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Abstract

Conjugate surfaces with point contact have been widely used in the practice of
gearing. The author of the present thesis has applied the theory of conjugate sur-
faces to develop the basic principles for designing and manufacturing a pair of point-
contacting surfaces with controlled properties of transmission and contact at any
position. An encompassing mathematical model was developed, based on Gleason
No. 16 Bevel-Gear Generator, and a computer program for this mathematical model
was written. Finally, the computer program was used to provide a numerical example.
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Chapter 1

Introduction

Hypoid gearing is an important machine element widely employed in industry. In
comparison with spiral bevel gearing, a pair of hypoid gearing can be used to provide
an offset between the axes of pinion and gear, that is, it can transmit the motion and
power between a pair of non-intersecting axes. Besides, under the condition of the
same size of gear member and transmission ratio, the size of the pinion member in
the case of hypoid gearing can be made bigger than that of the pinion member in the
case of spiral bevel gearing and this property can increase the strength of the gearing.
According to the differences of the tooth depth for hypoid gearing, there are two
different types of tooth surfaces: one is the uniform depth tooth and the other is the
tapered depth tooth. Gleason machine tools are used to make hypoid gearing with
tapered depth teeth, while Oerlikon machine tools are used to make hypoid gearing
with uniform depth teeth. The theoretical research and the practice of production
have proved that hypoid gearing with tapered depth teeth has obvious advantages
over that of uniform depth teeth. Especially in the toe end of hypoid gearing, the
tapered depth teeth have higher tooth strength.

Many researchers and gear manufacturing companies have conducted research
on hypoid gearing. For various reasons, there are gaps in the principles regarding
the design and manufacture of hypoid gearing which handicap our understanding
and inquiry into hypoid gearing. In order to ensure that we will be able to grasp,
deeply and comprehensively, the principles regarding hypoid gearing, and to employ
these principles to design and manufacture hypoid gearing, there is still a need to
re-investigate these principles from the most fundamental level, and further, to make
necessary improvements on some of the principles and conclusions.

E. Wildhaber[1-3] and B. Shtipelman[10] used method of projective geometry
to research hypoid gearing and derive mathematical expressions and equations. F.
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Litvin[16,17] used matrix to research hypoid gearing. As for general principles, the
methods used by E. Wildhaber, B. Shtipelman and F. Litvin are quite similar. Since
Shtipelman’s book[10] gives very much detail of the whole process of derivation of
all expressions and equations, we can use his book as an example to analyse their
methods. First of all, Shtipelman explored features of hypoid gear engagement and
obtained some expressions applicable to the case of a pair of hypoid gears. This work
was also done by E. Wildhaber, M. Baxter[9] and F. Litvin. Then, with the aid of
an imaginary crown gear, the mathematical expressions and equations obtained in
hypoid gear engagement can be applied to determine the machine-setting parameters
for gear and pinion and their curvature calculations. As an example, we consider
their way to determine the ratio of roll and the vertical offset of the machine-setting
parameters for a gear tooth surface. From the analysis of hypoid gear engagement,
it is known that once the relative position of both axes, the tooth numbers of gear
and pinion, and a calculating reference point are given, then the transmission ratio,
the spiral angles and some other parameters are uniquely determined. For example,
the transmission ratio of a pair of hypoid gears can be determined from expressions
(1.75) and (1.41) in B. Shtipelman’s book[10]. In order to determine the ratio of
roll for cutting a tooth surface, an imaginary crown gear can be introduced, and
then the imaginary crown gear and the workpiece together make a hypoid drive
having an offset Eg and a shaft angle (90° + I'g), where, I'g is the root angle of
the gear. Finally, the ratio of roll for the gear tooth surface can be determined by
expression (3.6) which is a direct application of expression (1.75). The offset E¢ can
be determined by expression (3.1) with the aid of Fig. 3.1 in Shtipelman’s book.
In addition, the blade angles of the cutter must be equal to the pressure angles of
the gear tooth surfaces which were determined in the section of gear blank design,
or a tilt device must be used in their methods. Since such a method is based on
the introduction of an imaginary crown gear, the parameters of the gear blanks with
respect to the reference cones must be tra::fered to the parameters with respect to
the root cones. Finally, the results of these calculation are not quite satisfactory.
For example, the position of mean point can not be precisely controlled, although
they intend the mean point to be a contact point. M. Baxter[9], F. Litvin[16,17], T.
Krenzer[14], C. Gosselin[12,13,15,24], L. Cloutier(12,13,15,24], H.J. Stadtfeld[18] and
J.R. Colbourne[23] have also suggested methods to improve the results of calculation.
M. Baxter[9] developed the TCA (tooth contact analysis) program to improve the
machine settings in order to improve the qualities of transmission and contact. The
changes in machine settings required to produce a good bearing pattern are found by
trial and error, and the choice of the final settings depends heavily on the individual’s
subjective judgement and experience. C. Gosselin and L. Cloutier{12,13,15,24] have
investigated the effects of the machine settings on the kinematical motion error, and



provided some numerical methods to optimize the machine-setting parameters which
can make the TCA method more efficient.

The present thesis derives mathematical expressions directly from the fundamental
requirements of conjugate surfaces. The fundamental method is different from the
methods mentioned above. Mathematical models in this thesis include functional
relationships among all the parameters of adjustment provided by the Gleason No.16
Bevel-Gear Generator. This system of design and calculation can precisely control
the position and curvature values of any specified contact point, and approximately
control the contact pattern without using the TCA program. The whole procedure
of design and manufacture of hypoid gearing in this system is as follows:

1. According to the requirements submitted by the users of hypoid gearing, design
a pair of hypoid gear blanks;

2. According to the requirements for a gear tooth surface A, obtained in the gear
blank design, design a cutter surface A, and a pair of conjugate motions (¢cg, d,)
between cutter surface A., and workpiece of gear Ay, and then a gear tooth surface

Ay is formed;

3. According to the conjugate requirements for a pair of line contact conjugate
surfaces, define a pinion tooth surface A, in terms of Ay and (¢,, ¢p);

4. According to the requirements for transmission and contact, perform curvature
modification to a pinion tooth surface A4,, and then obtain a new surface A; which is
used as the real pinion tooth surface;

5. According to the obtained tooth surface A;, design a cutter surface A, and
a pair of conjugate motions (¢, ¢p) between the cutter and the pinion workpiece
Finally, the pinion tooth surface A; is formed.

Chapter 2 of this thesis briefly introduces the contents of the theory of simple con-
jugate surfaces, which is one part of the theory of conjugate surfaces contributed by
Chih-Hsin Chen[4,5]. Then, the author of this thesis uses this theory to describe the
basic concepts in hypoid gearing, to research the basic principles for design and man-
ufacture of hypoid gearing, and to establish mathematical models which enable the
manufacturers of hypoid gearing to make good use of all the freedoms of adjustment
provided by Gleason machine tools to produce hypoid gearing. This method of de-
sign and calculation can be suitable for both the Formate method and the generating
method, with or without the tilt device, and is therefore very general. Furthermore,
this method provides the firm foundation for the future development of research on

hypoid gearing.



Chapter 2

Theory of Simple Conjugate
Surfaces

2.1 Rotation of a Vector

2.1.1 The Expression for the Rotation of a Vector

Given an arbitrary point-vector A and an arbitrary unit vector w, let A rotate
an angle £ ( by the right-hand rule) about w as an axis, and then a new point-vector
a sharing the same origin with the vector A as shown in fig.2.1 is obtained. Now
introducing a new operational sign ” ® ”, the new point-vector a can be expressed

as
a=(ew)® A (2.1)

The expression (2.1) is referred to as the expression for the rotation of a vector.

With the view of fig.2.1, we obtain

a =(ew)®A
= 0B
=0OFE+ED+ DB
Due to
=~ _ |OE|~s'4 _ |CI
0 —IC%IO _ICAIA
=|calA = coscA



0o

Y] Y] A
DB =|DB|I5;%- ICB]sine g5

=sine(w x A)

Therefore, the expression for the rotation of a vector is of the form

a =(ew)®A (2.2)
=coseA + (1 — cos¢)(w- A)w +sinew x A '

2.1.2 Combination of Successive Rotations

Suppose that a rigid body rotates first about an axis w; through an angle 6, and
then about w, through 65, the origin being the same. It is possible to obtain the final
orientation of the rigid body by a single rotation, i.e., by simply rotating the body
about an axis w through 6 with the same origin. This fact means that two successive
rotations with a common origin can be combined into a single rotation with the same
origin, i.e.,

(6202) ® [(B11) ® R] = (0w) ® R (2.3)

with R being an arbitrary point-vector as shown in fig. 2.2.
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0]

Figure 2.2:Successive rotations about two axes

Equation (2.3) will lead to the following two equations, expressing 6, w in terms
of 01, Wi, 92, Wy,

9 \/1 — [cos & cos & — sin % sin % (wr - wy))?

tan - = - - (2.4)
2 [cos & cos & — sin & sin % (w; - w,)]
= sin & cos 2w, + cos & sin 2w, — sin % sin & (w; x wp) (2.5)

\/1 — [cos & cos & — sin & sin % (w; - wy))?

2.1.3 Sequence-Reciprocation of Successive Rotations

Suppose a rigid body rotates about w: as an axis through an angle 8, first, and
then rotates about an axis w, through an angle 6,, both axes sharing the same origin
O. The final point-vector, with respect to O, of any point R on the rigid body after
rotation will be (f.ws) ® [(61w1) ®R]. This point-vector can be alternatively obtained
through an equivalent pair of rotations in the opposite order, that is, first, rotate
about an axis w, through an angle 8,, and secondly, rotate about an axis (6,w2) @ w,
through an angle 4y, i.e.,

(02602) ® [(ﬂlwl) ® R] = {01[(02LUQ) ® UJ]]} ® [(02&)2) ® R] (26)

Alternatively, first, rotate about an axis (—6,w;) ® w, through an angle 6,, and then,
rotate about an axis w; through an angle 6,, ie.,



(020.12) ® [(lel) ®@ R] = (010.)1) ® {{92[(—61(4)1) & wz]} ® R} (27)

where R is any point-vector.

2.1.4 Resolution of a Rotation

A rotation about w through 6 can be resolved into three successive rotations about
two prescribed mutually perpendicular axes of rotation, w; and wp (w1 - wo =0), with
a common origin on the axis w as follows:

(bw) ® R = (1w1) ® {(fowo) ® [(62w1) ® R} (2.8)

with R being any point-vector, and 6y, 6;, 62 being determined by the following
equations

6y = 2arcsin{/[1 — (w - w1)?]sin g} (2.9)
(0< 6, <m)
(if w-w20) (if w-wo<0)
01 = (51 + 52 or ™+ 61 - (52 (210)
02=51—52 or 51+(52—7I'
where
6 = arctan|(w - w;) tan ]
_r<g <
(F3 <8 <5) (2.11)

8, = arctan[{L1xwo)]

(w-wo)

(-2 <6<3%)



2.2 Introduction to Differential Geometry

2.2.1 The Expression for a Boundary Surface

Consider a coordinate system, say, O-i,j,k. A boundary surface can be expressed
in following two forms.

1. Functional Form.

Assume the coordinates of any point on the boundary surface are x, y, z. Then
the boundary surface equation can be of the form

F(z,y,2) =0 (2.12)

2. Parametric Form.

Assume a point-vector, relative to the origin O, of any point on the boundary
surface be R, and let u, v be two parametric variables. Then the boundary surface
can be expressed in the following parametric form

R(u,v) = z(u,v)i + y(u,v)j + z(u,v)k (2.13)

2.2.2 The Unit Vector Normal to a Boundary Surface at an
Arbitrary Point

The vector % is tangential to the curve v = const. at the point R; for its direction
is that of the displacement dR due to a variation du in the first parameter only. We
take the positive direction along the parametric curve v = const. as that for which
u increases. This is the direction of the vector %%. Similarly % is tangential to
the curve u = const. in the positive sense, which corresponds to increase of v. The
normal to the boundary surface at any point is perpendicular to every tangent line
through that point, and is therefore perpendicular to each of the vectors %—}} and %—%.
The unit normal to the boundary surface is therefore of the form

sR  oR

N(u,v) =i|%—?x%—§l (2.14)
= Ai+ Bj+Ck

where by substituting the expression (2.13) into the expression above, it follows that

A = l(.‘?ﬂiz_ - Qua_z)
s _ 55
C = L(QQE - ﬂéz)
Q \Bu v dv du

oo
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The sign ” £ ” can be chosen so that the positive direction of the unit normal points
from the body to the space.

2.2.3 Curvature of a Surface

1. Definition.

Let R be the position vector on a surface of any point P and N the unit normal
there. Let R+dR be an adjacent point P’ in any direction 7 on the surface from
the point P, and N + (dN), the unit normal at this point, and ds the length of the
displacement dR from point P to P’ along the direction 7. The limit vector (%)T

when ds tends to zero is defined as the curvature of the surface along the direction 7
at that point.

2. Expression.

Since N is a vector of constant length, its first derivatives are perpendicular to N

and therefore tangential to the surface. ( %I-:I-),. may be expressed in the form

(‘fi—f), = K,r+ G (N x 7) (2.16)

2.2.4 Normal Curvature

The component K, in the direction 7 of curvature (‘fi—lj), is defined as the normal

curvature of the surface along the direction 7 at the point P.

2.2.5 Torsional Curvature

The projection of the curvature (%), in the direction N x 7 is defined as the
torsional curvature G, of the surface along the direction 7 at the point P.



2.2.6 Geometric Angular Velocity of a Surface

Due to (%)T N =0, (%)T can be considered as the virtual linear velocity formed
by the end point of vector N rotating with the geometric angular velocity Q. (here,
the geometric parameter s can be regarded as the time parameter); that is,

dN

(55)r = xN (2.17)

Since any component of §2 in the direction N does not have any effect on the value
of the virtual linear velocity £, x N, Q. could be assumed to lie on the tangent plane
through the point P, that is,

Q,-N=0 (2.18)

Forming the vector products of both sides of equation (2.17) with N respectively and
using equation (2.16), (2.18), it follows that

Q. =K, (Nx71)-G,T (2.19)

2.2.7 Relation of Torsional Curvatures Between Two Mu-
tually Perpendicular Directions

Select arbitrarily two mutually perpendicular unit vectors p , q on the tangent
plane through any regular point of a surface, that is,

p-N=0,g-N=0,p-q=0

Without any loss of generality, let p, after rotating about N an angle 7, reach q,
that is, p x g = N.

It can be verified that the torsional curvature G, on the direction p equals the
negative value of the torsional curvature G, on the direction q, that is,

G, = -G, (2.20)

Proof:

First of all, it is always possible to perform such a transformation of parametric
variables of the parametric expression (2.13) for a boundary surface

u = u(p,q)
v =v(p,q) } (2.21)
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such that the parametric expression R = R(p, g) for the boundary surface after
the transformation satisfies the following requirement at the corresponding point of

the surface,

2 - :,s”" } (2.22)

Where p and q are arc lengths of the surface in directions p and q respectively.

With the aid of expression (2.22), and taking into account N = p x q, we obtain

R OR
N_pxq_a—px&- (2.23)
Consequently,
(iﬂi) _ ON 62RX3R+6R ’R
ds’® ~ Op 0p® g  08p Opdg
_ 2R)< + R
= B 1P g
And
(ﬁ) _ Q_N__a?RxQI}+6RX82R
ds’® ~ 8q  0Oqfp  Ogq Op = 0Og?
= IR g+px 2R
"~ Og0Op P Oq?

With the aid of above two expressions and expression (2.16), consequently,
dN o’R
G, = () (Nxp)=(@x 557 (Nxp)
_ R
OpOq

-N,

And

11



2
Go = (Ta-(Nxa) = (5 xa)- (Nxa)

0’R .
Oqdp

. . 2 2
Since R represents a regular point of the surface, gp—g = qu%, we conclude from

foregoing two expressions

In agreement with the expression (2.20).

2.2.8 Relations of Normal and Torsional Curvatures Be-
tween Different Tangential Directions

Suppose that on the tangential plane through a point P there are two pairs of
mutually perpendicular unit tangential vectors u, v=N xuand t,q =N x t. If
the angle through which u rotates about N as an axis to t is 6, then it follows that,
as shown in Figure 2.3,

(2.24)

u [(—0u)N]®t = cos Ot — sinf,,q

v (5 — 0u.)N]®t =sinfyut +cosbuq
Let the normal curvatures along directions u, v, t, be K, K, K; and the torsional

curvatures Gy, Gy, G;. Since u, v are perpendicular to each other, from the equation

(2.20), then G, = —G,.

Now suppose that after a small displacement ds of a point P in the direction t to
point P’ shown in fig. 2.3, the increment of the unit normal of point P’ with respect to
point P is (AN)p_pr, in virtue of (2.16), approximating to the first order infinitesimal
, (AN)p_pr may be given by

dN

(AN)p-pl = ('Es—)tds = (th + th)ds

On the other hand, (AN)p_p' can be obtained by summing increment (AN)p-p,
of small displacement cos 8,,ds of point P on direction u to point P, and the increment

12



v = Nxu
q= Nxt ?
t
P)
ds

sin 0,.ds

eut

— u
P cos 01ds P

Figure 2.3:Two mutually perpendicular tangential directions

(AN)p,_p: of the small displacement. sin 8,,ds of point P, on the direction v to point
P’, as shown in fig. 2.3, that is,

(AN)p-pr = (AN)p_p, + (AN)p,—p

in virtue of expression (2.16)
dN .
(AN)p_p, = (E)" cos B:ds = (Kyu + GyVv) cos by,ds

and

(AN)p,_pr = (%)v sin f,,ds = (K,v + Gyu) sin 0,ds

It follows that

/
(Kt + Giq)ds = [(Kyu + Gyv) cos By + (K, v + Gyu) sin 0,,)ds

Dividing each side of the expression above by ds and substituting from expres-
sion (2.24), the relations of the normal and torsional curvatures between different

tangential directions therefore are expressed as
K, = K, cos? 8, + K, sin? 0, + 2G, sin 0y, cos O, (2.25)
and

G = —(Ky — K,) sin 0y, cos 0y, + Gy(cos® 0y, — sin? fy,) (2.26)

13



2.2.9 Conjugate Normal and Torsional Curvatures

In order to facilitate derivation of expressions and calculations in subsequent sec-
tions, we can express the curvature (%), of a surface in the following form.

1. Definition.

If the curvature (%), of a surface is resolved in the mutually perpendicular di-

rections 7 and 7 x N, the projection K of (%—)T in the direction 7 is defined as
the conjugate normal curvature in the direction , and similarly the projection G, of
(%)T in the direction 7 x N is defined as the conjugate torsional curvature in the

direction 7, that is, N
2. Relations of Conjugate Normal and Torsional Curvatures with Respect to
Normal and Torsional Curvatures.

On comparing expressions (2.16) with (2.26), it follows that

K. =K,
Y } (2.28)

It follows from the above expression that under the same tangential direction, the
conjugate normal curvature is identical to the normal curvature, and the conjugate
torsional curvature is identical to the torsional curvatire in magnitude and opposite
in sign.

2.2.10 Relative Curvature, Relative Normal and Torsional
Curvatures

If two surfaces, S; and S, tangentially touch each other at a point P and let
their outward pointing unit normals to surfaces S; and S; at the point P of common
contact be N; and N, respectively, thus it follows that

N2 - —Nl (229)

Next suppose that in any tangent direction 7, the curvature of surface S, is (ig%l),

and the curvature of surface S, is (d—gz),, the relative curvature of S; to S; at point
2 in direction 7 is defined as

14



dN dN, dN,

(S =+ (5D (2:30)

Using expression (2.16), we have
cat

ds

and with the aid of expressions (2.27), (2.29), it follows that

)‘r = Ky, 7+ GIT(NI x T) (231)

(Bz), = K}, 7+ Gh, (T x Ny) (2.32)
= K}, 7+ G (Ny X 7) |

The substitution of above two expressions in expression (2.30) yields

dN

(=) = (K + K )7 + (G + Gy )(Ny x 7) (2.33)

The relative normal curvature &, and the relative torsional curvature G, of sur-
faces S; and S, at point P of common contact in the direction 7 are defined respec-
tively as

K‘r = Kl-r + Ké-r
K. = } (2.34)

Consequently, expression (2.33) may be expressed in the form.

dN, — =
(E—),— = K-,-T + G—,—(N X T) (235)
The relative curvature (-‘fg), can be represented as the virtual linear velocity
formed by the end point of vector N; rotating with the relative geometric angular
velocity §2,, that is,

=3

(=) =0 x Ny (2.36)

in which

o

= K, (N;x7)—G,T
= nl'r - 921- (237)

15



2.2.11 Relations Between Relative Normal and Torsional
Curvatures in Different Tangential Directions

Let the relative normal curvature and the relative torsional curvature in any di-
rection t be K; and G- and u, v be two mutually perpendicular tangential directions
in the common tangcutial plane of S;, Sp, and v = N; x u. Let the normal and

torsional curvatures of S; in directions u, v be Ki,, Kj, and G,, = —G), and the
conjugate normal and torsional curvatures of S, in directions u, v be k3, K3, and
b« = —G%,. The relative normal and torsional curvatures in directions u, v are then
in the form
?u =K 1w+ Kéu
K, =K, + Ky, _ (2.38)
Gy =G+ Gy =—(G+Gy) = -G,

Next, suppose that the angle of u rotating about IN; to t is 8y, due to N2 = ~Nj,
the angle of u rotating about Nj to t is (—6,). Consequently, by virtue of expressions
(2.25), (2.26) and (2.27), we obtain

Ky, = Ki,cos28y + Ky, sin? 8, + 2G1, sin 6y, cos 6y, )
G = —(Kiu— Kiy)sinfy cosby; -+ Giy(cos? Oy, — sin®fy,)
K., = Kb, cos*(—0y) + Kb, sin*(—0y:) + 2(—Gb,) sin(—0y;) cos(—bu:)

K, cos? By, + Kb, sin’ 0y, + 2GY, sin by, cos by, > (2.39)
(Ky - K3y) sin(—0u¢) cOS(—0ue)
—(—G%y)[cos?(—0ur) - sin®(—ut)]

~ (Kb, — Kb,) sin 0, cos 6, + Gb,(cos? 0, — sin? 6,)

!
2t

/

With the aid of expressions (2.34) and (2.38), the relative normal curvature K,

and the relative torsional curvature G, in direction t are given by

?g = Ku + Két
= K, cos2 0, + K,sin® 0, + 2G, sin 8y, cos Oy,
_G—g =Gu+ G’2
= —(K, — K,)sin by, cos 0, + Gy(cos? 0,; — sin? by;)

(2.40)

2.2.12 Compatible Equation of Surface Curvatures

With the aid of expressions (2.25) and (2.26), it follows that

16



N

Figure 2.4:Fundamental surface and substituting surface

(K, — K,) =[—( K,) sin Oy + 2G,, cos Oy} sin O, (2.41)
(Gu+Gy) =[—( K K ») sin By + 2G,, cos 6,,] cos Oy, :
Provided that tan@,, # (K—_';(—), e., —(K, — K,)sinb,, +2G, cos §,; # 0, expres-
sion (2.41) yields
K, —- K,
-t - 2.42
tan Out Gu m Gt ( )

Expression (2.42) is referred to as the harmonic equation of the surface curvature.

2.2.13 Curvature Difference

1. Fundamental Surface and Substituting Surface.

Given a boundary surface S, select any point P on S, and construct another
boundary surface S* tangent to S at point P, as shown in fig. 2.4. Then, S is called
the fundamental boundary surface, P is the fundamental point for substitution, S*
is the substituting boundary surface. Here, S and S* have the same unit normal at

point P.

2. Definition.

At the fundamental point P for substitution, along an arbitrary tangential direc-
tion 7, the difference vector between the surface curvature (%Ij—); of the substituting
boundary surface and the surface curvature (%N;), of the fundamental boundary sur-
face is defined as curvature difference A(%), at point P of S, S* in direction 7, that
is,

dN dN dN
—). = () — (— 2.43
dS )7' ( dS )1' ( dS )T ( )

17



3. Normal Curvature Difference and Torsional Curvature Difference .

Suppose normal curvatures at point P of S, S* in direction 7 are K,, K7, and
torsional curvatures G,, G}, then,

(gg), = K,7+G,(N x 7)
(&); =K +Gy(Nx7)

Substututing in the expression (2.43)

AGR), =(K; - K.)7+(G; - G)(N x )

2.44
= AK, 7+ AG,(N x 7) (2.44)

where AK, is defined as the normal curvature difference of S, S* in the direction 7;
AG, as the torsional curvature difference of S, S* in the direction 7; and with the
aid of expression (2.44), we obtain

AK, =K -K,
AG, =G’ -G, } (2.45)
2.2.14 Intersecting Curve
1. Definition.
The intersection of two boundary surfaces is called the intersecting curve.
2. Expressions for the Intersecting Curve.
(1) The functional expression:
The combination of the functional expressions for two surfaces, that is,
The first surface:  Fi(z,y,2) =0 (2.46)
The second surface:  Fr(zr,y,2)=0 ’
(2) Parametric expression:
The first surface: R =R;(u,v) (2.47)
The second surface: R =Rylq,t) '

Where u,v,q and t are parametric variables. Due to expressions (2.47), only one of
the variables u,v,q and t is independent.

18



F'=n+dérn

Figure 2.5:Unit normal and effective normal zone

2.2.15 The Unit Vector Tangent to the Intersecting Curve
at Any Pouint

Suppose the unit normals to the first and second surfaces at any point P of the

intersecting curve are, respectively, N; and Ny, and if the first surface is chosen

as the basic standard surface, the unit vector tangential to the intersecting curve at
point P is perpendicular to both normals, and is therefore given by

N] X N”
W= — 2.48
INI X NHI ( )

2.2.16 The Unit Normal to the Intersecting Curve at Any
Point and the Effective Normal Zone

1. Definition.

Any unit vector at point P perpendicular to w is defined as a unit normal N,
to the intersecting curve. If N; is chosen as the initial unit normal vector, then any
other unit normal vector N, can be regarded as formed by rotation of N; about w

an angle ¢ as shown in fig.2.5

2. The Angle ¢1'”.
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The angle ¢; 11 of rotation of IN; about w to N;; can be found from expression
(2.48),
0< ¢1,11 <7 (2.50)

3. The Effective Normal Zone.

If the value of ¢ satisfies the condition

0<¢< o1 (2.51)

then, the unit normal vector which is determined by expression (2.49) is referred
to as the effective unit normal vector. The zone defined by ¢; ;; is called the effective
normal zone.

2.2.17 The Unit Principle Normal and Curvatures of the
Intersecting Curve at Any Point

1. Definition.

Suppose the rate of change of the unit tangential vector to the intersecting curve
at any point P with respect to the arc length s of this intersecting curve is = "“’ , and
the unit vector in the dlrecuon > is defined as the unit principle normal vector £ at
the point P of the intersecting curve, ie.,

dw
£= l;l (2.52)
S

The magnitude of ¢ £~ is defined as the curvature k. of the intersecting curve at
the point P, i.e.,
dw

ke = ds) ds) l

(2.53)

2. Derivation of an Expression for (£¥).

Use of the expression (2.48) gives
d _ Ny xN
7‘;1 - NI:NII N
_ ]IE’_")WXNH NIX(#’ Iw 254
- %Nyl | IX 1] ( o)
ml—xﬂmd,(l Npl)
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With the aid of the expression (2.16)

le)w = K]wW + G!w(N1 X W)

(==

dN
( dsu)w = K1 + Griw(Nyp x w)

With the aid of expressions (2.16), (2.55) and (2.56)

4(IN; xNp) = £V, x N - N, x N17)]

{[(‘Tl-)wau]Hle(——;U- vi]} (NyxNyj)
= INsxNjf|
[w x (dN Jw] - Ny + Ny - [ S )w x W
(Grw - Gllw)(NI Ni1)

I

Substitution of expressions (2.55), (2.56) and (2.57) into (2.54) yields

dw ~I{[w(N” X W) + K”w(N[ X W)
s - IN; x N

Due to |N; x Ny;| = sin ¢y,11, Then

_d_vz — K”w(N1 X W) - K]w(N” X W)
ds Sin¢1,n

3. The Value of k..

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

Substitution of expression (2.59) into (2.53) leads to the curvature k. of the inter-

secting curve

k. = KIzw — 2K 1, K1y cOS ¢I,11 + K?Iw
’ sin @r,11

4. The Angle of Rotation of N; about w as an Axis to &.
Substitution of expressions (2.53), (2.59) and (2.60) into (2.51) yields

Kirw(Np x w) — Ky (Nyp x w)
VK7, = 2K1uKi cos ¢rir + Kiy,

E=

21
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With the aid of expression (2.61), we find angle ¢,,

singre =(N; x§)-w )
_ K1,COS @1 11-Ky1w
VK},~2K1uKirucosdr 1 +Kfp,
cosgpe =Nj-& > (2.62)
= —Kirusingsr11
\/Klzw—2K1WK”,,.COS¢1_”+K,2,W
= K

ke J

5. The Angle ¢;;¢ of Rotation of N;; about w as an Axis to £.
Again, using expression (2.61), we finf the angle ¢/,

sin ¢”E = (N" X f) W )
— Kiw—Ki1wcoséy 11
VK, —2K1uKr1wcosér i+ K},

cosdre =Nyr-€ > (2.63)

- —K11wsings.
\/11}';",‘,-2KIuKuw cos¢s 11+K,

ke J

6. The Curvature Condition for a Curve Lying on the Surface.
Expressions (2.62) and (2.63) lead to

_ K __ Kuw _ Kirw
COS re COS @y e cos(¢pr¢ — é1,11)

c —

(2.64)

It can be concluded from expression (2.64) that the normal curvature K, of a
surface in the direction tangential to the intersecting curve is equal to the negative
value of the product of the curvature of this curve and the cosine of angle ¢n¢ between
the normal vector to the surface and the principle normal vector to the curve

Ky = —k.cos ¢ (2.65)

Expression (2.65) is referred to as the curvature condition for a curve lying on the
surface.
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2.2.18 The Unit Binormal Vector to the Intersecting Curve
at Any Point

The unit normal vector formed by the rotation of the unit principle normal about
the unit tangential vector w a right angle I is defined as the unit binormal vector
to the intersecting curve at point P, that is,

B=(Gw)@E=wx¢ (2.66)

Substitution of expressions (2.61) into (2.66) yields

KNy — KinwNp
\/K,zw — 2K 1, K1 COS ¢1,” -+ KI21w

B= (2.67)

2.2.19 The Torsional Curvature of the Intersecting Curve
at Any Point

1. Definition.

Since the unit principle normal vector £ is a unit vector, and then % <€ =0, it
follows that the derivative of £ can have components in only the w and [ directions.

€ _ (€ a@
ds  ‘ds w)w+(ds )8

Since £ - w = 0, we use expressions (2.52) and (2.53) to obtain

d et

ds VTS ds T

Combination of the two expressions above yields

d d
—:—kcw+(-£-.

7s )B (2.68)

The projection of %‘; in direction J is defined as the torsional curvature k. of the
intersecting curve, that is,
3

=-&;-

2. The Expression for the Calculation of ..

g (2.69)

Ke
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Due to

= COS d)]gN[ + sin ¢15W x N; )
Consequently
%{ = —(sin¢;¢Ny + cos ¢ N; X w)5¢—'§ -
S dN . d ds (2 ll)
-+ cos ¢IE(EL)W — sin ¢lf[a—5(Nl X W)]w
Substitution of expression (2.70) into (2.66) yields
B = —(sin ¢;¢N; + cos ;e N; x w) (2.72)

Substitution of expressions (2.71) and (2.72) into (2.69), with the aid of expression
(2.55), gives the required expression for «..

Ke - (N; xw)- (’%‘)w

= 9¢1¢

_ %_:; _G (2.73)
s w

3. Rate of Change of Angle ¢, along the Intersection Curve.

Due to |N; x Ny;| = sin@; sy, Ny - Ny = cos ¢y 1y, we can find from expression
(2.57)

d, . d
a;(sm br1,11) = cos dy 11 <I;1s,n = (Gry — Grrw) cOs @1 11
That is ”

LI
— L = w — . 4
ds G[ Gllw (2 7 )

From expression (2.65)

Krycos(@re — ¢1.11) = Ky cos de (2.75)

The value of é%; can be obtained by taking the derivative of the ahove expression
with respect to the arc lengths of the intersecting curve, and using expression (2.74)

{ Ki1w(Grw — Grw) sin(é1e — ¢1,11) 1
dgre | +cos(bre — i) (%) — cos re(Y=)u |

= ; - 2.75
ds Krysin(¢re — ¢1.01) — Ki1wsin ¢y¢ (2.79)
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Then with the aid of expressions (2.66), (2.68), and (2.69), we obtain

A A
=Gy XxE+twx g 2.77)
=w X (—kw + k.0)
= —‘Kfcf

Finally, expressions (2.52), (2.68), (2.69) and (2.77) lead to the following three
relations,

o = kcE
£ _ fowt kb (2.78)
gé = ""ch

Expressions (2.78) are called the Serret-Frenet Formulas.

2.2.20 Geometric Angular Velocity of the Intersecting Curve
By regarding the arc length as a time parameter, the rate of change %"31, %, %@

of the three coordinate directions w, &, 8 can be considered as the velocities of their

end points if the vectors were to rotate with an imaginary angular velocity w,, that

18

dw _
£ _ Zc >>: ZV (2.79)
gé =w.Xf

ds

Substitution of expression (2.78) into (2.79) yields

we = KW + ko (2.80)

u. defined by expression (2.80) is called the geometric angular velocity of the
intersecting curve.
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2.2.21 The Relative Geometric Angular Velocity of the In-
tersecting Curve with Respect to the Boundary Sur-
face

1.Definition.

The subtraction of the geometric angular velocity ,, of either of the boundary
surfaces in the direction tangential to the intersecting curve, from the geometric
angular velocity w, of the intersecting curve, is defined as the relative geometric
angular velocity Aw, of the intersecting curve with respect to the boundary surface,
that is,

Aw, = w, — Ny (2.81)

2. Formula for Calculation.

Substituting expression (2.72) into (2.80), thus

We = KW — ko cos ¢reIN; x w — kcsin ¢y Ny (2.82)
In a similar way
We = KW — kccos @ppeNpp x w — ke sin ¢p1eNyp (2.83)
With the aid of expressions (2.19), (2.55) and (2.56), it follows

Q1w = K1w(Nf X w) = Gryw (2.84)

and
Qv = Kiw(Np x w) — Grrow (2.85)

The relative geometric angular velocity Ajw, of the intersecting curve with respect
to the first boundary surface can be found by substituting expressions (2.82), (2.84)
into (2.81) as

Ajwe = (Kc+ Gry)w — (kccos dpe + Kpy) (N X W)

—kcsin ¢1eN; (2.86)
Due to expression (2.64), i.e., k.cos ¢ + Ky, = 0, then
Aw, = (K'.c + G,w)w — k¢sin ¢15N1 (287)

Similarly, the relative geometric angular velocity Ajjw, of the intersecting curve
with respect to the second boundary surface is found as

Apwe = (ke + Griw)W — kesin@rreNpy (2.88)
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2.2.22 The Relative Curvature and Relative Torsional Cur-
vature of the Inters ~cting Curve with Respect to the

Boundary Surface

1. Definition.

It can be found from expressions (2.87) and (2.88) that the relative geometric
angular velocity Aw, of the intersecting curve with respect to the boundary surface
has components only in directions w and N. This is because expression (2.64) has to be
satisfied, thus, Aw, has no component in direction N x w, otherwise, the intersecting
curve would deviate from the boundary surface. The projection component of Aw, in
the direction N normal to the boundary surface is defined as the relative curvature
Ak, of the intersecting curve with respect to the boundary surface, i.e.,

Ak, = Aw.-N (2.89)
The projection component of Aw, in the direction w tangential to the intersecting

curve is defined as the relative torsional curvature Ak, of the intersecting curve with
respect to the boundary surface, i.e.,

Ak = Aw, W (2.90)

2. Formula for Calculation.

In accordance with expression (2.73), it can be found

do
KC + le = E:ﬁ'

d
ke+Grw = TI;{

By designating the angle of rotation of N (N; or Ny; ) about w to £ as ¢ng, the
above two expressions can be combined as

_ done
ke+ Gy = I (2.91)

Substitution of expressions (2.87), (2.88), and (2.91) into (2.89) and (2.90) yields

Ak, = —k.sin dne (2.92)
_ done
Ax, = =22 (2.93)

27



2.2.23 Geodesic

If the relative geometric angular velocity of the curve relative to the surface at

any point is identical to zero, i.e.,
Ak; = —k.singne =0

Are=20% _ o LG =0
ds

then this curve is said to be a geodesic of this surface.
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2.3 Kinematics of Conjugacy

2.3.1 Motion of a Rigid Body and Conjugate Motion
Degrees of Freedom for Motion of a Rigid Body

Motion of a rigid body, strictly speaking, refers to the motion, measured in a
specific time parameter, of a rigid body relative to a specific reference frame. Dis-
placement in a reference frame of any rigid body can be resolved into two parts, i.e.,
translation and rotation. Let R, be a point-vector, relative to the origin of a reference
frame, of any point of a rigid body at the initial instant, and after an elapse of time
t, due to displacements, R, becomes R,

R,=(0w)®Ro+s (2.96)

where (6w) ® Ry represents the part of rotation, w being an axis of rotation and 6 an
angle of rotation; s represents the part of translation. Expression (2.96) represents
rotation first and then translation. If a rigid body takes translation first and then

rotation, it comes

R, = (6w) ® (Ro +5,) (2.07)
From expressions (2.96) and (2.97), it follows that if
s=(0w)®s; (2.98)

then, expressions (2.96) and (2.97) are equivalent to each other.

Since w is a unit vector and s, s, are vectors, therefore, six parametric variables,
i.e., 8, w, s or sy, are required to determine the displacement of a rigid body, although
they are all functions of the time parameter, that is,

6= O(t), = w(t): 2
S s(t), 5= s(l } (2.99)

Expressicn (2.99) represents nine equations which must satisfy three conditions
represented by (2.98); that is, only six functional expressions can be arbitrarily pre-
scribed, therefore, the number of degrees of freedom for a rigid body, without a..;
constraint in a reference frame, is six. The above six functional expressions are not
independent of each other whenever the motion of a rigid body is subjected to con-
straints. Let C, be the number of independent relations to be satisfied among 0, w,
S, OT 8y, i.e., the number of degree of constraint for the motion of a rigid body be C;,
and thus the number of degree of freedom for the motion of a rigid body are

Dr = 6 hand Cr (2.100)
where 0 < C, < 5,then1 < D, <6.
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Motion of Rigid Bodies Sukject to a Constraint of Boundary
Geometric Configuration — Conjugate Motions

Suppose that rigid body I is fixed to the reference frame which measures the motion
of rigid body II, and thus, the motion of rigid body II is exactly the relative motion
of rigid body II to body I. Next suppose the boundary geometric configurations of
rigid bodies I and II are A and A (including surface, curve and point) respectively. It
is now assumed that a constraint in the relative motion between I and II is such that
A, A always keep contact with each other during the whole process of motion. Such
relative motion is called the motion of rigid bodies suject to a constraint of boundary
geometric configuration. Obviously, an arbitrary alternative of choice of a reference
frame does not affect the relative motion itself except for the form of expression for
the relative motion. Now select arbitrarily a reference frame O to measure motions of
rigid bodies I, I1, and let motions of I, II relative to O be ¢,, @, respectively, and thus
a pair of motions (¢;, ¢) represents the relative motion between rigid body I and
body II under the constraint (A, A), and consequently, (¢, ¢2) is called conjugate
motion and correspondingly, we will refer to this constraint (A, A ) as the conjugate
configuration. Conjugate motion has three characteristics:

1. Coexistence.

Any conjugate motion is composed of a pair of motions (¢;, ¢2). In the general
case, ¢1, ¢ are of the form similar to expression (2.96) or (2.97).

2. Interdependency with Conjugate Configuration.

Conjugate motion represents the relative motion of both rigid bodies subject to
constraints, and therefore, the conjugate motion and the conjugate configuration are
interdependent. Conjugate motion is the kinematic (time) manifestation of the con-
jugate configuration, and the conjugate configuration is the geometric manifestation
of conjugate motion.

3. Versatility of Form.

Under the same constraint, i.e., (A, 4 ), the conjugate motions (¢;, ¢,), because
of the different reference frames selected, are of different forms but they represent
the identical relative motion. The interchange among varieties of form (¢,, ¢2) corre-
sponding to the identical conjugate configurations (A, A) is called interchangeability
of conjugate motions.
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The Canonical Form of Conjugate Motion.

First let the reference frame O; be fixed with one of the rigid bodies, say, rigid
body I, and consequently, ¢; of the conjugate motion (¢1, ¢2) becomes static; that is,
if a point-vector of any point on the rigid body I at the initial instant is R, after an
elapse of time t, the point-vector of this point is ry;, and then r;, = R;. Meanwhile, ¢,
of the conjugate motion (¢;, ¢2) will be simply the relative motion ¢ of rigid body
II to body I. The most general form ¢, is a combination of rotation and translation.
If the point-vector of any point on the rigid body II, at the initial instant, is R,, and
at the time t, ry, from the expression (2.96), we obtain

ry = (fw)®Ry +s (2.101)

Now select arbitrarily two mutually perpendicular fixed unit vectors wi, wp
(w; - wo = 0) which do not vary with time, in virtue of expression (2.8), expression

(2.101) becomes
Iy = (—€1w1) ® {(—awp) ® [(~e2w1) ® Ro]} +5 (2.102)

Next select a reference frame O and suppose that O;, with respect to O, takes a
screw displacement consisting of first a rotation about an axis w; and then a trans-
lation parallel to w;, that is, at the instant t, the point-vector r; fixed with O; will
correspond to the point-vector R, in a reference frame O

R, = (61(4)1) ®r + o1wy (2103)

£1 being an angle of rotation, and o, being a translation along the axis w;. By making
use of r;;, = R;, and expressions (2.102), (2.103), conjugate motion (¢;, ¢z ) with
respect to the reference frame O can be found as follows;

¢1 Ry = (61w1) ® Ry + 01wy
$2: Ro = (—owp) ® [(—e2w1) ® Ry + pq } (2.104)

where pq = (e,w)) ® 8 + o1W1.

Expression (2.104) is regarded as the canonical form of conjugate motion. The
characteristic feature of the canonical form of conjugate motion is that among the ro-
tation parts of two motions ¢;, ¢, comprising conjugate motion, the more complicated
one, i.e., ¢, in expression (2.104), is a composition of just two successive rotations
about the two fixed axes. Comparing to expression (2.102) which contains three suc-
cessive rotations, this one is much simpler and therefore much more convenient for
carrying out analyses.
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The Classification of Conjugate Motions

In the canonical form of conjugate motions, i.e., expression (2.104), o, €1, €, vary
generally with time, and the corresponding conjugate motions (¢1, ¢2) are called the
general conjugate motion. If among three parameters o, €1, €2, at least one parameter
is constant, then, the corresponding conjugate motions (¢;, ¢2) are regarded as simple
conjugate motions.

