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Abstract

Microseismic events are commonly recorded during hydraulic fracturing ex-

periments. In microseismic interpretations, each event is often regarded as

causally independent and uncorrelated to neighbouring ones. In reality, both

the rock deformation (static stresses) and transient wave motion (dynamic

stresses) associated with microseismic events influence the stress field together

with the external loading (fluid injection). It is thus very likely that many

microseismic events are caused by both static and dynamic stress changes. In

other words, some events may be caused by propagation of transient waves

instead of the stress changes purely related to fluid injection. In this thesis,

dynamic triggering of acoustic emissions is studied as an analogy of microseis-

mic events using Bonded Particle Method (BPM). A biaxial deformation test

on a rock core sample is simulated. First, a major event is created and how

dynamic waves influence the occurrence of the subsequent ones is qualitatively

and quantitatively studied. Then an external vibration is applied to the model

to investigate the influence of transient wave motion on failure in a controlled

fashion. It is found that dynamic stresses can alter the stress field and hence

cause a favorable change in the stress state for bond breakages. The external

vibration can advance the formation of the upcoming large local failure events
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and delay or advance the final catastrophic failure depending on the vibrational

amplitude.
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Chapter 1

Introduction

1.1 Background

Hydraulic fracturing is a well stimulation technique applied in unconventional

tight reservoirs. It breaks down rocks by injecting pressurized fluids and cre-

ates fractures and fissures as connected pathways for hydrocarbon migration

up to the ground. Wellbore parameters, for example, borehole pressure, are

monitored to offer direct information about fracturing effectiveness. Besides,

microseismicity, originating from the fracturing process, is used as an indirect

method to monitor the development of hydraulic fractures. Microseismic mon-

itoring has become a routine application over the past decade. Microseismic

signals generated by the instantaneous underground deformation are recorded

and processed to map microseismic sources (Maxwell, 2011). This continuous

recording delivers diagnostic information in terms of location, geometry and

evolution of the resulting fractures, as well as additional geologic information

on the reservoir. Recently, progress in real-time microseismic processing allows

operators to react in real time with fracture control to improve stimulation

coverage and avoid potential geohazards (Le Calvez et al., 2007).

Microseismic mapping has been proven a success in evaluating hydraulic

fracturing treatments (Cipolla et al., 2005; Wolhart et al., 2006; Warpinski et
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al., 2013). Nonetheless, several interesting field observations raise a number of

questions. The input energy, calculated by the pressure and injection rate is

found to be nine orders of magnitude larger than the output energy calculated

based on microseismic measurement (Maxwell et al., 2008). Spatially speak-

ing, some microseismic events are observed above and below a large fracture,

challenging the assumption in hydraulic fracturing interpretations that micro-

seismicity is indicative of the fluid fronts (Johnson et al., 2014). As a result,

microseismic studies have turned from localization methods to source mecha-

nism determinations. Restricted by the quantity and quality of microseismic

recordings and the limited coverage of geophones, geomechanical modeling is

employed as an important tool to simulate the fracturing process and test hy-

potheses beneath observations. Chorney et al. (2014) simulate triaxial tests to

study energy budget associated with rock failure and they find the empirical

Kanamori relation used in traditional seismology underestimates the failure

energy for microseismic events. Johnson et al. (2014) incorporate flow and ge-

omechanics in a fractured model at the field scale and validate the existence

of dry microseismicity. Geomechanical modeling is a powerful tool potentially

unveiling further details about the hydraulic fracturing process (Hazzard et al.,

2002; Zhao and Young, 2009; Zhao et al., 2014; Garcia-Teijeiro and Rodriguez-

Herrera, 2014). The objective of this thesis is to use geomechanical modeling

to study the relationship between individual acoustic emissions during the frac-

turing deformation in a compression test. The study will benefit microseismic

interpretation and operation strategy in terms of treatment effectiveness.

1.2 Dynamic earthquake triggering

An earthquake is a rapid process of energy release due to the relative movement

along a locked fault. This permanent deformation alters the in-situ stresses in
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the surrounding area and hence the stability of local faults. The quantification

of the influence of the permanent stress on local faults, termed the Coulomb

failure function (CFF) by seismologists, is extensively used to interpret earth-

quake clusters concentrated in a certain region or time frame after one major

earthquake (Das and Scholz, 1981; King et al., 1994; Toda et al., 1998). CFF

evaluates the slip potential of a fault experiencing loading. The correlation be-

tween positive changes in CFF (permanent stress pushing faults closer to fail-

ure) and the distribution of aftershocks implies a causal relationship between

a major earthquake and the following ones. This is called static earthquake

triggering.

Besides the permanent deformation, seismic wave propagation is another

indispensable component during an earthquake. The theory of dynamic trig-

gering due to seismic wave propagation is also important. The observation of

unexpected seismicities at great distances (larger than a few fault lengths) chal-

lenges the theory of static triggering. The static stress change is not significant

enough to trigger an earthquake at large distances. Seismic waves transfer a

transient but relatively greater stress. The calculation of CFF using dynamic

stresses offers a plausible candidate for remote seismicity occurrences (Pankow

et al., 2004). Following the study of dynamic triggering in remote seismicity,

the importance of dynamic triggering in local earthquake triggering is grad-

ually recognized (Cotton and Coutant, 1997; Kilb et al., 2000). Pollitz and

Johnston (2006) first test the relative importance of the static and dynamic

triggering in near-field aftershocks. They compare aftershock patterns because

of aseismic events, corresponding to the static stress influence, and ones gen-

erated by impulsive events, which are influenced by both static and dynamic

stresses. They conclude that dynamic triggering is more dominant in causing

near-field aftershocks.
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Recently, the theory of a secondary mechanism initiated by dynamic wave

propagations is established through laboratory work. Jia et al. (2011) add

waves of different amplitudes during a uniaxial compression test on polydisperse

glass beads and find that the sound-matter interaction weakens the medium

by causing a decrease in elastic wave velocities. Johnson et al. (2008) and

Ferdowsi et al. (2014) observe frictional weakening in sheared granular media

due to wave propagation through laboratory experiments and numerical simu-

lations respectively. The nonlinear behaviour of rocks in response to dynamic

waves seems to play a indispensable role in earthquake triggering.

Seismic waves transfer a transient and dynamic stress and initiate a weaken-

ing mechanism, influencing earthquake occurrences. It is possible that micro-

seismic events also interact with each other through the transient wave motion.

This thesis aims to study dynamic triggering of acoustic emissions by simulat-

ing a compression test using the bonded-particle method. This examination of

the fracturing process offers insight into microseismic event interpretations and

stimulation strategies.

The objectives of this thesis include:

1. Computation of the analytic dynamic stress induced by an event and

exploration of the subsequent failure patterns in order to evaluate the

relationship between individual acoustic emissions from the perspective

of dynamic stresses.

2. The addition of an external vibration during the compression test to

study the influence of their amplitudes and dominant frequencies on fail-

ure patterns.
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1.3 Thesis structure

The study is carried out in the next six chapters:

Chapter 2 reviews fundamentals of geomechanics necessary to readers.

Separated into two parts, continuum mechanics and fracture mechanics, basic

definitions and observations, viewing conventions, and common criterion are

introduced.

In Chapter 3, different geomechanical modeling methods are first outlined.

Then, the tool used in this thesis, bonded-particle method (BPM) and the soft-

ware, Particle Flow Code (PFC) are introduced on how the discrete elements

are manipulated to simulate a realistic behaviour of a specific material.

Chapter 4 examines the performance of BPM handling elastodynamics

problems by comparing the displacement and stress fields due to a single force

excitement with the corresponding analytic solutions. Wave propagation in

BPM due to the model’s discrete nature, scattering, dependence of wave ve-

locity on frequencies are also discussed. Then dynamic triggering of acoustic

emissions are studied by simulating a major event in the next two chapters.

Chapter 5 creates a major event by breaking bonds within several particles

in the center of the rock model. The influence of dynamic stresses are studied

in two methods. First, two modes of simulations, static and dynamic modes,

are carried out to compare the static and dynamic influences directly. The sec-

ond approach is similar to the calculation of CFF in seismology. The analytic

stress pattern induced by the major event are compared with the occurrence
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of the next few events to determine relationships between dynamic waves and

following events.

To work in a more controllable way, Chapter 6 follows work done by Fer-

dowsi et al. (2014) by adding an external vibration with specified amplitudes

and frequencies to initiate failure by wave propagation. The influence of am-

plitude and frequency of dynamic waves are studied respectively.

Chapter 7 summarizes the contents of this thesis, and ends with discus-

sions of further possible research.
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Chapter 2

Geomechanics

Geomechanics is a theoretical and applied science concerned with the mechani-

cal responses of geological materials. The two main disciplines are soil mechan-

ics and rock mechanics, the latter of which is the subject of this work. The rock

has complex mineral constituents due to its complicated genesis conditions. It

undergoes perpetual changes after formation, especially the external loading

due to tectonic movement. The rock will deform, and even fail. Also, the rock

can be a porous medium filled with fluids in the voids. All these factors makes

rock a Discontinuous, Anisotropic, Inhomogeneous and Not-Elastic (DIANE)

material (Hudson and Harrison, 2000). This chapter describes the fundamen-

tals of rock mechanics and it is divided into two parts, continuum and fracture

mechanics.

2.1 Continuum mechanics

Continuum mechanics is concerned with stresses in a medium without gaps

or severe deformation. Although it is an oversimplification of rock, concepts

and mathematical functions in continuum mechanics offer a great aid in rock

behaviour analysis. The stress tensor describes the stress states at any point

mathematically. Alternatively, a Mohr’s circle offers a graphical expression in
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the rock deformation analysis. This section will start with the basic concepts

mentioned above and then introduces general laws depicting rock behaviour.

2.1.1 Stress

Rocks are subjected to external loading since their formation. Different parts

inside a rock undergo relative changes in position in response to the applied

force. The force may vary both in orientation and magnitude with spatial

position. So another concept, stress, is also used in geomechanical study.

Stress is a second-order tensor with nine components, depicting the forces

acting on all surfaces passing through a given point:

σ =











σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33











, (2.1)

where σij (i,j = 1,2,3) represent the components of the stress tensor σ. The

stress tensor is a combination of three vectors which are mutually orthogonal.

Each row represents one vector, indicating the force applied on one of the

three orthogonal planes. So the first subscript of these components are the

same along each row. The second subscript represents the direction of force

decomposition on each plane. The stress components can be easily illustrated

in a block shown in Figure 2.1.

The stress tensor is a symmetric matrix. Its diagonal elements are normal

stresses and the off-diagonal ones are shear stresses (Malvern, 1969). In lin-

ear algebra, a real symmetric matrix can be diagonalized (Bronson and Costa,

2008). In the case of the stress tensor, a set of orthogonal basis vectors exists

to make the six shear components in a general stress tensor vanish. The axes

are called principal axes and represent the principal plane directions. Then the
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where n represents the unit normal of the plane. Force t is also called traction.

The traction t can be projected into the normal and shear directions, with

values equal to σ and τ respectively (Figure 2.2a). This algebraic expression

can be represented graphically in a Mohr diagram, presented by Mohr in 1914

(Parry, 1995). Mohr circles offer a qualitative and quantitative way to express

the stress states graphically. For example, principal stresses are given by the

points where circles cross the axis is shown in Figure 2.2b.

The introduction of the Mohr circle is based on principal axes where only

principal stress σi is needed to depict the stress state. In two dimensions,

suppose the principal stresses are σ1 and σ2 (σ1 ≥ σ2). Next consider a plane

whose unit normal direction is rotated counterclockwise by angle θ from the

maximum principal stress (Figure 2.2a) and compute the traction acting on

this plane. This gives the resolved normal and shear components:

σ =
σ1 + σ2

2
+

σ1 − σ2

2
cos 2θ,

τ = −
σ1 − σ2

2
sin 2θ.

