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Abstract 

Modern agriculture faces the conundrum of a looming threat of food scarcity and heightened 

pressure on natural resources to address and sustain increasing food demand. Improving nutrient 

use efficiency is crucial to sustainable food production. It can be helpful in tackling this critical 

challenge while delivering the required benefits on social, environmental, and economic fronts. 

Given the limited availability of readily accessible available soil nitrogen (N) and the high cost of 

synthetic nitrogenous fertilizers, nitrogen use efficiency (NUE) becomes central to the 

effectiveness of any management practice aimed at sustainable agriculture. In this study, I 

evaluated the statistical challenges involved in defining NUE as a ratio of grain productivity to 

available soil nitrate (AN). Ratio analyses and different regression models were used to compare 

NUE. Measures of goodness of fit showed that quadratic regression (QR) models were 

comparatively more robust in estimating NUE. This finding elucidated a fundamental limitation 

in most analyses of NUE as a ratio matrix, as it negated the assumption of isometry crucial to 

validity of the derived conclusions. Nonetheless, results from QR analysis can be extrapolated to 

extract information of practical significance, such as the agronomically optimum N rate (AONR) 

and economic optimum N rate (EONR). Moreover, sample size calculations elucidated the need 

for a large number of plots to distinguish genotypes differing for NUE; therefore, imposing a 

logistic constraint to accurately assess differences in NUE. 

Strategies for improving nutrient management in croplands such as the 4R Nutrient Stewardship 

offer a promising avenue to address the seemingly contrasting goals of modern agriculture. In this 

study, I compared multiple linear regression, a non-geostatistical technique, to different geo-

statistical techniques, including ordinary kriging (OK), ordinary cokriging (OCK), and regression 

kriging (RK) to decipher the spatial structure of soil fertility parameters. Based on cross-validation 
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estimates, OK in most cases proved to be the model choice to predict soil nutrients, including 

available nitrogen, readily available phosphorus, and available potassium. In contrast, RK was the 

best performing method to estimate cation exchange capacity, pH, and organic matter. Landscape 

position did not show a strong spatial correlation with soil fertility parameters and grain 

productivity, as terrain attributes failed to substantively improve the corresponding predicted 

estimates.  
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ŷ predicated value of a variable 

Z measured value for a given variable 
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Chapter 1: Introduction 

1.1. The Green Revolution 

One of the most significant changes in agricultural productivity during recent history was 

the green revolution. It refers to a period of technological and agronomic advancements that have 

helped to sustain the growing world population by development of input-responsive, high yielding 

varieties of wheat and rice (Khush 1999; Khush 2001). Two major advancements that led to the 

advent of green revolution are development of the Haber-Bosch process (Galloway et al., 2013), 

and introduction of dwarfing genes in major crops (Evenson and Gollin 2003). 

Identification of dwarfing phenotypes during the early 20th century started this revolution. 

Dwarfing genes, though largely unknown at the time, came from a Japanese semi-dwarf wheat 

variety, Norin 10 (Reitz and Salmon 1968). These dwarfing genes were bred into commercial 

wheat varieties as part of breeding programs in U.S. Department of Agriculture (USDA) and 

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT, also known as International 

Maize and Wheat Improvement Centre in Mexico). The wheat dwarfing genes (reduced height; 

Rht) were later identified as Rht-B1b (formally known as Rht1), and Rht-D1b (formally known as 

Rht2) genes (Hedden 2003; Borojevic and Borojevic 2005). These genes repress gibberellin 

responsive growth, and result in reduced stem elongation. As a result, lodging associated yield 

losses are significantly reduced (Peng et al., 1999; Saville et al., 2012). Moreover, these 

phenotypes have a higher dry matter harvest index, as they allow the plants to allocate more 

resources towards grain (Rebetzke et al., 2012). 

1.1.1. Environmental Consequences of Green Revolution-Induced Agricultural 

Intensification 
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Between 1969-2017, wheat and rice productivity has increased by 213% and 148%, 

respectively (FAO STAT, 2018). This increase in grain productivity was achieved through the 

development of high-yielding varieties which require high inputs, in particular a higher nitrogen 

(N) supply (Figure 1.1). However, N is a limiting nutrient in most cropping systems. Production 

of synthetic, N-rich fertilizers through the Haber Bosch process has addressed this limitation by 

making available a large amount of reactive N as fertilizers (Erisman et al., 2008). This agricultural 

intensification has included a shift in cropping systems from polyculture to a monoculture system 

(Tscharntke et al., 2005). This change in dynamics of cropping pattern and cultivation intensity 

has led to several environment issues with local, regional and global consequences (Altieri and 

Nicholls 2017).  

Local environmental effects include detrimental impact on soil health, including loss of soil 

through soil erosion and a decline in biodiversity (Tilman et al., 2001; Foley et al., 2011). 

Maintenance of intensively managed cropping systems through application of large amounts of N- 

rich fertilizers, and different agronomic practices affects physical and biological soil properties 

(Matson et al., 1997). These agricultural practices not only deplete soil resources, but also affect 

the ability of soil to sustain biogeochemical processes, such as the N cycle; (Barrios 2007; Postma-

Blaauw et al., 2010; Tsiafouli et al., 2015; Bender et al., 2016). Consequently, the dwindling N 

pool is further depleted. 

To offset the limited availability of biologically active N, more synthetic N fertilizers are 

added, and this perturbs the natural N cycle (Galloway et al., 2004; Gruber and Galloway 2008; 

Ward 2012; Fowler et al., 2013). Moreover, the asynchrony between time of N application, and 

plant demand further exacerbates the imbalance between various N fluxes (Cassman et al., 2002; 



 
 

Statistical and In-field Challenges Involved in Quantifying Soil Fertility 

 
 

3 
 

De Oliveira et al., 2018). According to some estimates, plants are only able to use 30-50% of 

applied N (Tilman et al., 2002). The remaining is lost from the soil through leaching, surface run-

off, denitrification, and volatilization (Fowler et al., 2013). Besides economic losses, this loss of 

N also results in environmental hazards that have regional implications.  

One example is the degradation of aquatic ecosystems through anthropogenic enrichment 

with excessive N. Leached N, primarily NO3-N, percolates through the soil profile to a region 

below the root zone, where it is not only unavailable to plants (Cameron et al., 2013), but also has 

a high propensity to enter the groundwater reservoirs (Vitousek et al., 2009). Deposition of this N 

rich water into the aquatic ecosystem causes prolific growth of algae and phytoplankton, which 

limits light availability (Diaz and Rosenberg 2008), and causes the death of aquatic fauna and 

flora. Subsequent microbial decomposition creates an anoxic micro-environment which is known 

as “dead zone” (Chislock et al., 2013). This phenomenon of profuse growth in response to 

increased availability of a limiting nutrient is known as eutrophication. Interacting local and 

regional environmental consequences trigger a suite of reactions that affect the properties of an 

ecosystem at a global scale. The environmental effects of high-intensity agriculture are expected 

to worsen because few scientific studies foreshadow a failure in long-term sustainability of these 

agronomic practices (Tilman et al., 2011).

1.2. Need of Nitrogen Use Efficiency (NUE) in Crop Plants 

The human population is expected to increase to 9.1 billion by 2050 (FAO, 2015). To sustain 

this growing population, there will be a need to increase food production. According to FAO, food 

production should increase by 70% to fulfill population’s dietary requirements (FAO, 2009). This 
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scenario increases the pressure on land and water resources which are fundamental units of the 

food production system.  

In most cropping systems, biologically fixed N is insufficient to completely fulfill plants’ 

needs for different growth and developmental processes (Beatty and Good 2011). This limited 

availability of  N often leads farmers to overfertilize their fields with excess amounts of N (Diacono 

et al., 2013). This reliance on large amount of nitrogenous fertilizers is environmentally hazardous, 

and has resulted in serious perturbation of the global nitrogen cycle (Fowler et al., 2013). This 

progressively deteriorating situation has prompted the goal of developing fertilizer-efficient crop 

plants. It has also resulted in a change of target goals, from increased food production to sustainable 

food production, and has placed premium on improving Nitrogen Use Efficiency (NUE) of 

cropping systems (Hirel et al., 2011; Hawkesford 2014).  

1.2.1. Definitions of NUE 

Nitrogen is the most important, and expensive crop nutrient to be applied. Therefore, NUE 

is crucial for farmers to maximize their returns (Parry and Hawkesford 2010). However, complex 

environmental interactions make NUE a difficult trait to measure (Sharma and Bali 2017). 

Nitrogen use efficiency is a key concept in sustainable agriculture, and has been the subject of 

rigorous research and recent literature. However, NUE breeding programs are still in their nascent 

stages due to the inherent complexity of this trait. Furthermore, the inability to accurately assess 

NUE further limits the scope of these breeding programs.  

Definitions of NUE have changed over the course of time, and there is no universally 

accepted way of defining this trait. In most cases, NUE is defined according to the background of 
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the researchers e.g., soil scientists define it in terms of plants’ efficiency to uptake added or 

available soil N, while physiologists define it in relation to the efficiency of plants to remobilize 

and assimilate the absorbed N into grain yield. There are several definitions of NUE available in 

the scientific literature (Table 1.1), and each term carries a different meaning in different contexts 

(Weih et al., 2011). The most commonly used definition of NUE is the efficiency of uptake of 

applied or available N from soil, and is defined as a ratio of grain productivity to available or 

supplied N. However, there are a number of inherent statistical issues revolving around the use of 

this definition. These statistical issues along with in-field challenges involved in accurate 

assessment of NUE are described in detail in Chapter 2.  

1.3. Approaches for Improving NUE in plants 

1.3.1. Genetics Based Approaches for Improving NUE in Plants 

High genetic variability has been reported for NUE and NUE related traits in wheat, barley, 

rice, maize, canola, and many other crops (Monostori et al., 2017). Moreover, deciphering the 

molecular basis of NUE shows that it is a polygenic trait that is orchestrated by multiple genes 

controlling different biochemical, physiological, and morphological functions (McAllister et al., 

2012). Access to different tools for genome sequencing has generated copious amount of genotypic 

data. Over the last decade, a large number of N-responsive genes expressed at different N levels, 

and stages of N metabolism have been identified (Bi et al., 2009). This body of knowledge suggests 

that conventional breeding and transgenics offer a plausible avenue for improving NUE. However, 

this approach is not as simple as it seems, and this technology is still in developmental stages. 

Moreover, several extrinsic factors limit the success of developed varieties during the field 

evaluation. Variation due to genotype x environment interaction is profound (Senthilvel et al., 
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2008), and may be as large as genotypic variations (Han et al., 2015). Moreover, soil N supply is 

spatially and temporally variable. This labile N variability reduces the reproducibility of NUE 

indices over multiple years (Dobermann 2005). The interactive effect of N availability with other 

cropping variables, such as availability of water and other nutrients, also affects the accurate 

assessment of NUE (Dobermann 2005). In addition, the prevalence of different definitions of 

NUE, and different cropping practices makes it difficult to compare available studies across 

different environments and years.  

1.3.2. Management Based Approach for Improving NUE 

Best Management Practices (BMPs) have been highlighted as a sustainable solution to curb 

N losses (Bruulsema et al., 2008). Best Management Practices exploit different components of 

cropping systems, such as water, nutrient, and farm management practices (e.g., tillage) to 

optimize the efficiency of the production unit while maintaining profitable returns, and minimizing 

environmental hazards (Mikkelsen 2011). The same concept of BMPs has been applied to fertilizer 

management, an approach known as 4R nutrient stewardship. It is a relatively simple framework 

consisting of four components that are inter-related; right rate, right time, right place, and right 

source (Table 1.2). The success of this approach depends on a sound technical knowledge of the 

underlying principles, and the right combination of these components (Bruulsema et al., 2009).  

Each of these four components are of interest to different stakeholders who tailor a basic 

framework for given field conditions, such as soil properties, weather conditions, and available 

farm management resources (Johnston and Bruulsema 2014). Stakeholders including farmers, 

research institutions, government institutions, and the public have different objectives and 

performance parameters (Table 1.3) to evaluate the efficacy of the adopted operations. However, 
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the ultimate goal of economic and environmental sustainability is consistent between different 

stakeholders. 

1.3.2.1. Right Rate and Right Place for Fertilizer Application 

Fertilizer cost is an important consideration for the farmers in gauging economic returns. 

This makes application of the right rate of fertilizer at the right place a key element that forges 

successful implementation of the 4R framework. Theoretically, it is a simple concept that implies 

that added nutrients are sufficient to fulfill plant’s nutrient requirement at a given place, and the 

intended economic, social and environmental goals are also achieved. However, there are a few 

factors including inherent soil properties, weather and climatic conditions that govern this decision 

of N application (Mikkelsen 2011).  

1.3.2.2. Factors Affecting Right Rate and Right Place of Fertilizer Application: Spatial Soil 

Variability 

Soil is a dynamic natural resource that is quite heterogeneous in its properties. There are two 

important classes of soil heterogeneity; lithological and inherent soil heterogeneity. Lithological 

heterogeneity is the distribution of different lithological layers in a soil matrix. Inherent soil 

heterogeneity deals with the distribution of soil properties across a continuum of the soil profile 

(Phoon and Kulhawy 1999; Elkateb et al., 2003). This type of soil heterogeneity is due to 

interaction of different permanent features (such as, soil type and topography), and variable 

features (such as, cropping and management history and weather conditions) of the landscape 

(Lobb 2011; Diacono et al., 2013). Characterization of inherent soil variability is complex due to 

the interaction of cumulative factors at different spatial and temporal scales (Zhang et al., 2011). 

