l* National Library
of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions el

Bibliographic Services Branch des services bibliographiques

395 Wellington Street 395, rue Wellington

Ottawa, Ontano Ottawa (Ontario)

K1A ON4 K1A ON4
NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

- Canada

Youw lilg Volie tibierw s

Okw Mg Nolre igldrence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez

qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a laide d’'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de

qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Lol canadienne sur le droit
d'auteur, SRC 1970, c¢. C-30, et
ses amendements subséquents.

UNIVERSITY OF ALBERTA

Lincar Separability and Connectionist Categorization: A Study of Speed and

Generalization of Two Connectionist Networks.

BY @

Kevin S. Shamanski

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of Master of Science.

DEPARTMENT OF PSYCHOLOGY

Edmonton, Alberta

Spring, 1994

Bl [eiona Ly

Acquisitions and

Bibliothé&que nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 wellington Street 395, rue Wellinglon
Ottawa, Onlario Oftawa (Onlario)
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial

otherwise reproduced without
his/her permission.

Your i Volre réldrence

Ut his Nolie rdidiance

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothdque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-11366-3

Canadi

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Kevin S. Shamanski

TITLE OF THESIS: Linear Separability and Connectionist Categorization: A Study of Speed and
Generalization of Two Connectionist Networks.

DEGREE: Master of Science

YEAR THIS DEGREE GRANTED: 1994

Permission is hereby granted to the University of Alberta Library to reproduce single copies of this thesis

and to lend or sell such copies for private, scholarly or scientific research purposes only,

The author reserves all other publication and other rights in association with the copyright in the thesis,

and except as hereinbefore provided neither the thesis nor any substantial portion thereof may be printed

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read and reccommend to the Faculty of Graduate Studies and

Research for acceptance, a thesis entitled Lincar Separability and Connectimsrst Categorization: A Study

of Speed and Generalization of Two Connectionist Networks submitted by Kevin S. Shamanski in partial

fulfillment of the requirements for the degree of Master of Science.

mAarReH 2 ’/74/

Michael R.W. Dawson

.4

Don Kuiken T

b o Besh

Peter Van Beek

shalenct

The explosion in cosrnectionist rescarch that has occurred in the past decade has produced a large

rule proposed by Rumestesr Hi=<r. amd Williams (1986a, 1986b) has become one of the most
prominent of these learnimy #i:~-ihms The purpose of the research described is to systematically
compare the performance of two rules used to train connectionist networks: the standard generalized delta
rule devised by Rumelhart, Hinton, and Williams(1986a, 1986b); and an extension of this rule developed
by Dawson and Schopflocher (Dawson and Schopflocher, 1992; Dawson, Schopflocher, Kidd, and
Shamanski, 1992). In order to make this comparison, the paper proceeds as follows: First, activation
functions and learning rules are described, and their interrelation is briefly explored. Second, in depth
consideration is given to the logistic and Gaussian activation functions and how the generalized delta rule
relates to each respective functions. Third, the results of a series of computer simulations are reported.
The aim of these simulations was to provide a controlled and systematic comparison of the two rules.

The results of Experiment 1 demonstrated that the logistic architecture was more suited to
solving a linearly separable problem than a linearly nonseparable problem when speed to convergence
was considered. A network of Gaussian units, in contrast, had difficulty solving the linearly separable
problem, but was well suited to solving the linearly nonseparable problem. The simulations of
Experiment 2 add additional support to the network type-problem type interaction though a dependent
measure of generalization. Overall, each network architecture generalized well on only one specific
problem type: value units on the linearly nonseparable problem, and integration devices on the linearly
separable problem. These results are discussed within the framework of cognitive science, and

consideration is given to how they might contribute to a theory of categorization,

Acknowledgement

I would like to acknowledge my esteemed supervisor, Michael R. W. Dawson, whose patience:
and guidance allowed me to achieve this goal for without him who knows what | would have done. 1
would also like to acknowledge the members of the Biological Computation Project for their ideas,
comments, and their gentle criticism of this research; their aid was invaluable. Acknowledgement should

also be given to TLD, DMA, MAF, KS, who each in their own way kept me on the path to complete

this journey, and never doubted that I could do it.

Table of Contents

Introduction

Processors, Activation Functions, and Learning Rules
Training Integration Devices
Training Networks of Value Units
Comparison of the Generalized Delta Rules
Pattern Classifiers, and Pattern Spaces

PDP Networks Carve Pattern Spaces

Experiment I
Method
Problem Types
Network Architectures
Training Procedures
Results and Discussion
Majority Problem

Parity Problem

Experiment 11
Method
Problem Types
Network Architectures and Training Procedure

Results and Discussion

11

12

14

15

19

19

20

11

19

General Discussion
Engineering Perspective
Psychological Perspective
Models

Neuroscience

Figures

Bibliography

27

Figures

List of Figures and Illustrations

: A PDP Network

Figure

: Activation Functions

%]

Figure
Figure 3 : Receptive Fields

Figure 4 : Majority Problem Partitioning

Figure 5 : Parity Problem Partitioning

Figure 6 : Median Speed on the Majority Problem

Figure 7 : Failures to Converge on the Parity Problem

Figure 8 : Median Speed of Converged Networks on the Parity Problem
Figure 9 : Total Network Error on the Parity Problem

Figure 10 : Sum of Squared Network Error on Novel Patterns

30

31

32

33

34

Introduction

The basic instrument of cognitive science is a model and, in general, over the last 50 years the
predominant form of these models has been that of a symbolic or classical nature (Fodor & Pylyshyn,
1988; Newell & Simon, 1981). It has not been until the last decade that a new approach to modetling
has arisen called parallel distributed processing (PDP). This approach uses networks of simple processing
units that communicate with one another simultaneously via weighted connections to model cognitive
phenomena (see Anderson & Rosenfeld, 1988). An example of such a system is shown in Figure 1. The
example network consists of three processing layers: an input unit layer, which receives environmental
information; a hidden unit layer, which detects features in the input information; and an output unit layer,
which records the network’s response to the stimulus.

Each conmection in a PDP network has a weight associated with it that scales information
passing through it. The system’s "knowledge” is stored as the pattern of connection weights in the
network. "In this sense, the connection strengths play the role of the program in a conventional
computer” (Smolensky, 1988, p. 1). A property of the connections in a PDP model that make them
particularly attractive is that they are modifiable. The current connection weights of the system can be
altered on the basis of environmental information the network receives. Such changes in connection
strength are determined by a learning rule. To apply a learning rule to modifiable weights is to "teach”
the network to perform some specific task (e.g. Smolensky, 1988).

The explosion in connectionist research that has occurred in the past decade has produced a large
number of learning rules, each designed to train a specific network architecture. The gencralized delta
rule proposed by Rumelhart, Hinton, and Williams (1986a, 1986b) has become one of the most
prominent of these learning algorithms, and has the ability to train multilayer networks such as the one
depicted in Figure 1.

