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ABSTRACT

—

The movement and dispersion of vehicies (cars,
and buses: o= tnev travel betwee:. T S1qQna .S e ar
important Rractical consideration 1n both the design anc
analysis of fixed-time signal co-ordination timing plars.
Knowing the arrival pattern of a platoon of wvehicles
released from a previous set of traff’é signals on a road 1s
a requirement when calculating the signal offset and setting
of a subsequent set of traffic signals on the same road.
Platoon dispersion models provide some insight into this
complex phenomenon.

Among the wvarious studies 1in platoon dispersion
(Lighthill's and Witham's wave theory, Pacey's diffusion
theory and Robertson's recurrence model), the research by
Robertson represents a major advancement. This is indicated
by the incorporation of his platoon dispersion model in such
signal optimization programs as TRANSYT (TRAffic Network
StudY¥ Tool) and the GLC (Greater London Council) Combination
Method. ‘ Robertson's platoon dispersion model uses ‘a
recurrence exponential smoothing equation .to predict a -
S8ownstream arrival pattern (downstream cyclic flow profile)
from an upstream ;rrival pattern (upstream c¢yclic flow
profile). The smoothing factor is a funétion of the averége
travel time between the upstream and downstream cycli;_ flow
profiles, and two empirical parameter: alpha and beta.:

Robertson ~suggests average numerical values for these

parameters, but has qualified these values by stating that

r
W
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the parameters may vary with the site characteristics.

This "hesis concentrates on caiibrating Robertson's
Platoon .Dispersion nodel from <+he persect ve ¢f ven:cie
aelays, number of stops, apd perfofmance index for\ trafifac
platoons in™ Edmonton, Alberta. Actual real-time summer and

winter platoon data was collected with a Micro-computer
Cyclic Flow Profile Monitor.

The analysis indicated that the platoon dispersion
predicted by Robertsoh's model wusing his recommended
empirical parameters could be in error when compared with
the observed data. The impact of this error on ‘signal
performance as quantified by delay, stops and performance
index was Significant. The analysis re;;aled that improper'
empirical parameters and the Specifit form of Robertson's
model contributed to the error. Robertson's model requi&es
the flow wvalue in the previous downstream interval io
predict the value in the present interval. This information
1s not available in computing the flow during the first
iteration and is assumed to take a zero value. Since traffic
platoons between fixed-time signals are cyclic in 'Pature,
and if steady state conditions exist, thev flow for an
interval will be the same over all cycle lengt#fs. Based on
this information an initialization equation was derived. For
best results,_the research indicates that calibration of the
individual values of alpha and beta along with a moqpfied

form of Robe;tson's model 1s essential.

.
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Based on the survey results there is some evidence to

suggest <that the, individual values &f alpha and beta are

~elated tc¢ the degree of saturazior on the street. The

analysis suggests that as the degree of saturation
. }
decreases, the freedom to. maneuver increases and hence ‘the

amount of platoon dispersion increases. The research

provides average design guidelines for the alpha and beta

empirical parameters during winter ‘and summer weather
conditions. Finally, the knowledge derived from using cyclic
flow profiles is translated into several practical

applications.

-~
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1. INTRODUCTION

\.‘ Problem Statement

N

14
84}

The movement and dispersion of vehicles (cars, bus
and trucks) as they travel between traffic signals 1s an
1mportant practical consideration 1in both the design and
analysis of fixed-time signal co-ordination timing plans.
Knowling the arrival pattern of a platoon (an analysis of
vehicular flow rates with a period equal to the cycle
length, which indicates a higher rate of random flow, or
which some type of reqularity or pattern occurs, due to an
upstream signal, may be defined as a platoon) of vehicles
released from a previous set of traffic signals on a road is
a requiremeﬁt when cald¢ulating the signal offset and
settings of a subseguent set of traffic signals on the same
road. The application of this relationship 1s 1llustrated in
Figure 1.1 and described below. 'S

I1f the cumulative vehicular demand function (i.ejg

e
number of vehicles arriving'at the signal approach) and the
cumulative vehicular service function (i.e., number of
vehicles discharging at the signal stop line) are plotted
against time on the same graph, the following performance
indicators can be quantified

1. The area between the two cumulative functions represents
the total vehicular delay,

2. A wvertical 1line between the two cumulative functions
represents the vehicular queue or the number of vehicles
stopped at a given time, and

23
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FIGURE 1.1 .

REPRESENTATION OF QUEUING AT A SIGNALIZED INTERSECTION



3. A horizontal line between the two cumulative functions
represents the vehicular delay for a given vehicle.

The effect of varving the offset time between the twe
cc-ordinarzed ‘:raiflc s1gnaits at the end of tne roadwayv link
w1ll be to move ghe cumulafive service function relative to
t he cumulative demand function; thus the fundamental
relationship between delay/stops/performance 1ndex and
signal offset can be obtained.

Central to this fundamental concept is the observation
that the cumulative demand function is influenced by the
manner 1n which a platoon of vehicles moves along a roadway
link. Vehicles in the platoon will attain different speeds
due to a variety of factors: vehicle characteristics, driver
behaviour, road surface characteristics, interference from
pedestrians, roadside activities and side street traffic.
Ignoring the effect of this phenomenon would reduce the
effectiveness of signal coordination design. Plagson
dispersion models provide some insight into this complex
phenomenon.

Among the wvarious studies in platoon dispersion, the
research by Lighthill and Whitham(',6?), Pacey(?) and
Robertson('?) represent major .advancements in the
development of platoon dispersion models. The work by
Robertson is by far the most significant in terms of
practical application, as indicated by the incorporation of
his platoon dispersion model in such signal optimization

programs as TRANSYT('’) and the GLC Combination Method(??),

The effectiveness of these programs for both conventional
' J



and computerized si1gnal control systems has been

demonstrated in a number of field applications(-*,*" }. The

t

si1an.ii17ance of Robertsor’'s research is par:ially dus *¢ hic

7y

intoduction of the Cyclic Flow Profile Concept (**).

”,

Robertsoi's platoon dispersion model//ié/ based upon the
theory that the platoon of vehicles leaving an upstream
intersection 1s formed by the gueue of vehicles waiting at
the start of green, departing at the Sat’ration _tlow rate
and dispersing as the platoon travelifelong the segment.
.This concept satisfies a practical need in that 1t
represents a compromlse between using micro-scopic models
(simulation of individual vehicular behaviour) and
macro-scopic models (relationships between vehicle flow
rates and speed). N

Continued research in the area of platoon dispersion
has shown that the Robertson’'s model can  provide a
reasonable fit with observed data, but the accuréby of the
model can be enhanced significantly by calibrating to local
conditions and/or 1improving on the structure of the model.
Table 1.1 provides a comprehensive and chronological summary
of published calibrated empirical parameters in Robertson's
platoon dispérsion model. As shown in Table 1.1, there are a
significant range of empirical parameters which result in a
good prediction of the dispersion characteristics of
observed traffic platoons. Lam (2??) indicated that a lack of
ﬂcalibration may result in the prediction of minimum delay

estimates which are in error in the range of 5 - 20%. It is
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this variablility in the empirical parameters and the impact

of these empirical paramaters on such signal performance

incicators as delas STop; and Deriornance saa<r that hes
prompted this research for t he Edmonton, Alberta
environment . More specifically, this research. effort

concentrates on the dispersion of traffic along roadway
links typically in the Central Business District.

In addition, cyclic flow profiles provide the
transportation engineer with a great deal of'additonal
information relevant to signal design and analaysis. Such
profiles allow: review of average flow conditions,
identification of major/minor road idflows, the benefits of
signal co-ordination, estimates of saturation flow,
estimates of spare capacity, estimates of start and end
lags, estimates of platoon speed and amount of dispersiorn,
incident detection poséiblities, verification of signal
settings by TRANSYT, possibilities for an international
exchange standard, determination of preferential street
treatment and ranking of the importance of network links.
They also point to the need for coordination, and aid 1in
computer network condensation. The use and understanding of

this additional information is essential and a pre-reguisite

to good signal design and analysis.



1.2 Thesis Objective
The primary objective of this thesis 1s to calibrate
Robertson’'s Platoon Inisoerc. or Mceae. for data 1. BEdmon:on.,
/Alberta. Data was based on real-time ‘raffic platoons durina
summer and winter conditions. This data base was in response
to the practical problems associated with winter driving
conditions in Alberta (’’) and more generally across Canada.
To achieve the objective two tasks were undertaken. The
first task involvedithe validation of the basic structure of
the model as proposgg by Robertson and/or some modification
to 1ts basic form based on a mathematical extension. The
second task 1nvolved the calibration of the model(s) to
,Several "typical" roadway links which characterize arterials
in the Central Business District. The research objective

requires the following outputs:
1. Documentation of the difference in signal performance
characteristics such as delays, stops and performance

index between a calibrated and not calibrated platoon
dispersion model.

2. Presentation of design guidelines which will assist in
the selection of the most appropriate empirical
parameters. .

A secondary objective of this reseach is to translate
the experience obtained during the course of this reseach
into a series of practical applications as outlingd in

Section 1.1,



1.3 Scope Of The Research

In orgar:zing this research project a number of
acllivities are qgelinec wh.o: Wl..  Gllrtate  the  fourse  Gf
action 1n meetiny the research objectives. The following
considerations will assist in limiting the research to a
manageable level:
1. This study will not attempt to verify and calibrate any

platoon dispersion model other than that suggested by
Robertson. '

2. All street segments to be surveyed will be operated
under a fixed time signal control strategy.

3. The selected survey locations (total of 6 measurements
during the A.M. peak hour) will represent typical
arterial roadways within or leading to the Central
Business District (CBD) in Edmonton, Alberta, Canada.

4. Dispersion analysis will be restricted to link lengths
which arg typical of the CBD environment.

1.4 Organization Of The Thesis Document

The introduction along with the ©problem Statement,
thesis objective, scope of the research and organization of
the thesis document are given in Chapter 1. .

Chapter 2 reviews, in detail, past research efforts 1in
the area of platoon dispersion. Thoeretical aspects of
Lighthill's and Whitham's Wave Theory, Pacey's Platoon
Diffusion Theory and Robertson's Recurrence ‘Mbdel are

presented. Mathematical cong8iderations in Robertson’s

Recurrence Model are critically discussed.
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Chapter 3 discusses the data collection efforts with
respect to winter and summer platooh data and speed, travel
time datae. In addition, the survey sites and their observed
A.M. peak hour characteristics and site conditions are%
presented.

Chapter 4 ppesen?s the basic analytical tools thastwere
used 1n the analysis process. More specifically, three
computing ?rograms were employed to aid in the determination

of the "best" empirical parameters.

Chapter 5 presents a detailed summation o{jgii¥§palysi

undertaken. The results of the <calibrated process are

discussed from the perspective of delay, stops and
performance index. Design guidelines are also presented to
assist 1n the selection of the most appropriate empirical
parameters 1in Robertson's Model. 1In _addition, practical
épplications of observed traffic platoons are presented.
Chapter 6 presents the conclusions, recommendations and
further research " suggestions arising -from -this research

effort.



t

2. PLATOON DISPERSION MODELS

i

2.1 Overview Of Past Research Efforts
> §
The aifbunt of theoretical and applied research 1nto the

- [

behaviout of traffic platoons and effects of their
g »

Yoy . _ ' . - . .
‘e dispersion. on traffic control has increased sStegdily since

o« f
-

'S: 1955 .
g'_ Bhe of the earliest (1955) research works related to
s _ _ . i . .
***™slatoon dispersion was carried out by Lighthildl and

Whitham(',*). These scientists presented their kinematic

'
a

wave l¢heory 1n . two papers, the forger giving a more

matheMstical treatment and dealing specifically with flood

<&

movement in long rivers, the latter giving a more

descriptive treatment and dealing with the flow of traffic

o

on long crowded roads. In the two papers, dttention yas

=

drawﬁ to wa?es which can be exp}eééed,in'a one-dimensional
. flow system.. These waves exist 1f, to ~a sufficient
approximation, there 1is ‘a functional relaEioﬁship betweeg'
the fléw or volume, the conceﬁtfation or density and the
disténce along the roadway 1ink. On the assumption of a

éfunctional relationship, the wave theory, follows from the

equation of continuity alone. AccolF ly, the waves are
&
Al o %

s described as "kinematic", as opposed to "dynamic" waves
which depend on Newton's second law of motion and some other
assumptioms relating stress to displacement, strain, or

L Y

curvature. Kinematic waves do not disperse as other waves

do, but they suffer a change in form, due to the dependence

[



of the wave speed on the flow carried by the waves.

EL .
Accordingly, kInematic wave forms may develop discontinutlies

due 1 the cvertaking 0f slowe: waves by faster ones. Thess
were described as "shock waves" since they were formed :in
the same way as shock waves in a gas. From a plot ot both
the continuous kxnemitic waves and shack waves, the cyclic
flow profile, and thus the platoon structure at any point

-

along the roadway sectian, could be derived.

Pacey(’), 1n 1956, attempted to use Lighthill and
Whitham's kinematic wave theory to predict platoon
dispersion, and also developed his own platoon pfediction

model by treafing platoonfdispegsion as a fluid diffusion
process. The fluid diffusion theory asgumes that the only
changes 1n shape of the bunch of traffic feieased from the
signals arise from difference§$;n speed between vehicles in
the bunch; there is no interference wgth overtaking, and any
given vehicle in a platoon proceeds with a constant velocity
(normally distributed about a mean speed) irrespective of
the number or distribution of the vehicie§ on the road.

Lewis(*), in 1958, carried out a aumber “of surveys
downstream from a signal on a- semi-expressway. facility' and
found tha£ signal coordination 1is feasible for a link
distance of up to 1.0 kilometre (1,000 metres) or 0.65 miles
(3,430 feet). ;

Gerlough(*®), in 1961, suggested that an analogy exists

’ 3 . .
between traffic dynamics and wave mechanics which could be

used to describe the dissipation of traffic platoons when



released from a traffic signal.

