University of Alberta |
Department of Civil Engineering

Structural Engineering Report No. 166

AN EIGENVECTOR-BASED
STRATEGY FOR ANALYSIS OF
INELASTIC STRUCTURES

by

J. Napoledo Fo.
. AE.Elwi
and

D.W. Murray

May 1990



Structural Engineering Report No. 166

AN EIGENVECTOR-BASED STRATEGY
FOR ANALYSIS OF INELASTIC STRUCTURES

José Napoledo, Fo.
Alaa E. Elwi
and

David W. Murray

Department of Civil Engineering
University of Alberta
Edmonton, Alberta
Canada

T6G 2G7

May 1990



ABSTRACT

In the realm of materially nonlinear structures, an assessment
of current solution strategies has suggested the need for more
efficient methods of analysis. A simpler iterative phase, a fast
convergence rate and a low cost are the specific demands. The
strategy should also be able to trace complex load-deflection
histories, composed of ascending branches, prolonged flat segments,
limit points and unstable descending paths. Furthermore, the

correct failure mode should be captured.

To satisfy these requirements, an eigenvector-based strategy
has been proposed. Its formulation is based on a transformation of
the equilibrium equations, from the basis of the global degrees of
freedom to the basis of the eigenvectors of the tangent stiffness
matrix. In -addition, progressive damage in inelastic materials
causes domination of the eigenvectors associated with the lowest
eigenvalues upon the incremental displacement response of

inelastic structures. This allows for the reduction of the involved

degrees of freedom.

The formulation‘ of the strategy is organized in two phases. In
the pre-iterative phase, the finite arc-length of the load-deflection
curve is adopted as an independent parameter. Its size varies with
the current value of the stiffness parameter which is a measure of

the level of nonlinearity. A criterion for unloading, based on the
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presence of negative pivots in the factorized stiffness matrix, is also
included within this phase. Following the check for participation of
preselected eigenvectors, the transformation and reduction of the

incremental equilibrium equations take place.

In the iterative phase, the generalized displacement
increments and the generalized forces comprise the incremental-
iterative equilibrium equations. These variables are constrained to
an iteration path which is orthogonal to the arc-length. The
modified Newton-Raphson method is the iterative scheme followed

in this phase.

Four materially nonlinear structures serve as applications for
the proposed strategy. Comparison with other existing methods is
also ptovided. A fast rate of convergence and savings in CPU time,

as much as 45%, are achieved.

iii



ACKNOWLEDGEMENTS

This research program herein reported was carried out in the
Structural Division of the Department of Civil Engineering of the
University of Alberta.

The author feels grateful to Profs. A.E. Elwi and D. W. Murray
for the technical supervision of this work.

The funding of this project was provided by CAPES
(Coordenagio de Aperfeigoamento de Pessoal de Nivel Superior,
Brasil), PUC-RJ (Pontificia Universidade Catdlica do Rio de Janeiro),
NSERC (Natural Science and Engineering Research Council) through
the operating grants AS877 and A1673. The author wishes to

express his gratitude to these sources.

iv



TABLE OF CONTENTS

Contents: Page:

Chapter' 1 : Introduction

1.1 Problem Statement .......ccccccerrverssiissenssnesseinisacssissesssesssasisnssesssssasnns 1
1.2 ODBJECHIVES ..couvrreerinrnsrirnsnnsrisessnssessnsnsssnsessessusssssensassessnssassessassssasssassesness 3
1.3 SCOPE cccreerecnnnersissnssssncssssnssssnssasssssesssssnssssssssssssssssosssssasssessssassnssnsssesesses 3
1.4 OULHNE ....covvueninrrrrcnsenisinisenassrassessssssnacsisasssasassassssesmsssasassesesasassesessanes 4
Chapter 2 : Literature Review
2.1 INTOAUCHION ....coceriririsronnnnmsissnnnesnescsssssessessssssesissssnssnsesesssessssnessanees 6
2.2 General Formulation .......c..cccceiivinnimnecnniinemcnsscenseensenssenssseecssssnsenns 7
2.3 The Newton-Raphson Methods .........ccccccveiennicceniciicincenniencsnnens 8
2.4 The Displacement Control Method .........ccocoveirininnerinnecensinannens 9
2.5 The Arc-Length Methods ......coccceeiinvieiincceericnssenninncnneescsssseenenenes 11
2.6 The Reduction Methods ..........ceeevvvirsninsuininiensnssnnsienicensscsssennnes 13
2.7 Solution strategies in the Program NISA ...........ccccernnunneaee 15
2.8 DISCUSSION ..cucruieruiiseesrenisnsnssesssessmsessisnsssesssessessssesssssssessessssssansssssses 16

Chapter 3 : Formulation of the Incremental Equilibrium

Equations in the Basis of the Eigenvectors

3.1 INrOAUCHION .....oceuiiuennininreinensesncsrtsssessesseressessnessnessessenssessssesssans 23
3.2 Incremental Equilibrium Equations in the Natural
BaSIS .ot e sass s sses s sa s nes 25
3.3 Change Of BasiS ....ccccceereeseininsunsunssessnnsesssnsseisensnnseessesseessisansssssassneas 27
3.4 Incremental Equilibrium Equations in the Eigenvector
BASIS c.voveuenrnrnennnnnesesnsiniessisennesinisiseisesasssasaiassssssasssssasssnsassssssssassnsases 29
3.5 DIiSCUSSION ....corirurreinincnssisnicsinsiesisessssessessesessssessessssesnssnssssssssasssasnas 32



Chapter 4 : Domination of Eigenvectors of Materially

Nonlinear Structures

vi

4.1 INrOQUCHON ...ceveercieennicersneisrerusssssnsessnesssssesessnssessssasssassessensanssnsas 36
4.2 Material Constitutive Relations .........ccceevviieeniniensnnnennnennnee, 38
4.3 Analytical Parameters .......cceceeererrssrmnsnnssnnissnnasrssenssnesnneesseesnes 39
4.3.1 Basic Assumptions and Definitions ..........ccccerunneeee. 39
4.3.2 The Relative Size Parameter ..........cccceevevrereeriennnnnnn. 41
4.3.3 The Angle Parameter ........c.occcerecererecninnensinnnissnnencnannas 42
4.3.4 The Participation Parameter ...........ccceeevvvmunnnnnnennne. 44
4.4 The Approximate Displacement Increment Vector ......... 47
4.5 CaSe StUAIES ....coveerererrrsersacssissnnsessensuessiesnssnssanessssnssssssssnsassssasnaassos 49
4.5.1 A Plane Structure with Varying Geometric
PrOPOTHONS ....ccceeerenesniecneesessnnanssnsassssssesessssessssnasnensenss 49
4.5.2 An Elastic Perfectly Plastic Cantilever Beam ...... 53
4.5.3 An Elastic Softening Beam-Rod ........cccocvivieveuanenen. 58
4.5.4 A Reinforced Concrete Deep Beam ......................... 62
4.5.5 A Reinforced Concrete Shallow Beam ................... 70
4.6 DISCUSSION ....ccorrverreencsssarsessscsesniseesesssssssssssssssssssasnssasassansssasassassassssses 74
Chapter 5 : An Eigenvector-Based Solution Strategy
5.1 INtrOQUCHION ...ccvecveeerreereessasessnsssmsanssnssnnessssnassssssasssssnsssansnsssaassans 113
5.2 General CharacteriStiCs ......cccoveerrunssenrernrreseerssnressnsassseessensssannas 116
5.3 The Preiterative Phase ........ccccoveriiinncinennncnnienniennnniicecenneen. 117
5.3.1 Eigenanalysis of the Tangent
Stiffness MatriX ......cccvevrcemrnennensninsnnssnncsennuecnnesnnennes 118
5.3.2 Assessment of the Participation of the
Preselected Eigenvector Components ................ 121



5.3.3 Transformation and Reduction of the

Conventional Incremental Equilibrium

EQUALIONS .....ceceeeissiennensncssscnnsnnsasessssesasssssssssennssasssssassanss 123
5.3.4 The Stiffness Parameter ...........cccecevvvniricsneracnecnn. 125
5.3.5 Determination of the Arc-Length Size ............... 129
5.3.6 The Sign of the Initial Load Factor
11162001110 11 S 133
5.4 Comments on the Preiterative Phase .........cuveveerviirinnnnne. 137
5.5 The Iterative Phase .......cccceevvierinnrceriiseccernsnnseecseensennsennnnees 137
5.5.1 The Constraint EQUAtion ..........ccceeeuerccrenescrnneersnnnnen 138
5.5.2 The Iterative Equilibrium Equations ...........c...... 140
5.5.3 The Combined System of Equations ..........ccccc...... 141
5.5.4 The Two-Step Technique ..................... . 141
5.5.5 The Load Factor Increment ..........cccceeruriieriiccnnnnee. 143
5.5.6 The Generalized Displacement Increment ......... 144
5.5.7 Convergence Criteria ........cccceeerreerscrinricssccsnscsssnnenne 146
5.6 Conditions and Rate of CONVErgence ..........cccevrevereereuerennnns 147
5.7 Computational WorK .....c.ccceevvinrnrririvnrensiernisiscnnsncinssinssseeenens 149
5.8 DISCUSSION ...cceuiererensscsersnsnssnsnssnsessesssessesesssssessesssssesssssessssssssessnanss 150
Chapter 6 : Applications
6.1 INrOQUCHION .....ccvrreercersricsrissinneiserssesnesssnssnissescssessnsssesssssasssnsesanee 162
6.2 APPLCALONS .....evvvneeriinsnssnenrissnissesssissessssessssssssssssssensssssssssssasssesss 164
6.2.1 The Elastic Perfectly Plastic Cantilever
BeAM......ceccceeecccnnasnssinisiscasistsassiassssesssssassssssssasssssssssessases 164
6.2.2 The Elastic Softening Beam-Rod ..........c..ccccc.e..... 168
6.2.3 The Reinforced Concrete Deep Beam ................. 171
6.2.4 The Reinforced Concrete Shallow Beam ........... 177

vii



Chapter 7 : Summary, Conclusions and Recommendations

7.1 Summary and Conclusions .........ccceeveerrnnseersersnensencsnnensenseens 192

7.2 Recommendations ...................................... 194

BibHOZTAPRY .....cconreeiriniisiisesninisenssisnsnsaesesssssssssaessnsssssasassssssussssssssssssssasses 196
Appendix A : Material Models

A.] INTOAUCHOMN.....cccverrrrerserscecrcsrisersnsscsnssessssassnnsssssnanesssssnassssssasessas 204

A.2 Material Models......cccocinvnninsvininnnnnnenneninsnnnsinsssssnssscsssissesenees 204

A.2.1 The Linearly Elastic Model.........ccceocveeiruiinnnienccnnenens 204

A.2.2 The Elastic-Plastic Model..........c.cceeeurernmnvianraneencnnen. 205

A.2.3 The Multilinear Elastic-Plastic Model................. 206

A.2.4 The Hypoelastic Model.......cc.oovevummrenrensnirecscsscnane 207

A.3 Steel and Concrete Data........coveiieenenirnensennsnincssnccscissienssanees 209

A.4 Analytical and Experimental Reinforcement Strains.. 209

viii



Table:
2.1
3.1
4.1
4.2
4.3

4.4

4.5

4.6

5.1

5.2

6.1

6.2

6.3

A.l

A2

A3
A4

LIST OF TABLES

Page
Summary of the arc-length and constraints equations............. 19
Summary of available base vectors ............ 35
Criteria of partiCIPatiOn......cccerseressssesssnrsssrssssnsessssesssssesssssessasssssssesssnsasens 76
Actual and approximate deflections of the plane structure.... 76

Loads and tip deflections for an elastic perfectly plastic

DEAMNL.....coreeenrinnisssasnsnnansnssnsssasassesssssssnssesmsnsesssssssassenssassssesssssssssssssssnssssases 77
Loads and midspan deflections for a reinforced concrete

deeP DEAMI......ccuriicieiisnccstnisicsicissesnsssssiiesesissssassssasssssssssssasasnsaesans 77
Loads and midspan deflections a the reinforced concrete
SHALIOW DEAIMN.......ccorrinrinensnsennnnissssussesnsnsansnnsassnssusssssncsssonesssasssnessnsssanssneanee 78
Number of global and dominant degrees of freedom for the
CASE SLUAIES....ccuereeerearsnnensscssssssssissssensnssessnsasssesesssessssesessssassassnsansasosnosessassasns 78
Computational work of the preiterative phase...............cucuu.eee. 151
Computational work of the iterative phase.........coccceriveeeiininnnnns 152

Solution parameters from the analysis of the elastic

perfectly plastic cantilever beam..........coccvevinereiiveneenniinnenncaneenae 181
Solution parameters from the analysis of the reinforced
cONCrete deep DEAM......cocurveiesiinienneriienseirnssensstecssessaeesaneneesnesssensnenes 181

Solution parameters from the analysis of the reinforced

ShAllOW DEAMN.....cccceesiniereisnnnrisnisencsinsisssnssesssisncesenssessssssmessessnsssnssnesassannns 182
Steel data for the reinforced concrete deep beam................... 210
Steel data for the reinforced concrete shallow beam............. 210
Concrete data for the reinforced concrete deep beam........... 211
Concrete data for the reinforced concrete shallow beam...... 211

ix



LIST OF FIGURES

Figure: Page:
2.1 Typical iteration within a SOIUtion SteP.....ccecverveeereiiniiiriiiniinniannns 20
2.2 Newton-Raphson iterative SChemes........eevvviiciiiniiiniiicnniirniccineee, 20
2.3 Displacement control method........ccuevveeeinieiinininicenniitiinciineinnnnns 21
2.4 Continuous and finite arc-lengths........ccccccvvieiirimmnneriiinicirnineeienennnnee. 21
2.5  Arc-length Methods......cceiviiereninnnneensnisnniesensesnnseessssssssisssssesnsnencnsas 22
2.6  Solution strategies in NISA......c.ccovriiiinninnrnninnicnninneesscesenssnsssiseseens 22
4.1  Expansion theoreM.........c.cceerrreriennresnsessenescsnnsnsisnsessisnssnsmssisssssssssssssesans 79
4.2 Conditions of parallelism and orthogonality........cccecereereiriuesinnnnne 79
4.3 DireCtion NGIES.......ccccevsererursesnssssssrsnsarssensansssnssssssssossussnsesassesassasisnsanssssssns 80
4.4 Plane StIUCLUTE......cccereerercnnecsssrsaresassnosnessesssssssssassnsasessosasssssssessassnssassssesanss 80
4.5 Modes for the case H/L = 1/4......ucvviniimnniiinernnniccnetescnnnnensnaeens 81
4.6 Modes for the case H/L = 1/2......ccuiinniirrniimntniiicenineinccnnncssncisnnenee 82
4.7 Modes for the case H/L = 1/1...uurivineiriiiiinneriiercceiccnnsnaccnaeeens 83
4.8 Modes for the case H/L = 2/1.....cuueieeeeniinntiicniinnncnscsaenencnnnennne 84
4.9 Modes for the case H/L = 4/1.....uconvinreiniiinriicieennenccnnnsnnnecnaecees 85
4.10 Relative size parameters for the plane structure........................ 86
4.11 Angle parameters for the plane Structure...............ccceieeineiinnnnens 86
4.12 Participation parameters for the plane structure..........c.......... 87
4.13 Participation parameters for the first and

second eigenvectors of the plane Structure..........c.c...cccvvivuneneennn. 87
4.14 Elastic perfectly plastic beam.......cccoviveevrnniiniininiiiieiiniiineenen. 88
4.15 Load-deflection curves from the experiment and the

ANALYSIS...cvuerersrersssscssasacssssisessssessassessssssesssssssssssssnssssssassssssssssassasssssssnanssssssas 88
4.16 Development of yielding ZONES........cccoovurversercerccsssccnsinnseisneissnessinenees 89
4.17 Modes for the elastic perfectly plastic beam..........ccocecuveeieennneen. 90



4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31
4.32

4.33

4.34

Normalized eigenvalues of the elastic perfectly plastic

Elastic softening beam-T0d.........cccccoreruerersuenssnersseessserscssnecssnesseessnsanns
L0ad-defleCtion CUIVE..........ccorucmiessinsustssicnstssesisinsinsssnsssensinsencassacssenss
Development of SOftening ZONEs........cceeeecisneriisscseeriesscsnnnnecscssssseensanes
Modes at linearly elastic regime and at limit point....................
Modes at states C and Di........cccoceeereriicrecnniscricenssenssssssccssesesnsesaeesaesses
Normalized eigenvalues of the elastic softening beam-rod....

Relative size parameter of the elastic softening

Reinforced concrete deep beam.......ccccevcereriiiiirnniiecriscnneenreesessnneensennes

Load-deflection cuves from the experiment and the

Distribution of cracked and crushed zones from the
experiment and the analysiS.....c..cccceervereieenseresssneensiniennnereeesnenseanas

Distribution of material damage at failure.........cccccerrervrerreennnnnne.

X1

97



4.35

4.36
4.37

4.38
4.39
4.40
4.41
4.42
4.43

4.44
4.45

4.46

4.47
4.48

4.49

4.50

Normalized eigenvalues of the reinforced concrete deep

DBAMN....coveererenerereensesnesssessossorsessssssssssnessessesesssersassassssssssnsaessansassnsasssssasass 101
Modes at fAIIUTE......cccrerreeerentesesssosessemssesssssesssnssscssssacsssssssssssssasassssesansnaas 102
Actual and approximate displacement increment vectors

AL FALIUTE. c..veverereeeneneerenerenesesssnssssssssssssasssesessssssnonssnssssnsssanssassassnsnssnsansasansns 103
Relative size parameter of the reinforced concrete deep
DEAIMNL....couereererereerrrereenssessassssssssssssssssnsssssessssessssesssnsssssessrssssssssssesassantsssassasssss 104
Angle parameter of the reinforced concrete deep
DEAIML.c.cevrrircrersesennsaessnnesssnsssssssessossssessssassssssorasssssssssssssssssssssasasessesssnsnsasas 104
Participation parameter of the reinforced concrete deep
DEAM..uuviueirrernseernsenaresssssssssssssssasssosseseonssssesestssssassssssnsssnssssssassanasssasasssanes 105

Relative size parameter for the approximate displacement
increment vector of the reinforced concrete deep beam....... 105
Angle parameter for the approximate displacement

increment vector of the reinforced concrete deep beam....... 106
Participation parameter for the approximate displacement
increment vector of the reinforced concrete deep beam...... 106
Reinforced concrete shallow beam.........ccccevvvvemricinnneniiicnteeernnnnnene. 107
Load-deflection curves from the experiment and analysis.. 107
Distribution of cracked and crushed zones from the

experiment and the analysiS.........ccveviiiieeninniiniininenncc e 108
Modes of the reinforced concrete shallow beam............cc....... 109
Actual and approximate displacement increment vectors

of the reinforced concrete shallow beam........cccccceverrirrurmnnennnannee. 110

Normalized eigenvalues of the reinforced concrete shallow

Relative size parameter of the reinforced concrete shallow

Xii



4.51

4.52

5.1
5.2
5.3
5.4
5.5
5.6
5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
6.1

6.2

6.3

DEAIMNL . cureeniircennenncssnssassasssacssasasassssssasasssasssasssasssnsssssssssssssssssssssssasessssons 112
Participation parameter of the reinforced concrete shallow

DEAIML.....ccrerrresnnsneansesssiscssossssasssssssssssensssessansasassssnssessassssssssssesssssasssnssasos 112
Preiterative phase in the natural basis.........ccccceveermeeneceniciiiinnnnn. 153
Preiterative phase in the reduced basis.....cccccccviiiiiiiiiiiiiiirieniena. 153
Loads in the natural basis........ccceevrernrirnierserssecssucesscnnuccsssicsnncnsenennes 154
Loads in the reduced basis.........ccoceeveicriinvnsseenssnssnncnnsneccnncnennne 154
Current Stiffness Parameter........ccceevervureesicssinnenrrccssssnrsenrenssassneeeesenne 155
Average stiffless parameter........ccovvveeriirurnriisnnreiecisneeccssnneeessinneens 155

Typical load-deflection curves for behavior

types 1,2 and 3.......ieeciiiininnnnniseciisnne et assssssnsnesssesesassennes 156
Variation of stiffness parameter for behavior

types 1,2 and 3.ttt sasaae 156
Functions for the arc-length factor f.........cccccecvvviiviisvniiiinncccnnnnnen. 157
Types of equilibrium paths.......cccccvvvvreiriiniieiiccciriieiceeeniecreneeen, 157
Flowchart of the preiterative phase........cccoeevvuemereviviiriinnneecniennn. 158
Iterative phase in the reduced basiS......ccccceevveviuenenccricciciinenenenen. 159
Two-step technique in the reduced basis.........ccccoererierenrruennnennee. 159
Flowchart of the iterative phase........ccccccvririiiicrnnnrirenisisscsenenennenenne 160
Conditions of COMVETZEIICE..cccvrreienrairrsnnsessasssesasssssssesssnsassasssssssssassasassas 161

Conventional load-deflection curves of the elastic perfectly
plastic cantilever beam.......c.ccovveineeniieniiinssinisnnneeneesseeseeseeenaeeas 182
Generalized load-deflection curves of the elastic perfectly
plastic cantilever beam..........covvvivviinvcnnecnsnennninnniinneeinissieneneseenens 183

Stiffness parameters of the elastic perfectly plastic

xiii



6.4

6.5

6.6

6.7

6.8

6.9
6.10

6.13

6.14

CANLIEVET DEAMN......ccueeereeererereesessesssssseessssnsssssnssosssssssssssessssasnsesasasarsassases 183

Factor f for the elastic perfectly plastic cantilever

Convergence behavior for a solution step of the elastic
perfectly plastic cantilever beam.........oeereeeiciiiineieisennenncennennneans 184

Conventional load-deflection curves of the elastic softening

DEAIMI-TOW......ceeeeererrsessnsnescosissssessesnssnsssoscasssessesssssssessesseassnssnasasssssassanaansas 185
Generalized load-deflection curves of the elastic softening

BDEAMTOM......ceceereeeereennrnnsnesosisasssssisansessessssacssssessssassnsassssnssesssossasasanssssaasaas 185
Stiffness parameters for the elastic softening beam-rod....... 186
Factor f for the elastic softening beam-rod..........ccceeevverveerinennnnn. 186

Conventional load-deflection curves of the reinforced
cONCrete deep DEAML.....ccciviivrisiiirrinniensiesinsnenessessaessessnessesensssossassssaes 187
Generalized load-deflection curves of the reinforced

concrete deep DEaAML......cccvvvivrieerieesnisnnsnessessnnssensssnssessssssessassnsesassasoss 187

Midspan deflections of the reinforced concrete deep beam. 188

Stiffness parameters for the reinforced concrete deep

Factor f for the reinforced concrete deep beam........... R 189
Convergence behavior for a solution step of the reinforced
concrete deep DEAML......coeeeieimieieiririciinrisiesneseesssssnsssestesnsessesaessnssassas 189
Conventional load-deflection curves of the reinforced

concrete Shallow beam.........cueccieniueiiiniiinnniniieennrnnr e cseccenens 190

Stiffness parameters for the reinforced concrete shallow

Convergence behavior for a solution step of the reinforced

concrete SHALIOW DEAM.......cccivvrereeeeririeereeeeennescecresnessiesseenssnssssssssnnanesns 191



A.l
A2
A3
A4
A5
A.6
A7

A.8

Uniaxial linearly elastic behavior.......c..ccceeecreesisnnsiirneernrneenreernecnnen. 213
Uniaxial elastic-plastic behavior.................. fesesnnesnteriisesssnseesiassasnns 213

Multilinear elastic-plastic behavior of the reinforcement.... 214

Tensile behavior of CONCIELe........cuieeiuriirniecsrneisensisscniescnsesncssnssnsnaes 214
Compressive behavior of CONCIELe......cccvvureriersrnnerssssrrnersesisnereessennne 215
Shear behavior Of CONCTIELE........covvveicrirnsiniesseicsssnisisensssneessnresssensnses 215

Comparison of reinforcement strains of the reinforced

conCrete ShAllOW DEAMN.........eueeeevereeeiiisiecsieeseessreneeessnnsssssessessssssessasaesans 216

Comparison of the reinforcement strains of the reinforced

CONCIEte dEEP DEAMN...cccuiernieranscnnecssreserissansssersssssresssnesssassssnsssaseesseens 216

Xv



General:

{}
<>
[]
[’
(1!
TOL
DOF
det
SNRM
CALM
ESS

#ITE

-

M =9 g z ©

Scalars:

Ap

Ap
i-1

LIST OF SYMBOLS

Column vector.

Row vector.

Matrix.

Transposed matrix.

Inversed matrix.

Tolerance.

Degree of freedom.

Determinant.

Standard Newton Raphson Method.
Constant Arc-Length Method.
Eigenvector-based Solution Strategy.
Number of iterations.
Halfbandwidth.

Number of preselected eigenvectors.
Number of global degrees of freedom.
Number of dominant eigenvector components.
Product.

Summation.

Load factor increment at the (i)th iteration.
Load factor increment at the first iteration.

Load factor at the (i-l)th iteration.

Xxvi



1Ac {0},
1{Ar} I

Prescribed load factor.

A real and scalar function.
Prescribed displacement increment.

First component of the prescribed displacement increment

at the first iteration.

Second component of the prescribed displacement

increment at the first iteration.

Finite arc-length at the (i)th iteration.

Factor to control the global arc-length size.

Factor to control the displacement component of the arc-
length size.

Factor to control the load component of the arc-length size.
Component of the displacement increment vector.

Component of the reference force vector.

Kronecker delta.
The i eigenvalue.
The i generalized displacement increment.

The i generalized unbalanced force.

th

Relative size parameter related to the i relative size

parameter.

th

Euclidean norm of the i~ eigenvector component.

Euclidean norm of the displacement increment vector.

th

Angle parameter related to the i~ eigenvector component.

Absolute norm of the i generalized displacement.

th

Participation parameter related to the i~ eigenvector

component.

XXvii



Ao

i{Ac) 1

C

k
.
Ap
k)
S
1{Ar}, I

C
Ap,

b
Ap

b
Apq

Generalized displacement increment related to the
approximate displacement increment vector.

