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Abstract

A protocol for shell programmes to harness distributed UNIN workstation comput-
ing resources on a network is proposed and evalnated. The protocol allows a shell,
graphical desktop, or scripting language to exeente its subcommands on other com

puters by contacting them as servers. In a decentralised fashion, servers only respond
to requests that they are capable of fulfilling, preveuting the need for a centralised
database, load-balancing system, or capability service. Faster and more available
servers inherently respond more quickly to service requests, improving the perfor-
mance of the distributed system. Furthermore, a distributed shell allows nsers Lo
ignore which system can run different, commands, since only servers capable ol exe-
cuting a command by a given name will respond. The proposed protocol fills a pap
between existing remote exccution protocols, which are limited in their functionality,
and fully distributed programming paradigms. The original UNIX philosophy of ns-
ing a shell programme to picce together small programmes, thereby gaining {lexibility

and performance, is applied to the distributed environment.
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The proposed distributed shell (dish) protocol lills a gap between remote exeention
protocols such as rlogin, more sophisticated programming tools such as Sun Microsys-
tems’ Remote Procedure Call (RPCY [1] and eNternal Data Representation (NDR),
new progranmming paradigms like ISIS [2] and PVM [3], and graphical paradigms
such as HIGHLAND [4] and Enterprise [, 6], 1t takes advantage of the inherent
concurrency in the UNIX shell design to provide distributed compnting at. the shell
level. Carrently, there are no protocols oflicially documented in the Internet Protocol
Request for Comments (RFCs) for this kind of service [7].

Dish extends the functionality of the existing rlogin and reree protocols by pro
viding a mechanism for dynamically assigning tasks to machines, by making the
distribution of work transparent to the user, and by providing error recovery pro-
cedures. It provides a network capability for UNIX shells similar to the windowing
and graphic display service provided by the X window system [0 Both the User
Datagram Protocol (UDP) and Transmission Control Protocol ('TCP) layers of the
Internet Protocol (IP) [9] are utilised to distribute the shell’s subtasks.

For many applications, it is simpler to use a distributed shell with the existing,
standard UNIX input/output (I/O) library, or even lower-level system calls such
as read and write, than to go to the expensive overhicad of setting up a full RPC
application. Furthermore, dish takes advantage of and enconrages the traditional
UNIX code re-nse methodology of breaking up lunctionality into small programmes
(filters) Lo increase their general use and versatility.

Finally, a distributed shell allows more efficient, use of networks by reducing the
number of interactive remote login sessions, which are wasteful of handwidth becanse
each keystroke is transmitted over the network.

This protocol can also be used by any application with similar requirements to shell
scripts, such as Perl [10] and other nser applications. For a graphical environment,
the distributed shell protocol can be nsed to extend the functionality of desktops and
window manager programmes.

The dish protocol uses a client/server approach and will be deseribed through a



loose anthropomorphic analogy. Dish clients interact directly with users or their shell
seripts. Bach command pipeline given to the client is broken up into jobs, which are
advertised over the network. Servers on the network apply for these jobs, and are
given offers if they are considered the most appropriate for the task.

A distributed shell was implemented and tested on a heterogencons network of
workstations, and the performance shows that the idea of distributed subtasks in
a shell environment may prove to be worthwhile as processors become faster and

network bandwidth cheaper.

1.1 Terminology, Notation, and Network Sources

‘The pros ol deseribed in this thesis is called the distribuled shell protocol or the dish
prolocol. 'I'he implementation described is also referred to as the distributed shell or
simply as dish. An important term used throughout is pipeline. In this discussion, a
pipeline will refer o a set of commands given to a shell that are linked together in a
singly connected graph, where output from one command is fed as the input to the
next. Commands refer to executable programmes on a UNIX system. These may be
exccutable binaries for some type of processor, or execulable shell scripts.

All versions of UNIX come with their own edition of the UNIX Reference Man-
nal [11]. It is also available on-line through the man command. Each programme,
system call, library routine, file format, and protocol is given a manual entry, also
known as a manual page, though they often fill many pages. For convenience of
finding the manual entries, references to them are given with the section number in
parentheses.  For example, [umask(2)] refers to the system call umask(), found in
section two of the manual.

A typewriter font (e.g., /bin/cat) is used to denote input to or output from a
computer system, and is used for defining the protocol’s message formatting. It is
also used to deseribe file and directory names in the UNIX environment.

Some references are to documents that are pending publication and were obtained



using the File Transfer Protocol programme [fip(1)] from anonymous I"T'P sites on the
Internet, a global network of connected computers using the 1P protocol. Many sites
on this network allow anonvmous lile transfers to distribute research papers, software,
and other inform:: -n. Also obtained via fip were the protocol definition standards
for the Internet (Regucst jor Comments or RECs). They are ollicially aviilable from

the Internet site nic.ddn.mil.



Chapter 2

A Review of Shells and
Distributed Computing

The distributed shell protocol brings together two features of computing: shells and
shell programming, and distributed computing. Shells are the top level of the UNIX
environment and are well known and nnderstood, so only a short overview will be
presented here. Distributed computing, however, is a new and developing field. The
distributed shell protocol deals with the highest level of distributed computing, that
is, an interpreted langnage that builds on other programmes written in lower-level

languages.

2.1 Existing Shells and Desktops

The UNIX operating system was originally designed [12] with a guiding philosophy of
divide and conquer. Functionality was isolated and put in small pieces, called filters,
which were invoked in various combinations using a shell programme. Responsibility
for providing standard input, output and errvor channels either to keyboards and
monitors or files was given to the shell programme. Code was reused in this manner
and many operations on a UNIX system are accomplished by writing shell seripts,

programmes written in the shell interpreted language, to harness the power of all

)



the small filter programmes and coordinate them to do a given job. This approach
worked well, although twenty years alter the development of UNIX, shells are no
longer as widely used as they once were, and the operating system has diverged far
from its original philosophies and has become something of a hulking giant. Shells are
being partially replaced by graphical working interfaces (desktops) and new, complex
scripting languages, such as Perl [10] and Tel [13]). These alternatives to the shell can
also be distributed using the dish protocol, hut since they are less concurrent in their
nature, they would not be able to gain as much advantage

UNIX shell programmes allow the user to connect processes in a pipeline, mean-
ing that the output from one command is placed on the input channel of the next
command. An example is the standard UNIX method of removing duplicate lines
from a file. First the file is sorted with the sort command, then piped into another
command called uniq, which eliminates any repeated lines. Finally, if the ontpat s
to be viewed on a terminal, it is often finally piped into a pager such as less, which
is responsible for letting the user read a page of ontput before it mioves ofl the seveen.

The command line looks like:
sort < inputfile | uniq | less

Common shells include sh(1), esh(1), ksh(1), and bash(1), and come with an
extensive manual entry in the UNIX Reference Manual [11] explaining the nsage and
features of each.

A main function of the shell is to find specific commands, though their location
is not specified. UNIX has a hierarchical file system, consisting of directories and
subdirectories to an arbitrary level. The top of the filesystem is a dircctory called /.
Subdirectories are shown by a following / character. Therefore an explicit commancd
is given with a name starting al the root directory, for example “/usr/bin/cat.”

Users have home dircctories, which is where the shell typically hegins excent-
ing [login(1)], and they may also have their own collection of excentable files. When

a shell encounters a command without a directory, it looks through a list of directories



where it expecis exeentable files to reside. On UNIX this is traditionally located in
an enviromne ul variable called PATH. The path may include an entry consisting of a
. indicating the current working directory, instructing the shell to look also locally
for commands requested, (In the UNIX filesystem, all directories have at least two
directories in them, ¢, which represents the directory itself, and ‘. .7, which repre-
sents its parent directory.) The process environment is a set of data that is inherited
by all processes from their parents.

The UNIX filesystem was originally designed to be simple and small; however,
networking and shared file systems have complicated the task of shell command exe-
cution. A traditional shell will look through the PATH and attempt to execute the first
file that matches the command name specified, whatever its execution permissions
and content. Onee the shell invokes the system call to execute its subtask, the system
call first, checks the permission bits of the file [chmod(2)]. If the file is not marked as
excentable in the permission bits, the subshell execution fails. If the file is marked
as execntable, the system must check if it is a permissible executable for the host
architecture. This is done by checking if the file begins with a magic number [file(1),
w.oul(5)], or if it is an executable for an interpreted language such as a shell. Shell
seripts begin with the character sequence #! followed by the name of the programme
to interpret the commands, usually a shell,

Normally, all files in directories included in the PATH should be executable. Some-
times, however, other kinds of files are inadvertently placed in such directories, and
in a heterogencous network, some programmes will only work on a subset of the pro-
cossors available to the user. Binary executables, in particular, will only run on a
processor of the architecture type for which they were compiled. Shell scripts will
only execute on a given processor if the appropriate shell is available on that system.
This forces users cither to have different executable command names for the different
processors they use, or to use a different PATH for each machine they use, isolating
executables common to the different environments. Another difficulty in extending

the old shell paradigm to heterogeneous networks is provision for the same set of



system executables [or each type of machine.

2.2 High-Level Generic Distributed Computing

In the past decade, high performance computers have changed from isolated processor-
bound mainframes to small, numerous, networked multiprocessor systems.

Loosely coupled distributed processing began with networks of processors con-
nected via serial lines. With the arrival of more advanced network technology such as
ethernet, distributed processing came within the reach of most. workstation applica-
tion developers. However, there is still no generally aceepted paradigm for developing
distributed applications for these now common networks. Instead, several different,
approaches are becoming commonplace depending on the application, the network,
and the background of the software developer.

The protocol framework discussed in this thesis consist of the United States’ De-
fence Advanced Research Project Agency (DARPA) internetworking project, com-
monly called TCP/IP. This set of protocols has become a widespread and non-
proprietary standard for networking, and is the main network protocol employed
by UNIX and other open computing systems [9].

Fully generalised distributed operating systems are still not in widespread use.
Systems like Amorba may eventually render upper level protocols such as Remote
Procedure Call (RPC), Telnet, and dish obsolete. However, there is a Targe tnstalled
base of systems using TCP/IP. There are over one million nodes, mostly UNIX, on
the Internet alone. UNIX is a well-known operating system and many distributesd
processing ideas are gradually being added to it without a complete redesign of the
system. Dish represents a linking step in the evolution from processor-bound to
communication-bound computing. It attempts to make processing resources appear
to be distributed in the same way that a filly distributed operating system would.

The earliest approach to distributed systems is still with us in various message-

passing systems, which are well-suited to applications with little data sharing and



casy synchronisation. A more recent, and popular methodology is derived from Sun
Microsystem’s Remote Procedure Call (RPC) package, and is particularly suited to
developing applications on multi-threaded operating systems and for more difficult
synchronisation problems. The current industry standa” * such as OSF/DCE (the
Op 1 Software Foundation’s Distributed Computing Environment) are based on the
remote procedure call paradigm [14]. A third general method is to use ad hoc means
for distribution of processing work, with commands and facilities already available for
other network operations, such as network file systems, and remote sheil commands.
Load-sharing systems provide one or both of the above communication facilities as
well as a method for allocating processing resources in such a way as to balance the
processing load across the network. A central issue for load-balancing or distrit-uted
applications i the resource allocation policy. Since these systems are being developed
in a time when graphical user interfaces (GUls) are the norm, they are being used to
allow developers to visnalise and connect distributed application elements. Sophis-
ticated distributed systems allow for process checkpointing or migration to provide
fault-tolerance and dynamic reallocation of resources, for example, when a worksta-
Lion user wants the processor again after a network application has been using all
available processor eycles. All these methodologies for work distribution are striving
for the ultimate goal of an operating system based on the network, = ich as Amoeba.

The distributed shell provides an alternative to message-passing or remote pro-
cedure calling by extending the functionality of the shell or graphical desktop, and
making use of already concurrent characteristics of these environments, thus extend-
ing the functionality of ad hoe distributed computing methods. It provides a step
toward an environment that will provide users with processor resources in a fully
peneralised fashion. Dish has a checkpointing facility that can be used with general
purpose and non-complex applications. Although not considered here, the protocol
could be extended, especially on a homogeneous network, to include process migra-
tion.

Security is an integral part of distributed computing systems. Authentication

)
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and privacy must be provided by any network system. Only isolated and simplistic

applications do not need these facilities,

2.2.1 Socket Programming

The first implementation of TCP/IP in a UNIX system was provided by the Berke-
ley System Distribution (BSD) Version 4 UNIX sockel interface, which has become
a standard for UNIX networking and low level distributed implementations. This
interface gives the programmer direct access to TCP and UDP. For the design of
client/server protocols and services using BSD sockets, Comer and Stevens [15] offer
useful guidelines. Another network programming model for UNIX is the more general
STREAMS package [16] designed for System V, the commercial alternative to BsD
UNIX. However, this software is proprictary and not supported on as many UNIN
systems as the BSD socket interface.