Many studies on soil variability encompass a combination of these varying factors. For example, 
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soil N heterogeneity across a landscape is not explained by a single factor, but is in fact, a result 

of interaction of these variable soil and environmental interactions. The interactive nature of these 

factors should be taken into consideration while deducing practical implications for field 

management decisions. 

Among landscape features, soil type and topography are the two most important 

determinants of soil variability. Variation in soil types not only affect the availability, but also the 

retention of water and nutrients in the soil (Tola et al., 2017). Topography has a strong correlation 

with spatial variability of different soil properties, both physical and chemical (Ceddia et al., 

2009). It affects the physical movement of soil, that in turn, affects the spatial distribution of soil 

nutrients and soil moisture across the landscape (Noorbakhsh et al., 2008; Noorbakhsh et al., 

2011). Soil run off from hilltops deposits nutrient rich topsoil to low lying areas, hence eroded 

hilltops can be less fertile. This downwards movement of soil leads to the accumulation of 

nutrients, and soil organic matter in foot slope positions (Balasundram et al., 2006). However, 

accumulation of soil moisture in low-lying depressions can also lead to nutrient loses (Moulin et 

al., 1994). Difference in soil fertility profile can also affects soil quality, thus reducing crop growth 

and productivity in high positions (Verity and Anderson 1990). However, the degree and nature of 

such variability that is changing as a function of landscape position, is poorly understood.  

In addition to these permanent landscape features, variable features such as temporal 

variability of precipitation, also interplay with patterns of spatial soil variability (Santillano-

Cázares et al., 2012). Moreover, different agricultural practices such as conventional tillage and 

cropping patterns, also affect inherent soil variability by changing physical and chemical soil 

properties. These changes in soil properties affect the ability of soil to sustain biological functions 
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(such as nutrient cycling) by altering soil microbial biomass and activity (Spedding et al., 2004; 

Bausenwein et al., 2008; Lauber et al., 2013).  

1.3.2.3. Approaches to Assess Soil Variability 

Since its introduction in the early 1990s, yield monitoring has become common in modern 

agriculture (Stafford et al., 1996). It is defined as a process of gathering and processing geo-

referenced data for different crop characteristics, such as crop yield and soil moisture. A basic crop 

yield monitoring system comprises of a range of different sensors used for different purposes 

(Adamchuk et al., 2008). Software is used to extract and process raw data collected from these 

sensors. Data processing, and sensor calibrations are crucial for developing accurate yield maps. 

Sensors are calibrated according to the vendor’s operation manual to ensure accuracy of the 

collected raw data, which is then subjected to post-processing cleaning to identify and address 

commonly measured physical errors, such as erroneous travel distance and flow delay 

measurements, errors in header position sensor, and header cut-width (Luck and Fulton 2014; Luck 

and Fulton 2015). 

Crop yield monitoring serves as a tool to make educated decisions for managing in-field 

variability to optimize economic and environmental benefits. At the same time, it offers a good 

starting point for building an information repository to assess soil variability (Zhang et al., 2002). 

In preliminary analyses, the in-field grain yield variation could be used as a proxy for the soil 

variability. Grain yield maps from multiple years help to identify areas of consistent low and high 

productivity; however, they do not identify the underlying causes explaining this yield variability 

(Johnson et al., 2003). Therefore, this information can be of limited use to the farmers unless 

productivity-limiting factors are interrogated through soil sample analysis (Diacono et al., 2013).  
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1.3.2.4. Soil Sampling and Analysis as a Tool to Explain Causes of In-field Yield Variability 

In the wake of growing environmental and economic concerns, optimum nutrient 

management is of paramount importance. Soil sampling and analysis are crucial for developing 

soil fertility profiles that form the basis for nutrient management operations (Carter and Gregorich 

2006). However, the success of these operations depends on the accuracy of soil analysis. 

Therefore, it is important to collect and analyze soil samples that are true representatives of the 

field conditions. A well-designed sampling plan serves as a guiding principle in accurate 

assessment of soil nutrient status. Sampling depth, intensity, time, and location are the main 

components of a sampling plan that ensures soil samples are collected at appropriate time, and 

depth with an adequate spatial density (Carter and Gregorich 2006). Moreover, a host of other 

factors, such as cropping history and laboratory costs are also taken into consideration while 

developing a sampling plan. 

As a part of a sampling plan, selection of appropriate sampling strategy is also critical to 

develop accurate soil maps. Different sampling strategies, such as random composite, directed 

random composite, benchmark, landscape-directed benchmark, and grid sampling can be used 

depending on resources, field assessment, and the amount of information needed. This baseline 

information is not only useful for the farmers to manage the causes of in-field yield variability by 

using modern agronomic approaches, such as variable rate fertilizer application (Iqbal et al., 2005), 

but also provides important repository information that serves as a blueprint for developing 

sampling plans for modelling environmental and agricultural management systems (Jones et al., 

2017). 
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 1.3.2.5. Heterogeneity in Soil Variability 

Among other macro-nutrients, soil N exhibits high variability (Table 1.4) at both spatial and 

temporal scales. This variability becomes a nuisance to site-specific management intended to 

reduce N footprint on the environment. Studies have been conducted to document spatiotemporal 

variability of soil N (Robertson 1988; Cain et al., 1999; Stark et al., 2004; Huang et al., 2007; 

Wang et al., 2007). Variability in soil N could be structured at a much finer scale, and it could vary 

at scales as small as 1 m (Robertson 1988). According to geostatistical analysis conducted by 

Robertson 1988, nugget variance (i.e., variance for a given variable of interest at a scale smaller 

than minimum sampling distance) accounted for 20% of the total sill variance (maximum variance 

between spatially auto-correlated sampling pairs), indicating that some variability in soil N could 

be spatially structured at a scale less than 1 m, whereas another study conducted by Wang et al., 

2007 showed 32% of the total variability in soil N could be operating at an interval of less than 5 

m. Even though such small-scale variability is logistically inviable to sample and manage, it should 

still be recognized since site-specific management is incumbent on knowledge of the scale at which 

this variability operates.  

1.3.2.6. Limitation of Soil Sampling and Analysis 

Micro-managing the in-field yield variability requires a comprehensive dataset of spatial soil 

variability. However, in most cases, due to financial and practical reasons, collected soil data is of 

inadequate density, and this sparsity of soil information data becomes a major bottleneck in its 

application in precision agriculture (PA) (Oliver 2010). Geostatistics offers a solution to alleviate 

this limitation by interpolating data values for unsampled locations based on information collected 

from the sampled locations.  
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1.4. Geostatistics—A Solution to Sparse Data 

Geostatistics is a branch of statistics used to develop mathematical models to characterize 

spatial and spatiotemporal phenomena. Originally developed for assessment of mining sites, 

geostatistics is now finding widespread applications in ecological, environmental, and agricultural 

studies (Zhou et al., 2007). It is used to analyze geo-referenced datasets to decipher the underlying 

spatial patterns by exploiting spatial autocorrelation between the data points (Li and Heap 2014). 

The model outcome is a map showing continuous surface explaining the intrinsic spatial nature of 

variable(s) being modeled by assigning a definitive value at each given point (Johnston et al., 

2001). The developed map is checked to ensure that the interpolated values, and other model 

parameters, such as associated measures of uncertainty, are rational. If needed, necessary 

adjustments are made, and the resulting model can be used in making informed management 

decisions (Johnston et al., 2001).  

Geostatistics is based on Waldo Tobler’s First Law of Geography, “Everything is related to 

everything else, but near things are more related than distant things” (Miller 2004). According to 

the foundational principle of geostatistics, there is a degree of continuity in the spatial 

configuration of the regionalized variable. Variation of soil attributes in space is not random, but 

is in fact, structured in a way that this degree of variability decreases as the distance between the 

two sampling points decreases (Seidel and de Oliveira 2016). 

1.5. Application of Spatial Soil Information in Precision Agriculture 

Precision agriculture (PA; also known as site-specific agriculture), is defined as a set of 

agronomic practices that can contribute to a viable solution for sustainable food production. The 

concept of PA has been around for decades. It is based on an intuitive idea of tailoring different 
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inputs contingent on spatial and temporal soil and crop requirements. There are two major 

advantages of using these PA practices: (1) the preservation and improvement of environment by 

limiting different sources of environmental pollution, and (2) increased economic returns owing 

to reduced input cost (Diacono et al., 2013). 

Precision agriculture is a three-tiered approach; consisting of assessment of in-field 

variability, followed by management of this variability, and finally, evaluating the efficiency of 

the applied field operations (Figure 1.2). Accurate assessment of in-field soil variability is crucial 

for the overall success of this approach. Therefore, it is important to understand the underlying 

causes contributing to such variability.  

Although PA technology became available in the mid-1980s in Western Europe, Australia, 

Canada and USA adoption of this technology has been geographically and temporally variable 

(Swinton and Lowenberg-Deboer 2001; Micheels and Nolan 2016). This uneven adoption of PA 

technology is tied to a number of factors, such as land and labor availability, initial investment 

cost, public awareness about environmental hazards of intensive farming and stringency of 

environmental legislations. Moreover, adoption of leading application of PA depends upon the 

regional priorities, for example, mitigating detrimental effects of intensive farming is the focal 

point for PA adoption in Europe. 

Yield monitoring and nutrient management are the two leading applications of PA. In 

Canada, 5-15% of the land under cereal production uses either one or a combination of these 

technologies (Swinton and Lowenberg-Deboer 2001). Being a land-abundant country, Canada 

offers feasible conditions for the assimilation of PA technology; however, a large number of 
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farmers in Western Canada still hesitate to adopt these technologies due to the lack of supporting 

evidence of environmental and economic gains of making this transition. Research on 

quantification of spatial heterogeneity of soil properties using geostatistics is lagging in Western 

Canada. Recently, the effects of controlled traffic farming (a form of PA operation) on soil 

properties were quantified in the Canadian prairies, using geostatistical modelling (Guenette and 

Hernandez-Ramirez 2018). According to this study, geostatistical methods performed better than 

non-geostatistical methods to capture the underlying spatial structure of soil properties.  

1.6. Goals of this thesis 

Site-specific management relies on accurate quantification of soil fertility parameters. 

However, there is a large knowledge gap in quantification and mapping of these soil fertility 

parameters to gauge the extent of spatial heterogeneity within a field. Moreover, there are 

limitations in the accurate assessment of NUE. On one hand, it is a difficult trait to measure, and 

on the other hand, these measurements are also subjected to different statistical and in-field 

challenges. The purpose of this thesis is to bridge this knowledge gap. Specific research objectives 

of this thesis included: 

1. The investigation of statistical challenges involved in defining NUE as a ratio of grain 

productivity and available soil nitrate through comparison of different statistical models. 

2. The determination of in-field variability in soil fertility parameters through comparison of 

different geostatistical methods. 
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1.7. Figures and Tables 

 

 

Figure 1.1. Global yield and fertilizer consumption trends from 1961 to 2014. Line graph shows an increase in consumption of 

nitrogenous fertilizers from 12 Mt in 1961 to 114 Mt in 2014, and is expected to increase by approximately 2% annually. Cereal yield 

(including wheat, rice, maize, sorghum, oats, barley, millet, rye, soybean), shown by bar graph, increased by 175% from 1961 to 2014. 

Data Source: Fertilizer (FAOSTAT) (accessed December 2017) 
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Figure 1.2. Schematic representation of the basic components of precision agriculture. 
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Table 1.1. Common measures of Nitrogen Use Efficiency (NUE). All of these indices differ slightly in terms of measures taken into 

consideration during these calculations. Nonetheless, they capture the same essence of NUE, i.e., plants’ ability to assimilate and 

remobilize N (soil N supply and/or added N fertilizer) into the final product–grain yield. Using these indices for assessment of NUE 

requires careful analysis of the research objectives, and use of these estimates depends on the crop, harvest product, and research 

objectives (Adapted from Dobermann 2007). 

Measure Formula* Applications Limitations 

Partial factor productivity PFP= Gw/Ns It is the most commonly used NUE 

term, and is a good indicator of long-

term trends. 

It is of limited spatial scale, and 

there is a difficulty in making 

comparisons between different 

crops and cropping systems 

across different geographic 

regions. It is also subjected to 

several statistical limitations. 

Uptake efficiency (also known 

as partial nutrient balance) 

NUpE= Nt/Ns It is based on the expression of 

efficiency (i.e., ratio of output to 

input). Typically, it is used to 

answer: “How much N has been 

This measure of NUE provides 

misleading information of soil 

fertility profile, as all N inputs 

(such as biosolids, biologically 
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allocated to the grain in comparison 

to the amount of N supplied?” 

fixed N, residual N etc.), and 

outputs (N loss through soil 

erosion, and leaching) are rarely 

added in the calculations. 

Utilization efficiency (UE) UE= Gw/Nt It is used in breeding programs to 

assess performance of genotypes. 

Different biotic and abiotic 

stresses skew this measurement. 

Physiological efficiency (PE) PE= (Gwf - Gwo)/(Nf 

uptake-No uptake) 

It is used to study short-term field 

trends. 

This measurement requires 

implementation of a control plot 

(i.e., a plot without N 

application) at the site, and 

farmers are mostly hesitant to 

include this control plot at their 

farms. It is not a good measure of 

long-term field trend, as in the 

long run, soil N pool gets 

depleted, hence widening the 

response between treatment and 

control plot, and eventually 
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resulting in incorrect 

interpretations of NUE estimates. 