The Equivalent Conjugate Motions and Their Degrees of
Freedom

Suppose that a rigid body I is connected with a rigid body II through a conjugate
pair 1 and the rigid body II is connected with a rigid body III through a conjugate
pair 2, and thus, the motion of rigid body I relative to rigid body III is subjected to
constraints of conjugate pairs 1, 2, and this motion is the sum of both the conjugate
motion between rigid bodies I and II and the conjugate motion between rigid bodies
II and III. Such relative motion between two rigid bodies subject to constraints of
two or more conjugate pairs is also a conjugate motion and therefore referred to as
the equivalent conjugate motion.

The number of degrees of freedom D, for the equivalent conjugate motion is the

sum of the number of degrees of freedom for all individual conjugate pairs Dc; (
i=1,2.---n), that is,

D.=)Y =Dq (2.105)
1=1

Due ton > 2, D, > 1. from expression (2.105}, it follows D, > 2, i.e., there is
a minimum value of 2 for the number of degrees of freedom of equivalent conjugate
motion but no maximum limitation.

The canonical form for the equivalent conjugate motion is still expression (2.104),
but six parametric variables a, €,, €2, pq in expression (2.104) are functions of D,
independent parametric variables (assuming 6, 62, - - -, 0p,), that is,

a =a(01102a"',0D¢)

€1 =El(011023""0D)
¢ 2.106
) =€2(01702)""0D¢) ( )

pa = pq(61,62,---,6p,)
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Where 6,,6,,---,0p, are independent of each other and functions of time t as a
parameter, i.e.,

0; =0;(t), Ji=12,---,De (2.107)
Therefore, the condition D, > 6 does not change the number of parametric vari-
ables which describe the relative motion of both rigid bodies, i.e., six parametric

variables, @,¢1,€2,pq, but the condition D, > 6 enlarges the active scope of the
relative displacement of both rigid bodies.

2.3.2 The Simple Conjugate Motion with a Single Degree
of Freedom

The Canonical Form of the Simple Conjugate Motion

We call the motion simple conjugate motion, when among the three parametric
variables @, €1, £2 of the canonical form of conjugate motion (2.104), at least one is
constant. First consider the case that « is constant. In virtue of expression (2.6), ¢;

in expression (2.104) becomes
Ry = {—¢&2[(—ows) ® wi1]} @ [(—owo) ® Ro] + pq (2.108)

Due to w;,wp being constant unit vectors, o being a constant, (—owp) ® wy must he
a constant unit vector and assumed as

wy = —(~awp) ® w (2.109)

In the case cos a # 0, wy, wp, w) Xwg are non-coplanar, therefore, pq can be resolved
along the directions of these three unit vectors.

pa = oawz + fwo + hwy X wo (2.110)

In the case cosa = 0, ws, wy,w; are non-coplanar, pgq can be resolved as

pq = oawz + fwo + olw; (2.111)
Let
lp = fwo+ hwy X wp, (cosa # 0)
lp = fwg + oywi, (cosa = 0) (2.112)
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Combine expressions (2.110) and (2.111) into
pq = oawz + Ip (2.113)

Suppose
R' = (~ow;) ® R, (2.114)

With substitution into expression (2.108) from expressions (2.109), (2.113) and (2.114),
¢, may be expressed as

Ry = (62(4)2) ® Ra’z + owy + lp (2115)

R,; and Ry in expression (2.104) share the same origin. In order to suit such
a special case as simple conjugate motion, the origin of a point-vector of a point on
rigid body I remains the initial origin and the origin of a point-vector of a point on
rigid body II is adjusted to the end-point of the vector Ip. The point-vectors of points
on rigid bodies I, II with double origins are represented by R,, Ry, respectively for
discrimination. That is

R, =Ry }
2.116
R2p =Ry —Ip ( )

Since a is a constant, and wp is a constant unit vector, the expression (2.114)
represents the fact that the rigid body II rotates about wp through a fixed angle o
and this indicates a change of the initial orientation of rigid body II. If the orientation
after changing is assumed as the original orientation, then Rj may be rewritten as R,
consequently, in virtue of expressions (2.115), (2.116), together with the expression
(2.104), the canonical form of simple conjugate motion is found as

o : Ry, = Ry = (6101) ® Ry + oy } (2.117)

¢ : Rzp =Ry -—-Ilp= (62&)2) ® Ry + oowy

Where Ip can be found from the expression (2.112).

When among the three parametric variables, €, is constant and o, €, are variables,
replacing (—e,w;) ® Ry by R}, and a by €, will transform the canonical form from
expression (2.104) to expression (2.117), where w; = wy.

When among the three parametric variables, €, is constant and a, €, are variables,
obviously, just exchanging the indices of the rigid bodies I,II will reduce this case to
the same case as that of €2 being constant, and therefore the motion can also be
represented by the canonical form (2.117).
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Figure 2.6:Dual coordinate systems

Dual Coordinate Systems for a Simple Conjugate Motion

With angle o being constant, we can adopt the dual coordinate systems, ie.,
O —1i,j, k for body I and O' — i, j', k' for body 1I. The relationships between the dual

coordinates shown in fig. 2.6. are as follows.

izwy, j=w Xwy, k=w
i'=wy, jJ=woxwy, kK =-uwp } (2.118)
With the aid of expressions (2.109) and (2.118), we obtain
i’ =1, j =cosaj—sinak, ¥k =sinaj+cosak (2.119)
i=1i, j=cosaj +sinak/, k= —sinaj + cosak’ '

and making use of expressions (2.112) and (2.118)

Ip=00"= fi+hj (cosa#0)
Ip=00 = fi+ ok (cosa =0) (2.120)

Displacement of a Point of a Rigid Body in a Simple Conju-
gate Motion with a Single Degree of Freedom

1. Independent Parametric Variable.
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Due to the single degree of freedom, there exists only one independent variable
among €;,€;, 01,02, f, h (or o}). In principle, any one among these six parametric
variables can be selected as an independent parametric variable, and usually, €, is
selected as the independent parametric variable, that is,

£q = £9(€1), o1 = 01(e1), 09 = 02(€1)
L R I Sl el (2121)

2. Displacement of a Point P on Rigid Body I.

Let the initial (¢; = 0) point-vector of a point P in body I with respect to O —i, j, k
be R; = zi+yj+zk. After an elapse of time £, (here the angle €, can also be regarded
as a time parameter), the corresponding point-vector Ri, = zp1 + y,j + zpk of the
point (P;) will be

Rlp = (EILUI) ®Rl + owy = (Elk) ® Rl + U]k

T, =zCose; — ysing, (2.122)
Yp = ISINE;+YCOSE '
Zp =z+4+0

3. The Common Point of Rigid Body II.

Suppose that point P, is the common point of body I and body II at the instant
€1, and thus, its point-vector Rs,, as a point in body II, with the origin O’ is in the
form

Rgp = Rlp - lp = .’D;,i’ + y,',j' + Z;,kl

=2zp—f : (2.123)
= (yp — h)cosa — 2z, sin o
= (yp — h)sina + z,cosa

SLEHR

4. The Initial Corresponding Point P in Rigid Body II.

A point P in rigid body II at the initial instant, corresponding to the common
point P, at the instant ¢}, i.e., ccrresponding to the initial point P in rigid body I,
is called the initial corresponding point in rigid body II, and its point-vector R, =
z'i’' + y'j’ + 2'k’ with respect to the origin O’ is given by

R, = (—ngg) ® Rgp — Ools (2.124)
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With the aid of expressions (2.122) and (2.123), the foregoing expression may be
expanded as

(—62(.4.12) ® [(elw,) ® R1 + ow — lp] — OgaW2
' = z(cose;coses — cosasine; siney)
—y(sing; cos &2 + cos a cos £ sin €2)
+(z + 01)sinasine, — fcosez + hcosasines
¥ = z(cose;. ney + cosasine; cosey) 3 (2.125)
+y(cos acos €, cos ey — sin € sin €z)
—(z+0;)sinacose, — fsine; — hcosacoser
2 = zsinasing; +ysinacose; + (z +01) cosa
—hsina + o3 )

&
I

Where €5,0,, 09, f, h are all functions of ¢,.

Velocity of a Point in Simple Conjugate Motion with a Single
Degree of Freedom

1. The velocity v,, with respect to coordinate system O — i, j, k, of the point F,;
( Ry, ) in rigid body I at instant €, is

R g
Vp = G2 =w X Ryp+ oy (2.126)
= —ypl + 2§ + 2k
2. The velocity v;, with respect to coordinate system O - 1,},k, of the common
point Py(Ry,) in the rigid body II at instant £, is
d0'2 d(lp)

V;, = Mw, X Rgp + Eé—l‘wz + de, (2.127)
Where g
= %2
= 7 (2.128)

3. The reiative velocity vi2 = v)fi + v13j + v,3k at the point Py(R,,) of body I to
body II at instant €, is

V)i =vp,— v, )
=wy X R1p+ %%}uh - [ng X R2p+ %lzwz + ﬂéﬂl]
v =—(1+ Mcosa)y, + Mz,sina+ Mhcosa — j{__Ll > (2.129)
Ups =(1'*'1"“.305‘-'“)"310"Mfcosoz—i~‘;,—‘s’lsinoz—(‘fs—"1
v} =-—Mz,sina+ Mfsina+ 9% + %2 cosa ,
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4. The velocity vZ! at point P4 of body II relative to body I at instant ¢, is

Vi =V o Vp =V (2.130)
=Mw2xR2p+‘;5—”fw2+%-'§2—w1x(Rg,,—i-lp)—fi—‘e’-llw, )

Relative Angular Velocity of Simple Conjugate Motion with
Single Degree of Freedom

1. The angular velocity 232 of rigid body I relative to rigid body II at instant ¢,
is
Q12 =w; — Muw,
= Msinaj+ (1 + M cosa)k (2.131)
2. The projection component §2,,N1, of the relative angular velocity of rigid body
I relative to rigid body II at instant &; on the unit vector N, = Api -+~ B,j + Cpk
normal to the boundary surface of rigid body I at point P is

Qsp = {2 - Nlp

= B,Msina + C,(1+ M cosa) (2.132)
3. The equivalent projection component 7, of the relative angular velccity of body

I relative to body II at the instant &; on the common tangent plane at P is

Np = (wl - M(UQ) X Nlp A
= npli + 77p2j + 77p3k
mm = —By(1+ Mcosa)+ C,Msina
me = Ap(l+ Mcosa) L (2.133)
3 = —ApMsina
Inpl = \/ny + %2 + 2 |

4. The projection component 7, of {212 on the plane with the normal N,,,.

7]; = 912 - Q,;,Nlp = Nlp X (912 X Nlp) (2134)

5. The angle of rotation ,, about Nip axis from v;? to 7, is found as follows

_ Nip(vi2xn,)
v;2 |'lp|
v

2.p
COos 0,,,, = T;f;,m
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Pitch Surfaces and Condition of Their Existence in Simple
Conjugate Motion with a Single Degree of Freedorn

1. Definition.

A surface, between body I and body II, composed of points with v},"’ = 0 is defined
as the pitch surface.

2. The Condition of the Existence of a Pitch Surface.

Since any point on the pitch surface must satisfy requirements v}s = v}3 = v;2 = 0,
thus, when ¢, is regarded as the time parameter, the elimination of z, from the last
two cquations of (2.129) will yield the condition of the existence of a pitch surface

which must be satisfied by the simple conjugate motion with a single degree of freedom
as follows

d
ﬂ+(M+COSa)%Z—2- =0 (2.136)
1

dh. .
M(f - Zi?l)sma+(l+Mcosa)dE1

3. The Equation of the Pitch Surface.

If the condition of the existence of a pitch surface in the case of simple conjugate
motion with a single degree cf freedom, i.e., (2.136), is satisfied, with the use of ¢, as
a time parameter, the application of the first two equations in (2.129) and expression
(2.122) will provide the equation of the pitch surface on body I with the origin O at
the initial position, i.e., £, = 0, in the following form

Ry = =zoi+ yoj + 20k )
o = (—l-rm{[thosa+M(zo+al)sina—%]sinel
+(Mfcosa+ £ —sin a‘fz"f) cos€1} > (2.137)
Yo = ﬁ+—Ml-cEa—){[thosa+M(zo+01)sina— %]cosel
—(Mfcosa-!-f&—sina%;‘-f)sinsl} )

where 2g,€; are the two independent parametric variables, and M, f,h,0,,0, are
functions of €,, as in expression (2.121).

Application of expressions (2.125) and (2.137) yields the equation of the pitch

39



surface on body II with the origin O’ at the initial position as follows

R, = zii' +ybf + 20K’ *
I, = m{( f+ 2 —sinalB)cose; — [-h
+M(2p + 01)sina — i] cosasineg} + (20 + 01) sinasine,
W = ot f+& sma%’l)smsz+[ -h  (2.138)
+M(2o + 01)51na - —"L] cosacoser} — (20 + 01) sinacos ey
2z, = m[ h+M(zo+01)sma— —4L]sma+(zo+a,)cosa
-+a; J

where again zp, &; are the two independent parametric variables, and ¢, is a function
of e 1.

4. Equation for The Set of Pitch FPoints with Respect to the Fixed Coordinate
Frame.

It follows from substitution of expressions (2.137) into (2.122) that the equation
for the engagement of pitch surfaces is found in the form as follows

rp = Xol + YOJ + Zok

Xo m(Mf cosa+ 2 smaEZ)

Yo [thosa+M(zo+al)sma__dL]
Zy

(2.139)

1+Mcosa
20+ 01

Surfaces of Screw Axes Under Simple Conjugate Motion
with Single Degree of Freedom

1. Surfaces of Screw Axes.
We will assuine the angular velocity €22 of body I relative to body II is different
from zero, i.e., §2;2 # 0, and we consider points satisfying the requirement:

Q2 x v;2 =0 (2.140)

In other words, the relative velocity of the points is parallel with the relative angular
velocity of the bodies. Then a surface formed by any such points is called a surface
of screw axes.

2. Equations for the Surfaces of Screw Axes.
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With ¢, being the time parameter, substitution of expression (2.121) into (2.139)
together with the consideration £2;; # 0 yields

'U;l;%':o 2.141
'U;%(l‘*‘MCOSC!): ’l,ngina } ( - )

In virtue of expressions (2.122), (2.129), it follows from expression (2.140) that
the equation for the surface of screw axes in body I at the initial position with the

origin O is in the form

R, =z,i+yj+ zk
z, = Ecose; + Fsing (2.142)
Yo = —Esine; + Fcose;

where

M f(M+-cos a)+{1+M cos a)f;";-&-M sin a%—sin ad:l

E = (1+M cosa)2+M2sin’ a (2.143)
F M(za+01)sina+Mh cosa—f& .
- (14+Mcosa)

As before z,, €; are the two independent parametric variables, and M, f, h, 01,02 are
functions of ;.

With the aid of expressions (2.125) and (2.141), the equation for the surface of
screw axes in body II with the origin O’ at the initial position may be found as

1 — 1 21 14 1,7 3
R, = z)i'+yj + 2k
z) = Ecose; — Fcosasines + (2, +01)sinasing; — f cose
+hcosasines
, . . LY (2.144)
y. = FEsine;+ Fcosacose; — (2, +01)sinacose; — fsines
—hcosacosesy
z, = Fsina+ (z,+01)cosa—hsina+o
a a 1 2 J

where, E, F are defined in expression (2.142).
3. Screw Axes.

It may be seen from expressions (2.141) to (2.143) that z,, y., =4, y., 2, are all
linear functions of 2, at any given instant £;, and there are thus two straight lines
in bodies I and II respectively which are called the screw axes corresponding to the
given time €,. Surfaces of screw axes are just composed of screw axes corresponding
to all different times, and they must therefore be ruled surfaces.

4. Equation for the Set of Screw A~es with Respect to the Fixed Reference Frame.
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Expression (2.141) can be substituted into (2.122) to obtain the equation for the
Set of screw axes as follows

ro, = Xii+Yj+2k
M f(M+cos a)+(1+M cosa) $& = +M smaa-J-—smaa—l

(1+M coscx)2+M2 8in?
M(z,+0,)sin 0+thosa—a‘% (2»145)
Ya - 1+Mcosa
Za = z,+ 0}

Conjugate Relative Acceleration

At instant €;, the velocity v},z of body I relative to Il at the common point Py can
be determined by the expression (2.129). Likewise, the velocity v2' of body II relative
to I at the common point Py is v2' = —v]?. At instant (e; + Aey), the point Py on
body I will move to the position Pj(R;y) which may be given by the first expression
of (2.117).
do 1
—uw)Ae 2.146
d s wy)Ae ( )

With the aid of expressions (2.129) and (2.143}, omitting all the infinitesimals
higher than the second order, the velocity of body I relative to II at point Py(R,y)
at instant (¢, + Ag¢,) may be put in the form

Rlpl = Rlp + (wl X Rlp +

vt = V2 + {w X (w1 X Ryp + i) ﬂ%“"
ZEng % (Rup — Ip) - _,sz _d glg) (2.147)

~Muwy x [wy x Ryp + d—”—:-wl m]}Ae

Likewise, at instant (¢; + Ae;), the velocity of body II relative to I at the point
P}(R;p) of the body I is found as

Vi = v (2.148)

Since at instant (¢;+A¢;), body I has already rotated about w, a8 an axis through
an angle Ae;, with respect to the body I at the instant €1, the velocity of body I1
relative to I at the point P; becomes (—Aejuw;) ® v . Consequent!y, the conjugate
acceleration of body II relative to I is in the form

—~Agyw) @ v — v2
J,,=lim( wi) & vy ~ vy

alm Ac, (2.149)
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Substitution of expressions {2.148) into (2.149), together with the use of (2.123)
(2.130) and (2.147), yields

J, = GHwex (Ryp— ’P)+—-}w +£ip) -

—wy X [Mws x (Ryp — lp) + Mw + _(_El]
= Jp11+Jp2j+Jp3k
where
Jn = M[(f- )cosa—-%sva]+d Zs—"fsma )
+—4+dM[ —h)cosoz—z,,sina]
Jp2 = M[h+—L)cosa+z,,sma] M (zp — f) cosa 5 151
dcx I-}sma+-—r ( (2.151)
Jig = =My, + )sma+dM( z, — f)sina
do 20
Lo — %E-?cosa )

1

The parameter J, is a very important one which will be used in calculation of
curvature values and other second order differential parameters.
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2.4 Geometry of Conjugate Configuration

2.4.1 Conjugate Configuration

Conjugate Configurations, Quasi—Conjugate Configurations
and Conjugate Surfaces

Suppose that motions of bodies I, II with respect to reference frame O are ¢,
and ¢, respectively, if in the whole course of motion, the boundary configurations
A, A of bodies I, II can remain in continuous contact with each other without any
interference, (A, A) may then be recognized as a pair of conjugate configurations
under the conjugate motion (¢,, #2). Conjugate configuration and conjugate motion
are interdependent on each other, and their composition is called the conjugate pair.
The geometric foundation of a conjugate pair is a pair of conjugate configurations
(A, A), and the behaviour with respect to time ( or with respect to a kinematic
variable) of a conjugate pair is a pair of conjugate motions.

If the boundary configurations A, A of rigid bodies I, II can keep continuous
contact with each other without any interference during only part of the motion,
while in the remaining part of the motion A and A do not directly come into contact
with each other, that is, there exists neither contact nor interference between bodies I
and II, (A, A) are then said to be quasi-conjugate configurations under the conjugate
motion (¢;, #;). Either one of a pair of quasi-conjugate configurations is referred to
as the fundamental conjugate configuration, while the other one is called the limit
conjugate configuration. The composition of the quasi—conjugate configuration and
conjugate motion is regarded as the quasi-conjugate pair.

Although the boundary configurations A and A of rigid bodies I, II can contain
curves and points, surfaces are required for conjugation. In order to highlight this
fact, conjugate configurations (A, A) are also usnally referred to as the conjugate
surfaces (A, A).

Conjugate Contact Point and Conjugate Point

1. Definition.

At any instant, points in contact between a pair of conjugate configurations are
defined as a pair of conjugate contact points at the given instant. At any other
instant, due to the conjugate motion of bodies I, II, the original pair of conjugate
contact points will be separated from each other and consequently become a pair of
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corresponding points respectively on the individual conjugate surface. Such a pair of
points are defined as a pair of conjugate points.

2. Conditions to be Satisfied by Conjugate Contact Points.

(1). The conjugate contact point Rjy(R;p) of body I must coincide with the
conjugate coontact point Ro(Ryp) of body II, that is,

In the general conjugate motion,
Ru = th (2152)
In the simple conjugate motion,

Ry, — Ry = Ip (2.153)

(2). Coincidence of the unit normal, i.e.,

In the general conjugate motion,

Ny = —Ny (2.154)

In the simple conjugate motion,

Nlp = —N2p (2155)

(3). Relative velocity having no component along the common normal. i.e.,

In the general conjugate motion,

Ny -vi2i=0 (2.156)

In the simple conjugate motion,

Ny -v,2=0 (2.157)

(4). No interference in the neighborhood of the contact point, i.e., the relative
normal curvature K, at that point along any tangential direction 7 must satisfy

_I?'r = Kl‘r + K21' 4 0 (2158)
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Instantaneous Line of Contact and Line of Contact

In the case of line contact between a pair of conjugate surfaces, at any instant,
a pair of conjugate surfaces come into contact with each other along one curve, and
this curve is defined as the instantaneous line of contact at the given instant. At any
other time, due to the conjugate motions of bodies I, and Il, the initial instantaneous
lines of contact will move apart from each other and become a pair of corresponding
curves lying on the individual conjugate surfaces respectively, and such a pair of
curves are defined as a pair of lines of contact. In certain special cases, there may be
simultaneous contact along several lines of contact.

Surface of Engagement

A virtual geometrical surface, in the fixed reference space, composed of the totality
of points of contact at different instants, is defined as the surface of engagement B.

The Five Types of Problems of Conjugate Surfaces or Cur-
vatures

There are five types of problem which are frequently met in the geometry of
conjugate surfaces and curvatures.

1. Problem Type 1.

Given a conjugate surface A and a pair of conjugate motions ¢,, ¢;; determine
the conjugate surface A and the surface of engagement B. This kind of problem is
often encountered in the mechanical cutting process.

2. Problem Type 2.

Given a surface of engagement B anq_ a pair of conjugate motions ¢;, ¢;; deterem-
ine a pair of conjugate surfaces A and A. This kind of problem arises in the design
of tooth profiles for a gear pump.

3. Problem Type 3.

Given a pair of conjugate surfaces A, A and a conjugate motion ¢, or ¢,; determine
the surface of engagement B and the conjugate motion ¢; or ¢;. This kind of problem
occurs when tooth contact analysis is carried out.

4. Problem Type 4.
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Given a conjugate surface A, a slrface of engagement B and a conjugate motion
é:; determine the conjugate surface A and the conjugate motion ¢2. The solution to
this kind of problem is often required in measuring the accuracy of profiles formed by

a cutting process.

5. Problem Type 5.

Given a pair of conjugate surfaces A, A and a surface of engagement B; determine
the pair of conjugate motions ¢, and ¢,. This type of problem is often encountered
in the development of programs for a C.N.C. (computer-numerically-controlled) ma-

chine.

2.4.2 Global Geometry of Line-Con:acting Simple Conju-
gate Surfaces with Single Degree of Freedom

Computation Procedure for the Solution to the First Kind
of Problem of Conjugate Surfaces

1. Given Terms.
(1) The first conjugate surface A.

The parametric equation of A which is usually a surface.

R, = z(u,v)i+ y(u, v)j + 2(u, v)k (2.159)

The unit normal N; of A at the point R, given by expressions (2.14) and (2.15)

N, =Ai+Bj+Ck )
A _—_L(Qu&_z_éuaz)

? du dv v Ou
B = 1(2z0z_ 9201

Q\oudv ~ v du s (2.160)
C =L(ﬂéu_8_zéz)

Q\8u dv v Ju

- 8ydz _ Byd 9z 9z __ 9z 8zdy _ 9z @

Q =y/(BE-BEr+ G- EEr+ G -FD"

Where, the sign ” & ” is so defined that the positive direction of N; points from the
body to the space.

(2) Conjugate motions ¢; and ¢,.

Due to the single degree of freedom, there exists only one independent parametric
variable. Usually, the conjugate motion ¢; of body I contains rotation, therefore £,
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can be taken as the independent parametric variable, and all the other parametric
variables of conjugate motions are functions of €;. Given conjugate motions ¢, and
¢ implies that the following expressions are known,

er=aer), o1 =onler)s 02 = ar(en).
;zf(ell)a ;1=0’.l(611) % e } (2161)

2. Terms to be Solved.
The surface of engagement B and the second conjugate surface A.
The surface of engagement B can be given in the coordinate system O — i, j, k

r=xni+yj+ 2k (2162)

The second conjugate surface A can be expressed in the coordinate system
o L i', jl, k'

R, =z'i' +¢/j + 2K (2.163)

3. Steps of The Computation Procedure.

(1) Determine the values of the coordinates and the unit normal on a point of
the surface A. Choosing a pair of values (u,v), use expressions (2.159) and (2.160) to
obtain R; and N;.

(2) Find the corresponding value of €,. After the elapse of time ¢;, R, and N,
will reach the position of conjugate contact, i.e., becoming a conjugate contact point.

At that time, R, will become R;, and N; will become N;,. The use of expression
(2.122) gives

Rlp = (Elk) ®R1 + 0'1k } (2164)

N =(Ek)®N;

Being conjugate contact points, requirement (2.157) must be satisfied, i.e.,
Ny, - vi2 = 0. Substitution of expressions (2.129) and (2.164) into (2.157) will yield

Ucoseg; — Vsing; =W (2.165)
Where, U, V, W are determined by the followings

U = A[thosa+M(z+01)sina—£_L,]
—B(Mfcosa-%—;‘%—sina%"f)—Cstina

V = AMfcosa+ P —sinag2)
+B[thosa+M(z+01)sina—d;il]-CMysina

W = (1+ Mcosa)(Ay — Bz)
—C(Mfsina + %1 + cosal?)

,  (2.166)
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= 422
Here, M = 2.

Expression (2.165) can be rewritten in the form,

) — arctan(%) (2.167)

w
€, = arccos( NEaE
In the general case, U, V and W are functions of ¢, so the solution to €; can not
be calculated directly from expression (2.167) and must be found numerically . In
engineering practice, the case being often faced is that M, f{, h, gy, %11 are constants.
In this case, it is known from expression (2.166) that U, V and W are not functions
of €1, expression (2.167) will directly provide the value of ;.

(3). Determine i 'ding values of €, 01, 02, f, h. The substitution of
the value of €, obta‘s- . ") into expression (2.161) yields the corresponding
values.

(4). Determi;.- ine - sonding point r; of the surface of engagement B. r, in

the coordinate systum C — i, j, k can be *nund by substituting the values of €; and oy
obtained in steps (2), {3) 1m~ expression (2.122)

T, = ITCOSE; — ysing;
y; =zsing, + ycose; (2.168)
21 =z40;

(5). Determine the unit normal Ny, to the first conjugate susface A at point r;.
The expansion of the second formula in expression (2.164) will give

Ny, = Ayi+ Bj+Cpk

Ap = Acose) — Bsine,
B, = Asing; + Bcose (2.169)
Cp =C

(6). Determine the point-vector rj, with respect to coordinate system
O’ —1,j,K', corresponding to point r;. Application of expressions (2.119), (2.120)
and (2.153) will express the point-vector r as

ry =Ry, =i + i + 1K

n =n1—f
Y7 = (y1 — h)cosa - z;sina (2.170)
2y = (y — h)sina+2zcosa
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(7) Determine the unit normal Ny, to the second conjugate surface at the point
r; (i.e., r}). The employment of expressions (2.119) and (2.155) will give

Ny =~-Ny, = ALi + BYj + CIK'

A =-A

P 4 o
Bp =-B,cosa+ Cysina (2.171)
C, =-Bpsina-C,cosa

(8). Determine the corresponding conjugate point Ry on the second conjugate
surface A. The use of expressions (2.118) and (2.125) yields

R, = (eK)®ri+0ok =2V +yj + 'K
z'  =1zjcose, — yisine;

Yy =zising; + yjcoser

2 =z+0,

(2.172)

(9). Determine the unit normal N to the second conjugate surface A at the point
R,. With the aid of expression (2.118), N; can be found as

N, =A1"+Bj+C¥%

A" = Al coses — B! sines

P p
B' = Apsine; + B, cose; (2.173)
C' =G,

(18). Choose another value of a pair of parameters (u, v), and repeat the steps
from (1) to (10), until the entire surfaces B and A are obtained.

Line-Contacting Simple Conjugate Surfaces of Single Degree
of Freedom with Double Branches

In the general case of simple conjugate motion with a single degree of freedom,
points on a pair of line-contacting conjugate surfaces A and A are one to one cor-
respondent. When simple conjugate motion with a single degree of freedom meets
some specific constraint conditions, one point on surface A might have two different
corresponding conjugate points and one point on surface 4 might also have two dif-
ferent corresponding conjugate points, and sometimes, on surface A or A there may
exist points that have no corresponding conjugate points.

1. Constraints to Conjugate Motion.
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No variations in positions of axes of rotation; constant transmission ratio; no axial
translation of the body I; constant velocity of axial translation of the body II, namely,

f = constant h = constant } (2.174)

M = % = constant oy =94 =0 92 = constant

2. Double Solutions.

The corresponding values of U, V, W can be found by substituting expression
(2.174) into expression (2.166), that is,

U =AM(hcosa+ zsina)— B(Mfcosa — sina%2) — CMzsina
V = A(Mfcosa —sin ai—”lz) + BM(hcosa + zsina) - CMysina » (2.175)
W = (1+ Mcosa)(Ay — Bz) — C(Mf sina + cos a%2)

Since the unit normal vector (Ai + Bj + Ck) to the surface A at a point is the
function of the position (zi + yj + zk) of the point, in view of expression (D.24),
it is found that U, V, W are functions only of the position of the point, instead of

functions of €, i.e.,

U =U(z,y,2)
V =V(z,vy,2) (2.176)
W =W(z,y, Z)

Once a point on surface A is specified, U, V, W are accordingly determined, and
the corresponding value of ¢; can be found directly from expression (2.167).

If U, V, W satisfy the following condition
V24 Vis>w? (2.177)

then, the term arccos(zr&) in expression (2.167) will yield two solutions within

the range of from —= to m, i.e., the whole cycie (27); that is, 6. The value of # can

be given as
w

—_—_— 2.178
ST V? (2.178)

cosf =

Where 7 > 8 > 0.

Therefore, double solutions corresponding to the value of €; at the point on the

surface arise; that is,
e1=0-26 (2.179)
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and
£y =~0-6 (2.180)

where, the value of § within the range of from 0 to 27 is calculated from equation
(2.167) as

sind = —=4
IR } (2.181)
UiV

3. Double Branches of a Conjugate Surface.

Due to double solutions of the values of ;, there are two conjugate points, instead
of one, corresponding to one point of the surface A, thus, constituting two pieces of
a surface, regarded as the first and second branch of the conjugate surface A. Figure
2.7 shows double branches of the involute tooth surface. AB and A’B’ in fig.2.7 are
the same involute tooth surface in different positions, CD is accordingly the first
branch of the conjugate surface and EF the second branch of the conjugate surface.
Generally, the first and second branches of the conjugate surface intersect each other,
and the line of intersection between the first and second branches corresponds to two
different curves of the first conjugate surface A.

4. Condition for Tangency of Two Branches.

If on surface A there is a curve on which all points satisfy the condition

U?+V2=Ww? (2.182)

then, 8 = 0 when W > 0, or § = m when W < 0. +6 and —@ have no material
difference. £, no longer has double solutions but has a unique solution, that is, there is
only one, rather thun two, conjugate curve which corresponds to the curve on surface
A. The two bran~'.»>s of the conjugate surface do not intersect each other any more
but touch ech _ticr along a line.

5. Region of No Conjugate Solution.

If points within the area of surface A satisfy the following condition

U2+ Vi< W? (2.183)

+hen, 6 has no real solution, and consequently, £; has no real solution. This implies
that the points within this area will never reach the state of conjugate contact, and
this area is called region of no conjugate solution.
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The first branch

The second branch

Figure 2.7:Double branches of involute tooth surface

2.4.3 Geometry in Infinitesimal Region of Line-Contacting
Simple Conjugate Surface with Single Degree »f Free-

dom

Three Conjugate Relationships among Three Fundamental
Differential Quantities

1. Three Fundamental Diflerential Quantities.

Suppose that at instant €;,, conjugate surfaces A and A contact each other at point
P, thus, point P becoming a conjugate contact point, and point P must, therefore,
lie on the surface B of engagement. Choose arbitrarily a point P’ of surface A within
neighborhood of point P , 7ds; being the vector from point P to point P’, as shown in
fig.2.8. As ds; approaches zero, point P’ will lie on the common tangential plane to
point P of surfaces (A — A). On surface A there is a conjugate point 2 corresponding
o P’, and on surface B there is a corresponding conjugate contact point P”, the vector
trom pcints P to P being 7'ds,, and the vector from points P to P” being t.ds. ds,,
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(A-A) common tangential plane

¥Figure 2.8:R-laticnships among three fundamental differential quantities

ds, and ds are czllzd three fundamental differential quantities. They are related to
each other. When ds, — U—’/ dsy, ds will also tend to zero, i.e., ds; — G, ds — 0, and
therefore, when d¢; — 0, P will lie on the common tangential plane to the point P
of surfaces (A—-4) as well.

2. Angular (i.e., Time) Increment.

At instant €,,, P’ and P are, in general, two separated points, but a pair of conju-
gate points, and therefore, eventually in some instant, say, (€;,+de,), both points P’
and P will move to the common conjugate contaci point P”. The corresponding time
increment de;, is also called the angular increment, which stands for the increiaent,
calculated from &,,, of the rotating angle €; of body I as the independent parametric
variable of simple conjugate motion with a single degree of freedom.

3. The First Conjugate Relation.

Since ds;, de;, are infinitesimal, the vector from point P’ to P” with precision of
the first order infinitesimal may be thought of as the product of the velocity v, of
point P on body I determined by expression (2.126) and the time {angular) increment
deyp. Then, the first conjugate relation is expresse 3 as

t,ds = PP" = PP' + P'P” = 1ds, + v,dey, (2.184)

4. The Second Conjugate ilelation.



Similarly, the vector from point P’ to P” can be seen to be equal to the product
of v, determined by expression (2.127) by the time (angular) increment dey,

t.ds == PP” = P_P-' + —PIP” = T’ng + V;,dElp (2185)

With the aid of expressions (2.184) and (2.185) and taking into account v, —v, =
v}2, the second conjugate relation may be establiched as

dde = rdsy + vylde {2

Where, v;? is given by expression (2.129).
5. The Third Conjugate Relation.

Suppose that at instant €1, the unit normals at point P of surfaces A and A are
Nj,, Ngp respectively. Then due to point P being the conjugate contact point at
instant €,,, expression (2.155), i.e., Nj, = —Npy,, must be satisfied. Use of expression
(2.17) provides the unit normal Nj, at point P’ of surface A at instant €;,

Ny = Nyp + (dNy,)r = Nyp + Qi X Nypds; (2.187)

where, §;, is the geometric angular velocity at point P of surface A in direction T,
as defined in equation (2.19).

Analogously, ur:« normal Ny to point P’ of surface 4 is given by
ngl == sz + (ngp)-rl = ng + 2y X ngdSZ (2188)

where, €.+ is the geometric angular velocity at point P of surface A4 in direction 7'.

At instant (1, + deyp), points P’ and P will move to the common point P”, and
the corresponding unit normal vectors Ny,» and Ny, retaining only the first order
infinitesimals are

Nlp" ==z (del,,wl) ® Nlpl = N]p + 2y, X Nlpdsl + w; X ng,dﬁ';p (2189)

Nr‘pn = (dé'gpwz) ® szf = ng + {22.,: X szdSQ + wa X ngdEzp (2190)

Since point P” is the conjugate contact point at the instant (e, + dey,), we know

Ny,» = —Nyp». Then, using expressions (2.189) and {2.190), and taking into account
Nyp = ~Nyp, degp = Mde),, we obtain
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Qg.,.r X Nlpd82 = 911 X Nl,,dsl + (wl - MUJQ) X Nlpdé']p (2191)

Substitution from expressions (2.133) to (2.191) produces the third conjugate
relation
Qo X Nlpd32 =), X Nlpdsl + T]pdé'lp (2192)
where, 7, defined in equation (2.133), is the equivalent projection component of the
angular velocity of body I relative to body II. By using expression (2.19) to expand
Q,, and Q. in terms of the conjugate normal curvature K., and the conjugate tor-
sional curvature G5, and taking into consideration Ny, = —N,, the third conjugate
relation (2.192) can be rewritten as

[I{é,’.,'r’ + GIZT' (Nlp X T’)]ng = —[KITT + GIT(Nlp X T)]dSl - npd(:‘h, (2.193)

Rate of Angular Increment

1. Definition.

The rate of change (%‘;‘f), of the rotational angle €, with respect to the arc izugth
ds; of the first conjugate surface A along the tangential direction 7 is defined «: the
rate of angular increment at point P of surface A in direction 7. Since there is line

contact, direction 7 can ke chosen arbitrarily in the tangent plane.
2. The Other Form of Harmonic Equation of Surface Curvatures.

Expression (2.42) gave a relation between the normal and torsional curvatures in
directions t and u.

K,- K, sinf,; N-(uxt)
——— =tanf, = =
G.+ G, cos 0, u-t

(2.194)

then
[Kit + G¢(N x t)] -u = [K,u+ G4,(N x u)] - t

With the aid of expression (2.16), the above expression can be rewritten as

(dN

ds

In virtue of expression (2.17), expression (2.195) can be transiormed into the other
form of harmonic equation of surface curvatures

(QuxN)-t=(2,xN)-u (2.196)

Yo't = (%)t ‘u (2.195)
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3. Calculating Formula.

From the definition of the conjugate relative acceleration, i.e., expression (2.149),

and relation (2.130), that is, vZ! = —v;?, the velocity v}? at point P of body I

relative to body I at instant (€1, + de1p), under the condition of body I returning to
the position of the original instant €;,, may be found as
vi2 =vp? = Jypdey; (2.197)

At instant (€;, + de1p), the angular velocity of body I relative to bedy II is [(wi =
Muw,) + ‘-«-‘ﬂdf;’:—f-“—"zdelp], and then, at instant (), + de;,), under the condition of body

I returning to the position of initial instant €;p, the velocity at point P’ as shown in
fig. 2.8 of body I relative to body II, precise to the first order infinitesimal, is found

as
Vi = v+ {w - Mw,) x 7dsy
Substitution of expression (2.197) into the foregoing expression may yield
Vi = vgp = Jpdery + (w1 — Mwy) x 7ds) (2.198)

Still remaining at instant (£1p, + de1p), and returning body I to the position of instant
(e1p + de1p), point P’ will reach point P” as shown in fig. 2.8, and then, the relative
linear velocity v,? at point P” is in the form

Vi = (derpwi) @ vy (2.199)

Due to point P” being the conjugate contact point at instant (g1, + de1,), expres-
sion (2.157) must be satisfied, that is,

Ny - Vo = (2.200)

Substitution of expressions {2.189), (2.199) into (2.200) yields
Ny -viy =0 (2.201)

Substitution from expressions (2.187), (2.198) into (2.201), with the aid of
v,‘,z - Njp = 0 and neglecting any value higher than the first order infinitesimal, y'='ds

('ﬂ.’h X Nlp) . v;?dsl - Nlp . deElp + Nlp . [(w1 - M(.UQ) X T]d31 =0 (2202)
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With the aid of expressions (2.133) and (2.196), expression (2.202) may be rewrit-
ten as
]v},zl(ﬂlv X Nyp) - 7ds; — Nyp - Jpder, — mp - Tds; =0 (2.203)

Consequently, the expression for calculating the rate of angular increment may be

found i “ (@ N.) - 7]
lp\ Vp 1w X N1p) —7p
Jr = . 2
( da, N, 3, T (2.204)

. 12
where, £, is the geometric angular velocity at point P of surface A in direction %ﬁ-l
P

Conjugate Angular Velocity and Its Equivalent Projection
Component.

1. Conjugate Angular Velocity.

The angular velocity of body II relative to body I at instant &), is
Qo = Mw, — wy. The sliding velocity at the conju zate contact point P of body II
relative to body I at instant £, is v21 = —v;?, that is, body II slides a distance
—|v},2[ in the tangential direction F'!,‘;TI with respect to body I within the unit time
(angle). Since the first conjugate surface A at point P is curved and its geometric
angular velocity in the tangential direction —’f'r is ,,, if surface A at point P is

reduced to a plane, the equivalent angular velocnty W, of body II relative to body I
should include the angular velocity [—(—|v;?{)$2,] in addltlon to the physical relative
angular velocity €2;;. This equivalent relative angular velocity is referred to as the
conjugate angular velocity at point P, that is,

WP = [_("Ivézl)nld + le = |V,l;2|nlu - (wl - MLUz) (2.25‘5}

2. Equivalent Projection Component.

The equivalent projection component of the conjugate angular velocity is defined

as
U, =W, x Ny, (2.206)

Substitution of expressions (2.205) into (2.206) together with the aid of expression
(2.133) may produce

dN
| |nlv X Nlp = |v’1,2|( dS:p)v —Tp (2207)
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In view of expression (2.206), U, is perpendicular to Ny,, and U, is therefore a
vector on the common tangential plane at point P, and can be resolved along two

mutually perpendicular directions —ﬁ- and Ap, = Njp X —1},—

12

U, = D’l_v—zz—l + E,A, (2.208)
Where
D, = Klvl"wl - |77p|3039vn }
: 2.909
E, =Gu|vi2| ~ [1,]sinb, (2.209)

3. The Three Components of the Conjugate Angular Velocity.

W, can be resolved along three mutually perpendicular directions, that is,

V’I,Q v12 )
Wp = (Wp . |v12|)lvl2| (W -A )A + (W Nlp)Nlp (2210)

Substituting expressions (2.205) into (2.210), with the aid of expressions (2.17),
(2.132), (2.133) and (2.209), gives

v12
Wy = =Gyt 12|+DA QupN1p (2.211)

Expression (2.211) reveals that after reducing surface A at the point P into a plane,
the angular velocity of body II relative to body I is the sum of three components of

angular velocity, namely, angular velocity —FE, in direction —ﬁ—, angular velocity D,
in direction A, and angular velocity —2,, in direction Nj,.

Several Special Tangential Directions

There are seven special tangential directions in the common tangentia! plane at
vi2
the conjugate contact point P of surfaces A, 4 at instant £;,, namely, ;’;—;I, A, I_Zi_"

In,',l’ g= IU;L’ e, WV’;;_" etc., as shown in fig.2.9.

1. The Direction of Relative Velocity I—;il’-:—l
P
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Figure 2.9:Several special tangential vectors

1
p

12
tangential plane, and thus, ~» is a tangential direction at the point P.
g |vp I g

Since point P is a conjugate contact point, Ny, - vi? = 0, that is, v)? lies in the

2. The Tengential Direction A, Perpendicular to v,2.

A, is defined as
12

vP
Ap = Nlp X W—l (2212)
Then, A, lies in the common tangential plane, and is a unit tangential direction at
point P.

3. The Direction of the Projection Component of the Relative Angular Velocity

b
{1’

It is known from definition (2.134) that n; is perpendicular to Ny, and lies in the
common tangential plane, and I—z—’: is therefore a tangential direction at point P.

4. The Direction of the Equivalent Projection Component of the Relative Angular
Velocity I_Zﬁ

It is known from expression (2.133) that 7, is perpendicular to N,,, and lies in
the common tangential plane, and I—Zﬁ 1s therefore a tangential direction at point P.