Graham and Chenu(*), 1n 19, studied the phenomenon o
vlasoon dispersion at var.ous poInT s QownsTr=aw romoa
signal. Field studies confirmed that a: pox&?s 40>,  80o,

210, and 1610 metres (1 4, P2, 3 4 and 1&@ m:le!, the
percent of vehicles remaining in the platoon was 91, 85, 80
and 77%, respectively. This applied research confirmed the

basic weakness of co-ordination design methods based on
maximizing bandwidth.

Grace and Potts( ,*) and Herman et al(', ' °). in and
around 1964, gave a more mathematical treatment to Pacey's
diffusion theory and showed that the model can be described
by a one-dimensional pseudo-diffusion equation.

Hillier and Rothery(''), in 1867, concluded that
platoon dispersion <can be taken into account in the design
of co-ordination and that the offset setting for minimum
delay at the downstream signal up to 305 metres (1,000 feet)

1s a linear function of the distance from the upstream

signal.
Robertson('*), in 1967, introduced a recurrence
relationship to predict platoon dispersion in  his

contribution to the discussion on Area Control Of Road
Traffic. This work was carried out at the Road Research
Laboratory and 1is further reported('?, "+, ') ‘in the
description of the TRANSYT (TRAffic ﬁétwork Study
Tool)method of co-ordinating traffic signals. The model uses

a recursive smoothing equation and is iterative in nature.



Although 1t  appears that Robertson devised the method
emprrically 1t has been shown elsewhere(’'*) that Robertson's
tormuela L e samilar to thaoet o Parer excep! that Pacey's
transtormed, normal distribution of journey time 1s replaced

by a geometric distribution.

Seddon(' ", '*,>") 1n 1971,/72 attempted to validate the
three basic platoon prediction models proposed by Lighthill
and Whitham, Pacey, and Robertson, respectively. He found

that the Lighthill's and Whitham's theory could provide
reasonable platoon -~ prediction 1t an accurate
flow-concentration relationship 1s availlable. Pacey's model
preformed well for medium traffic but was not as accurate as
Lighthill's and Whitham's in the <case of heavy traffic
conditions. For best results, it was concluded that all
models should be calibrated for field conditions.

Hartley and Powner{(*°), and Tracz(?'), 1n 1971,
suggested that a rectangular distribution of journey time
gives a similar predicted arrival pattern to the transformed
normal or geometric distribution (1.e. Pacey or Robertson).
This 1s 1mportant because it would make the prediction of
platoon dispersion even faster than by use of the Pacey or
Robertson model.

Lam(*?*), in 1977, presented the results of experimental
studies on the accuracy and sensitivity of Robertson’'s
model, and also 1ts calibration against actual field data 1in
Toronto. The results 1indicated that platoon data predicted

by Robertson's model provided a reasonable fit with the



observed data, but the accuracy could be improved by the
introduction of a speclal eguation to initialize the vlatoon
prediction  process.  Withou:s T he 11T ialiTatton equat 100,
there could be sign:ilcant errors 1n tne predicated platoon
leading edges, thus leadinag to sub-optimal co-ordination
designs.

Among the variéus studies 1n platoon dispersion, the
research by Lighthill and Whithgm(',6*), Pacey () and
Robertson('‘) represent major advances in the development of
platgon dispersion models. The work by Robertson 1s by far
t he %OSt significant 1in terms of practical application. This
1s indicated by the incorporation of his platoon dispersion
model 1In such signal optimization programs as TRANSYT ('’)
and the GLC Combination Method(*’). The effectiveness of
these programs for both conventional and computerized signal
control systems has been demonstrated in a number of field
applications(**,?*), an® this effectiveness is partially due
to the accuracy of Robertson's platoon model 1in -describing

traffic flow patterns in a signal network.

2.2 Theoretical Aspects Of Three Basic Platoon Dispersion

Models

2.2.1 Lighthill's and Whitham's Wave Theory

Lighthill and Whitham(',?) put forth the theory that
kinematic waves exist in a traffic platoon (or hump as they

.described it) if there exists a functional relationship



b
between the following explanatory variables:
g = uk

where flow (vehicles passinGg a gilven polint 1n
units of time)

K]
1

k = concentration (vehicles present per unit
length of road), and

u = Speéd (along the road).

The approach wunifies speed-flow relationships at low
concentrations and headway phenomena at high concentrations.
On _ the assumption of & functional relationship, the wave
theory follows from the equation of Continufty alone.
Accordingly, the waves are described as "kinematic" (pure
mot ion without reference to the masses or forces 1nvolved)
as opposed to "dynamic” (motion and the equilibrium of
systems under the action of forces) waves which depend on
Newton's second law of motion (mass times acceration eguals
force).

Several characteristics of the flow-concentration (g -

k) curve, as defined by Lighthill and Whitham, are
1llustrated graphically 1in Figure 2.1 and are summarized
below:

1. For any point on the flow-concentration curve, the

radius vector represents the traffic speed (U,).

2. The tangent to this point on the flow-concentration
curve represents the wave velocity (u,). It is given by
differential of q with respect to k (dg/dk) at that

. point. This slope is smaller than the traffic speed
(U,), provided that the traffic speed decreases with an
increase in concentration. This 1s acceptable for
crowded roads and means that disturbances are propagated
backwards to the stream of vehicles.

\ S
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Kinematic waves do not disperse as other waves do, but
they sutfer a change 1n form due to the dependence of the
wave speecd on the flow carried by the waves. Accordingii;
wave forms may develop discontinuities due to the overtaking
of slower waves by faster ones (with lower flow values).

These were described/@y Lighthill and Whitham as "shock

waves" since they were formed in the same way as that of
shock waves 1in gases. For example, on the g - k curve in
Figure 2.1, point A represents a condition where traffic is

flowing near capacity and the speed is reduced to a value
well below the free-flow speed. Point B, on the other hand,
represents a condition where traffic flows at a somewhat
higher speed because of the 1lower density. Tangents at
points A and B represents the wave velocities for these two
conditions. Now, 1f the faster flow of point.B occurs later
in time than that of point A, the waves of point B will
eventually catch wup with those of point A. This is
1llustrated in the time-distance diagram of Figure 2.1. The
intersection of these two sets of waves has a slope equal to
the chord connecting the two points on the g - k curve, and
this intersection represents the path of the shock wave.
Note that the velocity of the shock wave is often negative
with respect to the roadway and is always negative with
respect to the traffic. )

The 1law of motion of kinematic shock waves is derived
from considerations of conservation of vehicles, as was the

law of continuous waves. If the flow and concentration
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values (g,, k,) on one side of the shock waves, and the flow
and concentration {(g:, k;) on the other side of the shock
wave, bork wnich move with speed (v), then the guanti-v
crossing per unit time may be written as

g, - vk, = q: - vk

P

This gives the velocity of the shock wave as

The velocity of the shock wave, by definition, 1s the slope
of the chord joining the two points on.the q - k curve (for
a given value of x), which corresponds to the states ahead
of, and behind the shock wave when 1t reaches x.

The waves on the time—distan;e diagram as presented are
not trajectories of vehicles, but lines of constant flow and
thus lines of constant speed. The individual vehicles have a
greater velocity than the waves, because the speed of
vehicles stream is represented by the radius vector, whereas
the velocity of the waves 1s represented by the tangent.

Lighthill and Whitham applied such analysis techniques
to the progress of a traffic "hump", a hump being a parcel
of increased density, such as might occur on a freeway,
flowing at a constant level along the main stream, where
thére is a short-term influx of substantial proportions at
an on-ramp. Applying such anaﬁ*éjs, traffic waves associated
with the formation of a hump could be determined. The speed
of the front of the hump can be obtained immediately from

Figure 2.1, as  the wvelocity of the earliest wave
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represent ing the increased flow. The construction of the
path of the shock wave, as discussed earlier, is also shown
in Figure 2.7L

In summary, to obtain the kinematic wave and shock wave
speeds, a detailed knowledge of the g - k relationship for
the roadway in guestion is necessary, and this relationship

~

has to be assumed constant over a gﬁan length of road at a
diven time. This assumption would seem reasonable provided
no change in the composition of the traffic stream (1.e. the
proportion of slower moving trucks and buses) takes place
during the period considered. Clearly this composition and
the motivatien of drivers 1is likely to change during the
day, and hence different g - k relations would be needed.
HSwever, during a given peak hour, it seems reasonable to
assume that 1t would remain constant. From a plot of wave
paths of both the continuous waves and shock waves,
fléw/time relationships, and thus the platoon structure at
any point along a road can be determihed. It thus appears
that, provided the various assumptions are acceptable, the
Lighthill's and Whitham's wave theory offers a method of
prediéting the behaviour of platoons as they progress along
the road from traffic signals.

The ,following are the three major criticisms of the
Lighthill's and Whitham's kinematic wave theory:
1. The theory requires an accurate model of q - &k

relationships which is difficult to obtain, especally
for urban arterials where stop-start conditions prevail.
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!

2. The predicted platoon does not 1ncrease 1n length as
such a platoon does 1n reaiilty, due to a weakness in the
theory.

The plotting of the various wave pa“hs 1s a very time
consuming process.

Lo

As far as the Researcher knows, the Lighthill's and

Whitham's wave theory has not been wused 1n any signal

control design procedure to date.

2.2.2 Pacey's Platoon Diffusion Theory

Pacey(’) assumed that there 1s no interference with
overtaking (passing is possible at will), and that any given
vehicle proceeds with the same velocity irrespective of the
number or distribution of vehicles on the road. This is
likely to be the case where flows are light on wide roads,
but it is unlikely that free overtaking will be possible in
congested urban conditions.

Assuming the distri?ution of velocities of vehicles to
be normal, it is possible to evaluate the distribution of

journey times between the two observation points. Pacey's

platoon diffusion may be descibed as follows: Let

- -

f(u)du = the probability distribution of platoon
- speeds, assumed to be a normal distribution,
r = travel time between the two observationt’

points,

= D/u where D = distance between the two
observation points, and

g(r)dr distribution of travel times.



22

The probability that a vehicle trevel time lies between

7 and (r + dr) is the Samé as the probability that the
correspondincg speec llies betweer u anc ‘U - Qu:. Nof;ng that
u =D , 71,
du = (D T+ ) dr, and
g(r)dr = f(u)du = f[(D/7) (D/r‘) dr]

/

Now, because speeds are assumed to be normally distributed,
f(u) = 1/(0 v(2n)) expl-(u-u)*/20*],

where v 1s the ©population standard deviation of speed.

Therefore,

g(r) = D/o r* V(2%) exp(-(D/r - D/7)*/20%].

Letting s = o / D,

gl{r) = 1/7* s yv(2n) expi{-(1/7 - u/D)*}/2s*}.

Considerating now the two observation points, the
number of cars passing the first point is qg,dt 1in the
interval [ t, (t + dt) ]. Of this flow,‘théigumber of cars
passing the second observation point will be q,(t)g(r)dtdT
in the interval [ (t + 7), (t + ¢ + 4T) ]. A

The total number of cars passing point two 1in the
interval [T, (T + dT)] is g.(T)dT = J,g,(t)g(T-t)dtdT, the
integral being overall values of t for which g,(t) exceeds
éero. As the flow pattern will not be represented by a
continous curve whose equation is known but by a histogram,
it 1is hore convenlent to use a corresponding formula for the

discrete case. Thus the following expression is employed:



n
g:(3) =z qg,(ilg(3y-1),
1=

whgpe\ i = count of the first observation pcint,
1 = count of the secona observation pointg,
q.(]) = flow past point 2 during the j-th interval,
g,{1) = flow past point | duri;é the 1-th 1interval,
g(j-1) = prébability of a journey time of a
duration (3 - 1)intervals, and
n = number of 1ntervals considered (e.g. number of

increments 1in the cycle length).

Putting this formula 1nto words, the flow in the J-th
interval at the second observation point eguals the sum over
all the values of i, of the flow in the 1-th interval at the
first point multiplied by the probabilit?‘of a journey time
(3 - 1) intervals.

Pacey found that in general, the diffusion theory fits
the observed data fairly wellk but that 1t ~1s slightly
inferior to the Lightham's and Whitham's wave theory 1in
extreme traffic conditions. For this reason, Pacey's platoon
diffusion theory has ‘not been used in any signal control
design procedure.

o

2.2.3 Robertson's Recurrence Model

Robertson('?*) introduced his method of predicting
platoon behaviour, in his coptribution to the discussion at
the Institute of Civil Englineers, Joint Symposium On Area
Control -Of Road Traffic (London, England) in 1967. His work

was carried out at the Road Research Laboratory and is
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further reported('’) in the description of the TRANSY&
{TRAffic Network StudY Tool) method of coordinating traffic
sianals. The method 1s simple to apply and makes use of an
empirical recurrence relationship.

N This relationship can be illustrated by reference td
Fiéure 2.2. The wunit flow in the 1-th interval of the

\
initial cyclic flow profile(**) is multiplied by a factor F

to give a portion of the unit flow in (i1+8T) interval in the

predicted c¢vclic flow profile. 1 addition, (1+8T7-1)
interval of the predicted cyclic f§i@ profile 1is mulfiplied
by a factor (1 - F) and added to the (i+8T) interval of the

predicted <cycle flow profile. By repeating this process for
all flow intervals, the downstriam arrival patt;rn can be
derived. In summary, the factor‘F controls gthe rate at which
a platoon disperses while the effect of introducing BT is to
offset the predicted pattern in time by an equal amount,‘or
to ensure that no vehicles arrive at the downstream stopline

until BT time intervals have elapsed. Robertson's recurrence

model takes the following mathematical form
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g = Py : ¢ Frg’
(=T 7 (1) (18T )
whete
1 = 1,2,...n; where n = number of time 1ntervals
comprising the cycle length at the upstream
signal, .
g = the flow 1n the 1-th time 1nterval of the
1 initial cyctic flow profile (upstream ftlow 1n
interval 1), 1 !
qg' = the flow in the 1-th time Interval of the
1 predicted cyclic flow profile (predicted

downstreant flow in interval 1),

T = the average journey time over the distance
for which the platoon dispersion 1s being
calculated (meaured in the time 1interval
used foqr q ), .

