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Abstract

In D-dimensional spacetimes which can be foliated by n-dimensional 

homogeneous subspaces, a quantum field can be decomposed in terms 

of modes on the subspaces. Substitution into the field equations re

duces the free quantum field in D dimensions to a collection of quan

tum fields yd. D — n  dimensions. This dimensional reduction estab

lishes a formal relationship whereby objects in the physical theory, 

such as the Green function and the effective action, can be written 

as sums of the corresponding objects in the dimensionally reduced 

theories.

In this thesis we examine dimensional reduction in the context of 

renormalization. Quantities of physical interest in quantum field the

ory, such as the expectation value of the stress tensor, are divergent 

and must be renormalized. Though the equivalence of the original 

and dimensionally-reduced theories is easily established at the bare 

level, we demonstrate that the divergent terms which must be sub

tracted to renormalize the higher- and lower-dimensional theories are 

not related by the mode decomposition. As a result, renormalized 

expectation values in D  dimensions can be obtained by sum m ing 

over their renormalized (D  — n)-dimensional counterparts only if the
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contribution of each mode is modified by an extra anomalous contri

bution. We call this effect the dimensional-reduction anomaly.

We explicitly calculate the dimensional-reduction anomaly in the 

field fluctuations and the stress tensor for several classes of space- 

times of physical interest, with particular emphasis on spherical and 

static spaces. In each case, the anomaly is shown to produce signif

icant mode-by-mode corrections to renormalized expectation values 

in the dimensionally reduced theories. For spherical geometries we 

investigate the relevance of the anomaly to recent attempts to cal

culate the stress tensor and Hawking radiation from Schwarzschild 

black holes using two-dimensional dilaton-gravity models. For static 

spaces we find an intriguing relationship between the anomaly and 

a new, general approximation scheme for renormalized expectation 

values of quantum fields.
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D dimensions D — n dimensions n  dimensions

indices ... a, b, c, .. . i, j ,  k, . . .
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d’Alembertian □ A„ An
covariant derivative ()* Va, V, ()|a Vi, ().,

field objects G ,W ,  . . . G, W ,.. .

curvatures DR  =  R[g] R  = R[Q]

Table 1: Conventions on Notation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1

Chapter 1 

Introduction

In the absence of a full quantum theory of gravitation, attempts to model the 

behaviour of quantized matter incorporating gravitational interactions are forced 

to rely on the semiclassical approximation. In this approach, the gravitational 

held is treated as a classical background on which the quantized matter fields 

propagate. Quantum amplitudes may then be calculated perturbatively to the 

desired order.1

Even at the semiclassical level, vacuum polarization effects in quantized mat

ter are notoriously difficult to compute. As a result, much effort has been de

voted to calculating vacuum polarization and particle production in privileged 

spacetimes which possess a high degree of symmetry; these include homogeneous 

cosmological models [1-4], and eternal black hole spacetimes [5-19]. In these sys

tems, one can take advantage of the continuous symmetries of the geometry to 

simplify the calculation of field-dependent functions. By selecting a coordinate 

system based on the symmetries and using separation of variables, the quantum 

field may be decomposed in terms of modes in the symmetry directions to effec

1 Small gravitational fluctuations about the classical background may be treated as a sepa

rate matter field of gravitons and quantized to the one-loop level, the non-renormalizability of 

gravity preventing a consistent extension to higher orders.
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CHAPTER1. INTRODUCTION 2

tively reduce the dimensionality of the system. For example, in a D-dimensional 

static spacetime one can decompose the quantum field in terms of Fourier time 

modes e"*. Substituting this Fourier transform into the field equation yields a 

new field equation in (D — 1) dimensions with an ^-dependent potential. Quan

tities of interest in the physical theory can then be obtained by solving for the 

corresponding quantities in the dimensionally reduced theory and sum m ing over 

all cj (performing the inverse Fourier transform).

This technique is standard in the solution of partial differential equations for 

classical fields. There is, however, a difficulty that one encounters in applying 

dimensional reduction to quantum field theories. Specifically, quantities of phys

ical interest in quantum field theories, such as expectation values, typically are 

divergent and must be renormalized to yield a finite, meaningful result. This 

raises the question of how renormalization affects the relationship between the 

dimensionally reduced theory and the original physical theory. In the language 

of operators, we ask whether dimensional reduction and renormalization com

mute. In this report, we find that they do not. This may be understood from 

the fact that renormalization is a purely local operation, depending only on the 

short-distance or high-frequency behaviour of the theory. Mode decomposition, 

however, is sensitive to global characteristics such as topology, and so probes the 

long-distance or low-frequency behaviour. Integrating out some portion of the 

manifold can change the global properties of the system, a change to which the 

renormalization is insensitive. This leads to different results when renormaliza

tion is carried out before versus after the mode decomposition. In subsequent 

chapters we will see that further discrepancies between renormalization in the 

two theories arise due to local effects depending on the curvature and field po

tential. We call the resulting non-commutability of dimensional reduction and 

renormalization the dim ensional-reduction anomaly.
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CHAPTER 1. INTRODUCTION 3

The problem of dimensional reduction and renormalization may be of rel

evance to various issues that have appeared in the literature in recent years. 

One of the most notable of these is the attempt to calculate the stress ten

sor and Hawking radiation of Schwarzschild black holes using two-dimensional 

dilaton-gravity models [20-31]. In this case, a massless, minimally coupled scalar 

field in a four-dimensional spherically symmetric spacetime (such as that of a 

Schwarzschild black hole) is decomposed into spherical harmonics, reducing the 

field to one propagating in two dimensions. Using the conformal properties of 

two-dimensional spaces, the calculation of the effective action is greatly simpli

fied. One can then obtain the contribution of the I =  0 spherical mode to the 

stress tensor and Hawking radiation in the original, physical spacetime. Various 

attempts along these lines [32-39] have been rewarded with unsettling results [40], 

including in some cases a negative Hawking flux, and in all cases two-dimensional 

stress tensors that are qualitatively different from the expected four-dimensional 

one near the black hole. We show that the dimensional-reduction anomaly sup

plies a state-independent contribution to the stress tensor which appears to cor

rect the predictions of the dimensionally reduced theories near the event horizon, 

while leaving the asymptotic behaviour (including the Hawking radiation) unaf

fected.

A second system that we shall consider is that of a scalar field in static 

space at finite temperature. In this case we demonstrate that the dimensional- 

reduction anomaly can be used to derive a new general analytic approximation 

for the renormalized physical theory which is based on the high-frequency be

haviour of the field. This technique can be viewed as an extension of previous 

approximations for conformal fields by Page, Brown, and Ottewill [8,9] and by 

Frolov and Zelnikov [10], as well as the approximation of Anderson, Hiscock, and 

Samuel [11,12] for fields in static spherically symmetric spacetimes.
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CHAPTER 1. INTRODUCTION 4

This thesis is organized as follows. In Chapter 2 we review some of the 

basic formalism of free quantum fields in curved space. We then examine the 

dimensional reduction of a quantum field in a spacetime with a homogeneous 

subspace. We indicate how the dimensional-reduction anomaly arises and relate 

it to the more general multiplicative anomaly. Chapter 3 is devoted to explicit 

calculations of the dimensional-reduction anomaly for the simple case of spherical 

decompositions in flat space. We show how the anomaly arises and why it must be 

included for the dimensional reduction to yield standard results for flat spacetime. 

In Chapter 4 we extend our considerations to general four-dimensional spherically 

symmetric spaces, with particular emphasis on the Schwarzschild geometry. We 

calculate explicitly the anomalies in ($2), the effective action, and the stress 

tensor. Comparisons to known results for renormalized quantum fields in two and 

four dimensions demonstrate the significance of the anomaly to dilaton-gravity 

models. In Chapter 5 we examine dimensional reduction in four-dimensional 

static spaces and derive the corresponding anomaly. For the zero-temperature 

case, we demonstrate in Chapter 6 how this anomaly may be used to obtain a 

new approximation scheme for quantum fields in static spaces. We conclude in 

Chapter 7 with a summary of our results and point out some prospects for future 

work.
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5

Chapter 2 

Quantum Field Theory in 

Curved Spacetime and 

Dimensional Reduction

Our main subject is special properties of quantum fields propagating in curved 

spacetimes. In this chapter we collect some general results which will be useful 

later. We begin in Section 2.1 with a brief review of the quantization of a free 

scalar field in a gravitational background, with emphasis on such topics as Green 

functions, the effective action, the heat kernel, and the choice of quantum state. 

In Section 2.2 we examine the dimensional reduction of such a theory when the 

spacetime contains a homogeneous subspace, showing how it may be rewritten as 

a collection of fields in a lower-dimensional spacetime. In Section 2.3 we indicate 

how this dimensional reduction breaks down under renormalization, producing 

the dimensional-reduction anomaly.
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CHAPTER 2. QFTCS AND DIMENSIONAL REDUCTION 6

2.1 Quantum Field Theory in Curved Space

tim e

Let us review the general scheme for the quantization of a free field in a gravi

tational background. It will be sufficient for our purposes to consider real scalar 

fields only, though the following formalism is easily extended to more general 

bosonic or fermionic fields. For more general and detailed accounts see, for ex

ample, DeWitt [41,42], Berezin [43], Birrell and Davies [44], and Wald [45].

2.1.1 Classical Field

A self-consistent description of a classical scalar field $  propagating in a curved 

spacetime with metric <7̂ ,  where the gravitational interaction of the matter is 

taken into account, may be formulated in terms of the actions for the scalar and 

gravitational fields. The classical action for $  is taken to be

S  = \ J d x y / \ f \ * F * ,  (2.1)

where F  is a self-adjoint operator.1 Combining the action (2.1) with the classical 

Einstein-Hilbert action for general relativity,2

S ^ . = ~ / < i a :y S i [ f i - 2A) ,  (2.2)

and setting the variation of the total action S  +  Sgr,„ with respect to the metric 

equal to zero yields the Einstein equations,

Rp, -  ^9tu,R +  A =  8nTfu, . (2.3)

lOur F  is self-adjoint if, for any smooth complex functions t/>i, ip? having compact support 

in an open spacetime region of interest,

J < b V \T \ \ji>i{Fip?) -  (FtAi)tfo] = 0 ,

where the bar denotes the complex conjugate.
2We ignore the surface term that should be included for rigour [46].
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CHAPTER 2. QFTCS AND DIMENSIONAL REDUCTION 7

Here is the stress tensor for the field $, and is defined by

T  (24)
"  "  v W * iT  ’ ‘ '

In this thesis we will consider the gravitational background as a fixed external

field and ignore the back-reaction of the (quantized) matter on the geometry,

focusing rather on the vacuum polarization of the scalar field.

For a fixed background geometry the field equation satisfied by $  is found by 

setting to zero the variation of the action (2.1) with respect to the field, and is

F $  =  0. (2.5)

The self-adjointness of the field operator F  can be used to show that there 

exists an invariant “inner product” for solutions of the field equation which is 

bilinear in the fields and independent of the Cauchy surface on which it is eval

uated. Specifically, if $ i, $2 are any two complex solutions of (2.5) and E is a 

complete Cauchy hypersurface, one can show that

is invariant under smooth deformations and displacements of E. (If the space 

is noncompact, one assumes that the solutions fall off sufficiently rapidly at 

infinity.) Here /  is related to F  via

f  dxy/\g\ [^ (F tfo ) -  (fty x )^ ] =  [
J n Jan

where ft is any compact region of spacetime with smooth boundary 9ft, dEM is 

the outward-directed surface element of 9fl, and ip 1, ^2 are any smooth complex 

functions defined on an open region containing ft. Using this inner product, one 

can introduce a complete, orthonormal set of solutions {$*, $,} (the bar denoting 

the complex conjugate) such that

(*,, * ,) =  - ( ¥ it ¥ ,) =  Sij, ( $ ,  * ,) =  (**, $,) =  0. (2.6)
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CHAPTER 2. QFTCS AND DIMENSIONAL REDUCTION 8

Since the set {<£,, <&*} is complete, we can decompose the field $  as

® =  5 2  [ot*( +  Oi$i] , (2.7)

where a* represents the constant amplitude of the field in the mode Note 

that the set is not unique; this will be of some importance later.

2.1.2 Canonical Quantization

Assuming that the spacetime is globally hyperbolic, so that it may be foliated 

by spacelike Cauchy hypersurfaces, we can define a canonical momentum II con

jugate to $  via

Here the x° coordinate enumerates the hypersurfaces.

A standard procedure for quantizing the theory (2.1) is to elevate <5, II to 

operators and impose on each slice the standard canonical commutation relations

where the dagger (t) denotes the hermitian conjugate. The commutation rela-

and creation operators for quanta in the mode as they satisfy the commuta

tion relations

$(x°,x),$(x°,x ') =  0 ,

n(x0,x),n(x°,x') = 0,

$(x°,x), n(x0,x') = i<J(x —x'),

(2.9)

(2 .10)

(2 .11)

where the x  are the coordinates on the hypersurfaces.

In the decomposition (2.7) the a*, a* become operators:

(2.12)

tions (2.9)-(2.11) then imply that the d*, dj act respectively as the annihilation

[Si, SjJ =  [at, a]] =  0, [a,, at] =  S„. (2.13)
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CHAPTER 2. QFTCS AND DIMENSIONAL REDUCTION 9

The free quantum field thus decomposes to a collection of independent quantum 

harmonic oscillators, and we can construct a Fock basis for the Hilbert space just 

as one would do for the quantum oscillator. In particular, the vacuum state |0) 

is defined as that state annihilated by all d»:

dt|0) =  0 . (2.14)

Multiparticle states can then be built up by repeated applications of the creation 

operator o{.

2.1.3 Vacuum States

It should be noted that the physical nature of the vacuum state (2.14) depends 

on the choice of basis modes {$i, $,}. One of the most interesting features of 

quantum field theory in curved spacetime is that in general there is no set of 

modes which is “preferred” by the geometry. As a result, there is no unique 

vacuum state.

To see the consequences of this, consider two complete, orthonormal sets of 

states,

{uj,Ui}, (2.15)

with associated creation and annihilation operators

{o(,a!}, { M l} ,  (2.16)

and vacua |0)u, |0)„ such that

Oi|0)tt =  0 , 6i|0>„ =  0 . (2.17)

Since both sets are complete, we must be able to write the {u»,Ui} as linear

combinations of the {u^u,}. For example,

V i = + • (2 -18)
k
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CHAPTER 2. QFTCS AND DIMENSIONAL REDUCTION 10

This is known as a Bogoliubov transformation. The orthonormality and com

pleteness of both sets of modes dictates that the matrices a  and @ must satisfy

aa*- 0  = 1, (2.19)

0 -0 a *  = 0, (2.20)

where I  is the identity matrix.

The operators {Si, 6|} can also be written in terms of the {di,aj}. For exam

ple,

bi =  dfc -  . (2.21)
k

If 0 ^  0, the annihilation and creation operators are mixed in the Bogoliubov 

transformation. As a result, the vacua |0)u and |0)„ are inequivalent. In par

ticular, the number of particles in the mode Vi contained in the |0)u vacuum 

is

„<0|S!6,|0>. =  T ,  l&il2 ■ <2-22)
k

If the gravitational field vanishes (or becomes static) at very early or very 

late times, the vacuum state in these asymptotic regions can be chosen naturally. 

To do so, one identifies the basis modes with positive-frequency solutions 

($ oc e_iut, u) > 0). For such a definition the corresponding vacuum state is the 

state of lowest possible energy. For x° -> —oo it is known as the “in” vacuum 

and denoted by |0; in), while for z° -* +oo it is the “out” vacuum |0;out). 

In the presence of both “in” and “out” asymptotic regions one has at least 

two generically different privileged vacuum states. If at intermediate times the 

gravitational field is non-trivial, a given “in” mode will typically scatter into 

a linear combination of the late-time modes {<&°ut,$ jut}. In particular, if the 

decomposition of into “out” modes contains any of the $^ut (i.e., if 0 ^  0) 

then the vacuum states |0; in) and |0; out) are not equivalent. In this case a field 

which begins in the state |0; in) at early times will contain “out” particles at late
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times. The interpretation is that the nontrivial gravitational field has produced 

particles of the quantum field.

2.1.4 Green Functions

The various Green functions associated with the quantized theory may be defined 

as expectation values or matrix elements of products of the field operators for 

a given quantum state. Of particular interest to us are the Hadamard Green 

function G(l)(x, x') and the Feynman Green function Gf (x , x') for some vacuum 

state |0):

Here {,} denotes the anticommutator and T() the time-ordered product,

where 0(x,x') =  1 if x  lies to the future of a spacelike hypersurface through 

x', and vanishes otherwise. The choice of hypersurface is arbitrary, as the field 

operators commute for spacelike separations.

Using the commutation relations (2.9)—(2.11), one can show that the Green 

functions obey the differential equations

Note that the boundary conditions obeyed by the Green functions are contained 

implicitly by the choice of modes {4>i, $*} used to define the vacuum state.

For a given mode set {$,, $*}, the Green functions can be found by substi

tuting the mode decomposition (2.12) into (2.23) or (2.24). For example, for the

G(l)(x,x') =  (0|{d(x),$(xO}|0), 

GF(x,:O M 0|T (*(x),* (*0)|0 ).

(2.23)

(2.24)

T(<l(x),<l(x')) =  0(x,x')$(x)<l(x') +  0(x ',x)$(x ')S(x),

FG (1)(i , i ') = 0 , (2.25)

F G f(x ,x') =  -<J(x,x') (2.26)
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Hadamard function we find

12

G(1)(z, x') =  ^ . - ( x ) ^ ' )  +  •(*')] - (2.27)
t

The stress tensor for the quantized theory may also be expressed as a sum over 

modes by taking the quadratic-in-<5 expression resulting from the differentiation 

of the action with respect to the metric in (2.4), making the replacement $  

and taking the expectation value. For the vacuum state we obtain

(O liyo) (2.28)
t

where !),„(<&,-, $i) is the expression resulting from (2.4); it is symmetric in x, x' 

and in $*. Equivalently, we will see in Section 2.2 that the stress tensor can 

be written as the coincidence limit x' -> x of a differential operator acting on the 

Hadamard Green function G ^ f o x 7). Using the mode-decomposed form (2.27) 

for C?W(x,£/) then yields (2.28).

2.1.5 Effective Action

We will be interested in calculating the expectation value of the stress tensor for 

quantized scalar fields. While the mode-sum technique is physically transparent, 

the required mode set is typically extremely difficult to find. An alternative 

approach which is both elegant and enlightening is to define a quantized ver

sion of the action (2.1), called the effective action and denoted W, from which 

the expectation value of the stress tensor for a given state can be obtained by 

functional differentiation in analogy to (2.4):

. - , 2 SW

( , " > =  7 S * r '  ( ’

Using the ‘in-out’ formalism, it is not difficult to show that W  may be ob

tained from the vacuum-to-vacuum transition amplitude (0;out|0;in). With
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hindsight we define

eiW =  (0; out|0; in) =  J  £>[$] eiSW , (2.30)

where we use the path integral representation for (0; out|0; in) (see, e.g., [44,47]). 

Under a change 8S in the classical action, the corresponding variation in W  is 

given by

SW = e " w f  X>[<6] (SSe'sW (2.31)

= <0;nOUt'^ l° ;‘n>. (2.32)
(0;out|0;in)

Equation (2.32) is a statement of the well-known “Schwinger variational princi

ple” [48]. For the special case where the variation 5S is due to a variation 6g 

in the metric, we have by definition of the stress tensor

6 S =± J d x y / t e \  S g T ^ . (2.33)

Substituting (2.33) into (2.32) it clearly follows that

(Ojoutlf^lO; in) _  _2_8W _
(0; out|0; in) \Z\g\59tu'

Other expectation values such as (0; in|T^.|0; in) differ from (2.34) by finite, well-

defined amounts [42].

The next task is to find a convenient method for calculating W,  which is

typically a difficult problem. Returning to (2.30) and inserting the expression

(2.1) for the classical field action, we obtain a Gaussian path integral for the free

field. This evaluates to [44,47]

ew  a  [det(F)]"5 , (2.35)

where we treat the field operator F  formally as a matrix. From this we determine

W  =  ^  lndet(F) =  ^Tr ln (F ). (2.36)
M A

In writing (2.36) we have dropped a metric-independent additive constant, as it 

will not contribute to the stress tensor.
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2.1.6 Heat Kernel

The result (2.36) for the effective action can be reformulated in a more convenient 

manner through the introduction of a quantity known as the heat kernel. Let us 

formally consider Gf as an operator on the space of vectors |x) normalized by

(x|x') = 5(x,x '), (2.37)

such that

Gp(x,x') = (x|Gf|x') . (2.38)

The differential equation for Gp then becomes Gf = —F~l, and hence one can

write

Gp =  - F ~ l = i [  ds eiFa, (2.39)
Jo

r°° d<t
In (F) = -  — eiF\  (2.40)

Jo s
where in the second equation we have discarded a metric-independent infinite 

constant. For rigour, we should add a small positive imaginary part to F  to 

ensure that the integrals over s converge in the s -> oo limit; for a massive field 

this is equivalent to setting m2 -> m2 — it. This procedure also assures that 

(2.39) evaluates to the Feynman Green function rather than one of the other 

Green functions [49j.

Taking matrix elements, we find
poo

Gp(x,x') = i l  dsK(x,x'\s), (2.41)
Jo

w  =  - 5  f  /  * ■ /S i K ( *is> ■ <2-42)

where the function K(x,xf\s) =  (xle^lx ') is known as the heat kernel for the 

operator F. It is clearly a solution of the Schrodinger-like equation

(i ^  + F SjK {x ,x '\s )  = 0 (2.43)
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with initial condition

K(x, x'|s =  0) =  £(x, x ') . (2.44)

These results can also be obtained through alternative means which avoid the 

formal constructions (2.37)-(2.40) [50].

The heat kernel formulation has several virtues. It provides a unified means 

of studying both the Green function and the effective action. From a conceptual 

standpoint, it is interesting because it gives a quantum-mechanical solution3 to a 

field theory problem. Most important for our purposes, the heat kernel formula

tion is convenient for renormalizing quantum field theories in curved spacetime, 

which we consider next.

2.1.7 Renormalization

One of the principle features of quantum field theory is that quantities of physical 

interest contain infinities. For example, the expectation value of the square of the 

field operator, which is a measure of the quantum fluctuations in the field, can 

be obtained from the coincidence limit of the Hadamard Green function (2.23):

($2(x)) = lim ^ G (1)(x,x '). (2.45)
x! —f i  2

However, this Green function diverges in the coincidence limit, so that ($2(x))

is not well-defined. Similar infinities plague the stress tensor and the effective

action. The procedure by which these infinities are eliminated to yield finite,

physically meaningful results is known as renormalization.

The heat kernel formalism just discussed provides a powerful method for

renormalizing quantum field theories in curved spacetimes. In (2.41)-(2.42),

the divergences in both the Green function and the effective action come from

3Note that the heat kernel is formally identical to the amplitude for a quantum-mechanical 

particle to propagate from x! to x in “time” s under the “Ham iltonian” -F .
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the s —> 0 limit of the s integral (the s —► oo limit is well-behaved due to 

the ie prescription). The advantage of the heat kernel formulation is that the 

small-s behaviour of the heat kernel is known for arbitrary curved spaces of 

any dimension, in the form of the Schwinger-DeWitt expansion [41,42,51]. We 

postpone a detailed examination of this expansion until Section 4.1; suffice it to 

say that the divergences in the effective action (Green function) in .D-dimensional 

spacetime are contained in the first No terms (iVD -  1 terms) of the Schwinger- 

DeWitt expansion of the heat kernel, where

N d = <
y  + 1  for D even,

(2.46)
— ■ for D odd.

Moreover, the coefficients in the Schwinger-DeWitt expansion are purely local 

functions of the background fields appearing in the classical gravitational and 

matter actions: the curvature, the field potential, and their covariant deriva

tives. (This is because the divergences come about in the x1 —> x  limit, and so 

must be independent of boundary conditions and the global nature of the space

time.) Because of their purely local form, the divergences can be absorbed into 

the classical actions (2.1), (2.2) by redefinitions of the Newtonian gravitational 

constant, the cosmological constant, the coupling in the potential, and the other 

parameters in these actions. From a practical standpoint, that means that we 

can renormalize a given expectation value by simply subtracting the contribution 

from the first few terms of the Schwinger-DeWitt expansion.

2.1.8 Euclidean Approach

Until now we have been considering quantum field theory on Lorentzian mani

folds; i.e., on spacetimes with indefinite metric. An alternative approach which 

is frequently used for quantum field theory calculations is to define and compute
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all quantities of interest on a Euclidean manifold; i.e., on a space with positive- 

definite metric [52]. For static spaces, this is equivalent to moving from real to 

imaginary time via the ‘Wick rotation’ t -> - i t .  Results for the physical space-

of the calculation.

The Euclidean approach has several advantages. Foremost among these is 

that the differential operator F , which is hyperbolic in Lorentzian manifolds, 

becomes elliptic in Euclidean manifolds. For a wide class of Euclidean spaces 

and operators, its inverse (the Green function) is then well-defined and unique 

[52]. This Green function G obeys the differential equation

and vanishes as the separation distance goes to infinity in noncompact manifolds.

One can also obtain the Euclidean Green function from the heat kernel, which 

is so named because in Euclidean signature it obeys the heat equation

The heat equation is obtained from (2.43) by the replacement s -»• - i s ,  t -> —it. 

Similarly, the Euclidean Green function and effective action are related to the 

Euclidean heat kernel via

Note that for massive fields these integrals are well-defined in the s —► oo limit 

because the Euclidean heat kernel is exponentially damped for large s; no ie 

prescription is needed.

time can be obtained by analytic continuation from Euclidean space at the end

FG{X,X')  =  5d{X,X')  =  —- I (2.47)

(2.48)

with initial condition

K(x,x'\s =  0) =  S(x,x ') . (2.49)

(2.50)

J  ~  j  dxy/g K(x,x\s) (2.51)
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Because of these properties, it is often more convenient to work in Euclidean 

space and continue the final results back to Lorentzian spacetime. For a static 

space, the inverse Wick rotation gives

Lorentzian Euclidean

Gf =  « G U ,  (2-52)

W =  i W \ M .