Relative size parameter related to the approximate
displacement increment vector.

Angle parameter related to the approximate displacement
increment vector.

Participation parameter related to the approximate
displacement increment vector.

Absolute norm of the generalized displacement increment
related to the approximate displacement increment vector.
Shift.

The i eigenvalue of the shifted stiffness matrix.
The i generalized displacement increment related to the
first displacement increment vector.

Euclidean norm of the first displacement increment vector.

Overall stiffness at the beginning of a solution step.

The first load factor increment in a solution step.
Overall stiffness at the beginning of the first solution step.

Stiffness parameter.

Euclidean norm of the first displacement increment vector

at the first solution step.

First load factor increment at the first solution step.

Net load factor increment at the end of a solution step.

Net load factor increment at the end of the first solution

step.

XXViii



#IE i
I E{Aa} I Euclidean norm of the accumulated generalized

displacement increment vector in a typical solution step.

#IIE i
I ;{Aa}'l ' Euclidean norm of the accumulated generalized

displacement increment vector in the first solution step.

AL Finite arc-length at the beginning of a solution step.
c
AL; Finite arc-length at the beginning of the first solution step.
AL Finite arc-length after adjustment.
f 1 Factor of adjustment of the arc-length size.
Af Adjusted first load factor increment.
p Total load factor after the first iteration of a solution step.
AWC Incremental work at the beginning of a solution step.
di; The i'" pivot of the stiffness matrix.
AWi The i'® incremental generalized work.
Pl . Total load factor at the i iteration.
I {.AO‘} 1|| Euclidean norm of the generalized displacement increment

vector at the ith iteration.
i
"{AY} ! Euclidean norm of the generalized unbalanced force vector

at the ith iteration.

5 Radius of the convergence domain.
E Modulus of elasticity.

v Poisson's ratio.

G Shear modulus.

H Hardening or softening modulus.
F Yield function.

XXix



€cu
Ecb
€tu

Gt

dgp

ODBR

€p

Vectors :

{Ar)ri_
(aQ)”

®)
(7)™

(ar),

{Achy

Yield stress.

Secant elasticity modulus of the reinforcement.
Moduli of elasticity in the orthotropy axes.
Shear modulus in the orthotropy axes 1 and 2.
Poisson's ratio in the orthotropy axes i and j.
Uniaxial compressive strength of concrete.
Biaxial compressive strength of concrete.

Uniaxial tensile strength of concrete.

Uniaxial compressive peak strain of concrete.
Biaxial compressive peak strain of concrete.
Uniaxial tensile strain of concrete.

Fracture energy density.
Minimum distance between Gaussian points.
Slope of the tensile descending branch.

Component of plastic strain.

Displacement increment vector at the (i)th iteration.

Unbalanced load vector at the (i-l)th iteration.
Reference force vector.

Equivalent internal nodal force vector at the (i-l)th

iteration.
First component of the displacement increment vector.

Second component of the displacement increment

vector.

XXX



i
{ZAr) Accumulated displacement increment vector up to the (i)th
iteration.
31
{A‘P} Typical generalized displacement increment vector at the

(i)th iteration.

{R) Transformed reference force vector.
~i-1
{AQ} Transformed unbalanced force vector at the (i-l)th
iteration.
1
{ZA(P) Accumulated generalized displacement increment vector at

the (i)th iteration.

(e); The (i)th natural basis vector.
{AR} External force increment vector.
{Au} Set of components of the displacement increment
vector
{A“} v Displacement iﬁcrement vector at the basis [V].
<AQ}V Unbalanced force vector at the basis [V].
(o); The i® eigenvector.
{Aa} Generalized displacement increment vector.
{Ay} Generalized unbalanced force vector.
{Ar}), Unit displacement increment vector.
(Ar}'a Approximate displacement increment vector.
{Ar}'c First displacement increment vector of a solution step.
{‘I’-} i The i eigenvector of the shifted stiffness matrix.
c
{Ar}'u First unit displacement increment vector.
{Aa}c First generalized displacement increment vector.
{7>c First generalized unbalanced force vector in a solution step.

xxxi



(aw)’
{ag}”

{aa);

{aa)y

{Ae}

Main diagonal matrix of the eigenvalues at the

beginning of a solution step.

Adjusted first generalized displacement increment vector.
Total generalized displacement vector after the first

iteration of a solution step.

Arc-length vector at the beginning of a solution step.

Generalized displacement increment vector at the ith

iteration.

h

Iteration path vector at the i'" iteration.

Generalized unbalanced force vector at the (i-l)th iteration.

First component of the generalized displacement increment

h

vector at the i'" iteration.

Second component of the generalized displacement

increment displacement increment vector at the ith

iteration.

h

Total generalized displacement vector at the i" iteration.

h iteration.

Total displacement vector at the it
Position vector of the iteration point.
Unit load factor vector.

Vector of total stresses.

Vector of total strains.

Vector of increment of stresses.

Vector of increment of strains.

XXxii



Matrices:

[L]
(D]
[Cle
[Clep
[Clnp

Tangent stiffness matrix at the (i-l)th iteration.
Geometrical tangent stiffness matrix at the (i-l)th iteration.
Linear stiffness matrix.

A set of general basis vectors.

Transformed linear stiffness matrix.

Transformed geometrical stiffness matrix at the (i)th
iteration.

Set of natural basis vectors.

Tangent stiffness matrix at the basis [V].

Set on N eigenvectors.

Main diagonal matrix of the eigenvalues.

Main diagonal tangent matrix of the eigenvalues at the
beginning of a solution step.

Identity matrix.

Tangent stiffness matrix at the beginning of a solution step.
Shifted tangent stiffness matrix at the beginning of a
solution step.

Set of eigenvectors of the shifted stiffness matrix.

Main diagonal matrix of the eigenvalues of the shifted
stiffness matrix.

Lower-unit triangular matrix.

Main diagonal matrix of the pivots of the stiffness matrix.
Elastic constitutive matrix.

Elastic-plastic constitutive matrix.

Hypoelastic constitutive matrix.

XXxiii



CHAPTER 1

INTRODUCTION

1.1 Problem Statement

It has been known from the beginning of this century that
engineering materials, such as steel and concrete, behave highly
nonlinearly (Timoshenko 1983, De Coursy 1987). More recently, the
improvement of experimental techniques and test apparatus have
enhanced the knowledge of the post-ultimate behavior of these
materials to the point where complete stress-strain curves can be
traced.

The impact of the progress of the experimental studies of
materials on the numerical analysis of structures can be felt
through two specific requirements. First, a material model capable
of reproducing the complex nonlinearities, inherent to the material,
is needed. Second, an efficient solution strategy is of paramount
importance in order to trace the complete load-deflection curve of
the structure and to capture the correct failure mode.

Robust material models for steel and concrete have already
been developed during the last two decades and are available in the
technical literature (Chen and Ting 1980, Elwi and Murray 1979,
Balakrishnan and Murray 1988, Owen and Hinton 1980).

The development of novel solution strategies, however, has
been mostly restricted to the field of geometrically nonlinear
structures made of linearly elastic materials (Noor and Peters 1983,

Riks 1984). For materially nonlinear structures, the emphasis has
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been put on solution strategies that are able to describe load-
deflection curves in the range prior to ultimate load. In this case,
the classical Newton-Raphson methods often suffice (Balakrishnan
and Murray 1989). Recently, however, a limited number of
innovative solution strategies for materially nonlinear structures
has emerged. These strategies have been applied to the
investigation of the post-ultimate response of plain and reinforced
concrete structures (Crisfield 1986, De Borst 1987). The common
points in these methods are the implementation of an arc-length
constraint on the iterative path such that the load level becomes a
dependent parameter, and an iterative technique that involves the
total number of the global degrees of freedom.

Nevertheless, some deficiencies have become apparent in the
performance of these strategies. For instance, the overcoming of
limit points has been difficult due to the adoption of an arbitrary
arc-length. On the other hand, if the arc-length is too small, the
solution provides an excessive number of solution steps. In
addition, the iterative phase of these strategies requires a great
amount of computational effort leading to a high cost. This is caused
by the commonly used procedure of updating the stiffness matrix
for each iteration and by the involvement of load and displacement
vectors for which the dimension is the total number of degrees of
freedom.

Therefore, it seems that there is a need for a solution strategy
that would present a simpler iterative phase, where a low number
of iterations and a reduced number of degrees of freedom could be

achieved. In addition, a control scheme for the size of the solution



step is strongly necessary. Finally, the solution strategy should be
able to overcome limit points and to trace unstable post-ultimate

behavior with due account for the capture of .the failure mode.

1.2 Objectives
The objectives of this study are:

1. To develop a self-controlled solution strategy that is able to trace
the complete load-deflection curves of materially nonlinear
structures with a reduced number of degrees of freedom.

2. To apply the developed solution strategy to the analysis of large
scale structures.

3. To evaluate and compare the developed solution strategy with
existing methods.

4. To recommend areas of future research.

1.3 Scope

Considering inelastic structures, the formulation of
equilibrium adopted in this study is incremental and iterative
within the framework of the finite element method. This
formulation is further restricted to deal with time-independent’ and
static equilibrium problems. Only limit point problems, as defined
by Thompson (1963), are of interest. Bifurcation problems are not
considered.

Displacements and strains are assumed to be small. As a
result, the current equilibrium configuration of the structure refers
to the undeformed state as the initial configuration.

The applied loads are treated as conservative and



proportional to a preselected reference force. Nevertheless, an
additional constant load vector can be accomodated within the
equilibrium formulation (Ramm 1981)..

The materially nonlinear structures considered in this study
are modeled as two-dimensional members. In the discretization of
these structures, the two-dimensional isoparametric element, with
eight nodes and 3x3 as integration rule, is utilized to model the
concrete and the steel members. The simple truss element is
adopted to discretize the reinforcement. Thus, shallow and deep

beams made of steel and reinforced concrete are of special interest.

1.4 Outline

Following this introduction, a brief review of some current
solution strategies, which are suitable to deal with inelastic
structures, forms the contents of Chapter 2.

In Chapter 3, the eigenvectors of the tangent stiffness matrix
are selected as a basis upon which the equilibrium problem is
formulated. The conventional incremental equilibrium equations
are transformed to the eigenvector basis. The resulting equilibrium
equations are diagonal and therefore totally uncoupled.

Chapter 4 presents an investigation of the dominance of some
eigenvectors upon the incremental displacement response of
materially nonlinear structures. Analytical parameters are
developed as tools to carry out such an investigation. Five case
studies are considered. The prominent result is that the previous
diagonal system of equations is drasticaly reduced to a system

whose dimension is the small number of the dominant degrees of



freedom.

Considering Chapters 3 and 4 as background material, Chapter
5 proceeds with the formulation of an eigenvector-based solution
strategy, which has been organized in two phases: pre-iterative and
iterative. Details, such as flowcharts and estimates of the
computational work required in each phase, are also included.

In Chapter 6, four materially nonlinear structures are chosen
as challenging applications of the proposed solution strategy.
Evaluation of the eigenvector-based solution strategy and
comparison with other methods complement this Chapter.

Finally, Chapter 7 contains a summary of the developed work,
as well as conclusions and recommendations for future research. An

Appendix describing the utilized material models ends this study.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In the context of the finite element method, the formulation of
the static equilibrium of materially and/or geometrically nonlinear
structures results in a set of nonlinear algebraic equations. The
solution of these equations requires the application of a strategy,
which is incremental and iterative in nature.

The development of solution strategies has followed a number
of basic concepts. First, the control of a single load parameter has led
to the formulation of the so-called load control methods, among
which the Newton-Raphson strategies are well known. Second, the
control of a single or a set of specific global degrees of freedom has
led to the displacement control strategies. A third concept unifies the
‘previous ideas, whereby load and displacements are concomitantly
controlled. The arc-length strategies are based on this concept.
Accounting for these concepts as background, many variants of the
existing methods have emerged during the past three decades.
Comprehensive reviews on the basic methods and their variants are
available in the literature (Tillerson et al. 1973, Bergan et al. 1978,
Ramm 1981, Noor 1981, Riks 1987, Bellini and Chulya 1987 and
Felippa 1988). v

The objective of this chapter is to present a selective review of
some solution strategies which are currently in use. A general
incremetal-iterative formulation, in which the load factor and the
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displacement increment vector are the interdependent variables, is
first intoduced. As special cases of this general formulation, the
classical Newton-Raphson methods, the displacement control strategy
and the arc-length methods are reviewed. Then, the novel class of
the reduction methods are addressed. Next, a layout of the
organization of the solution strategies in the program NISA
(Stegmuller et al. 1983) is presented. A discussion on the limitations

of the current solution strategies ends this Chapter.

2.2 General Formulation
Considering a typical iteration within a solution step, illustrated
in Fig. 2.1, the displacement increment vector is computed through

the solution of the following set of equilibrium equations
[KI* {arf = ap' (R} + {aQ)", [2.1]

i1, . .
where (K] is the tangent stiffness matrix updated at the end of the

previous iteration; {Ar}i and Apiare respectively the unknown
increments of displacements and load factor. In addition, the vector

of unbalanced forces is given as
{aQf” =pH (R)- (F)H, [2.2]

where pi'l, {R} and {F}i'1 are respectively the total load factor at the
end of the previous iteration, the vector of the reference forces and

the vector of the internal equivalent nodal loads.



Since the number of unknowns in [2.1], (N+1), is greater than
the number of equations (N), an auxiliary equation is needed so that
- a solution can be found. Usually, this additional equation represents a

constraint for the unknown variables {Ar}i and Api. A general

constraint equation can then be expressed as

gllarf , ap)=o, [2.3]

where g is a scalar and real function. The system formed by the
equations [2.1] and [2.3] can now be solved iteratively for the

unknown variables {Ar}i and Apiwith the aid of a specific solution

strategy.

2.3 The Newton-Raphson Methods
The classical Newton-Raphson methods are the most
representative of the load control concept. For these methods,

expressions [2.1] and [2.3] specialize to yield respectively

K] {Af}i= P (R)-(F)"? [2.4]

and

b

i-1 i
=p =P [2.5]

i i-

Ap =0, thatis, p
where pb is a known load factor prescribed by the analyst.
Geometrically, expression [2.5] represents a plane orthogonal to the
axis of the load factor and also represents the iteration path for these

methods. The trace of this plane is shown in Fig. 2.2.



The names Initial Stiffness, Modified Newton-Raphson and
Standard Newton-Raphson have been coined to identify the scheme
through which the stiffness matrix is updated in the expression [2.4].
Thus, the stiffness matrix is updated only at the beginning of the
first solution step in the case of the Initial Stiffness Method. In the
| Modified Newton-Raphson Method, the stiffness matrix is updated
only at the beginning of the solution step. On the other hand, the
stiffness matrix is updated for every iteration in the Standard
Newton-Raphson Method. These schemes are illustrated in Fig. 2.2.

Kao (1974) has compared the efficiency of these methods. In
short, a considerable number of iterations is required to provide an
accurate solution in the highly nonlinear range. Crisfield (1979) has
improved the efficiency of the Newton-Raphson methods by
implementing an acceleration factor. Zienkiewicz et al. (1969) applied
these methods in the analysis of elasto-plastic structures subjected to

loads up to the ultimate level.

2.4 The Displacement Control Method
In the displacement control method, analogous to load control,
the value of a preselected global degree of freedom is prescribed at

the beginning of a solution step. This yields

Ar,=Ar [2.6]

where the subscript , denotes the order of the prescribed degree of

freedom, whereas * designates the prescribed value.



Based on the linearized form of the set of equations [2.1], the

displacement increment vector can be decomposed in two parts. This

gives
{ar} ={ar}),+ap {ar);, [2.7]

i i
where the displacement components {ar};and {Ar}; can be computed

respectively through the solution of

i-1

K] {ac )= {aQ) 2.8)

and
K] {Ar)g= (R). [2.9]

In addition to the expressions [2.8] and [2.9], the constraint

equation [2.3] is specialized to yield

e 80", '
ArpI+Ap Al'p = Arp , [2.10]

10

which is defined within the pre-iterative phase, as shown in Fig. 2.3..

Thus, the first load factor increment is computed from [2.10] as

) (Afl)n | [2.11]

i
Throughout the iterative phase, AT, = 0 and [2.11] is simply



(’Ar’l) ’ | [2.12]

The set of equations [2.7], [2.8], [2.9], [2.11] and [2.12]
comprises the framework of the displacement control method. The
pre-iterative and iterative phases of this method are illustrated in
Fig. 2.3. The original version of this method, due to Pian and Tong
(1970), has come out with the drawbacks of lack of symmetry and
bandness of the stiffness matrix. Batoz and Dhatt (1979) have
circumvented these problems by postulating the displacement
decomposition stated in [2.7] and the partial solutions of [2.8] and
[2.9]. Although the method can overcome limit points, failures in the

description of snap-back behavior have been reported by Riks

(1979).

2.5 The Arc-Length Methods

The arc-length methods unify the concepts of load and
displacement control. In this class of methods, the load factor
increment and the displacement increment vector are the unknown
variables. The equilibrium formulation makes use of the same
equations [2.7], [2.8] and [2.9] as for the displacement control
method.

The novel concept in the arc-length methodology is the
definition of a finite arc-length as a constraint equation. This feature

makes the method very robust, since a unique relation between the
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continuous arc-length and the load factor or the norm of
displacements is now available. Figure 2.4 illustrates the continuous
and the finite arc-lengths and also the character of uniqueness
mentioned above.

The arc-length has been defined in various forms by different
researchers. An account of some available definitions has been given
by Bellini and Chulya 1987. A general expression for the arc-length

can be stated as

(AL) CL[CP( +Ap) +C,(<ZAr> {zar) )] [2.13]

where AL is the finite arc-length that corresponds to the i jteration

and C,, C, and Cp are prescribed constants that regulate the
magnitude of the load component, of the displacement component
and of the overall size of the arc-length, respectively. The other
ingredients of [2.13] are illustrated in Fig.2.5.

Some of the proposed definitions of the arc-length are outlined
by specialization of the general expression [2.13]. Table 2.1
summarizes the results of this process and refers to the original
sources in the technical literature. It is noted that some methods
have adopted a constraint equation in addition to the arc-length
definition. The reason behind this rests on the fact that a
linearization of the iteration path is sometimes preferable and leads
to a much simpler formulation (Wempner 1971, Riks 1972 and
Ramm 1981). Figure 2.5 shows some of the iteration paths described

in Table 2.1. In addition to these contributions, Fried (1984) has
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suggested an orthogonal iteration path, also indicated in Fig. 2.5.
Another point of attention is the attempt of controlling only the
component of the arc-length that relates to the load level (Park 1982,
Crisfield 1981 and De Borst 1986). A control of the global size of the

arc-length has not been envisaged to date.

2.6 The Reduction Methods

So far, the development and application of the reduction
methods have .been restricted to the area of geometrically nonlinear
structures. The basic idea behind this class of solution strategies is to
reduce the total number of global degrees of freedom of the
discretized structure. To accomplish this goal, a set of basis vectors is
needed in order to transform the equilibrium and constraint
equations from the basis of the global degrees of freedom to the
basis given by the selected vectors. Usually, a Rayleigh-Ritz
technique (Bathe and Wilson 1976) is employed in this basis
transformation.

Considering linearly elastic material and geometrically

nonlinear behavior, the incremental-iterative equilibrium equations

are expressed as

s 15 ] o) = 9 )+ () 2,14

1 .
where [K]p and K] ¢ are respectively the linear stiffness matrix and

the tangent nonlinear geometrical stiffness matrix. The other terms
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14
in [2.14] are the same as for [2.1]. The displacement increment vector

in [2.14] can also be decomposed according to expression [2.7].

Assuming a general set of basis vectors such as
[V]=[{V)1, N\ P ’{V}m] »  M<N [2.15]

where {v}; is the jth basis vector, the displacement increment vector

is given as a linear combination of the M basis vectors. This yields

(ary =vi{ag) [2.16]

where {Aq>}i is the generalized displacement increment vector. After
the substitution of [2.16] into [2.14] and the consecutive

premultiplication by [V1T, the following expression results

VI L+ KB Vi a0) = ap v (R) + V] {aQ} (2.17]

which can be further simplified as

R+ R (a0} = ap' (R} + (a0} 2.18]

The symbol ~ in [2.18] denotes the transformed matrix or vector.

Furthermore, the set of M equations in [2.18] represents the

statement of equilibium in the basis of the selected basis vectors.
Similarly to [2.17], the original arc-length constraint equation

[2.13] can be transformed to the new basis. This yields



2
oy viviizae)'+ 6o+ o] ot [2.19]
where all the constants in [2.13] are made equal to the unity for the
sake of simplicity. The set of equations [2.18] and [2.19] forms the
framework of the reduction methods. In addition, it is noted that the
dimension of the original system of equations has been reduced from
N+1 to M+1.
The crucial point within the reduction methods is the selection
of the basis vectors in [2.16]. Nagy (1977) and Almroth et al. (1978)
have proposed a linear global displacement solution in addition to
some buckling modes to constitute the set of the basis vectors. On the
other hand, Noor and Peters (1980) have adopted path derivative
vectors. These vectors are obtained by differentiating the

equilibrium equations with respect to the arc-length.

2.7 Solution Strategies in the Program NISA

The work to be presented in Chapters 3 through 6 has made
extensive use of and has been implemented in the NISA code
(Stegmuller et al. 1983).

The classical Newton-Raphson Methods, the Displacement
Control Method and the Arc-Length Method are implemented in the
current version of the program NISA. Within each method, the
stiffness matrix can be updated according to the schemes given by
the Initial Stiffness, Modified Newton-Raphson and the Standard
Newton-Raphson schemes. The implemented version of the Arc-

Length Method adopts a constant arc-length which has been
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proposed by Ramm (1981). The Displacement Control Method follows
the formulation due to Batoz and Dhatt (1979).

The original code of the program has included a single
subroutine to cast all methods. The current version, however,
incorporates a master subroutine for each method. This subroutine
calls other auxiliary routines that take care of checking the
convergence criteria for displacements and unbalanced forces and of
computing the stiffness parameter. In addition, a general subroutine
that initializes the selected solution strategy has also been
implemented. The layout of the organization of the subroutines for

the outlined methods is shown in Fig. 2.6.

2.8 Discussion

Despite the progress that the field of solution strategies has
undergone, some challenges are still present. This is specially true in
the application of the existing solution strategies in the analysis of
reinforced concrete structures. For this type of problem, sharp
changes in stiffness may occur due to the highly nonlinear material
behavior. In severely damaged zones, strain localization may take
place. Typical load-deflection curves of reinforced concrete
structures usually present ascending branches with drastic changes
in stiffness, limit points and unstable and steep descending branches.
In addition, the capture of the correct failure mode is also a

demanding problem.

The Newton-Raphson Methods are generally able to describe

16

load-deflection histories prior to the level of ultimate load. The

arbitrarily prescribed load increments and the possibility of



encountering a nearly singular stiffness matrix often hamper the
overcoming of limit points. Even within the ascending branches, a
considerable number of iterations is usually required to trace the
highly nonlinear ranges of behavior.

The Displacement Control Method can pass limit points.
However, the method fails in the description of snap-back behavior,
since the selected global degree of freedom can not be prescribed at
the snap-back point.

The Arc-Length Methods are capable of overcoming limit
points and of tracing problems including snap-back behavior.
Nevertheless, the iterative phase of these methods requires a great
amount of computational effort due to the large dimensions of the
matrices and vectors involved. For some of the arc-length methods,
the equation that gives the load factor increment is of a quadratic
order (Table 2.1). This is costly and demands a criterion for the
selection of the right root. Another difficulty relates to the
uncontrolled size of the arc-length. If the arc-length is large, limit
points might not be captured and the resulting solution may drift
from the correct curve.

The Reduction Methods have been applied only in the realm of
geometrically nonlinear structures. Applications in the field of
materially nonlinear structures are not known in the technical
literature. The major drawback in these methods is the lack of
orthonormality among the basis vectors. The resulting equilibrium
equations are reduced, but still coupled. In addition, a rational
criterion for mode selection has not been proposed in the available

methods. Nevertheless, this class of methods is undoubtedly the most
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promising direction to be followed in the development of novel

solution strategies.
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Figure 2.1: A typical iteration within a solution step.
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Figure 2.2: Illustration of the Newton-Raphson iterative schemes.



Pre-iterative phase

Iterative phase
. Iteration Path

Iteration Path
—_—
__tw

b \Equilibrium Path

et Unprescribed Degrees of Freedom

0 {r}

Figure 2.3: Illustration of the displacement control method.
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CHAPTER 3

FORMULATION OF THE INCREMENTAL EQUILIBRIUM
EQUATIONS IN THE BASIS OF THE EIGENVECTORS

3.1 Introduction

The formulation of the incremental equilibrium equations for a
nonlinear structure, within the framework of the finite element
method, has traditionally employed the natural basis for the
equilibrium description. The natural basis, as described by Bathe and
Wilson (1976), is formed by unit vectors which are associated with
the nodal displacements in the direction of the global coordinate
axes. Coupled equilibrium equations and symmetrically banded
stiffness matrices are direct consequences of this approach.
Furthermore, considerable computational effort is required through
the steps of factorization, reduction and backsubstitution in the Gauss
elimination process adopted for the equation solver as discussed by
Wilson (1989).

To simplify the formulation, a change of base vectors may be
considered. Change of basis has been common in some disciplines of
structural analysis. In structural dynamics (Clough and Penzien
,1975), the mode superposition method adopts the natural modes of
vibration as a convenient basis for the description of the dynamic
equilibrium of linearly elastic structures. Recently, Wilson and Bayo
(1986) have argued that special Ritz vectors would comprise a more
effective basis for dynamic analysis, although the generated vectors

are load dependent. For geometrically nonlinear structures, Almroth
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et al. (1978) and Noor and Peters (1980) introduced a reduced basis
technique. Almroth et al. selected linear solution vectors, whereas
Noor chose path derivatives to form the reduced basis. Nagy (1977)
adopted the buckling modes as base vectors to investigate problems
with mild change in geometry. In a broader scope, Argyris (1965)
proposed pure straining modes, imposed at element level, to
constitute an alternative basis to be used in the element formulation
and applied to various nonlinear problems. However, the large
majority of the base vectors mentioned above have been applied to
linearly elastic materials and have given rise to coupled equilibrium
equations. A summary of the properties and implications of some
bases reported in the technical literature is given in Table 3.1. Some
of the studies report that uncoupled equilibrium equations and
simpler solutions for the unknown displacement increments
constitute the beneficial consequences of a change from the natural
to the eigenvector basis.

