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Abstract

Advancements in data acquisition technologies and the desire for rich
data has led to an increase in the size of data collected from modern analytical
instruments. With the aid of chemometric techniques, researchers are still
able to glean more useful information from these kinds of data than they can
with conventional interpretation tools. These chemometric models also

benefit immensely from methods that eliminate redundant information.

To make these feature selection methods efficient, strategies to reduce
the size of the data prior to their implementation are also desirable. However,
in attempting to reduce the data volume, there is an associated risk of
information loss or distortion. In chromatography, where multivariate
detectors such as mass spectrometers are used, data reduction methods
currently available generally resort to elimination of some dimension of the

data.

This dissertation presents new approaches to data size reduction for
chromatographic data where multivariate detectors are used. The Unique Ion
Filter (UIF) was developed as a data reduction strategy for reducing data size
without altering the multivariate nature as well as the chemical information

in the data. Two types of UIF were developed namely, UIF1D and UIF2D
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for one-dimensional and comprehensive chromatography where multivariate
detectors are employed. UIF1D and UIF2D were successfully applied to
complex data and were found to be very useful. Segmented total ion
spectrum (STIS) was also developed to achieve data reduction with partial
preservation of retention information for gas chromatography data. STIS is
presented as an alignment-free data reduction method which allows
inter-laboratory comparison of chromatograms so long as the same anchor

compounds are used.

Cluster resolution feature selection (CR-FS) was developed as an
objective feature selection algorithm. Hitherto, there existed no guidance to
the determination of the two main parameters needed for full automation of
CR-FS. This has prevented true automation of the implementation of this
algorithm. The development of an empirical approach to guide the selection

of these two critical parameters is also accomplished in this dissertation.

Applications of feature selection tools beyond the realm of
chromatography are also explored. It is the desire of X- ray crystallographers
to be able to predict the crystal structure of crystalline compounds from their
elemental compositions. A machine learning approach to this problem was
also explored using CR-FS to determine elemental properties that can guide

such predictions.
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Rapid identification of micro-organism is highly desirable. This task
increases in difhculty as one moves down the taxonomic rank. Feature
selection with CR-FS in combination with matrix assisted laser desorption
ionization mass spectroscopy (MALDI-TOFMS) data presents an
opportunity for high throughput and automated method for bacterial

identification. The potential of this approach is also explored.

iv



Preface

A version of Chapter Two has been published as Unique Ion filter; A
strategy for GC-MS data processing prior to Chemometric Analysis, Adutwum
L. A, Harynuk J.J., Anal. Chem. 2014, 86(15), 7726 -7733. I was responsible
for the UIF software development, implementation, evaluation and data
analysis. 'The method development and analysis of green tea samples by
comprehensive gas chromatography-mass spectrometry (GC x GC-MS) were
also done by me. In addition to manuscript preparation and editing. Harynuk
J.J. was involved in concept formation, guidance, manuscript preparation and
editing.

A version of Chapter Three is under review for publication in Journal
of Forensic Science as Comparison of Total Ion Spectra and Segmented Total
Ion Spectra as Preprocessing Tools for Gas Chromatography-Mass Spectrometry
Data for the Chemometric Analysis of Casework Fire Debris Samples, Adutwum
L.A., Abel]. Robin and Harynuk J.]. (reference number: JOFS-17-303). [ was
responsible for the segmented total ion spectra (STIS) software development
and implementation. In addition to the chemometric analysis of total ion
spectra (TIS) and STIS data. In addition to manuscript preparation and
editing. Abel ]. Robin was involved in forensic analysis of misclassified samples
as well as manuscript editing. HarynukJ. J. was involved in concept formation,
guidance, manuscript preparation and editing,

A version of Chapter Four is under review for publication in Analytical
and Bioanalytical Chemistry as Estimation of Start and Stop Numbers for
Cluster Resolution Feature Selection Algorithm; An Empirical Approach using
Null Distribution Analysis of Fisher Ratios, Adutwum L. A., de La Mata A. P,
Bean H. D, Hill, E.J. and Harynuk J.J. (reference number: ABC-01259-2017).
I was responsible for software development, implementation, evaluation and
data analysis. In addition to manuscript preparation and edits, de La Mata
A. P. was responsible for the GC X GC-TOFMS analysis of fabric volatiles
compounds from fabric. Bean H. D. and Hill E. J. provided the bacterial data
in this study. Harynuk J. J. was involved in concept formation, guidance,
manuscript preparation and editing.