The Berkeley socket interface vrovides a data abstraction called a sockel, which
appears in most respects like a UNIX file descriptor [open(2)]. "The socket, onee
opened, can be used as an end-point, for task-to-task communication. "T'wo types of
sockets are widely used on TCP/IP systems. One type nses TCP, and is known as a
stream socket, since it behaves like a stream of bytes. Any number of bytes can be sent
through a TCP socket at once, and the other side can read them at onee or in smaller
or larger pieces. TCP is a reliable protocol-—all bytes are guaranteed to he delivered
and in order, except for a catastrophic network or processor failure, The other type
of socket, a dalagram socket, nses UDP, which is actually a user-level packaging for
the lower-level Internet Protocol (1P), which behaves in a similar fashion. Datagram
protocols deliver packets of variable but limited length, and can lose, duplicate, or
deliver them in a different order than they were sent. When these protocols were
developed, it was believed that moving reliability to a higher protocol level worthd
improve performance, since many networking technologies (.., etherned, conneeted
with gateways) are not reliabie, and also because they were designed as inlernelwork

protocols that should not make any assumptions abont the reliability of the networks



they are connecting.

Sockets can he connccted to form a fixed communication link, so destination ad-
dresses do not need to he specified for each send and receive call. Connected sockets
can be used almost, exactly like open files or devices, and therefore can connect pro-
grammes that are not concerned about, where input is coming from or where output
is going. Indeed, in the UNIX environment, filters should not be aware of whether
their 1/0 streams are connected to files, devices, or sockets.

To connect, sockets, one end must be made passive, and the process controlling it
st be set up to wait for incoming connection requests [aceept(2)]. When a request
comes in, a new socket is ereated and connected to the incoming request, thus allowing
the first socket to be used for more incoming connections. The request comes {rom
an active socket connection system call [connect(2)] from another process.

The passive socket, does not need to know in advance where the connection is

coming from, but the active side must know the [P address and [P port number

on which to connect. 1P addresses currently consist of a thirty-two bit value—a
compnter’s globally unique address. For readability, they are normally expressed in
decimal notation as four bytes separated by periods (for example, 129.128.220.8).
Port. numbers are sixteen bit integers identifying different services and connections
on the same host. Comer [9] provides more information on host and port addressing
in TCP/IP.

To implement a distributed application at this level requires address lookup and
socket management code. This can be cnmbersome for complex applications. How-
ever, using this level allows a software developer to achieve optimal performance by
choosing the most appropriate protocol for the application and the network, thereby

avoiding unnecessary protocol layers.

2.2.2 Message-Passing Systems

Distributed systems can be categorised as tightly coupled or loosely coupled. Tightly

coupled systems typically have processors sharing memory. Loosely coupled systems

11



have processors with thetr own localised memory. The original approach for loosely
coupled systems wax to conneet them together with serial conmmumeation hines, aned
then pass messages over the lines from one provessor unit to the othe: Hwang of al.
describe one of the early such systems [17]. Few people use serial lines ior interprocess
communication anymore, but the same communication paths are often simulated over
networks.

Message-passing systems such as PVM [3], NMP [18] and SIS [2] provide sim-
ilar communication channels between processes. TPhis paradigm is appropriate and
natural for some applications but in general requires great effort for design and imple-
mentation. The primary limitation of the message-passing approach is the radically
different, programming paradigm required. Programmers must learn a new methaod
ology, debugging hecomes much more diflicult, and existing sequential programimes
must be redesigned and reimplemented. Calls to library routines to set up and control
the communication channels must be inserted directly into the source code in order
to use these message-passing systems; thus they represent alower-level distributed
paradigm.

The new methodology consists of reformulating algorithms to include various an-
tonomons agents exchanging portions of the data they are working on. The size ol
the data being shared is limited by the performance of the communication lines or
network. Often this limitation on sharing of data can lead to inefliciencies in al-
gorithms. More importantly, though, timing considerations hecome important, and
seriously complicate the algorithm design process. Complexity of algorithms grows
enormously when they are distributed asynchronously; that is, when picces ol work
that are in some way dependent on cach other are executing simultancously on dil-
ferent computers, instead of cach system waiting for the others to finish work they
are dependent on.

Algorithms that take full advantage of message-passing communication tend Lo
be asynchronous and non-deterministic, thus hampering the debugging phase of pro-

gramme development. Non-deterministic programmes are those that do not necessir-

l')



ily execnte in a single, repeatable sequence. If the network Leing used is shared with
other applications, as is assumed in the framework of generic distributed comput-
ing, timing of messages is influenced unpredictably. Depending on the protocol and
amontit of rauting required, messages can be lost or delivered in a different order than
they were sent. Therefore, to debug such a distributed programme, all timing possi-
bilities must be taken into consideration. This may or may not be feasible, especially
without a dedicated network. In some cases the complexity makes an application
impossible to debug with sare atly available tools.

Pinally, message-passing sysiems require programmes to be re-written or exten-
sively modified. Code written for a sequential computer cannot take advantage of a
distributed system antomatically with this paradigm.

The Network Multi-Processor (NMP) is an example of a typical message-passing
system. NMP service is registered on cach participating machine. The master process
is invoked on one machine and it starts by iniiialising the NMP. This initialisation
procedure reads a configuration file to determine the intended destination of cooper-
aling processes and communication paths between them. The application attempts
to contact all specified machines through their NMP service daemon, and the config-
uration information is passed through to the daemon on each machine, where each
start the process indicated in the configuration file. Once the communication paths
are set up between all processes, they all exit from their respective calls to the NMP
initialisation routine. Applications then communicate through these channels until
their tasks are done and they call the shutdown library function, which cleans up all
the tasks and closes communication channels.

Channels are simple TCP streams, and any data conversion is left to the user.
Other message-passing packages enforce message typing, allowing programmers to
avoid converting data [rom one machine’s internal representation to another.

NMP configuration files can specify any arbitrary set of connections between pro-
cesses. They can be fully connected, to simulate a bus, or they can be arranged in a

tree, star, ring, or other hybrid fashton. The system has been enhanced by a dynamic

1
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configuration file builder to allow run-time determination of machines that are cur
rently idle. It can also add new communication channels hetween existing processes
or start up new remote processes dyvnamically.

ISIS is another message-passing system. [t uses the notions of process groups and
virtual synchrony. Process groups are sets of processes that join throngh a member-
ship service. Messages are then passed between process groups in a manner that s
usually asynchronous but can he brought into synchrony for eritical sections of code.
This allows the system to gain performance improvements fron asynchronons opera-
tions but still provide a degi+e of robustness and deterministic behavionr wien these
are needed. Virtnal synchrony means that during certain communication operations,
determinism is guaranteed.

ISIS also provides a more general purpose paradigm for message-passing, imple-
mentations, that of multicasts to groups. It is intended to give processes the roles ol
subseribers and publishers, where information is flowing in from and out to variable
sets of other processes. This allows for greater fault tolerance and case of implement
ing some types of systems, the example given by Birman [2] heing that of a brokerage
firm trading stocks on multiple stock market.

The Parallel Virtual Machine (PVM) system [3] has hecome a popular message
passing system. It is similar to NMP, however, it provides data conversion over the
communication channels with the use of XDR [19]. PVM provides ouly dynamic pro-
cess creation, which is implemented via the reeee(is) library routine. It also provides

a barrier mechanism to create critical sections where processes can be synchronised.

2.2.3 Remote Procedure Calling

Many programmers writing applications are turning to mulli-threaded operaling sys-
tems and remote procedure calls in combination to provide distributed processing.
Sun Microsystems was the first to introduce remote procedure calls to UNIX with
their RPC/XDR product {1]. Currently, the OSE’s Distributed Computing, lnviron-

ment [14] has adopted this same approach,



When Sun first introdnced RPCL they combined it with a flexible XDR (eNternal
Data Representation) package. It allows RPC developers to send various types of data
through as parameters withont having to do conversions. For example, computers
often have different byte-ordering of integer values, and different represcutation of
floating point numbers. An advantage of most RPC systems is that they provide
antomated methods of data representation over the network.

For some applications, remote procedure calling provides a convenient comnni-
nication mechanism. Any relatively fine-grained task, with a small amount of data
and a small number of parameters, can be distributed in this way.  Also, with a
multi-threaded process, larger grained tasks can be performed by ercating a thread
exclusively to initiate and wait for the completion of a remote task.

The Glish [20] system is an asynchronous RPC system implemented at the same
level as a shell. It provides data conversion, an interpreted command line and seripting,
language, and a special library of C4++ code used to interface with the scripting
language. It also provides a {lexible and powerful method of piecing together modules,
but it uses a non-standard scripting language, unlike dish which is designed to be built
in to existing scripting languages.

Glish is not strictly an RPC system, although it looks mueh like one. A Glish
script can start up processes on various hosts dynamically, and then assign operations
to events (name/value pairs). In this seuse, it is similar to Linda [21], except that
the operations a.c defined in terms of processes that the seript has initiated. A Linda
system must find a process to deal with an object (fuple) placed into it. The processes
do not interact directly with cach other in normal operations.

Another related project is the TCL and Tk systems [13], which provide a generie
command line and windowing interface for applications. Tk has a “send” command to
invoke TCL scripts on remote machines. However, this is imited by its synchronous
nature (like regular RPCs) and also by the windowing system underncath it (X).
TCL itsell has no interprocess or networking capabilities built in. The distributed

shell protocol could be implemented in an extended TCL script language, however.



2.2.4 Ad Hoc Distributed Computing

Another category of distributed computing relevant to the dish project is making use
of the existing but imited distribution tools already available: commands, filters, and
protocols such as the Network File System (NFS).

When Berkeley introduced TCP/IP to their version of UNIX, they provided a set
of user-level commands sometimes referred to as the Berkeley r-commands, including
rcp, rsh, rlogin, and rdist. These commands allow file transfer and synchronous
remote execution of shell commands, For example, a programme called cat on the
local processor can send its ontput to sort on another processor with the following

command:
cat /etc/passwd | rsh sundog sort

Another method is to use the Network File System, a de facto file sharing standard
for UNIX and TCP/IP. It allows many machines to access the same filesystems or
directories. An example of using NFS for ad hoc distributed processing is to perform
a group of tasks, cach creating their own output file. For example, take a set of tests
for verilying some software. A shell seript can be modified so that it checks for the
existence of an output file before starting the related task. If the file already exists, it
skips that task and iterates through the remainder until it finds one with no output
file created yet. I then executes that task, claiming it by creating the output file. In
this way, the same shell script can be invoked on many systems, and the processes
will leap-frog over cach other solving the problems.

These existing commands and facilities impose many limitations on distributed
processing. Exccution on each computer must be specified explicitly because there is
no built-in mechanism for choosing remote hosts to execute commands. The remote
execution protocol is too weak to handle fully interactive commands, but the remote
login protocol simulates a full interactive login, thus limiting its use for executing
subtasks as needed. This method of remote execution allows no two-way communi-

cation, and does not communicate the current environment of the user to the new
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command. Also, they do not take into account heterogencous collections of exeenta-
bles. Finally, shells as they are currently implemented, do not allow full use of these
facilities for antomated shell seripts. For example, job control is often available only
for interactive shell sessions and not for shell seript execution.

The Expect [22] project provides enhanced distribution via the usual ad hoe chan-
nels, and is primarily aimed at dealing with automation of interactive processes on
UNIX. It uses the pseudoterminal [pty(4)] construet to allow processes to talk to cach
other, locally and over the network. Conunections over the network are made trans-
parent to Expect users. Becanse it was intended as an antomation tool for dealing
with programmes designed to be nsed interactively, it provides a novel approach to

interprocess communication similar to the approach taken with the dish protocol.

2.2.5 Load-Sharing Systems

Load-sharing systems such as Ulopia [23] provide a general purpose set ol serviees
and libraries, similar to the dish protocol. Part of the Utopia project was the im-
plementation of 1stcsh [24], a load-sharing version of the popular UNEX shell tesh.
The functionality provided by this shell is similar to that provided by dish, but. works
at a higher level.

The Utopia system is an example of a distributed application building package
implemented entirely at the user-level, requiring no change to the operating system
kernel. It, therefore, does no process migration. It also assumes that all workstations
participating in the system have a uniform filename space (e.g., specifically nsing NI'S
to mount all file resources identically on cach machine).

The system is based on a distributed Load Informalion Serviee, which runs on
each machine participating in the system. These dacmons communicate with cach
other to keep track of the status of load distribution on the network. Tn the Utopia
design, this service is kept entirely separate from the remote execution service, This
provides an advantage of modularity, but, a disadvantage of overhead in the process

table on each machine and in the network port resources across the newwork.