Note that the Green function that results from the continuation of this G back 

to real time is the Feynman function Gp [49,52].

One other useful characteristic of Euclidean spaces is that they are very con

venient for considering quantum fields at nonzero temperatures [53]. In partic

ular, one can show that expectation values for a quantum field at temperature 

t = 0~l can be obtained by treating the field as propagating on a manifold which 

is periodic in imaginary time with period /J [54,55]. From this it follows that 

the Euclidean Green function and the Lorentzian Hadamard function are both 

periodic in Euclidean time (antiperiodic for fermions) [56,57]. These properties 

will be useful when we consider quantum fields at finite temperatures.

One drawback of the Euclidean approach is that many spacetimes of interest 

are not sections of a complex manifold which also contains a unique Euclidean 

section. However, this formulation is applicable to the spacetimes we shall be 

most interested in: fiat spacetime, Schwarzschild spacetime, and general static 

spacetimes. In future chapters our calculations of the dimensional-reduction 

anomaly will be done for Euclidean manifolds.

2.2 Dimensional Reduction

In this section we consider the dimensional reduction of a scalar field in a formal 

manner. We demonstrate how field objects such as the effective action and stress
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tensor may be related to the corresponding objects in a dimensionally reduced 

theory. In the following section we will indicate how this relationship breaks 

down under renormalization to give rise to the dimensional-reduction anomaly. 

Henceforth we work in Euclidean space unless stated otherwise.

2.2.1 Spacetime Metric and Notations

Consider a D-dimensional space with a line element of the form

ds2 = gliU{XT)dX'1dXu =  hab{xc)dxadxb + e-A*{xC)/n% { y k)dy'dyj . (2.53)

Here X a =  (x“,y‘), Qf, is the metric of an n-dimensional homogeneous space 

called the internal space, and is an arbitrary (D — n)-dimensionai Euclidean 

metric. The function <f> is known as the dilaton, and sets the scale of the internal 

space. The normalization of the dilaton field is a question of convenience; we 

set it by requiring that y/g for the metric (2.53) be proportional to e~2<t> for 

any number of internal dimensions n. Well-known examples of metrics of the 

form (2.53) are those of spherical spacetimes, and metrics connected with a 

dimensional reduction in Kaluza-Klein theories.

At this point some conventions on notation are in order. We shall need to be 

able to distinguish quantities like Green functions defined in different dimensions. 

“Ordinary” letters such as G, W  are used for the original D-dimensional theory, 

while calligraphic letters such as Q, W refer to dimensionally reduced quanti

ties. All curvatures will be with respect to h unless explicitly labelled otherwise; 

for example, R = R[h] and DR  =  R[g]. As for differential operators, we shall 

understand □ and ();/1, to represent the d’Alembertian and covariant deriva

tive using the metric g, while A*, ()|0, V„ are the d’Alembertian and covariant 

derivative using the metric h. We also use the shorthand (VC/)2 =

V U -V S  =  For the dilaton 0 we shall understand 0O> <t>ab, etc. to
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denote multiple (D — n)-dimensional covariant derivatives of 0 calculated using 

the metric h. In the rare cases where we need to take derivatives in the internal 

homogeneous space, we use the notation An, ():i. These conventions are repeated 

in Table 1, which is located at the beginning of the thesis for easy reference.

2.2.2 Quantum Field in D Dimensions

Let 6  be a scalar field propagating in the spacetime (2.53) and described by the 

classical action

S =  i  fd X y fg  + (m2 + V) * 2] , (2.54)

variation of which with respect to $  yields the field equation

F $  =  (□ -  m2 -  V) $  =  0. (2.55)

Note that we explicitly separate the mass term m2 from the potential V. The 

latter may contain an interaction with the curvature, £#[</], for a non-minimally 

coupled field, but is not fixed at the moment. We only assume that when calcu

lated on the background (2.53), the potential V  is independent of the yl coordi

nates.

The stress tensor for this theory is obtained by varying the action (2.54) with 

respect to the metric as in (2.4). Since we need to know the behaviour of 

the potential under variations of the metric to compute the stress tensor, we 

calculate for the physically interesting case V  =  £i2[y]. We find

r -  -  (2-56) 
=  (1 -  2 f ) « +  (R ^ \S  1$2

+  (2? -  \)gm  +  (rn2 +  e*fe])*2] . (2.57)

where we have used the field equation (2.55) to remove □ $  terms. Note that this
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classical stress tensor is traceless for conformally invariant fields, i.e., for m2 =  0,
c  _  1 D—2 
S — 4 D - r

In the quantum theory, the field $  is elevated to an operator. Quantities of 

physical interest, such as (<l2) and (T^), can be written in terms of the Euclidean 

Green function,

G(X,X ') = (*(X)*(X ')) ,  (2.58)

which satisfies

F G {X,X ') = -5 {X ,X ')  =  . (2 .5 9 )
s /9

Clearly,

( i J(X)) =  ;flimr G(A-,X'). (2.60)

Using (2.57), the expectation value of the quantum stress tensor can be written 

in terms of a differential operator acting on G(X , X') as follows:

<Xm) =  J im , Dm G(X, X ' ) , (2.61)

where for V  =  £R[g]

+(2« -  \)9m  ( « " * ' +  m2 +  ? % ])  +  . (2.62)

Here g is the bivector of parallel transport, and Va (Va/) is the covariant 

derivative at X  (X7) using the metric g. If the Green function has been ‘renor

malized’ so that it and its first two derivatives are finite as X ' X  then one

may set g f  -)• g°.

2.2.3 Mode Decompositions

Let us now consider what happens when we take advantage of the homogeneity 

of the internal space Dijdyxdyi . Using the line element (2.53), the operator □
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becomes

□ = Ak -  2 V(j>- V +  e4*/nAn , (2.63)

where A/,, An are the d’Alembertians corresponding to the metrics fly 

respectively, and V is understood to denote the covariant derivative with respect 

to the metric /i„6.

Considerable simplification of the problem in spacetime (2.53) is connected 

with the fact that for a wide class of homogeneous metrics the eigenvalue problem

A nY(y) = -A  Y(y) (2.64)

is well-studied [58]. We denote by the harmonics or eigenfunctions of (2.64), 

and use a collective index g to distinguish between different solutions of (2.64) 

for the same A. These modes may be chosen to obey standard orthonormality 

and completeness conditions,

j  dy\/D.Y\e(y)Yx>^{y) = 5\x>8ê  , (2.65)

g  vm v0 ■ <2-66>

We write summation over indices assuming that the spectrum is discrete (or 

equivalently, that the internal space is compact). For a continuous spectrum one 

must replace summation by integration over the spectrum. In what follows we 

shall assume that this rule is automatically applied.

Owing to (2.65), (2.66), the field $  can be decomposed in terms of the har

monics YXg(y):

*(X) =  e*1’ E  *>»(*) n„ (!/) , (2.67)
\,e

where c\e are constants. Substituting this mode decomposition into the classical 

action (2.54) and using (2.64), (2.65) gives

S  =  \  [ d x V h  j d y V l i e - 2* [e4*/nf i% ¥ a + hab$ ;a$.J) + (m2 + K)$¥]
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=  S  C*<?CAV \  [ dxy/h f  dy\/Q. [ e40/n<pX(py QijYXeriY vg>:j 
A,e A'.e' J J

+  h ^ id a tp x  +  {P \\a ){.<frb(P \'  +  <P\'\b)Y \eYX 'tf +  i 1™2 +  V ^ X V X 'Y x q Y AV ]

=  lcAel2 \  J dx'/h  [h^VxiaVwb + (m2 + V + <$?<$>a -<t>aa + Ae40/n) ] .
X,g

(2.68)

We use complex notation in (2.68) in case the modes Y\Q are complex.4

The classical action S  for the D-dimensional theory can thus be written as 

the sum of (D — n)-dimensional actions S\ ,

S =  X > a c|2«Sa, (2.69)
X,Q

where

SA = \ l d x V h [ h * V avxVb<Px + {m2 + V>)tf] , (2.70)

and the ‘induced potential’ V\ is

V\ = V -  A h<j> +  (V<£)2 +  Ae4*/n . (2.71)

In other words, by expanding the field in modes we effectively reduce the original

D-dimensional system to a similar system in (D -  n)-dimensional space with an

effective potential V\ depending on the dilaton field <(>.

An important feature of this dimensional reduction is that the (D — n)-

dimensional action Sx is independent of g. As a result, for a given A each g

makes an equal contribution to the classical action (2.68) up to the choice of the

constants c\g. In the quantum theory, the c\e will be replaced by creation and

annihilation operators, and each g contributes equally to the quantum action

and other expectation values. The total action due to all modes g for a given A

4 One can always choose real Y\e. In practice, however, it is often more convenient to work 

with complex modes, such as the Fourier modes e±iwt or the spherical harmonics Yim.
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will then be simply the action for any one g multiplied by the degeneracy of the 

eigenvalue A.

The (D — n)-dimensional field <p\(x) obeys the equation

Ex tpx =  (Ah -  m2 -  Vx) =  0 , (2.72)

which may be derived from the variation of the reduced action (2.70) or by 

direct substitution of the mode decomposition (2.67) into the D-dimensional 

field equation (2.55) and using (2.63). The special case V  =  £#[<7] is of particular 

interest. Substituting for i?[^] in terms of R[h], and the dilaton (see, for 

example, Appendix B.l), we have

Vx =  SR[h] +  (1 -  4— 0  (V*)2 +  (4f -  1)A h<j> + (A + f/2[fi])e4*/n . (2.73)n

Note that R[Q.\ is a constant, since describes a homogeneous space.

The stress tensor for our dimensionally reduced theory is obtained from 

the variation of (2.70) with respect to the (D -  n)-dimensional metric hab. For 

the potential (2.73), we find

T™ =  -^=—  (2.74)
“6 y/hSh*

=  (1 -  2^)Va<px̂ 6<Px -  VaVi<px + (2f — -)hab{V<px)2 + £Rttb[h)ip\

+ (2? _  2 ^ ° 6 m2 +  ZR[h\ + (4£ -  1)A*0 +  (1 -  4— f l ( V ^Tl

+  e4*/n(£fl[D] +  A) 

+  ( 1 - 4 0 ^ a

Vx +  (i “  £ ^ t ) M b V 2xTl

Vx, (2.75)

where we use the field equation (2.72) to remove &hV\ terms. It is interesting that 

this dimensionally reduced theory is only conformally invariant for D — n = 2 

(i.e., when the reduction is to a two-dimensional theory), A =  0, m  =  0, and 

£ =  0. In this case the classical stress tensor (2.75) will be traceless, while
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the trace of its quantum counterpart will be determined entirely by the con- 

formal trace anomaly. This useful property, combined with the fact that any 

two-dimensional space is conformally related to flat space, is at the heart of 

most efforts involving dilaton gravity models (see Section 2.2.7).

Strictly speaking, the dimensionally reduced stress tensor does not have any 

components in the y* sector. It is easily demonstrated, however, that one can 

write the D-dimensional T{1 in terms of the functional derivative of the action 

(2.54) with respect to the dilaton. Defining the effective pressure P = T^/n, one 

finds

P 4 T‘ = 2 ^ f -  <2-76'
For the dimensionally reduced theory we thus define analogously

V w  =  —L  —  (2.77)
2 y/h 6<(> v '

=  ( 2 e - ^ ) ( V ^ ) 2 + ( 2 e - i ) m2 +ZR[h] + {4Z- l )A h<f>

+  (1 -  )(V<£)2 +  e4*/n(£fl[D] +  A)Tl

_ ( l_ 4 ^ ± if l¥ > A
Tl V0.V +  ^ W Vx

+  - e 4*/n(£i2[fi] +  A)<^. (2.78)
Tl

For the quantized theory, the Euclidean Green function is defined by

Gx{x,x') = (<px(x)(px{x') ) , (2.79)

and satisfies

G\(x, *') = S ( x ,  x1) =  . (2.80)

In analogy to (2.60) we have

($(*)> =  Hm £a(x, x') . (2.81)
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Replacing <p\ by its operator equivalent and taking the expectation value of both 

sides of (2.75), one finds that the quantum stress tensor may be calculated using

<7£>)= lunD 2l & (i,x ') ,  (2.82)

where

+  (2? -  h h J & V ' V ,  + +  (2? -  i ) /w m2 +  £R[h]

+ 4£A h<t> +  (1 -  +  e4̂ n(eR[fi] +  A)71

+  (1 -  + (2? -  i )  W *  (V c + A?V„)

-  (2? -  5) [<MV„ +  Af'7 , )  +  fc(V. + )] . (2.83)

Similarly, the effective pressure may be calculated using

(Vw ) = Y i m V ^ g x(x,x'), (2.84)
z'-vx

where

®p ’ =  ( 2 ? - i )A r f VtVJ. - i ( l - 4 ^ i i { ) [ ^ ( v c +  AfVJ, ) + A r f ]

+  (2? - m2 +  +  (4? -  1)A»* +  (1 -  4— <)(V «2n

+ e4*/n(£R[fi] +  A) +  - e 4Wnp [ f i l  +  A). (2.85)
n

2.2.4 Dimensional Reduction of ($2) and (T^)

Mode-decomposition relations such as (2.67) for the field and (2.69) for the action 

can be extended to expectation values in the quantized theories. For example, 

by considering the differential equations (2.59), (2.80) for the Green functions 

and using (2.63) and the properties (2.64) and (2.66) of the Y\e, one can easily
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verify that G and Q\ are related by

G{X, X ')  =  £  fo (i, i ' ) . (2.86)
A ,e

Let us assume for convenience that the homogeneous space is compact (similar 

results will hold for the noncompact case). Then one can show that

Um £  YXe(y)YXt(,y') = ^ , (2.87)

where Vh is the volume of the homogeneous space, and Af\ is the degeneracy5 of 

the eigenvalue A:

JVa =  £  • (2.88)
e

Taking the coincidence limit of both sides of (2.86) then yields

<*2> =  £ ^ e2*<^>- <2-89>

Similarly, inserting the decomposition (2.86) into the expression (2.61) for the 

D-dimensional stress tensor, applying the operator Dab, and comparing to (2.82), 

(2.83), one finds

<TU) =  lim Daty 'e * <t|+<<' ,)n „ ( ! ( )n t (s')6»(x,i')A “f A
A,C

=  Um Y ,  {y)YXe(y) V ^ g x(x, Y)
* A,e

Vh
= (2>9°)

A

This demonstrates formally that the xa sector of the D-dimensional stress tensor 

can be obtained as the sum of the stress tensors for the dimensionally reduced

5For discrete spectra N \ is the dimension of the space of eigenfunctions Y\e with fixed A. 

It is finite [60].
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theories. A similar procedure can be carried out for the components of the stress 

tensor in the yl sector (the pressures), yielding an analogous result:

= (2.91)

Another elegant means to obtain these dimensional-reduction results is by 

employing the heat kernel. In Section 2.1 we were introduced to the heat kernel 

as a standard approach to renormalization in curved space. For a field satisfying 

the differential equation (2.55) in Euclidean space, the heat kernel K{X, X '|s) 

is a solution of of the heat equation (2.48) with initial condition (2.49); from it 

the Euclidean Green function and effective action may be obtained using (2.50),

(2.51). Analogous formulae also hold for the dimensionally reduced theory with 

operator !F\, heat kernel K.a (x , x'ls), Green function G\{x, x'), and effective action 

WA.

Using the field equations (2.55), (2.72) and the properties (2.65), (2.66) of 

the Yxe, one sees that the heat kernels K(X, X '|s), /Ca(x,x'|s) obey a mode- 

decomposition relation exactly analogous to that for the Green functions, (2.86):

K(X, X'\>) =  £  e<w+« 'V J,(y)F^(!/')K:»(:r, . (2.92)
A,e

This relation provides an easy way to produce the mode-decomposition relations 

for the (unrenormalized) Green function and the effective action. For example, 

in the compact case, integrating both sides of (2.92) over s as in (2.42) yields the 

mode decomposition of the quantized effective action,

W = Y , M aWa , (2.93)
A

in analogy to the result (2.69) for the classical actions. The mode decompositions 

of the stress tensor and pressure can then be derived from (2.93) by functional 

differentiation.
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For noncompact internal spaces, the decompositions (2.86) and (2.92) for the 

Green function and heat kernel still hold, but Vn ->■ oo and (2.87) is no longer 

valid. We must therefore go back to (2.89)-(2.91) and replace N'x/Vn —► oo by 

n e(y)FAe(y), which is easily shown to be y-independent. We will see explicit 

examples of this case in Chapters 5 and 6.

2.2.5 Dimensional Reduction of the Conservation Equa

tion

The D-dimensional action S  is invariant under the variation

^9(if = V(i\f A- T]f,(i)

= T)u$ u , (2.94)

where r) is an arbitrary smooth vector field. This invariance implies that the 

D-dimensional stress tensor obeys the conservation equation

TIU,*  = 0. (2.95)

This invariance survives quantum corrections (see Section 2.3), and so applies to 

the quantum stress tensor as well:

(T^)'v = 0. (2.96)

Substituting the mode-decomposed form for (T^)  yields the corresponding (non)-

conservation equation for the dimensionally reduced stress tensor,

Vl’( i £ )) = -2M'Pm)- (2.97)

The same result could also be derived directly in (D — n) dimensions by noting

the invariance of S \  under the transformation

8 h tif, =  T?a |6 +  7/ft|a  ,
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8<px  =  T}a tpx\a ,

5$ = i f $ a . (2.98)

This invariance also survives quantum corrections.

2.2.6 Induced Boundary Conditions

A final point regarding general dimensional reductions which will be very impor

tant for us later concerns global properties of the space and induced boundary 

conditions.

Let us assume that there exist points xa = xQ in the space (2.53) such that 

e- 0(ro) =  0; i.e., at which the volume of the internal space vanishes. If the D- 

dimensional manifold is regular at these points, then for a regular quantum state 

the (renormalized) expectation values of the field in that state will also be finite 

there. Considering the mode decomposition formulae (2.67) and (2.86), it is clear 

that the dimensionally reduced field fix and Green function G\ must vanish at 

these points. We call this effect “induced boundary conditions”. It will be very 

important in future chapters.

Note also that the induced potential (2.71) diverges at Xq if A 7̂  0.

2.2.7 Dilaton-Gravity Models

Classical Background

One of the interesting examples of dimensional reduction appearing in the liter

ature in recent years is the spherical reduction of Einsteinian gravity in D > 4 

dimensions to two dimensions [20]. As an example, consider the total (mat

ter plus gravitational) action for a minimally coupled massless scalar field in a 

four-dimensional spacetime with zero cosmological constant:

s ^ + s  = - 1- J d tx V \g \  +  (V<S)2] . (2.99)
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Under the assumption that both the spacetime and field configuration are spher

ically symmetric (i.e., keeping only the £ =  0 mode of the field in an expansion 

in spherical harmonics), this action reduces to

S ^  + S = [ i e- w (fl[/.l +  4 A ^ - 6 ( V « 2) +  ifi[n]

+ (V^feo)2 + ((W )2 -  A„*) *4o

where we write

(2 .100)

(2.101)
v 4tt

and =  2 is the curvature of the unit two-sphere.

The first line of (2.100) describes two-dimensional gravity interacting with a 

dilaton background field <f>. This theory can be generalized from Einsteinian grav

ity in D > 4 dimensions to include models inspired by string theory [21] and other 

sources [22-28]; the resulting class of systems is known as dilaton gravity. All 

classical solutions for dilaton gravity containing one event horizon and one singu

larity in the absence of matter are known [22,25,26], and their global properties 

and other characteristics have been studied [29-31]. The second line of (2.100) 

contains the classical action for a massless, minimally coupled two-dimensional 

scalar field propagating in the dilaton-dependent potential (V0)2 — A/,0. This 

corresponds to the s mode (the £ = 0 harmonic) of the four-dimensional scalar 

field <5. The quantization of this sector of the theory has been the subject of 

much interest in recent years, and we will discuss it momentarily.

Q uantum  Fields: Vacuum  Polarization and Partic le  C reation

The interest in dilaton-gravity models stems from the fact that semiclassical [32— 

39] and quantum-gravitational [61-63] calculations seem to be much easier to 

perform in two dimensions than in higher-dimensional spacetimes. For example, 

the Riemann tensor in two dimensions has only one independent component, and
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two-dimensional spaces are conformally flat. As well, for conformally invariant 

fields in two dimensions the quantum stress tensor is largely fixed by knowledge 

of its trace. These properties make it possible to perform some vacuum polar

ization and other calculations for arbitrary metrics, making the study of the 

back-reaction of quantized matter on the gravitational background possible [64]. 

This leads to the hope of being able to use dilaton-gravity models to obtain in

formation on the quantum creation and evaporation of genuine four-dimensional 

Schwarzschild black holes, including insight into the information-loss puzzle and 

black-hole thermodynamics [65].

If dilaton-gravity models are to shed light on the nature of black-hole evapo

ration and quantum gravity, it is clear that effects which are already known must 

be reproduced by them. The most interesting of these is Hawking radiation [66— 

68]. The first attempt to calculate the Hawking radiation in the 1 = 0 mode 

for a four-dimensional black hole using a two-dimensional model was made by 

Mukhanov, Wipf, and Zelnikov [32]. They used the conformal anomaly in two 

dimensions to calculate the effective action for a massless scalar field coupled 

minimally to gravity but nonminimally to the dilaton background. This tech

nique leaves undetermined a conformally invariant term. The authors developed 

a perturbative technique to compute this conformally invariant part but were 

unable to calculate it completely. Various attempts since then by a number of 

other authors [33-39] have led to different results for the Hawking radiation and 

stress tensor for dilaton-gravity, and disagreement on the correct approach to 

computing them. (Some authors [36] have stated that the Hawking radiation 

should be derived by integrating the (non)-conservation equation (2.97) for the 

two-dimensional stress tensor, while others [37] maintain that the effective action 

formalism is sufficient.) In addition to questions concerning their asymptotic be

haviour, comparison of the stress tensors obtained from dilaton gravity to the
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four-dimensional stress tensor for a massless scalar field near the event horizon 

also shows qualitatively different behaviour. These problems call into question 

the usefulness of dilaton-gravity models for understanding the physics of four

dimensional black holes, and at present there does not appear to be a consensus 

on the issue of the quantum effective action for dilaton gravity.

Part of this thesis (Chapter 4) is devoted to an examination of this issue, and 

the connection between spherically reduced quantum fields and physics in four 

dimensions.

2.3 The Dimensional-Reduction Anomaly

In the preceding section we saw that in a space (2.53), the main objects which 

characterize a free quantum field, such as the Green function, the square of the 

field operator, and the stress tensor, can all be written as formal sums of the 

corresponding objects in dimensionally reduced theories. These arguments have 

been applied to the field theory at the classical or bare level, and have commonly 

been assumed to hold for the renormalized theories as well. A central point of 

this thesis is to demonstrate that relationships like (2.89)-(2.91) in fact break 

down under renormalization.

The need for renormalization is apparent when one considers, for example, 

the expressions (2.60) and (2.81) for the expectation value of the square of the 

field operator. The Green function is divergent in the coincidence limit. As a 

result, our mode-decomposition expressions like (2.89) are purely formal; both 

sides contain divergences which must be removed to yield physically meaningful 

results. This raises the question of whether the renormalization in D dim ensions 

is equivalent to renormalization in (D — n) dimensions. Specifically, is the sum 

over A of the divergent terms in (D — n) dimensions equal to the divergent terms 

in D dimensions?
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As discussed in Section 2.1, the divergences in the effective action W  in D- 

dimensional spacetime can be removed by subtracting the first No terms of the 

Schwinger-DeWitt expansion of the heat kernel K  for the operator F , where ND 

is given by (2.46). By contrast, the dimensionally reduced action VVa is renormal

ized by subtracting the first No~n terms of the Schwinger-DeWitt expansion of 

the heat kernel IC\ for the operator T\. In subsequent chapters we will calculate 

the “divergent” parts of these heat kernels for various spaces and demonstrate 

explicitly that they do not satisfy a mode-decomposition relation like (2.92). As 

a result, the renormalization procedure destroys the formal representation (2.93) 

for the effective actions, so that after renormalization one gets

W'„. =  [W j|„ + AWj] . (2.102)
A

We call the additional contribution AW* the dimensional-reduction anomaly. 

Similar anomalies occur in the other expectation values of physical interest:

G„„(Jf,.Y') =  [C W * ,* 1) + AC»(i , i ')] , (2.103)
A,e

(*2>™ =  £  ^ e 2* [<0})_ +  A (® ]  , (2.104)
A Kn

C ft.)- =  E  ^  e"  [<■&*’>« + A<tS.A’)] • (2-105)

(P),.„ = E ^ e!* [(P(AI>™ + A<p<»>)] . (2.106)

In each case the anomaly is found as the difference between the renormalization 

terms for the (D—n)-dimensional theory and the mode-decomposed renormaliza

tion terms from D dimensions. For example, using the orthonormality condition 

(2.65) for the Y\e, one can show that for compact internal spaces the anomaly in 

the Green function is

A0»(i,x') =  ffA|Jl. ( i , i ' ) - e - (*(I>+«''» f d y y / H l i y ' ^ V Y ^ y )  Y ^ y ' )  Gal.(X ,X ' ) ,

(2.107)
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where the subscript ‘div’ denotes the divergent part obtained from the Schwinger- 

DeWitt expansion. In subsequent chapters it will be demonstrated that this 

anomaly is generally nonvanishing.