5. The Direction of Maximum Rate of Angular Increment g.

Substituting expressions (2.207) into (2.204), then

.dElp _ Up
dS] T Nlp 'Jp

T (2.213)
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In view of expression (2.213), when 7 = 'UE' the corresponding value of ( 2), has
its maximum value. Meanwhile, from the deﬁmtlon of Uy, i.e., expresswn (2. 206) U,

is perpendicular to Ny, and lies in the common tangential plane, and ’UZ' is therefore
in the tangential direction at point P and is called the direction of the maximum rate
of angular increment g, that is,

U 12 Ep

= A
€= 10,] \/D’+E’IV”I T/ E T

By using expression (2.214), angle 6,4 of ll;%i—i rotating about Nj, to g may be
P
found

(2.214)

. E
sin by = ==

VO 2.215
cos 8, = b (2.215)
where, D,, E, are given by expressions (2.209).
The value g of the maximum rate of angular increment may be found

(eey _ VD5 *+ 5 (2.216)

dSl g Nlp . Jp

g:

€. The Direction of the Instantaneous Line of Contact.

While 7 = g x Ny, = -UP— X Njp, with the aid of expression (2.213), the corre-

sponding value of ( )T is equal to zero; that is, all the points on this tangential
direction are conJugate contact points at the instant £,p, and hence, this direction is
the direction of instantaneous line of contact e. The use of expression (2.214) yields

U, xN, E, Vv’ D,

e=gxN
EX =T, T /DI B |v12| /DI + EZ

A, (2.217)

12
Angle 6, of I_:f’—l rotating about Ny, to e can be found from the expression (2.217)

=D,

sinye = 2=
A A (2.218)

Ccos 0,,e = *\7—[)2—’:'}3—2

P P
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7. The Direction of the Projection Component of the Conjugate Angular Velocity
w.
Wl

The projection component W3 of the conjugate angular velocity W, on the com-
mon tangential plane is

W2 =W, — (N3, - W,)Nip = Nyp x (W, x Nyp) = N x U, (2.219)

Hence, unit vector %LI is in a tangential direction at point P and use of expressions
(2.214) and (2.217) ylelds
w; U,
= Ny, X
KAl A

Expression (2.220) shows that the direction of the projection component of the
conjugate angular velocity is perpendicular to the direction of the maximum rate of
angular increment and coincides with the direction of the instantaneous line of contact
but in the opposite direction. After surface A at the conjugate contact point P is
reduced to plane A*, the motion of body II relative to body I can be represented by
the reduced cylindric surface A*, i.e., the reduced surface corresponding to surface A
at the point P, rolling, sliding and tw1st1ng on plane A*, i.e., the common tangential
plane P of surfaces A and A as shown in fig.2.12. Aftersuch a reduction the kinematic
meaning of expression (2.220) becomes very clear, that is, the stralght line of contact

e between cylindric surface A* and plane A* is just the rolling axis -WZ— of the surface

=N, xg=—e (2.220)

A* with respect to plane A* except for the opposite dlrectlm The rollmg angular
velocity of cylindric surface A* relative to plane A* about 'WL as an axis is |[W,|; the
twisting angular veloc1ty about Ny, as an axis is —{},,, and furthermore, the relatlve
sliding velocity is —v

Substitution of expressions (2.208) into (2.219) and using expression (2.212) may

give rise to
12

-~ V
W=- 5o 12|+DA (2.221)

(Wl =10, =4/D}+ E} (2.222)

Formulas of Calculation for the Values of Line-Contacting
Relative Curvatures

Then

1. In Direction e .
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T

3 /‘Zf Wl

Figure 2.10:Reduced relative motion

S:nce we are considering line-contacting simple conjugate surfaces with a single
degree of freedom, surfaces A and A arz completely coincident with each other in
direction e; that is, the relative geometric angular velucity §2, in direction e is

Qe =0 \4223)

With the aid of expression (2.37), expression (2.223) leads to the relative normal
curvature K, and relative torsiona! curvature G, in direction e as follows

X
I

3 } | (2.224)

5!
i

. . vi2
2. In Direction iy
p

. . . viz | .
When we consider direction 7 = I—‘—,{-z—l in the surface tangent plane, expression
P
(2.186) gives rise to
' vl2
T =

(d_sz) z
5y /T T

(2.225)
ds) 1 + Iv;2l(gd€?llz)'f }

Meanwhile, with the aid of expression (2.208), expression (2.213) gives
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12
Eiflp Up Vo _ Dp

(dsl_)" TNy, V2]~ Ny, - J,

(2.226)

Furthermore, using expression (2.192),

Q,, X Nlpd32 = £y, X Nlpdsl + T}pd61p

With the aid of the definition in (2.37), i.e., @, = 2}, — 4y, expressions (2.225)
and (2.226) are substituted into the above expression, to give relative geometric an-

—_— 12
gular velocity €2, in direction T*’T
P

— dsy, dss deyp
2, x Nlp(dsl)v = £, X Nlpl(ds1 ) — 1] = 75 ( ds, )v
that is, o
— ([Vp Iﬂlu X Nlp - UP)DP X
Q, xNypp= Dplv,l,2| TN, 3, (2.227)
or D
Q, =Ny, x (2, x Nyp) = £ W, (2.228)

(Dp|vi2| + Ny - Jp)

With the aid of equations (2.37) and (2.221), expression (2.228) leads to the
—_— —_— 12
relative normal curvature K, and relative torsional curvature G, in the direction %ﬁ—l
P
as follows

(2.229)

vi2

<o =0 (N x ) =0 & = Gmiis Ty
v T 84y Ip 7 WIE) = 2% 2P T (Dp v+ N1,-dp)
= - D,E

Q, - (—l-‘—'?_l) = DpIviZ+ N1, Jp)

3. Other Forms of Relations of Relative Curvatures between Different Tangential
Directions.

By using expression (2.35) and

sinfy, =N;-(uxt)=(N;xu)-t=v-t
cosf,, =u-t

where, v = N; X u.
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Relation (2.40) of relative curvatures between different tangential directions can
be rewritten in the form
dN dN dN
(%’)z = (gg)u(u 1)+ (E-;)v(v -t) (2.230)

With the aid of expression (2.36), expression (2.230) gives rise to another form of
relationship of relative curvatures between different tangential directions as follows,

Q, = Q,(u-t) + (v - t) (2.231)

4. In Direction g—Perpendicular to the Instantaneous line of Contact.
Since g = N}, x e, e and g can replace u and v in expression (2.231), and with
12
t = I—:%’a—, then,

— }1,2 w2
—0O(e. —P le] R

Substitution of expressions (2.214), (2.223) and (2.228) into the above expression
yields the relative geometric angular velocity €2, in direction g

— DI+ E? )
= L __F W (2.232)

Q =
! (Dp|vi?| + Nip - Jp)

With the aid of expressions (2.37), (2.214), (2.217) and (2.221), the relative normal
curvature (the maximum absolute value of relative normal curvature) K, and the
relative torsional curvature G, in direction g can be found from the expression (2.232)

_— 8 _ _._. . _ (D2+EZ)
f - 8 (N1p ) =—{-e= (Dplv32+N1p-dp) (2.233)
G, =% (—g) =

___As a matter of interest, the radius of curvature of the reduced cylindric surface
A* of the surface A at the point P is equal to 7%—
g
5. In an Arbitrary Tangential Direction.

Replacing t, u and v in expression (2.231) with 7, e and g respectively and taking
into account 2, = 0, then

Q= ﬁg(g - 7)
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By substituting expression (2.232) into the above expression and using expressions
(2.214) and (2.222), the relative geometric angular velocity £, in direction 7 is given
by

(Up - 7)
(Dp|v}?| + Ny - Ip)

Q, = W, (2.234)

By using expressions (2.37), (2.214), (2.217), (2.219) and (2.,222), expression
(2.234) leads to the relative normal curvature K, and relative torsional curvature
G, in the direction 7

> -6 (U,-7)? _ (D"’+E2)sm20”
KT - QT (Nlp x 7 (D2|v12|+N1,, ) (Dp|"l2|+NlP Jp) (2 235)
G, =0, (-r) = {RbE (Nipxr)] _ (D3-+E2)sin b, coser '

T T (Dplvi+Nipdy) T (D,,|v17|+N1,, Jp)

Formulas of Calculation for Values of Several Conjugate Pa-
rameters

1. Curvatures of the Second Conjugate Surface.

With the aid of expressions (2.37) and (2.234), the geometric angular velocity €22,
at the conjugate contact point P of the second conjugate surface A in any tangential
direction 7 is found,

(Up-7)
(Dplvi?| + Nyp - Ip)

o, =0 — QO = Uy ~ w; (2.230)

With the aid of expressions (2.37) and (2.235), conjugate normal curvature Kj,
and conjugate torsional curvature G of surface A in direction T are given by

- (D24 E?)sin? 6., . )
- K 17

, —_— —

K, =K,- K = (DpIVI+N1,:J5) ‘ 2.257)
' =G — Gy = (D2+E2)8in ey cos fer e .
27 - T 1r — (Dpivlzl'*‘mp p) 1

When 7 = e, i.e., in the direction of the instantaneous line of contact. expression
(2.237) gives

Ké = "Kle }
e 2.238
2 = —Ge ( )
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When 7 = I—:,'Jlf;-l, i.e., in the direction of the relative velocitv, the appiication of
p
expressions (2.218) and (2.237) yields

D?
Ki, = oy~ K
2 B (DFIV;DHE 19-dp) lv } (2239)

— PP -
- (DP|V}>2|+NIP'JP) Gl”

!
2v
When 7 = A,, i.e., in the direction pervendicula: to the relative velocity, the
application of expressions (2.212), (2.218) and (2.237} produces
' 2 _
[ (Dpl"p“};Eva'Jn) Kia } (2.240)
! —_ bl — ]
28 (Dplv;lyil'*'iilp':lp) ~Gua= —'sz

When 7 = g, i.e., in the direction perpendicular to the insiantaneous line of
contact, expression (2.237) gives

o (DA+EZ)
Kl’ng = BNy T~ Ko (2.247
29 = ~Gig

2. Angle between Conjugate Tangential Directions.

The tangential directions 7 and 7' in fig.2.8 are callec i .utu v conjugate tan-
gential directions at the conjugate cc.tact point P. Assun, - 1he 2-gle of rotation of
7 about Ny, to 7' be ., within the range of -7 < 0,n < u. Jot-multiplication of
both sides of expression (2.186), i.e., the second conjugate relationship, by 7 yields

.
€08 0,pidsy = T - T'dsy = dsy + v,° - TdE,

That is,
dsay _ . 112 de1p
cos 0,..,((1,51)7 =1+ |v;*| cos Oy ( T, Vs (2.242)
Dot-multiplying both sides of expression (2.186) by (N3, X 7) gives
) ds, . 12,961 2 ot dey :
sm 91")"(3—8;)7 = (I\lp x T) "Vp (’a;lg')'r = "']v;l) |Sln9 (Es-lp')f (2-243)

Substitution of expressions (2.213) into (2.242) and (2.243) and use of expressions
(2.214), (2.216) and (2.217) produces
sinf,,, - glv;?isin 8, sinf,,

= 2..
cosf.,» 1+ g|vi?| cos B, sin e, (2244)

tan 0, =
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When —glv;2|sin 6,,sin 8., > 0, 8, lies in the intervai 0 < 6, < m; when
—glvi?<n by sinfe, <0, 0> b, > —m.

Since 8,; = 0, + 0., expression (2.244) may be rewritten as follows

—g[v},2|[cos Oye — c05(20er + Oye)]
2 + g|v}?|[- sin 6y, + sin(20er + Oyc))]

tanf, = (2.245)

Wheze, |v,2| is . tr~mined by expression (2.129); g is determined by expression

(2.0..) 2rd 0,0 1sd . d oy expression (2.218).
YWhen T ot Fe, .., = N or 7, and then 0, = 0 will correspondingly result from
er:ession (2.245), tha - ~ and 7' are coincident with each other in e or -e.
12
When 7 = - \',}_ $ fer = Bey OF (7 + B¢,), and then .. = may also be obtained

from expression , .245), that is, 7 and 7' are coincident with each other in I_::%;I or
-vl'l
T vEl
An examination of vxuression (2.245) shows the fouswing: when g = 0, which is
equivalent to D, = 0, and E, = 0 with the aid of expression {2.216), or {v;?| = 0, (hew
¢, is always equa: to zero for any tangential direction 7, .Lat is, 7 <oincides with
7'. In the general case when g # 0, |v;2| 7 0, then only when v = +e or 1 = d:rznl
is the corresponding f,,+ equal to »ero. The value = 8.+ corresponding to any other
tangential direction 7 is different from zero. If the foliowing condition is satisfied,

2

—% 2 <) 2.216
glv;zl) - (2.216)

(sin Gy —

and when 9., is given by
2

g_l;ﬂl (2.247)

]

8., = 5[—9% -+ arcsin(sin 0, —
then the corresponding value of 0., will be |0,,/] = %, since the denominator term
of -..pression (2.245) becomes zero. In other words, whenever ineq.ality (2.246) is
satisfied, there exists a tangential direction such that |6,| > 3. On the contrary, if
expression (2.246) is not satisfied, i.e., when

2

——)2>1 (2.248)
glv?|

(sin 6, —

then since the deno:minator term of expression (2.245) is different from zero, it is
always true that |8;| < . In the general case of worm-gear drives, because values
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of g and |V12| ar= all very large, it is necessary to make the value of 6,. as close as
possible to |0,el 3 in order to satisfy the requirement of expression (2.248), and
this is just the rase in Niemann-worm drives (i.e., the Flender worm, new generally
known as the Cavex worm).

By substituting exprassions (2.216) and (2.218) into (2.248), expression (2.248)
may be rewritten in another form as follows

(Dy|vE| + 2Ny - 3,)2 > |vi2, (D} + E3) (2.249)

3. The Ratio of Conjugate Arc Lengths.

The ratio between the arc length ds in the tangential direction 7' of body II and
the arc length ds; in the tangential direction 7 of body I, as shown in fig.2.8, is called
the ratio of conjugaie arc lengths at the ccujugate contact point P in the direction
7 (ds,, ds; are specifidd as positive vaiues). Application of expressions (2.242) and
(2.243) gives

d"lp

diz\y 12 . g 122 o
(=) =1+2v[cc. (-——‘ Ve ( ) (2.250)

dSl !
Substitution of expressions (2.213) inte (2.250) together with use of expressions
(2.214), (2.216) and (2.217) and 8,; = 0, + 6., prodices

dsy (1—glv,?lsinf,, + =

(52), =

12 .
ds; +9[V1?|[cos b sin 20, + (sin bye — 9‘—‘;”—') €08 20,

|v12|2)

(2.251)

Formulas of Cal-ulation for Values of Several Parameters on.
the Surface of Engagement

1. Unit Vector Nornsal to the Surface of Eng: jement.

When 7 = e, expression (2.213) leads o (%‘;‘f)e = 0, and then, application of
expression /" "84), i.e., the first conjugate relation, gives

t e |
(;4,_ ) =1 } (2.252)
sy /€

When 7 = g, substitution of expressions (2.216) into (2.184) yields

d
to(5—)g = &+ gVy (2.253)

9 dSl )9
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In the general case, (g+gvy) # 0, then, the unit vector IT, normal to the con;: gate
contact point P of the surfacc of engagem2nt is found from expressions (2.252) and
(2.253)

I te X t, _ eX(gi-gv,,)
P |(te x ty)l I[e x (g + gvr)]l
Ny, +gexv,

‘ 2.254
[(N1p + g2 X vp)! ( )

Since II, -~ d N:, are both unit ve .ors perpendicular to e, Ny, can be rotated
about e to I,

I1, = (¢nne) ® Nip = cos pnynNyp —~ sin dnng (2.255)
Expressions {2.254) and (2.255) directly lead to
. _ _ _ g(Nipvy)
singyg = HP ' (—g) - |(l glp(-*-lge‘%"p)l } (2 256)
+9(gV '
cosgyn =1l Ny, = Rﬂm

Examination of exoression (2.256) indicates that when Ny, - v, = 0; that is, when
v, lies on the common tangential plane at conjugate contact point P, then, ¢nypn = 0.
In other words, IT, and Ny, are colinear, and the surfac = of engagement comes into
tangent contact with the common tangential plunc ai the point P. If at any instant
and at any conjugate contact point the requirement is satisfied for the surface o
engagement and the common tangential plane to be in tangential contact with each
cther, .hen, the correspondin. :onjugate ..arface is called the gear blaiik pitch surface
(assuming v, # 0).

2. The Relation between the Direction of the Contact Path and the Direction of
the Con:non Tangent at the Contact point.

Since &, = € and t, are all tangential directions to the surfaze of engagement and
perpendicular to ITp, t, can be expressed by rotation of e about IT,; that ic,

t, = ((petnp) Re (2257)
Substituting expressions (2.255) into (2.257), then,
t, = COS Qg€ + Sin Per(COS Pyng + sin dynNyp) (2.258)

Substituting expressions (2.258) into the first conjugate relation, i.e, expression
(2.184), and making use of expressions (2.213), (2.214), (2.216) and (2.217), then,
. . . d .
(cos @ere + sin et oS Pnpg + Sin @, SIn ¢NnN1p)(a?s).,. =17+ gsinb.,v, (2.259)
1
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Dot-multiplying both sides of expression (2.259) by e, g and Nj, respectively,
then

cos soe:(ff;)f = 0S¢, + gsinbe,(e-vy)
sin et cos Gnu(Fe)r = sinfe; + gsinfer (g - Vy) (2.260)
Sin e 5in d’Nl’I(adi')-r = gsin eeT(Nlp . Vp)

With the aid of expression (2.256), expression (2.260) leads to the relationship
between the tangential direction to the surface of engagement and the corresponding
tangential direction to the first conjugate surface

_ |(Ny, + ge x vp)|sin b,

t = - - 2.261
A Pet = 050, + gsinf.,(e-vp,) ( )

When sinfe, > 0, 0 < e < 7; and when sinfe, <0, 0 > per > — .

3. The Relation between the Arc Lengths of the Contact Path and Contacting
Profiles

Assuming ds; > 0, ds > 0, the ratio between the arc length ds along t of the

surface of engagement and the corresponding arc length ds; in direction 7 on rigid
Sody I is found from expression (2.259) as follows

ds —- .
(E‘s‘l‘)r = \ﬁ- - g5i0 Ber V) - (T + g5in 6ervp)

= /1 + 2gsin e (T - v,) + g2 sin® e, [vp[? (2.26%)

Substituting 7 = coz f,.€e + sin f.,g into expression (2.262), then

d : g2lvol?
Ei), = . 1+ g(g vp)p+ > o 2269
51 +g{sin 26, (e - v,) — cos 20..[(g - vp) + FE-]}

‘©ye Procedure for the Calculation of Curvatures of the Sec-
ond Conjugate Surface (The First Type of Probiem «f Con-
jugate Curvatures)

1. Given Quantities.

(1). The coordinate position of a specified point P on the first conjugate surface
R, =a:i+yj+zk,
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(2). The unit vector normal to this point of the first conjugate surface
N; = Ai+ Bj + Ck,

(3). A unit vector tangential to this point of the first conjugate surface
q = qii + g2 + g3k,

(4). Normal and torsional curvatures Kiq, K1y, G1g = - G1v at this point of the
first conjugate surface in directions q, w = N; x q.

(5). The direction u in the tange. ial plane in which the carvature of the second
surface is to be formed. To define u, we can use the angle 6, of rotation from q tc
u about the unit normal Nj,.

(6). Functional relations of conjugate motion: €, = £2(€1), 01 = o1(€1),
o2 = 03(€1), f = f(e1), h = h(e1) and the value o

2. Quantities to be Found.

(1). The coordinate position of the corre:ponding conjugate point P of the second
conjugate surface Ry = z'i' + ¢'j' + 2'K/,

(2). The unit vector 1:ormal to point P of the second ccnjugate surface Ny =
Al + By +C'y,

(3). The conjugate normal and torsional curvatures Ky, Kj,, Gj, = -Gy, of

the second conjugate surface at point P in the specified tangential directions u, v =
N, = u,

3. Steps of the Computation i°.- - 2dure.
(1). Using expressions (2.166) and (2.167), we o i..n th.e corresponding value €1y,.

(2). Using the given functicnal relations of the conjugate motion, we obtain the
: : . . — de do d dj di
corresponding values at the instant €y,: €;,01,0;, f, h, M = o 7 -d%lz, Ech’ ,,—6’—"-,

dM d?0g; d%0; d¥f dh
@ ‘@ @

(3). Using expression (2.168), we obtain the coordinate values of the corresponding
conjugate contact point R, = zpi + ypi + 2,k.

(4). Using expression (2.169), we obtain the unit vector normal to the first con-
jugate surface at the corresponding conjugate contact point Ny, = Api + By + Cpk.

(5). Using expressions (2.170) and (2.172), we obtain the coordinate position of the
corresponding conjugate point P of the second conjugate surface R; = z'i' +y'j' + 2'k".

(6).Using expressions (2.171) and (2.173), we obtain the unit vector normal to
point P of the second conjugate surface N, = A'i' + B'§ + C'K'.

(7).Using g, = (1pk) ® q, we obtain q.
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. Using expression (2.128), we obtain v1?, [v;?|.

(8)
(9). Using expression (2.133), we obtain 7,, |7,|.
(10). Using sinf,, = Nip- (g X !_:%:T)’ cosby = qp- I—:’;%:-I, we obtain sin g, cos Gy,
and 6.

(11). Using
K1y = Kiqc05? 0y + K1y 5in® g, + 2G145in 8, €05 b4y,

Gy = —Gin = —(K1y — K1v:) sin 8y, €05 0gy + Grq(cos? 6, — sin® 6g,)

e obtain Kiy, K1a, G1v = —G1a.

(12). Using (2.135), we obtain sin ,,, os fy,.
(13). Using {2.209), we obtain D,, E,.

(14). Using (2.218), we cbtain sin 6y, cosye, Gy
(15).

15). Using

Kle = Klu CO52 gvc + I{IA Siﬂ2 ave + 2G’lv sin ove Ccos evea
K1p = Ky 502 0y, 4 F1a €08” Oy — 2G1y 5in 8y €OS O,
Gie = -Gy = —(K1y — K1a)sin e cos O, + Glu(cos2 b, — sin’ Bye)-

we obtain Kle: Klg, Gl(; = —Glg.

(16). Using (2.148), we obtain J, aid Ny, - Jp = Apdp + BoJpz + CpJps.

). Using (2.233), we obtain K.

). Using (2.238), (2.241), we obtain Kj,, K3y, G5 = —(75,.

(19). Using Oey = Ocy + Oug + Ogy = —0ye — 04y + 6,4, We obtain Bpy,Sinb,,,, €O Oy -
). Using

K}, = Kb, c0s? Bey + K}, 5in° Oey + 2GY, 5in Oey €08 Oeu,

K}, = K}, sin* 0y + K3, c08? Oy — 2GY, 5in ey 08 ey,

! — | () ) : ! 2
ha = —Ghy = —(Kbe — K3y) sin fey €08 Oy, + G, (c08? By, — 5in? ).

we obtain Kj,, K, Gy, = —G,.

73



Oaiculetion Formulas for the Unit Normal and the Curva-
tures of the First Conjugate Surface When the Second Con-
jugate Surface is an Intersecting Curve.

1. Given Quantities.

(1). Values of the following parameters corresponding to the instant €, i.e.,

_ deg doy do dh dM d%0, d%0; d*f d%h
€2,01,02 fhy M = 2, 21, = feL,’ Terr @ —de—?l, I?z’ R and the constant value
a.

(2). The coordinate position of any point of the intersecting curve { the second
conjugate surface) at instant €y, i.e., Rgp = 2'{' + ¢'J' + 2'K’.

(3). The unit tangential direction of the intersecting curve at the point P,w=
whi' + whj’ + wik' = wyi + woj + wsk.
(4). The unit principal normal of iii¢ intersecting curve at point P § = Ei+E&5 +
'k = £,i + & + £k, and unit normal vectors Ny, Nyy of surfaces I, Il comprising
3
this intersecting curve.
(5). The curvature k. of the intersecting curve at point P.
2. Computation Procedure.

(1). First, we find the coordinu.« Tosition of the corresponding conjugate contact
point P of the first conjugate surt . .. -~ Zpl+ypj+2pk. Since point P is conjugate
contact point P, Ry, = Rop +Ip, t

T, =2,+ f
Yp = Ypcosa + iy sina+h (2.264)
zp = —ypsina + z,cos @

With the aid of expressions (2.129), (2.133), (2.148) and (2.264), and the given
values of the conjugate motior parameters, v},z, Tp» Jp can be correspondingly found.

(2). Next, the unit vector normal to the first conjugate surface at point Ry, is
Ny, = Api + Bgj + Cpk. Since the intersecting cur.. iiself is an instantaneous line of
contact whenever it comes into contact witl the first conjugate surface, i.e., w = te,
w is perpendicular to Ny, and lies in the common tangential plane. Meanwhile, since
R, is the conjugate contact point, v},"’ and N, are perpendicular, therefcre,

w x v}?
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Where, the sign ” & " can be determined in the following way

w-(N; x Np,) <0 (2.266)

The positive direction of w can be determined by expression (B.37), so that the
angle ¢;;; of N rotating about w to Ny, satisfies the requirement 0 < ¢y < 7, i.e.,
the expression (2.50).

(3). The normal curvature K, at point R,, of the first conjugate surface in
direction w is found as tollows. If the intessc:ting curve comes into contact with the
first conjugate surface, this intersecting curve is a curve lying on the first conjugate
surface . Use of the Meusnier theorem, i.e., expression (2.65), yields the normal

curvature as
Klw = _kc(Nlp . f) (2‘

(4). Next, we find the torsional curvature G1w at point Ry, of the first conjugate
surface in direction w. Use of expressions (2.42), (2.209) and (2.218), taking into
account w = te, yields

-K ~D, —(K|vi? = |np|cosé
——————K]w Y — tanf,, = tanb, = —= = (K1 1’2’ | In”l. )
Giw + G E, (G1o|v22| = |np] sin Byy)
P Kaulv?) = [nplcost Ny (vi2  w)
ol = T2 tan G = — 2 (2.268)
Gru| V| + |np| sin B,y vz w
Expression (2.268) gives the torsional curvature Gy,
(v w) Il ! .
G = Np V7 x ) (Kiw — v wl cos By,) — T‘?-l- sin Oy, (2.269)

(5). The normal curvature Kj, at point R, of the first conjugate surface in
direction q = Nj, X w is the ne::t quantity io be calculated. Since conjugate normal
curvature K3, of the intersecting curve in diraction q is K, = oo, then K, =K, =
K, + Kaq — 00, and application of expressions (2.209) and (2.233) yields

Dy|vE| + Nyp - Jp = [VI2|(K1o|vyp?| — Impl €08 6up) + Nip - Jp = 0 (2.270)

Expression (2.270) leads immediately to

Ny, - J,

£ 2
e (2.271)

K. = L:’p | cos By —
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Using expression (2.25), then

K1y = Ky €087 By + K155i0% Oy + 2G 14 5557 1y €OS By (2.272)

vvich the aid of expressions (2.271) and (2.272), the normal curvature k', can
then be found
(w- vxl,z)2 2(w - v},2)
Nip - (W x VIR [Ny - (wx v2)]
(|V;112”77p| 05 Oyy — Nip - Jp)
[Nip - (W x vi2)J?

Klq le

(2.273)

(G). The torsional curvature Gy, at point Ry, of the first conjugate surface in the
direction q is Giy = ~Gw-
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Chapter 3

Basic Principle for the Design of
Gear Blanks

The basic principles for the gear blank design have been given by B. Shtipleman
[10], M. Baxter [9] , F. Litvin [15] and the Gleason Works [30]. Since some concepts
such as the gear blank pitch surfaces are very importaat = the author’s opinion, it
is worthwhile to especially emphasize and explain theru “e-ther. In order to ensure
that we can use formulas of the AGMA 2005 standarc{1?! correctly to calculate the
parameters of the gear blanks which will be used i tix following se’‘ons, it is
necessary to rederive the formulas. 3ome of these are o:f et from tusse of the
AGMA 2005 standard in appearance, but their calculating > .t a1e The Fame.

3.1 The Kinematic Characteristics of Hypoid Gearing

Referring to the dual coordinate system shown in Fig.3.1, assur  ‘he coordinate
system O-i,j,k corresponds to hypoid gear with k == ) being its a...s of rotation and
O' — i',j, k' corresponds to hypoid pinion with k' = —w. being its axis of rotation.
Such a choice of the coordinate systems will be used throughout this thesis. Conjugate
mot;on of hypoid gearing is the motion of constant transmission ratio with fixed axes
and no axial translation; this is,

a = constant, f = constant, M = % = constant, } (3.1)

0'1=0'2=0; h=0

where, o is the shaft angle; f is the offset of hypoid gearing; M is the transmission
ratio; f and h together form the offset, but the axes can be chosen as that h = 0 as
shown in fig.2.1.
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) s J
1 = wo Y

i' = Wy
w2

Figure 3.1:Dual coordinate syste: s

From the condition of conjugate motion of hypeid gearing, i.e., expression (3.1),
the kinematic characteristics of hypoid gearing can be achieved as foliows:

1. No Pitch Surface.

By substituting expression (3.1) into requirement (2.136) for the existence of a
pitch surface, it can be seen that due to

d0’2

E:Mfsina;éo (3.2)

M(f - jdi)sina+ (1 +Mcosoz)£iﬂ + (M + cosa)
d€1 d€1

thus there exists no pitch surface in hypoid gearing.
2. Surfaces of Screw Axes with Hyperboloid.

Substitution of condition (3.1) into expression (2.142) leads to the equation for the
surface of the screw axes in the hypoid gear with reference to the coordinate system
O-i,j,k as follows.
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R, = a2.14 Yo+ 2.k
Tq L cose; + Fsingg (3.3)
Ya —FEsine; + Fcose

il

where

I

E (1+M cosa)?+MZsina
F = Mz sina
~ 1+Mcosa

M f(M+cosa) }
(3.4)

Since the following requirement is fulfilled

A 2 2
z Ya Zq _ \
'&%'f‘gz'—zg——l (3.5

where,

(1+M cosa)?+ M7 sin a
c = S(1+M cos a)(M-tcos a)
~ [(i+Mcosa)2+M?sin? afsina

a = b= — M f(M+cosa) }

thus, the surface of screw axes of the hypoid gear is a hyperboloid.

Li: wise, substitution of condition (3.1) into expression (2.144) yields the equation
for th .urface of screw axes in the hypoid pinion with respect to coordinate system
O’ —-1i,j,X as follows

R, =zli'+yi + 2K

z! = Ecosey — Fcosasine, + 2, sinasing; — fcoseg (3.7)
y, = Esine; + Fcosocosey — z,sinacosez — fsiner :
z;, = Fsina+z,cosa

Since the following reauirement is fulfilied

12

a ya [}
prl + v o2 (3.8)
where
ad =b=F~f
¢ = E=D(Micosa) (3.9)
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Then, the surface of screw axes of the hypoid pinion is also a hyperboloid.

The spatial position of the screw axis of hypoid gearing may be found from ex-
pression (2.145) as following

ro. = (w)®Ra=X i+Y,j+2Zk

Y =E= M f(M+cosa)
“ta T 7T (1+Mcosa)2+MZsin’a (3 14)
Y, =F= Mz sina J.
a T 14+Mcosa
Za =2,

That is, the screw axis intersects the coordinate axis i between points O and O’
and is perpendicular to the coordiuate axis i.

3.2 Gear Blank Pitch Surface

The def .ition of t - ..ank pitch surface has been given in section 2.4.3. We
use the requiremeit tka: '« uiface of engagement and the common tange.it:al plane
of both conjugate su:faccs should be in contact with each other in any instant, i.e.,
onm = 0, and the common tangential plane is defired as the gear blank pitch plane.
An implication of this definition is that the conjugate surface is aiways on one side of
the surface of engagement. Therefore, such surfaces will not cause any interference
with each other, when they are used as boundary surfaces of both members of gearing,.
On the other hand. an examination of expression (2.256) shows that ¢np is equal to
zero whenever Ny, - v, = 0 is fulfilled with the exception of g = 00, i.e., Ny, - J, = 0,
which is the singular case and will be discussed in the following section. The fact
N, - v, = 0 implies that the contact transmission will be realized only by friction,
instead of by an active force. From the point of view of energy transmission, conjugate
surfaces of this type are uracceptable. However, use of such surfaces as the boundary
surfaces of the correspondiag conjugate surfaces is most ideal, since this is very similar
to the case of transmission between two friction wheels and thus no interference will
occur.

With the aid of Ny, - v)? = 0, the requirement of Ny, - v, = 0 yields the unit,
normal N, to the gear blank pitch surface in the following form

N _iv,,xv;Z 3.11
ip = |Vp><V;2| ( )

where, v'},"’ is found from expression (2.129) and sign ” £ ” is so defined thst the

positive direction of N, points away from the axis w; = k.
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In the special case of conjugate motion for constant transmission ratio, fixed axes
and no axial translation, i.e., expression (2.1), the velocity v,, with respect to coor-
dinate system O-i,j,k, of point Py(R,p) in rigid body I at instant ¢, is found from
expression (2.129) as follows

Vp=w; X Rlp (312)
and the velocity v12 at point Py(R;,) of body I relative to body II at the instant ¢,
is found from expression (2.129)

viZ=w; X Ryp — Mwz x Ry (3.13)
Then the unit normal N, to the gear blank pitch surface can be calculated from

expression (2.11), that s,

vpxvi?
No = Ep, ol (3.14
| (w1 xRip)x(MwsxRap) (3.14)
T w1 xRip)x (MwaxRap)|
Since Ny is perpendicular to v, and v,l,z, we have the following relations,
Nb . (w1 X Rlp) =0
N, - (wz X Rgp) =0 (3.15)

As a consequence, N, intersects simultaneously with w; and wy, i.e., the axes of
rotaticn of gear and pinion, respectively.

It is worth notice that a gear blank pitch surface is neither a pifch surface nor a
surface of screw axes. The three types of surface are defined quite differently. There
exist the following three major differences in the geometric properties:

1. The pitch surface does not exist in any condition of conjugate motion and at
any conjugate contact point. Only when the condition of the existence of a pitch
surface is fulfilled, and the conjugate contact point is in the position determined by
expression (2.139) does a pitch surface exist. Surfaces of screw axes are available in
any condition of conjugate motion but only in the spatial position of the conjugate
contact point found from expression (2.145).

On the contrary, a gear blank pitch surface exists in any condition of conjugate
motion and any spatial position of the conjugate contact point.

9. Once the conjugate motion is given, the corresponding pitch surfaces (if ex-
isting) and surfaces of screw axes are uniquely determined; that is, there exist only
one pair of pitch surfaces and one pair of surfaces of screw axes. The pitch surface
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is just the special case of the surface of screw axes in the condition of v}? = 9. In
other words, the pitch surface and the surface of screw axes are simply the geometric

representation of conjugate motion.

On the contrary, the unit normal N, to a gear blank pitch surface is determined by
expression (3.11), and curvature properties of the first gear blank pitch surface can be
arbitrarily prescribed, as for the curvature properties of the second gear blank pitch
surface, this can be given from the solution to the first type of problem of conjugate
curvatures, referring to section 2.4.3. This implies that there exist a series of pairs of
gear blank pitch surfaces, due to sharing the same unit normal N,, being tangent of
each other under any condition of conjugate motion and any position of the conjugate

contact point.

3. At the position of the pitch point, i.e., v}f = 0, it is seen from expressior: (3.11)
that the direction of Ny is indefinite. In other words, any pair of conjugate surfaces
through the pitch point can be used as a pair of gear blank pitch surfaces. But in
the current practice of gear design for non-hypoid gears, a pair of corresponding pitch
surfaces through the pitch point is widely used as a pair of gear blank pitch surfaces.
This might be the reason for the confusion between the concepts of pitch surface,
surface of screw axes and gear blank pitch surface. It should be remembered that the
use of the pitch surface as the gear blank pitch surface is just a special case but is not
a necessary requirement. Here, strictly distinguishing the gear blank pitch surface
from the pitch surface and the surface of screw axes has a decisive effect on the gear
blank design, and will open the train of thought in the practice of gear design.

If we look to the practical function, it is also worthwhile to distinguish the following
five different surfaces. The functions of pitch surface and surface of screw axes are
the geometric representations of the conjugate motion. The requirement of the pitch
surface is v},2 = 0, i.e., expression (2.136) and the requirement of the surface of
screw axes is 212 X V12 = 0, i.e., expression (2.140). The function of the gear blank
pitch surface is mainly its use as the boundary surface of the corresponding conjugate
surface, instead of as a surface which accomplishes the task of transmission. The
requirement of the gear blank pitch surface is Ny v, =00r Ny = I::—ié:,—'%;-', i.e.,
expression (3.11). The transmission of motion and power are completed through a
pair of gear tooth surfaces. Whether a pair of gear tooth surfaces is designed better or
worse directly affects transmission properties of motion and power, strength of contact
and bending, life expectancy, vibration, noise, lubrication and sc on. Therefore, the
gear tooth surfaces are the major object oi gear research. In the course of gear design,
in order to define some parameters, it is necessary to introduce a referznce surface.
There are no specific requirements for the reference surface other than convenience.

In the current practice of gear design, pitch surfaces ( if existing ) are usually used
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as a pair of reference surfaces for gear and pinion respectively, or a pair of gear blank
pitch surfaces, as in the case of hypoid gearing, is used as a pair of reference surfaces.

3.2 The Conjugate Stagnant Curve, Conjugate Bounclary
Curve and Conjugate Varied Curve on Line — Contact-
ing Conjugate Surfaces

1. Conjugate Stagnant Curve.

We consider the case when a poini on a conjugate surface reaches the position of
conjugate contact, and the following condition is satisfied simultaneously in addition
to the fulfillment of the condition Ny, - v3? = 0,

Nlp : Jp =0 (316)

where, J,, is defined in expression (2.149).

Then, the curve composed of points satisfying these conditions is called the con-
jugate stagnant curve on a conjugate surface. It can be deduced from the definition
of J,, i.e., expression (2.149), that if a point P on the conjugate stagnant curve reach-
es the position of conjugate contact at the instant €, i.e., Ny, v},2 = 0, then, the
relative velocity v12 at the same point P on the conjugate surface but at the instant
(e1p + Agyp) is expressed in the form

viZ = (Aepwr) ® (v;? — Jple1p)

P 3.17
=vI2 4+ (W x v;? = Jp)Aeyy (3.17)

Meanwhile, the unit normal Ny, at this point and this instant, i.e., (€1p + Aep)
is found in the form

Ny = (Aeypwi) ® Nyp

= Nlp +w; X NlpAelp (318)

Since the point on the conjugate stagnant curve satisfies expression (3.16), the
combination of expressions (3.17) and (3.18) leads to

Nlpl . V,l,;z = Nlp . V;,z - Nlp . JpAé'lp =0 (319)

The implication of the above expression is that at instant (g1, + A€y,), this point
will still be a conjugate contact point and, therefore, is called the stagnant point of
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conjugate contact. Consequently, the curve composed of such kinds of points is called
the conjugate stagnant curve.

2. The Tangential Direction to a Conjugate Stagnant Curve.

Assume that P and P’ are two adjacent points on the conjugate stagnant curve,
and the vector from P to P’ is PP’ = e,ds,, thus, when ds; — 0, e, becomes the
unit vector at point P tangential to the conjugate stagnant curve. If at instant €y,
point P reaches the position of conjugate contact, then, requirement (2.203) will be
satisfied. When 7 = e;, it follows from expression (2.203) that

|v’1,2|(91,, x Njp) - €851 — Nyp - J,derp — 7p - €5ds; = 0 (3.20)

Since point P is the point on the conjugate stagnant curve, condition (3.16) is
fulfilled, and thus, with the aid of expression (2.207), expression (3.20) becomes

Up . esdsl =0 (321)

Expression (3.21) indicates that the tangential direction to the conjugate stagnant
curve coincides with the tangential direction to the instantaneous line of contact; that
is, at every point of the conjugate stagnant curve, the conjugate stagnant curve is
tangential to the instantaneous line of contact which passes through that point as
shown in fig. 3.2

3. Two Kinds of Common Tangential States.

The common tangential state of the conjugate stagnant curve with the lines of
contact zan be classified into two types. One type is when all the lines of contact stay
on one side of the conjugate stagnant curve as shown in fig.3.2 (a). The conjugate
stagnant cu-ve in this case is referred to as the Conjugate boundary curve. The other
type is when every line of contact crosses over the conjugate stagnant curve and
is tangent to the conjugate stagnant curve as shown in fig.3.2 (b). The conjugate
stagnant curve in this case is called the conjugate varied curve.

4. Two Special Tangential Cases.

When the conjugate stagnant curve coincides with one of the lines of contact,
the conjugate stagnant curve will no longer meet and be tangent to the other lines
of contact. This is a special case which can also be classified into two types. One
type is when all the lines of contact stay on one side of the conjugate stagnant curve
except for the one coinciding with the conjugate stagnant curve as shown fig.3.3 (a).
At this time, the conjugate stagnant curve becomes the conjugate boundary curve.
The other type is when lines of contact can be found on both sides of the conjugate
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line of contace

line of contact

conjugate boundary curve
conjugate varied curve

(a) Conjugate boundary curve (b) Conjugate varied curve

Figure 3.2:Two types of common tangential cases

stagnant curve and the conjugate stagnant curve coincides with one of the lines of
contact as shown fig.3.3 (b). The conjugate stagnant curve at this time is called the
conjugate varied curve.

5. Conjugate Boundary Curve.

If the values D, and E,, determined by expression (2.209), at every point on the
conjugate stagnant curve satisfy the following condition; i.e.,

D2+ E2>0 (3.22)

then it follows from expressions (2.216) and (3.16) that the corresponding value g =
(%‘f)g becomes g — o0o. The implication is that after being in tangent contact with
the conjugate stagnant curve, lines of contact will be back toward the original side of
the conjugate stagnant curve as shown in fig.3.4. Then, the conjugate stagnant curve
when condition (3.22) is satisfied must be the conjugate boundary curve as shown in
fig.3.2 (a) and fig. 3.3 (a). The conjugate boundary curve divides a conjugate surface
into two regions: one region accommodates all the lines of contact and is therefore
called the region of conjugate solution; and the other region has no lines of contact,
and is therefore called the region of no conjugate solution.

6. Conjugate Varied Curve.
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line of contact

line of contact

I

conjugate boundary curve conjugate varied curve

(a) Conjugate boundary curve (b) Conjugate varied curve

Figure 3.3:Two types of special tangential cases

If the values D, and E, and g satisfy the following condition, i.e.,
D:+E}=0
g= @ = 8 = definite limiting value # +00

then, after being in tangent contact with the conjugate stagnant curve, lines of contact
will cross over the conjugate stagnant curve. Therefore, the conjugate stagnant curve
when condition (3.23) is satisfied must be the conjugate varied curve. Since condition
(3.23) is much more stringent than condition (3.22), in most cases, the conjugate
stagnant curve on an arbitrarily prescribed conjugate surface, i.e., satisfying condition
(3.16), is generally a conjugate boundary curve.
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region of conjugate solution

region of no conjugate solution

Figure 3.4:The regions of conjugate solution and no conjugate solution

3.4 The Analytical Expression for the Conjugate Boundary
Curve under the Condition of Special Simple Conjugate
Motion

As has been analysed in section 2.4.2, when the condition of conjugate motion

satisfies expression (2.174), the requirement Ny, - v ? = 0 yields

Ucose; — Vsing, =W (3.24)
where, U, V and W are functions only of the position of the point and can be deter-
mined by expression (2.175).