(2.4)

Equation 2.4 represents a circle in the (σ , τ) plane (Figure 2.2b). If the

minus sign in the shear stress is absorbed into sin(−2θ), and cos(2θ) in the

normal stress is interpreted as cos(−2θ), then a circle can be expected at the

locus of the end of a vector with length (σ1 − σ2) fixed at the center point

(σ1+σ2

2
, 0) rotating clockwise around the center (Figure 2.2b). This circle is

called Mohr’s circle. The circle represents the stress states of planes orientated

in all directions. It intersects with the σ axis at two points, with the abscissa

equal to the principal stresses, σ1 and σ2. Mohr’s circle can be used to calculate

normal and shear stress at any plane. Though the calculation capacity of

modern computers is more appealing, the graphic representation gives a more

intuitive knowledge of the stress state especially in failure analysis.
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in Figure 2.3b).

So the stress states on a plane of any orientation are represented by the

shaded area in Figure 2.3c, an area bounded by three Mohr circles with diam-

eters given by the differences between any two principal stresses. Figure 2.3d

is a sketch showing the angles of the normal vector with the three principal

stresses in a Mohr diagram.

Underground stress states

The orientation of the principal stresses must satisfy the boundary condition

at the surface of the Earth where there is a nearly zero normal stress and

no shear (Hubbert and Willis, 1957). Therefore, here, one principal stress is

perpendicular to the surface, and the other two are surface parallel. Then the

three principal stresses can be expressed as σV , σH and σh (with σH ≥ σh). The

vertical stress is approximately equal to the overburden pressure and increases

with depth, yielding,

σV =

∫ z

0

ρ(z)gdz ≈ ρagz, (2.7)

where ρa is the average bulk density of the rock, and z is the target depth.

As for the horizontal stresses, they are controlled by lithology and tectonic

forces. In practice, it is observed that at shallow depths the minimum principal

stress is the vertical stress because of weaker cementation and compaction

at shallower depth as well as a reduced overburden weight. The minimum

principal stress often becomes a horizontal one at some depth depending on

the regional regime. There are three patterns of the relative stress magnitudes

shown in Table-2.1. The stress pattern determines the relative motion of rocks,

hence promoting a certain type of faulting (Anderson, 1951).

In some areas of tectonic activity, the principal stress may be tilted from the
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Type σ1 σ2 σ3

Normal faulting σV σH σh

Reverse faulting σH σh σV

Strike-slip faulting σH σV σh

Table 2.1: Anderson’s classification of faulting regime and the corresponding
relative stress magnitudes.

horizontal/vertical direction.

2.1.2 Strain

Upon loading, rocks can change in position as well as in shape (Figure 2.4).

Due to their deformability, different parts inside rocks may undergo nonuniform

displacements. Similar to stress, a tensor-form variable, strain, is used to give

a quantitative measure of the deformation:

ε =











ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33











, (2.8)

where εij (i,j = 1,2,3) represent the components of the strain tensor ε.

Strain results if relative change in position between neighbouring parts hap-

pens. However, not all relative displacement results in strain, e.g., rotation

(Figure 2.4b). The strain tensor can be expressed in terms of relative displace-

ment when the displacements of the material particles are assumed to be much

smaller than the dimension of the body (small-strain theory):

εij =
1

2
(
∂ui

∂xj

+
∂uj

∂xi

), (2.9)

where ui (i=1,2,3) is the relative displacement. The relationship between strain

εij and relative displacement ui is called the geometric equation. The strain

tensor is also symmetric.
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Linear elastic theory

In classic elasticity, stress and strain has a one to one correspondence and stress

depends linearly on strain. In one dimension, for example, external compression

at the two ends of a bar causes shortening. The relationship between the applied

loading and the material deformation obeys Hooke’s law stating that the force

F needed to attain a certain displacement x of a spring is proportional to the

distance, F = kx. It is a simple linear relation. The proportionality coefficient

k characterizes the spring’s elastic property and is called stiffness. For rocks,

moduli are used to describe the elasticity. The Young’s modulus E describes the

tendency to deform subject to opposing forces along one axis (Figure 2.4c). The

shear modulus µ describes an object’s tendency to shear (Figure 2.4d) when

acted upon by opposing forces. In a more realistic situation, the opposing

force along one axis not only causes shortening along that direction, it also

leads to expansion in the perpendicular directions. The parameter ν, called

Poisson’s ratio, is defined as the ratio between the transverse expansion and

the axial compression. These parameters are commonly measured and used in

geomechanical studies. Under triaxial loading, the linear dependence between

stress and strain is more complex:

σij = cijpqεpq, (2.12)

where cijpq (i, j, p, q=1,2,3) is a fourth-order tensor, called the stiffness tensor.

As Equation 2.12 has a similar form to Hooke’s law, it is called the generalized

Hooke’s law. Generally, a fourth-order tensor has 81 components. The stiffness

tensor decreases to 36 independent coefficients due to the symmetry of the

stress and strain tensors. If the material is isotropic, having no preference in

elastic properties along any orientation, the fourth-order tensor can be uniquely

expressed by only two parameters:
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cijpq = λδijδpq + µ(δipδjq + δiqδjp), (2.13)

where λ is Lamé’s first parameter. This parameter and the shear modulus

µ, also called Lamé’s second parameter, characterizing the elasticity of the

material. λ can be expressed using the Young’s modulus E and shear modulus

µ by:

λ =
µ(E − 2µ)

3µ− E
. (2.14)

Inserting Equation 2.13 into Equation 2.12, the generalized Hooke’s law in

an isotropic medium is:

σij = λεkkδij + 2µεij. (2.15)

Other constitutive relationships

Rock behaviour is much more complex than elastic theory predicts. In Fig-

ure 2.5a, immediately beyond the elastic range OB with a steep stress-strain

slope, a decreased slope occurs. The transition point B is called yield point

as irreversible deformation starts to form after this point. The rock enters the

plastic domain. The loading-unloading curve O-A-B-P-Q illustrates a perma-

nent deformation ε0. Figure 2.5a shows stress continues to increase with strain

after the yield point. It means the rock still supports the load without gross

fracturing. This phenomenon is called ductile behaviour, which is common in

carbonates and some sediments.

Rocks may also depend on strain rate, instead of purely strain alone. Rocks

resist deformation with time upon loading. Rocks then show viscoelastic and

viscoplastic features.

18





surface integral can be absorbed into the volume integral, that is:

∫∫∫

V

(5 · σ + f b) dV =

∫∫∫

V

ρü dV, (2.18)

where 5 represents the divergence operator. Due to the arbitrary choice of the

volume V , the integral can be discarded and the final expression is:

5 · σ + f b = ρü. (2.19)

This equation governs the dynamic problem at any point in the continuum.

In a homogeneous, unbounded, isotropic and elastic medium, Equation 2.19

becomes as follows by incorporating the constitutive relationship (Equation

2.15):

ρüi = f b
i + (λ+ µ)uj,ji + µui,jj, (2.20)

where the vectors, force and displacement, are expressed in the indicial nota-

tions as f b
i and ui (i = 1,2,3). The comma in the subscripts denotes partial

derivatives with respect to space. Repeating indices implies the use of the sum-

mation convention which states that the repeating letter should be given all

possible values and the results added together.

The governing equation can be used to set up a geomechanical model and

compute the stress distribution with the proper boundary and initial condi-

tions. This is the basis of the analyses in the following chapters.

2.2 Fracture mechanics

Underground rocks are subject to external loading including overburden stress,

tectonic forces, etc. Rocks fail if the applied stress reaches a certain limit, lead-
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ing to permanent deformation. This characteristic limit is called rock strength.

Compressive strength is generally assessed with laboratory tests, including uni-

axial, triaxial and true-triaxial or polyaxial tests. The most common test is an

axial compression test on a circular cylinder specimen. If confining pressure is

zero, it is called a uniaxial test and the stress at which rock fails is termed un-

confined compressive strength (UCS). When the confining pressure is not zero,

the experiment is generally called a triaxial test, even though the radial stress

is homogeneous. The strength generally increases with the confining pressure.

A true triaxial or plolyaxial test simulates the more general underground states

where three principal stresses are different.

Tensile failure is an alternative to compressional failure. Tensile strength

can also be attained in the laboratory by a Brazilian test.

2.2.1 Compression failure

The failure of rocks in compression is a complex process that involves micro-

scopic failures manifested as the creation of small tensile cracks and frictional

sliding on grain boundaries and cracks (Brace et al., 1966). Eventually, a shear

plane is formed through coalescence of these microscopic failures (Lockner et

al., 1991).

Mohr–Coulomb failure criterion

The Mohr-Coulomb failure envelope is an experimentally determined failure

condition. A series of triaxial tests defines an empirical Mohr-Coulomb failure

envelope. One plots the Mohr circles when failure occurs at different combi-

nations of principal stresses. The curve enveloping all the stress state points

on different circles is the Mohr-Coulomb failure envelope (Figure 2.7b). The

Mohr circle represents the stress states (the normal and shear stress) on planes

of any orientation. Points below the envelope are stable without possibility of
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Linearized theory of Mohr–Coulomb failure criterion

A linearized simplification is usually used in reality (Figure 2.7c). Amonton’s

law of friction states that two contacting bodies over an inclined surface must

overcome a shearing force T related to the normal force N and the friction

coefficient µi to slip, T = µiN . Similarly, the shear component of the traction

along the plane τ , needed to overcome the friction, is proportional to the applied

load σ. Sliding will occur as soon as the shear stress overcomes the friction. But

different from Amonton’s law, an inherent cohesive force exists in the process.

That is, even when the normal load is zero, sliding will not occur unless the

value of shear stress exceeds this inherent threshold. Then the linearized theory

can be defined by two parameters: (1) the slope of the failure line µi, termed as

the coefficient of internal friction, where the subscript in µi is used to distinguish

from the shear modulus µ; and (2) the inherent force S0, which is called the

cohesive strength (or cohesion), that is,

τ = S0 + σµi. (2.21)

Figure 2.8 shows the stress states (principal stresses S1 and S3) of failure

derived in a series of triaxial tests under different confining stresses in labo-

ratory. It shows the linearized Mohr-Coulomb criterion in the σ1 − σ3 plane,

which can also be derived analytically by replacing σ, τ in Equation 2.21 with

σ1 and σ3 using Equation 2.4.

2.2.2 Tensile failure

When tensile stress is applied and exceeds a critical limit, the rock will fail in

tension. The subjected tensile stress equals then the rock tensile strength, T0.

The tensile strength for all rocks is quite low compared with their compressive

strength. A purely tensile stress is quite rare underground especially below a

certain depth where stresses are generally compressive.
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Figure 2.9: Bilinear failure criterion used in both tensile and compressive loads
(Jaeger et al., 2009).

So apart from these empirical laws, much effort has been made in developing

criteria from physical models of the deformation in fracture processes. Based

on the fundamental concept of surface tension, Griffith (1924) created a new

theoretical framework to calculate strength. He assumed the sum of surface

tension energy of the crack, potential energy of the applied forces and strain

energy of the specimen stays constant during the crack development. Griffith

dealt with a two-dimensional problem, the stress in a plate pierced by a small

thin elliptic crack. Following Inglis’ solution to this general question (Inglis,

1913), he calculated the tangential stress along the boundary of the crack. Ac-

cording to the theory that a crack will extend when the maximum tensile stress

reaches some value characteristic for the rock, the maximum tangential stress

and the corresponding crack orientation were derived.

The ratio of uniaxial compressive strength and uniaxial tensile strength,

C0/T0 is 8 from Griffith’s theory. This is larger than the prediction of Coulomb

theory (less than 5.83) but still lower than commonly observed in most rocks

(on the order of 10); yet it is a reasonable result (Jaeger et al., 2009).
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Chapter 3

Geomechanical modeling

Different methods have been used to study the mechanical behaviour of rocks

and they can be analytical (Deresiewicz, 1958; Marketos and O’sullivan, 2013),

physical (Jia et al., 2011) or numerical (Cundall and Strack, 1979). All these

three methods can show mechanical characteristics to some extent. Besides,

they can provide an alternative test to validate each other. Numerical modeling

is insightful due to its repeatability and possibly continuous information stream.

However, observations from numerical tests should be taken with caution.