One might observe that there exists a relationship between the dimensional- 

reduction anomaly and the so-called multiplicative anomaly [69-71]. Formally, 

one can write

^  =  1 1 ^ ’ (2.108)
X,g

- ^ logdet F  =  — ̂  Afx log det . (2.109)

The latter relation is nothing but (2.93) for the quantum action. The violation 

of the formal relation (2.109) for products of operators after renormalization is 

known as the multiplicative anomaly.

In the following chapters we discuss special examples of the dimensional- 

reduction anomaly. For simplicity, we restrict ourselves to the physically inter

esting case where the number of spacetime dimensions D is 4, and the number 

of dimensions of the “internal” homogeneous space is 1 or 2. Unless specified 

otherwise, we work with manifolds of Euclidean signature. When we do con

sider Lorentzian spacetimes, our metric signature is always (— I- +  +). We use 

the conventions of Misner, Thorne, and Wheeler [72] for the definition of the 

curvature.
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Chapter 3 

Spherical Decompositions in Flat 

Space

We begin our study of the dimensional-reduction anomaly with an examination 

of one of the simplest and most familiar examples of dimensional reduction: the 

decomposition of a scalar field in flat space into spherical harmonics. This sur

prisingly nontrivial example illustrates most aspects of the dimensional-reduction 

anomaly, and allows their direct physical interpretation. At the same time, it is 

simple enough for exact results to be obtained, and will serve as a check on later 

calculations for the anomaly in curved spherically symmetric spaces.

We will be particularly interested in the role of the s mode (the £ =  0 spheri

cal harmonic) for quantum fields at nonzero temperatures. Accordingly, we begin 

in Section 3.2 with a direct calculation of the s-mode contribution to ($2) and 

(!),„) at finite temperature in four dimensions. We then consider in Section 3.3 

how to solve the same problem via dimensional reduction to a two-dimensional 

theory. We will demonstrate that renormalization of the dimensionally reduced 

theory fails to yield the correct expectation values, and explain why. We will 

then show how the dimensional-reduction anomaly corrects the predictions of
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the dimensionally reduced theory to reproduce the expected results for four di

mensions.

3.1 Spherical Dimensional Reductions

In section 2.2 we examined in a formal manner the dimensional reduction of a

ration for Sections 3.2 and 3.3 and for Chapter 4, we rewrite the more important 

formulae from Section 2.2 for the special case of spherical decompositions in a 

four-dimensional space.

Choosing standard1 angular coordinates (0,7?), the line element for a four- 

dimensional spherically symmetric space may be written as

ds2 = gtlu(XT)dXtldX u =  hab{xc)dxadxb + p V 2*(lC) (dd2 +  sin20 dr]2) . (3.1)

Here p is a constant with the dimensions of length. The radius of a two-sphere 

of fixed z° is given by r =  pe-0(ia). In the general case hob is an arbitrary 

two-dimensional metric; in this chapter we consider only flat two-dimensional 

space.

Consider a massive scalar field propagating on the space (3.1) and obeying 

the field equation (2.55), where the potential V  is also spherically symmetric. A 

natural procedure is to decompose the field into spherical harmonics Ytm(6, rj),

1=0 m = -l

where the c*m are constants. Using the orthogonality and completeness of the 

Ytm(6,rj) on the two-sphere, one easily verifies that the dimensional-reduction 

1 We denote the azimuthal coordinate by t) rather than 0 to avoid confusion with the dilaton.

scalar field without specifying the nature of the mode decomposition. As prepa-

(3.2)
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formulae from the previous chapter can be carried over directly for this decom

position using D =  4, n =  2, R[fl] =  2, and making the substitutions

YXe{ y ) ^ Y lm{p,rj), (3.3)

A -►£(£ + 1 ) , (3.4)

A/a —► 2£ +  1, (3.5)

Vh-+47T, (3.6)

£  - > •  £  • < 3 - 7 >

A 1=0

In addition,
*   2/ +1

E  j )  =  ftfcos A). (3.8)
m=—/

Here P* is a Legendre polynomial and we now use A to represent the angular 

separation of the points X , X', given implicitly by

cos A =  cos 9 cos & + sin 9 sin 9' c o s (t] — rf) . (3.9)

Following the analysis of Section 2.2, we see that (fit behaves as a field propa

gating in the two-dimensional space with metric ho*. It satisfies the field equation 

(2.72) with induced potential

Vt — V +  tM ± } l _  +  (V0)2, (3.10)
r*

and obeys Dirichlet boundary conditions wherever r  =  0 (provided the manifold 

is regular there). The corresponding two-dimensional Green functions Qt are 

related to the four-dimensional G via

G(X, X ')  =  £  ^ j ^ r f t ( c o s  A)j?,(x, I ' ) , (3.11)
1=0

while the renormalized quantities (2.102)-(2.106) take the following explicit form:

G ^ X . X 1) = £  ^ r P < ( c o s A )  [<?«,„(*,*') +  A fttx .x1)] , (3.12)
1=0 T
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= E  ^ 3 ^  [<$>»■+*<#>] • <3 l3 >
1=0
oo

W," B =  £ ( 2 1 + 1) [W,lr.0 +  AW,] , (3.14)
/=o

+  A(7g>>] . (3.15)
e=o

=  E  [ P * 1) -  +  A^ <0>] • <3-16)
/=0

In each case the anomaly is the difference between the divergent subtraction 

terms for the dimensionally reduced theory and the mode-decomposed subtrac

tion terms from four dimensions. For example, in analogy to (2.107) we find

AQi{x, x') =  Gi\div(x, x') -  2ttrr' j  d(cos A)P,(cos A)Gdiv(X, X ' ) . (3.17)

The remainder of this chapter is devoted to explicit calculations of these anoma

lies and elucidation of their importance for dimensional reductions in fiat space. 

General spherically symmetric geometries are considered in Chapter 4.

3.2 s-mode in Flat Space at Finite Tempera

ture

To better understand the role played by individual angular modes in spheri

cal decompositions, we calculate the contribution made by the s modes to the 

square of the field operator and the stress tensor of a scalar field in fiat four

dimensional spacetime at finite temperature. These follow the calculations of 

Balbinot, Fabbri, and Frolov for (T^)  in the massless case [73]. We use the 

metric signature (— +  + + ) .
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3.2.1 Formalism

In Section 2.2 we saw explicitly how the expectation values of the square of the 

field operator and the stress tensor for a scalar field in Euclidean space can be 

obtained from the Euclidean Green function. Formulae (2.60)-(2.62) hold in 

Lorentzian geometries as well with the replacement G -v |G ^ ,  where G(l) is the 

Hadamard function for the quantum state of interest. Thus,

(*2> =  ;Umx (3.18)

+ (? -  \ ) 9 ^  [ r ’G™ +  (m2 +  ?fl[s])G“ > ] , (3.19)

where G^j, =  ^ V ^ V MG(1)(X,X'), etc. Let us decompose the field operator <1 

in terms of a complete orthonormal set of modes

00 I  »

M X )  = E  E  I  i k  k t a W * )  + 4 t o W X ) ]  . (3-20)
<=0 m=-e J

where

= (3.21)
r

Under this spherical decomposition the four-dimensional field equation

(□ — m2) $*/„, =  0 (3.22)

reduces to

( -d ?  +  d ? - m 2 - <pu  =  0. (3.23)

In particular, for the i  =  0 mode the <p*o are just plane waves. However, to ac

count for the fact that r  6 [0, oo), we must impose Dirichlet boundary conditions
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on the (Pm at r =  0. The correctly normalized2 s modes are then

be the ordinary Minkowski (zero-temperature) vacuum. The zero-temperature 

Hadamard function is then given by (2.27):

with =  $(X '). Meanwhile, the Hadamard function at temperature T =  0~l 

can be shown to be [44]

00 l  poo .   . 1 I p-Built

Gjft.Y, X') = £  £  /  dk K ™ 5 '*™ + • (3.26)
1=0 m = -l

In flat space with vanishing potential, a free quantum field is renormalized by 

subtracting from the bare quantity the corresponding result for the Minkowski 

vacuum state. Taking the difference of (3.26) and (3.25), one finds

(3.24)

where k 6 (0, oo), and w* =  y/k2 4- m2 is the energy eigenvalue of the mode

Mm-

It can be shown that choosing the time dependence of the modes such that 

$iwm oc e~tUkt guarantees that the vacuum state associated with these modes will

£=0 m=—l

oo 00

( * V  =  £ ( 2 < + ! ) / « ,  26+l)(<2,  (3.27)

where the contributions to ($2)^ and (T^)^ due to modes of fixed I with m = 0 

are

$jwo $kto ,

2The normalized 3-modes are those satisfying

^tioo) =  —*47r drr2($iciOodt$k2oo — 3t$*i0o$*2oo)t=t' =  8{ki — fo) •
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roo

=  dk 
Jo

(3.29)

Since each value of the azimuthal number m for a given I gives the same con

tribution to (<l2) and (Tfu,), (3.28) and (3.29) are written for the m = 0 mode 

alone, and the degeneracy Mi = 21 +  1 is accounted for in (3.27).

Since in the following we deal solely with the s mode, we drop the superscript 

(£) and understand / ,  as referring to the 1 = 0 mode only.

3.2.2 s-mode Contribution to ($ 2)̂

Computing (3.28) for the 1 = 0 modes (3.24) we find

2 1 sin2 (kr)
1 ~  (2tt r)2 I  dk x ^ 2 ^ 2  * (3*30)

This can be expressed in terms of the known integral

/Jo

00 g-zSVP+m1
dk —= = = = =  cos(2 kr) = Ko(m \/0 2 +  4r2) (3.31)

y/k2 +  m2

by rewriting the ^-dependent factor in (3.30) as a geometric series in e~&Wk. The 

result is
1 °°

f  = ( 2 [K°(nm0) "  K'o(m>/(nP)a +  4^)] . (3.32)

Massless lim it

Taking the limit m  -»■ 0 in (3.32) reduces the Kq Bessel function to a logarithm:

1 (3.33)
(27rr)2 2 (27rr//3)
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The same result could also be obtained by taking the m  -¥ 0 limit in (3.30) 

before evaluating the integral. As expected, / m=0 is finite at r  =  0,

fm=o — ^2̂ 52 ’ (3.34)

while for large r  it decreases as

(3-35)

Low-temperature limit o f massive theory

For m/3 3> 1, the n > 1 terms in (3.32) are exponentially damped with respect 

to the n = 1 term, so we may neglect them to obtain

/,»« ., =  [tfo(rn,8) -  Ko[m\/P2 + 4 r2)j . (3.36)

Here the limiting values for large and small r  are

(3-37)

r->oo K o ( m 0 )  . .

(27rr)2 *

High-temperature limit of massive theory

The evaluation of the sum (3.32) in the previous cases has relied upon the asymp

totic behaviour of the Bessel function Kq for large and small values of its argu

ment. However, in the high temperature limit, m/3 1, these arguments are

neither always large nor always small, making the sums difficult to evaluate for 

general r. In spite of this, for very large and small values of mr we can still 

obtain /  by making use of the sums

n = l

K^nb) 
nb -  (3-39)
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f > ( n 4 )  =  ^ + I ^  +  l n i ) + 0 ( 6 2), (3.40)
n = l  '  '

7T4 7T2 7T 1 /  6  \

i564 +  l 2 ^ _ 66 +  l 6 V 7 + n 4^J
Ko(nb) + 2 K l (nb) ]
(nb)2 (nb) 4564

- ^ + 0 ( 6 2) (3.41)

(see, e.g., 5.9.1.4 of [74]).

For r  —>• 0 a Taylor series expansion for K Q(my/(n(3)2 +  4r2) yields

e r=o Ki(nmP)
I -  ^ 2  2-, nmp

n = l ^

1 m m2 /  , m/3\ m2
" 8 ^ ( 7 +  l n 4 r ) + l 6 ? + O W ) - (3“ 2)12/92 Airp

Note that taking the m -► 0 limit returns the expected result (3.34) for a massless 

field.

For mr »  1, we can ignore the K0 {m \/(n/3)2 + 4r2) terms as exponentially 

damped with respect to the Ko(nmP). We then have

'  n = l

47rr2 ^ +s ( 7+b̂ )+0̂ 2> (3.43)2m/?

Note that the m —> 0 limit is ill-defined. This is not surprising, since the as

sumption m r >  1 used to derive (3.43) excludes m =  0.

It should be noted that our results (3.34), (3.37), and (3.42) for the s-mode 

contribution to (<l2) at r  =  0 exactly reproduce the value obtained by summing 

over all modes [see (A.5), (A.7), (A.8) in Appendix A], This occurs because as 

r  -* 0, $kim oc r*, so only the s-mode makes a nonvanishing contribution to 

(<l2) at the origin. Meanwhile, the r  —► oo limit taken in (3.38), (3.43) equals 

(47rr2)-1 times the corresponding results for ($2)^ in two dimensions [see (A.17), 

(A.18)]. Similar phenomena will be seen with the stress tensor.
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3.2.3 s-mode Contribution to (TV)'3

Using (3.29), one finds that the stress tensor due to the s-modes has only diagonal 

components,

*dk — \ k 2T™ v +  \ k 2 cos(2kr)T™ u=  —  r(27rr)2 J0 efiut _  i  Wjfc

+  | r sin(2A:r)T^'/ +  ~  (1 -  cos(2fcr)) T ^ v 
, 2

+  ^ - ( l - c o s (2 * r ) ) r< J -

where the constant matrices T ^ u are

r r ( l ) u  
* M

0 1 0  0 

0 0 0 0 

0 0 0 0

j>(2)v
ft

( 4f 0 0

0 0 0

0 0 4£ -  1

0 0 0

\

rr{3)v  
x ft

r p {  4 ) v  
x ft

0 

0 

0

4 Z - 1  t

-4£ + 1  0 0

0 4£ —  1 0

0 0 -6$ + 1  

0 0 0

4£ — 1 0 0

0 —8£ +  1 0

0 0 8£ -  1

0

0

0

—6£ + 1

0 ^

0 

0

0 0 0 8f - 1

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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j i  5) u _ (3.49)

/

1 -1  0 0 0 ^

0 0 0 0

0 0 0 0

0 0 0 0

It is easy to verify that all of the integrals in (3.44) can be written as derivatives 

with respect to r  of the integral (3.31) after expanding the /3-dependent part as 

a geometric series in e~0Uk. Defining ^  =  y/(n/3)2 +  4r2, we find

(2 =  f ;  r<J>'
n = l

n = l Lr^n \  f*n /  /*n

n = l

+  E  -  ^ .(m w .) ]  T<;>”
n = l 
oo

+ m2 £  [«,(nm/S) -  ".

j i  2)i/

(3.50)
n = l

These sums can be evaluated for the massless, low-temperature, and high- 

temperature limits just as was done for the s-mode contribution to ($2)/3. More

over, it is easily verified that this stress tensor is conserved for all £ at all r, and 

that it is traceless for £ = |  and m =  0.

Massless limit

Taking m -> 0 in (3.50) replaces the Bessel functions by their small-argument 

limits. Using the sums

E [ " 2 + i2 r ‘ -  i
n = l

coth (nx) — —
7TX

oo r

e > 4 + ©
n = l L

=  In
sinh7rx

irx

(3.51)

(3.52)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. SPHERICAL DECOMPOSITIONS IN FLAT SPACE 47

one finds

(< /)M lm=0 47rr2 6/92 M
1

++  f       T' ‘
\327r2r 4 8/32r2 sinh2(27rr//?) /  M327r2r 4 8/32r2 sinh2(27rr//?)

167r2r4

4 - r  coth(27rrA9) — —
dr3 v / ; 16?r2r 4

The same result is obtained by taking the m —► 0 limit before evaluating the 

integral over k in (3.44).

This stress tensor is finite at r =  0:

Comparing to (A .ll), we conclude that at the origin |  of the total stress tensor 

(i.e., that obtained by summing over all I) is due to the s mode. The difference 

is made up by the £ =  1 mode, which can make a nonvanishing contribution at 

the origin due to the fact that the expression (3.29) for the stress tensor contains 

up to two derivatives per term quadratic in the field.

Finally, at large r  we have

In particular, for £ =  §,

(3.54)

( -I 0 0 o\

(3.55)

47rr2 602

\  o o o o  y

(3.56)
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Note that the leading order term is just (47rr2)-1 times the stress tensor for a 

massless scalar field in two dimensions, (A. 19) .

Low-temperature limit of massive theory

For low temperatures, m0 »  1, the arguments nm/3, m\J{n@)2 -f 4r2 of the 

Bessel functions in (3.50) are large for all n and so the Bessel functions are 

exponentially damped. The leading contribution to the sums then comes from 

the n = 1 term alone, as we saw earlier for (I*2)'3. Recalling that fj.\ =  \J02 + 4r2, 

we find

(27rr)2 (t ")

.Ml \  M 1 / M1
7^ ( 2 ) u  

I*

+ — T»»'
Ml

+ ^ s [KQ( m f i ) - K Q( m tti)] I™* 

+ m2[/f0(m/d ) - JPr0(mMi)] T ^ (3.57)

As in the massless case, the stress tensor is finite at r  =  0:

, 2

(V)

(2ir)2 9 (3.58)

In particular, for f  i

/

= ° 5

- 1 0 0 0

0 1
3 0 0

0 0 1
3 0

0 0 0 1
3

(2ir)2
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+
0 0 0 0 

0 0 0 0 

0 0 0 0V

1 2m3 
(2ir)2 0 Ki(mp) (3.59)

Let us compare this result to the total stress tensor (due to all £) for a massive 

field at low temperature, (A.14). We see that the second term in (A.14), which 

vanishes in the massless case, is due entirely to the s mode, while |  of the first 

term is due to the s mode.

Meanwhile, as r —> oo we find 

,2

M ,
n r

m 'm/9>i (27rr)2

By comparing to (A.20) we see that the leading-order terms are just (47rr2)-1 

times the low-temperature stress tensor for a scalar field in two dimensions.

High-temperature limit of massive theory

For <  1 we can evaluate the stress tensor for r —>■ 0 and r  —► oo only.

Let us consider the case r  —>• 0 first. By expanding the r-dependent Bessel 

functions in (3.50) for small r  and making use of the sums (3.39)-(3.41) one finds

(C ) 1 +
m

r= °  _  ( f i7 ’(2 ) "  4.  4 T ( 3) v  -t- T ^ 4) u\  [  7r
'  * " ] [l80/?4 ' 48/32

im4 "I 
256tt2J

+
m

647T2

4 (  , b \  3m4 1
^ ( 7 + l n ¥ j -------------1

mr 
247t/3

+  j>(5) i mr n r
+

mr
(3.61)

12/S2 8tt2 V 4tz j  16tt2

Note that taking the m —> 0 limit returns the massless result (3.54). Also, if we 

take £ =  £ and compare to the total stress tensor for a high-temperature field, 

(A. 15), we see that the second term in (A. 15) is entirely due to the s mode, while 

|  of the first term is due to the s mode.
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For mr  »  1, all of the Bessel functions Kj(mnn) will be exponentially small 

compared to the Kj(mn0), and may be ignored. We then find

m r—voo 1
(V) (2nr)2

+
1

(2 7 rr )2

7r2 7rm m2 (  . m/3\ m2
6 F " 2 3 - T ( 7 +  l n 4 7 j + T

(3.62)

Again, the leading-order terms are just (47rr2)-1 times the corresponding result 

for a scalar field in two dimensions, (A.21). As well, for m —► 0, this leading part 

reproduces the 1/r2 part of the stress tensor from the massless case, (3.56).

3.3 The Dimensional-Reduction Anomaly in Flat 

Space

In the previous section, we calculated directly the s-mode contribution to the 

expectation values ($2) and (TM1/) at finite temperature in four dimensions. In 

this section we attempt to solve the same problem using dimensional reduction. 

We show that naive dimensional reduction fails to produce the correct expecta

tion values for flat space. We then examine the dimensionally reduced theory 

in detail and show how the anomaly corrects its predictions to yield expectation 

values in agreement with those of the previous section.

Consider a quantum field $  in four-dimensional flat space. For convenience, 

we will calculate the anomaly in Euclidean space and continue the final results 

back to Lorentzian signature. We assume that the field satisfies the field equa

tion (2.55), where the potential V  vanishes inside the region of interest and is 

spherically symmetric outside. In this case, the Green function for a given state 

is renormalized by subtracting the Green function for the Euclidean vacuum. In
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four dimensions the latter is3

G„.(X, X ’) = - ^ — K^m y/2^ ) , (3.63)

where a is one-half the square of the geodesic distance between X  and X ', and 

Ki is a modified Bessel function. In spherical coordinates X M =  (t, r, 9, rj) the 

line element is

ds2 =  dt2 + dr2 +  r 2 {d.92 4- sin29dr]2) , (3.64)

and

2(7 = (t -  t')2 +  (r -  r ')2 +  2rr' (1 -  cos A) , (3.65)

where A, the angle between X  and X', is given by (3.9).

If there exists a boundary £  surrounding the region M  under consideration 

and the field obeys a non-trivial boundary condition at E, or equation (2.55) in

cludes a non-vanishing potential V  which vanishes in M ,  then the Green function 

G{X,X')  will differ from Gdiv. The renormalized Green function is then

Gm (A, X') =  G(X, X') -  GdW(X, X ' ) . (3.66)

It is evident that (4>2)ren and (T^u)na vanish in the absence of the external field 

V  and boundaries.

If before renormalizing we first decompose the field <1 into spherical harmonics 

as in (3.2), we will be left with an effective field fit propagating on the two- 

dimensional space with line element ds2 =  dt2 +  dr2, where t 6 (-oo, oo) and 

r € [0, oo). The geodesic distance function a  is simply £[(t -  if)2 + (r — r ')2], and 

from (3.10) the induced potential is

V4 =  S £ + i ) i {367)
r*

3Eq. (3.63) may be obtained using the Schwinger-DeWitt expansion, as described in Sec

tion 4.1.
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as A<f> — (V<£)2 =  0 for the line element (3.64). Though this induced potential 

is nonvanishing, it does not influence the divergences in two dimensions, as we 

shall see later. As a result, the theory is renormalized by subtracting the two- 

dimensional vacuum Green function4

Gtuw(x, x') =  — K0{my/(t - 1')2 +  (r -  r')2) . (3.68)

By this point one might have noticed a curious feature of the dimensional re

duction. For the original theory in four dimensions, one typically expects the 

renormalized stress tensor and field fluctuations to be finite everywhere (such as 

for a finite-temperature state). In particular, for the Euclidean vacuum state, all 

expectation values should vanish identically. By (3.2) and (3.11), finiteness at 

r =  0 in four dimensions implies that the dimensionally reduced field and Green 

function must vanish there. On general grounds, however, one expects that this 

boundary condition will produce infinite vacuum polarization which causes the 

dimensionally reduced stress tensor to diverge as r  —► 0 [75]. Thus, if one at

tempts to calculate (T^)™ by naively summing over the (t£v)na, the resulting 

four-dimensional stress tensor will diverge5 at r =  0, even for the vacuum state! 

A key result of this section is that the dimensional-reduction anomaly cancels 

these divergences in the two-dimensional theory to yield finite results in four 

dimensions.

The dimensional-reduction anomaly arises because of the inequivalence of the 

divergent subtraction terms for the higher- and lower-dimensional theories. To

4Eq. (3.68) can be obtained using the Schwinger-DeWitt expansion in Section 4.1.
5In fact, one can show that the sum over I  will diverge at all r. For example, the anomaly

A ($ )  varies as as I  oo, and hence sums like

^ (2 *  + l ) A/-2v v"* (2/ +1) „2
1=0 1=0

are divergent. Similar effects were noticed in [6,11,12].
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illustrate this, we decompose Gdiv into spherical harmonics and compare to Qt\div. 

Defining the mode decomposition by

Gal,(A-, X ') =  £  A)Gal.„(x, i") (3.69)
1=0

in accordance with (3.11), we have

G,uv\t{x,x') = 2 n r r 'J  d(cos\)Pt(cos\)Gdiv( X ,X ') . (3.70)

Inserting (3.63) into (3.70) and using the well-known integral representation for

j  dx x~l~u exp | —x -  =  2 K„(a) (3.71)

(see Appendix C.3.1), the integral

y “ dz P M  e*1- '  = (-1  /«+,„(?), (3.72)

where It+1/2 is a modified Bessel function (see e.g. [74], vol.2, eq.2.17.5.2), and 

the representation

W M  -  - k f  t  [ ( - ! )* -  -  ( - 1 M  , (3.73)

(see, for example, 8.467 of [76]), we obtain

(3.74)

where

<7± s i [ ( t - O a +  (r± r ')sl. (3-75)

Let us compare this result for the mode-decomposed subtraction terms from 

four dimensions with the subtraction term for the two-dimensional theory, (3.68).
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While Ge\div is the free-field Green function in two dimensions, it is not difficult to 

verify that Gdiv|/ is the Green function for a field propagating in the centrifugal 

barrier potential (3.67) and obeying Dirichlet boundary conditions6 at r  =  0. 

The anomaly in the Green function, given by

AGt(x, x') =  Gt\diw{x, x') -  Gdiv)/(x, x ' ) , (3.76)

is then simply the negative of the renormalized Green function for a field propa

gating in the centrifugal barrier potential (3.67) in two dimensions and obeying 

Dirichlet boundary conditions at r  =  0. The infinite vacuum polarization ef

fects in the effective two-dimensional theory due to the boundary at r  =  0 will 

thus be exactly canceled by the dimensional-reduction anomaly. In particular, 

for the four-dimensional vacuum state the anomaly exactly cancels the renor

malized two-dimensional Green function, yielding vanishing expectation values 

in four dimensions. Failure to include the anomaly will leave one with divergent 

results for four-dimensional expectation values, even for the vacuum state.