Agronomic efficiency (AE) AE= (Gwf - Gwo)/Nt It reflects per unit increase in yield 

in response to added N fertilizers, 

and is used for analysis of economic 

returns. 

Similar to PE, it also requires 

control plot for accurate 

assessment of NUE. 

Apparent recovery (AR) AR= Nf uptake - No uptake It expresses crop response to N 

fertilizer, and reflects the efficiency 

of cropping system, and 

management practices by indicating 

potential N losses. 

It is subjected to the same 

limitations as PE and AE. 

*Gw = Grain yield, Ns = N supply (amount of fertilizer or/and available soil N), Nt = total N in plants, Gwf = Grain weight with N 

application, Gwo = Grain weight without N application, Nf uptake = N uptake with N application, No uptake = N uptake without N 

application. 
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Table 1.2. Framework for the 4R Nutrient Stewardship. Combinations of different agronomic practices are used to achieve the larger 

goal of sustainability (Adapted from Bruulsema et al., 2009). 

4R 

Framework 

Scientific principles Important considerations Practices used 

Right rate Synchronization of nutrient 

application rate to crop 

requirement so yield and 

quality goals are met 

Rate of nutrient turn-over from 

organic fertilizers 

Pre-plant fertilization, and in-season 

adjustments accounting for environmental 

variables and equipment availability for 

variable rate application 

Right time Synchronization of soil supply 

rate to nutrient requirement for 

critical growth stages 

Critical growth stages, logistics of 

farm operations, and physical soil 

properties  

Pre-plant and split fertilization, foliar 

application, application of controlled-

release fertilizers, and fertilizer additives 

(urease or/and nitrification inhibitors) 

Right source Complementing fertilizer 

source to crop requirement 

Soil physical properties, equipment 

availability, fertilizer cost 

Granular and liquid fertilizers 

Right place Accessibility of nutrients to 

plant roots 

Soil physical properties, logistics of 

farm operations, and crop root 

growth patterns  

Banding, and broadcasting injection into 

the soil 



 
 

Statistical and In-field Challenges Involved in Quantifying Soil Fertility 

 
 

21 
 

Table 1.3. Performance indicators of the 4R framework. These measures are used to establish the efficacy of the adopted framework for 

nutrient management. This evaluation scheme is developed by the input of various stakeholders, and their relative importance changes 

accordingly (Adapted from Bruulsema et al., 2008). 

Main idea Components Management goals Performance indicators 

 

 

 

 

Sustainable 

development 

Economic Productivity Yield and yield stability 

Quality 

Profitability Farm income  

Economic returns 

Social Sustainability of cropping 

system 

Adoption of the applied practices 

Working conditions 

Accessibility to affordable food 

Ecosystems service 

Environmental Protection against 

environmental degradation  

Soil productivity 

Biodiversity 

Nutrient use efficiency  

Nutrient budget 
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Land and water use efficiency 

Water and air quality 

Soil erosion 
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Table 1.4. Descriptive statistics of studies conducted on variability in soil nitrogen.  

IN: inorganic nitrogen (NO3–N and NH4–N); d.w.: dry weight; AN: available soil nitrate; TN: total soil nitrogen; N/S: not specified 

 

N form  Mean Standard deviation CV (%) Reference 

IN 59.05 (µg g -1 d.w.) 3.30 (µg g -1 d.w.) 5.58 Costa et al., 2015 

N/S 2.37 g kg-1 0.72 g kg-1 30.38 Guan et al., 2017 

TN 0.21 g kg-1 N/A 10.43 Wang et al., 2015 

TN 25 g kg-1 N/A 37 Dessureault-Rompré et al., 2015 

N/S 0.66% 0.28 42.98 Gallardo and Paramá (2007) 

IN 183.1 kg ha-1 88.1 kg ha-1 48.1 Vasu et al., 2017 

TN 0.378% 0.17% 44.73 Wang et al., 2009 

TN 1.89 g kg-1 0.64 g kg-1 33.86 Xing-Yi et al., 2007 

AN 24 kg ha-1 N/A 39 Shahandeh et al., 2011 

AN 8.40 µg g-1 6.57 µg g-1 77.39 Wang et al., 2007 

AN 3.36 mg kg-1 1.60 mg kg-1 47.62 Redulla et al., 2002 
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Chapter 2: Approaches and Challenges Involved in Quantifying Plant 

Nitrogen Use Efficiency (NUE) 

2.1. Introduction 

Several different approaches are commonly used to estimate nitrogen use efficiency (NUE). 

The ratio of grain productivity to some measure of nitrogen (N) is the most commonly used 

definition of NUE (Moll et al., 1982). Ease of application makes ratio analysis prevalent in 

biological sciences; however, this simple matrix is subjected to numerous limitations that are 

mostly overlooked while drawing conclusions. Ratio analysis is based on an implicit assumption 

of an isometric relationship between the two variables of interest, i.e., the slope remains the same, 

and the regression line explaining this functional relationship passes through the origin (Packard 

and Boardman 1988). If the assumption of isometry is not satisfied, then the ratio is dependent on 

some function of the numerator. Therefore, comparing different groups using this approach could 

be misleading (Raubenheimer 1995). As an example, a yield of 200 Kg for 100 Kg of available N 

provides the same NUE ratio at 100 Kg for 50 Kg of N; however, a farmer would clearly prefer 

the former situation. 

Insufficient sample size to distinguish two genotypes differing for NUE, poses another in-

field challenge in accurate assessment of NUE. Sullivan and Feinn (2012) emphasized the 

importance of calculating the minimum number of samples required to test a null hypothesis with 

a sufficient degree of certainty. Calculating the minimum number of samples ensures that the 

experimental design is powerful enough to detect the given effect size. Effect size is a measure of 

substantive significance and is defined as the magnitude of difference between population means. 

Statistical power is defined as the probability of making a type II error. A priori power analysis 

should be conducted to ensure enough samples are included in the experimental design to detect 
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differences that actually exist between the populations. Unfortunately, these analyses are not part 

of standard practice. Therefore, there is a probability of making a type II error i.e., failure to reject 

a wrong null hypothesis, in other words, a false negative finding. 

The accurate calculation of NUE is not only of economic importance for farmers to help 

them exploit maximum potential of the crop plants, but also for plant breeders for the proper 

evaluation of varieties with improved NUE across different experimental designs and agro-

climatic conditions (Weih 2014). However, there is a lack of studies investigating different 

statistical and in-field challenges involved in assessing NUE. This chapter aims to bridge this 

knowledge gap by: (i) investigating the statistical challenges involved in defining NUE as a ratio 

of grain productivity and available soil nitrate (AN), (ii) evaluating different regression models to 

estimate the functional relationship between grain productivity and available soil nitrate as yield 

response curves, and (iii) estimating the minimum number of samples needed to discriminate 

populations differing for NUE. 

2.2. Materials and Methods 

2.2.1. Experiment Sites 

For this study, three commercial sites located north of Edmonton in Sturgeon County, Alberta, 

Canada, were selected. All the sites are predominantly characterized by moderately fine-textured 

Black Chernozemic soil with an average growing season precipitation of 286 mm, and mean 

growing season temperature of 2.67 °C. All these sites have been managed through conventional 

tillage, and are subjected to arable cropping. A crop rotation with wheat (Triticum aestivum L.), 

canola (Brassica napus L.), and field pea (Pisum sativum L.) is used at the Bert (53°51'13.4"N, 

113°14'06.8"W), while a wheat, and canola rotation is used at the Brad (53°51'41.6"N, 
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113°14'49.3"W) and the Lamoureux (53°50'06.5"N, 113°12'14.5"W) sites (Figure. 2.1). In the 

rotation at Brad and Lamoureux sites, canola was grown in 2014, and in 2015, it was wheat. In 

contrast, the Bert site had field peas in 2014 and wheat in 2015. Therefore, only the Bert site had 

a N fixing crop in 2014. In 2015, variable rate (VR) of urea was applied (Figure 2.2a – Figure 

2.2c). In spring 2015, Bert, Brad and Lamoureux sites also received an additional 100 lbs ac-1 of 

urea (46-0-0) to the field through a broadcast application (Table 2.1 – Table 2.3).  

2.2.2. Grain Productivity and Soil Data 

Wheat grain productivity data were recorded using the Green Star™ 3 yield monitor 

mounted on a combine harvester during September 2015. Before harvesting, moisture and grain 

flow sensors were calibrated for the wheat crop. Wet and dry grain volume (kg ha-1) were recorded 

at different geo-referenced locations.  

During early June of 2015, 2 ha sampling grids were defined across the sites and 30 soil 

samples were taken from each grid using a tractor mounted Auto-Probe™ at a depth of 0-15 cm. 

Samples collected from each grid were homogenized to get a representative sample, and sub-

samples (~ 50 grams) from this homogenized sample were placed in a labelled plastic bags, and 

stored at 4°C. Soil samples were sent to Midwest Labs for analysis of available soil nitrate (AN), 

readily available phosphorous (AP), and readily available potassium (AK). The P1 (weak bray) 

test was used to estimate AP, and neutral ammonium acetate extraction was used to measure AK. 

Flow injection analysis was used to analyze AN.  

2.2.3. Ratio and Statistical Analysis of NUE  

Computing NUE as a ratio of grain yield (y, response variable) to AN (x, regressor or 

predictor variables) (Table 2.4), helped to visualize some of the above-mentioned statistical 
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challenges. All statistical analyses were completed in R software (R core Team, 2017). The 

relationship between grain yield and AN in wheat was explored using different regression models. 

Before fitting a linear model, the assumption of normality was checked through Shapiro-Wilks 

test. A linear regression (LR) model I (ordinary least square, OLS), ŷi= β0 + β1x1 + 𝜀0, was fitted 

(Figure 2.3), where β0, β1 and 𝜀0 are the intercept, slope and error term, respectively. 

Fit of the model was assessed through diagnostic graphs (Figure 2.4). Normality and 

homoscedasticity of residuals were also assessed through the Shapiro Wilks and Breuch-Pagan 

tests, respectively. To account for sampling error in the explanatory variable, LR model II was 

performed (Figure 2.3) which computes slope using different methods, such as major axis (MA), 

standard major axis (SMA), and ranged major axis (RMA). Relationship between grain yield and 

AN was further explored using quadratic (QR) and piecewise regression (PWR) models (Figure 

2.5). 

2.2.4. Minimum Sample Size 

The minimum number of sampling units required to study a certain effect size with a 

specified statistical power were calculated using the following formula: 

                               N = 4σ2 (Zcrit+Zpwr)
2 /D2                                                                                                 [2.1] 

Where N is the sum of sample sizes for both varieties, σ2 is the variance, and D is the 

minimum expected difference between varieties expressed as a percentage. Z power (Zpwr) and Z 

critical (Zcrit) are the statistical power, and significance criterion used for this analysis. I chose 

conventional Zcrit of 0.05. To ensure that the study is flexible enough to accommodate experimental 

rationale and feasibility pre-requisite of future studies, I selected Zpwr of 0.80.  
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2.3. Results 

2.3.1. Statistical Analysis of NUE 

Computing NUE as a ratio of grain yield to AN demonstrated mean yield gain of 102 ± 

24.53, 232 ± 105.68, and 164 ± 23.31 kg ha-1 for every lb ac-1 of AN at the Bert, Brad and 

Lamoureux sites, respectively (Table 2.4). Average NUE values; however, can be misleading if 

the relationship between grain yield and AN does not pass through the origin or is non-linear in 

nature.  

Both, exploratory data analysis and the Shapiro Wilks test showed that grain yield and AN 

data for all the sites were normally distributed. Predicting the effect of the independent variable 

(AN) on the dependent variable (grain yield) using LR model I, ŷ0= β0 + β1x, gave the following 

equations: 

Bert:                                          ŷa = - 87.4 + 107x                                                                    [2.2]        

Brad:                                         ŷb = 3314.3 + 62x                                                                    [2.3]    

Lamoureux:                              ŷc = 2590.9 + 78x                                                                    [2.4]       

Where, ŷ is the predicted value of grain yield. β0 is the intercept and β1 is the slope, and they 

represent the estimated values of grain yield increase when no N and each additional 1 lb ac-1 of 

soil N is available, respectively. At all three sites, there was a significant linear relationship 

between grain yield and AN with a slope of 107 ± 12.37, 62 ± 9.51, and 78 ± 13.95 kg ha-1 grain 

yield per unit AN (lb ac-1) at the Bert, Brad, and Lamoureux sites, respectively. 

Linear regression (LR) model I does not take into consideration the measurement error in 

the predictor variable. However, LR model II addresses this limitation, and accounts for 
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measurement errors. Major axis (MA), standard major axis (SMA), and ranged major axis (RMA) 

are three different methods used by the lmodel2 function to compute the slope parameter. 

Assumptions for each of these methods were assessed prior to deciding which method to use. The 

principal assumption of bivariate normality, which is common to all three methods, was satisfied 

(p-value = 0.05). Since the two variables were dimensionally heterogeneous and were correlated, 

SMA was an appropriate model choice. Using this approach showed a grain yield increase of 117, 

74, and 91 kg ha-1 for every lb ac-1 of AN at the Bert, Brad, and Lamoreaux sites, respectively. 

However, for each site, LR I and II yielded insignificant (p > 0.05) differences in NUEs.  

Plotting the relationship between grain yield and AN as shown by these three different 

approaches (Figure 2.3) showed that ratio represented the shallowest relationship between the two 

variables at Bert as shown by the lower average NUE estimate; whereas, it overestimated this 

functional relationship for the other two sites, as given by higher average values of NUE (Figure 

2.3). 