Portions of Chapter Five have been published as Classifying Crystal
Structures of Binary Compounds AB through Cluster Resolution Feature
Selection and Support Vector Machine Analysis, Oliynyk A. O., Adutwum
L. A, Harynuk J. J, Mar A.,, Chem. Mater., 2016, 28(18), 6672-6681. 1
was responsible for software development for data organization, importation
and data analysis as well as manuscript preparation and edits. Oliynyk A.
O. was involved in data extraction, synthesis and characterization as well
as manuscript preparation. Harynuk J. J. and Mar A. were the supervisory
authors and were involved in concept formation, guidance, manuscript
preparation and editing.

Portions of Chapter Five has been submitted for publication as How to
Confuse a Machine: Structure Prediction and Polymorphism through Machine
Learning, Oliynyk A. O., Adutwum L. A., Rudyk B. W,, Pisavadia H., Tehrani
M. A., Hukhyy V,, HarynukJ. J.,, Mar A., Brgoch . (reference number: ja-2017-
08460p). I was responsible for software development for data organization,
importation and data analysis as well as manuscript edits. Oliynyk A. O’s
contribution to this study includes data extraction and processing, synthesis
and characterization and preparing the initial draft of the manuscript. Rudyk
B. W.was involved with synthesis and characterization of the samples using the
X-ray photoelectron spectroscopy (XPS) technique. Pisavadia H. contributed
by extracting the crystal structure data from the various data bases used in this
study. Tehrani M. A. contributed by performing density functional theory
(DFT) calculations of total energy. Hukhyy V. was involved with magnetic
property measurements and discussion. Harynuk J. J,, Mar A. and Brgoch J.
performed the supervisory role on the study.

vi



Dedication

to the memory of my dear mother Ama Nyarko

vii



Acknowledgments

The completion of the work in this dissertation could not have been
accomplished without the support of many individuals and funding agencies.
To them I owe a lot of gratitude.

I would like to express my heartfelt gratitude to my research supervisor,
Dr. James J. Harynuk for his leadership, direction and guidance throughout
the period of my PhD studies. I never believed I could accomplish this when
I started but you believed in me, for that I am very grateful. My sincere thanks
also goes to members of my advisory and examining committees, Dr. Charles
Lucy, Dr. John Veinot, Dr. Gabriel Hanna, Dr. Chris Le, Dr. Vincent Bouchard
and Dr. Sarah Rutan, your comments, corrections and inputs are appreciated.
Much thanks also goes to my collaborators who provided data.

To current and past members of the Harynuk Research Group, I couldn’t
have done this without your encouragements during various stages of my
studies. Much thanks to the Department of Chemistry’s Mass Spectrometry
Laboratory and Technical Shops and Services for their assistance. Many
thanks to my friends in Canada and Ghana for their encouragement at various
states of my academic pursuit.

I would like to acknowledge the financial support from the University of
Alberta, the Natural Sciences and Engineering Research Council of Canada
(NSERC), Chromaleont and Alberta Innovates Technology Futures for
funding at various stages of my studies.

My final gratitude is reserved for my siblings Gertrude, Salomey, Hustinx
and Joyce, I owe you this. To my dear wife Linda, and my kids Akosua and Papa
Kwadwo, you all have been a blessing to me. To my late mum Ama Nyarko,
thank you for believing in me, I dedicate this work to your memory.

viii



Contents

ABSTRACT . . . . . o o i i e e e e e e e e e e e e e ii
PREFACE . . . . . . . . o e e s
DEDICATION . . . . . . . . . e e e e e e e vii
ACKNOWLEDGEMENT . . .« v v v v v e e e e e e e e e e e e e viii
FIGURES . . . . . . . . e xiii
TABLES . . . . . . . e XVi
ABBREVIATIONS . . .« v v v v e e e e e e e e e e e e e e e e xvii
SYMBOLS . . . . o o o o o e e e e XX
GENERAL INTRODUCTION 1
1.1 Motivation . . . . . . . ... e 1