The anomaly in the Green function can be used to calculate the anomalies 

in (<l2) and (!),„). For (<§2) we find

A ($ )  =  Urn [&|div(x,:r') -G ^vi/fox ')] (3-77)r->i
1 ' (£ +  *)! l ( - l ) * - 1 ( - 1 ) ' ^  (< + *)! K>(2mr)

47t “  (I — k)\k  (mr)2k 2% "  k\(I — A:)! (mr)k

For example, for the first three modes the anomalies are

A(^Lo) =  ^ /fo (2 m r) , (3.79)

-  s

=  £

 ̂ — Ao(2mr)— . . ifi(2mr)(mr)2 (mr)

^ ** +  Ko(2mr) + ■ ^ K\(2mr)

(3.80)

(mr)2 (mr)4 (mr)

8Since (3.72) is finite for p =  0, Gdiv|< obeys Dirichlet boundary conditions at r  =  0, r1 =  0 

due to (3.70).
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+
12

(mr)2
Ki(2mr) (3.81)

Note that the anomaly diverges logarithmically as r  —> 0, and vanishes as r  —► oo. 

The divergence at r  =  0 precisely cancels the corresponding divergence in the 

renormalized two-dimensional theory due to the boundary condition.

The expressions for the anomaly in the stress tensor are more complicated, 

so we show the results for the I =  0 mode only. Substituting (3.76) into (2.82),

(2.83) we obtain

’2 r Ki(2mr)(4£ — l)Ko(2mr) +  (12£ — 2)-
(2 mr)

+ (8* - 2)Ko(2mr)'
(2mr)2

A(r < r )  =  I

= %

(2_8f) ^ i  + (2 - 16?)A:',(2mr)l
(2 mr)

(4* -  l)tf0(2mr) + (16* -  3)

K^{2mr)

(2 m r)2 
Ki(2mr) 

(2 mr)

(3.82)

(3.83)

+ (16*-2)

In the m

(2mr)2

0 limit the anomalous stress tensor becomes

A ( t (0!t> =  ^  [(1 -  4*){7 +  In mr} + (6* - 1 ) ] ,  

A(f«>)r) =  _ L _ [(g £ _ 1){7 +  lnmr} +  ( l - 4 * ) ]  , 

A (£(0)> =  [(2 -  16*) (7 +  Inmr} +  (16* -3 ) ]

(3.84)

(3.85)

(3.86)

(3.87)

where the m in the logarithms must now be considered an arbitrary parameter. 

Note that the anomalous stress tensor diverges as In ( r ) /r2 as r  -*■ 0, and vanishes 

as r  —► oo. As was the case for A{tpf}, the divergence at r  =  0 precisely cancels 

the corresponding divergence in the renormalized two-dimensional theory due to 

the boundary condition, leaving a finite stress tensor in four dimensions.
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3.3.1 Scalar Field at Finite Temperature

Let us return to the spherical decomposition of a scalar field at temperature 

T  = 0~l in four-dimensional flat space, and use this case as an illustration of 

the role of the dimensional-reduction anomaly. From the preceding discussion, 

the dimensional reduction of a free scalar field with vanishing potential produces 

a dimensionally reduced field (pt propagating in the centrifugal barrier potential 

t ( I+ l ) / r 2 and satisfying Dirichlet boundary conditions at r  =  0. The bare zero- 

temperature Green function for this theory is just (3.74). The finite-temperature 

Green function is most conveniently obtained by recalling that in Euclidean space 

the temperature dependence can be realized by requiring the field to be periodic 

in (imaginary) time with period 0. Thus, the finite-temperature Green function 

in two dimensions can be obtained from the zero-temperature function (3.74) by 

the replacement {t - 1) (t — t* -1- n0) and summing over all integers n:

The zero-temperature result is the n =  0 term, Gdiv|*(x, x'). The renormalized

Kk(my/2a;
(2 mrr')k

K k(m-j2a+) ,

(2 mrr')k Kk(my/2a^)

(3.88)

where

=  |[(* ~  +  n&? + (r ±  r')2\ ■ (3.89)

value of (p2) for the dimensionally reduced field is then

K k(nm0)

Kk{my/(n0)2 -(- (2r)2)

(3.90)

+ Urn [Gdwi^x.x') -  Giidivfox')] (3.91)
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Note that we have separated the n =  0 term and grouped it with the two- 

dimensional renormalization term, Qt\dW. This last line is precisely the negative 

of the anomaly A (3.77). As we have seen, this last part will produce 

a contribution to (</j2) which diverges as r  ->■ 0. However, in calculating the

The remaining terms are the finite, temperature-dependent contributions to 

($2)fen in four dimensions. For example, the I =  0 mode alone makes a con

tribution of

This is precisely the result (3.32) obtained in the previous section by working 

directly in four dimensions.

ties from the two-dimensional theory using relations like (3.12)—(3.16). However, 

to obtain the correct result we see that each term in the decomposition must be 

modified by adding a state-independent7 anomaly term, such as (3.78), (3.82)-

(3.84). Failure to account for these extra terms would result, for example, in 

nonzero expectation values in the Minkowski state. We conclude that one can

7See also the discussion at the end of Chapter 5.

renormalized (<l2)'3 in four dimensions this term is precisely cancelled by the 

dimensional-reduction anomaly:

"  47rr2 "  27t kl(£ — k)l1=0 n = l  k=0 '  '
I ( h ?)*

(3.92)

Kk(m\/(n0)2 + (2r)2)

/ ('=0> =  4 ^ 5  E  [*o("m/3) -  + (2r)2) ] . (3.94)

To summarize, we have demonstrated that expectation values such as ($2)«n 

and (T f u can be expressed as sums of the corresponding renormalized quanti-
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model correctly quantum fields using lower-dimensional theories, but only if the 

dimensional-reduction anomaly is accounted for.
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Chapter 4 

Spherical Decompositions in 

Curved Space

In the previous chapter we demonstrated the existence of the dimensional- 

reduction anomaly using the simple example of spherical decompositions in flat 

space. We saw that the anomaly has to be accounted for if the dimensionally 

reduced theory is to yield correct expectation values for the physical theory in 

four dimensions. In this chapter we extend our analysis to the more general 

case of spherical decompositions in curved spherically symmetric spaces. These 

include the very interesting example of the Schwarzschild black hole, which we 

shall consider at some length.

We begin in Section 4.1 with a detailed derivation of the dimensional-reduction 

anomaly in ($2). The techniques developed there are then applied in Section 4.2 

to the calculation of the anomaly in the effective action. In Section 4.3 we derive 

the anomalous stress tensor for a general spherical decomposition, and in Sec

tion 4.4 apply these results to the interesting case of the s-mode in Schwarzschild 

spacetime.
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4.1 The Dimensional-Reduction Anomaly in 

< * 2 >

While our chief aim is the study of the dimensional-reduction anomaly in the 

effective action, in order to illustrate more clearly the effect of curvature on local 

reduction anomalies we begin with the simpler case of the anomaly for (<f>2)ren.

4.1.1 Structure of Divergences

We take as our system a massive scalar field with arbitrary coupling to the four- 

dimensional scalar curvature, described by the field equation (2.55) with

V = Z4R{g}. (4.1)

We assume that the space of interest is Euclidean and described by the line 

element (3.1).

As we saw in Section 3.1, under the dimensional reduction (3.2) the quantum 

field <1 reduces to a collection of effective fields fie in the two-dimensional space 

with metric hat,. These dimensionally reduced fields propagate in the induced 

potential (3.10),

v , =  e 4% ] + ^ i i ! - A < 6 + ( v * ) 2Ti
= +  [<(«+1) + 2?] p -V *  + ( 4 ^ - 1 ) A r f + ( 1 - 6 ? ) ( V « ) J , (4.2)

where r  =  pe- *, and vanish at any regular points of the manifold where r  =  0. 

We wish to compute the anomaly associated with renormalizing this dimension

ally reduced theory versus (2.55).

Since the dimensional-reduction anomaly is connected with the divergences, 

let us discuss first the general structure of these divergences. The most conve

nient way for our purposes is to use the so-called Schwinger-DeWitt proper-time
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formalism [51], [41], [42]. In this approach, one can write the Green function 

G (X ,X ')  and effective action W  in the form

G {X ,X ')=  r d s K ( X , X ' \ s ) ,  (4.3)
Jo

W  =  ~ \ r  7  /  (4-4)
where K(X,  X '|s) is the heat kernel for the operator F, defined by (2.48), (2.49). 

Analogous formulae also hold for the dimensionally reduced theory with operator 

Ft, heat kernel ICt{x, x'|s), Green function Qi(x,x/) and effective action W*.

The divergences in both the Green function and the effective action come from 

the s —¥ 0 limit of the s integral. The advantage of the heat kernel formulation 

in curved space is that the small-s behaviour of the heat kernel is known for 

arbitrary curved spaces of any dimension, in the form of the Schwinger-DeWitt 

expansion [41,42,51]. In four dimensions this is

w, x D H X ,X ')  f 2 * ( X , X ' ) } ^K ( X ,X \ s ) =  (47rg)2 exp | - m s  _ _ | ^ a i ( X , X ) s  . (4.5)

Here again <j (X, X') is one-half of the square of the geodesic distance between

the points X  and X '  (sometimes referred to as the Synge world function [77]),

while D{X,X ')  is the Van Vleck-Morette determinant [78,79],

d d 
dX» dX"/

The On are the Schwinger-DeWitt coefficients for the operator F  of (2.55) with 

potential (4.1). In the coincidence limit X '  -> X  the first few of these are [41]

=  1, (4.7)

D ^ x ') =  - r r W 7 ^ m detV9{X)V9(X ')
v (X ,X ') (4.6)

(4.8)

a%~**R =  T^- [ X ^  4R ° ^ 6 -  ARa0 ^  +  □ 4« ]
loU

+H H )D4fi+H M 2(,fi)2- (4-9)
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Note that, as promised, the â , are purely local functions of the curvature, the 

potential, and their covariant derivatives. They are independent of the field 

mass, as this is accounted for separately in (4.5).

For the two-dimensional operator Tt of (2.72) with induced potential (4.2) 

we shall need the Schwinger-DeWitt expansion of the heat kernel only in the 

coincidence limit. This is

(4.10)

Considering (4.3), (4.4), it is clear that in four dimensions the divergences in 

G (W) arise from the first two1 (three) terms in the Schwinger-DeWitt expansion 

for K, while in two dimensions we need consider only the first term (first two 

terms) in fC(. The anomaly in ($2) or W  can then be calculated by mode- 

decomposing the appropriate terms from K , comparing to the heat kernel K.{ 

for the dimensionally reduced theory, and finally integrating the difference over 

s according to (4.3) or (4.4).

4.1.2 Calculation of the Anomaly

Let us begin with the anomaly in ($2). The divergent part of the Green function 

in four dimensions is given by

Gdiv(X, X')  =  [°°dS K M  X'\s) , (4.11)
Jo

where Kdiv consists of the first two terms of (4.5):

K ^ X , X ' \ s )  = - i - e x p { - m 2s -  X') -t-s3Fif-f"‘"(A',AT')] .

(4.12)

1 Comparing to (3.63), one sees that the integral representation used for Gaiv in Section 3.3 

was just the heat kernel representation (4.3) with (4.5)—(4.8).

ICt(x,x\s) =  ——— exp { —m2s} 
47TS 1

1 +  s
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Here we use the convenient notation

R°-*Ar(X ,X ')  =  D3(X,X') a°-Z*R( X ,X ') . (4.13)

In principle, the anomaly in ($2) is straightforward to calculate. We mode- 

decompose Kdiv in terms of Legendre polynomials in the usual manner:

K U X .X 'W  = (4.14)
1=0

Kdiv\t(x,x'\s) =  2irrr 'J  d(cos A) P*(cos A) Kdiv(X, X '|s ) . (4.15)

The anomaly in ($2) is then just the coincidence limit of the difference between 

the subtraction terms in two dimensions and those mode-decomposed from four 

dimensions, integrated over s:

A{v2{x))= [  ds [/C*|diy(x,x|s) — iifdl¥|£(ar,x|a)] . (4.16)
Jo

We encounter a difficulty, however, when we try to perform the mode decom

position. For a general space, a and the a°~*AR are known only for infinitesimal 

separations2 of X  and X ', while evaluation of the mode-decomposition integral 

(4.15) requires knowing a and the f°r finite separations of X , X '  on the

two-sphere. We proceed by determining an approximate Kdiv for finite separation 

based on the following criteria:

1. Our approximate Kdw must reduce to the known value in the flat-space 

limit.

2. Our approximate A'div must respect the periodicity of the two-spheres (i.e., 

it must be periodic in the angular separation A with period 27r).

2In terms of momentum integrals, finite separations correspond to the low-frequency regime, 

where the renormalization terms are not fixed by the divergences in the theory.
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The first criterion may be met in the following manner. We split the points 

X  and X '  in the angular direction only. Using the well-known short-distance 

expansions obtained in [80,81], a and the may be expanded in powers

of the angular separation A, which is equivalent to expanding in powers of the 

curvature. These expansions are then substituted into K div and, assuming small 

curvatures, truncated at first order in the curvature for A (<£2) and at second order 

for AW/. To take account of the periodicity of the two-spheres, the resulting 

expansions in powers of A2 are then converted into expansions in (1 — cos A). 

Defining z =  cos A, we have

A2 =  2 ( l - z) +  i ( l - 2)2+ i ( l - 2)3 +  . . . .  (4.17)

We then substitute (4.17) for each A2, truncating at the lowest order in (1 — z) 

which will yield the correct flat-space limit. This replacement of A2 by a finite 

series in (1 — z) means that our expansions axe only modified for large angular 

separations, where the renormalization terms are inherently ambiguous. Our 

choice simply corresponds to a natural extension of the flat-space heat kernel 

which respects the periodicity of the two-spheres for large angular separations. 

The details of this procedure are presented in Appendix B.2.

Following this procedure, one finds that to first order in the curvature

2<r =  2r2(l — z) +  -̂ -[1 — r2(V0)2](l — z)2, (4.18)

=  1 +   ̂4J?m(1 -  z ) , (4.19)

=  (4 2 o )

Inserting these expansions into (4.5) yields our approximation for the “divergent” 

part of the four-dimensional heat kernel,

K ^ X , X ' \ s )  =  ^ e x p { - m 2S- ^ ( l - * ) } [ l  +  S ( i - ? ) < R

+  i  % ,( !  -  z) -  A [ 1  -  r2(V0)2](l -  z)2] . (4.21)
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The mode decomposition (4.15) of this K dlw then boils down to evaluating the 

integral

for n /  0 can be obtained from the n =  0 result (3.72), (3.73) used in the flat- 

space case by differentiating with respect to p, yielding

The mode-decomposed heat kernel subtraction terms for a general four

dimensional spherically symmetric spacetime are then

The first term in (4.24) is the mode decomposition for flat space, while the other 

terms carry the contributions due to the curvature. Meanwhile, the various parts 

of the Jin fulfill several roles. First, the k ^  0 terms in (4.23) are associated with 

the centrifugal potential I(£ + 1 ) /r2 induced by the the mode decomposition. 

This potential is ignored in the renormalization in two dimensions, since only 

the first (potential-independent) term in the Schwinger-DeWitt expansion of the 

heat kernel contributes to the divergences of the two-dimensional Green function. 

Second, the terms in (4.23) proportional to e2p =  e-r*/* enforce the Dirichlet 

boundary condition at r  =  0 (if this point belongs to the four-dimensional man

ifold), which is required if the four-dimensional subtraction term is to be finite 

there [see (4.14)].

These results are to be compared with the subtraction term in two dimensions, 

which consists of the first term of (4.10):

where p =  —r2/2s is a dimensionless parameter and n is an integer. The integrals

_  (l +  fc)! (~1)*2W (k + n)l 2pY^ 2" (fc +  oQ!n!
^fc! (£- i fc ) ! [(-2p)»+* Jfc! 1 ^  (~2p)a+k k\a\(n -  a)! '

(4.23)

(4.25)
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In contrast to Kdiv\t, AC*|div is independent of both the position, the two-metric /i^, 

and the mode number L It matches just the first term in the k =  0 contribution 

to the flat space part of Kdiv\t.

The anomaly in the heat kernel is found by subtracting (4.24) from (4.25). It 

is clear that part of this anomaly is due to the different number of terms in the 

Schwinger-DeWitt expansion used to renormalize the four- and two-dimensional 

theories. One might hope that the anomaly could be eliminated by keeping the 

second term in the Schwinger-DeWitt expansion in two dimensions, (4.10). It is 

easily verified, however, that doing so only cancels the first term in the k = 1 

contribution to the flat-space part of Kdiv\i, and the first term in the k =  0 

contribution to the curvature-dependent parts of Kdiv\i. Furthermore, there is 

no hope that renormalization, a purely local procedure, could cancel the terms 

responsible for the induced boundary condition at r  = 0, which is essentially 

nonlocal.

The anomaly in ($2) is now obtained by integrating the difference of AC*|div 

and K div\i as in (4.16). We find

s.) Note that the anomaly in ($2) generally diverges at any point xa such that

where

1 (-1)* (fc +  n)!
2 (mr)2n+2k k\

(fc +  a)!n! K k+t+a-i(2mr)
"  k\{I — k)\ "  fc!a!(n — a)! (m r)* 'l+a+1

(4.27)

(The /[(m2s)‘J*n] result from integrating terms of the form (m2s)t_2J*n over
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r (x a) = 0, while for asymptotically flat spaces it vanishes as r  —► oo. Prom the 

discussion of Section 3.3, this behaviour is to be expected.

4.1.3 Spherical-Reduction Anomaly in Schwarzschild 

Spacetime

As an example, let us consider a quantum field in Euclidean Schwarzschild space, 

with line element

ds2 =  ^1 — dt2 +  ^1 — dr2 +  r2 (d62 + sin29dTj2) , (4.28)

where M  is the black-hole mass. For this geometry 4R  = 0, =  0, and

[1 -  r2(V<j>)2} =  — . (4.29)
r

Figure 4.1 shows plots of ifdiv|*=o(£,£|s) for fixed s and various values of M/y/s. 

Note that large values of M  cause the mode-decomposed subtraction terms to 

become negative.

The anomaly in ($2) for the £ =  0 mode is

A / -.2 \ _  K0{2mr) M 1 2
 Ki(2mr) — 2Ko(2mr) — TnrKi(2mr)(mr)2 mr

(4.30)

Plots of A(<£2_0) for various values of mM  are shown in Figure 4.2. Note that 

in the M  —* 0 limit we recover the exact anomaly in flat space, (3.79).

4.2 The Dimensional-Reduction Anomaly in the 

Effective Action

In the previous section we calculated the dimensional-reduction anomaly in (<l2) 

for a general four-dimensional spherically symmetric space. We now use the same
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Figure 4.1: /fdiv|<=o(:r>:r|s) in Schwarzschild space for fixed s and 

M/y/s = 0,2,4,8  from top to bottom. The common factor e- "*2*/(47t s ) 

has been removed. The two-dimensional subtraction term £*|div would 

be a horizontal line at 1 on this plot.

procedure to determine the anomaly in the effective action, denoted by AW* in 

(3.14). Functional differentiation of AW* with respect to the metric ho* and the 

dilaton <f> will then give the corresponding anomalies in the stress tensor and 

pressure in (3.15), (3.16).

The divergences in the four-dimensional effective action (4.4) come from the 

first three terms of the heat kernel expansion (4.5):

K«V(X ,X'|s) =  exp { -m 2s -  [^°~^R +  s ^ <R + s2R °~^r .

(4.31)

As in the previous section, we split the points X , X '  in the angular direction
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Figure 4.2: A(<p2=0) in Schwarzschild space for m M  =  0.1,1,10, from 

top to bottom.

only. Then one can write

2(7 =  2r2 [(1 — z) +  u(l — z)2 + u(l — z)3 H ] , (4.32)

=  *°(ors + s ° w ‘s (i - 2) + s »5),H(i - 2>2 + ---- <433)

where z =  cos A. From the calculations for the anomaly in (<l2) we have seen

that a =  i[ l  -  r2(V « 2], S j j f '* =  1, and =  (I  -  ?) «B.

The other and v are found in Appendix B.2. Inserting these expansions

into (4.31) and truncating at second order in the curvature, we find

^ • <x’r | s )  =  ( S ^ exp{ - m2s - s (1 ' z)} [ 1 + s S °(»)‘R

+  + S» “7f,R) (1 -  a)

+  ^S 0(2) 2 s 2 1{0) )  ̂ '
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+
I  2s K°<1> 2s )  (1

rAu2
. (4.34)

The decomposition of the heat kernel subtraction terms (4.34) is done in the 

same manner as in the previous section. Employing the definition (4.15) of the 

spherical decomposition and using the functions Jtn of (4.22), (4.23), we obtain

Kdivu(x,x\s) =  lim 27rr2 /* d(cos A) P*(cos A) ATdiv(X, X'|s)

r [ ( 1 +  sRw ) ,R +  s2R?m ,s) - ,»

+ (» £ P +*£?*) A

i  °P) 2s 2 l<°> ) 12

4 tts

+
(

m2«| m2iti , \  |»4*.2
. (4.35)

Meanwhile, the divergences in the effective action for the two-dimensional theory 

with the potential V* of (4.2) arise from the first two terms of (4.10):

£<|div(x,z|s) — 47rs
1 +  s (4.36)

The anomaly in the effective action is found by integrating the difference of 

(4.35), (4.36) over s as in (4.4):

AWt =  - ^ J c P x y /h J ^  y  [/C/|div(x,x|s) -  ATdivK(x,x|s)]

=  —  /  (Prs/h \l[Jto] +  4R/[m2sJio] +  ^ ° - f RI[mAs2Jt0)
47T J I TT% TT\t

+ « 5 l)‘‘‘W  + ,*/ [m2*-W + '‘R) / [ * lm &

+

-  ^ « l T R +
(mr)Au2

"m2s 'm2s

8
(4.37)

The /[(m2s)4J/n] are given by (4.27). Using (4.37) and the values of u, v, and 

the given in Appendix B.2, one can compute the anomalous contribution

to the stress tensor. This is done in the next section.
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4.3 The Dimensional-Reduction Anomaly in the 

Stress Tensor

The stress-tensor induced by a given effective action W in a space with metric 

hob may be calculated using

In the previous section we found the anomaly in the effective action for the 

decomposition of a general four-dimensional spherically symmetric space, (4.37). 

We now calculate the anomalous contribution to the stress tensor due to this 

action. We do this by substituting the values of u, v, and the given in

Appendix B.2 into (4.37), using integration by parts to cast the action into a form 

suitable for performing the variations, and then calculating A (7 ^ )  using (4.38). 

The anomaly in the pressure, A(P{̂ ), is most easily computed once M i ? )  is 

known by using the dimensionally reduced conservation equation (2.97), which 

implies

This procedure is straightforward but tedious, so we skip most of the details.

There are only a limited number of invariants dependent on h°* (such as 

A/,0, (V0)2, and R[h]) which enter AW*. For this reason it will be convenient

Assuming S  and N  are scalar functions, and that SN = 0 (but not 6S) under a 

variation one can show that

(4.39)

to define the following functions which result from the variation of these objects.

J  dWh6{[V<l>\2)S = J c (2xVhShab F^(S) ,

J  dWh<f(AfcJV)S = J  ( P x V h S h ^ F ^ S ) ,

J  <PxVh6(R)S = J  ( f x V h S h ^ F ^ S ) ,

(4.40)

(4.41)

(4.42)
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where

F^(S) =  M bS , (4.43)

FifiV, 5) =  -  [-Nad, -  Nbda +  habAhN +  haiVN-V] 5 , (4.44)

F 2M S )  =  - -Vflv„ + hoftA/, + -hai,R S . (4.45)

The other variations which we shall require can be written in terms of these 

functions. For example,

J  dV h < f(4fl)S =  I  d 2x ' / h 6 h ab [ F ^ R ,  S )  +  4 ^ ( 0 ,  S )  -  6 i^(S )] , (4.46)

J  ( f x V h 8 ( A hAR ) S  = J d ix V h S h ab[ F ^ ( R , A llS )  +  F ^ ( % S )

+ 4F^(<p, A hS )  -  6 F l ( A hS)] . (4.47)

We also have J  d ? x6 (y /h )S  =  J  d2x V h 6 h ab - l^o bS (4.48)

For convenience, we divide our effective action (4.37) up into 9 separate parts,

(4.49)
i=I

These parts and their associated stress tensors for the case V  =  f  4i? are listed 

below. The second form shown for each W* is obtained using integration by parts 

and is used for the calculation of the (T^);. Note that each W, is constructed 

using a different 7[(m2s)£Jfn]. For convenience, we write the /[(m2s)£ J/n] as 

simply I  on all but the first line of each result.

