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Abstract

An analysis framework to study the friction term dominated steady state

1D Saint-Venant equations is developed using a non-uniform flow test case and

Fourier analysis. In the non-uniform flow test, a sudden bed perturbation is in-

troduced, and in the Fourier analysis, a periodic bed perturbation is used. In

both analyses, the effects of the bed perturbations on the solution variables in a

steady state case are observed. Both the shock capturing and non-shock captur-

ing numerical schemes have been studied in this research. From the non-uniform

flow test results, it is found that the oscillations in the discharge and/or depth

solutions are apparent when discretization, roughness, and slope are large, and

the errors in the solution variables increase with an increase in these parameters.

From the Fourier analysis, the main non-dimensional parameter groups identi-

fied are: the number of discretization intervals per wavelength, the average flow

Froude number, and the numerical Friction number. The Fourier analysis results

show that the errors in both depth and discharge solutions or only in the depth

solutions are observed whenever there is any perturbation in the bed topography.

These errors increase with an increasing Froude number and increasing numerical

Friction number. A combined friction parameter is proposed for practical mod-

eling purposes which captures the variations of the separate parameters. The

proposed combined friction parameter is capable of locating the friction domi-

nated region in open channel flow modeling. The proposed combined friction

parameter is easy to calculate and to implement in any open channel flow model.

The proposed combined friction parameter is applied and used in 1D and 2D flow



models as a mesh refinement indicator and as a minimum depth criterion. The

results show that the proposed combined friction parameter is effective to identify

and to eliminate or reduce spurious velocity vectors. The analysis presented in

this study can be applicable to a wide range of numerical methods to study the

friction dominated steady state Saint-Venant equations.
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Chapter 1

Introduction

1.1 Introduction

The flow in an open channel or in a closed conduit with a free surface is referred

to as free-surface or open channel flow (Chow 1959, Chanson 1999, Chaudhry

2008). Some examples of open channel flow are the flow in natural streams and

rivers, and the flow in man-made channels, including irrigation and navigation

canals, drainage pipes, culverts, and spillways. The study of the flow behav-

ior in open channels is known as open channel hydraulics and this knowledge

is essential in many water resources problems. For example, flood forecasting,

hydraulic structures designing, morphological modeling, fish habitat modeling,

ice process modeling, and contaminant transport modeling all require knowledge

of the velocity and depth of an open channel flow.

Flow behaviors in open channel flows are normally studied using physical

modeling and/or numerical modeling. A physical model is a scaled representation

of the real flow situation, while a numerical model is a computer program that

solves the governing equations of open channel flow. The Saint-Venant equations

(Saint-Venant 1871) provide the fundamental mathematical description governing

the depth and average velocity in one-dimensional (1D) and two-dimensional (2D)

open channel flows (Chow 1959, Abott 1979, Cunge and Verway 1980, Chanson

1999, Chaudhry 2008). However, these equations consist of partial differential

equations with non-linear terms, which makes it difficult to get any closed form

analytical solutions, except for in some simplified cases. Though the simplified

solutions are useful in many cases, they do not provide detailed solutions that are

necessary for many practical water resources problems. Moreover, with advances
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in computing power, the numerical models usually have the advantage of quicker

results and lower cost when compared to the physical models and therefore are

now widely used in most practical cases.

The numerical solution of an open channel flow problem is known as Com-

putational Hydraulics and has become an important subfield of open channel

hydraulics. My research studies the friction-dominated flow, which is one partic-

ular issue that arises in Computational Hydraulics. The study is required for a

robust model that is applicable to the full range of practical applications. The

flow in open channels can either be gentle, like the flow in flood plains or in

irrigation canals, or it can be rough, like in mountain streams or in spillways.

Moreover, a variety of complex topographies may be present in a channel, for

example wet/dry areas, small depth areas, steep areas, and large boulder areas.

Modeling the flow in these cases can be challenging, as spurious velocities or

stability problems may occur.

In this chapter, first a brief history of Computational Hydraulics will be pre-

sented and then the different numerical issues present in Computational Hy-

draulics will be discussed in depth. Finally, we will discuss why the friction

dominated problem is chosen as the focus of this study, and how we address the

problem.

1.2 A Brief History of Computational Hydraulics

The Computational Hydraulics field can be viewed as a subfield of Computa-

tional Fluid Dynamics (CFD). Many numerical schemes used in Computational

Hydraulics originated in CFD, especially from the 1D mass transport problem

and the compressible gas dynamics problem. While modern Computational Hy-

draulics and CFD became widespread with the advent of the digital computer

in the early 1950s (Chung 2002, Szymkiewicz 2010), each of these fields started

their own journeys independently.

The development of CFD began with Finite Difference Method (FDM) be-

cause of FDM’s simplicity in formulation and computations. FDM uses finite

difference equations to approximate partial derivatives in a differential equation.

Some early applications of FDM in CFD are found in the works of Courant and
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Lewy (1928), Courant and Rees (1952), Lax (1957), Lax and Wendroff (1960),

and MacCormack (1969) (Chung 2002). However, FDM requires structured grids,

which necessitates grid transformations in case of 2D flow problems.

Finite Element Method (FEM), which has the support of unstructured grids

and can easily handle 2D geometry, was applied in CFD almost three decades after

the first uses of FDM in CFD. In FEM, the solution domain is divided into small

subdivisions, and the governing partial differential equations are transformed into

a set of finite element equations using approximate trial functions. Some early

applications of FEM in CFD can be found in Zeienkiewicz and Cheung (1965),

Olson (1972), Oden (1972), and Baker (1973) (Norrie and de Vries 1978, Baker

1983).

Finite Volume Method (FVM), which combines the advantages of both FDM

and FEM, was also applied in CFD during almost the same time as FEM. FVM

supports unstructured grids, so it proves advantageous over FDM, which could

only support structured grids, and its underlying formulation guarantees the con-

servation properties of the system. Some early applications of FVM in CFD can

be found in Godunov (1959), Gentry and Daly (1966), Runchal (1972), Raithby

and Torrence (1974), Van Leer (1974), and Roe (1981) (Patankar 1980, Toro

2009).

Computational Hydraulics had a slightly different process of development.

Computational Hydraulics started its journey with Method of Characteristic

(MOC) long before FDM had been applied in CFD. MOC was available to solve

the shallow water equations since 1889 (Rouse and Ince 1957), and some notable

early applications of MOC in Computational Hydraulics are found in the works of

Massau (1905), Stoker (1957) and Abott and Verwey (1970) (Liggett and Cunge

1975). Though the method is not used much today for numerical solutions, it

still provides the fundamental characteristics of the differential equations and the

understanding of the boundary condition requirements (Abott 1979, Cunge and

Verway 1980, Chaudhry 2008).

Use of FDM in Computational Hydraulics started almost three decades after

its first use in CFD. Some early applications of FDM in Computational Hydraulics

can be found in Morgali and Linsley (1965), Liggett and Woolhisher (1967), and
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Koren and Kuchment (1967) (Liggett and Cunge 1975).

Applications of FEM in Computational Hydraulics came a few years after its

first application in CFD. Some early notable applications of FEM in Computa-

tional Hydraulics are by Taylor and Davis (1972), Grotkop (1973), Norton and

Orlob (1973) and Partridge and Brebbia (1976) (Gray 1980).

Applications of FVM in Computational Hydraulics started almost three decades

later than its first application in CFD. Some early applications of FVM in Compu-

tational Hydraulics can be found in Glaister (1987), Alcrudo and Garcia-Navarro

(1992), Glaister (1992), and Bermudez and Vazquez (1994) (Toro and Garcia-

Navarro 2007).

Most of the aforementioned studies in both CFD and Computational Hy-

draulics were done by academic researchers. However, besides these, there were

also contributions from different governmental and private institutions in both

fields.

For example, FLOW-3D (Hirt and Nichols 1988) is a commercial CFD soft-

ware package developed by Flow Science, Inc; ANSYS Fluent (ANSYS 2009a)

and ANSYS CFX (ANSYS 2009b) are two popular commercial CFD software

packages developed by ANSYS, Inc; OpenFOAM (OpenCFD 2009) is an open

source CFD software package developed by OpenCFD Ltd.

In the development of Computational Hydraulics, the United States Army

Corps of Engineers (USACE) was a pioneer. The Hydrologic Engineering Center

(HEC) and the Coastal Hydraulics Laboratory (CHL) of USACE developed sev-

eral hydrodynamic, contaminant transport and sediment models including HEC-

RAS (Brunner 2008), RMA2 (Barbara 2006a), HIVEL2D (Berger 1997), RMA4

(Barbara 2008) and SED2D (Barbara 2006b).

Besides USACE, there were some other U.S. government agencies which also

supported the development of hydrodynamic models such as FESWMS (FHA

2002), developed by the U.S. Department of Transportation, WASP (Wool and

Comer 2004), developed by the U.S. Environmental Protection Agency, and

CCHE1D (Wu and Vieira 2002) and CCHE2D (Jia and Wang 2001), developed

by the U.S. Department of Agricultural Research Service.

Besides the U.S. agencies, there were contributions from one North American
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country, i.e., Canada, and from European countries, e.g., France, Denmark, and

the Netherlands. River1D (Hicks 2005) and River2D (Steffler and Blackburn

2002) are two hydrodynamic models developed at the University of Alberta,

Canada. SOBEK (Dhonida and Stelling 2004) and Delft3D (WL|Delft 2006)

were developed at WL|Delft Hydraulics, the Netherlands. MIKE11 (DHI 2003),

MIKE21 (DHI 2005) and MIKE3 (DHI 2005) were developed at Danish Hydraulic

Institutes (DHI), Denmark. TELEMAC2D (Lang 2010) model was developed by

Électrecité de France (EDF).

All of these Computational Hydraulics software packages are now widely used

in many practical applications of water resources problems, and all of them are

available in the public domain except DHI’s softwares.

1.3 Numerical Issues in Computational Hydraulics

Irrespective of the specific numerical method, there are five main issues en-

countered in Computational Hydraulics. These are: transcritical flow, advection

dominated flow, zero/negative depth, presence of bed slope term or source term,

and friction dominated flow. The transcritical and advection dominated flow is-

sues are also observed and handled in CFD, especially in the compressible inviscid

flow problem, i.e., the Euler equations, and in the mass transport equation. The

transcritical flow, advection dominated flow, zero/negative depth, and presence

of bed slope term or source term issues are well recorded in the literatures, and

hence are only briefly covered in this section. On the contrary, the friction dom-

inated issue has not been studied that much; therefore, this issue is the main

focus of this study.

1.3.1 Transcritical Flow Case

The first issue is the stability problem in any transcritical flow. Similar to the

Euler equations, the Saint-Venant equations (as derived and presented in section

2.2) are a hyperbolic system of equations and can generate sharp discontinuity in

the solution variables due to any variation of the flow geometry, and can produce

transcritical flow with a hydraulic jump or bore (Abott 1979, Cunge and Verway

1980, Chaudhry 2008, Toro 2001). Therefore, the numerical scheme used to solve
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this type of equations should have the capability to capture and handle the shock.

There are two approaches to computing solutions containing discontinuity:

the shock-fitting approach and the shock-capturing approach. In the shock-fitting

approach, discontinuities are fitted or tracked explicitly, and the rest of the areas

are solved by a numerical scheme which is suitable for smooth flows (Toro 2001).

While the advantage of this approach is that the discontinuities can be computed

as a true discontinuity, the approach becomes too complicated or impossible to

apply for multiple dimensions (Toro 2001).

In the shock-capturing approach, a single numerical scheme is used for the

complete domain, and shock waves emerge as part of the solution (Toro 2001).

The disadvantage of this approach is that the discontinuities are not computed as

a true discontinuity; instead, they are smeared or spread over a number of com-

puting cells (Toro 2001). Regardless of its disadvantages, this type of approach

is often used in practice due to its simplicity and applicability to any problem.

Both non-conservative and conservative shock-capturing numerical schemes

can handle the transcritical flow. However, the conservative schemes are prefer-

able because they produce the correct shock propagation speed (Cunge and Ver-

way 1980, Chaudhry 2008, Toro 2001, Toro 2009). Shock-capturing numerical

schemes can be classified into two categories: classical shock-capturing schemes,

where linear dissipation is used, that is, equal dissipation is used for all grids (e.g.,

Lax-Wendroff scheme (Lax and Wendroff 1960) or MacCormack scheme (MacCor-

mack 1969)), and modern shock-capturing schemes, where non-linear dissipation

is used, that is, dissipation varies from grid to grid (e.g., Total Variation Di-

minishing (TVD) schemes and Essentially Non-Oscillatory (ENO) schemes) (Yee

1987).

1.3.2 Advection Dominated Flow Case

The next issue is the stability problem in any advection-diffusion problem.

Many fundamental findings of CFD have been developed from the studies with

the simple 1D mass transport equation. The 1D mass transport equation can be

written as (Patankar 1980, Cunge and Verway 1980, LeVeque 2002):
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∂C

∂t
+ u

∂C

∂x
= D

∂2C

∂x2
(1.1)

where C is the mass per unit volume, u is the average velocity of flow, and D

is the mass diffusion coefficient. The Saint-Venant equations can be viewed as

a system of advection-diffusion equations. For the 2D Saint-Venant equations,

the diffusion terms come from the turbulent stress portion, and for the 1D Saint-

Venant equations, the diffusion term is zero.

Eq. 1.1 is a mixed type of a partial differential equation. The equation can be

a hyperbolic equation or parabolic equation depending on whether the advection

or diffusion term dominates. A non-dimensional parameter called the Peclet

number, i.e., uL
D

, where L is a length scale, is used to define the problem. When

uL
D
≥ 2, the equation becomes advection dominated; otherwise, it is diffusion

dominated (Patankar 1980).

Two major problems occur in the case of advection dominated flow. The first

one is related to an unsteady flow problem. When a forward explicit time step

numerical discretization is used, the time step should be such that the solution

propagation over a time step does not exceed the space discretization in order to

avoid any stability problem. In other words, for a ∆t time step and a ∆x space

discretization, if the solution propagates with a speed of u, then the condition

states that u∆t
∆x
≤ 1. This condition is known as the famous CFL condition,

named after Courant, Friedrichs, and Lewy (Courant and Lewy 1928). However,

an implicit numerical scheme does not need to satisfy this condition in order to

get a stable solution (Abott 1979, Cunge and Verway 1980).

The second problem with advection dominated flow is related to a steady state

flow problem. When advection dominates, the use of central difference schemes

will produce spurious oscillations due to the inability to resolve the boundary layer

caused by a fixed value downstream boundary condition (Chung 2002, Brooks and

Hughes 1982, Date 2005, Toro 2009). A non-dimensional parameter called the

grid Peclet number, u∆x
D

, is used to define the problem. When u∆x
D
≥ 2, any

central difference scheme will produce spurious wiggles (Chung 2002, Brooks and

Hughes 1982, Date 2005, Toro 2009). As the Saint-Venant equations are a system

of advection type equations, they are not free from this problem.
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Reducing ∆x is one way to eliminate the spurious oscillations, and applying

artificial diffusion is the other way to suppress these oscillations. Artificial dif-

fusion is normally applied by considering an upwind numerical scheme. For the

1D mass transport equation, i.e., Eq. 1.1, the upwinding is achieved by applying

a one-sided upwinding based on the flow direction. For example, when flow di-

rection is positive, the upwinding is done for FDM by taking the backward finite

difference; for FVM it is done by taking the upstream cell value as a flux at the

cell interface; for FEM it is done by putting more weight on the upstream node.

However, the simple one-sided upwind scheme based on the flow direction

produces an unstable scheme for a system of hyperbolic equations, e.g., the Euler

equations or the Saint-Venant equations (Ying and Wang 2004, Toro 2009). For

a system of hyperbolic equations, different eigenvalues with different directions

(signs) could be possible; therefore, a simple one-sided upwind numerical scheme

based on the flow direction may not give upwinding for all the eigenvalues.

The remedy to this problem is to do the upwinding based on the wave propaga-

tion direction embodied in the eigenvalues of the system of hyperbolic equations,

and this remedy is a key philosophy behind the Godunov upwind scheme (Go-

dunov 1959). The Godunov scheme is a shock-capturing scheme as well, and it

was in the center of focus in both CFD and Computational Hydraulics for the

last forty years. Several numerical schemes were developed based on this phi-

losophy in FDM, FEM, and FVM (e.g., Van Leer 1979, Roe 1981, Harten and

Van Leer 1983, Steger and Warming 1981, Brooks and Hughes 1982, Hicks and

Steffler 1992, Hubbard and Garcia-Navarro 2000).

The early schemes, e.g., Godunov’s (1959) and Roe’s (1981), are of first-order

upwind schemes and thus over-diffusive; therefore, higher-order upwind schemes

were sought. There are also some linear higher-order schemes (e.g., Lax-Wendroff

scheme (Lax and Wendroff 1960) or MacCormack scheme (MacCormack 1969))

which are centered-difference in space but still dissipative because of the dissi-

pation term present in the time discretization. However, these schemes produce

spurious wiggles in the vicinity of the discontinuity or the sharp gradient (Cunge

and Verway 1980, LeVeque 2002, Chung 2002, Toro 2009).

TVD (Total Variation Diminishing) schemes (e.g., Van Leer 1974, Harten and
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Van Leer 1983, Osher 1984) are developed where higher-order schemes are used

in the smooth regions and first-order upwind schemes are used in the discontin-

uous regions of a flow. The switch from a higher-order scheme to a first-order

scheme is done using some sort of limiters, e.g., slope limiters or flux limiters.

Essentially non-oscillatory (ENO) higher-order upwind schemes (e.g., Harten and

Osher 1987) are also developed where higher-order polynomial data reconstruc-

tion is used.

The above-mentioned high resolution schemes are mainly of FDM and FVMs.

However, there are also finite element high resolution schemes, e.g., Brooks and

Hughes (1982), Katopodes (1984a), and Hicks and Steffler (1992), which are

philosophically similar to the Godunov type scheme and produce better results

than the linear higher-order schemes.

1.3.3 Zero/Negative Depth Flow Case

The third issue is the zero/negative depth case or the wetting/drying prob-

lem. The solution becomes indeterminate or imaginary when the depth becomes

zero or negative. Flood plain modeling, tidal flow modeling, dam break flow

modeling, and low flow fish habitat modeling all face this problem. Handling the

wetting/drying problem properly is important as it can produce spurious veloc-

ities or can calculate an incorrect speed of the wetting/drying front (Bates and

Hervouet 1999).

Two approaches are used to handle the wetting/drying problem: one is the

Eulerian approach, where the computational domain is fixed, and the other is the

Lagrangian approach, where the computational domain evolves with the position

of a moving boundary (Tchamen and Kahawita 1998, Bates and Hervouet 1999,

Defina 2000, Heniche and Leclerc 2002). For practical modeling, it appears that

the Eulerian approach is easier to use than the Lagrangian approach, as the

Lagrangian approach is harder to program and is complicated to apply, especially

with complex topography (Tchamen and Kahawita 1998, Bates and Hervouet

1999, Defina 2000, Heniche and Leclerc 2002).

In either case, the common practice is to use a minimum depth to set the ve-

locity to zero, to switch to an alternate equation, or to remove dry nodes from the

9



computational domain. For example, Lynch and Gray (1980) used the Lagrangian

approach; Tchamen and Kahawita (1998) and Dietrich (2006) used a reduced mo-

mentum equation, i.e., dropping inertia terms; Bates and Hervouet (1999), Defina

(2000), and Heniche and Leclerc (2002) used modified Saint-Venant equations,

i.e., adding porosity to the equations; and the River2D model (Steffler and Black-

burn 2002) and Khan (2000) used a ground water equation for the dry nodes.

However, there is no definite criterion for setting a minimum depth. A wide

range of minimum depths is suggested for applied modeling, e.g., 0.01 m in the

River2D model (Steffler and Blackburn 2002), 0.02 m to 0.05 m in the CCHE2D

model (Jia and Wang 2001), and 0.005 m to 0.1 m in the MIKE21 model (DHI

2005). This indicates that a criterion for setting up the minimum depth would

be beneficial for practical modeling.

1.3.4 Presence of Bed Slope Term Case

The fourth issue is the handling of the bed slope term in the Saint-Venant

equations. Most of the schemes used in the Computational Hydraulics were

developed with a homogenous set of equations, i.e., the Euler equations, but are

also applied to non-homogenous equations. The source terms in the Saint-Venant

equations include the bed slope term and the friction term. However, most of the

studies related to the source terms issue mainly deal with the bed slope term.

Evidently, the presence of the bed slope term is important in Computational

Hydraulics, especially in non-level bed channels. Special numerical treatment is

required to handle it correctly, especially for the finite volume schemes (Brad-

ford and Sanders 2005, Toro and Garcia-Navarro 2007, Petaccia and Zech 2009).

Hubbard and Garcia-Navarro (2000) showed that if the bed slope term or the

source terms are not properly balanced with the flux terms, then for a steady

state case, the discharge solutions at the cell centers may not be balanced, and

spurious oscillations in the steady state discharge solutions may appear. Such

oscillations in the steady state discharge solutions with non-balanced or point

source Godunov schemes have been reported by several researchers (e.g., Brad-

ford and Sanders 2005, Petaccia and Zech 2009, Hubbard and Garcia-Navarro

2000, Zhou and Ingram 2001).
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Different techniques to handle the non-level bed in FVM have been proposed

(Bermudez and Vazquez 1994, Nujic 1995, LeVeque 1998, Hubbard and Garcia-

Navarro 2000, Zhou and Ingram 2001, Galloute and Sequin 2003). LeVeque

(1998) used the fractional step method to handle the bed slope term, but this

method provides relatively poor solutions for quasi-steady or steady problems

(Bradford and Sanders 2005). More effective are the proposals of Bermudez and

Vazquez (1994), who have proposed the upwinding of the bed slope term to be

taken as consistent with the flux term, and Hubbard and Garcia-Navarro (2000),

who extended their method to the higher-order accuracy method.

Nujic (1995) proposed the reconstruction of water surface elevation instead of

primitive variable depth, and Zhou and Ingram (2001) extended the method to

the higher-order accuracy method and named the method the Surface Gradient

Method (SGM). Galloute and Sequin (2003) assumed the bathometry as a piece-

wise constant and solved the Riemann problem for the difference in bed elevation

at the cell boundaries. All of these schemes are mainly concerned with ensuring

constant water level with non-level beds under a quiescent flow test condition,

which is also known as a C-property test.

1.3.5 Friction Dominated Flow Case

The last and least discussed issue is the friction term dominated case. The

above-mentioned studies dealing with source terms have not taken the friction

term as a separate issue, and therefore, left the need for the friction term to

be investigated in more depth. Balancing the source terms or ensuring the C-

property solves one part of the source term problem, but does not solve the whole

problem.

The friction term becomes more important when the depth is small, the dis-

cretization is large, the roughness is high, or the slope is steep. A typical prob-

lematic situation is a reach of rapids in a stream or river. Problem with the

small depth was first explicitly mentioned by Cunge and Verway (1980) on page

175: “In certain situations, computational difficulties develop when physical flow

depths are small, usually when flood waters first appear in dry channels or on the

flood plain, and we refer to these difficulties when we speak of the ‘small depth

11



problem’.”