As will be elaborated below, the mechanics of the generalized delta rule depend upon the
characteristics of individual processing units in a PDP network. As a result, variants of the generalized

delta rule have been devised to train slightly different types of networks. The purpose of the research

2
described below is to systematically compare the performance of two of these rules: the standard
generalized delta rule devised by Rumelhart, Hinton, and Williams(1986a, 1986b); and an extension of
this rule developed by Dawson and Schopflocher (Dawson and Schopflocher, 1992; Dawson,
Schopflocher, Kidd, and Shamanski, 1992). In order to make such a comparison, this paper will proceed
as follows: First, activation functions and learning rules will be described in general, and their
interrelation briefly explored. Second, in depth consideration will be given to two specific activation
functions and how the generalized delta rule relates to each. Third, the results of a series of computer
simulations will be reported. The aim of these simulations was to provide a controlled and systematic

comparison of the two learning rules above.

Processors, Activation Functions, and Learning Rules

To understand how a PDP model works, one must understand the mechanics of an individunl
processor within the network. The first operation of a processing unit is to compute its wet inpur. A unit’s
net input is simply the sum of all of the weighted signals that it receives from other processors, The
second operation of a processor is to activate. The processor will adopt a new level of internal activity
based on the net input that it has reccived. This level of activity is determined by the unit's activarion
Junction. The final operation of a processor is to output its activity to other processors. Each unit will
send its signal over a weighted connection to be received by another unit in the network. OF these three
operations, computing activation is the most important with regards to the learning rules to be described.

2a). According to this function, if a unit’s net input exceeds some threshold, 0, then the unit becomes

activated (shown ‘n Figure 2 as net output levels of 1.0). If the net input is less than 0, then the unit
plausible: it captures the "All or None Law" governing a neuron’s gencration of an action potential as
a function of the signals that it receives (Levitan & Kaczmarek, 1991, p.38).
Training Integration Devices

Unfortunately, the linear threshold function is not continuous, and therefore does not pOSsess a
derivative. As a result, researchers were unable to develop a learning rule that could train multilayer
networks that used this function (eg. a network like Figure 1). This is because the development of a
learning rule usually requires using calculus to determine what changes in connection weights will reduce
system error, If a derivative for an activation function does not exist, then the rules of calculus cannot
be exploited, and a learning rule can not be derived. This nearly led to the death of connectionism,
(Rumelhart & McClelland, 1986; Minsky & Papert, 1988)

To overcome such limitations, modern connectionism began research into a continuous

approximation of the linear threshold function. One such approximation is the logistic function illustrated

4
in Figure 2b. The limits of this sigmoid-shaped “squashing” function provide a good approximation of
the two discrete states of the linear threshold function in Figure 2a. Ballard (1986) refers to processors
using this activation function as integration devices.

The important difference between the linear threshold function and the squashing function is that
the latter is continuous, and therefore possesses a derivative. As a result, a learning rule can be derived

for multilayer architectures whose processors use this function. The ability to train hidden units with this

and Williams (1986b) demonstrated that a multilayer network utilizing the logistic activation function
is able to learn the exclusive-or (XOR) distinction, while a single layer network (ie. no hidden units) is
unable to make this distinction,

In order to train multilayer networks of integration devices the standard generalized delta rule
(Rumelhart, Hinton, and Williams, 1986a, 1986b) is used. The aim of the generalized delta rule is to
minimize network error by modifying the network's connections, where network error (E,) is given by

AN o 2
Ep = EE (Téjggpj)g (l) _
which represents the sum of squared differences between the desired (T,;) and observed value (O,) of

all output units when presented a specific pattern p. This error term is minimized as follows: First, the
network is presented input pattern p. After processing, this creates a pattern of response activity in its
output units. This response is compared to the desired response that the network is being taught to
produce. Discrepancies between the desired output pattern and the observed output pattern create an error
signal for the output units. This error signal is used to modify the weights of the output unit connections.
Then, output unit error is sent to the hidden units through the modified connections. The hidden units
of the next layer of connections. The sequence of (1) compute error, (2) modify weights, and (3) trahsmit
error is repeated until all network connections have been updated, These modifications of connection

weights dictated by the generalized delta rule are guaranteed to reduce system error as defined in

5
Equation 1. As a result, the next time the network is presented pattern p, its response will be closer to
the desired response,
Training Networks of Value Units

The generalized delta rule has become a benchmark to which other algorithms are compared
because it consistently produces extremely good pattern classifiers (e.g., Bamnard & Casasent, 1989),
However, it can often lead to networks comprised of a very large number of hidden units. As a result,
network training does not necessarily generalize well to new patterns, and network structure becomes
extremely difficult to interpret (Rumelhart & McClelland, 1986).

One approach to improving network interpretability is to adopt an activation function which
makes processing units more powerful. As a result, fewer processors will be required in a trained
network’s architecture. For example, Dawson and Schopflocher (1992) developed a multilayer perceptron
whose units used the Gaussian activation function. This activation function is illustrated in Figure 2c.
Ballard (1986) has referred to units possessing this kind of activation function as value unils, because
such units only activate strongly to a small range of net input values.

The generalized delta rule was derived under the assumption that the activation function of the
network’s units would be monotonic. For ¢xample, generic units using the logistic function are
monotonic, meaning that their output value always increases as a function of increasing net input. In
contrast, the Gaussian is nonmonotonic because its value can decrease as net input increases. As a resuli,
the standard form of the generalized delta rule cannot be used as a practical method for training networks
of value units, as shown by Dawson and Schopflocher (1992). They used the standard version of the
generalized delta rule to train a network built from units that had a Gaussian activation function. They
found that the network was almost always trained into a local minimum, and did not learn to respond
correctly to all inputs,

To solve this problem Dawson and Schopflocher (1992) developed a variant of the generalized
delta rule that minimized an elaborated error term:

i1~ (7 ;o ol -
2 (Tp5=0p)* + 53 Tpy (netymp))? (2)

Cp

6
The first component of Equation 2 is identical to Equation I, where T, represents the desired response
of output unit j for pattern p, and O,; is the observed response of the unit. The second component
measures the failure of the system to set net,= p, when the desired output is equal to 1.0, where net, is
the net input to unit / when pattern p is presented, and ; is the *bias’ value of the activation function.
As defined, this second component requires that T, be either 0.0 or 1.0; this limits the network to
(ideally) generating binary outputs after training, With the minimization of equation (2) the goal of
learning, the local minimum problem described above is avoided, because the second term in C, prevents
the weights being changed such that all the net inputs are drawn towards infinity. In essence, the
additional term in Equation 2 applies heuristic information about the Gaussian to prevent patterns where
T,; is equal to 1.0 from being pulled into the tail of the activation function’s distribution. This modified
version of the generalized delta rule has the ability to train multilayer networks of value units.
Comparison of The Generalized Delta Rules
Given that we have two distinct generalized delta rules for architectures that use different
activation functions, how do the rules compare to one another? Does one of the networks always learn

faster than the other? Does one architecture generalize better to novel instances after training than the

is inconclusive.