W, = J  ( F x V h I[ J t0\ , (4.50)

{Tab) i =  —habl, (4.51)
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Wtt = J  f o y / h ^ X ° - f RI[m2sJto]

= f  (Pxy/h^RI,
mi J (4.52)

m , (4.53)

W m  = J  d f c V h ± $ % - f R I [ m i s 2J t 0 }

2m4
J  <Px\fh{AR)'1

+ (* J } J d & V h  [A/,4R I  +  2 aRAh4> 1 +  2 4i?V0-V/]

[(

(

Aft4i2 + - i? 2 + 10(A„4>)2 +
r4,/

+  2i? +  12Aa0 -  8(V0)2 +  -T V 0-V /)
+ 2(V<£)2Aa/

{Tab) ill —_ i t j r
TTT

-  j M  4fi)2/  -  1 2 fS (  ’R I) +  8F iW , t o )

+  2 F%(R,*RI)

+ (i-?)
3m4

-;Ua6 (Ah4i2 /  +  2 *R A h<f> I  + 2 ARV<(>- V I)
£t

90m4

+ 2 4R<t>{aIb) - 6 f i (2 A * ^ /  +  2V0*V/ +  Ak/)

+  F i(^ , 24R I  + 8A *0/ +  8V0-V7 +  4A/,/)

+  F i (  4fl, /)  +  * £ (* ,2Ah0J +  2 V 0-V / +  A*/)

-ift* ((Ah4F + ^fl2 + lO(Afc0)2 + 1)1

(4.54)
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+  (2R  +  12Ah<f> -  8(V0)2 +  V<f>-V I  +  2(V<£)2A„/^

+  ^2/2 +  12A&0 — 8(V<£)2 +  <j>(ah)

+  i^ ( - 8 V 0 - V /- 4 A fc/)

+  20Ah<f>I +  12V0-VJ +  4A„7)

+ Fj6( / ,2 W ) 2) +  Fji ( 4i2,/)

+  F 2(F ,JR/ + 2V 0.V / +  A/l/) (4.55)

^ IV = J
= J  cFxVh^{l + r2B ) I , (4.56)

W+)„ = ^ - \ h ab(l + r2B )I-2 F °ab(r2I) + F ^ , r 2I) (4.57)

Wv = J  cPxVh ^ f t ° - f RI{m2sJn}

J  d V / i  [ 4i2(/ — r2V0-V/)] 

* 2 [  ScV h180t7i2 J

+  (3 A j« -2 V « 2)r2A»/

.  ( i z i l
6m2

+ - j /  +  ( -H  -  2A„0 +  4(V0)2)7'ZV 0-V /

(4.58)

(g ~  g) 
3m2 - jh .4  4fl( / -  rzV0*V/) -  4ifr24(„/M 

-  « £ ( /  -  r^V*-V/) +  4 F i« ,  /  -  r»V*-V/) 

+ f £ ( f l , / - r 2V*-V/)
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+9oSP ~ \h‘i ( T*1 + {~ R  ~ 2Ah4’+4W ) V W - w

+  ( 3 A ^ - 2  V42)r2A kA  

+  (- R  -  2A/,0 +  4(V0)2)r20(a/6)

+  i^ (4 r2V 0-V / -  2r2A hI)

+ F ^ , - 2 r 2V ^ V I  + 3r2A hI)

+ F ^ (/,(3 A ,,0 -2 V 0 2)r2)

+ F2,( R , - r 2V4>-VI) , (4.59)

Wvl = I M  ,R -  / [ * ]

JAVh  [(1 — r2(V0)2) 4ftr2/]

+ ^  f  [19/ + (20A/,0 -  4OV02)r2/360 J
+ (i?V02 -  3(A„0)2 + 1OA/.0V02 -  8V04)r4/  

+ (-8Ah<f> + 6V02)r4V0-V/ + 2V02r4A/,/] , (4.60)

{Fab) vi —
_ ( i - 0 — ̂ a6  (1 — r 2V02) aR t2I

180

+ i ^ ( -  4i2r4/  -  6(1 -  r2V02)r2/)

+ 4Fi(0, (1 -  r2V02)r2 J) + F^R, (1 -  r2V02)r2J)

1 -\hai> (19/ + (2OA/i0 -  4OV02)r2J

+ (#V02 -  3(A/,0)2 +10 A/,0 V02 -  8V04)r4/

+ (-8A/,0 + 6 V02)r4V0-V/ + 2V02r4A/,/)

+ (-8Aft0 + 6V02)r40(a/6)

+ i^ (-4 0 r2/  + [i? + 1OA,,0 -  16(V0)2]r4/  +  6 r4V0-V/
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+  2r4A „/)

+  20 r2/  +  [-6A„0 +  lO(V0)2]r4/  -  8 r4V<£-VJ)

+  Fj6(J,2(V0)2r 4)

+  F^(F, (V0)2r4/) (4.61)

WVII = (PxVh- /
=  - ^ y < f t x / S [ ( l  —r2V«t2) r 2/] , (4.62)

(Tab)vu = r2/ , (4.63)

Wv... » 'm2s

= J<Pxy/h [l3r2/  +  (5Ah<j> -  25V02)r4

+  (-2A  h<f>V<t>2)r6I  + 3r6V02V<£-V7 (4.64)

2
CT*)™, =  (13r2/ + ( 5 A ^ - 2 5 V « 2)r4/

+  (-2  A h0V^2)r6/  +  3r6V02V<£-V/) 

-  6 V02r60(a/6)

+  F^(50r4/  +  4Aft<̂ r6/  -  6 r 6V0* V/) 

+  F iW ,-10r*/ +  4V *V /)] , (4.65)
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Wa -  f

= J  (PxVh [(1 -  r2V<£2)2r4J] , (4.66)

m4
{Tab)lx =  "288 + (4-67)

The total anomalous stress tensor in the xa sector is

£>•*><• <4-68>
:=i

The anomalous pressure is most easily calculated for a given geometry using

(4.39). In the next section, both A(7 ^ )  and A("PW) are computed explicitly 

for the I =  0 mode in the Schwarzschild geometry.

4.4 Anomalous Stress Tensor in Schwarzschild 

Space

In this section we calculate the anomalous contribution to the stress tensor for 

the t  =  0 mode in the Schwarzschild geometry. This example is of particular sig

nificance to attempts to calculate the stress tensor of four-dimensional black holes 

using dimensionally reduced dilaton-gravity theories [32-39], discussed briefly in 

Section 2.2.7.

Using (4.68) and expressions (4.50)-(4.67), we can calculate the dimensional- 

reduction anomaly in a spacetime with given metric. In particular, for the i  = 0 

mode in the Euclidean Schwarzschild geometry (4.28), we find

A(T(0lt> =  ■ ■ ■* -z-z [—28tM  + 54Af2 +  (-15m 2r4 -  30m4r6 +  56m2r 3M' 1 ' 1807Tm2r6 L v
-I- 82m4r5M — 108m2r2M2 — 96m4r4M2) Ko[2mr)

+  (56 mr2M  +  H0m3rAM  + 20 m5r6M  —108 mrM 2
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— 162m3r 3M2 -  30m5r5M2) R l(2mr)]
( e -  M

4- ^nrn2r 6 [20rM — 45M 2 +  (3m2r 4 +  6m4r 6 — 49m2r3M

— 26m4r5Af +  90m2r2M 2 + 30m4r4Af2) KQ(2mr)

+ (9 m3r5 — 40mr2M — 55 m3r4M — 4 m5r6Af 

+90mrM2+75m3r 3M2+8m5r5M2) jKi(2mr)], (4.69)

A (fW r) =  [20 rM -42M 2 +  (—15m2r4 -4 0 m V M

— 38m4r5M +  84m 2r2M 2 + 24m4r 4M2) Ko(2mr)

+ (30m3r5 — 40mr2Af — 58 m3r4M + 84 mrM 2

+ 54m3r3M 2 + 10msr5A/2) ATl(2mr)]

+  ^— —  [-10rM  +  15M2 +  (—6m2r 4 +  29m2r3M  3mn2r6 L v
+ 4m4r5M — 30m2r2M2 — 6m4r4A/2) Ko(2mr)

+ (—6m3r 5 +  20 mr2M  +  23 m3rAM  — 30 m rM 2

— 21 m3r3M 2) Ki{2mr)\ , (4.70)

A('P(0)) = - ■ ■ — - a ,  [ —oOrM +  150M2 +  (l5m2r 4 -  30m4r6 
'  1807rm2r6 L v

+ 100m2r3M +  92 m4rsM -  300m2r2A/2

— 108m4r4M2 — 10m6r6A/2) K0(2mr)

+ (—15m3r5 +  100mr2Af +  142m3r4M +  38 m5 r6 A/

— ZQQmrM2 — 248m3r3M 2 — 44m5r5A/2) A'i(2mr)]
(f -

+  >tta°6 [25̂ *A/ — 60M2 +  (6m2r4 +  6m4r6 — 68m2r3M

— 28m4r5Af +  120m2r2A/2 +  36m4r4A/2) Ko(2mr)

+ (l2m3r5 — 50 mr2M  — 71m3r4Af — 4m5r6M

+  120mrM2 +  96 m 3r3M2

+ 8m5r5M 2) ATt(2mr)] . (4.71)

While these stress tensors were calculated for Euclidean Schwarzschild space,
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they are also valid for Lorentzian signature.3 It is easily verified that the anoma

lous stress tensor is finite on both the past and future event horizons. In the 

M  -¥ 0 limit we recover the exact results obtained earlier for the spherical de

composition of flat space, (3.82)-(3.84). Other limits of interest are m -¥ 0 and 

mr 3> 1. For massless fields we find

A ( f^ * )  = 1 L /  , x nM 2_ ^ 5 ( 7  +  I n ^ ) + 9 T - 9 73-

47rr2
/ . 1 M2'(7 +  In fir) +  6 — 10------10—5-t* r*

(4.72)

A(T(0)rr) = 1 L ,  , x .  o-W5 ( 7  +  In /xr) +  5 -  3——  5-^j-
607T r2

. ( I n i )
47rr2

M Af2
( 7  +  In /xr) — 4 +  2 ----- h 6—r-r  t**

A (P(0)) = 1 r t  noM2l, — r - 1 0  ( 7  +  In /xr) -  5 + 14-----1- 18^r-
1207rr2 [ r r

(4.73)

(£nil
8nr2 [ ( - < )

, , . rt_Af _ -Af2
( 7  +  In /xr) +  16 -  28--------32—5-

T* T*

(4.74)

where the /x appearing in the logarithms is an arbitrary parameter with units of 

mass. In the large mr limit, the Bessel functions in (4.69)—(4.71) are exponen

tially damped and may be dropped, leaving

1
A <f(0)tt) =  

A (ft°)rr ) =

1807rm2r4

1
1807rm2r4

r M  Af2 1 \  ,nnM  M2 1
-2 8 —  + 54-jj- + 60 ^  -  - J  (20—  -  45-J3-) ,

2° _  -  42^ 5- +60 -  -J  (—10— +  1 5 -^ )

(4.75)

(4.76)

3One converts from Euclidean to Lorentzian signature by changing the sign of (T(t) and 

(T**), but leaving ( f t l) and the other diagonal components of the stress tensor unchanged.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. SPHERICAL DECOMPOSITIONS IN CURVED SPACE 80

77)

A (V W) = 1 [-100— +  3 0 0 ^  +  60 ( {  -  1 )  ( 50— - 1 2 0 ^ )
x ' 3607Tm2r4 r r2 y  6J \  r r2 )

(
Plots of (4.75)-(4.77) versus the full expression (4.69)-(4.71) indicate that the 

asymptotic form is valid for all r  > 2M  for approximately mM  > 3.

To appreciate the significance of the anomaly, it will be convenient to analyze 

the massless and massive cases separately.

4.4.1 Massless Field

The calculation of the vacuum expectation value of the stress tensor for a massless 

scalar field in the Schwarzschild geometry has long been of interest [5-15]. In 

particular, in recent years numerous attempts have been made to obtain the 

stress tensor due to the t  — 0 mode using dimensionally reduced models [32-39].

For an analysis of the dimensional reduction, let us consider the stress ten

sor for a field in the Hartle-Hawking state |ff) [82]. This is the state for a 

black-hole spacetime which is regular on the past and future event horizons and 

which reduces at infinity to thermal radiation at temperature Th =  {8nM)~l . It 

represents a black hole in (unstable) thermal equilibrium with radiation; i.e., it 

most closely corresponds to the thermal states considered in the previous chap

ter. As well, it is the state obtained by continuation from the regular Euclidean 

Schwarzschild geometry [82].

Anderson [11] and Anderson, Hiscock, and Samuel [12] (henceforth AHS) 

have developed an approximation scheme for ($2) and (TJ') for scalar fields in 

four-dimensional static, spherically symmetric spacetimes. Their approach is to 

write the Green function as a mode sum, as discussed in Section 2.1.4, where the 

time dependence is of the form e1"* and the angular dependence is in terms of 

spherical harmonics V&n(0,7/). A WKB (high-frequency) approximation is then 

used to obtain the radial modes. The mode sum is evaluated for large ui and I,
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and renormalized using point splitting [80,81]. The resulting stress tensor has 

been verified numerically for massless scalar fields with arbitrary coupling £ in 

the Schwarzschild geometry [12]. For a field at temperature T  = /3~l they find

( V ) AHS — 28807r2r4/ 2

, f t - t )
IGttV 1/ 2

M 2 M 3 M4
-96tt4— + 60—5- -  216—r- +  198—  

p4 r* r*

' ,M* ,M 2 ,„Af3 M4
~02 "^3"+  "r4" (4.78)

(Trr)\HS ~

(T g 6) AHS =

28807r2r4/ 2

, f t - t )
487r2r4/ 2

1
28807r2r4/ 2 

487r2r 4/ 2

M2 _  A/ 3
32tt4— + 4—  -  24—r- + 30—r

,Mr M 2 „M2 A/ 3
- 1 6 7 T ——  + 24ttj —  +  8—  -  24—  +  18.M4

M 2 M 3 M4
327r> - 8T T  +  2V - 18
' 2M r Af2 _ M3 M4
8^ - 35- -  16—5- +  o4—r- -  48—7-0 2  J.2 r 3 r 4

(4.79)

(4.80)

where /  =  (1 — 2M/r). (In a spherical geometry the effective pressure P  is equal 

to (Tg6).) The Hartle-Hawking state corresponds to the choice (3 = 8 itM. Note 

that (4.78)-(4.80) is the stress tensor due to all modes (£ =  0 ,1 ,2 ,...)  of the 

field.

Recently, Balbinot, Fabbri, and Nicolini (henceforth BFN) have used the AHS 

technique to calculate the stress tensor for the £ =  0 mode of the dimensionally 

reduced massless scalar field with f  =  0 in the Schwarzschild geometry [83]. For 

the Hartle-Hawking state they find

1
BFN( V )

(Tr r)BFN

( V ) BFN —

384ttA/2
1

384trA/2 
1

384trM2

, nM  M 2 M 3' 1 +  2—  +  4—  +  40—

, M  tM 2 M 3 
1 +  2— +  4 - - 88—

144-

r
M31

(4.81)

(4.82)

(4.83)

The reader is reminded of our convention of using Latin letters to denote four-
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dimensional quantities (e.g., (T/)) and calligraphic letters for two-dimensional 

quantities (e.g., (Tt *)).

In Sections 3.2 and 3.3 we saw that in flat space the s-mode makes the 

dominant contribution to the stress tensor near the origin. However, the stress 

tensor calculated from the dimensionally reduced theory for the I = 0 mode is 

larger than the expected result in four dimensions for approximately r < /?, and 

in this region the contribution of the dimensional-reduction anomaly must be 

taken into account to obtain the correct stress tensor for a given mode. It is 

interesting to analyze the situation for the Schwarzschild geometry. Does the 

1 = 0  stress tensor (7^ 6 ) Bf n  serve as an approximation for the full stress tensor 

(Ta6)Ahs in the immediate vicinity of the black hole, and is the dimensional- 

reduction anomaly significant?

To test these ideas, we multiply the two-dimensional stress tensor of BFN 

by (47rr2)-1 as in (3.15) and compare to the stress tensor of AHS in four di

mensions. The results are displayed in Figures 4.3 and 4.4. Near r  =  2M, the 

two-dimensional stress tensor of BFN (from the t  = 0 mode alone) is approxi

mately an order of magnitude larger than and of opposite sign to the expected 

four-dimensional stress tensor of AHS (due to all modes). Clearly, the I = 0 con

tribution alone cannot serve as a useful approximation for the full stress tensor; 

furthermore, it seems unlikely that t  > 0 modes should cancel this 1  = 0  result to 

a sufficiently high degree to restore agreement with the four-dimensional stress 

tensor. This indicates a dismal failure of the dimensional reduction.

The resolution of this dilemma may be that we have not taken into account 

the dimensional-reduction anomaly. The anomalous stress tensor is shown in Fig

ures 4.5 and 4.6; it is of the same order as but of opposite sign to the predictions 

of BFN near the horizon. If the anomaly is added to the two-dimensional stress 

tensor and the total compared to (Tab)KHS, we see that the agreement between
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Figure 4.3: Comparison of the two-dimensional stress tensor of BFN for 

the £ =  0 mode to the four-dimensional result of AHS for a massless, 

minimally coupled scalar field. The upper curve is (T})XHS; the lower 

curve is (47rr2)-1(7^)BFN. This plot uses /x =  M -1. The horizontal axis 

is r/M ; the vertical axis is M4 x [stress tensor].
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2 . 5

►-03

Figure 4.4: Comparison of the two-dimensional stress tensor of BFN for 

the t  =  0 mode to the four-dimensional result of AHS for a massless, 

minimally coupled scalar field. The upper curve is (TJT)ahs; the lower 

curve is (4irr2)~l (7? )BFti. This plot uses y  — M~l. The horizontal axis 

is r/M ; the vertical axis is A/4 x [stress tensor].
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Figure 4.5: Comparison of the two-dimensional stress tensor of BFN 

for the t  =  0 mode to the four-dimensional result of AHS when the 

dimensional-reduction anomaly is taken into account. From top to bot

tom near the horizon, the curves are (47rr2)-1A(7?), (47rr2) - l [ ( 7 ? ) BFN +  

A(7?)]> (T?)ahs, (47T7-2)_1(7?)bfn- This plot uses /z =  M~l. The hori

zontal axis is r/M ; the vertical axis is M4 x [stress tensor].
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2 . 5

Figure 4.6: Comparison of the two-dimensional stress tensor of BFN 

for the £ = 0 mode to the four-dimensional result of AHS when the 

dimensional-reduction anomaly is taken into account. From top to bot

tom near the horizon, the curves are (47rr2)_IA(77), (4nr2)~l[(7?)BFS+ 

A(77)], <T?)ahs, (47rr2)- l (77)BFN- This plot uses [m = M~l. The hori

zontal axis is r/M ; the vertical axis is M4 x [stress tensor].

the two- and four-dimensional stress tensors is much improved near the event 

horizon. In fact, we find the remarkable result that at r  =  2M  the anomaly- 

modified stress tensor agrees exactly with the four-dimensional approximation of 

AHS.

As we move away from the horizon towards r  =  3M, the match between the 

anomaly-corrected stress tensor and the AHS result is worse. This is likely due to 

the fact that the stress tensor of AHS includes the £ > 0 modes, which become 

more significant at larger radii. It is also possible that the potential barrier, 

which is largely ignored by the WKB approximations of AHS and BFN, may
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be of some relevance. (Note that the high frequency modes used in the WKB 

approximation penetrate the potential barrier with little reflection, and so it has 

little influence on these approximations.)

Finally, at very large distances from the black hole (r «  102M or greater), 

the anomaly is vanishingly small compared to the two-dimensional stress tensor, 

and so does not influence the asymptotic behaviour of the dimensionally reduced 

theory. At the same time, the geometry becomes flat and (Ta 6 ) B F n  and (Ttt6)AHS 

reduce to the stress tensors for a massless scalar field at the Hartle-Hawking 

temperature in two and four dimensions. The results of Section 3.2 then assure 

us that in this regime the s-mode contribution to (Tab)AHS is precisely (4nr2)~l 

times the dimensionally reduced stress tensor (Ta 6 ) Bf n -

This analysis indicates that dilaton-gravity models may indeed be used to 

model vacuum polarization and particle creation effects for massless fields in 

higher-dimensional black-hole spacetimes, but only if the dimensional-reduction 

anomaly is taken into account. Specifically, it appears that in order to obtain 

the correct expectation values in the vicinity of the event horizon from a reduced 

theory one must include the contributions of the dimensional-reduction anomaly. 

It should be noted, however, that while the improvements in the dimensionally 

reduced stress tensor due to the anomaly are impressive, they are still tentative. 

For example, the anomaly for the 1 = 0 mode cannot be fixed exactly due to the 

inherent ambiguity in low-frequency structure of the divergences for a quantum 

field. Furthermore, the anomaly for the massless field contains an arbitrary 

infrared cutoff parameter ft which has a strong influence on the anomalous stress 

tensor. The value ft «  1 which was used in Figures 4.5 and 4.6 is merely that 

which gives the closest match between the dimensionally reduced theory and the 

full four-dimensional stress tensor near the horizon (though the exact agreement 

at r  =  2M  occurs for all ft). Finally, the accuracy of the two-dimensional stress
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tensor of BFN has not been determined; indeed, one would expect from general 

principles that it should also contain the cutoff parameter /z.

These difficulties could be reduced and our conclusions strengthened if the 

dimensionally reduced stress tensors for t  > 0 could be calculated accurately. 

In this case, by combining the stress tensors for each I with the corresponding 

anomaly and summing over even the first few I  a much better match with the 

four-dimensional stress tensor may be obtained in the vicinity of the horizon and 

the potential barrier. In particular, the effect of the low-frequency ambiguity 

in the anomaly would be lessened since the sum of the anomaly over all modes 

is well-defined. In any case, it is clear that the dimensional-reduction anomaly 

induces very significant alterations in the predictions of dilaton-gravity models 

for local observables in the vicinity of a black hole, and likely must be included 

for a proper comparison to physics in higher dimensions.

4.4.2 Large-Mass Case

For m M  1, the Compton wavelength m~l of the quantum field is small 

compared to the length scale M  over which the geometry changes. In this case 

one can use the Schwinger-DeWitt expansion for the heat kernel directly as an 

approximate solution for the system. Taking the coincidence limit of (4.5) and 

integrating over s results in an expansion for the effective action in terms of 

On/m2" «  (R /m 2)n w (m M )'2". For large mM, one can obtain an approximate 

effective action for the field by simply discarding the divergent terms in the 

Schwinger-DeWitt expansion and keeping the first finite term (the a3 term in 

four dimensions, or the a2 term in two dimensions). The stress tensor for large 

field mass can then be calculated from this approximate effective action.

For four-dimensional black-hole spacetimes the Schwinger-DeWitt approxi-
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mation has been calculated by Frolov and Zelnikov [16]. They found

(4.85) 
M 3 M
r3 ) \  ’ 

(4.86)

(4.84)

where A  =  (100807r2m2r6)-1. Anderson, Hiscock, and Samuel [12] have verified 

numerically that (4.84)-(4.86) is a good approximation to the total stress ten

sor for the Hartle-Hawking state near the event horizon in four dimensions for 

m M  > 2.

In the dimensionally reduced Schwarzschild geometry the Schwinger-DeWitt 

approximation for the I =  0 mode is easily calculated, and is precisely the neg

ative of the large mr limit of the anomaly, (4.75)-(4.77). We denote this stress 

tensor by (Ta 6)DS-

One can compare the Schwinger-DeWitt approximations in two and four di

mensions just as we compared the stress tensors for the massless field; the results 

are shown in Figure 4.7. As in the massless case, we see that the stress tensor pre

dicted by dimensional reduction for one mode alone is much larger than the full 

stress tensor in four dimensions. Again, the cause (and cure) are clear. In four di

mensions WDS is constructed starting with the 03 Schwinger-DeWitt coefficient, 

which is 0(R I3). In two dimensions the first contributions to WDS come from 

the a2 coefficient, which is 0(i?2). To reproduce the four-dimensional results, 

this 0  (R2) contribution must be removed somehow. The dimensional-reduction 

anomaly is the difference between the mode-decomposed subtraction terms from 

four dimensions (the ao, alt and a2 terms) and those from two dimensions (the ao 

and ai terms); i.e., it is essentially the negative of the mode-decomposed a2 from
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four dimensions. This is why adding the anomaly to the stress tensor in the two- 

dimensional Schwinger-DeWitt approximation exactly cancels the leading (a2) 

contributions. Thus, by taking the dimensional-reduction anomaly into account, 

the leading mode-by-mode contributions to the stress tensor in four dimensions 

will be 0 (R 3), as expected.

-to

Figure 4.7: Comparison of the stress tensors from the Schwinger- 

DeWitt approximations for the I =  0 mode in two dimensions and 

the total stress tensor in four dimensions. The plot uses f  =  0, 

mM  =  1. From top to bottom near the event horizon, the curves 

are (47rr2)- l (77)DS, (47rr2)_1(7?)DS) (TJT)d s, ( T ? ) d s , The horizontal axis 

is r/M ; the vertical axis is 907t2 ( 8 M ) 4 x  [stress tensor].

From these examples it is clear that the dimensional-reduction anomaly in

duces very significant corrections to the contribution of modes of fixed angular 

momentum to the stress tensor when calculated from spherically reduced models. 

It is thus vital to account for the anomaly if one is to obtain the correct stress
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tensor for a quantum field in the Schwarzschild spacetime from dimensional re

duction. (In fact, it can be shown that the sum of the anomaly over all modes is 

divergent, so that the total error in the four-dimensional stress tensor from ig

noring the anomaly is infinite.) Note, however, that the anomalous stress tensor 

does not contribute to the Hawking radiation, as the flux terms A(7tr) vanish. 

More generally, we see that the anomaly vanishes at large r in the dimensionally 

reduced spacetime, and so cannot affect the asymptotic behaviour of the dimen

sionally reduced system. This indicates that the dimensional-reduction anomaly 

is not associated with the negative Hawking flux from spherically reduced gravity 

obtained by some authors [37].
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Chapter 5 

Static Decompositions

In this chapter we consider the dimensional reduction of a scalar field when 

the internal space is flat and of dimension n =  1 or n =  2. If one of the 

intemal-space coordinates is the Euclidean “time,” and if the internal space 

metric is independent of this coordinate, then these spaces are static. As we saw 

in Chapter 2, static spaces are physically very important for their close connection 

to quantum field theory at finite temperature. Specifically, a quantum scalar field 

which is periodic in Euclidean time with period corresponds to a thermal state 

at temperature 0 ~l.

In the following sections we calculate the dimensional-reduction anomaly 

in static spaces. For a finite-temperature field (0 < /? < oo) we derive the 

anomaly in (<l2) for a one-dimensional internal space. For zero-temperature 

fields (/3 —>■ oo) we calculate the anomalies in (<l2) and W  for both n =  1 and 

n =  2. We begin in Section 5.1 with the anomaly for the decomposition of flat 

space in Rindler coordinates, where the internal space is compact (t € [0, 2tt]) 

with n =  1. Sections 5.2 and 5.3 deal with noncompact (/? -> oo) internal spaces. 