The possibility of non-linear relationship was tested by visual inspection of regression 

diagnostic plots for each site (Figure 2.4). Each residual vs. fitted plot showed some curvature as 

opposed to a roughly straight line required in order to meet the assumption of linearity of the 

residuals. Fitted LR models complied with the assumption of normality as shown by quantile-

quantile (Q-Q) plots (Figure 2.4) and the Shapiro Wilks test. Assumption of homoscedasticity 

(homogeneity of variance) was also verified using the Breuch-Pagan test.  

This pattern of distribution was further investigated to see if a different model fitted our 

datasets better compared to the LR models. Using QR analysis to model the functional relationship 

between the two variables yielded the following equations: 
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Bert:                                     ŷi= -3524.1 + 325.6xi – 3.08xi
2 +𝜀0                                                                      [2.5] 

Brad:                                    ŷj= 2232.7 + 170.1xj – 2.04xj
2 +𝜀0                                                                       [2.6] 

Lamoureux:                         ŷk= -497.9 + 270.2xk – 2.79xk
2 +𝜀0                                                                    [2.7] 

                                               

Unlike the LR models where slope was constant, and was independent of value of x, the 

slope in QR analyses changed throughout the regression line for the quadratic functions, and was 

given by the following first derivatives:  

Bert:                                      ŷi'= -6.16xi + 325.6                                                                      [2.8] 

Brad:                                     ŷj'= -4.08xj + 170.1                                                                     [2.9] 

Lamoureux:                          ŷk'= -5.58xk + 270.2                                                                 [2.10] 

Using equation 2.8, 2.9, and 2.10, the amount of AN where grain yield response became 

zero, was calculated. For a given site, these first derivates represented the best estimate of NUE as 

they captured the true dynamics of grain response to AN. The summary tables (data not shown) 

for the quadratic models showed that both linear (x – soil N) and quadratic (x2 – soil N2) terms in 

these models were significant predictors of the functional relationship between the two variables 

for each site (p < 0.001). Therefore, a quadratic approach should have been included while 

studying this relationship. This conclusion was further supplemented by examining performance 

indicators such as root mean square error (RMSE), and normalized root mean square error 

(RMSEn) for each of these models. Piecewise regression (PWR) was also used to study the 

functional relationship between the two variables, and it was the best performing model with 

smaller RMSE and RMSEn of 357 kg ha-1 and 2.13% for the Bert, 379 kg ha-1 and 1.54% for the 
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Brad, and 384 kg ha-1 and 1.73% for the Lamoureux site. Performance of the QR models was 

comparable to PWR models, with RMSE and RMSEn of 347 kg ha-1 and 2.14% for the Bert, 437 

kg ha-1 and 1.83% for the Brad, and 376 kg ha-1 and 1.79% for the Lamoureux site. In contrast, LR 

models showed higher RMSE and RMSEn of 602 kg ha-1 and 3.83% for the Bert, 534 kg ha-1 and 

2.31% for the Brad, and 415 kg ha-1 and 2.07% for the Lamoureux site (Table 2.5).  

2.3.2. Minimum Sample Size  

To estimate the minimum number of samples required to distinguish the two genotypes 

differing for their NUE, I conducted a power analysis. Different parameters taken into 

consideration for this power analysis included: level of significance (𝛼 = 0.05), effect size (10% 

difference in NUE), statistical power, and measure of variability (i.e., variance). To detect a 

difference of 10% in NUE relative to the mean of the check variety, AC Andrew, the minimum 

number of plots needed for AC Foremost, Plentiful and Harvest were 53, 969 and 47 plots, 

respectively (Table 2.6). The large number of samples required to detect a 10% difference in NUE 

of Plentiful compared to AC Andrew reflected the high variance (CV = 49%) associated with this 

cultivar/site. However, a decrease in NUE variability in datasets for AC Foremost (CV = 24%), 

and Harvest (CV = 14%) corresponded with smaller sample sizes and lower variances (Table 2.6).  

2.4. Discussion 

2.4.1. Ratio—A Dubious Matrix to Estimate NUE  

Disparity in the functional relationship between AN and grain yield show that being a ratio, 

NUE could also be subjected to the same limitations of ratio analysis as previously demonstrated 

by Tanner (1949), Packard and Boardman (1988), Allison et al., (1995), Raubenheimer (1995), 

Jasieński and Bazzaz (1999), and Beaupre (2005). This discrepancy in predicting the effect of AN 
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on grain yield gives an important insight into the challenges that could be involved in accurately 

assessing NUE, which in turn can have interpretative and management implications. 

Allison et al., (1995) demonstrated that the ability of ratios to control for the effects of 

denominator on the numerator was dependent on a few statistical assumptions. Results from ratio 

analysis were only meaningful if the relationship between the two variables was isometric in nature 

i.e., the slope was constant and the line explaining the functional relationship was linear and passed 

through the point of origin (Packard and Boardman 1988; Raubenheimer 1995). Ratio analysis 

fails to account for a non-linear relationship between two variables, and fails to remove any 

confounding effect of the denominator, thus making ratio analysis a dubious matrix (Curran-

Everett 2013). Our results showed that QR models performed better in comparison to the LR 

models, and yielded lower RMSE and RMSEn. This observation confirmed that the relationship 

between grain yield and AN was non-constant, allometric in nature. These results were consistent 

with conclusions from earlier studies (Kaleem et al., 2012; Poffenbarger et al., 2017). According 

to these QR models, there were two phases of response curves; phase A and phase B. During phase 

A, AN improved the crop's ability to assimilate more N into the grain and hence, there was a 

positive grain yield response. However, per unit increase in grain yield decreased for every 

increment of AN until it became zero. The amount of AN where slope became zero marked the 

culmination of phase A. In phase B, grain yield reached its maximum and beyond this level of AN, 

NUE continued to decrease (McDonald and Hooper 2013). This curvilinear response disproved 

the assumption of linearity and constant slope, and showed that grain productivity was changing 

throughout the curve as some function of AN, as given by equation 2.8–2.10.  

Results from the QR analysis were in accordance to response curves generated from field 

trials used to estimate agronomically optimum N rate (AONR) and economic optimum N rate 
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(EONR) (Rutan and Steinke 2017). These response curves can help farmers to identify maximum 

achievable yield which is represented by its summit. The corresponding value of N supply rate 

(fertilizer and AN) is known as agronomically optimum N rate (Sawyer et al., 2006). Though, this 

represents the maximum yield that could be achieved, revenue drives these management decisions. 

Therefore, EONR is estimated from the response curve where the N supply rate generates enough 

revenue from gain in yield that it offsets the cost of its application (Heady et al.,1955; Sawyer et 

al., 2006). This is indicated by the point on yield curve where slope is the same as the slope for 

LR model explaining the relationship between revenue and cost of N application. These yield 

response curves are used as a tool to help farmers make N fertilization management decisions. 

In addition to the non-linear relationship between the two variables, NUE also deviated from 

the assumption of a zero intercept for the Lamoureux and Brad sites. Ratio analysis offers a 

reasonable means of controlling the effect of denominator on the numerator only when intercept 

is not significantly different from zero (Allison et al., 1995; Curran-Everett 2013). However, for 

the Lamoureux and Brads site, this condition was not satisfied. Therefore, NUE as a ratio failed to 

provide a legitimate method to control for the effect of AN on grain yield for these sites. Failure 

to comply with this condition further illustrated the perils associated with defining NUE as a 

meaningful ratio. Defining NUE as per unit increase in grain yield to AN infers that the more soil 

N is available to the plants, the higher the grain yield. However, grain yield beyond a certain 

optimum of AN is limited by other agronomic and environmental factors, such as moisture and 

availability of other nutrients (Brancourt-Hulmel et al., 1999; Raun and Johnson 1999; Fixen et 

al., 2015). Therefore, one should be careful while drawing any conclusions using this definition 

of NUE, as N availability beyond the AONR can likely become detrimental to the grain 

productivity and quality, and the environment (Hong et al., 2007).  
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2.4.2. Regression—An Alternative Heuristic Approach to Estimate NUE 

Regression has been suggested as an alternate heuristic, as it alleviates some of the 

limitations of ratio analysis (Curran-Everett 2013). Regression analysis offers a flexible approach 

for hypothesis testing as it is not restricted by the necessity of a zero intercept of the regression of 

the variables of interest (Allison et al., 1995). Before proceeding to LR, the assumption of 

normality should be satisfied. If the variables are not normally distributed, one needs to resort to 

non-parametric statistical tests for hypothesis testing. For all the sites, data for both variables 

exhibited a normal distribution. Comparing the results from ratio and LR model I analysis led to 

disparate conclusions. According to ratio analysis, the highest per unit increase in grain yield to 

AN was observed at Brad site; however, this per unit change was the lowest according to LR model 

I analysis. Contradicting results were also observed for Bert site where ratio analysis yielded the 

lowest per unit gain in grain yield contrary to the highest per unit gain according to LR model I 

analysis. These different conclusions are tethered to the problematic matrix of ratio analysis that 

obscures the true relationship between the variables of interest, hence leading to erroneous 

conclusions. To my knowledge, statistical challenges involved in accurate assessment of NUE in 

light of the limitations of ratio analysis have not been explicitly described before in scientific 

literature.  

In addition to the theoretical flaws of a ratio, there are a few practical limitations to be 

considered as well, such as measurement errors associated with the explanatory variable (Curran-

Everett 2013). The LR model I assumed there were no appreciable errors in the measurements of 

AN. However, soil test results are subjected to various sampling and measurement errors (Tan 

2005), and these measurement errors are rarely taken into consideration. This failure can introduce 

bias in slope estimated through LR model I (Legendre and Legendre 2012). In such scenarios, it 
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is recommended to use LR model II to predict this relationship among the two variables (Legendre 

2000). In my study, results from LR model II were consistent with the findings of LR model I 

analysis, and led to the same conclusion where NUE was the highest at Bert site; whereas, it was 

the lowest at Brad site. Relatively smaller sample sizes used in this study might have concealed 

differences in NUE estimates from the two approaches. Therefore, it is recommended to use higher 

sample size for future studies. To my knowledge, the functional relationship between AN and grain 

yield has not been explicitly described before using LR model II.  

The relationship between AN and grain yield was also modelled through the PWR model, 

where two interconnected LR lines fitted the data for different ranges of AN. The points of contact 

between these two fitted linear segments, known as the breakpoints, represented the value of AN 

beyond which slope of the linear function changed. These breakpoints offered valuable 

information of practical significance (Muggeo 2017) representing the amounts of AN beyond 

which the net per unit increments in grain yield noticeably decreased. This information can enable 

the farmers to make informed decisions as to whether fertilize their field given that the revenue 

grows faster than the cost of fertilizer application.  

The QR model was the most robust model, as it illustrated the true dynamics of NUE, as 

given by the “law of diminishing returns” of plant growth proposed by Ehrlich Alfred Mitscherlich 

in 1909. This law stated that for every increment of fertilizer input, the growth response―in this 

case,  grain yield response decreased (Mitscherlich 1909). The yield response reduced as a function 

of the first derivative for the given response curve. In contrast, the PWR model suggested that the 

relationship of AN and grain yield was explained by multiple linear segments, which in return, 

perpetuated constant per unit increase within the various ranges of AN. This observation made any 
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simplified linear estimation of NUE a questionable approach to quantify the relationship between 

the two variables. 

2.4.3. Sample Size—A Practical Limitation to Accurately Evaluate Genotypes Differing for 

NUE 

Our results suggested that the evaluation of different wheat varieties for improved NUE 

required a large number of plots to observe a certain difference relative to control varieties (Table 

2.6). To my knowledge, use of power analyses to estimate the minimum number of plots required 

to distinguish genotypes differing for NUE have not been reported before in the scientific 

literature. However, power analysis is an important preliminary step as it enables the plant breeders 

to design an experiment powerful enough to eliminate the probability of making type II error 

(Sullivan and Feinn 2012). These findings lead us to another statistical challenge that limits the 

accurate in-field assessment of NUE.  

Given the large number of plots needed to evaluate the performance of NUE genotypes, 

financial and logistic limitations would make it difficult for the breeders to set up and manage 

trials with sufficient statistical power. Such intense requirements for infrastructure, labor, space, 

machinery and investment could hamper the practical application of this analysis.  

2.5. Conclusion 

This study provides evidence that statistical and practical limitations could hamper the 

accurate assessment of NUE. Defining NUE as a ratio of grain yield to any measure of N, in this 

instance, AN is a deceptively simple matrix that could lead to inaccurate conclusions. As shown 

in this study, the NUE as a ratio fails to meet the underlying assumption of isometry therefore, 

skewing the true relationship between the numerator and denominator. Among all the evaluated 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sullivan%20GM%5BAuthor%5D&cauthor=true&cauthor_uid=23997866
https://www.ncbi.nlm.nih.gov/pubmed/?term=Feinn%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23997866
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approaches, QR analysis is the best approach to estimate NUE, as it elucidates true quadratic 

relationship between grain yield and AN, and that is given by the first derivative of the quadratic 

equation. 

In addition to statistical limitations, the challenges in implementing a trial with sufficient 

power to detect a substantive difference between the genotypes differing for NUE imposes a 

practical limitation. In many or perhaps most cases, a large sample size is required to achieve 

sufficient power for hypothesis testing. It is imperative to acknowledge these statistical and 

practical challenges while drawing any conclusion using ratio analysis as a mean to study NUE. 
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2.6. Figures and Tables 

 

Figure 2.1. Map showing soil groups of Alberta. The geographic location of three study sites is 

indicated by red dots. Image courtesy: Alberta Agriculture and Forestry.  