3.1 Numerical modeling of rocks

Numerical methods can be subdivided into two categories:

• Continuum approaches

• Discontinuum approaches

These two methods are classified by the treatment of the problem domain

(Jing, 2003). A model ’qualifies’ for being continuous only when subdivided

into infinite number of components with the assumption of an infinitesimal

element. A model can be seen as discrete if it is represented by a finite num-

ber of well-defined components/elements. In terms of damage representation,

the continuum method is called an indirect model as the damage is addition-
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ally supplemented; the discontinuum method is a direct modeling approach

as damage is the result of formation of microcracks (Potyondy and Cundall,

2004). Following different methodologies, the governing equations and consti-

tutive relations are adaptively formulated.

3.1.1 Continuum approaches

In continuum models, as the assumption of infinitesimal elements made, the

equation of motion is represented at local points by a partial differential equa-

tion (PDE) (Equation 2.18) which is then replaced by an assembly of algebraic

equations by different numerical methods.

The finite difference method (FDM) directly approximates the partial deriva-

tives by differences. The problem domain in FDM is generally discretized into

a regular rectangular grid of nodes (Figure 3.1). A truncated Taylor series

is used for system variables like displacement. The partial derivatives in the

governing PDE can be represented by the remaining polynomials. Then the

unknowns at each point can be solved by the values at its surrounding nodes.

Using this treatment, combined with boundary values, the unknowns at nodes

in the whole domain can be calculated.

The finite element method (FEM) is one of the most popular numerical

methods (Strang and Fix, 1973). Instead of directly solving the partial deriva-

tives in the PDE, an integral is solved instead by summation and the PDE

becomes a global algebraic system of equations in matrix form. The integral is

a multiplication of the partial derivative and a polynomial (Figure 3.1b). The

polynomial is called the shape function. A triangular element is often used

in the discretization and hence FEM is more applicable in handling rock in-

homogeneity and anisotropy. Also, the efficiency of FEM makes it a powerful
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in rocks directly. The continuous modeling method is often used to describe

mechanical behaviour in engineering scenarios, whereas discontinuous modeling

is generally used to study the mechanics governing rocks’ behaviour (Potyondy

and Cundall, 2004).

The modelling method used in this thesis is called the bonded-particle

method (BPM) (Cundall and Strack, 1979). Modeling is performed by a com-

mercial modeling software, the particle flow code (Itasca, 2008). BPM is a

subset of the discrete element method (DEM) as bonding of two particles to-

gether is allowed. The details of how BPM is constructed and formulated will

be introduced in the next section.

3.2 Particle flow code (PFC)

The particle flow code (PFC) is a simplified implementation of the discrete

element method (DEM) as the components in the model, particles, are rigid

bodies which cannot deform. It models a real material as an assembly of par-

ticles. The particles inside the model interact at the contacts connecting two

bodies and hence the model evolves upon the prescribed conditions to simulate

real-world behaviour of a certain material. Details on the model and its ratio-

nale are introduced in this section.

3.2.1 Model setup

The model generated in PFC has three basic components: particles, contacts

and walls. Particles make up the main body of the model. Contacts become

active when two particles come into contact (overlap), and together with par-

ticles, they define the mechanical behaviour of the model. Walls are artificial
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interfaces used to apply external conditions to stimulate a certain response

upon request.

Particles

The shapes of particles in PFC are not arbitrary. They are circular disks with

unit thickness in 2D models or spheres in three-dimensional simulations. So

particles are often referred as balls in PFC. However, it is also possible to

simulate an irregular-shape particle by assembling several uniform particles

together as a unit, called clump. It is worth noting that the type of particle in

PFC is not necessarily equivalent to the unit of the real material, for example,

grain in the rock. Particle sizes in PFC can be diverse. It can range from

millimeters in rock core modeling (Chorney et al., 2012) to several meters when

simulating a field scale case (Yoon et al., 2014). Naturally, smaller particles

can more closely approximate the heterogeneity of real rocks and this gives

a better representation of micromechanical behaviour. However, for the same

size model, smaller particles mean larger quantities and hence more expensive

computations. Therefore the determination of particle size should be duly

considered. Apart from particle-size parameters, a particle is characterized by

microproperties listed in Table 3.1. The particle is an elastic object resisting

loads in the normal and shear directions. Because of the difference between

particles and grains, particle properties cannot be directly assigned laboratory

values. For example, the determination of particle density in a PFC model

needs to take porosity φ into consideration:

φ =

∑n
i=1 Vi

ρV
,

ρP =
ρ

φ
,

(3.1)
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where Vi is the volume taken by each particle of the model comprising of n

particles with volume equal to V . ρP is the particle density and ρ is rock

density.

Symbol Parameter
ρ Ball density
Ec Modulus, kn = 2Ec

kn/ks Stiffness ratio
µ Friction coefficient

Table 3.1: Microproperties of particles in a PFC model.

Contacts

As particles in PFC are rigid objects absent of deformation, the interaction be-

tween particles needs a specific treatment. The method used in PFC is called

soft contact approach which is widely used in discrete element simulations.

Two particles overlap each other after they get into contact and interaction

between particles begins. The interaction between two contacting particles has

three basic modes: compressed, slip and tearing apart. Parameterized in PFC,

the interaction is described by three microparameters associated with contacts:

stiffness, maximum shear contact force and bond strength. These three param-

eters can describe any potential relative motion between two particles.

Contacts have two forms according to the contacting entities: ball-ball and

ball-wall contact. Figure 3.2a shows the geometry of two interacting particles

A and B. xi denotes the location, and superscripts identify particles A and

B and contact C. Other geometric information includes particle radius R[A/B],

the distance between two particles d, overlap Un and the unit normal of the

contact plane ni. The contact plane is the plane going through the contact

point and perpendicular to the line connecting the centers of two particles. A
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the connecting springs does, otherwise the springs will buckle:

F eq = FA = FB,

keq
n (xA

n + xB
n ) = kA

n x
A
n = kB

n x
B
n ,

keq
n =

kA
n k

B
n

kA
n + kB

n

,

(3.2)

where F eq is the force on the equivalent spring, equal to forces FA and FB

on the springs representing particles A and B. kn is the normal stiffness and

superscripts identify the three springs (Figure 3.3a). Similarly, xn is the spring

displacement.

The shear stiffness of a contact has the same form of relationship with the

shear stiffness of particles. Different from compressive forces, the shear force

Fs between particles has a limit Fmax
s . It is subject to a Coulomb-type friction

threshold determined by the normal force Fn at the contact and the particle

friction coefficient µ (minimum value of two connecting particles):

Fmax
s = µ · Fn. (3.3)

Particles slip relative to one another once the shear force exceeds the limit

Fmax
s and the shear force is then automatically set to this maximum value.

The fraction of slipping contacts represents the intensity of particle motions.

So the slipping contact ratio (SCR) has been widely used in analysis of granular

material modeling (Ferdowsi et al., 2013).

The fact that the contact is inactive until two particles overlap implies

the normal component of the contact force can only be compressive. For a

more realistic representation of particle interaction, PFC provides the option

of adding a bond at the contact. This corresponds to a wide range of rocks
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in nature whose cohesion between particles results from compaction or binding

phase during their formations (Radjai et al., 2010). The bond works like a glue

combining two particles together so tensile forces are attainable. There are

two kinds of bonds built into PFC, namely contact and parallel bonds. Bonds

in PFC are parameterized by stiffness and strength in the normal and shear

directions. When bond strength (normal or shear) is exceeded, the bond will

break (Figure 3.3c).

These two bonds differ in application area. Contact bonds act on a van-

ishingly small area. It does not resist relative rotation, so only forces can be

transmitted. The contact bond can be seen as springs with limits in the nor-

mal and shear directions (Figure 3.4a). In the normal direction, the spring

continues working when two particles are no longer in touch compared with

unbonded particles (Figure 3.4b). The contact force is computed by:

Fn = kn · Un,

Fs = ks · Us,
(3.4)

where Fn and Fs are the normal and shear components of the contact force.

kn and ks represent stiffnesses in the normal and shear directions. Un is the

distance between particles. There is overlap when Un ≥ 0 and Un < 0 means

two particles are pulled away. Us is the shear displacement. If the normal/shear

component of the contact force exceeds the corresponding strength, F n
c and F s

c ,

the bond will break (Figure 3.4b and c).

Another difference is that contact bonds and slip behaviour are not com-

patible (Figure 3.4a and d). If the contact bond is installed, slip behaviour is

inactive regardless of the value of shear force unless the bond is broken. The

contact bond is defined by normal and shear bond strength, F n
c and F s

c . The

strength used in the contact model is force. The contact force is iteratively
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ticles as mentioned before. However, the assumption of a constant stiffness can

be oversimplified for a variety of materials and loading conditions. PFC also

provides other options. Table 3.2 lists several contact models in PFC to simu-

late a certain rock behaviour. The linear contact model with parallel bonds is

used to simulate compression tests.

Contact models Features
Simple ductile model Softening slope instead of constant slope of force-

displacement curve in contact-bond behaviour
Smooth-joint model Simulate a joint-like structure, a weak plane larger than

contact interface, in PFC
Simple viscoelastic model Add a dashpot in series with springs to simulate a time

dependence of stress on strain
Stress corrosion model Add a damage-rate law to the parallel-bond for a time-

dependence of brittle failure (Potyondy, 2007)

Table 3.2: Examples of additional contact models in PFC.

Walls

Walls in PFC have two main functions. The first one is to use walls as a tempo-

rary constraint for particle generation. The walls set up a vessel customized to

hold the model with a specified shape and size. Then particles are generated

within the region. The outcome is called a specimen. After generation, the

specimen can be removed from the vessel by deleting walls.

The second use is to apply boundary conditions. If not deleted, walls can

continue working in the form of boundary constraints. In PFC, forces cannot

be applied on walls directly by the user. The only way to control walls is to set

a velocity. Constant velocity corresponds to a fixed strain rate. The resultant

force on the particles can be monitored during simulation. Another boundary

condition is to use a feedback mechanism to maintain constant stress on walls
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by adjusting their velocities. This boundary condition is sometimes used to

introduce excitations in the model. A more complex velocity history can be

implemented too. Then the model evolves with the stimulation and the result-

ing particle interaction can again be monitored.

3.2.2 Model formulation

As mentioned before, geomechanical modeling is based on two key items,

namely the equation of motion and the constitutive relations appropriate for

the modeled material. In PFC, the constitutive relation is depicted at a mi-

croscale, that is, the contact model at each contact. The contact behaviour

links the displacement and resultant force/momentum at the contact. The

force/momentum in turn determines the particle motion according to New-

ton’s second law in terms of translational and rotational motion. PFC adopts

a time-stepping algorithm to develop a dynamic simulation of the model. The

calculation alternates between contact model and motion equation at each step.

Figure 3.7 shows the calculation cycle in PFC. Each step starts from the

spatial information of balls and walls, x
(P )
i and x

(w)
i . Then the assembly of

contacts gets updated in terms of position x
(c)
i based on the contact geometry

(Figure 3.2). According to the contact model, contact forces F n and F s are

then derived. The state of the parallel bond is checked at every calculation

step, if intact, bond forces and momentum (F
s

i , F
n

i and M3) are also calcu-

lated. Before jumping to the application of the motion equation, the shear

component of contact force F s and maximum stresses at the bond, σmax and

τmax, are compared with their limit values. If the shear force is greater than

the maximum value Fmax
s (Equation 3.3), the connecting particles will slip and

the shear force is set to the maximum value. If either of the maximum stresses

around the bond area exceeds the strength values (σc and τ c), the bond will
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Stress measurement strategies

One advantage of numerical simulations is its possibly continuous information

stream during the simulation process. The kinetic and dynamic information

are recorded to interpret the model behaviour. Quantities like velocities and

forces are easy to follow and can be extracted from the model results. However,

stress needs an extra treatment.