For instance, Dawson and Schopflocher (1992) compared the performance of the two rules on
a variety of small problems (XOR, symmetry, encoder, parity). The results of this comparison showed
that there were definite advantages for using value units in a network: in general, value unit networks
learned to solve these problems much faster, and failed to converge significantly less frequently, than
did networks of integration devices (see also Dawson, Schopflocher, Kidd, & Shamanski, 1992; Dawson,
Shamanski, & Medler, 1993). Unfortunately, this comparison lacked systematic control over important
network parameters and design variables. Fur example, insufficient attention was paid to the relation

between the network’s activation function (Gaussian or logistic) and the problem type used for training.

7

better than the generic architecture. One must consider that all of the problems studied by Dawson and
Schopflocher (1992) were linearly nonseparable, and therefore their conclusions may not apply to linearly
separable problems. In fact, it is argued below that networks of integration devices should perform better
than networks of value units on a particular type of problem -- called a lincarly scparable problem.
However, networks of value units are arguably better suited to solve more complicated problems.
Pattern Classifiers, and Pattern Spaces

PDP networks are known to be good classifiers, This means that a trained network is able to
make a distinction between whether a pattern belongs, or does not belong, to a specific category. In
essence, when the network is given an input pattern, it will produce the name of the category to which
the input pattern belongs. To do this the network must "carve" the pattern space into differently named
classification regions,

A pattern space is an N-dimensional space, where N represents the number of coordinates
required to locate any pattern as a point in this space. The network’s task is to carve this pattern space
into different regions. Patterns that belong to one category will fall into some of these regions, and
patterns that do not belong to the category will fall into other regions.

From this perspective, some pattern classifications may be very simple. For example, a /incarly
separable class may be defined by carving a single hyperplane through the respective pattern space
(Note: In two-dimensions this hyperplane would be a straight line). In this case, patterns on one side of
different category. An example of a linearly separable class is the majority class. If a majority of the
pattern’s units are on, then the pattern belongs to the majority class, otherwise the pattern does not
belong to the majority class. For example, the pattern [1 0 0 1 1] belongs to the majority class because
3 of its 5 units are active, where 1 represents an input unit being active. The pattern [0 1 0 1 0] does not
belong to the majority class as less than one half of its units are active.

In contrast, some pattern classifications are very complicated, and almost arbitrary decision

8
regions must be cut in the pattern space to provide a solution (Lippman, 1987). For example, consider
the parity class (referred to as a Type I problem by Minsky & Papert, 1988). If an odd number of units
in the pattern are active, then these points will belong to the class of odd parity, while all other possible
patterns will not belong to the class of odd parity. For example, the pattern [1 1 1 0 0] would be
classified as an odd parity pattern as an odd number of units in the pattern are active, while the pattern
[0 1 1 0 0] would not be an odd parity pattern as an even number of units in the pattern are active.

Note that the difference between simple and difficult classifications is not the size of the pattern
space, but is instead the complexity of the decision regions required to carve the space correctly. For
example, one can take exactly the same set of input patterns (and thus exactly the same pattern space),
and define either the majority class or the parity class for this set. This is important, because it allows
a researcher to manipulate problem complexity, while at the same time controlling other factors, such
as the number of input units and therefore the dimension of the pattern space.

PDP Networks Carve Pattern Spaces

As previously mentioned, PDP networks can learn to classify patterns. This ability is a result
of the activation function in the network having a “"receptive field” that carves the pattern space into
decision regions. The type of activation function controls how this space is partitioned. For instance, the
logistic activation function carves a single plane through the pattern space. This is shown by considering
the receptive field of this function that is shown in Figure 3a. As shown, the logistic divides the decision
region into two areas: one area (shaded) represents inclusion in the class, while the other (white)
represents exclusion from the class.

In contrast, the Gaussian activation function carves a "hyperbar" through the pattern space (eg.
Hartman & Keeler, 1991). Figure 3b shows the receptive field of the Gaussian. This band creates three
decision regions: one area within the boundaries of the band (shaded) representing inclusion, and two
areas on either side of the band representing exclusion from the class. This allows a more complex
division of the pattern space than the single hyperplane of the logistic. As shall be discussed, this

complex partitioning is not always beneficial in solving particular problems.

9

For example, consider the linearly separable majority problem. To solve this problem, a network

must learn to activate its output unit when more than half of its input units have been activated. Figure

4a shows that a small (2 input unit) version of the majority problem can be solved by an integration

device with no hidden units. For this problem, the activation function of the output unit carves a single

line through the pattern space, which after weight manipulations within the network learns to separate

the pattern with a majority of its bits on from the other patterns. A value unit network given this same

problem would also be able to partition the pattern space correctly by carving two parallel lines that
differentiate this one pattern from the others (Figure 4b).

However, when the dimensionality of the pattern space is increased, a difference between the

two architectures emerges. As Figure 4c shows, an integration device network with no hidden units can

larger pattern space, because of the problem’s linear separability. In contrast, this is nof true of the value
unit network. Because the "ON" region of its receptive field has limited width (see Figure 3), it is too
narrow to capture all of the "majority-on" patterns in the larger pattern space. To compensate, another
unit (providing an adjacent "ON" region) is required to correctly solve the problem (Figure 4d).
However, the simple division of the pattern space performed by the logistic activation function
can encounter problems when complex solutions are required. For instance, the parity classification
requires a more complicated partitioning. Figure 5a shows that a hyperplane through the pattern space
is unable to correctly partition the patterns for the parity classification as an area to one side of the line

encompasses patterns of both classes (inclusion and exclusion in odd parity). In order to make this

dimension of the pattern space, increases the number of hidden logistic units must also undergo an
analogous increase. However, smaller increases in the complexity of network structure may occur when

other activation functions are used.

10

Figure 5b shows how an output unit using a Gaussian activation function carves a hyperbar

through the 2-bit parity pattern space. In this case, the bar is able to encompass the even parity patterns
between the two parallel lines of the bar which represents class inclusion. Due to the Gaussian's ability

to carve two lines in the pattern space simultaneously, fewer units are required to create the same

(ie. fewer hidden units and connections), as well as create a more interpretable network structure,
Figure 5c and 5d show each respective network’s ability to carve a 3-dimensional parity
problem. Figure Sc shows how an integrarion device network is able to correctly partition the parity

pattern space given 3 planes to position. It is interesting to note that the logistic units try to position their

partition. Figure 5d shows the correct partitioning of the parity pattern space carved by value units. In
this case, the value unit network has 2 hyperbars to position, which it manipulates to capture the odd
parity instances within the hyperbars. So, as the parity problem is scaled up to higher dimensions the
simplest network structure to solve the parity classification is drastically different for each network type:
integration devices require more hidden units in order to create hyperband like partitions, while value
units already possess a hyperbar structure that allows them to easily encompass the odd parity patterns,

Based on this information, one would have to assume that the logistic function is better able to
make a linear discrimination such as the majority classification. This does not mean that the value unit
architecture is unable to make this classification, but that its performance will be poorer than that of the
logistic if'an analogous network structure is used. A parallel difference in performance may not exist for
networks tested on different pattern classifications. For instance, incorporation of value units into an
architecture learning the parity classification would allow fewer units to perform the same partitioning
of the pattern space as a larger network of logistic units. This change in performance based upon the
networks structure (ie. number of units) has been explored theoretically, but no empirical testing has been

done to verify this theory. The simulations below attempt to provide this empirical evidence.