Brad
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Lamoureux  
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Figure 2.2 (a). Variable rate application of urea (46-0-0) to the Bert site for year 2015. Green, yellow and 

red pixels illustrate 120, 100, and 87 lbs ac-1 of applied urea. 
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Figure 2.2 (b). Variable rate application of urea (46-0-0) to the Lamoureux site for year 2015. Green, 

yellow and red pixels illustrate 76, 65, and 54 lbs ac-1 of applied urea. 
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Figure 2.2 (c). Variable rate application of urea (46-0-0) to the Brad site for year 2015. Green, and red 

pixels illustrate 130, and 110 lbs ac-1 of applied urea. 
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(a) Av. (y/x) = 232 kg ha-1 

(c) LR II = 74 kg ha-1 (b) LR I = 107 ± 12.37 kg ha-1 
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(a) Av. (y/x) = 102 kg ha-1 

(b) LR I = 62 ± 9.51 kg ha-1 

(c) LR II = 117.31 kg ha-1 
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Available soil nitrate (lbs ac-1) 

Figure 2.3. Exploration of the relationship between available soil nitrate (AN) and wheat grain 

yield for the Bert (a), Brad (b), and Lamoureux (c) sites. Line A (shown in gray) shows on an 

average, there was an increase of 102, 232, 164 kg ha-1 in grain yield for every lb ac-1 of AN at the 

Bert, Brad, and Lamoureux sites, respectively. Line B (shown in red) and C (shown in black) show 

that the estimates of slope using linear regression model I and linear regression model II were 107 

± 12.37 kg ha-1 and 117 kg ha-1 for Bert, 62 ± 9.51 kg ha-1 and 74 kg ha-1 for Brad, and 78 ± 13.95 

kg ha-1 and 91 kg ha-1 for Lamoureux site, respectively. 
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(c) (b) LR I = 78 ± 13.95 kg ha-1 (a) Av. (y/x) = 164 kg ha-1 

(c) LR II = 91 kg ha-1 
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Figure 2.4. Regression diagnostic plots showing fit of the linear models for the Bert (a), Brad (b), 

and Lamoureux (c) sites. Plots of residuals versus fitted values in the left panels showed patterns 

in dispersion of points around a horizontal line, which should otherwise be a roughly straight line 

in order to meet the assumption of linearity of the residuals. This indicates that these linear models 

(a) 

(b) 

(c) 
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do not perform well in terms of modelling the data for these sites. Q-Q plots in the right panels 

show residuals aligning closely to the diagonal lines indicating that residuals are normally 

distributed.
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Quadratic regression                                           Piecewise regression                                              Linear regression 

       

        

Available soil nitrate (lbs ac-1) 

Figure 2.5. Regression analysis of nitrogen use efficiency (NUE) in wheat. NUE for each of our three study sites; Bert (a-c), Brad (d-f), 

and Lamoureux (g-i) was modelled using grain yield and available soil nitrate (AN) data. Grain yield was monitored in Fall 2015 using 

Green Star Monitor 3 mounted combine harvester. Spring soil samples were collected during June of the same year from a 2-ha grid at 

a depth of 0-15 cm using AutoProbe™ from each site. Soil samples were sent to Midwest lab for soil fertility analysis. These acquired 

data sets were modelled using linear, quadratic regression (QR) and piecewise regression (PWR) analysis in R software. Dotted vertical 

lines show the threshold (to) for respective model, beyond which yield response either became zero (as in case of QR model), or reduced 

(as shown by PWR model).  
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Figure 2.5. (continued)
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Table 2.1. Soil N (applied N fertilizer and available soil N) and measured wheat yield at the Bert 

site in 2015. Peas was grown at this site in 2014. 

Applied N fertilizer (lbs ac-1) Measured AN (lbs ac-1) Measured Yield (kg ha-1) 

120 26 2683.3 

87 42 5070.7 

120 20 2326.9 

87 40 4599.9 

100 38 4633.6 

87 50 4963.1 

100 32 3147.3 

120 14 524.6 

100 30 3201.1 

120 18 948.2 

87 54 4902.6 

100 36 4445.3 

120 24 2340.3 

100 40 4169.6 

87 56 5151.4 

120 28 3268.4 

100 32 4243.5 

 

  



 
 

64 
 

Table 2.2. Soil N (applied N fertilizer and available soil N) and measured wheat yield at the 

Lamoureux site in 2015. Canola was grown in 2014 at this site. 

Applied N fertilizer (lbs ac-1) Measured AN (lbs ac-1) Measured Yield (kg ha-1) 

76 20 3631.56 

76 24 3826.59 

76 24 4821.9 

65 26 4976.58 

76 26 4916.05 

76 30 5265.76 

65 32 5064.01 

76 32 5010.2 

65 34 5279.21 

65 36 5245.58 

65 40 6449.38 

54 46 5971.89 

54 48 5958.44 
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Table 2.3. Soil N (applied N fertilizer and available soil N) and measured wheat yield at the Brad 

site in 2015. Canola was grown in 2014 at this site. 

Applied N fertilizer (lbs ac-1) Measured AN (lbs ac-1) Measured Yield (kg ha-1) 

130 28 5709.62 

130 28 5655.81 

130 30 5265.76 

130 30 5817.22 

100 32 5064.01 

130 32 5010.2 

110 34 5279.21 

110 36 5245.58 

110 40 6449.38 

110 44 5333.01 

110 46 5971.89 

110 48 5958.44 

130 6 2616.07 

130 8 3463.43 

130 10 3934.19 

130 12 4088.87 

130 14 3994.71 

130 16 4727.75 

130 18 5333.01 
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Table 2.4. Descriptive statistics for data variables. 

Site Data variables  Mean St.dev. CV (%) Skewness Kurtosis 

Bert 

(n = 17) 

NUE  102 24.53 24 -1.28 0.96 

Grain yield  

(kg ha-1) 

3566 1428.24 40 -0.70 -0.74 

AN (lbs ac-1) 34 12.17 36 0.20 -1.01 

Brad 

(n = 19) 

NUE 232 105.68 45 0.74 -0.97 

Grain yield 

(kg ha-1) 

4996 974.53 19 -0.78 -0.22 

AN (lbs ac-1) 27 13.22 49 -0.08 -1.35 

Lamoureux  

(n = 13) 

NUE 164 23.31 14 -0.08 -1.17 

Grain yield 

(kg ha-1) 

5109 780.56 15 -0.27 -0.56 

AN (lbs ac-1) 32 8.58 27 0.46 -1.05 

NUE: nitrogen use efficiency; AN: Available soil nitrate (lbs ac-1)  
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Table 2.5. Regression parameters for quadratic, piecewise and simple linear regression models. 

Site  Models RMSE (kg ha-1) RMSEn (%) 

Bert  Quadratic 347 2.14 

 Piecewise 357 2.13 

 Linear 602 3.83 

Brad  Quadratic 437 1.83 

 Piecewise 379 1.54 

 Linear 534 2.31 

Lamoureux  Quadratic 376 1.79 

 Piecewise 384 1.73 

 Linear 415 2.07 

RMSE: root mean square error (kg ha-1); RMSEn: normalized root mean square error (%). 
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Table 2.6. Estimated number of samples needed to detect a difference of 10% in nitrogen use 

efficiency relative to the mean of the check variety, AC Andrew, at a significance level of 95% (α 

= 0.05) and power of 80% (β = 0.8). 

 Variety Mean NUE NUE Variance Minimum Sample Size (plots 

per hybrid/ line) 

Plentiful 232 11,168.26 969 

Harvest 164 543.35 47 

AC Foremost 102 601.72 53 

NUE: nitrogen use efficiency  
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Chapter 3: Comparative Assessment of Soil Fertility Parameters Using Non-

Geostatistical and Geostatistical Approaches  

3.1. Introduction 

Spatial heterogeneity in soil properties across the landscape can be conceptualized as a 

function of interactions between intrinsic (e.g., topography, soil, and vegetation type) and extrinsic 

(e.g., management practices and climate) factors (Cambardella et al., 1994; Diacono et al., 2013; 

Qiu et al., 2016). At first, the resulting spatial variability appears to be random due to complex and 

dynamic interactions between these factors. Significant variability in physical and chemical soil 

properties exists across a landscape, and this variability poses a challenge in farm management 

from both economic and environmental standpoint (Komatsuzaki and Ohta 2007). By explicitly 

unveiling and documenting spatial patterns, precision mapping offers a solution to this problem, 

and enables managers to make informed management decisions (Diacono et al., 2013). However, 

success of this technology hinges on the accurate assessment and quantification of the underlying 

soil variability. 

The development of sophisticated global positioning systems (GPS) and powerful software 

have recently prompted the integration of geostatistics into agricultural and environmental 

management. Geostatistics relies on spatial autocorrelation to generate a continuous surface from 

point data, and interpolates the given variable at unsampled locations with an estimate of reliability 

(Oliver and Webster 2014; Li and Heap 2014 ). Since the advent of this field, a number of different 

interpolation methods have been developed—some more robust than the others.  

Kriging is a geostatistical equivalent of least square regression that yields best linear 

unbiased predictions at any unsampled location (Noel 1990). Univariate kriging methods, such as 

ordinary kriging (OK) have been used to predict soil fertility profiles across different landscapes 
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(Xing-Yi et al., 2007; Mueller et al., 2010; Vasu et al., 2017). However, OK may have inadequate 

predictive power to develop accurate predictive maps (Li and Heap 2011). In such scenarios, 

sample size may limit the reliability of the derived inference, as the estimate of spatial 

autocorrelation, may be erroneous (Oliver and Webster 2014). 

Recently, combined interpolation methods, such as regression kriging (RK), have been 

employed to predict and subsequently map different soil properties. RK is stochastic extension of 

regression analysis that involves kriging of the residuals obtained from regressing the response 

variable as a function of auxiliary variables (Hengl et al., 2004). Different case studies have shown 

that RK performs better as compared to other competitors including inverse distance weighting 

interpolation, OK, and ordinary cokriging (OCK) (Hengl et al., 2007; Meng et al., 2013). 

However, lack of a user-friendly geoprocessing environment limits widespread adoption of RK. 

Furthermore, regression analysis becomes increasingly difficult if plethora of auxiliary variables 

are available. 

Theoretical and practical aspects of these spatial interpolation methods (SIMs) have 

continued to evolve, and this has led into the development of multivariate kriging methods, such 

as OCK. OCK is becoming increasingly popular due to easy access to high resolution remote 

sensed data, such as Light Detection and Ranging (LIDAR), and improved computational power. 

Among other pedogenic factors, topography has been widely used to model different 

pedogeomorphological processes, including soil fertility (Song et al., 2014), and soil hydrology. 

Although many studies have documented improvement in quantification of underlying spatial 

heterogeneity using OCK (Bogunovic et al., 2017; Guenette and Hernandez-Ramirez 2018), some 

studies have also shown that use of OCK may deteriorate the predictive accuracy when compared 
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to its univariate and hybrid counterparts, such as OK and RK, respectively (Peng et al., 2013; 

Bogunovic et al., 2017).  

Topography is one of the most important attributes of agronomic fields that affects the 

paradigm of spatial distribution of soil through erosion and deposition (Moulin et al., 1994). Thus, 

spatial distribution of various intrinsic pedogenic processes, including soil fertility and soil 

hydrology, are also affected by topography due to redistribution of soil particles (Bakhsh et al., 

2000). Crop productivity is the product of interactions between these edaphic variables. Moreover, 

environmental factors also exert significant effect on crop productivity. The easy availability of 

remote sensing data offers new realms for quantifying and managing variability in crop 

productivity. Studies have been conducted to decipher the relationship between crop productivity 

and topographic variables, such as slope, elevation, curvature and aspect (Moulin et al., 1994; 

Iqbal et al., 2005; Kumhálová et al., 2011; Heil et al., 2018). However, the relationship between 

topography and crop productivity is poorly understood, and there is a paucity of studies within the 

Canadian Prairies 

Several studies have been conducted to quantify the spatial dependency of soil fertility in 

agricultural fields; however, there is a knowledge gap in the relative performance of typical spatial 

interpolation methods, particularly in Canadian Prairies. To achieve the ultimate goal of tailoring 

inputs to spatially-varying crop requirements, it is imperative to develop accurate soil maps. 

Therefore, research objectives for this project were: (i) to quantify the spatial variability in soil 

fertility profile at a field scale, (ii) to compare performance of regression and geostatistical models 

with an aim to identify an optimal spatial model, (iii) to determine if multivariate kriging 

outperforms univariate and hybrid kriging methods by the addition of LIDAR derived terrain 

covariates, (iv) to estimate minimum number of sample size needed to predict each variable with 
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a certain degree of precision, and (v) to decipher relationship between crop productivity and 

topographic attributes, such as aspect, slope, elevation, curvature, and hillshade. 

3.2. Materials and Methods 

3.2.1. Study Sites 

This study was conducted at two commercial sites privately owned and managed by Kalco 

Farms Ltd. These study sites were located north of Edmonton in Sturgeon county. The Lamoureux 

site (53°50'06.5"N, 113°12'14.5"W) had a total area of approximately 60 hectares (ha) with a 

wheat (Triticum aestivum L.)–canola (Brassica napus L.) rotation. The Bert site (53°51'13.4"N, 

113°14'06.8"W) employed wheat–canola–field pea (Pisum sativum L.) rotation on an area of 78 

ha. Farm operations included light tillage in early May for even distribution of crop residue and 

weed control. Soil type at both sites was characterized as Black Chernozem according to Canadian 

System of Soil Classification. Based on data collected over 15 years from the nearest weather 

station, approximately 15 km away from these sites, climate was characterized by mean annual 

precipitation and air temperature of 730 mm and 2.67 °C, respectively. 