1.2 ChemometricAnalysis . . . .. ... ... . ... ... ... 3

1.2.1  Pattern Recognition in Chemical Data . . . . . . . .. 4

1.2.2 Unsupervised Pattern Recognition . . . . . . ... .. 5

1.2.3 Supervised Pattern Recognition . . . ... ... ... 6

1.3 Data Preprocessing and Pretreatment . . . . . . .. ... .. 7

1.3.1  Noise Filtering and Baseline Drift Correction . . . . . 8

1.3.2 DataAlignment. . . ... ... ......... ... 9

1.3.3 DataSizeReduction . . ... ... .......... 12

1.3.4 Centeringand Scaling . . ... ......... ... 13

1.4 FeatureSelection . . . . . . .. .. ... .. ... .. ..., 15

1.4.1  Cluster Resolution Feature Selection (CR-FS) Algorithm 17

1.5 Scope of Dissertation. . . . . . . .. ... ... ....... 19
1.5.1  Unique Ion Filter: A Data Reduction Tool for GC-MS

Data Preprocessing for Chemometric Analysis . . . . . 19

1.5.2  Comparison of Total Ion Spectra and Segmented
Total Ion Spectra as Preprocessing Tools for GC-MS
Data for the Chemometric Analysis of Casework Fire
Debris Samples . . . . . ... ... . oL 19
1.5.3 Estimating CR-FS Start and Stop Number via
Probability Density Function Analysis of True and
Null FisherRatios . . . .. ... ... ........ 20
1.5.4 Exploring the Application of CR-ES . . . . . . .. .. 20

ix



2 UNIQUEION FILTER: A DATA REDUCTION TOOL FOR GC-MS AND

GCXGC-MS DAtA PREPROCESSING PRIOR TO CHEMOMETRIC
ANALYSIS
2.1 Introduction . . . ... .. ... ... .. ...
2.2 ExperimentalData . . . . ... ... .. ... ... ...,
2.2.1 DataUIF1iDforGC-MS . . ... ... ... .....
2.2.2  Datafor UIF2D for GCXGC-MS . .. ... .....
23 Theory . . ... .. L
2.3.1  Algorithm for UIFiDand UIF2D . . . ... ... ..
2.3.2  Determination of peak parameters and peak groups for
UIF1D . . ... . .

33

2.3.3 Identification of Unique Ions for GC-MS chromatogram 36

2.3.4 Generation of new UIF1D filtered chromatogram . . .

2.3.5 Determination of peak parameters and peak groups for
UIF2D . . . . . e

2.3.6 Identification of Unique or Pseudo-unique lons for
UIE2D . ... .. .
2.3.7 Generation of UIF2D filtered chromatogram . . . . .
2.3.8 Chemometricanalysis . . . ... ...........
2.4 ResultsandDiscussion . . . . . . .. ... .. ... .....
2.5 Conclusions . . .. .. .. .. . .

COMPARISON OF ToTAL ION SPECTRA AND SEGMENTED
ToraL ION SPECTRA AS PREPROCESSING TOOLS FOR (GAS
CHROMATOGRAPHY-MASS SPECTROMETRY DATA FOR THE
CHEMOMETRIC ANALYSIS OF CASEWORK FIRE DEBRIS SAMPLES

3.1 Introduction . . ... ... ...
3.2 Experimental . . . . . ... ... .o o Lo
3.3 Generationof TISand STIS . . . . . . .. .. .. ... ...
3.4 ResultsandDiscussion . . . . . ... ... .. ........
3.5 Conclusions . . .. ... ... .. ... .. ...

ESTIMATION OF START AND STOP NUMBERS FOR CR-
FS ALGORITHM; AN EMPIRICAL APPROACH USING NULL
DISTRIBUTION ANALYSIS OF FISHER RATIOS

4.1 Introduction . .. .. .. .. .. ...

37

38

41
41
41
43
63

64

69
71
72
85

87



42 Theory . . . .. . .. 91

4.2.1 TrueandNull Fratios . . ... ... ......... 91
4.2.2  Proposal of Empirical Equation for Estimating Start
(nst) and Stop (ngp) Numbers . . . . ... ... .. 92
4.3 ChemometricAnalysis . . . . ... ... ... ........ 94
4.3.1 Datasets . . . . ... ... 94
4.3.2 Estimation of the constantdandngr . . . . . . .. .. 95
4.4 ResultsandDiscussion . . . . . ... ... ... ....... 96
45 Conclusions . . ... ... .. ... ... . 107
5 APPLICATIONS OF CLUSTER RESOLUTION FEATURE SELECTION 108
5.1 Classifying Crystal Structures of Binary Compounds AB
through CR-FSandSVM . . . . . ... ..o oL 110
s.1.1  Data Extraction and Organization . . . . ... .. .. 112
5.1.2 ChemometricAnalysis . . . .. ... ... ...... 113
5.1.3  Synthesis of RhCd and X-ray Diffraction Analysis . . . 113
5.1.4 ResultsandDiscussion . . . . . .. .. ... ..... 114
s.1.5 Conclusion . . . . ... ... 119
5.2 Machine-learning structural characterization of ABC ternary
equiatomic compounds and their polymorphs . . . . . . . .. 120
s.2.1 Data Extraction and Organization . . . . ... .. .. 121
5.2.2 ChemometricAnalysis . . . .. ... ... ...... 122
5.2.3 ResultsandDiscussion . . . . . ... ... ...... 123
s2.4 Conclusion . . . . ... ... ... .. . 128