It
Experiment |

The purpose of this set of simulations was to compare the learning performance of two network
architectures, integration devices and value units, on two types of classifications: the linearly separable
majority problem and the linearly non-separable parity problem. The argument illustrated in Figure 2
suggests that linearly separable problems, particularly those set in a high-dimensional pattern space, will
be more complicated (i.e., require more hidden units) for a network of value units than for a network of
integration devices. Our dependent measure was the number of training epochs required by a network
to correctly classify all patterns for a particular problem. These simulations were designed to test two
than networks of value units, and should utilize a simpler network structure; (2) Networks of value units
should learn the parity problem much faster than networks of integration devices, and should utilize a
simpler network structure.

Method

Problem Types

Networks were trained on two different problems: majority and parity. Each to-be-classified
pattern was represented as a binary pattern of input unit activity, where 1 represented activation of an
unit, and 0 represented unit inactivity. Problem size was manipulated by using different numbers of input
units in a network. Eight different sizes of the majority problem were studied, consisting of 2, 3, 4, 5,
6, 7, 8, or 9 input units (bits). As a great deal of difficulty was encountered in training integration
devices to convergence on the parity problem, only six different sizes of it were studied for both
architectures (2, 3, 4, 5, 6, or 7 input units). For a specific problem of a particular size, a network was
trained on all possible patterns where half of the possible patterns belong to one class, and the other half
did not.
Network Architectures

Networks of integration devices and networks of value units were both trained on the problems

described above. All of the networks had a single output uni, tmd their number of input units defined

12
by problem size, and had massively parallel sets of connections between adjacent layers of processing
units. The number of hidden units used for each network was determined by a combination of pilot
studies and theoretical analyses. Our goal was to equate the different architectures to one another with
respect to computational power by using the simplest network, in principle, possible to solve the problem.

Considering the two distinctly different architectures, one must also address the numerous free
parameter within the architectures that may be varied to allow a network to learn. In these simulations
the parameters were not equated for each architecture type, rather these parameters were systematically
varied to allow the specific network to learn the classifications. It was felt that this approach would allow
a more holistic evaluation of network properties, where the emphasis was placed on equating the two
architectures with respect to their computational power. In essence, each network was given only enough
computational power to solve the problem by restricting the number of hidden units used in the network
architecture.

For all sizes of the majority problem, no hidden units were used for the integration device
networks. For the value unit networks, the 2-bit majority problem was solved with no hidden units, the
3-bit through 7-bit versions of this problem were solved with one hidden unit, and the 8- and 9-bit

versions of this problem were solved with two hidden units. For the parity problem, networks of

problem (e.g., Rumelhart, Hinton & Williams, 1986a, 1986b). For the value unit networks, no hidden
units were used for the 2-bit parity problem (see also Dawson & Schopflocher, 1992). For the remainder
of the problems, N/2 hidden units were used when N was even, and (N + 1)/2 hidden units were used
when N was odd.
Training Procedures

In order to compare the average performance of the two architectures on the different problems,

each network was trained on every combination of problem type and problem size 25 different times;

13
were trained with the generalized delta rule (Rumelhart, Hinton & Williams, 1986a, 1986b). The initial
connection weights were randomly set in the range from -0.3 to 0.3. Biases were initialized to zero.
Connection weights and biases were updated after the presentation of cach pattern; order of pattern
presentation was randomized every epoch. The network was trained until a "hit" was recorded for every
output unit for every pattern in the training set. We operationalized a hit as being an activation of 0.9
or greater when the desired output was 1.0, and as being an activation of 0.1 or less when the desired
output was 0.

For all sizes of the majority problem, the networks of integration devices were trained with a
learning rate of 0.5 and a momentum term of 0.9. These parameters were also used for the 2- and 3-bit
parity problems. For all other sizes of the parity problem, the learning rate was reduced to 0.1, as this
tended to give the best learning performance of these networks to the problem.

As is described in the results section, the performance of the integration device networks on the
parity problem was very poor, particularly as problem size increased. As a result, we decided to end
training if convergence had not been achieved after 20,000 epochs. If a network failed to converge after
this much training, we recorded its total sum of squared error to the training set for later comparison with
value unit networks.

The networks composed of value units were trained with the Dawson and Schopflocher (1992)
extension of the generalized delta rule. Network weights were randomly set in the range of -0.3 t0 0.3,
while biases were initialized to 0.0. Once again, connection weights and biases were updated after every
pattern presentation; order of pattern presentation was randomized every epoch. The same hit criterion
and criterion for a failure to converge was used as described above for integration device netwgrks.‘

For all sizes of the majority problem, the value unit networks were trained with a learning rate
of 0.1 and with no momentum. These parameters were also used for the 2- and 3-bit parity problems.
However, with larger versions of the parity problem, this large a leamning rate led to dramatic oscillations
in the error term being minimized by the learning rule. As a result, as problem size increased we used

a smaller learning rate: 0.01 for 4-, 5- and 6-bit parity, and 6.001 for 7-bit parity. In addition to

14
recording the number of epochs to convergence for the parity problem, we also recorded total sum of
squared error to enable comparisons between value unit networks and integration device networks that
had failed to converge.

Results & Discussion
Majority Problem

Figure 6 shows that, as predicted, the integration device architecture learned the majority
problem significantly faster than did the value unit architecture. For each problem size the integration
device architecture’s median epochs to convergence was at least two standard deviations lower than the
same measure for value unit networks, as indicated by nonoverlapping standard error bars.

The two functions plotted in Figure 6 also illustrate qualitatively different effects of problem size
(i.e., the number of input units) on network type. For networks of integration devices, the median
number of epochs to convergence monotonically decreased as the number of input units increased. At
first glance, this result seems counterintuitive. However, recall that to solve each of these problems, an
integration device network is only required to correctly position a single hyperplane in the pattern space.
For the majority problem, only a relatively small amount of information (i.e., a relatively small number
of patterns) is required for this hyperplane to be correctly placed (e.g., Ahmad & Tesauro, 1988). As
problem size increases, the amount of information provided to the network per epoch (i.e., the number
of patterns) increases exponentially. Thus, it is not surprising that with very large numbers of patterns,
fewer epochs are required to provide the network the information required to solve the problem.