This observation is also supported by various reports of spurious velocities at

the flow boundaries in 2D models due to the small depths (e.g., Bates and Hawkes

1997, Tchamen and Kahawita 1998, Heniche and Leclerc 2002, Dietrich 2006).

For example, Tchamen and Kahawita (1998) observed numerical instabilities in

the form of negative depth and/or too large of a velocity within cells that are

partially wet due to small depth. Dietrich (2006) also observed oscillations and

instabilities in regions with steep bathymetry when a thin film of water was

allowed to flow uninterrupted.

Similar spurious velocities have been experienced with the River2D model.

Fig. 1.1 shows a typical velocity vector solution in the River2D model which

shows spurious velocity vectors near the boundaries. We suspect that these spu-

rious velocities are a result of small depths, i.e., the friction dominated case.

This is the motivation for undertaking this study and for studying the friction

dominated case in detail.

Most of the time, the small depth problems can trigger the zero/negative

depth problems and can be taken care of by the wetting/drying algorithm using

some minimum depths, and this makes it even more difficult to distinguish the

friction dominated cases from the others. However, depending on the discretiza-

tion size or the slope, the friction term dominated cases can occur at a higher

depth than the practical minimum depths (e.g., 0.01 or 0.05 cm), when we may

still see spurious velocities.

Among the available literatures, very few studies have focused on the friction

dominated problem. The few studies that do exist can be classified into two

broad categories. In the first category, the restriction over the time step due to

the friction dominated case has been the focus. The very first work found in this

category is by Liggett and Cunge (1975). They proposed an extra criterion for

explicit schemes that helps to limit the time step in the case of friction domination

in addition to the CFL conditions. Recently, Burguete and Murillo (2008) also

presented another criterion on the time step discretization based on limiting the

friction force, and this stability criterion is also used by Liang and Marche (2009)

and Berthon and Turpault (2011). However, the additional restriction on the time
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step can be avoided by using an implicit discretization of the friction term (Liggett

and Cunge 1975, Burguete and Gracia-Palacin 2007, Burguete and Murillo 2008).

The next category is the stability issue in any steady state flow due to the

friction dominated case. The restriction over the time step is not necessary in this

case. However, stability problems may arise when spatial discretization becomes

large and the effect of the friction term becomes significant. One of the works

that has been found in the existing literature is by Burguete and Gracia-Palacin

(2007), who proposed a stability constraint on spatial discretization due to the

friction dominated case, considering the flow on a simple adverse slope with a

flat water surface. Their proposed criterion is:

∆x ≤ 2R4/3

gn2
(1.2)

where ∆x is the spatial discretization, R is the hydraulic radius, g is the gravi-

tational acceleration and n is the Manning’s roughness coefficient. They showed

with the numerical solutions of very small depth flows in an irrigation channel

that Eq. 1.2 has to be satisfied in order to get an oscillation-free wet/dry front

(Burguete and Gracia-Palacin 2007).

1.4 Objectives

The previously-mentioned high resolution schemes, i.e., TVD and ENO schemes,

ensure non-oscillatory solutions for the advection dominated and transcritical flow

cases, but they do not guarantee non-spurious solutions when the friction term

dominates in the Saint-Venant equations (Cunge and Verway 1980, Toro and

Garcia-Navarro 2007, Burguete and Murillo 2008). Moreover, it was found that

all the studies that dealt with the source terms focused on the bed slope term

only. In particular to the friction dominated issue, one study, i.e., Burguete and

Gracia-Palacin (2007), looked at the steady state friction dominated case. How-

ever, their restriction over the spatial discretization, i.e. Eq. 1.2, was developed

from a simplified test case with the simplified form of the Saint-Venant equations.

The friction dominated problem has not been studied so far using the complete

Saint-Venant equations. In addition to these, there is no straight method to de-

fine or distinguish the friction dominated case, which is also needed to be set
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up.

Therefore, in this research our main objective is to study and to understand

the friction dominated issue with the full Saint-Venant equations. This will lead

us to a stable numerical scheme that can be applicable to a wide range of practical

water resources problems.

The following specific objectives will lead us to achieve our main objective.

Our specific objectives are:

• To develop a framework analysis to study the friction dominated issue.

Because there have not been any studies on this particular issue using the

full Saint-Venant equations, a framework analysis which can be applicable

to a wide range of numerical schemes is needed.

• To identify the different dimensional parameters that affect the friction

dominated case and to understand their effect.

• To formulate the non-dimensional parameters that may affect the friction

dominated case and to understand their effect. The friction dominated

problem can be analogous to the advection dominated problem. Similar to

the grid Peclet number, one or more non-dimensional parameters and their

critical values could be found for the friction dominated problem.

• To find a suitable numerical scheme that will be stable and non-oscillatory

for the friction dominated case. Analogous to the upwinding schemes for

the advection dominated case, similar numerical schemes can be found for

the friction dominated case.

• To understand the friction dominated problem in the 2D flow case. Similar

or equivalent non-dimensional parameters found with the 1D Saint-Venant

equations can be found for the 2D Saint-Venant equations. From the prac-

tical application point of consideration, this is the most important objective

of this study.
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1.5 Methodology

In this research we will study the 1D Saint-Venant equations in depth. While

our ultimate goal is to apply the findings in 2D models, studying the 1D Saint-

Venant equations can provide us with sufficient knowledge of the problem to do

so.

We focus on the steady state solutions of the 1D Saint-Venant equations; the

friction dominated flow can be seen in both transient and steady flow cases. To

eliminate the effects of the transient issue, we have limited ourselves to steady

state solutions. However, the transient model is still used to obtain the final

steady state solutions.

We have also limited ourselves to the sub-critical flow regime. While topo-

graphic variations necessitate that some local areas in open channels can have

super-critical flow, flow in most areas is in the sub-critical regime. Therefore,

to avoid any trans-critical flow issue, we mainly focus on the sub-critical flow

regime.

The friction term becomes dominant when the depth is small, the discretiza-

tion is large, or the roughness is high. To see these parameters’ effects on the

solution variables, we do non-linear model analysis. In this analysis, final steady

state solutions are solved for a simple non-uniform flow test case, where two

abrupt slope changes are introduced to create a non-uniform sub-critical flow.

We then run this test case using different discretizations, roughnesses, and slopes,

and observe their effects on the solution variables.

To find the non-dimensional parameters and their effects, we do Fourier anal-

ysis of the linearized non-dimensional form of the Saint-Venant equations, which

includes the bed slope and the friction term. The discrete form of the non-

dimensional Saint-Venant equations give us the non-dimensional parameters. In

the Fourier analysis, a periodic bed perturbation is introduced and the effects on

the solution variables are observed.

As a side note, it is not feasible to cover all the numerical schemes available in

the Computational Hydraulics field within the time period of this study. There-

fore, we have limited our focus to two schemes from each numerical method, such

that it covers both shock-capturing and non-shock-capturing schemes as well as
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balanced and non-balanced numerical schemes. While we have limited our study

to just a few numerical schemes, the analysis can be applied to a wide range of

numerical schemes.

From FDM, we have taken the box finite difference scheme (Preissmann 1961)

and the MacCormack scheme (MacCormack 1969); from FEM, we have studied

the Bubnov-Galerkin scheme (Baker 1983) and the Characteristic Dissipative

Galerkin (CDG) scheme (Hicks and Steffler 1992); finally, from FVM, we have

taken two first-order shock-capturing finite volume schemes: a balanced Godunov

scheme (Hubbard and Garcia-Navarro 2000) and a one-sided upwind-downwind

scheme (Ying and Wang 2004). The box finite difference scheme and the Bubnov-

Galerkin finite element scheme are non-shock-capturing schemes, and the rest are

shock-capturing schemes.

Once we understand the friction dominated problem with 1D Saint-Venant

equations, we move forward to the 2D flow problem. Similar or equivalent pa-

rameters to the 1D non-dimensional parameters can be found for the 2D model.

Subsequently, the non-dimensional parameters’ effects can be investigated with

2D flow test case. In this research, two test cases (flow past a submerged groin

and flow in a natural river) have been used for that purpose and we use the

River2D (Steffler and Blackburn 2002) model for this stage.

1.6 Organization of the Thesis

The organization of this thesis is as follows. In chapter 2, the governing

equations for the open channel flow, i.e. the 1D Saint-Venant equations, are

derived, and different forms of the 1D Saint-Venant equations are presented. The

linearized and the non-dimensionalized forms of the 1D Saint-Venant equations

are also presented in this chapter.

Chapter 3 presents the framework analysis to study the 1D steady state fric-

tion dominated Saint-Venant equations. Both non-linear model analysis and

Fourier analysis are presented in this chapter.

In the following six chapters, the six numerical schemes are investigated for

the friction dominated case with the framework analysis, and the results are

presented.
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Chapter 10 outlines the general discussions on the friction dominated problem

based on the results of the previous six chapters. Different utilities and the

significance of the current study are also presented in this chapter.

In chapter 11, the non-dimensional parameter identified from the framework

analysis of the 1D model is extended to the 2D model. The results from the 2D

idealized test case and the natural river test case are presented in this chapter.

Chapter 12 presents conclusions and future recommendations for further re-

search. Finally, the coefficients used in the Fourier analysis for different numerical

schemes are presented in appendices.
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Figure 1.1: A typical Froude number contour and velocity vectors plot with the
River2D open channel flow model.

18



Chapter 2

Governing Equations

2.1 Introduction

Three conservation laws - mass, momentum, and energy - are used to describe

open channel flows (Abott 1979, Cunge and Verway 1980, Chaudhry 2008). In

1D open channel flows, two independent variables, such as the flow depth and

velocity or the flow depth and discharge, are needed to describe the flow condi-

tions. Therefore, two governing equations are required to express a 1D flow. The

conservation of mass and momentum or the conservation of mass and energy laws

can be used in this case.

The expression of a 1D flow can be either continuous or not continuous. If flow

variables are not continuous, such as in the hydraulic jump or bore, the conserva-

tion of mass and momentum should be used, and if flow variables are continuous,

either of the two sets of laws can be used (Cunge and Verway 1980, Chaudhry

2008). Since the conservation of mass and momentum laws are applicable to both

continuous and discontinuous situations, this set of laws is the most often used

in open channel hydraulics (Cunge and Verway 1980, Chaudhry 2008).

2.2 1D Saint-Venant Equations

The Saint-Venant equations (Saint-Venant 1871) comprise the fundamental

mathematical description governing the depth and average velocity in both 1D

and 2D open channel flows (Chow 1959, Cunge and Verway 1980, Chaudhry

2008, Chanson 1999). These equations have been studied extensively both ana-

lytically and numerically. The basic assumptions needed to derive the 1D Saint-
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Venant equations as well as derivations of these equations are well presented in

many books pertaining to open channel hydraulics and Computational Hydraulics

(e.g., Chow 1959, Liggett 1975, Abott 1979, Cunge and Verway 1980, Chanson

1999, Chaudhry 2008, Szymkiewicz 2010). Since our main focus is on the 1D

Saint-Venant equation, the assumptions and derivations for these equations are

presented in this chapter. Moreover, different forms of the 1D Saint-Venant equa-

tions including the linearized and non-dimensionalized forms of the equations are

also presented here.

2.2.1 Basic Assumptions

The basic assumptions in deriving the Saint-Venant equations are as follows

(Cunge and Verway 1980, Hicks 1990, Chaudhry 2008):

• the flow is one-dimensional, i.e., velocity is in the direction of the channel;

• the streamline curvature is small and the vertical accelerations are negligi-

ble, hence the pressure distribution is hydrostatic;

• the velocity distribution is uniform over the cross-section;

• the channel bed slope is small enough that sinφ may be replaced by tanφ

and cosφ by unity, where, φ is the angle between the channel bed and the

horizontal;

• frictional resistance formulae for steady uniform flow are applicable to un-

steady non-uniform flow;

• the dependent variables are continuous differentiable functions;

• the channel is prismatic;

• no lateral flows occur;

• the fluid (water) is incompressible;

• shear stress on the surface due to wind is negligible.
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2.2.2 Conservation of Mass

The conservation of mass states that the mass within a closed system remains

constant with time. Therefore, for a control volume, as shown in Fig. 2.1, and for

a system without any lateral inflows, the net rate of change in fluid mass within

the control volume must equal the net rate of inflow of fluid mass into the control

volume (Cunge and Verway 1980, Hicks 1990, Chaudhry 2008).

∂

∂t

∫ x2

x1

ρAdx = ρQ1 − ρQ2 (2.1)

where ρ is the density of the fluid, in this case water. A is the area of the cross-

section and Q1 and Q2 are the discharges acting on the upstream (x1) and the

downstream (x2) end, respectively. x and t are the space and time coordinates,

respectively. Applying the mean value theorem of calculus (Chaudhry 2008), Eq.

2.1 becomes:
∂

∂t

∫ x2

x1

ρAdx = −
∫ x2

x1

∂

∂x
(ρQ)dx (2.2)

where Q is the discharge. As for most of the practical cases, the density of water

is constant (Chaudhry 2008, Hicks 1990), and since x1 and x2 are two arbitrary

locations, Eq. 2.2 becomes:

∂A

∂t
+
∂Q

∂x
= 0 (2.3)

which is generally known as the continuity equation.

2.2.3 Conservation of Momentum

The conservation of momentum states that for the control volume as shown in

Fig. 2.2, the net rate of change of momentum in a control volume is equal to the

summation of all forces (
∑
F ) acting on the control volume plus net momentum

influx along the longitudinal direction (Liggett 1975, Cunge and Verway 1980,

Chaudhry 2008). Thus we can write:

∑
F =

∂

∂t

∫ x2

x1

ρQdx+ ρQ2u2 − ρQ1u1 (2.4)

where u1 and u2 are the cross-sectional average velocities acting on the upstream

and downstream end of the control volume. As we can see in Fig. 2.2, there are
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four forces: two pressure forces (Fp1 and Fp2); one gravitational force (Fg); and

one frictional force (Ff ), acting on the control volume. So:∑
F = Fp1 − Fp2 + Fg − Ff (2.5)

The pressure forces are (Chaudhry 2008):

Fp1 = ρgA1h̄1 (2.6)

and:

Fp2 = ρgA2h̄2 (2.7)

where g is the gravitational acceleration, and h̄1 and h̄2 are the depths of the

centroid of flow area A1 and A2, respectively. Furthermore, the gravitational

force can be taken as the component of weight of the water in the control volume

in the longitudinal direction:

Fg =

∫ x2

x1

ρgA sinφdx (2.8)

As the channel bed slope is small, sinφ can be replaced with tanφ or the channel

bed slope, Sb, itself. So,

sinφ = −dz
dx
≈ tanφ = Sb (2.9)

where z is the bed elevation. Therefore, Eq. 2.8 becomes:

Fg =

∫ x2

x1

ρgASbdx (2.10)

The frictional force due to the shear between water and channel sides and channel

bottom may be expressed in terms of friction slope, Sf (Cunge and Verway 1980,

Chaudhry 2008):

Ff =

∫ x2

x1

ρgASfdx (2.11)

In this study the frictional slope is evaluated using Chezy’s equation:

u = C∗
√
gRSf (2.12)

where u is the cross-sectional average velocity, C∗ is the non-dimensional Chezy

coefficient and R is the hydraulic radius equal to A
P

. P is the wetted perimeter
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of a cross-section. C∗ can be calculated from Manning’s roughness coefficient, n,

as (Chow 1959, Chaudhry 2008)

C∗ =
R1/6

n
√
g

(2.13)

where n is in SI units. After applying Eq. 2.5 to 2.11 to Eq. 2.4 we get:

∂

∂t

∫ x2

x1

ρQdx+ρQ2u2−ρQ1u1 = ρgA1h̄1−ρgA2h̄2+

∫ x2

x1

ρgASbdx−
∫ x2

x1

ρgASfdx

(2.14)

Applying the mean value theorem of calculus (Chaudhry 2008), Eq. 2.14

becomes:

∂

∂t

∫ x2

x1

ρQdx+

∫ x2

x1

∂(ρQu)

∂x
dx = −

∫ x2

x1

∂(ρgAh̄)

∂x
dx+

∫ x2

x1

ρgASbdx−
∫ x2

x1

ρgASfdx

(2.15)

As for most of the practical cases, the density of water is constant (Chaudhry

2008, Hicks 1990), and since x1 and x2 are two arbitrary locations, we find:

∂Q

∂t
+
∂(Qu)

∂x
+
∂(gAh̄)

∂x
= gA(Sb − Sf ) (2.16)

Eq. 2.16 is commonly known as the momentum equation in longitudinal direction.

Eq. 2.3 and Eq. 2.16 together are known as the Saint-Venant (1871) equations

for one-dimensional open channel flow in a prismatic channel without any lateral

inflows.

2.2.4 For a Wide Rectangular Channel

In this study, we have assumed the channel to be a wide rectangular channel

of a width B. So, for a wide rectangular channel, Eq. 2.3 and Eq. 2.16 can be

written as (Cunge and Verway 1980, Chaudhry 2008):

∂h

∂t
+
∂q

∂x
= 0 (2.17)

and
∂q

∂t
+
∂( q

2

h
)

∂x
+
∂(gh

2

2
)

∂x
= gh(Sb − Sf ) (2.18)

where q is the per unit width discharge equal to Q
B

, and h is the depth.
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2.3 Different Forms of the 1D Saint-Venant Equa-

tions

2.3.1 Conservative Form

Eq. 2.3 and Eq. 2.16, or Eq. 2.17 and Eq. 2.18, are known as the conservative

form of the Saint-Venant equations, because the equations are written in terms

of the conserved variables. The conservative form of the Saint-Venant equations

is mainly used in Computational Hydraulics as this form gives the correct prop-

agation speed of a shock (Cunge and Verway 1980, Chaudhry 2008, Toro 2001).

In our study, this form of equations is used in most numerical schemes, except

for one particular numerical scheme, i.e., the one-sided upwind-downwind finite

volume scheme.

We can write Eq. 2.17 and Eq. 2.18 in a matrix form as:

∂U

∂t
+
∂F(U)

∂x
= S(U) (2.19)

where U, F(U), S(U) are, respectively, the vectors of the conserved variables,

fluxes, and sources, defined as follows: U =

[
h
q

]
, F(U) =

[
q

q2

h
+ gh2

2

]
, S(U) =[

0
gh(Sb − Sf )

]
.

2.3.2 Non-conservative Form

When the derivatives in the Saint-Venant equations are written in terms of

the solution variables, U, rather than the fluxes, F, the equations are called

as the non-conservative form of the Saint-Venant equations (Cunge and Verway

1980, Chaudhry 2008). Though this form of equations does not produce the cor-

rect shock speed, this form is still used in certain cases, e.g., for obtaining the lin-

earized form of the Saint-Venant equations, and for evaluating wave propagation

directions and speeds for numerical upwinding purposes. The non-conservative

form of Eq. 2.19 can be written as:

∂U

∂t
+ A

∂U

∂x
= S(U) (2.20)
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where A is the Jacobian of the Saint-Venant equations which is equal to ∂F
∂U

. U,

F(U), and S(U) are the same as in Eq. 2.19. A For Eq. 2.19 can be written as:

A =

[
0 1

(gh− u2) 2u

]
(2.21)

2.3.3 Partial-conservative Form

The partial derivative of the pressure force in Eq. 2.18, i.e.,
∂( gh

2

2
)

∂x
, can be

written in non-conservative form, i.e., gh∂h
∂x

. This term can then be taken to the

right hand side of the equation and added to the gravitational force term, i.e.,

−gh ∂z
∂x

. This alteration places the equation in terms of the derivative of the water

surface elevation, i.e., −gh∂H
∂x

, where H is the water surface elevation equal to

h+ z.

Several researchers, such as Nujic (1995), Zhou and Ingram (2001), and Ying

and Wang (2004), found that this form of the Saint-Venant equations is suitable

to use with non-level beds. As this form of equations does not use the full non-

conservative form, i.e., Eq. 2.20, nor the full conservative form, i.e., Eq. 2.19, we

call this form of equations the partial-conservative form of the 1D Saint-Venant

equations. In our study, the partial-conservative form of equations is used for one

particular numerical scheme, i.e., the one-sided upwind-downwind finite volume

scheme. The partial-conservative form of the 1D Saint-Venant equations can be

written in matrix form as:

∂U

∂t
+
∂F(U)

∂x
= S(U) (2.22)

where U, F(U), and S(U) can be defined as follows: U =

[
h
q

]
, F(U) =

[
q
q2

h

]
,

S(U) =

[
0

−gh∂H
∂x
− ghSf

]
.

2.3.4 Linearized Form

The linearized form of the 1D Saint-Venant equations is often used in Com-

putational Hydraulics. This form simplifies the Saint-Venant equations, which

allows us to do theoretical analysis on the equations, such as Fourier analysis

(e.g., Ponce 1977, Abott 1979, Cunge and Verway 1980, Katopodes 1984b, Hicks
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and Steffler 1992). The non-conservative form of the Saint-Venant equations, i.e.,

Eq. 2.20, is used for the linearization process.

The linearized form of the 1D Saint-Venant equations are derived by taking

h = h0 + h′ and q = q0 + q′, where h0 and q0 are the average quantities and h′

and q′ are the small amplitude perturbations to them, respectively. Similarly we

can take z = z0 + z′, where z0 is the bed elevation corresponding to the average

bed slope S0, where S0 = −dz0
dx

and z′ represents the small perturbation to z0.

Neglecting the products of the small perturbations, Eq. 2.20 becomes:

∂h′

∂t
+
∂q′

∂x
= 0 (2.23)

for the continuity equation, and:

∂q′

∂t
+2u0

∂q′

∂x
+(gh0−u2

0)
∂h′

∂x
=

u0

h0C2
∗

(−2q′+2u0h
′)− u

2
0

C2
∗
−gh0

dz0

dx
−gh′dz0

dx
−gh0

dz′

dx
(2.24)

for the momentum equation, where u0 is the average velocity equal to q0
h0

. Assum-

ing the base or average flow as a uniform flow one can write the Chezy’s uniform

flow formula as:

u2
0 = C2

∗gh0S0 = −C2
∗gh0

dz0

dx
(2.25)

Applying Eq. 2.25 to Eq. 2.24 we find:

∂q′

∂t
+ 2u0

∂q′

∂x
+ (gh0 − u2

0)
∂h′

∂x
=

u0

h0C2
∗

(−2q′ + 3u0h
′)− gh0

dz′

dx
(2.26)

The linearization process followed in this study is similar to other studies done

by Liggett (1975), Cunge and Verway (1980), and Hicks (1990). However, in those

studies, they did not perturb the channel bed elevation, and the perturbation of

the bed elevation is the most important aspect of this study. By perturbing the

bed elevation, we can observe the effect of the bed perturbation on the solution

variable perturbations.

2.3.5 Non-dimensional Linearized Form

The non-dimensional form of the Saint-Venant equations is used to obtain the

non-dimensional parameters that may affect the solution variables. In this study,

the Fourier analysis is performed on this form of equations. The non-dimensional
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form is found using the linearized form of the Saint-Venant equations, i.e., Eq.

2.23 and 2.26.