1

8 = (beta), an empirical travel time factor
expressed as the ratio between the platoon
leader travel time and the.average travel
time of the entire platoon ™ Robertson
suggested a value of 0.8),

F = an empirical smoothing factor given by the
: following expression,

]

1 + afiT

a = (alpha), an empirical dispersion
factor accounting for the degree
of platoon dispersion between
signals (Robertson suggested an
value of 0.50),

K = a % f ' (Robertson's Standard

K value = 40)
100

1

BT

integer value.
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For noe dispersion ot traffic platoons, alpha would

assume a vaiue of cero, beta would assume a value ot

one
anc the smocthine tactor Fowoulrd eguate o ¢ vaeause Cfoone,
In the limit, as the number ot intervals approaches
intinity, the predicted cycle flow profile approaches zero,
but since the time period 1s not 1nfinity but rather a cycle
length, small errors in  the predictive process are

1ntroduced. It should also be noted that Robertson's

equation requires the flow value 1n the previous downstream

interval so predict the value i1n the present 1nterval. This
information 1s not available 1n computing the first
downstream 1nterval. Hence Robertson’'s eqguation will

consistently underestimate the downstream flow rates.

It 1s’ 1mportant to note that t he exponentially
smoothing process described above relates to the average
platoon behaviour. In reality, individual platoons will vary
randomly around the mean. (It should be pointed out that the
equation on page 141 of Reference ('‘) has been misprinted.)

Robertson('?) s?i}ed that 1t would be reasonable to
expect that. the value of F would be a function of wvarious
site factors such as road width, gradient, parking acitiviy,
opposing flow level, traffic coméosition, etc., rather than
simply the average journey time.

Although i1t appears that Robertson devised the .method
emperically, 1its undoubted success in signal control design

procedures suggests that 1t must have a sound theoretical

basis. Seddon('®’) has shown that Robertson's formula is the



same as that of Pacey, except that Pacey's transformed
normal distr:bution of  Journey g(j 1) 1s replaced by a
probability function B By . This Jatrer functionn
!'s a geometric distribution which 1s commonly used tor
represent ing the number of failures 1n a series of trials to
the first success. In <his case, 1t 1s the probability that
a vehicle passing the first point in the i-th interval will
pass the second point i1n the j-th interval. Seddon therefore
concludes that the success of Robertson's Recurrence Model

Can be attributed to the approximation of the geometric

distribution to the true distribution of journey times.



2.3 Mathematical Extension To Robertson's Recurrence Model

As cutlined 1n Section. 2.2.3, Robertson's Recurrence

Moae ] tor

piatoon  clispersion  makes  ude of

IS

simple recurrence relationship:

where

BT

q’

= F + {(1-F)g’ , {
(1+47T) g?i) (1+pt-1)

I
-

1,2,...n; where n=number of time intervals

the followinge

comprising the cycle length at the upstream

signal,

the flow 1n the,1-th time interval of the
1nitial cyclic {low profile (upstream flow
in interval 1),

the flow in the i-th time 1interval of the
predicted cyclic flow profile (predicted
downstream flow in interval i),

the average journey time over the distance
for which the platoon dispersion 1s being
calculated (measured in the time intervals
used for q ),

1

(beta), an empirical travel time factor
expressed as the ratio between the platoon
leader travel time and the average travel
time of the entire platoon (Robertson sug-
gested a value of 0.8),,

] . -
1 + afgT

(alpha), an empirical dispersion factor
accounting for the degree of platoon dis-
persion between signals (Robertson sug-
gested an value of 0.50),

a*B (Robertson's Standard K value=40), and

100

integer value.
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Robertson's equation requires the flow value in the

previous downstream interval [ g ] te predic:  the
(1+4T-1)

value 1n the presgnt intervai [ q° J. This information
(T

1s not available in computing the flow during the first

1teration and 1s assumed to take a zero value. Therefore

Equation(1) takes the following form for the first interval
only:
q’ = Fq (2)
(1+8T) (1)
and
g’ = Fqg + (1-F)g’ (3)
(1+8T) {1) (1+8T-1)
for 1=2,3,4,...,n (for all succeeding intervals).

The use of equation (2) underestimates the flow rate during

the first interval, and this effect 1s perpetuated
throughout the entire prediction process due to its
recursive nature. To provide some insight into this volume

error, an expression 1is derived('’) for determining the
discrepancy between initial and predicted cyclic flow
profiles:

q' = Fg + (1-F)qg" (1)
(1+8T) (1) (1+B8T-1)

-

By summing q' over the entire cycle which consists of
. (i+4T)
-n intervals, Equation (1) can be re-written as follows
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h
\Kn n n
VI og = F I g + (1-F) L q' (4)
1=1 (40T i=1 (1) 1=1  (1+4T7-1)
n
The expansion of the term L Q' 1s as follows
1=1  (1+6T-1)
n
z g = q' + a + q +
1=1  (1+pT-1) (8T) (1+6T) (2+B8T)
i q + + g’ (5)
(3+8T) (n+BT- 1)
Adding g’ - q' which equals to a zero value to
(n+gT) (n+f8T)
Eguation (5) we obtain the following
n
r q' = q' + q’ + q' +
i=1  (1+8T-1) (BT) (1+8T) (2+8T)
] + + q' +
(3+8T) (n+pT-1)
q’ - g’ (6)
(n+8T) (n+8T)
n
= q' + L q' - q’ (7)
(BT) i=1  (1+8T) (n+pT)
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By replacing the equality defined 1in Equation (7) into
Equation (4) we obtain the following

n n
L g = F L g +(1-F)[ g +
1=1  (1+T) 1=1 (1) (sT)
n
r q’ - q’ ]
1=1 (1+087T) (n+gT)
n
= F L q +(1-F)[ g - q’ ]+
1=1 (1) (8T) (n+gT)
n
(1-F) L g
1=1  (1+48T)
n n
r q' -(1-F) L q'
1=1  (1+0T) 1=1  {(1+8T)
n
= F L g +(1-F)[ q° - qg' ]
i=1 (1) (8T) (n+8T)
n n
FI q *=F I g +(1-F)[ q' - q' ] (8)
i=1  (1+pT) i

Dividing by the fattor F in Equation (8) we obtain the

following
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1= (1+0T)

Under steady state conditions, 1f 1t exisis, the wvalue

of g’ and q' are 1dentical and therefore the last
(8T) (n+4T)
term 'in equation(9) 1s reduced to zero. Under this traffic
condition there will be no volume error between the initial
n
cyclic flow profile [BL g ] and the predicted <cycl:c
n i=1 (1)
flow profile [ L q' J. In practice, however,
) 1= (1+8T)
Robertson's eguation ‘assumes that q’ has an assumed
(87T)
value of zero, with the value of g’ being calculated
o~ (n+gT)
in the final step of the itetation process. This difference

in value therefore leads to a finite volume error.
To understand the potential 1mpact of this finite
volume error let's consider the feasible values that (1-F)}/F

and [ g’ - q ] may assume under realistic traffic
(BT) (n+8T)

flow conditions. For a typical lane lets assume that the

smoothing factor F takes on a value of 0.20 and g’

(n+g4T)
takes on a value of 1.70. The value of 1.70 1s based on a 2
second time slice, saturation flow rate = 1800 vehicles per

hour green and B5% degree of saturatiog. (Saturation flow 1s
defined as the number of passengers car wunits which can
discharge at a stop-line of an "ideal" intersection approach
(width 3.0 to 3.5m), moving straight ahead (i.e., no turning
movements are involved), with no additional traffic friction
(i.e., no bus stops) under the given set of weather

conditions, during the given length of the effective green
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interval. The concept of saturation flow assumes that after
the 1nitlal hesitation following the display of green,
ttarftic discharges” at a constant rate, unt:.l shortlv after
the beginning of amber, when a sharp drop occurs. Effective
green time 1s therefore defined as the horizontal dimension
of the rectangular transformation of the area encompassed by
the saturation flow diagrams.) Given this condition the

predicted downstream cyclic flow profile is in error by 6.8

vehicles. At a 100 second cycle length (10 seconds
intergreen period, 80/20 split between major and minor
street) the average volume of traffic per cycle would
approach to 36.00 vehicles. However, at 85% degree o?h/
saturation, the predicted downstream volume is 36.00 - 5.40

= 30.60 vehicles. The resulting degree of saturation based
on predicted volumes (30.60 - 6.80 = 23.80) is calculated to
be 66%. The potential 1impact of a 28.6% error in volume
estimate due to the prediction process can best be

1llustrated by making reference to the following TRANSYT (VS
/

|

- Vé) expression for random delay:

Dr = (X)?

4(1-X7

random delay in units of vehicle hour
per hour, and

where: Dr

X = degree of saturation, defined as the -’
ratio of volume to capacity. -

T -
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Hence for X=0.66 and 0.85 the respective values of Dr
are 0.3 and 1.2. The basic conclusion, thererfore 1s that a
28.¢¢ error 1n  volume estimate under hiah dearees  of
saturation could increase the random delay component by a
factor of four. On the other hand. there is a different set
of other traffic conditions 1in inCh these types of errors
due to the prediction process, can be minimized. Two
conditions have been tdentified. The first conditio%
1ncludes a larger smoothing faétor which will result 1n the
value of (1-F)/F approachingfﬁzero. The second condition
includes very compact platoon in the middle of a long cycle
length with no flows on ei1ther side of the platoon. The
leading edge of this particular downstream platoon would
arri o earlier than (i+gT) time wunits with the cycle
1eng:hﬂhhiﬁg‘bf sufficient length that the value of g’

(1+8T)
approaches a zero value at the end of the calculation.

Since traffic platoons moving between fixed time
signals are cyclic 1n nature (the period equals the cycle
length), and if steady state conditions exist, the flow for
an interval will be the same over all ;ycle lengths. Based
on thisAinformation an initializétion equation is derived.

As was indicated previously, Robertson's equation

requires that the flow wvalue 1in the previous downstream

interval [ q' ] to predict the value in the present
(i+8T-1)
interval [ g’ ]. For the first downstream interval
(i+4T)
[ g ] the previous downstream interval [ q'
(1+8T) (1+8T-1)

is unknown and is therefore assumed to be zero. Applying the
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summat 1on of serles technigive and 1f steady state
conditions exist (*’) Robertson's Recurrence Model 1s
expanded to provide an  initial estimate for *ne value of
g’ in  the predicted Cyclﬁc flow pnofile.n The

(i*HT) It
mathematical proof follows.

Robertson’'s model is given by the following form:
q' =Fqg + (1-F) g’ . : (1)
(1+67T) 1 (1+6T-1)
Redefine eqguation (1) by looking at the previous interval.
q’ = F g + (1-F) g’ (10)
(1+p5T-1) (1-1) (1+pT-2)
Substitute equation (10) into equation (1). Eguation (1)
takes the following form:
q =F g +(1-F)[F g +(1-F) g’ ]

(1+4T) 1 (1-1) (1+4T-2)

=F q +F(1-F) g +(1-F)* q' . (11)
1 (1-1) (1+8T-2) -

Redefine eqguation (10) by looking at the previous interval.

g’ = F q' + (1-F) g (12)
(i+87T-2) (1+8T-2) (i+8T-3)

Substitute equation (12) into equation (11). Eguation (11)
takes the following form:

q' =F g +F(1-F) g +(1-F)*[F q +
(i+8T) i (i-1) (#-2)
(1-F) q' ) ,
(1+8T-3)
= F g + F(1-F) g + F(1-F)* q +
(1) (i-1) (i-2)
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(]__F)) qJ (]3)
(1+£T-3)
_ 3
Re-define equation (12) by looking at the previous intervai .
UL
q’ v = F g + (1-F) g’ (14)
\«i+BT-3) {1-3) (i+8T-4)

Substitite equation (14) into eguation (13). Equation (13)

takes the following form:

g’ =F g +F(1-F) g + F{1-F)* g +
(1+6T) (1) (1-1) (i-2)
- (1-F)*[F q' + (1-F) g ]
(1-3) (1+8T-4)
= Fq +F(1-F) g +F(1-F)* g +
1 ) (i-1) (1-2)
F(1-F)* g + (1-F)* q' (15)
(1-3) (1+8T-4)
It follows that Q' can be strugtured in the following
(1+4T) )
general form: A
' SF q +F(1-F)' q . +F(1-F)* g
(i+8T) i (i-1)% (i-2)
+...+ F(1-F)"" ' q +(1-F)" g (16)
(i-n+1) : (i+8T-n)

/

More specifically, equation (16) translates to the

following:

% _
_“ ; 4\
F(1-F)' g +(1-F)" q' (17)
=0 (i-3) (i+BT-n)

Q
n
.M

(1+8T)
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Equation (17) and equation (1) are 1dentical. If the number
of time slices within a cycle length 1s n and we assume that
the valué from the predicted cvciic flow profile s the same
. S e
.at the beginning of each cyd®e then:
qV = q! = ql

(1+48T-n) (1+8T) (1+8T+n)

=g’ etc. (18)
: (1+8T+2n)

This equality follows from the key assumuption that

steady state conditions prevail. For interval J1=1 equation
(17) and eguation (18) become the following, respectively:
n-1
q' =L F(1-F)’ g +(1-F)" q' (19)
(1+8T) =0 (1-73) (1+8T-n)
' ‘= qY = q' = q'
(1+8T-n) (1+87T), (1+8T+n) (1+8T+2n)
etc. (20)

Substitute q' -.in equation (19) with g’ as
(1+8T-n) (1+8T)
defined by the equality in equation (20). .
n-1
q' =X F@O-F)l g + (1-F)" q° (21)
(1+6T) j=0 (1-3) (1+87T)

Therefore : (\;>



N
n- 1

q' -[Cr-F) g ]J= L F(1-F)' q (22)

(1+48T) (1+23T) j=0 .19

n- |l

q (1-(1-F)") = L F(iI-F)' g (23)

(1+8T) =% (1-9)

n- |

g’ = T F(1-F)’ g (-1 F)") (24)

(1+4T) 7=0 (1-3)

Equation (24)‘can be used not only for 1nitial 1nterval
prediction but also for computing all 1intervals simply by
substituting the indices (1+8T) and (1-3) by (1+f8T) and
(i-j) respectively. However, this equation is more
cumbersome to use than Robertson's eqguation, and after the
first 1nterval jould not improve the model accuracy. The
incorporation of this equatlon into the Robertson Model will

in subsequent sections of this thesis be referred to as the

Modified Robertson Recurrence Model. It 1s anticipated that

this improvement to the model will significantly affect the
calibration process. Since the upstream ana downstream
cyclic flow profiles will have the same volume, the result
will be better predictions with\i respect to total delay
(random delay + uniform delay), number of vehicle stops and

performance index.