Stress is a continuum concept whereas PFC is a discrete model. Stress

does not exist at a single particle; instead contact forces and particle displace-

ments are calculated and recorded. They can be used to estimate the stress

in the model. Two techniques for stress calculation are included in PFC: (1)

boundary-based stress by dividing forces on walls or outermost particles by the

cross-sectional area of the specimen’s side; (2) average stress within a specific

area extracted by means of measurement circles (2D) or spheres (3D). Both of

these methods are used in this work.

The wall-based stress calculation gives an overall estimate of the stress state

in the sample during simulation. For example, the axial stress is calculated by

dividing the forces on the horizontal walls, Fy, with the width of the sample,

wd. Forces exerted on the walls are recorded using:

Fy = 0.5×
(

W 2
y −W 1

y

)

, (3.6)

where W is the force on the wall. The subscript corresponds to the individual

component of the force. The superscript represents wall index, where 1 is bot-

tom and 2 is top wall (Figure 3.8). The wall-based stress calculation calculates

average forces on two opposing walls so the factor 1
2
is used.

Sample dimensions are measured by monitoring the location of the confin-
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direction can be calculated through:

σyy =
Fy

wd
. (3.8)

The wall-based stress is monitored during the whole simulation to give an over-

all picture of the stress state throughout the sample. Stress accumulation leads

to bond breakage. A bond breakage is actually a conversion of strain energy

into kinetic energy. When the released energy is large enough, the wall can

’detect’ the change and a sudden drop occurs in the axial stress.

The measurement-based stress gives a detailed description of the stress state

at a microscale defined by the size and position of the measurement circle.

The circle is defined by its center (mx,my) and radius mr (Figure 3.8). The

displacements and forces of all the particles within the measurement circle are

used to calculate the averaged stress σij based on the concept of homogenization

(Jing and Stephansson, 2007):

σij =
1− n

∑Np

1 V (p)

Np
∑

1

N
(p)
c

∑

1

(

x
(c)
i − x

(p)
i

)

F
(c,p)
j , (3.9)

where n is the porosity in the measurement circle, Np is the total number of

particles within the measurement circle, V (p) is the volume taken by one par-

ticle, N
(p)
c is the number of contacts around one particle, x

(c)
i and x

(p)
i give

locations of a specific contact and its particle, and F
(c,p)
j is the associated con-

tact force. The derivation of Equation 3.9 can be found in the PFC2D manual

(Itasca, 2008).

The measurement-based stress cannot be obtained in laboratory tests. Yet

it gives pertinent information to analyze the behaviour of materials, including

stress phenomena due to local failure. Laboratory tests can only obtain wall-
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based stresses. So comparison between PFC models and real materials should

rely on wall-based results.

Damping and dynamical modeling

A numerical damping force is added in the PFC system to absorb energy for an

accelerated convergence. Rocks in nature have various mechanisms like internal

friction and scattering to dissipate energy. However, a PFC model can only

dissipate energy through frictional sliding, which is insufficient to reach a steady

state within a reasonable number of calculation steps. A numerical damping

force is introduced. It is added to each particle every step. The magnitude of

the damping force is proportional to the unbalanced force to stabilize particles:

F d = −α|F |sign(v), (3.10)

where F d is the damping force, α is called the damping parameter which de-

termines the damping level, |F | is the magnitude of the unbalanced force and

sign(v) is the sign of the velocity of the particle. The measurement of atten-

uation in rocks, the quality factor, Q is inversely proportional to the damping

parameter α (Hazzard and Young, 2004):

Q =
π

2α
(3.11)

The default value of the damping parameter α is 0.7, corresponding to a

high level of damping. As simulations in this thesis involves dynamic processes

where wave propagation is crucial, a lower damping equal to 0.0157 is used to

attain a realistic level of energy dissipation in granite. It corresponds to a Q

value equal to 100. The damping parameter is switched to this low value to

allow for wave propagation when a bond breaks, and switched back to 0.7 after

the influence of wave propagation is believed to terminate to maintain a reason-
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able rate of convergence. Bond failure thus redistributes stress in its vicinity

due to the deformation of contacts and bonds in the neighbouring particles.
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Chapter 4

Analytical and numerical

computation of stresses and

strains

4.1 Introduction

The particle-based method allows for examination of wave propagation and

stress patterns at the microscopic scale. In this section, wave propagation is

simulated using a bonded particle method to validate its capability of wave

propagation simulation. Elastic wave propagation is simulated by exciting a

particle with a single force. I then compare the resulting displacements and

radiation patterns with the analytic results to validate the simulation results.

Finally, characteristics of wave propagations in a discrete model are discussed.
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4.2 Theory

4.2.1 Analytic solutions

Displacement field

First, a point source is considered. More complex sources with a spatial extent

can be constructed from an integral of this end-member case. The nth compo-

nent of the displacement u(x, t) at the observation position x, due to a point

force at the origin in the pth direction with a time-varying magnitude Fp, in a

homogeneous, isotropic, elastic and unbounded medium is (Aki and Richards,

2002):

un (x, t) = Fp ∗Gnp

=
1

4πρ
(3γnγp − δnp)

1

r3

∫ r
β

r
α

τFp (t− τ)dτ

+
1

4πρα2
(γnγp)

1

r
Fp

(

t−
r

α

)

+
1

4πρβ2
(−γnγp + δnp)

1

r
Fp(t−

r

β
),

(4.1)

where Gnp is the Green’s function, γi is the direction cosine with the ith axis

at the observation point x , r is the source-receiver distance, α and β are the

P- and S-wave speed respectively, and ρ is the density of the medium. δij is

the Kronecker symbol.

Equation 4.1 shows the displacement is made up of three parts and they are

known as the near-field, far-field P- and S-wave terms (Aki and Richards,

2002). Each term is made up of four constituents: (1) a constant, (2) a

distance-dependent variable, responsible for geometric attenuation, (3) a space-

dependent factor, included in the bracket, also called the radiation pattern, and

(4) a time-dependent variable, modifying the shape of the source waveform Fp.
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The radiation pattern is a linear combination of direction cosine γi. It re-

flects the wave polarization at a wavefront. The near-field wave motion has

both radial and transverse components. It is a mixture of P- and S-waves. The

far-field P-wave term has only a radial component and that is why it is termed

as a P-wave. Similarly, only a transverse component exists in the far-field S-

wave term.

The time-dependent variable which includes Fp, reflects the waveform of

each term. According to Equation 4.1, the far-field P- and S- wavefields have

the same waveform as the source wavelet, but with a lag. The P-wave arrives

at a time of r
α
while the S-wave has an arrival time of r

β
. Both of them have the

same period as the source, T . The near-field wavefield has an integration from

the far-field P- to the S-wave arrival times. So it has a longer duration time

equal to r
β
− r

α
+ T . According to the mathematical expression, the near-field

waveform is part of the convolution of the source wavelet with time, depending

on the integral interval related to the source-receiver distance r. So the near-

field waveform varies with r. This can complicate for instance the calculation of

wave velocities when the receiver is at a position where the near-field influence

cannot be ignored.

The r-variable in each term is responsible for attenuation with travelled dis-

tance. It determines which term in Equation 4.1 is more dominant at a specific

position. Aki and Richards (2002) gave the frequency-domain representation

of Equation 4.1 to demonstrate the relative dominance. Following the notation

and convention of the following Fourier transform:

F (ω) =

∫ +∞

−∞

f (t) e+iωtdt (4.2)
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The Fourier transform of Equation 4.1 is:

Un (x, ω) = Fp (ω)Gnp (ω)

=
Fp (ω) e

iω r
α

4πρα2r

[

γnγp + (3γnγp − δnp)
(

IP + I2P
)]

−
Fp (ω) e

iω r
β

4πρβ2r

[

(γnγp − δnp) + (3γnγp − δnp)
(

IS + I2S
)]

,

(4.3)

where IP = i α
ωr

and IS = i β
ωr
.

The frequency representation shows that P- and S-wavefields can be inde-

pendently expressed in the frequency domain. Besides, the relative dominance

of the near- and far-field components at a point can be determined by compar-

ing the two terms in the square brackets. The first term within the brackets

corresponds to the far-field term, and the second term to the near-field con-

tribution. Since the radiation patterns are of the same order of magnitude,

dominance can be decided by comparing the weights. The weight of the far-

field contribution is a constant, equal to 1. For the near-field term, the weight

is a quadratic polynomial of a distance-dependent variable, IP and IS. For

simplicity, the imaginary unit is ignored and only the physical meaning of α
ωr

and β
ωr

is explained here.

α

ωr
=

1

ωr/α
=

1

2πfr/α
=

1

2πr/λP

=
1

2π × nP

, (4.4)

where nP is the number of wavelengths λP at a distance r for a P-wave of

frequency ω. Factor α/ωr is inversely proportional to np and np is propor-

tional to r for a given frequency wave. So the relative dominance depends

on the distance. The factor α/ωr approaches infinity and hence the near-field

is more dominant, when receivers are positioned a small fraction of a wave-

length away from the source. When positioned at several wavelengths, α/ωr

approaches zero and the far-field term becomes the significant contribution.
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The factorβ/ωr has the same property as α/ωr.

In short, the displacement due to a single force in a homogeneous, isotropic,

elastic and unbounded medium is made up of three parts, namely the near-field

waves, far-field P-wave and far-field S-wave. They propagate from the source

with a circular front and a certain radiation pattern. They attenuate with

the travelled distance r. The near-field waves dominate within a distance of a

small fraction of the wavelength, and the far-field waves become dominant at

positions several wavelengths away from the source.

Stress field

The transient stress perturbations due to wave propagation can be linked to

the displacement expressed in Equation 4.1 by the stress-strain relationship

and the geometric equation (Equation 2.9). Combined with Hooke’s law for

homogeneous and isotropic media (Equation 2.15), the following relationship

is obtained:

σij = λδijup,p + µ (ui,j + uj,i) , (4.5)

where λ and µ are known as the Lamé’s moduli and ui,j is the spatial derivative

of displacement component ui along the jth direction.

Inserting Equation 4.1 into Equation 4.5, the dynamic stress associated with

an elastic wave due to a point source in a homogeneous, isotropic, elastic and
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unbounded medium is,

σij (x, t) =
1

4πρ

1

r4
(λδijAN + µBN)

∫ r
β

r
α

τFp (t− τ)dτ

+
1

4πρα2

1

r2
(λδijAIP + µBIP )Fp

(

t−
r

α

)

+
1

4πρβ2

1

r2
(λδijAIS + µBIS)Fp

(

t−
r

β

)

+
1

4πρα3

1

r
(λδijAFP + µBFP ) Ḟp

(

t−
r

α

)

+
1

4πρβ3

1

r
(λδijAFS + µBFS) Ḟp

(

t−
r

β

)

,

(4.6)

where the dot represents the temporal derivative. The parameters are given

by:
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(4.7)

Similar to the displacement, the stress field can be subdivided into several

terms. These are, in order of appearance, the near-field, mid-field P-wave,

mid-field S-wave, far-field P-wave and far-field S-wave terms, also identifiable

by the increasing power in the distance dependence and their arrival times.
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4.2.2 Numerical solutions

Upon an excitation, PFC iteratively applies the force-displacement law and the

law of motion to each particle in the model (see Chapter 3 for full details). The

response to an excitation can be quantified by kinetic parameters like particle

velocity and displacement, as well as dynamic parameters like stress and strain.

The wave motion and radiation pattern can be easily recognized from the

particle velocity, displacement and stress. Also, the wave propagation velocity

can be calculated. Particles can be selected to record signals, similar to re-

ceivers used in reflection seismology. Then it is straightforward to compute the

propagation velocity using arrival times and positions of these particles.

4.2.3 Model setup

In this chapter I will compare analytic results for particle displacements and

stress perturbations due to a single force with those obtained using a PFC

simulation. However, general PFC models are confined by rigid walls exerting

the boundary conditions. Therefore wave reflections on walls are inevitably

complicating a direct comparison of the analytical and modeling results. As

a result, a high damping layer is added around the model to absorb the re-

flections. The model for wave propagation is assembled by fitting together

several uniform units using the AC/DC (Adaptive Continuum/DisContinuum)

algorithm in PFC (Young et al., 2004). The AC/DC algorithm allows a large

model to be quickly assembled with the unit which is already compacted and

in equilibrium, and also inexpensive in memory and computation, instead of

constructing a large one from scratch.