The non-dimensional form of the equations 2.23 and 2.26 is found by tak-

ing: ϕ = q′

q0
, η = h′

h0
, ζ = z′

h0
, ξ = x

L
, τ = t

T
= tu0

L
, where, ϕ, η, ζ, ξ, and τ

are the non-dimensional discharge perturbation, depth perturbation, bed eleva-

tion perturbation, longitudinal coordinate, and time coordinate, respectively. L

and T are the characteristic length and time scale, respectively. Inserting these

variables, Eq. 2.23 becomes:
∂η

∂τ
+
∂ϕ

∂ξ
= 0 (2.27)

and Eq. 2.26 becomes:

∂ϕ

∂τ
+ 2

∂ϕ

∂ξ
+ (

gh0

u2
0

− 1)
∂η

∂ξ
=

L

h0C2
∗

(−2ϕ+ 3η)− gh0

u2
0

dζ

dξ
(2.28)

If we define Fr0 = u0√
gh0

, and β = L
h0C2

∗
, where Fr0 is called the average flow

Froude number and β can be called the Friction number, respectively, then Eq.

2.28 becomes:

∂ϕ

∂τ
+ 2

∂ϕ

∂ξ
+ (

1

Fr2
0

− 1)
∂η

∂ξ
= β(−2ϕ+ 3η)− 1

Fr2
0

dζ

dξ
(2.29)

In flood routing models, β is called the kinematic flow number because it is

associated with the kinematic wave flood propagation (Miller and Cunge 1975,

Woolhiser 1975). In this study, however, we will call this the Friction number, as

this represents the relative importance of the friction term in the Saint-Venant

equations.

2.4 2D Saint-Venant Equations

2D depth averaged shallow water modeling is currently applied to a vari-

ety of river problems (Waddle 2009, Katopodis 2003, Leclerc and Bechara 2003).

Common applications include flow around hydraulic structures, fish habitat mod-

eling, ice modeling, and morphology modeling. 2D modeling has become popu-

lar because of its ability to capture local variations as well as better visualiza-

tion and description of the flow physics compared to 1D simulation (Katopodis

2003, Leclerc and Bechara 2003).
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2D models include in an additional (lateral) coordinate, y, and therefore, an

additional equation is also required which can be taken as the conservation of mo-

mentum in the y-direction. The 2D Saint-Venant equations of open channel flow

are written as (Cunge and Verway 1980, Chaudhry 2008, Steffler and Blackburn

2002):
∂h

∂t
+
∂qx
∂x

+
∂qy
∂y

= 0 (2.30)

∂qx
∂t

+
∂(uqx)

∂x
+
∂(vqx)

∂y
+
g

2

∂(h2)

∂x
= gh(Sbx−Sfx)+

1

ρ

∂(hτxx)

∂x
+

1

ρ

∂(hτxy)

∂y
(2.31)

∂qy
∂t

+
∂(uqy)

∂x
+
∂(vqy)

∂y
+
g

2

∂(h2)

∂y
= gh(Sby−Sfy)+

1

ρ

∂(hτyx)

∂x
+

1

ρ

∂(hτyy)

∂y
(2.32)

where, qx and qy are the discharges, u and v are the velocities, Sbx and Sby are

the bed slopes, and Sfx and Sfy are the frictional slopes in x and y direction,

respectively. τxx, τxy, τyx, and τyy are the components of the horizontal turbulent

stress tensor.

Similar to the 1D Saint-Venant equations, the 2D Saint-Venant equations,

i.e., Eq. 2.30 to 2.32, can also be written in terms of non-conservative form of

the equations. In many cases, e.g., for evaluating wave propagation directions

and speeds for numerical upwinding purposes, the non-conservative form of the

2D equations are useful.

2.5 Conclusion

In this particular research, while our ultimate goal is to understand the friction

dominated problem for the 2D Saint-Venant equations, we mainly study the 1D

Saint-Venant equations. Both the conservative and partial-conservative form of

the 1D Saint-Venant equations are used in different numerical schemes to solve

the steady state solution for a non-uniform flow test case. The non-conservative,

linearized, and non-dimensionalized form of the 1D Saint-Venant equations are

mainly used in Fourier analysis.
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Figure 2.1: Definition sketch for the one-dimensional open channel flow.

Figure 2.2: Forces acting on the one-dimensional control volume.
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Chapter 3

An Analysis Framework to Study
Steady State Friction Dominated
1D Saint-Venant Equations

3.1 Introduction

The friction term becomes increasingly important when the depth is small,

the discretization is large, the roughness is high, or the slope is steep. A typical

problematic situation of friction dominated case is a reach of rapids in a stream

or river. To see the effect of these parameters, an analysis framework has been

developed using a non-uniform flow test case and Fourier analysis.

In the non-uniform flow test case, abrupt slope changes are introduced, and

the steady state solution is solved using full 1D Saint-Venant equations through

either the conservative form (Eq. 2.19) or the partially conservative form (Eq.

2.22) of the equations. In the Fourier analysis, a periodic bed perturbation is in-

troduced, and steady state solution is solved using the linearized non-dimensional

Saint-Venant equations, i.e., Eq. 2.27 and 2.29.

While the friction dominated problem arises in both transient and steady

state case, steady state solution can give us an adequate insight to the problem.

Both the non-uniform flow test case and Fourier analysis will provide us the effect

of the bed perturbation on the solution variables when the friction term domi-

nates. With this analysis framework, we will be able to identify the controlling

parameters and their critical limits for the friction dominated case. The analysis

framework presented in this study can be applied to a wide range of numerical
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schemes.

3.2 Non-uniform Flow Test Case

In this test case, two abrupt slope changes are introduced in a simple open

channel to create a non-uniform sub-critical flow. The test reach is relatively long

compared to the depth of flow to ensure a friction-dominated regime. Similar non-

uniform flow test cases are also used by Bradford and Sanders (2005) and Schippa

and Pavan (2008) in their studies.

In our particular case, a 10 km long rectangular channel of very large width is

considered where two different slopes are introduced in three parts of the channel.

A smaller bed slope (Sb1) is used for the first and last third of the channel, and

a higher bed slope (Sb2 = 3Sb1) is used for the middle third of the channel. A

typical bed elevation and water surface elevation profile are shown in Fig. 3.1.

A unit discharge of qin is taken as the inflow boundary condition. A flow depth

of hout is taken as the downstream boundary condition, which is the uniform flow

depth for Sb1, calculated using Chezy’s uniform flow equation:

hout = (
qin

C∗
√
gSb1

)2/3 (3.1)

A unit discharge equal to the inflow rate and a flow depth equal to the downstream

depth are used as initial conditions at all nodes.

The non-linear model is run using a transient method until the solution reaches

a steady state situation. The simulation is run until the maximum change in any

of the solution variables after each time step is reached less than 10−10 to ensure

the steady state solution. The size of the time step should not affect the final

steady state solution. The steady state discharge solution should give a constant

value throughout the channel. As the test reach is long enough, the steady state

depth solution should give uniform depths in most of the channel except in the

areas where the abrupt slope changes produce non-uniform depth profiles.

Two test scenarios are run for each numerical scheme under the non-uniform

flow test case. In the first scenario, for the given bed slopes and Chezy coeffi-

cient, three different discretizations are used. In the second scenario, for a fixed

This chapter and the next chapter together have been submitted to the Journal of Hydraulic
Engineering for publication and parts were also presented in the 33rd IAHR congress in 2009.
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discretization, three different values of Chezy coefficient and bed slopes are used.

In this scenario, the Chezy coefficient is varied and the bed slopes are calculated

using Eq. 3.1 so that the flow rate, the uniform flow depths and the Froude num-

bers remain the same as in the first scenario. As a result, the effects of slope and

Chezy coefficient are not independently distinguished. To do so, would require

changes in other parameters and/or variables. In both scenarios qin is taken as

0.164 m2/sec and hout is taken as 0.28 m. Table 3.1 and 3.2 list the discretiza-

tions, Chezy’s coefficients and slopes for the two scenarios. The last column of

each table shows the average bed slope, S0 = (2Sb1 + Sb2)/3, for each case.

Table 3.1: The non-uniform flow test case - effect of discretization.

∆x (m) C∗ Sb1 Sb2 S0

20 15 0.000555 0.001667 0.000926
100 15 0.000555 0.001667 0.000926
200 15 0.000555 0.001667 0.000926

Table 3.2: The non-uniform flow test case - effect of Chezy’s coefficient and slope.

∆x (m) C∗ Sb1 Sb2 S0

100 20 0.0003125 0.0009375 0.000521
100 15 0.000555 0.001667 0.000926
100 10 0.00125 0.00375 0.0021

In any individual run, once the final steady solution is found, we calculate

nodal percent errors in the discharge and depth solutions by taking the difference

between the numerical solution and the reference solution and dividing the error

with their reference solution. As we are solving for steady state solution, a con-

stant discharge is the reference solution for the discharge variable. For the depth

variable, the reference solution is found by solving the steady state gradually

varied flow equation using a fourth-order Runge-Kutta method. In this study, a

discretization of 0.1 m is used with an estimated maximum depth error of less

than 10−5 m.
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3.3 Fourier Analysis

The use of Fourier analysis as a tool to study the linear stability of different

numerical schemes for the Saint-Venant Equations is common (e.g., Cunge and

Verway 1980, Katopodes 1984b, Hicks and Steffler 1992). All of these applications,

however, are limited to the homogenous form of the equations, neglecting slope

and friction terms. Furthermore, all of these studies focus on the propagation

of small perturbation amplitudes with time only. Ponce (1977) performed a

Fourier analysis of the analytical linearized Saint-Venant equations including the

slope and friction terms and was able to show how the dynamic shallow water

wave speed and the kinematic wave speed were connected as a function of the

wavelength. In this study we will look at the effect of small perturbations of the

bed elevation on the numerical steady state depth and discharge solutions. To

the best of our knowledge such a study has not been previously attempted.

First the 1D Saint-Venant equations including the source terms are linearized,

and then the linearized equations are non-dimensionalized. The linearized form

and the non-dimensional form of the Saint-Venant equations are shown in Eq.

2.23 and 2.26 and in Eq. 2.27 and 2.29, respectively. The linearized non-

dimensional Saint-Venant equations are then discretized using a numerical scheme.

After that, we introduce a periodic bed elevation perturbation to both differen-

tial and discrete forms of the non-dimensional linearized Saint-Venant equations.

Assuming that the solution variables are also periodic functions, we calculate the

analytical and numerical amplitudes of the steady state responses and compare

them over a range of non-dimensional parameter values. The differential form

of the equations will give us the analytical solution, and the discrete form of

the equations will give us the numerical solution. The purpose of the analysis

is to identify the controlling non-dimensional parameters and ranges over which

objectionable oscillation/errors may be produced.

3.3.1 Analytical Solution

To get the analytical amplitudes of the non-dimensional depth (η) and dis-

charge (ϕ ) perturbations, we introduce a periodic bed elevation perturbation

of ζ = Zeiκξ to Eq. 2.27 and Eq. 2.29, where i is the imaginary number equal
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to
√
−1. Z and κ are the non-dimensional amplitude and wave number of the

bed elevation perturbation, respectively. We also assume that η = Hae
iκξ and

ϕ = Φae
iκξ, where Ha and Φa are the non-dimensional analytical amplitude of

the depth and discharge perturbation, respectively.

For the steady state solution, the non-dimensional analytical amplitude of the

discharge perturbation becomes zero, i.e.,

Φa = 0 (3.2)

and the normalized non-dimensional analytical depth amplitude becomes

Ha

Z
=

1

−1 + Fr2
0(1− 3β

κ
i)

(3.3)

Three different cases can be identified from Eq. 3.3. The first of these oc-

curs when Fr0 is equal to zero, which is the quiescent flow case, i.e., q0 = 0.

The non-dimensional depth amplitude approaches the state of equaling the non-

dimensional bed amplitude with the opposite sign, i.e., Ha = −Z . Now if we

define the non-dimensional water surface elevation as γ, which is equal to (η+ζ),

then we can say that for the quiescent flow case the non-dimensional water sur-

face elevation amplitude becomes zero, and therefore, the water surface elevation

becomes flat for this case.

The second case arises when the Friction number, β, is equal to zero. In this

case, the non-dimensional depth amplitude becomes equal to ( Z
−1+Fr2

0
), and for

any sub-critical flow, i.e., Fr0 < 1, the water surface elevation will be out of

phase with the bed elevation.

The final case occurs when β approaches infinity. In this case, the non-

dimensional depth amplitude approaches zero, i.e., Ha = 0, and therefore, the

non-dimensional water surface elevation amplitude becomes equal to the non-

dimensional bed amplitude and in phase with the bed elevation.

Fig. 3.2 shows the non-dimensional bed elevation (ζ) and bed water surface

elevation (γ) with the non-dimensional channel distance (ξ) for three different

Friction numbers (i.e., β = 0, 0.1, and 1). In all cases Z = 0.5, Fr0 = 0.5,

κ = π/25, and ξ is from 0 to 100. The figure shows that for β equal to zero,

γ is out of phase with ζ and has an amplitude of 0.1667. As β increases, the
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amplitude of γ increases and approaches the bed elevation amplitude, 0.5. The

water surface elevation also is in phase with the bed elevation.

3.3.2 Numerical Solution

To get the numerical amplitudes of the non-dimensional depth (η) and dis-

charge (ϕ) perturbations, we use the discrete form of the linearized non-dimensional

Saint-Venant equations and introduce the periodic bed perturbation to the dis-

crete equations. The generalized discrete forms of Eq. 2.27 and Eq. 2.29 with

any six (or fewer) point numerical scheme are as follows:

a1η
m+1
j−1 +a2η

m+1
j +a3η

m+1
j+1 +a4ϕ

m+1
j−1 +a5ϕ

m+1
j +a6ϕ

m+1
j+1 +a7η

m
j−1 +a8η

m
j +a9η

m
j+1

+ a10ϕ
m
j−1 + a11ϕ

m
j + a12ϕ

m
j+1 = a13ζj−1 + a14ζj + a15ζj+1 (3.4)

b1η
m+1
j−1 + b2η

m+1
j + b3η

m+1
j+1 + b4ϕ

m+1
j−1 + b5ϕ

m+1
j + b6ϕ

m+1
j+1 + b7η

m
j−1 + b8η

m
j + b9η

m
j+1

+ b10ϕ
m
j−1 + b11ϕ

m
j + b12ϕ

m
j+1 = b13ζj−1 + b14ζj + b15ζj+1 (3.5)

where ar and br (r = 1 to 15) are the coefficients of the discretization. The

superscript m indicates that the variable is evaluated at a known time level and

the superscript m+1 is the variable at the next unknown time level. The subscript

j is the spatial index of the nodal points that are spaced apart by ∆ξ = ∆x
L

.

Now we introduce the bed perturbation of ζj = Zeijκ∆ξ and assume that

ηm+1
j = ηmj = Hne

ijκ∆ξ and ϕm+1
j = ϕmj = Φne

ijκ∆ξ (i.e., assuming the steady

state case), where Hn and Φn are the non-dimensional numerical amplitudes of

the depth and discharge perturbations, respectively. By assuming ηm+1
j = ηmj and

ϕm+1
j = ϕmj , the time discretization terms for some numerical schemes may cancel

each other out, and the solutions may not depend on the time discretization. After

introducing the periodic functions, Eq. 3.4 and 3.5 together become a system of

equations and can be written as a matrix form, such as:{
Hn
Z

Φn
Z

}
=

[
M1 M2
M3 M4

]−1{
R1
R2

}
(3.6)

where, M1 = (a1 +a7)e−iκ∆ξ +(a2 +a8)+(a3 +a9)eiκ∆ξ, M2 = (a4 +a10)e−iκ∆ξ +

(a5 + a11) + (a6 + a12)eiκ∆ξ, M3 = (b1 + b7)e−iκ∆ξ + (b2 + b8) + (b3 + b9)eiκ∆ξ,
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M4 = (b4 +b10)e−iκ∆ξ+(b5 +b11)+(b6 +b12)eiκ∆ξ, R1 = a13e
−iκ∆ξ+a14 +a15e

iκ∆ξ,

and R2 = b13e
−iκ∆ξ + b14 + b15e

iκ∆ξ.

The coefficients ar and br for all schemes are presented in the appendices,

and it is apparent from those coefficients that for all schemes, Hn
Z

and Φn
Z

mainly

depend on the average flow Froude number (Fr0) and two non-dimensional pa-

rameters, i.e., κ∆ξ and β∆ξ. Some numerical schemes, e.g., the CDG scheme and

MacCormack scheme, may have more non-dimensional parameters in addition to

these three parameters.

κ∆ξ can be written as 2π
λ/∆x

, where λ is the dimensional wavelength of the

bed elevation perturbation. λ
∆x

can be interpreted as the number of discretization

intervals per wavelength Nλ. Also, β∆ξ can be written as ∆x
h0C2

∗
. By comparison

with the Friction number, β = L
h0C2

∗
, we will call this non-dimensional parameter

the numerical Friction number and denote it as β∆x. Note that for all cases, the

length scale, L, is canceled out, or, in effect, L is replaced by ∆x. In general, we

can write: {
Hn
Z

Φn
Z

}
= f(Fr0, Nλ, β∆x, ....) (3.7)

The analytical depth solution, i.e., Eq. 3.3 can also be written in terms of

these new parameters as:

Ha

Z
=

1

−1 + Fr2
0(1− 3β∆xNλ

2π
i)

(3.8)

Eq. 3.7 shows that for a given bed elevation perturbation of Z, we have three

or more (depending on the schemes) non-dimensional parameters that affect the

numerical amplitude of the solution variables. We vary all these non-dimensional

parameters, and for each case, we calculate the normalized numerical amplitudes

Hn/Z and Φn/Z using Eq. 3.6. The corresponding normalized analytical depth

amplitude, Ha/Z, is found using Eq. 3.8. The depth amplitude error is, then,

calculated by (Hn − Ha)/Z. The discharge numerical amplitude, Φn/Z, itself

represents the error for the discharge variable, as the analytical amplitude of ϕ

is zero. For all cases, Fr0 is varied from 0.1 to 0.8, β∆x is varied from 0.01 to 5,

and Nλ is varied from 2 to 100.
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Figure 3.1: A typical bed elevation (BEL) and water surface elevation (WSE)
profile for the non-uniform flow test cases.

Figure 3.2: The non-dimensional bed elevation (ζ) and non-dimensional analyt-
ical water surface elevation (γ) with ξ for three different Friction numbers and
Fr0 = 0.5.
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Chapter 4

Characteristic Dissipative
Galerkin Finite Element Scheme

4.1 Introduction

The finite element method (FEM) is popular due to its geometric flexibility

and its underlying mathematical robustness. In FEM, the solution domain is

divided into small subdivisions (as shown in Fig. 4.1) that are known as finite

elements. Then with the use of approximate trial functions and the variational

or weighted residual methods, the governing partial differential equations are

transformed into a set of finite element equations. These local equations are

collected to form a global system of algebraic equations, which can be solved

implicitly or explicitly. In the implicit scheme, an iterative method is needed to

solve the non-linear system of equations.

In FEM, the conserved variable vector U of Eq. 2.19 is approximated with

the trial function Ũ using the interpolation function fj, i.e.,

U ≈ Ũ =
N∑
1

fjUj (4.1)

where N is the number of nodes in a domain. Using the trial function Ũ, Eq.

2.19 can be written as a weak statement:∫ L

0

vi{
∂Ũ

∂t
+
∂F(Ũ)

∂x
− S(Ũ)}dx = 0 (4.2)

where vi is the weighting function. The choice between weighting functions leads

This chapter and the previous chapter together are submitted to the Journal of Hydraulic
Engineering for publication and also were presented in the 33rd IAHR congress in 2009.
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to different finite element schemes, e.g., Bubnov-Galerkin finite element scheme

or Petrov-Galerkin finite element scheme.

One simple choice of weighting function is as the interpolation function, which

leads to the Bubnov-Galerkin finite element scheme (Brooks and Hughes 1982,

Baker 1983):

vi = fi (4.3)

The Bubnov-Galerkin scheme is similar to any central differences scheme and pro-

duces non-physical oscillations when convection dominates or gradient becomes

steep, and therefore, the scheme requires some form of upwinding to dissipate

those non-physical oscillations (Chung 2002, Brooks and Hughes 1982).

In the Petrov-Galerkin type finite element scheme, the upwinding weighted

test functions are introduced to provide dissipation as follows (Brooks and Hughes

1982, Hicks 1990):

vi = fi + wW
∆x

2

dfi
dx

(4.4)

where w is a diffusion parameter (or upwinding coefficient), and W is the up-

winding matrix that controls the distribution of the diffusion.

Different choices of W lead to different upwinding finite element schemes,

such as the Dissipative Galerkin (DG) scheme (Katopodes 1984a) or the Charac-

teristic Dissipative Galerkin (CDG) scheme (Hicks and Steffler 1992). In this

study, we have used the CDG scheme, which is an upwind shock-capturing

scheme used in various practical finite element models, e.g., River1D (Hicks 2005),

River2D (Steffler and Blackburn 2002), HIVEL2D (Berger and Stockstill 1995),

and TELEMAC2D (Bates and Hawkes 1997).

The CDG method is based upon the work of Hughes and Mallet (1986), who

examined the application of the Petrov-Galerkin method to symmetric systems

of hyperbolic equations. In general, the implementation requires that (Hughes

and Mallet 1986, Hicks 1990):

W =
A

|A|
(4.5)

Now, A can be decomposed as:

A = RΛR−1 (4.6)
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where R is the matrix of right eigenvectors, and Λ =

[
Λ1 0
0 Λ2

]
is the eigenmatrix

of A; Λi signifies the eigenvalues for i = 1, 2. So, the upwinding matrix W

in the CDG scheme for the Saint-Venant equations can be evaluated as (Hicks

1990, Hicks and Steffler 1992):

W = R

[
Λ1

|Λ1| 0

0 Λ2

|Λ2|

]
R−1 (4.7)

W for the 1D Saint-Venant equations, i.e., Eq. 2.19, can be found in Hicks (1990)

and Hicks and Steffler (1992), and W for the non-dimensional linearized form of

the 1D Saint-Venant equations, i.e., Eq. 2.27 and 2.29, is given in appendix A.

Using a fully implicit time-stepping approach, the discrete finite element equa-

tions provide a system of non-linear algebraic equations. These equations are

solved using the Newton-Raphson iterative method. The residuals and the Jaco-

bian matrix for the iterative method are calculated using numerical integration

and differentiation, respectively. Linear interpolation functions are used through-

out.

4.2 Quiescent Flow Test Case

Before moving to the friction term dominated case, we will show that the

CDG scheme used in this paper satisfies the quiescent flow test case with a non-

level bed. This is done to show that the friction dominated issue is separate from

the bed slope source term issue for the CDG scheme. In the quiescent flow test

case the non-linear model is run with a non-level bed as shown in Fig. 4.2a with a

downstream water surface elevation of 20 m, and an upstream discharge equal to

zero. This non-level test case was first proposed by the working group on dam-

break modeling (Goutal and Maurel 1997) and also used by other researchers

(e.g., Hubbard and Garcia-Navarro 2000, Zhou and Ingram 2001) to test their

numerical schemes. The numerical scheme should give a constant water level and

a zero discharge without any oscillations due to the non-level bed elevation. Fig.

4.2a and 4.2b show the final steady state water surface elevation and discharge

solutions obtained with the CDG scheme, and we find that the CDG scheme

produces the exact solution to within machine level accuracy.
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4.3 Non-uniform Flow Test Case Results

Fig. 4.3 and 4.4 show the discharge and depth solutions and Table 4.1 and

4.2 show the maximum nodal percent errors in the discharge and depth solutions

for both scenarios.