3. DATA COLLECTION EFFORTS

5.1 Data Collection Techniqgues

The collection of real-time, tralific platoon data was
achleved with the ai1d of a Micro-computer Cyclic Flow
Profile Monitor(**). Travel time #formation was derived by
collecting spot speed with the aid of a radar speed gun.

Technical detaills of each of these two tools are discussed

below.

3.1.1 Platoon Data"

Research at the University of Alberta 1s currently
underway to develop a Micro-computer Cyclic Flow Profile
Monitor. The specific objective of this research, which is
under the auspices of both the Department of Electrical
Engineering and the Department of Civil Engineering, at the
University of Alberta, is as follows:

" To Design And Bulld A Micro-computer Based Local
Device To Monitor Cyclic Flow Profiles Within The
Context Of An Incident Detection System. "

With the support of the City of Edmonton,
Transportation Department (formerly the Engineering
Department), a basic system has been designed and 'bp{TE to
permit numerous users to collect several different typég/of
traffic related informatEon.

The system configuration of this device makes use of an

$
eight bit micropocessor chip. Erasable Programable Read Only

40
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Memory (EPROM) provides program storage, while Random Access

Memory (RAM) 1s used for data collection purpoeses.  All
intormazion collected 1n RAM  1s dumped onic ¢ Sixty (ol
minute cassette tape, via a Standard tape recorder. Once on
tape, information 1s then transmitted to the University of

Alberta Computing Centre from the City of Edmonton Traffic
Control Centre. Figure 3.1 conceptually 1llustrates a block
"diagram of the system.

The hardware of the system 1s described below and 1is

~

illustrated conceptually 1n Figure 3.2.

1. An A.C. Transformer 1s used to convert 12 volts D.C.
power from a standard «car  battery to 120 Volts A.C.
power to energlize the microprocessor.

2. The entry of the operating system commands for the
microprocessor i1tself 1s via a standard Keyboard Panel.
The keyboard 1s wused 1nitially tc start the data
collection routine, with the basic input being the cycle
time of the upstream signal and a sequence set of
commands to set up the work space. A reset button on top
of the microprocessor terminates the data collection
effort. The keyboard 1s also wused to issue a set of
commands to store data onto a standard cassette
recorder.

3. The interface <card, ribbon <cable, and connector box
along with the cable wires form the system from which
the collection of field data 1is transmitted to the
microprocssor. N

4. The length of the cable wire essentially constrain the.
maximum possible distances between observations points.
Each survey location (shown as Location #1!, #2 and #3)
consists of twe channels for recording platoon data.
Typically Location #1 uses channels 0 and 1, Location #2
uses channels 2 and 3 and Location #3 uses channels 4§
and 5. For consistency, the lower channel at each
location usually represents the curb lane of the roadway
section.
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5. The <collection of the data requires a surveyor at eath
locati1on. Basic instructions are to press the respective
channel numbe: button(s) {event recorder) each time a
vehicle passes the survev [o~atlon.

After the survey, the ¢oullected cgata was stored on a

cassette tape, and the 1nformation was then transmitted to
the University of Alberta Computer from Edmonton’'s Traffic
Control Centre. To translate this raw déta 1nto a meaning
full format a computing program (BRAD#+*PLOTLIB) was written
to summarize the data 1n a tabular and graphical manner. The
tabular summarizes are in the form of an arrival matrix
while the graphical plots are in the form of average and
individual cyclic flow profiles.

Table 3.1 summarizes a part of a typical tabular
summary of measured traffic platoon data. Characteristics of
the arrival matrix are described below:

1. The arrival table 1s prefaced with four header cards to
organize the data base with respect to location, survey
date/time, run identifier and channel number.

r

2. Rows represent cycles of data collected.

3. Columns represent successive time intervals (user
specified) up to the cycle length.

4. Each entry is the number of vehicles arriving in a given
time 1interval.

5. The observed total number of vehicles recorded 1in each
time slice 1s summarized along with an unbiased estimate
of the standard deviation (The information is the basic
input 1nto two computer programs which will be discussed
in Chapter 4).

6. The totals for each time 1interval are also converted
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TABLE 3.1
ARRIVAL MATRIX

TYP1CAL
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Into an average one lane flow rate (vehicles per hour
green) along with an unbiased estimate of the standard
deviation.

/
The graohical output Irom +this~ proaram inciudec tne

following:

. A plot ot the average lane flow rates with an asterisk
(*) marker to illustrate the degree of variability ( +
or - one standard deviation) in the data base. A typlical
graphical summary of the arrival matrix 1is shown in
Figure 3.3

2. A plot(s) for a specified cycle(s) to observe the actual
lane flow rates for that cycle in comparision to the
vaverage lane flow rates for all cycles collected. The
average lane flow rates for all cycles collected is
indicated with an asterisk (x) marker. A detail
graphical summary of the arrival matrix 1is shown in
Figure 3.4
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3.1.2 SpeedVTravel Time Data

.

To obtain an estimate of the actual trave. *:mé be'ween
twe  survey locations, the data collecyed with spot speed
survey technigue was translated to travel ime with the
uniform acceleration model.

The standard radar gun which 1is based on the
Doppler-principle was used and calibrated prior to each spot

speed survey. A statistical analysis of ‘each spot speed

v

survey date was undertaken using the - STPK Package
(Interactive STatistical Graphics PacKage (f‘). Principal
outputs from this analysis 1ncluded the mean speed
{kilometres per hour), variance, and a faitted normal

probability density funtion. For all spot speed data
collected and analyzed, a Normal Distripution was
statistically significant at the 95% confidence level.
Figure 3.5 1llustrates a typical output from the STPK
analysis.

The uniform acceleration model is based on t he
assumption that acceleration is constant. This resuits in

the following fundamental relationships :
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dv

_ . (1)
dt

v

;3N = L. a dt

Yo

v = v, * at {2)

Jo dx = J§ (ve *+ at) dt

X = vyt +t 1/2 att (3)
where a = acceleration
‘
v = speed
Ve = 1lnitlal speed
x = distance
t = time
N
Equation (1) to (3) are the acceleration-time, speed-time,

and distance-time relationships respectively for uniformly
accelerated motion. The expression for distance as a
function of speed may be obtained from (1) as follows
: dv dx dv

a = — — = — V

dx dt dx

J5 a dx = | v dv

These relationships are 1llustrated in Figure 3.6
;-
Based on several spot speed survey mean speeds along
the roadway section, and the uniform acceleration model, an

estimate of the travel time between two survey locations was

determined. %
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3.2 The Survey Sites And Their Characteristics

Table 3.2 provides an overview of the survey sites
dur:nc the A.M. peak nour from the perspeci.ve ¢f weainer
conditions, dispersion distance, number of platoons
collected, total volume observed, and the degree of
saturation (ratio of wvolume to capacity) observed. The
ydefinition of the three states of weather conditions 1s
consistent with the research done 1n Alberta on saturation
flow (2°).
"Summer” driving conditions were defined as

&

- dry weather (i.e. no rain or snow)

- temperature form about -10°C to well above 0°C

- dry pavement (no snow residues)
- good visibility
"Winter" driving conditions were characterized as :

Ve

- . drytweather (no snowfall)
- clear or cloudy sky
- temperatures from about -10°C to -30°C

- dry pavement with some packed snow residdes but well

A

sanded
a

- no snowbanks at intersections

_ good visiblity

"Severe winter" conditions were characterized as :
- clear or cloudy sky

»
- very low temperature (lower than -30°C)

.

- wvisibility obstructed by exhaust fumes

i
or by: F§
L)
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TABLE 3.2

OVERVIEW OF THE SURVEY SITES DURING THE A.M. PEAK HOUR

Locatron Weather Cispersion Number 0f  Total Degree (Of

Condi tirons Distance Platoons Vo lume Saturation
tmeters: Collected rvehicles! ol

teLd v aovenrs 1 OY o Eo( <o

11 St Winte: )

104 Av. - Winter ag 28 1248 88

116 St.

104 Av. - Summer 106 27 1318 96

116 St.

(Week

No. 11

104 Av. - Summer 106 27 1260 g2

116 St.

{Week

No. 2!

111 Av. -» Summer 106 25 386 44

116 St. ’

102 A Av. - Summer 84 23 157 29

97 St.



- heavy snowfall or shortly after, before snow has been
cleared
- temperatures bejow (0°C. -~

As can be seen, the definitions do not provide, for a
clear seasonal distinction. "Summer” driving conditions mav

[

occur during the winter season while "winter” or "severe
winter” conditions may be experienced 1n the spring or fall.

Generally, however, the definitions characterized typical

"winter"” contitions.

long lasting "summer"” and

,The dispersion distance generally varies between 84 -
106 metres, a distance wﬁlch 1s generally representative of
the majority of roadway links in the CBD, as illustrated in

Figure 3.7. The number of platoons collected reflects on

average 30 - 45& minutes of field observations per survey
) = :
site. These observations translated to a volume of 157  to
~

1248 vehicles with degrees of saturation varying from 29 -
92 %. In summary, more than 150 blatoons of data were

collected and 5200 individual vehilcles were surveyed during

these surveys. ‘\

| d

3.2.1 104 Avenue - 116 Street (Severe Winter Conditions)

1. Organization of data base for . future reference
LOCATION: 104 Avenue -116 Street; Eastbodnd Vehicular
flows. SURVEY DATA/TIME: Thursday, February 4,1981; 7:30
A.M., RUN IDENTIFIER: Severe Winter Conditions, Exhaust
Fumes In The Air, Icy Pavement, CHANNEL NUMBERS:
Locations #1 (Channel 0 + 1 Combined, 24 Metres (80
Feet) Downstream Of The Signal Stopbar). Location #3
(Channel 4 + 5 Combined, 130 Metres (426 Feet)
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Downstream Of The Signal Stopbar).

Figure 3.8 illustrates a scaled schematic drawing of the
104 Avenue - 11b Street intersection and the roaawav
section where these cvclic {low profiles were collecred.

Travel time between Location #1 and Location #3 (a
distance of 10b Metres) 1s 14.04 seconds, 24.64 feet per
second or 16.80 miles per hour.

A total ot 21 <cycles of data were collected with an
average volume per cycle of 40.95 vehicles for two lanes
with an unbiased standard deviation of 7.74 vehicles.

Signal timing 1nformation at the upstream signalized
intersection (104 Avenue - 116 Street); cycle length=930
seconds, main street green (104 Avenue)=50 seconds, main
street intergreen (3 seconds amber, 2 seconds all-red)=5

seconds, cross street green (116 street)=30 seconds, and
cross street 1ntergreen (3 seconds amber, 2 seconds
all-red)=5 seconds. Interval size for analysis
purposes=2 seconds=1 step.

Characteristics of the survey site 1ncludes the
following : major arterial roadway system leading into

CBD, a 92% degree of saturation (at all survey sites
this degree of saturation is implied for the upstream
signalized 1ntersection), no parking/stopping along the
curb, wvery little side friction (no driveway), passing
freedom to manoeuvre is seriously limited due to the

very high degree of saturation, bus volume 1is
approximately four buses per hour with a dwell time 1in
the range of 10 - 15 seconds, and the movement of

traffic platoons can be characterized as unrestricted
(the location of the nearest downstream signal was
approximately nine city blocks).

Figure 3.9 presents graphically the survey information
for 104 Avenue - 116 Street (Severe Winter Conditions).

3.2.2 104 Avenue - 116 Street (Average Winter Conditions,

Further Downstream)

\
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Organization of data base for future refefence

LOCATION: 104 Avenue -116 Street; Eastbound Vehicular
flows. SURVEY DATE/TIME: Wednesaey, March 10,1981; 7:30
A.M., RUN IDENTIFIER: Winter Month, Visual Inspection Of

The Roaaway Surface Would Suggest Tvpical Summer
Conditions Dry Pavement). CHANNEL NUMBERS: Locations #
(Channel 0 + i Combined, 130 Metres (426 Feet)

Downstream Of The Signal Stopbar). Location #3 (Channel
4 + 5 Combined, 224 Metres (734 Feet) Downstream Of The
Signal Stopbar).

Figure 3.8 1llustrates a scaled schematic drawing of| the
104 Avenue - 116 Street 1ntersection and the roZdway

section where these cyclic flow profiles were collécted.
/

Travel time between Location #1 and Location #3 (a
aistance of 94 metres) 1s B8.24 seconds, 37.40 feet per
second or 25.50 miles per hour.

-
A total of 28 cycles of . data were c¢ollected with an
average volume per cycle of 44.57 vehicles for two lanes
wQﬁlan unbaised standard deviation of 8.09 vehicles.

Signal timing 1nformation at the upstream signalized
intersection (104 Avenue - 116 Street): see Section
3.3.1.

Characteristics of the survey site: see Section 3.3.1.
Degree of saturation during the, survey was 88%.