The unit used is an assembly of 1866 particles, representing a 31.7 x 63.4
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mm block of Lac du Bonnet granite. The damping parameter is set to a lower

value, 0.0157, to approximate a realistic attenuation in granite. Microproperties

input into PFC are listed in Table 4.1. The average particle diameter is 1 mm.

Compression tests on the unit model yield the value of macroproperties in Table

4.2 (Potyondy and Cundall, 2004).

Parameter Value Unit
Grain density 3169 kg/m3

Grain Young’s modulus 62 GPa
Stiffness ratio for grain 2.5 N/A
Friction coefficient 0.5 N/A
Parallel bond Young’s modulus 62 GPa
Stiffness ratio for parallel bond 2.5 N/A

Table 4.1: Microproperties of the unit assembly

Parameter Value Unit
Density, ρ 2667 kg/m3

Young’s modulus, E 71.3 GPa
Poission’s ratio, ν 0.22 N/A
P-wave velocity, vP 5525 m/s
S-wave velocity, vS 3310 m/s

Table 4.2: Macroproperties of the unit assembly (derived in a compression test
with confining stresses equal to 10 MPa).

Then using the AC/DC algorithm, a large model used for wave propaga-

tion is assembled. The large model is square in shape, made up of 32 units

and 60850 particles (Figure 4.1). Particles within the model can be subdivided

into two categories according to their functions. The outer boundary (yellow

particles) serves as a damping layer to eliminate reflections. These particles are

assigned a high damping parameter compared with the inner particles, decreas-

ing the reflecting energy on the boundary. The middle part (grey particles) is

the observation area. It is a 126 mm-wide square. The model can be used to
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4.3 Results: excitation of a single force

A half cycle of a sine wave is input at the center as a point source with a dis-

placement along along the vertical direction. The frequency is set at 100 kHz.

The analytical displacement and stress fields are calculated by replacing Fp with

a half cycle of sine function along the vertical direction in Equation 4.1 and

Equation 4.7. The PFC model is stimulated by a particle displaced vertically

with a sinusoidal-varying velocity lasting a half-period for the numerical results.

4.3.1 Analytic solutions

First I compute the resulting analytic wavefields and stresses.

Displacement field

Figure 4.2 shows the radiation pattern of the displacement field in terms of

near- and far-field components. It clearly shows the near-field waves are a

mixture of P- and S-waves, having both non-zero radial and transverse compo-

nents. In the far-field terms, the P- and S-waves are decoupled. P-waves have

only a radial component, as defined from the origin (center). The radiation

pattern has a symmetry axis in the direction of the source motion, i.e., the y-

axis. The S-wavefield has only a transverse component and the symmetry axis

is perpendicular to the source particle motion, that is, the x-axis. For P-waves,

both near- and far-fields have the same polarities whereas for S-waves, they

have opposite polarities as predicted by radiation terms in Equation 4.1.
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4.3.3 Discussion: comparison between the analytic and

numerical solutions

The analytic solution is based on the assumption of a homogeneous, isotropic

and elastic medium, whereas the numerical calculator PFC is an inhomoge-

neous and damped system. So differences between these two solutions should

be expected.

For the displacement field, basically, the PFC results have the same pat-

tern as the analytic solutions (Figure 4.4 and 4.7). The differences reside in

the location and shape of the main lobes. The main lobes extent to a further

distance from the source. As the two solutions are shown at the same time

instance, it implies a higher velocity of wave propagation in PFC. This relates

in part to the difference between the dynamic velocity in PFC and the static

velocity prescribed in the analytic solution. The static velocities are calculated

by elastic constants E and ν given in Table 4.2. This coincides with the fact

which is shown in the following section that the static velocities are smaller

than the dynamic ones. Dispersion may also play a role as shown in the next

section. Another difference is the shape of the outer loops. The outer two

loops in the analytic solution are the remains of the near-field and far-field P-

wavefields when summed together. They become one in PFC. Despite of these

two points, PFC shows comparable features with the analytic solution.

The stress field is more complex than the displacement field. The analytic

solutions and PFC results show similar stress fields in terms of patterns and

polarity (Figure 4.6 and 4.8). However, the speckle noise masks many of the

features clearly visible in the analytical solutions. The PFC stresses are likely

more diverse due to the use of a discretized grid of individual particles, leading

to wave scattering and stress heterogeneity.
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The similarities between the analytic and simulated results in both the dis-

placement and stress fields gives confidence that PFC can be used to study

wave propagation and dynamic triggering due to brittle failure.

4.4 Further analysis

4.4.1 Characteristics of wave propagation in PFC

The previous section shows that displacement of a single particle generates

both P- and S-waves. However, various aspects of wave propagation in PFC

are not yet clear. For instance, what is the propagation speed? Are the results

frequency dependent?

In this part, a series of 20 particles are registered (R1-20) to further study

wave propagation in PFC with the same model (Figure 4.9). They serve as

receivers used in laboratory and field work to record particle velocities. They

are placed along the horizontal and vertical directions with the same spac-

ing, about 15-particle-diameter lengths around a source particle in the center.

According to the source-receiver geometry, the horizontal components of the

receivers along the vertical direction (R11-20) record transverse motion and

vertical components correspond to radial motion. Similarly, the horizontal and

vertical components of the receiver recordings along the horizontal direction

(R1-10) trace radial and transverse motion, respectively.
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quite similar to the source particle (orange line in Figure 4.11a). It starts with

a trough, followed by a larger peak. For R-5, the vertical motion starts with

a small positive bump, followed by a waveform similar to the source particle.

Both of the vertical recordings have the same initiation time, highlighted by red

circles. Also, the vertical component at R-5 has a larger amplitude than R-15.

The relative amplitudes of R-5 and R-15 can also be observed in the frequency

domain (Figure 4.13b). Besides, motions at these two farthest receivers retain

the characteristic frequency of the source motion.
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posed S-wave recorded at R-5 has the same arrival time as the P-wave at R-15

(red circles in Figure 4.13). This could be explained by the random packing

of the PFC model. R-5 is not perfectly located along the horizontal direction.

So the P-wave motion cannot be excluded from the vertical motion recorded

at R-5. Then the arrival time cannot be used to calculate the wave velocities.

As a result, the first positive peak is chosen instead (black asterisks). The

smaller positive peak is due to the fact that R-5 is not perfectly located in the

horizontal direction. Also, Hazzard (1998) and Chorney (2014) use the same

technique to differentiate P- and S- waves and derive promising results of wave

propagation in PFC.
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propagation velocity is constant, as shown by the constant time separation in

arrivals between the equally spaced receivers. As explained earlier, the vertical

components at R1-10 represent the S-wave and R11-20 are the P-wave motion.

The first positive peaks of these waveforms are picked to calculate the P- and

S-wave velocities. It gives an average value of 5783.8 m/s and 3747.4 m/s for

P- and S-wave velocities.

The decreasing trend in amplitudes can be attributed to several factors.

First is geometric attenuation. The excitation is injected at a single particle.

Different from plane waves, this point source creates a spherical wavefront,

resulting in decreased energy density on the expanding sphere. Secondly, as

damping is included, energy is extracted from the system at every step of calcu-

lation. In the frequency domain, it is seen that the amplitude of the dominant

frequency declines too. The widening of the spectrum may be the result of the

limited length of the recordings. As shown in the time domain, the farthest

receiver (green curves) still moves as the fifth period of the sine wave is passing.

Influence of excitation frequency

The influence of excitation frequency is investigated next. The response of a

PFC model to wave propagation is investigated on the influence of the exci-

tation frequency. The amplitudes of the excitations are uniform for all sim-

ulations. Figure 4.15 shows the recordings at R-16 for different excitation

frequencies. The amplitudes of the received signals display a dependency on

the frequency. They increase with frequencies, attaining the maximum value

at 100 kHz, and then starts to decrease. This might be related to a resonant

frequency. PFC model is a multiple mass-spring system in nature which has its

own natural frequency. The mass-spring system displays a severer oscillation

at a natural frequency, i.e. 100 kHz, than at other frequencies.
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4.16 shows velocities calculated at 20 receivers for different frequency excita-

tions. R-1 to 10 give P-wave velocities and R-11 to 20 offer S-wave velocities.

The velocities measured with frequencies equal to 50 kHz and 500 kHz devi-

ate from results for other excitations, especially the S-wave velocities. Also,

receivers close to the source (R-1,6, 11, and 16) give more dispersive results.

As a result, the velocities for each frequency wave are calculated by averaging

results at the other 16 receivers. Table 4.3 shows the P- and S- wavelengths in

terms of the average particle diameter (1 mm) for each frequency wave using

the average velocities. For most P-waves, the four receivers close to source

are located within one wavelength distance, where the near-field influence is

quite obvious. So wave velocities using these four receivers are discarded. The

inconsistence of 50 kHz simulation can be linked to its long wavelengths. The

receivers are located in regions influenced by the near-field wave motion in this

case and thus the measured velocities are not acceptable. For 500 kHz simu-

lation results, the deviation is probably due to strong scattering due to high

frequency perturbation.

Frequncy (kHz)
Wavelength (average particle diameter)

P-wave S-wave

50 111 66

100 55.3 33.1

200 27.6 16.6

300 18.4 11.0

400 13.8 8.3

500 11.1 6.6

Table 4.3: Wavelengths of different excitation waves using the velocity shown
in Figure 4.16.

An average wave velocity is derived for different frequency waves. The aver-
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age P-wave velocity equals to 5627 m/s and S-wave 3560 m/s. For comparison,

the static velocities using elastic parameters given in compression test (Table

4.2) are also calculated, 5525 m/s and 3310 m/s for P- and S-waves respec-

tively. The dynamic velocities measured by simulating wave propagation are

larger than static velocities. This can in part explain that lobes of the numer-

ical wavefield are located at a farther distance from the source than analytic

solutions (Figure 4.4 and 4.7).

The different excitation frequencies show the existence of dispersion and

scattering. Toomey and Bean (2000) show that wave propagation in discrete

systems is dispersive, that is, the wave speed is a function of the wavelength.

Caution should be taken when choosing the excitation frequency in PFC. Gen-

erally, a minimum wavelength equal to 10 particles is used (Toomey and Bean,

2000; Chorney, 2014). Also, high frequency waves cause strong scattering.

4.5 Conclusions

1. A comparison of analytic and numerical simulations of the displacement

and stress patterns due to a single vertical force shows that both produce

comparable results. The random grid causes however wave scattering

producing more complex stress and displacement patterns. Dispersion

and attenuation is also important contrary to the analytical solutions for

a homogeneous, isotropic medium.

2. The discrete model is a multiple spring-mass system having its natural

frequency. The mass-spring system displays a severer oscillation at a nat-

ural frequency than at other frequencies. A discrete model can be excited

in an efficient way by using the natural frequency.
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3. The dynamic velocities are calculated by initiating wave propagation. It

is found the measured velocities are stable at a certain range of frequen-

cies. The dynamic velocities are found larger than the static velocities

calculated from elastic constants.
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Chapter 5

Radiation patterns of acoustic

emissions and dynamic

triggering

5.1 Introduction

In seismology, a large earthquake is generally followed by a series of after-

shocks and they are found to have a preferential spatial pattern that could be

used in the analysis of earthquake clusters in time and space and their pos-

sible interactions (Freed, 2005; King et al., 1994). Microseismicity deals with

smaller-magnitude events. Each event is often interpreted as independent and

uncorrelated to neighbouring ones. In reality, both the rock deformation (static

stresses) and transient wave motion (dynamic stresses) associated with micro-

seismic events add to the stress field together with the external forces (fluid

injection). The study of the phenomenon of triggering can help in two ways:

to promote local failure for more effective treatments and suppress unwanted

seismicity for safety.
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Vasudevan and Eaton (2011) calculate the static stress changes due to mi-

croseismic events and show the subsequent ones concentrate in regions where

the static stress promotes failure. How about the dynamic stresses? Are dy-

namic stresses capable of inducing new failure? If so, how do they control

the occurrence of the new failures? To answer these questions, the dynamic

triggering of acoustic emissions during a numerical compression test is studied.

