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Abstract  

 
Heel buildup, i.e., the accumulation of non-desorbed/non-desorbable adsorbates and their 

by-products on an adsorbent, during cyclic adsorption/regeneration of volatile organic compounds 

(VOCs) onto activated carbon decreases its adsorption capacity and lifetime. In this this study, the 

effect of purge gas glow rate and oxygen impurity on heel build-up were investigated and machine 

learning was used to predict heel build-up. 

In the first part, the simultaneous effect of purge gas flow rate and oxygen impurity during 

successive adsorption/regeneration cycles on adsorption capacity of and heel buildup on activated 

carbon during cyclic adsorption-desorption of TMB was investigated. Nine thermal desorption 

scenarios were investigated by varying nitrogen purge gas oxygen impurity level (< 5 ppmv, 

10,000 ppmv, and 21%) and flow rate (0.1, 1 and 10 L/min or 1, 10 and 100% of adsorption 

flowrate) during thermal regeneration. The results show that increasing purge gas flow rate during 

thermal desorption improves adsorption capacity recovery and mitigates adverse effects of purge 

gas oxygen impurity. By increasing the purge gas flow rate from 0.1 to 10 SLPM, fifth cycle 

adsorption capacity increased from 30 to 40 wt% when 10,000 ppmv O2 was used as purge gas 

and from 10 to 37 wt% when dry air (21% O2) was used. Cumulative heel increased with increasing 

the purge gas oxygen impurity and decreasing its flow rate. In the least effective regeneration 

scenario (0.1 L/min N2 with 21% O2), 32.8 wt% cumulative heel was formed on BAC after 5 

adsorption-desorption cycles whereas that of the best-case scenario (10 L/min N2 with <5 ppmv 

O2) was 0.3 wt%. Comparing the pore size distributions of virgin and used BAC indicated that 

heel is firstly built in narrow micropores (<8.5Å) and then starts to engage mesopores. 

Thermogravimetric analysis (TGA) of regenerated samples revealed that oxygen impurity leads to 
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formation of high boiling point and/or strongly bound heel species. TGA confirmed that in 

presence of oxygen, higher purge gas flow rates could reduce the amount of heel but promote 

chemisorbed heel formation. These results can be used for optimizing the regeneration conditions 

to boost activated carbon’s long-term performance in cyclic adsorption. 

In the second part, two machine learning (ML) algorithms (XGBoost and deep neural 

network (DNN)) were applied to predict volatile organic compounds (VOCs) cyclic heel buildup 

on activated carbons (ACs). A dataset consisting of 411 experimental tests of cyclic 

adsorption/desorption of different VOCs on ACs with distinct properties was used. Our study 

revealed that cyclic heel buildup can be predicted with acceptable accuracy using both ML 

algorithms by considering the adsorbent characteristics, adsorbate properties and regeneration 

conditions. The DNN algorithm showed better performance in prediction of cyclic heel buildup 

(R2 = 0.94) than XGBoost (R2 = 0.81). To verify the ML algorithms results and gain some insight 

into heel buildup relation to adsorbent’s nature characteristics, partial dependency plots were 

generated using adsorbate properties and regeneration conditions, partial dependency plots were 

generated. The proposed ML-based heel prediction methods can be used to: (i) optimize 

adsorption/desorption operating conditions to minimize heel buildup on activated carbon in cyclic 

adsorption processes and (ii) quickly screen various adsorbents for efficient adsorption of a 

particular family of VOCs.   
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1 Background 

 

According to US Environmental Protection Agency (EPA), Volatile organic compounds (VOCs) 

are any organic chemical except carbon monoxide and dioxide, carbonic acid, metallic carbides or 

carbonates, and ammonium carbonate which participate in photochemical reactions in the 

atmosphere (e.g., photochemical smog reaction)1. 

VOCs emission to the atmosphere originates from anthropogenic and biogenic sources (from soil 

and vegetation) as well as forest wildfire. In 2019, 1675 kilotons of VOCs were emitted in Canada, 

where the oil and gas sector, paint and solvent industry, and transportation accounted for ~ 39, 18, 

and 9% of VOC emissions, respectively 2. One of the important sources contributing to VOCs 

emission is automotive paint booths that use solvent-based paints in their spray booth operations. 

The solvents used in solvent-based paints include esters, ketones, alcohols, glycolethers, aromatic 

and aliphatic hydrocarbons 3.  

The emission of VOCs is of concern since prolonged exposure to some VOCs brings about eye, 

nose, and throat irritations, headache, dizziness, nausea, memory loss, and damages to the central 

nervous system, liver, and lungs 4. Besides, VOCs facilitate the formation of photochemical smog, 

including tropospheric ozone, through photochemical reactions with NOx in the atmosphere 5. 

Therefore, considerable scientific and industrial attention has been directed towards the abatement 

of VOCs. 
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1.1 VOCs treatment techniques 

Several methods, including physical, chemical, and biological treatments, can be applied for VOCs 

removal. However, removal techniques can generally be classified into two main categories, 

namely(i) recovery-based and (ii) destruction-based methods 6. 

In destruction-based techniques, VOCs are converted mainly into carbon dioxide and water. The 

destruction process includes oxidation and biofiltration 7. The oxidation process is applied where 

energy recovery rather than VOC recovery is the primary concern, and it can be subcategorized 

into thermal oxidation (also known as fume incinerators) and catalytic oxidation. While up to 85 

and 70% energy recovery can be achieved through thermal and catalytic oxidation, respectively, 

the efficiency of both processes is highly dependent on operating conditions, and additional control 

equipment may be required downstream 6, 8. On the other hand, bio-filtration, which is a cost-

effective technique for VOC removal, is a slow process and produces biomass as the secondary 

pollutant 9. 

Recovery methods are applied when retrieved VOCs can be re-used in the system and/or are 

economically valuable. Condensation 10, absorption 11 , adsorption 12, and membrane separation 13 

are commonly applied methods for VOC recovery. However, there are certain limitations 

associated with some methods. For example, more than 85% removal efficiency is not feasible 

with condensation, while absorption requires rigorous maintenance and may require pre-treatment 

of VOC. Membrane separation is an expensive process 6. 

Among recovery-based techniques, adsorption is commonly applied due to its high removal 

efficiency, low maintenance cost, and low required energy. Among different adsorbents, activated 

carbon (AC) is a widely used adsorbent to capture VOCs due to its low cost, high removal 

efficiency, and ability to be regenerated 14-16. As a common practice in the industry, following the 
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adsorption process, the used adsorbent (i.e., loaded with VOCs) is regenerated to restore its 

adsorption capacity and recover the adsorbates.  

The adsorption process can occur reversibly (i.e., physisorption), irreversibly (i.e., chemisorption 

or non-desorbed physisorption), or a combination of both 17. Regarding VOCs removal with 

adsorption, an obstacle is heel buildup, i.e., the accumulation of non-desorbed/non-desorbable 

adsorbates and their by-products on the surface/pores of the adsorbent. Heel buildup decreases 

recovered VOC and reduces activated carbon’s lifetime and adsorption capacity after each 

adsorption/regeneration cycle 18. Accumulation of heel species and consequently loss of activated 

carbon micropores, in turn, increases the cost associated with the treatment process due to the 

necessity for more frequent replacement of adsorbent 19. 

1.2 Research Objectives 

This study has two main goals regarding heel buildup: 

1. To investigate the simultaneous effect of purge gas oxygen impurity and flow rate on 

irreversible adsorption (heel buildup).  

2. To predict heel buildup on activated carbon using machine learning (Deep learning and 

XGBoost). 

In the first study, nine different regeneration scenarios, consisting of a combination of three 

different purge gas flow rates and three different purge gas oxygen impurities, were applied to 

regenerate VOC latent beaded activated carbon (BAC) to study the following objectives: 

• to systematically identify the simultaneous effect of flow rate and oxygen impurity of the 

desorption purge gas on heel formation mechanism(s) and heel buildup  

• to study whether using a higher purge gas flow rate can mitigate the presence of oxygen 

impurity in the desorption purge gas in terms of adsorption capacity recovery and heel 

buildup  



 

 

4 

 

 

In the second study, a data set including 411 experimental tests of cyclic adsorption/desorption of 

VOCs on activated carbon was collected from the literature, including the adsorption/desorption 

cycles generated in the first study. Two machine learning (ML) algorithms, namely, XGBoost and 

deep neural network (DNN), were applied to predict cyclic heel buildup given the adsorbent 

characteristics, adsorbate properties, and regeneration conditions.  

1.3 Thesis outline 

This thesis is divided into five chapters. Chapter 1 gives a general introduction of the topic and its 

objectives. Chapter 2 includes a general literature review about adsorption, regeneration, heel 

formation, machine learning, and its application in adsorption. Chapter 3 investigates the 

simultaneous effect of purge gas oxygen impurity and flow rate in regeneration on heel buildup. 

Chapter 4 provides two machine learning algorithms to predict cyclic heel buildup based on 

adsorbent characteristics, adsorbate properties, and regeneration parameters. Finally, in chapter 5 

conclusion of the research as well as recommendation for future works are included. 

1.4 References 

1. USEPA. Technical Overview of Volatile Organic Compounds; https://www.epa.gov/indoor-air-

quality-iaq/technical-overview-volatile-organic-compounds. 

2. Canada's Air Pollutant Emissions Inventory; Open Data Canada; 

https://open.canada.ca/data/en/dataset/fa1c88a8-bf78-4fcb-9c1e-2a5534b92131. 

3. Kim, B. VOC Emissions from Automotive Painting and Their Control: A Review. 

Environmental Engineering Research 2011, 16 (1), 1-9; 10.4491/eer.2011.16.1.001. 

4. Molhave, L. Volatile Organic Compounds, Indoor Air Quality and Health. Indoor Air 1991, 1 

(4), 357-376; 10.1111/j.1600-0668.1991.00001.x. 

5. Aydin Berenjian; Natalie Chan; Hoda, J.M. Volatile Organic Compounds Removal Methods: A 

Review. American Journal of Biochemistry and Biotechnology 2012, 8 (4); 

10.3844/ajbbsp.2012.220.229. 

https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds.
https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds.
https://open.canada.ca/data/en/dataset/fa1c88a8-bf78-4fcb-9c1e-2a5534b92131
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2 Literature review  

2.1 Adsorption 

Adsorption is a process whereby gas or liquid molecules are collected on the internal surface of a 

solid. Adsorption on solids is attributed to unbalanced forces which attract adsorbate molecules on 

the solid surface. Adsorption can be divided into two categories: physical adsorption and chemical 

adsorption 1, 2.  

Physical adsorption is reversible and occurs where intermolecular forces (i.e., van der Waals 

forces) are the primary attractive forces between adsorbate species and the adsorbent surface. In 

addition, a fast adsorption rate and low heat of adsorption (< 2- or 3-times latent heat of 

evaporation) are the other properties of physical adsorption. Since intermolecular forces are weak, 

the adsorbate molecules’ structure will remain unchanged after physical adsorption, and by 

applying proper regeneration conditions, they can be recovered again3, 4. 

On the other hand, chemical adsorption or chemisorption is based on the forming chemical bonds 

and changes in adsorbate molecules’ structure, making it irreversible. Chemical bonds are highly 

specific and release a relatively high heat of adsorption (> 2- or 3-times latent heat of evaporation) 

2, 4. 

2.2 Regeneration  

During adsorption, the adsorbate species are increasingly accumulated on the adsorbent; hence, 

the adsorption capacity of the adsorbent is continuously decreased until the adsorbent reaches the 

saturation point. Regeneration of the adsorbent, rather than disposal, can be conducted to recover 

adsorption capacity, reuse adsorbent, and recover adsorbates. Different regeneration methods such 



8 

as thermal 5, chemical 6, vacuum 7, and bio-regeneration 8 can be applied to regenerate exhausted 

adsorbents.  

2.2.1 Thermal regeneration 

Thermal regeneration includes increasing the adsorbent’s bed temperature while a purge gas or 

steam passes through the adsorbent bed 9.  The regeneration heat can be provided to the adsorbent 

bed with a hot purge gas or steam 9, conductive heating 10, 11,  microwave 10, 11, ultrasound 12, or 

resistive heating 13. In conductive heating regeneration, the activated carbon bed is heated up using 

conductive heating while a purge gas is introduced to the adsorbent bed to carry desorbed species 

away. An inert gas (mainly nitrogen) is used in conductive heating regeneration to prevent any 

potential reaction between purge gas and desorbed species 9. 

2.2.2 Chemical regeneration  

Chemical regeneration includes three main mechanisms: extraction, reaction, and pH changes. 

Depending on the adsorbate properties, more than one mechanism might be involved in a chemical 

regeneration method 14. According to the mechanisms mentioned above, the most common 

chemical regeneration methods are solvent, NaOH, supercritical and oxidative regeneration. 

Solutions of NaCl or NaNO in pure water 15 and boiling 16 or pressurized 17-19 liquid water can also 

be applied for the chemical regeneration of carbonous adsorbents.  