With the aid of expression (2.118) and (2.122), the expression of J, can be written
as

3, = Juit Jpj+ Tk
Jp = Mfcosa— 2sina .

) de 3.2¢
Jp2 = Mzsina+ Mhcos (3:25)
Jps = —M(zsine, + ycose,)sina
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Substitution of expression (3.25) and (2.169) into expression Ni,-J, = 0 produces
[Usineg, + Vecose; =0 (3.26)

Combination of expression (3.24) and (3.26) leads to
U2+ vi=w? (3.27)

This is the analytical expression for the conjugate boundary curve in the condition
of conjugate motion represented by expression {2.174).

3.5 The Boundary Curve of Curvature Interference on the
Line-Contacting Conjugate Surtace

If the point within the region of conjugate solution on the conjugate surface,
when xt reaches the position of conjugate contact. i e., fulfillment of the requirement
Ny - v, ,, = (, satisfies the following requirement

Dplv)?|+ Ny -3, =0 (3.28)

then the curve composed of such points divides the region of conjugate solution into
two sul-regions, in one sub-region, (Dp|v)2|4+N),-J;) > 0; and in the other sub-region,
Dy|vi?| + Nip - Jp) < 0, and thus, the curve composed of points satisfying condition
(3. 28) is called the boundary curve of curvature interference on the conjugate surface.
The boundary curve of curvature interference divides the region of conjugate solution
into two sub-regions. Within one sub-region, where ( Dy|v}?| + Nyp - Jp) > 0, the
value of the corresponding relative normal curvature determined by expression (2.233)
becomes K > 0; that is, there is no curvature interference between rigid bodies I
and II, and therefore, this sub-region is called the conjugate valid zone as shown in
fig. 3.5. Within the other sub-region, where (Dp|v}?|+ Ny, - Jp) < 0, the value of the
corresponding relative normal curvature becomes K < 0; that is, there is curvature
interference between rigid bodies I and II at contact points within this sub-region.
Therefore, this sub-region is regarded as the conjugate invalid zone as shown in fig.3.5.

3.6 Basic Geometry of the Gear Tooth under the Condition
of Constant Transmission Ratio, Fixed Axes and No
Axial Translation

1. Gear Blank Pitch Surface of Rotation.
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region of conjugate solution

boundary curve of curvature inter{erence

Dplvp?l + Nip - Jp = 0

conjugate valid zone iy > 0 ) ) _
Jug g conjugate invalid zone 'y <0

Dplv,?l+ Nip -3, > 0 Dplvy* |+ Ny, -3, <0
Figure 3.5:Conjugate valid and invalid zones

The conjugate motion for constant transmission ratio, fixed axes and no axial
translation is given by expression (3.1). Assume that the positions of the conju-
gate contact point in coordinate systems O — i,j,k and O' — i',j', k' are respectively
represented in the forms

Ry, =z, +ynj+ 5k
; P (3.29)
= pcos i+ psin pj + zk

where, p is the radial distance of the conjugate contact point P from the axis w;, = k;
i is the phase angle made by rotating axis i about axis k = w, to the radial vector
of point P; and 2, is the axial distance from point P to origin O along the direction
k = w,. Similarly, in the second coordinate system

Rop = z,i' 4y, + 7K' (3.30)

= p'cosp'i' + p'sin p'§j’ + z k' '
where, p' is the radial distance of conjugate contact point P from the axis wy, = —k’;
' is the phase angle made by rotating axis i’ about axis k' = —w, to the radiai vector

of conjugate contact point P; and 2z, is the axial distance from point P to origin 04
along axis k' = —w;s.
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Employing expressions (2.153) and (2.120) and using expression (C.23) leads to

R,

Comparison of expressions (3.30) with (3.31) gives

and consequently,

= Rlp -Ip
= (pcosp— f)i' + (psinpcosa — 2z sin «)j’ (3.31)
+(psin usin @ + 2z, cos o)k’
pcosy’ =pcosp— f
p'siny' = psinpcosa — zysina (3.32)
zp = psin usina + z,cosa
= y/(pcosp — f)? + (psinpcosc — zp sin a)? (3.33)

Substitution of expression (3.29) and the condition of conjugate motion, i.e., ex-
pression (3.1) into (2.129) gives the relative velocity at the conjugate contact point

P as follows

%2 = viti + vi3j + 3k )
2 —p(1+Mcosa)smu+Mz,,sma
12 = p(14+ Mcosa)cosp~Mfcosa (3.34)
12 = _M(pcosp— f)sina
12| — 2 122 12\2
| = /)2 + () + (03 J

Also, v}? can be rewritten in the coordinate system O' — i',j', k' with the aid of

expression (2.119)

—’l)l%l' sz’+U kI
12——p(1+Mcosa)smu+szsma

=vp2 cosa — v)3sina

_p(cosa—}-M)cosu Mf

p2 sma+v COSG = pcosusma

(3.35)

Further, substitution of expressions (3.29) and (3.1) into (2.126) yields the velocity

as follows

v, = —psin pi + pcos pj (3.36)
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Substitution of exnressions (3.1) and (3.29) into (2.150) yields

J, = Jni+ Jpoj + Jpak

Jpi = M fcosa -
Jp2 = Mz,sina (3.37)
Jp3 = ~—My,sina=~Mpsinusina

Consequently, the unit normal to the first gear blank pitch surface can be found
from the defini“ion, i.e., expression (3.11), and by using expression (3.34) and (3.36).
The unit normal then takes the form

vpxvi2 . .
Ny = :i:-lv—px—;’%g—l = Api+ Bpj + Cik

A, = (pcospu—f)sinacos
B, = (pcosu—/%bsinasinu (338)
C _ (z cosus%ba—f sin y cos a)

b = (473

]

where, Q, = £+/(pcosu — f)?sin® @ + (2, cos psina — fsin pcosa)?, and sign ” 2°
is so defined that the positive direction of Ny, points from the body to the space.

With the aid of expressions (2.119), (3.32) and (3.38), the unit normal to the
second gear blank pitch surface is given from the requirement (2.155) as following

Ny = —Npp = A;,i'-i- By +C{,k' 3\
! _ __ —p'cospusinacosy’

A, =-A= o

B, = —Bycosa+ Cysina
__ —p'cosusinasiny’ > (339)
- (4]

C, =-Bysina—Cycosa
__ —(psinusina+zpcosa)cosusina+fsiny
- Qs J

It can be seen from the above analyses that once the position of the conjugate
contact point is found, i.e., the parameters p, u and z, and the conditions of conjugate
motion in expression (3.1) are given, then the unit normals to the gear blank pitch
surfaces are accordingly determined. Then, the shape of the first gear blank pitch
surface can be, in effect, arbitrarily prescribed under the fulfiliment of the requirement
for the unit normal. It is just for convenience that the surface of revolution through
the conjugate contact point with the axis w; = k is used as the first gear blank
pitch surface. The second gear blank pitch surface should be, strictly speaking, the
conjugate surface corresponding to the first gear blank pitch surface of revolution.
Thus, the second gear blank pitch surface may not certainly be a surface of revolution
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with the axis w, = —k’. But as noted before, the function of the gear blank pitch
surface is just to secure no interference between the conjugate surfaces rather than
to accomplish the task of transmission. Therefore, to facilitate manufacturing, the
practice of using the surface of revolution as the second gear blank pitch surface is, of
course, completely permitted, although somewhat differences of curvature arise. This
is just the situation in the current practice of gearing. However, such difference of
curvature must make conjugate surfaces separate.

2. Pitch Angle of the Gear Blank.

In the formation of the surface of revolution, the curve in the axial intersection
with the surface of revolution is usually used as generatrix. Let the unit vector tangent
to the generatrix of the first gear blank pitch surface be S, then,

Ny x (k x Ryp}

S = 3.40
Ny x (k X Ryp)] (3.40)
Substitution of expressions (3.29) and (3.38) into (3.40) yields
S =Sli+52j+S3k
Sl — —(zpcosusino—fsinpcosa)cosu
52 = —(zp cos usin a—Qfsinpcosa)sinu (3.41)

S __(pcosu—f)sinaQb
3 = Qs

Analogously, let the unit vector tangent to the generatrix of the second gear blank

pitch surface be S', then,
Ngb X (k’ X Rgp)

S = 3.42
[Ng x (k' x Rap)| (342)
Substitution of expressions (3.31) and (3.39) into {3.42) yields
S' =S + Sy + SiK! )
S = {p cos p— f)|(psin psin a+2p cosa) cos psin a—f sin y]
1 Qb\/(pcos u—f)2+(psin pcos a—zp sin a)?
- (psin p cos a—z, sin a){(psin psin a+zp cos @) cos usina~f sin y] > ' _ (3.43)
2 Qb\/(pcos p~f)2+(psin u cos a~zp sin a)?
S ==z cos p8in a\/(p cos u—f)2+(psin pcos a—zp sina)?
3 - Qs J

The pitch angle v, of the first gear blank pitch surface can be found from the
dot-product of S with the axis w; = k as follows

=|(pcosu—f)sina| (3.44)

cosy, = |S - k| o
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where,0 < v, < §

Likewise, the pitch angle v, of the second gear blank pitch surface can be found
as follows

cosy, = |S'-K|
I—cos;mina\/(pcosu—f)2+(psinpcos a-zpsina)? I (3-41’)
Qs

where,0 < v, < 3.
3. Spiral Angle.

Since the common normal to any pair of conjugate surfaces must be perpendic-
ular to the relative velocity v12 at the conjugate contact point P, then, v,? must be
perpendicular both to the common normal N, = —Njy, to the pair of gear blank
pitch surfaces, and to the common normal to the pair of conjugate surfaces which, in
effect, undertake the task of transmission. In other words, the tangential direction of
the intersection between the gear blank pitch surface and the conjugate surface really
undertaking the task of transmission is colinear with v}f" at the conjugate contact
point P. Consequently, the spiral angle of the first conjugate surface, i.e., the tooth
surface of the gear, can be defined to be the angle made by the tangential direction to
the intersection between the tooth surface of the gear and the first gear blank pitch
surface with the direction S of the generatrix of the first gear blank pitch surface,
that is,

S-V12|

[
Cos Yy = -_rg-lvp | 3.46
[Sin2 45012453012 (3.46)
- [vip|

where, |v1?[, v;?, v}?, and v}2 can be found in expression (3.34), and S;, S; and S;
can be determined from expression (3.41), for a right-hand gear 0° < 1, < 90°; for a

left-hand gear 90° < 3, < 180°.

Analogously, the spiral angle of the second conjugate surface, i.e., the tooth surface
of the pinion, can be defined to be the angle made by the tangential direction to the
intersection between the tooth surface of the pinion and the second gear blank pitch
surface with direction S’ of the generatrix of the second gear blank pitch surface; that
is,

__ I8vi?

coSd’p = v |' , , (3 47)
_ ISif s +siuld '
- vl
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. . U ! 1]
where, S|, S, and S} can be found in expression (3.43), and vl?, v}? and v;} can

be found by expression (2.35), for a right-hand pinion 0° < ¥p < 90°; for a left-hand
pinion 90° < 1, < 180°.
4. The Pressure Angle of the Gear Tooth Surface and the Tooth Curvature.

Since the unit common normal N, = —Npy to the gear blank pitch surfaces
and the unit common normal Nj, = —Nj, to the conjugate tooth surfaces are si-
multaneously perpendicular to the reiative velocity l—z‘l';—:—l, and I%:%:T coincides with the
tangential direction t to the intersection between the cponjugate tooth surface and the
gear blank pitch surface, thus, the unit normal Ny, to the tooth surface of the gear
can be obtained by a rotation of Ny about t through an angle (¢, — 90°) and ¢, is
called the pressure angle of the gear.

The tangential directicn t to the intersection between the conjugate tooth surface
and the gear blank pitch surface can be found in the form

t = (—9¢,Np)®S =tii+1tj+1sk

1, = 51 COoS ’l,bg - (Bb53 - CbSQ) sin ¢g (3 48)
t, = SQ COS ’l/)g - (Cbsl - AbS3) sin '(/)g '

ts = Sacosty — (ApSy — BpS1)siny,

where, Ny, is determined by expression (3.38), S is calculated from expression (3.41)
and 1, is the spiral angle of the gear determined by expression (3.46).

Then, the unit normal Ny, to the tooth surface of the gear is given as follows

Ni, = [(¢, — 90°)t] ® Ny, = sin ¢,Nip — cos ggt x Ny, (3.49)

As discussed previously, the point at which the conditions Ny, - v},"’ = 0 and
Nip - Jp = 0 are fulfilled is called the conjugate stagnant point. In other words, the
unit normal at the conjugate stagnant point of the tooth surface of the gear is equal

to 12
vy X Jp

T VEX T,
which is regarded as the unit limit normal. The pressure angle corresponding to the
unit limit normal is defined as the limit pressure angle ¢,.

Nep (3.50)

To derive an expression for the limit pressure angle, we set equation (3.49) equal
to expression (3.50), i.e.,

12
vt XJdp

m sin ¢0N1b - COS ¢ot X Nlb (351)
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Dot-multiplication of both sides in the above expression with J, yields the limit

pressure angle as follows
J p’ (t X Nlb)

Jp Ny

where, J,, Ny, and t can be determined by expressions (3.37), (3.38) and (3.48)
respectively.

tan ¢, = (3.52)

Since only the section on one side of the conjugate stagnant curve can enter the
position of conjugate contact, this situation is, of course, undesirable. In order to
exclude the conjugate stagnant curve from the active section of the tooth surface, the
actual pressure angle of the gear should be different from the limit pressure angle.

From the analyses in section (3.5), it can be seen that when D|v;?|+Ny,-J, =0,
curvature interference would occur. Since in hypoid gearing, the relative velocity |v},2|
is always different from zero, curvature interference would arise whenever Nip-Jp=0
and D, = 0 simultaneously. The curvature corresponding to D, = 0 with the limit
normal is called the limit normal curvature Kp and it can be found from definition
(2.209) as follows
K, = |mp] €08 00 _ vyl - (Sh2 x Nop)

|vi2| lviz|?

where, |v1?], |7,| and cos 7,y can be determined from expressions (3.34), (2.133) and
(2.135) respectively.

(3.53)

The limit curvature k2 of the intersection between the gear tooth surface and
the gear blank pitch plane, i.e., the reference plane, is found by using the Meusnier
theorem, i.e., expression (2.65)

K, =k cos ¢, (3.54)

Correspondingly, the limit curvature radius ry, of the intersection of the gear
tooth surface with the gear blank pitch plane can be defined to be

_ [v,2| cos ¢o

= cost (3.55)

no

5. Relation of the Surface of Engagement with the Gear Blank Pitch Plane.

Application of expression (2.184) yields a unit vector tangential to the surface of
engagement as follows
de
A+ vp(FE)-]

T ds

&), (3.56)
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Nlpo w b’
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Figure 3.6:Relation among the unit normals

Writing 7 = l%‘;’-;—, expression (2.56) becomes
P

viz

[—ﬁ;— +vp( 52 )]

v =
(F5)o

(3.57)

With the aid of expression (3.38), i.e., Ny = —”———’f;—, then, t, - Nj, = 0, that is,

Vp XV
t, is the unit vector tangent to the intersection of the surface of engagement with the

gear blank pitch plane.

In virtue of fig.3.6, the actual unit normal to the gear tooth surface on the convex
side is found

Nipi = sin @4 Ngp + cos @it X Nop (3.58)

where, ®, is the angle between Ny, and t X Nop.
With the aid of expression (3.50), we obtain
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Nipi - Jp = cos ®yi(t X Nop) - I, (3.59)

where, J,, t and IN,, can be determined by expressions (3.37), (3.48) and (3.50).
Let the actual curvature of the intersection between the gear tooth surface on
the convex side and the gear blank pitch plane be the sum of the limit curvature

k2 and the incremental value Ak, i.e., k2 + Ak. In this case, the actual normal
curvature Kg,; of the gear tooth surface on the convex side in the direction of the

relative velocity F’%-l is found by using expression (2.65)
14

Koui = (k2 + Akg) sin(@g: — ¢,) (3.60)

Substitution of expressions (3.34}, (2.133), (2.135) and (3.60) into (2.209) and
using (3.53), (3.54) yields the quantity Dgp;

Dgpi = 9U1l {z | Inpl cos avn
—k2|v3?| cos D, sin ¢, + Ak,_.,-lv,lfl sin(®4i — @) (3.61)
v12 [Fllzx(thap)] co SQ’

Rz

where, §, is calculated in expression (2.131).

Consequently, with the aid of expressions (3.59) and (3.61), application of expres-
sion (2.226) yields the rate of angular increment along the direction of the relative
velocity on the convex side in the following form

Dgpi
( dsy )gvz _NTE-E
_ l:”lvf"’|2zsm4:¢,+v12 [Q2x(txNop)] | Akeilvi2|sin{®gi—¢o) (362)
== [vIZ[(txNop)-Jp + (thop)J,,cos¢g.

Finally, expression (3.57) gives the unit vector tangential to the intersection of
the surface of engagement corresponding to the convex side with the gear blank pitch

plane as follows
vi2

itV (&), v
tgm’ - dsp) don 7 (363)
ds; /gvi

Likewise, the actual unit normal to the gear tooth surface on the concave side is
given, as shown in fig.3.6

Nipo = — sin @y Nop + €05 Pgo(t X Nop) (3.64)
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then
Nipo+ Jp = cos Pgo(t X Nop)  Ip (3.65)

where, J,. t and N, can be determined by expressions (3.37), (3.48) and (3.50).

As we did with the convex side, we let the actual curvature of the intersection of
the gear tooth surface on the concave side with the gear blank pitch plane be the sum
of the limit curvature k2, and the modification value Ak.. Again, the actual normal
curvature Ky, of the gear tooth surface on the concave side along the direction of

12
relative velocity I—:ﬁ—l is found in the following form
P

K gpo = — (k2 + Ake,) sin(@go + do) (3.66)

Substitution of expressions (3.34), (2.133), (2.135) and (3.66) into (2.209) and
using expressions (3.53) and (3.54) yields

DQP" = ngolv,l,2| - IT]pl CcoSs 9,,,7
= ~k2|v1?|cos @y sin @ — Ak vi2| sin(@g, + Bo) (3.67)
__v,’go[ﬁnx(th.,,,)]
P

cos @y

Consequently, the rate of angular increment in the direction of the relative velocity
on the concave side is found

dey D
(T2)gvo = Wioos
dsl gvo ipo"
VR in 004 vE (Riax(ExNop)] _ BkcolvE2]sin(@g0+o) (3.68)

= VIZ[(txNop)- 5 T T(€xNop)-Jpcos Pgo

Finally, the unit vector tangent to the intersection of the surface of engagement
corresponding to the concave side with the gear blank pitch plane is given

vxz de
. =1
Ivp?l + v dsy )guo

d
(E_%)gvo

too = (3.69)

It can be seen from the examination of expressions (3.63) and (3.69) that once the
following requirement is satisfied, i.e.,

Akg sin(‘I’g,- - ¢o) - _ Ak, Sin(q’go + @) 3 70)
coSs Qgi COos ng .
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then, t,, = ty; that is, both surfaces of engagement corresponding to the convex and
the concave sides intersect in a line which is in tangential contact with the gear blank
pitch plane.

It can also be seen that if using the limit normal and limit normal curvature of
the gear tooth surface as the actual unit normal and the curvature of the gear tooth
surface, then, due to Ny, -J, = Nop - J, = 0 and D, = 0, the corresponding rate
of angular increment would become indefinite, i.e., (%’f)v = 2. This implies from
expression (3.57) that the tangential direction of the intersection between the gear
blank pitch plane and the surface of engagement is indefinite, in other words, the gear
blank pitch surface is in tangential contact but not intersection with the surface of

engagement.

Tt should be mentioned here that in order to eliminate the possibilities of both the
conjugate boundary curve and of curvature interference, the current practice of gear
design is to prescribe the pressure angle of the gear different from the limit pressure
angle, i.e., N1, - J, # 0, and use the limit curvature radius as the practical curvature
radius of the gear, i.e., D, % 0, finally, Dy|v}?|+Ny,-Jp # 0. But, on the other hand,
due to D, # 0, it can be seen from expression (2.218) that 6, # 0, that is, there
exist bias contacts. In the author’s opinion, there is no need to consider the factor of
the limit curvature, and just the limit pressure angle is taken into consideration for
designing the tooth surface with point contact.
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Chapter 4

Design of the Gear Blank

Some expressions in this section are cited directly from AGMA 2005 standard, and
some other expressions are different from the AGMA 2005 standard in appearance

but the same in principle.

4.1 Calculation of the Basic Shape Parameters

Let the number of teeth for the gear and the pinion be N, and N, respectively,
and the theoretical transmission ratio between gear and pinion is in the form

Ny

¥ (4.1)

Mgp =

The face width Fg of the gear and the hypoid offset fg, are specified by the users
of hypoid gearing.

Although the shaft angle between the gear and the pinion in hypoid gearing can
be any value, the right angle is most widely used in the industry practice. In order
to simplify the calculation, this thesis is confined to discuss only the case of a right
angle between the gear and the pinion shafts, i.e., a = —90° in condition (3.1), but
the principle used here can be applied in the case of a shaft angle with any value.

We select the tooth surface of the gear as the fundamental surface and then, the
tooth surface of the pinion is the mating surface. Further, we prescribe a point F;
on the fundamental surface as the reference point, and the gear blank pitch surfaces
through the reference point P, are used as reference surfaces (reference cones) to define
nominal parameters such as pressure angles, spiral angles and so on. The position of
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the reference point is not strictly prescribed but is usually at the mean point of the
tooth width and the center of a tooth space on the reference cones. Its position can
be defined by the following three parameters,

Parameter 1: The radial distance of the reference point P, to axis w; = k—py;

Parameter 2: The phase angle made by rotating axis i about axis k to the radial
vector of the reference point Py——p;

Parameter 3: The axial distance of reference point P, from origin point O along
axis k—z.

Once these three position parameters for reference point P, are prescribed, the
basic shape parameters, i.e., pitch angles, spiral angles and pressure angles, can be
accordingly determined as following

1. Pitch Angles.
(1). Gear pitch angle «,.

Replacing p, p, 2, and f in expression (3.44) by ps, s, 25 and fg, respectively and
considering a@ = —90° yields the gear pitch angle as follows
coS Yy = [(op co5 p1p— fap)l

@ (4.2)
0< v, <90

where, f,, is the offset between the gear and the pinion, and @ is found in the form

Qs = /(o cos = fop)? + 23 co8? 1 (4.3)

(2). Pinion pitch angle ,.

The position parameters for point P, on the pinion corresponding to the reference
point P, on gear can be found by using expression (3.32) as follows

Ph = /(o cos = fgp)? + 23

[ — 2]
e (44)
zy  =—pysinpy

where, g} is the radial distance of point P; from axis k' = —ws; y, is the phase angle
made by rotating axis i’ to the radial vector of point Py, and z, is the axial distance
from point P} to origin point O’ along axis k' = —w,.

Then, application of expression (3.45) leads to the pinion pitch angle as follows

| cos 154/ (b €08 pp— fgp)2+23

Qs
0< Yp < 90°

CoOsYp = (4'5)
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2. Spiral Angles.
(1). Gear spiral angle 9.

Application of expression (3.34) and setting a = —90° yields the velocity at the
reference point P; of the gear relative to point P; on the pinion as follows

= offi+ ol + v}k
= —ppSin pp — Mgpzb

= Py COS Lip

= Mg, (pycos py — fop)
(032)? + (v33)? + (vi3)?

(4.6)

and expression (3.41) gives the generatrix of the gear reference cone in the form

S, = Sp1i + szj + Sizk
_ zpcosipy
St = Q. (’4 7)
Sy =2 cosghbsm m .
— —(ppcosup—fop)
Sb3 - Qs

Then, substitution of expressions (4.6) and (4.7) into (3.46) yields the gear spiral

angle 1, as follows

cos Yy =

12 12 12
_ |vbl Sp + Vi Sio + Vp3 Sba!

= 4.8
|Vb‘| (48)

where, if f,p > 0, then 0° < 9y < 90°; if fgp < 0, then 90° < 1, < 180°.
(2). Pinion spiral angle .
Expression (3.43) gives the generatrix of the pinion reference cone in the form

14

Sh

!

Sh

'

St

!

Sta

and expression (3.35) gives
12
M
Uy

U

3\

— ) 2 ’ sl ! !
= Sy’ + Spo’ + Spak
— _(pycosp—fop)?sinp
Qb)/ (o5 €08 py— fop)?+2¢
— _zb{pycospp—~fop)sinp
Qb+/(po cos ss—fop)2+2E

__ cos /(py cos up— fop)2+22
- Qs

J

= i’ + 03 + vg K’

(4.10)
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Then, substitution of expressions (4.9) and (4.10) into (3.47) yiclds the pinion
spiral angle as follows

r o, 12 Yy r .12

_ 1Shivat + Sty + Spatsy |
cosp = m
|Vb

(4.11)

where, if fg, > 0, then 90° < 1, < 180°; if fgp < 0, then 0° < 1, < 90°.
3. Pressure Angles.

The gear pressure angle ¢, can be prescribed as long as its value is different from
the limit pressure angle ¢,. Replacing M, f, p, ¢ and z, in expression (3.37) by Mg,
faps Pos s and z, and setting o = —90° yields

Jo = Jdpi+ Jp2j + i3k
Jnp =0

4.12
Jb2 = —MgpZp ( )
Juz = Mgppysin
Expression (3.38) can be further simplified in the form
Ny = Api+ Byj + Cik
Ay, = __{ps cos up—Jfgp) cOS 1y
B, =~ (oo cosw?}gp)sinub (4.13)
b
—_ % COos iy
G = Qs

where, @, is given by expression (4.3).
Substitution of expressions (3.48), (4.12) and {4.13) into (3.52) yields the limit
pressure angle
pb(tle - tQA,b) sin Kb — Zb(taAb - thb)
prb sin Hy — ZbBb

tan ¢, = (4.14)

Then, the gear pressure angles are in the following forms

(1). Pressure angle on the convex face, @g;.

bgi = Pgm + Do (4.15)

where, 0° < ¢ym < 90° and 0 < ¢y < 90°.

(2). Pressure angle on the concave face, ¢g,.
¢go =180 — ¢gm + ¢o (416)

103



where, 90° < @go < 180°.

(3). Average pressure angle of gear, ®,.

_ 180° — @go + Bgi
= 5 (4.17)

The pressure angle of the pinion depends on the condition of conjugate motion
and the requirement of the curvature modification and is directly influenced by the

pressure angle of the gear.

@,

4.2 Calculation of the Gear Blank Parafneters for the Gear
and the Pinion

1. Select Depth Factor k;, Mean Addendem Factor ¢, and Clearance Factor k,.
The depth factor k; can be found from table 6—1 in the AGMA standard [8].

The mean addendum factor ¢; can be found from table 6—2 in the AGMA stan-
dard.

The clearance factor k, can be found from chapter 6.5 in the AGMA standard.
2. Depth Parameters at the Reference point on the Gear.

(1). Mean working depth h.

The mean working depth h can be calculated from table 6—7 in the AGMA
standard in the following form

_ 2kypp oS Y
h= N, (4.18)

(2). Mean addendum.

With the aid of table 6—7 in the AGMA standard, the mean addendum values
can be determined in the following form.

Mean addendum for the gear a,.

g = Clh (419)

Mean addendum for the pinion a,.

ap=h-—a, (4.20)
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(3). Mean dedendum.

With the aid of table 6—7 in the AGMA standard, the mean dedendum values
can be found as follows:

Mean dedendum for the gear b,.

by =h(1+k2—61) (4.21)

Mean dedendum for the pinion bp.

bp = by +ag — ap (4.22)
(4). Clearance c.
With the aid of table 6—7 in the AGMA standard, the clearance c is found in the

form
Cc = kzh (423)
3. Depthwise taper parameters of the gear.
(1). Sum of the dedendum angles, £dp

Figure 4.1 (a) exhibits the shape of the tooth slot on the gear pitch cone. It can
be seen from fig. 4.1 (a) that

MN
= MN 4.24
b= (4.24)

due to -
MN = N, (4.25)

and with the aid of fig.4.1 (b), we obtain

ob= 2 (4.26)

sin 7,

where, 1, is found in expression (4.2).
Thus, substitution of expressions (4.25), (4.26) into (4.24) leads to

msiny,

b= N, (4.27)
Examination of fig.4.1 (a) gives
mn
== 4.28
Be o (4.28)
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®) (d)

Figure 4.1: Approximate determination of the sum of the dedendum
angles.

due to
mn ~ MNsin,
Ob=r. } (4.29)
where, 7. is the nominal radius of the cutter.
With the aid of expression (4.25), substitution of expressions (4.29) into (4.28)
yields
_ mpySin g,
f2 = N N, (4.30)

After rotating the convex flank about the axis —k until point N coincides with
point M on the concave flank, as shown in fig.4.1 (c), the unit vector 7 becomes TN
given by the following expression
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(-5/k)® 7N
(- ﬁlk)®[(ﬂ2k ) ® ) (4.31)
= (B2 — B1)K] ® Tag

On the other hand, 7) can be expressed in the form

v = (=Ak) ® Ty (4.32)
in which ) is the angle made by rotating 7p about the axis —k to 7y.

A Comparison of expressions (4.31) and (4.32) yields

A=py— B (4.33)

By replacing the actual tooth surfaces on both sides with the tangential planes at
points M and N, as shown in fig.4.1 (d), we obtain

Htan®, ~ L% (4.34)

where, ®, is found in expression (4.17).

On the other hand, H can be found as following

H=x~Lé (4.35)

Therefore, the combination of expressions (4.34) and (4.35) leads to

§ =2 = Bizh
2tan ® 2tan ®
— 1 g (1rsin-yg __g wpbsinwg) (436)
2tan®g '\ Ny reNg

Finally, the sum of the dedendum angles in the case of duplex depth taper can be
found in the form

Sop = 2
_ ol : pysin g (4.37)
= W, tan &g cos | (siny, — 272)

By defining the mean pitch cone distance of the gear as

Amg = =22 (4.38)
sin v,
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expression (4.37) can be rewritten in the form

7 sin vy (1- Amgsin zl)g)
N, tan ®,| cos | Te

Lop =

Since the diametral pitch of gear is defined as

_Ng
Pi=

and the outer cone distance is found in the form

D
2sin7y,

AoG =

in which D is the pitch diameter, then dp can be expressed in the form

90° _ Angsingy,
PyA.c tan @4| cos ) Te

Yop =

(2). Dedendum angle of the gear, d,.
Table 6—4 in the AGMA standard yields

8, = Tbp — zap(ihg-)

(3). Addendum angle of the gear, a,.
Table 6—7 in the AGMA standard gives

Q4 =2(5]_) —(59

4. Blank parameters of the gear.

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

With the aid of fig.4.2, the blank parameters of the gear can be found as follows

(1). Face angle of gear, 7ys.
Table 6—7 in the AGMA standard gives the relation

Yof =Yg+ Qg

(2). Root angle of the gear, 7,r.
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Figure 4.2:Blank parameters of gear

Table 6—7 in the AGMA standard gives

Yor = Vg — dg (4.46)

(3). Pitch apex beyond the crossing point (including sign), Zg,.
Examination of fig. 4.2 yields

Py
oo = Zp — 4.47
go 2p tan ')’g ( )

(4). Face apex beyond the crossing point (including sign), Zy;.
With the aid of fig.4.2, we can see that

+ a, CoS
B.b___i__—-ﬁ.*.ag

i {4.48
e+ agsiny) (4.48)

Zgy =25 — (
(5). Root apex beyond the crossing point (including sign), Z,,.
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The coordinate Z,, is found in the same way

py — b, cos, .
Zg,. =2Zp— (——t_a-,;lg'y—gr——g - bg sin ’)’g) (449)
5. Blank parameters of the pinion.
(1). Face angle of the pinion, 7py.
The parameters of point Pp shown in fig.4.2 are found in the form

pp = py— (bg —c)cosg 4
zp =z + (by — c)siny, (4.50)

We construct a cone through point Pp with cone angle equal to root angle <y, of
the gear. Then application of expression (3.44), setting a = —90°, yields the phase
angle up of point Pp as follows

cos pup = —J@ 1A or (4.51)
zp + pp tan ygr

Employment of expression (3.45) gives the angle 7,y of the pinion as follows

cos py/(pp €0s up — fop)? + 23
COS Yps = | VI On P D (4.52)

where

Qp = \/(PD cos pip — fgp)? + 2% cos? up (4.53)

(2). Root angle of the pinion, Ypr.

Likewise, parameters of point P, shown in fig.4.2 are found in the form
pr = P+ (ag + ) cos, (4.54)
2z =2~ (ag+c)siny, '

Again, we construct a cone through point P with cone angle equal to the face
angle 7,y of the gear. Then application of expression (3.44), setting oo = —90°, yields
the phase angle p; of point P, as follows

t
Cos [y = _f@M_ (4_55)
2+ ptanygg
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Employment of expression (3.45) leads to the root angle 7, of the pinion as follows

cos pe/(pr cos py — fop)® + 2¢ |

COS Ypr = 4.56
Yor = | ) ( )
where
Q= \/(pt cos 1y — fop)? + 2% cos? (4.57)
(3). Face apex beyond the crossing point (including sign), Zys.
b
Zys = —ppsinpp - — yp (4.58)
where, with the aid of expression (3.33), pp, can be determined in the form
Pp = \/(PD cos pup — fgp)? + 2} (4.59)
(4). Root apex beyond the crossing point (including sign), Zpr.
!
Zpr = —pySin pty — fan 7or (4.60)
where, with the aid of expression (3.33), p, can be determined in the form
o= /(prcos e — fop)? + 2 (4.61)
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Chapter 5

Determination of Machine—Setting
Parameters for the Generation of
the Gear Tooth Surface

In processing a pair of hypoid gears, the fundamental surface, i.e., the tooth
surface of the gear, is usually cut first, and then, according to the fundamental surface
obtained, the adaptability of a pair of tooth surfaces to errors and the requirement
for transmission precision, the tooth surface of the mating gear, i.e., the tooth surface
of the pinion, is finally produced through proper curvature modifications. Therefore,
there is no unique specification for the shape of the fundamental surface, and this
facilitates the design and manufacture of the gear tooth surface.

The current method for determining the machine-setting parameters is to intro-
duce an imaginary crown gear and then to try to find a relationship between the
imaginary crown gear and the workpiece. This method lacks a theoretical basis. S-
ince the essence of the problem for calculating the machine-setting parameters is to
determine the relationship between a pair of motions, i.e., the motions of cutter ¢
and workpiece ¢, and a pair of surfaces, i.e., the cutter surface A and the tooth
surface A, it is necessary to satisfy the requirements of conjugation, 1.e., expressions
(2.153), (2.155), (2.157) and (2.158). Furthermore, the tooth surface A is formed by
the cutter surface A under the motions of cutter ¢; and workpiece ¢z, and therefore,
the machine-setting parameters can be calculated with the aid of the solution to the
first kind of problem of conjugate surfaces given in section 2.4.2.

The Gleason No. 16 Bevel-Gear Generator enalbes us to produce a tooth surface
of hypoid gearing by the Formate method or by generation with or without the tilt
device. In the case of Formate, a cutter surface, i.e., a cone formed by rotation of
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Figure 5.1: Dual coordinate systems for determination of the machine—
setting

cutting edge, takes no motion with respect to the workpiece and the tooth surface
obtained is the complement of the cuiter surface. In the case of the generating
method, the cutter surface rotates about the cradle axis, and the workpiece rotates
about its own axis. Hence, the tooth surface of the workpiece is the envelope surface
of the cutter surface under the motion of the cutter relative to the workpiece. In the
case of the generating method without a tilt device, the axis of the cutter is parallel
to that of the cradle; while in the case of the generating method with a tilt device,
the axis of the cutter is not parallel to that of the cradle.

The orientation of the cutter axis relative to the cradle axis is defined by the tilt
angle and the swivel angle. The angle between the cradle axis and the cutter axis is
called the tilt angle which is used to compensate the difference of the pressure angle

‘of the workpiece and to obtain the required root angle. The swivel angle is used
to adjust the orientation of the inclined angle of the cutter axis with respect to the
cradle.

Similarly to section 2.3.2, we use dual coordinate systems O — im,jm, km and
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Figure 5.2:The initial position of cutting edge

Oy, — ig,jg, kg as shown in fig.5.1, and we choose coordinate system Op, — im,jm, km
correspondmg to the machine frame, k.. being coincident with the axis of the cradle,
and i,, being vertically down. The coordinate system O, — ig, Jg: kg corresponds to
the workpiece, k, being coincident with the rotating axis of the workpiece. The
relationship between Om — im,Jm: km and Og — ig, Jg, kg is found as follows,

On:Og = f mgim

By =in (5.1)
jg = (ﬂim) ® (_km) = —cos Bk, + sin Bim )
k, = (Bim) ® jm = sin Sk, + cos fjm

5.1 Expressions for the Cutter Surface

Cutter surface A, can be expressed in coordinate system O, — i, jc, ke as shown
in fig.5.2. k. coincides with the axis of the cutter.

Let w, be the tangential direction of the cutting edge in the coordinate plane
ic — O — j. as follows
W, = sin ¢.i. + cos ¢k, (5.2)

where, 0° < ¢, < 180°.
Then, the expression for the cutter surface can be obtained by rotating the cutting
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edge about axis k. as follows

R. = (ok.) ® (pci. + sw,)

= (p + ssin @.) cos oic + (p. + ssin ¢c) singjc + s cos Pk, (5.3)

where, in the case of the concave side;, c= a‘f, s = s"? ¢c = 2, pc = p?, and in the
case of the convex side, 0 = o*, s = §*, ¢. = ¢, pc = p..

Correspondingly, the unit normal N, to the cutter surface may be expressed in
the form

N. = (ok.) ® (— cos ¢.i. + sin ¢.k.) (5.4)
= — COS P COS 0l — COS P sin gj, + sin Pk, )

Now, we embed coordinate system O, — i, jc, ke into Om — im,Jm, Km, as shown
in fig.5.3 and the coordinate systems O, — i, jc, kc and O, — im, jm, k,, are related as
follows

ic = (Okn) ® iy, = cosOi,, +5in Ojp,
k. = (¢ic) ® ky, = sin( sin Oi,, — sin { cos O, + cos Ckrn (5.5)
jo =keX i, = —cos(sinOin, + cos cos Ojm + sin Ck,,

where, © is the swivel angle, and ( is the tilt angle. For the concave side: © = oo,
for the convex side: © = ©".

Without the tilt device, i.e., © = ¢ = 0, the relationship above will be simplified
as follows

le =1y
Je =lm (56)
k. =kn
and .
OO = Tcim + Yedm + 2ckm (5.7)

where, for the concave flank: z. = z2, y. = ¥?, 2. = 22; for the convex flank: z. = T,
Yo = Yor 2c = Z-

Then, with the aid of expression (5.5), the cutter surface A, can be expressed in
coordinate system Om — jm,Jm, Kkm as follows
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Figure 5.3:Relationship among coordinate systems

R, = 0,0.+R,
= [z, + (pc + s5in ¢c)(cos o cos © — sin o cos ( sin O)
+5 c0s ¢ sin ¢ 5in Olin, (5.8)
+[ye + (e + ssin ¢.)(cos o sin© + sino cos ( cos O) '
—5 €08 @, 5in ¢ €os Oljm

+([2c + (pc + ssin @) sin o sin ¢ + s cos ¢ cos (Jkn,

Further, if we assume that the cutting position of the point on the cutter corre-
sponding to reference point P, on the workpiece is in coordinate plane i. — O, — i,
i.e., s = 0, then the position vector of the point on the cutter corresponding to the
reference point P, on the workpiece can be simplified in the form

R = (zc+ pecosocos® — p.sino cos(sinO)in
+(ye + pc cos o sin © + p.sin o cos  cos O)jn, (5.9)
+(z¢ + pcsinosin )k
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where, for the concave ﬂank: Pc=p 0= 0° © = ©° Tc = T, Ye = Yh 2 = 2¢; for
the convex flank: p. = pi, 0 = 0°, © = O, T, = T}, Ye = Yp» 2c = 2.

Correspondingly, the unit normal N, to the cutter surface is found in the form

N, = Nezim + Ncyjm. + Nekm

N.. = —cos¢.cosocos© + cos P, sino cos(sin© + sin @ sin ( sin © (5.10)
N, = —cos¢.cososin® — cos,sino cos( cos © —sin¢,sin(cos © '
N, = —cos¢.sinosin(+ sin¢.cos(

Without the tilt device, i.e., © = ¢ = 0, expressions (5.8) and (5.9) become
Ron = [T+ (pc+55in @) €08 Olim+[ye+ (pc+55in ¢c) sin oljm +(2e+5 cos dc )k (5.11)
Rop = (Zc + pe €08 0)im + (Ye + pc 5in 0)jm + 2ckm (5.12)

Correspondingly, the unit normal N, to the cutter surface in the case of the no
tilt device is found as follows

N, = (ok.) ® (—cos @i, + sin ¢.k.)

. o . (5.13)
= —CO0S¢.COSTim — COS P SiN Ty + Sin Pckm

where, for the convex side: ¢, = ¢., 0 = o'; for the concave side: ¢, = @2, 0 = 0°.

5.2 Cutting Position of the Reference Point P, on the Work-
piece

The initial position of reference point P, on the workpiece can be assumed to be
in coordinate plane i — O — k, that is

Rgso = poi + 2k (5.14)

where the coordinate system O — i, j, k is the same as that of chapter 4.1.
Then the cutting position Ry of reference point P, on the workpiece can be
reached after rotating R, about axis k through an angle €, that is

Ry = (Egk) ® (ool + 2pk)

= ppCOSEl + ppSinggj + zpk (5.15)
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where, p, is the radial distance of the reference point P, to axis w; = k; for the convex
side: €4 = €; for the concave side: €4 = £5; 2b is the axial distance of the reference

point P, to the origin O along direction k = w;.
Likewise, the unit normal vector at reference point P, to the tooth surface at the
initial position is found in the form
Ng = (743) ® {(_d’yi) ® [(¢4k) ® (-}
= (sin ¢, COS 7Y, + €OS Pg Sin Yy 5in 7)1 — COS Py COS Y] (5.16)
+(— sin ¢, sin 7, + cos ¢ sin P, cos Yo )k

Correspondingly, the unit normal at reference point P, to the tooth surface at the
cutting position is found as follows
Ny, = (Eyk) ® Ny,
= [(sin @ cos 74 + COS Pg 5in 9 5in yg) COSE, + €OS Py €OS Py SiN g,li (5.17)
+{(sin ¢, cos 75 + COS P Sin P, sin Yg) sin €g — €OS B¢ €OS Py COS gi v
+(— sin ¢, sin 7y, + €08 @g sin 1, cos 7o)k

where, for the convex flank: ¢, = ¢;; for the concave flank: ¢, = ¢5.

Now, we embed coordinate system O —1i, j, k into Og — iy, Jg, kg as shown in fig.5.4
and the relationship between coordinate systems O —1i, j,k and O, — g, 34, kg is given
as follows

i =i

j = jg

X -k, (5.18)
0,0 =Lk

where, iy, jg, kg are given in expression (5.1).