The function for networks of value units in Figure 6 is, in contrast to the function discussed
above, decidedly nonmonotonic. This nonmonotonicity reflects the fact that this particular curve displays
the speed to learn of three different network sizes -- one with no hidden units (for the 2-bit majority
problem), one with one hidden unit (for the 3- through 7-bit problems), and one with two hidden units
(for the 8- and 9-bit problems). For any one of these network types, it appears that smaller versions of
the problem can be solved relatively quickly, presumably because the network has available more than

enough computational power. As problem size increases, and network architecture is held constant,

15
convergence times increase because the problem places more demands on the architecture. This trend
continues until problem size reaches a point that the architecture cannot discover a solution without using

an additional hidden unit. Once this hidden unit is added, a dramatic decrease in median learning speed

learning speeds for the 7- and 8-bit problems,
Parity Problem

While the results indicated a significant advantage for integration device networks over value
unit networks when the majority problem was leamed, in general, the reverse was true for the parity
this problem than was the case for the majority problem, because of the difficulty in obtaining solutions
to the parity problem when the generic architecture was used.’

This is illustrated in Figure 7, which indicates the frequency of "failures to converge" obiained
over the 25 runs of each architecture on each size of the problem. On the basis of pilot simulations, we

operationally defined a "failure to converge" as being a network that did not record a "hit" for each

size increased to S5-bits or higher, failures to converge were the norm: 24 of the networks failed to
converge for the 5-bit problem, and all of the networks failed to converge for the 6- and 7-bit problems.
In contrast, the value unit architecture was able to converge several times for all sizes of the parity
problem.

Figure 8 presents the median epochs to convergence for the two architectures for simulations
in which correct solutions were achieved. For these runs, the value unit architecture was significantly
faster than the integration device architecture, as indicated by the nonoverlapping standard error bars.
The functions plotted in Figure 8 also suggest that increasing problem size produces an exponential

increase in convergence times for both architectures. However, the rate of growth of the value unit

1 Difficulty in training generic architectures on the parity problem have been reported by other rescarchers (e.g. Tesauro &

Janssens, 1988).

function appears to be substantially less than that of the integration device function.

One problem with comparing speed to converge on the parity problem, and with speculating
about data trends as problem sizes increase, is the fact that convergence was extremely rare for the
generic networks when problem size increased. A fairer approach to comparing network performance
under these circumstances is to examine the total error of the network to the pattern set. Figure 9a
illustrates the sum (over the entire pattern set) of squared error for the output unit for both types of
network for all 25 runs at each size of problem. This figure indicates that for the smaller versions of
the problem, the error for both network tjfpes was about the same, which is not surprising as both
networks were able to solve the smaller versions of the parity problem. However, as problem size
increased to 6 or more bits, the amount of error produced by the integration device networks was
significantly larger than the amount of error produced by the value unit networks. Figure 9b presents
the same error data as Figure 9a, but does so only for the simulations that failed to converge to a
solution. For this select set of simulations, the two networks generate the same amount of error for all
problem sizes except the largest. For the 7-bit problem, when the value unit networks failed to converge,
their total error to the stimulus set was substantially lower than that generated by the generic networks.

However, one drawback of Experiment 1 was that networks were trained by presenting every
pattern required to define the class. This kind of training presents three different problems. First, to the
extent that PDP networks are intended to be psychologically relevant (cf. Dawson & Shamanski, 1992),
such training is not psychologically plausible -- humans learn categories without being presented every
possible instance and noninstance. Second, such training does not examine one of the presumed strengths
of artificial neural networks, their ability to generalize what they have learned from a small sample of
instances to novel stimuli (e.g, Zurada, 1992, p. 54). Third, as is detailed below, one can plausibly argue
that additional architecture by problem-type interactions should be revealed when the ability of a network
to generalize to new patterns is measured.

Consider the majority class. In principle, one would expect networks of integration devices to

learn this class when only presented a very small number of instances, even if the network has no hidden

17
units. This is because all the network has to do to learn the classification is position a single hyperplane
through the pattern space. As previously mentioned, this should only require a small number of patterns
adjacent to the border in the pattern space between members and nonmembers of the class. Indeed,
Ahmad and Tesauro (1988) found that network of integration devices learned the entire majority clnss
very quickly when only presented a small number of "border patterns”,

In contrast, networks of value units should require a much larger number of instances to learn
the majority problem. This is because value units are limited in their ability to utilize information about
more than one hyperplane) requires the network to receive information about nonborder patterns to
correctly place the receptive fields of hidden units. In short, because the value unit must position a
number of "nonborder" receptive fields to learn the majority problem, it must receive information from
a large number of points away from the class boundary.

The ability of a PDP network to generalize also depends upon the regularity of the pattern space
that is being sampled. In particular, one would expect excellent generalization when the pattern space
is considered "smooth" in the sen: = of Marr (1982): namely, neighbouring patterns should belong to the
same class. As the majority class only violates this condition at the border between majority and
nonmajority members, it is extremely smooth. In contrast, complex classifications like parity ar¢ not
smooth, because neighbouring patterns usually belong to different classes. For this reason networks
generally have extreme difficulty learning such classes, and ! = poor generalization. For example,
Moody and Darken (1989) note that radial basis function networks are poor at learning the parity class

due to its pattern space being so irregular. From this, it would be expected that both networks of

A second set of simulations was conducted to investigate this possibility. Once again, the
performance of the two different types of networks on the majority problem and on the parity problem
was compared. However, in this case the networks were only trained on 75% of the patterns, The

dependent measure of interest was the total sum of squared error of the trained networks on the 25% of

18
the patterns that had not been presented during training. This experiment was designed to test two
hypotheses: (1) Networks of integration devices should generalize better than network of value units for

linearly nonseparable, and extremely irregular, parity problem.

19
Experiment 11
Method

Problem Types

The problem types and problem sizes that were studied were the same as in Experiment 1. The
only difference was that prior to training, 25% of the problems were randomly deleted from the training
set. At the end of training, these deleted patterns were presented to the network. This random deletion
was performed every time a network was trained on the same problem (to allow later comparisons of
average performance). For example, a 7 input unit classification creates 128 different stimuli for
presentation to the network. If 75% of the patterns were used as training patterns (96 stimuli), then the
remaining 25% of the pattern set (32 stimuli) were used as test patterns to assess the network's ability
to generalize to novel instances. In presenting the withheld stimuli after training, a measurement of
whether the network had learned the relation desired, or whether the network had learned some subset
of the relationship, was assessed. Our dependent measure was the total sum of squared error generated
by the network to these novel patterns.
Network Architectures and Training Procedure

The network sizes and training procedures described in Experiment | were also employed in this
second experiment. The only exception was the fact that all networks had to be trained to convergence
on the 75% of the pattern set used during learning before generalization was tested. Thus, if a network
did not converge to a solution on the training set after 20,000 epochs it was discarded from the
experiment, and a new network was trained in its place. Ussunately, we were still unable to collect
generalization data for integration devices on the 7-bit parity problems because we could not train a
network to convergence. Once the network had learned to correctly classify the training set, the network

was then presented the group of test patterns. Each of these patterns was randomly presented to the

the desired output were compared to determine the network’s ability to generalize to these novel test

patterns.