3.2.2. Soil Data Collection 

During June 2014, the Bert study site was sampled at 82 locations with 95 m between each 

sampling point on a 1 ha (2.5 acre) grid using a tractor driver AutoProbe ™ soil sampler. A total 

of 20 samples were collected from each grid at a depth of 0-15 cm followed by homogenization to 

get one representative sample per grid. The centre of each grid was geo-referenced as a sampling 

location for that grid. The collected samples were added to pre-labelled sampling bags, and were 

stored at 4°C prior to shipping to Midwest laboratories for soil fertility analysis.  
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An area of 8 ha was sampled at 36 georeferenced locations at the Lamoureux site during 

June 2017 at a distance of 56 m, and an additional 20 samples were collected from two transects 

at a distance of 4 m. Sampling equipment and handling was the same as that for Bert site, except 

for the sampling intensity and distance.  

3.2.3. Derivation of Terrain Covariates from LIDAR Data 

Topographic LIDAR data was acquired via Cessna aircraft equipped with Leica sensors with 

cloud datapoints integrated to a resolution of 2 m x 2 m with a corresponding horizontal and 

vertical accuracies of 50 and 30 cm, respectively. A suite of terrain covariates including elevation, 

aspect, hillshade, slope, and curvature were used to describe land surfaces. Candidate terrain 

covariates were derived using Spatial Analyst Tools from ArcGIS ver. 10.5.1 (ESRI, Redlands, 

CA, USA). After extracting area of interest for both sites, rasters for aspect, hillshade, slope and 

curvature were developed using the “surface” tool. Elevation data were extracted for each 2 m x 2 

m grid cell followed by “sampling” all the developed rasters using bilinear interpolation into a .dbf 

file. 

3.2.4. Statistics 

Sample statistics including mean, standard deviation, minimum and maximum values, and 

coefficient of variation (CV) (Table 3.1) were calculated to describe different soil fertility 

parameters of our study sites. Exploratory data analysis, such as visual analysis of Q-Q plots was 

conducted to explore datasets for the presence of outliers. Prior to multiple linear regression (MLR) 

analysis, the assumption of normality was tested using the Kolmogorov-Smirnov (KS) test. 

Measures of kurtosis and skewness (Table 3.1) were used in conjunction with KS test to identify 

non-normal variables, and were log transformed where deemed necessary. Auxiliary variables 

were pre-screened based on strength and level of significance of their functional relationship with 
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the response variables (Table 3.2). Variables with high variance inflation factor (VIFs > 4) were 

eliminated from the respective maximal models to avoid multicollinearity among auxiliary 

variables. The model with the lowest Akaike’s Information Criterion (AIC) was selected as the 

optimal model (Table 3.3), and were tested for assumption of normality and homoscedasticity of 

residuals through the KS test and visual examination. Residuals obtained from MLR analysis were 

subsequently used in RK for spatial structural analysis and interpolation. The data analysis was 

completed using R ver. 3.3.3 (R Foundation for Statistical Computing, 2017). The relationship 

between grain productivity and terrain attributes was explored using Pearson correlation analysis 

in SigmaPlot ver. 11.1. (SYSTAT 2008) (Table 3.4). 

3.2.5. Geostatistics 

The spatial structure of each soil fertility parameter was deciphered using a combination of 

different standard, including OK and OCK, and combined geostatistical methods, such as RK. 

Estimation of the semivariogram constituted the preliminary step for each one of these 

geostatistical analysis methods, and was used to quantify variation in soil fertility parameters as a 

function of distance. The developed semi-variogram was a graphical representation of the 

magnitude of this spatial auto-correlation, where spatial auto-correlation statistic—semivariance, 

was plotted against distance. Semivariance for a given sampling interval can be calculated using 

the following formula:  

                                        γ(h) = 1

2(𝑁)

 ∑ (𝑍𝑖 –  𝑍𝑖 + ℎ )𝑁
𝑖 = 1

2                                                            [3.1] 

where; γ(h) is the semivariance for sampling pairs separated by distance h, Zi and Zi+h are the 

measured sample values at locations separated by distance h. 
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This iterative modelling exercise was completed in ArcGIS ver. 10.5.1 (ESRI, Redlands, 

CA, USA). Active lag distance, which defined the distance over which spatial autocorrelation 

statistic was calculated, covered 50-75% of the maximum sampling distance. A minimum of 30 

pairs were used to populate each lag class, and lag class distance intervals were selected 

accordingly. After calculating semivariance for each class, a spherical, exponential, gaussian or 

linear model was fitted (Figure 3.1 & 3.2, Table 3.5). After modelling the spatial dependence of 

each soil fertility parameter using semivariogram, the underlying spatial structure was interpolated 

using three types of kriging. The general estimation formula for OK, OCK and RK are presented 

in the following equations:  

                                           𝑂𝐾 =  �̂�i = ∑ 𝑁
𝑖=1 i Zi                                                            [3.2]     

                               OCK =  �̂�i = ∑ 𝑎𝑁
𝑖 = 1 i Zi + ∑ 𝑏𝑁

𝑖 = 1 i Zj                                                [3.3] 

                                 RK = �̂�i = Zi(R) + ∑ 𝑁
𝑖 = 1 i e(Zi)                                                      [3.4] 

where; �̂�i and Zi are the predicted value and measured value for the variable of interest at location 

i, Zj is the measured value for the covariate, N is number of samples, i , ai, and bi are the kriging 

weights assigned to the measured value, Zi(R) is the estimated value of variable Zi by the regression 

model, and i e(Zi) is the residual for the given location i. 

 A series of additional steps were completed for OCK due to inclusion of covariates. Similar 

to primary variables, in this case―soil fertility parameters, spatial autocorrelation for each 

covariate was also explored through semivariogram. Cross-correlation between primary and 

secondary variables was given by cross-variogram, and it established cross-continuity between the 

two variables as a function distance, and cross-correlation was calculated using following formula: 
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                          Zij = Zji = 
1

2𝑁 (ℎ)
 ∑ [𝑍 

𝑁(ℎ)
𝑖 = 1 (i+h) – Zi ] x [Zj(j+h) – Zj ]                                  [3.5] 

where; Zij and Zji  is the cross-correlation between variable i and j, N is number of samples, h is the 

distance between two sampling points, Zi and Zi+h are the measured sample values of the primary 

variable at locations separated by distance h, Zj and Zj+h are the measured sample values of 

covariate at locations separated by distance h. 

3.2.6. Cross-validation 

Cross-validation is a leave-one-out method that removes one measured value at a time, and 

uses the developed model to re-estimate the removed value from the remaining values of the 

dataset. It is performed to test accuracy of the developed predictive models. Different diagnostic 

accuracy statistics, including root mean square error (RMSE), mean square error (MSE), and mean 

absolute error (MAE) are used for this purpose, and these are defined in the equations below: 

                                                MSE = 1

𝑛

 ∑ (𝑍𝑛
𝑖 = 1 i - �̂�i)

2                                                                                [3.6] 

                                         RMSE =  √
1

𝑛
 ∑ (𝑛

𝑖 = 1 𝑍𝑖  −  �̂�𝑖)
2                                                                       [3.7] 

                                         MAE = 1

𝑛

 ∑ (𝑍𝑛
𝑖 = 1 i - �̂�i)                                                             [3.8] 

where; �̂�i and Zi are the predicted value and measured value for the variable of interest i, 𝑎𝑛𝑑 n is 

number of samples. 

3.2.7. Estimation of Minimum Sample Size 

Minimum sample size was calculated to estimate the number of soil samples required to 

predict each soil fertility parameter with the desired level of accuracy (Table 3.7). For this study, 
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accuracy levels of 10%, 20% and 50%, and probability of type I errors i.e., alpha (α) was set to 

0.05 and 0.1. This set criteria provided reasonable spread of accuracy thresholds and statistical 

significance levels that were flexible enough to accommodate the accuracy needs of the upcoming 

studies. Sample sizes were calculated using the following equation given by Metcalfe et al. (2008);  

                                                                        N = (
𝑡𝛼  𝐶𝑉𝑠𝑖𝑙𝑙 

𝐷
)

2

                                                        [3.9] 

where; N is the number of samples, tα is the t statistic for the given alpha value (t0.05 = 1.96, t0.1 = 

1.645), CVsill is the measure of spatial variability within data for a given variable and is calculated 

using, CVsill = 
√2 x (𝐶𝑜+C)

�̅�
 (where; 𝐶𝑜 + 𝐶 is the semivariogram sill, and �̅� is the sample mean), and 

D is the required accuracy level.  

3.3. Results and Discussion 

3.3.1. Descriptive Statistics  

Descriptive statistics for soil fertility parameters outlined important characteristics of each 

property at our study sites (Table 3.1). Visual inspection of the Q-Q plots identified three outliers 

in our data set from the Bert site. These were removed from the subsequent analysis. Data for some 

of the variables failed to comply with the assumption of normality, and were log transformed (base 

10). Coefficient of variation (CV), in particular, gave an invaluable insight into the heterogeneous 

extent of our variables of interest. As described by Wilding (1985), CV was used to characterize 

each variable as weakly (CV < 15%), moderately (CV 15-35%), and highly (CV > 35%) variable 

(Table 3.1). In general, available soil nutrients were highly variable, as given by large indices of 

C.V. at both sites. These estimates of variability were consistent with studies conducted by 

Gallardo and Paramá (2007), Fu et al. (2010), Wang et al. (2009), and Vasu et al. (2017). 

Moreover, moderate variability was observed for cation exchange capacity (CEC) and organic 
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matter (OM) at both study sites. This observation was in agreement with the findings of Cassel et 

al. (2010), Ferreiro et al. (2016), and Emamgholizadeh et al. (2017). Moderate to high estimates 

of variability for each of these soil fertility parameters could be explained through dynamic 

interactions of intrinsic and extrinsic factors functioning on different scales, thereby imparting 

spatial variability across the landscape (Lofton et al., 2010). Available soil nitrate (AN), in 

particular, had high variability due to its strong propensity to move through the soil given its high 

water solubility and low affinity for soil surfaces, typically dominated by negative charges.  

3.3.2. Step-wise Multiple Linear Regression Analysis of Soil Fertility Parameters  

Selection of predictors is important to yield meaningful results. Therefore, it is crucial to 

make knowledge-based decisions and only to include biologically plausible candidate predictors. 

It is also imperative to draw a distinction between causation and association. Statistically, 

modelling a response variable as a function of association with another variable precludes from 

developing meaningful results, and may result in spurious conclusions. Prior to MLR analysis, 

variables were classified as response or/ and predictor (Table 3.1) based on our objective of model 

evaluation, and rationale of biological processes. Step-wise MLR analysis was conducted in order 

to generate baseline information for model evaluation. Akaike’s Information Criterion (AIC) 

values served as a criterion for optimal model selection, as it measured how parsimonious the 

models were (i.e., the ability to predict the most variability with the least amount of predictors). 

Models with the lowest AIC values were selected as optimal models. The predictive capabilities 

of these models were better for soil fertility parameters exhibiting weak to moderate variations; 

for instance, CEC, OM and pH, with an R2 generally higher than 0.5, but were unable to 

sufficiently predict highly variable soil nutrients at both sites (Table 3.3). 

3.3.3. Semi-variography for Primary and Secondary Variables 
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Kriging-based SIMs rely on semi-variogram to generate weighted estimates of spatial 

autocorrelation at a given distance, and the developed algorithm is used to make predictions at 

unsampled locations (Oliver and Webster 2014). Isotropic semi-variograms were developed for 

each primary and secondary variable. The possibility of directional influences was also 

investigated through development of anisotropic semi-variograms and these influences were 

deemed insignificant if ratio of major to minor axis was less than 2.5. However, direction-

dependent spatial autocorrelations were not detected. This might be due to insignificant influence 

of topography and other intrinsic soil processes, such as soil water movement, on inherent soil 

variability (Noorbakhsh et al., 2008). 

Understanding spatial dependence of each variable of interest is instrumental in deciphering, 

and subsequently mapping the underlying spatial structure (Webster and Oliver 2000). Estimation 

of different parameters of semi-variogram helped to quantify the spatial dependence for each 

variable. Cambardella et al. (1994) proposed a system of classification to quantify the extent of 

spatial continuity through analysis of nugget to sill ratio (NSR), where each variable is classified 

as weakly (NSR > 0.75), moderately (NSR = 0.25-0.75) or strongly (NSR < 0.25) dependent over 

space. Nature and extent of the prevalent soil variability can be attributed to intrinsic or extrinsic 

factors (Cambardella et al., 1994). Intrinsic factors constitute inherent soil variability, and may be 

responsible for imparting strong spatial structure, and therefore, less variability. Whereas, extrinsic 

factors, such as different farm management practices, would result in weak spatial dependence. 