Finally, in Section 5.4 we derive the dimensional-reduction anomaly for the case 

n =  1 when the time coordinate has arbitrary periodicity #.
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5.1 Rindler space

93

In our consideration of dimensional reductions in spherically symmetric spaces, 

we began with the simplest example of flat space. This system had the advan

tage of being exactly solvable, which aided in the physical interpretation of the 

dimensional-reduction anomaly.

To begin our study of dimensional reductions in static spaces, we shall again 

begin with the simplest nontrivial example: quantum theory in Rindler space 

[84]. Because Rindler space is simply flat space in non-inertial coordinates, we 

can again perform mode-decomposition calculations exactly. We will find results 

closely analogous to those for spherical decompositions in flat space.

Consider a scalar field obeying the field equation (2.55) in Euclidean Rindler 

space,

ds2 = z2dt2 -I- dz2 +  dar2 -I- dy2 , (5.1)

where t € [0,27r], z  6 [0, oo), x ,y  €  ( - 00, 00), and the points t =  0, t =  2n are 

identified. This corresponds to the special case of the line element (2.53) where

xa =  (x, y, 2), y l =  t, hob =  6ab, £1̂  = 1, and p e r 2* =  2. The Rindler-space line

element may be obtained from the standard flat-space line element

ds2 = dT2 + d X 2 +  d Y 2 +  dZ2 (5.2)

by the coordinate transformation

T  =  2 sin(f), X  =  x ,

Z  =  2 cos(t), Y  =  y ,  (5.3)

and is clearly just flat space in polar coordinates.

Since Euclidean Rindler space is not periodic in the usual Minkowski time 

coordinate T  of (5.3), an inertial observer will see a zero-temperature state. 

However, a line of fixed Rindler coordinates (x, y, 2) is periodic in Rindler time
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with period 2ttz; hence a Rindler observer at fixed z will find the quantum field 

to be in a thermal state with temperature (2xz)~l. This is a statement of the 

well-known Unruh effect: for two systems in relative accelerated motion, the 

vacuum of one system appears relative to the other as a state with thermally 

distributed particles at a temperature which is proportional to the acceleration 

[67,85].

Because the line element (5.1) is static, a quantum theory on this space may 

be dimensionally reduced by decomposing the field in terms of Rindler “time” 

modes cos(fc[t — £/])/\/27r. We wish to calculate the anomaly associated with this 

dimensional reduction.

We assume that the potential V  is ^-independent and vanishes in the region 

of interest. Hence, the Green function for a given state in four dimensions is 

renormalized by subtracting the Euclidean vacuum Green function (3.63), where

2a — (x -  x ')2 + {y — y' ) 2 + {z — z' ) 2 +  2zz' [1 -  cos(f -  £')] . (5.4)

Since any physical quantity must be periodic in t, we may decompose this Green 

function in terms of the Rindler time as an ordinary Fourier cosine series,1

G a„(X ,r)  = £ - 1 =  f )  cos(t[*-(1)G ai.|i ( i , i ' ) ,  (5.5)
OO

= VI?/d(f-Ocos(fc[i-f'])G,,,,(AT,*'). (5-6)
Jo

where x  =  (x,y,z); note that Gdiv|_* =  Gd„\k- One may verify that Gdiv|fc(x, f f) 

is a solution of the three-dimensional Green-function equation

Ft  5 ( f , £ )  =  (A -  m2 -  Vt )gt (x, i )  = - 6 (x — i") 6 (y — jf) S(z -  z ') , (5.7)

where A =  3^ + and
4  1

=  (5-8)

1This is a special case of the decomposition for arbitrary /? discussed in more detail in

Section 5.4.
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and which vanishes at z = per2* =  0, 2/ =  0. [The potential (5.8) follows from 

(2.71) with A -> fc2, where V  is assumed to vanish in the region of interest.] 

We may obtain an explicit expression for Gdiv|*;(x, f ')  by decomposing the four

dimensional Green function as in (5.6). Using the integral representation for 

Ki from Appendix C.3.1 (i.e., the heat kernel representation for Gdiv), combined 

with the integrals
rl-K

I dzcos(fcx)epc08(x) =  27r/fc(p) (5.9)
Jo

and

fJo
00 1

dx — e °* */fc(cx) =  2Ik{\Jb(a +  c) — \Jb{a — c))x
xKie(^b(a + c) + \Jb{a — c)) (5.10)

(see, for example, 5.1.937.2 of [76] and 2.15.6.4 of [74] respectively), one can show 

that

^  = - ^ f ( ^ a-)+ z 4la-)) ( s r - s : )
(5.11)

where we have defined

= y(d+ ± <*-) , d ± =  V(x ~  *')2 + ( y -  y')2 + (z ± Z'Y • (5-12)

Note the similarity of d± to a± of (3.75).

The physical observable of interest, (<&2)r„n, can be calculated from the full

Green function G (X , X ') with a t-independent boundary or potential outside the 

region of interest using

( i 2)™ = Jim [G{X, X ') -  G ^ X ,  X')] . (5.13)
A  " 4 A

Decomposing G in the same manner as Gdiv then allows us to write a decomposed 

form for ((l 2)ren:

($2(x))„n =  ^  Urn I ^  [Gk(x, g )  -  Gdiv(fc(f, g ) ]  j  . (5.14)
lfc=—00 J
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On the other hand, the renormalized value of {<$.} for the three-dimensional oper

ator T\e in (5.7) is obtained by subtracting from the frill three-dimensional Green 

function Gk(x, &) not Gdiv|fc(x, i?), but rather the first term in the Schwinger- 

DeWitt expansion for Tk, denoted £fc|div(x, s'). Specifically, for each k we have

(<p2k{x))nn =  lim [gk{x, x') -  & |dlv(x, f')] , (5.15)

where2 x

=  (516) 
Comparing (5.14) to (5.15) we find

<42(f)U  =  s i  £  [ < # < * » - + .  <517)
k= — oo

where for each k the anomaly is

A ($ (£ )) =  liml [&|di,(f,ff) - G div|*(f,f')] (5.18)r —>x
= 1 +  mz k.i(Tnz)Kkk.ilTnz) +  A”̂ (t712) )

+ k ( r t (mz)Kk +l(mz) -  Ik+i{mz)Kk{mz)^ . (5.19)

Once again, the anomaly is seen as the difference in the subtraction terms used 

to renormalize the higher- and lower-dimensional theories. It is easily shown that 

(5.19) falls off as 0{z~l) for large mz, and diverges as 0 (z _l) when mz —► 0 for 

k #  0. For k =  0 the anomaly is finite as mz —> 0.

The divergence of the anomaly as z ->■ 0 is familiar from the spherical de

compositions, and arises for the same reason. As in the spherical decomposition 

of flat space, the dimensionally reduced theory obeys Dirichlet boundary condi

tions (i.e. the Green function vanishes) at z =  pe-2* =  0. We therefore expect 

divergences in the three-dimensional renormalized expectation values at z =  0

3Equation (5.16) can be obtained from the Schwinger-DeWitt expansion in three dimensions 

[41].
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due to the vacuum polarization produced by this boundary. These are cancelled 

by the dimensional-reduction anomaly, leaving finite expectation values in four 

dimensions, as expected for fiat space.

composition of flat spacetime in Section 3.3. This should not be surprising, con

sidering that the Euclidean Rindler space (5.1) is simply flat space in polar coor

dinates. As a result, the calculations of this section amount to a one-dimensional 

“spherical” decomposition of flat space.

To be precise, recall that mode decompositions take advantage of a contin

uous symmetry of the manifold. For flat space, there are three distinct sets of 

continuous symmetries (the Poincare group): translations, rotations, and boosts. 

The translations are fairly trivial; one can get the dimensional-reduction anomaly 

for these by taking 0 -> 0 in the results of the next section. Rotations were cov

ered in Chapter 3. Translations in Rindler time are the boosts, which mix the 

Cartesian time and space coordinates. Of course, in Euclidean space they are 

just another set of rotations. As a result, the decompositions of this section 

are the one-dimensional counterparts of the two-dimensional decompositions of 

Section 3.3.

5.2 The Dimensional-Reduction Anomaly in

In the previous section we examined the dimensional-reduction anomaly for the 

decomposition of a field in flat space into Rindler time modes. There the internal 

space was compact and of dimension 1. In the next two sections we consider 

general static spaces with internal spaces which are noncompact and of dimension 

1 or 2. While qualitatively different from Rindler space, we shall see in Section 5.4

These results me qualitatively very similar to those from the spherical de-
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how the anomalies in these two examples may be related.

5.2.1 (1+3) Reduction

We begin with the case n = 1 and write the metric (2.53) in the form

ds2 =  g„u dX* dX u =  e ' ^ d t 2 +  hab(x)dx*d^ , (5.20)

where a, b € {1,2,3}. We assume that t 6 (—00, 00), corresponding to a zero- 

temperature state. The scalar field operator is again taken to be F  =  □ —m2 — V, 

where the potential V  is independent of Euclidean “time” t. It is easy to see that 

the operator An for the metric (5.20) is d^/dt2. Hence, the mode decomposition 

in terms of its eigenvalues is simply the standard Fourier transform with

y „ ( , ) - S 2 l= M . (5.21)
v2 ir

In the language of Section 2.2 we have

A = cj2 , £ =  [  du>. (5.22)
J -°°

For example, the orthogonality and completeness relations become

/ °° Hi
e - i ( u =  ( 5 .2 3 )

•OO

L°° = 5{t -  if) . (5.24)
F—OO

The bare (<l2) is obtained from the coincidence limit of the Green function,

( i I( I ) ) = J t o G ( X ,r ) .  (5.25)

We saw in the previous chapter that for a general four-dimensional space the 

divergences of the Green function in the coincidence limit come from the first
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two terms of the Schwinger-DeWitt expansion of the heat kernel. From (4.11) 

and (4.12),

points X  = (t ,x ) and X ' = %l°~v is defined as in (4.13), D(X,X ')  is the

Van Vleck determinant (4.6), and the first few Schwinger-DeWitt coefficients for 

arbitrary potential V in the coincidence limit X '  —► X  are

Expansions of a and the for the metric (5.20) with x  =  x7 and e-2<*(£ — if) 

small are given in Appendix C.l. We also include a cut-off parameter e in the 

exponent of the integrand in (5.26) which ensures convergence of the integral for 

small 3 with a vanishing. The anomaly is independent of this regularization pa

rameter, and it is useful for displaying intermediate results. (This is the way the 

calculations of the anomaly were done in Chapter 4; e did not appear explicitly 

since only final results were displayed.)

Our purpose is to compare the divergences of four- and three-dimensional 

theories related by a Fourier time transform. Unfortunately, it is not possible 

to evaluate the Fourier transform of (5.26) exactly for general h as a  and 

the are known in the general case only for infinitesimal point separations. 

Our response is the same as that in Chapter 4: we make point splitting in the 

t-direction, expand all t-dependent quantities in powers of the curvature, and 

truncate all expressions at first order in the curvature (two derivatives of the

d,vV, , ’ ' y0 (47TS)2 4s J L 0 " 1
(5.26)

Here a  =  cr(X, X') is one-half of the square of the geodesic distance between

flo-Vr =  1.
a U - V  =

a%~V =

(5.27)

(5.28)

(5.29)
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dilaton or metric). Denoting r  =  e 2*(f — f7) and putting x  =  xf we have up to 

first order in the curvature

2 <r(t,x;t',x) =  r 2 - -(V 0) V  ,

*°~ V = 1 +  ^ r2 ’ 
ftO-V = l * R - v .

(5.30)

(5.31)

(5.32)

See Appendix C.l for details. Note that in this case the internal space is not 

compact, and so there is no need to make our expansions periodic in (t — t').

Substituting (5.30) into (5.26), expanding the exponent, and keeping in the 

exponent only terms which are quadratic in r , we get

Gdiv{t,x;t',x)  =  f  
Jo

oo g —m2j —(r*+t*)/4®
ds

(47TS)2

(5.33)

The integral over the parameter s can be taken with the following result (see 

Appendix C.3.1):

-  v )  K„M  + m2 ^  + i c i ^ I C , ( z )

(5.34)

Here z =  ttwJ t 2 +  e2,

K „(*)=  0 )  *„(*), (5.35)

and the K u are modified Bessel functions. For example, putting e =  0 and 

expanding G%w in a Laurent series in r  we get

1 1
x, t , x ) —

4 7 t2t 2 8ir2

m 2 (V0)2 □ (f>
167T2 127T2 247T2

(5.36)

Here 7 is the Euler constant, and the dots denote terms of higher order in r . The 

terms displayed are just the usual DeWitt-Schwinger expansion for the divergent 

parts of G for the metric (5.20).
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The renormalized value of (<l2) can be written in the form

(<l2{t, x))„n =  lim lim [G(t, x; t', x) -  Gdiv(t, x ; f7, x)] .c—>01—t7 —̂0 (5.37)

Taking the limit e —>■ 0 in this expression is a trivial operation since the difference 

in the square brackets is already a finite quantity.

Let us now analyze what happens when we mode decompose Gdiv and com

pare to the corresponding divergent terms from the three-dimensional theory. 

Following (2.86) and (5.21)—(5.24), the Fourier time-transform pair is defined as

Gdiv(x; x'\(jj) =  d{t -  t') e ^ 4" ^  Gdiv(t, x; t', x ' ) , (5.38)
J  -OO

Gdi.((, x; i ,  t f )  =  e<**> ^  !>!„). (5 .3 9 )

Since Gdiv(t, x; t', x') depends only on the difference t—tf, the function Gdiv(x; x'ltu) 

does not depend on t and if. Calculating the integral in (5.38) using (5.34) and 

(C.57) we obtain

Gdiv(x;x|u/) =
47r +

m2D0 m4(V0)2
+ 2/x5 +  0(e)

(5.40)

where fi =  y/m2 +  e4*w2. Meanwhile, the operator which determines the 

reduced equation of motion (2.72) is

-  m2 -  KiM , (5.41)

where

Vu[4>] =  V  + w2e4* + (V0)2 -  . (5.42)

The Schwinger-DeWitt expansion of the heat kernel [41] for the operator in 

three dimensions is

1
ICu^x, x|s) =    -3-exp { -m 2s}

(47TS)5
1 +  s + (5.43)
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The divergent part of the Green function for is generated by the first term 

in this expansion,

Qu\dw(x;x) = [  ds 1 , exp ( - m 2s -  ^ -1  =
Jo (47TS)5 L 4sJ 47T

 m + 0(e)e . (5.44)

Hence, if we start with a three-dimensional theory with the field equation

we will obtain for the renormalized value of (tp? ) the representation

(5.45)

(<£2 (*))«„ =  lim [Gu{x\ x) -  Gu|div(x; x)] (5.46)

By comparing (5.37) with (5.46) we can get the following relation between (<l2) 

in the four- and three-dimensional theories:

{ i 2u =<?* r  ^  t < ^ > ~ + ■ <5-47>

where the anomalous term is

A(<£2) =  lim [(/W|d|V(x; x) -  Gdiy(x; x|w)]
t->0 

_1_ 
47r

1 f 1 4r> t A  m 2 U(t> ™ 4 ( V 0 ) 2 '
 2/i®

(5.48)

(5.49)

Since A(<^2) does not vanish we have another example of the dimensional- 

reduction anomaly.

It is useful to note that for large frequencies A(<£2) is proportional to u j. 

Thus, the integral over u> of the anomaly diverges as u  —► ±oo. Since the renor

malized ($2) in four dimensions should be finite, this implies that the integral 

of (</?2)„n over u  also diverges. Thus, if one attempted to calculate ($2)rra in 

four dimensions by summing over the (<p2)^,, the result would diverge. Similar 

results held for the spherical reductions considered in Chapters 3 and 4.
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5.2.2 (2+2) Reduction

Let us discuss now the dimensional-reduction anomaly for (<l2) for the case when 

the metric of the internal space is flat and two-dimensional; that is, the spacetime 

metric is of the form

ds2 = e~2̂ x\d t^  +  dt\) -F h,AB{x)dxAdxB , (5.50)

where A ,B €  {2,3}. First of all, it should be noticed that this metric is a special 

case of the metric (5.20) when the dilaton field does not depend on one of the 

coordinates x“. Equation (5.50) can be obtained from (5.20) by rescaling the 

dilaton field 0 -*• 0/2 and putting

habdxadxb =  e-20(l) dt\ +  h.AB(x)dxAdxB . (5.51)

For the divergent part of the four-dimensional Green function expanded to first 

order in the curvature we have an expression similar to (5.34),

1
x, t , x) — 87T2 m2Ki{z) +  ^ ^ - m 4r 4K 2(2) +  — m V K ^ z )

+ Q 4f l - V ^ K 0(*) (5.52)

See Appendix C.2. Here 4R  refers to the curvature of the full four-dimensional 

space with metric of (5.50), and we define

z =  my/r2 +  e2, r 2 =  e-20t 2 =  e-2*(fjj + 1̂ ). (5.53)

To obtain the mode decomposition of the divergent part of the Green function 

we make a Fourier transform similar to (5.38)

f "  d (t-t')e*< , - ,'>Gaw(t ,i; t ' ,x ')1 (5.54)
J -OO

Gdiv(t, x; t \  x') =  e(̂ ) J  -̂ 0  ̂e"ip(t_t' ) Gdiv(x; x '|p ). (5.55)
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Here we use the vector notations p =  (po,Pi) and p t =  Pofo+Pi^i- We also denote 

p2 =  p2. Since the function Gdiv(t, x; t', x1) depends only on the difference t  — t', 

its Fourier transform depends only on p. Calculating the integrals we obtain

G ^ A v )  =  +
2

+  ^ J ° ^ + ^ s W ) 2 |+ O W , (5.56)

where

fi=  y/m 2 +  p2e2̂ . (5.57)

The adopted mode expansion into plane waves exp(ipt)/27r reduces the initial 

system for the four-dimensional operator F  =  □ — m2 — V  a two-dimensional

system with a dilaton-dependent potential. The corresponding wave operator Tp

is

Tp = A h - m 2 -  Vp[<(>], (5.58)

where

Vp[(f>} =  V  + p2e2* +  (V0)2 -  A . (5.59)

The divergent part of the two-dimensional Green function for the operator Tp 

can be obtained from the first term of the Schwinger-DeWitt expansion for this 

operator, (4.10) with Vt -¥ Vp. With the regularization parameter e inserted,

*) = I  i .  A  ̂  {_m>, _ £ }  = - i .  {7 + l-  ( ^ )  } + O(e).
(5.60)

We define the four- and two-dimensional renormalized values ($2(z))«n and 

(ip2(x))na by expressions similar to (5.37) and (5.46) respectively. By comparing 

these definitions, and using relations (5.56) and (5.60), we obtain the represen

tation

(*!) „  =  e2* /  ^  [<#>„ +  A < $ ]  , (5.61)
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where the dimensional-reduction anomaly A(£2) is

-  h  [1to (S  - 'v )  -  1 ■ (5-62)
Compare this to the anomaly for the (1 +  3) reduction, (5.49).

5.3 The Dimensional-Reduction Anomaly in the 

Effective Action

5.3.1 (1+3) Reduction

For the static spacetime (5.20), the calculation of the anomaly in the effective 

action W, where

W[g} = J d X J g L ,  (5.63)

proceeds analogously to the calculation of the anomaly in ($2). To analyze the 

divergent part of the effective action we introduce first a point-split version of 

the effective Lagrangian3 L. Using the Schwinger-DeWitt expansion for the heat 

kernel, we have for the divergent part of L

W i ,  x ; t ,x )  = - \ j q 7  (47rs)2 [»oD- v +  ^  +  s2*%-v] •
(5.64)

As earlier, the points are split in the t direction. Since the internal space is homo

geneous, the point-split Lagrangian depends on t  and t  only in the combination 

t - H .

Faced with the same problem as before, we expand a and the in terms 

of t  =  e-20(t—tf) for x  = xt, this time truncating at second order in the curvature

3It is more convenient to work with L than W  for noncompact internal spaces, as the 

spacetime volume integral (5.63) contains an infinite volume factor Vq -¥ oo.
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(four derivatives of the metric or dilaton). Writing

2er(£, x; £', x) =  r2 + ur4 +  vt6 H ,

R ^ f r x ^ . x )  =  »°(or +  » 5 ) V  +  » ° ; )V  +  --. , (5.65)

we have 3?°(o)K =  ^  while u, v, and the other 3ft°(*̂  may be found in Ap

pendix C.l. Inserting and truncating at 0 (R 2) gives

1
m4K2(z) — ^(wr4 + vT6)m6K 3(z)

+  ^ u 2Tsm&K A(z) +  r 2m4 ^K2(z) -  ^ u r4m2K 3(z)^

)
(5.66)

(47r)2

+  » 0D(; )V m 4K2(2) + R ^ m 2 ( k ^ z) -  ^u r4m2K 2(z)

+  S ; - V m l l(2) +  » 2y Ko(z)

The function K„(z) is defined by (5.35).

We define the Fourier transform of Ldiv as in (5.38). (This follows from 

using the heat-kernel decomposition formula (2.92) and the mode (5.21) from 

the previous section.) Evaluating the transform as before yields

£div(x|w) n o a O —V  , g a d —V  
^0(2) +J£1(0)

+ 3u +  23ft!,o-v
0 (2 ) * 1(0) )

5uoj2e4<(> m2uu2e4<t> 15 m6v 105m8u2
H ^-------1----- x- ;----------?— F2 n
, a>D-v 

+  W0(2)

, jpD—V 
+  * 1(0)

2/i3 2/i7
ui2e4<t> 15m6u

/*
3 m4u 
4/i5

2/i7 +»oD(; r

8/i9
3 m4

LM5 j
I spQ-^  

+  * 1(2)
m2 i
2/i3 + « s□ - V

(0) }<+  0 (e ) ) . (5.67)

Meanwhile, for the three-dimensional theory with the field operator J\j given 

by (5.41) we have
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47T ? + s G K- v“- ”,2) + T - ? ( l fi- l,“) ] +0(e>-
(5.68)

Here V,„ is the effective potential of the three-dimensional system, given by (5.42), 

and R  is the scalar curvature calculated from the three-metric hai,. It is related 

to the four-dimensional curvature AR  via

4R[g] =  R[h] +  4a<j> =  R[h] +  4Ah<f> -  8(V<£)2. (5.69)

The renormalized effective Lagrangians in four and three dimensions are ob

tained by subtracting from the exact effective action its divergent part, as given

by (5.66) and (5.68) respectively. By comparing these divergent parts using

(5.38), (5.39) and (5.67) we can write

£ „ „ (x )  =  <s» ^  [ £ * . ( * )  +  A C M ]  , (5 .70)

where A£u is the term representing the dimensional-reduction anomaly of the 

renormalized effective Lagrangian,

A C  =  (V « 2 +  A»*) -  jm u/V *

+ ( 2U~  + ~ ^ -2m 2u +  m2R^2jV +  ^ 2(0]^)

+  

mu
+

5.3.2 (2+2) Reduction

As we already mentioned, the (2 +  2) reduction is a special case of the “static” 

spacetime reduction. The calculation of the dimensional-reduction anomaly is 

very similar to the calculations of the previous subsection -  straightforward but
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quite involved. We do not reproduce the details of these calculations here but 

simply give the final results.

The mode decomposition of the renormalized effective Lagrangian for the 

operator F  =  □ — m2 — V  has the form

L,~ =eU  /  + ’ (5'72) 

where the dimensional-reduction anomaly A£p is

+ Q f l  -  K +  A4>- (V^)2 -  m2 -  p2e24,Sj  In 

(l2n -  + 1  ( s ^  -  8m2u +  t o 2^ )

^  8jt

+

■8nS?(; )', +  32»S’(7)1')

+ £  ( —96u -  9 6 u S g ^ )  + £  (192u2) (5.73)\  "'‘I / fiL

Recall that n is given by relation (5.57).

In the next chapter we will use these anomalies to derive analytic approxi

mations for (<l2) and W  at zero temperature. First, however, we will consider 

an approach to mode decompositions in static spaces with arbitrary periodic

ity P in an attempt to unify the Rindler-space results of Section 5.1 with these 

zero-temperature anomalies.

5.4 The Dimensional-Reduction Anomaly in 

($ 2) at Finite Temperature

In this section we determine the dimensional-reduction anomaly in (<$2) for the 

decomposition of a scalar field in a static space where the Euclidean time co

ordinate has an arbitrary period ft. In the context of thermal quantum field
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theory, this corresponds to a field at temperature T  =  0~x. Although we con

sider only the anomaly in ($2), the techniques used here are readily applied to 

the calculation of the anomaly in W.

Consider the line element (5.20),

ds2 = e -W ^ d t2 +  hab{xc)dxadxb, (5.74)

where we now choose t € [0,0] with t =  0 and t = 0  identified. Rindler space 

(5.1) corresponds to 0 = 2n, e-20 = x3 = z with — Sab, while the zero-

temperature case (5.20) corresponds to 0 ->• oo.

Following the steps of the previous sections, we split the points in the 

t-direction only, and expand all geometric quantities in powers of (t — tf)2. Since 

the internal space of (5.74) is periodic, as for the spherical decompositions, we 

follow the technique of Section 4.1 and make our expansions periodic as well. 