NaOH can be used to recover specific adsorbates from activated carbons, and depending on 

adsorbate type, chemical reaction or pH change might account for the regeneration mechanism. 17, 

21 

Solvent regeneration can be applied to remove adsorbate species that are difficult to desorb. In 

addition, solvent regeneration outperforms thermal regeneration in terms of ease of adsorbates 

recovery, mass loss, and potential damage to adsorbents pores 20-24. However, some important 
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drawbacks such as a drastic increase in regeneration cost due to employment of organic solvents 

and high toxicity of solutions produced in the regeneration step limit their application to only 

specific cases 25. 

In supercritical regeneration, the extraction mechanism occurs by introducing a supercritical fluid 

to the adsorbent bed. The high diffusivity of supercritical fluids alongside their low viscosity and 

low dielectric constant makes them a promising solvent for organic adsorbates 26. Water 27 and 

CO2 
28 are the agents usually applied in supercritical regeneration. Depending on the adsorbate 

type, supercritical regeneration can result in high adsorbate removal efficiency (RE = ~100%) and 

increases in adsorbent pores and surface area after regeneration, especially when supercritical 

water is applied as the regeneration agent. However, different adsorbates have shown different 

solubility in critical agents and consequently different removal efficiency. For example, in 

regeneration with supercritical CO2, some organic compounds such as phenol (RE = ~36%) 29 and 

naphthalene (RE = ~75%) 30 have shown less solubility compared to others such as benzene (RE 

= ~100%) or toluene (RE = ~100%) 31. In addition, it should be noted that the severe condition 

required for supercritical agents, which is at least and Pc = 74 bar, Tc = 31°C for CO2 and Pc =221 

bar and Tc = 374°C for water, is not feasible in many cases especially when supercritical water is 

desired. Furthermore, supercritical CO2 has shown poor performance in removing strongly 

adsorbed adsorbates and adsorbates with heavy molecular weights such as pesticides 30, herbicides 

32, or insecticides 33. 

In oxidative regeneration, adsorption capacity is recovered through the reaction between oxidative 

agent and adsorbate species and degradation of the adsorbate. The extraction mechanism is also 

involved in the oxidative regeneration process. The oxidative regeneration process can be 

categorized into oxidative regeneration with O2 as the oxidative agent and with other oxidants such 



10 

as S2O8
2− and H2O2

  as the oxidative agent 14. It should be noted that the high reactivity of O2 can 

damage adsorbents’ pore structure 34 and produce non-desorbable by-product species through 

thermal oxidative reactions with adsorbate species 35.  

2.3 Heel buildup  

A challenge associated with the adsorption of VOCs on activated carbon is the accumulation of 

adsorbate species that remain non-desorbed or transform into non-desorbable species during 

regeneration 36. Successive heel buildup decreases adsorption capacity and shortens adsorbent 

lifetime. Therefore, it increases the cost associated with the treatment process due to the necessity 

for a more frequent replacement of adsorbent to meet the required removal efficiency or the 

minimum adsorption capacity to recover concentrated VOCs during regeneration. 

The following mechanisms are reported to contribute to heel buildup so far 36: 

• non-desorbed physisorption, 

• chemisorption of adsorbates, 

• adsorbates’ reaction by-products, 

• adsorbate decomposition (i.e., char formation) 

Many studies have been conducted to identify the parameters affecting heel buildup quantitively 

and qualitatively. The effective parameters can be categorized into three different classes: 

Adsorbent properties (e.g., BET surface, micropore volume) 

Adsorbate properties (e.g., molecular weight, boiling point) 

Adsorption/desorption conditions (e.g., adsorption and regeneration temperate, purge gas 

oxygen impurity) 

Regarding adsorbent properties, different studies have been conducted, as summarized here. 

Jahandar Lashaki et al. 37 studied the role of beaded activated carbon’s pore size distribution on 

heel buildup. Their experimental data indicate that heel is mainly formed in beaded activated 
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carbon (BAC) micropores, while BAC mesopores contribute to organic vapor adsorption but not 

heel formation. They also reported a linear correlation (R2= 0.91) between heel buildup and BAC 

micropore volume among their study samples. Following Jahandar Lashaki’s findings, 

Fezibakhshan et al. 38 also observed high heel buildup in samples with high microporosity and 

inadequate meso/macropores and concluded that hierarchical pore structure mitigates heel buildup 

by facilitating desorbed species diffusion to the fluid phase. In another study on the role of beaded 

activated carbon’s surface oxygen groups on heel buildup, Jahandar Lashaki et al. 39 reported 

higher heel buildup for BACs with higher surface oxygen groups.   

From the perspective of adsorbate’s properties, molecular weight and boiling points are known to 

directly affect heel buildup. Specifically, higher heel buildup is observed for heavier VOCs (high 

boiling point and/or molecular weight) 40. 

The extent of regeneration parameters’ impact on heel buildup depends on the regeneration 

method. For an adsorption system with conductive heating as the regeneration method, logically, 

the applied temperature must be greater than the adsorbate’s boiling point to achieve complete 

desorption at atmospheric pressure 41. Purge gas oxygen impurity can increase the heel buildup on 

BAC by reacting with adsorbate species or adsorbent surface 41-43.  

Jahandar Lashaki et al. 44, in a study on the effect of adsorption and regeneration temperature on 

heel buildup on activated carbon, reported a 30% increase in heel buildup by changing the 

adsorption temperature from 25°C to 45°C. In addition, they observed that a higher regeneration 

temperature accelerates the regeneration process and decreases heel buildup as it could facilitate 

mass transfer and diffusion in micropores, specifically for adsorbates with high affinity when high 

temperature is applied. However, it should be noted that the study was conducted in the absence 

of oxygen. In contrast, increasing regeneration temperature in the presence of oxygen facilitates 
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reactions between purge gas oxygen and the adsorbate; hence, increases heel buildup. In a study 

on the simultaneous effect of regeneration temperature and oxygen impurity on heel buildup, 

Fezibakhshan et al. 41 showed the adverse effect of increasing regeneration temperature on heel 

buildup in the presence of oxygen for the first time. 

Purge gas flow rate and heating rate are other regeneration parameters playing a role in heel 

buildup. It has been demonstrated in a study conducted by Niknaddaf et al.45 that decreasing 

heating rate and/or increasing purge gas flow rate decreases heel buildup. They supported their 

results by arguing that increasing purge gas flow rate and decreasing heating rate shortens desorbed 

species residence time in adsorbents micropores and the duration for which the adsorbate species 

are exposed to high temperature. However, in that study, carbon fibers were regenerated with 

resistive heating and in absence of oxygen. No study has been conducted so far to study the effect 

of purge gas flow rate on heel buildup in an adsorption system with conductive heating 

regeneration method.  

Selecting the optimal adsorption/regeneration condition requires a cost/performance trade-off 

since regeneration parameters change the operational cost drastically. For example, introducing 

pure nitrogen reduces heel formation due to oxygen impurity; however, the nitrogen purification 

process is relatively energy-consuming and costly; consequently, it increases the process's 

operational cost. In addition, the required energy to purify nitrogen exponentially increases with 

the purity level. For example, in a typical pressure swing adsorption process, power consumption 

increases 2.5-fold in order to improve the N2 purity from 95 to 99.99%46.  

2.4 Machine learning and adsorption 

Machine learning (ML) is one of the most powerful tools to learn, elaborate, and predict non-linear 

and complex models.  Many well-developed ML algorithms such as artificial neural network 
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(ANN), extreme gradient boosting (XGBoost), gaussian process regression, decision tree, random 

forest (RF), gradient boosting trees, and support vector machines (SVM) are applied to chemical 

and environmental engineering problems such as adsorption. The mathematical details of applied 

ML methods are provided in the Methods section in chapter 4. 

The ML studies conducted in adsorption have mainly focused on the optimization of adsorption 

condition 47, performance prediction or construction of adsorption models 48, 49, and inverse design 

of adsorbent materials 50. Nagesh Pai et al. 51 applied different ML algorithms to predict and 

optimize the separation of CO2 from N2 with zeolite 13X in the vacuum swing adsorption (VSA) 

process. They were able to provide a fast and accurate predictive model (Gaussian process 

regression based with R2 = 0.98) based on the data collected from an experimentally verified 

computational model. Furthermore, they performed process optimization by (i) prediction of 

process performance using the trained ML algorithm in different practical conditions and (ii) using 

the predicted optimized condition by ML algorithm as the initial input for the detailed 

computational model to shorten the converging time, which resulted in 23- and 6-times decrease 

in computer load respectively. 

ANN algorithm has been used to learn and optimize a hydrogen purification pressure swing 

adsorption (PSA) process in another study 52. For the first step, ANN was applied to the data set 

generated by an experimentally verified ASPEN model (average R2 = 0.88). Then by combining 

the validated ML algorithm with the sequence quadratic program (SQP) algorithm, multi-objective 

optimization of the weighted linear combination of hydrogen productivity, recovery, and purity 

was achieved.  

In a study conducted by Burns et al. 53, RF has been applied to classify Metal−organic frameworks 

(MOFs) based on whether they meet the US Department of Energy requirements of 95% CO2 
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purity and 90% CO2 recovery target (95/90-PRTs) in an optimized four-step VSA system. This 

study used an experimentally validated process simulator to generate more than 5 million data 

points by varying operating conditions and MOFs. The trained RF method was able to predict 

MOFs capability to meet the 95/90-PRTs with an accuracy of 91% based on adsorption metrics 

(e.g., CO2 working capacity), composite metrics (e.g., adsorption performance score 54, i.e., the 

product of CO2 working capacity and the CO2/N2 selectivity), and MOF’s geometric features (e.g., 

maximum pore diameter). 

 

Finally, regarding the application of machine learning in the inverse design of adsorbent materials, 

generative machine learning methods found their way in adsorption studies, such as the study 

conducted by Kim et al. 50 on the inverse design of pure silica zeolites for methane adsorption 

using generative adversarial network (GAN). GAN consists of a generator and a discriminator. 

The former is assigned to generate realistic fake data points to deceive the latter, which is 

responsible for distinguishing between real and generated data. This study used 31,713 known 

zeolites and their attributed properties, including energy (or methane potential) grid and oxygen 

and silicon positions grid, to train the GAN. It should be mentioned that Gaussian functions (μ = 

1, σ = 0.5) were used to represent silicon on oxygen atom positions in the material grid. 

Furthermore, the Lennard-Jones (LJ) 12-6 potential model was applied to compute the interaction 

energy level in each grid node. After applying the post-clean-up procedure, they were able to 

generate eight zeolite structures, one of which had not been reported in any literature before. In 

addition, they targeted zeolites with the heat of adsorption value between 18 and 22 kJ/mol for 

methane and were able to generate six new zeolites, two of which were not included in the dataset.  
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Although an increasing number of studies have been conducted about different applications of 

machine learning algorithms in adsorption, no single study has been carried to investigate and 

predict heel buildup. As mentioned earlier, heel buildup substantially deteriorates adsorbents long-

term performance in the cyclic adsorption/desorption process and causes unsustainable adsorption 

process requiring frequent replacement of/discarding exhausted adsorbent. Hence developing a 

machine learning algorithm that predicts heel buildup has important practical implications. 
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3 Simultaneous effect of oxygen impurity and flow rate of purge gas 

on adsorption capacity of and heel buildup on activated carbon 

during cyclic adsorption-desorption of VOC 
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3.1 Introduction 

 

Volatile organic compounds (VOCs) have been extensively used as solvents in chemical industries 

involving paints and are used in lubricants and liquid fuels 1-3. In automotive manufacturing, 

vehicle painting operations are the main source of VOCs emissions due to their use of solvent-

based paints 4. Adsorption onto activated carbon (AC) is widely used for capture of VOCs due to 

its low cost, high removal efficiency, and ability to recover the adsorbate and regenerate the 

adsorbent for reuse 5, 6. 

Adsorption is strongly influenced by the adsorbent’s characteristics including surface area, surface 

functional groups, and pore size distribution, as well as the adsorbate’s properties such as polarity, 

molecular size, molecular weight and boiling point 7-10. Depending on the type of interaction 

between the adsorbent and adsorbate, adsorption process can occur reversibly (i.e. physisorption), 

irreversibly (i.e. chemisorption or non-desorbed physisorption), or a combination of the two 11. 

Both physiosorbed and chemisorbed adsorbates can undergo transformation (i.e. 

decomposition/pyrolysis, polymerization) and become permanent heel 
11. Heel buildup not only 

decreases the amount of recovered VOC but also reduces activated carbon’s lifetime and its 

adsorption capacity after each adsorption/regeneration cycle 12, 13. This can, in turn, increase the 

cost associated with the abatement process due to the need for more frequent replacement of 

adsorbent 14. 