Then, with the aid of expression (5.18), the cutting position vector Ry, can be
expressed in coordinate system Oy — iy, jg, kg as follows

Ry = pyCOSEgly + ppSinegiy + (25 + L)kg (5.19)
Likewise, the unit normal at the reference point to the tooth surface is given in

the form

N, = [(sin ¢y cos 7, + cOs @y sin 1, sin 7y) COSEg + €OS Py €OS Yy Sin €glig
+[(sin ¢, cos Y, + cOS @, sin Vg sin 7,) sin €5 — €OS Py COS P COSEljy (5.20)
+(— sin @, sin 7y + oS P Sin P cos v,)kg
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5.3 The Relationship between the Cutter Surface and the
Gear Tooth Surface

With the aid of expressions (5.1), (5.9) and (5.19) and taking into consideration
a = 90° — f3, expression (2.170) leads to the relationship between R, and Ry, as
follows

pyCOSEy = T+ p,COs0CcosO — p.sinocos(sin® — fry
pssine, = (ye+ pecososin® + p,sino cos( cos ©)sin f

—(2. + pesinosin () cos B (5.21)
z+L = (y.+ p.cososin® + p.sinocoscosO)cos

+(2c + pcsinosin () sin f

Without the tilt device, expression (5.21) can be simplified in the form

PoCOSEg = T+ PcCOSO — fmg
ppsine, = (Y + pcsino)sinf — z.cos B (5.22)
z24+L = (yc+ pcsino)cosf + z.sin
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Likewise, substitution of expressions (5.10) and (5.20) into (2.171) together with
consideration of « = 90° — 3 yields the relationship between N and N, as follows

—~N., = (sing,cosvy + cos ¢y sin 1, sinyg) coseg
+ COS (g COS Yy Sin €y
~Ngsinf+ N cosf = (sin @ cos g + oS @y sin Ygsin Yg) SINE (5.23)
— COS (g COS Yy COS Eg
—NgcosfB— Ne;sinff = — sin ¢, sin -y, + €0S @y Sin Yy oS Y,

Without the tilt device, i.e., © = ¢ = 0, expression (5.23) may be rewritten in the
form

cos¢g.coso = (sin @y COS7Yg + COS ¢y Sin Py sin Yg) COSEg
+ COS ¢ COS Py SiN €y
cos dsinasin B +sing.cos § = (sin @y €0 ¥, + €OS Py Sin Yy sinyg) sin g 5.24)
— €OS ¢y COS Py COSE
cos g sinocos B —sing.sinB = —sing,siny, + cos g, sinihy cos v,

Substitution of expressions (5.9) into (2.129) yields the velocity at the reference
point P, of the cutter reiative to the workpiece as follows

vi¥ = [~(14 MpgsinB)(ye + pccososin© + p,sino cos ¢ cos ©)
+Mumg(2c + pcsinosin () cos Blim
+[(1 + Mpmgsin B)(zc + pccos o cos© — p,sin o cos(sin 0) (5.25)
- mgfmg sin ,B]jm .
+[=Ming(zc + pecos o cos © — psin o cos ( sin ©) cos §
+ Mg fmg c0s B)km

where, Mpmy = —:fm is the ratio of roll.
Without the tilt device, i.e., ¢ = © = 0, the relative velocity is in the form

vi¥ = [—(1 4+ MpgsinB)(yc + ocsin 0) + Mgz, cos flim
+[(1 + Mypgsin B)(zc + pc €05 0) — Mimg fng in Blim (5.26)
+{—=Mmg(zc + pccos o) cos B + Mmg fmg COS Blkm

Condition (2.157) yields the following equation of conjugacy

Nez[—(1 + Mg sin B)(yc + pc cos o5in © + pcsin o cos  cos o)

4+ Mg (2 + pesinosin ) cos ] + Ney[(1 + Mg sin B)(z

+p €0s 0 €05 O — g sin o cos { sin ©) — Mg fing sin f] (5.27)
+ Nz [~ Mg (T + pc cos o cos © — p. sin o cos € sin ©)cos

+Mmgfmgcos f] =0
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Without the tilt device, equation (5.27) becomes

— c0s ¢ cos a|—(1 + Mpgsin B)(yc + pcsin o) + Mgz, cos O]
— ¢0S ¢ 5in o[(1 + Mg sin B)(zc + pc €05 0) — Mimg fmg sin 3] (5.28)
+ $in ¢e[— Mmg(zc + pc €05 0) €08 B + Mg fing COS fl=0

5.4 Four Auxiliary Conditions

The point where the cutter axis k. intersects the coordinate plane i,; — O - Jm
is named P.,, and then, the position vector R, of point P, is expressed in the form

RCT = xcrim + ycrjm (5.29)

Therefore, the position vector 0O0. of the origin O, of the coordinate system
O. — ic, jc, ke can be found in the form

00, = R, + pk. (5.30)

where, p is the distance from the intersection point P, to origin O, along axis k..

With the aid of expression (5.5), removing pk. to the left side of the expression
above results in

Re = Zgim + Yerdm (5.31)
= (z.— psin(sin®)ip + (ye + psin( cos O)jm + (2c — pcosQk

where, for the concave side: 1. = 12, y. = ¥, 2. = 22, © = ©°; for the convex side:
Te = Th Yo = Yor 2 = 25, O = O

Due to 2. — pcos{ = 0, then,

2
=== 5.32
P= st (5.32)
Substitution of expressions (5.31) into (5.30) leads to
Ree = Zerim + Yordm (5.33)

(z. — z.tan( sin ©)ip, + (yc + 2. tan cos ©)jm

Since the distance from the intersection point P, to the cradle axis k,, is a constant
in the whole course of the cutting process, the first auxiliary condition can be found
as follows

(z° — 22 tan ( sin ©°)% + (y2 + 22 tan { cos ©°)?

= (z! — 2! tansin©)? + (y! + 2} tan { cos ©*)? (5.34)
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Figure 5.5:The phase angle for gear

and without the tilt device, condition (5.34) can be written in the form
(22)? + (32)° = (20)* + (v2)* (5.35)

Let £, be the phase angle made by R, with axis i,. Then, the second auxiliary
condition can be found in the form

Ye + 2. tan cos ©
= arct - 5.36
Ee ctan T, — z.tan(sin© (5.36)

Without the tilt device, expression (5.36) results to the form

€. = arctan Ye (5.37)
z

Since the rotating angle of the gear from the conjugate cutting position of the
convex face to the conjugate cutting position of the concave face is Ae, = T +e5 — €
shown in fig.4.5 and the rotating angle of the cradle corresponding to Ag, is
Ag, = €2 — €f shown in fig. 5.5, the third auxiliary condition can be found as follows

de Ae
— %9 _
Mpn, = d. = Aec (5.38)
- Tg+52-—eg .
eL—e2

where, My, is negative, and 1, = =4~ ;,’ , which is the angle corresponding to the tooth
space, is positive for a right- hand gear and negative for a left-hand gear, and N, is
the tooth number of the gear.
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Figure 5.6:The phase angle for cradle

Since the coordinate system O, — i, j., k. is fixed in the cradle, the fourth auxiliary
condition can be found as follows

Q=0+ ¢l (5.39)

where, ©° and © are the swivel angles corresponding to the concave and convex sides
respectively.

5.5 Simultaneous Equations for Determining the Machine—
Setting Parameters and Discussion of the Degrees of
Freedom for the Cutting Process

Combination of expressions (5.21), (5.23), (5.27) in the cases of both concave and
convex sides, together with the four auxiliary conditions, i.e., (5.34), (5.36), (5.38)
and (5.39), leads to the following simultaneous equations for calculating the machine-
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setting parameters,

Py COSEY = T¢ + pZ COS 0° COS ©° — p2<'no°cos(sin ©° — fing,

pysined = (yg + pZ coso°sin ©° + p?sin 0° cos  cos ©°) sin 3

—(z2 + p2sin o®°sin () cos 3,

2+ L = (y° + p2 cos 0°sin ©° -+ p sin 0 cos ¢ cos ©°) cos 3

+(28 + p¢sin o®sin () sin 3,

pycosel = z¢ + pi.cos o' cos ©' — pisin o' cos(sin ©' — fmg,

pysiney = (ye + pc cos o' sin ©' + p.sin o' cos { cos ©*) sin 8

—(2¢ + pisino’sin () cos 3,

2+ L = (yi + pl cos o sin © + p sin 0% cos { cos ©°) cos §

+(2 + pisinotsin¢) sin S,

—NgZ, = (sin ¢ cos g + cos ¢g sin Y, sin 7Yg) €OSEg + COS ¢ cos Ygsin ey,
—Ng,cosf — NZ sinff = — sip ¢g sin g + cos @, .sin Pg COS g, '

— N, = (sin ¢}, cos vy + cos ¢ sin 9, sin ) cos £, + cos ¢; cos Py sin €5,

— N}, cos § — N, sin § = — sin ¢ siny, + cos ¢}, sin 1), cos 7,

N2 [~(1 + Mg sin B)(y + p2 cos 0°sin ©° + pZ sin 0° cos { cos ©°) + Mg
(22 + p2sin osin ¢) cos B] + NG, [(1 + Mg sin B) (22 + pg cos o° cos o°
—p2 5in 0° cos { 5in ©°) — Mg fmg sin B) + NZ,[—Mmg(z2 + p¢ cos 0° cos ©°
—p2 sin 0° cos { sin ©°) cos B + Mg fmg €OS g] =0,

Ni_[~(1 + Mppgsin B)(yi + p.cos o sin ©* + pi sin o* cos ¢ cos ©%) + Mpmg
(2} + pisina'sin ) cos B] + Ni[(1 + Mg sin B)(z} + p}, cos o* cos o'

— pl.sin 0% ¢0s € §in ©%) — Ming fmg sin B + N, [—Mimg(2 + p}, cos oicos®
—p' sin o* cos ¢ sin ©%) cos B + Mg fmg c0s f] = 0,

(z2 — 22 tan (sin ©°)% + (y2 + 22 tan { cos ©°)?

= (zi ~ zi tan(sin ©F)? + (yi + 24 tan { cos ©°)?,

de Ae Ty+ed—¢;
_ _deg _ _Deg _ 1gTEgTEg
Mm.‘? T dee T Aec T €r—e2 0

0° =0 +el—¢ )

5 (5.40)

where N2, N&,, Ng, and N, N;,, N, can be calculated by expression (5.10). €% and
g2 can be found as follows

i
€, = arctan z' —z! tan ( 8in ©F
Yotz tan(cos 92

z2—z¢ tan { sin ©°

(5.41)

yi-+2{ tan ( cos ©°
€2 = arctan

Without the tilt device, i.e., { = © = 0, equations (5.40) can be expressed in the
form
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pyCOSEG = Tl + p2cos0° — frmg,

pysinel = (y2 + p2sin o°) sin § — 27 cos

2y + L = (y2 + p2sino®) cos B + 22 sin 3,

Py COSEG = T + P COST" — fmgr

pysiney = (y¢ + p.sino*)sin f — 2 cos 3,

2+ L = (y: + pl.sino*) cos B + zsin 3,

cos @2 208 0° = (sin ¢ cos v, + cos ¢ sin 1y sin Yg) COSEQ

+ €os ¢ €os Yy singg,

oS ¢g sino° cos B - sjn @#sin f = - sin ¢ sin 7y, + cos ¢g sin ¥, cos v,
cos @, cos o' = (sin ¢y COS Y + COS ¢, sin 1, siny,) cos €,

+ cos @, cos Ygsineg, . '

cos ¢, sin o* cos B — sin ¢} sin f§ = — sin ¢ sin 7, + cos @, sin Y, cos vy,

— c05 ¢ c0s 0°[— (1 + Mg sin B)(x2 + pg sin 0°) + Mymgz? cos f]
— cos ¢° sin 0°[(1 + Mg sin 8)(z8 + p2 cos 0°) — Mg fmg sin ]
+ 5in @2 — Mg (22 + p2 €08 0°) €08 B + Mg frmg c0s B] = 0,

— cos ¢, c0s 0*[— (1 + Mg sin B)(yi + pisino*) + Mgz} cos §]
— cos @' sin 0*{(1 + Mg sin B)(zt + pf c0s 0*) — Mg fmg sin f]
+ sin @[~ Mg (z2 + pi cos ') cos B + Mg frmg cos ] = 0,

(22)? + (¥2)* = (z2)* + (W),

where

de Ac Ty+ed—c!
_ 2 = 28 — 979 g
]‘/[mg dec Aec €i~e2
i _
E, = ;g
Eo praad gﬂ
c zg

\ (5.42)

(5.43)

The simultaneous equations (5.40) consist of 15 independent equations. The pa-
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rameters to be calculated are now 21, i.e, ¢, 3, 2, i, yi, 25, ©°, 6y, 0°, 0', €3, £,
02, o, 82, %, ¢, By Mg, fmg and L. Therefore, there are six parameters whose values
must be prescribed. In order to limit the number of cutters, the radii and the blade
angles of the cutter, i.e., pg, p. and ¢2, ¢i can be prescribed. In the current practice
of hypoid gearing, the tilt device is usually used to allow for a difference between
the gear pressure angle and the cutter blade angle. In this case, the minimum value
of the tilt angle ¢ can be achieved by letting the phase angles of the cutting edges
be right angles, i.e., ¢° = o = 90°. The simultaneous equations (5.40) can then be



further simplified as

Py COS €5 = T¢ — pZ cos ¢ sin ©° — fmg, )
pesine) = (y; + pg cos { cos ©°)sin B — (22 + p2sin(°) cos 3,

2y + L = (y° + p2cos { cos©°) cos B + (2 + pZsin ¢)sin g,

pbCOSE} = T; — picos(sin® — fng,

ppsin el = (y& + p; cos ( cos ©%) sin § — (z; + p;sin () cos B,

25+ L = (y + pi.cos { cos ©%) cos f + (2; + p}sin () sin B,

—Ng, = (sin @] cosyg + cos ¢ sin g sin 7g) COSE + COS P COS Py sineg,

—Ng, cos B — NZ,sin B = —sin ¢gsin e + cos ¢g sin g €S g, o
—N¢, = (sin ¢} cos g + cos ¢; sin 1,11.9 sin ) cose, + cos @, cos Yy siney,
— N}, cos § — N, sin B = —sin ¢, sin v, + cos ¢, sin Py cOs g, | (5.44)

N2 [—(1 + Mpgsin B)(yS + pg cos { cos ©°) + Mpmg(22 + p2sin () cos B
+NZ,[(1 + Mpgsin B)(zZ — pg cos  sin ©°) — Mpng fmgsin ]

+ N[~ Mypg(z8 — p2 cos ¢ sin ©°) cos f + Ming fmg cos 8] = 0,

Ni_[—(1 + Mg sin B)(y: + pf. cos € cos ©°) + Ming(2{ + pisin () cos B
+NL[(1 + Mpgsin 8)(z¢ — Pl cos ¢ sin ©') — Mg fmg sin f]

+ N[~ Mg (i — pf cos { sin ©) cos B + Mg fmg cos ] = 0,

(z° ~ 2% tan ( sin ©°)% + (y? + 22 tan { cos ©°)?

= (z% — 7 tan ¢ sin ©%)? + (¥} + 2! tan { cos ©%)?,
de Ac Tg+e)—eg
M —_ %2 . _Zfg 8 5 9
mg —  de Aec eL—e2 ?
o _ Qi o __ i
=0 '+l —-¢; )

where, N2, N2, N, and Ni,, N, N, are calculated by expression (4.10). €% and €2
can be found as follows

i — ape
€. = arctan :é-zl tan (8in ©*
yctzgtan(cos©F

z2—22 tan { sin ©°

(5.45)

y'='+z‘:' tan  cos 6°
€2 = arctan

Without the tilt device, the problem can be treated as follows. The simultaneous
equations (5.42) consist of 14 independent equations, but the parameters to be solved
are 18, i.e., 20,92, 22, 2%, 45, 28, 0%, 0%, €2, 4, p2, Pt 82, 8%, By Mimg, fmg and L. Therefor=.
there are four parameters to be prescribed. Usually, 4 can be assumed to be equa.
to the root angle v, of the gear, ie., 8 = 7, the blade angles ¢2 and ¢: can be
prescribed, and the inner and outer radii of a cutter can be defined by the following
equations, which can be derived by inspection from fig.5.7

R =ro=[(L+2Zy)siny, - 2tandg + 22 (5.46)
pi =r1c—[(L+ Zy)sinyyr — z;]tan g, — 3¢ |
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where, Wp is the point width of the cutter, 7 is the nominal radius of the cutter, and
Zg is the root apex beyond the crossing point O between the gear and the pinion.

Therefore, the simultaneous equations for machine-setting parameters in the case
of the no tilt device take the following form

Py COSEG = T + pg €OS 0° = fmgs \
pysine) = (y2 + p¢ sin 0°) sin Ygr — 2 COS Yyr,

2+ L = (y2 + p2sin 0°) cos vgr + 2¢ sin Yyr,

pbcoseg =z + pccosa = fmg:

pysiney = (yc + pcsino *) sin ygr — z COS Yqr,

2o+ L = (y + pl sin o*) cos - + 2% sin Y,

cos ¢2 cos 0° = (sin @3 cos v, + cos d>° sin 9, siny,) cos €3

+ €08 @ cos Y, sin e;,

cos ¢2sin a" COS Ygr — Sin @7 sin g, = — sin @7 sin vy + cos @, sin g cos g,
cos ¢} cos o (sm dJ‘ oS Yy + €OS ¢' sin Y, sin y,) cos s

coS ¢' cos dzg sin €y, e (5.47)
cos ¢' sin o cos 'yg, sin ¢ sin v, = —sin ¢’ sin y4 + cos d)' sin 1, cos v,

— cos @2 cos 0°[—(1 + My, mg SN Yor) (¥2 + p2sin0°) + Mmgz COS Ygr]

— cos ¢9sin o°[(1 + Mmg sin vgr) (22 + p2 €05 0°) — Mg fmg sm Yer

+ 5in @[~ Mg (22 + pZ 05 0°) €08 Ygr + Ming fmg COS Yor] =

—cos ¢} cosot[—(1 + Ming sin Yor) (Ut + pESING%) + Mpmg2g cos 'yg,]

— cos ¢} sin a*[(1 + Mg sin yyr) (22 + p.cos ') — Mg fing sm 'yg,]

+ sin @i [— Mg (22 + pi cos 0%) cos Ygr + Mg frmg €08 Ygr] =

(@2 + (2 = (@0 + (P,

Mg = ‘%f—‘ﬁic -L:’E—”e_el )

Let 7. be prescribed and W, be calculated. By solving the simultaneous equations
(5.47), all 14 remaining parameters can be found.

With the Formate method, we obtain Mpy = , from expressions (5.38) and
(5.39). It follows 2 = z! = z, ¢ = y; = ¥, and T + €5 — €, = 0. Simultaneous
equations for the machme-settmg parameters in the case of the formate method are
then found in the form
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Figure 5.7:Dimension of cutter

PpCOSEQ = T+ p2cosa° = fmg,

pysined = (ye + p2sin o) sin ygr — 22 COS Ygr,
25 + L = (yc + p2sin 0°) cos Ygr + 22 sin Yy,
Py COSEY = T, + picosc® = fmg,

pysinel = (ye + pisino*) sinygr — z: cos ¥y,
2+ L = (yc + pl.sino*) cos 7y, + 25 sin 7gr,

cos ¢2 cos 0° = (sin @ cosy; + cos ¢ sin g, sin 7,) cos €5 s (5.48)
+ cos @ cos Y, sin g,

cos ¢g sin af COS Yor — sin @2 sin ygr = — sin ¢ sin 7y, + cos @ sin 1), cos g,

cos ¢; cos o = (sin ¢ cos 7y, -+ cos ¢}, sin 1), siny,) cos €y

+ cos #, cos Y siney, . . .

cos @ sin o' coS Ygr — sin ¢ sin 7 = — sin @} sin -y, + cos @, 5in ), c0s g,
Ty+e,—¢€,=0. )

where, p2, p! are given by expression (5.46).

There are now 11 equations and 13 parameters, i.e., Tc, Yo, 22, 2%, €2, €5, 0°, 07,
@2, ¢k, Wy, fmg and L. Let ¢ and ¢ be prescribed. Solving simultaneous equations
(5.48) provides all the remaining parameters.
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Since the number of calculating parameters is more than that of equations, a
optional choice of free parameters is available. In the case of a small amount of
production, we can use a currently available cutter rather than invest expensive money
to especially design and make a new cutter. But in the case of mass production, we
can especially design and make a new cutter according to requirements.
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Chapter 6

Calculation of Curvature for the
Gear Tooth Surface

Since the gear tooth surface is generated by the cutter surface under a pair of
conjugate motions of the gear and cutter, the curvature properties of the gear tooth
surface can be obtained by the solution to the first type of problem of conjugate
curvatures. Further, the cutter surface is formed by a cutting edge, and therefore, it
is necessary to calculate the curvature properties of the cutter surface by the method
given in section 2.4.3, before calculating the curvature properties of the gear tooth

surface.

6.1 Calculation of Curvatures for Conical and Cylindricai
Helicoids with Constant Rate of Lead and Rotating

Surface

We assume that the generating curve, i.e., the cutting edge, is fixed in the sec-
ond reference frame O' — i/, ', k' as described in section 2.4.3. If the corresponding
conjugate motion is given in the following form

. dey dey

d(! 2

i‘%lyl = 0, %ll = 0gq, dT:?l = 0.
then the corresponding conjugate surface formed by the cutting edge under such a

type of conjugate motion is a conical helicoid with constant rate of lead. by and b,
are two constants which represent the rate of radial and axial leads respectively.

M= _q d_ﬂx_—_‘f“:z:o, iﬂﬂ:b,cos'yi+b,sinfyj,} (6.1)
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Substituting expressions (2.135) and (2.265) into (2.269) and (2.273) respectively,
then expressions (2.267), (2.269) and (2.273) can be simplified in the following forins

Ko = ~hlMNyp-8)
ke(vp* §)+W-n
Gw = |W><\)!:;,2| * (6.2)

— W- (w1 —M Gi1w(W-vi?) Nip-J
Ky = "_|6lev,,177_2 - |va,,13| - |W:<vp1§'|!
Position vector R;, of point P on the generating curve can be expressed in the
first coordinate system O — i, j, k as follows

R,, = pcosoi+ psingj + 2k (6.3)

where, p is the radial distance from point P to axis w; = k; o is the phase angle made
by the radial vector to axis i and z is the axial distance of point P along axis k.

The unit radial vector r, in the direction from axis w; = k to point P is in the
form
r, = cosoi +sinoj (6.4)

and the unit circumferential tangential vector t, is found as follows

t, =kxr,

= —sinoi + cosgj (6.5)

Rotating unit vectors r, and t, about axis k, each through an angle v, yields new
unit vectors W, and &, as follows

W, = (vk)®r,= (vk)® (cosoi+ sinaj)
= cos(o + v)i+sin(o + v)j

& = (vk) ®t, = (vk) ® (—sinoi + cos o)
= —sin(o + v)i+ cos(o + v)j

(6.6)

The unit tangential vector W at point P to the generating curve can be obtained
by rotating W, about axis &, through an angle ¢. — 90° as follows

W = [(¢c - 900)60] W,

= sin ¢ cos(o + v)i + sin @.sin(o + v)j + cos gk (6.7)

The unit principle normal vector £ at point P to the generating curve results from
rotating &, about W through an angle 4, that is,

§ = (5W) ®&
= [—cosdsin(o + v) — sindcos @ cos(o + v)]i (6.8)
+[cos 6 cos(o + v) — sin & cos ¢, sin(o + v)]j + sin & sin ¢k
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With the aid of expression (6.3) and taking into account M =0, application of
expression (2.129) yields

vi2 = (~psino — b cos7)i+ (pcoso — by sin7)j+ bak (6.9)
V12| = \/p? + b2 + b% + 2pb; sin(o — 7) '

and application of expression (2.150) results in

J, = b, sin~yi — b, cos7j (6.10)

Substitution of expressions (6.7), (6.9) into (2.265) yields the unit vector Ny,
normal to the conjugace surface formed by the generating curve as follows

N.. = Wxv)2 )
Ip = [Wxvl?
[b sin ¢, sin(o + v) — (pcoso — by siny) cos gcJi
{ +{—ba sin @ cos(o + v) — (psino + by cos 7) cos ¢clj l}
+[psin ¢, cosv — b, sin g sin(y — o — v)lk
Q’ \ (6.11)

W x v7?|

Qp

b2 sin? @ + p?(cos? g, + sin® ¢, cos? v)

+b2[cos? @ + sin? ¢ sin?(y — o — v)]
+2pb,[sin(c — 7) cos® ¢ — sin® g cosusin(y — 0 — v)]
—2pb, sin ¢, cos ¢, sin v + 2bgb, sin @ cos . cos(y — o — v) J

Expression (2.133) results in

N =~ "lpli + 77pzi + 77p3k W
Tl = b, 8in @ cos(o+v)+(psin o+by €08 ) €O5 Pc
__ ba8in ¢¢ sin(a+u)—(gzos o—by 8in ) co8 ¢¢
T2 = Qp
Tz =0 , (6.12)
|7)p| = \/77,2;1 + 7732 + 77,2;3
_ \/b?, 8in? ¢c+([p?+b2+2pby sin(o~7)] cos? Bc+2ba 8in P o8 Pc[br co8{y—0~v)—psin ]
- Qp J
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Application of expressions (6.7), (6.9), (6.10), (6.11) and (6.12) results in the
following expressions

Nlp Iy = by [ba 8in ¢ cos('y—a—v)+s:os @c 8in{o0—¥)+b, cos @]
W vl? = psingcsinv — b sing.cos(y ~ 0 = v) + bg cos @c (6.13)
W __ singc[bs 8in ¢c—pcos . sin v+br €08 Pe cOS(7—0~v)]
T = @

and finally, substitution of expressions (6.7), (6.8), (6.11) and (6.13) into (6.2) leads
to the general expressions for calculating the curvatures of conical helicoids with
constant rate of lead as follows

K = k b, sin ¢ cos § — p(sin § cos v + cos ¢, cos d sin v) W
1w Qs | +b,[sindsin(y — o — v) + cos ¢ cos d cos(y — 0 — V)]

G, _ _ Kiyu[psin ¢ sin v—by sin ¢c cos(y—o—v)+ba co8 éc]
wo Q
+ 8in ¢c[ba 8in @ —p cOS ¢c sin v-+b, cos @ cos(7—o—v)] > (6. 14)
fay]
Kl . _cos¢. _ Giwl[psinge sinfz—b, 8in ¢ cos(y~0—v)+b, €08 P¢)
g =

Q
_ br?lfa sin ¢ cos(y—0—v)+pcos ¢ sin’(ltr—‘y)+br cos @}
Q; J

If y =0 =v =0° and § = 90°, the expressions above can be further simplified in
the following forms

Nl = —pCOoS ¢ci—'(ba sin ¢c+br co8 P¢ '-ii)sin d’ck A
P P2+(ba sin gc+br cos ¢c)?
kep

Ky = -
t /P?+(ba sin dc+by cos ¢c)?
_ kep(ba cos ¢c—by sin e )+(ba 8in dc+br co8 Pc)8in ¢
Giw = p2+(ba sicn @c+br COS Pc)? - ) (6'15)
Klq — €08 P¢

- \/;2+(ba 8in ¢c+br cos Pc)?
__kep(ba €08 ¢ by sin ¢c)?+(ba 8in ¢ +br cos ¢c)? cos o

[p24(ba 8in ¢c+br cos ¢c)?] % /

If further we let k. = 0 in expression (6.15), corresponding to a straight cutter
blade, then the expression above can be rewritten in the form

K = 0
— (ba rin ¢c+br cos ¢c) sin ¢c
G = p24(ba 8in o +by OB P ) (6.16)
K, = — o8 ¢ [p2+2(bo 5in de+br cos ¢c)?)
¢ =

[p2+(ba 8in ¢c+br cos ¢c)2]§

By assuming b, = 0 in the condition of conjugate motion, i.e., in (6.1), the cor-
responding conjugate surface formed by a cutting edge under the conjugate motions
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of this type is a cylindrical helicoid. Substitution of condition (6.1) into expressions
(6.11) and (6.14) together with consideration b, = 0 leads to the general formulas to
calculate the unit normal and the curvatures of a cylindrical helicoid with a constant

rate of lead as follows
b, sin @ sin(o + v) — pcos o cos gcJi
—[b sin ¢, cos(a + v) + psino cos ¢clj
+psin ¢, cos vk (6.17)
/b2 sin® ¢, + p?(~os? ¢ + sin? ¢ cos?2 v) — 2pb, sin ¢ cos @ sinv '

and
ke[ba 8in ¢, cos §—p(sin & cos v+cos ¢ cos d sin v)) )
\/tglin2 de+p?(cos? ¢c+8in? ¢c cos? v)—2pba sin ¢ €08 P 8in v
sin ¢ (b, sin ¢, — pcos ¢.sinv)
—k¢[bg sin @ cos & — p(sin § cos v + cos ¢ cos § sin v)]
G = (psin ¢, sin v + b, cos @)
lw — b2 sfin2 ¢c+p?(cos? ¢ +s§n7 @c €082 v)—2pbg sin ¢ cos Pe s.in v 3 (6.18)
k[b, sin ¢ cos & — p(sin § cos v + cos ¢, cos d sin v)]
(psin ¢, sin v + b, cos @) — 2b2 sin? ¢ cos ¢,
—p?(cos? ¢ + sin? ¢, cos? v — sin® ¢, sin® v) cos @
—pbq(sin? ¢ — 3 cos? ¢c) sin @ sinv

(b2 5in? ¢c+p?(cos? ¢c+5in? ¢ cos? v)—2pbg sin Pe cOS Pc 8in u]i /

Kiw =

Ky =

If o = v =0° & = 90°, the expressions above can be simplified in the form

__ —pcos ¢.i—bq sin ¢cj+psin gk 3
p2+b2 sin? ¢
k
Kiw =~
p2+b2 sin® ¢, 6.19
G] = ba sin? @etkepba €OS d¢ } ( : )
v VP2 +b2 8in? .
K. = 08 ¢ (p*+2b2 8in? de +kcpba OB Pc)
1q -

(p2+b2 sin? 6c) ¥ )

Further, assuming k. = 0, besides 0 = v = 0°, § = 90°, then expression (6.19)
yields the formulas to calculate curvatures of the surface of the Archimedes worm as

follows

K w ~ 0
G = b, sin? ¢¢

t p?+b2 sin? g (6.20)
Klq = — (p?+-2b2 sin? ¢ ) cos Jc

(p?+b2 sin? ¢)¥
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If we choose b, = 0, b, sin ¢, — psin v cos ¢. = 0 and k., = 0, the cylindrical helicoid
with constant lead of this type is the involute helicoid. The value psinv represents
the radius of the base circle, and ¢, is equal to i, the base helix angle. Substitution
of ke=0,b =0and b, = ﬂﬂgﬁﬁ into expressions (6.11) and (6.14) leads to the
unit normal and the curvatures of the involute helicoid as follows

Nj;, = —cos@ccos(o + v)i— cos@sin(o + v)j+ sin ¢ck

K]w = 0

G = 0 (6.21)
Ky, = _;—Z%%

Assume b, = b, = 0 in the condition of conjugate motions, i.e., in {6.1), then
the corresponding conjugate surface formed by a cutting edge under this type of
conjugate motions is a surface of revolution. Substitution of condition (6.1) into
expressions (6.11) and (6.14) together with consideration b, = b, = 0 leads to the
general formulas to calculate the unit normal and curvatures of an axisymmetric
surface as follows

N, = = €08 0 oS Pci—8in o cos P j+sin ¢ cos vk \
P }Eos2 ¢c+8in? ¢ cos? v
K _ ke(sin d cos v+cos ¢ cos dsinv
lw - - . 2
cos? ¢c+8in? ¢ cos? v
le — [kcp(sin 8 cos u+cos ¢ cos § sin v)—cos ¢c]sin ¢ sinv $ (6.22)

plcos? pc+sin® ¢, cos? v)
[cos? ¢ + (cos? v — sin® v) sin? @] cos ¢,
+k.p(sin & cos v + cos ¢ cos d sin v) sin? g, sin* v

plcos? ¢c+sin? ¢ cos? v]'} J

Ky, =

Setting k. = 0 in expression (6.22) leads to the formulas to calculate the curvatures
of a hyperboloid of revolution as follows

G —_ 8in ¢ CO8 @ 8in v
lw — plcos? ¢ +8in* ¢ cos? v) (623)
K, = - [cos? ¢ +(cos? v—sin? v} sin? @] cos ¢c

¢ =

plcos? ¢c+sin? ¢ cos? v]i

If choose v = 0 and k. = 0 in expression (6.22), then, expression (6.22) provides
the formulas to calculate the unit normal and curvatures of a cone as follows

N;, = —cosocos¢.i— sinocosg.j+ singck

Klw = O

G = 0 (6.24)
Ky = - u%%
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Further, assuming ¢, = 0° or 180° in expression (6.24) gives the unit normal and
curvatures of a cylinder as follows

N;, = =(cosoi-+sinoj)

Kw = 0

G = 0 (6.25)
Klq = ﬂ:%

6.2 Selection of the Fundamental Contact point and Deter-
mination of the Cutting Position of the Fundamental

Contact Point

1. Selection of the fundamental contact point.

A fundamental contact point is an important concept which is a unique feature
in this system of design and calculation. In order to realize a pair of tooth surfaces
with peint contact, it is necessary to select a criterion point on the fundamental
surface, i.e., the tooth surface of the gear, first, and then, to carry out curvature
modifications to the substituted surface, i.e., the tooth surface of the pinion, at the
point corresponding to the criterion point based on a pair of tooth surfaces with line
contact, and finally, a pair of tooth surfaces with point contact will be obtained. This
criterion point is called the fundamental contact point P;. The reference point P
is mainly used to define the shape parameters of the tooth surface. Its position is
usually at the mean point of the tooth width and the center of the tooth space on
the reference cone. The position of a fundamental contact point Py can be prescribed
and determines the position of contact bearing. Suitable selection of a fundamental
contact point Py is one of the major ways to improve the quality of transmission of
gearing and directly affects the strength of bending and contact.

The position of a fundamental contact point Py can be defined by two parameters
with respect to the reference point P,. Parameter 1 is £ which represents the distance
from the reference point F; to the fundamental contact point Py in the direction of the
generatrix of the reference cone; and parameter 2 is ay which represents the distance
from the reference point F, to the fundamental contact point Py in the direction of
the tooth height, as shown in fig. 6.1. The radial distance p; from the fundamental
contact point P; to axis w; = k and the axial distance 2 to the fundamental contact
point Py from the origin point O along axis k are found in the form

pr = pp+Essiny, +ascosy, (6.26)
2z = zp+Ecosy,—assinyg ’
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Figure 6.1:The position of the fundamental contact point

where, p, and 2z, are defined in chapter 4.1, and +, is the gear reference angle which
is determined in expression (4.2).

The machine-setting parameters for the gear tooth surface, i.e., Mpyg, fmg, L,
and the blade angle ¢, have been given by expressions (5.44) or (5.47). Since the
curvature properties at the fundamental contact point Py of the gear tooth surface are
determined by the cutter parameters and the conjugate motion between the cutter and
the gear, i+ is now required to know the cutting position of the fundamental contact
point Py in order to calculate the curvatures at the fundamental contact point Py.
Similar to the derivation of expression (5.9), let OO, = fim + ylim + 2/km, as
shown in fig.5.3, be the position vector of the origin of the coordinate system for the
cuatter, i.e., O, — i, j¢, ke, corresponding to the fundamental contact point Py, and let
the cutter radius, phase angle and swivel angle corresponding to the cutting position
of the fundamental contact point be p/, 0/, and ©/ respectively. Replacing z., ., 2,
pe, 0, © in expression (5.9) by =, y!, 2!, pf, of, ©f yields the position vector of the
point on the cutter corresponding to the cutting position of the fundamental contact
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point in the following form

R, = (z+ plcoso! cos® — plsina’ cos(sin®)in,
(yf + pf cos o/ sin©7 + pf sin o/ cos ¢ cos ©)jm (6.27)
(2! + pfsinof sin ¢)km

As before, the unit normal N/ to the cutter surface is found in the form

N/ = NiLim+ Nijm+ Nikm )
NL = —cosg.coso’ cos©f + cosd.sin o’ cos(sin ef
+ sin ¢, sin ¢ sin &/ { (6.28)
NJ, = —cosg.cos 0! sin ©f — cos ¢, sin o/ cos ( cos ©f '
— sin @, sin { cos ©f
Ni = —cosg¢.sino!sin( + sin ¢ cos( )

where, for the convex side: ¢, = i. for the concave side: ¢, = ¢¢.
Without the tilt device, i.e., ©/ = ¢ = 0, expressions (6.29) and (6.30) become

Ry = (2] + pf cos 0')im + (¥l + pl sin o’ )jm + 2lkm (6.29)
and
N/ = NLi, + chy'm + Nk,
NI = —cos¢.cosa’ (6.30)
NI = —cos¢.sino’ '

=5
i

cz Sin ¢C

The unit normal at the fundamental contact point Py of the gear tooth surface at
the cutting position can be found by application of expression (2.171) together with
consideration o = 90° - 3

NI = -N[=NLi,+Njj, + NLk,
NI, = -N{
oz & (6.31)
Nl = —N/;sinf+ N cosp
Nj, = - cf:cosﬂ—chzsinB

Without the tilt device, i.e., ©f = ¢ = 0, expression (6.33) is simplified as follows,

NI = NLi,+ Nij,+ Nk,
N, = cos¢.coso’
5 o f . (6.32)
Nj, = cosg.sino’ sinygr + sin $c COS Ygr
NI, = cos¢.sino’ cos g — sin gcsin vy,

138



Replacing Zc, ¥e, Zc, 0, ©, pb, 2, £, in expression (5.21) by !, y/, 2/, o/, &/, py,
2y, €f yields the following equations,
f1 Sy

preose! = zf + pl coso! cos©®f — p! sino’ cos(sinOf — fm,
p,sinsz = (y! + p{ coso! sin®/ + pf sin o/ cos { cos ©/) sin B

—(zf + p{sino’ sin¢) cos B (6.33)
zz+L = (y!{+plcosolsin® + plsinof cos(cos®’)cos

+(z{ + pf sino/ sin () sin B

Without the tilt device, expression (6.35) with consideration § = 7, can be
simplified in the form

preosef = zl+ plcosol — fmg
pysin EZ = (y! + p!sino’)siny, — 2{ cos v, (6.34)
zp+L = (yl+ plsino’)cosyg + 2f sinvy,,

Likewise, expression (5.25) yields the velocity at the fundamental contact point
P; of the cutter relative to the gear as follows

vt = vffim+ Uiy dm + Uy Km )

v = (14 MpyysinB)(y! + pf cose/ sin® - pl sin o’ cos { cos ©)
+Mpg(2f + pf sinofsin¢) cos 8

S = (14 Mogsin f)(e] + pl 60507 cos® — plsino! cos sin©)

g ey | | (6.35)

v = —Mpg(z! + pf cosaf cos© — pf sin o/ cos(sin©/) cos B
+Mmgfmg cos 3

Viel = R+ )+ () J

where, My, fmg and ¢ can be determined form expression (5.44).

Without the tilt device, i.e., ©f = ¢ = 0, the relative velocity reduces to the form

V9 = 0im + U im + Vi ke )

vff = —(14 Mpgsinvg)(y! + plsina’) + My, 2! cosy,r

vjY = (14 Mpgsing)(z! +plcoso!) ~ Mmgfmgsinyer 4 (6.36)
ViEl = R + ) + () )
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Correspondingly, expression (5.27) becomes

NL[~(1 + Mygsin B)(y! + pf cos o/ sin®/ + pf sino’ cos { cos of)

+ Mg (2L + pL sin o sin ¢) cos ] + N4[(1 + Mg sin B)(z!

+p! cos g/ cos©/ ~ pf sina” cos ( 5in ©) — Miyng fmg sin f] (6.37)
+ Ny [~ Mpmg(z! + pf cos 0! cos ©f — pl sino’ cos (sin ©7) cos B

+Mumg fmg c0s B} = 0

and without the tilt device, expression (6.37) becomes

— ¢08 ¢ o5 0/ [— (1 + Mpny sin v4r) (yf + pf sin o!) + Myngz{ cos ver]
— €05 ¢ 5in 07 [(1 + Mumg sin 7gr) (%] + pf €08 07) = Ming fimg sin vyr] (6.38)
+ 5in @[ = Mg (z{ + pf cos 07) cos Ygr + Mg fmg €OS Yor] = 0

2. Three auxiliary relationships

Application of expression (5.34), which represents the distance between the center
of the cutter and the center of the cradle, leads to the first auxiliary relationship as
follows for the outer and inner sides of the cutter,

(2 — 70 tan ( sin ©°)% + (y2 + 22 tan { cos ©°)?
= (zf — z{ tan ¢ sin ©/)? + (y{ + z{ tan ( cos ©/)?
o and ‘ (6.39)
(zi — zi tan ¢ sin ©7)2 + (yi + 2} tan { cos ©')?
= (zf - 2/ tan(sin ©7)? + (y! + 2/ tan { cos ©/)?

Without the tilt device, condition (6.39) becomes

(22)? + (32)* = (=0)* + ¥{)° }

and (6.40)

(8)? + (i) = (=0)* + (¥{)?

With the aid of expression (5.32) and the definition of the blade angle of the
cutter, the second auxiliary relationship can be found

pc — pl = (p — py) tan é. (6.41)
that is ;
2c z}

pl = p. - (cos ¢ s C) tan ¢, (6.42)
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where, p! is the radius of the cutter corresponding to the fundamental contact point
Py. pc can be determined from expression (5.44), for the convex side: pc = p}, 2. = 2,
é. = ¢i; for the concave side: p. = p?, z. = 22, ¢ = ¢¢.

Without the tilt device, i.e., ¢ = 0, expression (6.42) becomes
ol = pe — (2. — z) tan ¢, (6.43)

where, p. is determined by expression (5.46) and 2 is determined by expression (5.47).

With the aid of expression (5.36), application of expression (5.39) yields the third
auxiliary relationship as follows

420t o/ 1 t
y! + z! tan(cos _ arctan Ye + 2. tan cos © (6.44)

©/ = © +arctan .
zf — 2l tan(sin©f Z,— z.tan(sin©

where, for the convex side: © = ©', z. = 2%, y. = i, z. = 2!; for the concave side:
©=0°%z. =122 Y=Y 2. = 2.