The objective of this Chapter is to formulate the incfemental
equilibrium equations in the basis of the eigenvectors of the tangent
stiffness matrix of structures with material nonlinearities. Firstly, the
formulation of the incremental equilibrium equations in the natural
basis is briefly presented. Then, a change to a general basis is carried
out, followed by the formulation of incremental equilibrium in the
basis of the eigenvectors. A discussion on the form of the resulting

equilibrium equations finalizes the Chapter.
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3.2 Incremental Equilibrium Equations in the Natural Basis
The displacement formulation in the finite element method has

conventionally applied the natural unit vectors,
<e>i = <0,...,0,ei=1,0,...,0> i=12..N [3.1]

as a basis to define the N-dimensional vector space of the global
degrees of freedom. From all the N vector coordinates in [3.1], only
the ith coordinate is nonzero and corresponds to the ith global degree
of freedom of the structure. The displacement increment vector is in

the same vector space and therefore can be written as a linear

combination of the base vectors,

N
{Ar) = X Auj {e}i, | [3.2]
i=1

where Auj is the ith scalar displacement increment. Similarly, the

reference force vector can be defined in terms of the base vectors as

N
{R} =i§ Ri {e}i, [3.3]

where R; is the ith scalar reference force.
Under the condition of proportional loading, the applied

incremental force vector is denoted by

{AR} =4p {R}, [3.4]
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where Ap is the load factor. Substituting [3.3] into [3.4] gives

N
(AR} =Ap§ R; {e};. [3.5]

Expression [3.5] can easily be extended to incorporate the case of
nonproportional loading by allowing for multiple and distinct load

factors.

The matrix forms of expressions [3.2] and [3.5] are respectively,

{ar} = [E] {Au} [3.6]
and

{AR} =Ap [E] {R}, [3.7]

where the columns of [E] are the natural base vectors expressed in

[3.1]. Thus, [E] is a unit diagonal matrix and defines an orthonormal

basis since
<e>i {e}j = dij, : [3.8]

where Sij is the Kronecker delta as denoted by Hawkins (1963).
Within a typical solution step, the incremental equilibrium

equations can be described as

K]t {ar} = {AQ}, [3.9]
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where [K]; is the tangent stiffness matrix and {AQ]} is the unbalanced
force increment vector which is defined as a function of the external

and internal force vectors, respectively {R} and {F}, as
{AQ} =(p+4p) {R} - {F}. [3.10]

Similarly to {Ar}, the unbalanced force increment vector {AQ} is
in the same vector space defined by the vectors in [3.1]. The jth
column of [K]; represents the set of nodal forces necessary to mantain

equilibrium for the set of displacements given by {e}j. Therefore, [K];
is, as well, formulated in the vector space spanned by the natural

base vectors.

If the natural base vectors do not constitute a convenient basis
from the practical standpoint, a change of basis may be performed on

the displacement increment and unbalanced force increment vectors.

3.3 Change of Basis

Let a new set of base vectors be written as

[VI=[{v}1, .., {vln] [3.11]

The displacement and the unbalanced force increment vectors are

now written as
{Ar} = [V] {Au}y [3.12]
and

{AQ} =[V] {AQ}v, [3.13]
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where the vectors with subscript v in [3.12] and [3.13] contain
respectively the scalar components of the displacement increment
and unbalanced force increment vectors in the new coordinates

defined by [3.11]. Substituting [3.12] and [3.13] into [3.9] gives

[K]t [V] {Au}y = [V] {AQ}v. [3.14]
Premultiplying [3.14] by the inverse of the matrix [V] yields

[VI'! [K] [V] {Au}y = {AQ]}y, [3.15]
which is further reduced to

[Klty {Au}y = {AQ}v, [3.16]

where [K]i, represents the tangent stiffness matrix in the new basis.

Considering a general basis, the numerical solution of [3.16]
may still require a considerable amount of computational effort since
it involves operations such as matrix inversion and multiplication. In

the particular case of an orthonormal basis, the property
[VIT = [V]1 [3.17]

holds and the inversion is reduced to a transposition operation as
demonstrated by Pettofrezo (1966). Despite this simplication, the
equations outlined in [3.16] may be coupled if the transformed
stiffness is not represented by a main diagonal matrix. Uncoupled

equations are achieved if the base vectors satisfy the eigenproblem.
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The research work reported herein employs the eigenvectors of the

tangent stiffness matrix as base vectors.

3.4 Incremental Equilibrium Equations in the Eigenvector
Basis

The eigenproblem, related to materially nonlinear structures, is

stated as

Kt {¢}i =i ()i [3.18]

The solution of [3.18] furnishes N eigenpairs (Aj,{¢}i), where Aj is an
eigenvalue and {¢}; is the corresponding eigenvector. It is also of
practical significance to note that the expression [3.18] can be
thought of as a set of N equilibrium equations. The right hand side is
a set of external forces proportional to a set of displacements {¢};i.
The proportionality factor is the uncoupled stiffness Aj. The left hand
side denotes a set of equilibrating forces required to mantain the
deformed shape represented by the eigenvector {¢}i.

The linearity of the standard eigenproblem in [3.18] is not in
conflict with the nonlinear nature of the stiffness matrix. The lack of
conflict is realized if the stiffness matrix is linearized within a
typically small displacement increment.

The expression [3.18] can be expanded in matrix form to

include all eigenpairs
[K]; [@] = [®@] [A], [3.19]

where the columns of [®] are the eigenvectors and [A] is a diagonal

matrix formed by the eigenvalues. The eigenvectors of a symmetric
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and positive definite matrix are linearly independent and orthogonal
(Wilkinson 1965). If the eigenvectors are further normalized with

respect to their Euclidean norms, then

<o>i {0}j = &j;. [3.20]

Expanding [3.20] to include all eigenvectors gives

[@]T [@] = [I], [3.21]

in which [I] is the identity matrix. Therefore, the eigenvectors of the
tangent stiffness matrix comprise an orthonormal basis for the N-
dimensional vector space of the global degrees of freedom. Thus, the
displacement and unbalanced force increment vectors can be

expressed as a linear combination of the normalized eigenvectors

N
{Ar}) = ; Aci {9} [3.22]
and
N
{AQ} =1§1 Ay {0} [3.23]

in which Aaj and Ayj are respectively the generalized displacement
and the generalized unbalanced force increments corresponding to
the ith eigenvector. In matrix format, expressions [3.22] and [3.23]

are written as



{Ar} = [@] {Aa} [3.24]
and

{aQ} =[] {Ay} [3.25]

Substituting [3.24] and [3.25] into the incremental equilibrium

equations, expression [3.9], yields

[K]; [@] {Aa} = [@] {Ay} [3.26]
Substituting [3.19] into [3.26] gives

[@] [A] {Aa} = [@] {Ay} (3.27]

After premultiplying [3.27] by [®]T and recalling the orthonormality
property of the eigenvectors in [3.21], expression [3.27] is further

reduced to
[A] {Aa} = {Ay}. [3.28]

The above expression represents the set of incremental equilibrium
equations formulated in the basis of the eigenvectors of the tangent
stiffness matrix. From [3.28], the ith generalized displacement is

conveniently computed as

Aai = Ay [ Aj [3.29]
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in which Ay; is the ith generalized unbalanced force increment. The
eigenvalue A; in [3.29] is interpreted as the uncoupled stiffness which
is associated with the eigenvector {¢};.

The generalized unbalanced force increment vector can be
expressed in terms of the unbalanced force increment vector given in

the natural basis. From expression [3.25],

{4y} =[@]T {AQ}, [3.30]
where the ith generalized unbalanced force increment is

Ay = <¢>; {AQ}. [3.31]
Substituting [3.31] into [3.29] yields

Aaj = (<> {AQ} )/ Ai. [3.32]

This expression is employed to calculate the generalized
displacement increments within the iterative process of the solution

strategy covered in Chapter 5. From [3.32], the equilibrium equations
Aj Aaj = <¢>i {AQ}, i=12,..,N - [3.33]

are completely uncoupled as opposed to the standard form

established in [3.9].

3.5 Discussion

Some important observations can be drawn from the form of

the equations in [3.32]. Firstly, it is noted that the generalized
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displacement increment can easily be computed by [3.32] since all
participating variables are uncoupled.

Under the assumption of distinct eigenvalues, the eigenvalue Aj
is directly identified as the stiffness coefficient that corresponds to
the type of deformation mode represented by the eigenvector {d}i-
An extensional stiffness, for example, is associated with an extension
mode and so on.

The direction of the unbalanced force increment vector,
relative to the eigenvector, affects the computation of the numerator
of [3.32]. For instance, the generalized displacement increment
vanishes in the case of orthogonality between {AQ} and {¢};.

The degree of nonlinearity that a structural member exhibits,
such as progressive cracking or crushing for concrete and yielding for
metals, can reasonably reduce the stiffness coefficient Aj, which gives
rise to a larger generalized displacement Aaj in [3.32]. Theoretically,
the eigenvalue A; can assume a zero value at limit points of a
structural response characterized by progressive damage. However, a
zero eigenvalue is not commonly encountered in a computational
analysis of a practical problem. Moreover, the orthogonality condition
[3.20] does not take place at a limit point as pointed out by De Borst
(1986). In addition, the unbalanced force increments in [3.32] are
expected to decrease at the vicinity of a limit point. Thus, the
generalized displacement increment is usually finite and computable
at a limit point.

Lastly, the calculation of the generalized displacement
increments requires the solution of the eigenproblem stated in [3.19].

Fortunately, efficient techniques such as the subspace iteration
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method, described by Bathe (1971) and improved by Moler and
Stewart (1973) and further by Wilson and Farhat (1988), provides

economy and accuracy in the solution of the eigenproblem.
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CHAPTER 4

DOMINATION OF EIGENVECTORS OF MATERIALLY
NONLINEAR STRUCTURES

4.1 Introduction

An eigenanalysis of a nonsingular tangent stiffness matrix
provides all basic modes of deformation (the eigenvectors) of a
materially nonlinear structure. According to expression [3.22] in the
previous Chapter, the actual displacement increment vector can be
decomposed in terms of the eigenvectors. All modes of deformation
must comply with the conditions of kinematic admissibility, which
are the prescribed displacement boundary conditions and the
internal strain compatibility as discussed by Malvern (1969).

In practice, structures sustain and transfer loads by deflecting
through specific modes of deformation. Structural members, such as
shallow beams, corbels and rods, for instance, deform through
bending, shear distortion and extension modes respectively.

The structural stiffness represents an integrated synthesis of
more elemental properties, such as material properties and
geometric proportions. Therefore, it seems reasonable to expect that,
among all eigenvectors of the stiffness matrix, a very small number
of modes would be active in the actual deformation mode exhibited
by the structure, when subjected to the particular distribution of the
externally applied loads. The participation of the activated
eigenvectors in the displacefnent response would be accentuated in

the presence of progressive damage, such as cracking and crushing
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for concrete and yielding for metals. Thus, a linear combination of
the active eigenvectors would accurately approximate the actual
displacement response of the materially nonlinear structure within
an incremental solution step. In this context, the most participating
eigenvectors would dominate the deformational behavior of the
structure and will henceforth be called the dominant eigenvectors.

Domination of eigenvectors is present in the dynamic analysis
of linearly elastic structures. According to Hurty et al. (1971), the
fundamental mode of vibration, which usually corresponds to the
lowest natural frequency, may dominate the dynamic response of
standard buildings subjected to common load distributions, such as
wind loads. For static equilibrium problems involving materially
nonlinear structures, however, domination of eigenvectors has not
been investigated to date. Rots et al. (1987) performed an
eigenanalysis of the stiffness matrix of tensile plain concrete
specimens while studying non-homogeneity of deformation beyond
the peak point of the pertinent load-deflection curve. Nevertheless,
no reference to the existence of domination has been reported.

The objective of this Chapter is to develop and apply analytical
parameters in order to investigate and demonstrate the existence of
domination of certain eigenvectors on the displacement response of
materially nonlinear structures. The investigation will cover the
complete load history of the structure, from the undeformed state to
physical structural collapse due to extensive material damage.

Different material constitutive relations are considered, since
the level of domination of some eigenvectors may vary according to

the type of material behavior.
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The structural members chosen as case studies for this
investigation are steel and reinforced concrete structures whose
strengths and particular deflections have been predicted through the
application of limit analysis or observed in experiments.

After this introduction, a brief description of the material
models used in this study is presented. This is followed by the
formulation of the analytical parameters to measure the domination
of specific eigenvectors. After the formulation of the analytical
parameters, the concept of an approximate displacement increment
vector is developed. Then, the analytical parameters are applied to
five case studies dealing with real structures. A discussion about the

evidence of domination and further implications ends the Chapter.

4.2 Material Constitutive Relations

An elastoplastic constitutive relation, with bilinear stress-strain
description for softening, yielding and hardening, has been used to
describe the behavior of steel structures and the reinforcement in
reinforced concrete members. This model parallels the original
elastoplastic model developed by Nayak and Zienkiewics (1972) and
has been implemented in the program NISA by Stegmuller et al.
(1983).

An hypolelastic constitutive relation has been adopted for the
modeling of concrete. This model was originally formulated by Elwi
and Murray (1979). Currently, a modified version, due to Napoleao
and Elwi (1990), has been implemented in the program NISA and
applied to the modeling of the behavior of large scale reinforced

concrete structures.
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A standard linearly elastic constitutive relation is used solely in
one example designed to study the effect of geometric proportions on
the domination of eigenvectors of a plane structure. |

The material models used herein have been formulated to deal
with plane stress, plane strain and axisymmetric problems, with the
exception of the elastoplastic model assigned to the reinforcement
element, which describes uniaxial behavior.

A more detailed description of the material constitutive
relations employed throughout this study forms the contents of

Appendix A.

4.3 Analytical Parameters
4.3.1 Basic Assumptions and Definitions

The derivation of the analytical parameters, to measure the
domination of eigenvectors on the displacement response of
materially nonlinear structures, is based on the fact that the
eigenvectors constitute a basis for the N-dimensional vector space of
~ the global degrees of freedom of the discretized structure. This has
been discussed in Section 3.4. |

Recalling expression [3.22], the actual displacement increment

vector computed for a typical solution step, can be expanded as

{AI'} = Aq, [¢}1 + ... + Aoj {¢}1 + ...+ Aoy {¢}N9 [41]

where Aaj and {¢}i i = 1,..N, are respectively the generalized

displacement increments and the normalized eigenvectors.
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Crandall (1983) refers to [4.1] as the mathematical statement of
the expansion theorem defined for linear problems. Figure.4.1
illustrates the physical meaning of the expansion theorem in the N-
dimensional vector space. The vector {Ar} embodies an
approximation due to the linearization of the incremental nonlinear
equilibrium equations as previously discussed in Section 3.4. In
addition, the eigenvectors in [4.1] are extracted from the tangent
stiffness matrix assembled at the beginning of the considered

solution step and are kept the same throughout the step.

The vector Aai{¢}i represents an eigenvector component of the
actual displacement increment vector {Ar}. This component has an
Euclidean norm Il Aaij{¢}; Il and an angular position 6; relative to {Ar}
as illustrated in Fig. 4.1. If the actual displacement increment vector
is available, then the generalized displacement increment can be

calculated by premultiplying [4.1] by <¢>; which yields
<¢>i {Ar) = Aou<¢>i{o}1 + ... + A0i<d>i{d}i + ... + Aan<0>i{O)n. [4.2]

Recognizing the orthonormality property of the eigenvectors stated

in [3.20], all terms on the right hand side of [4.2] vanish except the

ith term. Thus,
Aaj = <¢>i {Ar}. [4.3]

Expression [4.3] represents the scalar product between the
normalized eigenvector and the actual displacement increment
vector and is of substantial importance regarding the evaluation of

the analytical parameters to be formulated in the following sections.
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In practice, it would be important to determine the level of
participation of a typical eigenvector component Aoai{¢}; in the
formation of {Ar} in [4.1]. The most effective procedure to carry out
this task is to formulate analytical parameters through which a
typical eigenvector component can be compared with the actual
displacement increment vector. Since the comparison involves vector
entities, the size and angular position are naturally selected to
comprise the analytical parameters.The mathematical derivation of
these parameters is based on simple concepts from vector algebra

which is covered by Hawkins (1963).

4.3.2 The Relative Size Parameter

The relative size parameter provides a measure of the size of
an eigenvector component relative to the size of the actual
displacement increment vector. It is defined in terms of the

Euclidean norm for both vectors:

_Naaiel;l [4.4]
YA

Applying the concept of vector norm to the numerator of [4.4] yields

_ '\/Aai2<¢>i <¢}i _ [4.5]

' 1{Ar} 1
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Furthermore, the orthonormality property of the eigenvectors can be
applied to the numerator of [4.5]. Thus, the final form of the relative

size parameter is:

| Ao

—i. 4.6
1{ar} (4.0]

Figure 4.1 illustrates the quantities in the numerator and
denominator of [4.4] for a typical eigenvector component. It is
further noted that the relative size parameter is a non-negative

entity. The domain interval of the size parameter is [0 , 1].

4.3.3 The Angle Parameter

The angle parameter measures the angular position of the
eigenvector component relative to the actual displacement increment
vector as shown in Fig. 4.1. The derivation of this parameter employs
the definition of the included angle between two 3-D vectors, which
has been extended by Shilov (1977) to vectors in the N-dimensional
vector space. The angle parameter is indirectly defined in terms of

its cosine as

Aai<¢>i{Ar>
0=y Aaf{o) i {ar) 1 7]

Substituting [4.3] into [4.7] and accounting for the orthonormality

property of the eigenvectors, the above expression is reduced to
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Aai
BN 4.8
A/ Aa; 1{Ar} 1 .81

cosf; =

and further to

Ao
cosO; = %i [4.9]

Coa{arhn
Comparing [4.9] with [4.6], it is directly concluded that
cos6j = Bj, [4.10]

which means that the cosine of the angle parameter is equal to the
size parameter. Moreover, [4.10] indicates that the concepts of size
and angular position of a typical eigenvector component in [4.1] are

directly dependent. From [4.10], the angle parameter is computed as
6i = cos”'Bi. [4.11]

The angle given above varies in the interval [0°, 90°]. Thus, the
cigenvector {¢}; is parallel to the actual displacement increment
vector {Ar} for 8;=0° and orthogonal for 8;=90° as schematically
illustrated in Fig. 4.2. According to [4.3], a typical generalized
displacement increment vanishes in the case of orthogonality
between the normalized eigenvector and the actual displacement
increment vector. Therefore, there is no contribution of the
corresponding eigenvector component to the addition performed in

[4.1].
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4.3.4 The Participation Parameter

It is of practical importance to quantify, in percentage, the
participation of each eigenvector component in the expansion [4.1].
For this purpose, the actual displacement increment vector is
normalized with respect to its Euclidean norm, which gives the

corresponding nondimensional unit vector {Ar}, as

{Arh = {ar) [4.12]

“u{ach

Dividing both sides of [4.1] by ll{Ar}Il and applying the definition
given in [4.12] yields

(ac)=S—2 (o). [4.13]

=l {Ar}

Since {Ar}y is a unit vector, the Euclidean norm of the vector on the

right hand side of [4.13] must be unitary:

1
2

) fol] =1 [4.14]

i1 (II{Ar}II

Introducing the non-negative term

2

Aa;
(-] i=1.N [4.15]
(H{Ar}n)
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in [4.14] and considering the orthonormality property of the
‘eigenvectors and further the squaring of both sides, [4.14] is reduced

to
N
2pi=1. [4.16]
1=1

The term p; is defined in the domain interval [0,1], since it is a
non-negative number according to [4.15] and is further constrained
to furnish a unitary summation in [4.16]. It can conveniently be

expressed in the form of percentage as
Pi= 100 (pi) % . [4.17]

The term P;is hereafter called the participation parameter. This
parameter indicates, in percentage, the level of participation of a
typical eigenvector component in the actual displacement increment
vector defined in [4.1].

Recalling the definition of the cosine of the angle parameter

stated in [4.9], expression [4.13] can be rewritten as

{ar}, =Y coso; {0}, [4.18]
i=1

where 0; varies in the interval [0°,90°]. Resorting to the definition of
the direction cosines of a line in the N-dimensional vector space, the

cosine in [4.18] can be interpreted as the direction cosine of the angle
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between the directions defined by {¢}iand {Ar}y. This is illustrated in

Fig. 4.3 for the N eigenvectors. -
From [4.9] and [4.15], it is concluded that

pi = cos’6;, [4.19]

which indicates that the participation parameter and the angle

parameter are interrelated. Futhermore, from [4.10],

2
Pi=Bs [4.20]

which shows the dependence between the participation and the size
parameters. The interdependency present in the derived analytical
parameters, given in [4.10], [4.19] and [4.20], stems from the
constraint imposed in [4.1]. For example, if the size of an eigenvector
component in [4.1] is changed, while preserving {Ar} constant, the
corresponding angular position showed in figure 4.1 must as well
change. Nevertheless, this interdependency does not diminish the
role of each of the analytical parameters while studying the
domination of eigenvectors of materially nonlinear structures. For
example, a linearly elastic problem with nonproportional loading
which engages different eigenvectors may be best studied through
angular variation of the modes. On the other hand, a materially
nonlinear problem may require the application of all the analytical

parameters throughout the load-deflection history of the structure.



4.4 The Approximate Displacement Increment Vector

It has been indicated in Section 4.3.3 that the orthogonality
condition, between a typical eigenvector {¢}i and the actual
displacement increment vector {Ar}, gives rise to a null eigenvector
component Acai{¢}; in the addition [4.1]. In fact, the relative size and
participation parameters vanish if applied to an orthonormal
eigenvector component.

Quasi-orthonormal eigenvectors are often present in the
expansion [4.1]. The definition of a quasi-orthonormal eigenvector
component is based on the values of the corresponding analytical
parameters and the assigned domain intervals. The intervals that
identify a quasi-eigenvector component are given in Table 4.1.

If the purely orthogonal and the quasi-orthogonal eigenvector
components are removed from the expansion [4.1], an approximate

displacement increment vector can be defined as

{Ar}'a=ZAai{¢}y M, [4.21]
i=1

where the M eigenvectors in [4.21] are called the participant
eigenvectors that effectively contribute to the addition performed in
[4.1]. The adopted intervals of variation of the analytical parameters
for the participant eigenvector components are listed in Table 4.1.
The vector space whose base vectors are the participant
eigenvectors in [4.21] is in fact a subspace of the original N-
dimensional vector space of the global degrees of freedom of the

structure. A vector in this subspace represents an approximation
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{Ar},a of the actual displacement increment vector {Ar} that belongs to
the N-dimensional vector space.

The analytical parameters defined in the previous sections can
be applied to the approximate displacement increment vector.
According to [4.3], an approximate generalized displacement

increment can be computed as

7

Ay = <Ar>y (AT}, [4.22]

Analogous to expressions [4.6], [4.11] and [4.19], the analytical
parameters for the approximate displacement increment vector can

be defined as

] [4.23]

Pa= Ak’
-1
0,=cos B, [4.24]
and
2
Py=100B, %, [4.25]

where Pa, 02 and P, are respectively the relative size, angle and
participation parameters of the approximate displacement increment
vector.

It may be practical to work with the approximate displacement
increment vector as a unique vector component in [4.1] instead of the

individual participant eigenvector components. This approach might
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be effective when a considerable number of eigenvector components
participate in [4.21]. In fact, the approach based on {Ar}, has been
applied to the analysis of a deep reinforced concrete beam that forms

a case study to be presented in the next Section.

4.5 Case Studies

In this section, five problems have been chosen as case studies.
The primary objective in addressing these problems is to apply the
analytical parameters formulated in Sections 4.3 and 4.4. to
structures with different geometries and material behavior. Some
important conclusions about domination of eigenvectors on the
displacement response of structures emerge naturally from the

analysis of the problems that constitute the content of this Section.

4.5.1 A Plane Structure with Varying Geometric Proportions

In the introduction of the presentl Chapter, it has been
mentioned that the geometric proportions of a structure form a
contributing factor of the structural stiffness. Thus, the structural
stiffness can be altered through variation of the geometric
proportions. In turn, this implies a change in the structural behavior.
For example, a shallow beam that deforms fundamentally through
bending, accompanied by negligible shear distortion of its cross
sections, changes the deformational behavior when the depth of the
cross section is substantially increased. In this case, shear distortion
is predominantly present in the deformation of the beam.

The objective of this subsection is to investigate the influence
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participation, in terms of level and number, of the eigenvector
components of [4.1] in the actual displacement vector of the
structure.

To fulfill this objective, a parametric study is carried out by
varying the aspect ratio H/L of a plane structure and applying the
analytical parameters to measure the contribution of the eigenvector
components associated with the lowest eigenvalues extracted from
the stiffness matrix of the structure.

Figure 4.4 shows the discretization, type and intensity of the
applied loads and the dimensions of the structure selected to form
this parametric study. The varying dimensions give rise to values of
the aspect ratio H/L of 1/4, 1/2, 1/1, 2/1 and 4/1. The material is
linearly elastic with properties E = 400 MPa and v = 0.0. A null
Poisson ratio has been adopted so that the eigenvectors can depict
more distinguishable deformational patterns, without transverse
effects such as contraction or expansion. The load intensity qy has
been kept constant, whereas q, varies according to the value of the
aspect ratio as showed in Fig. 4.4. This results in a constant shear
force at the fixed cross section. The loads in Fig. 4.4 have been chosen
so that a general deformation mode, with components such as
extension, bending and shear distortion, could be present in the
actual displacement vector of the structure. The level of contribution
of these components depends on the value of the aspect ratio.