Thermal regeneration is an effective approach for regenerating activated carbon. Several studies 

have focused on determining the parameters that can affect heel formation on activated carbon 

during thermal regeneration 5, 11, 15, 16. For instance, Jahandar Lashaki et al. 15 found that raising 

the adsorption temperature from 25 to 45 °C increased the heel buildup on activated carbon beads 

by 30%, while increasing the regeneration temperature from 288 to 400 °C could reduce the heel 
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buildup by 61%. Using activated carbons with different pore size distributions, Jahandar Lashaki 

et al. 16 observed that heel was mainly formed in AC micropores, and demonstrated that heel 

buildup can be linearly correlated with activated carbon micropore volume. They also highlighted 

that carbon’s mesopores primarily are involved in physisorption (i.e. reversible adsorption) of 

VOCs and tend not be susceptible to heel formation. The presence of surface oxygen groups on 

activated carbon is another important factor contributing to heel buildup 5. Formation of covalent 

bonds between the adsorbate and surface oxygen groups can lead to chemisorption. Jahandar 

Lashaki et al. 5 reported that for activated carbon samples with low surface oxygen content heel 

buildup is greatly suppressed and mainly stems from non-desorbed physisorption. From the 

perspective of adsorbate properties, VOCs with high molecular weight and large kinetic diameter 

are more difficult to desorb and more likely to result in heel formation 2, 17.  

Presence of oxygen in the purge gas (usually nitrogen) used during regeneration can also increase 

the heel buildup on AC due to the formation of chemical bonds between O2 and 

adsorbates/adsorbent at high temperatures 18-21. Jahandar Lashaki et al. 19 observed that increasing 

the oxygen concentration in the desorption purge gas increased cumulative heel build in cyclic 

adsorption/desorption of a mixture of VOCs on activated carbon. In accordance with Jahandar 

Lashaki’s findings  19, Hashemi et al.  18 also found an adverse impact of oxygen impurity in the 

purge gas. Nevertheless, it needs to be mentioned that generating purge gas with low impurity can 

be energy consuming and costly. For instance, in a typical pressure swing adsorption process, 

compressor power consumption increases 2.5-fold in order to improve the N2 purity from 95 to 

99.99%  22.  

In addition to oxygen impurity, the flow rate of the desorption purge gas can also affect heel 

buildup and adsorbent lifetime. However, no study has investigated the simultaneous effect of 
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purge gas impurity and flow rate. Hence, the objectives of the present study are (i) to systematically 

identify the simultaneous effect of flow rate and oxygen impurity of the desorption purge gas on 

heel formation mechanism(s) and heel buildup and (ii) to study whether using a higher purge gas 

flow rate can mitigate for presence of oxygen impurity in the desorption purge gas in terms of 

adsorption capacity recovery and heel buildup. A broader understanding of the parameters playing 

roles in heel formation can give insight into how heel buildup can be mitigated to enhance activated 

carbon performance during cyclic adsorption/desorption. Furthermore, reducing the amount of 

heel formed on activated carbon can lead to significant energy/cost savings for regeneration or 

replacement of the adsorbent.  

3.2 Material and methods 

3.2.1  Adsorbent and adsorbate 

Virgin petroleum pitch-derived beaded activated carbon (BAC; G-70R; Kureha Corporation) is 

the adsorbent studied in this work. This BAC is a highly microporous (~87%) material with narrow 

pores from 0.6 to 8.4 nm in diameter. Before each experiment, BAC was preheated at 288 °C for 

2h to remove potentially adsorbed impurities. 1,2,4-trimethylbenzene (TMB, 98%, Acros 

Organics) was used as adsorbate as it is a common component of automotive paint solvents. In 

addition, TMB has high tendency to form heel on BAC 15, 23 because of its relatively large kinetic 

diameter (0.61 nm) 24 and high boiling point (171 °C) among solvent compounds commonly used 

in automotive paints 2.  

3.2.2  Experimental set-up and methods 

A schematic of the adsorption/regeneration set-up is presented in Fig. 3-1. The 

adsorption/regeneration experiments were conducted in a stainless-steel tube containing 

4.000±0.002 g of BAC supported by glass wool at both ends. During the adsorption, 10 standard 
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liter per minute (SLPM) dry air with a concentration of 500 ppmv TMB was introduced into the 

adsorption tube. Liquid TMB was injected at a rate of 28.0 µl/min using a syringe pump (KD 

scientific) onto glass wool in the injection port to avoid concentration fluctuations during the 

experiment. The temperature was maintained at 24±1 °C during adsorption. Flame ionization 

detector (FID; Baseline-Mocon Inc. series 9000) was used to measure the VOC inlet and outlet 

concentrations.  

 

 

 

 

 

 

 

 

 

 

 

All adsorption experiments were conducted for 2h. Regeneration was conducted at 288 °C (550 

°F), in the range of temperatures used in industrial applications, in order to desorb the adsorbate 

while minimizing the energy consumption and damage to BAC pore structure 25. A constant flow 

rate of the purge gas passed through the adsorbent bed during desorption. Heating was provided 

to maintain the BAC temperature at 288 °C in the first 3h, followed by a cooling step for 50 min. 

For regeneration, heating tape and insulation tape were respectively wrapped around the stainless-

  MFC: Mass flow controller 

  DAC: Data acquisition and control 

  FID: flame ionization detector 

 Signal 

 3-way valve 

 Desorption flow 

 Adsorption flow 

Air  

(10 SLPM) 

Syringe 

Pump 

DAC 

Thermocouple 

FID 

T
u

b
e 

MFC 

V
O

C
 i

n
je

ct
io

n
 

Air, N2 or 10,000 

ppmv O
2
 

Fig. 3-1. Schematic diagram of the adsorption-desorption setup 
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steel tube to provide the required heat and minimize the heat loss. The BAC temperature was 

measured and controlled during regeneration using a K type thermocouple connected to a data 

acquisition and control (DAC) system. The DAC consisted of a data logger (National Instruments, 

Compact DAQ) and a LabVIEW program (National Instruments) to record the bed temperature 

and control heating. In order to investigate the effect of purge gas flow rate and oxygen content on 

heel buildup, three flow rates (0.1, 1, and 10 SLPM corresponding to 1, 10 and 100% of adsorption 

flowrate) and three levels of oxygen impurity (<5 ppmv, 10,000 ppmv, and 21%) were used, 

creating nine different regeneration scenarios. The flow of the purge gas was set using a 100 

SCCM, 1 SLPM, or 20 SLPM mass flow controller (Alicat Scientific). Ultra-high purity nitrogen 

(99.9984%, Praxair), mixed nitrogen (containing 10,000 ppmv oxygen, Praxair) or air (99.999%, 

Praxair) was used as the purge gas, containing <5 ppmv, 10,000 ppmv and, 21% oxygen, 

respectively. 

Heel buildup and adsorption capacity are determined based on gravimetric analysis and the results 

are reported as percentages relative to the weight of the virgin BAC. The amount of adsorbed VOC 

in each cycle is calculated by subtracting BAC’s weight before adsorption from its weight after 

adsorption in that cycle. The amount of heel buildup in each cycle is defined as the difference 

between BAC weight before adsorption and after regeneration in that cycle. Cumulative heel in 

each cycle is determined by subtracting preheated BAC weight from its weight after regeneration 

in that cycle. Therefore, fifth cycle cumulative heel buildup represents the difference between 

preheated BAC weight and its weight after regeneration in the fifth (final) cycle. 

Adsorption capacity (wt%)  

=  
weight of BAC after adsorption −  weight of BAC before adsorption 

weight of preheated BAC 
 × 100 
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Mass balance cumulative heel (wt%) 

=  
weight of BAC after last regeneration cycle −  weight of BAC before adsorption

weight of preheated BAC
× 100 

 

Adsorption/desorption experiments were duplicated, and average values are reported. Virgin and 

used BAC samples (i.e. after the fifth adsorption-regeneration cycle) were characterized in a 

micropore surface analysis system to obtain the pore size distribution (PSD) and surface area 

(iQ2MP, Quantachrome). After degassing the samples for 5h at 120 °C, nitrogen adsorption was 

conducted at -196 °C while its relative pressure (p/p0) varied from 10−7 to 1. Relative pressures 

ranging from 0.01 to 0.07 and 0.2 to 0.5 were used to obtain specific surface area and micropore 

volume by BET method and V-t model, respectively. The p/p0 = 0.975 was used to determine the 

total pore volume. Pore size distribution was determined using the quenched solid density 

functional theory (QSDFT).  

Surface elemental compositions (C, O, and N) of samples were determined with X-ray 

photoelectron spectroscopy (XPS). High resolution scans of binding energy with signal to noise 

ratio of greater than 10 were collected by an AXIS 165 spectrometer (Kratos Analytical). An 

energy analyzer at a pass energy of 20 V and a step of 0.1 eV was used to obtain the scans with 

the binding energy within the range of 0 eV to 1100 eV. XPS data were then processed using 

CasaXPS Software and the final results were obtained as atomic concentrations. 

After completion of five successive adsorption/regeneration cycles, the BAC samples were 

analyzed with thermogravimetric analysis (TGA/DSC 1, Mettler Toledo). For the TGA test, a 

heating rate of 2 °C/min was used to increase BAC sample temperature from 25 to 800 °C in a 50 

SCCM N2 flow. 
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3.3 RESULTS AND DISCUSSION 

3.3.1  5-cycle adsorption breakthrough curve and capacity  

5-cycle breakthrough curves and adsorption capacities during cyclic adsorption/desorption 

experiments for regeneration scenarios are shown in Fig. 3-2 and Fig. 3-3 A, respectively. All the 

experiments were replicated, with the differences in adsorption capacity of replicates being within 

4 wt%. In successive adsorption/regeneration cycles, the 5% breakthrough time (i.e. time at which 

the outlet concentration reaches 5% of the inlet concentration) shifts to earlier times and\or the 

area above the breakthrough curve decreases, meaning that the adsorption capacity has declined. 

In experiments where higher oxygen impurity and/or lower purge gas flow rate were used, the 

reduction in breakthrough times was greater. For example, using 0.1 SLPM air (21% O2) as purge 

gas, the breakthrough time in the first cycle was 52 minutes while that of fifth cycle decreased to 

6 minutes.  Increasing purge gas flow rate instead of reducing its oxygen impurity also mitigates 

the adverse effect of oxygen on BAC regeneration. For instance, for the 0.1 SLPM air purge flow 

case above, the difference between the first and fifth cycle breakthrough times was 46 minutes 

(∆T1,5 =46 min); however, by increasing the flow rate to 10 SLPM air (10 SLPM 21% O2) or 

decreasing purge gas oxygen concentration to < 5 ppmv (0.1 SLPM N2 containing < 5 ppmv O2), 

the breakthrough time reduction decreased to only 6 minutes (∆T1,5 = 6 min).   
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Fig. 3-2. Adsorption breakthrough curves at different desorption purge flow rates and oxygen impurity levels 
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Fig. 3-3. Adsorption capacity (A) and heel formation (B) during cyclic adsorption/regeneration 
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gas flow rate and oxygen impurity) were not sufficient to completely desorb the adsorbate resulting 

in heel buildup on BAC. Subsequently, non-desorbed VOC species may undergo two different 

pathways :(i) pyrolysis reaction in the absence of oxygen or (ii) thermal oxidation of non-desorbed 

physiosorbed species 11. Both paths result in chemically formed heel or chemisorbed species which 

ultimately transform into char or polymeric species 11. 

Thermal regeneration using 1 or 10 SLPM N2 containing < 5 ppmv O2 almost completely (97%) 

recovered the adsorption capacity of BAC during 5-cycle adsorption/regeneration (Fig. 3-3). 
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0

10

20

30

40

50

1 2 3 4 5

A
d

so
rp

ti
o
n

 c
a
p

a
ci

ty
 w

t 
%

Cycle number

A

0

10

20

30

40

50

1 2 3 4 5

C
u

m
u

la
ti

v
e 

h
ee

l 
 w

t 
%

Cycle number

B



30 

Insufficiently high temperature (T=288 °C) during regeneration, especially at low purge gas flow 

rates, could be a reason for incomplete removal of VOCs from BAC 15. Although the boiling point 

of TMB is only 169 °C, which is less than the applied temperature during thermal regeneration, a 

higher temperature (T > 288°C) is required to completely desorb TMB from BAC due to diffusion 

limitation in BAC micropores 21. Chemisorbed species and adsorbed species in narrower pores are 

harder to desorb; therefore, a greater driving force for desorption is required 15, 26. In the absence 

of oxygen, increasing the desorption temperature reduces the process time and improves the 

desorption efficiency by facilitating mass transfer and diffusion in micropores specifically for 

adsorbates with high affinity 21. However, this increase in temperature can negatively affect BAC 

lifetime by facilitating pyrolysis of non-desorbed physiosorbed species to form chemisorbed 

species 11. On the other hand, in the presence of oxygen, increase in temperature might result in 

higher heel buildup by facilitating reactions between purge gas oxygen and the adsorbate 21.  