3. Simultaneous equations for determining the cutting position of the fundamental
contact point.

Combining expressions (6.33), (6.37), (6.39), (6.42) and (6.44) gives rise to the fol-
lowing simultaneous equations for calculating the cutting position of the fundamental
contact point Py.

pseosel =zl + pl coso! cos©f — pf sino’ cos(sin®/ — fug, )
pjsin e}q y,{ + pl cos o/ sin©f + pf sino’ cos { cos ©f) sin §
—(f + pfsmaf sin () cos 3,
zs+ L = (y! + p{ cos o/ sin© + pf sino/ cos { cos ©) cos

+(zf + p’smaf sin () smﬂ,
NL[~(1 + Mg sin B)(y{ + pf cos o/ sin®/ + pf sin o/ cos ¢ cos &)
+ Mg (2 + pf sina/ sin () cos f] + NL[(1+ Mmg sin 8)(z{

+p! cosa! cos ©f — pf sino’ cos (sin or ) = Ming fmg sin B > (6.45)
+ Ny [~ Mg (! + p’ cos o’/ cos©®f — p! sing’ cos(sin®7) cos §
+Mimg fmg €08 f) =

(zc — 2. tan(sin 6)2 + (ye + 2 tan ¢ cos ©)?
= (zf - 2{ tan(sin 0/)2 + (y + z{ tan cos ©/)?,
o,
P! Pc — cos( - cos() tan ¢,
©/ = © + arctan 1‘,—5,—5——"”! tan(cos® _ prepan Meticlanicos®
- z{—z! tan (sin @/

Zc—2ctan(8in® "

/

where, L, Mmg, fmg and ¢ can be determined by equation (5.44). For the convex side:
Te=1, Ye =i, 2. =z, and © = ©'; for the concave side: T, = 22, Yy = ¥, zc = 2¢s
and © = ©°. These quantities are also determined by equation (5.44).
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Solving simultaneous equations (6.45) results in z{, y/, 2{, ©/, ef, of and p/.

Without the tilt device, the simultaneous equations for determining the cutting
position of the fundamental contact point Py are simplified as following form

preosel = zi + plcosof — fng,
py sin 55 = (y! + pf sina’) sin vy, — z{ cos v,

zg+ L = (y! + pl sina!) cos yor + 2 sin Yy,

— c08 ¢e €08 0! [— (1 + Mpmy sin v, ) (yf + pf sin 0/) + Mngz{ cos vr]
— ¢08 @ 5in 0/ [(1 + Mg siny,,)(z{ + pf cos 0f) = Mg fmg SiN Ygr)
+ 5in e[~ Mimg (z! + pf cos 0¥) c08Ygr + Ming frmg €05 ¥gr) = 0,

(zc)? + (5e)? = (2f)* + (¥])?,

pl = pe— (2. — z{) tan .

Solving equations (6.46) results in z{, y/, 2/, €/, o/ and pf.

With the formate method, expression (6.46) is simplified in the form

pseosel =z, + pl cosa! — fing,
py sin eg}q = (ye + p! sin o) siny,, — 2{ cos 7,r,
2+ L = (yc + p sinal) cos ygr + 2/ sinvgr,

pl = pc— (2 - 2{)iang..

[N

N~

(6.46)

(6.47)

Solving the simultaneous equations (6.47) results in 2/, €}, o/, and of.

6.3 Determination of the Curvature Properties of the Gear

Tooth Surface

The direction W of the cutting edge corresponding to the cutting position of the
fundamental contact point Py can be found from expression (6.7) by setting v =0,

W = sin ¢, coso/i. + sin ¢, sin 0’3, + cos p k.

(6.48)

With the aid of equation (5.5), expression (6.48) can be written in coordinate
system Oy, — im,Jjm, km as follows

Wiin + szm + Wik,

sin ¢, sin o/ sin ¢ + cos ¢ cos ¢
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sin ¢, cos o/ cos ©f — sin ¢, sin o cos ¢ sin © + cos @ sin ( sin O/
sin ¢, cos o/ sin ©/ + sin ¢, sin 0/ cos ¢ cos ©f — cos @ sin ¢ cos O/

(6.49)



Without the tilt device, expression (6.49) becomes

W = Wi,+ W2jm + Wakn,
W, = sin¢.coso’

2 = sin¢.sino’ (6.50)
W3 = cos¢,

The direction —‘rr can be obtained by rotating the tangent vector W to the
cutting edge about umt normal N, to the cutter surface through an angle 6,,,

v
VI wvaD W

(6.51)
= €058, W +5in8y,,N/ x W

The angle 0, is then given by

mg w -
cos O,y

v
JW1+u W2+v!3 w3
IV[ gl
vTI.(NIx W)
IV/ | L
—vf1 9(cos o/ cos ¢ sin ©f + sin o/ cos ©)
+vjy (cos o/ cos C cos ©/ — sin o/ sin ©f)
+v7y coso” sin ¢
|V! | /

§infy, = (6.52)

I

where, [v7?|, Y, v7y anc v}y are determined by expressions (6.35).
Without the tilt device, the expressions above become
VW *

‘VJ ]
v}"l W1+v fWa4v m'Ws

cos By

. * c
sinfyy = —ﬁm—l——-
-7} ama/+ul 9cosof
|V o

/

where, [v7¥|, vﬂ , vy and v}y are determined by expressions (6.36).
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With the aid of expressions (6.24), (6.52) or (6.53), application of expressions
(2.25) and (2.26) leads to the nermal and torsional curvatures of the cutter surface

mg mg
along directions of I’%"T and Ay = N/ x I—Zi"’T as follows

K, = Kiycos?0y, + Kigsin? Oy + 2G1y sin by c0s Oy \
- °°: e 5in? By,
(]
—(K1w — Ki1g) 8in Oy €08 By + G1u(COS? By — sin? fyy)
- c#'fﬁﬁ sin By, €OS Oy
(4
Kia = Kiwsin?y, + Kigc05? Oy — 2G 1 5in By €08 Gy

_COB c 2
T cos 0.y )

Glu

il

,  (6.54)

where, in the case of the tilt device, sin §,, and cos 6,,, are determined by expressions
(6.52); in the case of no tilt device, sin 8, and cos 8, are determined by expressions

(6.53).
Employment of expression (2.133) yields the direction n; perpendicular to the
relative angular velocity component in the tangent plane,

ny = Npim + Np2dm + My3km W

A AT

Nz = NEL(1+ MpmgsinB) , (6.55)
ns| = \/”?1 + 12 + 1y ’

where, N/, N7, and N, are determined by expression (6.28).

mg
Expression (2.135) yieids the angle between I%i"rl and 7; as follows,

. N{.(v]9xny) )
sinfoy = — }"éll—w_l
v (wy - Mmgw2)

= LT

vyling

. _MmngimgcosB
= T ¢ (6.56)
— vpoy
cosbuy = [
mg

Ullgf)l1 +v%ﬂiz +U';:qg'713
|V! "'lfl /

where, v}, v7y, v7y and |vy¥| are determined by expression (6.35).
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Without the tilt device, expressions (6.55) and (6.56) become

Ui = nflim + 77f2jm + nf3km )
= 05 PcSin 07 (1 + Mg Sin Ygr) + Mg sin e cos vgr
Nz = NL(1+ Mpgsiny,,)
= —cos ¢.co507 (1 + Mpgsinv,,) ? (6.57)
N3 = _Ni;fomg COS Ygr
= My, cos ¢ cos o’ cos vy
gl = /nh+ 7%+ J

where, [fg, and o/ are determined by expressions (5.47) and. (6.46). and

N{.(vP9xny) \

sinfuy =~
v"{’

_ f (w1—Mmgw2)

- IV] Jlngl

— _ Mmgfmgcosygr

= Ml \ (6.58)
me-nf

vy Zlingl g

”!19’7!1+" 2 ’7!2+B;n3g'?f3
i"; ling] J

cosl,, =

where, v}"]-" , v;';g , v;';,g , |v}"~" |l 71, My2 and 773 are determined by expressions (6.36)
and (6.57) respectively.

Expression (2.151) gives the components of the conjugate relative acceleration,

Jj = Jﬂim + Jjgjm + Jfakm
Jfl = Mmgfmg Sin ﬁ (6 59)
Jrg = Mpg(z! + plsina/sin¢)cos B '
Jrs = —Mmg(y! + pfcoso! sin®f + p sin o/ cos { cos &) cos 3
and
NI .J; = NLMpgfmgsinB+ NLMng(zf + plsino’sin) cos § (6.60)
—~ N Mg (yf + p{ cosa’ sin®f + pf sino/ cos(cos©f)cos f
Without the tilt device, expressions (6.59), and (6.60) become
Jfl = Mmgfmg sin Yor
Jjz = Mpgz! cos, (6.61)
Jrs = —Mmg(yl + plsino’) cos,,
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and
NI-J; = —Mpgfmgsinygrcos @ccos 0! — Mpg2zf cos ¢.sin o/ cos vy (6.62)
‘Mmg(y'c' + pfsin o) sin ¢, cos Ygr '

Substitution of expressions (6.35), (6.54), (6.55) and (6.56) into (2.209) yields
D, = K1v|v;‘ng|"‘ |m| cos Bun
C

mg ¢ s 29
_IVI osp; 8in® fuy Iﬂjl cos ovn
G1u|V'{ng| — |ng|sin Gy

c

|v}”’ 08 ¢ 8in yy €08 Oy

B, (6.63)

-7 — |ny] sin Byy

where, in the case of the tilt device, (v, |nsl, sinByy, and cosfy, are determined
by expressions (6.35), (F &%} and (6.56$ respectively; in the case of no tilt device,

V7oL, Imygl, sin By, &7 -2 determined by expressions (6.36), (6.57) and (6.58)
respectively.

With the aid of e, '6.54), application of expressions (2.239) and (2.240)
yield"s‘ the conjup~-. o v .- properties of the gear tooth surface in the directions

9
of 1:; | and Af = 7‘15 - l.,';‘-’.’ as follows

K’ Dk _ g )
gv T DNLI, T TN
— D2 €08 & 8in? fyy
Dplvy o1+ NI -J; ol

= __QL@L’__ -
Gyy D,[v79|+NI-J; Gl
DpEp €08 e 8in By €08 uyy
DyIVy?I+NL I, ol

P S '¢
9h Dﬂlv?gl"'Nc Jy 1A
Ep

+ cos s e €082 Buy
Dp|V}"’|+N‘c"JJ ol

(6.64)

Ve

s

where, D, and E, are determined by the expression (6.63), in the case of the tilt
device: [vy*| and N/.J; are determined by expressions (6.35) and (6.60) respectively;
in the case of no tilt device: |[v}¥| and N/ . J; are determined by expressions (6.36)
and (6.62) respectively.
With the aid of expression (2.28), the normal and torsional curvatures of the gear
mg mg
tooth surface in directions of '%éry] and A; = Nf x T:,—’irryi are found in the form

Ko = Ky
Gp = -Gy (6.65)
Ko = _:;A
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If we construct a cone with the root angle -y, of the gear through the fundamental
contact point P; at the cutting position, the unit normal N, to this cone at the
fundamental contact point Py is found in the form

N,r = (efk) ® (cosvgri — sin k)

cos ¥gr(cos efi + sinefj) — sin vk (6.66)

With the aid of expressions (6.31) or (6.32) and (6.66), the unit vector t,, tan-
gential to the intersection of the gear tooth surface with the cone constructed above
is found in the form

NI xN,,

toe] = Nf sin 'yg,-+Ng, €08 Ygr 8in sg

gr - Qgr

topp = N;,', €08 Ygr COS eg +N;,', 8in ygr

gz = Qpr L
¢ _ N}, €OS Ygr 8in s{,-—N;,’, CO8 Ygr CO8 eg (6 67)

gr3 = Qg,

(N, sinvgr + NJ cos Yor sinef)?
Qyr = % (Nf €S Ygr COS E + N/ sin 'yg,)
+(NJ, cos ygr sinef - N cos Yor cOSES)?

where, for the convex side: " =" is positive; for the concave side: ” +” is negative.

Expression (6.35) or (6.36) can be written in the coordinate system O —1,j,k as
follows

mg  _

vl o= vfl 1m+vﬂjm+v!31¥ . (6.68)
= vii+ (v} sin B — v cos f)j + (v} cos B + vy sin )k
and
v = vf191m+vf2 Jm+'U!3k (6.69)
g .
= vpli+ (v sinyg, — vpy €08 Yr)j + (V57 cosvr + vpy sinygr)k
On the other hand, t, can be obtained by the following method, i.e.,

ter = (BuNJ)® —Irrr _
i ’ (6.70)

= cos0,,,—4:r +sm0,,¢N X —lnr

Angle 8, is given by
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, tgr-(NIxvT9)
sin 0,,; = Q—WarrlJ—-
v;nlg(tgﬂNJz - tgrSNéf )
+(v"',}9 sin 8 — v)':? cos B)(tgraNj, — teraNJ,)
- Vil

t,,xv""'l’+t,,z(v"";9 sin ﬂ—v}';g cos ,6)+tg,3(v}"2' cos ﬂ+v7’39 sin B)

cosf, = Th I )

In the case of no tilt device, the angle 3 is replaced by 7gr

. tor- (NS xvT)
sinf,, = __'“"_L_IV, |
m
v5y (tgraNV _i;fz - t97'3Ngfy)
m . m
+(v7y sinygr — vyy COS Yor)(tgraN{z — tgr1 NZ,)
m, m o
+(v7y cosYgr + v} sin ’yg,.)(tgﬂNgfy - tyr2N§rz)
|V! |
tgnu}"lg +tgr2(v}"2’ sin 'ygr—u}"aﬂ cos —ya,.)+ty,3(v"'"29 cos ,79'_'_07\39 sinvgr)

cos By, i

—

/

(6.71)

o~

(6.72)

Application of expressions (2.25) and (2.26) yields the normal and torsional cur-
vatures of the gear tooth surface in directions ty, and sy = N/ x tgr in the following

form
Ky = Kgycost 0y + Kopsin? 8, + 2G gy sin Oyt €08 By
Gy = —(Kg — Kgn)sinby cosfy + G gy (c0s? By — sin® Oyr)
K,y = Kgusin? 0y + Kga cos? 0,y — 2Ggy 5110, c0 by

(6.73)

where, Kgy, Ggy, Kga. sin 8, and cos 6,; are determined by expressions (6.65), (6.71)

or(6.72) respectively.

With the Formate method, the normal and torsional curvatures of the gear tooth
surface in directions W and q = Ng x W are found in the following form

Kp = 0
Ggw = 0

Ky =c.%&

Pe

(6.74)

Since expression (6.48) can be written in coordinate system O — i, j, k, that is,

W = sin¢,.coso’i+ (sin ¢.sin of sin g — cOS ¢ COS Yy )j
+(sin ¢ sin 0/ cos v + c0s ¢ sin 74 )k
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and t,, can be obtained by the following way

tg,- = ( th )®W
= cos()th+sm0wlN x W

then, we can find angle 6, as follows

sin 0w¢ = (N X W)
( g,.gN — tgraNJ,) sin ¢, cos af
+(t graN g,lN / )(sin ¢, sin o/ sin v, — COS @ COS Ygr)
+(teriNJ, — grgN )(si1. @ sin o/ cos ygr + COS P Sin Ygr)
cosByt = tgqisin d)c cos o/ + tgra(sin @ sin of sin g — coS @, €OS Yyr)
+tgr3(sin @ sin a7 cos vy, + cos e 5in vyr)

(6.76)

> (6.77)

/

Application of expressions (2.25) and (2.26) yields the normal and torsional curva-
tures of the gear tooth surface in directions of t4, and sgr = NJ x t,r in the following

form

Ky = Kgucos® 0y + Kgq sin? Bys + 2G gy Sin By €OS Oyt )

08 Pe Sin? Buwy

Pe
Gy = —{(Kguw— Kgg)sinbyycos by + Ggu(cos? fur — sin? fy)
— ¢cos @c 8in Oyt €08 Ouse >
K, = Ky smﬁ Bt + Kgq cOS 2 0t — 2G gy Sin Oy €05 By

€0t P €08? Bust

Pc /
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Chapter 7

Calculation of Curvatures for the
Pinion Tooth Surface with Line

Contact

Since precise conjugate motions between a pair of hypoid gears are prescrit .- by
the users of hypoid gearing, and the tooth surface of the gear member is already
determined in previous sections, the curvat:.re values of the pinion tooth surface can
be determined by application of the solution to the first type of problem of conjugate
surfaces and curvatures.

7.1 Determination of the Conjugate Contact Posicion at the
Fundamental Contact Point P; of the Gear Relative to
the Pinion

The fundamental contact point Py of the gear will reach the conjugate contact
position with the pinion after rotating about the axis k of the gear through an angle
de, from the cutting position, that is, the conjugate contact position Rgp at the
fundamental contact point of the gear with the pinion is derived in the following way

R, = (6e.k) ® [(eJk) ® (psi + 27k)] = [(€] + 82g)K] ® (psi + 2/k)
= zhi+yhi+zhk
xh, = py cos(eg + deg) (7.1)
yg,'/, = pysin(e] + dey)
Zp = 2
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where, p; and z; are determined by expression (6.26); in the case of the tilt device: eg
is determined by expression (6.45); in the case of the no tilt device: sg is calculated
by expression (6.46) and in the case of the Formate method: €l is calculated by
expression (6.47).

Consequently, the unit normal ng at the fundamental contact point P; to the
gear tooth surface at the conjugate contact positicn of the gear with the pinion is
found by making the same rotation

N = GegeN
. = ngzr + Ny +,Ng.pzl§
Nie = ]\{q? cosdeq — Ny, sinoeg (7.2)
Nl = Ngsin doeg + N}, cosde,
1’\/”" = ]Vf
gpz 9z

where, in ihe case < the tilt device: NZ,

(6.31) and in thi caszs of the no tilt device and the Formate method: Ng’x,
N/, are -termined by exprassion (6.32).

Ngfy and NS{Z are determined by expression
N/, and

Application ! expression (2.167) together with the shaft angie set at a = —90°
leads to angle 0g, in the following form

V.
be, = arccos( Ees) - arctan(—22) (7.3)
? Ugp + Vap Ugp
where
Up = NLMgyps cos e - Ng’:Mng!
Vop = Nészgp'pj sine) — NJ, Mgpz; (7.4)
Wy = NIpssinel — NJprcose] + NJ,Mgpfop

and M, is determined by expression (4.1).

With the aid of expression (2.123), the conjugate contact position at the funda-
mental contact poirt Py of the gear with the pinion can be expressed in the coordinate
system O' — ', j', k' of the pinion, that is,

R/ = zfi'+ y;,fj’ 4 z{k'
B Z e,
% = TYp
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7.2 Calculation of Curvatures

Since a pair of tooth surfaces with point contact is obtained by applying curvature
modification to the substituted surface, i.e., the pinion tooth surface, of a pair of
tooth surfaces with line contact, thus, a pair of tooth surfaces with line contact is
the basis for a pair of tooth surfaces with point contact. It is necessary to obtain a
clear understanding of the curvature properties for a pair of tooth surfaces with line
contact before obtaining a pair of tooth surfaces with point contact.

The phase angle 6{, of vec.or T * with respect to coordinate plane i’ — & -- Ir ‘s
found from its coordinates

s

. f - Y
sinée =
d 7(:2)27@2? \7.6)
! T
COSE€ ;
P Va6l 7

With the aid of expression (2.171), the unit normal Nz{ at point Py, corresponding
to the fundamental contact point, of the pinion tooth surface is found in the following

form

N/ = —Néf = NLi' + NLj + NL¥

%’i _ —INV”}” 7.7
o - fgpz

N;, = Ny

The unit normal N/, at point Py, corresponding to the fundamental contact
point, of the pinion tooth surface at the position where point Py, returns to the
coordinate plane i — O’ — k' is found in the following form

NI, = (—s/{k’) ® N/
= (Nfcosef + NJ sine])i’ + (~Nfsine, + NI, cosel)j + NLK (7.8)

(—N{,, cosel — N, sine])i' + (NJ,; sinef — NJ, cos )i + N, K

On the other hand, N/, cau be obtained as a series oi rotations

NI, = () ® {(=%pri’) ® [(¢prk") ® (-J)]}
== (Sin Ppr COS Ypr + COS Ppy Sii: Ypy 5N Ypr )i’ — €OS Gpr COS Yprd' (7.9)
+(— sin @pr SIN Ypr + COS Ppr SIN Ypr. COS Ypr )k’
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where, ¢, and ¥, are the pressure angle and the spiral angle of the pinion at point
Py, with respect to the root cone of the pinion. o is the root angle of the pinion
and is determined by expression (4.56).

Combination of expressions (7.8) and (7.9) yields the values of ¥, and @, as

follows
tan 1) _ N;,,y cos 7,,,—(N!,, coseﬁ-{-N_{,,, sin e,!,)sin Tpr
pr Njp: ;os el -NJ,. sine},
i = - I s — NI si
sing,y = —(NJ,cose)+ NJ, sinel)cosvpr — Nip, sinvpr (7.10)
cOS ¢ _ N,;',,, cos eg-ng, siney
o €08 Ypr

where, 0° < v, < 180° and 0° < ¢,y < 180°.

The use of expression (2.129) gives rise to velocity v?” at the fundamental contact
point Py of the gear relative to the pinion as follows

-

i

o
S
1

Application of expressinn

vffi + o) + vitk

— pp sin(e] + deg) — Mgpzg

py cos(ef + de,)

My,ps cos(e] + deg) — Mypfop

(7 11)

(2.150) yields the conjugate relative acceleration at the

fundamental contact point P

J, = Jpi+ Jpj+ Jpk
Jpl == 0
7.12
Jp2 = —Mgpzy (712)
Jpzs = Mgppysin(e) + d¢e,)
and
J, NI = —MgpzgNL, + Mgpps N1, sin(e] + bey) (7.13)
Expression (2.133) gives
n, = (k+ Mgk') x ng )
= i + 7o) T Tpsk
M1 = ~NJ — N zM
ny = NLOUOUE L (7.14)
p2 _zz’z
Mp3 = N zMQP
Inpl = +/mf+ g2 + M2 )
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The direction of t, at the conjugate contact position of the fundamental contact
point Py is found in the following way

t;, = (Selk)® tg, = tg,li + tg, o+ thak

tort tgr1 COS 66 — tgr2Sin 65 715
Lor2 tgr1 SIN0Ey + tgr2 COSOE

t£r3 = tgr3

where, tgr1, tgr2 and tgr3 are determined by expression (6.67).

Since & L i.e., expression (7.14) , can be expressed as a rotation from the sliding
velocity direction,

T _;r
7] ( un gp) ® (7.16)
= CO0S 0,,,, lvg, + sin 6/, N/ % —ép-
angle 6/, is therefore given by
N xviP) 3
. ! _ W (
sinfl, = i
_ Mgpv9h —vg 4
- v
/ oM ) (7.17)
cosby, = [V
Np1 U?, +ﬂp207§+7)p3v}§
eIV o] )

where, v}, vf; and v{; are determined by expression (7.11).

On the other hand, since vg” , i.e., expression (7.11), can also be expressed as a
rotation from vector t/,
vIP
= (6,NI)®tl,
cosOf,t], +sin 6, NI x tf,

|V/ [

(7.18)

Angle 8], is therefore given by
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. 29 (N t!,. \

sinf, = Xl%?;%‘_v_l

{ v%’(Ngfpyt{)’r.’i - ngzt£r2)]+ v?Z(Ngfpzjt_({rl - Ng{pxtgrii) }
+v}§(Ngfprt9r2 - N_t{pytgrl )

= VO] ’ (7 1 9)
s v”’-t{,
COoSs Ow = —ILV-?-'—
- AR ATy AP
vyl J

Consequently, application of expression (2.39) yields the normal and torsional
9P

curvatures of the gear tooth surface in directions v{’ and A% = N/, x I—:{,-I as follows
!

Kogy = Kycos?6], + Kgyysin® 6], + 2Gy,sin 6, cos 6,
Guo = —(Kg— Kys)sinbl,cos8f, + Gy(cos? 0f, — sin?0,) (7.20)
Kgpa = Kgsin® 8/ + K g5 COS? 6/ — 2G g, sin 6/ cos 6],
where, K, Gg and K, are determined by expression (6.73) or (6.78).
Expression (2.209) leads to
D, = Kgul|V¥|— |npl cosb], }
. 7.21
E, = Ggpv|";p| ~ |np| sin ol{r) (7.21)
where, |1,| is determined by expression (7.14) and sin 8;, and cos 6/, are determined
by expression (7.17).
2P
With the aid of expression (2.218), the angle 8/, shown in fig.7.1 of T:,:éyi rotating

about ng to the direction e of the instantaneour ‘ine of contact is found in the

following form
sinf!, = ——=
" VD3 (7.22)

/S =
cosf!, = :/-——L_—=D3+ =

where, D, and E, are determined by expression (7.21).

With the aid of expressions (7.20) and (7.22), application of expression (2,39)
yields the normal and torsional curvatures of the gear tooth surface in directions e
and g = N/ x e as follows

Kpe = Kypycos® ), + Kopnsin® 8], + 2Gp, sin 8], cos 6],
Koy = Kgopysin?8!, + Kgpa cos? 0, — 2Ggp, sin 6/, cos 6],
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common tangential plane

Figure 7.1:Several tangential vectoris

Expressinn (2.233) gives rise to the relative normal curvature K, in the direction
perpendicular to the instantaneous line of contact in the following form
— DX+ E?
K, = - p” E 7 (7.24)
Dp|v{?| +Jp - Ngp

where, D, and E, are determined by expression (7.21), |v}?| is determined by expres-
sion (7.11) and J, - N/ is calculated by expression (7.13).
Application of expressions (2.238) and (2.241) yields the conjugate normal and

torsional curvatures of the pinion tooth surface in directions e and g = ng X e in
the following form

K;I)c = _Kgpc
r
Gpe = —Gpe (7.25)

K, = Ky—Kgpy= -2 _K
Py 9 9Py — DpIV}"I-FJp'N 9p9

gp

If we construct a cone with the root angle of the pinion througn the point on the
pinion corresponding to the fundamental contact point , the unit vec:or t, tangential
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to the intersection of the pinion tooth surface with the cone constructed above is
found as follows

ty = (k) ® (prd)) ® [(~Ypri!) O K]
ty) = COSWpr SiN Yy COSES — sin Yy, sinef (7.26)
tp2 = — COSYPpr COSYpr
tps = COSYprSiN Yy sinef + sinthy, cose)
The unit vector s, = —NJ, x t,, can then be fourd
27)
Spy = P3N N
Sp3 = ngy N 9pz

where, NI, N/, and N/, are determined by expression (7.2).

Angle 9,,,,, of v{¥ rotating about ng to t, is found in the foliowing way
\
tP = (ovtpng) ® “5!"'
= COS Outpl—ép— + sin GL,pN X —-5,—
tp (NI ngp)

sin0,{,p = ———~|;er—
9puvls Nyfpzvgp)"'tﬂ(]}’s{pzvﬂ Ngfprv%)} > (7.28)
+t”3(IXQPIL N1t

4

tp VQP
cos 0{,,, = T

_ t,,lvgt" +¢pzu";p +t,,3v9[
vl

It can be seen in fig.7.1 that

01, = 61, + 62, (7.29)
so that
egtp = t{tp - gt{e (730)
Consequently,
sin 0£tp = sin 0,,,,, cos 8/, — cos 0,,,,, sin 8/, (7.31)
cosf!, = cosfl, cos 0’ + 5in 6/, sin 6/, '
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Finally, the ccnjugate normal and torsional curvatures of the pinion tooth surface
in directions t, and s, = NJ x t, are found in the following way

' = K, cos? Oeftp + K, sﬂin2 0{,,, + 2G), sin 0,{”, cos 0{,,,
r, = —(Kj, — Kp,)sin0}, cos 0!, + G, (cos® 6%, — sin® 61,,) (7.32)
K!, = Kj,sin®6l,+ K, cos’ 0!, — 2G.,sin 8, cos 67,
where, K}, G, and K, are determined by expression (7.25).
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Chapter 8

Calculation of the Quantity for
the Curvature Modification to the
Pinion Tooth Surface to Obtain
Point Contact

The pair of tooth surfaces of hypoid gearing obtained in the previous sections have
line contact. A pair of line contact tooth surfaces are very difficult to manufacture
and are very sensitive to any errors. In order to alleviate the above two deficiencies,
we can make a small curvature modification to the pinion tooth surface, and then a
pair of point contact tooth surfaces will be obtained.

The selection of the findamental contact point and the determination of the modi-
fied curvature values at the fundamental contact point on the pinion tooth surface con-
stitute the two indispensable conditions to realize a pair of controlled point-contacting
tooth surfaces. The amount of curvature modification determines the magnitude and
the shape of the contact bea*ing between a pair of tooth surfaces, and directly affects
the strength of contact and bending. the ability to absorb errors and deformations,
the motion precision, the noise, vibiaiion and the lubrication properties. Therefore,
the amount of curvature modification should be determined taking these factors into
account.
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8.1 Angle between the Virtua: instantaneous Line of Con-
tact and the Contact Locus.

In the case of a pair of point-contacting conjugate surfaces A and A, selecting
arbitrarily one surface, say A, as the fundamental surface, due to the conjugate mo-
tions being given, it is definitely possible to derive the virtual conjugate surface A*
which is in line-contact with the fundamental surface A. At any given instant, the
three surfaces A, A and A* will touch each other at the common conjugate contact
point. However, it is obvious that, at the common conjugate contact point, the rel-
ative curvatures of A with A* along the virtual instantaneous line of contact e, are
zero, i.e., K*e, = Kie, + K3, =0, and G*., = Gy, +G5,, =0, 0r

Ky = —K. }
Ev v 8.1
w = ~Gi, &1)

while the relative curvatures, Ko, and G, of surfaces A with A along e, are not
sero. Due to the identity of the conjugate motions between A and 4, and A and A,
the two surfaces A and A* will certainly touch each other not only at the common
cojugate contact point, but also along a curve, which is just the very contact locus
on A for a pair of point-contacting conjugate surfaces A and A. Hence, the conjugate
curvatures of the surfaces A and A* at the common conjugate contact point along
the contact curve direction 7' (unit vector) will be identical, i.e.,

K’ = "'
- (82
2t T 27
Using the compatible equation of surface curvatures, i.e., expression (2.42), we
obtain K "
tanf,, = —-2:—'—:——-2,8—” (8.3)
o ,2"r’ + G,2e.,
and K _K
tan B, = =2 — 2o (8.4)
o ,21" F Gée.,
Substitution of expressions (8.1) and (8.2) into (8.3) gives
K.+ K
tan e, = —,21————]2 (8.5)

2r Glev
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With the aid of expressions (8.4) and (8.5), the angle ., between the virtual
instantaneous line of contact e, on surface A and the contact locus 7’ on surface 4 is
expressed as follows

(Kiey +K;,I)"(K;,l _Kég )

Xo

tan Bev»r’ =

(GT ’ —Glev )—(G; ’ +G'Ze‘.)
_ _Z\J1¢0+Kéc - :_7(-;“ (86)
- Glgu +G2¢u - ch

It is worth notice that since there is actually a point contact between a pair of
surfaces .4 and A, the instantaneous line of contact does not exactly exist between
A and A4, that is why e, is called the virtual instantrneous line of contact. On the
other hand, if, on the contrary, selecting A as the fundamental surface among the
same pair of surfaces A and A4, it is also possible to derive a virtual instantaneous
line of contact €], between A and A, but €, is usually not equal to e, i.e., €, # e,. If
e/ =e,, A and A become in line contact with each other.

8.2 The Modification AK), of the Conjugate Normal Cur-
vature to the Pinion Tooth Surface in the Direction of
the Instantaneous Line of Contact.

The modified value AK}, of the conjugate normal curvature to the pinion tooth
surface in the direction e of the instantaneous line of contact depends on the expected
semi-width Fg, of the contact bearing, and the impact of AKj, is upon the length
of the major axis of the elliptic contact bearing. The value 2Fg, is defined to be
the product of the actual tcoth width along the direction e and the proportional
coefficient F,. In actual calculation, the following two cases should he considered,
and the smaller value of the two cases should be used:

1. If the instantaneous line of contact e intersects the toe and the heel of the gear
tooth surface as shown in fig. 8.1 (a), 2Fg. is found in the following form

~ F.Fo
2FG€ | cos g COS(g{%-‘-Jg)I (87)

G
| cos 6 cos 8], cos 61, cos vy |

where, F, is prescribed, Fg is given in chapter 4.1, and 1y, 4, 0{,, and 6/, are deter-
mined by expressions (4.8), (4.43), (7.19) and (7.22) respectively.

2. If the instantaneous line of contact e intersects the top and bottom of the gear
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Figure 8.1:Determination of 2Fg.

tooth surface as shown in fig. 8.2 (b), 2Fg. is found in the following form

~ Fehcoség
2Fge = | cos &g sin 6y, | (88)

ch cos &g

~
| cos $g(sin 9{0 cos 0{, +cos B{V sin 6., )

where, ®, is determined by expression (4.17), and h is determined by expression
(4.18).

Since the actual exhibition of the value 2Fg. is the length of the major axis of the
elliptic contact bearing in the inspection of the tooth contact quality, and at both
ends of the major axis of the elliptic contact, the value of separation between the
pinion and the gear tooth surfaces reaches the specified value 4, i.e., the value of
the diameter of a particle of the color compound, AKj, can be determined in terms
of Fg, and 6. It is known from chapter 2.4.3 that among a pair of line-contacting
tooth surfaces, the fundamental surface, i.e., the gear tooth surface, can be reduced
to a plane, and the substituted surface, i.e., the pinion tooth surface, can be reduced
to a cylinder whose axis is parallel to the direction e of the instantaneous line of
contact, as shown in fiz. 8.2 (a). After the curvature modification to the pinion
tooth surface, the original reduced pinion tooth surface, i.e., the cylinder, becomes an
ellipsoid which is used as a substituting reduced pinion tooth surface, as shown in fig.
8.2 (b). The original direction e of the instantaneous line of contact hecomes now the
direction e, of the virtual instantaneous line of contact after curvature modification.
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The reduced pinion tooth surface The reduced pinion tooth surface

(The substituting surface
NEIPA (The substituted surface) N/ ! )

gp

/ /

\
€ I
o /’7 e

v T~ —=

lV, ' V9P

Ve

The reduced gear tooth surface
The reduced gear tooth surface

(2)
(b)
Figure 8.2:Curvature Modification

The direction €' of the major axis of the ellipsoid, i.e., the substituting surfare, might
be different from that of the virtual instantaneous line of contact, i.e., €' £ e, = e,
but since the modified value of the curvature is very small, it can be assumed that
e~e,x~e.

Let K, be the reduced pinion conjugate normal curvature in the directio: € of the
instantaneous line of contact before the modification, i.e., in the state of line contact,

thus,
Ki =0 (8.9)

and let K, be the reduced pinion conjugate normal curvature i: ti.e direction €' =
e, ~ e after vhe modification, i.e., in the state of point contact

K} = '1';' (8.10)

where, R, is the radius of curvature in direction e.
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Figure 8.3: Normal intersectior in direction e of instantaneous line of
contact

Then, examination of fig.8.3 yields
26 1

. Y —
=
L'Ge Re

(8.11)

Hence, the reduced pirion conjugate normai curvature K after the modification
can be expressed ac follows

Kf=—~— (8.12)
With the aid of expressions (8.9}, (8.10) and (8.11), the increr.2ntal conjugate

normal curvature defined in chapi-+ 2.2.13 is found in the following form

/] — p il
AKZe - I§62e T 4M2e

(8.13)

T
F(}‘e

Finally, conjugate normal curvature K, of the pinion tooth surface in direction e
after the curvature modification 1s found in the following form

K% = K., + AK), (8.14)

where, K}, is determined by expression (7.25).
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8.3 The Modification AG), of the Conjugate Torsional Cur-
vature in the Direction of the Instantaneous Line of
Contact

The fundamental surface A., i.e., the gear tooth surface, is in line contact with the
substituted surface Ap, i.e., the pinion tooth surface before the curvature modification.
The conjugate motion 2nd the direction of the iustantaneous line of contact between

and Ap are desi,, '~ as ¥ and e. By replacing the substituted surface A, with the

suistituting surfar .~ ., the pinion tooth surface after the curvature modification,
the fundamental .. Ag is in point contact with the substituting surface A,, and
tios, the comjugate ~  m between Ay and A, is designated as £. The virtual

instatitan ous Yne e, of contact can be derived undg_r_ the base of A, and T. If the
substitute:i © ‘ace A, and the substituting surface 4, are in line contact, then the
conjugate me. ;X and T are identical, and consequently, tl:e virtual instantaneous
line e, of contact between A, and A, is identical to the instantaneous line e of contact
between A, and A,. If A, and 4, are in yoint contact, then the corjugate motions z
and 3 are not identical, and consequently, the virtuc! ‘nstantaneous fine e, of contact
betwcen A, and A, is tiot identical to the instantaneous line e of contact between Ay
and A,.

Appiication of expression (8.) yields

Ko + K2 \
tan6!, ~ —EZ_TE:',% (8.15)

where, Kgpe and G, are calculated by expression \7.23).

K} and G}, in expression (8.15) are the conjugate normal and torsional curvatures
of the pinion tooth surface after the curvature maodification, and are fourd ia the
foliowing form

K? = K' +Ai,
pe pe Zo
Gh = Gl +AG, } (8.16)

where, K}, and Gy, are determined by expression (7.25).

With the aid of expressions (7.25) and (8.16), expression (8.15) can be rewritten
in the following form
AKj,

e (8.17)

tan 8/, ~ -
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Consequently. the modified value AG), of the conjugate torsional curvature in
direction e is found as follows

AK),

tan 6’

er!

AG), ~ (8.18)
and

0!7’ = ogv + 01{1' + 67);
_01{2 - 01{1' + 01"'7’ (819)

!

where 6/ can be determined in expression (7 .22) and 617, can be found by expres-
sion (2.244), and €/, can b= prescribed, usually assuming 61, = 90°.

Finally, the conjugate tersional curvature G2, of the pinion tooth surface in direc-
tion e is found in the {ollowing form

CP =G, +AGY, (8.20)

8.4 The IModification AKj, of the Conjugate Normal Cur-
vature in Direction g Perpendicuiar to Direcuion e.

Witn the curvature modification to the pinion tooth surface, the previous pair of
taoth surfaces with line contact becomes a pair ¢f inoth surfaces with noint contact.
The curve on the tooth surface formed by the set of contact points is called the contact
locus. Obvicusly, if we consider only the contaci iransiissicu between one pair of
touil surfaces, the corract locus on the tooth surface will extend from the bottom to
the top of the tooth surface which is called the theoretical contact locus as shown in
fig. 8.4 (a), no matter hov the curvature modifications have been done. But, in fa:t,
since the two adjacent ¢ ooth surfaces will also ¢ - tribute to the contact transmission,
the actual contact locus occupies only on. - iun of the theoretical contact locus as
shown in fiy. 8.4 (b).

Let the  ‘inate designate the rotating angle €, of the pinion and the abscissa
designate the rotating angle £, of the gear. Then, without the curvature modification

to the pinion tooth surface, due to the transmission ratio Mg, = -Z—?— = constant, i.e.,
g

expression {4.1), the motion diagram of &, = £}(¢,) should be the straight line as
shown in fig. 8.5 (a). With the curvature modification to the pinion tooth surface,
the motion diagram of % = €b(¢;) might be the convex curve as shown in fig. 8.5
(a). If, alternatively, let the ordinate designate the error Ac, of the rotating angle of
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the theoretical contact locus the actual contact locus

]
R
.
)

(a) (b)

Figure 8.4:Contact locus

the pinion, i.e., Agp, = €f — 5:; and the ahscissa designate the rotating angle g, of the
gear, the motion diagram, i.e., fig. 8.5 (a), can be re-depicted as shown in fig. 8.5
(b).

If the contact transmission occurs only between one pair of tooth surfaces, the
contact locus should correspond to the curve CC' of ti.* motion diagram. Due to
the succeeding contact of the adjacent tooth pair, tooth 2 is about to be in advance
of tooth 1 at poini B’ of the motion diagram, and accordingly, the contact will be
transfered from tooth 1 to to~th 2 and therefore, tocth 1 works oaly in the rargz of
rotating angle corresponding io the curve BB’ of the motion diagram.

If the motion diagr=m is the concave curve as shown in fig. 8.6, in such a case,
since tooth 2 is in advance of tooth 1 at point A of the motion diagram, the contact
sudderly jumps from tooth 1 to the tip edge of tooth 2 of the pirion, and in turn,
tooth 1 is about to be in advance of tooth 2 at point B’ -* the motion diagram, and
thus the coxtact transmission will be transfered more than once from tooth 2 to tooth
1. Finally, at point C’ of the motion diagram, the contact point reaches the tip edge of
tooth 1 of the gear, ~.nd therefore, the contact suddenly jumps from tooth 1 to tooth
2 again . So, the iniermittent contact locus corresponding to this case is as shown ir
fig. 8.6 (c). The same situation will occur repeatedly, and cause vibration, noise and
instability. Therefore, such a situation is not permissible. From the analyses above,
the motion diagram should be convex curve =s shown in figs. 8.5 (a) and (b) or 8.7
(a) and (b).

Since in the cours manufacture, assembly and transmission of gearing, errors and
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tosth 1 tooth 2

(b)
Figure 8.5:Motiou diag:am

deformation are inevitable, thus, it is impossible to achieve exactly the required trans-
mission ratio. But, because there exists an intrinsicaily interchangable relationship
between geometry and motion, the error of transmission can be, to some extent,
compensated through the curvature modification.

Let the allowed error in the transmission ratio be AM,, within the range of a
single pitch. Then, the modified value of the angular acceleration A(‘—’;gf?-) is found
in the following form

d N,AMy,

AM
A‘“Tieip) =t (8.21)
9

where, N, is the number of teeth in the gear.

168



Ok AN®

 \
. oth/l 1 pitch ‘ tooth 2
° B

(b) (<)

Figure 8.6:Mction diagram and contact locus

The motion diagram is shown in fig. 8.7 (a), and its first-order derivative 1s
the instantaneous transmission ratio Mg, = %, skown in fig. 8.7 (c). Since the
motion diagram for the theoretical line-contacting tooth surfaces is a straight line,
thus, the instantaneous transmission ratio is constant, i.e., (Mg); = (ﬁf), = const.,
as shown in fig. 8.7 (c), and the instantaneous angular acceleration is zero, i.e.,
(dfg’:ﬂ)z = () as shown in fig. 8.7 (d). If tke motion diagram for the point-con*acting
tooth surfaces is assumed to be approximatcly a second ords. curve, then, the curve
for the iastantaneous transmission ratio (M), = (%:—)p is a straight line as shown
in fig. 8.7 (c), and the instantaneous angular acceleration is a constant as shown in
fig. 8.7 (d). Consequentiy, the modified value of the angular acceieration is found as
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follows

dMgyp,  dMgy. dMgyp <0, forward transmission;
A( de, )= deg Jp = ( de, ) >0, reverse transmission. (8.22)

Since the transmission ratio at the fundamental contact point Py remains un-
changed before and after the curvature modification, and only the derivative to the
transmission ratio a* the fundamental contact point Py is changed after the curvature
modification, i.e., A( %”iﬁ) # 0, with the aid of the definition of Jp, i.e., expression
(2.150), and expressions (2.123), (7.5) and (7.7), the corresponding modified value of
A(J, - N/ is found in the foliowing form

A3, N§) = {(ZE2)w; x (R, ~ Ip) + Mgpwp X (w1 X RY,)
—w; X [Mgpw X (R{;f - Ip)}}- Ngf — {Mgpwa % (w1 x RE)
—wy X [Mgwy x (R, — Ip)]} - Ny, (8.23)
= -A(%E)(K xRf)-NJ,
= A(%)[zgpNéfpz - Ng{pz(x_gp - fgp)]

vheir A(%’fﬁ) is determined by expression (8.21), NJ,, N/, are determined by

2xpression (7.2) and z/ zJ are determined by expression (7.1).
9 “9p

The increment A(J,,- ng) can be achieved through the modification of the conju-
gate normal curvature to the pinion *ooth surface along direction g perpendicular to
direction e of the instantaneous lire of contact. Taking the increment of expression

(2.241) yields
_ dK, NS Y - ngE% )
AKég - d(inngp)A(Jp ng) d(JP'Nyp)A(Jp ng)

- ; i ; (8.24)
= —E#?A(Jp . ng) - I(SPJNEZ,—)A(J' . ng)

where, D, and E, are determined by expression (7.21), and _I_{_g can be determined
by expression (7.24).
Since no curvature modification is applied to the gear tooth surface, the value

—”%—d(:KN ) is equal to zero. Finally, the modified value AKj, of the conjugate normal
p'iigp
curvature to the pinion tooth surface is found in the following form

, K, ,
AK;, = —F%Tgb:gaup -NJ,) (8.25)
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Tcnsequently, the value K of the cunjugete normal curvature for the pinion

tooth surface is found as follows
K,',’; = AK;Q + K,’,g

where, K, is determined by expression (7.25).