A varying number of the lowest eigenvalues and corresponding
eigenvectors were extracted for each case of aspect ratio. This
number has been achieved tentatively so that the orthogonal, quasi-

orthogonal and participant eigenvector components are exemplified
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and the required accuracy in the approximate deflections is obtained.
Figures 4.5 to 4.9 show the actual displacement vector, the
normalized eigenvectors, the eigenvector components and the
approximate displacement vector for the values of the aspect ratio
varying from 1/4 to 4/1. The approximate displacement vector is
based on the participant eigenvectors as defined in Table 4.1. A
constant plot scale has been used throughout the plotting of the
aforementioned figures. For each value of the aspect ratio, the
analytical parameters are computed for each eigenvector component.
The values of the relative size, angle and participation parameters
are plotted in the Figs. 4.10, 4.11 and 4.12 respectively. In the
following paragraphs, the eigenvector components shown in the Figs.
4.5 to 4.9 are classified according to the criteria outlined in Table 4.1.
For this purpose, the values of the analytical parameters should be
consulted in the Figs. 4.10 to 4.12. For comparison of deflections in
Table 4.2, the resultant deflection of node 21 is selected. For this
linear problem, the ratio between the actual (finite element analysis)
and the approximate (approximate displacement vector) deflections
is the same for all the free nodes of the discretized structure in Fig.
4.4, ‘

For H/L=1/4 (Fig. 4.5), only the first eigenvector component is
participant. The second and the third are quasi-orthogonal, whereas
the fourth is completely orthogonal. In addition, the normalized
eigenvectors depict pure deformational patterns, such as simple
bending for the first eigenvector, extension for the second and
double curvature bendihg for the fourth. The third eigenvector,

however, shows a combination of shear and bending. The
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approximate displacement vector is solely based on the first
eigenvector component and reproduces the actual displacement
vector accurately, as deduced from the comparison between the
approximate and the actual deflections at node 21 for which a ratio
of 0.998 is shown in Table 4.2.

For H/L=1/2 (Fig. 4.6), the first and second eigenvector
components are participant, whereas the third and the fourth are
respectively quasi-orthogonal and orthogonal. Except for the first
eigenvector, which appears to represent a simple bending mode, the
others are affected by- transverse deformation and shear distortion.
Nevertheless, the approximate displacement vector provides a ratio
of 0.997 between the approximate and actual deflections at node 21
as illustrated in Table 4.2.

For H/L=1/1 (Fig. 4.7), all eigenvector components are

participant and the first component contributes with almost 78% to
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the actual displacement vector. Transverse deformation and shear .

distortion appear more accentuated than for the previous aspect
ratio. A ratio of (0.968 between the approximate and the actual
deflections at node 21 is reported in Table 4.2.

For H/L=2/1 (Fig. 4.8), only the fifth eigenvector component is
quasi-orthogonal. The remaining components are participant. Shear
distortion is apparent in the first component and virtually all
components reflect a mixing of different deformational patterns.
With five participant components, a ratio of 0.975 between the
approximate and the actual deflections is achieved (Table 4.2).

For H/L=4/1 (Fig. 4.9), the fourth and fifth eigenvector

components are quasi-orthogonal. All components have lost the



purity of deformation depicted for the case of H/L=1/4. Yet, the five
remaining participant components form an approximate
displacement vector which provides a ratio of 0.936 between the
actual and the approximate deflections of node 21 (Table 4.2).

Figure 4.13 illustrates the variation of the participation
parameter, computed for the first and second eigenvector
components, with the value of the aspect ratio. For low aspect ratios,
the first eigenvector component shows a predominant participation,
whereas the first and second components share comparable
participation levels in the range of high aspect ratios.

This parametric study demonstrates that a large number of
eigenvector components is required while approximating the actual
displacement vector of structures with high aspect ratios, such as
deep beams and corbels. Therefore, this serves as a guideline to the
analyst which wants to estimate the necessary number of
eigenvector components to approximate the displacement response
of a plane structural problem. In addition, the participant
eigenvector components, regardless of the aspect ratio, are based on
a reduced number of eigenvectors that are necessary to provide an
accurate appoximate displacement vector according to the criteria
given in Table 4.1. These eigenvectors are designated the dominant

eigenvectors.

4.5.2 An Elastic Perfectly Plastic Cantilever Beam
Generally, a structural- member whose material is idealized as
elastic perfectly plastic exhibits three identifiable phases in its load-

deflection curve. A linearly elastic phase is followed by an
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elastoplastic phase in which the plastic zones gradually extend to
cover a greater portion of the structure. The third and last phase,
designated plastic, coincides with the onset of localized plastic hinges
within the material. This, in turn, causes the formation of a failure
mechanism which develops under approximately constant load.
Further information on the behavior of elastic perfectly plastic
structures is provided by Horne and Morris (1981).

An investigation of the domination of some eigenvector
components, associated with the lower eigenvalues, upon the
incremental displacement response of an elastic perfectly plastic

structure constitutes the objective of this Subsection. The study

covers all phases of behavior discussed above, from elastic to the

establishment of the failure mechanism.

Figure 4.14 shows the discretization, dimensions and loading
for the shallow cantilever steel beam selected for the present case
study. The beam material is modeled as elastic perfectly plastic with
the following properties: E = 200,000 MPa, v = 0.30 and Fy, = 300 MPa.
Timoshenko and Gere (1972) derived an expression to estimate the
free end deflection of the beam which serves as a comparison for the
finite element solution in the elastoplastic range. The expression is

given in a dimensionless form as

R.\2
r-(Rf[5.3+ R),/3-2K], R <3
Ty (R)[S By’ Ryl 1=}, =3 [4.26]

where 1y (30 mm) and Ry (15 KN)are respectively the deflection and

the load at first yield which have been calculated using simple



formulae from strength of materials. The ratio r/ry is called
hereafter the deflection ratio.

Two basic assumptions have been made in the derivation of
[4.26]. The influence of shear strains on the deflection is neglected
and a plastic hinge with an infinitesimal length is assumed at the
fixed cross section of the beam. .

Figure 4.15 shows the load-deflection curves given by [4.26],
hereafter called simple beam theory, and the finite element analysis.
The standard Newton-Raphson method has been used to trace the
linear and the beginning of the elastoplastic phases, whereas the
constant arc-length method was applied to describe the plastic phase.
The finite element solution overestimates the first yield load given
by the simple beam theory by 12%. This is caused by the stiffening
effect of the adopted discretization in terms of mesh refinement and
boundary conditions. However, the general agreement between the
two solutions is apparent from Fig. 4.15.

The first plot of Fig. 4.16 shows the effect of the discretized
boundary conditions on the initiation of yielding at the vicinity of the
fixed end. The yield zones in this figure start to appear at a small
distance from the fixed end section. The simple beam theory allows
for a fully yielded section considerably earlier than the finite
element solution. This is so because the finite element solution
incorporates the effect of shear on the development of yield zones.
The shear effect, although small in the present case, postpones the
yielding of the central regions of the beam as shown at the middle
plot of Fig. 4.16. In addition, the length of the formed plastic hinge is

not infinitesimal as demonstrated in the last plot of Fig. 4.16. The
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length of the plastic hinge in this figure is approximately equal to the
beam depth.

Table 4.3 presents a comparison between the values of load
and tip deflection ratios at the first yield and fully yielded stages
given by the finite element analysis and the simple beam theory.

Considering the solution given by the finite element analysis, a
series of eigenanalyses has been carried out throughout the load-
deflection history of Fig. 4.15. Only the first and second eigenvalues
are of interest for this study, since domination is expected to be
restricted to a small number of eigenvector components as
demonstrated in Section 4.5.1. The corresponding eigenvectors are
plotted in Fig. 4.17. Figure 4.18 shows the variation of the first and
second eigenvalues, normalized with respect to their initial values,
with the deflection ratio. The initial values for the first and second
eigenvalues, computed in the linearly elastic regime, are respectively
20.281 N/mm and 555.003 N/mm. The normalized eigenvalues
remain constant in the linearly elastic phase and decrease gradually
in the elastoplastic phase. Along the plastic phase, both normalized
eigenvalues attain approximately constant values. It is noted that the
first normalized eigenvalue decreases in the elastoplastic phase
through a higher gradient than the second normalized eigenvalue.
Moreover, it reaches a very small non-negative value during the
plastic phase. Since the eigenvalue is the stiffness associated with the
corresponding eigenvector, the first eigenvector component may give
rise to the failure mechanism of the beam. However, this comment
can only be a conclusive statement after the application of the

analytical parameters to the first and second eigenvector
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components, shown in Fig. 4.17, throughout the load-deflection
history.

Figure 4.19 illustrates the variation of the relative size
parameter with the deflection ratio. The size of the first eigenvector
component approximates accurately the size of the actual
displacement increment vector in the linearly elastic, elastoplastic
and plastic phases. The relative size of the second eigenvector
component is very small for the linearly elastic and elastoplastic
phases and drops to zero in the plastic phase.

With respect to the angle parameter (Fig. 4.20), the first
eigenvector component is nearly colinear to the actual displacement
increment vector in the elastic and elastoplastic phases and is
perfectly colinear in the plastic phase. The second eigenvector
component is quasi-orthogonal in the elastic and elastoplastic phases
and is completely orthogonal in the plastic phase.

The variation of the participation parameter is shown in Fig.
4.21. It is concluded that the participation of the first eigenvector
component is overwhelmingly prevale‘ntv for the entire load-
deflection history. Thus, this example demonstrates that the first
eigenvector component dominates the incremental displacement
response of this cantilever beam, from the beginning of the elastic
phase to the onset of the failure mechanism. The domination acquires
optimum level of efficiency along the plastic behavior of the beam.

Figure 4.17 shows that the approximate displacement
increment vector {Ar},, based on the first eigenvector component,
incorporates all the distinguishable characteristics of the known

failure mechanism. In this figure, the high gradient of bending

57



curvature is very localized within the region adjacent to the fixed
end where the plastic hinge, shown in Fig. 4.16, develops. The

remaining part of {Ar}, does not show any evidence of incremental

curvature as expected in the known mechanism.

4.5.3 An Elastic Softening Beam-Rod

In the field of plasticity, Drucker (1959) defined strain
softening as a type of material behavior in which the incremental
work performed by the increment of stress upon the increment of
strain is negative. The material behavior is unstable within the strain
softening range. Studies on the softening behavior of engineering
materials have substantially evolved during the present decade
mainly due to successful experiments in which the entire stress-
strain curve of the specimen has been traced. A review of the
present status of the research related to the behavior of engineering
softening materials is given by Read and Hegemier (1984).

The objective of this Subsection is to apply the analytical
parameters to the eigenvector components extracted from the
current stiffness matrix of a structure made of a strain softening
material. The beam-rod shown in Fig. 4.22 represents the structural
member selected for this investigation. The material is treated as
elastic softening with the following properties : E=200,000 MPa,
H'=-5,000 MPa, v=0.30 and Fy = 300 MPa. Pietruszczak and Mroz
(1981) demonstrated that the slope of the descending branch of the
load-deflection curve of a strain softening material structure is mesh
dependent. In ‘addition, a finer mesh tends to allow for a more

gradual progress of softening zones. Nevertheless, a coarse mesh has
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been adopted in the discretization of the beam-rod since the problem
of uniqueness of the descending branch is out of scope of the present
study. The type and intensity of the applied reference loads have
been designed to induce the appearance of the flexural and
extensional deformation modes.

Figure 4.23 shows the relation between the load and the
resultant deflection of node 11 of the beam-rod. This particular node
experiences the largest resultant deflection among the free nodes
and for this reason it has been chosen as target. The eigenvector-
based solution strategy, to be introduced in the next Chapter, was
applied to trace respectively the ascending and softening descending
branches of the load-deflection curve including the limit point. A
total of thirty solution steps comprised the presented solution.

The development of softening regions is illustrated in Fig. 4.24
for the equilibrium states A, B ,C , D and E that appear on the load-
deflection curve. After the equilibrium state E indicated in the load-
deflection curve, the spreading of softening stabilizes according to
the pattern depicted in the last plot of Fig. 4.24.

The load combination of uniformly distributed tension and
pure bending induces the development of uneven softening through
the depth and span of the structural member. This condition
influences the level of domination and the deformational patterns of
the eigenvector components illustrated in Figs. 4.25 and 4.26.

The value of the aspect ratio of the beam-rod is the same as for
the case discussed in Subsection 4.5.1 and Fig. 4.5. Since the fourth
eigenvector component in that figure is completely orthogonal to the

actual displacement vector, only the first three eigenvectors and
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eigenvalues are of interest herein. Specifically, the bending and
extensional modes are important while forming the approximate
displacement increment vector, since these modes are expected to be
activated by the uniformly distributed load and bending moment
applied to the structure. In addition, the nomenclature adopted to
identify the eigenvector components is set in the linearly elastic
regime where the purity of deformation is clearly present. In Fig.
4.25a, the subscripts f, sf and ¢ stand for flexural, shear-flexure and
extensional respectively. Such a nomenclature is preserved for other
stages of behavior, although the purity of deformation is no longer
apparent as illustrated in Figs. 4.25b, 4.26a and 4.26b.

Figure 4.27 shows the variation of the normalized eigenvalués
with the free end resultant deflection of node 11 of the beam-rod.
The eigenvalues of the linearly elastic stiffness matrix normalize the
current eigenvalues and have the values 1746 N/mm, 51911 N/mm
and 90811 N/mm, which are respectively associated with the
flexural, shear-flexure and extensional modes. Within the linearly
elastic behavior, the normalized eigenvalues are equal to the unity.
Upon initiation of uneven softening at the equilibrium state A (Figs.
4.23 and 4.24), their values decrease gradually until the limit point is
reached. Immediately after the limit point, the normalized
eigenvalues that correspond to the flexural and extensional modes
drop suddenly and attain thereafter a short range of stable values.
The level of uneven softening throughout this stable range is
represented by the pattern associated with the state C in Fig. 4.24. It
is noted that the flexural eigenvector is the only mode with a

negative stiffness. Therefore, it incorporates the effects of the
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unstable material behavior which characterizes the descending
branch of the load-deflection curve. At the establishment of even
softening, typically exemplified by the state D in Fig. 4.24, the
normalized eigenvalues associated with the flexural and extensional
modes decrease further to a final series of approximately constant
values. The relative eigenvalue related to the shear-flexure mode
remains almost unchangeable throughout the range of displacements
that corresponds to the descending branch.

Figures 4.28, 4.29 and 4.30 illustrate the variation of the
analytical parameters with respect to the free end resultant
deflection of node 11. The domination of the eigenvector components
is herein investigated for each stage of behavior, from linearly elastic
to extensive softening damage. During linearly elastic behavior, the
flexural and extensional eigenvector components compose the actual
displacement increment vector representing 12% and 88% of
participation respectively. The greater participation of the
extensional mode is intentional and has been achieved by specifying
a reference value of 100 N/mm for the uniformly distributed load
(Fig. 4.22). Fig. 4.25a shows the prevalent participation of the
extensional eigenvector component within the linearly elastic regime.
The shear-flexure eigenvector component is quasi-orthogonal
throughout this range of behavior. Upon initiation of uneven
softening, the domination of the flexural eigenvector component
starts to increase. At the limit point, all modes participate as shown
in Fig. 4.25b and Figs. 4.28, 4.29 and 4.30. ‘After the limit point, when
the uneven softening stabilizes at state C (Fig. 4.24), the flexural

eigenvector component dominates completely. This condition prevails
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within the horizontal segment in Figs. 4.28, 4.29 and 4.30
immediately after the limit point. In this range of behavior, the
extensional eigenvector component is quasi-orthogonal to the actual
displacement increment of the beam while the shear-flexure
eigenvector component is nearly orthogonal. At the onset of even
softening, represented by the state D in Fig. 4.24, the flexural and
extensional eigenvector components contribute respectively with
84% and 16% of participation. This condition corresponds to the
second horizontal segment that takes place after the limit point in
Figs. 4.28, 4.29 and 4.30. In this range, the shear-flexure eigenvector
component is completely orthogonal to the actual displacement
increment vector.

The present case study demonstrates that the domination of
some eigenvector components varies along the load-deflection
history. In addition, the level of domination within a particular range
of behavior depends on the state of development of softening zones
which characterizes that range. Furthermore, the pure bending and
extensional deformation patterns of the modes extracted in the
linearly elastic range disappear in the nonlinear range. Instead, a
combination of bending and axial deformation forms the modes in

the nonlinear range (Figs. 4.25b, 4.26a and 4.26b).

4.5.4 A Reinforced Concrete Deep Beam

Generally, reinforced concrete deep beams experience different
types of material damage when tested to failure. Flexural and
dfagonal cracks, crushing and shearing develop in the concrete,

whereas yielding takes place in the reinforcement. These multiple
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nonlinear effects render a structural stiffness that changes abruptly
throughout the load-deflection history. This may imply that the
domination of eigenvector components would not be as evident as for
the case of elastic perfectly plastic material behavior where yielding
progresses gradually as shown in Subsection 4.5.2.

The objective of this Subsection is to investigate the domination
of some eigenvector components which are based on the eigenvectors
extracted from the tangent stiffness matrix of a reinforced concrete
deep beam. Rogowsky et al. (1983) tested a series of reinforced
concrete deep beams from which the simply supported beam,
designated as B1/1.5T1, has been chosen for the present case study.

Figure 4.31 shows the -discretization, dimensions, loads and
boundary conditions for the south shear span of the beam. Contrary
to the north span which was designed with the minimum shear
reinforcement ratio, the south span did not incorporate any stirrups.
In this way, the failure of the beam could be precipitated in the
south shear span. The modeling of the boundary conditions and
applied loads has been kept as close as possible to the conditions
verified for the test. A roller under the left column support and a
load distributing plate over the center loading column were used
during the experiment. The discretized structure is formed by 69
two-dimensional concrete elements and 33 truss elements that
model the three layers of reinforcement shown in Fig. 4.31.

The hypoelastic and the multilinear elastoplastic constitutive
relationships are applied to model the behavior of the concrete and
the reinforcement, respectively. The basic propertics of the concrete

and the reinforcement are provided in Appendix A.

63



Figure 4.32 shows the load-deflection curves obtained from the
finite element analysis and the experiment. The standard Newton-
Raphson and the constant arc-length methods have been used to
trace the ascending and descending branches respectively. A total of
21 solution steps comprise the finite element solution.

The behavior of the beam along the ascending branch can be
divided to three segments. The first segment ranges from the
undeformed state to the appearance of flexural cracks. The load-
deflection curve is approximately linear in this range and the beam
does not present cracks induced by applied loads. Shrinkage cracks,
however, were detected prior to the experiment according to
Rogowsky (1982). This .may explain the difference in the initial
stiffness given by the experiment and the analysis. The value of the
initial modulus of elasticity of concrete Ec, adopted in the analysis, is
based on the data related to the uniaxial compressive cylinder tests
performed and reported by Rogowsky et al. (1983). This value of Ec
does not include any adjustment for the effect of shrinkage cracks in
the beam. The second segment begins with the occurrence of flexural
cracks and ends with the onset of diagonal cracks. Two kinks in each
load-deflection curve are associated with the appearance of these
nonlinear effects. Within this segment, thin flexural cracks develop
through the depth at the midspan region and towards the left column
support. The third segment of behavior ranges from the onset of
diagonai cracks to the extensive crushing of the top zone of the
compression strut. Flexural and diagonal cracks progress and widen
throughout this segment along with the first yielding of the

longitudinal reinforcement. At maximum load, crushing and incipient
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smashing of concrete localize in the region close to the left face of the
center loading column which coincides with the top zonme of the
compression strut. This condition is illustrated in Figs. 4.33a and
4.33b for the experiment and analysis, respectively..

The point of maximum load capacity coincides with the limit
point in each of the load deflection curves. In this stage, the beam
attains its ultimate limit state of structural failure. After the
structural failure, the beam undergoes a phase associated with the
descending branch of its load-deflection curve. In this phase, the
beam is still able to sustain decreasing loads. Six solution steps
constitute the descending branch traced by the finite element
method. The behavior of the beam along the descending branch is
affected by progressive material damage in the form of shearing
within the developed cracks, crushing and subsequent smashing of
concrete and ongoing yielding of the reinforcement. This situation of
highly extensive material damage characterizes a condition of
postfailure. The postfailure of the beam corresponds to the last point
of the load-deflection curve where the tangent stiffness is
approximately horizontal. At postfailure, the distribution of material
damage in the beam is shown in Fig. 4.34. Since there is an evident
predominance of damage caused by shear and compression, it seems
appropriate to call this stage of behavior as a shear-compression
failure. The experimental descending branch shows only two points.
However, it appears that the rate of displacement specified during
the test to trace the descending branch was not sufficient to capture

some intermediate points of the curve.
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Table 4.4 presents some values of applied loads and midspan
deflections at node 232 (Fig. 4.31) given by the experiment and the
analysis for particular stages of the behavior of the beam.

The domination by some eigenvector components upon the
actual displacement increment vector of the reinforced concrete deep
beam is investigated throughout the load-deflection history. The
beam considered herein can be classified as very short since its shear
span ratio of 0.60 is less than 1.0 (MacGregor 1988). Considering this
fact, the abrupt changes in the load-deflection curve and the findings
of section 4.5.1, the eigenvectors that correspond to the three lowest
eigenvalues are selected while studying domination.

Figure 4.35 illustrates the variation of the relative eigenvalues
with the midspan deflection evaluated at node 232 of the discretized
structure shown in Fig. 4.31. Once more, the eigenvalues extracted
from the stiffness matrix assembled at the first solution step are
used to normalize the current eigenvalues. These initial eigenvalues
are 1,443.81 N/mm, 27,218.06 N/mm and 28,729.23 N/mm. The
normalized eigenvalues are constant and equal to unity within the
segment of behavior that corresponds to the uncracked beam. At the
formation of flexural cracks, the normalized eigenvalues experience
sudden variations. More variations occur at the onset of diagonal
cracks although these are less dramatic than at the onset of flexural
cracks. A moderate drop is visible at first yielding of the longitudinal
reinforcement. Immediately before the limit point, the normalized
eigenvalues attain the lowest values, which correspond to the
crushing of the concrete at the top zone of the compression strut.

Right after the limit point, there is an increase in the normalized
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eigenvalues. This is caused by the approach adopted in the
formulation of the material behavior which prescribes tangent and
secant constitutive matrices before and after the peak points of the
stress-strain relations respectively. However, this disturbance occurs
only in the vicinity of the limit point, after which the normalized
eigenvalue associated with the first eigenvector drops to
approximately 5% of its initial value. This value relates to the
condition of the beam at the beginning of the last solution step that
ends with the shear-compression failure.

Figure 4.36 shows the normalized eigenvectors {6}1, {0}2 and
{6}3and the eigenvector components Ao1{0}1, Aaz{d}2and Aasz{d}3,
while Fig. 4.37 shows the actual and the approximate displacement
increment vectors, respectively {Ar} and {Ar},. The eigenvectors have
been computed from the tangent stiffness matrix assembled at the
beginning of the last load step of the load-deflection history, which is
related to the condition of the beam immediately prior to shear-
compression failure. Throughout the load-deflection history, the first
eigenvector {¢}; provides the single curvature pattern of the beam.
In addition, this eigenvector incorporates localized deformations
which increase from the limit point to the point of shear-compression
failure. For the 'last solution step, the localized deformations are
consistent with the distribution of material damage caused by
shearing and smashing of the concrete as illustrated in Fig. 4.34.
These nonlinearities induce shear distortion and downward punching

along the cross sections of the beam close to the left face of the

center loading column in Fig. 4.36.
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The eigenvectors {¢}> and {¢}3 represent multiple curvature
modes which are as well affected by localized deformations. The
second eigenvector {¢}2 shows a pattern of localized deformations
similar to that of {¢};. On the other hand, the localized deformations
in {0¢}3 concentrate along the region that coincides with the
compression strut. For the considered solution step, the approximate
displacement increment vector {Ar}, is formed by the three
eigenvector components, where the first contributes with
approximately 93% in terms of participation.

In order to investigate the degree of domination of each
eigenvector component upon the actual displacement increment
vector, the analytical parameters have been computed for the
complete load-deflection history. Figures 4.38, 4.39 and 4.40 show
the variation of the relative size, angle and participation parameters
with the midspan deflection. In the segments of these figures that
correspond to the ascending branch of the load-deflection curve, the
first eigenvector component dominates completely. The second and
the third eigenvector components alternate as quasi-orthogonal and
orthogonal according to the criteria outlined in Table 4.1. Therefore,
these eigenvector components do not participate in the approximate
displacement increment within the ascending branch. After a small
disturbance at the limit point, the level of domination of each
eigen{'ector componeht oscilates dramatically throughout the
segment that is associated with the descending branch of the load-
deflection curve. For the majority of the solution steps of this range
of behavior, the first eigenvector component provides the greatest

level of participation. However, the remaining eigenvector
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components still participate in the formation of the approximate
displacement increment vector.

The failure mode of the beam is approximately described by
the first eigenvector component which provides the lowest
eigenvalue or stiffness at shear-compression failure.

The level of domination of the approximate displacement
increment vector, as a single vector, upon the actual displacement
increment vector, is studied throughout the load-deflection history of
the reinforced concrete deep beam. For the ascending branch, it has
been demonstrated that the approximate displacement increment
vector is formed solely by the first eigenvector component, since this
component contributes almost with 100% of participation. For the
descending branch and including the limit point, it is necessary to
add the eigenvector components Ao;{¢}1, Axz{¢}2 and Adas{¢}3 in order
to obtain {Ar}j,.

The analytical parameters computed for the approximate
displacement increment vector along the ascending and descending
branches are illustrated in Figs. 4.41, 4.42 and 4.43. Contrary to the
dramatic variation of the analytical parameters along the descending
branch, shown in Figs. 4.38, 4.39 and 4.40, the variation of the
analytical parameters with the midspan deflection in Figs. 4.41, 4.42
and 4.43 is reasonably smooth. In addition, these figures
demonstrate that the approximate displacement increment vector
approximates the actual displacement increment vector accurately

along the ascending and descending branches of the load-deflection

history.
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This case study has demonstrated that a small number of
eigenvector components dominates the displacement history, and is
sufficient to approximate the real incremental response of a
structure that embodies a complex material behavior, such as a

reinforced concrete deep beam.