Figure 3.10 presents graphically the survey information
for 104 Avenue - 116 Street (Average Winter Conditions,
Further Downstream). ‘

.3 104 Avenue - 116 Street (Week No. 1)

Organization of data base for future reference :
LOCATION: 104 Avenue -116 Street; Eastbound Vehicular
flows. SURVEY DATE/TIME: Thursday, April 16,1981; 7:30

A.M., RUN IDENTIFIER: Summer Conditions, Dry Pavement,
CHANNEL NUMBERS: Location #1 (Channel 0 + 1 Combined, 24
Metres (80 Feet) Downstream Of The Signal Stopbar).
Location #3 (Channel 4 + 5 Combined, 130 Metres (426
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Feet) Downstream Of The Signal Stopbar).

Figure 3.8 illustrates a scaled schematic drawing of the
104 Avenue - 116 Street intersection and the roadway
section where these cyclic flow profiles were collected.

Travel time between Location #! and Location #3 (a
distance of 106 metres) is 9.87 seconds, 35.05 feet per
second or 23.9 miles per hour.

A total of 27 «cycles of data were collected with an
average volume per cycle of 48.81 vehicles for two lanes
with an unbiased standard deviation of 4.59 vehicles.

Signal timing information at the upstream signalized
intersection (104 Avenue - 116 Street): see Section
3.3.1.

Characteristics of the survey site: see Section 3.3.1.
Degree of Saturation during the survey was 96%.

Flgure 3.11 presents graphically the survey information
for 104 Avenue - 116 Street (Week No. 1).

.4 104 Avenue - 116 Street (Week No. 2)

Organization of data base for future reference :
LOCATION: 104 Avenue -116 Street; Eastbound Vehicular
tlows. SURVEY DATE/TIME: Thursday, April 23,1981; 7:30
A.M.(Note: This survey was duplicated one week later),
RUN IDENTIFIER: Summer Conditions, Dry Pavement, CHANNEL
NUMBERS: Location #1 (Channel 0 + 1 Combined, 24 Metres
(80 Feet) Downstream Of The Signal Stopbar). Location #3
(Channel 4 + 5 Combined, 130 Metres (426 Feet)
Downstream Of The Signal Stopbar).

104 Avenue - 11 Street intersection and the roadway
section ghere these cyclic flow profiles were collected.

‘Figure 3.8 illustrites a scaled schematic drawing of the

Travel 'time between Location//;7\3tnd $Location #3 (a
»
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distance of 106 metres) 1s 9.87 seconds, 35.05 feet per
second or 23.9 miles per hour.

4. A  total o 27 cvcles of data were ccAlected with an
average volume pe:r cycle oi 46.70 venigies for two lanes
with an unbtased standard deviation of 7.66 vehicles.

5. Signal timing  1information at the upstream signalized
intersection (104 Avenue - 116 Street): see Section
3.3.1. '

6. Characteristics of the survey site: see Section 3.3.1.

Degree of Saturation during the survey was 92% (decrease
of four percentage points from the previous survey).

7. Figure 3.12 presents graphically the survey information
for 104 Avenue - 116 Street (Week No. 2).

3.2.5 111 Avenue - 116 Street

. Organization of data base for future reference :
LOCATION: 111 Avenue -116 Street; Eastbound Vehicular’
flows. SURVEY DATE/TIME: Friday, May 6,1983; 7:30 A.M.,
RUN IDENTIFIER: Summer Conditions, Dry Pavement, CHANNEL
NUMBERS: Location #1 (Channel 0 + 1 Combined, 24 Metres
(80 Feet) Downstream Of The Signal Stopbar). Location #3
(Channel 4 + 5 Combined, 130 Metres (426 Feet)
Downstream Of The Signal Stopbar).§g? @

2. Figure 3.13 illustrates a scaled schematic drawing of
the 111 Avenue - 116 Street intersection and the roadway
section where these cyclic flow profiles were collected.

3. g!;vel time between Location #1 and Location #3 (a
distance of 106 metres) is 11.08 seconds, 31.24 feet per
second or 21.30 miles per hour. ‘

4. A total of 25 cycles of data were collected with an
average volume per cycle of 15.44 vehicles for two lanes
with an unbiased standard deviation of 4.06 vehicles.

[
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116 STREET

111 AVENUE -
INTERSECTION AND THE ROADWAY SECTION WHERE CYCLIC FLOW

A SCALED SCHEMATIC DRAWING OF THE

-

PROFILES WHERE COLLECTED
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Signal timing information at the upstream signalized

intersection (111 Avenue - 116 Street): cycle length=70
seconds, main street green (111 Avenue}=237 seconds, ma:in
street intergreen (3 seconds amber, ® second all-red)=
seconds, Ccross street green (116 street)=24 seconds, and
cross street 1ntergreen (3 seconds amber, . seconas
all-red)=5 seconds. Interval size for analysis
purposes=2 seconds=1 step.

Characteristics of the - survey site 1ncludes the

following : major arterial roadway system leading 1into
CBD, medium degree of traffic pressure as measured by a
44% degree of saturation, no parking/stopping along the

curb (note: <c¢urb lane was not surveyed), very l#tle
side friction (no driveway), passing freedom ,™s
generally not restricted due to medium degree of

saturation (significant amount of passing was observed)
bus volume approximately four buses per hour with a
dwell time 1n the range of 10 - 15 seconds, and
unrestricted traffic platoon movement (the location of
the nearest downstream signal was approximately seven
city blocks). .

Figure 3.14 presents graphically the survey information
for 111 Avenue - 116 Street.

}
.6 102 A Avenue - 97 Street

& .

Organization of" data base for -future’ reference
LOCATION: 102 A Avenue * 97 Street; Eastbound Vehicular

- flows. SURVEY, DATE/TJME Friday, Octobés 14,1983; 7:25

3.

A.M., RUN IDENTIFIER: Summer Conditions, Dry Pavement,
CHANNEL NUMBERS: Location #1 (Channel 0 + 1 Combined, 21
Metres (70 Feet) Downstream Of The Signal Stopbar).
Location #3 (Channel 4 + 5 Combined, 105 Metres (345
Feet) Downstream Of The Signal Stopbar). '

4

Figure 3.15 illustrates a scaled séhemat1¢ drawing of
the 102 A Avenue - 97 Street intersection and the
roadway section where these cyclic flow profiles were
collected '

t

Travel tlme between Location #1 and Location #3 (a
*distance of 84 metres) is 12.76 seconds, 21.56 feet per
Sedond ~cor 14,70 miles per hour (function of the
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70

space-time diagram for southbound flows between 102 A
Avenue and 102 Avenue).

LN

A total of 23 cycles of date were collected with an
average volume per cycle ot v.853 vehicles for twe lanes
with an unbilased standard deviation of 3.07 vehicles.

Signal timing information at the upstream signalized
intersection (102 A Avenue - §7 Street) is presented in
Figure 3.16 as a space-time diagram. In reviewing this
figure it i1s important to note that, by design, the
ssouthbound green waveband 1is <coordinated for a speed
23.7 kilometres per hour (14.7 miles per hour). Spot
speed surveys undertaken immediately downstream of 102 A
Avenue, indicate that vehicles desire to achieve a speed
of approximately 35 kilometres per hour. Because of the
signal design the phenonenon of platoon compression

appears to be taking place (reverse of« platoon
dispersion). Interval size for analysis purposes=2
seconds=1 step.

Characteristics of the survey site include the following

major arterial roadway system in the CBD, very low
degree of traffic pressure as measured by a 29% degree
of sat®tation, no park1ng/stopp1ng along the curb, very

little side friction, passing freedom to manoeuvre is
not restricted at all due to the low degree of
saturation, and restricted traffic platoon movement (the
proximity of the downstream signal affects the
dispersion or alternately compression of traffic
platoons). (Non-platoon to a platoon sltuation,

compression of flow into a platoon or a re-grouping of
vehicles.)

Figure 3.17 presents graphically the survey information
for 102 A Avenue - 97 Street.
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4. THE ANAL&TICAL TOOLS FOR CALIBRATION
To assist 1n the manipulation, handling, and management
of the data ccllected ;ith respect to model(s) calibration
three computing programs were written. They are described

below:

4.1 The GORDONQ1 Computing Program

The computing program GORDONV1 1s based on the program
ROBERT, that was developed at the Toronto Traffic Control
Centre (?°). The version of ROBERT which was obtained was
found, wupon vigours testing to have several software er}ors
(BT did not assume an integer value, prediction of the
downstream <cyclic¢ flow profile was not displaced by BT time
intervals and the delay/offset algorithm was not
functioning). Based on the skeleton program of the ROBERT
program, revisions where made ,t0 suit the specific needs of
this research and the program was renamed GORDONVI1.

The GORDONV 1 computing pr&gram calculates the
downstream cyclic flow profile from an input upstream cyclic
flow profile accdrding to Robertson's Recurrence Model for a
specified range of alpha(a) and beta(B) values. The Root
Mean Square Of Error (RMSE) between the predicted downstream
cyclic flow profile and actual‘>downstqeam cyclic flow
profile over all intervals 1is calculated . to éerve as a
'prelimina;y means of . meésuring the goodness-of-fit. This .
provides a relative measure of the accuracy of the predipfed»
cﬁhlic flow préfile .;omééred ‘to the actual cyclic floQ

¢ ..
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- profile for a given street segment. It should be noted that
this type of comparison would not be valid between differen;
treet segments.

The RMSE, which is one performance indicator to measuré
the accuracy of the Robertson model, takes the following

form

>
/
L

n /.
RMSE =" SQRT[ I [Actual Flow(i)-Predicted Flow(i)]*]
i=1
where

RMSE = Root Mean Square Of Error

”»
1,2,...,n; where n=number of time
intervals comprising the cycle
length at the upstream signal

[}

1

the observed flow in the i-th time
interval at the downstream cyclic
flow profile, and

Actual Flow (1)

the predicted flow in the i-th time
interval at the downstream cyclic
flow profile.

Predicted Flow (1)

For a given alpha value, the performance indicator
RMSE, 1s calculated for a complete range of beta from a

specified lower limit to a specified upper limit for~‘a given

. N
increment size. Simildarily, for a given beta value, the
performance .indicator RMSE, 1is calculated for a range of

alpha from a specified lower lidit to a specif@; upper limit
“.for a given increment size’.‘ The analj!.;is for each
combination?of alpha and beta is éresented in a tabular and
graphical form. The combination of ‘alpga and beta which

minimizes the RMSE performance indicator is therefore

considered to be the 'best' calibrated empiricsiyparameters.

X
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A typical tabular summary of thh GORDONV I output 1s
presented 1i1n Figure 4.1. The following information 1is

summar ized:

1. Robertson's beta wvalue, BT (note the integer value in
brackets), alpha value, and F factor.

2. Four header cards to organize the data base with respect
to location, survey data/time, run identifier and
channel number.

3. A table with f{ive columns of data. Column 1 represents
the number of intervals used in the analysis (interval
size times number of intervals ‘equal -cycle length).
Column 2 represents the -initlal upstream cyclic flow
profile. This information is obtained from the arrival
matrix (vehicles per “interval size) for location #1.
Column 3 represents the calculated downstream cyclic
flow profile based on the empirical parapgeters at the
top of the table and Robertson's Recurrence Model.
Column . 4 represents the actual/observed downstream
cyclic flow profile. This information is obtained from
the arrival matrix (vehicles per interval size) for
location #3. Column 5 indicates for each interval the
error between the actual downstream and predicted
downstream flows. ’

In reviewing Figure 4.1, several items are worth noting.
as they relate to the data collection technigue, and more

importantly, to Robertson's Recurrence Model.

1. Generally speaking, the awyerage cyclic ¥olume for the
initial cyclic flow profi should be egqual to <the
actual downstream cyclic flow profile if nd overcounting

»or undercounting “takes place. Using the 1information
presented in Figure 4.1 we can tabulate and find.out
that the average flow of the initial cyclic flow profile
is -40.97 while the average flow.of the actual downstram
cyclic flow is 41.58. This discrepancy is due sblely to
an error in the data collection technique (surveyor
error). :

2. Consistently, the average cyclifgy . volume for the
predicted downstream cyclic flow profile will be less
than the average cyclic volume for the 1initial cyclic
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flow profile. This error <can be calculated using the
error eguation presented 1n Section 2.3 where (I1-F)'F
takes on the value (1-0.25)/0.25 = 3.00 and
q’ = q' ()
(n+4T)

takes on the value 0.15, The product of these two values
(3.0 x 0.15 = 0.45) subject to rounding represents the
absolute error. For this specific example we conc lude
that Robertson's equation underestimated the downstream
average cyclic flow profile by 0.45 wvehicles or
alternatively by a factor of 1.01.

The calculated random delay for the average «cyclic
volume for the actual downstream cyclic flow profile is
6.08 seconds per vehicle. The calculated random delay

for the average cyclic volume for the predicted
downstream cyclic flow profile 1s 4.51 seconds per
vehicle, or alternately, an underestimation of the
random delay by a factor of 1.35. (See Section 2.3 and

" Secton 4.3).

‘ <>,
For this specific example, Robertson's Recurrence Model
will underestimate the predicted downstream volume by a
tactor of 1.0t which will 1in tutn result in an
underestimate of the random delay by a factor of 1.35.

<

Figure 4.2 1illustrates a typical graphical summary of

the goodness-of-fit between the predicted/actual downstream

cyclic ?low profile based on the information presented in

Figure 4.1.-The following specific information is‘noted:

Four header cards to organize the data base with respect
to location, survey date/time, run Adentifier and
channel number. 7

i

.

Plot of the measured/actual downstream cyclic flow
profile which is indicated by an asterisk (%), . g '

~

Plot of the predicted downstream cyclic flow profile
which is indicated by a letter (o). A visual ‘inspection .
of these graphs indicate that during severe winter -
conditions Robertson's recommended parameter OK

;:alpha=0.5 and beta=0.8 will produce significant error.

,
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4. The X or horizontal axis is the cycle time in steps. The
Y or vertical axis is flow per unit of time.

N

The RMSE performance indicator f{or the above two plots
1s summarized.