Load-sharing systems allow the application builder to tune the application config-
uration to run optimally on a given network. Unfortunately, monitoring of processor
load is not casily done in most versions of UNIX. Often the best measure available is
the number of processes waiting on the run queue (known as the load average).

Of particular interest is the Utopia load-sharing shell, 1stcsh, whose units fou
remote execntion consist of entire command lines. The shell maintains lists of com-
mands that are eligible for remote execution and those that are specified to be run
locally. It also provides for two modes of operation, one where remote execution of a
pipeline is more encouraged, and one where it is discouraged.

Resources are categorised by the needs of each command, and the user can cus-
Lomise resource requirements on the command line. The user can also specify location
for execution of any given command. It provides a degree of network transparency
for execntion of remote commands as if they were local.

Drawbacks of the load-sharing shell are the reliance on the load information server
and the overhead of maintaining their record of the network status. Also, commands

are not hroken up within one pipeline, and a uniform file name space 1s required.

2.2.6 Determination of Idle Workstations

A problem in any system intended to share workstation resources is how to determine
availability of perhaps privately owned workstations sitting on someone’s desk. The
main difficalty is the unpredictable nature of how people use these resources. Many
workstations sit idle most of the time. When users who own workstations want to
perform some task, they normally will expect instant response. Also, if they have
hackground tasks of their own, they may wish to disable remote execution of work in
order to speed up their own work.

Some systems use an active screen-saver (a process to prevent phosphor burnout
on computer monitors by clearing or changing the display after a given time span
of inactivity) to determine the idleness of workstations. While this allows users to

casily control the remote use of their personal workstation, it causes problems in
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situations where background tasks are alrcady running on a workstation that is not
in interactive use.

Avother common approach is to use the load average available on many UNIX
systems. This metric is based on the number of processes in the system’s process
table that are “runnable,” that is, on a queue of processes not waiting {or any signal
or 1/0 event. In most cases, any load average of helow one is assumed to indicate
an idle workstation, but even this can be deceiving in that an editing session will not
generate enough cycles to keep its process on the run quene, but having a foreign task
start on the workstation may noticeably impair the response of the editor progranime,
or the graphic display being used.

In addition to determination of idle resources, load-halancing benefits from a flex-
ible method of releasing resources to higher priority tasks. If the system immediately
terminates remote execution whenever any activity oceuars on the workstation key-
board or mouse, it may cause a process to be terminated prematurely if the user
was performing a short task such as checking for incoming mail. However, users may
be unnecessarily inconvenienced by a long delay of removing the process from their
workstation, if they are resuming work with a task that requires the resourees imme-
diately, such as graphic image processing. The owner of the resources, in these cases,
should be given control of the availability of their resources to remote nsers. Most,
importantly, any restrictions placed ou the resource availability should require a time-
out factor so that the resources are made available when the workstation controller
is no longer physically present.

When a system becomes available or unavailable, a load-sharing system with pro-
cess migration capabilities can re-arrange the processes as required. This approach
incurs a great deal of complexity due to the possibility of open 1/O streams. An
alternative to process migration is to re-start the task. This requires that there he
no error-causing side-effects when the task is repeated on another machine.

The Condor system [25] is intended mainly for large compuiationally intensive

single-processor applications. It provides a system where a long process can be shifted
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around the network as loads and processor usage changes. It was originally designed
as a system for making nse of idle workstations on a local area network (LAN).

Condor, however, provides no mechanism for interprocess communication.

2.2.7 Graphical Application Builders

The Enterprise [5, 6} and HIGHLAND [4] systems are examples of ¢tools that allow
application developers to design and configure message-passing or remote procedure
calling programmes graphically.

The Enterprise system allows application developers to write modular code and
then piece it together in a graphical environment using a variety of connecting models.
It is based on a modilied form of the remote procedure call. A developer can tag those
procedure calls that would benefit most from being distributed across the network. A
special pre-compiler is used to insert the communication primitives into the code and
generate the varions modules that will be used in the distributed application. Then
these modules are glued together using a GUI and a number of modules for assigning
tasks and gathering results.

Porting sequential code to this system is dependent on the application. It works
well for code that is already modular or fits into the paradigm of the system.

The idea of piccing together processing elements in a graphical way could be easily
implemented in a graphical desktop using the distributed shell protocol. However,
it would be limited by the nature of pipelines and the lack of data conversion. In
the context of a graphical shell, however, various tools could be written to piece pro-
grammes together, to split up data streams to many processes. These scrts of simple
tools could follow the original UNIX philosophy of breaking up tasks to their smallest
possible components. For example, a message multiplexor could be implemented by
splitting o data stream into lines (strings terminated by a newline character) and
feeding each line to a different process running somewhere on the network. Tradi-
tionat UNIX systemis roughly treat files as “databases,” lines in files as “records,” and

delimiting “fields” in lines by white space (tab or space characters) or other charac-



ters. In this manner, records in a database being input could be split and sent to
different machines to process,

In the HIGHLAND system, a graphical interface is used to build connections
between independently written modules (although they are presented to HIGHLAND
as source code). These modules must, nse specialised procedures to read their standard
input and write to their standard ontput. No other 170 channels are allowed, thus
simplifying implementation of the connection process. It uses strongly typed data
types and translates them for heterogencous operation.

The graphical interface that is nsed to construet the distributed computation
remains in effect during execution, thus allowing user control over processes; such as

moving them to different hosts and terminating parts of the application.

2.2.8 Process Migration and Checkpointing

Many attempts have been made to provide process migration in a distributed oper-
ating environment. These systems typically require extensive changes to the system
kernels, and are complex due to the requirement of 1/0 and other resonree continnity.
The Condor system [25] allows process migration and checkpointing without systems
kernel modification, but it uses a system-dependent feature of UNIX: the longjmp()
call.

The essential difficulty with process migration is dealing with processes’ active
resources, such as open files, sockets, devices, and shared memory objects. The
process, after migration, must have the process counter (the processor’s idea of where
in the programme it is running) set properly. All the information on the stack ymust,
also be preserved across the migration, which may require translation if the new
processor is of a different architecture, or else the process will not he able to return
to lower levels of procedure execution. The code itself may have to be veplaced if the
processors are not binary compatible. The remaining memory resources being used
must also be reconnected. Any open files, communication links, devices, semaphores,

message queues, etc. must he recreated or reconnected. In fact, many resources heing



used hy a given process will be impossible to be migrated to another processor—some
process woitld have to remain to handle that resource usage.

Therefore, either all resources have to be taken over by a distributed operating
systemn kernel (extensively modified from a traditional UNIX kernel), or access to
resonrees must, be provided through some centralised service arrangement. In the
second case, a serions performance impact can be expected for any 1/0 or other
resouree intensive programmes, and applications will only benefit fully from migration
with strictly processor hound applications. 1t also limits the resources that can be
taken away from a process to the processor resource itself.

Checkpointing is a simpler approach but requires programmes to be re-written so
that they can recover from interrupted compntations without the help of the operating
system. Il a process can periodically write the results or intermediate results of its
computation to a file, and use those values to resume computation from the point that
they were written ont, then it can nse checkpointing. In this way, the responsibility
for reconmecting resources and preserving the contents of memory are shifted from
the operating system level to the user-level. Therefore, the two main advantages
of checkpointing are keeping the kernel simpler, and improved performance on a
heterogencous network.

An implementation of checkpointing that works for simple applications on homo-
gencous networks is to use an operating system call that makes an image of the current
exeentable (commonly provided for debugging purposes) and using it to reconstruct
the process on a new machine.

Process migration will eventually be the norm once truly heterogeneous distributed
operating systems are available. Meanwhile, substantial gains can be provided by

allowing checkpointing if the application developer wishes to use such facilities.

2.2.9 Fully Distributed Operating Systems

Ideally, a truly distributed operating system will provide transparent distribution and

migration of processes. Experimental operating systems are being developed to ad-



dress this need. Plan 9 [26] is a distributed operating syvstem being developed by
AT&T. where UNIX was written, Finallv, the Athena svstem developed by Mas-
sachussetts Institute of Technology (MIT) is currently in use there and provides most
of the features of a distributed operating system.  Tannenbawm ef al. [27, 28], at
the Free University of Amsterdam have developed the Amoceba distributed operating
system.

The distribiited operating system being developed at ATET Bell Labs, Plan 9,
uses a UNIX-like hierarchical file name structure to reference all resourees in the

network. It has a command called cpu that allows a shell nser to change the processor

(Central Processing Unit) being used by the shell, much like the system command of

Istesh. However, users are still aware of the processor boundaries in Plan 9.

Athena can also be viewed as a distributed operating system [29]0 Phis system
provides a sccure and totally uniform operating environment over a large actwork.
All resources are made available throngh centralised servers, including suthvntication
and workstation bootstrap softwarc. Processing is done locally however, sinfess the
user explicitly begins a session remote through the Athena windowing system, X.
The uniform nature of the network is achieved largely becanse only two types of
workstations are supported. Another probable reason the Athena system has not
been widely adopted is because most network installations have many resonrees that,
are already in use and system administrators are nnwilling to give them up o the
Athena system, since it provides sceurity by taking over control of the workstaiions.

In Amoeba, the notions of processes and files are replaced by the more general
object (a collection of data), which may be active, or dormant in some storage arca.
For example, a user login session is simply a data object. When the user vonaects
to a workstation, the object is bronght out of long term storage (most likely a hard
disc drive) and into a processor’s memory. Upon disconnection the objeet is migrated
back out to disc. Capabilitics are used to name objects and to perform servises on
them.

Commumication in Amocba is limited to remote procedure calls, imphanented as
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three distinet system calls. Processes must locate the service they desire through the
hierarchical naming serviee, and make a system call to invoke the remote procedure
call. Servers must provide their service name to the operating system through azn-
other system call; which also provides them with an incoming request. The server
terminates the remote procedure call with a third system call. Amoeba also suppeyi-
multi-threaded programming,.

A main goal of Amoeha was to remove any centralised reliance on processors. It
provides a pool of processors beyond those contained in the workstations. Amoeba
users do not know how many processors they are using at any given moment nor where
they are physically located.  Processors in the system run a kernel that provides
minimal communication and core services. Amoeba has a UNIX emulation mode,

although no UNIX code was used in its implementation.

2.2.10 Security

Seeurity in distributed systems consists of two procedures, authentication and en-
cryplion. Authentication ensures that agents on the network are whom they claim
to be. Authenticated agents can then be authorised to do certain tasks, or be held
accountable for performing questionable tasks. Privacy, or an encryption system,
is sometimes required in sensitive applications and must be provided in any useful
distributed system.

There are three commonly used anthentication methods. The first and most cum-
hersome is requiring a password every time a connection is made over the network
to another node, This is the most secure since each machine can keep its own list of
passwords and authenticate cach user every time. However, it is highly inconvenient
and a shell user would rapidly tire of having to type passwords to the different ma-
chines on the network. The slow response time would also preclude any kind of rapid
deployment, of work over the network. Although effective at securing the system from
external networks, this method generates traflic on the local area network containing

passwords that could be used to compromise the system.



Another approach is that employed by the Berkeley r-cemmands. The servers
that respond to these command requests cheek two files to see if they shonld grant
the request [rlogind(8)]. One is a system wide file (/etc/hosts.equiv), and another
is a file in the bome directory of the apparent requester (.rhosts). This system
allows authentication to be performed locally on the server machine without checking,
passwords, and requires that these files he carclully protected on cach system in the
network. This is the least secure system sinee it relies only on the I address of
the requesting machine to match ity tables, and it might be possible under some
circumstances to subvert this check by impersanating a machine on the local arca
network that is currently down.

The third approach is to use Kerberos, the anthentication server developed for the
Athena system at MIT [30]. Kerberos provides fickets, time-limited aceess keys that
can be used for authentication to services, to its chients. Tickets are distributed by
a centralised, carefully controlled and sceured server. To make the Kerberos system
secure, the clocks on all nodes must be synchronised [31], although other protocols
have been designed to overcome this limitation [32].

The other security measure, encryption, is typically done with a private key sys-
tem. Both parties need to have a seeret picce of information that can he used as a key
for an encryption algorithm. Given a picee of text and a key, this type of cneryption
algorithm encrypls the text using the key, resulting in unreadable text ontput. ‘I'his
output, when fed back as input to the encryption algorithm with the same key, pro-
duces the original text. Private keys for this purpose can he obtained from protected
files (in a file readable oniy by the invoking user), or else can he generated by the

Kerberos system.

An alternative to the key broker is to use public keys {33]. These keys consist of

pairs, one half is kept secret to the client, and the other half made public. Unlike
the private key systems, a key will not decrypt a message encrypted with itsell.
Text encrypted with one half of the pair can only he deerypted with the other half.