3.3.2 Effect of oxygen impurity 

The effect of desorption purge gas oxygen impurity on adsorbate breakthrough and adsorption 

capacity is illustrated in Fig 3-2 and Fig 3-3 A, respectively. The presence of oxygen impurity in 

the purge gas adversely affected the performance of BAC by contributing to heel formation (Fig 

3-2 and Fig 3-3 A). Oxygen molecules can take part in reactions with TMB on the surface of 

activated carbon, producing species that accumulates as heel 27. At a constant flow rate, higher 

concentrations of O2 in the purge gas led to earlier breakthrough times and decreased the adsorption 

capacity (Fig. 3-2). The continuous decline in adsorption capacity during cyclic adsorption stems 

from cumulative heel formation which is accompanied by pore blockage and decrease in 

adsorbent’s available surface area and active sites 11, 18, 21. 
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Although oxygen impurity clearly exacerbates heel formation on BAC, the magnitude of its 

negative effect strongly depends on the purge gas flow rate. For instance, at 0.1 SLPM purge flow, 

by increasing the oxygen impurity in the purge gas from <5 ppmv to 21% (i.e. air), the fifth cycle 

breakthrough time decreased from 45 to 6 min and the fifth cycle adsorption capacity dropped 

from 39 to 10 wt%. However, at 10 SLPM purge flow, by increasing the oxygen impurity from < 

5 ppmv to 21%, the fifth cycle breakthrough time and adsorption capacity decreased by only 15 

min and 8 wt%, respectively. 

3.3.3 Effect of desorption purge gas flow rate 

A higher purge gas flow rate could desorb more VOCs off BAC surface and recover the adsorption 

capacity to a greater extent (Fig. 3-3 A). However, the effect of purge gas flow rate on heel 

formation  

is strongly related to the purge gas oxygen impurity. Increasing the purge gas flow rate mitigates 

the reduction in cyclic adsorption capacity and breakthrough times. This mitigating effect becomes 

more important when purge gas oxygen impurity increases. 

For instance, by increasing the purge gas flow rate from 0.1 to 10 SLPM, the fifth cycle 

breakthrough time increased by less than 5 minutes for <5 ppmv O2, while for 21% O2, the fifth 

cycle breakthrough time improved by 41 minutes, and the fifth cycle adsorption capacity was 

enhanced by 2.8 and 26.5 wt% respectively. Evidently, the effect of flow rate on breakthrough 

time and adsorption capacity becomes more important at high oxygen impurities. Breakthrough 

curves for samples with cumulative heel greater than 16 wt% could not reach the inlet 

concentration (500 ppm) after 2h despite their early breakthroughs. It is believed that in these 

extreme cases (cumulative heel > 16 wt%), heel formation substantially reduced access to 

micropores and the internal mass transfer rate, preventing complete saturation of the adsorbent in 
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2h and resulting in the long tail in breakthrough curves shown in Fig 3-2 (0.1 SLPM 21% O2, 1 

SLPM 21% O2 and 0.1 SLPM 10,000 ppmv O2). Fig. 3-4 shows the relationship between the 

cumulative amount of heel in each cycle and the next cycle’s adsorption capacity. Regardless of 

the nature of heel and the pathway it is formed through (non-desorbed physisorption, 

chemisorption, thermal oxidation, pyrolysis), heel formation results in the loss of BAC active sites 

on which VOCs can be adsorbed. Based on Fig. 3-4, three important conclusions can be drawn :(i) 

there is a certain amount of heel after which BAC can be considered fully exhausted and will 

provide negligible adsorption capacity; (ii) at high cumulative heel (≥16 wt%), the adsorption 

capacity decreases more sharply with heel formation, likely due to severe pore blockage; and (iii) 

there is a nonlinear relationship between heel buildup and BAC adsorption capacity in the next 

cycle, which implies that pore blockage becomes faster as heel buildup increases.  

 

Fig. 3-4. Relationship between cumulative heel for a cycle and the adsorption capacity of the 

following cycle. 
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3.4  Heel formation during cyclic adsorption/regeneration  

3.4.1 Effect of oxygen impurity 

The effect of oxygen impurity on mass balance heel during cyclic adsorption/desorption of TMB 

on BAC is illustrated in Fig. 3-3 B. Firstly, cumulative heel increases with the cycle number, 

meaning that heel is being built up over successive cycles and each cycle contributes to the total 

heel. Moreover, a higher oxygen impurity in the purge gas leads to more heel formation. At 0.1, 1 

and 10 SLPM, increasing oxygen impurity from <5 ppmv to 21% increased cumulative heel by 

approximately 28.85, 20.65 and 5.20 wt%, respectively. This demonstrates that oxygen impurity 

in the purge gas accelerates heel formation; however, the severity of its impact on heel formation 

is strongly dependent on the purge gas flow rate. Heating virgin BAC (i.e., no TMB present) with 

purge gas containing oxygen impurity for 3 hours at 288 °C did not cause heel formation. 

Therefore, it is reasonable to hypothesize that the interactions between oxygen and TMB 

molecules on the surface of BAC are the main source of heel formation. In fact, a higher 

concentration of oxygen in the purge gas during regeneration augments the probability of non-

desorbed VOC participation in thermal oxidation reactions, which is one of the major mechanisms 

in heel formation. The potential by-products of these reactions consist of polymeric species, which 

are heavier than TMB and more difficult to be desorbed at 288 °C 28, 29.  

3.4.2 Effect of flow rate 

At a constant oxygen impurity, a lower purge gas flow rate resulted in formation of a larger amount 

of heel (Fig. 3-3 B). For instance, at 21% oxygen, by decreasing the flow rate from 10 to 0.1 SLPM, 

cumulative heel in the fifth cycle increased from 5.5 to 32.8 wt%. Thus, increasing the purge gas 
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flow rate can be used to reduce the negative impact of oxygen impurity on heel formation. 

Interestingly, at high purge gas flow rate or oxygen impurity, the influence of oxygen impurity 

concentration on cyclic heel slowly levels off. At 10 SLPM, increasing the oxygen impurity from 

<5 to 10,000 ppmv increased the fifth-cycle cumulative heel from 0.35 to 4.18 wt%, while its 

amount at 21% was only 4.55 wt%. Another observation regarding regeneration with nitrogen (<5 

ppmv O2) is that increasing the flow rate from 0.1 to 1 SLPM greatly decreased heel formation, 

whereas a higher flow rate (i.e. 10 SLPM) brought about minimal improvement to heel formation. 

This indicates that by increasing the purge gas flow rate, the desorption rate reaches a plateau, after 

which it will be independent of the flow rate 30. 

To understand how increasing purge gas flow rate facilitates TMB desorption, the effect of purge 

gas flow rate on desorption rate from virgin BAC was investigated in the absence of oxygen (Fig. 

3-5). The early stages of desorption are when purge gas flow rate substantively affects desorption 

rate (Fig. 3-5). During the first ~20 minutes of desorption, the external mass transfer is the rate-

determining step, even at high flow rates (i.e., 1 and 10 SLPM), since a considerable amount of 

adsorbed TMB is being desorbed. After this stage, for 1 and 10 SLPM the internal mass transport 

resistance will be the dominant factor in desorption 31, which can be verified by the same 

desorption rate of samples regenerated with 1 and 10 SLPM after t = 20 min. Therefore, in this 

period, when sufficient purge gas flow rate is applied, desorption rate becomes independent of 

flow rate.  
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Fig. 3-5. First cycle desorption rate profiles of TMB from virgin BAC with <5 ppmv O2 at varying 

purge gas flow rate 

 

3.5  Characterization of regenerated BACs 

3.5.1 Nitrogen adsorption analysis 

BET surface area, micropore volume, and total pore volume of BAC samples before and after five 

cycles adsorption/regeneration are listed in Table 3-1. Heel formation substantially decreased BET 

surface, micropore volume and total pore volume for used BAC samples relative to the virgin 

BAC. Formed heel blocks the adsorption sites and pores. Comparing the total pore and micropore 

volumes of virgin and used BAC demonstrates that pore loss mainly occurred in the micropore 

region, which accounts for greater than 87% of the virgin BAC total pore volume. In the worst 

regeneration case (0.1 SLPM with 21% O2), the BET surface area and micropore volume of BAC 

samples regenerated decreased by 80 and 88 %, respectively. This heel buildup on BAC restricts 

adsorbate’s access to active sites and increases mass transfer resistance in the adsorbent pores 

resulting in a long tail in the fourth and fifth cycles of adsorption breakthrough. However, with 0.1 
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surface area, micropore volume and total pore volume of regenerated samples after 5 cycles by ~ 

3.3, 6.2 and 1.5 times, respectively. At 10 SLPM, those values were increased by ~ 32, 30 and 18 

%, respectively since high purge gas flow rate mitigated some of the adverse effect of oxygen 

impurity on BAC regeneration. These results are further supported by the PSD profiles presented 

in Fig. 3-6. At 5.7, 7.8 and between 10.1 to 13.0 Å, three major peaks are observed for all BAC 

samples except the one regenerated with 0.1 SLPM air (Fig. 3-6). BAC regenerated with 0.1 SLPM 

air shows no peaks because of the nearly complete blockage of its pores by non-desorbed adsorbate 

species and/or species formed during thermal regeneration. For BAC sample regenerated with 1 

SLPM air (Fig. 3-6 C), the third peak is shifted to the left relative to virgin BAC and BAC 

regenerated with 10 SLPM air due to partial blockage of BAC large micropores (10.1-13.0 Å), 

which made its pores narrower.  

 

 

Table. 3-1. Physical and chemical characterization of virgin and regenerated BAC samples. 

Average values are reported. 

Carbon 

description 

Pure gas O2 

content 

(ppmv) 

Purge gas  

flow rate 

(SLPM) 

Physical properties Chemical properties  

BET 

surface area 

(m2/g) 

Micropore  

volume  

(cm3/g) 

Total pore  

volume  

(cm3/g) 

O(%) a N(%) a C(%) a 

Virgin BAC - - 1372.0 0.50 0.57 6.0 0.0 94.0 

BAC after  

5Ads/Reg.  

cycles 

<5 0.1 1175.9 0.43 0.48 6.6 0.1 93.1 

<5 1 1249.0 0.46 0.50 7.6 0.0 91.9 

<5 10 1279.3 0.47 0.52 6.6 0.0 93.1 

10,000 0.1 848.6 0.31 0.36 8.5 0.2 91.1 

10,000 1 967.6 0.36 0.39 9.0 0.0 90.8 

10,000 10 1144.3 0.42 0.46 7.8 0.2 91.9 

210,000 0.1 272.3 0.06 0.19 12.9 0.0 86.9 

210,000 1 599.2 0.20 0.30 12.6 0.7 86.4 

210,000 10 980.8 0.36 0.44 10.7 0.4 88.6 
a Atomic percentage. 
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Fig. 3-6. Pore size distributions of BAC samples A) regenerated with < 5 ppmv O2, B) 

regenerated with 10,000 ppmv O2, and C) regenerated with 21% O2 after five-cycle 

adsorption/regeneration   
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3.5.2 XPS 

 

The XPS analysis was conducted to determine the regenerated BAC surface elemental composition 

and to elucidate the effect of purge gas flow rate and oxygen content on the chemical nature of 

heel. BAC surface oxygen content increased by increasing the oxygen impurity in the purge gas 

in all cases, presumably due to thermal oxidation of adsorbed species and heel formation. The 

oxygen rich heel species are attributed to heavy polymeric products formed as a result of the 

reactions between TMB and oxygen in the purge gas 29, 32, 33. The rate of heel formation via thermal 

oxidation partly depends on the number of collisions between the adsorbed TMB and oxygen 

molecules in the purge gas. For BAC samples regenerated with purge N2 containing <5 and 10,000 

ppmv oxygen impurity, the use of 1 SLPM purge gas flow rate resulted in the highest surface 

oxygen content, which could be explained from two points of view. First, at those oxygen 

concentrations, with 0.1 SLPM purge gas, a very small amount of oxygen enters the adsorbent bed 

during regeneration; therefore, only a small fraction of the total heel is formed through reactions 

involving oxygen. Secondly, at 10 SLPM, adsorbed species are desorbed and quickly carried away 

by air during regeneration due to the high flow rate, leaving fewer TMB molecules available for 

oxidation reactions. Consequently, it is suggested that under our operating conditions, at <5 and 

10,000 ppmv O2 impurity, 1 SLPM purge gas provides the most suitable conditions for reactions 

between the adsorbed species and oxygen in the purge gas. As can be seen in Table 3-1, for a 

particular purge gas flow rate, increasing the concentration of O2 in the purge gas increases the 

surface oxygen content on regenerated BAC. This can be attributed to the higher probability of 

oxidation of TMB as the number of available O2 molecules increases.  
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As mentioned above, at <5 and 10,000 ppmv O2 impurity, using 1 SLPM purge gas results in the 

maximum reaction between TMB and purge gas oxygen (thermal oxidation); however, the 

maximum heel (physisorption, chemisorption, polymerization, pyrolysis and thermal oxidation) 

buildup occurs at 0.1 SLPM. In fact, using lower desorption purge gas flow rate reduces TMB 

concentration gradient between BAC pores and the purge gas resulting in mass transfer limitation 

of the desorbed species from the adsorbent to the purge gas, leaving some TMB in the BAC pores. 