5.3 Strain Level Distinction of Lactobacillus reuteri through
successive feature selection and principal component analysis . 129

5.3.1  Bacterial Culture and Sample Preparation . . . . . . . 131
5.32 MALDI-TOFMS Analysis . . . ... ......... 132
5.3.3 ChemometricAnalysis . . . ... ... ........ 132
5.3.4 ResultsandDiscussion . . . . . ... ... ...... 133
5.3.5 Conclusion . . . .. .. ... ... ... 156
6 GENERAL CONCLUSIONS AND PROSPECTS FOR FUTURE WORK 157
6.0.1 General Conclusions . . . .. ... ... ....... 157
6.0.2 Prospectsfor Future Work . . . . .. ... ... ... 159

REFERENCES 161

xi



APPENDIX A 183
APPENDIX B 191

APPENDIX C 194

xii



2.3.1
2.3.2

2.3.3

2.3.4
2.4.1

2.4.2

2.4.3

2.4.4
2.4.5
2.4.6
2.4.7
2.4.8

2.4.9
2.4.10

2.4.11

3.3.1
3.4.1
3.4.2
3.4.3

3-4-4
3-4.5
3.4.6
3-4.7
3.4.8

Figures

Data analysis workflow without (A) and with (B) UIE.. . . . 32
Peak groups for UIF1D for GC-MS identification. . . . . . . 35
A 1D version of a TIC generated from GCxGC-MS

separation. . . . . .. ... 39
Peak groups for UIF2D for GC X GC-MS identification. . . . 40
Feature selection time and model quality plot for benchmark

pathwayfor GC-MS.. . . . . .. ... .. ... ... .. 45
Sensitivity, Specificity and Accuracy plots for UIF1D

experiments. . . . . ... ..o 47
PLS-DA y-predicted plot for benchmark pathway and

optimum for UIF1D (UIF1D(, o). . . . . ... ... ... 49
Effect of UIF on Chromatogram. . . . . ... ... ..... 50
Features selected by feature selection with and without UIE. . 51
Features selected by feature selection with and without UIE. . 52
Application of UIF2D to GC X GC - MS chromatogram. . . 355
Feature selection time and model quality plot for benchmark

pathways for GCXGC-MSdata. . . . . ... ... ..... 58

PLS-DA model prediction accuracy for UIF2D experiments. 59
PLS-DA y-prediction plot for optimum benchmark pathway

andUIF2D(, , o). oo oo oo oo 61
Comparison of selected features for optimum benchmark

pathway(a) and UIF2D(, , o (b).. . . ... ... ... .. 62
ATIC of a typical sample chromatogram. . . . . ... ... 73
Atypicalsample TIS. . . . . ... ... ... .. ... ... 75
Atypical sample STIS. . . . .. ... ... ... ... .. 76
Average model prediction sensitivity, specificity and

accuracy of PLS-DA models for TISand STIS. . . . . . . .. 77
Variable survival frequency for TIS. . . . . ... ... ... 79
PLS-DA y-predicted gasoline for TIS. . . . ... ... ... 80
Variable survival frequency for STIS. . . . . . ... ... .. 81
PLS-DA y-predicted (gasoline) for STIS.. . . . . . ... .. 82

Aplot of features that survived TIS. . . . . . ... ... .. 83

xiii



3.4.9

4.2.1
4.4.1
4.4.2
4.4.3

444

4.4.5
4.4.6

5.1.1
5.1.2
5.1.3
5.1.4
5.2.1

5.2.2
5.2.3
5.2.4
5.3.1
5.3.2

533

5.3.4
5-3.5

5.3.6

5-3-7

5.3.8

A plot of features that survived in both Xgr1s.4 and Xgr1s.5- -

A plot of Probability Density Function for frrue(f1)- - - - -
Optimizationofd. . . .. .. ... ... . ... ......
A z-score plot for the determination of optimum value of d. .
Feature survival rate for all variables for (a) bac, (b) ucp and