Guided by the Rindler space example, in which the f-dependence of a was in the 

form (1 — cos(t — t')) with t € [0,27r], we define an effective angular coordinate 

A by

A =  2 7 r ^ ^ € [ 0 ,2 7 r ] .  (5.75)
0

We then replace all (t - 1!)2 by 

2
I 2(1 -  rn s \ \  -I- _  .

3 ' ' 45
(t -  t')2 =  ( ] I 2(1 -  cos A) + ^(1 — cos A)2 +  -^-(1 -  cos A)3 +- ' ' " (4)'

(5.76)

truncating at the lowest order that gives the correct flat-space limit. With this 

technique our expansions (5.30)-(5.32) for a  and the become

1 4.2<r =  2L (1 -  cos A) +  L 

L2

(1 — cos A)2 , (5.77)
O O  J

£2
= 1 +  — C ty(l-cosA ), (5.78)3

n°~v  =  (5-79)
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where for convenience we define

de-2*
L =  (5.80)

which is the effective radius of a line of constant t. The local temperature is 

then given by Tl0C =  It is easily verified that (5.77)-(5.79) reduce to

the previously derived results for both Rindler space and zero-temperature static 

space.

The mode decomposition is similar to that for the Rindler-space example:

£+0' 00
K {t,x;t',x '\s) = — ^  K n{x,x'\s), (5.81)

n =-oo

Kn(x, x'|s) =  I d(t — if) emT (‘- t') x• ^  x'|s) t (5.82)
Jo

where we use

/ o_\2  <*
^Ae(y) - >— ^  • (5.83)

V™ \  b /  X g n=_oo

The renormalized values of the square of the field operator will then be related 

via

p20 »
( * V  = y E [  +  M t i )  ] • (5.84)

n =-oo

Note also that we can return to the zero-temperature (0 ->■ oo) formalism with 

the replacements

27r 1 A  I f " .  ,eacx

f  d { t - i ! ) - * [  d(t -  if) . (5.86)
70 J -o o

By inserting the expansions (5.77)-(5.79) into the expression (4.12) for the 

divergent part of the heat kernel in four dimensions and performing the mode
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decomposition (5.82), we obtain

e_m*
#div|n(z,*k) =  L

(47rs)2 
L2

JnQ +  8 *R — V^j Jno +  — U(f> Jnl

~  ^ ( 1  -  4(V0)2L2)Jn2j , (5.87)

where

Jnv= f  *d\ einA ep̂ 1_coŝ ( l  — cos X)q , (5.88)
Jo

and p =  -L 2/2s . These integrals are evaluated by taking derivatives with respect

to p of the q =  0 result (5.9) used in the mode decomposition of Rindler space:

Jn0 =  2 7 r (— l )V 7 n(p), (5.89)

Jnq = ^ Jno- (5-90)

Equation (5.87) is to be compared to the subtraction term for the dimensionally 

reduced theory, consisting of the first term of the Schwinger-DeWitt expansion 

(5.43) in three dimensions:
e-m2j

ICn|div =  7 • (5-91)
(47TS) 5

The anomaly in ($2) can now be obtained by integrating the difference of 

(5.91) and (5.87) over s:

poo

& (& )=  ds [ACn|div(x,x|s) -  ATdiv|„(x,a:|s)] . (5.92)
Jo

Employing the formula (5.10) from the Rindler example, one can show with much 

tedious algebra that the anomaly is given by

“  4jr
-  1 +  n (In(mL)Kn+i(mL) -  In+i(mL)Kn(mL)) 

+ mL {In(mL)Kn{mL) + In+i{mL)Kn+l{mL))

- ± Q 4R - v ) /„ (m L) K „( m L )
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07T
nIn(mL)Kn(mL) -  ^mL (In(mL)Kn+i(mL)

-  In+l(mL)Kn(mL))

+ I S l (1 - 4W )2l2)
(n2 — n)In(mL)Kn(mL)

+ ^ m L  (/n+1(mL)irn(mL) -  In(mL)Kn+l(mL)) 

+ i(m L)2 (/n(mL)iTn(mL) -  / n+l(mL)tfn+l(mL)) (5.93)

Using uniform asymptotic expansions of the Bessel functions, one can verify that 

in the L —► oo (0 —► oo, T —)• 0) limit (5.93) reproduces the zero-temperature re

sult (5.49).4 As well, the special case of 0 = 2n with line element (5.1) reproduces 

the exact Rindler-space anomaly, (5.19).

In the following chapter we turn our attention to making “practical” use of 

these dimensional-reduction anomaly results. First, however, a few comments 

regarding the dimensional-reduction anomaly and the choice of quantum state 

are in order. The anomaly is determined by the divergent subtraction terms 

of the D- and (D — n)-dimensional theories, and the mode decomposition. The 

divergences are local, depending on the geometry and potential, and so are state- 

independent. The mode decomposition, however, is sensitive to the global be

haviour of the internal space (at least for low frequencies), and so may be affected 

by the choice of state. In particular, if the time direction lies in the internal 

space, the mode decomposition will be sensitive to the temperature; this means 

that the dimensional-reduction anomaly for static spaces will be state-dependent. 

By contrast, for the spherical reductions considered previously, the decomposi

tion was over spatial directions, and so the dimensional-reduction anomalies of 

Chapters 3 and 4 are state-independent.

4In taking the zero-temperature limit it is important to hold the frequency fixed. One does 

this by replacing n by u0/2ir and holding u  constant as 0 -> oo.
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In either case, it is important to recognize the distinction between the low- and 

high-frequency parts of the dimensional-reduction anomaly. The high-frequency 

part of the anomaly is responsible for the divergences in the D-dimensional the

ory. It is purely local, and so is universal and unambiguous. By contrast, the 

low-frequency part of the anomaly is sensitive to the global behaviour of the 

system. As a result, it is inherently somewhat ambiguous in the sense that dif

ferent assumptions for the large-distance behaviour of the system will alter the 

anomaly at low frequencies. In particular, the assumption of periodicity used in 

the spherical decompositions of Chapter 4 and in the static decompositions of 

this section do influence the anomaly. While they are perhaps the most natural 

choices for determining the anomaly for compact internal spaces, they are not 

unique.
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Chapter 6

Analytic Approximations for

($ 2) and W

In the preceding chapter we examined mode decompositions and the dimensional- 

reduction anomaly in static spaces. In this chapter we will see how these results 

may be used to derive a new type of analytic approximation for renormalized 

expectation values in static spaces. At the present time, this scheme has only 

been applied to zero-temperature fields; its generalization to fields at arbitrary 

temperature is still underway.

6.1 Analytic Approximation for (<&2)

In Section 5.2.1 we derived the dimensional-reduction anomaly in ($2) for a field 

at zero-temperature in the static space (5.20),

where the four- and three-dimensional theories are related via

(6 .2)
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The anomalous term A(<£2) is finite and can be written in the form

A <#) = A < # )'+ A < # > * , (6.3)

where1

-  i
2u 2oj \6  J

2u> 2 J \ p  u J

(6.4)

m2 0<j> m4(V0)2
6 n3 2/i5

(6.5)

Here and later we use the notation u> =  e2<i>ui. The quantity A(<̂ 2)11 is that part 

of the anomaly which dominates at high frequencies (uj -»■ oo); it consists of 

all terms of 0 (u/_l) and higher in the large-w expansion of A(<£2). These are 

the terms which diverge in the integration over oj, and hence which lead to the 

divergences in the four-dimensional Green function as t — f  -> 0. The part of 

the anomaly that remains when A(<£2)5 is subtracted off is denoted by A(<£2) \  

It is of 0(u~ 2) for high frequencies, so the inverse Fourier transform of A ^ 2)’ 

is finite as t — tl —¥ 0.

Let us examine the inverse Fourier transform of A(<p2)̂ . Defining

<i2U « =  (6.6)
Jo n

and performing the integration (see Appendix C.3.2), we obtain

.i 2. m2 1 A  4 2\  m2e-4* □<£ (V<j>)2
<$ )approx -  +  167r2 R  v  m  J  In ^  247j-2 127T2 • ( ^

The parameter 77 is a low-frequency cut-off which is required to make the integral 

convergent. It corresponds to a well-known ambiguity in the renormalization 

prescription. This ambiguity is absent for a conformally invariant theory, when 

m =  0 and V =

1The symbol 8 (sharp) is borrowed from musical notation to denote the high-frequency part 

of the anomaly; the remainder is labelled with b (flat).
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The reason that (6.7) is of interest (and the justification for the name ($2)ipptQX) 

is that in certain special cases it reproduces previously known approximation 

schemes for quantum fields in curved spacetimes. In particular, for a mass- 

less, conformally coupled field (6.7) reduces to the zero-temperature limit of the 

Killing approximation of Frolov and Zelnikov [10] for static spacetimes. This 

scheme is based on the assumption that one can approximate the expectation 

value of interest ((<£2) or (T^)) by a tensor which is a local function of the curva

tures, the Killing vector for the static spacetime, and their covariant derivatives. 

Imposing physical properties, such as the covariant conservation of (T^), then 

uniquely determines the approximate tensor up to a few arbitrary constants 

which depend on the choice of state. For the further specialization to static 

Einstein spaces the Killing approximation contains the approximations of Page 

[8], and Page, Brown, and Ottewill [9], and so our result (6.7) is equivalent 

to the zero-temperature limit of these approximations as well. Finally, for the 

special case of static spherically symmetric spacetimes (6.7) also reduces to the 

zero-temperature limit of the WKB approximation of Anderson [11]. (The corre

sponding result for the stress tensor, derived by Anderson, Hiscock, and Samuel 

[12], was discussed in Section 4.4, where it was denoted (T’fil/)AHS.)

The agreement between our (<52).pprox and the results of Anderson is particu

larly interesting when we recall that (6.7) is constructed using the low-frequency 

part of the dimensional-reduction anomaly, A ^ 2)*. We are thus led to the seem

ingly paradoxical conclusion that there is a connection between the low-frequency 

part of the anomaly and the high-frequency behaviour of the field.

A more careful examination of how ($2)«pprai is constructed resolves this mys

tery. Note that the renormalization terms Qu\dw (5.44) from the dimensionally 

reduced theory do not contribute2 to A(<p2)i>. The analytic approximation is

2This is because of their dependence on the frequency, u>. Specifically, the renormalization 

terms from the dimensionally reduced theory are polynomials in u 2 [w only enters /Cu|div
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therefore constructed using only the renormalization terms (5.40) from

four dimensions. Schematically, we have

Here Ge(t, x ;^ ,! )  denotes the high-frequency part of the Green function, ob

tained by Fourier transforming the Green function, keeping only the terms of 

0(ui~l) and higher in the large-w limit, and then inverting the Fourier trans

form. Viewed in this manner, we see that the analytic approximation is simply 

the expression resulting from using a high-frequency approximation for the Green 

function, renormalized in the standard manner in four dimensions (using (5.36)). 

This is why our technique reproduces the WKB approximation of Anderson.

There are several points to note regarding our approximation. First, it is 

unambiguous since it is constructed using the high-frequency behaviour of the 

Green function, which is determined by the ultraviolet divergences of the theory. 

In particular, Gs is completely independent of the particular ansatz used for the 

Green function for large point separations in the Fourier transform. Different 

choices change only the low-frequency behaviour of the Green function, which is 

discarded anyway in the high-frequency limit. This means that we can construct 

Gi using any ansatz for the Green function which contains all of its divergences 

for the given point-splitting; the Schwinger-DeWitt expansion is merely the most 

convenient and general such ansatz.

Similarly, the low-frequency part of GiW used for renormalization in four di

mensions is also unimportant, as it is not affected by the subtraction in (6.8) and 

through the induced potential Vu, given by (5.42)]. Thus, they are unaltered in the high- 

frequency expansions and so sire removed identically when we subtract the high-frequency

ipp rox

=  Jim [G^t, x ; t', x) -  Gdiv(t, x; f \  ar)] . (6.9)

limit, A ((^)s.
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is just returned identically in four dimensions when the mode sum is done. For 

example, note that the terms in (5.36) which are finite as r  -> 0 all appear iden

tically in the analytic approximation (6.7) [except for a sign reversal, since (5.36) 

is subtracted from G* in the renormalization]. As a result, these finite terms need 

not be mode-decomposed in the first place. We could just as easily have begun 

with the Laurent series (5.36) for G, and only Fourier-transformed those terms 

which diverge as t —► 0. Removing the high-frequency limit and performing the 

inverse Fourier transform would then yield our analytic approximation (6.7).

The only knowledge used to construct (<l2).pprox is the structure of the diver

gences of the physical theory and the static nature of the space. Since the diver

gences are known for arbitrary spaces and field parameters via the Schwinger- 

DeWitt expansion, this method can (in theory) be applied to any spacetime 

with a continuous symmetry. This is a distinct advantage over the WKB ap

proximations used by Anderson, Hiscock, and Samuel and by Balbinot, Fabbri, 

and Nicolini, which require explicit mode solutions for the entire field 6, not just 

for the temporal behaviour. Our approach does not presume detailed knowledge 

of the spacetime; in particular, we do not need to assume any symmetries other 

than being static. Furthermore, since our approximation is constructed (in the 

massless case) using only covariant objects from the static space (i.e., the curva

ture, the Killing vector, and their covariant derivatives), it is clear that it must 

reduce to the Killing approximation of Frolov and Zelnikov and the approxima

tions of Page, Brown, and Ottewill for massless conformally coupled fields. Our 

high-frequency approximation is not restricted to conformal fields, however, and 

hence relation (6.7) can be considered as an extension of these approximations 

to the general case when the spacetime is static, but not necessary spherically 

symmetric, and the field equation includes an arbitrary mass and potential V. 

This approximation should be valid whenever the high-frequency limit of the
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Green function is appropriate for modelling the full Green function.

Finally, we note that our approximation for (<l2) is the same if we were to 

use the anomaly from the (2 +  2) reduction in Section 5.2.2. In this case, the 

square of the field operators for a (2 4- 2) decomposition of the space (5.50) were 

shown to be related by (5.61),

< * V  =  e2* /  A -  [<#>_ + A(<$] , (6.10)

where the dimensional-reduction anomaly A i s

1_
Air ■ (6.11)

The part of A(<£2) which dominates at large “momentum” p and which is 

responsible for the divergences of the four-dimensional Green function in the 

coincidence limit t  -  t ' -> 0 is

*<#>■=i z
i_

Air (<U2)

where we define p — pe*. Defining the sub-leading part A(<̂ 2)1’ of the anomaly 

and (^appro* by relations similar to (6.3) and (6.6), respectively, we obtain an 

expression for ($2)»ppro, which is identical to (6.7); see Appendix C.3.3. One can 

expect this result, since the (2 +  2) reduction may be considered as a special case 

of the (1 +  3) reduction.

Thus confident as to the physical meaning of our new approximation scheme, 

let us apply it to the effective action and the stress tensor.
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6.2 Analytic Approximation for the Effective 

Action

Our approximation procedure is easily applied to the effective action. From 

(5.70), the effective Lagrangians in four and three dimensions are related by

= [£„,„(*) +  A £„M ] , (6.13)

where A i s  the dimensional-reduction anomaly (5.71),

A ^  | -  m3) -  i(»j -  m) Q f l  -  V  -  (V0)2 +  A » ^  -  i mu2

+  f  ( | «  -  RS;,V)  +  £  (~ 2m 2u +  m2̂  +

+ $  (-t* ■+ \ * $ ) +?  (“ sr - )
m6 (  15 15 m8 /105 2\  1

+ v  (“T* -  ¥ < »  ) + v  ( - “ ) } ' (614)
As earlier, we write

A£w =  A£j#+ A / i ,  (6.15)

where A£*, is the part of the anomaly which dominates at high frequencies 

(w -> oo),

A£“ -  ^ { I - 3 - - | ( | r - V - (V«)^+ A ^ )

+  5  [ l T  -  T  -  v  - (w )2  +  A‘* + 3 “  - 2* ^ )

<6 - 1 6 >

By subtracting this large-cu limit from the anomaly (6.14) and making the inverse 

Fourier transform, we can construct an approximate effective Lagrangian for the
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four-dimensional theory:

r°° duj u
"appro* / U *

J o 7r

121

(6.17)

Performing the w-integration (see Appendix C.3.2) gives

, 2

</approx
3m4 m‘ 

+128tt2 32tt2
1

~ R  +  V  4- (V0)2 - A h<j> + u -  2«°j,vr

+

+

87T2

1
32tr2

-  M«Sm  -  *> + i2u*

v\D —V
2(0)

-  ^  + m2 ( i f l  -  V -  (V<«2 + Arf + 3u -  2S*5;,̂  

\  412 /
(6.18)

The effective action corresponding to this Lagrangian may be simplified consid-

Cn(*)erably using integration by parts. Substituting for the u, v, and from

Appendix C.l and neglecting surface terms, one can show that the effective ac

tion for the important case V  =  £4R  may be written as

-  / ^ { - s s ^ p S r ) m4 + i ( 4J W ,S°‘W

-  ARa0 ARQS +  □ 4R) +
3m4 m2(V<£)2

128tt2 247t2
1 4j

360tt2

( e -M [
32tt2 I

647T2

m24/ 2 - | 4fl(V0)2 +
u ' ■ ( = ? ) ( - m24f l + i n 4i2)]

(6.19)

Note that (6.19) has been written entirely in terms of four-dimensional quantities. 

The stress tensor (T’/u,)ipprox resulting from the variation of this action with respect 

to the metric is displayed in Section 6.3. It can be shown that in the special case 

of a static, spherically symmetric spacetime (TMJ/).pprox coincides with the analytic
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approximation of Anderson, Hiscock, and Samuel [12] for the zero-temperature 

case. Furthermore, in the massless, conformally coupled limit (6.19) coincides 

with the zero-temperature Killing approximation [10] and the zero-temperature 

Page-Brown-Ottewill approximation [8,9].

6.3 Analytic Approximation for (TMZ/)

Using the result (6.19) for the approximate effective action for a scalar field in a 

static four-dimensional spacetime with potential V  =  £ 4/?, one can calculate the 

resulting stress tensor. For convenience, we split the action into pieces according 

to its dependence on the field mass m  and coupling f  as follows:

w ^ .  = W l  +  +  ( t  -  i )  [Wi, +  Wi,] +  ( f  -  i )  Wl* ; (6.20)

where

"*■ -  (6-2i) 

< >  =  . (6.22)

“  I  ( l ^  )  + Dfl) } ' <6'23>

=  ^ I ^ { R ~ R[ a  } ’ <624>

=  3hi  ■ <6'25>

^  (626)
Here and for the remainder of this section we assume all curvatures and deriva

tives to be four-dimensional; i.e., calculated using the metric g ^ .  For ex

ample, multiple four-dimensional covariant derivatives of <j> are represented by 

<t>afi =  <t>;al3, etc. Also, xM is the Killing vector of the space (5.20), with x2 = e~4*-
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Using

& ,>  =
2 8W

(6.27)
y /§ sg r  ’

the stress tensor due to each part of the effective action is found to be (in Eu

clidean signature)

'm 2e~A*'

n 0 +  ^ ( V 0 ) 2 - 2 < ^ „ j  ,

= "2 8 8 0 ^2  ^  ( l ^ ~ )  [ 12(i^  “  4^ ^ ) ^

-  AR{R(IV -  ^g^R) + 6ERp,, -  2R;fU/ -  g^DR

m4 f 
327T2 \

XitXu
X2

m4 f 
247^1

XnXv
X2

M m  o
1 1 , 

2880tt2 2

(6.28)

(6.29)

+ f XtiXv (RoWRafrs -  R^Rof, + OR)
2880tt2 x2

+ 4 (-R }a<t>« -  2K*4>ae -  3n 2<t> -  4D((V<£)2) +  8(D0)2 

+ 8V0-V(D0) +  16D0(V0)2 +  16V0-V((V<£)2))

+ 720tt29nv -  R °0<i>a0 -  \ R 'a<f>« + z 2<f> -  2R ?04>ac,

+ 2{<t>a<tf),af} -  3(D^)2 -  6V0-V(Cty) -  8V^*V((V0) )

+ 8(V<£)4

+ 720tt2 £Rnav0<t>af> +  X (Ratify* +  Rav<t>°)

+ 3 {Rpy-a Rfta;v Rucr,ft) 4>

~  (E0):#u, +  4 (Ra(i<f>v +  Rav4>p) 4>** +  2 (̂4>ft4>u) 

-  2 ((4>Mua + (4>u4>«V) +  6 (<Mn < ^  +

+ 8 (^((V0)2);„ + &,(W )2U  -  !6(4>fl4>u)o4>
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As noted before, in the special case of a static, spherically symmetric space

time this stress-energy tensor coincides with the analytic approximation of An

derson et al [12] for the zero-temperature case. Furthermore, in the massless, 

conformally coupled limit, it coincides with the zero-temperature Killing ap

proximation [10], and the zero-temperature Page-Brown-Ottewill approximation 

[8,9]. Our high-frequency approximation can in fact be considered as an ex

tension of these schemes to the general case when the spacetime is static, but 

not necessary spherically symmetric, and the field equation includes an arbitrary 

mass and potential V.

-32(<M ,)(V 0)2 - (6.30)

(6.31)

-  ~ 9 in <f> +  2(V<£)2) +  (□* +  2(Vd>)2) ;iiu

-  2R(j>fl<f)v +  ^ (i?;#A  +  -  g»»R;a<t>a) j , (6.32)
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Chapter 7

Discussion and Future Work

In the presence of a continuous spacetime symmetry, the field equation can be 

solved by decomposition of the field into harmonics. This effectively replaces 

the single field in the physical theory by a collection of lower-dimensional fields. 

One can then express quantities of interest, such as the Green function and the 

effective action, as sums of the corresponding objects in a dimensionally reduced 

theory. Due to the presence of ultraviolet divergences, however, these decom

positions have only formal meaning, as the renormalization violates the exact 

form of such representations. As a result, the expression for the renormalized 

expectation value of the object in the physical spacetime can be obtained by 

summing the contributions of corresponding lower-dimensional quantities only if 

additional anomalous terms are added to each of the modes. We call this effect 

the dimensional-reduction anomaly.

The anomaly may have several sources. The dimensional reduction may 

change the global properties of the spacetime, inducing additional boundary 

conditions which the dimensionally reduced field must satisfy. This effect was 

seen in the decomposition of fiat space into spherical modes (Section 3.3), and 

into Rindler-time modes (Section 5.1). Because of its nonlocal nature, this effect
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cannot be eliminated by additional finite renormalization of the dimensionally 

reduced theory. In addition to this “global” contribution to the dimensional- 

reduction anomaly, there also exist “local” contributions due to the curvature 

and the potential induced by the dimensional reduction. The corresponding 

anomalous terms are local invariants constructed from the curvature, the dila- 

ton field, and their covariant derivatives. Comparison to the Schwinger-DeWitt 

expansion shows that these additional anomalous terms also cannot be elimi

nated by additional finite renormalizations. The dimensional-reduction anomaly 

is therefore not merely an artifact of renormalization ambiguity, and cannot be 

ignored in the analysis of quantum fields via dimensional reduction. Failure to 

account for the anomaly will lead to incorrect predictions for the contributions 

of fixed modes to expectation values in the physical theory. Furthermore, when 

summed over ail modes, the renormalized expectation values of the dimension

ally reduced theory will in general diverge if the anomaly is not included. Naive 

dimensional reduction and renormalization (ignoring the anomaly) cannot yield 

finite results for the physical theory.

We have explicitly demonstrated the importance of the dimensional-reduction 

anomaly for the study of the stress tensor of a quantum field in a black-hole 

spacetime using dimensional reduction. The stress tensors predicted by two- 

dimensional dilaton-gravity models for the £ =  0 mode are qualitatively very 

different near the event horizon from the stress tensor in four dimensions. The 

anomaly appears to correct the predictions of the dimensionally reduced theory 

at the event horizon, while leaving the asymptotic behaviour from individual 

modes unaffected.

We have also demonstrated how mode decompositions can be used to obtain 

a very simple and general high-frequency approximation scheme for renormalized 

expectation values of quantum fields in static spaces. This scheme requires only
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the structure of the divergences in the theory and minimal assumptions about 

the spacetime (the existence of a Killing vector). It can therefore be applied to 

fields with arbitrary parameters in a wide class of spacetimes.

There are a number of topics presented in this thesis which merit further 

investigation. In dilaton-gravity theories, the contribution of the £ > 0 modes is 

of interest, particularly near the potential barrier at r  «  3M. The high-frequency 

approximation scheme developed in Chapter 6 may be useful here for confirming 

the WKB approximation of Balbinot et al for the £ =  0 mode, and for deriving 

the dimensionally reduced stress tensors for £ > 0. Better approximations for 

the stress tensor in black-hole spacetimes would aid in the accurate modelling of 

the back-reaction on the geometry and the subsequent evaporation process.

The dimensional-reduction anomaly could also be of relevance to Kaluza- 

Klein theories [86,87], in which the assumption of extra ‘hidden’ dimensions 

is used in attempts to explain the physical properties of our four-dimensional 

universe in a more natural manner. Such theories arise, for example, as a natu

ral consequence of the low-energy limit of string theory [88]. The dimensional- 

reduction anomaly implies that one might expect additional quantitative and 

even qualitative differences between the higher-dimensional quantum field the

ory and the effective four-dimensional behaviour of matter in our universe, and 

this possibility has yet to be fully explored [89].

The generalization of our approximation scheme to include finite-temperature 

effects would be of great value. In that case, one could regard our scheme as a 

proper extension of the Killing and WKB techniques to general static spaces 

with nonconformal fields.

Also important is the testing of our approximation scheme to establish its 

range of validity. While in the special cases of conformally invariant fields and 

Schwarzschild spacetimes it reduces to known approximation methods (Killing
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and WKB respectively), one does not expect this high-frequency approximation 

to be useful in all cases, such as for fields of large mass. A determination of the 

criteria for the validity of this scheme is required if it is to be applied to other 

systems.
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Appendix A

Quantum Fields in Flat 

Spacetime at Finite Temperature

As an exercise we derive the renormalized expectation values of the square of the 

field operator and the stress tensor for a scalar field in four- and two-dimensional 

flat spacetimes at finite temperature. These are useful for interpreting the con

tribution of s mode done, derived in Section 3.2.