(8.26)

With the aid of expression (7.31), application of expression (2.39) yields the con-
jugate normal and torsicnal curvatures of the pinion tooth surface in directicns of t,

and s, as follows

l (8.27)

K% = K}Zcos’ 0,{,,, + KP sin? 0,{”, + 2G}, sin 0{,,, cos B,{tp
GL = -(K& - Kp)sin 81, cos 81, + G'%(cos? 6, — sin’ 6!,
K2 = Kp2sin®6l, + K2 cos? 6, — 2G,sin 6, cos bl
where, K2, G and K, are detcrmined by expressions (8.14), (8.20) and (8.26)

respectively, and 0{,, is determined bLv expression (7.31).
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Figure 8.7:Diagrams for motion analyses
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Chapter 9

Determination of Machine-Setting
Parameters for the Generation of
the Pinion Tooth Surface

The manufacture of the pinion tooth surface is a very critical and practical step
to achieve a pair of point-contacting tooth surfaces with good mismatch. The pinion
tooth surface finally obtained should have the specified curvature properties besidos
the prescribed unit normal at the fundamental contact point. Therefore, the proce-
dure for choosing the cutting paramete: - for the pinic  soth sarface is more compli-
cated than that for the gear tooth surf~~. Ir the cut. it practice of manufacturing
hypoid gears, the pinion tooth surface - gei.2rated by the single s.de method, i.e.,
the two faces on each sidc of a tooth spac2 are cut independently.

9.1 The Cutting Position Vector of - ae PPoirt on the Cutter
Corresponding to the Fundamental Certact - » at

Similar to chapter 2.3.2, we use dual coordinate systeme Op — im,jm,km and
O, — ip, jp, Ky as shown in fig.9.1. We choose coordinate syster Om — imyJmy km to
correspond to the machine frame , k,» being coincident with the axis of the cradle,
i, being vertically down; and we chocse coordinate system Op — ip,jp, kp to corre-
spond to the workpiece, k, being coincident with the rotating axis of workpiece. The
relationship between Oy, — im,jm, km and Op — i3, ], k, is found as follows,
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Im

(k')

Figure 9.1:Relaticaship among coordinat: «+’cms

OmOp = frpim )
» =m TP (9.1)
Jp = (Bpim) ® (=km) = — cos fpkp, + sin Bpjm

kP = (ﬂpim) ® jm = sin .Bpkm <+ cos ﬂpjm

In the same manner as chagter 5.1, we establish coordinate system O, — i, j¢, ke
corresponding to the cutter, and then with the method used to derive expression
(5.5), we show that the coordinate system O, — i, jc, k. is related to the coordinate
system Oy, — i, jm, km as foilows
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ic = (Opkm) ® im = cos Opim + sin Opjm
k. = ({ic) @ ki = sin(, sin Opim — sin §p cos Opjm + c0s Gk (9.2)
jo =ke X i, = —cos(,sinOpim + cos (p cos Opjym + sin (pkm

where, ©, is the swivel angle, and (, is the tilt angle.

Without the tilt device, i.e., ©, = {;, = 0, the relationship above is simplified as
follows

i =i,
e =Jm (9.3)
k. =kn
and .
OmOc = ZTepim + Yepdm + 2epm (9.4)

Let p.p designate the radius of the cutter corresponding to the fundamental contact
point Py, ¢, designate the blade angle of the cutter for the pinion and o, designate
the phase angle of the cutting edge in the coordinate system O, — i, jc, k.. Then
following the derivation of expression (5.9), and knowing that the conjugate cutting
position lies in coordinate plane i, — O, — j., the position vector of the point on
the cutter corresponding to the fundamental contact p~int on the pinion is found as
fcllows

R4np = mmpim + ympjm + Zmpkm

Tmp = Zep+ PepCOSTp 08O, — pepSin gy, €os (psin Op (9.5)
Ymp = Yep + PcpCOS O, Sin O, + pepsin oy cos (pcos Oy '
Zmp = Zept PepSinoysingy

Correspondingly, the unit normal N, to the cutter surface is found in the form

Ncp = Ncpzirn + Ncpyjm + Arcpzkm )
Nepz = — 0S¢y €OS Gy €08 Op + €05 ¢, 5in g €08 (5N O,
+ sin ¢y sin {p 5in O | (9.6)
Nepy = —C0S ey 080,500, — cos bepsin op cos (p €03 O '
— sin ¢cp 5in {, cos Op
Ngp: = —€08¢gpsinay,sin(p + sin ¢y oS (p )
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and the unit vector tangential to the cutting edge at the point corresponding to the
fundamental contact point is given by

Wy = Weiim + Wepzim + Wepskm
Wepr = Sin e COS 0, OS O, — sin dop 5in 0 €08 5in Oy
+ €OS @p 5in {; 5in By \ (9.7)
Wy = Sin @080, sin O + sin ¢, sin op cos §, cos Op '
— €OS @Pcp Sin {; cOS Oy
Was = singdesino,sindy, + cosgepcos(p )

Without the tilt device, i.e., ©, = (; = 0, expressions (9.5) become

Rﬂ:p = . 4pim -+ ympjm + Zmrkm

Tmp - ep + PepCOSTp (9.8)
Ymp = Uyt PepSINOp

Zrp = Zep

Correspondingly, the unit norm:’ Ny, to the cutter surface in the case of no tilt
device is found as follows

Ng = (opke) ® (—cos depic + sin depke)
= Ncpxim + Ncpyjm + Ncpzkm

Nyz = —C0s¢yC080p (9.9)
Ngy = —c0s¢ysinoy
Ny, = sindgg

and the unit * ~ctor tangential to the cutting edge is found in the following form

Wer = singgpcosop
Wepe = singgsinoy (9.10)
Wes = cosggp

9.2 The Cutting Position Vector of the Fundaraental Con-
tact Point on the Pinion

The cutting position vector R, of the fundamental contact point Py on the pinion
can be reached by rotating vector R{ , i.e., expression (7.5), representing the conjugate
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contact position at the fundameatal contact point of the pinion with the gear, about
axis k' through an angle de/, that is,

B, =

Tp
Yyp =
Zp =

(0elk) @ RI = (8efk') ® (xfi' + yi + :JK')
Tpi + ypi' + 2K’

zf cos bef — y sin Aef (9.11)
«f sin 8] + yf cos 8¢

P
f
Zp

s 32

where, zJ, yJ and z] are determined by expression (7.5).

With the aid of expression (2.153), R, is related to Ry, i.e., expression (9.5), as

follows
R"Nlp = R1J + fmpim + ka’ )
Tep + Pep COS 0 €OS &y, -~ prpsin 0, €08 G, 5in O, = 2 cos ] ~ y] sin be]
+frps
Yep + Pep COS T 27 2, + pep sin 0 €05 G €08 O = (2] + L) cos 3, L (9.12)
~ ‘ndef +y cos def) sin By,
i - pepSinopsinGy, = (2] + Lp) sin B,

t . Qi g
-y sin 0e] + yf cos 6e]) cos By,

Consequently, with the aid of expression (7.7), the unit vector at the fundamental
contact point P; normal to the pinion tooth surface corresponding to the cutting
position is found in the following form

222 L
[ T

N

With the aid of
tne following form

(6e{,k’) ® N: = (6s£k’) ® (N,{Ii’ + N,{yj’ + NLK')
Npi' + Npyj' + Np k'

N’;’ cos 66}{ - N}{y sin deé (9.13)
N/, sinde} + N, cos be}
NS

pz

expression (2.171), N, is related to N, i.e., expression (9.6), in

NZ, cosbe] — N, sinde] = —Nep,

N/, sin 8¢ + Nf, cos 6ef = — Nepy sin fp + Nop, cos 5, (9.14)

NJ, = =Ny cos fp — Nep. sin 3,
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Without the tilt device, expressions (9.12) and (9.14) are simplified to the following
forms

Tep + Pep COS 0p = T4 cOS 6] — yf sin be] + fop,
Yep + Pep Sin 0y = (2 + L) cosypr + (2] 5in 65},{ + y] cos bef) sin ., (9.15)
Zep = (2§ + Lp) sinypr — (2] sin 8€] + y; cos del) cos ypr

and

N/, cos b} — NJ, sinée] = cos ¢cp cos op,
N/, sin bef + NJ, cos 8l = cos e sin 0y SN Ypr + SiN Pep COS Ypr, (9.16)
N, = 03 @cp Sin 0, €OS Ypr — SN Gep SIN Ve

9.3 Calculation of Curvatures for the Pinion Tooth Surface

The required curvature properties for the pinion tooth surface have been deter-
mined in Chapter 8, but on the other hand, the pinion tooth surface is generated
by the cutter surface under the conjugate motions of the cutter and the pinion.
Therefore, machine-setting parameters for the pinion tooth surface should satisfy the
curvature requirements obtained in Chapter 8.

With aid of expression (2.129), the velocity at the fundamental contact point of
the cutter relative to the pinion corresponding to the cutting position is found in the
following form

v’;;lnﬁ = 'u;:;pim -+ v;nij.m + U’r)r;p m

vﬁz = —(1+ Mqyysin Bp)Ymp + Zpm Mimp €08 By, (9.17)
UF = (1% Mg SiD 5p)iny — Moy fopSi0

vy = —MpZmp 08 Bp + Minp fmy €05 B

where, M, is the ratio of roll for the pinion, and Zmp, Ymp, Zmp are determined by
expression (9.5).

Expression (2.133) results in

= Tpiim + Modm + Mgk, ‘

T = —Nepy(l+ Mmp‘ sin Bp) + Nepz Mpmp €05 By,

Ty = Nepz(1+ Mmpsin B)s > (9.18)
gl = /() + () + () J

where, Ngpz, Nepy and N, are determined by expression (9.6).
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The requirement of conjugacy, i.e., expression (2.157), yields
[= (1 + Minp$in Bp)Ymp + ZmpMmp €08 Bp] Nepz + [(1 + My sin Bp)Zmp (9.19)
—~Mmp fmp sin 8] Nepy + (— MmpZmp €OS By + Mynp fmp €08 Bp) Nepz = G

Without the tilt device, expressions (9.17), (9.18) and (9.19) are simplified to the
following forms

vIP = vpim + Vpy jm + vy km

v = —(1+4 Mppsin Ypr)Ymp + ZmpMimp COS Ypr, (9.20)
vy = (14 Mmpsinype)Zmp = Mimp Jinp SIN Ypr, '
v,',’;” = —MmpZmp 08 Ypr + Minp fmp €OS Ypr

where, Znp, Ymp and zm, are determined from expression (9.8).

and
"75 = ngim + n;‘?jm + ngskm’ )
P = (14 Munpsin ypr) €0S gep Sin op + Mip COS Y Sin @ep,
o = — (1 + My Sin py) €OS ¢cp COS Op, \ (9.21)
= My cos @cp €OS Tp COS Ypr,
) = ) + () + ()? J
and

[= (1 + Mump Sin Ypr)Ymp + ZmpMinp COS Ypr] COS Gep COS Tp
+{(1 + Minp Sin Ypr ) Trmp — Mump fing, i Ypr] €OS Pep sin o (9.22)
—(=MmpZmp €0 Ypr + Minp fmp COS Ypr) SN Pep = 0

P mp
Since the unit vector 1% can be obtained by rotating by about Ny, as an axis
P

mp

through an angle 677, thatpis,
nP _ va
W= (ex’pN”)f Va7l mp (9.23)
v . .
= cos 6P by + sin 0PNy X I_zf“"l
then,
vml’.np 3

Ve il
} 4 mp
upl "p1+vp2

,,{;L":Unﬁl
sinfm™ = ——mf-?—E-Nc”.(v X17p)
vn [Vp " |l
__ Mmpfmpcos B

[vp " ilnpl J

P
cos O}
Tp2+Vp3 Tpa

o

(9.24)
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where, in the case of the tilt device, vy}", v;” and v;';” are determined by expression
(9.17), and 7", np2 and 77”3 are determined by expression (9.18); in the case of no tilt
device, v,,", Upy and vpy are determined by expression (9.20), and 7%, 7b, and
are determined by expresswn (9.21), with B, = 7pr.

mp
Since vector ll:;ﬁwT can be expressed in the following form
4

viP
i = (T Neg) @ W, (9.25)
= COS 9 W cp + Sln Bwv NCP X ch
then
viI'P. W, )
cosOpF = —ﬂ—vmvT—p
chl". ‘U ‘ch2+'U ‘ch3
mp (N \W” )l ,
- mp cpX YWep
sin ewv IVP’"P| 3 (926)

'U;’;p (N cpyu/cpii - N, cpz ch2)
+U;7§p (Ncpz chl - Ncpx chs)
,U'rr;p ( N, cpx ch2 N cpy chl )

|Vp | J

where, Nepz, Nepy and N, are determlned by expressmn (9.6), Wepi, Wepz and Wy

are determined by expression (9,7), and v,;,", v;3” and vpy’ are calculated by expression
(9.17).

Without the tilt device, the expression above simplifies to the following form

mp
Upa

mp _m.,,.;_
CcOS owv leP | cos ¢cp ) (9 27)
singm™r = 7P cosop— ;:‘1” sinap :

wy - |v 4 |

mp
Upt s

With the aid of expressions (2.39) and (6.24), the curvature properties of the
mp mp
cutter surface in directions of —?np- and Ay = Ny X —-%m- are found as follows

where, v\, U5y 2 P and v P are determined by expression (9.20).

Keov = Koy cos? 0T + Kopgsin® 078 + 2G opy, sin 077 cos 657 )
__cosdep sin?2 65,0

Pcp ! 2
—(Kopw — Kepg) sin 072 cos 072 + Gepy,(cos® 657 — sin® 077)
om? s (9.28)

€05 Pep Sin 0;’,‘3’ cos

Q
3
I

I

Kpa = Kepu sin?¢ 9,,,,, + K opg c0s2 07 — 2G oy, sin 07 cos 07
__€Os ¢cp COS 290F

pcp J
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where, in the case of the tilt device: sin 67 and cos 67} are determined by expression
(9.26); in the case of no tilt device: sin ) and cos 6m? are determined by expression

(9.27).

Expression (2.151) results in

Jp = Jplim + Jp2jm + Jp3km7

Joi = Mppfmpsin By,

2 = Mmp2zmp oS by, (9:29)
Jpys = —Mpmplympcos By

where, ymp and zm, are determined by expression (9.5).

Then, the combination of expressions (9.6) and (9.29) yields

3, - N = Nepz Monp frmp 8in B + Nepy Mrmp 2mp €08 By = Nepz MmpYmpcos B (9-30)

Without the tilt device, expressions (9.29) and (9.30) become

Jp = Jplim + Jijm + Jp3kma

’ 9.31
Jp2 = Mmpzmp COS Ypr, ( )
Joza = —MmpYmpCOSTYp

where, Ymp and zmp are determined by expression (9.8).

and

J, Ny = —Mpy fmp Sin Ypr cos Gep COS Tp — MipnpZmp COS Ypr COS PepSinop (9.32)
—~ M npYmp COS Ypr SiDl cp

Expression (2.209) results in

Dp = chvlv;npl_ |n£|c080$7p’ (9 33)
E, = GepulvI™| — |2|sin 63 '

~where, K py and Gepy are determined by expression (9.28), and sin é]}F, cos Oy are

determined by expression (9.24); in the case of the tilt device: |v;*?| and 75| are
determined by expressions (9.17) and (9.18); in the case of no tilt device: |vp?| and
Inp| are determined by expressions (9.20) and (9.21).
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Application of expressions (2.239) and (2.240) yields the Comugato normal and
torsional curvatures of the pinion tooth surface in directions of ——ém,— and

Angp =Ng X Win:pT in the following forms

D2
/ — ___,W_z_
Kﬂv - D,,]v,, |+J,J Nep KCP"’

G;w = Dp|vp"’¥’|+JpN' chv, (9.34)
i = mprng — Koo

where, Kpy, Gepy and Kpa are determined by expression (9.28); in the case of the tilt
device, |vI*?|, and J,- N, are determined by expressions (9.17) and (9.30) respectively;
in the case of no t11t device, |vy®|, and J,, - N, are determined by expressions (9.20)
and (9.32) respectively.

In the cutting position, vector t, defined by expression (7.26) becomes

tpe = (6E£kl) ®tp
= tpclim + tpcgjm + tpc3km,
tper = tp1cosde] — tyasin 65{, (9.35)
tpz = (tpisin 65 + tp3 cos bef) sin ﬂp — tp2 €08 fBp,
tpes = —(tpisin 65 + tp3 COS 5! 1) cos B, — tpasin By

Consequently, vector s, defined by expression (7.27) is given by

spe = (JelK)®s,
= Spcilm + 3pc2jm + 3pc3km»
Spt = Sp1€080e] — sp3sin bel, (9.36)
Spez = (Sp1sin 55 + 5p3 cos 0e]) sin By — spz cos fy,
Spes = —(Spisin ésf + $p3 COS 5el 1) cos B, — spasin B

Without the tilt device, expressions (9.35) and (9.36) become

tpe = (55!1(’) Rty )
= tpcllm + tpczjm + tpc3km,
tpet = COSYpr Sin Yy cos(e) + b)) — sin 1,/),,, sin(e] + é¢f),
tpz = sin Yor sin Yy, cos(e) + 8e]) + [sin® vy, sm(e L gel AR (9.37)
+ 05 Ypr) €OS Ypr,
toes = [1— sin(ef + 8ef)] cos y sin Ypr cOS Ypr
— COS Ypr SIN Ppr cos(s + éef) J
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and

spc = (0elk) ®sp
= Spcllm + 5pc?Jm + Spciikm;
Sper = 8p1cosdE] — sp3sindef, (9.38)
Spcz = (Sp1sin 56 + Sp3 COS 66 1) sinYpr — Sp2 COS Ypr,
Spes = —(Sp18in 56f + §p3 €OS Sl 1) cos Ypr — Sp2 Sin Ypr

Since vector t,. can be derived by rotating ﬁ/’% about N, as an axis through an

angle t,,7, that is,

— mp va
tre = O Do) 1ol - (9.39
— mp vmP vmr .
= 080y yms T sin 0" Nep X gy
therefore. the angle 8., is given by
toc-v? \
cosdfp = 4
t,,cjvpl -‘H,p,_-z +tpc3u
I\7" B I ’
g = tee(Nepxup®) > (9.40)
sinv,, = VP
— tpcl(Ncpy —Ncpzv 2 )+tpc2(Ncpz "'Ncpzv )+tpc3(Ncyz —Ncpyv;';p)
- lvp | J

where, in the case of the tilt device, Nepz, Nepy and N, are determined by expression
(9.6), v ;’{”, v,',g” and v""’ are found in expression (9.17), and tp., tpe2 and t,3 are
calculated by expressmn (9.35); ln the case of no tilt device, Nepz, Nep Py and N, are
determined by expression (9.9), vp)", vy’ and vyy” are found in expression (9.20), and

tpet, toca and tpes are calculated by expression (9 37).

With the aid of expressions (9.34) and (9.40), application of expression (2.39)
yields the conjugate normal and torsional curvatures of the pinion tooth surface in
directions of t,. and sy in the following form

e = Kj,cos? 057 + K sin’ 07 + 2G,, sin Gy, cos 6,7 )
Gy = (K’ - K’A) sin 8];F cos 9 + G’ (cos2 g — sin? 6,7), (9.41)
K, = K, sm2 0 + Koa cos2 0,,}’ 2G;v sin 637 cos 65"

9.4 Simultaneous Equations for Machine-Setting Parame-
ters of the Pinion Tooth Surface

The values of the conjugate normal and torsional curvatures of the pinion tooth
surface in directions of t,. and s, have been given by expression (8.27). Setting
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Ky = or Gotp = Gy .and K., = K&, .and combining equations (9.12), (9.14)
and (9.19), we obtain the simultaneous equations for determining the machine-setting

parameters of the pinion tooth surface in the following form

Tep + Pep COS 0y €08 O — pep 5in 0 COS (p 5in O = 2] cos e — y] sin be] W
+ fmp

Yep + Pep COS T SIN O, + pep Sin T €OS ( COS Op = (2] + Ly)ces By

+(zJ sin ée] + y] cos 8ef) sin By,
Zep + PepSinopsin G = (2f + L) sin B,

—(zf sin 8¢} + yJ cos bel) cos By,

N/, cos 6] — N/, sinde] = —Nepe, > (9.42)

N/, sin ée} + NJ, cos def = —Nepy sin B + Nep, cos Gy,

[—(1 + Mumpsin Bp)ymp + ZmpMinp €08 Bp] Nep: + [(1 + Mpmp sin Bp)Tmp
— Mo frnp Sin By Nepy + (— MenpTrmp €08 Bp + Mump finp €08 Bp) Nepz = 0,
K =K' cos? 0 + Kjsin’ 07 + 2G}, sin 0" cos 6,17,

G2, = (Kb, — Kjp) sin 0" cos 67 + Gy, (cos? Oz° — sinZ 8;"),

I_I-fmp (] 2 omp ! oin QTP mp
Kf, = K, sin 6" + Ky cos Oy’ — 2Gp, sin f,,” cos Oy

&

Simultaneous equations (9.42) consist of nine equations, and there are twelve
parameters to be determined, i.e., Zcp, Yeps Zcps Tps Cps Op, Deps Pepr fmps Lp, 65,{, and
Mnp. Therefore, the values of three parameters among them be prescribed.

Without the tilt device, simultaneous equations for determining the machine-
setting parameters of the pinion tooth surface are found in the following form

Tep + Pep COS 0y = T3 COS 6] — y] sin def + fmp, )
Yep + PepSin 0p = (2] + Lp) cos Ypr + (z] sin o] + y] cos 8] sin ypr,
2y = (2] + Ly) sinypr — (] sinde] + yfcos 8el) cos Ypr,
N/, cos e} ~ N/, sinde] = cos pc, cos o,

N, sinéef + Nj, cos del = cos ¢y Sin oy sin Ypr + Sin Pep €OS Ypr,
[=(1 + Mump Sin Ypr)Ymp + 2mpMemp cOS Ypr] €OS Pep €0 0 > (8.43)

+[(1 + My Sin Ypr)Tmp ~ Mump frnp Sin Ypr] COS p SIN T,

— (= MinpTrmp €OS Ypr + Mmp frmp €O Ypr) sin ¢ep = 0,

K = K., 82 05F + K sin® 67 + 2G,, sin 03° cos 67,

- ! ! : mp mp t 2 omp .2 pmp
Gop = —(va - sz) sin 8}, cos 0; + Gp,,(cos 657 — sin” 63;7),
K, = K',sin® 6 + Kja cos? 657 — 2Gy, sin 05,7 cos 6,7 )

Simultaneous equations (9.43) consist of nine equations, and there are ten pa-
rameters to be determined, i.e., Zep, Yepy Zepy Ops Peps Peps Smps Ly 65{,, and Mpp.
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Hence, the value of ¢, must be prescribed, and the remaining nine parameters are

calculated.
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Chapter 10

Summary of the Procedure for
Design and Calculation

Given a pair of line-contacting surfaces, we select one surface as the fundamental
surface, and use the other surface as the substituted surface. Then, from the require-
ments, we select a fundamental contact point and replace the substituted surface
at the fundamental contact point by the substituting surface which shares the same
unit normal with the substituted surface but whose curvature properties have been
slightly modified. Consequently, a pair of new surfaces, i.e., the fundamental surface
and the substituting surface, are obtained. Such a pair of surfaces is obviously a
point-contacting pair.

Since the contact strength for a pair of point-contacting surfaces is low, much
gearing in current use is designed with line-contacting surfaces. But a pair of line-
contacting surfaces have the following two major defects: 1. high sensitivity to all
kinds of inevitable errors; 2. difficulty to manufacture. Substitution of a pair of
point-contacting surfaces for a pair of line-contacting surfaces can overcome the two
shortcomings above, and meanwhile, preserve almost the same contact strength and
the precision of transmission. This is based on the following two reasons:

1. These kinds of inevitable errors mentioned above are very small in value, so,
very little modification to the curvatures is required in order to compensate for these
errors. Thus, it is possible to eliminate the sensitivity to errors and to retain almost
the original contact strength.

9. There are a few constraints to the substituting surface as follows: (1). The
substituting surface must pass through the fundamental contact point; (2). The sub-
stituting surface must have the required unit normal at the fundamental contact point;
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(3). The substituting surface should have the required curvature properties at the fun-
damental contact point. On the contrary, the constraints to a pair of line-contacting
surfaces are much more stringent than those of a pair of point-contacting surfaces,
for every point on a pair of line-contacting surfaces has to satisfy the requirement
of conjugation. Therefore, a pair of point-contacting surfaces can be manufactured
much more easily than a pair of line-contacting surfaces.

As stated before, the basic principle for this system of design and calculation can
be summarized as the following points:

1. Design of the Gear Blank.

Use the gear tooth surface as the fundamental surface, select the reference point
for calculation on the fundamental surface, anc calculate the basic shape parameters
and the gear blank parameters for the gear anu the pinion respectively in order to
determine the basic shapes and the scope of the tooth solid.

2. Determination of the Machine-Setting Parameters and the Cutter Parameters
for the Gear.

According to the requirement for the unit normal to the gear tooth surface at the
calculation reference point, determine the machine-setting parameters and the cutter
parameters.

3. Analysis of the Tooth Surface Structure.

Select the fundamental contact point, and then calculate the curvature properties
of the gear tooth surface at the fundamental contact point, and finally with the aid
of the solution to the first type of the conjugate curvature problem, determine the
curvature properties at the fundamental contact point of the pinion tooth surface for
the state of line contact.

4. Calculation of the Curvature Modification.

Use the pinion tooth surface with the line contact as the substituted tooth surface,
according to the requirement for the strength, the direction of the contact locus, the
ability to absorb errors caused by elastic deformation and assembly, and the precision
of transmission, carry out the curvature modification at the fundamental contact
point to the pinion tooth surface in order to derive a pair of tooth surfaces with point

contact.
5. Calculation of the Machine-Setting Parameters and the Cutter Parameters for
the Pinion.

According to the requirements for the unit normal and the required curvature
properties at the fundamental contact point of the pinion tooth surface, determine the
machine-setting parameters and the cutter parameters for the pinion tooth surface.

187



Finally, from the above analysis, it can be concluded that this method can precisely
control the position of the contact point, and make good use of all the parameters of
adjustment provided by the Gleason No.16 Bevel-Gear Generator and approximately
control the contact pattern. Other methods such as the Gleason Works and F. Litvin's
methods need many cycles of trial and error through the TCA before they reach the
required position of the contact point and the required contact pattern. In the present
method, the machine settings can be calculated directly, to give contact at exactly
the chosen fundamental point, and the specified curvature conditions.

188



Chapter 11

Immediate Future Challenge

So far, we have used the theory of conjugate surfaces to derive a pair of hypoid
gears with point contact whose geometric properties and transmission properties at
the fundamental contact point are controlled under comparatively ideal working con-
ditions. In order to grasp comprehensively, deeply and precisely the performance of
the hypoid gearing obtained in the whole course of transmission under realistic condi-
tions, it is necessary to take into account not only the normal displacement caused by
the profile error and the elastic deformation at the corresponding conjugate contact
point but also the effect of the tangential location change of the conjugate contact
point due to profile error and elastic deformation under dynamic loads. Obviously,
the use of just the theory of conjugate surfaces is not sufficient to deal with this prob-
lem, and we have to perform analysis of dynamic loads on gear teeth with the aid of
the theory of dynamics, which, as is well-known, deals with the laws of interrelation-
ship between forces and kinematical motions, and the theory of elasticity, which, as
is well-known, deals with the laws of interrelationship between forces and geometric
configuration, and the aid of the theory of conjugate surfaces which deals with the
laws of interrelationship between kinematical motion and geometric configuration. A
general analytical theory to this problem has been given in reference (19]. Since three
theories, i.e., theory of conjugate surfaces, theory of elasticity, and theory of dynamic-
s, are involved, this analytical theory is called Conjugato-Elasto-Dynamics, or simply
CED. This is, in the author’s prediction, the direction of the future development.
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Appendix A
Numerical Example

The original parameters for the design of a gear blank are quoted from AGMA
standard. The figure in bracket refers to the number of equation in the thesis. The
units of length is millimeters

A.1 Design of Gear Blank

Input parameters:

Item Expression Value
The Number of Gear Teeth N, 45
The Number of Pinion Teeth Ny 11
The Hypoid Offset fop 38.1
The Radial Distance of the Pb 117.29628
Reference Point :
The Phase Angle of the i —72.829584°
Reference Point

The Axial Distance of the 2 36.934075
Reference Point

The Face Width of the Gear Fg 40.64
The Nominal Radius of Cutter Te 150
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Intermediate Parameters and Output Parameters:

Gear Pitch Angle

The Radial Distance of
Point P,

The Phase Angle of
Point P;

The Axial Distance of
Point P}

Pinion Pitch Angle

Relative Velocity at
the Reference Point

The Generatrix of the
Gear Reference Cone

Gear Spiral Angle

that is, expression (4.3)
%Yy = arccos los cos o —fp| °°°é""f

that is, expression (4.2)

oy = /(pscos iy = fop)? + 2}
that is, expression (4.4)
[ 2p

tan uy, = Pb €08 b —fgp
that is, expression (4.4)

z, = —pySin pp
that is, expression (4.4)
|C°S#b\/7’bC03#b - fgp)3+2}|

Yp = arccos on
that is, expressxon (4.5)
vi© = i+ vi3) + vp3k
Ub1 = —ppsin pp — Mgp2p

vZ = Py COS 1y
Vg3 = Mgp(pb cos ub fap)
lvi?| = \/(U + (vi3)? + (v3)?
that is, expression (4.6)
Sy = Spii + Spoj + Sezk
Sy = 2z cos? py
Sb2 — Zpcos sin

Sb? - Q
that is, expression (4. 7)
125y +v)28 28,
,(/) —arccos|—°’ b1 vb‘z' b2+v}2 Spal

that is, expression (4.7)

b
_Ppcospp—Jop

Item Expression Value

Transmission Ratio Mgy = 3¢ 4.090909091
that is, expression (4.1)

Intermediate Parameter Py €OS iy — fop -3.472406499

Intermediate Parameter | Qs = v/(pscos pp — fgp)? + 2f cos? pp | 11.44305792

72.335014°

37.09694735

-10.63644911

112.0684927

16.853544°

-39.02545048
34.6275935
-14.20529931

54.07260439

0.281294521
-0.910379551
0.303450924

30.033337°
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The Generatrix of
the Pinion Refere-

nce Cone

Relative Velocity
at the reference
point

Pinion Spiral Angle

Conjugate Accelera-
tion of Reference
Point Pb

Unit Normal to the
Gear Blank Pitch

Surface

Intermediate Para-

meters

Limit Pressure
Angle

St = Spri + St + Spak

(Pb COS pp— fgp)2 8in pp

H
b1 = (py cos pp— fgp)2+zb
S b{pp €08 py — fop) Sin pp
b2 =

\/ (o co8 pp—fop)? +2§

cos 1y /(s cos s —fop)2+2¢
Shs =

Qb
that is, expressmn (4.9)
vi? = udi + ud§ + vk

12 _ 12
ot = Yt
W,

Upgr = = Upp

that is, expression (4.10)

12
|Sh1 V3% +Shavim + 53t |

Yp = arccos 4
that is, expression (4.11)

Jy = Jpi+ Je2j + Jpsk
Jbl = 0
Jo2 = —Mgpzp

Jyz = Myppysin pp
that is, expression (4.12)
Nip = Api + Bpj + Cik
Ay = __(ppcospup—fep)cosuy
By, = —

G =",
that is, expression (4.13)
t = t)i+ 6§ + 3k

b .
{pp cos up—fgp) sin 1y

Qp
- ':’h [o{e}] Eh

t, = Spcosyy
—(BsSss — C»Sp2) sin 1y
ta = Sp2cosy,

—(CbSbl - AbSb3) sin ’(,/)g
t3 = Sba COSs ’l/)g
—(A,,Sbg - 31,53) sin '(/)g
that is, expression (3.48)
po(t1 By — taAp) sin s
—2zy(t3Ap — 11C)

}

tan @, = ppCh 5in pp—2 By
that is, expression (4.14)

-0.027138144
0.288653487

0.957048945

-39.02545048
-14.20529931
-34.6275935

132°

0
-151.0939432
-458.4620156

0.089583192

-0.289926395
-0.952847068

0.721723152

-0.640390709

0.26270788

—4.5004158°
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Average Pressure
Angle of Gear

Gear Pressure Angle
on Convex Side
Gear Pressure Angle
on Concave Side
Depth Factor

Mean Addendum
Factor
Clearance Factor

Mean Working Depth

Mean Addendum for
Gear

Mean Addendum for
Pinion

Mean Dedendum for
Gear

Mean Dedendum for
Pinion

Clearance

Mean Pitch Cone
Distance
Sum of Dedendum

Angles

Dedendum Angle of
Gear

Addendum Angle of
Gear

Face Angle of Gear

Root Angle of Gear

Pitch Apex Beyond
Crossing Point

q’g = ¢gm
that is, expression (4.17)
¢gi = ¢gm + ¢a
that is, expression (4.15)
¢go = 180° - ¢gm + o
that is, expression (4.16)
k
that is, table 6-1 in AGMA standard
C1
that is, table 6-2 in AGMA standard
ko
that is, section 6.5 in AGMA standard

h _ 2ki1pp coswg
- N,

that is, express?on (4.18)
ag = c1h
tha: is, expression (4.19)
a,=h-—a
that is, expression (4.20)
bg = h(l + kg A Cl)
that is, expression (4.21)
b, =by+ay—a,
that is, expression (4.22)
c= kgh
that is, expression (4.23)
AmG = &n T
that is, expression (4.38)

_ 7 8in g _ Amcsiniyg
Ldp = Ng ta.nd>g|coa¢g|( Te )

that is, expression (4.39)
6y = Zdp — Tép(FE)
that is, expression (4.43)
Qg = E(SD - 69
that is, expression (4.44)
Yof =Yg+ Qg
that is, expression (4.45)
Yor = Yo — O
that is, expression (4.46)

= zp — —Lb_
ZQO =2 tan,

that is, expression (4.47)

20°

15.499584°

155.49958°

2.0

0.2384

0.125

9.0264373

2.1519026

6.8745347

8.0028393

3.28020721

1.1283047

123.1008416

7.1274237°

5.4282459°

1.6991778°

74.0341918°

66.9067681°

-0.4209788
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Face Apex Beyond
Crossing Point
Root Apex Beyond

Crossing Point
Intermediate Para-
meters

Intermediate Para-
meters

Face Angle of
Pinion
Intermediate Para-
meters

Intermediate Para-
meters

Root Angle of
Pinion
Intermediate Para-
meters

Face Apex Beyond
Crossing Point
Intermediate Para-
meters

Root Apex Beyond
Crossing Point

— PpFag COB 7. .
Zyr =z — (B + agsiny,)

that is, expression (4.48)

— o, _ (Pr=bgcosyy ;
Zgr = 25— ( T bg sin )

that is, expression (4.49)
pp = ps — (bg = c) cos 7,
zp = zp + (bg — ¢) siny,
that is, expression (4.50)

_ _ foptaner
CoSHp = zp+pp tanvgr

that is, expression (4.51)

Qp = /(pp cos up — fop)? + 2 cos? pup
that is, expression (4.53)

_ cospupy/(pp cos pp—fop)?+2}5
~ps = arccos | oD |

that is, expression (4.52)
pt = py + (ag + c)cosvg
z = 2z, — (ag + c)sinyg

that is, expression (4.54)

— fg,, tanygs
COS Ut = Zytprtanrys

that is, expression (4.55)
Q= +/(prcos py — fop)? + 27 cos? e
that is, expression (4.57)

cos piey/ (pt cos pe—fgp)?+2]
“Ypr = arccos | v o |

that is, expression (4.56)

pp = v/(ppcospp — fep)? + zh
that is, expression (4.59)

= —pp si - fn_
ZPf = —ppSiNLp tanps

that is, expression (4.58)
P, = \/(pecos e = fop)® + 2
that is, expression (4.61)
Zypr = —pysin py — -

that is, expression (4.60)

1.138391799

-4.41967989

115.2101968
43.48445536

0.284855941

13.46585344

22.08480729

118.2916616
33.80853899

0.297739353

10.47000225

15.22372558

43.8040225

2.478663941

33.93097746

-11.7558611
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A.2 Machine-Setting Parameters for Gear

The input parameters were obtained in the design of the gear blank together with

the following parameters:

Item Expression | Value
Outer Blade Angle (4 160°
Inner Blade Angle @ 14°
Output Parameters:
Item Expression Value
Vertical Position fmg 0.87699787
of Gear that is, by solving equations (5.44)
Horizontal Position L -14.094601
of Gear that is, by solving equations (5.44)
The Point Width W, 1.7458611
of Cutter that is, by solving equations (5.44)
The Ratio of Roll Mpg -1.0121695
The Phase Angles € 95.2441723°
for Gear Cutting €y 78.46167698°
Position
that is, by solving equations (5.44)
The Phase Angles o’ 36.40313597°
for Cutting Edge o' 17.4713471°
that is, by solving equations (5.44)
The Coordinates of z2 -133.55318
Cutter Center at Yl 25.186956
the Cutting 28 -24.805069
Position T -116.23481
yl 70.429421
z -24.067896
Unit Normal to N¢ = Nezip + Negyjm + Ne:km
the Cutter N2 = —cos ¢} coso’ 0.756322233
Surfaces N, = —cos¢gsing® 0.557672745
NP, = sin 42 0.342020143
Ni = —cos ¢} cos o* -0.925533277
Ni, = —cos ¢} sing* -0.291310741
N:, =sin¢, 0.241921895

that is, expression (5.13)
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Intermediate Parameters:

Item Expression Value
Unit Normal N, = Ngzi + Ngyj + Nk
N = (sing,,C0S 7Yy + COS PgoSIN Y,
9z 9 9 9 9 -
to the Gear sin7,) COSES + COS B0 COS Uy SIN 2 0.756322219
N°, = (sin ¢y, C0S7Y, + €OS PgoSiN Y
gy go g 9 9 -
Tooth Surfaces Sin ;) SID €2 — €OS g0 COS ¢ COSE 0.378835142
Ng: = 08 9g05in ¥y cosy -0.533348509
— sin @go 5in 7Y
Ni, = (sin@yicosy + cos @g;sin Py 0.925533288
. siny,) €O €} + €OS Pg;i €OS Yy Sin 4
N;, = (singg; cos :yg + €OS Pgi Sin Yy 0.362855997
siny,) sin €y — cos (gi COS Py COSE}
Nj. = cosdsingycosTy -0.108275803
— sin @g; sin 7, '
that is, expression (5.20)
—Ng, sin ygr + N, €OS Ygr -0.378835187
—Ngy oS Ygr — N, sin g, -0.533348449
—Ngy sinYgr + NC? €OS Ygr 0.362856032
—N;, cosYgr — N:, sin vy, -0.108275802

Cutter Radius

Cutting

Position

that is, condition (5.24) is satisfied

p° = 7o~ [(L+ Zg)sinyg — 2¢] tan ¢
e

pi = 1e— (L + Zg)sinvg — zi]tan ¢}
_W

thazt is, expression (5.46)
Ry = (zc+ pcCOSO)im
+(Ye + peSinO)jm
+zkm
zl + pgcos o’
Y2 + p?sino®
zc
i + pc cos o
YL+ pc sin o
2
that is expression (5.12)
Rgs = py COSEGL + pysinegj + (2 + L)k
P COS €9

153.7025726

147.3724974

-9.843925059
116.4037366
-24.805069
24.33898303
114.674892
-24.067896

-10.72091897

199




Velocities of

Cutter relative

to Gear

Center Distance
From Cradle

to Cutter

The Phase Angle
of the Cutter
Center

Ratio of Roll

pp SiN eg
»+ L
Py COSE
psSInEy
that is, expression (5.19)
z% + plcoso® — fmg
(y + pCsin 6°) sin vy, — 22 €OS Ygr
(y2 -+ p2sin 0°) €0S Ygr + 2¢ SIN Ygr
o +pccosa - fmg
(¥l + pc sin o*) sin Yr ~ 2; €OS Ygr
(y: + pisin o) cos Ygr + 25 Sin Ygr
that is, equation (5.22) is satxsﬁed
vy ? = v¥im + v m + V7 Km
v = Mpyg28 COS Ygr
— (1 + Mg sinver) (y2 + p2 sino®)

v = (1+ Mpgsiny,)(z + pZ cos 0°)
Mmgfmg sin Yeor
v = —Mpg(z2 + pg cos o) cos Y
+Mmgfmg COS Ygr
Vp = Ming2; €08 Ygr
— (14 Moy sin ) (g + p25in )
Vy® = (1 4 Mg sin g ) (% + pL cos o*)
mg fmg sin 'Ygr
VT = —Mp,(zt + plcosot) cos vy
+ Mg fmg COS Yor

that is, expression (5.26)
Ngugd + Ngyd + Ng, ;’},9
New® + Va0 4 N2l

that is, condmon (5 28) is satisfied
v (22)? + (¥2)°
V(28)? + (ve)?

that is, condition (5. 35) is satisfied
€9 = arctan 1’1

g} = arctan __.-,
that is, expresswn “(5.37)

__ 180

T, = N,
Ty+es—e,

Mpg = i

that is, condition (5. 38) is satisfied

116.8053047
22.839474
23.46199194
114.9258554

-10.72092293
116.8053073
22.83947313
23.46198516

114.9258585
22.83947281

1.823032917

0.137920685

-4.256224452

1.649556794

2.49441626

9.314447609

0.000000437
-0.000001137

135.9074488
135.9074479

169.3199583
148.7873364

40
-1.012169579
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A.3 Calculation of Curvatures for the Gear Tooth Surface

Input parameters were obtzined in the previous sections.
Output Parameters and Intermediate Parameters:

( All calculations from A.3 to A.6 correspond to the concave face of the gear and
the convex face of pinion).