The numerical method used is called the bonded-particle method, where crack

development can be tracked and analyzed independently. First, we stimulate

a major event and then simulate two runs on the same model, a static and

a dynamic run using respectively a high and low damping factor to eliminate

or encourage transient waves. The acoustic emissions are analyzed in terms of

quantity, spatial distribution and source mechanisms to highlight the influence

of dynamic wave propagation. Then, the stress changes due to a major event

are computed and compared to the occurrence of the next few events. If a

correlation exists, it implies a causative relation between the major event and

the subsequent ones.

5.2 Theory and methodology

The source mechanism of real events, including earthquakes, microseismicity

and acoustic emissions, is much more complicated than a single force as used

in the previous chapter. Seismologists use the moment tensor to quantify the

source mechanism of events. This is described first. Then the computational

algorithm for moment tensors in PFC is presented. Next, with the moment

tensor representation, the analytic solution of the dynamic stresses associated

with an event characterized by an arbitrary moment tensor is derived. The

dynamic stress cannot be used directly in determining the occurrence of failure

as the bond force is the direct indicator determining if a bond fails or not. As
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a result, the criterion most commonly used in seismology, the Coulomb fail-

ure function (CFF), is adapted in the bonded-particle method to estimate the

likelihood of failure, that is, bond breakages. After the theoretical work, the

model and analysis methodology is outlined.

5.2.1 Moment tensor

It is common to employ the body-force equivalent as a proxy for the actual

forces of an earthquake. It is a useful tool in earthquake studies which generally

involve discontinuities so that equations of continuum theories can be directly

used. The body-force equivalent can be represented in terms of force couples.

A force couple is made up of two parallel forces that are equal in magnitude,

opposite in sense, and displaced by a certain distance called the arm. For

three-component forces and three possible arm directions, there are nine basic

couples (Figure 5.1). The quantification of the mechanism of the earthquake is

a second-order tensor, called the moment tensor:

M =











M11 M12 M13

M21 M22 M23

M31 M32 M33











, (5.1)

where the component Mpq (p, q = 1,2,3) represents the strength of the force

couple along the direction of ξp with the arm in the ξq direction. The source co-

ordinate system ξi (i=1,2,3) is used to distinguish from the general coordinates

xi (i=1,2,3), which are often referred to as the observation points. Similar to

the stress and strain tensor, a moment tensor has its principal values. Gen-

erally, the moment tensor is represented by its principal components. These

components correspond to force couples whose forces and arms have the same

orientation, called vector dipoles. For earthquakes, the moment tensor is de-

80





fprq over the source volume, V .

As PFC is a discrete system, the integral in the moment tensor expression

becomes a summation. Contact forces and particle locations around bond

breakages are tracked to calculate the moment tensor by Hazzard and Young

(2004) as:

Mpq(t) =
∑

4fp(t)rq, (5.3)

where 4fp(t) is the p-th component of the change in contact forces from that

prior to bond breakages, and rq is the distance vector component in the q-th

direction between the contact and the event centroid. The summation is over

all contacts in the event area.

Analytic solutions of the stress field

Following the same strategy as in the previous chapter, the analytical stress

field is derived from its displacement field (Equation 4.6). The displacement

field due to an arbitrary source characterized by a moment tensor Mpq can be

represented by the contribution of the nine force couples. For each component

Mpq, the displacement vn is the linear summation of the contribution of two

parallel forces, identical in magnitude Fp and opposite in sense, displaced by a

distance 4lq along the q-th direction shown in Figure 5.1:

vn = u(2)
n − u(1)

n , (5.4)

where u
(i)
n (i=1,2) represents the displacement due to a single force Fp (Equation

4.1). As the arm 4lq is infinitesimal, the right hand of Equation 5.4, the

difference of un, can be converted to a differential of un with respect to the

source coordinate ξq:

vn = 4lq
∂

∂ξq
un. (5.5)

82



Inserting Equation 4.1 which shows the displacement un due to a single

force Fp is the convolution of the single force with the Green’s function Gnp,

the right hand side becomes:

vn = 4lq
∂

∂ξq
(Fp ∗Gnp). (5.6)

As the single force Fp is independent of the source coordinates ξi, Fp can be

removed from the spatial differential sign and thus:

vn = 4lqFp ∗
∂Gnp

∂ξq
. (5.7)

According to the definition of the moment tensor (Equation 5.2), the first term

4lqFp equals the moment tensor component Mpq. Then it follows that the

displacement vn due to a source characterized by Mpq is the convolution of the

moment tensor and the spatial derivatives of the Green’s function Gnp with

respect to source coordinates ξq. Aki and Richards (2002) give the expression

of the displacement due to the moment tensor Mpq in a homogeneous, isotropic,

elastic and unbounded medium:

vn (x, t) = Mpq ∗Gnp,q

=
1

4πρ

1

r4
(15γnγpγq − 3γnδpq − 3γpδnq − 3γqδnp)

∫ r
β

r
α

τMpq (t− τ)dτ

+
1

4πρα2

1

r2
(6γnγpγq − γnδpq − γpδnq − γqδnp)Mpq

(

t−
r

α

)

+
1

4πρβ2

1

r2
(−6γnγpγq + γnδpq + γpδnq + 2γqδnp)Mpq(t−

r

β
)

+
1

4πρα3

1

r
(γnγpγq) Ṁpq

(

t−
r

α

)

+
1

4πρβ3

1

r
(−γnγpγq + γqδnp) Ṁpq(t−

r

β
),

(5.8)

where vn is the n-th component of the displacement at x. On the right side,
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γi is the direction cosine with the i-th axis of the observation point x, r is

the source-receiver distance, α, β are the P- and S-wave speed and ρ is the

density of the medium, δij is the Kronecker symbol. The dot represents the

temporal derivative and the comma in the subscript means a spatial derivative.

Equation 2.13 sets up the relation between the dynamic stress and the dis-

placement through the spatial derivative of the displacement. To derive the

expression of the dynamic stress due to an event characterized by Mpq, the

derivatives of the displacement vn with respect to the observation coordinates

xm is necessary.

vn,m =
∂vn
∂xm

=
1

4πρ

1

r5
CN

∫ r
β

r
α

τMpq (t− τ)dτ

+
1

4πρα2

1

r3
CIP1Mpq(t−

r

α
) +

1

4πρβ2

1

r3
CIS1Mpq(t−

r

β
)

+
1

4πρα3

1

r2
CIP2Ṁpq(t−

r

α
) +

1

4πρβ3

1

r2
CIS2Ṁpq(t−

r

β
)

+
1

4πρα4

1

r
CFPM̈pq(t−

r

α
) +

1

4πρβ4

1

r
CFSM̈pq(t−

r

β
),

(5.9)

where double dots denote the second-order derivative of the variable and the
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parameters in the above equation are given by:
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(5.10)

Equation 4.1 and 5.9 give the analytic stress field due to a source quantified

by a moment tensor Mpq. The numerical solution of the stress field will be

derived by the measurement-based algorithm in PFC as outlined in Chapter 3.

5.2.3 Bond failure functions

The stress state can be used to estimate the likelihood of failure. In seismology

where an earthquake is commonly a slippage on an incipient fault plane, the

Coulomb failure criterion is used to characterize shear failure in rocks (Jaeger

et al., 2009). The normal and shear stresses on the fault plane must satisfy

conditions analogous to those of the shear slippage on a preexisting plane. So

the Coulomb failure function (CFF) is presented to evaluate the possibility of

aftershocks on neighbouring faults.

CFF is a function of the stress state and the friction coefficient according

to the Coulomb theory. It represents the stability of a fault and it is a relative
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the bond respectively. So the relative changes of tensile and shear bond forces

are calculated for the likelihood of bond failure. The bond force is calculated

as the traction on the contact plane according to the particle-particle geometry

(Figure 3.2a) using Equation 2.3. Then the normal and shear components can

be easily derived by a dot product operation applied on the traction and the

unit normal or tangent vector.

5.2.4 Model setup and workflow

A 126x62.3 mm Lac du Bonnet rock model composited by 1886 particles is

constructed using the microproperties listed in Table 4.1. The average particle

diameter is 1 mm. After calibration, the model is first confined at 10 MPa

stress and loaded with an increasing axial stress until 90% of its peak strength

is achieved (red dashed line in Figure 5.3b). Also shown are cracks that form

before (Figure 5.3c) and after (Figure 5.3d) this point. The confining and

axial stresses will be fixed from this point on. Then several particles in the

center (yellow particles in Figure 5.4) are chosen and the bonds between them

are broken and thus tensile (blue) or shear (red) cracks form depending on

the original bond forces. As compression is dominant during the long-term

loading, this is mainly a closing event and considered as the major failure

event. The objective is to monitor stress changes due to this event, and look

for relationships between the following new cracks and this one.

Two approaches are used here. The first method is to conduct two simu-

lations with different damping parameters after the major event occurs. Both

simulations before the major event use the same stress history and damping

parameter 0.0157 to simulate a realistic attenuation of the granite (Q=100).

This method gives a direct comparison between the static and dynamic stress

changes due to the same event. This so-called dynamic run is done with a low
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Figure 5.3: (a) History of the axial stress during a confined (10 MPa) com-
pression test, (b) zoom-in image around the peak strength and red dashed line
highlights the time point when the main event is stimulated, and cracks that
form (c) before and (d) after this specific time point. Red cracks are tensile
and blue are shear.

damping parameter (0.0157) so a large part of the released energy from the

bond failures are converted into kinetic energy and thus elastic waves. Next a

second run is done using the same damping parameter up to the main event,

but then the damping is significantly increased to 0.7. A high damping param-

eter ensures most of the energy stored at the bonds are absorbed after the bond

breaks. There is less elastic wave propagation throughout the system. It can be

seen as if only static stress changes are involved, and it is called the static run.

The cracks formed in these two runs are compared in terms of both quantities

and locations to examine the effect of dynamic and static stress changes after

a major failure event.
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contour is composed by three loops of alternating lobes. The lobes in terms

of location and shape are determined by the radiation pattern of the displace-

ment field. These three loops with alternating polarities correspond to the

input source, one cycle of a cosine wave. The noisy part in the center of the

analytic solution is due to the generation of fluctuations on the order of ma-

chine precision. The consistency of the results by these two methods indicate

the accuracy of our analytic expression of the spatial derivatives of the dis-

placements and hence the stress calculations using Equation 2.9 and 2.12 in

the next section.
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5.3.2 Source mechanism of the main event

The experiment is divided into two stages separated by a relatively large event,

called the main event. The first stage is a confined compression test with a

confining stress equal to 10 MPa. This stage terminates when the axial stress

reaches 90% of its peak strength (Figure 5.3b), followed by the main event.

Next the axial and confining stresses are fixed in the second stage to observe

the influence of the main event.

The main event that will be analyzed in the following simulations is com-

posed of 14 bond failures, including 5 tensile and 9 shear failures (Figure 5.4).

Figure 5.7 shows the moment tensor solution using the algorithm from Hazzard

and Young (2004). The moment tensor is illustrated by equivalent forces. The

two pairs of arrows correspond to the principal values of the moment tensor.

The directions and lengths of the arrows represent the orientations and mag-

nitudes of the principal stresses. This event grows with time in magnitude,

and weakens after 7 calculation steps. At first, it is a closing event along a

sub-vertical direction. This is likely because the axial stress is the dominant

stress sustained in the model. The compression in the axial direction forces the

particles in between to move to the sides, which corresponds to tension. The

amount of tension (opening) and the minimum principal stress increases with

time, although it remains a closing event in general. The orientation of the

maximum principal stress also changes with time. It is sub-vertical first, then

becomes more vertical, and finally back to sub-vertical again. The main event

evolves to a more shearing-like event in the last few steps.
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Figure 5.7: Evolution of the moment tensor of the main event. The moment
tensor solution is represented by two sets of arrows corresponding to the prin-
cipal values of the moment tensor indicating respectively compression and ex-
tension depending on the direction of the arrows.