It can be seen from Fig. 4.3a and 4.4a that non-physical oscillations in the

discharge are observed, and these oscillations increase as discretization increases,

and as roughness (decrease of C∗) and slope increase (as also shown in Table 4.1

and 4.2 ). The errors in the depth solutions also increase with the increase of

these parameter values (as shown in Table 4.1 and 4.2 and Fig. 4.3b and 4.4b)

and are of similar magnitude to the discharge errors.

In all cases, the oscillations are confined to a few elements in the vicinity of the

slope changes, and they appear as 2∆x wavelength oscillations (as shown in Fig.

4.3 and 4.4). The discharge oscillations appear both upstream and downstream of

the transition, while the depth oscillations occur mainly upstream of the transi-

tion. For both depth and discharge solutions, the transition from a steeper slope

to a milder slope creates somewhat larger oscillations than the transition from a

milder slope to a steeper slope.

Table 4.1: The non-uniform flow test case - effect of discretization with the CDG
scheme.

∆x (m) C∗ S0 q error (%) h error(%)
20 15 0.000926 0. 34 0.25
100 15 0.000926 3.41 2.07
200 15 0.000926 11.22 7.29

Table 4.2: The non-uniform flow test case - effect of Chezy coefficient and slope
with the CDG scheme.

∆x (m) C∗ S0 q error (%) h error(%)
100 20 0.000521 1.49 0.64
100 15 0.000926 3.41 2.07
100 10 0.0021 13.09 8.38
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4.4 Fourier Analysis Results

The coefficients ar and br of Eq. 3.6 for the CDG scheme are shown in

Appendix A. From these coefficients, it is found that within the CDG scheme

Hn
Z

and Φn
Z

do not depend on the time step discretization. In addition to the

parameters shown in Eq. 3.7, the CDG scheme has one extra parameter, which

is the upwinding coefficient, w. So, for the CDG scheme we can rewrite Eq. 3.7

as: {
Hn
Z

Φn
Z

}
= f(Fr0, Nλ, β∆x, w) (4.8)

Fig. 4.5 shows analytical and numerical amplitudes of the depth and discharge

variables and the corresponding errors as a function ofNλ with w = 0.5, Fr0 = 0.5

and β∆x = 1. The figure shows that the errors in both solution variables are

observed for the perturbations in bed elevation. The errors are maximum at the

shortest wavelength and tend to diminish as Nλ increases. For this case, the

errors appear to be negligible for Nλ > 10.

Fig. 4.6 shows the variation of the discharge and depth amplitude errors as a

function of Nλ for the range of Fr0 with w = 0.5 and β∆x = 1. The figure shows

that both the discharge and depth errors are low at a low Fr0 and increase with

increasing Fr0. The changes in the depth errors as Fr0 increases are relatively

small compared to the changes in the discharge errors. The numerical depth

amplitudes are less than the analytical depth amplitudes for Fr0 ≤ 0.5 and

become greater for Fr0 > 0.5.

Fig. 4.7 shows the variation of the discharge and depth errors as a function

of Nλ for the range of β∆x with Fr0 = 0.5 and w = 0.5. The figure shows that,

similar to the Fr0 results, both the discharge and depth errors are also low at low

β∆x and increase with increasing β∆x. The depth amplitude errors (Fig. 4.7b)

are within 0.05 to 0.1 for β∆x ≤ 2, and a big increase occurs for β∆x > 2 . The

discharge amplitude errors (Fig. 4.7a) increase continuously as β∆x increases.

The numerical depth amplitudes are less than the analytical depth amplitudes

for β∆x ≤ 1 and become greater for β∆x > 1 .

Fig. 4.8 shows the variation of the discharge and depth errors as a function

of β∆x for the range of Fr0 with w = 0.5 and Nλ = 2. The figure shows that

both errors are low at low Fr0 and low β∆x and increase with increasing Fr0 and
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β∆x. From Fig. 4.8a, we can say that for any value of Fr0, if β∆x ≤ 0.01, the

discharge errors will be less than 0.03. The same figure shows that the discharge

errors can reach up to 1 when both Fr0 and β∆x are large. The depth amplitude

errors (Fig. 4.8b) can also reach up to 0.5 or more when Fr0 and β∆x are large.

The numerical depth amplitudes are less than the analytical amplitudes when

β∆x ≤ 1 and become greater when β∆x > 1.

Fig. 4.9 shows the variation of the discharge and depth amplitude errors as a

function of Nλ for the range of upwinding coefficients w = 0 to 1, with Fr0 = 0.5

and β∆x = 1. Fig. 4.9a shows that without any upwinding, i.e., w = 0, there

are no discharge perturbation errors for any Nλ. However, the depth error (Fig.

4.9b), in this case at Nλ = 2, is the maximum. With a slight upwinding (w = 0.1

or less), the depth error at Nλ = 2 drops significantly, but this introduces a large

discharge error. Increasing the upwinding coefficient appears to reduce the short

wavelength discharge error but increases the error at longer wavelengths. The

changes in depth error in these cases are negligible compared to the discharge

error changes. This may explain why we need at least some upwinding for any

convection dominated case, and why w is usually used as 0.5 for the CDG scheme

(Hicks and Steffler 1992).

4.5 Discussion

From the non-uniform flow test case results, it is found that non-physical

discharge and depth oscillations are apparent when the discretization becomes

large, or the roughness (decrease of C∗) and slope become large. From the Fourier

analysis, we also find that errors in the discharge and depth solutions increase

with increasing Fr0 and β∆x. Since increasing the discretization, roughness, or

slope increases β∆x and/or Fr0, this is consistent with the non-uniform flow test.

The Fourier analysis results show that the maximum error occurs at Nλ = 2.

This is also consistent with the non-uniform flow test as the oscillations appear

with a 2∆x wavelength. The Fourier analysis results also show that the depth

and discharge errors can be an order of 1 or more when both Fr0 and β∆x are

large, and the errors will be negligible when β∆x ≤ 0.01.
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Figure 4.1: Definition sketch of the finite element method for one-dimensional
flow.

Figure 4.2: (a) Bed elevation (BEL) and water surface elevation (WSE) profile
and (b) Discharge solution for the quiescent flow test case with the CDG scheme.
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Figure 4.3: (a) Unit discharge and (b) Depth solutions for the non-uniform flow
test case with the CDG scheme - effect of discretization.
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Figure 4.4: (a) Unit discharge and (b) Depth solutions for the non-uniform flow
test case with the CDG scheme - effect of Chezy coefficient and slope.
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Figure 4.5: Normalized amplitudes and errors as a function of Nλ for w = 0.5,
Fr0 = 0.5 and β∆x = 1 using the CDG scheme.
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(a)

(b)

Figure 4.6: (a) Discharge and (b) Depth amplitude errors as a function of Nλ for
a range of Fr0, w = 0.5, and β∆x = 1 using the CDG scheme.
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(a)

(b)

Figure 4.7: (a) Discharge and (b) Depth amplitude errors as a function of Nλ for
a range of β∆x, w = 0.5, and Fr0 = 0.5 using the CDG scheme.
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(a)

(b)

Figure 4.8: (a) Discharge and (b) Depth amplitude errors as a function of β∆x

for a range of Fr0, w = 0.5, and Nλ = 2 using the CDG scheme.
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(a)

(b)

Figure 4.9: (a) Discharge and (b) Depth amplitude errors as a function of Nλ for
a range of w, β∆x = 1, and Fr0 = 0.5 using the CDG scheme.
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Chapter 5

Box Finite Difference Scheme

5.1 Introduction

The finite difference method (FDM) is useful because of its simplicity in

formulation compared to the other methods. In FDM, the partial derivatives of

the differential equations are approximated with finite differences, which results

in a set of algebraic equations with all unknowns. These algebraic equations can

be solved explicitly or implicitly. FDM uses a structured grid and thus requires

grid transformation in multidimensional flow case. A typical finite difference

grid is shown in Fig. 5.1. In this study, we have looked at two finite difference

schemes: the box finite difference and MacCormack scheme. The analysis with

the box finite difference scheme is presented in this chapter.

The box finite difference scheme is also known as the Four-point implicit

scheme or Preissmann scheme (Preissmann 1961). Four points are used to con-

struct the scheme. According to this scheme, the partial derivatives and variables

are approximated as follows (Cunge and Verway 1980, Chaudhry 2008):

∂U

∂t
=

(Um+1
j + Um+1

j+1 )− (Um
j + Um

j+1)

2∆t

∂U

∂x
=
θ(Um+1

j+1 −Um+1
j )

∆x
+

(1− θ)(Um
j+1 −Um

j )

∆x
(5.1)

U =
1

2
θ(Um+1

j+1 + Um+1
j ) +

1

2
(1− θ)(Um

j+1 + Um
j )

where θ is a weighting coefficient, which is typically used as 0.6−0.7 (Cunge and

Verway 1980, Chaudhry 2008). The superscript m indicates that the variable

is taken at a known time level and m + 1 indicates the next time level. The
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subscript j indicates the nodal point spaced apart by the discretization ∆x. By

substituting Eq. 5.1 into Eq. 2.19, we find:

Um+1
j + Um+1

j+1 + 2
∆t

∆x
[θ(Fm+1

j+1 − Fm+1
j ) + (1− θ)(Fm

j+1 − Fm
j )]

+ ∆t[θ(Sm+1
j + Fm+1

j+1 ) + (1− θ)(Smj + Fm
j+1)] = Um

j + Um
j+1 (5.2)

Eq. 5.2 is a set of non-linear implicit equations and requires an iterative method

to solve for the unknowns. In this study, the Newton-Raphson iterative method is

used to solve the system of equations. The Jacobian matrix and residual vectors

for the iterative method are calculated numerically.

5.2 Non-uniform Flow Test Case Results

Fig. 5.2 and 5.3, and Table 5.1 and 5.2 show the non-uniform flow test case

results for both scenarios with the Box scheme. The tables show that there are

no errors in the discharge variable, i.e., steady solutions produce exact discharge

solutions at all nodes. However, both the figure and table show that the errors

in the depth solutions are apparent and the errors increase as discretization in-

creases, and as roughness (decrease of C∗) and slope increase. For ∆x = 100,

the depth solution shows a tip of oscillation, and for ∆x = 200, the depth so-

lution shows significant 2∆x oscillations that spread over five elements. Similar

2∆x oscillations are also seen for C∗ = 10, S0 = 0.0025. In both scenarios, the

oscillations are in the upstream region of transition from steep slope to mild slope.

Table 5.1: The non-uniform flow test case - effect of discretization with the Box
scheme.

∆x (m) C∗ S0 q error (%) h error(%)
20 15 0.000926 0 0.17
100 15 0.000926 0 6.46
200 15 0.000926 0 22.14

5.3 Fourier Analysis Results

The coefficients ar and br of Eq. 3.6 for the Box scheme are shown in Appendix

B. From those coefficients it is found that for the Box scheme Hn
Z

and Φn
Z

do not
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Table 5.2: The non-uniform flow test case - effect of Chezy coefficient and slope
with the Box scheme.

∆x (m) C∗ S0 q error (%) h error(%)
100 20 0.000521 0 1.65
100 15 0.000926 0 6.46
100 10 0.0021 0 24.65

depend on the time step discretization. So for the Box scheme, we can write:{
Hn
Z

Φn
Z

}
= f(Fr0, Nλ, β∆x) (5.3)

Fig. 5.4 shows analytical and numerical amplitudes of the depth and discharge

variables and the corresponding errors as a function of Nλ with Fr0 = 0.5 and

β∆x = 1 for the Box scheme. The figure shows that there are no discharge errors

for any Nλ with the Box scheme, which is consistent with the non-uniform flow

test case. However, there are depth amplitude errors, and the errors diminish as

Nλ increases. For this case, the depth errors appear to be negligible for Nλ > 10.

Fig. 5.5 shows the variation of the depth amplitude errors as a function of

Nλ for the range of Fr0 with β∆x = 1. The figure shows that the depth errors

are low at low Fr0 and increase with increasing Fr0. There is a sudden increase

in the errors when Fr0 > 0.5, and the errors become greater than 0.4.

Fig. 5.6 shows the variation of the depth amplitude errors as a function of

Nλ for the range of β∆x with Fr0 = 0.5. The figure shows that the depth errors

are low at low β∆x and increase with increasing β∆x. The errors are less than 0.1

for β∆x ≤ 1, and a sudden increase in the errors occur for β∆x > 1.

Fig. 5.7 shows the variation of the depth amplitude errors as a function of

β∆x for the range of Fr0 with Nλ = 2. The figure shows that the errors are low at

low Fr0 and low β∆x and increase with the increasing of Fr0 and β∆x. The figure

also shows that for any value of Fr0, the errors can be negligible when β∆x ≤ 0.1.

The errors can reach up to 1 or more when both Fr0 and β∆x are large.

5.4 Discussion

Both the non-uniform flow test case and Fourier analysis results show that

for the Box scheme, there are no oscillations or errors in the discharge solutions.
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However, both results also show that there are errors in the depth solutions. The

non-uniform flow test results show that the depth errors increase as discretiza-

tion increases, and as roughness (decrease of C∗) and slope increase. The depth

oscillations also appear as 2∆x wavelength. The Fourier analysis results show

that the errors increase as Fr0 and β∆x increase. The Fourier analysis results

also show that the depth errors can be 1 or more when both Fr0 and β∆x are

large and the errors are negligible when β∆x ≤ 0.1 for this scheme.
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Figure 5.1: Definition sketch of the finite difference grid for one-dimensional flow.

Figure 5.2: Depth solutions for the non-uniform flow test case with the Box
scheme - effect of discretization.

56



Figure 5.3: Depth solutions for the non-uniform flow test case with the Box
scheme - effect of Chezy coefficient and slope.

Figure 5.4: Normalized amplitudes and errors as a function of Nλ for Fr0 = 0.5
and β∆x = 1 using the Box scheme.
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Figure 5.5: Depth amplitude errors as a function of Nλ for a range of Fr0 and
β∆x = 1 using the Box scheme.

Figure 5.6: Depth amplitude errors as a function Nλ for a range of β∆x and
Fr0 = 0.5 using the Box scheme.
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Figure 5.7: Depth amplitude errors as a function of β∆x for a range of Fr0 and
Nλ = 2 using the Box scheme.
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Chapter 6

MacCormack Finite Difference
Scheme

6.1 Introduction

The MacCormack scheme (MacCormack 1969) is an explicit shock-capturing

scheme that is second-order accurate both in space and time (Chaudhry 2008).

The scheme requires two steps, predictor-corrector, to obtain the solutions. Two

alternatives of this scheme are possible for one-dimensional flow. In one alterna-

tive, backward finite differences are used in the predictor part and forward differ-

ences are used in the corrector part to approximate the spatial partial derivatives

(Chaudhry 2008). In the other alternative, forward differences are used in the

predictor part and backward differences are used in the corrector part (Chaudhry

2008). For the first alternative, the predictor part is:

∂U

∂t
=

U∗j −Um
j

∆t
∂F

∂x
=

Fm
j −Um

j−1

∆x
(6.1)

in which superscript (∗) refers to the variables computed during the predictor

part. Substitution of Eq. 6.1 into Eq. 2.19 yields:

U∗j = Um
j −

∆t

∆x
(Fm

j − Fm
j−1) + ∆tSmj (6.2)

The equation for the corrector part is as follows:

∂U

∂t
=

U∗∗j −Um
j

∆t
∂F

∂x
=

F∗j+1 −U∗j
∆x

(6.3)
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in which superscript (∗∗) refers to the variables computed during the corrector

part. Substitution of Eq. 6.3 into Eq. 2.19 yields:

U∗∗j = Um
j −

∆t

∆x
(F∗j+1 − F∗j) + ∆tS∗j (6.4)

The value of Uj at the next time level m+ 1 can be found as:

Um+1
j =

1

2
(U∗j + U∗∗j ) (6.5)

Eq. 6.5 is an explicit set of equations, where unknowns can be solved directly

from the known values.

6.2 Non-uniform Flow Test Case Results

The MacCormack scheme is the only scheme in our study in which the time

step discretization affects the final steady state solution. Therefore, the test case

scenarios as shown in Table 3.1 and 3.2 are first run for a fixed time step. In addi-

tion to these, another test scenario is run where for a fixed spatial discretization,

Chezy coefficient, and slope, three different time step discretizations are used (as

shown in Table 6.3).

Fig. 6.1 and 6.2 and Table 6.1 and 6.2 show the non-uniform flow test case

results for both scenarios with the MacCormack scheme. The figures and tables

show that the oscillations and errors in the depth and discharge solutions are

apparent. These errors increase as discretization increases, and as roughness

(decrease of C∗) and slope increase. Similar to the CDG scheme results, the

discharge oscillations in the transition from steep to mild slope are relatively

larger than the oscillations in the transition from mild to steep slope.

Fig. 6.3 shows the discharge and depth solutions for the test scenario as shown

in Table 6.3. Both the figure and table show that as the time discretizations

increase the discharge errors increase. For the depth errors, the errors decrease

first as ∆t increases from 4.5 sec to 22 sec and then increase as ∆t increases from

22 sec to 36 sec.

6.3 Fourier Analysis Results

The coefficients ar and br of Eq. 3.6 for the MacCormack scheme are shown in

Appendix C. From those coefficients, it is found that in addition to the parameters
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Table 6.1: The non-uniform flow test case - effect of spatial discretization with
the MacCormack scheme.

∆x (m) C∗ S0 ∆t (sec) q error (%) h error(%)
20 15 0.000926 4.5 0.50 2.16
100 15 0.000926 4.5 4.70 6.82
200 15 0.000926 4.5 9.34 11.5

Table 6.2: The non-uniform flow test case - effect of Chezy coefficient and slope
with the MacCormack scheme.

∆x (m) C∗ S0 ∆t (sec) q error (%) h error(%)
100 20 0.000521 4.5 1.48 5.27
100 15 0.000926 4.5 4.70 6.82
100 10 0.0021 4.5 10.4 11.87

shown in Eq. 3.7, Hn
Z

and Φn
Z

also depend on ∆τ
∆ξ

. ∆τ
∆ξ

can be written as u0
∆t
∆x

and

called the average flow Courant number, Cr0. Therefore, for the MacCormack

scheme, we can write: {
Hn
Z

Φn
Z

}
= f(Fr0, Nλ, β∆x, Cr0) (6.6)

Fig. 6.4 shows analytical and numerical amplitudes of the depth and discharge

variables and the corresponding errors as a function of Nλ with Fr0 = 0.5, Cr0 =

0.5 and β∆x = 1. The figure shows that errors in both solution variables are

observed with the MacCormack scheme. The errors are at their maximum at the

shortest wavelength and diminish as Nλ increases. For this case, the depth errors

appear to be negligible for Nλ ≥ 20, and the discharge errors become negligible

for Nλ ≥ 50.

Fig. 6.5 shows the variation of the discharge and depth amplitude errors as a

function of Nλ for the range of Fr0 with Cr0 = 0.5 and β∆x = 1. The figure shows

that both errors are low at low Fr0. As Fr0 increases, the discharge errors (Fig.

6.5a) at the shortest wavelength increase. At the higher wavelengths, the errors

increase until Fr0 ≤ 0.5 and the errors decrease when Fr0 > 0.5. The depth

errors (Fig. 6.5b) are small compared to the discharge errors. The numerical

depth amplitudes at the shortest wavelength are greater than the analytical depth

amplitudes until Fr0 ≤ 0.5 and become less when Fr0 > 0.5.
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Table 6.3: The non-uniform flow test case - effect of time discretization with the
MacCormack scheme.

∆x (m) C∗ S0 ∆t (sec) q error (%) h error(%)
100 15 0.000926 4.5 4.70 6.82
100 15 0.000926 22 12.20 2.97
100 15 0.000926 36 22.37 4.7

Fig. 6.6 shows the variation of the discharge and depth amplitude errors as

a function of Nλ for the range of β∆x with Fr0 = 0.5 and Cr0 = 0.5. The figure

shows that both errors are low at low β∆x and increase with increasing β∆x. The

discharge errors are negligible when β∆x ≤ 0.1 and reach to 1 or more when

β∆x > 1. The depth errors are negligible when β∆x ≤ 1. A sudden increase in

depth errors occurs when β∆x > 1 and reaches more than 1.

Fig. 6.7 shows the variation of the discharge and depth amplitude errors as a

function of β∆x for the range of Fr0 with Cr0 = 0.5 and Nλ = 2. The figure shows

that both errors are low at low Fr0 and low β∆x. For any Fr0, the discharge

errors in 6.7a can be negligible when β∆x ≤ 0.01. The figure also shows that the

errors can reach up to 1 or more when β∆x is large, i.e., β∆x ≥ 1. The numerical

depth amplitudes (Fig. 6.7b) are less than the analytical depth amplitudes when

β∆x ≤ 1 and become greater for β∆x > 1.

Fig. 6.8 shows the variation of the discharge and depth amplitude errors as a

function of Nλ for Cr0 = 0.1 to 1 with Fr0 = 0.5 and β∆x = 1. Fig. 6.8a shows

that for the shortest wavelength, the discharge errors are high at low Cr0 and

decrease with increasing Cr0. However, for the higher wavelengths, the discharge

errors are low at small Cr0 and increase with increasing Cr0. Fig. 6.8b shows

that the numerical depth amplitudes are less than the analytical amplitudes when

Cr0 ≤ 0.3 and become greater when Cr0 > 0.3 and increase as Cr0 increases.

6.4 Discussion

The non-uniform flow test results with the MacCormack scheme show that

non-physical oscillations in both the depth and discharge solutions are apparent

when discretization, roughness and slope are large. The results further shows

that the oscillations appear as 2∆x wavelength oscillations. The Fourier analysis
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results show that the errors in both variables are apparent and increase with

increasing Fr0 and β∆x. The Fourier analysis results also show that the MacCor-

mack scheme is susceptible to high error at higher β∆x, e.g., β∆x ≥ 2.

64



Figure 6.1: (a) Discharge and (b) Depth solutions for the non-uniform flow test
case with the MacCormack scheme - effect of discretization.
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Figure 6.2: (a) Discharge and (b) Depth solution for the non-uniform flow test
case with the MacCormack scheme - effect of Chezy coefficient and slope.
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Figure 6.3: (a) Discharge and (b) Depth solution for the non-uniform flow test
case with the MacCormack scheme - effect of time discretization.
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Figure 6.4: Normalized amplitudes and errors as a function of Nλ for Fr0 = 0.5,
Cr0 = 0.5, and β∆x = 1 using the MacCormack scheme.
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(a)

(b)

Figure 6.5: (a) Discharge and (b) Depth amplitude errors as a function of Nλ for
a range of Fr0, Cr0 = 0.5, and β∆x = 1 using the MacCormack scheme.