4.5.5 A Reinforced Concrete Shallow Beam

Generally, reinforced concrete shallow beams exhibit a
behavior in which extensive flexural cracks take place prior to
failure. In the case of under-reinforced beams, the longitudinal
reinforcement yields before the outer concrete fiber crushes. These
conditions characterize a ductile structural behavior. Ductility is
enhanced by specifying a reinforcement ratio lower than the
balanced ratio. Burns and Siess (1966) have demonstrated through
experiments that the failure mode for beams meeting the above
conditions is purely flexural. Moreover, the failure mode is triggered
by the formation of a plastic hinge at the region of maximum
bending moment. This plastic hinge results from extensive crushing
of concrete in the compression zone and yielding of the longitudinal
reinforcement in the tension zone.

The objective of this Subsection is to study the behavior of the
eigenvector components based on the eigenvectors extracted from
the tangent stiffness matrix of a ductile reinforced concrete shallow
beam.

McCollister (1954) has tested a series of simply supported
reinforced concrete beams from which the beam S8 is selected for

this study. This specific beam is under-reinforced (reinforcement
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ratio is 21% of the balanced ratio) and does not incorporate any
stirrups. In addition, its concrete has a considerably low compressive
strength (18 MPa).

Figure 4.44 illustrates the model, the applied loads and the
boundary conditions adopted for half of the actual beam. The
discretization uses 50 two-dimensional elements and 12 truss
elements that model, respectively, the concrete and the single layer
of longitudinal reinforcement. The hypoelastic and the multilinear
elastoplastic constitutive models have been applied to describe the
behavior of the concrete and the reinforcement, respectively. The
basic properties of both materials are listed in Appendix A.

Figure 4.45 shows the analytical and the experimental load-
deflection curves. The deflection has been measured at midspan
which corresponds to the node 175 in Fig. 4.44. The standard
Newton-Raphson and the constant arc-length methods have been
adopted to trace respectively the ascending branch and the nearly
flat plateau of the load-deflection curve. Within this flat plateau, the
iterative process uses a constant stiffness matrix that has been
updated after the first yielding of the longitudinal reinforcement.

The behavior of the beam along the ascending branch of the
load-deflection curve can be divided into two segments. The first
segment ranges from the undeformed state to the appearance of the
first flexural cracks at the midspan region. This causes a moderate
kink in the numerical load-deflection curve. The second segment
begins with the formation of the first flexural cracks and continues

until the onset of yielding in the longitudinal reinforcement. Within
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this segment, flexural cracks progress through the beam depth and
towards the left support.

The relatively flat plateau of the load-deflection curve presents
two phases. The first phase extends from the onset of the first
yielding of the reinforcement to the point of maximum load. In this
phase, yielding of the reinforcement advances and reaches the
hardening range of behavior. This contributes to the slight increase
in load which is seen in the load-deflection curve (Fig. 4.45). Also, the
first visible crushing in the concrete is detected in the top fiber, after
which crushing continues to spread towards the neutral surface of
the beam. The condition of complete crushing of the concrete is
attained when the crushed zone meets the upper flexural cracks. This
situation is visible in Figure 4.46 which shows the distribution of
nonlinearities in the concrete at maximum load. In addition,
extensive shearing within the flexural cracks appears in this figure.
The second phase within the flat plateau is associated with the
smooth descending branch present in Fig. 4.45. The observed
decrease in load is due to the gradual drop in the internal
compressive force in the concrete because of softening. In terms of
the material integrity, the drop in load is motivated by ongoing
smashing of the concrete at the compression zone. This phase
terminates with the fexural failure of the beam.

Table 4.5 lists values of loads and deflections associated with
specific stages of the behavior of the beam. The comparison between
loads seems reasonably accurate, whereas the correlation between
deflections shows some discrepancy for the stage of maximum load.

This may be due to the lack of experimental data related to the
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descending branch of the compressive stress-strain behavior of the
concrete. Without these data, the interpolation of stresses and
strains, in the formulation of the compressive constitutive relation,
becomes innaccurate.

Considering the various nonlinearities mentioned above, the
variation of the lower normalized eigenvalues is now investigated.
The first and second eigenvalues and the corresponding eigenvectors
are selected for this study in view of the conclusions outlined in
Subsection 4.5.1 (case of H/L=1/4). The eigehvalues of the elastic
stiffness matrix  have the values 83,910 N/mm and 6,667.250
N/mm, respectively for the first and second eigenvalues. In
subsequent eigenanalyses, the eigenvalues are normalized with
respect to these values. The first and second eigenvalues represent

the flexural stiffness coefficients associated respectively with the
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single curvature mode {¢}, and the double curvature mode {¢},.

illustrated in Fig. 4.47. Figure 4.49 shows the variation of the first
and second normalized eigenvalues with the midspan deflection of
the beam. According to this figure, the normalized eigenvalues drop
significantly from the initial values at the onset of the first flexural
cracks to a value nearly 30% of their initial values just prior to the
first yielding of the reinforcement. Following this stage, the
normalized eigenvalues decrease steeply. The first normalized
eigenvalue attains only 2% of its initial value, whereas the second
stabilizes at 25% of its initial value. The drastic reduction in the
flexural stiffness (first eigenvalue in the present analysis) that
corresponds to the single curvature mode of the beam has been

observed during experiments as reported by Burns and Siess (1966).



The participation of the eigenvector components Aa,{¢}, and
Aoy{¢},, shown in Fig. 4.47, in the actual displacement increment
vector {Ar} can be studied through the application of the analytical
parameters formulated in Section 4.3. Thus, Figs. 4.50, 4.51 and 4.52
illustrate the variation respectively of the size, angle and
participation parameter with the midspan deflection of the beam.
Based on these figures, it is demonstrated that the first eigenvector
component, which reproduces the single curvature mode of the
beam, is fully participant from the beginning to the end of the load-
deflection history. On the other hand, the second eigenvector
component, which represents the double curvature mode, is
orthogonal to the actual displacement increment vector prior to the
first crushing of the concrete and becomes quasi-orthogonal
thereafter. Therefore, the second eigenvector component can be
discarded from the composition of the approximate displacement
increment vector {Ar}, shown in Fig. 4.48.

The results of this investigation demonstrate that the first
eigenvector component Aow,{¢},, which represents the single
curvature mode, dominates the incremental displacement response
of the reinforced concrete shallow beam. In addition, a single

generalized displacement increment Ac«, is sufficient to describe the

displacement response.

4.6 Discussion
Recalling the results of the case studies carried out in this
Chapter, a comparison between the number N of the global degrees

of freedom {Ar} with the number M of the generalized degrees of
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fredom {Aa)}, can be summarized. Table 4.6 provides such a
summary.

The most important conclusion is that the number of the
degrees of freedom of a materially nonlinear structure can be
drastically reduced. The beneficial aspects of this conclusion will
serve as background for the formulation of an eigenvector-based

solution strategy which constitutes the object of the next Chapter.



Type of o .
Eigenvector uasi o
Component Orthogonal Orthogonal Participant

Relative

Size
Parameter 0 (0,0.10] (0.10, 1.0]
Angle
Parameter
(degrees) 20 [84,90) [0, 84)
Participation
Par:«(x%m)eter 0 (0, 1] (1,100}

Table 4.1: Intervals of variation of the analytical parameters for the
orthogonal, quasi-orthogonal and participant eigenvector

components.

2 e Resultant Deflection Ratio:
@ at node 21 Approximate
H ————
~ I’ Actual Approximate Actual
Y
<l (mm) (mm)
H/L-1/4 67313 67.199 0.998
H/L=1/2 10.636 10610 0.997
H/L=1/1 2613 2529 0.968
H/L-2/1 1.299 1.266 0.975
H/L=4/1 1.028 0.963 0.936

Table 4.2: Values of the actual and the approximate deflections at
node 21 of the plane structure.



Stages FirstYield Fully Yielded
Type of I R I R
Solution Ty Ry Ty Ry
Simple Beam

Finite
Element
Analysis 1.120 1.120 4.120 1.556

Table 4.3: Values of the tip deflection and load ratios for the limit
stages of behavior of the elastic perfectly plastic cantilever beam.

Applied Load Midspan Deflection
Particular Stages (KN) (mm)
of the Behavior of
the R/C Deep Beam | pooxf o0y LTEST | rpor*| anar, | -TEST.
ANAL. ANAL.
Flexural 125 | 156 | 080 | 071 | 035 | 2.03
Cracks ' ‘ ' '
Diagonal 240 | 240 | 1.00 | 1.89 | 090 | 2.10
Cracks
Yielding of
Reinforcement 500 54960} 091 | 439 | 4.00 1.09
Crushing of top
of Compression | 606 | 609 | 099 | 5.18 [ 528 | 098
Strut

*Rogowsky et al (1983)

Table 4.4: Loads and midspan deflections from the analysis and the
experiment of the reinforced concrete deep beam.




Particular Stages Applied Load Midspan Deflection
of the Behavior of (KN) (mm)
the R/C Shallow

Beam TEST | ANALJ-LE3L | TpsT*| ANAL. [<IEST
ANAL. ANAL.

First
Flexural 500 | 7.15 j0.700 | 0.26 | 0.38 | 0.699
Cracks

Yielding of
Reinforcement

33.80 | 36.00 1 0938 | 5.33 | 5.84 | 0.913

First Crushing

of Concrete 36.92 | 39.26 | 0.940 | 25.40 | 19.20 | 1.317

Maximum 40.03 | 40.93 | 0978 | 73.66 | 52.77 | 1.396
Load

* Adapted from McCollister (1954)

Table 4.5: Loads and midspan deflections from the analysis and the
experiment of the reinforced concrete shallow beam.

Linearly Elastic Reinforced )
Structure ) Elastic Concrete Reinforced
Case aspect ratio H/L: Elastic Perfectly Softening Deep Beam Concrete
Study Plastic Beam Beam-Rod | ascending|iescending] Shallow
1/4 { 12 | 1/1 | 2/1 | 41 branch | branch Beam
N 32 286 18 460 346
M 1 2 4 5 5 1 2 1 3 1

Table 4.6: Number of the global and the dominant generalized degrees
of freedom for the case studies.
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Figure 4.1: An illustration of the expansion theorem in the N-
dimensional vector space.

{Ar)
{Ar)

Figure 4.2: An illustration of the conditions of parallelism and
orthogonality between the eigenvector and the displacement
increment vector.
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Figure 4.3: The direction angles between the eigenvectors and the
unit displacement increment vector.

* 4= 6.67(E) N/mm
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L - 4H, 20, H, H/2, A/4 10 mm

Figure 4.4: Discretization, loads and dimensions of the plane structure
with varying geometrical proportions.
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Figure 4.10: Variation of the relative size parameter of the
eigenvector components per value of the aspect ratio.
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Figure 4.12: Variation of the participation parameter of
the eigenvectors components per value of the aspect ratio.
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Figure 4.14: Discretization, dimensions and load for the elastic
perfectly plastic beam.
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Figure 4.15: Load-deflection curves given by the finite element
analysis and simple beam theory for the elastic perfectly plastic
cantilever beam.
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Figure 4.16: Development of yielding zones for the elastic perfectly
plastic cantilever beam given by the finite element analysis.
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Figure 4.22: Discretization, dimensions and loads for the elastic
softening beam-rod.
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Figure 4.23: Load-deflection curve for the elastic softening beam-rod.
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Figure 4.24: Development of softening zones at the equilibrium states
A B,C.D and E for the elastic softening beam-rod.
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Figure 4.40: Variation of the participation parameter with the midspan
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deep beam.

RELATIVE SIZE PARAMETER (/1M

0.0 0.4 0.2 0.9 0.4 0.8 0.8 0.7 0.8 0.9 1.0 1.1

1.8

t
MACGREGOR/ROGOWSKY BEAM B1/1.5T1

LEGEND
[G—&IAPPROX. DISP. INCREMENT VECTOR
b e UNITY LINE
- -~ LIMIT POINT LINE

A A n A A Y A

o 1

e 8 4« S __ & 1 8
- MIDSPAN DEFLECTION @10

10

Figure 4.41: Variation of the relative size parameter with the midspan
deflection for the approximate displacement increment vector of the

reinforced concrete deep beam.



106

s ™ -
o MACGREGOR/ROGOWSKY BEAM BY/15T1
E. LEGEND
Lé:" [—EAPPROX. DISP. INCREMENT VECTOR

- ~-- 0 DEG. LINE
i [ e 90 DEG. LINE
g" - - - LIMIT POINT LINE
ws
3
&
L 1 -

TN 0
MIDSPAN DEFLECTION (MM

Figure 4.42: Variation of the angle parameter with the midspan

deflection for the approximate increment vector of the reinforced

concrete deep beam.
[

™~
- v T Y T T T Al .4 v

100
1

80
Ll

MARCGREGOR/ROGOWSKY BEAM BI/1ST1 1

LEGEND ]
[M—8APPROX. DISP. INCREMENT VECTOR
---0 % LINE

------ 100 % LINE
- - = LIMIT POINT LINE

PF;!‘!’?FI‘IETER (%)

40

20

PARTICIPATION

[ ]
L
|
|
1
»
.
!
1
.
1
|
1
]
I
i
.
|
1
L]
.
1
I
1
|
.
1

, ' vopspan DEFLECTTON ¢v0 , .
Figure 4.43: Variation of the participation parameter with the midspan
deflection for the approximate displacement increment vector of the

" reinforced concrete deep beam.



107

:

stub 18

column

at all nodes
of this side

AW

A left dimensions in mm @ 4/51;2-:0
support v¥4 .

I< > 1371.60 >I

152.40
€

Figure 4.44: Discretization, dimensions, loads and boundary conditions
for the reinforced concrete shallow beam.

50
] first crushing of concrete

45 1 / maximum load flexural
7 A ‘ ;

first yielding of longitudinal reinforcement

flexural cracks
10
5 =~ FINITE ELEMENT ANALYSIS
‘ —— EXPERIMENT (adapted from McCollister 1954)
0

0 10 20 30 40 50 60 70 8 90 100 110 120
MIDSPAN DEFLECTION (mm)

Figure 4.45: Load-deflection curves from the finite element analysis
and the experiment for the reinforced concrete shallow beam.



108

(a) Experiment*

NONL INEARITIES
t  CRACK % SHERRING
¢ CRUSHING ® : SMASHING
I ¢ WIDE CRACK A : NO AGG INT
- AY
' -\
e A -4
e s Pl -~ 3
£ *'/ 3 * ) =15 *—*
|
: : \ [V ’ \

(b) Finite Element Analysis

Figure 4.46: Views of the reinforced concrete shallow beam at maximum
foad. (*reproduced by permission of C. P. Siess)



Ao},

Aa£¢}2

Figure 4.47: The eigenvectors and the eigenvectors components for

T .

e e e el e - - oo ———

R S S Lo [ P L s T B =1
................ [ S TP S S AN U S
______
.......................
[ J! | DT S P S b S -t —-
b Y= | Sy —"
! | I o S —— I P [ P
il i ' ' ikt T TR SES 444 1
..... L 4 f T
----- et PNPUROH U Y WS S H
==
------- e S R e
= T
: ‘ =3I
' | §o-— P L ety SO
‘ I - 3 E T pusaye
_______________ 1 R Sahtete? | O )
__ 1 i 4 —F—1—1
------ B s St It | N ! i
I
T - . T, Bomom e 1 [3 . i { ] ]‘
==
e el Y

" the reinforced concrete shallow beam.

109



T
e T & T
.................... b gl T RN N
t--_ Jl ] "i ———gme—— fom——— D it =t —t
[ =T =g - ! .
; — ! ; 4 -_.':. _____ e 'f _____ L ok Tuw Sy R R
...... L IR . |
LY e [f PR .L_.xl._..ll.—--!-—--"-—-""
e st
_________________________ L
T D B R Baiaieit sl DEY SRS -—.--—--—--_-._-‘
e Y PN i
o T s oo S NS I 0 I
(== i .- q-==-=4
[ 4.
I i i i ! B q--=-- ¥ e e e e e
— L
—————o— | e Lo H H |
——teo b [ PR l---’-—-i—i—i-"l

Figure 4.48: The actual displacement increment vector and the
approximate displacement increment vector for the reinforced
concrete shallow beam.

110



cracks

o
o

| first yielding of
| reinforcement

first crushing
of concrete | maximum load

NORMALIZED EIGENVALUES

-
O = N W R N NN

——{3— FIRST EIGENVALUE
| flexural —&— SECOND EIGENVALUE

Ak ——h——h——h—h—A

MIDSPAN DEFLECTION (mm)

0 10 20 30 4 50 60 70 80

90

100

Figure 4.49: Variation of the normalized eigenvalues with the midspan

deflection of the reinforced concrete shallow beam.

1.2

e
oo
a1

REINFORCED CONCRETE SHALLOW BEAM

—{}— FIRST EIGENVECTOR
—a&—— SECOND EIGENVECTOR

E

£

g

g

§ 06-
g L
N 0.4'-'
w
:
5
R

Lo ym—a—-—a———_{4—g—_—4——g—_—0-0

MIDSPAN DEFLECTION (mm)

Figure 4.50: Variation of the relative size parameter with the midspan

deflection of the reinforced concrete shallow beam.



100

REINFORCED CONCRETE SHALLOW BEAM
—]— FIRST EIGENVECTOR
—k— SECOND EIGENVECTOR

ANGLE PARAMETER (DEGREES)
o 58 88 38 38
s 1 1 1 1 1 ] 1 [l

90 deg. line

—
o

3'()4l()r5'06'()7l()8b9101
MIDSPAN DEFLECTION (mm)

o
Y—
(o]
[\
(=]

Figure 4.51: Variation of the angle parameter with the midspan

deflection of the reinforced concrete shallow beam.

00

110
100
90
80
70
60
50
40
30

REINFORCED CONCRETE SHALLOW BEAM
—{— FIRST EIGENVECTOR
—&— SECOND EIGENVECTOR

PARTICIPATION PARAMETER (%)

100% line
—D—D——D——D—-—-Dgnz_—.n—_—n— =0=91T

0 10 20 '3[0' 40 50 60 '7'0' 80 9b .
MIDSPAN DEFLECTION (mm)

112

Figure 4.52: Variation of the participation parameter with the midspan

deflection of the reinforced concrete shallow beam.



CHAPTER 5

AN EIGENVECTOR-BASED SOLUTION STRATEGY

5.1 Introduction

The solution strategies developed to date for solving materially
nonlinear problems have been formulated in the natural basis
associated with the N global degrees of freedom of the discretized
structure. This is the case of all methods resulting from the Newton-
Raphson, displacement control and Riks-Wempner formulations as
reviewed in Chapter 2. For these methods, the general form of the
iterative and incremental equilibrium equations is given by
expression [3.9] which represents a N-dimensional system of banded
and coupled equations. Thus, the iterative process involves N-
dimensional vectors to store displacement increments and
unbalanced loads. In addition, the equation solver usually utilizes
out-of-core storage and goes repeatedly through the steps of
decomposition of the stiffness matrix, reduction of the load vector
and backsubstitution of the degrees of freedom.

Riks (1987) and Felippa (1988), while reviewing the current
status of solution strategies for nonlinear problems, have addressed
the reduction methods, originally developed by Almroth et al. (1978)
and Noor and Peters (1980), as the most promising class of available
methods. As outlined in Chapters 2 and 3, Almroth et al. have
selected initial displacement vectors and buckling modes, whereas
Noor and Peters have chosen path derivatives vectors to comprise

the set of base vectors which are applied to reduce the order of the
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system of equilibrium equations. Noor and Peters (1981) have
improved the existing version of the reduced basis technique by
introducing the arc-length as a path parameter. A review of the
recent applications of the reduction methods in dynamics and in
geometrically nonlinear structural analysis has been covered by Noor
(1981). Although effective for geometrically nonlinear problems, the
reduction methods have not so far been applied to materially
nonlinear problems for which localization of deformation may govern
the displacement response. In addition, the reduction methods have
utilized nonorthogonal base vectors within the Rayleigh-Ritz
technique applied to reduce the number of the global degrees of
freedom of the discretized structure. The adoption of nonorthogonal
base vectors causes coupling of the equilibrium equations as
discussed in Chapter 3, equation [3.16].

It has been demonstrated in Chapter 3 that the selection of the
eigenvectors as base vectors results in a system of uncoupled
equilibrium equations given by expression [3.28]. Furthermore, it has.
been concluded in chapter 4 that, among the N eigenvectors
extracted from the tangent stiffness matrix, a much smaller number
M of eigenvectors participate effectively in the actual displacement
increment vector of the materially nonlinear structure. Recalling the
case studies of Chapter 4 and Table 4.6, the maximum values of N
and M are respectively 476 for the reinforced concrete deep beam
and 5 for the linearly elastic plane structure with aspect ratio 4/1.
This implies that the selection of M participant eigenvectors as base
vectors in the description of incremental equilibrium expressed in

[3.28] results in a reduced system of M uncoupled equilibrium
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equations, given in terms of generalized displacements and
generalized loads. For the majority of the case studies of Chapter 4, a
single generalized displacement increment that multiplies the
eigenvector associated with the lowest eigenvalue has described the
displacement response of the materially nonlinear structure,
including the failure mechanism. This strongly suggests that an
accurate and efficient solution can be obtained with a reduced set of
incremental equilibrium equations.

The objetive of this chapter is to formulate an eigenvector-
based solution strategy that rests on the conclusions of Chapters 3
and 4. For materially nonlinear problems, the specific requirements
of the solution strategy correspond to the difficulties that usually
hamper the numerical analysis, such as abrupt changes in the
stiffness, the condition of near or complete singularity of the updated
stiffness matrix at the vicinity of limit points, assessment of limit
points, description of the descending branch of the load-deflection
curve and the capture of the failure mode of the structure. Other
general requirements are cost-effectiveness and a relatively fast rate
of convergence.

After this introduction, the chapter follows with the
formulation of the eigenvector-based solution strategy for the
preiterative and iterative phases. Subsequently, the algorithms for
both phases are introduced. Estimates of the rate of convergence and
of the computational effort are then presented. A discussion on the

potential of the eigenvector-based solution strategy ends the chapter.
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5.2 General Characteristics

The conventional arc-length method, due to Wempner (1971)
and Riks (1972), describes equilibrium paths in the (N+1)-
dimensional load-displacement space. However, if the approximate
displacement increment vector, given in [4.21], is inserted in the arc-
length equations, the equilibrium paths can be described in the
(M+1)-dimensional load-generalized displacement subspace, where M
is much less than N. This is the general characteristic that guides the
formulation of the solution strategy. Thus, the proposed solution
strategy identifies the reduced dominant eigenvector basis and then
uses the corresponding generalized displacement increment and the
load factor increment as interdependent variables. These variables
comprise the finite arc-length, which is the independent variable.

In each load increment, the solution strategy has two phases.
In the preiterat.ive phase, a trial displacement increment is
calculated followed by an assessment of the dominant eigenvector
basis, reduction of the system of equilibrium equations into the
generalized form and computation of the arc-length and other
solution control parameters. The iterative phase starts and follows a
path which is orthogonal to the arc-length. Within this path, the
iterative phase utilizes the modified Newton-Raphson scheme to
iterate load factor and generalized displacements. Kao (1974) has
compared the performance of different iterative schemes based on
Newton-Raphson methodology. The modified Newton-Raphson
method has shown an outstanding performance with respect to the

degree of accuracy and amount of computational effort for moderate
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sizes of solution steps employed in the analysis of nonlinear
problems.

This solution strategy is formulated to deal primarily with
proportional loads. Nevertheless, the alternative for an additional

constant load vector has been taken into account.

5.3 The Preiterative Phase
The preiterative phase starts with the computation of the first

displacement increment vector. The set of incremental equilibrium

equations is solved in the form of

K*{Ar) = (£ 1.0){R}, [5.1]

where {Ar}®is the first displacement increment vector associated
with the reference force vector {R}.

A predetermined number "p" of eigenvectors {¢}; and
corresponding eigenvalues A;are then evaluated from the tangent
stiffness matrix, as illustrated in Fig. 5.1. The stability of equilibrium
is investigated through the sign of the lowest eigenvalue or,
alternatively, through the sign of the pivots of the factorized stiffness
matrix. The result of this investigation determines the sign of the
first load factor increment Ap®. Based on the vector {Ar}® and the
extracted eigenvectors, the first generalized displacement increment
vector {Aa}®, shown in Fig. 5.2,is computed. The resulting eigenvector
components Ao;{¢}; are tested for dominance, after which the

dominant components are selected. Next, the transformation of the
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incremental equilibrium equations, from the conventional (N+1)-
dimensional load-displacement vector space to the (M+1)-
dimensional load-generalized displacement subspace, takes place.
This process gives M uncoupled incremental equilibrium equations.
Finally, the stiffness parameter is used to adjust the current arc-
length. Generalized displacements and loads are adjusted accordingly.

Figures 5.1 and 5.2 illustrate this phase in both vector spaces
and emphasize the referred transformation of basis. In these figures,
a right superscript on the variable denotes the order of the iteration

within the solution step. The following stages form the preiterative

phase.

5.3.1 Eigenanalysis of the Tangent Stiffness Matrix

The eigenanalysis of the tangent stiffness matrix may be
required at point "a" in Fig. 5.1, which represents the beginning of a
typical solution step. In the case of materially nonlinear problems,
the eigenproblem, stated in Chapter 3, can be written in its standard

form as

KJ[@]=[1][a][A]. (5.2]

where the eigenvectors in [®] and corresponding eigenvalues in [A]
are extracted from the tangent stiffness matrix K] updated and
assembled at point "a" in Fig. 5.1. In the current version of the
modified program NISA, the updated tangent stiffness matrix K} and

the identity matrix [I] in [5.2] constitute the input for the



119

eigenanalysis of materially nonlinear structures through the
subspace iteration method (Bathe and Wilson 1976).

In dealing with material nonlinearities and in the vicinity of
limit points, singular or nearly singular tangent stiffness matrices
may be encountered. This can cause convergence problems in the
evaluation of the eigenpairs. For nearly singular tangent stiffness
matrices, Moler and Stewart (1973) have proposed the "QZ" algorithm
that applies implicit shifts to the matrix to render it nonsingular
while iterating for the solution of the correct eigenpairs.

For indefinite stiffness matrices, explicit and positive shifts are
utilized to disclose negative eigenvalues which are commonly
associated with descending branches of load-deflection curves.