Therefore, at <5 and 10,000 ppmv O2 impurities, using 0.1 SLPM as purge gas results in the 

maximum total heel while using 1 SLPM as purge gas results in the highest oxygen induced heel. 

When air is used as the purge gas, its high oxygen content (21% O2), even at low flow rates, 

provides ample oxygen to the BAC bed during regeneration. An increase in purge gas flow rate, 

however, decreases available TMB on the BAC surface and results in less TMB oxidation during 

regeneration.  

3.5.3 Thermogravimetric analysis 

TGA can be used to help understand the nature and potential formation mechanism(s) of heel 56. 

Operating condition (e.g., oxic or anoxic) as well as characteristics of adsorbates (boiling point 

and molecular structure) 34 determine the heel formation mechanism 71. Therefore, in addition to 

chemisorbed species, some physiosorbed adsorbates also cannot be fully removed during thermal 

regeneration due to their high boiling point and large molecular size 17. These non-desorbed species 

may be converted into heavier compounds through pyrolysis or thermal oxidation reactions. 

Ultimately, after repetitive cycles and extended reactions, heel species are converted to char and/or 

heavy polymeric compounds 11. DTG results for virgin and regenerated BAC samples are shown 

in Fig 3-7. Stronger bonds between the adsorbate and adsorbent require higher temperatures to 

break 3. Strongly physiosorbed heel is attributed to heel species completely removed by heating to 
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450 ◦C (H<450). The strong DTG peak at around 330-450 °C (H<450) can be attributed to the heel 

formed due to (i) the superposition of wall effect in pores which are similar in size with adsorbate 

species, and (ii) diffusion limitations in narrow micropores of BAC 15. Therefore, physiosorbed 

species trapped in BAC due to low flow rate during regeneration and/or weakly chemisorbed low 

molecular weight species formed during thermal oxidation could be desorbed at this temperature 

range. Moreover, chemically formed (chemisorbed) heel is attributed to heel species removed 

between 450◦C to 850 ◦C (H 450_850), and non-desorbable heel made up of chemisorbed heel and 

char is attributed to heel species that require temperature higher than 850 ◦C (H>850) to be removed 

21. As Fig 3-7 indicates, samples began to lose mass at temperatures lower than the regeneration 

temperature (288 °C) due to adsorption of water vapor after fifth cycle desorption on BAC samples 

15.  
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Fig. 3-7. DTG analysis of samples regenerated at A) <5 ppmv, B) 10,000 ppmv and C) 21% oxygen 

concentrations after five-cycle adsorption/regeneration. 
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For virgin BAC and BAC regenerated with <5 ppmv O2 purge gas at 1 and 10 SLPM (Fig 3-7 A), 

no major peak was observed except the final baseline rise at approximately 800 °C due to carbon 

loss 16 . Therefore, DTG results further confirm that 1 and 10 SLPM with <5 ppmv O2 purge gas 

removed almost all TMB during regeneration.  

For the BAC regenerated with <5 ppmv O2 purge gas at 0.1 SLPM (Fig 3-7 A), the peak at 350 °C 

(H<450) can be only attributed to non-desorbed physiosorbed species as there in no or very little 

oxygen for thermal oxidation reactions. Higher purge gas flow rate lowers VOC bulk concentration 

and, therefore, enhances the desorption efficiency by increasing the TMB concentration gradient 

between the surface of BAC and bulk gas. At 0.1 SLPM, purge gas became saturated with TMB 

and therefore the concentration gradient was small which resulted in incomplete desorption and 

accumulation of physiosorbed TMB species. Additionally, as shown in Fig 3-7(A, B and C), an 

increase in purge gas flow rate during regeneration effectively reduced strongly physiosorbed heel 

species corresponding to DTG peaks at around 380 °C (H<450).  

BAC samples regenerated with purge gas containing 10,000 or 21% O2 show two major peaks at 

around 380 °C (H<450) and 500 °C (H 450-850), which were reduced in size with higher purge gas 

flow rate.  At 10,000 ppmv O2 (Fig 3-7 B), by increasing the flow rate from 0.1 SLMP to 10 SLMP, 

the ratio of H 450-850 to H<450 increased, i.e., heel shifts from strongly physiosorbed (H<450) to 

chemisorbed (H 450_850), although the total heel amount decreased.  

For BAC regenerated with 21% O2 (Fig 3-7 C), an additional peak is observed at 650°C, which 

can be attributed to heavy polymeric species formed through thermal oxidation of non-desorbed 

organic species 11. For all purge gas flow rates, higher oxygen impurity level led to shifting the 

DTG peaks to higher temperatures. For all the three oxygen levels, increase in purge gas flow rate 

reduced heel buildup, and suggests this may be a promising alternative method where greater purge 
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gas purity is not feasible. However, in the presence of oxygen, higher purge gas flow also resulted 

in transformation of heel species to heavier compounds which required higher temperature to 

desorb.  

3.5.4 Conclusion 

 

The combined effect of purge gas flow rate and oxygen content on the type and magnitude of heel 

buildup during 5-cycle adsorption/desorption of TMB on BAC was investigated. Nine different 

regeneration scenarios corresponding to three flow rates (0.1, 1 and 10 SLPM) and oxygen 

concentrations (<5 ppmv, 10,000 ppmv and 21%) were considered. Increase in oxygen impurity 

or decrease in flow rate of the purge gas resulted in higher heel buildup, which in turn led to 

reduction in adsorption capacity, breakthrough time, and adsorbent surface area and porosity. 

Thermal regeneration using 1 or 10 SLPM N2 purge gas (<5 ppm O2) recovered 97% of its TMB 

adsorption capacity after 5-cycle adsorption/regeneration. By increasing the purge gas flow rate, 

the extent of oxygen impurity’s effect on heel formation over BAC can be reduced. Higher 

concentration of oxygen in the purge gas increases the possibility of thermal oxidation of non-

desorbed TMB. Utilizing a higher purge gas flow rate reduced the amount of heel formed; 

however, after a certain purge gas flow rate, increasing purge gas flow rate results in a negligible 

heel buildup decrease. Comparing the PSDs and micropore volumes of virgin BAC and 

regenerated BACs indicated that the pore loss due to heel formation mainly occurred in the 

micropore region. By increasing purge gas flow rate, the PSD of the regenerated BAC approaches 

that of virgin BAC. On the other hand, at extremely high oxygen impurity (i.e., air), the PSD of 

regenerated BACs shifted downward indicating blockage of its micropores by heel species. DTG 

results showed that higher purge gas oxygen impurity alters the nature of heel species from non-

desorbed physiosorbed to chemically-formed, heavy organics via consecutive thermal oxidation 
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reactions. Increase in purge gas flow rate at lower oxygen impurities resulted in lower heel buildup. 

Although higher flow rate improves desorption efficiency and reduces heel buildup at relatively 

high oxygen impurities (10,000 ppmv), it transforms the heel into heavier chemically-formed 

organics. 
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4 Prediction of Heel Buildup Using Machine Learning Algorithms (XGBoost 

and Deep Neural Network) 
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4.1 Introduction 

Adsorptive removal of volatile organic compounds (VOCs) over activated carbon (AC) has been 

extensively applied at industrial scale 1-4. In cyclic adsorption processes, used activated carbon 

(i.e., loaded with VOCs) is regenerated to desorb the organics off the surface and ideally retrieve 

the original capacity for the subsequent cycle. A common method for regeneration of activated 

carbon is thermal regeneration using heating elements. In this method, the temperature of 

adsorbent bed is gradually raised to desorb the adsorbed VOCs while the system is continuously 

purged by an inert gas (e.g., nitrogen) to remove the desorbed species, improve the desorption 

efficiency by maintaining a concentration gradient between the purge gas and adsorbent surface, 

and prevent the adsorbates from participating in reactions on AC. However, a challenge associated 

with adsorption-based VOC abatement is the accumulation of strongly or irreversibly adsorbed 

species commonly referred to as a heel. Heel buildup on activated carbon during cyclic adsorption-

regeneration results in a progressive decline in AC’s adsorption capacity and operation lifetime 5-

8. Heel buildup can be due to: (i) chemisorption of adsorbates or their reaction by-products, (ii) 

adsorbate decomposition (i.e., char formation) 9, and (iii) accumulation of non-desorbed 

physiosorbed species due to insufficient regeneration. 

Previous studies reported that regeneration operating conditions, adsorbent characteristics and 

adsorbate properties exert great influence on the magnitude and nature of heel formed on activated 

carbon 7, 9-22. In particular, the extensive research by our group on conductive heating regeneration 

of AC indicated that regeneration temperature 11, 17, heating rate 16, purge gas type 17, 19, 22, and 

purge gas flow rate 16 significantly affect the desorption efficiency and heel buildup. For instance, 

it was found that low purge gas flow rate 16 and high oxygen impurity 17, 19, 22 in purge gas 13,23 can 

accelerate heel buildup. Regeneration temperature can have a negative or positive impact on heel 
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buildup depending on purge gas oxygen content 17. On the other hand, with regard to the adsorbent 

and adsorbate, higher heel buildup values were observed for activated carbons with higher 

micropore volume 20, non-hierarchical pore structure 14, and higher surface oxygen content 12, 21, 

and for adsorption of heavy and/or bulky VOCs (i.e., high molecular weight and/or large kinetic 

diameter) 15. However, in these works, the effect of one individual parameter 11, 15, 19-22 (or rarely 

two parameters 16, 17) on heel buildup was evaluated, limiting one’s ability to clearly delineate the 

interconnections between these parameters and their overall impact on heel buildup.  

Machine learning (ML) is one of the most powerful tools to develop non-linear complex models 

and represent the dependency between output and input values. Machine learning algorithms have 

shown excellent performance in many chemical engineering problems including adsorption 23-30. 

Zhu et al.30 modeled the adsorption of heavy metals in water on 44 biochars considering the biochar 

characteristics, metal properties, and process conditions as input variables. Both deep neural 

network (DNN) and random forest (RF) offered high predictive performance for adsorption 

efficiency (R2>0.94). Developed RF models indicated that biochar characteristics, especially 

cation exchange capacity and pH, have the greatest influence on the adsorption efficiency. In 

another study, Mendoza-Castillo et al. 31 used DNN to predict the multi-component adsorption of 

heavy metal ions on char. They suggested that an adsorption capacity-based DNN model would 

provide better predictions of multi-component adsorption behavior compared to an equilibrium 

concentration-based one. Toyao et al. 32 developed a ML model to predict adsorption energies of 

CH4 related species on Cu-based alloys for methane conversion and compared the predictions with 

density functional theory (DFT) calculations. The ML model was acceptably accurate and much 

less time-consuming than first-principles methods, allowing screening of a large number of 

catalysts.  
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Knowledge of heel buildup is crucial to assess the long-term performance of an adsorbent in 

adsorption-regeneration processes. Heel buildup can be experimentally investigated via cyclic 

adsorption-desorption tests; however, such procedures are time and resource consuming and it is 

onerous to include all the variables that affect heel formation (i.e., adsorbate/adsorbent properties 

and adsorption/regeneration conditions) in the experimental design. In this context, machine 

learning methods can be applied to the data available in the literature to learn/model complex 

relationships between dependent and independent variables associated with heel formation and 

predict the rate and extent of heel buildup. In the present work, two ML algorithms, deep neural 

network (DNN) and extreme gradient boost (XGBoost), that have demonstrated satisfactory results 

in the field of adsorption 26, 28-30 were applied. A dataset consisting of 411 experimental tests on 

cyclic adsorption/desorption of VOCs on different ACs conducted by our research group was used 

for training and testing the selected ML algorithms. The inputs for DNN and XGBoost included 

adsorbent characteristics (e.g., surface area, pore volume, etc.), adsorbate properties (e.g., boiling 

point, molecular weight, dipole moment, etc.), desorption conditions, and adsorption capacity 

while the target variable was heel buildup. The aim is to accurately predict/model heel buildup on 

different ACs based on relevant parameters, compare the performance of ML algorithms for 

prediction of heel buildup, and investigate its partial dependency on key parameters to verify the 

models’ reliability.  

4.2 Materials and Method 

4.2.1 Data Collection and preprocessing 

The experimental data (420 tests) used in this study were compiled from our previous published 

works on single-compound, cyclic adsorption of VOCs on activated carbon 11, 12, 14, 17, 19, 20. In all 

these experiments, regeneration of AC was done by conductive heating under a purge gas flow 
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(most often nitrogen) to desorb adsorbed VOCs. All adsorption tests were conducted at room 

temperature (21-25°C) and continued until the AC reached full saturation for the given conditions. 

Afterwards, exhausted AC underwent regeneration (desorption) and then cooling. During 

regeneration, the adsorbent bed was heated to the desired regeneration temperature and kept at that 

temperature for three hours, typically, while flowing purge gas through the bed. In the cooling 

step, heating was stopped but purge gas flow continued for an hour, typically. Schematics of the 

adsorption-regeneration set-up, details of each stage of the process and characterization of AC, 

and data analysis can be found elsewhere 12, 14, 19, 22.  