Therefore, one agent can send a message enerypted with the public key for its desired
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destination and only that destination node can decode it.

2.3 Distributing the Shell

In a fully distributed operating system, the shell or user desktop would antomatically
nse resources transparently across the network. However, the primary paradigms
for distribution of processing currently in use do not address such high-level require-
ments. Socket, jp ogramming, message-passing libraries, and multi-threaded remote
procedure calling all operate at a level too low to be useful from the shell level. Other
protocols, such as load-sharing systems or seripting languages such as Glish, are more
generally useful, hut not tailored exclusively io provide maximum performance at the
shell fevel. The load-sharing Lstesh shell provides some functionality of a distributed
shell, but is limited by the Utopia environment, which was designed for more general
purpose applications. Process migration (if supported by the underlying operating
system) and checkpointing can be provided more simply if limited to the shell con-
struet. Distributed shells based on GUIs would borrow concepts from the graphical
distribution tools such as Enterprise and HIGHLAND. The primary advantage of
specifically distributing the shell is, however, that it perpetuates the original philos-
ophy of the UNIX system-—making the shell responsible for piecing together many

smaller picces in order to provide a flexible and powerful computing environment.
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Chapter 3

Design of the Distributed Shell

Protocol

A complete deseription of the distributed shell protocol is presented heres 1t can he
used to provide distribution of task exccution {or shells, graphical desktops, and other
general-purpose seripting languages such as Perb or TCL.

Dish is designed in the client-server paradigm, which is the primary model for
distributed applications on TCP/IP networks. In the dish sysiem, o serecr runs on
cach participating computer. Each server provides task exeention {or many clients,
An interactive session with a user is a efient, as well as any execeuting dish seript.,

An analogy is used to deseribe the allocation of tasks.  Servers are likened to
potential employees or contractors, and clients to employers. When a elient has
subtask to do, it adverlises it over the network. Servers respond with applications.
The client then chooses the most appropriate application, and offcrs the joh. Figure |

shows the relationship hetween servers and elients,

3.1 Design Considerations and Constraints

The following considerations went into the design of the distributed shell protocol.
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o e protocol should be independent of any particular shell, command line in-
terface or graphical desktop. 1 should be generalised to make it uselul for any

system with multiuser, multiprocessing capabilities,

e No database of load information should he kept. Each time a subtask is executed
remotely, the network should be queried and response time can then be used as

the main heuristie for the shell to choose a server,

e The functionality should lie between the existing remote execution protocols
(the Berkeley “r-commands’) and higher level tools such as Sun RPC and Fn-

terprise.

¢ It should bridge the gap between current client/server teehmology and the fune

tionality of a completely distrib :ted operating system.

o It shonld follow the distributed process paradigm ol making small modules that

need not be aware of the details of their connection to oiher modules,

o The protocol should be easily extended in order to allow fully transparent ve-

mote execution of tasks, including terminal control.

e The protocol should allow for robust network error recovery, and for socially

acceptable use of available resources.
o Process checkpointing services should be provided.
e Support for interactive programmes such as sereen editors shonld be provided.

e The protocoi should include the ability to extend the traditional notion ol a

UNIX shell pipeline including splitting and looping.

e The shell command line or desktop interface should be extended to allow the

user to control at least some aspeets of execution over the network.

In addition to these design considerations, the protocol was designed with the

following assumptions:



o The protocol is designed to fit with the set of protocols built on top of the
Internet Protocol (1P). Another protocol at the same level is the rezee protocol.
Protocols of this type are docnmented in RFC 1340 [7], and are usually listed
in the UNIX file Jetc/services [serviecs(5)]. The programming interface used
is the Berkeley sockel library package, the original implementation of TCP/IP

on UNIX.

e H M H o f . M ,
o T'he underlying network provides fast datagrams and slower stream connections.

This is the case for most. UNIX workstations running TCP/IP protocols.

o Network handwidth and processors will become cheap. In the near future large
numbers of processors will be available for remote execution. This scenario
[avours a design that relies on small, independent servers able to respond quickly
on a fast network over a design that favours large centralised databases or servers

running on mainframes.

3.2 Interaction of Client and Servers

In the distributed shell environment, there are two main classes of interprocess com-
munication. The first is the control messaging between the dish server and client
processes. The second class is interprocess communication that takes place between
the subtask processes spread around the network. The different types of commu-
nication channels are shown in Figure 2. Small boxes represent processes and the
large boxes their host computers. Above the dotted line are the client and server
processes, which send each other command messages with UDP datagrams, shown
with dashed arrows. Below the dotted line are the subtasks, which initiate their
own TCP Interprocess Communication (IPC) stream connections, shown with solid
arrows indicating the direction of data flow. Subtasks are children of the processes
shown above them, and can communicate using whatever process is most convenient,

usually pipes [pipe(2)].
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Figure 2: Interprocess Communication Channels

A client and its server processes commumnicate via datagram packets to provide
control over the system. Datagrams are used to make the initial process of task start-
up and negotiation as fast as possible. UDP as defined in the Internet Protocol Suite
is quick but not gnaranteed or reliable. For the distributed shell however, unreliability
is not a problem because if the client encounters an error during start-up, it will not
want to execute the subtask on the associated server anyway. Absence of a response
is quietly ignored by both server and client.

However, to get this quick response, the dish protocol must inclnde the small
amount of reliability and flexibility that a higher level (but slower) protocol such as
TCP would provide. This is done by including a task identification fickd in cvery
message, by providing a mechanism to break up large messages (for example, sending,
a large environment description to a task about to starl execntion), and by providing
user-adjustable timeout factors, after which servers and clients will decide that the
other party has failed and will give up on it, taking whatever action is required upon

failure.



Advertisement 0
Application !
Offer 2
Confirmation 3
Completion 4
Checkpoint, 5
Checkpoint acknowledgement. | 6
Quit, 7
Signal 8
Signal acknnowledgement 9

Table 3.1: Dish Control Message Types

Subtasks of the server and clisnt processes ase the information contained in these
control mes wees to connect. themselves with TCP streams. These connections, once
the subtasks are started, appear to be their standard input, output, and error chan-
nels.

Ten possible dish control message types, and their values for identification in
messages, are shown in Table 3.1, Bach command message type has required fields
and optional fields, depending on the information needed in different circumstances.

Servers listen for these messages on an agreed upon port number. The Network
Information Centre provides a port number registration service [7]. Currently the
dish protocol has no registered port number, so a port number must be decided upon
sy the installation procedure in order not to conflict with other unregistered software
protocols installed on any given system.

Servers may take requests from any nnmber of clients at this one port number and
must, keep track of their various clients internally with the help of the inforination
contained in the messages.

The message format itself is defined as follows. The message consists of regular
ASCl-encoded characters (the American Standard Code for Information Interchange
provides the standard mapping from characters to binary storage on UNIX comput-

ers). They are divided into fields each separated by a newline character. Each field
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consists of an identifier. followed by an =" stgn. followed by the value assigned to
that field. The first line must contain a version field, which for this definition of the
dish protocol is equal to zero. Therefore, the first five characters of all dish command
messages are “av=0\n,” where "\n" is a newline character. The remaining ficlds may
be in any order (except for the env parameter deseribed in Section 3.2.3). Their
names and permissible values are deseribed in the following sections. Some ficlds are
common to multiple message types, and any extrancous liclds are silently ignored. A

summary of all parameters is given in Appendix A.

3.2.1 Advertisements

A client shell wishing to perform a pipeline over the network first: broadeasts an
advertisement for each picce of work making up the pipeline. Iis the responsibifity
of the shell implementation to determine whether sucl advertisements are required
for each part of the pipeline. For example, some commands might he marked as
Jocally executable only, or they might be built-in to the shell.

The job advertisement is a UDP datagram sent to a default, or specified list of
dish server hosts. UDP datagrams are nsed to make the job application process as
fast as possible. The shell’s method of tuning the timing parameter helps prevent,
busy stations from getting more jobs than they can handle. Any dish server can reply
to a job advertisement, including one on the same machine. This enables the system
to take advantage of multi-processor machines by allowing a dish server dacmon to
negotiate jobs on the different processors.

Table 3.2 shows the fields available for job advertisement messages.  Optional
parameters are given in ialics. The dv parameter is the dish version parameter.
Currently it is always set to “dv=0." The type paramcter indicates what kind of
command message is being sent. Advertisements are definest 1o be type 0. Table 3.1
shows the other values available for the type parameter. Appendiz 13 contains an
example of an advertisement message.

The user parameter specifies the client’s nser name. The dish server authenticates
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dv ewd
type umnask
user ticket
job_id host
client_port path
command arch

0s

MEMSIZC

epuperf

Table 3.2: Advertisement Message Fields

the client’s identity by checking the file /etc/hosts.equiv or by reading the file
.rhosts in the user’s home directory, obtained by looking up the user name in the
file /etc/passud. Alternatively, the ticket parameter can be used with a third-party
authentication server such as that provided by the Kerberos system from MIT [30].

The job_id parameter is a unique string to identify a job. It consists of three parts,
the host name of the client, the client’s process identification (1) number [get-
pid(2)], and a sequential number, increased by one for each new job advertisement.
This string identifies the job in question for the remainder of the client’s lifetime, so
it must be designed to be unique for any possible client.

'The client_port parameter specifies an Internet Protocol port number for the
server to send applications to. The parameter host for this message type indicates the
host name of the client in case it is different from the sender of the advertisement —if
the elient is using a broadeast server for the job applications on a different node on
the network, then the sender address will not be valéd for returning applications.

The command peeameter contains the name of the executable file that the client

wants performed. There are three possible ways to reference a command.

e An absolute pathname may be given. In this case an executable file is described
with all directories starting at the root (e.g., /usr/ucb/vi). If a dish server
receives such an advertisement, it can immediately check that one location to

sce if there is a valid executable by such a name and respond immediately.



e On the other hand, a relative pathname may be specified. This is a pathname
with directory names but not starting at the root (c.g.. . /mybin/myprog). Then
the cwd must be provided in the job advertisement, so the server can check
immediately if such a file exists in the server's file space. This can fail also if

the current working directory does not exist or is unreadable on the server node.

e Finally, a simple command can be specified, which consists of a stmple name
with no directory specifications. In this case, the path must be specified in the

job advertisement.

A traditional shell scarches the path for the specified file name and attempts
to execute it, regardless of its permission bits and magic number (see Section 2.0).
The distributed shell has to ensure that it can in fact he executed on the server’s
hardware. It may be unable to do so hecanse the executable itsellis intended for a
different processor. Also, an exeentable seript may be written for a shell that does
not exist on the server’s platform. For example, if it is a script specifically written
for Perl and has the first line of #!/usr/bin/perl and the server has no version of
perl available in /usr/bin, then it cannot reply with a joh application. Similarly,
the client itself has to build its hash table containing only exeeutables it can perform.
This added limitation will have an impact on the performance of a distribnted shell,
because the traditional shell has the advantage of being able to assume it can execute
everything and then fail when it makes the attempt.

The path parameter contains a set of directory names, separated by colons (*: ).
The server uses this list to attempt to find an exeeutable file if the command param-
eter has no path. The value of the path parameter is taken from the client’s PATH
environment variable.

If the path includes the current working directory (specified by a ©.7 as a member
of the path set), or a relative pathname, then the cwd field must be provided ina job
advertisement as well. In this case, the server subtask invokes the ehdir(22) system

call before doing the executable search, so that the current directory (indicated by a
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.} is valid. The enrrent working directory must always be specified as an absolute
pathname.

Two parameters, cwd and umask, contain the current working directory of the
client. anid its file creation mask [umask(2)], respectively. These are two parts of the
shell environment that potentially change frequently. If they are not specified, the
user’s home directory is nsed as the curvent, working directory, and the system default
itmask is used for the file creation mask. Operating systems other than UNIX will
have different parameters of this type specific to their operation.

Other parameters describe requirements of the process. These will come from a
table in the dish client, set up by the user to tune performance of the dish application.
To specify a processor type the arch parameter is nsed. The format is the output of
the uname -m UNIX command [uname(2)]. This parameter can be used {or comzilers
and other programmes where the output will be different depending on the processor
architecture, If a specific operating system is required, it can be identified with the os
parameter, the value of which is the output of the UNIX command uname. Version
numbers can be appended to this field’s value to provide more specific operating
system requests,

Resource specifications currently include memory size and processor performance.
An estimate ol memory usage is provided by memsize, and processor requirements are
estimated by cpuperf. Memory is measured in megabytes of main storage. Processor
performance can he a function of a static processor speed index and the current load
on the system, or for more sophisticated load-balancing, a dynamic benchmark could
be run cach time a job application is processed. Unfortunately, however, a dynamic
benehmark would slow the application process.