Relative Velocity
of Fundamental
Contact Point

Intermediate

Parameters

Curvatures of the
Cutter Surface

in Direction l%;:'l
and Ay

that is, expression (6.50)
Vi = v im + vfdm + U5 Km

mg __ ,,mg
vf 1 = Uzo
mg P (]
j2 vyo
vj3 = vzo

V7ol = R+ W) + 02
that is, expressmn (6.36)

v W1+v +v TS W
oS By = £ %y

—vﬂ" sing +v!2’ coso/
7l
that is, expression (6 53)
Ky c%‘fﬂ sin? 6,

Gy, = ‘i"%‘&ﬂ sin 0y, oS Oyy

pe
Kia= —ﬁ—ﬂw:d’ cos? B,
that is, expression (6.54)

Sin By, =

Item Expression Value
The Position of &s 0
the Fundamental ay 0
Contact Point Pr = Po 117.29628
2y =2z 36.934075
ef =€ 95.2441723°
zl =1° -133.55318
yl =y° 25.186956
2zl =2° -24.805069
= p? 153.7025726
ol =0° 36.40313597°
The Tangential W = Wiiyp, + Wojm + Wakn
Direction to the W, = sin ¢2 cos o/ 0.275278782
Cutting Edge W, = sin 42sin o’/ 0.202976279
W3 = cos ¢? -0.93969262

1.823032917
0.137920685
-4.256224452

4.632269176

0.977788518
-0.209593919

0.268572 x 1073
—0.1252934 x 102

0.5845134 x 1072
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Intermediate

Parameters

Conjugate Curvat-
ures of Gear Tocth

Surface in Direc-

mg
tions ~m; and A 1
|Vf |
Curvatures of

Gear Tooth
Surface

Ny = Npiim + Np2m + Ny3km
nn = —chy(l + Mg Sin vg;)
+ N, Mg €O Ygr
np2 = NL(1 + Mpgsiny,,)
Ny = _chz]wmg COS Ygr

Ing| = \/n?l + M5y + N}
that is, expression (6.57)
Sin 01"’ = - _A""'Igvfmg COS Ygr

Hnyl
v nn+vr i npatviings
o]
that is, expression (6.58)
Jfl = mgfmg sin Yor
Jr2 = Mpgz! cosvgr

cos Oy, =

Jr3 = —Mmg(y! + pl sino’) cos v,

that is, expression (6.61)

N{ -Jf = Nngjl +N£,J;2+chz.]f3

that is, expression (6.62)
Dp = Klvlv_’fngl - |77f| cos gvn
Ep = le"’?gl - lnfl sin oun

that is, expression (6.63)

D2

K =—>2 __ _K
9v T DyIvyII+NI.J, 1y
o __’?.EE}‘_r__ -

va Dp|V,/ng|+Nc-J/ le

! —_ Egz _ K
98— Dp|V}ng|+Nc'Jl 14
that is, expression (6.64)

Ky = K,
Ggv = —Gy,
KgA = K;A

that is, expression (6.65)

-0.174227322

0.052139215
0.300261199

0.351041941

0.214110562
-0.976809447

-0.81653953
9.8476544
46.21248

20.67980014

0.34414519
-0.080965733

0.50486606
x10~2
0.1968525

%1075
—-0.55508254
x1072
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Intermediate

Parameters

Curvatures
of Gear in

Directions

tor and
N/ X tgr

Qgr

(N, sin vgr + NJ cos Yor sine])?
(Nf cos Yor cos e + N/, sin fyg,)
+(N/J; cos 'yg, sin ef
——Nf COS Ygr COS ef)2
tgr - °grll + tgr2J + tgr3k
i _ Ng, 8in vgr+ Ny, COSYgr Sin €y
grl = Q?'
¢ — Ng, €OS Ygr CO8 eg+}\£q, sinygr
9r2 = , Qqr
¢ s = Ngz 08 7gr sin eé—N;, coS Ygr cosé
gr3 = Qor
that ic expression (6.67)
( }ng(tgﬂN - )
tgr3Nf ) ( gr3N
~tgr1 NJ,) (V75 sin Ygr
{ —of cosy)+
( grlN tgrQN )
( j g cos ’Ygr'*‘

. vy sin vy
sSin evt = L !3 s 97') 2
vy [

e

(v}';g sin Ygr —
vy COS Ygr)+
tgr3 (’Uﬂ COS Ygr

407 sin
cos B, = f3|v I'Ygr)

that is, expression (6.72)
Ky = Kgyco5?0y + Koa si.2 Oy,
+2G gy sin B,y cOS By
~(Kgv — Kg_\) s1n0 bt COS O
+Gg,,(cos 9yt — sin Gut)
Ky = Kgysin 20, + Ky cos 20,
—2Gg, sin B, cos Oy
that is, expression (6.73)

th =

-0.929128813

-0.589267912
0.72820477
0.33255944

-0.97303546

-0.23065557

—0.49877952
%102
-0.23771477
x1072
0.44856304
x1072
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with Line Contact

Input parameters are all obtained in the previous sections.

Output Parameters and Intermediate Parameters:

A.4 Calculation of Curvatures for the Pinicn Tooth Surface

Contact Position
of Fundamental
Contact Point

Corresponding
Unit Normal

Contact Position
in Pinion Coordi-
nate System

Phase Angle of

Contact Point

Unit Normal to
the Pinion Tooth
Surface

that is, expression (7.4)
Yor

= ___WEL__ _
ey = arccos( \/Dm) arctan(ugp)

that is expression (7.3)

RS, = [(e] + de,) k]® psi+ 27k)
zf, = pycos(e] + bey)
ygp = pysin(e 7+6eg
Zop = 2f

that is, expression (7.1)
N/, = (degk )®Nf
= Nf cos beg — N, sin deg
N . sindeg + N cos e,
NI, =N,
that is, expressmn (7.2)
R] = z’1’+yfj + zJK'
zf = z fg,,

l’

QPU

that is, expressmn (7.5)
f
y.
(zp)2+(yp)?

! . T
CosEy = 77=£==f
p (xp)2+(yp)2

that is, expression (7.6)
N/ = —-NJ, —Nf1’+Ny,] + NLX

sin Ep

— Nf
prz ]qf,’,,
N f = apy

__that is, expressmn (7.7)

Item Expression Value
The Increment of | Uy, = NJ,Mgps cosel — NJ Mgz | 137.6674679
Rotating Angle V N Mg,,p,squ N WMgpzs | -197.6154936
Wy = N szfy S + Np: Mofir | 175 5335061
- gyprOSE

191.9262439°

34.627594
-112.0684926
36.934075

0.661709394
0.526953544
-0.533348509

-3.47240596
36.934075
112.068492¢

0.995609549
-0.093603549

-0.661709394
0.533348509
0.526953544
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Intermediate

Parameters

Velocity of Gear
with Respect to
Pinion

Conjugate
Acceleration

Intermediate
Parameters

NJ,, cos Ypr—
(NJ,z cose}
+N{ . sin el) sin ypr

N,’,,, cos e},{—Ng,,, sin 5,’,'

Ypr = arctan

singy = —(Nigcosel + NJ,sine])
08 Ypr — Njp, SIN Ypr
bpr = Ng’;u CO8€p— gf,z sine{,
COS Ppr = v

that is, expression (7.10)
vy = v'%’i + v + visk
v%’ = —pys sm(eg + 8ey) — Mgpzy
v = py cos(e] + de,)
‘U% = Mgpps 008(55 + deg) — Mgpfop
V| = \/(v;';)z + ()2 + (vF5)?
that is, expression (7.11)
J, = Jpii + Jpoj + Jpsk
Jpl =0
Jp2 = —Mgp2s
Jp3 = Mgppy sin(e] + deg)
that is, expression (7.12)
that is, expression (7.13)

Tp = npli + 7]p2j77p3k
Npr = _Ngfpy —fo Mgp

apz
Moz = Nops
Mp3 = N, ,«{pzMgp

Il = /M1 + M52 + Tlps

that is,expression (7.14)
t], = th i+ i+ thak

tgrz = tgp1 5in 0€) + tgra COS oe]

tors = tgr3
that is, expression (7.15)

9P _ o 9P
Mgpvili—vis

sin@f = ——-Lpl2
vn InplIVE]
cosff. = Tlp1v7; +np2v55+1p3v78
v Iﬂpllvgpl

that is, expression (7.17)

132.5135127°
0.43376541

0.901025825

-39.02545048
34.62759404
-14.20529711

54.07260416

0
-151.0939432
-458.4620152

164.9005434

1.65492672
0.661709394
2.706992975

3.241057349

0.736817609
-0.588645927
0.33255944

0.889366573
-0.457194828
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v%’(N glpytg? - N, gfpzts{;?)
+v§§(x§pzt.¢}rl - Ng}})zt?ra)
+ too— NIt
sin@f, = Vs (Naps lg‘;f,,l aptar1) -0.088144664
9P 4] ! 99 ¢/
cos8f, = "“‘9"*”?3;%',’*”“’”" -0.996107692
that is, expression (7.19)
Kpv = Kgcos?0], + Kg,sin® 6], —0.53316263
+2G 4 sin 6, cos 8, x10-3
Gopw = —(Kgt — Ky,)sin8f, cos6f, ~0.15084276
+G ge(cos? 0, — sin® 6], %102
Kpa = Kgsin?0), + Kg,cos? 8], 0.48294615
—2G g sin 6/ cos6f, x10~2
that is, expression (7.20)
Intermediate Dy = Kgp| V| — \mp| cos 6], 1.1934993
Parameters E,= GgPu|v§p | - |gp| sin 6], -2.9640528
sin 6/, = “\/_Egﬁl"—a‘; -0.373515168
j — —_E -
cosbf, = 2= 0.927624072
6, 201.9325709
that is, expression (7.22)
Kpe = Kgpycos®0f, + Kopasin® 6, —0.49593016
Curvatures of +2G gpy sin 61, cos 6}, %1072
- Ggpe = —(Kopw — Kgpa)sinbl,cosdf, | 0.24330951
Gear in Dire- +G gpu(cos? 6], — sin® 61,) x 1072
: Ky = Kgpysin?0), + Kgpa cos? 6, 0.44571368
ctions e and g —2G ypy sin 81, cos 8, x10~2
that is, expression (7.23)
. o D2+E?
Relative Curva- Ky = D13, N, 0.044500619
ture that is, expression (7.24)
Conjugate Cur- K, = —Kgpe ?(";(9)?23016
vatures of Pinion Gpe = —Gpe ;(1)62:12330951
in Directions K, =K, — Kgpq 0.040043483

eand g

that is, expression (7.25)
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Intermediate
Parameters

Conjugate
Curvatures of

Pinion

tp, =t + tpo + tpsk

tp1 = €OS Ypr SIN Ypr COS €] — sinty, sin el

tp2 = — COS YPpr COS Ypr

tp3 = COS Ypr IR Ypr IR g] + sin Y coSEJ

Sp = Sp1i + Sp2j + s,,3k

Sp1 = tpzN tp3N
Sp3 = tplN pzN

(N}) Ufa - Ngfpzv_ﬂ)
Nf U5)

f +tP3(NypIU!2 ngyvfl)

in 9’ =
St VT
cos 0 _ t,lv}’;+t,2uj§+t,w;3
vty = i
ovt,,
that is, expressmn (7.28)
getp 0 - ef

that is, expressxon (7 31)
K!, = Kbcos?6l, +Kj,sin*6],
+2G’ sin Oc," cosO
~(K;,, — K)sin oetp cos de
+G, (cos2 9e: — sin? Ge,p)
K,, = K’ sin® 6, , + Kp, cos? eet,
—2G’ sin Oet c050
that is expressmn (7. 32)

-0.717271937
0.652050049
-0.24566583

-0.218315441
-0.545115305
-0.809436632

0.021121875

0.99977691
1.210278966°

—200.7222919°

1.0962361
x10~2
—1.3434867
x10~2
3.4040423
x10~2

cation to the Pinion Tooth Surface

Input parameters are all obtained in the previous sections.

Output parameters and intermediate parameters:
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Item Expression Value
Proportional coe- F, 0.4
ficient
~ F_F,
Actual contact 2Fge1 = easd; cosd] cgs o o vl 20.41280746
width that is, expression (8.7)
~ Fehcos$
2FG€1 ~ | cos ®g(sin G{U coso.{,-:cos&{v sin 8], )] 8.428470146
that is, expression (8.8)
Fge 4.214235073
Allowable error of AMg, 0.00259
transmission ratio A(Ghe) = ~Ragtee -0.018549508
that is, expression (8.21)
Diameter of color ) 0.00635
compound
Modified value of AK), = gg- 0.000715099
Curvature in Dir- that is, expression (8.13)
ctions e and g g5 = 31\;@;@ 0.019377236
gp'vp
;o 1-g,|v;*’|sina.{,
tand,, = 2 0L, 49, VP con T, -2.444046149
that is,expression (8.19)
AGY, = — =55 0.000292588
that is, expression"(8.18)
NS)Y = dMop\1,f N/
AWp-Ng) = Al des )[ngNgﬂf -0.418989272
_:ngz(xgp - fQP)]
K
AK3, =~ priir AJp - Nj) 0.000081266
that is, expression (8.25)
0.56744
Curvatures of K} = K, + AK,, 102
e TN —0.2140507
Pinion in Direc- GP, = Gy + AG, 102
tions e and g that is, expression (8.16)
KP =K', + AK), 0.040124749

that is, expression (8.26)
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K? = KPcos?bl, + K’ sin?6] 1.140444
pt pe etp P9 ety
Curvatures of 12G% sin oéftp cos 9.{:,, %102
G? = —(K® ~ K)sin6/,cosb —1.3005779
. . . . _ pt pe P etp etp
Pinion in Direc +G' (cos? 02, — sin® ) %1072
K = K"sin6, + K? cos®6] 3.4394709
tions t, and s ps pe” © Tetp T "7P9 etp z
? 4 —2GP, sin 8],, cos 62, x1072
that is, expression (8.27)

A.6 Determination of Machine-Setting Parameters for the

Pinion Tooth Surface

Input parameters are all obtained in the previous sections and together with:

Item Expression | Value
Blade Angle for Pinion Py 24°

Output parameters:

 Ttem Expression Value
Vertical Position fmp 32.195057
of Pinion that is, by solving equation (9.43)
Horizontal Position L, 0.91700418
of Pinion that is, by solving equation (9.43)
The Ratio of Roll My -4.2258279
The Increment of Ph- be] —2.790746357°
ase Angle for Pin- that is, by solving equation (9.43)
ion Cutting Position
The Phase Angle Op 134.0309399°
for Cutting Edge that is, equation (9.43)
The Coordinate of Tep 130.91316
Cutter Center at Yep 14.909281
the Cutting Position Zep -6.0901225

that is, by solving equation (9.43)

Cutter Radius at Pep 144.43365

Cutting Position

that is, by solving equation (9.43)

Intermediate Parameters:
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The Position of Cut-
ting Point on Cutter

The Position of Cut-
ting Point on Pinion

Unit Normal to
Cutter

Unit Normal to
Pinion

Unit Tangent to
Cutting Edge

Velocity of Cutter

Relative to Pinion

Rmp = zmpim + ympjm + zmpkm
Imp = Tcp + Pep COS Tp
Ymp = Yep + PepSIN Ty
Zmp = Zcp
that is, expression (9.8)
R, = 2, + i’ + zpk’
z, = z cos bl — y] sin de]
Yp = mf sin de) + yf cos def
2p = z,{
that is, expression (9.11)
Zp + f mp
YpSin Ypr + (Lp + 2p) COS Ypr
(Lp + 2p) SIn Ypr — Yp COS Ypr
that is, equation (9.15) is satisfied
Ncp cp:z:lm + Ncpy.]m + ]chzk
Nepz = — c0s ¢}, cos 0p
Nepy = —cos ¢' sin op
Nep, = sin ¢'cp
that is, expression (9.9)

N, = N,,zx + Npyj' + Np K
N;z = Nf, cos8e] — NJ, sin e}
N = N . sin 8ef + Nf cos&ef

Np, = sz
—~Nepy sin Ypr + Nepz COS Ypr
~ Nepy €0S Ypr — Nep: S0 Ypy
that is, equation (9.16) is satisfied
ch = chlim + ch?ijCpSkm
Wep = sin ¢, cos gy,
Wepa == sin ¢cp sin g,
Weps = cos ¢’
that is, expression (9 10)
VP = yPin + v dm

v;'{p = —(1 4+ MuppSin Yor)Ymp

+Zmp Mmp COS Ypr

30.52502605
118.7519592
-6.0901225

-1.67002467
37.0593377
112.0684926

30.52503233
118.7519574
-6.090124212

0.634956769
-0.656806825
0.406736643

-0.634956701
0.564933573
0.526953544
0.564933465
0.526953586

-0.282700968
0.292429239
0.913545458

37.85441933
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Intermediate

Parameters

Curvatures of

Cutter Surface

Conjugate Accele-
ration

mp

v = (14 MppsinYpr)ZTmp

p2
—Mnp fmp sin Ypr
mp _
Vpy = —MpmpZmpCOSYpr
+Mmp fmp €OS Ypr

viel = /P + ()2 + ()2
that is, expression (9.20)
U Nepz + U P Nepy + Vp3 Nep:
that i 1s, equatlon (9.20) is sa.tlsﬁed
= im + Thodm + Tp3Km
77p1 = —NCPy(l + Mppsin 7Pr)
+Nepz Mpmp COS Ypr
p2 — Ncpz(l + Mmp sin 7pr)
b3 = = Neps Mmp COS Ypr

=\/77p1 )2+ (mh2)? + (m}a)?

that is, expressmn (9.18)
VP by v P b, +up nps

cos ;P = _L_L__e,,,,-%,—L—LMIVP! 4
: mpJmp CO8 Ypr
sin ;P = —Lm,f;,—f—’;lvp 4
that is, expressmn (9.24)

i

—_ 3
cosOn? = —ml———| (congt,
mP
. omp _ Yp2 cosa,,—v P sinop
sin 077 4

that is, expression (9.27)

i ain2 TP

— _cosq&:,E sin® Oy,

chu Pep

cos ¢}, sin 63,5 cos ooy

G = —

Pcp
cos ¢t cos? 007
K = -
that is, expression (9.28)
JP = Plim + Jp2jm + Jp3km

Jp2 = MmpZmp COS Ypr
Jp3 = _Mmpymp COS 7Ypr

that is, expression (9.31)
Jp - Nep = Jp1 Neps + Jp2Nepy + Jp3Nep:

32.378184

-6.8095895
50.27598205

-0.000002013

-1.7305048
-0.06962614
2.5890581
3.114918379

-0.545268214
0.838261667

-0.14826212
-0.988948102

—(.6185984
x1072
—0.92739653
x10~3
—0.1390343€
x10~3

-35.725404
24.832685
484.21521

157.9537049
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Intermediate Dy, = Kepo|vy?| ~ 1] cos 637 1.3874596
Parameters Ep = Gepo|Vy?| — |nB| sin 6P -2.6577423
that is, expression (9.33)
. D? 1.4639927
Conjugate K,, = _""’_L.’_N_D,,lv,, NG T Kepy %10-2
" DpE, —1.526652
Curvatures of Gpy = D—pl—v;wphs';jﬂc—p' - Gepy %10-2
.. E? 3.1159221
Pinion Kop = _'"”_LJTD,,IV,, o S Kepa %10-2
that is, expression (9.34)
Intermediate tpe = tpciim + tpe2im + tpeskm
Parameters tper = tp1 cOS O€f — tp3sin de] -0.728382352
toez = (tprsin 66,{ + tp3 COS 55,{) sin yp, -0.684430433
—1g2 COS 'yp}. ;
tps = —(tn sin de] +tp3c0s0e5) COSYTor | 3 131845307
—1p2 SIN Ypr
that is, expression (9.35)
mp mp mp
cos O = 2B Hect Y o -0.993515343
tpcl(Ncpyv;::,:p— N,,.,;,zv;,'é:’1 ’)’
toe3( N, B\
singre = L el e L) ) )| _o.n13698111
that is, expression (9.40)
K', = K' cos?0 + K, sin? 03" 1.140444
; pt pv vt pA vt
Conjugate ’ +2Gp, sin 65" cos 6,° x 1072
’ (] ! H mp mp
= —(Kp, — Kpp)sinby” cos by, —1.3005778
Curvatures of 4 +G,, (cos? P _ sin? g77) %102
Pinion K, = K, sinz'o,',',"’m+ K "(1:052 0" 3.4393709
—2G,, sin O5F cos 6, x10~
that is, requirement (9.41) is satisfied

A.7 Calculation of Curvatures for the Gear Tooth Surface

Input parameters were obtained in the previous sections.
Output Parameters and Intermediate Parameters:

(All calculations from A.7 to A.10 correspond to the convex face of the gear and
the concave face of the pinion).
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Item Expression Value

The Position of & 0

the Fundamental ay 0

Contact Point pr = pPo 117.29628
2p=2z 36.934075
el =€, 78.46167698°
ol =171t -116.23481
yl =19yt 70.429421
2l =2 -24.067896
ol =pt 147.3724974
o/ =0 17.4713471°

The Tangential W = Wiipm + Wojm + Wik

Direction to the W, = sin ¢ cos o/ 0.230761364

Cutting Edge W, = sin ¢! sin o/ 0.072631925

W3 = cos ¢} 0.970295726

Relative Velocity
of Fundamental
Contact Point

Intermediate

Parameters

Curvatures of the
Cutter Surface

in Direction ,—:;4".;1
and Ay

that is, expression (6.50)
v = v im + Vi dm + vys Km

mg __ ,Mmg
’U{nlg = U..#;g
r2 = Yy
Uj3 = vz:

Vi = (070 + (o) + (v5s')?
that is, expression (6.36)
WTIWy+ T T Wy
= —4

cos Oy = Tved
T mg !
. v,y 8ing/ +v,,y COBO
Sin By, = —< lv}ngl’

that is, expression (6.53)
Ky, = —7‘1 sin? Oy
G =-— ﬂ;ﬁi sin 8y, cos Oy,
Kia= —%‘32 052 By
that is, expression (6.54)

1.649556794
2.49441626
9.314447609

9.782744214

0.981278538
0.19259401

—0.2442155 x 103
~0.1244293 x 1072

—0.63397519 x 102
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Intermediate

Parameters

Curvatures of
Gear Tooth
Surface

Conjugate Curvat-
ures of Gear Tooth

Surface in Direc-

mg
tions l—:in'rl and Ay

Ny = Npim + N2dm + Ny3km
np1 = —NL (1 + Mmgsiny,)
+N{, Mg cos Ygr
N = ch:;:(l + Mmg sin 7gr)
Npa = ~NL Mpg cos v,
ng| = \/n}l + 0%+ 1
that is, expression (6.57)
sinf,, = — ﬂ’%{%ﬁ’—
cos By, = v?‘gw%{,"{ﬁﬁwm
that is, expression (6.58)
Jf = Jﬂim + Jfgjm -+ J]3km
Jfl = Mmgfmg sin Yor
Jr2 = Mmgz{ cos g

Jyz = —Mmg(y! + pl sino’) cos v,

that is, expression (6.61)

N{'J, = Nngﬂ-i-NgyJﬂ-FNngjg

that is, expression (6.62)
Dy = KuulV}®| — [ny] cos oy
B, = G1u[v}¥| = Iny| sinfuy

that is, expression (6.63)

D2
K' = —mto——-K
gv Dplv}"9|+Nc Jy 1y
r DyE _
va Dplv'!"9|+NZ 'Jl le
E?
1) — ____L!_ - K
98 = DV +NL 3, 14

that is, expression (6.64)

Kg = K,
Gy = —G",
KgA = K;A

that is, expression (6.65)

-0.075961069

-0.063804267
-0.36743827

0.380594207

0.093512144
-99561814

-0.816539538
9.5549954
45.526126

8.986028398

0.376537403
-0.047762781

1.1434817
x10~2
—-0.175205
x1073
0.65198116
x10~2
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Intermediate

Parameters

Curvatures
of Gear in

Directions

tgr and
NI X tg,

Qor

(N, sinvgr + N, cos Yor sinef)?
+(IV/, cos 7gr cos s + N/ sin 79,)
+(N/, cos 'yg, sin ef
— N/, cos v cos z:f)2
tgr - tgrll + tgrAJ + tgrak

Ngfv sin 'ygr+Ngz CO8 Ygr 8iN €5

tgrl - - .
torg = N,,z €08 Ygr cossg+N§', sinYgr
gr2 = Qgr

Ngl, €OS gy 8iN sg—NS{y €08 Ygr €CO8 sj{

tgrB - Qgr
that is, expressmn (6 67)

( 7’11 (tgr?N )
tgr3N ) ( grSJV
—-tg,lN )(vf2 sin g,

4 —vﬂ cos'ygr)+

( grlN gr2 ;)

(vfz COS Ygr+

mg

vy sinygr)

: 3 gr /
sin ovt -— > f |v}ng|

g~

tg,}’lv?;g + tgr2
(v Ur 7 sin g~
Vs 73 COSYgr)+
tg,;;(vfz COS Ygr
+v75 Sin Yyr)
|V, |
that is, expression (6.72)
Kg¢ = ng COS2 0,,, + KgA sin2 0,,;
+2G gy 5in B,y €05 Oy
Gy = —(Kg— ga) sin th cos O,
+Ggu(cos f,: — sin 0,,,)
Ky = Kgysin thKgA coS? Oy
—2Ggy sin Gy cos Oy
that is, expression (6.73)

cosf,, =

0.950194249

-0.307483399
0.887053929
0.34436796

-0.986956488

0.16098728

0.65915175

x10~2
0.61481
x10~3

0.011363111
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A.8 Calculation of Curvatures for the Pinion Tooth Surface

with Line Contact

Input parameters are all obtained in the previous sections.

Output Parameters and Intermediate Parameters:

Contact Position
of Fundamental
Contact Point

Corresponding
Unit Normal

Contact Position
in Pinion Coordi-
nate System

Phase Angle of
Contact Point
Unit Normal to

the Pinion Tooth
Surface

that is, expressxon (7.4)

‘/
deg = arccos( )~ arctan(,—fg’:)

that is, expressmn (7 3)
RI, = [(e] + d¢y) k] ® (psi+ z/k)

zf, = pycos(e] + dey)
ygp = pysin(e i+ deg)
ng =2y

that is, expression (7 1)

N/, = (degk) ® N/

= N ,cosdeg — NJ, sindeg

N . sindeg + N cos deq

N/ . = N/,

that is, expressxon (7.2)

R] = z,i’ +pr + 2]k’
a;f = m

f

gpy

9p ng

f’_ —QP

ygp
that is, expressxon (7.5)
!

. f _ Y
sineg; = W-E-ﬂ—
P (x,)’;{v(yp)z
f— z
COSE;, =
P \7<=Z)2+(u3 )2

that is, expression (7.6)
N/ = -NJ = NLi' + N,{y,]' + NLK

Nf_
Nf=— gf
N Nf

gry
that is, expressmn (7.7)

Item Expression Value
The Increment of | Uy, = N, Mgpp,coss — N[, Mgpz; | -150.2348805
Rotating Angle Vep = Nf Mg,,pf sine ,q N yMap2y -105.731345
Wep = Nepysine + NE Manli 80.97811994
—N/,05 coss

—151.2912602°

34.62759519
-112.0685
36.934075

-0.637459643
-0.762837824
-0.108275803

-3.47240481
36.934075
112.0685

0.995609553
-0.093603519

0.637459643
0.108275803
-0.762837824
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Intermediate

Parameters

Velocity of Gear
with Respect to
Pinion

Conjugate
Acceleration

Intermediate
Parameters

gpz

+ng, sinef ) sin Ypr

NI, cos Ypr—
(N?, cosef

71)?" = arctan N, vz cose},— g,,, smsg
sin ¢y = (Ngfpz cosel + N/, sinef)
0S8 Ypr — Nypy SIN Ypr

_ N;,,, cosep—Nppz BiNER
cos ¢P" - €oS Ypr

that is, expression (7.10)

v = vffi+vfh] + vtk
vf] = —py sm(ef + 56,,) Mgpzs
v§h = py cos(ef + deg)
vih = Mgppy cos(ef + deg) — Mgpfop
vl = \/(vn) + (vf5)? + (v3 3)?
that is, expression (7.11)

J, = Jpi+ Jpoj + Jpsk
Jpl =0
Jp2 = gpz.f

Jps = Mgppy sm(e + d¢eg)

that is, expression (7. 12)

Jp . N ngpr2 + ngz']P3
that 1s expression (7.13)

Tp = npu + npzmpak

Tp1 = —N ngzMgp
Mp2 = Néfpz
Mp3 = ngzM

Imel = /21 + 7% + s
that is,expression (7.14)
t], =t i+t 2,1+t${,3k

tgrl = tgr COS 66 — tgr2 Sin 65
t] o = tgr sin 65 + tgra €OS 66f

tgr3 ty"3
that is, expression (7.15)

M vQP_vﬂ’

: f — ep 12 3
sin 6}, =~
cos ] = e
L/ Inplive"l

that is, expression (7.17)

131.7107678°
0.24675552
-0.969077754

-39.02545098
34.62759519
-14.20529239

54.07260397

0
-151.0939432
-458.4620137

164.9005175

1.205784291
-0.637459642
-2.607789445

2.942929891

0.695788179
-0.630309071
0.34436796

0.979462025
-0.2016286
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Intermediate
Parameters

Curvatures of
Gear in Dire-

ctionseand g

Relative Curva-

ture

Conjugate Cur-

vatures of Pinion

in Directions
eand g

- N} t!r2)

gp I
Vs (Nf t gpz'g

gpy~gr3

f !
+U§§(N§pzt%rl - ng:tg};_rii)
ing. = +ij(ngrtyr2_Ngfpyt9rl)
sin §;, = T
cos 8], = i ’;t{ﬂwﬁ:’{p’,m%,‘{"
!

that is, expression (7.19)
Kgv = Kgcos?8l, + Kgsin® 6},

+2Gg: sin 6/, cos 6},
Gegpv = —(Kg — Kg,)sin 6! cos 6,
+G g1(cos? 8], — sin’ o)
Kpa = Kysin? 0], + Ky, cos? 6},
—2Ggesin 6/, cos 6],

that is, expression (7.20)
D, = Kgpvl";:l — | cos 6!,
Ep, = GopulVT| — |g,,|sm 6/,

sin 01{8 = —-——2L—2'
Vv gp"’Ep
cos§), = ——2—

6]
that is, expression (7.22)
+2G gy 5in 61, cos 67,
Ggpe = "’(Kgpu - KgpA) sin 61{e COS 058
+G gy (cos? 6f, — sin® 0],)
Kpg = Kop sin® 6f, + Kgpa cos? 8],
that is, expression (7.23)
D3+E2

K = 2T
Kg Dp|v{I+3pN

gpP

that is, expression (7.24)
K;,ae = —Kgpe

(-
Gpe - _'GQPC

Kx’zg = Fg — Kgpg
that is, expression (7.25)

0.086190401
-0.996278678

0.65213778
x10~2

0.196019
x10~3

0.01143325

0.94600667
-2.8718933

-0.312864991
-0.949797608
198.2319733

0.71186241
x1072
0.1617249
x 1072

0.010836004

0.04221682

—0.71186241
x1072
-0.1617249
%1972
0.031480816
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Intermediate tp, = tpil + tpaj +tp3k
Parameters | tp = COS Ypr SNl Ypr COS €] — sinyp, sin ef | -0.726881324

tp2 = — COS 1,1),,, COS Ypr 0.642021369
tp3 = €OS Ypr SIN Tor sine] + sin ¥, cos el | -0.24382802

Sp = Sp + s,,z] + spsk

Sp1 = p2N - N -0.255516615
Sp2 = toaNJ . — N 0.076726864
Sp3 = ,,1N ,,2N 0.963755281

(N vf3 - Ng}fpzv%)
f

t N
sin6f, = ! ””’Tﬁ». 9”””’ ‘ -0.019638552
cosbl, = """7"’“;’3;,??*"3"& 0.99980714
02, —1.125278472°
that is, expression (7.28)
0’ = 0’ - 67, —199.3572518°
that is, expressmn (7 31)
' = K cos?8], + Kjgsin® 6] —0.18664823
. pt etp :
Conjugate +2G’ sin 0ez,, cos get)p x1072
! !
= —(Kpe — Kpp)sin 08, cos 0e,p —0.13332715
Curvatures of +G, (c052 9ez _ San Oetp) %101
K, = K’ sin® 0/, +K’ cos? 67,
ini ps etp 0.026228674
Pinion —2G' sm9 et, COS 0&

that is expressmn (7. 32)

A.9 Calculation of the Quantity for the Curvature Modifi-
cation to the Pinion Tooth Surface

Input parameters are all obtained in the previous sections.

Output parameters and intermediate parameters:
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Ttem Expression Value
Proportional coe- F, 0.4
fficient
~ F,F,
Actual contact 2FGe1 = Tcosty cond] cg oo vl 19.93283795
width that is, expression (8.7)
~ Fehcosé
2Fge ™ | cos P4 (sin 0{‘, cos 61, +gcos 9{0 sin8.,)| 16.64248085
that is, expression (8.8)
Fge 8.321240424
Allowable error of AMgp 0.00259
transmission ratio A(Ge) = —Tag e 0.018549508
that is, expression (8.21)
Diameter of color ] 0.00635
compound
Modified value of AK}, = %Gf— 0.000183412
Curvature in Dir- that is, expression (8.13)
ctions e and g g5 = 31@2’:3 0.018336448
gp'Yp

Curvatures of

Pinion in Direc-

tions e and g

1-gs|v¥?|sin o,

tang’, =
er! tan 0. +g ,lv?” | cos 62,

that is,expression ,(8.19)
AG;e = —taAnl;",
that is, expression (8.18)
A(J,-Np) = A(%a)[zbprs{pr
_;—Ngjpz(mgp - fyp)]
AK}, = —5rim A3, Np)
that is, expression (8.25)

K? = K., + AK),

GE = G, + AGy,

that is, expression (8.16)
KP = K, + AK),
that is, expression (8.26)

-2.139732477

0.000085717

-0.443703483

0.000086905

—0.6935212
x10~2
—0.1531532
x1072

0.031567721

220




Curvatures of Kl = Kpcos’6l, +Kf, sin” 6], —~0.1747284
+2G’”’ sin Getp cos 06, x1072
e Gl = (K’P K!r)sin 08,, cos@l, | —0.13235653
Pinion in Direc- G2 (c052 oetp sin aetp) %10-1
K! = K] "’ sin? 6/, + KF cos2 6! 0.26379792
. ps ctp etp
tions ¢, and s, 2G’ sin Ge,p cos Be,p %1071
that is, expressmn (8.27)

A.10 Determination of Machine-Setting Parameters for the

Pinion Tooth

Surface

Input parameters are all obtaired in the previous sections and together with:

Item Expression | Value
Blade Angle for Pinion @7, 168.5°

Output parameters:
Item Expression Value
Vertical Position fmp 37.810831
cf P 1ion that is, by solving equation (9.43)
Horizontal Position L, -22.452872
of Pinion that is, by solving equation (9.43)
The Ratio of Roll Mpp -3.8506395
The Increment of Ph- oe] —9.726736057°

ase Angle for Pin-
ion Cutting Position
The Phase Angle
for Cutting Edge
The Coordinate of
Cutter Center at
the Cutting Position

Cutter Radius at
Cutting Position

that is, by solving equation (9.43)

Op
that is, equation (9.43)
Zep
Yep
Zep
that is, by solving equation (9.43)

Pep
that is, by solving equation (9.43)

131.2873315°
121.80237
3.7442306
-12.159691

123.02163

Intermediate Parameters:
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The Position of Cut-
ting Point on Cutter

The Position of Cut-
ting Point on Pinion

Unit Normal to
Cutter

Unit Normal to
Pinion

Unit Tangent to
Cutting Edge

Velocity of Cutter

Relative to Pinion

Rmp = xmpim + ymnim + zmpkm
Tmp = Tep + Pep COSTp
Ymp = Yep + Pep SINTp
Zmp = Zep
that is, expression (9.8)
R, = i + yi' + zpk'
T, = xf cos 6e] — y] sin ée]
Yp = zf sin 6] + yj cos Jef
zp = zf
that is, expression (9.11)
Tp + fmp
Yp Sin Ypr + (Lp + 2p) COS Ypr
(Lp + 2p) sin Ypr — Yp COS Ypr
that is, equation (9.15) is satisfied

Nep = Nepzim + Nepyim + Nepzkm
I (1
Nepz = — €08 ¢, €08 0
J— 1 3
Ny = — €OS @ SIN Ty

N, = sin g,
that is, expression (9.9)
N prl + pr_] + szkl
Ny, = N, cosée] — NI, sin 8¢
N = N smcSe +Nf coséef
NPZ = N Pz
— Nepy €08 Ypr — Nep Sin Ypr
that is, equation (9.16) is satisfied
ch chl Iy + chzichpIikm
Wep1 = sin ¢, €0s gp
Wep2 = sin ¢cp sin oy
Weps = cos ¢cp
that is, expression (9.10)
vpP = ,','{" im + Vg3 dm
= —(1 + MppSin Ypr)Ymp
+Zmp Mimp COS Ypr

mp
vpl

40.62832609
96.18391928
-12.159691

2.817498853
36.98979848
112.0684926

40.62832985
96.18392751
-12.15978655

-0.646589149
0.736325268
0.199367934

0.646589118
-0.000978945
-0.762837824
-0.000979056
-0.762837803

-0.131550049
0.149807068
-0.979924705

46.25045504
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Intermediate

Parameters

Curvatures of

Cutter Surface

Conjugate Accele-
ration

vy = (1 + Mmp sin 'Ypr)zmp

p2 .
- mpfmp 8111 Ypr
+Mump fmp COS Ypr
viel = /(P2 + ) + ()2

that is, expression (9.20)

Vg Nepz + Vpg Nepy + V53 Nep:
that is, equation (9.20) is satisfied
12 = him + Thodm + TsKm
My = —Nepy(1+ Mmpsinyp)

+Nep: Mmp €OS Ypr
s = Nepz (1 + My sin vpr)
3 = —Nepe My €OS Ypr
78 = /()2 + ()2 + (nfs)?
that is, expression (9.18)
VB by +U5y T +Yp3 Mo

Ccos 03:’}7 = _L__L_em,_zvl__L-L

Ivp "linp

p

. Mpmp fmp CO8 Ypr
mp — _ Mmp/mpCO87pr
sin Oy Ve g
that is, expression (9.24)
vP
mp __ p3
cos Owé’ T vy |cosdy,
v™P cosap—v P sino
3 mp _ _p2 P Yp1 P
sin 07 = Td

that is, expression (9.27)

cos ¢} 8in? 650

— __CO8@cp BN Cuwy
Kq’” Pcp
G.. = cos ¢}, sin 6% cos i)
cpy = pep
cos @i, cos? 05,7
— o Yep - WD
chA —_ - C wv
Pcp

that is, expression (9.28)
J, = Jprim + Jp2dm + Jpskm
Jp1 = Mnp fmp SN Ypr
Jp2 = MnpZmp COS Ypr
Jp3 = — MmpYmp COS Vpr
that is, expression (9.31)
Jp-Ne = p1Nepz + Jp2Nepy + Jp3 Nep:

37.779459

10.468446

60.62986454

0.000000351

-0.73255526
0.007199543
-2.4024099
2.511625444

-0.385859643
0.922557509

-0.176198786
-0.984354605

0.77181707
x1072
0.1381547
x16-2
0.24729594
»1073

-38.23184133
45.179481
357.37255

129.2357142
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Intermediate
Parameters

Conjugate
Curvatures of
Pinion

Intermediate
Parameters

Conjugate
Curvatures of

Pinion

Dp = Kepo|Vp?| — |nb| cos 637
E, = chvlv;""I - Ingl sin 6,7
that is, expression (9.33)

D2
[ — pu—
Kp” = DpvyP+3, Nep chv
; D,E _
G”" ~ Dplvy [+JpNep chv
j p— . '¢
pA ™ Dpl"’;;" [+dp-Nep - fopas
that is, expression (9.34)

tpt: = pclim + tpc?jm + tpc3km
tper = tp1 COSOES — tp35in 6]

tpz = (tp1sinde] +ty3cos8ef)sinypr
—1p2 COS Ypr
tps = —(tp1sindel + ty3cosdef)cosypr
—152 SIN Ypr

that is, expression (9.35)

mp mp mp
_ tpe1vy,y +lpc2vy +ipe3vpy

cos B, = T
tpc1 (NepyUps. — Nep:057)
+tpe2(NepzVpy — NepzUpy )

that is, expression (9.40)

Ky, = Kpcos? 8y + Ko sin? 43"
+2G),,; sin f;" cos 0,
o, = —(Kp, — K;,A) sin 87 cos ;"
+G), (cos? 07 — sin? @)
K, = Kp,sin®657 + Ky cos® 07

—2G},, sin O,” cos ;"
that is, requirement (9.41) is satisfied

1.437086499
-2.2333558

0.18268453
x10~2
—-1.6215321
x10~2
2.2805663
x10~2

-0.757626794
-0.65035005

-0.055194692

-0.99271638

-0.120474847

—0.1747283
%1072
—-1.3235606
x1072
2.6379791
x107%
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Parameters for Gear Blank

B > lag+ b+ fa(tanay, +Ftan 8g)]sin g
pg = pp+ -Ef sin 7, + (ag + £ tan ag) cos 7,

PB

Ls

Parameters for Cutter of Gear

dgi = 27',: - I’Vp

dgo = 2rc+Wp

Qg = ¢::

ag = 180° —¢¢

H,, > [ag+ b, + E&(tana, + tandy)] cosd,

-~

l_

— !
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Paraneters for Machine-Setting of Gear

Ly =
R = /@l + @) =
D. = (L+ Z,)sinv,

O &

. Fg cos,
2y — agSmy, + mﬂ + B

(ze)? + (y2)?
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Parameters for Pinion Blank

Fp > FG
Bp > {ap+b+ ff[tan}(;ypf — 7p) + tan(p — Ypr)]} sin Yy
sin
] . Fp cosy
Lpp = zy—apsinvy,+ _——ZL-2cos('7,]—'yp) + Bp

By
s———
9
i Ty 4
N A\

s
s

o' 4 l

!
!

Lps
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Parameters for Cutter of Pinion (Convex)

Hop > {ap+b+ 2 [tan(vpsr — 7p) + tan(p — Ypr)]} cos(9p — Ypr)
dpi = 2p%, + 2[(Lp + Zpr) sin Ypr — z;,) tan ég,, (A.5)
api = ¢::p

/ // ~ p = “’/ P /,/l’ ,/” e '
M// /'///,."')///////4/
4

! = O
dy
; -—
Parameters for Cutter of Pinion {Concave)
dpo = 208 + 2((Lp + Zpr) sinypr — 28] tan g3, (A.6)
ap, = 180° — ¢g, '

]

Q
= \
1

ro
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Parameters for Machine-Setting of Pinion

Dy = (Lp+ Zp)sinvpr } (A7)

R, \/ :r:c,,2 + yqp2

oy _

Jm

j
iy g

Ov
km \
o 1

f
<p
. ~
\ K,

/ -
—)pr 42» N 4
<, A/ Q
3

: IR
{A&
. 1
kP
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Data of Gear Blank

Data for Cutter of Gear

Q
Q.
il

R
)
3
|

Data for Pinion Blank

Fp =
Bp =

pPpPB
Lpg

Data for Cutter of Pinion (Convex)

= 30> 12.09

137.494

298.254

= 301.749

14°
20°

= 20> 12.632

70.475
135.907
-17.031

43 > 40.64
10 > 3.692
51.794
140.681

= 20> 12.588

291.756

= 24°
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Data for Cutter of Pinion (concave)

dy =

Qpo

Data for Machine-Setting of Pinion

i
Dy,
0
Dy,
i
mp
0o
mp
i
RCP
[
R;,

244.75
= 11.5°

= -—2.846
—8.983
32.195
37.81
131.759
121.86

Il

i
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