69



(a)

(b)

Figure 6.6: (a) Discharge and (b) Depth amplitude errors as a function of Nλ for
a range of β∆x, Cr0 = 0.5, and Fr0 = 0.5 using the MacCormack scheme.
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(a)

(b)

Figure 6.7: (a) Discharge and (b) Depth amplitude errors as a function of β∆x

for a range of Fr0, Cr0 = 0.5, and Nλ = 2 using the MacCormack scheme.
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(a)

(b)

Figure 6.8: (a) Discharge and (b) Depth amplitude errors as a function of Nλ for
a range of Cr0, Fr0 = 0.5, and β∆x = 1 using the MacCormack scheme.
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Chapter 7

Balanced Godunov Finite
Volume Scheme

7.1 Introduction

The FVM method is popular today, especially among researchers, because of

its advantages over the other two methods, the FDM and FEM. The FVM method

has the simplicity of FDM method, but also has the support of unstructured

grids like FEM. Moreover, the underlying mathematical formulation that uses

the integral form of the Saint-Venant equations instead of the differential form of

the equations, guarantees the conservative properties.

In our study, we have studied two first order finite volume methods: a balanced

Godunov scheme and a one-sided upwind-downwind scheme. Because a higher-

order scheme reduces to a first order scheme to suppress any wiggles when there

is a sharp gradient or discontinuity, studying first order schemes can also give

us adequate insight into the friction dominated problem. In this chapter, the

balanced Godunov scheme and its results are presented, and in the next chapter

the other scheme and its results are presented.

The FVM that is considered for our study uses a cell centered grid, as shown

in Fig. 7.1. In this case, the cell average values of conservative variables are

updated using fluxes computed at the cell boundaries. Integrating Eq. 2.19 over

the jth cell with length and applying explicit Euler time stepping, we find:

Um+1
j = Um

j −
∆t

∆xj
(Fm

j+1/2 − Fm
j−1/2) + ∆tSmj (7.1)

A variation of this chapter and the next chapter together are presented and published in
the 34th IAHR congress in 2011.
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Different approaches are available to evaluate the inter-cell flux, i.e., Fm
j±1/2,

which construct various conservative numerical schemes. A common practice is

to solve the Riemann problem at the interface of two computing finite volumes or

cells and construct an upwind scheme utilizing the direction of wave propagation

embodied in the Saint-Venant equations. This is the fundamental philosophy of

Godunov type finite volume schemes (Chung 2002, Toro 2001, Toro 2009).

Different exact solvers (e.g., Godunov 1976, Gottlieb and Groth 1988, Toro

1989) and approximate solvers (e.g., Roe 1981, Osher and Solomon 1982, Harten

and Van Leer 1983) are used to solve the Riemann problem. But the exact solvers

are computationally expensive compared to the approximate solvers (Toro 2009).

Moreover, the approximate solvers provide sufficient accurate results for a wide

range of practical problems and thus are used in most cases.

Roe’s approximate solver (Roe 1981) is a simple solver that is used in our

study. In Roe’s method, the flux difference across the cell boundary are decom-

posed into two traveling discontinuities, which are then used to estimate the flux

at the cell boundary as (Bradford and Sanders 2005):

Fj±1/2 = FL
j±1/2 + (R̂Λ̂−R̂−1∆U)j±1/2

= FR
j±1/2 − (R̂Λ̂+R̂−1∆U)j±1/2

=
1

2
[FL

j±1/2 + FR
j±1/2 − (R̂|Λ̂|R̂−1∆U)j±1/2] (7.2)

where FL and FR denote the fluxes evaluated to the left and right of the boundary,

respectively, and ∆ denotes the finite difference across the cell boundary. Λ̂± are

the positive/negative eigenvalues, and R̂ is the right eigenvectors of the matrix

Â. ‘̂’ denotes that the variables are evaluated at Roe’s average state (Roe 1981).

Applying Eq. 7.2 to Eq. 7.1, we get:

Um+1
j = Um

j −
∆t

∆xj

(
(R̂Λ̂+R̂−1∆U)j−1/2 +(R̂Λ̂−R̂−1∆U)j+1/2

)
+∆tSmj (7.3)

In the above equation, for the source terms Sj, the nodal variables can be

considered at the jth cell and the bed elevation gradient can be taken as cell

centered difference, i.e.,

Sj =

[
0

−ghj
zj+1/2−zj−1/2

∆x
− qj |qj |

C2
∗jh

2
j

]
(7.4)
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This form of the Godunov scheme is known as the first-order point source Go-

dunov scheme (Hubbard and Garcia-Navarro 2000, Toro 2001). This form of the

scheme does not balance the flux and source terms and therefore does not pro-

duce exact steady state discharge solutions with a non-level bed, i.e., it produces

non-physical oscillations for the cell centered discharge solutions (Bradford and

Sanders 2005, Petaccia and Zech 2009, Hubbard and Garcia-Navarro 2000, Zhou

and Ingram 2001). Popularity is growing for balanced Godunov schemes in which

the source terms are balanced with the flux terms in such a way that they pro-

duce exact steady state cell center discharge solutions (e.g. Hubbard and Garcia-

Navarro 2000).

In a first-order balanced Godunov scheme, the source terms are discretized in

a way similar to the discretization of flux terms (Hubbard and Garcia-Navarro

2000). Thus, Eq. 7.3 becomes:

Um+1
j = Um

j −
∆t

∆xj

(
(R̂Λ̂+R̂−1∆U)j−1/2+(R̂Λ̂−R̂−1∆U)j+1/2

)
+∆t

(
Ŝ+
j−1/2+Ŝ−j+1/2

)
(7.5)

where Ŝ±j±1/2 = (R̂I±R̂−1)j±1/2 and I± = Λ̂−1Λ̂±.

Eq. 7.5 is an explicit non-linear system of equations, and the unknowns can

be solved directly from the known values. Like any cell centered finite volume

schemes, two ghost cells are introduced at the boundaries to complete the sys-

tems. The time step discretization may not affect the final steady state solution.

However, like any explicit scheme, the time step is chosen to satisfy the Courant

condition.

7.2 Non-uniform Flow Test Case Results

Fig. 7.2 and 7.3 and Table 7.1 and 7.2 show the non-uniform flow test case re-

sults for both scenarios with the balanced Godunov scheme. The tables show that

there are no oscillations or errors in the discharge solutions. However, both the fig-

ures and tables show that errors in the depth solutions are apparent. These errors

increase as discretization increases, and as roughness (decrease of C∗) and slope

increase. The figures also show that for ∆x = 200 m and for C∗ = 10, S0 = 0.0025,

the depth solutions show 2∆x oscillations. In both scenarios, these oscillations
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are apparent in the upstream region of the transition from steep slope to mild

slope.

Table 7.1: The non-uniform flow test case - effect of discretization with the
balanced Godunov scheme.

∆x (m) C∗ S0 q error (%) h error(%)
20 15 0.000926 0 0.28
100 15 0.000926 0 5.05
200 15 0.000926 0 17.5

Table 7.2: The non-uniform flow test case - effect of Chezy coefficient and slope
with the balanced Godunov scheme.

∆x (m) C∗ S0 q error (%) h error(%)
100 20 0.000521 0 1.48
100 15 0.000926 0 5.05
100 10 0.0021 0 19.41

7.3 Fourier Analysis Results

The coefficients ar and br of Eq. 3.6 for the balanced Godunov scheme are

shown in Appendix D. From those coefficients, it is found that Hn
Z

and Φn
Z

do not

depend on time step discretization. Therefore, for the balanced Godunov scheme,

we can write: {
Hn
Z

Φn
Z

}
= f(Fr0, Nλ, β∆x) (7.6)

Fig. 7.4 shows analytical and numerical amplitudes of the depth and discharge

variables and the corresponding errors as a function of Nλ with Fr0 = 0.5 and

β∆x = 1. The discharge amplitude errors are zero for any Nλ, and the depth

amplitude errors are high at small wavelengths and diminish as Nλ increases.

For this case, the depth errors appear to be negligible for Nλ > 10.

Fig. 7.5 shows the variation of the depth amplitude errors as a function of

Nλ for the range of Fr0 with β∆x = 1. The figure shows that the depth errors

are low for low Fr0 and increase as Fr0 increases. There is a sharp increase in

the errors when Fr0 > 0.5.
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Fig. 7.6 shows the variation of the depth amplitude errors as a function of Nλ

for the range of β∆x with Fr0 = 0.5. The figure shows that the depth errors are

low at low β∆x and increase as β∆x increases. The errors are less than 0.1 when

β∆x ≤ 1 and shift to 0.2 or more when β∆x > 1.

Fig. 7.7 shows the variation of the depth amplitude errors β∆x for the range

of Fr0 with Nλ = 2. The figure shows that the errors are low at low Fr0 and

low β∆x and increase when the same two parameters increase. For any Fr0, the

errors are negligible when β∆x ≤ 0.1 and can reach up to 1 or more when both

Fr0 and β∆x are large.

7.4 Discussion

Both the non-uniform flow test case and Fourier analysis results show that

there are no oscillations or errors in the discharge solutions for the balanced Go-

dunov scheme. However, both the results show that there are errors in the depth

solutions. The non-uniform flow test results show that the depth errors increase

with increasing discretization, roughness and slope, and the Fourier analysis re-

sults show that the errors increase with increasing Fr0 and β∆x. Moreover, the

errors can be 1 or more when Fr0 and β∆x are large and the errors are negligible

when β∆x ≤ 0.1 for this scheme.

77



Figure 7.1: Definition sketch of the finite volume cell centered grid for one-
dimensional flow.

Figure 7.2: Depth solutions for the non-uniform flow test case with the balanced
Godunov scheme - effect of discretization.
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Figure 7.3: Depth solutions for the non-uniform flow test case with the balanced
Godunov scheme - effect of Chezy coefficient and slope.

Figure 7.4: Normalized amplitudes and errors as a function of Nλ for Fr0 = 0.5
and β∆x = 1 using the balanced Godunov scheme.
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Figure 7.5: Depth amplitude errors as a function of Nλ for a range of Fr0 and
β∆x = 1 using the balanced Godunov scheme.

Figure 7.6: Depth amplitude errors as a function of Nλ for a range of β∆x and
Fr0 = 0.5 using the balanced Godunov scheme.
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Figure 7.7: Depth amplitude errors as a function of β∆x for a range of Fr0 and
Nλ = 2 using the balanced Godunov scheme.
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Chapter 8

One-sided Upwind-Downwind
Finite Volume Scheme

8.1 Introduction

The Saint-Venant equations can be considered as a system of advection type

equations with source terms. In contrast to the 1D advection equation, which

produces a stable scheme, one-sided upwind approximation for both the discharge

and depth derivatives of the Saint-Venant equations produces an unconditionally

unstable scheme (Ying and Wang 2004). Therefore, the upwinding for a system of

advection type equations is done based on the characteristics information that is

embodied in the equations; this is also a key philosophy for Godunov type schemes

(Toro 2001). Godunov type schemes are often used in CFD and Computational

Hydraulics (Toro 2001, Toro 2009).

An alternate technique is to apply a one-sided upwind-downwind approxima-

tion to the partial-conservative form of the Saint-Venant equations, as in Eq. 2.22

(e.g., Ying and Wang 2004). In this particular technique, the discharge fluxes are

taken as the one-sided upwind approximation, and the water surface elevation

gradient is taken as the one-sided downwind approximation based on the flow

directions.

Similar to the balanced Godunov finite volume scheme, the one-sided upwind-

downwind finite volume scheme also uses the cell-centered grids, as shown in Fig.

7.1. The average values of conservative variables at any cell are updated using

A variation of this chapter and the previous chapter together are presented and published
in the 34th IAHR congress in 2011.
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fluxes computed at the cell boundaries. The same Eq. 7.1 is also applicable to

the one-sided upwind-downwind scheme, which is:

Um+1
j = Um

j −
∆t

∆xj
(Fm

j+1/2 − Fm
j−1/2) + ∆tSmj (8.1)

The definitions of U, F, and S can be found in Eq. 2.22.

For the one-sided upwind-downwind scheme, the inter-cell fluxes of Eq. 8.1

are taken as the upstream node values based on the flow direction (Ying and

Wang 2004), i.e.,

Fj+1/2 =

[
qj+l

( q
2

h
)j+l

]
(8.2)

In the above equation, l = 0 if qj > 0 and qj+1 > 0; l = 1 if qj < 0 and qj+1 < 0;

and l = 1
2

for other cases, where the subscript j + 1
2

represents the average of

values at j and j + 1 grid points. The variables in the source term are taken

at the jth cell and the water surface gradient is taken as the downstream nodes

based on the flow direction. The source term in Eq. 7.1 is written as (Ying and

Wang 2004):

Sj =

[
0

−ghj Hj+1−l−Hj−l
∆x

− qj |qj |
C2
∗jh

2
j

]
(8.3)

Similar to the balanced Godunov scheme, Eq. 8.1 is an explicit non-linear

system of equations, and the unknowns can be solved directly from the known

values. Like any cell-centered finite volume scheme, two ghost cells are introduced

at the boundaries to complete the systems. Moreover, like any explicit scheme,

the time step is chosen to satisfy the Courant condition.

The downwind approximation of the water surface elevation gradient produces

a stable scheme, but the scheme is of first-order accuracy (Ying and Wang 2004).

The scheme can capture shocks, model dam-break flows with initial dry/wet beds,

and handle a non-level bed without producing any non-physical oscillations in the

discharge solutions (Ying and Wang 2004). However, behavior of the scheme for

the friction dominated case has not yet been studied, which we will try to achieve

in this study.

8.2 Non-uniform Flow Test Case Results

Fig. 8.1 and 8.2 and Table 8.1 and 8.2 show the non-uniform flow test case

results for both scenarios with the one-sided upwind-downwind scheme. The
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tables show that, similar to the balanced Godunov scheme, there are no errors

or oscillations in the discharge variable. However, the figure and table both show

that errors in the depth solutions exist. One can see in the figures (i.e., Fig.8.1

and 8.2) that these depth errors are diffusive, and the diffusion increases as the

discretization increases, and as roughness (decrease of C∗) and slope increase.

However, the tables also show that the maximum value of the errors does not

change much with a changing parameter.

Table 8.1: The non-uniform flow test case - effect of discretization with the one-
sided upwind-downwind scheme.

∆x (m) C∗ S0 q error (%) h error(%)
20 15 0.000926 0 2.52
100 15 0.000926 0 8.84
200 15 0.000926 0 7.40

Table 8.2: The non-uniform flow test case - effect of Chezy coefficient and slope
with the one-sided upwind-downwind scheme.

∆x (m) C∗ S0 q error (%) h error(%)
100 20 0.000521 0 5.44
100 15 0.000926 0 8.84
100 10 0.0021 0 7.44

8.3 Fourier Analysis Results

The coefficients ar and br of Eq. 3.6 for the one-sided upwind-downwind

scheme are shown in Appendix E. From these coefficients it is found that Hn
Z

and Φn
Z

do not depend on the time step discretization for the one-sided upwind-

downwind scheme. Therefore, for the one-sided upwind-downwind scheme we can

write: {
Hn
Z

Φn
Z

}
= f(Fr0, Nλ, β∆x) (8.4)

Fig. 8.3 shows analytical and numerical amplitudes of the depth and discharge

variables and the corresponding errors as a function of Nλ with Fr0 = 0.5 and

β∆x = 1. The discharge amplitude errors are zero for any Nλ, and the depth
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amplitude errors are at their maximum at the shortest wavelength and diminish

as Nλ increases. For this case, the errors become negligible when Nλ ≥ 20.

Fig. 8.4 shows the variation of the depth amplitude errors as a function of

Nλ for the range of Fr0 with β∆x = 1. The figure shows that the depth errors

are low at low Fr0 and increase as Fr0 increases for the shortest wavelength. For

the higher wavelengths, the errors increase until Fr0 ≤ 0.5 and decrease when

Fr0 > 0.5 with increasing Fr0. For all Fr0, the numerical depth amplitudes are

less than the analytical depth amplitudes.

Fig. 8.5 shows the variation of the depth amplitude errors as a function of

Nλ for the range of β∆x with Fr0 = 0.5. The figure shows that the errors are

low at low β∆x. For the shortest wavelength, the errors increase with increasing

β∆x until β∆x ≤ 2, and after that the errors decrease as β∆x. For the higher

wavelengths, the errors increase until β∆x ≤ 0.5 and decrease when β∆x > 0.5

with increasing β∆x. Similar to the Fr0 results, the numerical amplitudes are less

than the analytical amplitudes for all β∆x.

Fig. 8.6 shows the variation of the depth amplitude errors as a function

of β∆x for the range of Fr0 with Nλ = 2 . The figure shows that the errors

are low at low Fr0 and low β∆x, and increase when the same two parameters

increase. The figure also shows that for any Fr0, the errors will be less than

0.1 for β∆x ≤ 0.01. Moreover, for the highest value of Fr0, the depth errors

are maximum at β∆x = 0.5 and then decrease as β∆x increases. The numerical

amplitudes are less than the analytical amplitudes for any value of Fr0 and β∆x.

8.4 Discussion

Both the non-uniform flow test case and Fourier analysis results show that

there are no oscillations or errors in the steady state discharge solutions for the

one-sided upwind-downwind scheme. However, both results also show that the

depth errors are apparent, and the depth errors are diffusive. The Fourier analysis

results also show that the numerical depth amplitudes are less than the analytical

depth amplitudes for any value of Fr0 and β∆x, and therefore, the depth errors

are diffusive in nature. Moreover, from the non-uniform flow test and Fourier

analysis results, we can see that the one-sided upwind-downwind scheme appears
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to be unconditionally stable for any value of discretization, roughness, and slope.

Therefore, the one-sided upwind-downwind scheme can be used in the friction

dominated case.
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Figure 8.1: Depth solutions for the non-uniform flow test case with the one-sided
upwind-downwind scheme - effect of discretization.

Figure 8.2: Depth solutions for the non-uniform flow test case with the one-sided
upwind-downwind scheme - effect of Chezy coefficient and slope.
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Figure 8.3: Normalized amplitudes and errors as a function of Nλ for Fr0 = 0.5
and β∆x = 1 using the one-sided upwind-downwind scheme.

Figure 8.4: Depth amplitude errors as a function of Nλ for a range of Fr0 and
β∆x = 1 using the one-sided upwind-downwind scheme.
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Figure 8.5: Depth amplitude errors as a function of Nλ for a range of β∆x and
Fr0 = 0.5 using the one-sided upwind-downwind scheme.

Figure 8.6: Depth amplitude errors as a function of β∆x for a range of Fr0 and
Nλ = 2 using the one-sided upwind-downwind scheme.

89



Chapter 9

Bubnov-Galerkin Finite Element
Scheme

9.1 Introduction

From the elementary CFD, it is known that center difference schemes are

not suitable for advection dominated flows, as this type of scheme produces non-

physical oscillations when steep gradients form (Brooks and Hughes 1982, Baker

1983, Chung 2002, Toro 2009). However, it would be interesting to learn how this

type of scheme behaves when the friction term dominates in the Saint-Venant

equations. Do they generate non-physical oscillations like upwinding schemes,

or do they generate diffusive errors like the one-sided upwind-downwind scheme,

when the friction term dominates? With these questions in mind, we study the

Bubnov-Galerkin scheme as a representative scheme for center difference type

schemes. The Bubnov-Galerkin scheme is chosen because it is a special case of

the CDG scheme, i.e., w = 0.

In Chapter 4, we mentioned that the Bubnov-Galerkin finite element scheme

could be found by assuming the weighting function, vi, as the interpolation func-

tion, fi, for Eq. 4.2, i.e.,∫ L

0

fi{
∂Ũ

∂t
+
∂F(Ũ)

∂x
− S(Ũ)}dx = 0 (9.1)

The definitions of the variables in Eq. 9.1 can be found in Eq. 4.1.
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9.2 Non-uniform Flow Test Case Results

Fig. 9.1 and 9.2 and Table 9.1 and 9.2 show the non-uniform flow test case

results for both scenarios with the Bubnov-Galerkin scheme. The tables show

that there are no errors or oscillations in the discharge variable for the Bubnov-

Galerkin scheme. However, the figures and tables also show that errors in the

depth solutions exist. These errors increase as discretization increases, and as

roughness (decrease of C∗) and slope increase. The depth oscillations for the

Bubnov-Galerkin scheme mainly appear on the steep to mild slope transition

region, as with the previous upwind schemes. But, in contrast to the previous

upwind schemes, in which the depth oscillations appear on the upstream elements

of the transition, the depth oscillations for the Bubnov-Galerkin scheme appear

on the downstream elements of the transition.

Table 9.1: The non-uniform flow test case - effect of discretization with the
Bubnov-Galerkin scheme.

∆x (m) C∗ S0 q error (%) h error(%)
20 15 0.000926 0 0.87
100 15 0.000926 0 5.20
200 15 0.000926 0 11.9

Table 9.2: The non-uniform flow test case - effect of Chezy coefficient and slope
with the Bubnov-Galerkin scheme.

∆x (m) C∗ S0 q error (%) h error(%)
100 20 0.000521 0 3.00
100 15 0.000926 0 5.20
100 10 0.0021 0 12.88

9.3 Fourier Analysis Results

Fig. 9.3 shows analytical and numerical amplitudes of the depth and discharge

variables and the corresponding errors as a function of Nλ with Fr0 = 0.5 and

β∆x = 1 for the Bubnov-Galerkin scheme. The discharge amplitude errors are

zero for any Nλ, and the depth amplitude errors are at their maximum at the
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shortest wavelength and diminish as Nλ increases. Because of the central differ-

ence approximation, the numerical depth amplitude at Nλ = 2 is equal to zero.

For this case, the depth errors become negligible when Nλ ≥ 4.

Fig. 9.4 shows the variation of the depth amplitude errors as a function of Nλ

for the range of Fr0 with β∆x = 1. The figure shows that at Nλ = 2, the depth

errors start at -1 and increase as Fr0 increases. For the other wavelengths, the

errors are low at low Fr0 and increase with increasing Fr0. However, the errors

at Nλ > 2 are much smaller compared to the errors at Nλ = 2.

Fig. 9.5 shows the variation of the depth amplitude errors as a function of

Nλ for the range of β∆x with Fr0 = 0.5. The figure shows that at Nλ = 2, the

depth errors are maximum at low β∆x and decrease with increasing β∆x. For the

other wavelengths, the errors are low at low β∆x and increase as β∆x increases.

Similar to the Fr0 results, the errors at Nλ > 2 are much smaller compared to

the errors at Nλ = 2.

Fig. 9.6 shows the variation of the depth amplitude errors as a function

of β∆x for the range of Fr0 with Nλ = 2 . Because of the central difference

approximation, the figure shows that for low Fr0, e.g., Fr0 = 0.1, the errors stay

at -1 for any β∆x. For higher Fr0, as β∆x increases the errors decrease and the

errors become less than -1 when β∆x > 1. The errors approach zero, when both

Fr0 and β∆x are large.

9.4 Discussion

For the Bubnov-Galerkin scheme, both the non-uniform flow test case and

Fourier analysis results show that there are no discharge oscillations. However,

the depth oscillations are apparent for the Bubnov-Galerkin scheme when the

discretization, roughness and slope are large. The depth oscillations also appear

as 2∆x wavelength for this scheme. This is also consistent with the Fourier

analysis results, as the depth errors are at their maximum at Nλ = 2.

However, in contrast to the non-uniform flow test results, the Fourier analysis

results show that the depth errors at Nλ = 2 decrease as β∆x increases for a

fixed Fr0 (shown in Fig. 9.5 and 9.6). It is not clear why this anomaly occurred.