Heel buildup refers to the adsorbed species that could not be removed from the adsorbent at the 

prescribed regeneration conditions. Here, heel buildup, the target variable, is defined as follows: 

heel buildup (%) =  
𝑊(𝐴𝐷)

𝑘 − 𝑊(𝐵𝐴)
𝑘   

𝑊(𝐵𝐴)
1 × 100  (1) 

where 𝑊(𝐵𝐴)
𝑘  and 𝑊(𝐴𝐷)

𝑘  respectively denote the weight of adsorbent before adsorption and after 

desorption in the kth cycle.  

The candidate parameters that are considered as the input features in developing the ML models 

for heel buildup are classified as: 

(i) Adsorbent characteristics: mesopore and macropore volume (cm3/g), micropore 

volume (cm3/g), surface oxygen to carbon ratio (molar %), and BET surface area 

(m2/g) of virgin AC. 

(ii) Regeneration parameters: cycle number, regeneration temperature (℃), purge gas 

oxygen content (ppmv), and normalized purge gas flow rate.  

Normalized purge gas flow rate (
𝑆𝐿𝑃𝑀

𝑐𝑚2 ) = 
𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒(𝑆𝐿𝑃𝑀)

𝐶𝑟𝑜𝑠𝑠−𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝐴𝐶 𝑏𝑒𝑑 (𝑐𝑚2)
                    (2) 

The adsorbent bed cross sectional area is used here to account for the difference in adsorbent bed 

cross sectional areas among the tests in the dataset.  
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(iii) Adsorbate properties: boiling point (°C), molar refraction (MR, 
cm3

mol
), and 

Abraham descriptors 33-35 including the adsorbate’s effective H-bonding acidity 

(A) which represents electron accepting capability, effective H-bonding basicity 

(B) which represents electron donating capability, dipolarity/polarizability (S), the 

log of the hexadecane−air partition coefficient (L), and excess molar refraction 

(E,
cm3

10×mol
) , which is the difference between adsorbate MR at 20 °C and that of a 

hypothetical alkane of the same molar volume 36.   

MR was calculated using the following equation 35 :  

𝑀𝑅 =
(𝑛2−1)MW

(𝑛2+2) 𝜌
  (3) 

Where n, MW (
g

mol
) and 𝜌 (

cm3

mol
) denote adsorbate refractive index, molecular weight and 

density, respectively. 

The Abraham features have been proven to be useful to describe various physicochemical 

properties of organic chemicals 37 and are collected from the UFZ-LSER online database 38.  The 

adsorbent characterization data and adsorption/regeneration operating conditions are reported 

elsewhere 
11, 14, 17, 19-21, 39. The statistical distribution of input and output variables are depicted in 

Fig. 4-1. 
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Fig. 4-1. Distribution of target variable (purple) and input features related to regeneration steps 

(blue), adsorbent characteristics (orange), and adsorbates properties (green). V_AC denotes 

virgin activated carbon. 
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Pearson correlation coefficient (PCC) was used to measure linear dependencies between any two 

features and between any particular feature and the target parameter. PCC varies between -1 and 

+1, with -1 indicating a strongly negative correlation, +1 a strongly positive correlation, and 0 the 

absence of a linear correlation. When two features have a PCC close to +1 or -1, one feature can 

be removed since they both are providing the same information to the model. PCC between two 

features, α and β, is calculated as follows: 

𝑃𝐶𝐶 αβ =
∑ (α𝑖−α̅)𝑛

𝑖=1 ∑ (β𝑖−β̅)𝑛
𝑖=1

√∑ (α𝑖−α̅)𝑛
𝑖=1

2√∑ (β𝑖−β̅)𝑛
𝑖=1

2
                  (4) 

where α̅ and β̅ represent the average value of α and β among all samples.  

The PCCs between any two features used in this study are provided in Fig. 4-2. In training and 

testing of ML algorithms, two features, virgin AC micropore volume and the hexadecane-air 

partition coefficient, L, were excluded due to high linear correlation with virgin adsorbent BET 

surface area (PCC Micropore volume & BET = 0.99) and MR (PCC L & MR = 0.93), respectively. 
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Fig. 4-2. Pearson correlation coefficient between study features and between any particular feature 

and cyclic heel build-up. 

 

4.2.2 Extreme gradient boosting 

XGBoost, developed by Chen et al 40, is a fast, flexible and scalable tree boosting method which 

has shown promising performance in many machine learning applications. In XGBoost, unlike 

other tree-based methods, regularization parameters (L1 and L2) can be added to the objective 

function in order to avoid overfitting. For a dataset with 𝑛 samples and 𝑑 features 
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D{(𝑥𝑖, 𝑦𝑖) |𝑖 = 1 𝑡𝑜 𝑛,  𝑥𝑖  𝜖  𝑅𝑑 , 𝑦𝑖  𝜖  𝑅  },  ŷ𝑖
(𝑡)

, which is the ith predicted value after the model 

generates the Jth tree is determined by: 

ŷ𝑖

     =  ∑ ƒ𝑗(𝑥𝑖)
𝐽

𝑗=1
                 (5) 

where ƒ𝑗 represents the jth tree structure.  

The relationships between objective function (Φ), loss function (𝑙 , a differentiable convex function 

to measure the difference between prediction and real values) and the regularization terms of the 

XGBoost method are: 

𝛺(ƒ𝑘) = γT + α(‖𝑊‖) +
1

2
 λ ‖𝑊‖2 (6) 

Φ(J) =  ∑ 𝑙(𝑦𝑖 , ŷ𝑖
(𝐽)

)
𝑛

𝑖=1
+ ∑ 𝛺(ƒ𝑗)

𝐽

𝑗=1
 (7) 

where α and λ are the L1 and L2 regularization terms on weights, ‖𝑊‖ and ‖𝑊‖2 denote the L1-

norm and L2-norm of the weights respectively, T denotes the number of leaves in the tree and γ 

determines how to prune XGBoost based on the decrease in loss function associated with adding 

further branches to an existing tree.  

After generating the Jth decision tree, the predicted value and objective function at  j = Jth step are 

as follows: 

ŷ𝑖
𝐽 =  ŷ𝑖

𝐽−1 + ƒ𝐽(𝑥𝑖)  (8) 

Φ(J) =  ∑ 𝑙(𝑦𝑖, ŷ𝑖
𝐽−1

+ ƒ𝐽(𝑥𝑖) )
𝑛

𝑖=1
+ 𝛺(ƒ𝐽) (9) 

By applying Taylor expansion, equation (9) is approximated as follows: 

Φ(J) ≅  ∑ [𝑙(𝑦𝑖, ŷ𝑖
𝐽−1 )𝑔𝑖ƒ𝐽(𝑥𝑖) +

1

2
ℎ𝑖

2ƒ𝐽(𝑥𝑖)]
𝑛

𝑖=1
+ 𝛺(ƒ𝐽)  (10) 



58 

where 𝑔𝑖
  and ℎ𝑖

  are the first and second derivatives of the loss function with respect to the predicted 

value and are calculated as follows: 

𝑔𝑖 =  
𝜕

𝜕ŷ(𝐽−1)  𝑙(𝑦𝑖, ŷ 
𝐽−1 )  (11) 

ℎ𝑖 =  
𝜕2

𝜕ŷ(𝐽−1)  𝑙(𝑦𝑖, ŷ 
𝐽−1 )  (12) 

4.2.3 Deep neural network  

Deep neural network can be applied to solve complex machine learning problems. It consists of 

interconnected neurons in input, hidden and output layers, to non-linearly map input layer 

parameters to target value(s) in the output layer. Each connection between neurons is associated 

with a specific weight, which is determined during the training process using the backpropagation 

algorithm 31. Neural network consists of two cyclic steps: feed forward and back propagation. In 

the feed forward step, input connections transmit each layer’s neurons output value to the next 

layer’s neurons by multiplying the output value by the connection’s attributed weights, and then 

applying an activation function on the summation of each neuron’s input values. For a given 

dataset with 𝑛 samples and 𝑑 features, D{(𝑥𝑖, 𝑦𝑖) |𝑖 = 1 𝑡𝑜 𝑛,  𝑥𝑖  𝜖  𝑅𝑑, 𝑦𝑖  𝜖  𝑅},  feed forward step 

in the ith neuron of the qth layer (𝑞 ∈ {0, 𝐼, 𝑄 − 1}) of a neural network with Q hidden layers, is as 

follows: 

𝐴0 = 𝑥 (Input data)  (13) 

𝑧𝑖
𝑞+1 = ∑ 𝑤𝑖𝑘

𝑞+1𝑛𝑞−1

𝑘=1 𝐴𝑘
𝑞
 (14) 

𝐴𝑖
𝑞+1 = 𝑓(𝑧𝑖

𝑞+1) (15) 

where, 𝑤𝑖𝑘
𝑞

 is the weight of connection between kth neuron in layer q and ith neuron in layer q+1, 

𝑛𝑞 is the number of neurons in layer q, 𝑧𝑖
𝑞+1

 denotes the input value of ith neuron in layer q+1, 

𝐴𝑖
𝑞+1

 denotes the output value of ith neuron in layer q+1 and 𝑓 is an activation function.  
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Leaky rectified linear (LReLU) is used as the activation function 41, which is defined as: 

𝑓(𝑥) = {

𝑥, 𝑥 ≥ 0
 

𝑥

𝑎
, 𝑥 < 0

  (16) 

where the best value for 𝑎 is determined during the hyper parameter tuning process.  

 

Fig. 4-3. Feed forward in neural network. 

 

 

The second step is back propagation in which connections’ attributed weights are adjusted through 

gradient descent in order to minimize the objective function: 

Φ =  
1

𝑛
∑ (𝑦𝑖 − ŷ𝑖

 )2 
𝑛

𝑖=1
+  

λ

2𝑛
∑ ‖𝑊[𝑞]‖

𝐹

2 𝑄
𝑞=1  (17) 

where ‖𝑊[𝑞]‖
𝐹

2
 is calculated as follows : 

‖𝑊[𝑞]‖
𝐹

2
=  ∑  ∑ (𝑤𝑖𝑘

𝑞)2𝑛𝑞

𝑘=1

 𝑛𝑞+1

𝑖=1
 (18) 
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To avoid overfitting, L2 regularization (λ) was used. The Keras library42 was used to build the 

DNN architecture and implement feed forward and back prorogation algorithms.  

4.2.4 Hyper parameter tuning and model performance evaluation 

Optuna framework 43, which provides a Bayesian sampling algorithm called Tree-structured 

Parzen estimator, was coupled with 5-fold cross validation 44 to find the optimum value for hyper 

parameters. For this purpose, 500 trials on suggested hyper parameters were conducted by Optuna. 

First, the entire dataset was randomly divided into train and test sets with an 80-20 split. Then, the 

train set was randomly divided into 5 sub samples, 4 of which serve as the training set and the 

remaining one is used for validation. The desired method (XGBoost or DNN) was trained and 

optimized on the training set to achieve the minimum RMSE error on the validation set and then 

was applied to the test set to obtain the predicted values. Finally, the predicted values (ŷ) were 

compared to the values obtained experimentally (𝑦 ) in terms of: 

Regression coefficient (𝑅2) = 1 −
∑ (𝑦𝑖−ŷ𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�𝑖)2𝑛
𝑖=1

  (19) 

Mean absolute error (MAE) = 
∑ |𝑦𝑖−ŷ𝑖|𝑛

𝑖=1

𝑛
 (20) 

Root mean squared error (RMSE): √
1

𝑛
∑ (𝑦𝑖−ŷ𝑖)2𝑛

𝑖=1  (21) 

The hyper parameters that resulted in the lowest average RMSE in 5-fold cross validation were 

implemented in the modeling. For both XGBoost and DNN, after finding the optimum hyper 

parameters, the data set was randomly divided into a training set (64%), validation set (16%) and 

test set (20%). Subsequently, the ML algorithms performance on the validation set was monitored 

during the training step in order to continuously modify the learning rate (for DNN) and early stop 

the training in case of no error reduction on validation set(for XGBoost and DNN). This avoided 

overfitting for both methods and gradually decreased learning rate in the DNN training process. In 
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DNN, Adam optimizer was used, and total number of epochs, patience, and reducing factor were 

set to 200, 30 and 0.9, respectively, which means that, during the training process, the model goes 

over the entire training data for 200 times, and if in 30 epochs no improvement occurs in the 

model’s performance on the validation set, its learning rate will be multiplied by 0.9. In addition, 

Model_checkpoint_callback was used to save the weights that led to minimum loss or error on the 

validation set during training and to avoid overfitting on the training set.  

Finally, DNN/XGBoost performance was evaluated based on its prediction capability for the test 

set. Since the dataset in this research was relatively small, to ensure the generalizability of each 

ML method’s error and performance on the entire dataset, the above-mentioned procedure was 

conducted 10 times and the average errors are reported. 