5.3.3 Approach 1: static and dynamic simulations

The influence of the major event is first explored by conducting two simulations

in the form of static and dynamic runs. Both simulations allow for spontaneous

bond failures and are run for 70 steps after the major event. Figure 5.8 shows

the stress curve for the dynamic and static run, with a full compression test. It

clearly shows the dynamic run experiences a larger stress drop than the static

run in response to the forced main event. Then the cracks formed in these two

runs are further compared in terms of quantities and locations of subsequent

smaller failures to compare the effect of dynamic and static stress changes after

a major failure event.
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The locations of cracks are easily discerned in Figure 5.9. For the dynamic

run, cracks form at positions further from the main event in the first 40 cycles

(Figure 5.9a and b). In the following cycles, new cracks occur at the vicinity of

the existing cracks instead of further positions. This relates to two aspects. To

begin with, a dynamic wave is propagating outwards with a larger wavefront.

The dynamic stress due to the main event declines because of geometric spread-

ing (attenuation), becoming less effective in causing bond failures at a larger

distance. Meanwhile, the cracks that form in the early stage emit new dynamic

energy, which may contribute ultimately more to the overall stress changes. So

new cracks concentrate around the existing cracks to form clusters. With in-

creasing simulation time, more cracks are expected to occur around the old

ones. Figure 5.10a shows bond failures at 90 cycles. The old cracks (first 70

cycles) are shown in red for tensile and blue for shear. New cracks (green and

black) which are formed in the next 20 cycles are observed to locate around

the old ones as expected.

Figure 5.10b shows the source mechanism of the new events in the dy-

namic run. Cracks form close in time and space are registered as events. The

source mechanism varies with each event. Closing, opening, shearing and hy-

brid mechanisms are all observed. The source mechanism is decided by the

in-situ stress which is a combination of the stress from the main event, and

most importantly, the initial stress field established by the long-term loading

due to the boundary stresses. This also holds for the static run which shows

fewer bond failures (Figure 5.11). Although fewer cracks are formed, the source

mechanisms show similarities with those in the dynamic run.
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dynamic run is observed to have more cracks formed than in the static run.

Next, the new cracks are analyzed in terms of locations and source mechanisms

using the analytically predicted dynamic stresses using Equation 4.1 and 5.9

as outlined above.

5.3.4 Approach 2: dynamic stress field and its correla-

tion with new cracks

The second approach deals with the dynamic simulation. First, the analytic

dynamic stress field due to the main event is calculated. Then the stress field

influenced by the dynamic stress due to the main event is compared with new

cracks that form following the main event.

Analytic and numerical solutions of the stress field

The dynamic stress field is analytically calculated by Equation 4.5 and 5.9.

Figure 5.12 shows the analytic solution of stress field due to the main event

after 70 cycles, together with the numerical result in PFC. The analytic stresses

show again two concentric loops, similar to the stress field due to a single force

(Figure 4.6). Each loop is composed of alternating lobes with a 90◦ periodicity.

The symmetrical axises vary with different stress components. The warm color

represents tension and cold is compression for the normal stresses.

The stress field at the same time instant measured by PFC using the dynamic

run is shown in the bottom panel. The numerical stress field is derived by fix-

ing all the bonds so that no bonds will break. This treatment ensures only the

dynamic stress field due to the main event is exhibited. The stress field in PFC

is less clear compared with the analytical one due to speckle noise patterns.

Also, stresses in the center with large strengths add more discrepancy from the
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tact planes to explain this preferential distribution. Only the tensile cracks are

considered here as most cracks during this compression test are tensile.

The calculation of bond forces depends on the stress tensor as well as the

contact plane orientations. The random packing creates an almost even distri-

bution of contact plane orientations shown in Figure 5.13a. The orientation is

represented by the angle between the unit normal and the x-axis in the positive

sense. Though evenly oriented in all directions with regard to all the contacts,

the contacts with critical bonds have a preferential orientation. The critical

bonds are ones with a relative large load, hence being closer to failure. Com-

pared to others, the critical bonds are more likely to fail so the contacts with

critical bonds are considered here. The long-term axial loading has the bonds

with a larger load orientated nearly parallel with the maximum principal stress

direction. The critical state is set to be 70% of the tensile strength. Figure

5.13b shows that the unit normals for these contacts deviate from the horizon-

tal axis with very small angles. So a unit normal with 10◦ is used to compute

the bond forces.
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with the main event and hence the static and dynamic stresses they create are

limited in magnitude. So it is reasonable to argue that the dynamic stress

generated by the main event is responsible for new crack formations.

In seismology, static and dynamic stress changes are pervasively calculated

to explore the interaction between a major earthquake and the following ones

(King et al., 1994; Freed, 2005; Cotton and Coutant, 1997; Belardinelli et al.,

1999; Kilb et al., 2000). It is found that the stresses induced by the main shock

influence its neighbouring ones through a Coulomb-type friction law. The af-

tershocks are found to mainly concentrate in regions with elevated Coulomb

stress changes due to either the dynamic or static stresses (Figure 5.2). The

preceding analysis shows similar results in a granular model. The dynamic

stresses due to the main event influence bond forces in a certain pattern de-

cided by the source mechanism of the causative event. The following bond

failures lie in regions where bond forces are increased by dynamic stresses (Fig-

ure 5.14). Moreover, numerical modeling offers the access to conduct the static

and dynamic simulations (Figure 5.9) and hence examine the influence of static

and dynamic stresses separately. The additional cracks formed in the dynamic

run proves the role of the additional loading associated with dynamic stresses,

which is more important than static stresses.

5.5 Conclusions

An event is stimulated to explore its radiation pattern and influence on the

subsequent bond failures. Two simulations with different damping parameters

are conducted. The static run with a high damping parameter is believed to be

solely influenced by the static stress due to the main event. The dynamic run

corresponding to low damping includes both the static and dynamic stresses.
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The dynamic run has more cracks compared with the static run. The dynamic

waves cause the same bond failures as in the static run, as well as additional

ones. These cracks are found to concentrate in the form of clusters. The failure

mechanisms of these new failures vary from event to event. These failure mech-

anisms likely depend on the initial stress field before the main event, which is

determined by the long-term loading.

To explain the occurrence of the additional cracks in the dynamic run, the

analytic solution of the dynamic stress field is derived. The analytic result

shows comparable patterns with the numerical one in PFC and it aids in ana-

lyzing the stress state and failure occurrence as an independent reference.

The analytic stress is further converted to bond forces which have a more

direct link to bond failures. The tensile force changes due to waves emanating

from the main event show both areas of tensile force increase and decrease.

Subsequent cracks are formed predominantly in areas of tensile force increase.

This correlation between new failure locations and areas of tensile force increase

implies the dynamic stresses are responsible for their occurrences. Static stress

changes are thought to play a lesser role since only 2 out of the 15 events occur

during the static run.

Numerical modeling, like PFC, has the advantage of the direct and contin-

uous scrutiny of stress and failure. It offers the opportunity to compute stress

changes and check failure locations to explore the causal relationship between

the main event and the subsequent events. Dynamic stresses are shown to play

an important role in altering the absolute stress state, to the point of introduc-

ing additional local cracks.
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Chapter 6

Analysis of triggered acoustic

emissions in a compression test 1

6.1 Introduction

The previous chapter illustrates that dynamic stresses due to wave propagation

influence failure patterns. In this chapter, the influence of dynamic waves is

further explored. Instead of forcing an internal event, an external vibration

is applied to study the triggering influence of previous acoustic emissions on

subsequent ones.

Apart from introducing a linear component to the in-situ stress, the inter-

action between dynamic waves and a medium also causes a nonlinear inter-

action. Jia et al. (2011) conduct a uniaxial compression test on polydisperse

glass beads and find that elastic parameters like wave velocities of the granular

pack decrease after wave propagation. Johnson et al. (2008) and Ferdowsi et

al. (2014) observe frictional weakening in sheared granular media due to wave

propagation through laboratory experiments and numerical simulations respec-

1Part of this chapter is published as Lu and van der Baan (2016)
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tively. The nonlinear behaviour of noncohesive materials such as loose sands

and beads in response to dynamic waves is well-documented through physical

and numerical experiments (Michlmayr et al., 2012; van den Wildenberg et al.,

2013; Giacco et al., 2015). The effect of dynamic stresses on cohesive materials

such as sandstones and granites is less well studied.

The objective of this chapter is to study the role of acoustic emissions in

the failure process of a mechanically stressed cohesive medium. A wave with a

specified amplitude and frequency is introduced by adding an external vibra-

tion to the same granite model as the one in Chapter 5. The influence of their

amplitudes and dominant frequencies on failure patterns are characterized.

6.2 Model description and procedure

The model used here is the same in terms of microproperties as those in the

previous chapter. A 31.7 x 63.4 mm block of Lac du Bonnet granite is repre-

sented by an assembly of 1866 particles being confined by four walls (Figure

6.1a). The average particle diameter is 1 mm. A compression test is simulated

at a confining pressure σc equal to 10 MPa with an increasing axial stress. The

axial load is added by moving the top and bottom platens at a constant velocity

(strain rate), v0 of 31.7 mm/s which corresponds to a strain rate of 1 s−1. In

contrast to the previous chapter, the damping parameter is kept at a constant

low level equal 0.0157 to attain a realistic attenuation of the granite (Q=100).

The simulations are separated by two modes. One with an additional exter-

nal loading is called a perturbed run and the other without any perturbations

is called the reference run. An external vibration is introduced in the perturbed

runs by assigning a sinusoidal-varying velocity to the bottom platen (Figure

108





First, the influence of vibrational amplitudes is explored. The amplitudes

range from 0.01 to 1 m/s, which correspond to strains on the order of 10−7 to

10−5 considering the sample dimensions. These are reasonable values in terms

of dynamic strain (Ferdowsi et al., 2014). The frequency is set to be 100 kHz

which corresponds to a P-wavelength equal to 55.3 particles and S-wavelength

equal to 33.1 particles (Table 4.3). This value is chosen based on the size of

particles in the model to decrease both dispersion and scatter in the discrete

model (Toomey and Bean, 2000). Also, the model displays a severer oscillation

at 100 kHz than others (Figure 4.15).

Chapter 4 show that the frequency of events during numerical compression

tests ranges from 50 to 250 kHz. As a result, for tests aimed at the influence of

frequencies, f is set to {50, 80, 100, 150, 200} kHz. For each simulation with

a specific frequency value, a series of amplitudes are tested. The amplitude

values correspond to the same strain range as the perturbed run at 100 kHz:

{2.5e-7, 2.5e-6, 7.5e-6, 1.0e-5, 1.25e-5, 1.5e-5, 2.25e-5, 2.5e-5}.

The perturbation is set to last 1 ms and it is arranged shortly before one

major failure event chosen from the reference run. The timing is decided based

on two reasons. (1) The model has to be loaded close to failure, otherwise

less failure can be observed. (2) The chosen failure is made up of several bond

breakages which makes for an obvious stress drop in the axial stress curve. The

influence of the dynamic waves can then be easily detected solely based on the

axial stress.

During each simulation, the axial stress is monitored as an indicator of

failure occurrences and the overall stress state throughout the model. It is

calculated by averaging the forces of the top and bottom platens (Equation

3.8). As the axial stress is a rough estimate of the internal stress state, the
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change in axial stress cannot display every event clearly. Only the larger events

associated with more energy can be captured by the stress curve in the form

of a stress drop. So bond breakages in the form of acoustic emissions (AE)

and clusters (AEc) (Hazzard and Young, 2002) are also recorded. Each bond

breakage is called an AE due to energy release into its kinetic form. Bonds

that break close in time and space are thought to form an event, also called

AEc, an acoustic emission cluster. Particle motion in the vicinity of one event

is recorded to calculate the kinetic energy for an event (Chorney et al., 2012;

Chorney, 2014).

6.3 Results

6.3.1 Reference run

The reference run sets a benchmark for the perturbed simulations. Figure 6.2

shows the changes in terms of axial stress, event magnitude and failure energy.