Denoting p as a positive shift, the shifted stiffness matrix is computed

as

[R]; =K+ 1], [5.3]

where the symbol A denotes "shifted”". The standard eigenproblem for

the shifted matrix can be stated as

[R][#]=(1][¥][a]. [5.4]

where [¥] and [Q] contain respectively the eigenvectors and the
eigenvalues of the shifted stiffness matrix. Substituting the shifted

stiffness matrix given in [5.3] into [5.4], it yields

K [¥]=[1][¥] ([Q] -[u] ): [5.5]
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where the ith eigenvalue is w;-p. Since the solution of [5.2] and [5.5] is

unique, it is concluded that

{v}i= {0k [5.6a]
and
A= - 1, i=1,.,N. [5.6b]

Thus, the relations [5.6a] and [5.6b] state that the shifting technique,
applied to a nearly singular or indefinite stiffness matrix, does not
alter the original eigenvectors. In addition, the eigenvalues of the
unshifted matrix can be recovered by subtracting the shift p from
the eigenvalues of the shifted matrix. Implicit and explicit shifts are
currently implemented in the program NISA (Stegmuller et al. 1983).

Finally, the subspace iteration method outputs a preselected
number of eigenpairs (A, {¢}i), i = 1,..., p, where p<N. The eigenvalues

obey the order

A <}»2<...7~p [5.7]

from the lowest to the highest. The examples of materially nonlinear
structures investigated in Chapter 4 have indicated that the
participant eigenvector components are among the first two or three
eigenvectors. For this reason, an upperbound for the number of
preselected eigenvectors has been set equal to 3 throughout the

applications of the present study.
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5.3.2 Assessment of the Participation of the Preselected

Eigenvector Components

Up to now, the normalized eigenvectors and the first
displacement increment vector have been calculated. It is assumed
herein that the "p" preselected normalized eigenvectors constitute a

basis for a p-dimensional vector subspace in which
[+ [~
Arp = ) Ao\ 0y,
{ar) g o}, [5.8]

c
where Aq; is the i'™ generalized displacement increment associated
with the first displacement increment vector. The generalized
displacement increment in [5.8] is evaluated through expression [4.3],

which yields

Aa; ={oy;{ar)”. [5.9]

The computation of [5.9] makes it possible to know all the

preselected eigenvector components in [5.8].

The first unit displacement increment vector

e {ar}

{ar),= 22—,
KA} 1

[5.10]

determines the current and actual direction of deformation of the
structure. The objective now is to assess the participation of each

preselected eigenvector component in the first displacement
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increment vector given in [5.8]. For this purpose, the participation

parameter (Section 4.3.4),

2
c

A
Pi=1m _l % i=19n0’p [5-11]
[+
K Ar} 1

is applied to determine the percentage of participation for each of
the preselected eigenvector components. It is noted that [5.11] is not
sensitive to the size of the first displacement increment vector, since
it is normalized with respect the Euclidean norm of this vector.
Therefore, variation in participation implies variation in direction
between the eigenvector component and the first unit displacement
increment vector.

Among all the preselected eigenvector components for which
the participation parameter has been computed above, the ones that
participate effectively in the actual first displacement increment
vector are selected. The selection criterion is based on the domain
intervals of the participation parameter provided in Table 4.1. In this
table, the orthogonal and quasi-orthogonal eigenvector components,
called herein nonparticipants, show participation parameters P;<1.
Thus, if all the nonparticipant eigenvector components are excluded

from [5.8], the first displacement increment vector can be computed

approximately as

c M c
{arh =Y aa{0),, [5.12]
i=1
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where M is the number of participant eigenvector components.
Expression [5.12] defines the approximate displacement increment
vector treated in Section 4.4,

In practice, the degree of accuracy incorporated in [5.12] is

considered satisfactory if

M
Y P.295%, [5.13]
i=1

where P;is the participation parameter for the it participant

eigenvector component.

5.3.3 Transformation and Reduction of the Conventional
Incremental Equilibrium Equations

The results of Section 4.4 have demonstrated that the
participant eigenvectors form a basis of a M-dimensional vector
subspace. In this subspace, the first displacement increment vector

and the reference force vector can be expressed respectively as:

{ar) =[0]{aa)” . [5.14]

and

(R)=[o]{y} [5.15]

where the columns of [®] are the selected participant eigenvectors

and {y}® is the generalized reference force vector which can be

computed as
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() =[o] (m). [5.16]

Expressions [5.14] and [5.15] relate entities given in the
conventional N-dimensional vector space to corresponding entities
defined in the M-dimensional vector subspace of the participant
eigenvectors. The matrix [®] serves as a transformation matrix. Since
the M participant eigenvectors are linearly independent, the
transformation matrix is nonsingular and defines a unique
transformation between both vector spaces. The relation between
both vector spaces is illustrated in Figs. 5.1 and 5.2 for displacement
and load factor. Figures 5.3 and 5.4, on the other hand, show the

transformation relations for force vectors given in both vector

spaces.

Substituting expressions [5.14] and [5.15] into the incremental

equilibrium equations [5.1] yields

K@) {aa)’ = (t1.0)[@]{v} . [5.17]

Premultiplying [5.17] by [®]T and accounting for the orthonormality

property of the eigenvectors, the expression above may be written as

(o] 1t[@] {aa)° = (1.0) ()", (5.18]

or yet,

[A]{aa} = (1.0 {v} . [5.19]
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Expression [5.19] represents the set of M incremental equilibrium
equations in the basis of the selected participant eigenvectors. In

addition, the resulting equations are completely uncoupled.

5.3.4 The Stiffness Parameter

A measure of the degree of nonlinearity of a structure that
experiences progressive material damage can be used to control the
size of the current solution step. Among other measures, Bergan
(1979) has proposed the current stiffness parameter to assess the
level of overall nonlinearity of the structure at the beginning of a
solution step. |

The current stiffness parameter utilizes the concept of stiffness
of a discretized structure. Thus, the overall stiffness at the beginning
of a solution step can be defined as

¢
K= Ap

{ar} , [5.20]

where the numerator and the denominator are respectively the first
load factor increment and the Euclidean norm of the first
displacement increment vector associated with point "c¢" in Fig. 5.1.
The units of [5.20] are N/mm.

Resorting to relation [5.14] and recalling the definition of
Euclidean vector norm, the stiffness measure [5.20] can be expressed

in the basis of the selected participant eigenvectors as
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Ap

'\/ Qo) [@ {Aa}

[5.21]

where the columns of [®] are the M participant eigenvectors.
Accounting for the orthormality property of the participant

eigenvectors, given in [3.21], the expression above is reduced to

[
A
K=—2P [5.22]

{ac)

where the denominator is the Euclidean norm of the first generalized
displacement increment vector for the current solution step as shown
in Fig. 5.5.

The current stiffness parameter, formulated in the basis of the
selected participant eigenvectors, is expressed in a dimensionless

form as

[
s =X [5.23]

where kjis the stiffness measure [5.22] evaluated at the beginning of

the first solution step which is also illustrated in Fig. 5.5. The right

subscript , denotes the first solution step. Applying the definition

[5.22], the explicit form of [5.23] is
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c

Ap

Sp=lﬂAa3H.
Ap, [5.24]

{ Acc}

[+
Noting that Ap; = (+1.0) and Ap® = (¥ 1.0), the last expression is

simplified to give

S, =1 -, - [5.25]
K Aa) I

where the negative and positive signs account respectively for stable
and unstable behavior.

The presented definition of the current stiffness parameter is
useful as long as the stiffness matrix is updated at the beginning of
the current solution step. This definition conforms with the modified
Newton-Raphson scheme adopted herein. However, if the initial
stiffness scheme is selected for the sake of economy, an adequate
definition of the stiffness parameter is

b b
Ap / Ap,

P dite Hite
Il

Z{Aa}ill IIZ{Aa)iIII [5.26]
i=1 i=1

S

b
where Apb and Ap, are the load factor increments respectively at the

end of the current and first solution steps. The denominators of the
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first and second terms of the fraction [5.26] represent respectively
the Euclidean norms of the accumulated generalized displacement
increment vectors for the current and first solution steps. It is
remarked that the definition [5.26] incorporates the concept of an
average stiffness related to the current solution step. Therefore, it
seems appropriate to call this parameter the average stiffness
parameter. Figure 5.6 illustrates this concept and the terms in [5.26].

Figure 5.7 presents different types of structural behavior given
in terms of load versus norm of the generalized displacement vector.
Behavior type 1 is typical of structures whose load-deflection
response incorporates an ascending branch, a limit point and a
descending branch. Behavior type 2 is representative of ductile
structures for which ascending and flat branches are present. Finally,
behavior type 3 is characterized by a hardening branch after the
ascending branch. Furthermore, it is remarked that the stability of
equilibium varies from stable, neutral and unstable for curve type 1,
whereas it changes from stable to neutral for curve type 2 and
remains stable throughout curve type 3.

Figure 5.8 shows typical variations of the stiffness parameter
[5.25] with respect to the Euclidean norm of the generalized
displacement vector and for the types of behavior considered in Fig.
5.7. For all types of behavior, the stiffness parameter remains
constant (=1.0) within the linear range of the corresponding load-
deflection curve. After this range, the stiffness parameter decreases
gradually with increasing level of nonlinearity to attain negative
values for behavior type 1, and positive values for behavior types 2

and 3.



129

5.3.5 Determination of the Arc-Length Size

For a materially nonlinear structure, the level of nonlinearity
increases as the load-deformation history progresses.

In the context of material behavior, plastic strain increments
are irreversible for the models based on the theory of plasticity. On
the other hand, for models based on hypoelasticity, total strain
increments are reversible as long as the stress increments remain
sufficiently small (Chen and Saleeb 1982). The prescription of a
considerably large load step can violate the restrictions related to the
formulation of the constitutive relations referred above. Problems,
such as iterative returning to the material strength surface from an
outside stress point and deviation from the actual stress-strain path,
are commonly originated due to a large incremental load step.

Regarding the adopted solution strategy, a large solution step
gives rise to a large number of iterations which, in turn, is conducive
to a high cost of the solution. Therefore, it seems necessary to control
the size of the solution step so that a fair representation of the
material behavior is preserved and a cost-effective solution is
achieved.

The total size of a solution step is approximately formed by the
dimension of the finite arc-length (Fig. 2.4), associated with the
preiterative phase, and the length‘ of the iteration path defined
within the iterative phase (Figs. 5.1 and 5.2). In practice, however,
the size of the finite arc-length is more significant relative to the size
of the iteration path. Thus, the control of the size of a typical solution
step can be carried out .through a rational determination of the total

size of the current finite arc-length. This is seen as innovative since
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the well known contributions by Ramm (1981) and Noor (1981) deal
only with constant arc-lengths. An improved approach has been
proposed by Bellini and Chulya (1987) whereby the control of the
arc-length is carried out with respect to the load factor.

At the beginning of a typical solution step, the finite arc-length,

associated with point "c" in Fig. 5.1, is defined as

AL =4/ {ary {ar) +(¢ 10) . [5.27]

Using the relation given in [5.14], the finite arc-length can be

written in the basis of the M selected participant eigenvectors as

AL’ =/ <a0) o] o] {ac) +(t 1.0) . [5.28]

Taking into account the orthonormality property of the participant

eigenvectors [3.21], expression [5.28] can be simplified to give

AL =~ (aa) (a0 + (£ 1.0) [5.29)

which represents the current generalized finite arc-length seen in
Fig. 5.2. Similarly, the generalized finite arc-length computed at the

beginning of the first solution step is designated as

LS =A (aa; {aa);+(£1.0) [5.30]

where the subscript ; denotes the first solution step.
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Herein, the current generalized finite arc-length [5.27] is

proportioned to be equal to

1

AL =fxAL,, [5.31]

where AL! is the generalized finite arc-length that corresponds to
point 1 in Fig. 5.2 and from which the orthogonal iteration path
initiates.

The factor f in [5.31] has been chosen as a positive function of
the current or- average stiffness parameter and reflects the level of
nonlinearity of the structure. Since the variation of the stiffness
parameter (Fig. 5.8) depends on the type of structural behavior given
in Fig. 5.7, two functions for the factor f are considered.

The first function is recommended in conjunction with behavior

type 1 and is defined in a stepwise manner as

1.002S,2 0.10 , f=5, [5.32]
0.10<S,2-0.10 , £f=0.10 [5.33]
-0.10< 8,2 -1.0 , f=-§, [5.34]
Sp< -1.0 , f=1.0 [5.35]

This function is illustrated in Fig. 5.9. For the behavior type 1, a limit
point takes place. Therefore, small solution steps in the vicinity of
the limit point are automatically prescribed so that the response can
be traced with accuracy in that region. Larger solution steps are
allowed in the ranges before and after the limit point vicinity.

The second function, shown also in Fig. 5.9, is suggested for use

with behavior types 2 and 3 (Fig. 5.7) and is defined as
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1.028,2020, f=1125xS, - 0.125 [5.36]
0.20>8,20.0, f=-450xS,+ 1.0 | [5.37]

In this case, approximately flat plateaus and stable hardening
ascending branches are expected after the ascending branch of the
corresponding load-deflection curve. Thus, small solution steps are
prescribed within the transition branch after the linear branch,
whereas larger solution steps can be tolerated throughout the linear
and hardening or flat branches of the load-deflection curve.
Following the proportion of the generalized finite arc-length,
the first generalized displacement increment vector and the first load
factor increment that correspond to point "c" in Fig. 5.2 are scaled to
conform with the proportioned arc-length computed in [5.31]. Thus,
the scaled first generalized displacement increment vector is

calculated as

IO
AL

where {Aoc}1 is shown in Fig. 5.2. Similarly, the scaled first load factor

increment is computed as

)
1 I fx AL c
Ap = ~1Ap , [5.39]

[

AL

which is as well shown in Fig. 5.2.
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After scaling the first generalized displacement increment
vector and the first load factor increment, total generalized
displacements and load level are updated. With respect to point 1 in

Fig. 5.2, the total generalized displacement vector is updated as

{a) = {a) +{aa) , [5.40]

whereas the load factor is updated as

1

1 a
p=p +Aap. [5.41]

5.3.6 The Sign of the Initial Load Factor Increment

In addition to determining the size of a solution step, the sign
of the initial load factor must also be determined, i)articularly when
limit points are expected in the analysis. Load incrementation takes
place at the beginning of a solution step (point "a" in Fig. 5.1). The
sign of the first load factor increment determines the direction of the
incremental force vector that forms the system of incremental

equilibrium equations. This may be expressed as

[K]f{Ar}:APC{R) , (5.42]

where {Ar}® Ap® and {R} are respectively the first displacement
increment vector, the first load factor increment and the reference

force vector associated with point "c¢" in Fig. 5.1.
Bergan et al. (1978) and Meek and Tan (1984) have suggested

that the sign of the first load factor increment should be the same as
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for the previous solution step, unless the sign of the first incremental

work

aw’ ={ary K {ar) [5.43]

changes. Expression [5.43] adopts the concept of quadratic form, as
proposed by Langhaar (1962), to investigate the definiteness of the
tangent stiffness matrix relative to the first displacement increment
vector. However, this vector should be known in advance so that
expression [5.43] can be computed. This, in turn, requires the
solution of [5.42] with some arbitrary sign applied to the first load
factor increment.

On the other hand, Crisfield (1981) has proposed that the sign
of the first load factor increment should follow the sign of the

determinant of the factorized stiffness matrix, given as

K} =[] DI’ [5.44]

where [L] is a lower-unit triangular matrix and [D] is a main diagonal
matrix formed by the pivots originated from the Gauss elimination

method. The determinant of [5.44] is computed as

N
det (K] = JICSTE
i=1 [5.45]

where d;; is the ith pivot. This approach fails thoroughly for the case

of an even number of negative pivots. For this case, the computation
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of [5.45] results in a positive quantity, although the structure may be
unstable.

Ramm (1981) has recommended the monitoring of negative
pivots in the matrix of pivots [D]. Thus, if a negative pivot is detected
at the beginning of a solution step, the sign of the first load factor
increment is altered from positive to negative. This approach has
been proposed in a rather numerical way. Some physical insight is
needed.

The presence of negative and positive pivots in [D] implies an
indefinite tangent stiffness matrix, which is commonly associated
with the descending branch of the load-deflection curve. Recalling
the application of the concept of quadratic form to assess the
definiteness of a matrix (Langhaar 1962), there are displacement

increment vectors {Ar} for which the quadratic form

{ar)[K]i{ar} <o0. [5.46]

The above expression can be formulated explicitly if the
displacement increment vector is written in the basis of the
eigenvectors. For this purpose, relation [3.24] is recalled and

substituted into [5.46], which yields
(aad|e] Kii[e] {aa) <o, [5.47]

or yet

(aay[a]; {aa} <0, [5.48]
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which represents the quadratic form [5.46] in the basis of the
eigenvectors. Since the generalized displacements in [5.48] are

uncoupled, the quadratic form can be developed as
N 2
;M(A“J <0, [5.49]

or explicitly as
2 2 2
ll(’Aal) +...+xi(Aai) +...+7LN(AaN) <0, [5.50]

where the resulting negative sign emerges from the dominance of
the eigenvectors associated with negative eigenvalues.
Considering a virtual generalized displacement increment

vector for which Aa;#0 and Aoy = O for k = i, the i" term of [5.50],

denoted as
AW, =();A0) Ac, [5.51]

can be interpreted as the incremental virtual work performed by the
generalized force increment (A; Aca;) upon the virtual generalized
displacement increment Aa;. If the incremental virtual work is
negative at the vicinity of the equilibrium point "a" shown in Figs. 5.1
and 5.2, it implies that the structure is unstable with respect to the
considered set of generalized displacement increments. Therefore,
[5.51] serves as a stability test for the current equilibrium state of

the materially nonlinear structure. In practice, negative increments
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of the load factor have to be specified in order to describe the
unstable behavior of the descending branch under the condition that
[5.51] is negative.

In a solution step for which an eigenanalysis is not required,
the stability test [5.51] can not be carried out. Instead, one must rely
on the correlation between the eigenvalues and the pivots of the
factorized tangent stiffness matrix. Fortunately, Strang (1988) has
demonstrated that the signs of the pivots match the signs of the
eigenvalues. This result implies that the stability test [5.51], applied
to the lowest negative eigenvalue, suggests unstable behavior in the
case of a negative pivot is detected in [D]. This is the approach

adopted in the present solution strategy.

5.4 Comments on the Preiterative Phase

The steps that comprise the preiterative phase of the present
solution strategy have the role of preparing the solution strategy to
tackle the iterative phase. Figure 5.10 illustrates the preiterative
phase for different equilibrium paths and for the common case of a
single participant eigenvector component which gives rise to load-
deflection curves described in a 2-dimensional vector space. The

algorithm for the preiterative phase is provided in Fig. 5.11.

5.5 The Iterative Phase

The iterative phase deals with the computation of the
generalized displacement vector {Aoc}i and the load factor increment
Api. These variables are illustrated in Fig. 5.12 for a typical iteration,

from point "i-1" to point "i". In the following, the derivation of the
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constraint equation that sets the condition of orthogonality between
the arc-length and the iteration path is presented. Next, a two-step
technique is utilized to compute the generalized displacement
components of {Aoc}i. Following this stage, the load factor increment
Apiis evaluated through the application of the constraint equation.
After the update of the generalized displacements and load level, the
convergence criteria for loads and displacements are verified. The
procedure follows closely the well known modified constant arc-

length method (Ramm 1981).

5.5.1 The Constraint Equation

The vector associated with the finite generalized arc-length
[5.31] can be defined as

(T),= ({80} + ap {p}, ., [3.52]
in which [:I;] is an (N+1) x M matrix whose columns are the columns
of [®] augmented by a zero in the (N+1)%! row, whereas {plyisa
vector of zeros except that the (N+1)St element is one. The normalized
eigenvectors in [E)] and the unit vector {p},, shown in Fig. 5.12,
provide the direction of the deformation and loading respectively. It
is remarked that the arc-length vector in [5.52] is tangent to the
load-generalized displacement curve at point "a" (Fig. 5.12) only in
the case of the modified Newton-Raphson scheme.

Similarly, a vector contained in the iteration path can be

described as
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{Aw}l=[5] {Aoc}l + Apl{p}u , [5.53]

where the scalar components in [5.53] are the generalized
displacement increments {Aa}' and the load factor increment Api.

The sequence of vectors {Aw}i(i=2, ... ,b) describe geometrically the

iteration path shown in Fig. 5.12.
The condition of orthogonality between the vectors defined in

[5.52] and [5.53] is formulated by means of the scalar product
¢y, {aw) =0 . [5.54]

Substituting the transpose of [5.52] and the vector in [5.53] into
[5.54], it yields

(a0 ] [3] {aa} + 40" 2p' <D, {p)u=0 - C [5s8)

Recalling the orthonormality of the participant eigenvectors, equation

[5.55] is reduced to
<Aoc>l (Aa) + Ap Ap =0 . [5.56]

The equation above represents a constraint for the M+1

interdependent variables that form (Aa}'and Ap'. For this reason, it is

frequently called 'the constraint equation'.
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5.5.2 The Iterative Equilibrium Equations

The incremental form of the equilibrium equations has been
presented in Chapter 3, expression [3.28], in the basis of the N
normalized eigenvectors. Herein, the same form is adopted, except
that now only M participant eigenvectors are present. Thus, the set

of equilibrium equations can be described as

(] {ae) =[] "+ a0 )Ry - 7 5,57

where the rows of [®]T are the M participant eigenvectors. The left
member of [5.57] represents a set of incremental forces associated
with the trial generalized displacement increments. On the other
hand, the right member means a set of generalized unbalanced forces
that arises from the difference between the generalized external
forces [(I>]T(pi'1 + Api){R} and the generalized internal forces [CD]T{F}i'l.

Introducing the transformations given in A[3.3O] and [5.16],

equation [5.57] is reduced to
a i i c i-1
(Al {aa} =ap {v} +{av} ", [5.58]
where the generalized unbalanced forces at "i-1" (Fig. 5.12) are
S T[ i1 :
{8y} =[] [p {R}-{F}"l]- [5.59]

The terms that comprise the right member of [5.58] are shown in Fig.
5.4. It is noted that the system of equations in [5.58] has M+l

unknowns, which are represented by the load factor increment Ap'
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and by the generalized displacement increments {Aa}i. In addition,

these equations are totally uncoupled and are further reduced to the

number M of participant eigenvectors. In this study, M <3.

5.5.3 The Combined System of Equations

One possible approach to solve for the unknown variables {Aoc}i
and Api is based on the combination of the constraint equation [5.56]
and the iterative equilibrium equations [5.58]. In matrix form, this

gives

W -7 el Jan”
<Aa>1 Apl Api = 0 , [5.60]
where all the entries have been defined in the previous subsections.

The a.pproach outlined in [5.60] has been adopted in
conjunction with the original form of the arc-length method (Riks
1979). In the original arc-length method, the combined system of
equations suffered from lack of symmetry and bandness of the
system matrix. Although this problem exists in [5.60], it is not as
restrictive as with the full set of equations since the number of

unknowns has been reduced drastically.

5.5.4 The Two-Step Technique
Instead of solving the combined system of equations [5.60],
Wessels (1977) has proposed a two-step technique to be applied to

the conventional arc-length method. Batoz and Dhatt (1979) have



142

proposed a similar technique in the realm of the displacement
control method. Herein, this technique is adapted to deal with the
uncoupled and reduced system of equations.

The two-step technique is based on the description of the
iteration path vector, given in [5.53], in the alternative form (Fig.

5.13)
(aw) =[a]{ac)i+ap [3] {aa)s+ap (o)., [5.61]

where the normalized participant eigenvectors in [d] provide the
direction of deformation, whereas the unit vector {p}, gives the
direction of loading. Also, the generalized displacement increments in

[5.61] can be computed through

a i i-1
[a] {aa},={ay} [5.62]
and

(AL {aa)s={v)", [5.63]

: N i
where {,Aa,}'x contains the generalized displacement increments

associated with the generalized unbalanced forces {Ay}"l, whereas

i
(Aa’}n groups the generalized displacement increments associated

with the generalized reference forces {y}€ defined in [5.16].
The main diagonal matrix of the eigenvalues [A]t is kept

i
constant throughout the iterative phase. Therefore, the vector {Aa}n

is the same as {Aa}® defined within the preiterative phase,
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expression [5.19]. This vector is always available in core. It is further
noted that the two-step technique mantains the properties of
bandness and symmetry of the systems of equations [5.62] and
[5.63]. In addition, the equations are completely uncoupled and
reduced to the number M of participant eigenvectors. Due to this fact,
the steps of factorization of the stiffness matrix, reduction of the load
vector and backsubstitution of the degrees of freedom, which are
common in the conventional solution strategies, are not required

while solving the systems [5.62] and [5.63].

5.5.5 The Load Factor Increment

The second and third vector components of {Aw}i in [5.61]
depend on the load factor increment Api, which has to be computed.
The computation of the load factor increment is carried out through
the condition. of orthogonality stated in [5.54]. Thus, applying this
condition to the vectors defined in [5.52] and [5.61], and accounting

for the orthonormality property of the eigenvctors, gives

a0 (aai+ap a0 (sl + G fohuso'ap' =0. (s

After isolating the load factor increment in [5.64] yields

i (aa) {Aa;

Ap =- : . '
(aoy {aa)y + ap. [5.63]

The load factor increment, defined above, takes into account

the generalized displacement increments evaluated within the
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preiterative and iterative phases. In addition, the load factor
increment associated with the preiterative phase is also included.
Therefore, Apireﬂects the size of the solution step. In fact, the
present solution strategy tends to load control for large values of Apl
in [5.65]. On the other hand, it tends to displacement ¢ontrol for small
values of Apl. Geometrically, expression [5.65] gives the intersection
point "i" between the iteration path and the arc-length vector {T},
translated to point "a;_;" in Fig. 5.13.

After the calculation of the load factor increment, the load level
can be updated as

i-1 i

p=p +4p. [5.66]

5.5.6 The Generalized Displacement Increment

The generalized displacement increments form the scalar
displacement component of the iteration path vector defined in
expressions [5.53] and [5.61]. Thus, equating the scalar displacement

components of {Aw}' in these expressions yields

{Aa}i={Aa}:+ Api{'Aa},iI . [5.67]

Substituting [5.67] into the incremental equilibrium equations [5.58],

gives

(A {aa), + ap [A] {ac)y = {av) "+ ap ()" [5.68]
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This result substantiates the decomposition carried out in [5.62] and

[5.63], which has been based on geometric considerations (Fig. 5.13).