Analysis of NSR showed strong spatial dependence for all the soil properties at both sites, as 

substantiated by NSR values smaller than 0.25. There was however an exception to this 

observation as AN was weakly variable and CEC was moderately variable at the Bert site (Table 

3.5). pH was also moderately variable at Lamoureux site (Table 3.5). Strong spatial dependencies 



 
 

84 
 

for the studied soil fertility parameters were congruent with the findings of Cambardella et. al 

(1994), Omonode and Vyn (2006), Cemek and Mustafa (2007) and Guenette and Hernandez-

Ramirez (2018), and were suggestive of low variability for a given variable of interest at a scale 

smaller than minimum sampling distance. These could be attributed to an intrinsic component of 

soil variability. Moderate variability of a soil property, in this instance, AN could be attributed to 

the cumulative effect of both inherent soil variability and management practices (Cambardella et 

al., 1994). 

3.3.4. Performance Assessment of Evaluated Statistical and Geostatistical Methods 

Different geostatistical SIMs including OK, OCK, and RK were evaluated to study spatial 

variability of different soil fertility parameters at two study sites near Edmonton. Prediction error 

statistics, including RMSE, MSE, and MAE were primary means for assessing model performance 

(Table 3.6). The adequacy of R2 as a matrix for model performance evaluation is questionable 

despite being commonly reported as a measure of goodness of fit, and therefore, was not used for 

model selection. The best performing method was characterized by smaller values of error 

statistics. Geostatistical SIMs performed better in estimating soil nutrient concentrations at both 

sites. However, the predictive performance of these methods was inconsistent for pH, CEC, and 

OM with MLR models outperforming geostatistical models at the Bert site (Table 3.3). Despite 

the best performance, estimates from MLR analysis were subjected to practical limitations because 

strong spatial structure (as illustrated by the semi-variogram analysis) rendered the residuals 

spatially auto-correlated. This violated the assumption of independent errors for MLR (Wagner 

2013). 

Of all the evaluated geostatistical and non-geostatistical methods, OK generally proved to 

be the most effective method to estimate soil nutrients at both sites, as illustrated by lower cross-



 
 

85 
 

validation error statistics. Highest performance estimates of OK for AN, AK (readily available 

potassium) and AP (readily available phosphorus; with exception to AN and AP at the Bert site) 

were inconsistent with the findings of Bogunovic et al. (2017) and Guenette and Hernandez-

Ramirez (2018), where they concluded OCK was the front runner SIM. This disparity in 

conclusions could be explained in part by the poor correlation between soil nutrient profile and 

terrain covariates (Table 3.2). Strong correlation between primary and secondary variable is an 

important prerequisite that warrants reduction in error variance as suggested by Ahmed and De 

Marsily (1987), Hernandez-Stefanoni and Ponce-Hernandez (2006), Li and Heap (2011), and 

Meng et al. (2013). OCK was optimal SIM for predicting AP at Bert. This result supported work 

conducted by Bogunovic et al., (2017). Improvement in performance of OCK, even in absence of 

correlation between the primary and secondary variable as in our case with elevation, may be 

partially explained by Borůvka et. al., (2002), who pointed-out the limitations of conventional 

correlations to detect spatial correlations between variables. RK reduced error estimates in 

predicted AN at the Bert site, and these results complied with findings of Peng et al., (2013).  

Regression kriging was also the best performing SIM for estimates of pH at both sites, with 

smaller RMSE, MSE and MAE. This observation; however, was contrary to findings of Bogunovic 

et al. (2017), and Guenette and Hernandez-Ramirez (2018). According to their studies, OK and 

OCK were optimal SIMs to map pH at a farm scale. Additionally, RK predictions for OM and 

CEC at both sites were most reliable in our study. In multiple studies conducted by Bogunovic et 

al. (2017) and Bogunovic et al. (2017), OK and OCK were the most accurate SIMs for predicting 

OM. To the best of my knowledge, comparison-based studies focusing on performance assessment 

of different SIMs for predicting CEC are not available in the scientific literature. Superior 



 
 

86 
 

performance of RK in comparison to other evaluated models may be due to strong correlation 

between response and predictor variables (Meng et. al., 2013) (Table 3.2).  

3.3.5. Grain Productivity and Topography 

Pearson correlation (r) analysis showed weak correlation between grain productivity and a 

suite of terrain attributes for both sites (Table 3.4). These weak correlations could be explained by 

relatively uniform topography at both study sites. Therefore, topography might not subscribe as a 

strong propellant for grain productivity response. Given the weak correlations between soil fertility 

parameters and the evaluated terrain attributes (Table 3.2), this finding is perhaps not surprising. 

Slope (r = 0.20) and elevation (r = 0.13) were the best performing terrain attributes for the Bert 

and Lamoureux sites, respectively (Table 3.4), and this finding complied with earlier reports 

(Kaspar et al., 2004, Kumhálová et al., 2008). Slope and elevation affect physical and chemical 

soil properties through redistribution of soil as the result of erosion and deposition (Moulin et al., 

1994). Therefore, these topographic attributes generally perform well to predict grain productivity 

response across a landscape (Singh et al., 2016). Weather conditions also affected the relationship 

between grain productivity and topography. Influence of topography on grain productivity 

appeared to be more pronounced during drier year i.e., 2015, in the study, and this finding was 

consistent with the conclusions drawn by Kumhálová et al. (2008). Drier weather conditions 

significantly influence the paradigm of water availability. Thus, the effect of topography on grain 

productivity is more prominent under such drier conditions. 

3.3.6. Minimum Sample Size 

Adequate sample size is an important pre-requisite for spatial modelling of a variable as it 

affects the reliability of the developed semi-variogram. Therefore, sample size is an important 

consideration in any sampling strategy. The size of samples required to estimate a given variable 
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within 20% of the true value (N20) offers a reasonable guide for designing future experiments for 

quantification of soil fertility parameters since this estimate is conservative enough to fulfill 

accuracy requirements (Loescher et al., 2014), and also encompasses logistic feasibility. Sample 

size in our study, n = 79 for the Bert site, and n = 56 for the Lamoureux site, was adequate to 

quantify each soil fertility parameter with accuracy level of 20% and 50% of the true value, with 

the exception of AN at the Lamoureux site that required 76 samples for N20 at an alpha value of 

5%  (Table 3.7). There was a disparity between the ideal number of samples and the actual number 

of samples used to quantify certain variables (AN and OM at the Lamoureux site, and AP and AK 

at the Bert site) within 10% of the true value with alpha value of 5%, and this observation could 

be explained by high spatial variability (Metcalfe et al., 2008), as given by their respective CVsill 

(Table 3.7).  

3.4. Conclusion 

Although MLR analysis offers a good starting point to develop insight about correlations 

among data variables, it failed to capture the underlying spatial structure. In this study, the results 

from MLR analysis became of little practical significance. In general, OK was the best performing 

SIM for estimating soil nutrients in our study, as demonstrated by smaller values of error statistic, 

and RK outperformed OK and OCK for predicting pH, CEC, and OM. Even though OCK 

assimilated more auxiliary information related to terrain attributes in its prediction framework, it 

failed to deliver more accurate estimates in most cases. Therefore, landscape position was not 

strongly responsible for spatial heterogeneity in soil fertility parameters. Moreover, topography 

was not a strong driver of soil fertility and grain productivity.  
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3.5. Figures and Tables 

                                     a) AN                                                                              b) AK                                                                        c) AP 

    

                                    d) pH                                                                               e) CEC                                                                       f) OM 

   

Figure 3.1. Semivariogram analysis of soil fertility parameters at the Bert site. Gaussian, spherical, or exponential model (as detailed in 

Table 3.5) were fitted to decipher spatial continuity of each variable of interest. AN: available soil nitrate (mg NO3-N kg-1 soil); AK: 

readily available potassium (mg K2O kg-1 soil); AP: readily available phosphorus (mg P2O5 kg-1 soil); CEC: cation exchange capacity 

(meq 100 g-1); OM: organic matter (%).  
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                                       a) AN                                                                                b) AK                                                                            c) AP 

      

                                       d) pH                                                                                 e) CEC                                                                          f) OM 

      

Figure 3.2. Semivariogram analysis of soil fertility parameters at the Lamoureux site. Spatial continuity of each soil fertility parameter 

was modelled as a function of distance using either gaussian, spherical, or exponential model (as detailed in Table 3.5). AN: available 

soil nitrate (mg NO3-N kg-1 soil); AK: readily available potassium (mg K2O kg-1 soil); AP: readily available phosphorus (mg P2O5 kg-1 

soil); CEC: cation exchange capacity (meq 100 g-1); OM: organic matter (%). 
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Table 3.1. Descriptive statistics of soil fertility parameters at a depth of 0-15cm and terrain attributes for the Bert (n = 79) and 

Lamoureux (n = 56) site.  

Properties Type Sites Mean SD Min. Max. Skewness Kurtosis CV(%) 

AN (mg NO3 -N kg-1 

soil) 

Response/

Predictor 

Bert 15.91 4.77 7 29 0.66 0.34 30 

Lamoureux 6.79 4.74 1 16 0.39 -1.01 70 

AK ( mg K2O kg-1 soil ) Response/

Predictor 

Bert 223.7 84.58 55 422 -0.06 -0.32 38 

Lamoureux 288.2 92.80 126 508 0.38 -0.60 32 

AP (mg P2O5 kg-1 soil) Response/

Predictor 

Bert 77.46 34.41 4 149 -0.33 -0.96 44 

Lamoureux 28.98 16.95 11 98 1.80 3.76 58 

pH Response/

Predictor 

Bert 5.21 0.56 4.30 8.10 2.60 9.39 11 

Lamoureux 5.8 0.80 5.1 7.8 1.60 1.07 14 

CEC (meq 100 g-1) Response/

Predictor 

Bert 15.43 2.93 7.4 24.8 -0.37 1.41 19 

Lamoureux 15.81 4.43 7.9 25.20 0.53 -0.48 28 

OM (%) Response/

Predictor 

Bert 4.16 1.10 1.6 8.7 0.77 2.83 26 

Lamoureux 4.96 1.03 3.4 7.2 0.60 -0.74 21 

Extractable Magnesium Predictor Bert 135.6 42.38 50 241 0.38 -0.20 31 
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(ppm) Lamoureux 165.1 83.80 70 340 0.94 -0.56 50 

Extractable Manganese 

(ppm) 

Predictor Bert 28.24 12.64 4 56 0.23 -0.64 45 

Lamoureux 15.48 11.45 ND 71 2.33 9.18 74 

Extractable Copper 

(ppm) 

Predictor Bert 1.20 0.53 0.5 4.1 2.36 9.33 44 

Lamoureux 0.47 0.21 ND 1.40 1.89 5.99 45 

Extractable Boron (ppm) Predictor Bert 0.62 0.32 0.3 1.8 1.7 5.7 52 

Lamoureux 0.65 0.36 ND 1.70 1.57 1.77 55 

Extractable Iron (ppm) Predictor Bert 233.8 221.07 44 999 2.19 4.13 95 

Lamoureux 135.6 83.77 ND 378 0.84 0.44 62 

Extractable Zinc (ppm) Predictor Bert 3.38 1.28 1.20 8.90 1.30 3.18 38 

Lamoureux 1.26 0.92 ND 5.2 2.21 5.96 73 

Elevation 

(m) 

Covariate Bert 658.34 2.97 648 662 -2.70 9.93 0.45 

Lamoureux 647.12 2.87 645 651 0.61 1.38 0.44 

Slope (°) 

 

Covariate Bert 25.13 17.84 0 85 0.25 2.66 71 

Lamoureux 38.59 13.33 3.04 76.16 0.15 2.40 34 

Curvature Covariate Bert -0.27 46.68 -183.1 287 -0.57 30.44 – 
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AN: available soil nitrate (mg NO3-N kg-1 soil); AK: readily available potassium (mg K2O kg-1 soil); AP: readily available phosphorus 

(mg P2O5 kg-1 soil); CEC: cation exchange capacity (meq 100 g-1); OM: organic matter (%), ND: not detected. 

 

(m-1) Lamoureux -0.01 42.77 -225 212.5 -0.07 3.27 – 

Aspect 

(m) 

Covariate Bert 146.98 105.78 0 358.71 0.01 1.84 72 

Lamoureux 189.15 82.65 0.95 354.6 0.04 2.07 44 

Hillshade 

(°) 

Covariate Bert 118.71 88.16 0 254 -0.15 1.53 74 

Lamoureux 141.82 80.40 0 254 -0.37 1.83 57 
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Table 3.2. Pearson correlation of soil fertility parameters with auxiliary variables and terrain covariates. Soil fertility analysis was 

conducted on spring soil samples collected at a depth of 0-15 cm from the Bert and Lamoureux site. Terrain covariates were extracted 

from topographic LIDAR data collected using ArcGIS. 