On a fast network capable of broadceasting to all stations on the network, a client
could use a broadceast server to send out job advertisements instead of using a list
of servers.  The distributed shell client cannot send the broadcast itself, since in
the UNIX environment using the underlying broadcast capabilities is a privileged

operation. Therefore, if the host field is specified in the job advertisement, servers
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dv memsize
type rmemsize
job.id epuperf
host PrOCCSSOrs

Table 3.3: Application Message Fields

must use its value to look up the 117 address of the client. Otherwise, the server can

more speedily extract the address from the advertisement message [recofrom(2)].

3.2.2 Job Application

A dish server wakes up when it receives a job advertisement broadeast. It cheeks to
see if the system is idle, then decides whether it qualifies for the job, and ifit does,
sends a job application to the potential “employer.” The address of the employer is
constructed from the port number specified in the adveriisement message, and an 1’
address found with the host field [gethostbynanme (i3)] if present, or else taken from the
sender address of the advertisement. Ficlds nsed in application message are shown in
Table 3.3.

Again, the dv ficld contains the version number of 0. The type for an application
is defined as 1. The job_id contains the same job id string as presented in the joh
advertisement. All futnre messages pertaining to this jobh will contain an identical
string for this field.

The host parameter specifies which host, is applying. Currentiy this is a required
field, but in future a default could be derived from the sender’s address as is imple-
mented for advertisement messages.

The remaining parameters, if present, provide the client with more information to
use for the server selection. The parameters cpuperf and memsize represent the pro-
cessing capabilities and physical memory size, respectively. The paramneter vmemsize
is the size of the server’s the virtual memory space. If a server has more than one

processor, the processors field shonld be provided. The valueis an integer indicating



the number of processors available in the system,
When a server has sent a job application, it returns to its original state, awaiting

other advertisements or offers.

3.2.3 Selection and Job Offer

Distributed shell elients listen for job applications for a specified period, called the
application timeoul. The optimal value for this timeont is a tradeofl between network
performance and response time for the user. For interactive shells in particular, the
timeout must be short to make the delay unapparent to the user.

If a user has a shell script that invokes resource intensive subtasks, it may be
worthwhile to include in the seript some tuning adjustments in order to give the
client more time to find the best server available on the network.

If no applications are reccived before the timeout ~rrives, or if the client decides
thal its own host is better qualified than those of all rec - " == fiestions, the client
attempts to run the command locally. Any applications arriviug late will be silently
discarded.

Onee the client has chosen a server, it composes an offer message. This confir-
mation will include all the detailed information required to run the command ap-
propriately, such as the environment, and instructions on how to connect current file
deseriptors. Offer paramieters are shown in Table 3.4. The message type for offers is
2. The dv and job_id fields are as described in section 3.2.1.

The number of arguments to the command is specified in arge, and the arguments
themselves are specified in argv. The arguments are listed in order, contained in
square braces ([ and J) to prevent the ambiguity of quoting. By convention, the
command name itsell is included as the first argument.

The two parameters ports and hosts provide the necessary information for the
servers 1o set up the required pipelines between processes. On a UNIX system, each
command usually expects to have three files open when it is invoked, the standard

input, standard output, and standard error channels. Some shells, such as the Korn



dv envocount
type encryption
job.id protocal
argc

argv

ports

hosts

env

Table 3.4: Offer Message Fields

shell [ksh(1)] allow other files to be opened on behalf of subprocesses by the shell.
Therefore, for each 1/O channel needing to be opened and actively conmected (see
Section 2.2.1) for the remote execntion, a host name and port number are given,
Hosts are given by name, separated by colons (1), and the corresponding port nnmbers
are simply decimal integers also separated by colons. I a host and port number is
missing for a channel in the offer, it means that the server subtask is expected to wail
passively for an incoming connection request, and it must provide a port number for
the other subtask to use to connect to the passive socketl in its confirmalion message,
The server must then find and allocate an available port number and send it back to
the client. If the host name and port number are given for a channel, the server is
expected to make an active connection to the port at that host’s address.

A third optional array of values specifies which protocol to use [gelprolobyname ()]
for each interprocess channel instead of the default TCP, and is called protocols
Maximum performance can be achieved with reliable networks by using lower protocol
levels. A special value for the protocol field is pty. This invokes the Berkeley rlogin
protocol over a TCP line corresponding to the standard input, or the output and error
channels [34]. This protocol uses a psendoterninal in order to make the specificd
channel appear as a terminal to the subtask.

The env parameter contains the environment, space for the job. This parameter
must be last because it might, contain newline characters. If the environment, does ot

fit into one UDP message, it will also be continued in the next env_count messages
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dv
type
job.id
host
ports

Table 3.5: Confirmation Message Fields

to follow. If the messages are not received immediately, the remote exeention fails.
Subsequent. offer messages then have a deerementing value for env_count.

The encryption parameter allows clients and servers to use a data encryption
scheme. This field will include the scheme name and the key if required.

The offer is sent to the potential server and the shell client waits for a job confir-

mation message.

3.2.4 Job Confirmation

T'he final step in the fonr-stage startup is the confirmation from the dish server to the
advertising client. The confirmation message also serves the function of returning the
port. numbers to the client upon which the server will wait for incoming interprocess
channel connections.

Table 3.5 shows the parameters required for the confirmation message. Before
sending its confirmation the server must find available port numbers for each passive
socket it needs to open, and send these values back to the client through the parameter
ports, thus allowing the client to send the port number to the task on the other side

of the connection.

3.2.5 Job Completion

When a server detects completion of a subtask, it must send a final message to
its client. Table 3.6 contains the parameters for a completion message. The type

parameter is 4. The return code from the subshell execution is returned in the status



dv
type
job_id
status

Table 3.6: Completion Message Fields

parameter.

The five message types deseribed are the core of the remote subtask control facil
ities. The remaining message types are deseribed in the following sections, as are the
semantics of setting up the pipelines between subtasks. The approach taken is de
centralised, using the network and server reaction performance to job advertisements
as part of the mechanism for choosing the most appropriate server to perform a task.
It can also adapt more casily to changes in the network, sinee no state is assumed
when a job advertisement is broadeast, making it more reliable than systems that
have a static allocation of resources. Unless the application can only run on remote
servers, a workstation taken entirely off the network could still funetion by execnt
ing all commands locally. In comparison, Ulopia’s load-sharing module performs a
similar function but constantly generates traflic on the network, even when the load
sharing shell is not in use. The Glish system requires the user to specily the name of
the server for any given task, and therefore provides no mechanism for antomatically

distributing tasks.

3.3 Pipeline Setup

The next step once a task has been confirmed by a client for a given server s to
set up the pipeline channels. If the task is the first in a pipeline, the client shell is
responsible for providing input on a socket of the appropriate protocol type (see the
prOtOCOllhTanvierhlSCCHOH:XZJ”.]fthu\ﬂﬁkisthﬂlnﬂlhlﬂ]ﬁpﬂ““u,”ufrﬁvnt

must arrange to pick up the standard ontput and error channels in the same way, and



dish sockets are set up to provide two-way communication, applications can take
advantage of this to send information both ways on the pipe.

The Berkeley socket paradigm requives a passive and an active side for socket
connection. The elient is responsible for deciding which side of a connection is active
and which is passive, and shows this throngh the parameters inits job olfer message.
This is the client’s responsibility because it must gather port. nummbers from: cach
server before it can send them on to the next server, The input to the first task and
the output from the last task are antomatically assigned to the elient task itselt. The
client thus chooses port numbers and fills in the appropriate offer messages to the
first or the last client. The server does not have to know or care whether the sockets
it is opening are going to be for input or output, as long as the elient ensures that one
side of each connection is indicated as passive and the other is indicaved as active, by
the presense or absence of a corresponding field in the hosts and ports parameters
of the job confirmation message.

Figure 3 shows an example of how a client might set up the active and passive
socket addresses for a pipeline exeenting on three different servers. The command
issued to the client dish on host namao produces all the words in the system dictionary

ending in the letter ‘y,” converted to upper case, and sorted in reverse order:
grep 'y$’ /usr/dict/words | tr ’[a-z]’ ’[A-Z]’ | sort -r

The host namao first advertises the three jobs in the pipeline. Al applications
received in time are processed, and the three commands are assigned Lo servers,

In this example, an offer is sent to sundog to perform the grep command. Inchided
is the port number (2344) on which namao will supply the standard mput stream
(although in this case it will not be used). Sundog replies with a confirmation message,
including the port number (3366) for the socket on which it will send its output. Alter
this exchange, sundog will make an active connection to namao at port, 2344, and will
passively wait for a connection on its port munber 3366.

The port number returned by sundog is then included in the offer message sent

by the client to hobbema. The remaining port numbers are communicated similarly.



Note that the arrowheads in the TCP connections point to the passive side of the
socket connection. Tuput and output functions are indicated by the side of the box on
which the connection is shown. The direction of communication on a TCP connection
is not, related to which side is active or passive.

If a server is the suceessful applicant for a job and then fails before sending a
confirmation, the client must either take over that subtask or choose another server.
For this reason, il a server subtask fails to make the connection properly in a given
amount, of time, it must assume that one of its neighbours has failed, close down
all its sockets, and try the process again. After a pre-specified number of tries the
server subtask gives up and the pipeline fails. Server failure after transmission of
confirmation messages is also considered a general {ailure.

Once the inter-task communication pipelines are connected between subprocesses
on both the client and server side, the client, has two ways of determining failure of
the connection. First, a signal message may be sent from the server when it notices its
subtask terminating abnormally. Second, if both the server and its subtask fail an/i
disappear, the client will notice that no checkpoint messages (see Section 2.2.8) have
arrived for a specified amonnt of time and assume the machine has failed. Then it
must close down its subtasks and start them again to prevent the server from coming
back on the network and resuming its work. If a server detects the failure of its
subtask, it can send a signal to the client with a signal message. The server is also

responsible for transmitting signals to its subtasks.

3.4 Signals and Job Control

Normally when a shell executes a subcommand locally, the subtask is responsible for
handling its own signals. Shells need to deal specially with certain signals regarding
1/0 stages and interrupts. For the distributed shell, the communication has to be
negotiated through the servers since the subtasks may be executing somewhere else

on the network. Therefore, signal messages can be sent from client to server or server



dv

type
job.id
signal_id
signal

Table 3.7: Signal and Acknowledgement Message Fields

to client to indicate the reception of a signal by the subtask or to send a signal to a
subtask. An example for an implementation of dish with job control, would be the
SIGSTOP and SIGCONT signals to stop and restart a job, respectively.

To provide network transparent signal delivery, servers must install interrupt han-
dlers for all relevant signals before forking [fork(2)] and invoking the subtasi. This
allows the server to inform the client, shell of any unusual activity taking place on the
server machine.

A three-way handshake is used to ensure that the signal is received. First o signal
message is sentt to the server or client process. It then communicates the signal to the
appropriate process on the server or client, node. Onee the signal has heen successfully
delivered, the signal is acknowledged through another control message. Finally, the

acknowledgement is also acknowledged.

3.4.1 Signal Messages

Table 3.7 shows the parameters required in signal (type 8) and acknowledgement,
(type 9) messages. Acknowledgements do not need the job_id nor the signal param-
eters. If the control message is being sent by a client to a server, the job_id parameter
specifies which subtask is to receive the signal. Otherwise, if the server is sending the
signal message, it shows which subtask gencrated the signal. The signal_id param-
eter is a unique string used to connect, acknowledgements to their signals. It Consishs
of the value of the job_id parameter, concatenated with an ‘s’ (for server message) or
‘c’ (client), and another sequential counter. Finally, the signal value itself is contained

in the parameter signal, and consists of a POSIX signal number |signal(3)]. (POSIX
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is a set of standards for UNIX systems, including a standard signal interface.)
Interprocess signals are the most operating system dependent part of the dish
protocol. To provide a more generic protocol, future versions of the dish protocol will
need a more versatile signal sub-protocol.
Note that the quil control message replaces the functionality of the termination

signals and should be used instead of those signals.

3.5 Security

When a server receives a job advertisement, the associated user is authenticated by
looking for the client’s machine name in the files /etc/hosts.equiv, and .rhosts
in the user’s home directory. This scheme, taken from the Berkeley implementation
of the r-commands allows the user to set up access privileges without intervention
of the system administrator, and trusted local area networks can take advantage of
their internal security [34].

This scenrity mechanism is convenient because it allows users to access other
systems without providing passwords. However, there is a large security weakness
on LANs using this scheme because a malicious user or an intruder can set up a
workstation masquerading as another temporarily disabled workstation. It also allows
access to the entire LAN when one machine is compromised.