The to td  renormdized vdues of ($2)^ and (T^)^ for a scdar field in flat 

spacetime are easily cdculated using (3.18), (3.19) of Section 3.2. Decomposing 

the field $  in terms of the standard plane-wave modes

-ifccX**
=  - 7= = _  , (A.l)

y/2(jj(2ir)n~1

where k° = \/k2 + m2, k =  |fc|, and each of the components of the vector k

range over (—00, 00), we find the renormalized Hadamard Green function to be

x h > = j y & h i  { * & +5**t) • (a-2)
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A .l Four dimensions

In four dimensions we have

/ oo poo
dk = Ait I d,

■oo JO

dkk2. (A.3)

Using the modes (A.l) with (3.18), we obtain

L -  ( A -4 )

Note that this is equal to the expression for the contribution of the s-mode alone, 

(3.30), evaluated at r  =  0. For a massless field we find

($2>m=o = w J QduJ e * - - l  =  12/32 ’ 

while in the massive case we have

(4 V  =  (A .6)
'  ' 2tt2 ^  nmp K }n = l

m0» 1 1 (A 7)
27T2 P

m /9<l 1 m  7712

12/d2 47T/3 167T2

Similarly, for the total stress tensor we have

g - r - i M

Note that (T^)?  is diagonal, independent of f, and also traceless for m =  0. In 

the massless case we need only compute the time-time component,

r00, OJ3 7T2,
du —x   =

/ 0 1 = s T<' (a -io>
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and the total stress tensor is then1

(  - 1  0 0 0 N

\

0

0

0

\  0 0 
0 I  0 

0 0

(A.ll)

In the massive case let us consider first the low temperature limit, m/3 »  1. 

The trace of the stress tensor is given by

,2 /-oo k2
<V>

—77T
m 0 »  I — 2ir2

1
/Jo

oo
dk

\Jk2 +  m2

(A.12)

Combining this with the time-time component

+ n r  e2 o —0'Jk2+m 2

1 f2m3 ..  , .. 6m2 , .. 12m
= ^ 2  r s - K i f a P )  +  ~ z r Ko(mP) +  — ^ i f ^ )

yields the total stress tensor

d3 (A.13)

^ - 1  t  D o '

{TuU)m0^l —
0

0 0

5 0 0 

i 0
(2tt)2

‘6m2 „ 12m..  , _.Ko(m(3) +  —rz-Ki{m(3)
P

+

0 0 o \ j

1 - 1  0 0 0 ^

0 0 0 0

0 0 0 0

0 0 0 0

1 2m3
(A.14)

1 These calculations have been performed in Cartesian coordinates; however, in transforming 

to spherical coordinates any second-rank tensor of the form T£ =  diag(a, b, b, b) has the same 

components in both spherical and Cartesian coordinates.
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The high-temperature limit can be obtained from the low-temperature result 

by substituting @ -» n/3 and summing over n from 1 to oo. Using the sums 

(3.39)-(3.41), we obtain

+

1 -1  0 0 0 ^

0 \  0 0

0 0 J 0

0 0 0 \ ,
(  -1  0 0 0 ^

0 0 0 0

0 0 0 0

y 0 0 0 0

7T
+

mr mr
+

m
18O/04 48/32 2AkP 64tr2 (7+b,s ) -

3m4
256tt2

m m
12/82 47T/3 87t2 (7+lns)

TTT
167T2

(A.15)

A .2 Two dimensions

Repeating these calculations for two-dimensional space, where

/OO AOO

dk = 2 d k ,
•oo -/O

(A.16)

we find that (4>2)'9 is divergent for a massless field, while in the massive case we 

have

m̂ 1 - K 0(mP),
7T

2m/3 2?r V 4tt

(A.17)

(A.18)

The stress tensor is

^  w i l l - (A.19)
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m/8> I TTl
ir

- i o  U ^ ) +  - i o  
0 1 mP \  o 0

m 0 « l  |  0

0

+

0 \ f 7r m m2 (  m/3 \  m2 ]
1 j  16/32 2/? 47T l 7 +  47r J +  87r J

f m m2 /  , m/9 \ 1
{ 2 0 + 2 ^ ( 7 +  l n 4 7 j } -

- 1  0

(A.20)

(A-21)

Note that the r -»> oo limit of the contribution of the s mode alone in four 

dimensions, derived in Section 3.2, are (47rr2)-1 times these.
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Appendix B 

Spherical Decompositions

B .l  Spherical Decomposition of Curvatures

Consider a line element of the form

ds2 = g^dX ^dX "  =  habdxadxb + p2e~2<bojijdyid‘y’ , (B.l)

where hab =  hab(xc) is an arbitrary two-dimensional metric and uiij = u>ij(yk) is 

the metric of a two-sphere. The dilaton 0 is a function of the xa only, and p is 

a constant with the dimensions of length. The radius of a two-sphere of fixed xa 

is r = pe~*.

We wish to decompose our field theory in terms of modes on the two-sphere. 

This requires rewriting four-dimensional geometric quantities like the curvatures 

in terms of the corresponding curvatures for the metric h.

Our notational conventions are as follows: four-dimensional covariant deriva

tives are denoted by ();o, while □ is understood to represent the d’Alembertian 

with respect to g. Meanwhile, V, ()|n and A& are the two-dimensional covariant 

derivatives and d’Alembertian calculated using the metric For the dilaton 

(j> we shall understand </>a, <t>ab, etc. to denote multiple two-dimensional covari

ant derivatives of <f>. For example, the four-dimensional d’Alembertian of an
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angle-independent scalar S  decomposes to

135

□5 =  A/,5 — 2V0-VS. (B.2)

In particular,

□0 =  Ah<t> -  2(V0)2. (B.3)

For the given line element, the nonvanishing Christoffel symbols are

4a ( s ]  = 2i m  (B.4)

Tfylj] =  P 9« , (B.5)

‘ rj-Jj] =  - * $ ,  <B-6)

“rSfa] =  arJ[u]. (B.7)

Selecting coordinates (0, rj) on the two-spheres, where

Uijdy'dyi =  d62 + sin20 d r f , (B.8)

one finds

4rU s] =  -  sin 9 cos 9 , Ar^\g] =  ^ . (B.9)

For convenience, we define the following commonly occurring functions of the 

dilaton field:

A =  1 — r2(V0)2 , (B.10)

B  =  Ah0 - 2  (V0)2 , (B.ll)

0̂6 =  0a6-0a0&, (B.12)

T = =  A*0 - ( V 0)2. (B.13)

Since the two-sphere metric has constant curvature, 2R[u] = 2, explicit reference 

to it may be dropped. Henceforth we shall assume all curvatures to be with 

respect to the two-dimensional metric ka6 unless explicitly labelled otherwise.
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Using this notation, one can show that the only nonvanishing components of the 

four-dimensional curvatures are

Rabcd[9\ — 2 R-{hachbd ^ad^bc) >

Raibj [5 ] =  9ijTab 1
A

=  {.9ik9jm ~  9im9jk) i

(B .1 4 )

(B .1 5 )

(B .1 6 )

% j { 9 \  =  9 i j \  + BT

4% ]  =  JR +  4Ah0-6(V<A)2 +  - 2 ,

while the only nonvanishing 4i?Q/j;7 are

4̂ W [< ?] =  - j h a b R \ c  +  2 T a b \c  ,

T^amjnf*?] — 9 m n  2  ^  7*̂  *^° <̂ ' a ^

4Rm n;a[9\ =  9mn ( J $  +  '

Also,

(B .1 7 )

(B .1 8 )

(B .1 9 )

(B .2 0 )

(B .2 1 )

(B .2 2 )

(B .2 3 )Rmn;ab[9] — 9mn [ 2 ’
V  / |o 6

4f tm n Ufc[s] =  -  {9km9nj +  0fcn0mj) R + ^  +  B ^ j  ( V 0 ) 2 -  2Tab4)a<()b

-  9jk9mn (J z  +  < P , (B .2 4 )

□4*Ws] = 5mn|[A/l- 2 V 0 . V ] ^  + B)+i2(V0)2- 2 ^  + B ) w ) 2 

+  4 T a ^ v }  , (B .2 5 )
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% a[g] =  ^  +  4 A ^ -6 (V 0 )2 +  ^  , (B.26)

%ab[g} =  fi2 +  4 A ^ - 6 ( V 0 )2 +  4 )  , (B.27)
\  T /  \ab

ft;m„[<7] =  -5m n(i2 +  4Ah0 -6 (V 0 )2 +  ^ ^ “ , (B.28)

□ 4R[g] =  [Aa -  2V0 • V] ( r  +  4 A ^  -  6(V0)2 + ^  . (B.29)

B.2 Small-Distance Expansions

To perform the decomposition into spherical harmonics it is necessary to know 

the behaviour of cr and the D*On for X  and X ' separated along the two-spheres. 

Without loss of generality we take the points to be split in the 9 direction only, 

with angular separation A =  9 -  6''. Our procedure will be to calculate the 

desired quantities first as expansions in powers of A2, and then to convert them to 

expansions in powers of (1—cos A) for use in the mode-decomposition calculations. 

We take as our ansatz for the geodetic interval a

2cr(x, y; x \ y') =  (fA)2 +  U(x)(r\)4 + V^x^r A)6 + • • • , (B.30)

where x =  ^(x +  x'). Taking the derivative of a with respect to each of the

coordinates and requiring a =  \ga0aaa$ in the coincidence limit, one can show 

that

U(X) =  - ^ W ) 2 , (B.31)

v (z) = (B.32)

and

(a6)2 =  A2 l  -  i r 2(V « 2A2 +  r4 W ) 4 -  A4 + , (B.33)
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a" =  0,

<r“ =  - l r ( r A ) 2 + (rA)‘ +
(B.34)

(B.35)

The expansion (B.30) for a  can be converted into one in terms of (1 — cos A) 

using

A2 =  2(1 - z )  + 1(1 -  2)2 + 1(1 -  2)2 +  . . .  , (B.36)

where z =  cos A. Defining the functions u(x), v(x) by

2cr(x, y ; x, y') =  2r 2 [(1 -  z) + u(x)(l -  z)2 + u(x)(l — z)3 H----] , (B.37)

we obtain

u(z) = 1(1 -  r2(V^)2] ,

»(*) = Jg 1 -  l r 2(Vtf)2 + r4(V0)4 -  1 4V0 • V[(V0)2] 
4 8

(B.38) 

. (B.39)

Combining (B.33-B.36) with the results of Appendix B.l and the short- 

distance expansions of [80,81], one can derive expansions for the D^an in powers 

of (1 — z). Writing

D la° - ‘ *  = =  » “- f ''R +  “ (1 -  z) +  S ° - f<R(1 -  z f  +  • • ■ , (B.40)

it can be shown that

=  1, (B.41)

(B.42)

»°-54r
0(2) l / l 2 + 1(1 + r 2B)2 +1(1 +  r2S )(l -  4r2(V«)2)

+
180

^ ( V 0 ) 2 +  6 Tab<j>a(j>b + 2TabT ab

+ 1 2 (1 + b )(V41)2 + 6 ( 1  + b U'' (B.43)
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5D°-C4R
K l(0) (B.44)

wi(D

•2 ( 0 )

[(l +  r2B ) + r 2V0-V] ( R + 4 2 W - 6(V«>)2 +  £ )  

+ A  [flT + 3R(V$ 2 +  K T jr*  +  1 2 T ^ V  
180 L 

+ ( i?  + 4Ah0 - 6 ( V 0 )2 +  4 )\  r-4 /|a

+ 3[A1 - 2 V 0 - V ] ( i  +  B ) - 6 ( i  + B ) (V 0 )  

+ ^ 5  (2A2 + A(1 + r2B) -  2(1 + r2B)2) , (B.45)

5 ( 5 - f )2( B+4A^ - 6W)! + l ) !
i  (  i  -  { ) [A» -  2V0 ■ V] ( R + 4<W -  6(V<«2 + ^  ) 

j | j  [(A, -  2V0 - V] (  R +  4A»* -  6(V«)2 +  1 )

+

+

+ \ r 2 - 2 R T  +  4TabT ab +  4  A2 -  4 (1  + r2B )2
2  r 4 r 4

(B.46)

It is easily verified that for flat spacetime each of the vanishes, except

for B g * * .
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Appendix C 

Static Decompositions

These appendices contain formulae required for the calculations in Chapters 5 

and 6, which deal with mode decompositions in static spaces.

C .l Small-Distance Expansions for (l-f3 )  

Reductions

The line element for a static space may be written in the form

ds2 =  e ' ^ d f 2 +  hab(x)dxadxb . (C.l)

For this static metric is an induced 3-metric and n“ =  e20(l)6f is a unit

vector normal to the surfaces of constant t. The extrinsic curvature Kab on these 

surfaces vanishes. The nonvanishing Christoffel symbols are

4HcM = 4rSo = 2e-4V \  4rg0 = - 2 <t>;a . (c.2)

Because we will be using some quantities defined in terms of the full four

dimensional metric g and others defined in terms of the three-dimensional metric 

h, some conventions on notation are in order. Henceforth four-dimensional cur

vatures and covariant derivatives will be denoted by 4R... and ();a respectively,
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while □ is understood to represent the d’Alembertian with respect to g. All 

other curvatures and covariant derivatives are understood to be calculated using 

the three-metric h. In particular, V and ()|0 are three-dimensional covariant 

derivatives, and is the three-dimensional d’Alembertian. For the dilaton <j> 

we shall understand 0O, <f>ab, etc. to denote multiple three-dimensional covariant 

derivatives of <f>.

With these conventions we have, for example,

It is convenient to define the following three-dimensional tensor which occurs 

naturally in the 1 +  3 reduction:

We shall also need the following expressions for ARa(t,i, ARafr-,s, AR-,a , and AR-,a$:

□0 =  A ^ -2 (V < £ )2 . (C.3)

Tab =  2  [<j>at, — 2 0 O 0 & ]  ,

T  =  T“ =  2 [A/,0 — 2(V0)2] =  2D0.

(C.4)

(C.5)

In terms of Tab the only nonvanishing components of the four-dimensional cur

vatures are

(C.6)

(C.7)

(C.8)

(C.9)

(C.10)

4fl«0;0 =  -2 e ‘ 4* [ ( /k  +  Tab) -  T<t>a] ,

472oo;c =  e-4*Tjc ,

(C .ll)

ARab;00 =  -2e-*[(Rab + Tab)\c<t>c -4<f>a<i>bT + 2<l>a(RbC + TbC)<l>c 

+  24>b (Roc +  Toe) <t>c|  , (C.12)
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4#a0;c0 = —2e~4<t> + Tab)\c $  + 2(f)b (R ^  +  Tab) <t>c

-  2<t>a<i>cT  -  ^02|C] , (C.13)

4RaO;Od =  -2 e -4« [(Rob + Tab) <t>b -  T<t>a} ld , (C.14)

4Roo;cd =  e-4̂ ,  (C.15)

4i?00;00 =  2e-8^ [4 (Rab +  Tab) <f>a<t>b -  4 7 W a -  2|a^a] , (C.16)

%

%

K  =

;ab ~

;00 =

(i? +  2T)|a ,

(R + 2T)|o6 ,

—2e_4<* (iZ +  2T)|a 0°

(C.17)

(C.18)

(C.19)

For the mode decomposition (Fourier time transform) we need to know the 

behaviour of the two-point functions a  and D l 2̂a°~v for points X a = (t, x) and 

A',Q =  (t1, x) where r  =  e~2<t>(t—t!) is small. Using the procedure of Appendix B.2 

one can easily show that

2o(t,x;t?,x) =  r 2 - ^ V ar 4 +  ^ [ 8 (0 V tt)2 -30V 0«6]T 6 +  . . - ,  (C.20) 

<7a(t, X; t', X)  = -  <t>aT2 +  £ [(pb<j>b<(>a ~  <̂606a] T* +  • • • , (C.21)

at( t ,x ; t \x )  =  e 2*t 

H----

1 ~ l<t>a<t>aT2 +  ^  [8(<t>a<t>a)2 ~  34>a<t>b<t>ab\ ^

(C.22)

Combining the above expressions with the results of [80,81] for small-aQ 

expansions of the D1̂2an, it is easily shown that for the operator □ — V, where 

the potential function V  is independent of t, the first three D l/2a°~v to 0(R2) 

are

D l/2a°~v  =  1 +  — TY2 *  —  0 12 360 6 (^ 6  +  T^) 4?<t>b -  16T0°0O +  67|O0°

+  7 T 2 + TabTab 4 r 4, (C.23)
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+  ( \ V^ a ~  T2V T  ) +  3^0 [3AfcT +  6T2 +  6TabTab 

+ 5R T + 2R?bTab +  24 (R*  +  Tab) <t>a(f>b -  24T<t>a<f>a

-  18Rla<f>a -  42Tja<£°J |  r 2 , (C.24)

D l/2a%~v  =  i ( ^ - K  +  | r ) 2 +  ^ [ A /l(i? + 2T )-2 ( /2  +  2T)|a0o]

C.2 Small-Distance Expansions for (2+2) 

Reductions

In this case we will be using some quantities defined in terms of the full four

dimensional metric g ^ ,  and others in terms of the two-dimensional metric hAs  

{A ,B  =  2,3).1 In analogy to the (1 4- 3)-splitting case, four-dimensional cur

vatures and covariant derivatives will be denoted by 4/L. and ();0 respectively, 

while □ is understood to represent the d’Alembertian with respect to <7̂ .  All 

other curvatures and covariant derivatives are understood to be calculated using 

the two-metric hAB- In particular, V and ()|a are two-dimensional covariant

lWe use uppercase Latin indices for the n =  2 decomposition to avoid confusion with the

+ [RabcdR^ + 4T°*T06 -  {Rab + Tab) (IU  + Tab) -  T2]
180

(C.25)

Consider a spacetime with the line element

ds2 =  e 2*(x)(dtjj +  dt\) +  hAs(x)dxAdxB . (C.26)

n =  1 case.
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derivatives, and Ah is the two-dimensional d’Alembertian. For the dilaton 0 

we shall understand (j>A, <(>ab , etc. to denote multiple two-dimensional covari

ant derivatives of <t>. For example, with these conventions the four-dimensional 

d’Alembertian of a y-independent scalar 5  decomposes to

□5 =  AhS  -  2V0-VS . (C.27)

In particular,

a<i> =  Ah<f> -  2(V0)2 =  - i e 2*A fce - 2* . (C.28)

For the given line element, the nonvanishing Christoffel symbols are (i, j  = 
0 , 1)

Fbc[9] =  rg C[h] = - h AD(hDB,c +  hCD,B ~ hBC,D), (C.29)

T a [9} = (f> Ae~ 2<t>Vij =  <j>A9 i j , (C.30)

^ a \s \ = =  - M j ,  (C.31)

r Ay[y] =  -ri,A[y] =  (Pa ^ V h =  <t>A9ij• (C.32)

Meanwhile, the only nonvanishing components of the four-dimensional curvatures 

are

*Rabcd[9] =  gR(9ac9bd -  9ad9bc) , (C.33)

ARAmBn[9] =  9mn[4>AB ~  0A0b] i (C.34)

Rijkm[g] =  4*A& (9ik9jm  9im 9jk ) > (C.35)

AR ab [9] =  ^R ^ ab +  2[0a b  — <t>A<i>B] > (C.36)

ARmn[g] =  5m n[^ - 2 ^ ] ,  (C.37)

4fl[y] =  R + i(f>i- 60a0a • (C.38)
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We shall also need the following components of 4i2Q̂ rT, ARQfc'r6 , AR,a, and AR-a0 -

aR a b -,c [9] =  2 ^ a b ^ 'c  ^ AB ~  0 a 0 b ] |c  ,

■̂ Amjnî ?] =  9mn  ̂ ^R^A. "t” 0A A/,0 20 0BA j i

ARmn-A9] ~  0mn[A/,0 ~  2(V0)2](/i ,

(C.39)

(C.40)

(C.41)

ARmn;AB[g\ 

% j;k m [9 ]

<7mn[A/,0 ~  2(V0)2],aB , (C.42)

(9ik9jm + 9im9jk) [ \ r {V4>)2 -  (V0)2Ah0 +  20a0b0ab 

-  (gij9km) [A/,0 -  2(V0)2] |A 0A, (C.43)

4i?,4[<7] =  [i? + 4A/,0 — 6(V0)2] A , (C-44)

£;Ab[s] =  [/? + 4A/,0 — 6(V0)2] |AB ,

=  -9mn[R + 4A/.0 -  6(V0)2] |A 0A .

(C.45)

(C.46)

Note again that operators and curvatures are with respect to the two-dimensional 

metric hAg unless explicitly labelled otherwise.

We now write out the expansions of cr(t, x; t', x) and the D l 2̂an(t, x; t ', x) for 

small separations. Defining r ‘ =  e-4>(f* — t?), we have to second order in the 

curvature

2<r(t, x; t ', x) =  r 2 -  ^ (V 0 )2r 4 -1- ^  [4(V0)4 -  30a0b0ab] t*6 ,

c r ' ^ x ^ x )  =  e*r* 1 -  ^0 a0Â  +  [4(0a0A)2 -  30*0*

(C.47)

(C.48)

a°(t,x; t ' ,x)  =  - ^ 0 V  -  ^ 0 B  (0BA -  20B0A) r 4

+
720

-  12(0B0b)20A +  80a0B0c0°A +  9 0A0"0°'0BCC A lAa.B±C*

3 0B0BC0CA — ^0B0C0BCA (C.49)
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Combining these expressions with the results of [80,81], it is easily shown that 

for the operator □ — V, where the potential function V  is independent of t*, the 

first three D l!2a°~v are

D l' 2o?-v' =  1 +  4  [At* -  2(V0)!] t 2 + A -  [3fi(V «2 +  48(V«*12 L J 1440
-  36(V0)2Ah<t> -  44<t>A<t>B<f>AB +  5(AA0)2 +  44>AB(j,AB

+ 120a (Afc0 ) J  t4 +  0 ( r 6) , (C.50)

D ^ a °-V =  [ \ r ~ V + !<(>*- < / > U A ] + \ [ - l v A<t>A-±V [A h<i>-2(V<t>)2}

+ h R ^ A + R [ ^  ~  i i (v^ + iio (60<v*>4
-  62(V<f>)2Ah<f> ~  524>A<f>B<t>AB +  16(A/,0)2 -  4<t>AB<f>AB 

+ 180a (Ak4>)A -  m AA h(<t>A) + 3A2^) ] r 2 +  0 ( r 4) , (C.51)

^ ' V -  5 [ g * ~  ^ + § * « - * * ♦ * ] *  4 * K +  SV> *  + S A‘ JI

_ — r a4>a + —  
15 180

- R 2 -  2R[Afl<(> -  (V0)2] +  8(V0)2Afc0

+ 136(t>A4>B<t>AB -  2(AK<t>)2 -  68<t>AB4>AB -  m AA h{4>A)

-4 8 0 a(A/i0)a +  24A2^ + 0 ( r 2) (C.52)

C.3 Useful Formulae

C.3.1 The Modified Bessel Function Kv

The modified Bessel functions K„(z) may be defined via the integral

I  ‘k I_1~‘' KCp { - 1 - j j }  =  2 ( j ) (C.53)
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It may be shown that K -U(z) = Kv{z). Furthermore, for u > 0 the K u(z) obey 

the differential relation

( ~ z S z ) ” = lC'54)

In particular, for z =  m \/r2 +  e2 one can easily show that

(C 5 5 )

Combining (C.55) with integral (6.677) of [76],

f  dr cos(cI»t) Ko(my/e2 + r2) =  T— =exp(—eVm2 +u>2) , (C.56)
J -oo vm 2 +ui2

allows us to evaluate the (1 +  3)-splitting Fourier transforms of Sections 5.2.1, 

5.3.1 as follows:

J j r  cos(wr) r»  =

= <-‘>‘1 ^  ( - + I )  ^ p exp(- £'/;;?T35>'(C-57)
For convenience, we have used the notation ui =  introduced in Section 6.1. 

C.3.2 Integrals of na for the (1+3) Reduction

For n =  \/m 2 + x2 it is easily shown that for large ui

f*  i  3 1 4 3 2-2 9 4 3 4 2 i/ dxfi = -uj +  - m u  +  —m + -m  In —  , (C.58)
J g 4 4 32 8 Ttx

r  1 O 1 ,  1 2, 2u/ dxu =  -u r  +  -m  +  -m  In —  ,
Jo 2 4 2 m

(C.59)

T d x -  = In— . (C.60)
Jo V ~y. m

In addition, for n > 1,

See for example (2.271) of [76]. These results are sufficient to perform the sums 

over modes in Sections 6.1 and 6.2.
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C.3.3 Formulae for the (2+2) Reduction

The Fourier transforms of Sections 5.2.2 and 5.3.2 were computed before perform

ing the s-integration by expanding all 2-dependent quantities for small curvatures 

and using

J  cPzexp ^ - ^ z 2 +ipz'^z2n = (4irs)e~p2a(4s)nIn , (C.62)

where p =  e^p and

Io = I , (C.63)

I x =  1 - p 2s ,  (C.64)

/ 2 =  2 - 4 p2s + p*s2 , (C.65)

I3 — 6 — 18p2s +  9pts2 -  j f s 3 , (C.66)

/4 =  24 -  96p2s +  72pV -  16pV + pV . (C.67)

For the summation over modes referred to in Sections 6.1 and 6.2 one may use

the integrals

rP „ 2  1f  j . H2 1. _2 p2 + m2 1 2
/  dXX l n ^ 2  = «(P? + m ) l n — 2------ 9 P ' (c -68)J 0 77i I m L

f p , _2 1 p2 + m2/  dxxy. 2 =  - I n  5— , (C.69)
Jo 2 m

and for n > 1,

I  <fcj*‘~a‘ =  2 ( n - l U - ) ’
where p =  y/m2 + x2.

(C.70)
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