~For a typical iteration, only the variables in {Aa}; are computed.
The remaining variables in the basic relations [5.65] and [5.67] have
been calculated within the preiterative phase and are available in
the iterative phase. Furthermore, out-of-core storage is not required
since the displacement vectors and the stiffness matrix have small
dimensions due to the reduction of the number of degrees of
freedom. In this study, the maximum dimension used for vectors and
matrices has been set equal to 3.

After the computation of the generalized displacement
increment in [5.67], the level of total generalized displacements can

be updated. This gives

(a)'={o)" +{aa). [5.69]

Usually, the total displacement vector, given in the N-
dimensional vector space of the global degrees of freedom, is
required to provide the deformed configuration of the structure.

Knowing from chapter 4 that

{ar) =[0]{aq) , [5.70]

the total displacements can be updated as

(= (1)L + [0] {Aat) . [5.71]
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5.5.7 Convergence Criteria

The generalized displacement increment vector {Aoc}l and the
load factor increment Api are trial quantities to which the
convergence criteria should be applied.

The convergence criterion for generalized displacements is

stated as

Ao < 1oL

> {Ac) [5.72]
j=1

where the numerator is the Euclidean norm of the generalized

h iteration, whereas

displacement increments corresponding to the i
the denominator is the Euclidean norm of the accumulated
generalized displacement increments, from the 1% to the i iteration.

On the other hand, the convergence criterion for the

generalized unbalanced forces is defined as

{ Ay} p—

o'~ p )1 [5.73]

where the numerator is the Euclidean norm of the generalized
unbalanced forces at the i iteration, and the denominator is the
Euclidean norm of the .generalized incremental forces at the i'"
iteration. The tolerance number TOL above has usually been set equal
to 0.01. The terms in [5.72] and [5.73] are illustrated in Figs. 5.12 and

5.4 respectively.
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5.6 Conditions and Rate of Convergence

The present solution strategy adopts the modified Newton-
Raphson scheme to iterate the generalized displacements and load
factor within the iterative phase. This scheme is based on the
recurrence relations given in [5.62] and [5.69]. In order to apply
successfully these relations, while iterating towards an equilibrium
point, some conditions should be observed. These issues, as well as
the rate of convergence, are herein examined in a practical way. For
rigorous mathematical formulation and proofs, Riks (1979) and
Ortega and Rheinboldt (1970) can be consulted.

The first condition to attain convergence can be expressed as

a

det[A], = 0, - [5.74]

a
where [A]t is the main diagonal stiffness matrix containing the

participant eigenvalues extracted at the beginning of the preiterative

phase. The condition above assures that the trial generalized

a
displacement increment CAO‘>1 is uniquely determined. In practice,
the condition of a nonzero determinant is usually satisfied, since a

perfect limit point is unlikely to occur in the numerical modeling of
a
materially nonlinear structures. In addition, the stiffness matrix [A][

is updated only at the beginning of a solution step. This aspect
~diminishes the chances of updating the stiffness matrix at a pure
limit point.

If the first condition is satisfied, a second condition states that

a finite domain, defined as
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u{m}uz= 5, : [5.75]

exists around the equilibrium point "b" in Fig. 5.15. The radius § is a
function of the position vector {‘C}b. Assuming that the condition in

[5.75] holds, the iterative process will converge if

(u(’m:}iu)2 <5, [5.76]

where {At}' is an increment of the position vector {’t}b and

B jteration within the iteration path shown in Fig.

corresponds to the i’
5.15. Ortega and Rheinboldt (1970) have demonstrated that two

successive approximations that satisfy [5.76] are related as

At} =L x {ach n [5.77]

where L depends on the position vector {‘L‘}b and varies in the
interval (0,1) for a convergent iterative process. Relation [5.77]
implies a linear rate of convergence. The conditions in [5.75], [5.76]
and [5.77] fail when a large finite arc-length is specified. In this case,
the iteration path is diverted indefinitely from the equilibrium path,
as it is illustrated in Fig. 5.15. In the present solution strategy,
however, the automatic adjustment of the size of the arc-length,
treated in Section 5.3.5, allows the iteration path to intersect the

equilibrium path.
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5.7 Computational Work

The computational work of a numerical procedure is defined as
the total number of arithmetical operations (typically multiplication
and addition) involved in the performance of the procedure. This
concept does not account for the type of computer in use. However,
the differences between conventional and parallel processors should
not affect the performance comparisons, since most of the time
cosuming operations take place on N dimensional vectors and
matrices in the same manner.

The computational work required for the present solution
strategy is herein evaluated and outlined in Tables 5.1 and 5.2. In
this table, N is the number of degrees of freedom, h is the
halfbandwidth of the stiffness matrix, p is the number of preselected
eigenvectors, M is the number of dominant eigenvector components
and (#ITE) is the number of iterations in the iterative phase.

Assuming a hypothetical example for which N=300, h=30, p=3,
M=1 and (#iter)=15, the results in Tables 5.1 and 5.2 give 1,783,800
operations for the eigenanalysis, 156,014 operations for the
preiterative phase without eigenanalysis and 22,710 operations for
the iterative phase. These figures demonstrate that the eigenanalysis
process requires a very large number of operations. However, it is
not necessary to perform eigenanalysis for every solution step. In
the example given above, only 9% of the total number of operations

is required for a solution step without eigenanalysis.
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5.8 Discussion

The potential of the eigenvector-based solution strategy
presented in this chapter can be assessed through the numerical
analysis of large scale problems. For these problems, a large number
of global degrees of freedom is required in the discretization of the
structure. It is expected that the savings resulting from the
numerical treatment of the reduced and uncoupled equilibrium
equations can compensate for the large computational work required

for the eigenanalysis in some specific solution steps.



- Equation Computational
Phase Description of the step number work Note
. Z
Eigenanalysis (521 |Nh+Nh(3+5p)+2Np 8))
+40Np(h4-2p+3/2)
Solution of incremental equilibrium equations | [5.1] 1 /2th + 2Nh ¥))
Computation of ﬁ.rst generalized displacement [5.9] pP(2N-1)
increments
m Computation of participation factors [5.11] (2N-1) + 3p 3)
>
[:: Selection of dominant eigenvectors components | [5.13] M-1) C))
<
o Transformation and reduction of incremental
E equilibrium equations (5.19] M@N-1) ®
g‘-l Computation of stiffness parameter [5.25] M- +1 6)
- [5.29]
Determination of arc-length size [5_'3 1] (2M+1)
Adjustment of first generalized displacement [5.38] M+2)
increments and load factor [5.39]
_Update of total generalized displacements [5.40] 1
and load factor [5.41] (M+1)
Z
SUBTOTAL OF THIS PHASE 3/2Nh +5Nh(1+p)+2Np[20(h+2p+3/2)+1]

+N-1)(p+M+1)+3p+(TM-2)+5

Notes:

(1) This figure has been calculated assuming 10 iterations in the
subspace iteration method and neglecting zero elements within the
bandwidth of the stiffness matrix. The halfbandwidth h of the

identity matrix is zero.

(2) The first member of the computational work in this step
accounts for the factorization of the stiffness matrix, whereas the
second member refers to the reduction of the load vector and
backsubstitution of the degrees of freedom.
(3) (2N-1) accounts for the computation of the Euclidean norm of
the first generalized displacement increment vector.

(4) In this study M<3.

(5) This involves only the reduction of the reference force vector.
The reduction of displacements has been carried out in [5.9].
(6) This stiffness parameter is the one associated with the modified

Newton-Raphson escheme.

Table 5.1: Computational work of the preiterative phase.
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L. Equation Computational
Phase Description of the step number work Note
Computation of current external forces [5.57] N ¢))
Computation of current generalized
unbalanced forces (5-59] M(@2N-1) @
Computation of generalized displacement
increments { Aq‘}i [5.62] M
= .
Test of convergence for the generalized
Z unbglanced forcesg [5.73] (2M-1)+3 3)
)
: Computation of load factor increment [5.65] (2M-1)+1 (€]
m
Computation of generalized displacement
= o ir%crements * [567] M
Computation of ic;(:;:::ri:snal displacement [5.70] NM+(M-1)
. {5.69
Update of total displacements and load factor ggé M+N+1
Test of convergence for generalized
displacement increments [572] M+2(2M-1)+1
SUBTOTAL OF THIS PHASE 2N+NM+M(2N-1)+(14M-5)+6

TOTAL COMPUTATIONAL WORK

3/2 Nh +SNh(1+p)+2Np[20(h+2p+3/2)+1]

i +(2N-1)(p+M+1)+3p+(TM-2)+5
+ - -

Notes: ok
(1) This refers to p. l(R)

. (2) The procgss of computation of the conventional unbalanced

forces {AQ)

is standard and is not addressed herein.

(3) The Euclidean norm of {y}°has been computed within the
iterative phase and is not accounted for in this step.

(4) The denominator of this expression is kept constant throughout
the iterative phase and is not included in the calculation of the

computational work for this step.

Table 5.2: Computational work of the iterative phase.
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Figure S5.5: Illustration of the terms of the current stiffness parameter.
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Figure 5.6: Illustration of the terms of the average stiffness parameter
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Figure 5.8: Typical variation of the stiffness parameter for
different types of behavior.
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Figure 5.9: Variation of the arc-length factor with the stiffness
parameter.
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Figure 5.10: Illustration of the preiterative phase for different types
of load-single generalized displacement equilibrium paths.



Start Preiterative Phase

Update [K];

|<-— Select Shift p —--—)l

If pivot d;;<0 If pivot d;>0
4
p=0

R

(R <[+

Compute eigehpais();, { 0}
. i=1,..,p

[k} fe=[rwllc]

{6)={w)iand A=o—p

Check stablity of equilibrium and set sign of
first load factor increment

IfA;20 , Ap =+10 : Stable or Neutral
IfAa<0, Ap°=—1.0 :  Unstable

Solve the }ncremental
Equilibrium Equations

(Kl {ar) =20(R)

Compute first generalized
displacement increments

A=A}’ i=1,..p

Investigate participation of eigenvectors
o\ 2
Agy

fad)

P= 100><( ) % i=1,..p

Select dominant eigenvector components
M
(Acty{9)1, .., Acm{ )M suchihat YP295% ?
il

yes

STOP —22 ¢ >

>

l

Transform and reduce the incremental
equilibrium equations

from: [K]:{ Ar) =20 (R}
o: [Al{ Ac) =ap ()"

I(-—Computc stiffness parameter —>|

Modified Initial Stiffness
Newton-Raphson escheme

I Ac)
I{ ac) i

b b
Ap / Ap,

i i
”21 AU.} il
nl

S..

Sp=i P - -
1
5] Aa

=l

Compute Arc-length
factor

f:£(S)

Adjust arc-length size
1
AL =fxAL{

Compute current arc-length

o=V ¢aay*{aa)+lap)

Adjust generalized displacement
increments and load factor increment

1 1
1 1
o {2 s 29’2
AL l AL
Update total generalized
displacements and load factor

(@) =(a)*+{ac), and p'=p'+ap’

End of preiterative
phase

Fig. S.11: Flowchart of the preiterative phase

158



13 sl

=1

o1

159

Fig. 5.12: Illustration of the iterative phase in the (M+1)-dimensional
load-generalized displacement vector subspace. '

iteration path

segment of the equilibrium path

Fig. 5.13: Illustration of the two-step technique in the (M+1)-dimensional

load-generalized displacement vector subspace.



L,
Sarti ierafon

\/
Compute current external forces
i i
{s} =p (R}

Compute current internal forces

("= [ B o) av,

k=1

Compute unbalanced forces

(aQ)"=(s)"-(R)"

Compute generahzed unbalanced forces
(o) "=[a]' '{AQB

Compute generalized displacement increments
associated with generalized unbalanced forces

Compute load factor increment
1 i
i A (Aah
1 c 1
Ao {Aa} +ap

Compute generalized displacement increments
{aa) =(aa)r+ap {Aa)”

Compute conventional displacement increments
{ar) =[0]{4a)

Update _total d_isplacen!ents
(a)'={) " +{40)
()= (e +{ar)

‘Y Update lp‘iid factor
1 b3 13
(A aai={a)” wher (a3 p=p 20
j=1,..M
) Test convergence of generalized
Test co::;;%:;‘::do:oﬁl :rallzed displacement increments
1
il Aa
KW _ror s = 'K ! toL 9 —10,
.1—_ . 1 J
lo™-p) (' g Al
#$ITE<(#ITE) pax ?
) no l yes >
f Output results for this
solution step
Increment yes
#ITES(#ITE) pax ? Yes iteration
no
no
\ 4
STOP STOP

Fig. 5.14: Flowchart of the iterative phase

160



C nonconvergent
iteration path

e

nonadjusted

arc-leng
convergent

iteration path

limit point
adjusted
arc-length

(T}a

a segment of
the equilibrium path

finite domain around the
equilibrium point

Fig. 5.15: Illustration of the conditions of convergence of the

solution strategy.

161



CHAPTER 6

APPLICATIONS

6.1 Introduction

The structures addressed in Chapter 4 have exhibited different
types of load-deflection histories that reflect complex material
nonlinearities, such as yielding, softening and cracking. The load-
deflection histories have been shown in terms of load-deflection
curves which relate the load factor and a preselected global degree of
freedom. Different types of branches form the resulting load-
deflection curves. For example, an ascending branch shows the
concurrent increase of the load factor and the preselected
displacement. On the other hand, the load factor decreases while the
displacement increases in a descending branch. Along a flat véegment,
the load factor remains approximately constant under increasing
displacements.

The objective of this chapter is to apply the eigenvector-based
solution strategy, developed in the previous chapter, to the
materially nonlinear structures treated in Chapter 4. For each of the
applications, two types of load-deflection curves are traced. First, the
conventional load-deflection curve, which relates the load factor to a
preselected global degree of freedom, is considered. Second, a
generalized load-deflection curve, which characterizes a one-to-one
relation between the load factor and a dominant generalized

displacement, is also presented.
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Bergan et al. (1978) argued that conventional load-deflection
curves might not represent the true structural response, since the
relation between load and deflection may vary according to the
preselected degree of freedom. This objection does not apply to the
generalized load-deflection curves traced by the eigenvector-based
strategy, since the generalized displacements are associated with
modes of deformation which dominate the displacement response of
the structure.

In addition to the load-deflection curves, the variation of some
stiffness parameters with a deflection measure is also provided.
Hence, the current and the average stiffness parameters, defined
respectively in [5.25] and [5.26], are plotted. A normalized secant
stiffness parameter, which is based on the ratio between the current
levels of applied load and deflection, is traced and serves as a basis
for comparisoh with the current and the average stiffness
parameters. The latter two parameters rely on the tangent stiffness
matrix. For some of the examples, the normalized determinant of the
" updated stiffness matrix is presented in conjunction with the other
parameters. The tracing of the variation of these parameters intends
to furnish a deeper insight in the interpretation of the behavior of
the structure, principally at sharp changes in stiffness and in the
vicinity of limit points.

The factor f, treated in Subsebtion 5.3.5, is utilized to adjust the
size of the finite arc-length of the load-deflection curves presented in
this chapter. The variation of the factor f with the chosen stiffness

parameter is given for each example.
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With respect to the overall performance, the eigenvector-based
solution strategy is compared with the constant arc-length method
that incorporates the modified Newton-Raphson method as the
iterative process (Ramm 1981). For some applications, a combination
of the standard Newton-Raphson method with the constant arc-
length method is also used for the sake of comparison. Furthermore,
a combination, via a restart procedure, of the standard Newton-
Raphson method with the eigenvector-based strategy is applied to
the analysis of the last example. This attempts to demonstrate the
flexibility of combining the proposed method with other available
strategies. The results of the comparative study are presented in
table format and include the CPU time and the number of iterations
for each solution strategy. The rates of convergence, given in terms
of Euclidean norm of displacement increments, are also compared.

For the sake of simplicity, a nomenclature should be created to
identify the solution strategies in the following presentation. Thus,
SNRM stands for the Standard Newton-Raphson M ethod, whereas
CALM and ESS denote respectively the Constant Arc-Length

Method and the Eigenvector-based Solution Strategy.

6.2. Applications

6.2.1 The Elastic Perfectly Plastic Cantilever Beam
This example represents a broad class of members for which
the structural behavior is characterized by a high level of ductility.

In practice, the tracing of the complete load-deflection curve is
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essential to the evaluation of the level of ductility that the structure
may exhibit.

According to Subsection 4.5.2, the conventional load-deflection
curve of this beam presents three distinct segments. A straight
segment identifies the linearly elastic phase, whereas the curve and
flat segments describe respectively the. elastic-plastic and plastic
phases.

The numerical description of this type of load-deflection curve
poses three difficulties. First, large sizes of solution steps give rise to
large strain increments. This, in turn, can cause a nonconvergent
iterative subincrementation technique while returning the strain
state onto the yield locus. Murray et al. (1980) referred to such a
drawback in the context of elastic-plastic modeling of concrete.
Second, the stiffness matrix is nearly singular throughout the flat
segment. Third, the prescription of load increments within the flat
segment is impractical since the applied load remains approximately
constant in that region. These last two limitations explain why the
classical Newton-Raphson methods fail in the analysis of such
structures, as reported by Zienkiewicz et al. (1969).

Figure 6.1 shows three conventional load-deflection curves
labeled as SNRM & CALM, CALM and ESS. In this figure, the applied
load and the resulting deflection are normalized with respect to their
values at first yield, which are respectively 15 KN and 30 mm.

The curve denoted as SNRM & CALM in Flg 6.1 has been traced
by the SNRM for the elastic and elastic-plastic segments and by the
CALM for the flat segment. The SNRM uses the load at first yield as

reference load. The load increments are kept reasonably small (about
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10% of the reference load) so that convergence of the iterative
subincrementation technique is ensured. At the end of the elastic-
plastic segment, the SNRM fails due to the onset of a nearly singular
tangent stiffness matrix. At this stage, the solution strategy is
changed to CALM through a restart procedure. In the subsequent
description of the flat segment, CALM works with a constant stiffness
matrix which has been updated at restart. Therefore, the iterative
process relies mainly on the updated unbalanced forces. In addition,
the reference load is decreased to one-fifth of the yield load. Despite
the adoption of a constant stiffness matrix, the flat segment, along
which the flexural mechanism develops, is accurately described.

The curve designated as CALM in Fig. 6.1 represents the
solution given by CALM that uses the modified Newton-Raphson
method as the iterative process. This means that the stiffness matrix
is updated only at the beginning of each solution step. A reference
load of 5.6 KN has been adopted in this solution. Thus, the CALM is
capable of tracing all segments of the load-deflection curve, although
using a constant arc-length. The adoption of a constant arc-length
generates only two solution steps within the elastic-plastic segment
as illustrated in Fig. 6.1.

The eigenvector-based solution strategy provides the load-
deflection curve denoted ESS in Fig. 6.1. In this solution, the stiffness
matrix is updated only at the beginning of each solution step and a
total of six eigenanalyses are performed. The iterative phase is
carried out with a single generalized displacement which gives rise to
a single generalized unbalanced force. The first eigenvector of Fig.

4.17 represents the dominant bending mode associated with this
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single degree of freedom. The corresponding eigenvalue serves as the
uncoupled stiffness which is preserved constant within the iterative
phase. Due to the condition of uncoupling, a one-to-one relation
between the generalized displacement and the load factor exists and
gives rise to the generalized load-deflection curve shown in Fig. 6.2.

The current, the average and the secant stiffness parameters,
along with the normalized determinant of the tangent stiffness
matrix, are plotted against the norm of the generalized displacement
in Fig. 6.3. The correlation between the current and the average
parameters is very good for all phases of behavior indicated in the
figure. This is expected since both parameters utilize the concept of
tangent stiffness matrix which is also used in the formulation of the
plasticity model. The normalized determinant follows a similar
variation, but shows a sharper drop within the elasto-plastic range.
In the plastic segment, these parameters decay to nearly zero values.
This corresponds to the formation and development of the plastic
mechanism shown in Fig. 4.17. On the other hand, the secant stiffness
parameter experiences a very shallow decrease after the linear range
of behavior. This is caused by the adoption of the concept of secant
stiffness in the formulation of this parameter.

Considering the current stiffness parameter as the independent
variable, the definition of the factor f, given in [5.36] and [5.37] for
behavior type 2 (Figs. 5.7 and 5.9), is applied to the control of the
size of the arc-length for the present application. Figure 6.4 shows
the resulting reductions in the elasto-plastic range and the
extensions in the plastic range. It is noted that the relatively large

number of reductions of the arc-length size prior to the plastic range
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is responsible for the smooth transition from the elasto-plastic phase
to the plastic phase, observed in the load-deflection curve (Fig. 6.1).
In addition, a low number of solution steps within the plastic
segment (Fig. 6.1) is enhanced due to the the extensions of the arc-
length in that range of behavior.

Table 6.1 contains the solution parameters for all the applied
solution strategies. Although the ESS requires an intermediate total
CPU time relative to the other strategies, it shows the best
performance with respect to the CPU time per solution step. This is
due to the fact that ESS required a single iteration for each solution
step. This further suggests a fast rate of convergence. This is indeed
verified in Fig. 6.5 where the convergence rates are plotted for a
specific solution step. In this figure, the ESS needs a single iteration
to attain convergence, while the SNRM & CALM requires four
iterations. Heuristically, the observed fast rate of convergence of the
ESS can be explained by the fact that only the dominant modes of
deformation are accounted for in this strategy. The other modes, that
may contribute to stiffen the displacement response of the structure,

are excluded.

6.2.2 The Elastic-Softening Beam-Rod

This example offers the oportunity to test the ESS in view of
the presence of two dominant modes of deformation in the
displacement response of the beam-rod. These modes represent
respectively the flexural and the extensional patterns shown in Fig.

4.25. Moreover, the degree of participation of each mode varies along
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the displacement response of the beam-rod as demonstrated in Fig.
4.28.

According to Subsection 4.5.3, it has been demonstrated that
the conventional load-deflection curve of the beam-rod presents a
distinct limit point. The overcoming of a limit point constitutes a
challenge for any solution strategy. This is so because the considered
solution strategy should deal with a stiffness matrix that changes
from positive definite to a condition of singularity and becomes
indefinite at the vicinity of the limit point. This drastic change in
stiffness may often cause lack of convergence of the iterative
process. As an attempt to avoid these problems, Bergan (1979) has
suggested to proceed with solution steps without equilibrium
iterations near a limit point. However, this approach may cause
drifting from the correct equilibrium path. It is also known that the
classical Newton-Raphson methods fail completely prior to the limit
point (Riks 1979). In addition, the proper description of the unstable
descending branch is important to the evaluation of the load capacity
and displacement response beyond the ultimate level.

Herein, CALM and ESS are applied to trace the load-deflection
curve of the elastic-softening beam-rod. Figure 6.6 shows the
corresponding curves for 30 solution steps. Both methods use the
same reference load indicated in Fig. 4.22 and the same number of
solution steps. The prescription of the same number of steps for both
strategies is intentional and attempts to know how far each strategy
is able to trace the load-deflection curve of the beam-rod.

The CALM passes the limit point and traces a small portion of

the descending branch. As seen in Fig. 6.6, too many solution steps
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are required at and after the limit point. This is motivated by the
very small size of the adopted constant arc-length, which is based
only on the Euclidean norm of the displacement increment vector
computed for the first solution step (Ramm 1981).

The ESS also overcomes the limit point as illustrated in Fig. 6.6.
This solution includes 10 eigenanalyses and the iterative phase uses
only two generalized displacements. The first and second generalized
degrees of freedom correspond respectively to the flexural and the
extensional modes shown in Fig. 4.25a. The relations between these
generalized displacements and the load factor are illustrated in Fig.
6.7 for the complete range of the beam-rod behavior. At the limit
point in Fig. 6.7, the extensional generalized displacement remains
stationary, whereas the flexural generalized displacement passes
smoothly over that point. It is also noted that the flexural
generalized displacement is more significant than the extensional
generalized displacement along the descending branch.

The variations of the current, the average and the ‘secant
stiffness parameters with the Euclidean norm of the generalized
displacements is illustrated in Fig. 6.8. The variation of the
normalized determinant is also shown. It is noted that the current,
the average and the determinant show similar variations throughout
the phases of the behavior of the beam-rod. Specifically in the
softening range, these parameters attain small negative values that
‘correspond to the negative stiffness of the descending branch of the
load-deflection curve (Fig.6.6). The secant stiffness parameter
exhibits a more gfadual transition from the elastic phase to the

softening phase. Although the secant parameter allows for the decay
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in stiffness, this decay is not as steep as for other stiffness
parameters.

The factor f that adjusts the size of the arc-length is a function
of the current stiffness parameter. Its definition for behavior type 1
(Figs. 5.7 and 5.9) is given in [5.32], [5.33], [5.34] and [5.35]. Figure
6.9 shows the variation of this factor with the value of the current
stiffness parameter. A single reduction of the arc-length size takes
place in the elastic-softening phase. Close to the limit point, the arc-
length size is reduced to 10% of its initial size. On the other hand, the
arc-length is extended in the softening range to its initial value. As a
result of the control of the arc-length size, the ESS has provided a
better distribution of solution steps around the limit point and
throughout the descending branch of the load-deflection curve (Fig.
6.6).

Due to the limited number of global degrees of freedom (18), a

comparative study about CPU time is meaningless for this present

example.

6.2.3 The Reinforced Concrete Deep Beam

To date, the numerical description of load-deflection curves of
reinforced concrete structures has faced severe obstacles imposed by
a diversified and highly nonlinear material behavior. For instance,
cracking, shearing and crushing of concrete as well as yielding of the
reinforcement may occur at different stages of the load-deflection
curve. Accordingly, the chosen solution strategy should be able to
deal with sharp changes of stiffness, to overcome limit points and to

trace unstable and sometimes steep descending branches. In
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addition, the solution strategy has to capture localization of
deformation that may happen within small regions of the structure.