Figure 4.1 and 4.2 are repeated for all combination of
g p

alpha and beta specified by the user.
9

«

Before wusing the GORDONVI program to calibrate
Robertson’'s Recurrence Model, 1t s 1nstructive to

understand the functional relationship between the value of

-

RMSE and Robertson's alpha and beta parameters. For a given

Pw

beta value, the range of RMSE is calculated for a large

range of alpha from 0.05 to 0.60. The results of this
analysis, using data from severe wrnter conditions, 1s
presented in Figure 4.3. Several observations are noted.

'
Firstly there exists a unique value fof alpha, which can

minimize the global RMSE. Secondly, for this unique value of
alpha, there are several valﬁes of Dbeta which alé%
contribute to a global minimaf value of RMSE. One unigue
family of curves exists for each set of BT valueé which
correspond to one integer valuye. Thirdly,'fqp different

ranges of beta values, there also exists a value which

minimizes” the RMSE; however, this value represents only a

local minimum vs a global minimum. -Forthly, an alpha value

of 0.40 vs the stagdard value of 0.50 minimizes the value of

>

RMSE .

’ -

For a given alpha value, the range of RMSE has also.

been calculated for a large range of beta from 0.30 to 0.80.

The results of this analysis are presented in Figure 4.4.
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The following observations are noted. Firstly, there does
not exist a unigue value of beta which <can minimizea the
RMSE. Thi; observation 1s related to the form of Robertson's
equation 1n that the wvalue of BT 1s an 1integer vaiue.
Therefore, for the range of beta that minimizes the RMSE,
the product of beta times travel time in steps repiesents a

~

unigue integer value. This analysis also suggests for the
range of beta values which will give a minimal RMSE error,
there will also exist over that range of beta values only
one smoothing factor F. We conclude that the selection of
the best beta value is the beta value which minimizes the
rounding error of the product of beta, times the travel time
1n seconds (equals an‘integer value). Secondly, a beta value
of 0.570 (this value minimizes the rounding error) vs the
standard value of 0.80 minimizes the value of RMSE.

The effect of alpha and: beta on RMSE 1is a very

important consideration in the calibration process, due to

the complementary relationship between alpha, beta and the

smoothing factor. This information highlights some of the
deficlencies in previous research efforts(see Table 1.1)., In
specific, it 1is noted that those studies which calibrated

only alpha may not have the 'best' values.

N
Based on the above analysis the following procedure was

adopted for the calibration progess:

1. Search for the optimal combination of alpha and beta
which will minimize the RMSE.

2. Select the alpha value which minimizes the RMSE.
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3. For the minimal RMSE select a beta value which has the
least round-off error. {(beta times travel time 1n Steps
equgls an integer value).

SR -3;

A
R :
4. Tn%ﬁ&roduct 5f the selected alpha and beta value 18

re\gqxed to a K.
4.2 The GORDONV2 Computing Program

The GORDONV2 computing program 1s similar to the
GORDONV1 computing program with one exception. The exception
s that Robertson's Recurrence Model 1s modified by the
introduction of an initialization eguation as shown in
Section 2.3. The program outputs and analysis process are
identical to GORDONVI1. In all cases it should be noted that
the best _combination of alpha and beta with the V1 program
are 1dentical to the best combinat&on with the V2 program.
There 1is one difference in that V2 will consisteqtly result
in a lower RMSE when compared to V1 since V2 predicted
downstream volumes are identical to actual downstream

4

volumes.

. 4

To distinguish the difference between V1 and V2 the
following comments are printed on the top of each tabular
and graphical output : GORDONV1 - ROBERTSON'S EQUATION AS IT
EXISTS IN THE TRANSYT PROGRAM, GORDONV?2 - MODIFIED

ROBERTSON'S EQUATION.
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4.3 The (DSPI1) DELAY/STOP/PERFORMANCE INDEX-OFFSET Computing

Program

The DSPI computing program :al:uﬁages, for a given
cyclic flow profile (basic input) and an ’artifical fixed
time traffic signal, several signél performance
characteristics. The computation of delays, stops, and

performance index from a «cyclic flow profile 1s based on
relationships developed by Gartner(’°) and was validated on
Bloor Street .in Toronto. In sbecific, for each possible
signal offset, the following performance indicators are

calculated:

1. Average delay per vehicle (uniform plus random delay
component ). ’

2. Average stops per vehlicle.
3. Performance index (weighted combination of stops and
delay). In specific, the 1link performance index was

established by summing the uniform delay component due
to the signal design based on an average pattern plus
the random delay component plus a stop penalty  factor
multiplied by the number of vehicle stops. For this
research a stop penalty factar of 4 was wused to allow
for economic loss due to vehicle stoppings (’*).

A typical ~computing output for the first page 1is
illustrated in Figure 4.5. The following specific
information 1s summarized
1. Four header cards to organize the data base with respect

to location, survey date/time, run 1identifier and
channel number.

2. Echo of input data: cycie length, effective green (green
plus 1 second), interval._ size, release or saturation
rate (maximum discharge across a signalized stopline
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FIGURE 4.5

TYPICAL TABULAR SUMMARY OF THE DSPI OUTPUT (PAGE 1/2)
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3. A calibrated Robertson profile.
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under the given traffic environmental conditions), K
factor to weight the relative importance of stops/delay,
and arrival data (obtained from the arrival matrix in
the GORDONV1 or GORDONV2 computing outputs).

3. Brief overview of some output data including cumulative
average cyclic arrivals, the TRANSYT (V5 - Vé6). random
delay component and the degree of saturation expressed
as a saturation ratio. \

’

A typical computing output for the second page is

in Figure 4.6. Basic information extracted from
this o t is .indicatéd by an asterisk(x) and, includes the
following :

1. The offset (indicated in steps vs seconds) for which
delays, stops or the performance index are minimized.

2. The associated absolute values of these three signal
performance indicators.

The DSPI computing program was then used to evaluate at

the downstream survey location the signal performance

characteristics for the following types of «cyclic flow
profiles.,
. Measured/observed data.

2. A Robertson profile which was not calibrated.

4. A calibrated, modified Robertson profile.
" The principle purpose of this program is to be able to
quantify the impacts in signal performance as a result of an
improvemertt in the model and/or local calibration. The

LY
errors in signa. performance by not <calibrating and/or

improving the model can be highlighted.
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In swvwmmary,., the DSPI program becomes tﬂe tool to
quantify the i1mplications of calibration or modifications.
L :onrragt, 2 statistical test such as chi-sguared, would
only measure s;atfsticaly how closely the predicted cyclic
flew pretile comes to the observed cyclic flow profile. This
.atter test, glves no consideration to the 1implications of

the goodness-of-fit from the perspective of delays, stops

and performance index.



5. DISPERSION OF TRAFFIC PLATOONS

1

5.1 The Process Of Calibrating Robertson's Recurrence Model

The process 9f calibrating Robertson's .recurrence model

,/*‘TSLpreSented.in the following sequencial steps:

For the measured/observed downstream., cyclic flow
profile, the DSPI computing program_was used to generate
delay/offset, stop/offset and performance index/offset

“ curves. Based on these curves, the following information

- 4

was summarized : ,

- Offset at which the actual delay is a minimum, and
the true value of the delay at its minimum value.

- ‘Offset~n at which the actual stops is a minimum, and
the true value of the stop at 1ts minimum value.

~

- Offset at which the actual performance index is a .
minimum, and the true value of the performance index
at 1ts minimum value. B

.

4

In reviewing this information, it should be recognized
that the offset value which minimizes delay does not
imply that stops or the performance 1index are also
minimized at the same offset value. This is due to the
fact that, -essentially, delays, stops and performance
index are different measures of effectiveness for signal
control. This observation can be confirmed by referring
to Figure 4.6 which indicates that a different minimium
signal offset value occurs for delay, stops and the
performance index.

The GORDONV1 computing program was used to geherate two
specific analysis for each site. The first analysis
involved the calculation of the downstream cyclic flow
profile based on Robertson's recommended parameters of
alpha=0.50 and beta=0.80 -and the: resulting - RMSE
statistic. The second analysis involved the use of the
GORDONV1 program to search out the combination of alpha
and beta which reuslts in a global minimum value of the
RMSE performance indicator. This .process generatel a

/ 89
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standard Robertson profile and a calibrated downstream
cyclic flow profile based on the Robertson's Recurrence
Model. The DSPI computing program was used to generate a
delay/stop/performance-index offset infomation. Based on
these predicted <cycle flow profiies and the actual
cyclic flow profile, the following statistics were
summarized in the tabular form

~
v

- Offset at which the predicted delay from the
predicted cyclic flow profile is a minimum, and the
predicted value of the delay at its minimum. This
predicted value of the delay 1s compared to the
actuat value " of delay which is generated from the
actual cyclic flow profile at the best offset given
by the predicth cyclic flow profile.

o)

- Offset at which the predicted stops from the
predicted cyclic flow profile are a minimum, and the
predicted value of the stops at its minimum. This
predicted value of the stops 1s compared to the
actual. value of stops which 1s generated from the
actual cyclic flow profile at the best offset given
by the predicted cyclic flow profile.

- Offset at which the predicted performance index form
the predicted cyclic flow profile is a minimum, and
thi predicted value of the performance index at its
mihimum. This predicted value of the performance
index 1s compared to the actual value of the
performance index which is generated from the actual
cyclic flow profile at the best offset given by the
predicted cyclic flow profile.

-

For a perfest fit between the predicted downglream
cyclic flow profile and the actual downstream cjclic
flowf profile, the differences between the various
performance indicators at the best offset value or over
all offset values would be zero.

v ¢ | r

The previously described process was repeated with the
GORDONV2 computing prdgram with the exception that there
was no need to search out the combination of alpha and
beta which results in a global minimum value of the RMSE
performance indicator, .
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5.2 Calibration Results .
For each of the six survey sites, four cases are
analyzed from the perspective of delays, stops and

)
performance index. These caseﬁfare:

)
Case 1 : Robertson's Model (Robertson’'s recommended
) alpha value of 0.50 and beta value of 0.80 is assumed.)
Case II : Calibrated Robertson’'s Model (Calibration_of

both alpha and beta values).

Case 111 : Calibrated, Modified Robertson's Model
(Introduction of an lnitialization eguation and
calibration of both alpha and beta values).

Case IV : Modified Robertson's Model (Robertson's
recommended alpha value of 0.50 and beta value of 0.80

1s assumed).
Tables 5.1 to 5.6 inclusive provide a comparison of
platoon prediction erfors with respect to delay, stops and
performance index for all intersection surveyed. To explain

in more detail the exact process and the results obtained,

~Table 5.1‘will be explained in detail.

[4

For the .measured/observed downstream cyclic  flow-
profile the minimum delay occurs at an qffset of 68 seconds
and theitpue value of this delay at its minimum wvalue is
9.70 secoqu per vehicle. Similarily, the minimum stops
occurs At an offset of 56 seconds and the true value of the
stops at its miminal value is 0.64 stops per vehigle. Also,
the minimum performance index occurs at an’ offset of 64

seconds and the true value of the performance index at its

' L}
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minimum value 1s 5.88.
For the predicted downstream cyclic flow profile which

1s based on Robertson's Model {(alpha=0.5G, beta=0.80), the

minimum delay occurs at an offset of 72 seconds and the
predicted value of the delay at its minimum value 1s 8.52
seconds per vehicles. Using the observed downstream cyclic
flow profile, the true delay at the 72 second offset value
is 12.58 seconds per vehicle. Similarily, the minlimum stops
occurs at an offset of 64 seconds and the predicted value of
the stops at its minimum value is 0.30 stops per vehicle
Using the observed downstream cyclic flow profile the true
value of stops at the 64 second offset value 1s 0.74. Also,
the minimal performance index occurs at an offset of 68
seconds and the predicted value of the performance index at
its minimal value 1s 4.94. Using the observed downstream
cyclic flow profile, the true performance index at the 68
second offset value 1is 6.08. In summary, for this pgrticulaQ.
site with the wuse of Robertson's recommended empiricai'
parameters f(alpha=0.50, beta=0.86) the delay indicator will
be in error by 48%, the stops indicator wili be 1n error by
147% and the performance indicator will be 1n error by 23%.
One therefore concludes that significant errors 1in the
signal performance <characteristics can materialize by not
calibrating Robertson's‘Recurrence Model.

For the predicted downstream cyclic flow profile which

is based on a Calibrated Robertson's Model (alpha=0.40,

beta=0.57) we note that RMSE index 1s decreased from 2.463
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to 0.863, suggesting that a better fit is being obtained by
calibration. A review of the three basic signal performance
indicators for this <case shows that witn calibration the
delay i1ndicator will be 1n error byk 24%; however,. the
improvement 1in the estimate gf delay 1s in the order of 50%
((48-24),/48). Similarily for s£ops, the stop indicator will

be in error by 31%; however, the improvement in the estimate

of stops is in the order of 79% ((147-31)/147). Also, for
the performance 1ndex, the 1indicator will be 1n error by
24%, however this makes no significant change (sfight

J:decrease in performance) as a result of calibration.

For the predicted downstream cyclic flow profile which

is based on a Calibrated Modified Robertson's Model
(alpha=0.40, beta=0.57), we note a further improvemen£ in
the RMSE i1ndex from 0.863 to 0.844,‘Suggesting a even better
fit can be obtained by providing an initlialization eguatilon.
A review of the three basic signal performance indicators
for this case shows that with modifications and calibration
the delay' indicator will still be in error by 16%, however
this further improvement (calibrated modified Robertson's
model in comparsion to a calibrated Robertson's model) in
the estimate of delay is in the order of 33% ((24-16)/24).
Similarily for stops, the stop indicator will still be in
error by 28%; ~ however, fhié further improvement 1in the
estimate o¢f stops is in the order of 10% ((31-28)/31‘). ;\lso

for the performance index, the performance 1indicator will

still be in error by 16%; however, this further improvement
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in the estimate of the performance index is in the order of

33% ((24-16),31).