However, one possible reason could be the effect of the non-linear term present in
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the Saint-Venant equations. The Fourier analysis uses the linearized form of the

Saint-Venant equations, which is incapable of catching the effect of a non-linear

term.

Still, the analysis with the Bubnov-Galerkin scheme is valuable, as it at least

shows that a center difference scheme produces oscillatory solution when the

friction term dominates.
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Figure 9.1: Depth solutions for the non-uniform flow test case with the Bubnov-
Galerkin scheme - effect of discretization.

Figure 9.2: Depth solutions for the non-uniform flow test case with the Bubnov-
Galerkin scheme - effect of Chezy coefficient and slope.
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Figure 9.3: Normalized amplitudes and errors as a function of Nλ for Fr0 = 0.5
and β∆x = 1 using the Bubnov-Galerkin scheme.

Figure 9.4: Depth amplitude errors as a function of Nλ for a range of Fr0 and
β∆x = 1 using the Bubnov-Galerkin scheme.
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Figure 9.5: Depth amplitude errors as a function of Nλ for a range of β∆x and
Fr0 = 0.5 using the Bubnov-Galerkin scheme.

Figure 9.6: Depth amplitude errors as a function of β∆x for a range of Fr0 and
Nλ = 2 using the Bubnov-Galerkin scheme.
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Chapter 10

Discussions on the Non-uniform
Flow Test Case and Fourier
Analysis Results

10.1 Non-uniform Flow Test Case Results

Table 10.1 lists a summary of the non-uniform flow test case results for all

different schemes. From the table, we see that errors and oscillations in the

discharge variable exist for the non-balanced shock-capturing schemes, such as

the CDG and MacCormack schemes, even though the steady state solution is

solved. The table also shows that there are no discharge errors or oscillations

with a balanced shock-capturing scheme, e.g., the balanced Godunov scheme, or

with a non-shock capturing scheme, e.g., the Box or Bubnov-Galerkin schemes.

Table 10.1: A summary of the non-uniform flow test case results with all schemes.

Scheme Shock-
capturing

Maximum
q-error (%)

Maximum
h-error (%)

Nature of
error

CDG Yes 13.09 8.38 Oscillatory
Box No 0 24.65 Oscillatory
MacCormack Yes 10.4 11.87 Oscillatory
Balanced Godunov Yes 0 19.41 Oscillatory
One-sided upwind-
downwind

Yes 0 8.84 Diffusive

Bubnov-Galerkin No 0 12.88 Oscillatory

Oscillations in the steady state discharge solution are unwanted. However,

these oscillations are unavoidable with a non-balanced shock-capturing scheme.
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Shock-capturing schemes are designed to capture the discontinuity in the depth or

velocity variables, which in effect introduce a fixed error in the discharge variable

(Bradford and Sanders 2005). In a way, the total errors are divided into both

depth and discharge variables.

Similar discharge oscillations with a point-source Godunov scheme, which is

also a non-balanced shock-capturing scheme, were reported by several researchers

(e.g., Petaccia and Zech 2009, Hubbard and Garcia-Navarro 2000, Zhou and In-

gram 2001, Bradford and Sanders 2005). But the use of a point-source term does

not balance the source terms and the flux terms with a non-level bed, and there-

fore generates oscillations at cell center discharges (Hubbard and Garcia-Navarro

2000), even though fluxes at the cell boundaries are non-oscillatory (Hubbard

and Garcia-Navarro 2000, Bradford and Sanders 2005, Petaccia and Zech 2009).

In a balanced Godunov type scheme (e.g., Hubbard and Garcia-Navarro 2000),

the scheme is written in such a way that the discharge solution at the center of

an element becomes continuous. However, balancing the source and flux terms

is not sufficient to avoid the oscillations in the depth solution when the friction

term dominates, as is inevitable with the balanced Godunov scheme.

From Table 10.1 we also find that errors in the depth variable exist for all

schemes. As the errors are divided in the non-balanced shock capturing schemes,

the depth errors for these schemes are smaller than the depth errors with the

Box or balanced Godunov scheme. Except for in the one-sided upwind-downwind

scheme, where the depth errors are diffusive, the depth errors are oscillatory and

appear as 2∆x wavelength for all schemes. For these schemes, the depth oscil-

lations appear on the transitions from a steep slope to a mild slope. The depth

oscillations for the Bubnov-Galerkin scheme appear on the downstream elements

of the transition, while the depth oscillations for all other schemes appear on the

upstream elements of the transition.

For all schemes, the non-uniform flow test case results show that the errors in

the discharge and/or in the depth variables increase as discretization increases,

and as roughness (decrease of C∗) and slope increase.
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10.2 Fourier Analysis Results

Fourier analysis results are consistent with the non-uniform flow test results.

Table 10.2 lists the maximum errors in the discharge and depth amplitudes found

within the Fourier analysis results for all different schemes. The Fourier analysis

results, similar to the non-uniform flow test results, show that there are errors

in the discharge amplitudes for the CDG and MacCormack schemes, and that

there are no discharge errors for the rest of the four schemes. However, depth

errors are still apparent for all schemes. Four schemes (i.e., the CDG, MacCor-

mack, Box, and balanced Godunov) have positive depth errors: the numerical

depth amplitude (Hn) is greater than the analytical depth amplitude (Ha), and

we expect to see depth oscillations for these schemes, which is consistent with

the non-uniform flow test results. The one-sided upwind-downwind scheme has

negative errors with maximum depth errors of less than (below) -1, and therefore,

the depth error acts as a diffusive error. For the Bubnov-Galerkin scheme, the

depth errors are negative, but are greater than (above) -1, and therefore, the

depth errors are oscillatory. The results with the one-sided upwind-downwind

and Bubnov-Galerkin schemes are also consistent with the non-uniform flow test

results.

In all schemes except the one-sided upwind-downwind and Bubnov-Galerkin

scheme, errors in the discharge and/or in the depth variables increase as the

numerical friction number, β∆x, increases, and as the average Froude number,

Fr0, increases. This is also consistent with the non-uniform flow test results.

An increase in ∆x, increase in roughness (decrease in C∗), or decrease in depth,

increases β∆x, and an increase in slope increases Fr0.

The non-uniform flow test results can be connected with the Fourier analysis

results. For both the scenarios (as shown in table 3.1 and 3.2), the average flow

depth, h0, was taken as 0.222 m and the base unit discharge was taken as 0.164

m2/sec. Thus, the average flow Froude number, Fr0, was 0.5. Changing the

discretization and Chezy coefficient changes the value of β∆x, which is equal to

∆x
C2
∗h0

. Table 10.3 shows all the discretization and C∗ that are used in the non-

uniform flow test case, the corresponding average β∆x, and the errors for both

scenarios with the CDG scheme.
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Table 10.2: A summary of the Fourier analysis results with all schemes.

Scheme Maximum Φn
Z

Maximum (Hn−Ha)
Z

CDG 1.03 0.62
Box 0 2.45
MacCormack 4.70 5.72
Balanced Godunov 0 2.45
One-sided upwind-
downwind

0 -0.93

Bubnov-Galerkin 0 -2.78

Table 10.3: The non-uniform flow test case - effect of average β∆x for the CDG
scheme.

∆x (m) C∗ β∆x q-error (%) h-error(%)
20 15 0.4 0. 34 0.25
100 20 1.125 1.49 0.64
100 15 2 3.41 2.07
200 15 4 11.22 7.29
100 10 4.5 13.09 8.38

Fig. 10.1 shows the discharge and depth errors as a function of β∆x from

the non-uniform flow test case with the CDG scheme. The figure reveals that

the errors increase linearly in log scale as β∆x increases. From this figure we can

say that any further increase in β∆x will cause the errors to reach 100 percent or

more and may result in negative depths or imaginary solutions. Though the exact

error values from the non-uniform flow test case are not directly comparable with

the Fourier analysis results, this increasing error with increasing β∆x appears

consistent with the Fourier analysis results, at least qualitatively.

The numerical friction number, β∆x (which is equal to ∆x
C2
∗h0

), identified in

the Fourier analysis in our study, is exactly the same as the parameter found by

Burguete and Gracia-Palacin (2007) as shown in Eq. 1.2, i.e., ∆xgn2

R4/3 ≤ 2 (note

that C∗ and n are connected by the relationship C∗ = R1/6

n
√
g
, which is given in Eq.

2.13). However, their limit doesn’t capture the variation of error for different

values of Fr0. In this research, we capture the variation of the error for a range

of Froude numbers, i.e., 0.1 to 0.8 (sub-critical flow), using the full Saint-Venant

equations.
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10.3 A Combined Friction Parameter

As the errors increase with both increasing Fr0 and β∆x, it is interesting

to see the combined effect of these two, say, β∆xFr
2
0. For the base uniform

flow Fr2
0 = C2

∗S0, and therefore, this combined friction parameter could also be

written as ∆x
h0/S0

. The denominator h0/S0 can easily be interpreted as a length

scale associated with the length of a backwater curve. This combined friction

parameter can then be interpreted as the number of elements over a backwater

curve. It is well known from elementary hydraulics that backwater curve solutions

can be unreliable and may oscillate if an insufficient number of computation points

are used. In complex natural channels and especially in 2D models, effective

backwater curves are caused by changes in depth, bed slope, or channel geometry,

and may have a locally short length.

This combined friction parameter can also be thought of as analogous to the

grid Peclet number, ∆xu
D

, for advection-diffusion problems. D/u is the length scale

associated with a boundary layer caused by a fixed value downstream boundary

condition. When the grid Peclet number is high, e.g., ∆xu
D
≥ 2, the algebraic

equations become advection dominated and oscillations may occur in the vicinity

of steep gradients. Similarly, we can say that when the combined friction param-

eter is high, we will have a friction dominated case, and non-physical oscillations

in the solution may occur in the vicinity of abrupt changes in bed topography.

The results of the Fourier analysis for different Fr0 and β∆x with the CDG

scheme, (i.e. Fig. 4.8), are re-plotted using the combined friction parameter and

are shown in Figure 10.2. Similarly to Fig. 4.8, this figure shows that the errors

increase as β∆xFr
2
0 increases and that the errors can reach up to 1 or more when

β∆xFr
2
0 ≥ 1. We can also see that if β∆xFr

2
0 ≤ 0.01 the errors will be negligible

for any value of Fr0. From the point of view of backwater curve length scales,

the former value corresponds to a single element over the backwater curve length

scale and the latter corresponds to 100 elements.

The combined friction parameter is intended as an approximate simplification

for practical application. Comparing Fig. 4.8 and Fig. 10.2 we can find that the

error variation with the separate parameters is not completely captured with the

combined friction parameter. However, from Fig. 4.8a and practical experience,
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we know that problems are generally not encountered at low Froude numbers.

Fig. 4.8a shows that the combined friction parameter does capture the error

variation for moderate to high (0.3 to 0.8, sub-critical) Froude numbers. In

particular, one can use Fig. 10.2a to set a limiting value of the combined friction

parameter, based on an acceptable error tolerance.

We can use this combined friction parameter as a potential error indicator.

We can expect that when this combined friction parameter is high the errors will

be high and when this parameter is low the errors will be low. In complex natural

channels, shallow areas with relatively low velocities or deep areas with low or

high velocities will have low β∆xFr
2
0 values, and we don’t usually see any spurious

velocities in those areas. On the other hand, shallow areas with high velocities

will have a high value of β∆xFr
2
0, and those are the areas where we usually see

spurious velocities.

Fig. 10.3 shows velocity vectors and the combined friction parameter contours

for a natural channel with the River2D model that uses the CDG shock capturing

scheme. The combined friction parameter for each node in this case is calculated

using nodal depth, nodal roughness and nodal velocity. The discretization length

is taken as the square root of the average of the areas of the elements connected

to a node. The figure shows the contours from 0.01 to 85. The combined friction

parameter values in most parts of the channel are well below 0.01 and we can

see smooth parallel velocity vectors in those areas. At a few nodes the combined

friction parameter values are greater than 0.1 and among them two nodes have

very high values, 41 and 81. The velocity vectors for those nodes are larger than

expected and appear to have spurious directions as well.

When this combined friction parameter is high there are several possible

courses of action. Mesh refinement is one obvious option to choose. As the

discretization is reduced, the parameter value is also reduced and thus the error

should be reduced. However, one can imagine that in complex natural channels,

as the discretization is reduced, the depth at newly introduced nodes can also

be reduced and the parameter value may remain the same or even be increased.

Moreover, as one can see in Fig. 10.3, the combined friction parameter values can

be of the order of 100 or even more. To reduce the parameter down to at most
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0.1, one would need a mesh refinement at least 1000 times finer, which would be

computationally impractical.

Smoothing the bed is another option when the parameter value is high. Per-

turbations in the solution variables are due to the perturbations in the bed. Thus

bed smoothing reduces the bed perturbation amplitude, and may reduce the er-

rors in the solution variables.

A third approach is to switch to an alternate set of equations when the pa-

rameter value is high. A minimum depth is normally used to make this switch,

which is usually a very small depth, e.g. 0.01 m in River2D (Steffler and Black-

burn 2002). But, as we can see from this analysis, a friction dominated case can

occur at a higher depth than that minimum depth. So, taking 0.1 as a practical

maximum limit for the combined friction parameter, one can calculate a mini-

mum depth for a given discretization length, velocity, and roughness. This will

give graded minimum depths rather than a fixed minimum depth for all nodes.

The last, and perhaps most desirable approach is to switch to alternate nu-

merical schemes when the parameter value is high. Analogous to the advection

dominated problem, a numerical scheme that will not produce any oscillations for

the friction dominated case can be used, if such a scheme is available. Existing

shock capturing schemes should be tested for the friction dominated case, and if

none are suitable, new schemes should be researched. The analysis presented in

this paper can be used as a framework to test such numerical schemes.

For the case of perturbation in a uniform flow, this new combined friction pa-

rameter becomes same as the parameter proposed by Hannah and Wright (1995),

which was developed from the analytical study of wind-driven flow in the coastal

ocean. However, in Hannah and Wright’s (1995) parameter, they have used the

local bed slope, whereas, we have used the average bed slope. Furthermore, for

the case of a non-uniform flow, instead of the average bed slope, one can use any

of the three slopes, i.e., friction slope, water surface slope, or bed slope.
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10.4 A Conservative Shock-capturing Scheme Suit-

able for the Friction Dominated Case

The one-sided upwind-downwind scheme is a prominent candidate for the

friction term dominated case. Both the non-uniform flow test case and Fourier

analysis results show that there are no discharge errors or oscillations for this

scheme. Moreover, in contrast to the upwind or center difference schemes, the

depth errors are not oscillatory, but diffusive. The scheme appears to be uncon-

ditionally non-oscillatory for any value of discretization, roughness, and slope, or,

Fr0 and β∆x.

The diffusive behaviors with the one-sided upwind-downwind scheme for the

friction dominated case can be explained by the elementary hydraulics. In this

scheme, the water surface elevation gradient term is taken as downwinding ap-

proximation, while in all other schemes the depth gradient or the pressure gra-

dient term is taken as upwind or center difference approximation. When the

governing Saint-Venant equations are advection dominated, the characteristics of

the equations necessitate upwinding. But when the governing equations become

friction dominant, the nature of the equations are changed. From the elementary

hydraulics, we know that to calculate a backwater curve for a steady state sub-

critical flow case, the solution should march from the downwind stream end, i.e.,

downwinding is required. This is what we see when the friction term dominates

in the Saint-Venant equations. Use of any upwinding type schemes or any center

difference type schemes will produce oscillations in the depth solutions in the

friction dominated case. Only the downwinding of the depth gradients provides

sufficient diffusion to suppress the wiggles that produce non-oscillatory solutions

in the friction dominated case, as is found with the one-sided upwind-downwind

scheme.

The effect of the downwinding can be shown through further example. To

show this, we add a second-order depth derivative term, Dn
∂2h
∂x2 , to the momentum

equation, where Dn stands for the numerical diffusion coefficient. This second-

order derivative term will provide an artificial diffusion to the depth solution. We

solve these modified Saint-Venant equations with the Bubnov-Galerkin scheme.

Fig. 10.4 shows the non-uniform flow test case results with the Bubnov-Galerkin
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scheme for three different values of Dn, with ∆x = 100 m, C∗ = 15, and S0 =

0.00111. We already know from the Bubnov-Galerkin results that without any

artificial diffusion, i.e., Dn = 0, non-physical depth oscillations appear in the

downstream elements of the steep to mild transition. With a positive diffusion,

i.e., Dn = 10, 000, the depth oscillations shift from the downstream elements

to the upstream elements of the transition (as shown in Fig. 10.4), and the

oscillations increase from 5.20 percent to 15 percent. The negative diffusion,

i.e., Dn = −10, 000, provides sufficient downwinding effect to suppress the depth

oscillations and produce a non-oscillatory depth solution (as shown in Fig. 10.4).

It is worth mentioning that in many wetting/drying algorithms, researchers

use a zero inertia momentum equation or reduced momentum equation to rep-

resent the dry nodes or very shallow depth flows (e.g., Tchamen and Kahawita

1998, Dietrich 2006). However, our study shows that simply dropping the inertia

term in the Saint-Venant equations will not prevent it from becoming a friction

dominated case and therefore, will not help to suppress the oscillations. The only

way to avoid the non-physical oscillations for the friction dominated case is to

use the correct numerical schemes, i.e., the one-sided upwind-downwind scheme,

or to apply the right amount of negative numerical diffusion.

The one-sided upwind-downwind scheme that is used in this research following

the Ying and Wang (2004) scheme does not use the full conservative form of the

Saint-Venant equations. It considers the non-conservative form of the pressure

gradient term, i.e., gh∂h
∂x

, and applies the downwind approximation to that term.

However, the downwinding approximation can also be applied to the conservative

form of the pressure gradient term, i.e., ∂(gh2/2)
∂x

. Thus, in this new scheme, based

on the flow direction, the inter-cell discharge flux can be taken as the upstream

node value while the conservative pressure flux can be taken as the downstream

node value. Therefore, a flux at a cell boundary in Eq. 7.1 can be expressed as:

Fj+1/2 =

[
qj+l

( q
2

h
)j+l + (gh

2

2
)j+1−l

]
(10.1)

The variables in the source term are taken at the jth cell, and the bed elevation

gradient is taken as downwind discretization:

Sj =

[
0

−ghj zj+1−l−zj−l
∆x

− qj |qj |
C2
∗jh

2
j

]
(10.2)
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Fig. 10.5 and Table 10.4 show the non-uniform flow test results for different

discretization with the fully conservative form of the Saint-Venant equations for

the one-sided upwind-downwind scheme. Comparing Fig. 10.5 and Table 10.4

to Fig. 8.1 and Table 8.1 respectively, we can see that the results with the fully

conservative form of equations give similar results to the non-conservative form

results, with slightly higher depth errors. The linearized version of both forms

appears to be exactly the same.

Table 10.4: The non-uniform flow test case - effect of discretization with the one-
sided upwind scheme using the conservative form of the Saint-Venant equations.

∆x (m) C∗ S0 q-error (%) h-error(%)
20 15 0.000926 0 3.03
100 15 0.000926 0 10.09
200 15 0.000926 0 8.17

10.5 Conclusion

Thus the one-sided upwind-downwind scheme proves to be a suitable scheme

for the friction dominated case. The only limitation is that the scheme is of

first-order, and therefore, over-diffusive. However, similar to the TVD concept,

higher-order methods can be applied in smooth regions or in advection dominated

regions, and this first-order method or the negative artificial diffusion can be

applied in the friction term dominated regions. The proposed combined friction

parameter can be used as an indicator to identify the friction dominated regions.
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Figure 10.1: Errors as a function of β∆x with the CDG scheme from the non-
uniform flow test case.
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(a)

(b)

Figure 10.2: (a) Discharge and (b) Depth amplitude errors as a function of
β∆xFr

2
0 for a range of Fr0, w = 0.5, and Nλ = 2 using the CDG scheme.
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Figure 10.3: A typical contour plot of β∆xFr
2
0 and velocity vectors plot using the

River2D open channel flow model.

Figure 10.4: Depth solutions for the non-uniform flow test case with the Bubnov-
Galerkin scheme - effect of artificial diffusion.
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Figure 10.5: Depth solutions for the non-uniform flow test case with the one-
sided upwind-downwind scheme using the conservative form of the Saint-Venant
equations - effect of discretization.
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Chapter 11

Application to 2D Open Channel
Flow Model

11.1 Introduction

2D depth averaged shallow water modeling is currently applied to a variety of

river problems (Waddle 2009, Katopodis 2003, Leclerc and Bechara 2003). Com-

mon applications include flow around hydraulic structures, fish habitat modeling,

ice modeling, and morphology modeling. 2D modeling is popular because of its

ability to capture local variations and to offer a better visualization and descrip-

tion of the flow physics compared to 1D simulation (Katopodis 2003, Leclerc and

Bechara 2003). FDM, FEM, and FVM are the same three numerical methods

used to solve the depth averaged 2D Saint-Venant equations, i.e., Eq. 2.30 to

2.32. However, unstructured meshes in FEM and FVM have the advantage of

better geometric flexibility than FDM and the ability to do local mesh refinement,

and therefore these two are widely used in 2D modeling (Marrocu and Ambrosi

1999).

Although 2D depth averaged modeling has a variety of applications, they are

challenging to use for mountainous streams because of the highly variable bed

topography, steep gradients, and small depths, not to mention the presence of

pool/riffle regions and large boulders/rocks. Local variations in bed topogra-

phy can lead to sub-critical/supercritical transitions necessitating a conservative

upwind shock-capturing numerical scheme. Moreover, when the depth becomes

A variation of this chapter was presented and published in the annual conference of Cana-
dian Society for Civil Engineers (CSCE) in 2010.
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small compared to the discretization scale, which is common with mountainous

streams, the source and friction terms generally dominate in the Saint-Venant

equations, making them even more difficult to model.

In earlier chapters, we studied friction dominated problem with the 1D Saint-

Venant equations. We found that the upwinding or center-difference numerical

schemes give non-physical oscillations in the discharge and/or depth solutions

when the friction term dominates. From the 1D non-uniform flow test case re-

sults we have shown that a friction dominated case occurs when discretization,

roughness and slope become large, or when depth becomes very small.

From the Fourier analysis, we have also found that the errors increase with

Fr0 and β∆x. Moreover, a combined friction parameter was intended for the

practical purpose of capturing the effect of the two separate parameters. The

proposed combined friction parameter β∆xFr
2
0 captures the variation of the errors

for moderate to high Froude numbers, i.e., 0.3 to 0.8 (sub-critical flow). Moreover,

we showed in Fig. 10.3 that we can use this combined friction parameter as a

possible error indicator.

We also discussed that we can use this error indicator to do local mesh refine-

ment or to calculate minimum depth in order to switch to an alternate equation,

e.g., the ground water equation, in 1D or 2D open channel flow models. In this

chapter, we will explore the two applications of the combined friction parameter

in 1D and 2D models. First, a brief literature review on the existing mesh re-

finement indicators for the 2D model will be presented. Then, different options

to calculate the combined friction parameter will be discussed. These different

options will be applied and compared with a 1D flow test case, flow over a hump,

and with two 2D flow test cases, flow past a submerged groin and flow in a nat-

ural river. Finally, the combined friction parameter will be used as a criterion

to calculate variable minimum depths with which to switch to the ground water

model.
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11.2 A New Mesh Refinement Indicator for Open

Channel Flow Models

Modelers are often faced with spurious velocity vectors or stability problem

when modeling natural channels (e.g., Bates and Hawkes 1997, Tchamen and

Kahawita 1998, Heniche and Leclerc 2002, Dietrich 2006). Natural channels have

many variations in topography that makes modeling of flow challenging, especially

when wetting/drying areas, very shallow areas, or very steep gradient areas are

present.