20
Results and Discussion

In examining the ability of the two types of networks to generalize, two different issues must
be addressed. The first is the relative ability of the networks: for a particular problem, does one
architecture offer significantly better generalization than the other? The second is the absolute ability
of the networks: how well do either of the networks generalize in comparison to what would be expected
by chance?

To deal with this second issue, let us define an ignorant network as some network that has no
knowledge whatsoever about a novel set of patterns. In other words, by definition an ignorant network
has zero ability to generalize whatever knowledge is encoded in its connection weights to these new
patterns. For a pattern set to which binary outputs are to be generated, the expected output (from a
statistical perspective) of an ignorant network to one of the novel patterns must be 0.5, because this
network can at best be viewed as generating a random output between 1 and O for this pattern. From
this it follows that the expected value of the squared error for an ignorant network to a single pattern
must be 0.25. For any set of N novel patterns, the expected value for the ignorant network’s total sum
of squared error is thetefore 0.25N,

Figure 10a illustrates the results of Experiment Il for the majority problem, giving the actual sum
of squared error for the two different types of networks that were trained as well as the expected sum
of squared error for an ignorant network. This figure clearly shows that both types of networks were
better generalizers than an ignorant network. This figure also clearly shows that when the problem size
was greater than 3-bits, the networks of integration devices were significantly better generalizers than
networks of value units.

Figure 10b illustrates the results of Experiment II for the parity problem, and presents a
markedly different pattern than that found in Figure 10a. First, for all sizes of this problem, the value
unit architecture provided significantly better generalization than did the network of integration devices.
Second, the network of v#lue units was a poorer generalizer than the ignorant network for the 2-bit parity

problem, but then provided better generalization than the ignorant network for all other sizes of the

21
problem. In contrast, the networks of integration devices were poorer than the ignorant network for all

sizes of the problem.

intriguing. A plausible account of this result is that value units only activate themselves for very narrow
ranges of net input, and in all other cases are inactive, Given this it is conceivable that the network is
able to generalize well to patterns requiring outputs of 0.0 simply due to their functional properties: for
example, probabilistically the chance a value unit will generate an ¢ put of 0.0 is much higher than
generating 1.0, therefore the units should be very good at generalizing to patterns that require an output
of 0.0.

In the case of integration devices, one might question how a trained network could give a
performance level less than that of chance. In this case, one must evaluate what responses a network may
make to allow such a result. For example, in the ignorant network case an output of 0.5 is assumed for
both expected outputs of 0.0 and 1.0, and therefore allows a squared error of .25 for each pattern
presented as described above. In contrast, a trained network of integration devices is able to produce any
value along the continuum between 0.0 and 1.0 for an output. If the network is being trained to produce
a 1.0 for a specific pattern, and the network instead produces an output of .25 giving a squared error for
the pattern greater than that of an ignorant network. If such a discrepancy happens for a number of
patterns presented to the network, then the network is able to generate a squared error in excess of that
created by an ignorant network. The problem of having the observed output pulled towards the opposite
expected output is a major contributor to local minima experienced in integration device networks
learning the parity problem.,

Once again an iteration of problem type and architecture type is revealed, Consider that the
integration device networks are able to generalize better than value unit networks, in general, when
trained on the linearly separable majority problem. The reverse of this relationship is found when the
networks are trained upon the linearly nonseparable parity problem. This adds additional support, in the

form of a second dependent measure for the networks, to the concept that each network type is best

suited to one particular type of problem.

22

23
General Discussion

A comparison of the generalized delta rule of Rumelhart, Hinton, and Williams (1986a, 1986b)

and the modified generalized delta rule for Gaussian units created by Dawson and Schopflocher (1992)

linearly separable problem, but was well suited to solving the linearly nonseparable problem. In addition,
Experiment II showed that networks of integration devices had better generalization than networks of
value units for linearly separable problems, but had poorer generalization for linearly nonseparable
problems. So, given two different dependent measures of network pet;fannance each architecture has
shown itself to be best suited for only one distinct problem type.

What does this evidence tell us about connectionist networks? Does this mean that we should
adopt one specific unit type for a network given a particular problem type? What application do these
results have for connectionist models in general? What does this research have to offer to cognitive
science and psychology as a whole? The sections below attempt to address these questions and provide
the bridge that is required between the evidence given above and cognitive science theory.
Engineering Perspective

First, let us consider the results and their implications for PDP modelling in general. For
instance, what does this evidence mean to someone constructing a generic connectionist network, whether
they be an engineer, computer scientist, or perhaps a cognitive scientist? It has been shown that each
activation function is particularly suited to a specific problem type. Given this evidence, a re-evaluation
of a priori network design is required. Designers must now attempt to understand the nature of the
problem to be learned, in order to make an educated decision about which particular architecture to use:
i.e. given such and such a problem, you would use this type of network unit. It must be noted that even
though a specific architecture performs well on many problems, it may not perform well for all types

of problems. In essence, PDP modelling must become more open to utilizing activation functions other

24
than the logistic function (for example, value units, Dawson & Schopflocher, 1992; radial basis functions,
Moody & Darken, 1989). Such a perspective raises the possibility of utilizing many different unit types
within a network to best solve a particular range of problems (i.e. hybrid systems; Dawson, Schopflocher,
Kidd, & Shamanski, 1992). Future research must be conducted to ascertain which activation functions
are problem specific and good at only one certain type of problem, which architectures offer more
flexibility by performing consistently well on differing problems, and how these different functions may
work in tandem to create multi-functional networks.

Psychological Perspective

Models: PDP models have been developed for a diverse range of phenomena, as a survey of
almost any journal related to cognitive science will show. For example, in recent years Psychological
Review has published connectionist models concerned with aspects of reading (Hinton & Shallice, 1991;
Seidenberg & McClelland, 1989), classical learning theory (Kehoe, 1988), automatic processing (Cohen,
Dunbar, & MecClelland, 1991), apparent motion (Dawson, 1991), and dreaming (Antrobus, 1991), In
addition, many basic connectionist ideas are being directly implemented in hardware (e.g., Jabri &
Flower, 1991) under the assumption that increases in computer power and speed require radical new
parallel architectures (e.g., Hillis, 1985; Miiller & Reinhardt, 1990, p. 17). "The neural network
revolution has happened. We are living in the aftermath" (Hanson & Olson, 1991, p. 332). Such
advances have resulted in a growing number of papers by anti-connectionist researchers devoted to the
use of non-connectionist cognitive models (Besner, Twilley, McCann, and Seergobin, 1990; Fodor &
Pylyshyn, 1988; Broadbent, 1985).