The last set of analysis 1is based on the predicted

cyclic flow profile, which 1is based on an Modified
Robertson's Model {alpha=0.50, beta=0.80). Generally

speaking, in comparison to the Robertson’'s Model there is a
consistent and significant improvement with respect to
delays, stops, performance index and the RMSE statistics.
~ﬂowever the 1mprovements in performance are not comparable
to those obtained by calibrating and modifing Robertson's
model.

To obtain a comprehensive overview pf all the analysis
that was undertaken, a /linear regression analysis of all
predicted signal performance characteristics in comparison
to the actual performance characteristics was undertaken in
order to deduce, from a statistical perspective, the

improvements relating to calibration and/or modifications to

the model.

5.2.1 Delay Considerations

A regression analysis of the predicted minimal delay vs

the actual minimal delay was undertaken for the data that
’

was analyzed at all survey sites. The linear regression

equation was of the form:

Yy = a, + b, X,

predicted minimal delay (seconds
per vehicle),

where Y.
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Xy = actual minimal delay (seconds per
vehicle), and
a,,b, = calibrated coefficents,

For a perfect fit between predicted minimum délay Vs
actual minimum delay, the coefficient af’@ould assume a 0.00
value and the coefficient b, would assume a 1.00 value.
Alternately, a good platoon dispersion model should approach

these specific values for the coefficientsg

'.I
The resulting regression equation #or CASE 1, CASE 11

and CASE III along with R-Square (R?’), and correlation
coefficient (p) are listed below : \
CASE 1
Robertson's Model
Yo = 0.607 + 0.791X, ; R* = 0.92, p = 0.96
CASE 11
Calibrated Robertson's Model
Y, = 0.497 + 0.828X, ; R* = 0.99, p = 0.99 )
CASE 111
Calibrated Modified Robertson's Model
Y, = 0.106 + 0.949X, ; R* = 0.99, o = 0.99

The aone eguations indicate that, from a statistical
perspective, the Calibrated Modified Robertson Model results
in the best overall form of model for predicting minimal
vehicular delay. Figure 5.1 illustrates all three delay
fegression lines along with the data points for CASE III. In
reviewing this figure, it should be noted that all five of

the six data points fall within the 95% confidence band. One
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data point misses this confidence bj%d by approximately 0.2

seconds per vehicle.
For comparison purposes only, Lam's data (%) was
subjected to similar regression analysis. The equations

derived for CASE 1 and CASE I1l respectively were

s

/¢

CASE 1 '
Robertson's Model

.83

il
o

Y, = 1.091 + 0.791%X, 3 R* = 0.69, o

CASE 111
Calibrated Modified Robertson's Model

0.997 + 0.912X, ; R* = 0.79, »p 0.89 -

<
a
I

Principal conclusions reached from a mimimum delay

perspective are as follows =™

K2
L d

1. In the range of 0-5 seconds per vehicle the effect of
calibration or modifications to Robertson's Recurrence

Model is insignificant. ' 5

2. In the range of 5 - 15. seconds per vehicle, a
Robertson's Model which has not been calibrated could be
in error up to 20% ((15.00/12.47)).

3. In the range of 5-15 seconds per vehicle a Calibrated
Robertson's Model <could be in error up to 16%
((15.00/12.92)).

A

4. In the range of 5-15 seconds per vehicle a Calibrated
Modified Robertson's Model could still be in error wup to
7% ((15.00)/14.03)).

5. From the data collected and analyzed, no conclusion can
be reached for delays greater than 15 seconds per
vehicle. However, given the R? and p values, we can
conclude that this equatioa is strong in its predictive
power and that similar conclusion can be drawn for

(
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larger delay values.
Figure 5.2 1llustrates graphically the effect of
calipbration or modifications from a minimum delay

perspective.

5.2.2 Stop Considerations

Undertaking a similar regression anlaysis for stops as
was presented 1n Section 5.2.1, the following regression

equations were oObtained:

CASE 1
Robertson's Model
Y, = 0.105 + 0.433X, ; R* = 0.74, p = 0.74
CASE 11 .
Calibrated Robertson's Model
Y, = 0.000 + 0.702%, : R?* = 0.95, p = 0.97
~ CASE 111
Calibrated Modified Robertson's Model
Y, = 0.000 + 0.72%X, ; R* = 0.94, p = 0.96

Based on the above eguations, we conclude that, from a
statistical perspective the Calibrated Modified Robertson
Model results 1n the best éverail foEonf the model for
predicting minimum vehicular stops. Figure 5.3 1illustrates
all three. stop regression lines along with the data points
for CASE III. In rgviewing thig figure it should be noted
that all six data poinég/ fall within the 95% confidence

bands.
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Principal conclusions that are reached from a minimum

stop perspective are as follows

In the range of 0.35-0.45 stops per vehicle the effect
of calibration of modifications to Robertson's model 1is
insignificant.

In the range of 0.45-0.80 stops per vehicles a

Robertson's Model which has not been calibrated could be
in error by 78% ((0.80)/0.45)). In the range of
0.00-0.45 stops per vehicle, a Robertson's Model which
has not been calibrated could have larger percentage
errors; however, the magnitude of this error in absolute
values 1s smaller. The former errors represent an
underestimation while the later errors represent an
overestimation.

A Calibrated Robertson’'s Model could be in error up to
43% ((0.80/0.56)).

A Calibrated Modified Robertson's Model could be 1in
error up to 38% ((0.80)/0.58)).

From the data collected and analyzed, no conclusions can
be reached for minimum stops greater than 0.85 stops per
vehicle. However, given the R? and p values, we can
conclude that this equation 1is strong in terms of its
predictive power and that similar conclusions can be
drawn for larger stop values. ; :

-’

Figure 5.4 1llustrates graphically the effect  of

re

calibration and modifications from a minimum stop

-

perspective.

5.2.3 Performa\ce Index Considerations

S

Again, a similar regression analysis for the

performance index as was presented in Section 5.2.1 and -

Section 5.2.2 resulted in the following regression

equations:

~—



108

U

T347SY3N IR, Tu NC mdqu}(ﬂu NOSHDILDC IS I

7.77 33443587

NeSdlaa 3

..‘ o\.h No,r < e
) m E s — (P®404Q110D iON )} TIAON S NOSLINISON
g N ==
. ‘ o .
= % 98 Zv ¥ -
Fors e [re—
- _ il o= TI00N S NOSLNINON 03ILVERINYI ———
% 56 % fr T == —
- Ay
x ‘ - 200N §NOSL¥IBOW QFI4IQ0N QILVNEINYI ——]
z & = e VivQ Q3AM3ISE 0 / QIUNSYIN =]
N ‘ — ‘
- r
. i ~ N l : l I | L l
v T . h M ) 1 1 1 LI 1
M o] o 0 =] o -
m W w mM © " L4 (2] ~ nlv
2 x.% ) X3GNI  3AILY 3w .
a A . r
e o
- \.a.‘..*w(.v.,.. * 4 &4
PR -
P St

FIGURE 5.4

EFFECT OF CALIBRATION OR MODIFICATIONS FROM A MINIMUM STOPS

PERSPECTIVE



109

CASE 1
Robertson's Model
Y = (0.041 + 0.877X ; R‘ = (.99, 4 = (.99
P p
CASE Il
Calibrated Robertson's Model
Y o= 0.720 *+ 0.861X ;s R = 0.99, p = 0.99
P P
CASE 111
h Calibrated Modified Robertson's Model
Y = 0.003 +# 0.963X ; R* = 0.99, p = (.99
p p :
Based on the above equations, we <can conclude, that

from a statistical perspective the lCalibrated Modified
Robertson Model results 1in the overall’ best form of the
model for predicting minimum performance index. Figure 5.5
1llustrates all three performance index regression lines
along with the data points for CASE III.'In reviewing this

figure, it should be noted that all five of the six data

-

points fall within the 95% confidence band. One data point

misses this confidence interval by only 0.09.

-

Principle conclusions that «can be reached fraom a

minimum performance index perspective are as follows :

L d

] .
1. Rebertson's Model which has not been calibrated could be

in error up to 14% ((10.00),/8.82)). .

2. A Calibrated Robertson's Model could be in error up to
15% ((10.00)/8.73). The differences between a calibrated

r
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and a non-calibrated Robertson's Model appear to be
insigntificant.

A Calibrated Modified Roberton's Model -~ould be 1n error
up to by 4% ((10.00) 90.4) .
Figure 5.6 1llustrates graphically the etfect of

calibration and moditications from a minimum performance
index perspective. It should be noted that the use of a
different weighting factor (performance index equals total
delay (unitorm plus random) plus four times the number of

stops) may alter these conclusions.
5.2.4 Overall Impact Of Calibration And Modifications To
Robertson's Model

Based on the previously discussed regression analysis

we conclude that the Calibrated Modified Robertson's Model

can i1mprove the predictive estimates of the minimum value of
delays by 13% (93.5/83.1), stops by 29% (72.5/56.3), and the
performance 1ndex by 9% (96.4/88.2). On the other hand, a

Calibrated Robertson's Model can improve on the previously

defined signal performance indicators by 4%, 24% and 11%
respectively. A similar regression analysis was also
duplicated for the complete range of offsets (all offset

values including the minimum value) for delays and stops at

each intersection surveyed and analyzed. Similar conclusive
results were obtained. Calibration of the individua! value
of alpha and beta along with some modifications to the

model, will consistently improve the prediction of signal

-
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performance indicators such as delays, stops and performance

.

index for any signal offset value.
{

l

5.3 Design Guidelines

The calibration results for t he survey sites
investigated are summarized in Table 5.7, and 1llustrated
graphically 1n Figures 5.7 to 5.12. For each site

investigated Table 5.7 presents the following information
the -alpha value which minimized the RMSE, thé beta value
which minimized both the RMSE and the rounding off error

when the product of beta and the travel time 1in steps is

calculated, the resulting K value (note Robertson's
recommended K value is 40), the calculated smoothing factor
F, and the associated degree of saturation. In reviewing

this table the-following trends have been 1dentified

ALPHA VALUE

. At intersections (summer data) where the degree of
saturation ranges from a high value (104 Avenue - 116
Street, Week No. 1 and 2) to a medium value (111 Avenue

- 116 Street) to a low value (102 A Avenue - 97 Street),
we note a corresponding decrease in the value of alpha
ranging from 0,45 to 0.15

2. The basic difference between summer and winter
conditions at high degrees of saturation appear to be a
slight decrease in the alpha value (Summer (.45 to 0.40
vs Winter 0.40 to 0.30). Severe winter conditions are at
the higher end of the range while average winter
conditions are at the lower end of the range.
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FIGURE 5.7

COMPARISON OF MEASURED (x) VS PREDICTED (O0) CYCLIC FLOW
PROFILE FOR 104 AVENUE - 116 STREET (SEVERE WINTER
CONDITIONS) WITH THE FOLLOWING CALIBRATED ROBERTSON'S
PARAMETERS : ALPHA = 0.40, BETA = 0.570
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FIGURE 5.8
COMPARISON OF MEASURED (%) VS PREDICTED (O) CYCLIC FLOW
PROFILE FOR 104 AVENUE - 116 STREET (AVERAGE WINTER
CONDITIONS, FURTHER DOWNSTREAM) WITH THE FOLLOWING

CALIBRATED ROBERTSON'S PARAMETERS : ALPHA = 0.30, BETA =
0.725
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FIGURE 5.9

COMPARISON OF MEASURED (%x) VS PREDICTED (O) CYCLIC FLOW
PROFILE FOR 104 AVENUE - 116 STREET (WEEK NO. 1) WITH THE
FOLLOWING CALIBRATED ROBERTSON'S PARAMETERS : ALPHA = 0.45,
BETA = 0.811
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+FIGURE 5.10

COMPARISON OF MEASURED (*) VS PREDICTED (0) CYCLIC FLOW
PROFILE FOR 104 AVENUE - 116 STREET (WEEK NO. 2) WITH THE
FOLLOWING CALIBRATED ROBERTSON'S PARAMETERS : ALPHA = 0.40,
BETA = 0.811 '
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COMPARISON OF MEASURED (%) VS PREDICTED (O) CYCLIé FLOW
PROFILE FOR 111 AVENUE - 116 STREET WITH THE FOLLOWING
CALIBRATED ROBERTSON'S PARAMETERS : ALPHA = 0.35, BETA =

0.722
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FIGURE 5.12

COMPARISON _OF MEASURED (%) VS PREDICTED (O) CYCLIC FLOW
PROFILE FOR 102 A AVENUE - 97 STREET WITH THE FOLLOWING
CALIBRATED ROBERTSON'S PARAMETERS : ALPHA = 0.15, BETA =
0.627
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BETA VALUE

1. At intersections (summer data) where the degree of
saturation ranges from a high value (104 Avenue - 116
Street Week No, 1 and 2} to a medium value (111 Avenue -
116 Street) to a low value (102 A Avenue - 97 Street),
we note a corresponding decrease in the value of beta
ranging from 0.811 to 0.627.

2. The basic difference between summer and winter
conditions at high degrees of saturation appears to have
significant impact on the range of beta values. During
typical winter conditions, beta is slightly 1lower than
summe r conditions; however, during severe winter
conditions, the beta value observed is lower than the
lowest value of all beta values 1n summer. :

K VALUE

1. When the TRANSYT model was 1initially 1introduced, the
recommended K value was 40 (alpha=0.50, beta=0.80). The
most current verdion of TRANSYT, Version 8, recommends a
K value of 35 (alpha=0.44, beta=0.80) in response to the
available published literature which indicates that more
dispersion 1s actually taking place in comparsion to
Robertson's orignal research. .Based on the Edmonton data
a K value of 35 still appears to be too high, suggesting
that in cgmparsion to other traffic flow patterns,
Edmonton drivers do not exhibit a compact platoon
behaviour. Edmonton data results in a K value ranging
from 9 to 37. :

Robertson ('’)stated that it would be reasonable to
expect that the valﬁe of F be a function of various site
factors such as road width, gradient, parkilng aétivity,
opposing vehiclar flow level, traffic composition, etc., and

not simply the average journey time (T). 'Robertson when

making this statement, in Eact indicating that the .alpha

value would only be a £ nction of these characteristics
singe the basic input into the TRANSYT model (Card Type 31 -
Link/Node Relation) permits. the user to input K. A closer

examination indicates that through K, the user could only

»
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change alpha and not the value of beta. The value of beta =
0.80 could not be changed by the user.