For extra security, the distributed shell servers can use a private key broker sucl: as
Kerberos [30] to authenticate each client, and provid. private keys for the processes to
use for eneryption purposes within the dish system. A public-key encryption system
conld also be incorpora’ o into a distributed shell for specialised applications requiring
strong encrypiion an w ntication.

To achieve the goals of flexible security, the dish protocol is designed to isolate
the authentication and encryption functions so they can be easily tailored to the

application’s need.
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3.6 Control and Error Recovery

The signal and quif command messages are nsed for process control and error recovery.
The cheekpoint command message is used to help in error detection.

Two situations arise where a distributed shell may have to backtrack il a certain
station fails, or if another us = on that station requires the resources heing consumed
by the remote task.

If a server notices a subtask failure, it is responsible to report it back to the client
via the signal message mechanism. 1 the server itself fails, the elient will discover this
by the lack of checkpoint rnessages. To detect the loss of a communication channel for
TCP connections a SIGPIPE signal would be received, then the dish server is notilied
and a new process is starsed. A limit on the number of restart attempts would be
wise to include in a dish implementation.

In the cuse of workstation users, who have a computer on their desk that is not
always busy, they must be able to communicate with the dish server and tell it to stop
doing work or to resume work. There are many ways to implement such a feature,
depending on the local circumstances. For example, a convention conld he adopted
that the existence of a file called /tmp/. .nodish.. indicates that no remote tasks
should be execnted on the local station. If the temporary directory /tmp is not local
to the workstation, then the hostname would have to be added to the filename in
question. Traditionally on a UNIX system anyone can create or delete files in /tmp,
and the directory is cleaned of old files regularly. However, the mechanism to disable
the remote dish tasks must have enough privilege to send termination signals to the
resident dish subtasks. It would thercfore be best built in to the server process,

A UNIX command or X tool conld be provided to disable or enable remote dish
tasks, and to terminate any processes already residing on the system. Alternatively, a
programme to lock the screen of a workstation could be built that toggles the activity
of the dish server, so that whenever the nser locks the sereen of the workstation to
leave for a while, the station would he made available to remote tasks. Depending on

the circumstances of the installation, it may be desirable to introduce a delay hetween
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dv

type
job-id

Table 3.8: Quit Message Fields

disabling new dish subtasks and destroying the old ones, thus allowing short tasks to
complete without having to restast somewhere else, but still eliminating long tasks

from interfering with the interactive performance of the workstation.

3.6.1 The Quit Message

The quit message has paragheters as shown in Table 3.8, and is of type=7. A client
sends this command message to a dish server if it wishes the server to terminate the
subtask shown by job_id. A server does not send this message type to the client. If
a server detects a subtask has abnormally terminated, it sends an appropriate signal
message, waits for the appropriate acknowledgement handshake before shutting down

the subtask.

3.7 Checkpointing Service

The checkpoint messages serve two distinct functions. The first function, as the name
implies, is for servers to send checkpoints of the progress of their subtasks to their
client. The second function is to provide dei-ction of errors that are not caught by
the regular socket interface routines.

Il a client fails to receive a checkpoint message from a server within a user-
conligurable time factor, it assumes the server has failed and fails itself, or restarts
the pror=ss elsewhere, If a server fails to receive an acknowledgement from a client
within another user-configurable timeout factor, it assumes the client has failed and
terminates the client’s subtasks.

To make full use of checkpointing, prograramers must change their code. First,



they must make it so that upon entry, their programme checks its environment for any
variables another instantiation has placed there for it with partial results or mstruc-
tions to resume a partially completed task. Second, shell seripts must be maodified to
allow or to disallow checkpointing, since many existing programmes will be incom-
patible with the checkpoint approach. If full checkpointing is not specitically enabled,
the checkpoint messages will still be sent. back to the client, but no environment space

will be included.

3.7.1 Implementation

The checkpoint service ccmplicates programme implementation hecause it reqnizer
that the server have some way of polling the environment space of its subtasks. This
can most easily be done with a named pipe [mkdev(2)], and a user-definable signal
(or a new signal if kernel changes are decmed appropriate or desirable), which the
server sends to its subtasks in order to have them place their current enviromment
space onto the pipe for the server to read and send on to the dish client.

On the client side, when full checkpeinting is in effect, &l communication between
subtasks must be stored up between checkpoints. This requires all societ connections
to go through the client processor instead of being directly connected to sublasks,
thus slowing communication performance. Therefore, a checkpoint acknowledgement,
message may include a parameter to adjust timing in case the client buffers become
full.

Since programmes have to use the dish method of storing checkpoint, informadtion
in the environment space, checkpointing must be enabled for any session or seript

that wishes to use full checkpointing facilitics.

3.7.2 Checkpoint Messages

Parameters defined for checkpoint messages are given in Table 3.9. The sub-
task for which the checkpoint is being made is described by the job.id parameter.

The checkpoint message from the server to the client includes the env (and optional

a0



dv cnu

type cnv_count
job_id

timestamp

Table 3.9: Checkpoint Message Fields

env_count for environments too large to fit in one datagram) parameter described in
Section 3.2.3. Checkpoint messages from the server to the client require a new, unique
Limestamp, which is a string representation of the number of seconds and milliseconds
since the UNIX epoch [geltimeofday(2)], separated by a colon (1), as measured on the
server’s clock. The same timestamp is used in the checkpoint confirmation message
as returned by the elient back to the server.

To make use of the dish checkpointing facility (see Section 3.7), an application
must place information in the environment space, and check for that information when
starting execution to resume execution where it last sent the environment space back

to the client.

3.7.3 Checkpoint Acknowledgement Messages

The checkpoint acknowledgement message (Table 3.10) is provided in order to speed
up or slow down the checkpoint messages, and also to let the server know the client
is still running. The timestamp parameter is the timestamp of the checkpoint veing
acknowledged. The interval parameter has the same format as the timestamp pa-
rameter, showing the desired amount of time to elapse between checkpoint messages.
This meseage is only sent from the client to dish servers, and is provided because
with heavy 1/0 usage the client buffers may overflow and cause excessive blocking of

subtasks.
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dv intereal
type

job_id

timestamp

Table 3.10: Checkpoint Acknowledgement Message Fields

3.8 Processor and Resource Classes

The dish servers are responsible for determining whether they can execute a given
command by searching their path for an exeentable file valid for their own proces-
sor type. This is done by the dish server extraculag the path parameter in the job
advertisement and searching for a valid exccutable in that path. In this manner,
no database of processor classes is needed. Furthermore, no polling over the net-
work is needed to keep track of resource availability at any given time. Most other
load-sharing and distributed task allocation systems require either a centralised or
distributed database of capabilities that must be kept, up to date using queries over
the network. This canses extra traffic on the network and a potential centralised
bottleneck. These problems are avoided by the fonr-step dish startup mechanism,
which reflects resource and processor availability only when needed.

Processor types can be specified if required, for example, in the case ol a compiler
where a certain type of executable is desired. Then the client simply includes the
arch parameter in its job advertisement. Futhermore, if the dish client is told that,
a certain programme is processor intensive or memory sensive, it can also specily
those requirements in the job advertisement.

The following resource categories are defined: processor architecture, real ey
size, virtual memory size, and operating system. A more clahorate deseription of
storage structure on any given machine, as well as network or 1/O performance,

could be included in future versions of dish.



3.9 Interactive Commands

Some commands invoked by the shell expect their input and output channels to be
connected to a terminal rather than a file, device, or socket. An example is a screen
hased editor like vi(1). A line based editor, on the other hand, since it needs no
special access to the terminal, works with the regular TCP sockets. If the remotely
exceuting subtask does expect 1o talk to a terminal device, the server then sets up a
psendoterminal [pty(4)] —a feature introduced to the UNIX operating system along
with TCP/IP 1o provide such remote login capabilities. It was required because many
UNIX applications control the terminal or its device driver directly. For example,
during login itself, the echo must be disabled during password entry to avoid showing
it on the user’s sereen.

The elient, informs a server of this requirement with the protocol parameter in
its job confirmation message. This parameter is a list of protocols for each open file
deseriptor. I a value is given as pty, then the server must set up the pseudoterminal
and arrange to pass terminal control information to the client. Then it is required to
use the rlogin protocol o control the remote interactive execution {34]. This method of
remote execution provides an important improvement over the existing rlogin protocol
because the entire environment space of the shell is available to the remote server.
Note that the rlogin protocol referred to here is referring to its operational protocol,
not the startup protocol since that is taken care of through the dish task initiation

MeSSages,

3.10 Files

Often shell pipelines extract their input from a file, or place their output in a file.
This is accomplished using the 1/O redivection facilities of the shell.

File names specified for input or output to dish are accessed only by the client in
its local namespace. Arguments to commands, however, are passed through to the

server to be handled exclusively by the subtask on the remote processor. Obviously,



a uniform name space across the network will make this more predictable and casier
to deal with, but is not a strict requirement.,

For a dish implementation to access files that are only available on a remote
machine, it would require a mechanism of addressing those files. Something like
the addressing method used in the Berkeley r-commands would be appropriate. For
example, the cominand shown here would open the tile throngh the repd(8) dacmon

on the host st-brides. Normally, /tmp is local to a workstation.
sort < st-brides:/tmp/inputfile

For files that a subtask expects to inherit from its parent, clients instruet the
servers on which IP host and port each channel will be available (see Section 3.2.8).
The client is then responsible for reading input from a specified file name (for shell
input redirection using <), or placing ontput from server’s subtask in output files (for

output redirection using >).

3.11 Known Limitations

Although the dish protocol provides access to commands thronghout the network,
there are some drawbacks to a shell usivg this protocol as compared to the traditional
single-processor version of the shell.

This version of the distributed shell protocol is somewhat operating system de-
pendent, and currently is ouly defined for UNIX systems. Fature versions of dish
could be enhanced to allow for more operaling system interaction. Open standards
such as POSIX may make this a trivial extension to the protocol.

The elegance and efficiency of using the pipe(2) system call for setiing up shell
execution is lost. Instead, a distributed shell uses IP sockets for interprocess comnm-
nication, whose setup is more complex and time consuming,

In the current implementation, an extra subtask is generated for every connmand
pipeline to gather input and output for it. With a nen-distributed shell, the client

itself can assume this task.

ol
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Fxtra information must be gathered and maintained by the client shell.  This
inchides tables of commands that shionld be executed locally for speed, and commands
expected to control their terminal for remote execution.

The protocol design is dependent on fast networks and processors. If a network is
slow or busy, the time spent. waiting for applicalion messages could become too long.

Finally, a distributed shell is impaired by its necessity to ensure an executable is
valid hefore exeenting a likely looking file. Files must be opened and read to inspect

their headers, slowing down the construction of hash tables and doing PATH checks.



Chapter 4

Implementation and Results

This chapter discusses the changes required to a shell needed to implement the dish
protocol, and the proof of concept implementation. I, also presents the vesulls derived
from it. A simple server and client were implemented to find acceptable parameters

and evaluate its performance on two different networks.

4.1 Extension to Shell Function

Shells, desktops, and other command interpreters implementing the dish protocol will
require a number of changes. These changes could he completely transparent to the
user, but in order to gain full access to the potential benefits of a distributed shell,
certain new commands, syntax, and variables should be introduced.

A distributed shell implementation shonld have the following features:
o a way to disable remote execution allogether.

o a wav to [lag individual commands to execute locally, remotely, or on a specific
g Y )

remote site.

e a way to control distribution of work: a specified group of hosts, a speeified

group of sub-nets, or & combination of the two,

e provide data encryption if available.
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To have a fully user-configurable exeeution environment, the shell should also have
tables of commands with associated resources or requirements. These can either be
set. up by bnilt-in shell commands invoked in startup files, or be contained in the
user environment. For example, a user environment variable called DISH.CMDLOCAL
can contain a list of all commands to run locally, and DISH.CMDREMOTE a list ol all
commands to run remotely. Associations between commands and other service char
acteristics can he stored in variables such as DISH_.CMDHOST, which wounld have entries
of the form command,host1,host2,host3 where the lirst entry is the command name
in question and the following entries are hosts that the user wishes to permit exeente
that command. An environment variable containing all hosts to advertise to should
also be included, such as DISH.SERVERS.

The other primary modification of the shell involves changing its method of locat.
ing executables, starting subshells, and connecting their input and outpat channels,

as described in Chapter 3.

4.2 Implementation Details

For the purposes of testing the protocol and deriving some timing information, a
small shell was written using a subset. of the dish protocol. The core command
message types 0-4 were implemented (see Table 3.1). The remainder of the protocol
is very similar to other systems and is already proven. Portions of the implementation
specifically relating to the protocol are deseribed here. The current implementatior
provides for task initiation over the network and provides pipe connections hetween
suntasks using TCP sockets.