Site Soil 

property 

Mg Mn Cu B Fe Zn Elevation Slope Curvature Aspect Hillshade 

B
er

t 

AN 0.00 0.33** 0.19 0.11 0.29** 0.28* 0.04 0.04 -0.09 -0.05 -0.16 

AK -0.03 0.21 0.21 -0.33** 0.01 0.33** -0.05 0.21 -0.02 -0.04 0.07 

AP -0.15 0.20 0.22* -0.30** 0.06 0.42*** -0.14 0.28* -0.07 -0.10 -0.03 

pH 0.73*** -0.64*** -0.31** 0.36** -0.31** -0.28 -0.07 -0.26 0.07 0.07 0.12 

CEC 0.77*** -0.11 -0.05 0.35 -0.10 -0.00 0.11 -0.21 0.09 0.02 0.10 

OM -0.13*** 0.46** -0.19 0.40** 0.32 0.03 0.05 -0.17 0.06 0.04 0.07 

L
a
m

o
u

re
u

x
 

AN -0.30* 0.01 0.13 -0.27 0.45** 0.30* -0.13 -0.32* -0.06 -0.04 0.09 

AK -0.71*** 0.12 0.22 -0.51*** 0.68*** 0.42** -0.09 0.13 0.03 0.07 0.29* 

AP -0.62*** -0.02 0.07 -0.48*** 0.46*** 0.32* 0.31* 0.16 -0.14 -0.32* 0.40** 

pH 0.87*** -0.50*** 0.01 0.91*** -0.53*** -0.05 0.28* -0.07 -0.01 0.12 -0.07 

CEC 0.90*** -0.37** -0.03 0.82*** -0.55*** -0.14 0.01 0.14 -0.10 -0.04 -0.14 
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OM 0.60*** -0.29* 0.11 0.67 -0.26 0.19 0.04 -0.02 0.17 0.09 0.11 

AN: available soil nitrate (mg NO3-N kg-1 soil); AK: readily available potassium (mg K2O kg-1 soil); AP: readily available phosphorus 

(mg P2O5 kg-1 soil); CEC: cation exchange capacity (meq 100 g-1); OM: organic matter (%), Mg: Magnesium (ppm), Mn: Manganese 

(ppm), Cu: Copper (ppm), B: Boron (ppm), Fe: Iron (ppm), Zn: Zinc (ppm).  

 *indicates p-value < 0.05,  ** indicates p-value < 0.01, *** indicates p-value < 0.001
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Table 3.3. Step-wise multiple linear regression analysis of different soil fertility parameters at the 

Bert and Lamoureux site. 

Site Soil property Regression equation R2 

 

 

Bert 

(n = 79) 

ANa (mg NO3-N kg-1 

soil) 

2.31 + 0.03 (CEC) 0.05 

AK (mg K2O kg-1 soil) 492.64 – 51.57 (pH) 0.10 

AP (mg P2O5 kg-1 soil) 209.98 – 25.41 (pH) 0.16 

pH 4.71 + 0.01 (Mg) – 0.02 (Mn) 0.61 

CEC (meq 100 g-1) 2.09 + 8.63 (log OM) + 0.01 (Mg) 0.85 

OMa (%) – 0.12 + 0.08 (CEC) + 0.05(pH) 0.85 

 

 

Lamoureux 

(n = 56) 

AN (mg NO3-N kg-1 soil) 15.49 – 2.13 (pH) + 0.11 (slope) 0.20 

AK (mg K2O kg-1 soil) 643.61 – 61.24 (pH) 0.27 

APa (mg P2O5 kg-1 soil) – 0.80 – 0.41 (pH) + 0.03 (elevation) 0.44 

pH – 1.47 + 0.12 (CEC) + 0.67 (log OM) – 

0.09 (AN) + 0.02 (elevation) 

0.83 

CEC (meq 100 g-1) – 14.57 + 10.11 (log OM) + 2.48 (pH) 0.64 

OMa (%) 2.25 + 0.17 (CEC) 0.54 

AN: available soil nitrate (mg NO3-N kg-1 soil); AK: readily available potassium (mg K2O kg-1 

soil); AP: readily available phosphorus (mg P2O5 kg-1 soil); CEC: cation exchange capacity (meq 

100 g-1); OM: organic matter (%); Mg: Magnesium (ppm), Mn: Manganese (ppm) 

a based on log-transformed data
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Table 3.4. Pearson correlation of grain yield (kg ha-1) with terrain covariates. Grain yield data were 

recorded in 2015 at the Bert and 2017 at the Lamoureux site, using Green Star Monitor 3 mounted 

combine harvester. Terrain covariates were acquired from airborne LIDAR topographic data 

extracted using ArcGIS ver. 10.5.1 (ESRI, Redlands, CA, USA).  

Site Year AnP 

(mm) 

Elevation Slope Curvature Aspect Hillshade 

Bert 

(n = 43258) 

2015 357 0.18*** 0.20*** 0.18*** 0.19*** 0.19*** 

Lamoureux 

(n = 30439) 

2017 328 0.13*** 0.02*** 0.01 0.10*** 0.11*** 

*** indicates p-value < 0.001 

AnP: Annual precipitation (mm)



 
 

97 
 

Table 3.5. Semivariogram analysis for the optimal geostatistical methods for the given soil fertility parameters at the Bert and Lamoureux 

sites. 

Site Soil 

property 

Geostatistical 

method 

Covariate Model Range (m) Nugget (Co) Partial Sill 

(C) 

Sill (Co + 

C) 

Nugget-to-sill 

ratio 

Spatial 

dependence 

Lamoureux AN Regression kriging N/A Gaussiana 50.39 2.39 15.89 18.28 0.13 Strong 

Bert AN Ordinary kriging N/A Gaussiana 218.70 0.07 0.03 0.09 0.77 Weak 

Bert AP Ordinary kriging N/A Gaussiana 889.69 295.83 1653.88 1949.71 0.15 Strong 

Lamoureux AP Ordinary kriging N/A Gaussiana 78.81 0.02 0.07 0.09 0.22 Strong 

Bert AK Ordinary kriging N/A Sphericala 504 3.36 6068.28 6071.64 0.00 Strong 

Lamoureux AK Ordinary kriging N/A Gaussiana 62.30 520.56 3903.13 4423.69 0.12 Strong 

Bert CEC Regression kriging N/A Exponentiala 950 0.84 0.55 1.39 0.60 Moderate 

Lamoureux CEC Regression kriging N/A Gaussiana 76.61 1.70 5.85 7.55 0.22 Strong 

Bert pH Regression kriging N/A Exponentiala 579.97 0.00 0.14 0.14 0.00 Strong 

Lamoureux pH Regression kriging N/A Gaussiana 100.68 0.07 0.04 0.11 0.64 Moderate 

Bert OM Regression kriging N/A Sphericala 536.28 0.01 0.00 0.01 1 Weak 

Lamoureux OM Regression kriging N/A Gaussiana 97.72 0.16 0.50 0.66 0.24 Strong 
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AN: available soil nitrate (mg NO3-N kg-1 soil); AK: readily available potassium (mg K2O kg-1 soil); AP: readily available phosphorus 

(mg P2O5 kg-1 soil); CEC: cation exchange capacity (meq 100 g-1); OM: organic matter (%); a based on isotropic model.  
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Table 3.6. Performance assessment of different non-geostatistical and geo-statistical spatial interpolation methods used to quantify each 

soil fertility parameter at the Bert and Lamoureux sites.  

Soil 

Property 

Site Multiple linear regression (MLR) Ordinary kriging (OK) Ordinary cokriging (OCK) Regression kriging (RK) 

RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE 

AN Lamoureux 4.12 16.98 3.41 3.01 9.06 2.18 3.58 12.83 2.69 3.58 12.87 2.67 

 Berta 0.29 0.08 0.23 4.57 20.93 3.52 4.59 21.13 3.53 0.26 0.07 0.20 

AK Lamoureux 77.94 6074.72 60.90 68.82 4735.67 50.30 74.40 5535.22 53.48 76.08 5788.91 56.34 

 Bert 79.02 6244.73 63.33 41.38 1712.58 33.46 42.09 1771.31 33.70 47.68 2273.33 35.88 

AP Lamoureuxa 0.36 0.13 0.27 12.95 167.77 8.11 13.76 189.44 8.38 0.35 0.12 0.25 

 Bert 30.54 932.72 26.14 18.60 346.28 14.94 18.05 325.82 14.17 19.46 378.60 15.62 

pH Lamoureux 0.31 0.10 0.26 0.37 0.14 0.28 0.44 0.19 0.33 0.30 0.09 0.24 

 Bert 0.34 0.11 0.22 0.33 0.11 0.20 0.32 0.10 0.22 0.22 0.05 0.14 

CEC Lamoureux 2.58 6.67 2.08 2.25 5.07 1.59 2.93 8.57 2.41 2.12 4.49 1.63 

 Bert 1.11 1.24 0.91 2.66 7.11 2.01 2.70 7.27 2.07 1.10 1.22 1.22 

OM Lamoureuxa 0.68 0.47 0.54 0.76 0.58 0.57 0.70 0.50 0.52 0.64 0.41 0.48 

 Berta 0.11 0.01 0.08 0.90 0.81 0.65 0.93 0.86 0.69 0.10 0.01 0.08 
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AN: available soil nitrate (mg NO3-N kg-1 soil); AK: readily available potassium (mg K2O kg-1 soil); AP: readily available phosphorus 

(mg P2O5 kg-1 soil); CEC: cation exchange capacity (meq 100 g-1); OM: organic matter (%); RMSE: root mean square error; MSE: mean 

square error; MAE: mean absolute error; abased on log-transformed data. 
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Table 3.7. Sample size to estimate soil fertility parameters with given accuracy of 10%, 20% or 50% of the true value at an alpha value 

of 0.05 and 0.1. These calculations are based on CVsill which is a measure of spatial variability in overall data.  

 

Site 

 

Soil property 

 

CVsill 

Sample size 

        α = 0.05     α = 0.1 

N10 N20 N50 N10 N20 N50 

 

 

Bert 

AN  0.16 10 3 0 7 2 0 

AK  0.49 93 23 4 66 16 3 

AP  0.80 250 62 10 176 44 7 

pH 0.10 4 1 0 3 1 0 

CEC  0.10 5 1 0 3 1 0 

OM  0.10 4 1 0 3 1 0 

 

 

Lamoureux 

AN  0.89 305 76 12 215 54 9 

AK  0.32 41 10 2 29 7 1 

AP  0.13 7 2 0 5 1 0 

pH 0.08 3 1 0 2 0 0 

CEC  0.24 23 6 1 16 4 1 
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OM 0.71 194 49 8 137 34 6 

AN: available soil nitrate (mg NO3-N kg-1 soil); AK: readily available potassium (mg K2O kg-1 soil); AP: readily available phosphorus 

(mg P2O5 kg-1 soil); CEC: cation exchange capacity (meq 100 g-1); OM: organic matter (%). N10 = sample size to estimate a given 

measurement within 10% of the true value; N20 = sample size to estimate a given measurement within 20% of the true value; N50 = 

sample size to estimate a given measurement within 50% of the true value. 
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Conclusion 

Agriculture is a major contributor of green house gas emissions. Excessive application of 

nitrogenous fertilizers results in nitrous oxide (N2O) emissions, and given the high global warming 

potential, these N2O emissions are detrimental to environmental health and sustainability. 

Therefore, it is becoming crucial to improve the efficiency of cropping systems. Finding 

concurrent solution to food security and environmental sustainability is pivotal to mitigate climate 

change driven by intensive agriculture. Precision agriculture (PA) offers a plausible solution to 

two contrasting challenges faced by the modern agriculture—food security and sustainable 

environment. It promises the possibility of sustainable food production while managing the impact 

of anthropogenic hazards on environment.  

Success of PA technology hinges on a sound knowledge of the field and prudent 

management decisions. It is also imperative to make timely decisions given the weather conditions. 

Quantifying in-field yield variability is crucial to its precise management. Yield maps generate 

historic footprint of yield variability for a given field, and data from at least 3-5 previous years 

offers a good starting point for farmers to start understanding in-field yield variability prevalent at 

their farms. Farmers can divide their fields into different productivity zones (i.e., low, medium, 

and high). Based on this understanding of their field, farmers can make prudent management 

decisions to increase their economic return while mitigating global ecological footprint. Economic 

benefits of yield map-based management can be observed by considering the following examples. 

Suppose a 100 hectares of wheat field, and 15% of this farm was heavy clay soil. Let’s say, for 

2017, the early growing season was wet, and almost half of the applied N to this patch of land was 

leached below the root zone, and therefore, became unavailable to the plants. This developing N 
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stress was detected through crop scouting. A second doze of N was applied to this patch of land, 

and this helped farmer to avoid potential yield losses. A simple calculation can help us understand 

the profitability of PA adoption in this case. For example, if yield recovery was 50% of the average 

1500 kg ha-1, and the second application of N would have increased 11250 kg (750 kg ha-1 x 15 

ha) of yield. At $0.25 kg-1, there would have been an economic gain of $2812.5 on 100 hectares 

farm. There is also a possibility that similar economic gains might not be extended to severely 

water-logged area in a farm, and farmer might deem this area unfit for cultivation in the coming 

years. In such a scenario, the farmer not only achieves sustainability goal of PA technology, but is 

also able to ration his resources to where they are needed, thus improving his economic benefits. 

Consider another example to examine the economic benefits of PA technology. A Canadian 

farmer fertilized his 50 hectares farm with a uniform rate of 220 kg ha-1 with a total N fertilizer 

cost of $13,200 (plus cost of application, including machinery and labour). Comprehensive 

assessment of spatio-temporal variability of available soil N showed that the farm could be 

delineated into 3 N management zones: 15 hectares of 140 kg ha-1, 25 hectares of 190 kg ha-1, and 

10 hectares 200 kg ha-1 of urea (46-0-0). In this example, dividing the field into 3 management 

zones reduced N fertilizer cost to $10,620 for 50 hectares. In addition to increased profitability, 

environmental sustainability was also improved by matching N fertilizer rate to the crop 

requirement.  

“Garbage In, Garbage Out”— being a big data science, PA is also subjected to this limitation. 

Collection of meaningful datasets is more important than collecting big datasets. Farmers might 

feel overwhelm with the amount of data generated in a short period of time, and may fail to 

capitalize on the amount of information available. Practical implementation of the developed 

solutions imposes a hurdle to realize the full potential of PA technology.  
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