Gresho and Lee (1981) argued not to suppress the wiggles because those

spurious velocities give us a chance to reconsider the mesh. These errors indicate

that either the discretization is too coarse to resolve the physics of that area, or

the generated flow is beyond the capacities of the existing model scope. Generally

mesh refinement helps to remove those wiggles.

An appropriate mesh is necessary for the accuracy and stability of numerical

models. Moreover, variable graded mesh is often required for 2D depth averaged

shallow water modeling with large domains, e.g., flood plain modeling and ocean

modeling, in order to minimize the computational effort. Having a criterion for

mesh refinement would be helpful for the 2D depth average modeling, but there

are few existing criteria or guidelines for specifying the discretization, especially

for the shallow water model (Hagen and Kolar 2000, Hagen and Horstmann 2001).

A number of good literature reviews on mesh refinement indicators are avail-

able in Hagen and Kolar (2000), Tate and Stockstill (2006), and Dietrich and

Dresback (2008). Westerink and Muccino (1994) proposed a mesh refinement

indicator using the wavelength of a tide to the grid size ratio, but the limitation

of this indicator is that the local areas with a high rate of bathymetric change,

such as shelf break and steep continental slope, are not properly resolved (Hagen

and Kolar 2000).

Another criterion was given by Hannah and Wright (1995), which was based

on the ratio of the topographic length scale to the discretization scale. According

to Hannah and Wright (1995):
∆xSb
h
≤ ε (11.1)

where Sb is the local bed slope and ε is the mesh generation criterion. Eq. 11.1
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incorporates bathymetry and the gradient of the bathymetry into the mesh gen-

eration process. However, the refinement is not necessarily required only on the

steep bathymetric changes, but also required where the solution variables change

rapidly (Hagen and Horstmann 2001, Dietrich and Dresback 2008). Furthermore,

their parameter was developed from the analytical study of wind-driven flow in

the coastal ocean.

Based on a posteriori analysis, Hagen and Kolar (2000) and Hagen and

Horstmann (2001) introduced the localized truncation error analysis (LTEA)

method for mesh refinement. The limitation of this method is that the technique

requires a priori calculation of the truncation errors which require knowledge of

the ‘true’ solution, typically obtained from a uniformly and highly refined mesh

(Dietrich and Dresback 2008).

In recent years, mass balance error has been used as a mesh refinement indi-

cator by several researchers (e.g., Dietrich and Dresback 2008, Tate and Stockstill

2006, Berger and Howington 2002, Marrocu and Ambrosi 1999). This is also a

posteriori method. In the mass balance error method, differences between the

consistent mass fluxes and nodal discharges are calculated, and those differences

are minimized using mesh refinement.

Except for the parameter introduced by Hannah and Wright (1995), no method

considers the depth explicitly and therefore may not be able to capture the fric-

tion dominated case. The proposed combined friction parameter, β∆xFr
2
0, has

shown its efficacy to indicate the friction dominated area. Therefore, this com-

bined friction parameter can be used as a mesh refinement indicator and its use

as such will be investigated in this study.

11.2.1 Different Options for the Combined Friction Pa-
rameter

The proposed combined friction parameter, i.e.,
∆xFr2

0

C2
∗h0

, incorporates various

other parameters and variables. The combined friction parameter has its origins

in the linearized non-dimensional form of the Saint-Venant equations. For the

non-linearized Saint-Venant equations, there are several ways to calculate this

combined parameter. In the linearized equations, Fr0 and h0 are considered to

be the average quantities. In the non-linear equations, one obvious option is to
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use the nodal quantities instead of the average quantities. Therefore, our first

option for the combined friction parameter is ∆xFr2

C2
∗h

, where Fr, C∗ and h are

considered the nodal values, and we will call this parameter a basic combined

friction parameter.

Following Chezy’s uniform flow equation, for a uniform flow we can write

that Fr2 = C2
∗Sf = C2

∗Sw = C2
∗Sb, where Sf is the local friction slope, Sw is the

local water surface slope, and Sb is the local bed slope, respectively. Applying

these relationships in the basic combined friction parameter, we can write the

parameter as ∆x
h/Sf

, ∆x
h/Sw

, and ∆x
h/Sb

, respectively. The denominators h/Sf , h/Sw,

or h/Sb can be viewed as a characteristic length scale, L. The use of Sb gives

the same parameter as Hannah and Wright’s (1995) parameter, i.e., Eq. 11.1.

We will call these three parameters as the parameter with friction slope, water

surface slope, and bed slope, respectively. Table 11.1 lists all the different options

to calculate the combined friction parameter.

For a uniform flow, we know that the local friction slope, local water surface

slope, and local bed slope all become equal. Therefore, for a uniform flow, all the

four parameters are equal. However, these parameters are not equal when flows

are not uniform. In this chapter, we will explore the applications of these four

parameters with 1D and 2D flow test cases, where the flows are non-uniform.

Our objective is to find which parameter gives the best representation of the

characteristic length scale, or which parameter locates the problematic areas most

effectively in case of non-uniform flow.

Table 11.1: Different options for the combined friction parameter.

Options Parameters

Basic combined friction parameter ∆xFr2

C2
∗h

Parameter with friction slope
∆xSf
h

Parameter with water surface slope ∆xSw
h

Parameter with bed slope ∆xSb
h
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11.2.2 1D Flow Test Case: Flow Over a Hump

In this test case, a small hump of 0.5 m height is introduced in a 2500 m

long rectangular channel. The length of the hump crest is 100 and the average

channel slope is 0.00111. An inflow of 100 m3/s and a normal depth of 0.74 m

are used as inflow and outflow boundary conditions. Initial flows equal to the

inflow and initial depths equal to the downstream boundary depth are used as

the initial conditions for all nodes. The non-dimensional Chezy coefficient (C∗) is

taken as 15 for all nodes. The test case is run until the solution reaches a steady

state solution.

For this particular test case, we have used the CDG finite element scheme to

solve the final steady state solution. We have already studied different numerical

schemes with the 1D non-uniform flow test case, and we have found that except

the one-sided upwind-downwind scheme, all schemes give oscillations in the dis-

charge and/or depth solutions for the friction dominated case. Therefore, except

the one-sided upwind-downwind scheme, we can use any scheme for this test case,

and the CDG scheme is used for this test case because the same scheme has also

been used in the River2D model which will be used for the 2D flow test cases.

Fig. 11.1 shows the final steady state solutions for ∆x = 100 m. Fig. 11.1a

shows the bed elevation and water surface elevation, Fig. 11.1b shows the dis-

charge solution, and Fig. 11.1c shows the four friction parameters as a function

of longitudinal channel distance. From the figure, it is clear that the discharge

oscillations appear where the combined friction parameters are high. Fig. 11.1c

shows that the basic combined friction parameter values are almost double in

magnitude compared to the other three parameters’ values.

Fig. 11.2 shows the final steady solutions for ∆x = 10 m. As it is expected,

the discharge oscillations are reduced significantly, i.e., from 14% to 0.71%, due

to the reduction of ∆x. The combined friction parameter values are also reduced

from a maximum value of 1.72 to 0.15.

This 1D flow test case shows that the combined friction parameter with the

four different options as listed in Table 11.1 can be used as an indicator of the

error. The test case also shows that refinement does help to reduce the parameter

as well as the error.
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11.2.3 2D Flow Test Case: Flow Past a Submerged Groin

In this test case, the four different combined friction parameters (as listed in

Table 11.1) are implemented in the River2D model (Steffler and Blackburn 2002)

and compared with an idealized 2D flow test case, flow past a submerged groin.

This 2D flow test case is chosen for its similarity to the 1D flow test case, but

has a more complex flow field. The flow is sub-critical; it has large local changes

in topography as well as in the solution variables, and the depth is quite small

at the crest and steep gradient sections.

To calculate the combined friction parameters at a node in a 2D model, we

need an estimation of the discretization length, ∆x, and an estimation of different

nodal slopes (friction, water and bed). The estimation of the discretization length

is found by taking the square root of the average of the areas of the elements

connected to a node. Similarly, the different nodal slopes are calculated by taking

the average of the slopes of the elements connected to a node. The depth, the

Froude number, and the Chezy coefficient are taken at the nodal values.

In this 2D flow test case, a rectangular channel of 130 m long, 100 m wide,

and 0.0025 bed slope is taken. An idealized submerged groin with sloping sides

is placed on one side of the rectangle channel at a distance of 60 m. The groin

has a height of 0.15 m, a crest width of 10 m, and a length of 40 m. A typical

bed elevation contour of the test case is presented in Fig. 11.3, while Fig. 11.4

shows the longitudinal and cross-section bed profile of the test case.

An inflow of 7 m3/s and a downstream depth of 0.14 m are used as inflow and

outflow boundary conditions, respectively. An initial flow equal to zero and depth

equal to the downstream boundary depth are used as the initial conditions for

all nodes. The test case is run until the solution reaches a steady state solution.

Two locations, one at y = 40 m and the other at x = 70 m (as shown in Fig.11.4),

are the main foci for this test case, where major bathymetric changes take place.

Oscillations or errors are expected to be maximum at these two locations.

The test case is run, first, with a coarse grid which has a uniform discretization

length of 4 m with 2178 elements. The River2D model has a useful feature, the

break-line method, which allows the user to capture any topographic changes with

a minimum number of elements. This feature is used in the test case to generate
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the mesh, and Fig. 11.5 shows the final coarse mesh. One can see in the figure

that the whole groin feature (i.e., 30 m length along the longitudinal direction) is

covered in the coarse mesh with six to ten elements, while the individual sloping or

crest part is covered with two or three elements only. From practical experience,

we know that these few elements are not sufficient to capture the flow features

correctly in the groin areas.

To compare the coarse mesh solution, a reference solution is obtained by

finding a nearly grid-independent solution for the test case problem. Continuous

refinements are done for the whole domain until the changes in the solutions are

negligible. The reference solution has an estimated maximum of errors in velocity

or depth solution of less than 2.4% and has an average of less than 0.0008%.

The final fine mesh has nearly 750,000 elements with a maximum discretization

size of 0.027 m, which is nearly 150 times smaller than the size of the coarse

discretization. The final fine mesh is not shown here, as that figure is almost

black due to the large number of elements.

Fig. 11.6 shows the Froude number contour for the fine and coarse grid.

Comparing Fig.11.6a and 11.6b, we can see that spurious oscillations in the coarse

grid solution are apparent in the groin areas. However, at the outside of the groin

areas, both solutions look similar, at least qualitatively. To explore further and to

quantify the errors, we extract velocity and depth solutions at two cross-sections,

y = 40 and x = 70 m. Error at each node for each discretization solution is

calculated by taking the absolute differences from the reference solution and by

dividing the error with the reference solution.

Fig. 11.7 shows the velocity and depth solutions, Fig. 11.8 shows the rela-

tive velocity and depth errors, and Fig. 11.9 shows the basic combined friction

parameter with the longitudinal distance for different uniform discretization at

y = 40 m. Fig. 11.8 shows that the relative errors are maximum for ∆x = 4 m

(27.7%), the errors decrease as the discretization decreases, and the maximum

error for ∆x = 0.08 m is 2.4%. Comparing 11.8 and 11.9, we can see that the

combined friction parameters are high where the errors are high. The maximum

parameter for ∆x = 4 m is 3.3, and the maximum parameter for ∆x = 0.027 m

is 0.18.
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Fig. 11.10 shows the velocity and depth solution, Fig. 11.11 shows the relative

velocity and depth errors, and 11.12 shows the basic combined friction parameter

with the cross-sectional distance for different uniform discretization at x = 70 m.

Similar to the results at y = 40 m, the relative errors are maximum for ∆x = 4

m (17%), and the errors are minimum for ∆x = 0.08 m (1.6%) (as shown in Fig.

11.11). Moreover, the errors are also high where the combined friction parameters

are high (as shown in 11.11 and 11.12). The maximum parameter for ∆x = 4 m

is 2.17, and the maximum parameter for ∆x = 0.027 m is 0.12. In addition, one

can see that the non-physical oscillations in the velocity solutions are present for

the coarse discretizations, e.g., ∆x = 4 or 2 m (as shown in 11.10a).

The results for this particular 2D flow test case show that as the discretiza-

tion decreases, the error decreases, and so does the combined friction parameter.

Therefore, the combined friction parameter can be used as a measure of error.

Moreover, the errors are high where the combined friction parameters are high,

and therefore, the friction parameter can also be used as an indicator of error.

Thus, we can use the combined friction parameter as a mesh refinement indicator.

In this study, we have used all four different friction parameters to do the mesh

refinement, and the results for all refined meshes are compared.

A typical refinement process in the River2D model using the friction param-

eter is as follows. First, the combined friction parameters are calculated at all

nodes, and then a check is made for each element through-out the domain. If

any element has a single node that has a friction parameter value greater than

a maximum allowable limit (0.1 for this test case), a new node is created in the

center of that element as well as in the adjacent three elements (as shown in Fig.

11.13). The whole mesh is then re-triangulated (as shown in Fig. 11.14). Most of

the times, the new triangulated mesh generates a poor quality of triangles, and

therefore, in the River2D model, a tool called ‘smoothing’ is used in which trian-

gles are stretched out to obtain a better triangle quality (Steffler and Blackburn

2002). Fig. 11.15 shows the final mesh after four to six smoothing processes. A

new steady state solution is solved for the new mesh, and the combined friction

parameters are calculated using the new solution. The check for the refinement

is made for each element again, and this refinement process continues until all
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nodes have parameter values less than the maximum allowable limit.

The final meshes after being refined with the four different combined friction

parameters are shown in Fig. 11.16, 11.17, 11.18, and 11.19, respectively. The

first three meshes have almost the same number of elements, i.e., 11650, 11317,

and 11138, respectively, and the last mesh has a higher number of elements, i.e.,

14296. Again, the velocity and depth solutions are extracted at y = 40 and

x = 70 m for all these meshes, and the results are compared.

Fig. 11.20 shows the relative velocity and depth error at y = 40 m for the

refined meshes. We can see that refinement with all four different friction param-

eters does help to reduce the errors. The maximum error is reduced from 27.7%

to 6% with the first three parameters and to 2.7% with the fourth parameter.

Fig. 11.21 shows the relative velocity and depth error at x = 70 m for the

refined meshes. Similar to the results at y = 40 m, we can see that refinement

with all the four different friction parameters does help to reduce the errors. The

maximum error is reduced from 17% to 3% with the first three parameters and

to 2.2% with the fourth parameter.

For this particular test case, the mesh with the friction parameter with bed

slope generates more elements, but gives less errors compared to the other three

meshes. This is because the parameter with bed slope refines the upstream areas

of the crest (as shown in Fig. 11.19), whereas the other meshes don’t refine the

upstream areas with a maximum parameter limit of 0.1.

Comparing Fig. 11.16 to 11.19, we can see that, similar to the 1D flow

test case results, the results of this test case shows that all four options more

or less capture the high error areas, and refinement takes place in those areas.

All four options suggest the need for refinement in the downstream of the crest

areas, where the velocities are high, the depths are small and the slopes are high.

Moreover, Fig. 11.20 and 11.21 show that we can achieve solutions with refined

mesh which have errors of less than 6% with around 11,000 elements only.

11.2.4 2D Flow Test Case: Flow in a Natural River

In this particular test case a natural river is modeled; the test case area

is located in the South Platte River (Colorado) (as shown in Fig. 11.22). A
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portion of that river channel was modified in order to increase diversity of channel

morphology and improve trout habitat which includes placement of boulders

in the channel (Waddle 2009). To evaluate the effect of modification, detailed

velocity and depth measurements were taken at two large boulder locations (as

shown in Fig. 11.23) for three different discharges, i.e., 1.133, 1.529 and 4.531

m3/s. A numerical model has also been created by Waddle (2009) for the study

area. In this study, we will simulate only one flow rate case, that is 1.529 m3/s,

and the results will be compared with the observed data and Waddle (2009)

solution.

Waddle’s (2009) model consists of nearly 130,000 elements which capture all

small/large boulders present in the study area. Fig. 11.24 shows the mesh that

was used by him. In this particular study, our objective is to model the same

channel with a minimum number of elements, while still getting a solution as close

as possible to Waddle’s (2009) model solution, especially in the main boulder

region.

Several meshes are developed in this study. Table 11.2 lists all the different

meshes that are used in this test case. First a coarse uniform discretization, i.e.,

∆x = 3 m, is used to create an initial mesh, which is named Mesh1 (as shown in

Fig. 11.25). A problem with the very coarse mesh is that it doesn’t capture all

the variability in the topography, for example large or small boulders. Therefore,

the next mesh, i.e., Mesh2 (as shown in Fig. 11.26), is created by capturing

all the small/large boulders that are present at the main velocity measurement

region using fixed nodes. A few local refinements are done to provide a smooth

transition in the mesh. This mesh is considered to capture the most geometric

features with a minimum number of elements. Thus, Mesh2 will be our base

mesh on which regional or local refinement, or the minimum depth criterion, will

be implemented. The third mesh, Mesh3 (as shown in Fig. 11.27), is created by

doing the first level of regional refinement. Refinement is done only at the main

boulder region. The fourth mesh, Mesh4 (as shown in Fig. 11.28), is found by

doing another level of regional refinement.

Near the two main large boulders (as shown in Fig. 11.23), velocity and

depth solutions for different meshes are compared at four cross-sections with
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Table 11.2: Different meshes that are used in the natural river test case.

Meshes Description Number of elements
Mesh1 Uniform discretization mesh 21,182
Mesh2 Mesh with boulders 26,956
Mesh3 First level of regional refinement 35,406
Mesh4 Second level of regional refinement 59,834

the observed data and Waddle’s (2009) solution. Fig. 11.29 to 11.32 present

the depth solutions and Fig. 11.33 to 11.36 present the velocity solutions at

those four cross-sections. Moreover, Table 11.3 shows the average and maximum

differences in depth and velocity solutions for all the different meshes compared

to the Waddle (2009) solution.

From the figures and table, we find that except for the uniform mesh, i.e.,

Mesh1, all meshes give solutions close to the Waddle (2009) solution. For these

three meshes the average of the absolute differences in depth solutions are less

than 0.03 m and in velocity solutions are less than 0.09 m/s. Moreover, the

differences between the last three meshes’ solutions are negligible. This is because

the combined friction parameters are small in these measured locations. The

maximum basic combined friction parameter is found in these locations to be

0.05 and the average combined friction parameter is found to be 0.003. Thus, it

is expected that the refinement does not help very much to improve the solutions

at these locations.

Table 11.3: A summary of the solutions from different meshes in the natural river
test case.

Depth (m) Velocity (m/s)
Difference between Average Maximum Average Maximum

Waddle’s mesh-Mesh1 0.083 0.620 0.186 0.84
Waddle’s mesh-Mesh2 0.026 0.146 0.086 0.396
Waddle’s mesh-Mesh3 0.021 0.087 0.067 0.402
Waddle’s mesh-Mesh4 0.021 0.086 0.063 0.398

Waddle’s mesh-Observed 0.030 0.287 0.105 0.395

However, even though the solution at the boulder areas are close to the ob-

served values with the last three meshes, there are few places where spurious
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high velocity vectors are present. Fig. 11.37 plots the velocity vectors which

are greater than twice the average velocity for the Mesh2 solution, and one can

see the spurious high velocity vectors. Similar spurious high velocity vectors are

observed with Waddle’s (2009) model solution (as shown in Fig. 11.38). These

spurious high velocity vectors normally slow down the solution convergence rate,

and in some cases, produce instability.

The combined friction parameter is effective at locating these spurious high

velocity vectors. Fig. 11.39 and Fig. 11.40 show the same velocity vectors plots

where the basic combined friction parameters are greater than 0.5. Comparing

Fig. 11.37 and Fig. 11.39, or Fig. 11.38 and Fig. 11.40, we can see that the

combined friction parameter not only locates the spurious high velocity vectors,

but also locates the vectors which are not high but spurious.

Once the high velocity vectors are located, we can do local refinement or use

minimum depth criterion to eliminate or reduce these spurious high velocity vec-

tors. In this section, the use of the local refinement using the friction parameters

is presented. Refinement is done where the parameter values are greater than

a maximum allowable limit, and for the natural river test case, we use 0.5 as a

maximum allowable limit. A typical refinement process in the River2D model

using the combined friction parameter was described in the previous section.

A typical issue with the local refinement using the combined friction parameter

in a natural river is that the combined friction parameter reaches up to an order

of 100 or even 1,000 in a few locations. Therefore, to reduce the parameter up to a

reasonable limit (0.5 in this case) requires an excessive level of local refinements.

Moreover, in a few cases, local refinement finds a new bathymetry which has

a steeper gradient or shallower depth, either of which increases the value of the

combined friction parameter, or at least keeps the parameter the same. Therefore,

local refinement may not be able to eliminate the high spurious velocity vectors

for these cases. However, the refinement is still a useful step as it confines the

high velocity vectors to a small region when it can not eliminate them.

In this particular test case, we do local refinement on the Mesh2 using the

basic friction parameter and the parameter with local bed slope. As the basic

friction parameter, parameter with friction slope, and parameter with water sur-
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face slope all refine more or less the same areas (as found with the flow past a

submerged groin test case), we use just one parameter from these three param-

eters. Up to four levels of local refinements are done using the basic friction

parameter and the parameter with bed slope, and the results are compared.

Table 11.4 shows the number of elements after each level of local refinement

using both parameters, and Fig. 11.41 and Fig. 11.42 show the final mesh after

four levels of local refinement. Fig. 11.43 and Fig. 11.44 show the velocity

vectors which are greater than twice the average velocity for those two meshes,

respectively.

Table 11.4: Number of elements after local refinement using the friction param-
eters in the natural river test case.

Refinement
level

Number of elements
using the basic friction
parameter

Number of elements
using the parameter
with bed slope

First 27,561 46,696
Second 28,287 80,407
Third 29,091 137,447
Fourth 31,111 231,351

Comparing Fig. 11.37, Fig. 11.43, and Fig. 11.44 we find that the local

refinements using both parameters more or less eliminate some of the spurious

high velocity vectors. However, both parameters also produce a few new spurious

high velocity vectors. After four levels of local refinement, there are still a few

locations where the parameters are higher than 0.5, and therefore, not all the

spurious high velocity vectors are eliminated with the local refinements.

Comparing the number of elements after refining using each parameter (as is

shown in Table 11.4), we see that the meshes using the parameter with local bed

slope always have more elements compared to the meshes using the basic friction

parameter. This is also consistent with the flow past a submerged groin test case

result. However, in the flow past a submerged groin test case, the mesh using

the parameter with local bed slope has only 1.22 times more elements than the

meshes with the basic friction parameter. In the natural river test case, meshes

using the parameter with local bed slope have 2 to 8 times more elements than

the meshes with the basic friction parameter. A natural river has too many
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variations in local topography, which necessitates too many refinements with the

parameter with local bed slope. Therefore, for a natural river, the basic friction

parameter, or the friction parameter with friction slope or water surface slope, is

more effective at locating the high velocity vectors than the friction parameter

with bed slope.