The shell first learns whether it is a server or a client. I a server, it opens a socket,
on which to listen to incoming service requests. If it is a client, it setnps a command
database, prints a prompt, and waits for command input from the user. The server
runs until killed explicitly by a signal, because it is running as a dacinon. The client

runs until it reads an end-of-file, or it receives the exit built-in command.

S



4.2.1 Built-in Commands

Normally a shell has a great abundance of built-in commands. Any command that
affects the internal state of the shell must be a built-in command. For example,
the ed(1) command is internal to the shell since it must change the current working
directory in the environment space. Sometimes commonly used but simple commands
(e.g., ccho(1)) are built-in to improve performance.

gy M

Fhese commands are always run locally by the client, so the server does not need
1o know how to execute them. The prototype dish implementation has the following

built-in commands. Optional arguments are enclosed in angle braces.

exit < value > Terminates the client. One optional parameter specifies the exit

value for this shell.

cd dir Changes the working directory. This updates the value of the PWD environment

variable also. It needs one parameter, the new directory name.

setenv variable valuc Sets an environment variable. It needs two parameters, the

environment variable name and its new value.

printenv < variable > Prints out environment variable (name is first parameter).

Il no parameter is specified the entire environment is displayed.
which command Shows command from database, il any match the first parameter.

rehash Rebuilds command database. This also occurs if the PATH environment vari-

able is changed using setenv.

The setenv command has other possible side effects, because some behaviour
of the distributed shell is dependent on environment variable values. If the PATH
environment variable is changed, the command database is rebuilt. For example, the
variable DISH_SERVERS is the list of machines to send advertisements to. When this
variable changes, the shell makes sure the new server names are valid by attempting

to look up their IP addresses. This is done so that the name-to-address conversion



only takes place once instead of each time an advertisement is sent out. Environment,
variables are also used to determine timeouts, Currently, the only timeout defined is

called DISH.CLIENTWAIT and is stored internally in micreseconds.

4.2.2 Input Syntax

The prototype dish implementation has a subs-t of the usual shell functionality. Com-
mands and other tokens are delimited by space characters and tabs.

Dish implements automatic command lookup —users do not need to specify the
exact location of the programme they want to ran, they need only type its name,
ard the shell will find the programme with the help of an environment variable called
PATH.

File input and output redirection is supported. To obtain standard input from

file input, and direct the results to output, the syntax used lor dish is:
command <inputfile >outputfile

Command pipes are supported, indicated by a | character with white space
on either side. Commands without pipes connecting their input and outpat can
be separated by semi-colons or ampersands. A semi-colon () indicates sequential
execution—the first command is completed exeeution hefore the sccond one can he-
gin. An ampersand (&) indicates concurrent (backgronnd) execution. The conmand
pipelize to the left of an ampersand is exccuted and put in the background. 1. i
continue to run separately {rons the client shell.

Eunvironment variables can be substituted in the input using the traditional §
mechanism. For example, 1o see what is in the PATH variable, the folowing, command

can be executed:

echo $PATH

G0



4.2.3 Command Database

A primary task of a command interpreter is to locate the commands the user wants
to run. Some shells search the PATH environment variable for every search. Others,
such as the C-shell [esh(1)], keep a hash table to speed command lookup.

Il using such a database, a distributed shell needs to be more careful to place
only valid executables in it. The C-shell, for example, hashes all the files contained
in the directories specified in the PATH, assuming there are no extrancous files or
subdirectories in those directories. If the user types the name of such an extraneous
lile, the shell attempts to execute it, receives an error, and fails. The distributed shell,
on the other hand, uses the hash table to determine whether the client is capable of
executing the command, which influences the urgency of finding a server to execute
it instead.

The database is implemented as a hash table. The key is calculated using the
command name as a sced. Entries contain the command name to verify matches, the
directory that contains the executable, and a flag to indicate whether the directory it
was fonnd in comes after a “.” entry in the PATH. If this flag is true, the shell must
cheek the enrrent directory for a similarly named executable that would then take
precedence over the one in the database.

The database is not needed for the server because the client specifies a path with
every joh advertisement. If extensive PATHs were common, the server could maintain
a database of directories that it commonly had to search. Such a database would
have to be eleaned out regularly in case users with highly diverse requests were to fill
it up with uncommon directories. The quick implementation used for this research
simply searched the PATH for cach job advertisement.

A problem encountered in the implementation was the amount of time required to
build this database. If the shell was only required to scan through the directories and
cheek the permission bits (via a call to stat(2)), the datahase could be built quickly.

However, this implementation also opens each file and reads the first 128 bytes, and
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format [a.out(5)], or if it contains an executable shell seript. it s a shell seript and
begins with the characters #1. then the name of a shell or interpreter programie 18
expected Lo follow on that line. The server must ensure that the progranume spectlied
".,.'l.,\l; IT.J,. ]\. ...'t,t.-' y l |/ 3 . l.‘ .
is available. For example, a script starting with #!/usr/bin/perl can only run on a
system with a perl executable in that location. If requived, a distributed shell could

do without the database, but it wonld increase the respounse time for cach pipeline.

4.2.4 Command Pipelines

Once the shell has parsed a command pipeline, it must take some extra steps not
normally required in a non-distributed shell.

From left to right, the shell takes cach command and checks environment vari-
ables for information regarding that command. This information is used for creating
subtasks later, including whether to execute the command locally or what kind of
processor must be used.

Once all the commands are checked in the database, an [/O subtask is spawned
(see Section 4.2.7) to gather input for the first command in the pipeline and to colleet
output from the last command (in fact, they may he the same process). This subtask
is given the first two assigned port mimbers, which will later be used to connect the
input channel of the first command in the pipeline and the output channel of the
last command. This implementation is limited to the first two channels, Lhe standard
input and output. The standard error channel is lost for server tasks and prints to
the terminal of the client for all tasks executed by the client itsell.

Next the advertisement messages are built and senh to the hosts listed in the
environment variable DISH.SERVERS. Applications are received, and a server is chosen,
The client takes any tasks that are unassigned. For the purposes of this experitent,
the algorithm for choosing a server was simple: choose she first server that responds
capable of doing the job. In practise this method works well, sinee the fastest and
nearest computers will be the first to reply, unjess they are already too busy, in which

case they will not be first. Other limitations, snch as processor classes, are sinmlated
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by placing a directory in the PATH, which is local on all machines (/tmp was used),
and popnlating it with varions commands on the different participating servers.

As cach command is assigned, it is given a new port number for its input and
output channels, and the host name for its input channel. (In this implementation,
the client chooses all port, numbers in a certain range known to be safe on the given
network. In a portable implementation, the scheme described in Section 3.2.3 must
he nsed.) This host name is the host of the client for the first command in the
pipeline, and the name of the host awarded the previons command for the rest of the
commands. This implementation uses the simplification of awarding commands in
left-to-right order, but there is no inherent reason for the client to award jobs in this
manner. To award them in any other order would be more complicated because for
cach connected command, one server must know the host name of the other server to
which it must connect.

Ounce the subtasks are spawned, and if the pipeline is running in the foreground,
the client awaits the completion of the 1/0 subtask started previously to the bid-
ding process. Finally, the client waits for each command in the pipeline to send its
completion message, unless they are running in the background. Background tasks
are left to execute independently of the client dish, but the client still keeps track of
the incoming completion messages and its locally running subtasks so it can properly

clean up if they complete.

4.2.5 Server Operation

This version of the dish server is implemented as a user-level daemon. No authentica-
tion is needed because each user must run their own daemon on the specificid server
nodes to get any response. For a full implementation, the daemon would have to
do the authentication in response to each advertisement. Then it would set its user
identitication [setuid(2)] to that of the advertisers before invoking the subtask. If the
dacmon is invoked by a super-daemon [inetd(8)]. then it must stay active until the

subtasks it invoked are complete.
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The server, instead of reading commands from the standard input, ignores its
input channel, (a normal dacmon disassociales itsell from its controlling terminal and
usually is started at boot time), and assigns a socket to listen to the dish port.

If a message comes in, the server parses it and if it is an advertisement, it immedi-
ately checks through the path for the requested command. If it finds an executable,
it constructs an application message and sends it back to the chient. Tt then returns
to its original state.

If the received message is a job offer, it then extracts all pertinent information

from the offer, sends a confirmation, and spawns the subtask required.

4.2.6 Execution of Subtasks

The client and server use the same code for exeention ol subtasks. The algorithm is
similar to what might be expected for a shell implementation. First a fork system call
is made, resulting in two processes. The parent process waits for the completion of the
child, unless it is the client and the task is marked as a background task. ‘The server,
by waiting for the child task to complete, prevents any other dish clients from reaching
this machine. A different implementation would be required for a multiprocessor node
to enable more than one concurrent remote dish task, or for a serionsly unbalanced
set of nodes where some servers could take higher loads of subtasks.

The child process from the fork call first sets up its input and output pipes. The
process actively connects to any channels that have hosts specified in their hosts ficld
of the offer message. Then, it passively waits for another process to connect Lo the
channels not specified in the hosts parameter. In the current implementation, it s
assumed that the input is always specified and the ontput is never specified, although
this is simply for convenience and has no impact on the fanctionality of the service,
Once the pipes have successfully connected, the child process does an execv system

call [ezec(2)] to invoke the command that was requested.



4.2.7 irput/Output Subtask

The dish client invokes a special subtask for cach pipeline called an /0 subtask. This
process is responsible for providing input to and gathering output from the pipeline
processes. Unlike the command subtasks, which open their active sockets first and
Vien their passive ones, this module must do it in the other order, since the first
programme in the pipeline is expecting to connect immediately actively, and the last
programne will be passively awaiting its connection to the 1/0 subtask last (See
Figure 3).

In a more general implementation, both sides would have to poll for both active
connections and passive, since it would not always be guaranteed that the process to
receive or provide a connection would be there at any given time.

Ouce the connections are made, this process simply reads from the standard input
it inherited from the client (usually the keyboard), and sends it to the first task in the
pipeline, while simnltancously reading from the last task in the pipeline and sending
it to the standard output (usually the user’s sereen). To do both tasks in one process,
the seleel(2) call is used to block for input on both channels.

Implementation of the pty option for the protocol parameter described in Sec-
tion 3.2.3 requires the 1/O process to set up a pseudoterminal and communicate any
signals generated by its input to the other tasks in the pipeline.

The 1/0O subtask exits after both its input and output are finished. Reads and
writes on sockets return the number of bytes successfully read or written, or a nega-
tive error value, or zero to show an end-of-file condition. An end-of-file on a socket
means the other end of the connection has closed, so the subtask can assume that
communication channel is done and close down the four sockets it was using, and

exit.

An tmplementer may wish to provide a flag to tell the dish client to make a circular

pipeline by avoiding the 1/0 subtask altogether and telling the last process to connect

to the lirst process. This could be useful for some types of distributed applications.
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4.3 Performance of Distributed Shell

The distributed shell was tested on two different networks consisting of Sun SPARC-
stations, Intergraph Clipper workstations, IBM RISC System /6000 workstations, and
Digital Equipment Corporation (DEC) AXP workstations. They were connected with
standard (10 Mbit/s) ethernet.

The first network tested was a large, basy, TCP/IP network using pateways. A
set of three SPARCstation 1PC’s running SunOS 4.1 were nsed, two on the same
ethernet wire, one separated by a gateway. The partial network is shown in Figure 4.
The client was set up with an applicalion limeoul of 100 milliscconds.

To measure performance of the startup protocol, real time was measured hefore
and after all code in the client involving the dish protocol, and accummmlated for cach
pipeline execution. The amount of time measured this way for the entire pipeline
is called the distribution overhead. The average distribution overhead for starting

up a single remote command was approximately 700 milliscconds. For two remote



SPARCstation
10

Clipper 400

67

AXP3000

AXP3000

Bridges

I

T1

Bridges

Clipper 300

SPARCstation
10

Clipper 300

| 1

RS/6000

Clipper 300

Clipper 300

Figure 5: Networl: 2

commands, the time to start up a job rose to 1.4 seconds. For three commands, it

took approximately 2.1 seconds.

This increase in timeis due to the implementation rather than the protocol. The

current implementation only advertises a new job after it has assigned the previous

one. A full implementation would broadcast all advertisenients at once. Therefore,

the overhead for the protocol is within one order of magnitude of the delay required

for remote servers to reply to dish job advertisements.