McCloskey (1991) has provided an important recent criticism of the value of connectionist

simulations of theories. The reason for this claim is that, in general, connectionists are unable to interpret
network structure, and therefore are unable to explain how a network arrives at its solution; no
interpretation leads to no understanding. A second point is that PDP models fail to offer concrete and

testable theories about the phenomena they describe. McCloskey argues that connectionist models and

25

simulations may be a stepping stone to the creation of theories, but in themselves fail to create a
"workable theory",

Seidenberg (1993) has offered an alternative view of connectionism in a response to McCloskey

(1991). Seidenberg considers connectionism to be separable into two distinct forms: (1) descriptive

and to show how an outcome may be achieved by a network. In contrast, an explanatory connectionist
model can attempt to account for a particular outcome, but in addition, it may also generate other novel
predictions about the system’s functioning. Furthermore, in explanatory connectionism the model itself
(and its building blocks) become legitimate objects of study in their own right.

Given this dichotomy, one would consider the experiments and results above to be a form of
explanatory connectionism. Specifically, these experiments were designed to investigate fundamental
differences between two connectionist architectures. In turn, the results obtained will allow us to generate
new predictions about these networks for further research. In short, the goal of explanatory connectionism
is to provide a basis for descriptive connectionism by providing a basic understanding of the abilities of
each architecture.

In addition, such abilities can help a descriptive connectionist to make design decisions about
their model. For example, consider how a descriptive connectionist would use this information when
creating a psychological model of categorization. Experimental results show that humans do not typically
find linearly separable classes easy to learn, and in some cases find them more difficult to learn than
linearly nonseparable classes (e.g.,, Medin & Schaffer, 1978; Medin & Schwanenflugel, 1981;
Wattenmacher, Dewey, Murphy, & Medin, 1986). This indicates that the value unit architecture may be
more appropriate than the integration device architecture for a PDP model. If the explanatory

connectionist research on architecture type had not been done, then a descriptive researcher would not

(%]

6
be able to make such a decision. The explanatory research provides the building blocks for the
descriptive model,

models use to be biologically plausible. In general, artificial neural networks (ANNs) are considered to
be functional representations of biological neural network. Only properties that are considered relevant
to the model are incorporated. For example, neurons within the nervous system are known to be
connected to one another by weighted synapses. ANNs emulate this constraint by joining network units
together through the use of weighted connections. An additional example is the property of ANN
processing units being homogenous.: i.e. each processing unit in the system uses the same activation
function. The reason for this assumption is the predominance this view has gained in the neurosciences,
and neural network modeling, over the last 20 years (Getting, 1989). According to this view, a network
can be completely understood by determining the anatomy of its connections.

However, Getting (1989) reviews a considerable amount of evidence to suggest that this view
is false, and that biological network components are extremely heterogeneous. "No longer can neural
networks be viewed as the interconnection of many like elements by some simple excitatory or inhibitory
synapses.” (Getting, 1989, p.187). Why might biological networks be heterogeneous? Possibly this is
because such networks are faced with a wide ;fariety of information processing tasks. The results from
Experiment I and Experiment II show that different architectures are better suited to solve different
problems. Perhaps the heterogeneity of biological networks provides a sufficient range of architectures
to deal with a diverse range of situations.

It should be stressed that the assumptions incorporated into ANNs represent, at best, the limited
knowledge of how the actual neural system are believed to operate. In essence, the long term promise

made by explanatory connectionism is that these basic artificial neural network principles will eventually

FIGURES

28

Output Layer

Hidden Layer

Input Layer

Figure 1 : A nnltilayer PDP network construct

ed from massively parallel connections between three

layers of processing units.

29

Wt o

; :

Figure 2 : Different network activation functions - (a) the discrete linear threshold function, (b) the
continuous logistic function which approximates the linear threshold function, and (c) the

continuous Gaussian function,

30

b

Figure 3 : (a) The receptive field carved by a processing unit if it is an integration device. Any input
pattern that falls in the dark shadow will turn the processing unit on. (c) The receptive field

carved by a processing unit if it is a value unit,

K}

1 @ ®

\

Figure 4 : A comparison of how two architectures might solve different versions of the majority
problem. (a) A single integration device isolates the input pattern (1,1) from the other patierns
in a two-dimensional version of the problem. (b) A single value unit can also isolate this
pattern, (c) For a three-dimensional version of the majority problem, a single integration device
can still carve a single plane that separates "ON" from "OFF" pattern.. (d) For the larger
dimensional majority problem, the limited width of the value unit’s receptive field requires that
an additional hidden unit be added to capture all of the "ON" patterns. One unit tumns "ON" to
the pattemns that fall between the two planes, while the other unit turns "ON" to the remaining

majority pattern that does not fall between the two original planes.

32

Figure 5 . A comparison of how two architectures might solve different versions of the parity problem.
(a) Two integration device isolate the input pattems (0,1), and (1,0) from the other patterns in

a two-dimensional version of the problem. (b) A single value unit can also isolate this pattern.

(c) For a three-dimensional version of the parity problem, three integration devices are required
to carve three different planes to separates "ON" from "OFF" pattems. (d) For the larger
dimensional parity problem, the value unit's more complex receptive field allows the network

to require only one additional hidden unit to capture all of the "ON" patterns.

-l
&
Q
-]

ki
Q
Q
=1
1

Median Epochs to Converge

i
LN

Number of Input Units

KX

< = - [Integration Devices
— Value Units

Figure 6 : Median iterations to convergence on the majority problem (with standard errors of the mean)

for both architectures.

34

25[-

10

Number of Fallures to Converge

g__l integration Devices
| Value Units
2 3 4 5 6 7
Number of Input Units

Figure 7 : The frequency of failures to converge, over 25 independent runs, for both architectures on

different sizes of the parity problem.

20000

15000 -

10000 -

Medlan Epochs to Converge

15

- = - - integration Devices
~——— Value Units

Number of Input Units

Figure 8 : Median iterations to convergence on the parity problem for both architectures, including

simulations which did solve the problem within 20,000 epochs.

36

100.00 5

10.00 .

ﬂiig =]

- - = - Integration Devicas
Valus Units

Toteal Sum of Squared Hetwork Error
=~
(=1
[=1
I

0.01 +—1— "!7 T T 1 1

Number of input Units

100.0 -

10.0 4

Total Sum of Squared Network Error

= - = = Integration Devices
— ——— Valus Units

Number of Input Units

Figure 9 : (a) Total sum of squared error for both architectures on the parity problem using a
logarithmic scale. Each data point is a median based on 25 independent runs. (b) Median total
sum of squared error for both architectures on the parity problem, including only those runs that

failed to converge, using a logarithmic scale.