The axial stress increases linearly at first until 1.2 ms when bonds start to break

(black circles). Then the stress slope gradually decreases and bonds start to

fail now and then, releasing stress concentration and converting strain energy

to kinetic energy. The stress drop occurring at 2.56 ms (highlighted by the

red star) corresponds to a major failure. After a temporary stress drop, stress

continues to increase due to the constant loading. The final failure occurs

abruptly after the peak stress with a large amount of bond breakages and

energy release.

Figure 6.3 shows the spatial distribution of bond failures before and after the

peak stress. At first, the distribution of bond breakages is spatially uncorrelated

due to the intrinsic inhomogeneity. Stresses develop unevenly throughout the

sample; local failures occur in regions with stress concentrations and lower
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three runs (Figure 6.6b) but at a later time. This indicates that dynamic trig-

gering induces more of an advance of the expected failure than simply creating

additional ones; (2) the smaller vibration A=0.1 introduces some cracks not

present in the other perturbations (green stars). Hence, the additional vibra-

tions are not simply clock-advancing or delaying failure patterns. It may be

that the slightly longer simulation time (Figure 6.4a) plays a role although the

final axial stresses are similar.

6.3.3 Influence of perturbation frequencies

In the previous section, vibrations with a range of amplitudes are added during

the loading stage to study the influence of dynamic waves. The behaviour in

response to perturbations varies with the perturbation amplitude. A minimum

value corresponding to a strain of 10−5 is required to advance the expected

local failure. In this part, the influence of vibration frequencies is studied. The

frequencies used are f={50, 80, 100, 150, 200}kHz. All the other perturba-

tion parameters, including perturbation strain amplitudes which range from

2.5×10−7 to 2.5×10−5, timing and duration, and confining stress are the same

as used in the previous part.

Figure 6.11 shows the short-term influence in response to a series of ampli-

tudes for different frequencies. All plots show similar features: (1) perturba-

tions result in simultaneous stress oscillations proportional to vibrational strain

amplitudes (see legends); (2) the expected local failure is advanced when the

vibration strain strength exceeds a certain value of about 10−5. However, stress

oscillations for runs with the same strain amplitudes but different frequencies

are proportional to vibrational frequencies. Besides, runs with high frequen-

cies induce an earlier occurrence of the studied failure if the failure is advanced.
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of the strain amplitude being about 10−5 to induce a clock advance of an ex-

pected local failure. This value is larger than the finding of a threshold of 10−6

in a sheared granular medium (Ferdowsi et al., 2015). It is probably mainly

due to the cohesion between particles in BPM which adds to the strength of

the model. Besides, model setup including the confining stress and the driving

mechanism are different.

External strain vibrations result in oscillations of axial stresses (Figure

6.4b). To explore what is going on beneath the stress oscillations, an autore-

gressive (AR) model (Tary et al., 2013) is applied to the recorded time series to

remove sinusoids. The AR model is a linear prediction filter to describe time-

varying processes using previous samples. In practice, the input parameters of

an AR model include the pole number and window length. Filter coefficients

are computed using the Burg method which is based on a recursive least-square

scheme to minimize prediction errors.

The AR model is used to reconstruct and remove harmonics in the axial

stress. Three poles and a window of 80 length are used based on visual tests.

Figure 6.14 shows how the AR model is applied to the case when A equals 0.6.

First, the data are prepared by removing the trend of the axial stress and the

segment of 126 points containing the sinusoids is selected as the input signal

of the AR model. The time-frequency representation of the segment shows a

frequency of 100 kHz, which coincides with the frequency of the imposed vibra-

tion. Figure 6.14d shows the reconstruction of the sinusoidal part along with

the original segment and they match quite well. The error, which is the resid-

ual after detracting the reconstructed signal from the original one, is almost

negligible. The reconstruction and error signals are then concatenated with

the other parts in the data. Figure 6.14e shows a perfect match between the

original and reconstructed signal, validating the AR model and its parameters.
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Figure 6.14f shows a nearly constant decrease in stress after the removal of

the perturbation influence. This procedure is applied to all other runs with

different vibrational amplitudes (Figure 6.15). A stress decrease is observed

after removing sinusoids due to vibrations when compared with the reference

curve. The value of decrease is proportional to the perturbation strength. This

implies material weakening. The perturbation in the form of constant loading

and unloading somehow weakened the sample so that it cannot support the

load it could bear previously in the reference run (FFigure 6.1c). And when

the vibrational amplitude exceeds the threshold value, the weakened model re-

sponses with clock-advanced failures.
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(Figure 6.18). The average contact force changes for the perturbed runs show

periodic variations similar to the axial stress in Figure 6.4. Significant decreases

in contact force ensue from local failures. The quantities of strong and weak

contacts also experience oscillations during each perturbation. The difference

lies in that the strong contacts have losses while the weak contacts have gains.

This fact confirms the weakening phenomenon. The vibration weakens the

strong contact network, which supports the main body of the load. For smaller

perturbations (A=0.1), the decrease of strong contacts and increase of weak

ones terminates along with the vibration and the contact network composition

recovers to that of the reference run. In response to medium and large per-

turbations, e.g., A=0.6 and 1, the variations in the contact network are more

pronounced and irreversible at least in the short term by changing the timing

of the measured local failure event.
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event (Chorney et al., 2012; Chorney, 2014). It is measured per event. The

cumulative kinetic energy is also recorded to deliver an overall measurement.

Figure 6.19 shows the kinetic energy results for the reference run and perturbed

run with A equal to 0.6 at 100 kHz. Bonds break due to the propagation of

the dynamic waves induced by the bottom platen movement. The bond break-

ages are associated with conversion of strain energy into kinetic energy (Figure

6.19c). The cumulative kinetic energy curve for the perturbed run (red) starts

to deviate from the reference curve (black) at the introduction of the vibration.

This active stage is characterized by advance of the local failure. The failure

is accompanied by a stress drop, resulting in a lower stress at bonds which are

less likely to fail. For the perturbed run, it is less active in bond breakages.

The red curve is exceeded by the black one when the major local failure occurs

in the reference run. This indicates that the expected event is smaller in the

perturbed run than the reference one. Following Ferdowsi et al. (2014), this

stage is called energy suppression because of less energy release. However, this

stage of quiescence is temporary and terminated by a series of new failures.

Constant loading leads to stress concentration at bonds. Failures occur with

more energy release than for the reference run in the same time interval. This

compensates for the previous energy suppression stage. Bond breakages allevi-

ates stress concentrations and leaves most of bonds at a lower stress requiring

more time to fail. So the final failure for the perturbed run is delayed com-

pared to the reference run. This indicates a chain reaction of acoustic emission

occurrences and energy release: the advanced failure leads to periods of energy

suppression, the recovery stage with energy compensation leads to the delayed

final failure. But this does not always happen. When the vibration is extremely

large, e.g., the A=1 run, the advanced local failure is followed by the advanced

final macroscopic failure (Figure 6.8). This is possibly due to the large amount

of energy release due to the clock-advance event (Figure 6.7).
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introduced vibration at the bottom platen propagates through the sample,

carrying a dynamic stress and affecting the background stress field. It is found

that:

1. The perturbation weakens the model by softening the strong contact net-

work. It can cause an advanced local failure during the vibration interval

when the vibrational strain amplitude is large; it leads to an advanced

failure after the termination of vibration when its amplitude is moderate;

it does not make any difference in terms of timing of the local failure when

the perturbation is small. A frequency-dependent amplitude threshold of

about 10−5 exists in the cohesive granular model, which is larger than

10−6 in the non-cohesive granular system.

2. The long-term influence is less clear than the short-term response. The

final failure can be either advanced or delayed. For runs with a moderate

perturbation, the local failure is advanced with less energy release for the

same event. So more local events occur to compensate for the energy

suppression, yet the final failure is delayed.

3. The temporal and spatial analysis of acoustic emissions shows that dy-

namic triggering leads to an ’advance’, but does not simply ’create’ more

events in the short term. The external vibrations may change the timing

of events but rarely their locations. The long-term influence in terms of

acoustic emission quantities is hard to determine as the simulation time

is an important factor.

4. Higher frequency perturbations have a more effective triggering influence.

For the same vibrational strain amplitude, the runs with higher frequen-
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cies have a more advanced local failure.
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Chapter 7

Conclusions and future work

In this thesis, the topic of dynamic triggering of acoustic emissions is studied

using the Bonded Particle Method (BPM).

The capability of BPM handling elastodynamical problems is first examined

in Chapter 4. A single force excitation is added in a granite rock model using

BPM. The comparison with analytical solutions regarding wavefields and the

associated stress patterns shows a comparable result. Speckle noise and wave-

form distortions are caused by the use of a discretized and irregular grid of

individual particles, masking partial details visible in the analytical solutions.

Nonetheless, numerical solutions using BPM exhibit the main features in terms

of patterns and polarities, and hence allow for the examination of stresses re-

lated to wave propagation in this thesis.

The study of dynamic triggering of acoustic emissions is carried out by sim-

ulating a compression test. In Chapter 5, a major event is created within

the model. The influence of dynamic stresses is examined in two approaches.

The first one is to compare the influence of the static and dynamic stresses

directly by simulating a static and a dynamic run respectively. The dynamic

run is found to experience a more vibrant motion and have more bond failures
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compared with the static run in response to the same event. This implies dy-

namic stresses play a more important role than static stresses in causing bond

breakages. The second approach aims at studying the interaction between the

main event and the following ones using the analytic solution for the dynamic

stresses. The expressions of the dynamic wavefield and stress patterns are de-

rived and validated. The analytic dynamic stress is converted into the change

of bond forces which is the direct indicator of whether a bond will fail in BPM.

The correlation of bond force changes and bond breakages confirms the causal

relation between dynamic stresses incurred by the main event and the occur-

rence of following events.

Chapter 5 demonstrates the role of dynamic stresses in altering the stress

field and hence inducing a favorable change in the stress state for bond break-

ages by creating an internal event. To work in a more controllable way, in

Chapter 6, a vibration is introduced externally to initiate wave propagation.

The influence of wave characteristics in terms of amplitude and frequency on

an immediate local failure and the final microscopic failure is studied. The

external vibration weakens the model in the form of less load bearing than it

does without perturbations. The micromechanical analysis corroborates this

showing that strong contacts decrease substantially by vibrations. When the

vibrational amplitude exceeds the threshold value, the weakened model re-

sponses with an advanced local failure. The amplitude threshold is frequency-

dependent. It is about 10−5 in terms of the imposed strain amplitude, larger

than 10−6 in a non-cohesive granular model. The final failure can be either

advanced or delayed. A moderate perturbation advances the immediate local

failure and delays the final one which can be explained by the chain reaction of

energy release: the advanced local failure is associated with less energy release

for the same event, and so more local events occur to compensate for the en-

ergy suppression and the final failure is thus delayed. For the tested frequency
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range, higher frequency perturbations have a more effective triggering influence.

Apart from implementing this study in the three-dimensional context for a

more realistic evaluation, several interesting topics arise for further study.

In Chapter 6, dynamic waves are found to expedite local failure. In prac-

tice, the addition of vibrations to hydraulic fracturing treatments may have a

positive effect on their efficiency (Hulse, 1959). Yet more detailed investiga-

tions are needed to fully understand how vibrations influence the short- and

long-term evolution of the stress field as well as the resulting failure patterns.

This can be done by introducing a constant vibration during loading.

Another interesting point is similar to the role of local stress heterogeneities

in generating dry microseismicity (Garcia-Teijeiro and Rodriguez-Herrera, 2014).

The analysis into the force chain evolution (Figure 6.16) and spatial distribu-

tion of bond breakages (Figure 6.6) shows some bonds fail in the weak force

zones or close to areas with very large force gradients instead of strong force

regions. This implies the importance of the asymmetric force distribution in

generating local bond failures. Still, a comprehensive statistical analysis of

bond forces and contact forces is required. This will help in understanding how

forces are transmitted, how the contact network evolves and accommodates lo-

cal failure, potentially explaining the formation of the final macroscopic failure.
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