This Rese=archer, with the same reasoning, sugaests that
1t would also seem reasonable to expect that AT, which in
effect 1s the average arrival time of leading vehicles in
the platoon, should depend to some extent on these same site
factors (perhaps -more importantly to ambient weather
conditions) and not simply 0.8 of the average Jjourney time
(T). The Reseracher furtner suggests, that the amount of
platoon dispersion (which is a function of alpha, beta and
travel time) could be «correlated with the degree of
saturation at ‘the upstream signalized intersection. As
degree of saturation increases, the freedom to maneouvre
decreases, and hence we would expect that the amount of
dispersion to decrease.

The Edmonton data as presented in Table 5.7 provides
some conformation that alpha and beta could be a function of
site characteristics. It appears that a;grees of saturation
(ratio of volume to capacity) are perhaps a better indicator
of the most appropriate value of alpha anpx(f@$a for
design/analysis purposes. For this reason, it islrecé%mended
that the information presented in Table 5.7 be wused as a
design guideline. The Edmonton data also suggests that when
winter signal timing plans are being prepared, estimates of
w%ﬂter saturation flo& rates (°%*) and winter travel times
alonhe, are not adequate inputs for signal design. Different

emperical values of alpha and beta in comparsion to summer

v
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conditions are alsc required. Based on a weilghted averagqe
3
(weighted in proportion te the number of c¢ycles of data

collected) the fcllowing average empirical parameters mav

also be used tor general design purposes

[ AVERAGE EMPIRICAL PARAMETERS FOR USE IN ROBERTSON'S
RECURRENCE MODEL DWRING SUMMER CONDITIONS IN EDMONTON,
ALBERTA, CANADA : ALPHA = 0.34, BETA = 0.75.

’
AVERAGE EMPIRICAL PARAMETERS FOR USE IN ROBERTSON'S:

RECURRENCE MODEL DURING WINTER CONDITIONS I EDMONTON,
ALBERTA, CANADA : ALPHA = (0.34, BETA = 0.606.

3

%]

5.4 Practical Applications

Knowledge of platoon dispemsion has many

: . » . . : o
applications(**,??) apart from 1its main wuse in deriving

accurate downstream arrival patterns for signal offset

design and evaluation through the 'computation of delay,
-~

stops, and performance index relationships. The height of

the peaks and trough of the cyclic flow profile, and their

shape and location in time, provide the transportation
engineer with a great deal of addition information as

outlined below: ) t

1. Average flow. The area of the <cyclic flow profile is
proportional to the average flow. When inspecting
several such graphs, sites with heavy flows are easily
1dentified.

2. Major/minor road inflows. 1f the green times along with
the signal phasing sequence at the upstream intersection
are known, then the major and minor inflow rates can be
checked by observing the average flow during the
appropriate part of the cycle.

3. Benefijts of signal co-ordination The variation in the
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height of the <c¢yclic flow profile is a measure of the
need for signal co-ordination. If the height is nearly
constant during the cycle, then there is no benefit to
be gained by cc-ordinating the upstream and downstream

signals. This is true even when the average flow is
large. Conversely, a cyclic flow profiile with -
pronounced peak corresponding to a well defined platcorn
presents a strong potential for good signal

co-ordination.

Saturation flow. Saturation flow is defined as the rate
of flow across the stopline from a queue, but it can be
deduced from measurements at a site just downstream of
an 1ntersection. During some part of the signal cycle
(during that portion of the <cycle when a stationary
gueue exists), traffic will discharge at the saturation
rate.» With knowledge of upstream signal timings, the
magnitude, duration, and effect of length of green on
Saturatiqn flow can be «checked from the cyclic flow
profile.

Spare capacity. The part of the entire green time during
which the actual flow 1s below saturation flow levels
represehts the space capacity at the upstream signal
approach.

Platoon speed and dispersion. The location in time of
the peaks and troughs of the cyclic flow profile will
depend on the upstream signal timing, the time of
traffic platoons arriving at the upstream signal, and
the distance betweefi the up-stream signals and the site
at which the cyclic flow profile is measured.

Signal start and endJ lags. During a fully saturated
signal 'phase the observed cyclic flow profile can be
used to calculate signal start and end legs (°'). A
start lag 1s the initial hesitation following the
display of green prior to traffic discharging at a
constant rate. A end lag is the time when the display of
amber results in traffic discharging at a rate which
reduces sharply to zero.

Incident detection. The shape of the cyclic flow profile
will alter during the normal day. It may alter more
rapidly 1if there is an accident or other incident at an
upstream signal; change in cyclic flow profile shape may
be a sensitive 1indicator of traffic incidents. (This’
specific type of research is presently being undertaken
jointly by the Civil Engineering and Electrical
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Engineering Departments at the University Of
Alberta.)(?®) The computing program BRAD#+*PLOTLIB
permits the user to view graphically the variations (see
Figure 3.4) in the cyclic flow profile from one cycle to
the next.

Signal setting by TRANSYT. Cyclic flow profile traffic
analysis 1s likely to be particularly wuseful when the
TRANSYT method ofeoptimizing fixed-time plant has been
employed to derive the signal timings. The TRANSYT
computer program prints a cyclic flow profile graph for
each part of the network. Comparision of predicted and
measured cyclic flow profile's can be inspected and
quickly reveal any serious differences between theory
and practice. Corrections can then be made to the data
fed to TRANSYT and an improved standard of traffic
control will result.

International exchange standard. In the view of
Robertson, there is considerable merit in using cyclic
flow profiles to exchange information on the behaviour
of urban road traffic in different cities and countries.
Comparison between measured and predicted cyclic flow
profiles confirms the accuracy of the exlsting methods
and highlights areas for further research and
development. For example, advisory speed are displayed
tc motorists in some co-ordinated signal systems. To be
effective such signs would be expected to alter the
downstream CFP shape. It would be interesting to
establish whether they do.

As a further example, it may be possible as this
reseach has indicated on a preliminary level to
establish relationships between weather conditions and
the cyclic flow profile shape. An icy road not only
affects saturation flow. rates, but also journey times
and platoon dispersion factors. At the present time,
little is known of the magnitudes of these effects.

Teply (°?) provided a definition of a framework for
evaluation of the applicability of foreign experience in
traffic management, considering behavioural differences
of drivers and pedestrians in various countries. The
element of individual and collective behaviour as
measured by traffic platoons (dispersions, headways and
spacing, headway stability) either constitutes or
significantly influences traffic behaviour. Traffic
platoons, therefore is one measure to report deviations
from the accepted level.

Preferential street treatment. To provide guidelines in
the traditioq’l preferential =~ street treatment of
co-ordination ~ design. Streets with compact platoon



movements can be favoured over streets with considerable
platoon dispersion.

Ranking of network Jinks. To aid 1n the ranking of
network links 1n order of thelr 1mportance in terms of

effectiveness of co-ordination. Link ranking 1s
important 1in off-line signal control strategies such as
SIGRID (SIgnal GR:d Design) Program (’') where links are

weighted by thelr importance before optimization.

Need for coordination. To provide an indication of
co-ordination needs. For example, links without platoon
movements can be excluded from the network description
to save computing time.

Network condensation. To aid in network condensation for
easier analysis. For example’, the Combination
Program(*’) which 1s only applicable to certain complex
networks can be condensed to suit the program by the
deletion of links with relatively 1ll-defined platoon
structures.

Understanding, the flow characteristics at a midblock
access Troad | between two signalized  intersections.
Estimating tHe shape of a cyclic flow profile flow for a
two-way Yoad at a midblock access capacity analysis. If
the platoon from both directions of flow cross the
midblock access road at the same time, adequate gaps for,
the minor street flow may be created. On the other hand,
staggering the arrival of both platoons may imply that a

capacity deficiency may materialize at the access road.



6. SUMMARY

6.1 Conclusion
The results of this research have shown that the

dispersion of traffic platoons between fixed-time signalized

intersections can be simulated gulte accurately using
Robertson’'s Recurrence-.Modél. 1In the absense of locaily
avallable information, Robertson's recommended empirical

parameters of alpha=0.50 and beta=0.80 or more recently

alpha=0.44 and beta=0.80 represent good starting
approximations. Under circumstances such as winter weather

conditions and degrees of saturation less than 90% on the
Street system, Robertson's recommended parameters will be in
error. The effect of these errors has a signficant éféect on
the accuracy of signal offset design which is measured by
such 1ndicators as delays, stops and performance index.
Significant improvements can be made by calibrating the two
1individual empirical parameters and introducing an
‘initialization equation (Modified Robertson's Recurrence
Model) to start the prediction process. Specifically, the
following errors in signal performance are noted :

MINIMUM VEHICULAR DELAY

1. A Robertson's Recurrence Model which has not been
calibrated to local conditions could be in error up to
20%.

2. A Robertson's Recurrence Model which has been calibrated
to local conditions could be in error up to 16%.

127
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AN

3. A Modified Robertson's Recurrence Model which has been
calibrated to local conditions could still be in error
up to 7%.

N

N

MINIMUM VEHICULAR STOPS *

i. A Robertson's Recurrence Model which has not been
calibrated to local conditions could be 1n error up to
78%.

2. A Robertson's Recurrence Model which has been calibrated
to local conditions could be 1n error up to 439%.

3. A Modified Robertson's Recurrence Model which has not
been calibrated to local conditions could still be in
error up to 38%.

MINIMUM PERFORMANCE INDEX

1. A Robertson's Recurrence Model which has not been
calibrated to local conditions could be in error up to
14%. '

2. A Robertson's Recurrence Model which has been calibrated
to local conditions could be in error by 15%.

3. A Modified Robertson's Recurrence Model which has been
calibrated to local conditions could still be 1in error
up ‘to 4%. :

Based on the analys&s of six survey sites, the

Researcher concludes that both calibration and modifications

to Robertscn's Recurrence Model can reduce the error in

prediction of delay by a factor of 3, error in prediction of
stops by a factor of 2, and error in prediction of the

[y

performance index by a factor of 3.5. These conclusions have
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significant implications in the following areas

The design of signal timings along a one way arterial
where the objective is to minimize the number of stops.
An error in the estimate of the number of stops byra
factor of 2 will result in sub-optimal signal design.

The design of network timings in the TRANSYT model 1s
based on an optimization procedure. The offsets between
signals are adjusted by a "hill-climbing” optimization
procedure to minimize an index of performance. The index
of performance is a weighted combination of delay and
stops. Errors in delay estimates and stops estimates,
when combined into a performance 1ndex generally will
result on average in a larger error. Optimization of an
index which 1s 1n error will result 1n sub-optimal
network timing design.

6.2 Recommendations

To improve on the prediction of several signal

performance indicators such as delay, stops and performance

index the following recommendations are put forth:

Robertson's Recurrence Model in the TRANSYT method of
signal design should be modified by 1introducing an
initialization equation to the prediction process.

Basic imput into the TRANSYT method of signal design
should be modified to allow the 1individual empirical
parameters of alpha and beta as input parameters.

In the absence of data for a specific signal network,
the following empirical parameters should be used in
Edmonton, Alberta (Canada):

|
(@}
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o
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.34, Beta
.34, Beta

SUMMER CONDITIONS
WINTER CONDITIONS

Alpha
Alpha

|
o
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o
o
[e)}

The Micro-computer Cyclic Flow Profile Monitor has been
demonstrated to be an excellent tool for collecting
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real-time traffic platoon data. It 1s estimated that
with two tehhnical support staff and two-three hours of
total survey time (setting up of the machine, survey
1tself, dis-assembly of survey equipment), approximately
one-half to one hour of data can be collected to a
resoiution of one-tenth of a second. With the software
packages (BRAD#+*PLOTLID, GORDONV1!, GORDONV2 and DSPI)
that were specifically designed for this research, it is
estimated that one to one-half hour of support staff
time would be reqguired to obtain the most appropriate
value of alpha or.beta. The City Of Edmonton traffic
signal design/analysis team 1is, therefore, encouraged to
use the data collection technique and the various
software programs gdeveloped for this research. This on
going process of data collection and analysis at
selective roadway links 1s needed to confirm that the
predictions by TRANSYT reflect the actual fi1eld
conditions. :

6.3 Further Research Needs o

The following further research needs have been

o

identified:

The 1ni1tialization equation introduced into the Modified
Recurrence  Model was based on the assumption of
steady-state conditions. Additional research 1nto the
validity of this assumption is required especially when
it 1s observed during peak time periods, that time
varying demands occur.

The analysis of the data base presented, indicates that
the individual value of the alpha and beta parameters is
influenced by weather conditions (summer vs winter) and
degree of saturation. Specifically it was observed
that, with the summer data, a éonsistent trend (as
degree of saturation increased the individual value of
alpha and beta 1increased) appeared. More winter and
summer data could be instrumental in defining more
refined design/ analysis gquidelines in the use of the
two empirical parameters.

More study 1is needed to explain why a Calibrated
Modified Robertson's Recurrence Model still results in
an underestimation of minimum delay by 7%, an
underestimation of minimum stops by- 38%, and an
underestimation of minimum performance ‘index by 4%.
Suggestions 1include : revisions to the form of the F

p -

4

oy
W
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factor (making BT a real value vs an integer value),
prediction downstream 1s based on a portion of the
previous calculated interval (i+BT-1 vs 1+8T-2(3,4...)).

Detail statilstical analysis of the travel time of
individual vehicles in a platoon (platoon followers) vs
the travel time of ©platoon leaders so that a better
understanding of the beta -empirical parameter can be
determined.
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