§ 100.00 -

& .

o

; a

e 10.00 i

o

8

'ﬁ 1.00 -

°

g

g -

(7]

s 0.10 -

E _ o

'3 weeseen Expocted Value
= - = - - Integration Davicea
.‘_5 0.01 ' v - r g —— Value Units

1 2 3 4 s 6 7 a8)

-

e

o
]

Total Sum of Squared Error on Test Patterns

1-0 -
[— E!Fg’élji v:lﬂi
- - = - Integeation Devices
0.1 ' , — Value Units
1 2 8 4 6 6 7

Number of Input Unita

Figure 10 : (a) Median total sum of squared error for networks on the 25% of the patterns not
presented during training on the majority problem using a logarithmic scale (b) Median total sum
of squared error for networks on the 25% of the patterns not presented during training on the

parity problem using a logarithmic scale.

38
Bibliography
Ahmad, 8., & Tesauro, G. (1988). Scaling and generalization in neural networks: A case study. In
G.E. Hinton, T.J. Sejnowski, & D.S. Touretzky (Eds.) Proceedings 88 Connectionist Models
Summer School. San Mateo, CA: Morgan Kaufmann,
Anderson, J.A., & Rosenfeld, E. (1988). Neurocomputing: Foundations of research. Cambridge, MA;
MIT Press.
Antrobus, J. (1991). Dreaming: Cognitive processes during cortical activation and high afferent
thresholds. Psychological Review, 98, 96-121.

Ballard, D.H. (1986). Cortical connections and parallel processing: Structure and function. Behavioural

Barnard, E., & Casasent, D. (1989). A comparison between criterion functions for linear classifiers,
with an application to neural nets. /EEE Transactions on Systems, Man, and Cybernetics, 19,
834-846.

Besner, D., Twilley, L., McCann, R.J,, & Seergobin, K. (1990). On the association between
connectionism and data: Are a few words necessary? Psychological Review, 97, 432-446,

Broadbent, D. (1985). A question of levels: Comment on McClelland and Rumelhart. .Journal of
Experimental Psychology: General, 114, 189-2.

Cohen, J.D., Dunbar, K., & McClelland, J.L. (1991). On the control of automatic processes: A
parallel distributed processing account of the Stroop effect. Psychological Review, 97, 332-361.

Dawson, M.R.W. (1991). The how and why of what went where in apparent motion: Modeling
solutions to the motion correspondence problem. Psychological Review, 98, 569-603,

Dawson, M.R.W., & Schopflocher, D.P. (1992). Modifying the generalized delta rule to train networks
of nonmonotonic processors for pattern classification. Commection Science, 4, -31.

Dawson, M.R.W., Schopflocher, D.P., Kidd, J., & Shamanski, K.S. (1992). Training networks of value
units. In J. Glasgow, & R. Hadley (Eds.) Proceedings of the Ninth Canadian Artificial

Intelligence Conference, Palo Alto, CA: Morgan Kaufman Publishers Inc.

19
Dawson, M.R.W,, & Shamanski, K.S. (1992). Connectionism, confusion, and cognitive science. Journal

of Intelligent Systems, in press.

In L. Goldfarb (Ed.) Proceedings of the Fifth University of New Brunswick Artificial Intelligence
Symposium (pp245-305). Fredericton, NB: UNB Press.

Fodor, J.A., & Pylyshyn, Z.W. (1988). Connectionism and cognitive architecture: A critical analysis.
Cognition, 28, 3-71.

Getting, P.A. (1989). Emerging principles governing the operation of neural networks. Annual review
of neuroscience, 12, 185-204,

Hanson, S.J., & Olson, C.R. (1991). Neural networks and natural intelligence: Notes from Mudville.
Connection Science, 3, 332-335.

Hartman, E., & Keeler, J.D. (1991). Predicting the future: Advantages of semilocal units. Newral
Computation, 3, 566-578,

Hinton, G.E., & Shallice, T. (1991). Lesioning an attractor network: Investigations of acquired
dyslexia. Psychological Review, 98, 74-95.

Hillis, W.D. (1985). The connection machine. Cambridge, MA: MIT Press,

Jabri, M., & Flower, B. (1991). Weight perturbation: An optimal architecture and learning technique
for analog VLSI feedforward and recurrent multilayer networks. Newral Computation, 3, 546-
565.

Kehoe, EJ. (1988). A layered network model of associative learning: Learning to learn and
configuration. Psychological Review, 93, 411-433,

Levitan, I.B., & Kaczmarek, L.K. (1991). The neuron: Cell and molecular biology. New York, NY:
Oxford University Press.

Lippmann, R.P. (1987). An introduction to computing with neural nets. /JEEE ASSP Mugazine, April,

4.22,

40

McCloskey, M. (1991). Networks and theories: The place of connectionism in cognitive science.
Psychological Science, 2, 387-395,

Marr, D. (1982). Vision. San Francisco, CA: W.H. Freeman.

Medin, D.L., & Schafer, M.M. (1978). Context theory of classification learning. Psychological Review,
85, 207-238.

Medin, D.L., & Schwanenfluegal, P.J. (1981). Linear separability in classification learning. Journal of
Experimental Psychology: Human Learning and Memory, 7, 355-368.

Minsky, M., & Papert, S. (1988). Perceptrons, 3rd Edition. Cambridge, MA: MIT Press.

Moody, J., & Darken, C.J. (1989). Fast learning in networks of locally-tuned processing units. Neuwral
Computation, 1, 281-294,

Miiller, B., & Reinhardt, J. (1990). Neural networks. Berlin: Springer-Verlag,

Newell, A., & Simon, H. (1981). Computer science as empirical inquiry. In J. Haugeland (Ed.) Mind
Design. Montgomerty, VT: Bradford Books.

Rumelhart, D.E., McClelland, J.L., & the PDP Group (1986). Parallel Distributed Processing, V.l.
Cambridge, MA: MIT Press.

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986a). Learning representations by
back-propogating errors. Nature, 323, 533-536.

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986b). Learning internal representations by error
backpropogation. In D. Rumelhart , J. McClelland, & the PDP Group (Eds.) Parallel Distributed
Processing V.1. Cambridge, MA: MIT Press.

Seidenberg, M.S. (1993). Connectionist models and cognitive theory. Psychological Science, 4,
228-235,

Seidenberg, M.S., & McClelland, J.L. (1989). A distributed, developmental model of word recognition
and naming. Psychological Review, 96, 523-568.

Smolensky, P. (1988). On the proper treatment of connectionism. Behavioural and Brain Sciences,

11, 1-74,

41
Tesauro, G. & Janssens, B. (1988). Scaling relationships in back-propogation leaming. Complex
Systems, 2, 39-44,
Wattenmaker, W.D., Dewey, G.I., Murphy, T.D,, & Medin, D.L. (1986). Linear separability and
concept learning; Context, relational properties, and concept naturalness. Cognitive Psychology,
18, 158-4,

Zurada, J.M. (1992). Introduction to artificial neural systems. St. Paul, MN:; West Publishing Company.