11.3 A New Minimum Depth Criterion for Open

Channel Flow Models

While solving the Saint-Venant equations numerically, if depth becomes neg-

ative or zero, the solution becomes indeterminate or imaginary. To avoid this

particular issue, in every numerical model the common practice is to use a mini-

mum depth beyond which the code will terminate or switch to an alternate set of

equations, e.g., a reduced momentum equation (Tchamen and Kahawita 1998, Di-

etrich 2006), modified Saint-Venant equations (Bates and Hervouet 1999, Defina

2000, Heniche and Leclerc 2002), or a ground water equation (Khan 2000, Steffler

and Blackburn 2002).

However, there is no fixed criterion for choosing a minimum depth, and there-

fore, a wide range of minimum depths, e.g., 0.01 m to 0.1 m, are observed in

practical modeling. Furthermore, a fixed minimum depth is normally used for a

domain, which may be too conservative or may be ineffective depending on the

situation. For example, in the River2D model (Steffler and Blackburn 2002), 0.01

m is used as a minimum water depth. When depth becomes less than 0.01 m,

the ground water equation (Khan 2000, Steffler and Blackburn 2002) is used to

calculate the water surface elevation, and the surface water flow is set to zero.

However, from the practical modeling experience and from Fig. 11.37, we find

that in a few cases spurious velocities are observed where the depths are greater

than 0.01 m. The high value of the combined friction parameter in this case

indicates that these nodes are of the friction dominated case. This indicates that

the depths are small compared to the discretization scale, and either refinement

should be done or the node should be considered a dry node.

In the previous section, local refinement was done using the combined friction

parameter. In this section, we use the ground water model to eliminate the high
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vectors using the combined friction parameter. In this approach, a nodal com-

bined friction parameter will be calculated at all nodes. If any nodal parameter

value is greater than a maximum allowable limit, the ground water model will be

activated for that node. In this test case, we use 0.5 as the maximum allowable

limit so that the ground water model is applied only to a few nodes.

Use of the combined friction parameter as a criterion to switch to the ground

water equation is similar to the use of variable minimum depths rather than a

fixed minimum depth. In other words, by using 0.5 as the maximum allowable

limit of the combined friction parameter, variable minimum depths can be calcu-

lated for all nodes. If any depth is smaller than the calculated minimum depth,

then the wetting/drying treatment will be applied to that node.

Fig. 11.45 shows the final velocity vectors which are greater than twice the

average velocity after implementing this approach, and comparing Fig. 11.37,

11.39, and Fig. 11.45, we see that the spurious high velocity vectors are eliminated

with this approach, even though the solution at the main boulder region does not

change.

As the parameters at a few nodes are higher than the allowable limit, apply-

ing the ground water model should not affect the overall solution significantly,

provided that the dry areas are not too big. To avoid too many areas being dry,

this approach can be applied in conjunction with the local refinement. Local

refinement can be done first, where the combined friction parameters are higher

than the maximum allowable limit. Local refinement will confine the high veloc-

ity vectors to a small region, and then, if the local refinement alone is not able

to eliminate/reduce the high velocity vectors, the ground water model can be

applied.

One important thing to note here is that while implementing the ground

water model with the combined friction parameter, from practical experience,

we have found that the combined friction parameter with the friction slope or

water surface slope is more suitable in implementation than the basic combined

friction parameter. This is because when the ground water model is applied to

any node, surface water flow rate is forced to zero on that node, which makes

the basic combined friction parameter equal to zero. This makes that node wet
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again, and the alternate wet/dry condition hampers the convergence rate, while

the parameter with the friction slope or the water slope does not change that

much after applying the ground water model.

11.4 Conclusion

The results of the 1D flow test case, flow over a hump, and of the 2D flow

test case, flow past a submerged groin, show that the proposed friction parameter

can be used as a measure of error and an indicator of error. The 2D flow test

case results with a submerged groin show that the proposed friction parameters

can be used as a mesh refinement indicator and that all four options used to

calculate the combined friction parameter more or less capture the problematic

areas. However, mesh using the parameter with local bed slope generates more

elements (e.g., 3,000) than the meshes with the other three parameters.

The results of the 2D flow test case with a natural river show that the pro-

posed friction parameter is effective at locating high velocity vectors in natural

rivers, and therefore can be used as an indicator for the mesh refinement or to

switch to a ground water equation. Local mesh refinement using the basic friction

parameter or the parameter with local bed slope does help to reduce/eliminate

some of the spurious velocity vectors. However, meshes using the parameter with

local bed slope produces more elements (2 to 8 times) than the meshes with the

basic friction parameter. The natural river test case results by applying ground

water model using the friction parameter show that the spurious velocity vectors

are successfully eliminated with this approach. However, in order to avoid too

many areas being dry, this approach should be applied in conjunction with local

refinement.

It is to be noted here that (as we have also discussed in section 10.3) the

friction parameter with the local bed slope becomes same as Hannah and Wright’s

(1995) parameter. However, both the 2D test cases, i.e., flow past a submerged

groin and flow in a natural river, results show that Hannah and Wright’s (1995)

parameter generates too many refinements, especially in a natural river case. This

suggests that, in a natural river, the use of a local bed slope as a mesh refinement

indicator is not very effective. Therefore, for a natural river, the basic combined
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friction parameter, or the parameter with friction slope or water surface slope,

should be used as an indicator for the mesh refinement or to switch to a ground

water equation.

The proposed combined friction parameters can detect steep gradient of depth

changes, water elevation changes, and velocity changes. Moreover, they can de-

tect the small depth areas with steep gradients. Furthermore, these parameters

are easy to calculate and implement in any open channel flow model. The use

of the proposed friction parameters can lead to an automated mesh refinement

process in open channel model.
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Figure 11.1: 1D flow over a hump test results with ∆x = 100 m (a) Bed elevation
(bel) and water surface elevation (wse) profile (b) Discharge solution and (c)
Combined friction parameter with four different options.
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Figure 11.2: 1D flow over a hump test results with ∆x = 10 m (a) Bed elevation
(bel) and water surface elevation (wse) profile (b) Discharge solution and (c)
Combined friction parameter with four different options.
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Figure 11.3: Bed elevation contour for the flow past a submerged groin test case.

Figure 11.4: (a) Longitudinal bed elevation profile at y = 40 m and (b) Cross-
sectional bed elevation profile at x = 70 m for the flow past a submerged groin
test case.
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Figure 11.5: Generated mesh with uniform discretization of 4 m for the flow past
a submerged groin test case.
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(a)

(b)

Figure 11.6: Contour of the Froude number solutions for the 2D flow past a groin
test case (a) Fine mesh and (b) Coarse mesh.
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(a)

(b)

Figure 11.7: (a) Velocity and (b) Depth solutions at y = 40 m for different
uniform discretization meshes.
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(a)

(b)

Figure 11.8: (a) Velocity and (b) Depth errors at y = 40 m for different uniform
discretization meshes.
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Figure 11.9: Combined friction parameters at y = 40 m for different uniform
discretization meshes.
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(a)

(b)

Figure 11.10: (a) Velocity and (b) Depth solutions at x = 70 m for different
uniform discretization meshes.
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(a)

(b)

Figure 11.11: (a) Velocity and (b) Depth errors at x = 70 m for different uniform
discretization meshes.
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Figure 11.12: Combined friction parameters at x = 70 m for different uniform
discretization meshes.

Figure 11.13: Placing of new nodes at the center of elements where friction
parameter is greater than the allowable limit.
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Figure 11.14: Re-triangulation of the mesh after placing new nodes.

Figure 11.15: Refined mesh after four to six smoothing processes.
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Figure 11.16: Final mesh refined with the basic combined friction parameter.

Figure 11.17: Final mesh refined with the friction parameter with friction slope.
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Figure 11.18: Final mesh refined with the friction parameter with water surface
slope.

Figure 11.19: Final mesh refined with the friction parameter with bed slope.
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(a)

(b)

Figure 11.20: (a) Velocity and (b) Depth errors at y = 40 m for refined meshes.
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(a)

(b)

Figure 11.21: (a) Velocity and (b) Depth errors at x = 70 m for refined meshes.
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Figure 11.22: South Platte River study area (red line) and velocity measurement
area (yellow segment)1.

Figure 11.23: Velocity and depth measurement points near two main large
boulders1.

1Theses two figures have been collected from personal communication with the author of
the Waddle (2009) paper and published in this research for the purpose of review under the
s.29 Fair Dealing provision in the Canadian Copyright Act.
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Figure 11.24: Mesh from the Waddle (2009) model.

Figure 11.25: Mesh1 (Uniform discretization mesh).
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Figure 11.26: Mesh2 (Mesh with boulders).

Figure 11.27: Mesh3 (First level of regional refinement).
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Figure 11.28: Mesh4 (Second level of regional refinement).

Figure 11.29: Depth solutions at first cross-section for different meshes.
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Figure 11.30: Depth solutions at second cross-section for different meshes.

Figure 11.31: Depth solutions at third cross-section for different meshes.
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Figure 11.32: Depth solutions at fourth cross-section for different meshes.
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Figure 11.33: Velocity solutions at first cross-section for different meshes.

Figure 11.34: Velocity solutions at second cross-section for different meshes.
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Figure 11.35: Velocity solutions at third cross-section for different meshes.

Figure 11.36: Velocity solutions at fourth cross-section for different meshes.
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Figure 11.37: Plot of velocity vectors which are greater than twice the average
velocity from the Mesh2 solution.

Figure 11.38: Plot of velocity vectors which are greater than twice the average
velocity from the Waddle (2009) model.
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Figure 11.39: Velocity vectors plot from the Mesh2 solution where the combined
friction parameters are greater than 0.5.

Figure 11.40: Velocity vectors plot from the Waddle (2009) model where the
combined friction parameters are greater than 0.5.
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Figure 11.41: Final mesh after four levels of local refinement using the basic
combined friction parameter.

Figure 11.42: Final mesh after four levels of local refinement using the friction
parameter with local bed slope.
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Figure 11.43: Plot of velocity vectors which are greater than twice the average
velocity from the refined mesh using the basic combined friction parameter.

Figure 11.44: Plot of velocity vectors which are greater than twice the average
velocity from the refined mesh using the friction parameter with local bed slope.
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Figure 11.45: Plot of velocity vectors which are greater than twice the average ve-
locity after using the ground water model where the combined friction parameters
are greater than 0.5.
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Chapter 12

Conclusions and
Recommendations

This research undertakes the highly understudied issue of the friction dominated

case in open channel flow. Very few studies have been done for this issue and

none have been done using the full form of the Saint-Venant equations. There

is no analysis framework from which to study friction dominated Saint-Venant

equations. This significant gap in Computational Hydraulics led us to formulate

an analysis framework using a non-uniform flow test case and a Fourier analysis.

In the non-uniform test case a sudden bed elevation change is introduced and

a steady state solution is solved for the test case using the Saint-Venant equations.

In the Fourier analysis a periodic bed elevation perturbation is introduced and

the effect of the bed elevation perturbation on the solution variables is observed

by solving the steady state solution using the linearized form of the Saint-Venant

equations. To the best of our knowledge, use of the Fourier analysis to study the

steady state solution of the Saint-Venant equations, which includes the bed slope

and the friction terms, has never been attempted.

Six different numerical schemes comprised of two schemes for each numerical

methods (FDM, FEM, and FVM) are studied for the friction dominated case

using the analysis framework. The non-uniform flow test case results show that

errors and/or oscillations in the discharge and/or depth solutions are observed

when the discretization, roughness, and slope are large, and the errors increase

when these parameters increase.

The Fourier analysis results show that for the sub-critical flow, errors in the

discharge and/or depth solutions are observed whenever there is any perturbation
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in the bed elevation. The results also show that these errors are highly dependent

on the numerical Friction number, β∆x, and the average Froude number, Fr0, and

increase with increasing β∆x and Fr0. The errors can be an order of 1 or greater

depending on the value of these two non-dimensional parameters. Moreover, for

any value of Froude number, the errors can be negligible if β∆x is less than 0.01.

The results with all six different numerical schemes show that errors and

oscillations in the steady state discharge solution exist only for the non-balanced

shock-capturing schemes, such as the CDG and MacCormack schemes. However,

errors in the steady state depth solution exist for all schemes, and except in the

one-sided upwind-downwind scheme, where the depth errors are diffusive, the

depth errors are all oscillatory and appear as 2∆x wavelength. The downwinding

of the pressure term or the depth gradient term in the case of the one-sided

upwind-downwind scheme produces sufficient negative diffusion to suppress any

wiggles because of the friction term dominance.

As the errors increase with both increasing Fr0 and β∆x, a combined friction

parameter, β∆xFr
2
0, is intended for practical purposes to capture the effect of

the separate parameters. The proposed combined friction parameter captures

the variation of the errors for moderate to high Froude numbers, i.e., 0.3 to 0.8

(sub-critical flow) for the CDG scheme. This combined friction parameter can

be interpreted as the number of elements over a backwater curve and can also

be thought of as analogous to the grid Peclet number. Similar to the advection

dominated case, when the combined friction parameters are high, we will have a

friction dominated case, and non-physical oscillations in the solution may occur

in the vicinity of abrupt changes in bed topography.

The proposed combined friction parameter can be used as a measure of error

and an indicator of error. Moreover, the proposed combined friction parameter is

easy to calculate and implement in any open channel flow model. In this study, we

have investigated the applicability of the proposed combined friction parameter

with a 1D flow test case (flow over a hump) and with two 2D flow test cases

(flow past a submerged groin and flow in a natural river). All the test cases show

that the proposed combined friction parameter is an effective indicator for the

error-prone areas. The proposed combined friction parameter has also been used
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as a mesh refinement indicator and to calculate the minimum depths to switch

to a ground water model. The results show that applying mesh refinement or

the ground water model using the combined friction parameter is successful at

eliminating/reducing spurious high velocity vectors from the solution.

Besides the aforementioned two approaches, a third approach, and perhaps

the most desirable approach, is to use a numerical scheme that will not produce

numerical oscillations for the friction dominated case. The diffusive behavior

of the one-sided upwind-downwind scheme in 1D Saint-Venant equations shows

that this scheme can be a suitable numerical scheme for the friction dominated

case. However, an appropriate downwinding method for the 2D Saint-Venant

equations requires further study, which has not been done in this thesis because

of time limitations.

Furthermore, other numerical schemes that have not been studied in this

research, but used in Computational Hydraulics, can also be investigated for the

friction dominated case. The analysis framework presented in this thesis can

be used for that purpose. A non-oscillatory numerical scheme for the friction

dominated case helps the open channel model become more robust, accurate,

and generally applicable.
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Appendix A

Coefficients of the CDG Finite
Element Scheme

The upwind matrix W of EQ. 4.7 can be written as:

W =

[
Waa Waq

Wqa Wqq

]
where Waa, Waq, Wqa and Wqq are the coefficients of the upwinding matrix. W

for the non-dimensional linearized Saint-Venant equations, i.e. Eq. 2.27 and 2.28

are:

Waa =
(1−Fr2

0)

2

(
1

|Fr0+1| −
1

|Fr0−1|

)
; Waq = (Fr0)

2

(
Fr0+1
|Fr0+1| −

Fr0−1
|Fr0−1|

)
;

Wqa =
(1−Fr2

0)

2Fr0

(
Fr0+1
|Fr0+1| −

Fr0−1
|Fr0−1|

)
; and Wqq = 1

2

(
(Fr0+1)2

|Fr0+1| −
(Fr0−1)2

|Fr0−1|

)
By defining α = ( 1

Fr2
0
− 1) in Eq. 2.28 the coefficients ar and br, for r = 1 to 15

of Eq. 3.6 using CDG scheme are:

a1 + a7 = wWaq(−α
2
− 3β∆ξ

4
);

a2 + a8 = wWaqα;

a3 + a9 = wWaq(−α
2

+ 3β∆ξ
4

);

a4 + a10 = −1
2
− wWaa

1
2

+ wWaq(−1 + β∆ξ
2

);

a5 + a11 = wWaa + 2wWaq;

a6 + a12 = 1
2
− wWaa

1
2

+ wWaq(−1− β∆ξ
2

);

a13 = wWaq
1

2Fr2
0
;

a14 = −wWaq
1
Fr2

0
;

a15 = wWaq
1

2Fr2
0
.

b1 + b7 = −α
2
− β∆ξ

2
+ wWqq(−α

2
− 3β∆ξ

4
);

b2 + b8 = −2β∆ξ + wWqqα;
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b3 + b9 = α
2
− β∆ξ

2
+ wWqq(−α

2
+ 3β∆ξ

4
);

b4 + b10 = −1 + β∆ξ
3
− wWqa

1
2

+ wWqq(−1 + β∆ξ
2

);

b5 + b11 = 4β∆ξ
3

+ wWqa + 2wWqq;

b6 + b12 = 1 + β∆ξ
3
− wWqa

1
2

+ wWqq(−1− β∆ξ
2

);

b13 = 1
2Fr2

0
+ wWqq

1
2Fr2

0
;

b14 = −wWqq
1
Fr2

0
;

b15 = − 1
2Fr2

0
+ wWqq

1
2Fr2

0
.
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Appendix B

Coefficients of the Box Finite
Difference Scheme

The coefficients ar and br, for r = 1 to 15 of Eq. 3.6 using Box scheme are:

a1 + a7 = 0;

a2 + a8 = 0;

a3 + a9 = 0;

a4 + a10 = 0;

a5 + a11 = −1;

a6 + a12 = 1;

a13 = 0;

a14 = 0;

a15 = 0.

b1 + b7 = 0;

b2 + b8 = −α− 3β∆ξ
2

;

b3 + b9 = α− 3β∆ξ
2

;

b4 + b10 = 0;

b5 + b11 = −2 + β∆ξ;

b6 + b12 = 2 + β∆ξ;

b13 = 0;

b14 = 1
Fr2

0
;

b15 = − 1
Fr2

0
.
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Appendix C

Coefficients of the MacCormack
Finite Difference Scheme

The coefficients ar and br, for r = 1 to 15 of Eq. 3.6 using MacCormack scheme

are:

a1 + a7 = −α
2
;

a2 + a8 = α− 3β∆ξ
2

;

a3 + a9 = −α
2

+ 3β∆ξ
2

;

a4 + a10 = − ∆ξ
2∆τ
− 1;

a5 + a11 = 2 + β∆ξ;

a6 + a12 = ∆ξ
2∆τ
− 1− β∆ξ;

a13 = 1
2Fr2

0
;

a14 = − 1
Fr2

0
;

a15 = 1
2Fr2

0
.

b1 + b7 = −α∆ξ
2∆τ
− α + αβ∆ξ;

b2 + b8 = −3β∆ξ∆ξ
∆τ

+ 2α− 3β∆ξ − αβ∆ξ + 3(β∆ξ)2;

b3 + b9 = −α∆ξ
2∆τ
− α + 3β∆ξ;

b4 + b10 = −∆ξ
∆τ
− α

2
− 2− 3β∆ξ

2
+ 2β∆ξ;

b5 + b11 = 2β∆ξ∆ξ
∆τ

+ α + 4 + 3β∆ξ
2
− 2(β∆ξ)2;

b6 + b12 = ∆ξ
∆τ
− α

2
− 2− 2β∆ξ;

b13 = 1
2Fr2

0

∆ξ
∆τ

+ 1
Fr2

0
− β∆ξ

Fr2
0
;

b14 = − 2
Fr2

0
+ β∆ξ

Fr2
0
;

b15 = − 1
2Fr2

0

∆ξ
∆τ

+ 1
Fr2

0
.
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Appendix D

Coefficients of the Balanced
Godunov Scheme

For the non-dimensional linearized Saint-Venant equations, i.e. Eq. 2.27 and

2.28,

A =

[
0 1

( 1
Fr2

0
− 1) 2

]
Λ =

[
(1 + 1

Fr0
) 0

0 (1− 1
Fr0

)

]
R =

[
1 1

(1 + 1
Fr0

) (1− 1
Fr0

)

]
RΛ+R−1 = Fr0

2

[
−(1− 1

Fr2
0
) (1 + 1

Fr0
)

−(1 + 1
Fr0

)(1− 1
Fr2

0
) (1 + 1

Fr0
)2

]
=

[
A+

11 A+
12

A+
21 A+

22

]
RΛ−R−1 = Fr0

2

[
(1− 1

Fr2
0
) −(1− 1

Fr0
)

(1− 1
Fr0

)(1− 1
Fr2

0
) −(1− 1

Fr0
)2

]
=

[
A−11 A−12

A−21 A−22

]
RI+R−1 = Fr0

2

[
−(1− 1

Fr0
) 1

−(1− 1
Fr2

0
) (1 + 1

Fr0
)

]
=

[
S+

11 S+
12

S+
21 S+

22

]
RI−R−1 = Fr0

2

[
(1 + 1

Fr0
) −1

(1− 1
Fr2

0
) −(1− 1

Fr0
)

]
=

[
S−11 S−12

S−21 S−22

]
Now the coefficients ar and br, for r = 1 to 15 of Eq. 3.6 using balanced Godunov

scheme are:

a1 + a7 = −A+
11 −

3β∆ξ
2
S+

12;

a2 + a8 = A+
11 − A−11 −

3β∆ξ
2
S+

12 −
3β∆ξ

2
S−12;

a3 + a9 = A−11 −
3β∆ξ

2
S−12;

a4 + a10 = −A+
12 + β∆ξS+

12;

a5 + a11 = A+
12 − A−12 + β∆ξS+

12 + β∆ξS−12;

a6 + a12 = A−12 + β∆ξS−12;
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a13 = 1
Fr2

0
S+

12;

a14 = − 1
Fr2

0
S+

12 + 1
Fr2

0
S−12;

a15 = − 1
Fr2

0
S−12.

b1 + b7 = −A+
21 −

3β∆ξ
2
S+

22;

b2 + b8 = A+
21 − A−21 −

3β∆ξ
2
S+

22 −
3β∆ξ

2
S−22;

b3 + b9 = A−21 −
3β∆ξ

2
S−22;

b4 + b10 = −A+
22 + β∆ξS+

22;

b5 + b11 = A+
22 − A−22 + β∆ξS+

22 + β∆ξS−22;

b6 + b12 = A−22 + β∆ξS−22;

b13 = 1
Fr2

0
S+

22;

b14 = − 1
Fr2

0
S+

22 + 1
Fr2

0
S−22;

b15 = − 1
Fr2

0
S−22.
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Appendix E

Coefficients of the One-sided
Upwind-Downwind Finite
Volume Scheme

The coefficients ar and br, for r = 1 to 15 of Eq. 3.6 using one-sided upwind-

downwind scheme are:

a1 + a7 = 0;

a2 + a8 = 0;

a3 + a9 = 0;

a4 + a10 = −1;

a5 + a11 = 1;

a6 + a12 = 0;

a13 = 0;

a14 = 0;

a15 = 0.

b1 + b7 = 0;

b2 + b8 = −α− 3β∆ξ;

b3 + b9 = α;

b4 + b10 = −2;

b5 + b11 = 2 + 2β∆ξ;

b6 + b12 = 0;

b13 = 0;

b14 = 1
Fr2

0
;

b15 = − 1
Fr2

0
.
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