4.3 Results and discussion 

4.3.1 Comparison of DNN and XGBoost performances 

The summary of the hyper parameters tuning process and optimal values of hyper parameters for 

DNN and XGBoost models are reported in Fig. 4-4 and Table 4-1, respectively. Regarding DNN 

hyper parameters tuning, as the optimization summary plot shows (Fig. 4-4 B), DNN with two 

hidden layers architecture outperformed one and three hidden layers DNN during hyper parameter 

optimization. High numbers of trainable weights in larger DNNs such as 3-layers could lead to 

overfitting and poor prediction due to the relatively small size of the dataset and the complexity of 

the underlying phenomena. 
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Fig. 4-4. XGBoost (A) and DNN (B) hyperparameters tuning. 

 

 

 

Table. 4-1. XGBoost and DNN hyper parameters and their optimum values. 

XGBoost DNN 

Booster gbtree Number of hidden layers 2 

Grow_policy depthwise Hidden Layers #Neurons  38,13 

Alpha 0.43 1st layer 𝜆 0.01 

max_depth  9 2nd   layer 𝜆 0.01 

 Eta 0.72 LReLU parameter (a) 0.04 

Gamma 0.11 Initial learning rate 0.13  

Lambda 2.28 Batch size 460 

Alpha       Eta                  Max depth                           Gamma                           Lambda          Average 

Error 

#N (L3)          𝝀  (L3)           # N (L2)          𝝀  (L2)          #Layers       #𝐍 (𝐋𝟏)              𝝀(L1) LRelu (a)  Init_learning rate  Batch size   Average Error 
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Using the optimum hyper parameters, XGBoost and DNN algorithms were run (10 times) and the 

predicted heel buildup values were compared to experimentally measured values (Fig. 4-5). For 

both models, XGBoost and DNN, the deviations of predicted values from the measured values are 

relatively small. The performance of XGBoost and DNN were compared based on R2, MAE, and 

RMSE values. As can be seen in Fig. 4-6, DNN significantly outperformed XGBoost in terms of 

prediction accuracy. The average RMSE and MAE for DNN on the test set were 0.08 ± 0.01 and 

0.19 ± 0.01, respectively, and for XGBoost were 0.26 ± 0.09 and 0.28 ± 0.04. Similarly, the R2 

values for XGBoost and DNN were 0.81 ± 0.05 and 0.94± 0.03, respectively. In general, the 

optimized DNN model showed negligible overfitting error while XGBoost performance decreased 

substantially on the test set relative to the training set, as shown in Fig.4-5.  

 

Fig. 4-5. Comparison of predicted and experimentally measured heel buildup values for XGBoost 

and DNN over 10 runs with random sampling 

 

R2 Test = 0.94 ± 0.03 

R2 Train = 0.94 ± 0.01 

 

 

 

 

R2 Test = 0.81 ± 0.06 

R2 Train = 0.95 ± 0.02 
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Fig. 4-6. Comparison between DNN and XGBoost models’ predictive abilities in 10 different 

runs with random sampling. 

 

 

4.3.2 Heel buildup partial dependency on selected parameters 

DNN was selected to generate partial dependency plots since it outperformed XGBoost and 

showed high predictive ability, low variance in different runs and low overfitting error. Heel 

buildup partial dependency on each individual feature is reported in Supplementary Information 

(SI). A SHapley Additive exPlanations (SHAP) 45 summary plot (Fig. 7) provides some insight on 

the impact of each parameter on heel buildup. Features are ordered based on their importance, 

defined as the average of absolute changes imposed on the predicted values by varying features 

within their range. Each point represents a single cycle result, its color represents the parameter 

value, and its X-axis position (SHAP value, wt%) represents the expected change in predicted heel 

buildup compared to the prediction when a feature has its baseline value.  
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Fig. 4-7. SHAP summary plot of prediction of heel buildup using DNN. Each dot represents an 

instance, its color represents the feature value and its X-axis position (SHAP value, wt%) 

represents the expected change in predicted heel buildup compared to the prediction when feature 

took some baseline value. 

 

Numerous factors were identified that exacerbate heel buildup, including the following: 

adsorption/regeneration in early cycles (i.e. low cycle number), low purge gas flow rate, high purge 

gas oxygen impurity, virgin AC with low meso+macro pore volume, and virgin AC with high O/C 

ratio.  Adsorbate properties that contribute to heel building include high boiling point, high 

excessive and absolute molar refraction, high basicity or electron donating capability, low 

dipolarity/polarizability and low acidity. Although the data suggest a positive correlation between 

heel buildup with virgin AC BET surface area (or micropore volume) and virgin AC’s O/C % , 

some of the experimental data were inconsistent suggesting that the depedencies may be affected 

by other parameters. The same consideration may be true for regeneration temperature. Based on 

the literature it can be concluded that the AC’s “meso+macro” pore volume and the purge gas 
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oxygen impurity are the most important parameters affecting the impact of BET surface area and 

regeneration temperature on heel buildup, respectively 14, 17.  

To evaluate the reliability of developed DNN algorithm and thoroughly investigate the effect 

and/or co-effect of adsorbate and adsorbent properties as well as regeneration parameters on heel 

buildup, the dependency plots shown in Figures 8 a to h were generated. Since the dataset is 

relatively small, in each run some important samples might not have been in the training set to be 

learned by the ML algorithm; therefore, the least important features (such as adsorbate’s effective 

H-bonding–A), might show a different partial dependency in some runs. However, the most 

frequently repeated partial dependency plots are provided here. 
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Fig. 4-8. Partial dependency of heel buildup per cycle on a) normalized flow rate (SLPM/cm2) and 

purge gas O2 impurity (ppmv), b) virgin AC’ BET surface (m2/g) and its O/C%, c) Virgin AC’s 

(meso+macro)pore volume (m3/g) and its  BET surface (m2/g) , d) regeneration temperate (°C) and 

purge gas O2 impurity (ppmv) e) cycle number and adsorbate’s S-descriptor,  f) adsorbate’s E-

descriptor (cm3.mol-1 /10) and adsorbate’s MR (cm3. mol-1), g) adsorbate’s A- descriptor and B-

descriptor, h) adsorbate’s boiling point (°C) and adsorbate’s MR (m3/mol). Gray planes represent 

variation (upper and lower limit) in the model output. 

 

4.3.2.1 Interaction of oxygen impurity and normalized flow rate  

The effect of purge gas oxygen impurity and normalized flow rate on heel buildup is illustrated in 

Fig. 4-7a. As could be expected from the experimental observations 16, 17, 19, 22, both regeneration 

parameters have a large impact on the extent of heel buildup on activated carbon during 

adsorption/desorption of organic compounds. There are also economic and performance trade-off 

relationships for purge gas purity, purge gas flow rate and heel buildup that must be considered 

when selecting optimal regeneration conditions 19, 46. As can be seen in Fig. 4-7a, regardless of the 

applied normalized flow rate, the heel buildup is more severe on saturated activated carbons that 

are regenerated with N2 purge gas containing O2 impurity. Presence of O2 in the purge gas induces 

unwanted chemical reactions between oxygen and adsorbate molecules. It has been found that 

oxygen reaction with aromatic compounds produces heavy polymeric by-products 47, 48, which 

g h 
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require more energy (i.e., higher regeneration temperature or longer duration) to be removed from 

the adsorbent. Thermal-oxidation of non-desorbed VOCs during thermal regeneration is a primary 

mechanism that accounts for the majority of heel buildup in these experiments 19. Based on the 

model’s outcomes, heel formation is positively correlated with the purge gas oxygen content, 

meaning that at a certain temperature and flow rate, as the oxygen impurity in the purge gas 

increases, more non-desorbable species are formed on the activated carbon. The amount of heel 

buildup and the oxygen impact on heel formation depend on the nature of adsorbate and its 

reactivity with oxygen19. From an economic perspective, the power consumption associated with 

nitrogen generation rapidly increases with nitrogen purity and with greater flow rate 46. An increase 

in the purge gas flow rate during thermal regeneration improves mass transfer and desorption 

efficiency by shortening VOCs residence time inside AC pores and creating a steep concentration 

gradient between the AC surface and bulk flow 16. In Fig. 4-8a, in the high normalized flow rate 

region (> 4), especially when oxygen concentration is low, an increment in the purge gas 

normalized flow rate brings about a less significant reduction in the heel buildup compared to a 

similar change in the low flow rate region. This indicates that there is an optimum flow rate for 

each specific purge gas oxygen impurity, at which a better trade-off between the activated carbon 

long-term performance and the regeneration cost can be achieved. Hence, for industrial 

applications, optimization of the flow rate can be an efficient tool to minimize heel buildup when 

providing high purity purge gas is not feasible. Likewise, if system down-sizing is desired or 

operating limitations do not allow high flow rates, purge gas purification should be considered to 

avoid heel formation. 
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4.3.2.2 Interaction of of virgin activated carbon BET surface area and surface oxygen groups  

The combined effects of activated carbon BET surface area and surface atomic oxygen to carbon 

ratio on heel buildup are shown in Fig. 4-8b. Since in this dataset BET surface area of virgin 

activated carbon was linearly correlated with micropore volume, only the BET surface area was 

used for developing the ML models; however, the information in Fig. 4-8b provides insight on the 

impact of micropore volume on heel buildup as well. As shown in Fig. 4-8b, for activated carbons 

with the same O/C ratio, samples with larger BET surface areas (or micropore volumes) exhibit 

greater heel buildups. The underlying cause is the high adsorption energy of VOCs in micropores 

which result from the overlapping of attractive forces on adsorbates in narrow channels from the 

surrounding walls 13, 49. In addition, diffusional limitations in micropores, particularly when 

adsorbate molecular size is comparable to that of AC’s pores 20, 21, 50, could also account for heel 

buildup in extremely microporous adsorbents. It has also been suggested that the presence of 

oxygen groups on AC surface promotes the chemisorption of VOCs during adsorption 21. On the 

other hand, surface oxygen groups can participate in reactions with adsorbed VOCs and form high 

boiling point oxidation by-products 21. In either case (chemisorption or formation of by-products), 

activated carbons with higher O/C ratios are more vulnerable to heel buildup because higher energy 

is required to desorb heavy oxidation by-products and/or chemisorbed VOC molecules. It should 

be highlighted that the observed trends for heel buildup with variations in activated carbon surface 

area and O/C ratio are consistent with the experimental data in the literature 12, 14, 20, 21. 

4.3.2.3 Interaction of virgin activated carbon BET surface area and mesoo-/macropore volume  

Previous experimental investigations of the role of activated carbon’s porous structure on heel 

formation have indicated that activated carbon’s meso-macroporosity has a substantial influence 

on the extent of heel buildup 14. As shown in Fig. 4-8c, during cyclic adsorption-regeneration, for 



71 

adsorbents with the same BET surface area, less heel is formed on activated carbons with greater 

“meso+macro” pore volumes. This behavior can be justified from different aspects. One reason is 

that in ACs with very high microporosity, narrow micropore channels hamper the diffusion of 

adsorbates to the surface during the desorption process, increasing the amount of non-desorbed 

VOCs (or heel) 14. On the other hand, the impediment of VOCs diffusion by micropores prolongs 

the residence time of adsorbates in the AC at elevated temperatures, which in turn increases the 

probability of VOC polymerization, pyrolysis and/or reaction with purge gas impurities. In the 

case of oxygen impurity, the oxidation reaction by-products are often large, bulky molecules 

compared to the original adsorbate and might get trapped in or strongly attached to narrow 

micropores, causing further heel buildup especially in ACs with high microporosity 20. It is, 

therefore, reasonable to propose that to avoid excessive heel formation, microporosity of the 

adsorbent must not exceed a certain level. At the same time, as the developed ML model clearly 

indicates, the higher the “meso+macro” pore volume is, the lower the heel buildup will be. High 

“meso+macro” porosity allows faster mass transfer and diffusion out of the pores. Moreover, in 

contrast with adsorption in micropores, where superposition of wall effect results in formation of 

relatively strong bonds, adsorption energy on meso/macro pores is low, and the adsorbate 

molecules are weakly adsorbed to the BAC surface 20. Therefore, presence of meso+macro pores 

can facilitate the desorption process, and adsorption on meso+macro pores is expected to be easier 

to reverse. 

4.3.2.4 Effect of regeneration temperature and purge gas oxygen impurity  

The shape of the “regeneration temperature vs. purge gas O2 content” surface in Fig. 4-8d suggests 

that at a fixed purge gas O2 level, the minimum heel could be expected when the applied 

regeneration temperature is around 200 °C. This is consistent with Feizbakhshan et. al.’s study on 
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concurrent effects of purge gas oxygen impurity and desorption temperature on heel buildup 17. As 

seen in Fig. 4-8d, heel buildup increases with regeneration temperature, except for samples 

regenerated with low-oxygen purge gas which showed a maximum heel buildup at around 400-

500 ℃. On one hand, raising the regeneration temperature enhances the desorption efficiency by 

boosting the mass transfer and diffusion rates, especially for heavy molecules adsorbed in 

micropores 11, 51, 52. However, for purge gas with oxygen impurity, higher regeneration temperature 

increases the rate of the oxidative reactions between O2 and organic species. Based on Collision 

theory, reaction rate is directly correlated to frequency of collisions between the reactants 53, and 

as the kinetic energy increases with increment in the desorption temperature, rate of oxidation 

reactions on activated carbon rise. Therefore, in the presence of oxygen, high regeneration 

temperature could have both adverse (more oxidation by-products) and favorable (higher 

desorption rate) impacts on heel formation, however, with increasing regeneration temperature, 

the adverse effect becomes dominant. In low-temperature desorption, the driving force is 

insufficient; consequently, adsorbates, especially the ones in micropores, remain non-desorbed. It 

is logical to conclude that the heel buildup accruing at low and high temperature is attributable to 

non-desorbed physisorbed and chemisorbed species, respectively. It should be noted that carbon 

loss in the TGA of AC samples at very high temperatures (>750 ℃) 20, might partially contribute 

to the decrement in observed and subsequently predicted heel buildup values at these high 

regeneration temperatures. 