When the application timeout on this network was reduced to 50 milliseconds, the

overhead was reduced also by approximately half. However, even when they are not

separated by a gateway, the servers sometimes cannot reply in only 50 milliseconds.
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The second network 1 sted was a larger mixed protocol network nsing hridges
and repeaters instead of ve eways. The machines on the network used {or testing
are shown in Figure 5. (Re ecaters transmit all packets they get on one network to
another network. Bridges ¢ not retransmit packets aimed at a target that it knows
is on the same network *ae packet originated on.) This trial was performed with
two sets of processors Lo ated in different sites approximately Tk apart. They were
connected by local of wernet wires, several repeaters, bridges, and a 'T'1 (145 Mbit /)
iink. This trivl was run when the machines and network were otherwise idie. Oue site
consisted of two DEC AXP workstations with Alpha processors running OSE/1 (these
are substantially faster computers than the others), @ Sun Sparestation 10 running,
Sun0$ 4.1, and an Intergraph Clipper 400 workstation running CLIN 6.0, Another
Sparcstation 10, an IBM RS/6000 running AIX 3.1, and five Clipper workstations
running CLIX 6.0 were on the other side of the T1 link. At cach local site, some
stations were connected to the same ethernet wire, others were conmected throngh
repeaters and bridges.

The following results were observed when using the 100 milliscecond application
timeout. One Sparcstation was the client. The other Sparestation, a server, was al-
ways the fastest to respond to a job advertisement, and the average overhead inenrred
was about 400 milliseconds. The other stations, regardless of their proximity on the
network, increased the overhead for a command exeeution to 600-700 milliseconds.

On the second network, 100 milliseconds was the minimal value for the wait period
for job applications, and often with a smaller value no servers conld reply in time.
Furthermore, eliminating servers did not affect, the timing results. This is becanse
of the nature of the job advertisement cut-off, and because the traftic of the job
advertisements and applications is negligible on ihese networks.  Furthermore, the
amouut of network hardware separating the computers scemed to have little impact,
on the distribution overhead. The distribution overhead does not, seem to correspond
to proximity or processor performance. In fact, access to the hard dise and network

hardware performance probably make the most impact on the overhead.



Note that this implementation did not attempt any kind of optimiisation on the
code or algorithms used. A full implementation, outside the seope of this thesis, conld
improve performanece by tuving the algorithms used. Another important avenne for
improving performanes would he to make the application timcout a more dynamic
variable, sclf-adjusting to the network conditions. For example, if applications are
regularly arriving within a much shorter time frame than the current value, it should
be decrcased te reduce apparent delays.  Furthermore, optimal response could be
acheived by dways timing out alter the first available (and therefore probably most
desirable) server has replied. Finally, optimising the command lookup in the dish

server wonld also help to reduce the overhead.
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Chapter 5

Conclusion

This thesis demonstrates the feasibility ol implementing a distributed shell using, a
high-level protocol, providing better access to processing resources on a network and
moving one step toward the ideal of distributed compnting  network transparency.

The distribuled shell protocol was designed to take advantage of fast, high band-
width networks and high performance workstations. I achioves load-balancing as
part of the server query process, instead of keeping resource availability databases
that are quickly ont of date or else require substantial resonrees to maintain, It pro.
vides interactive and transparent access to all commands on all servers to the user,
without requiring knowledge of their architectires or resource availability.

The trial implementation of the protocol shows that with current network stan:
dards, a slight delay would be noticable when nsing a distributed shell. However,
a production implementation would involve substantial work on optimisation of re-
sponse time from dish servers, bringing it closer to the time allowed for servers to
respond (currently 100 milliseconds).

Interesting further work would be to implement, a fully distributed and optimised
shell with all the features described in Chapter 3, inchiding checkpointing facilities,
fully interactive remote execution using psendo-terminals, and signal transmission. A
broadcast service could be installed to find out how it affects performance in general

and what impact it has on network load. Further analysis of the protocol design wonld

70



Bibliography

(1]

Sun Microsystems Ine. Reguest for comments 1057: Sun RPCL Network: Infor-

mation Center, June 1988, [nic.ddnanil:/rfe/efel057.0xt].

IX. Birman. The process group approach to reliable distributed computing. Tech-
nical Report TR-91-1216, Cornell University, July 1991 [ftp.cs.cornelledu: /TR

91-1216.ps.7].

Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiaug, Robert Manchek, and

Vaidy Sunderam. PVM 3 User'’s Guide and Beferenee Manual, May 1993,

Donuglas . Meyer and Ralph W. Wilkerson. THGHLAND: A graph-based parallel
processing environment for heterogencous local arca networks. ln The Fefth

Distributed Memory Computing Conference, pages 702 747, Apnl 1992,

Jonathan Schaelfer, Duane Szalron, Greg Lobe, and Tan Parsons. The Bnterprise
) ) g |
model for developing distributed applications.  [EEE Parallel and Distvibuled

Technology, October 1993, 1o appear.

A. Singh. A Template-Based Approach Lo Struclturing Distvibuled Algorvillis

Using a Network of Workstations. Ph1) thesis, University of Alberta, 1992,

1. Revnolds and J. Postel. Request for comments 1340: Assigned yumbers,
Y { £

Network Information Center, July 1992, [nic.ddnanil-/rfe/rfe1340.0x1].

Ellie Cutler, Daniel Gilly, and Tim O Reilly. The X Window Systoi in o Nul-
shell. O'Reilly & Associates, Sebastopol, California, 1992

T2



o]

[10]

(1]

[12]

(13]

[11]

15)

[16]
[17]

[15]

[19]

Donglas F. Comer. Inlernetworking with TCP/IP, volanie 1. Prentice-Hall, Inc.,

1991,

Larry Wall and Randall Sehwartz.  Programming Perl. O’Reilly & Associates,

Sehastopol, California, 1991,
UNIX Refercnee Manual.

.M. Ritehic and K. Thompsen. The UNIX time sharing system. Communica-

tions of the ACM, 17(7):365-375, 1974,

John K. Ousterhout.  An Introduction to TCL and Tk (DRAFT). Addison

Wesley, 1993,

Open Software Foundation. While Papers on the Distributed Computing Envi-

ronment. O'Reilly and Associates, Ine., 1991,

Douglas 5. Comer and David L. Stevens.  Inlernctworking with TCP/IP, vol-

ume 3. Prentice-Hall, Ince., 1993,
Sun Microsystems Ine. STREAMS Programming Manual, March 1990.

INai Hwang, William J. Croft, George H. Goble, Benjamin W. Wah, Faye A.
Briges, William R. Simmons, and Clarence L. Coates. A UNIX-based local
computer network with load balancing. [EEE Computer, pages 5565, April

1982,

T.A. Marsland, T. Breitkreutz, and S. Sutphen. A network multi-processor for
experiments in parallelism. Concurrency: Practice and Experience, 3(3):203-

219, June 1991,

Sun  Microsystems  Ine. Request for comments 1014: XDR: External
data representation standard.  Network Information Center, June 1987.

[nic.ddnmil: /efe/rfe1014.1xt].

T3



[20]

[21]

28]

[29]

Vern Paxson and Chris Saltmarsh. Glish: a user-level software bus for loosely-

conpled distributed systems. In CSENIY Winter Conference, 1993,

Nicholas Carriero and David Gelernter. Linda in contest. Communications of

the ACM, 32(4), June 1989,

Don  Libes. Nibitz—conunecting multiple interactive programs  together,

Software --Practice and Experviencee, 23(5):465 475, May 1993,

S. Zhou, J. Wang, X. Zheng, and . Delisle. Utopia: A load sharing lacility
for large, heterogencous distributed computer systems. Technical Report CSR1-
257, Computer Software Rescarch Institute, University of Torouto, April 1992,

[sys.toronto.edu:/white-technical-reports/257).

P. Delisle and Jingwen Wang. Load sharing tesh (Istesh) user’s mannal. Obtained

over Internet, September 1991,

Michael Litzkow and Marvin Solomon. Supporting checkpointing and process

migration outside the UNIX kernel. In Usenie Winter Conference, March 1992,

Rob Pike. Dave Presotto, Ken Thompson, Howard Trickey, and Phil Winter
b Y l ) J
bottom. The use of name spaces in Plan 9. ACM Operaling Systems Revicw,

27(2):72-76, 1993.

H.E. Bal. The Shared Data-object Model as a Parvadigm for Programaning [is-

tributed Systems. Mathematisch Centrinm, Amsterdam, 1984,

S.J Mullender and A.S. Tanenbanm. The design of a capability-hased dis-

tributed operating system. Compuler Jowrnal, 29(4):289 299, August. 1956,

George A. Champine, Daniel E. Geer, and William N. Rub. Project athena as a

distributed computer systen. [EEE Compuler, pages 4050, September 1990.



[30] Jennifer G. Steiner, Clifford Nenman, and Jeffrey L Schiller. Kerberos: An

[31]

[:33]

[34]

anthentication service for open network systems. In USENIX Proceedings, March

[ RK.

Li Gong. A scewrity risk of depending on synchronised clocks. Operating Systems

Review, 26(1):49-53, Janary 1992,

A. Kehme, J. Schonwilder, and H. Langendorfer. A nonce-based protocol for
multiple anthentications. ACM Operating Systems Review, 26(4):84-89, October

1992.

Roger M. Needham and Michael D. Schroeder. Using encryption {or authentica-
tion in large networks of computers. Communicalions of the ACM, 21(12):993-

999, December 1978,

B. Kantor. Request for comments 1282: BSD rlogin.  Network Information

Center, December 1991, [nic.ddnamil:/vfe/rfe1282.txt}.

=1

[



Appendix A

Dish Message Format

Dish messages are datagram packets with the following format. Albmessages consist
of printable ASCIH characters. The first {ive characters, for version zero ol dish,
are: “dv=0\n" where “\n” is a newline character. After the fifth character are liclds
separated also by newline characters. Fields consist ol an identitier, an equal sign (=),
and a value. They may be placed in any order, except for the env lield, which must
he last because it may have newlines in it. A dish control message is self-contained,
unless il contains an env_count parameter, which indicates the mimber of messages
used to transmit the entire environment. All messages must contain a type ficld.
Following is a list of all message parameters defined for version zero of the dis

tributed shell protocol:

arch The processor type of a server.

argc The argument, connt for a sub-task.

argv The arguments for a sub-task. Fach argument is enclosed in square hraces.
client_port The I port number for the server to reply to.

command The command for a subtask.

cpuperf The processor performance of a server.

0
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cwd The cnrrent working directory for a subtask.

dv The dish Version number (currently always ()

encryption Encryption scheme for a intertask communication.

env.count ‘The nmber of datagrams nsed to provide a environment description.

env ‘The environment. This must be the last parameter because it wiil probably

contain newlines,

hosts List of hosts which server must actively connect to to get descriptors for sub-

tasks. Separated by colons.
host The host of the originator of the message.

interval The interval desired hetween checkpoint messages, format is seconds and

microseconds in decimal separated by a colon.
. s M ¥ 8 < .
ioperf The io performance measure of a server.

iob.id T'he iob identification string. Consists of client host name, client process id
o 9 Y

and a sequential number separated by periods.
memsize Real memory size needed by task or available on a server.
netperf Network performance of a server.
os Operating system running on a server or desired by client.
path List of directories in which to look for the command. Separated by colons.

ports List of port numbers chosen by server to connect incoming interprocess com-

munication channels.
processors Number of process .7« server.

protocols Protocoi list to use for intertask communication. Separated by colons.



signal_id Identification of signal transaction.

signal Which POSIX signal number to send to subtask or client.
status The return status of a subshell.

ticket The authorisation key for a client.

timestamp The timestamp (seconds and microseconds from cpoch, separated by a

colon) of a checkpoint.
type Type of message. Sce list above.
umask Umask of client. [umask(2)].
user Userid which client is running for.

vmemsize Size of virinal memory on a server.



Appendix B

Example Startup Messages

The following messages show an example transaction between two hosts, st-brides
and sundog, where a server on sundog performs the command 1s -1t for the client

running on st-brides.

Advertisement

dv=0

type=0

user=tim
job_id=st-brides.1938.23
client_port=22783
command=ls
cwd=/home/sundog/tim/xyz
umask=022
path=.:/home/sundog/tim/bin:/bin:/usr/bin
host=st-brides
arch=sun4m

os=Sun0S



S0

Application

dv=0
type=1
job_id=st-brides.1938.23

host=sundog

Offer

dv=0

type=2
job_id=st-brides.18938.23
argc=2

argv=[1s] [-1]
ports=22784::22785
hosts=st-brides::st-brides
env=SHELL=/bin/dish
HOME=/home/sundog/tim
PWD=/home/sundog/tim/xyz
TERM=vt100

LOGNAME=tim

PATH=. : /home/sundog/tim/bin:/bin:/usr/bin

Confirmation

dv=0

type=3
job_id=st-brides.1938.23
host=sundog

ports=:27827:



Completion

dv=0
type=4
job_id=st-brides.1938.23

status=0

&1