In view of these difficulties and in the absence of a suitable
solution strategy, most of the published research has been confined
to the description of the part of the load-deflection curve that ranges
from zero to ultimate load (Schnobrich 1977, Balakrishnan and
Murray 1989, Frantzeskakis and Theillout 1989).

Recently, however, De Borst (1987) has succeeded in describing
the post-ultimate response of plain and reinforced concrete
structures by means of the indirect displacement control method
reviewed in Chapter 2. This method requires a preselected set of
global degrees of freedom to constitute the arc-length constraint
equation. Apart from being problem-dependent, the arbitrary
selection of some global degrees of freedom may not enhance the
capture of localization of deformation, since the region of the
structure in which this phenomenon takes place can not be
anticipated in general.

According to the formulation of the ESS, given in Chapter 5, this
solution strategy selects automatically the dominant generalized
displacements to form the arc-length constraint equation. It is also
known that these generalized displacements are associated with the
dominant eigenvectors extracted from the tangent stiffness matrix.
Hence, localization of deformation, seen as a material instability, is
directly represented within the dominant eigenvectors. This is very
evident in Fig. 4.36, where the second and the third eigenvectors of
the tangent stiffness matrix of the reinforced concrete deep beam

incorporate such localizations.
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The behavior of the reinforced concrete deep beam, discussed
in subsection 4.5.4, shows all the complex features of sharp changes
in stiffness, limit point and unstable and steep descending branch.
Therefore, this beam represents a challenge to the application of any
solution strategy.

Figure 6.10 shows the load-deflection curves that result from
the experiment (Rogowsky et al. 1983) and from the analyses
performed by the ESS and the SNRM & CALM.

The curve denoted ESS (1DOF) is traced utilizing a single
generalized displacement within the iterative phase. This single
generalized displacement is associated with the overall bending
mode (first eigenvector in Fig. 4.36) and the corresponding stiffness
(first eigenvalue). While solving the incremental-iterative
equilibrium equations, a reduction from 460 global degrees of
freedom to only one generalized degree of freedom is carried out
through the utilization of the overall bending mode. Out of the 30
solution steps, 20 eigenanalyses are performed: one eigenanalysis for
each of the first five steps and alternate eigenanalyses thereafter.
The resulting load-deflection curve correlates well with the other
curves in the initial range of the beam behavior, prior to the onset of
diagonal cracks. However, it seems slightly stiffer thereafter. This
discrepancy may be caused by the somehow low number of
eigenanalyses performed within that range of behavior. Prior to the
limit point, the solution is terminated due to the insufficient ‘level_ of
participation (about 77%) of the selected mode.

On the other hand, the load-deflection curve designated as ESS

(1IDOF & 3DOF) in Fig. 6.10 shows a much better agreement with the
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alternative solutions. In this case, eigenanalysis is done at every
solution step. As before, the first eigenvector is preserved as the
single mode throughout the ascending branch. However, the first
three eigenvectors are used as displacement components from the
limit point to the end of the descending branch. In doing so, a
participation greater than 95% is achieved. In addition, this
demonstrates that the modes that incorporate localization of
deformation are necessary in the accurate description of the
descending branch.

The load-deflection curve labeled SNRM & CALM (460DOF)
results from the application of the SNRM and the CALM, respectively
for the ascending and the descending branches shown in Fig. 6.10.
Load incrementation along the ascending branch is prescribed to
conform with the obtained load levels that result from the solution
given by the ESS. In addition, the the size of the arc-length in the
descending branch has been prescribed to agree with the size
furnished by the ESS. Despite the large number of iterations (Table
6.2), the SNRM traces the ascending branch accurately, but fails prior
to the limit point due to the occurrence of a nearly singular stiffness
matrix. At this stage, the solution strategy is changed to CALM by
means of a restart procedure. Thus, the description of the descending
branch is successfully achieved.

Figure 6.11 shows the generalized load-deflection curves that
relate the dominant generalized displacements to the load factor. It is
emphasized that such curves represent one-to-one relationships,
sfnce the equilibrium equations are uncoupled. In addition, the

predominant participation of the first eigenvector (Fig. 4.36), relative
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to the second and third modes, is apparent in Fig. 6.11. The latter
modes show relevant levels of paticipation only after the limit point.

In terms of midspan deflection, Fig. 6.12 illustrates the
participation, separately and combined, of the first three modes. In
this figure, the resulting deflections are compared with the actual
midspan deflection which is represented by the 45 degrees straight
line. The combination of the deflections, that results from the three
modes, approximates the actual deflection very accurately.

The variation of the current, the average and the secant
stiffness parameters with the midspan deflection is illustrated in Fig.
6.13. The current stiffness parameter experiences sharp drops at the
onset of flexural and diagonal cracks. Then, it suffers a smooth
decrease at the first yielding of the longitudinal reinforcement. After
the first crushing of concrete, the current stiffness parameter
decreases drastically and attains negative values, which are
associated with the unstable behavior along the descending branch of
the load-deflection curve (Fig. 6.10). The behavior of the average
stiffness parameter seems very sensitive to the sharp variations in
the beam stiffness that take place after the appearance of flexural
cracks. In this example, the secant stiffness parameter follows a
similar path as for the other parameters. This is somehow expected
since the formulation of the material model utilizes a tangent
constitutive matrix before peak values of strains and stresses,
whereas it changes to a secant matrix thereafter. As a consequence,
the overall variation of the stiffness parameters in the present case
(Fig. 6.13) is not as smooth as for the cases in which gradual yielding

occurs (Figs. 6.3 and 6.8).



176

Figure 6.14 shows the variation of the factor that adjusts the
size of the arc-length with the current stiffness parameter. Once
more, the definition of the factor f given in [5.32], [5.33], [5.34] and
[5.35] is adopted herein. Considerable reduction of the arc-length size
is automatically generated prior to the limit point. These series of
reductions avoid the drifting from the actual curve and helps to
overcome the limit point. After this point, the size of the arc-length is
relatively extended, although it reaches approximately 40% of its
initial value. The extended arc-length is then applied to the
description of the descending branch.

Figure 6.15 illustrates the convergence performance of the ESS
and the SNRM & CALM for the same stage on the respective load-
deflection curves (r= 0.600 mm and P=220 KN), where the diagonal
cracking initiates. It is noted that the rate of convergence of the ESS
is much faster than the one associated with the SNRM & CALM. While
five iterations are required for the SNRM & CALM solution, only two
are sufficient to satisfy the prescribed tolerance in the case of the
ESS. This favourable property is enhanced by the exclusion of stiffer
deformation modes from the generalized equilibrium formulation
used in the ESS.

Table 6.2 lists the solution parameters that correspond to the
ESS and the SNRM & CALM. Considering the same number of solution
steps for both methods, the ESS requires a much lower number of
iterations than for the SNRM & CALM. This substantiates the fast rate
of convergence demonstrated in Fig. 6.15. As a beneficial effect, the
ESS uses approximately 54% (including eigenanalysis) of the total
CPU time required by the SNRM & CALM.



177

6.2.4 The Reinforced Concrete Shallow Beam

According to Subsection 4.5.5, the load-deflection history of an
underreinforced concrete shallow beam (Fig. 4.45) shows three
distinct phases of behavior. First, the phase that ranges from zero
load to the appearance of the first flexural cracks is approximately
linear. A slight drop in the beam stiffness is observed at the onset of
the first flexural cracks. This phenomenon initiates the second phase
which ends with the first yielding of the longitudinal reinforcement.
It is noted that the bending stiffness does not experience severe
changes during these phases. The third and last phase begins with
the yielding of the reinforcement and prolongs extensively until the
concrete crushes completely within the compression zone. It is at the
start of this stage that the bending stiffness decreases drastically,
although no remarkable change is verified thereafter. Thus, the
premature yielding of the reinforcement and the gradual formation
of the compression zone in the concrete impart considerable ductility
to the beam. As a result, this type of structure presents a great
capacity of energy absorption.

The description of the segment of the load-deflection curve
that corresponds to the phase of ductile behavior mentioned above
constitutes a difficult application for a solution strategy. This is so
because the solution strategy should accomodate the severe drop in
stiffness at the first yielding of the reinforcement, apart from
describing the complete range of ductile behavior.

In this section, the solution étrategies CALM and ESS, in
conjunction with the SNRM, are applied to trace the load-deflection

curve of the beam S8 tested by McCollister (1954). First, the SNRM is
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employed to describe the nearly linear segment associated with the
first two phases of the beam behavior. Then, a restart procedure
changes the solution strategy from the SNRM to the CALM or the ESS
so that the segment of ductile behavior can be described. The
presentation to follow is restricted to the description of this part of
the load-deflection curve, which is by far the most troublesome.

Figure 6.16 shows three load-deflection curves, respectively
given by the experiment (McCollister 1954), the CALM and the ESS.
The stiffness matrix for the CALM and the first eigenvalue for the
ESS have been updated only at the first yielding of the
reinforcement, which coincides with the step of the restart. A unique
and constant arc-length has been prescribed for both strategies.

The curve provided by the CALM in Fig. 6.16 utilizes the total
number of global degrees of freedom, which is 346 for the preseni
case. It agrees well with the experimental curve, specifically at the
range close to ultimate load. Nevertheless, local unloading has
occured in a few steps.

The curve denoted as ESS (1DOF) in Fig. 6.16 results from the
iterative solution of an equilibrium equation with a single
generalized displacement. This generalized displacement is associated
with the single curvature mode shown in Fig. 4.47. The
corresponding eigenvalue represents the uncoupled bending stiffness
which is kept constant throughout the phase of ductile behavior.
Thus, the iterative process relies mainly on the variation of the
generalized unbalanced force. The resulting solution is reasonably
accurate for the first half of the flat plateau, but overestimates the

load (in 15% of the experimental ultimate load) for the second half. A
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possible reason for this moderate discrepancy rests on the way that
the material model influences the unbalanced force at that specific
range of behavior. After crushing, the material model adopts a secant
constitutive matrix which may be much stiffer than the tangent
constitutive matrix used before crushing. This, in turn, causes a
relative increase in the generalized unbalanced force. |

The variation of the beam stiffness is suitably described by the
average stiffness parameter defined in [5.26]. The current stiffness
parameter is not adequate in this case, since the stiffness is kept
constant throughout the segment of ductile behavior.

Figure 6.17 illustrates the variation of the average and the
secant stiffness parameters with the midspan deflection. It is noted
the sharp drop of the average stiffness parameter at the first
yielding of the longitudinal reinforcement. In addition, the beam
stiffness, as indicated by this parameter, decays to a very low and
nearly constant level throughout the remaining part of the segment
that corresponds to the ductile behavior. The negative values of the
average stiffness parameter shown in the figure reflects local
unloading in the load-deflection curve (Fig. 6.16). The automatic
‘adjustment of the arc-length size is not carried out in the present
case because of the adoption of a constant arc-length for both
strategies.

Table 6.3 lists the solution parameters relative to both solution
strategies. Considering the same number of solution steps, the ESS
needs 65% of the total number of iterations required by the CALM.
The saving in CPU time resulting from the ESS solution amounts to

30% of the total CPU time used by the CALM. Once more, the fast rate
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of convergence enhanced by the ESS is observed for all solution steps
belonging to the flat plateau. The steady number of one iteration per
solution step has been recorded for the ESS strategy. Figure 6.18
shows the convergence performance for both strategies considering a
solution step after the first crushing of concrete. While three
iterations are required by the CALM, a single iteration is sufficient to
satisfy the convergence criterion in the case of the ESS. Again, the
fast rate of convergence can be credited to the exclusion of spurious

and stiffening modes of deformation from the formulation of the ESS.



181

> ELASTIC PERFECTLY PLASTIC CANTILEVER BEAM

g‘é SOLUTION PARAMETERS

=1 Bl R R e Il Wl ] ] el B S
S:Rc:/l steps | iter. ** st;aD lengths | : leng. DOF |Eigenan time *|__sten Lm’gcnan
& | 17 | 31 |183] s . - |28 | - |36 |2n7] -
CAIM

cam| 11 | 15 J13es| 11 | - - |28 | - 16 | 1454| -
Ess | 22 | 22 | 1000 3 o | 10 ] 1 6 | 8 [1273] 6

*: CPU time in seconds
*%: After the initial iteration.

Table-

6.1:

Comparative results of the

elastic-plastic cantilever beam.

solutions for the

> REINFORCED CONCRETE DEEP BEAM

= g SOLUTION PARAMETERS

Sé No. Pf No. 'No. of INo. constO- ol { No. of No. of | No. of Total | CPU | CPU
5E o] of o] e o e ) 0 | e e

TNEM : ength | hme SIED_Leigenan,
& | 2 | 93 |4227| 7 . - a0 | - |38 [17273] -

CAIM

Ess | 22 |40 Jisis| o | 13 9 lm‘bl'# 2 | 136 [6182] 68

3:des. by

* : CPU time in seconds
**. After the initial iteration.

Table 6.2: Comparative results of the solutions for the reinforced
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Table 6.3: Comparative results of the solutions for the reinforced
concrete shallow beam.
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Figure 6.3: Stiffness parameters for the elastic-plastic cantilever beam.
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Figure 6.17: Stiffness parameters for the reinforced concrete shallow
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CHAPTER 7

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary and Conclusions

In this study, an eigenvector-based solution strategy has been
developed and applied to the analysis of materially nonlinear
structures; in particular, structures subjected to damage reflected in
material nonlinearity. The type of damage in a given structure is
naturally specific to the type of loading. Such damage .would also
result in changes in the tangent stiffness matrix of the structure.
Thus, it would ultimately result in prefered deformation directions.
These directions must be reflected in the eigenvectors of the stiffness
matrix itself. A study of the eigenvectors of the stiffness matrix of
such structures would not only offer insight into the structural
behavior, but also may lead to a reduction in the number of
generalized degrees of freedom necessary to adequately describe the
structural behavior. |

Thus, the eigenvectors of the tangent stiffness matrix have
been chosen as the basis vectors while describing the static
equilibrium of inelastic structures. A transformation of the
equilibrium equations, from the basis of the global degrees of
freedom to the basis of the eigenvectors, has been undertaken. A
completely uncoupled system of N equilibrium equations has
resulted from this transformation. In addition, the condition of
equilibrium has been formulated in terms of generalized

displacement increments and generalized forces.
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A comprehensive study of the dominance of a preselected set
of eigenvectors upon the incremental displacement response of
materially nonlinear structures has been presented. As tools,
analytical parameters have been formulated to investigate
dominance. A beam-rdd as well as a deep beam and two shallow
beams have been used as case studies. Material models, such as
elastic perfectly plastic, elastic softening and hypoelastic, have been
adopted in the course of this investigation. As a consequence of the
study of dominance, a criterion has been set to determine whether or
not an eigenvector participates effectively in the incremental
displacement response. Following the finding that a drastically small
number of eigenvectors participates in the displacement response,
the system of equilibrium equations is reduced from N to M, where M
is the number of dominant eigenvectors.

The uncoupling and reduction of the degrees of freedom have
served as background for the formulation of the eigenvector-based
solution strategy. The concept of an aré-length with an orthogonal
iteration path has been employed within this formulation. The
modified Newton-Raphson method has been chosen as the iterative
scheme. This strategy is performed in two phases. First, the pre-
iterative phase reduces and uncouples the system of equations. In
addition, the control of the arc-length size and the criterion for
unloading have been built in this phase. In the iterative phase, the
solution of the incremental and iterative equilibrium and constraint
equations is carried out in terms of generalized displacement
increments and generalized forces.

The proposed strategy was then applied to the solution of four
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problems. In these problems, the strategy was able to accomodate
sharp changes in stiffness, to pass limit points, to trace prolonged flat
segments and to describe steep descending branches. Considerable
efficiency resulted from the adoption of an automatically controlled
arc-length. For regions of linear behavior, the size of the arc-length
was extended, whereas it was reduced for highly nonlinear regions.
The expected failure modes of the examined structures have been
properly captured. The comparison of performance with other
strategies has been done on the basis of some solution parameters,
such as the number of iterations, the rate of convergence and the
CPU time. A fast rate of convergence has been found of great
importance in the demonstrated cost-effectiveness of the proposed

strategy. Savings in CPU time, as much as 45%, have been registered. -

7.2 Recommendations

Considering the experience gained during the development and
application of the eigenvector-based‘ solution strategy, the following
points are recommended for future research.
1. An automatic criterion should be developed to determine whether
or not an eigenanalysis is required. The change in the value of " the
stiffness parameter can be used as a possible guideline.
2. The detection of lack of participation of the preselected
eigenvectors should be followed by a re-eigenanalysis, incorporating
additional eigenvectors. For example, if two eigenvectors are
preselected, but three are required to satisfy the participation
criterion, a re-eigenanalysis would furnish only the third

eigenvector. This interactive eigenanalysis, however, requires
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modification of the structure of the subspace iteration method.

3. The solution strategy should be applied to geometrically nonlinear
problems, involving possibly global and local buckling. Then, a
comparison of performance with the existing reduction methods
would be important.

4. Application of the developed solution strategy to structures that
exhibit multiple deformation modes, such as membrane and bending

modes, would be of great interest.
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APPENDIX A

MATERIAL MODELS

A.1 Introduction

In this appendix, a brief and informative review of the
material models used in the analysis of the structures treated in
Chapters 4 and S5 is presented. The classical linearly elastic and
elastic-plastic relationships and the hypoleastic constitutive relation
for the concrete comprise the set of material models. Following the
presentation of the models, the steel and concrete data utilized as
input of the analysis of the reinforced concrete deep and shallow
beams are listed in tabular format. Some comparisons of the strains
in the steel reinforcement, as given by the experiment and the
analysis, form the last section of this appendix. In what follows, small

strains and plane stress condition are assumed.

A.2 Material Models
A.2.1 The Linearly Elastic Model
In this model, the stress-strain relation that describes the

material behavior is nonincremental and assumes the form

{o}=[CL{e}, [A.1]

where {o} and {e} are the vectors of total stresses and strains,

respectively. The matrix [C]. is the elastic constitutive matrix given

as
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1 v 0
E
Cl.= 1 0
[ e 1_"2 M 1 [A.2]
-V
0 0 3
-l

In [A.2], E and v are respectively the modulus of elasticity and the
Poisson's ratio. The prime assumptions governing this model are:
isotropy, reversibility of the stress and the strain states and
independency with respect to the stress path. In addition, the model
has been applied without a strength criterion. Figure A.l illustrates the

stress-strain law for the uniaxial case.

A.2.2 The Elastic-Plastic Model.

The most important ingredients of this model are the postulated
-existence of a yield criterion, the flow rule and the partition of the.
increment of total strains into the elastic and plastic strain increments.
Considering the von Mises yield criterion and isotropic hardening or

softening, the incremental constitutive relation can be derived as
{Ac} =[C]ep<A8} , [A.3]

where the elastic-plastic matrix [Clep, is given as

-1

[Clp=[Cl, [C]e{a{ }{%}EC] H{ {c}}zq{ ?F}} [A4]

where F is the von Mises yield function, {c} is the vector of total
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stresses, [Cl, is the elastic constitutive matrix defined in [A.2} and H' is
the hardening or softening modulus. The input constants for this model
are E, v, H' and the uniaxial yielding stress Fy. The possibilities of
hardening, yielding and softening are shown in the uniaxial stress-
strain relation shown in Fig. A.2. Complete derivation of the
constitutive relation [A.4] can be found in the reference by Zienkiewicz

et al. (1969).

A.2.3 The Multilinear Elastic-Plastic Model.

This model describes the behavior of the reinforcement element
within the reinforced concrete member. Its input parameters are the
modulus of elasticity E and a number (maxirr;um of 10) of stress-strain
pairs (g;,0;) that trace the experimental stress-strain curve as shown
in Fig. A.3.

Two types of behavior of the reinforcement layer can occur. First,
linear behavior is accounted for in the case of stress levels below the
prescribed stress-strain history (unloading case) (Fig. A.3.). The

constitutive relation is then formulated as

0=E(e—ep), [A.5]

where o and € are respectively the total stress and the total strain and

g, is the accumulated plastic strain. On the other hand, if the stress-

P
strain point is on or above the prescribed stress-strain curve (loading

case) (Fig. A.3), the constitutive relation assumes the form

o=ci_1+Ei(e—ei_1), » [A.6]
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where €;., and o;.; define the prescribed stress-strain point and E; is

the secant modulus computed as

E;=——11,
£ —¢ [A.7]

The linear piecewise description of the experimental curve
allows for a variety of behaviors depending on the type of steel

adopted in the structure.

A.2.4 The Hypoelastic Model

This model has been used in the description of the concrete
behavior. The basic assumptions underlying this model are the
material orthotropy, stress path dependency, incremental reversibility
of the stress-strain state and the lack of coupling between normal and
shear stresses. In addition, the orthotropy axes follow the axes of
principal strains up to the point the material is damaged. The axes are
fixed thereafter.

The incremental constitutive relation, when referred to the

orthotropic axes can be written as
{Ac}=(Cl,, {ae}, [A.8]

where [Cly, is herein called the hypoelastic constitutive matrix and can

be evaluated as
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. -
El(l' l—l;z,) ~EE, (stlia*' u.,) 0
2
[Chp= Ez(l - Pn) 0 » [A9]
SYM. G206
where
2
Rp=VpVy , [A.10]
2
Hp=VaVa [A.11]
2
Hu=VsVa [A.12]
2 2 2
Og=1-Hp—Hn—Mp—2Hglaly [A.13]

In expressions [A.10], [A.11] and [A.12], Vi is the Poisson's ratio
evaluated with respect to the orthotropic axes i and j. In addition, E,,
E, and Gy, in [A.9] are respectively the moduli of elasticity and the
shear modulus measured with respect to the orthotropic axes 1 and 2.

In the original 3D formulation, due to Elwi and Murray (1979),
seven independent variables formed the set of material properties.
This model relies further on the concept of equivalent uniaxial strains
(Darwin and Pecknold 1977). This concept gives rise to the derivation
of material moduli in function of the current level of stress. The curves
of stress versus equivalent uniaxial strain, for the cases of tension,
compression and shear, are illustrated respectively in Figs. A4, A5
and A.6. The ascending branches of these curves follow the parabola
proposed by Saenz (1965). On the other hand, the descending branches
of the tensile and shear curves obey straight degrading lines defined in

terms of fracture properties, such as the fracture energy density and
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characteristic length. The adopted strength criterion is based on the
surface proposed by Willam and Warnke (1975). Two surfaces, one for
stress and the other for strain, are implemented in the model. A
complete derivation of this material model is included in the reference

by Napoleao and Elwi (1990).

A.3 Steel and Concrete Data

Tables A.1 and A.3 provide respectively the steel and the
concrete data used in the analysis ‘of the reinforced concrete deep
beam. Similarly, Tables A.2 and A.4 list the data corresponding to the

reinforced concrete shallow beam.

A.4 Analytical and Experimental Reinforcement Strains
Figure A.7 shows the variation of the strains in the longitudinal
reinforcement of the reinforced concrete shallow beam at maximum
load (Figs. 4.44 and 4.45). Both variations demonstrate that a plastic
hinge forms at midspan, since the concrete is already crushed at this
load level (Fig. 4.46). However, the extent of yielding in the
longitudinal reinforcement is longer for the experimental variation
than for the analytical solution. This may be caused by the effect of the
discretization of the reinforcement through truss elements.
| Similarly, Fig. A.8 illustrates the variation of the strains in the
bottom reinforcement of the reinforced concrete deep beam (Fig. 4.31)
for the load levels of 350KN and 550KN (Fig. 4.32). Despite some local

discrepancies, both solutions show a reasonable correlation.



Material
Value
Property
E 205,000 MPa
mm/mm MPa
0.000  0.000
0002  455.000
(€, 0) 0010  455.000
0.040  679.060
0.100  741.310

Table A.1: Steel data for the reinforced concrete deep beam.

Material
Vi
Property alue
E 161,458MPa

mm/mm MPa
0.000 0.000
0.002 310.000

(€,0) 0011  310.000
0.108 498.000

Table A.2: Steel data for the reinforced concrete shallow beam.
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Material Property Value
Elasticity and Shear Moduli:
E;, =123 21,100.000 MPa
G 8,792.000 MPa
Poisson’s Ratio:
Vigs Vizand v, 0.200
Parameters of the Stress Surface:
fa -42.400 MPa
f
7{“ 1.160
f,
%w 0.087
& 13.500
G 0.000
& 4.000
€3 0.000
Parameters of the Strain Surface:
€ -0.003 mm/mm
€
7{“ 1,200
e
7{@ 0.066
& 50.000
G 0.000
& 4.300
& 0.000
Parameters of the Tensile Behavior:
Gt 0.044 N/mm
dzp 77.000 mm
Olper 0.060
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Table A.3: Concrete data for the reinforced concrete deep beam.



Material Property Value
Elasticity and Shear Moduli:
Ei, =123 20,186.000 MPa
G2
Poisson's Ratio: 8.412.000 MPa
Vizs Vizand vy, 0.200
Parameters of the Stress Surface:
fau -18.200 MPa
f
7{@ 1.170
f
7{“ 0.072
& 13.500
& 0.000
& 4.000
& 0.000
Parameters of the Strain Surface:
€cu -0.002 mm/mm
o/
%m 1.170
€
%w 0.072
& 50.000
& 0.000
& 4.300
G 0.000
Parameters of the Tensile Behavior:
G¢ 0.044 N/mm
dep 25.400 mm
Olppr 0.060

Table A.4: Concrete data for the reinforced concrete shallow

beam.
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Figure A.1: Linearly elastic behavior (uniaxial case).
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Figure A.2: Elastoplastic behavior (uniaxial case).



214

‘-l--..___~

D-"m [

ol—=8___"T==

[

|

|

|

|
E |

|

I -

&1 €

Figure A.3: Multilinear elastic-plastic behavior of the reinforcement.
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Figure A.4: Tensile behavior of concrete
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Figure A.S5: Compressive behavior of concrete.
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Figure A.6: Shear behavior of concrete.
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Figure A.7: Variation of the strains in the reinforcement of the
reinforced concrete shallow beam.
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Figure A.8: Variation of the strains in the bottom reinforcement

of the reinforced concrete deep beam.
(* Adapted from Rogowsky et al. 1983).
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