4.3.2.5 Effect of cycle number  

The effect of cycle number on heel buildup is shown in Fig. 4-8e. For a specific adsorption test 

set, the virgin activated carbon’s surface area is one of the most influential parameters for the 

prediction of nth cycle (n=1 to 5) heel buildup. As mentioned before (section 3.2.1), there is a 
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relationship between heel buildup and adsorbent surface area (or micropore volume); a higher heel 

buildup is expected for adsorbents with larger surface area or micropore volume. On the other 

hand, it is reported that the adsorbent’s surface area and micropore volume linearly decrease with 

cumulative heel 19. In cycle 1 (with virgin AC), the highest surface area and the narrowest pores 

are available, and naturally, maximum heel is formed in comparison with subsequent cycles. 

Blockage of narrow and accessible micropore channels by non-desorbed species or large 

molecules produced via oxidation, polymerization and/or pyrolysis reactions during regeneration 

is the main reason. Fig. 4-8e shows that there is a gradual decrease in cyclic heel buildup as the 

process proceeds, suggesting that after a certain number of cycles, the heel buildup rate in each 

adsorption/regeneration cycle would approach a steady value. On the other hand, adsorbate 

dipolarity/polarizability (S) seems to have a minor negative contribution on heel buildup, as 

explained in the next section. 

4.3.2.6 Effect of adsorbate’s properties (A, B, boiling point, MR, and S)  

The adsorbate’ properties greatly influence the adsorption capacity and desorption efficiency 

during cyclic operations. Abraham descriptors of the adsorbate can be related to major mechanisms 

contributing to heel buildup. The adsorbate excess molar refractivity (E), molar refraction (MR), 

boiling point, basicity (B), dipolarity/polarizability (S), and acidity (A) are shown to contribute to 

heel build up, in that order (Fig. 4-8). The effect of MR and E on heel build up is shown in Fig. 4-

8e. The dominance of MR and E in determining heel buildup among Abraham descriptors (Fig. 4-

7), and their positive correlation with heel buildup (Fig. 4-8f) demonstrate that heel buildup 

proceeds mainly through London dispersive interaction and interaction through π or n electrons, 

respectively.  Interestingly the results of the partial dependency plots produced by DNN are in 

excellent agreement with the findings of previous studies which conducted derivative 
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thermogravimetric (DTG) analysis on spent ACs to quantify physiosorbed and chemisorbed heel 

species. It has been reported that heel buildup is mainly due to accumulation of non-desorbed 

physiosorbed species 10-12, 16, 17, 19-21, which may further undergo thermal oxidation or pyrolysis 

based on presence or absence of oxygen in the purge gas 10. In addition, they considered 

chemisorbed species and by-products of adsorbed species reactions as the second contributor to 

heel buildup. Van der Waals interactions described by MR and E-descriptor can be attributed to 

physiosorbed species while H-bonding interactions described by B- and A-descriptors can be 

attributed to chemisorbed species. It should be noted that S-descriptor accounts for dipole−dipole 

and dipole−induced dipole interactions other than H-bonding and hence has some overlap with E 

and MR. 

According to Dubinin-Radushkevich (D-R) model 54 which is commonly used to estimate AC 

adsorption capacity for VOCs, the adsorption capacity (W) is calculated as follows: 

𝑊 =
𝑊𝑜

𝜌
 𝑒𝑥𝑝 (−𝑘

(RT 𝑙𝑛(−𝑘
𝑃0
𝑃

))
2

𝛽2 )  (22) 

In this equation, β is affinity coefficient which is determined exclusively based on adsorbate 

properties. β can be calculated as the ratio of MR of the test adsorbate to that of a reference adsorbate 

(MR𝑟𝑒𝑓,)55: 

𝛽 =  
𝑃𝑒

𝑃𝑒 𝑟𝑒𝑓
=

𝑀𝑅

𝑀𝑅 𝑟𝑒𝑓
   (23) 

Therefore, an increase in MR is associated with an increase in adsorption capacity which 

contributes to heel buildup. This is understandable because the entrapment of more adsorbates in 

activated carbon (or a higher adsorption capacity) (i) increases the probability of adsorption on 

highest energy active sites (e.g., narrow micropores), (ii) necessitates more energy input for 
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complete regeneration, and (iii) restricts the diffusion/removal of adsorbed species out of AC’s 

pores in a given time (i.e., regeneration duration).  

The adsorbate’s H-bond basicity (B) is another important adsorbate property (Fig. 4-8g) 

contributing to heel buildup. Higher heel buildup is expected for VOCs with high electron donation 

capability, however, acidity among the majority of ACs used in this study were slightly higher 

than basicity 12, 14, 19, 20. Therefore, for basic AC’s a different correlation might be observed since 

the acidity of the AC’s makes the acid-base interaction with adsorbates more favorable. In contrast 

with adsorbate basicity, its acidity shows a minor negative impact on heel buildup. Moreover, as 

shown in Fig. 4-8e, the adsorbate’s dipolar type interaction capability (S) has a minor negative 

impact on heel buildup, and the AC samples of the study have low tendency to form irreversible 

bonds through the dipole-dipole and dipole-induced dipole interaction with VOC species. 

Finally. the DNN model indicates that heel buildup is directly correlated with adsorbate’s boiling 

point (Fig. 4-8h,). Previous studies 15, 39, 56 showed that adsorbates with high boiling point and/or 

high molecular weight tend to have higher heel buildup at a constant temperature since the 

regeneration driving force is correlated with the difference between applied temperature and 

adsorbate’s boiling point 17. The effect of molecular weight has already been considered as a part 

of MR parameter and hence was not included in this study. 

4.4 Conclusion 

XGBoost and deep neural network were applied to predict heel buildup for cyclic 

adsorption/desorption of VOCs on activated carbon based on adsorbent properties, adsorbate 

characteristics, and adsorption/regeneration parameters. For this purpose, a data set including 411 

experimental tests of VOC cyclic adsorption/desorption on activated carbon were collected from 

the literature. 5-fold cross validation was coupled with Bayesian sampling algorithm to optimize 



76 

both algorithms’ hyperparameters. Both machine learning algorithms showed reasonable accuracy 

in predicting the cyclic heel formation, however DNN outperformed XGBoost (e.g., 𝑅𝐴𝑁𝑁
2 =  0.94,

𝑅𝑋𝐺𝐵𝑜𝑜𝑠𝑡
2 = 0.81). Partial dependency plots between heel buildup and regeneration parameters, 

adsorbent characteristics and adsorbate describing Abraham parameters were generated to study 

the simultaneous effects of some of the most important features on heel buildup and to verify the 

models’ reliability. 

It was demonstrated that purge gas flow rate and O2 impurity, cycle number, and the adsorbate’s 

molar refraction (MR, or capability of non-specific dispersive interaction) and excessive molar 

refraction (E, interactions through π or n electrons) have the most noticeable impacts on the extent 

of heel buildup. The findings presented in this study can assist in the selection of 

adsorption/desorption operating conditions to minimize heel buildup over activated carbon in 

cyclic adsorption/desorption processes. Moreover, the correlations developed between the 

adsorbent/adsorbate properties and heel buildup can be used to choose suitable adsorbent(s) for a 

specific application.  
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5 Conclusions and Recommendations 

5.1 Conclusions 

In chapter 3, the simultaneous effect of oxygen impurity and purge gas flow rate on adsorption 

capacity of and heel build-up on activated carbon during cyclic adsorption-desorption of VOC was 

studied. 5-cycle adsorption/regeneration experiments were performed with nine different 

regeneration scenarios by varying purge gas flow (0.1, 1, and 10 SLPM) rate and oxygen impurity 

(<5 ppmv, 10,000 ppmv, and 21%). The results showed higher heel build-up for samples 

regenerated with higher oxygen impurity and/or lower flow rate. Furthermore, lower adsorption 

capacity, BET surface area, breakthrough time were observed for the samples regenerated with 

high oxygen impurity and/or low flow rate purge gas. In addition, it was found that increasing 

purge gas flow rate mitigates the extent of oxygen impurity adverse effect on heel build-up. DTG 

analysis of the regenerated samples showed less heel buildup for samples regenerated with higher 

flow rates.  

In chapter 4, two ML algorithms (XGBoost and DNN) were used to predict heel build-up in cyclic 

adsorption/desorption of VOCs on activated carbon. Adsorbate’s properties (e.g., Abraham 

descriptors, MR, and boiling point), adsorbent’s characteristics (e.g., BET surface area, 

“meso+macro” pore volume, O/C ratio), and regeneration parameters (e.g., purge gas flow rate, 

purge gas oxygen impurity, and regeneration temperature) were used as input to predict cyclic heel 

build-up. DNN (R2 = 0.94) outperformed XGBoost in prediction of heel buildup (R2 = 0.81). 

Partial dependency plots were generated to validate DNN performance and gain insight into the 

relationship between heel build-up and the input parameters. According to the DNN model and 

partial dependency plots, purge gas flow rate and O2 impurity, cycle number, and the adsorbate’s 
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molar refraction (MR, or capability of non-specific dispersive interaction) and excessive molar 

refraction (E, interactions through π or n electrons) have the most noticeable impacts on the extent 

of heel build-up. 

5.2 Recommendations 

In this thesis, the simultaneous effect of the purge gas oxygen impurity and flow rate on heel 

formation was investigated and heel buildup was predicted using machine learning algorithms. 

The following recommendations can be made for future research: 

·     Although increasing the purge gas flow rate and purity reduces heel buildup, they add expenses 

to the VOC abatement process. Hence, conducting a technoeconomic analysis of the regeneration 

process can result in finding the optimum regeneration conditions with respect to the purge gas 

flow rate and its oxygen impurity. 

·     According to the partial dependency plots provided in chapter 4, the effect of purge gas oxygen 

impurity on heel buildup is highly dependent on regeneration temperature. Hence, conducting 

TGA analysis to find the optimum regeneration temperature at which oxygen impurity does not 

adversely affect heel buildup is strongly recommended. 
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Appendix A: Supplementary Information for Chapter 4 

A.1 DNN architecture 

 
Fig. A-1. Architecture of DNN model used in the study 

 

A.2 Partial dependency plots 

The y axis illustrates the difference between predicted heel and what would be predicted at the 

baseline or leftmost value. Specifically, 

∆ Heel (W%) = Heel (W%) (at X = x) – Heel (W%) (at X = x0) 

where x can be any value within the feature domain and x0 is the minimum observed value of 

that feature in data set. For example, as shown in Fig S.3, ∆ Heel at T = 300 °C is about 0.2 W% 
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which means that by increasing the temperature from X=x0 = 200 °C to X = 300 °C, 0.2 W% 

increase in average cyclic heel buildup would be expected. 

The blue shaded area indicates confidence level. Hence, greater shaded area represents larger 

uncertainty in the reported average value. 

 
 

Fig. A-2. Heel partial dependency on regeneration temperature (°C) 
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Fig. A-3. Heel partial dependency on purge gas normalized flow rate (SLPM) 

 
 

Fig. A-4. Heel partial dependency on purge gas oxygen content (ppmv) 
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Fig. A-5. Heel partial dependency on cycle number 

 

 

 
 

Fig. A-6. Heel partial dependency on virgin activated carbon's BET surface area (
𝑚2

𝑔
) 
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Fig. A-7. Heel partial dependency on virgin activated carbon's "mesoo+macro" pore volume 

(
𝑐𝑚3

𝑔
). 

 
 

Fig. A-8. Heel partial dependency on virgin activated carbon's O/C % 
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Fig. A-9. Heel partial dependency on adsorbate's molar refraction (MR, 
𝑐𝑚3

𝑚𝑜𝑙
) 

 
 

Fig. A-10. Heel partial dependency on adsorbate's excessive molar refraction (𝐸,
𝑐𝑚3

10×𝑚𝑜𝑙
) 
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Fig. A-11. Heel partial dependency on adsorbate's boiling point (°C) 

 
 

Fig. A-12. Heel partial dependency on adsorbate's effective H-bonding basicity (B) 
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Fig. A-13. Heel partial dependency on adsorbate's dipolarity/polarizability (S) 

 

 

 
 

Fig. A-14. Heel partial dependency on adsorbate's effective H-bonding acidity (A) 

 