Fisher ratio scores for all variables. . . . . .. ... ... ..
PLS-DA class predicted probability for CsCl-type. . . . . . .
SVM class predicted probability for CsCl-type. . . . . . ..
SEM, EDX and XRD data for New binary compound RhCd.
F-ratio scoresof variables. . . . .. ... ... .......
SVM predicted probabilities for TiNiSi-type structure.
SVM predicted probabilities for ZrNiAl-type structure
Prediction probability confirmed polymorphs that adopt
either TiNiSi- or ZrNiAl-type structure. . . . . . .. .. ..
PCA Plot of MALDI-TOF MS processed data from analysis
ofbacterial samples. . . .. ... ... L L oL
PLS-DA y-predicted and Q Residual for bacteria samples
belongingto ClassA,Band C. . . . . ... ... .. ....
PLS-DA y-predicted plot for bacteria samples in Class A, B
and C after feature selection. . . . . ... ... .. ... ..
Variables retained for the classification of Class A,Band C. .
PCA and PLS-DA models for Class A (FUA3108 and
FUA3408) before feature selection. . . . . .. ... ....
PCA and PLS-DA models for Class A (FUA3108 and
FUA3408) after feature selection. . . . ... ... ... ..
Variables retained for the classification of A (FUA3108 and

PCA and PLS-DA models for Class B (TMW1.656 and
mlc3) before feature selection. . . . . . ... ... .....

Xiv

84

93

99
100

102

103
10§
106

115§
116

117
118

124

. 126

. 127

128

135

137

141



5.3.9 PCA and PLS-DA models for Class B (TMW1.656 and

mlc3) after feature selection. . . . . ... ... ... .... 142
5.3.10 Variables retained for the classification of B (TMW1.656

andmlc3). ... ... 142
5.3.11 PCA plot of Class C subclasses before feature selection. . . . 143
5.3.12 PLS-DA model for Class C before feature selection. . . . . . 144
5.3.13 PLS-DA model for Class C after feature selection. . . . . . . 145§
5.3.14 Variables retained for the classification of C1, C2and C3. . . 146

5.3.15 PCA and PLS-DA models for Class C1 before feature selection. 147
5.3.16 PCA and PLS-DA models for Class C1 after feature selection. 148

5.3.17 Variables retained for the classification of C1Aand C1B.. . . 148
5.3.18 PCA and PLS-DA models for Class C1A before feature
selection. . . . . .. ... 149

5.3.19 PCA and PLS-DA models for Class C1A after feature selection. 150
5.3.20 Variables retained for the classification of TMW1.112 and

LTH2584. . . . . . . . . o e 150
5.3.21 PCA and PLS-DA models for Class C1B before feature
selection. . . . . . . ... 151

5.3.22 PCA and PLS-DA models for Class C1B after feature selection. 152
5.3.23 PCA and PLS-DA models for Class C3 before feature selection. 153
5.3.24 PCA and PLS-DA models for Class C3 after feature selection. 154
5.3.25 Variables retained for the classification of 100-23 and
FUA3400. . . . . . . . . . . e 154
5.3.26 Hierachical flow chart for the classification of Lactobacillus
reutristrains. . . . . . . . . .. .o e e e e e e e e 15§



Tables

2.4.1 Results of feature selection and model quality for optimum

benchmarkandUIFAD . . .. ... ... .......... 53
2.4.2 Results of feature selection and model quality for optimum
benchmarkand UIF2D . . ... ... ... ... ...... 62

5.1.1 Structure types and number of samples in each class for AB
compounds . . ... ... 112
5.2.1 Structure types and number of samples in each class of ABC
compounds . . . ... 122
5.2.2 SVM model sensitivity, specificity and accuracy for structure
types . . . ..o 125



'D

*D

acC

AIC
ANOVA
COW
CR
CR-FS
CI (max)
EDA

EP

fN ULL

f TRUE

GA
GB
GC

GC-MS

Abbreviations

First Dimension

Second Dimension

Accuracy of Classification Model
Akaike Information Criterion
Analysis of Variance

Correlation Optimized Warping
Cluster Resolution

Cluster Resolution Feature Selection
Cluster Resolution of an External Validation set
Exploratory Data Analysis

Earthly Paradise

Fisher Ratio

Null F-Ratio

True F-Ratio

Genetic Algorithm

Gigabyte

Gas Chromatography

Gas Chromatography - Mass Spectrometry



GCxGC Comprehensive Gas Chromatography
HS-MS  Head Space - Mass Spectrometry

IL Ignitable Liquid

JD Jasmine Dragon Tears

KNN k Nearest Neighbour

LC Liquid Chromatography

LC-MS  Liquid Chromatography Mass Spectrometry
LDA Linear Discriminant Analysis

LIS Local Ion Signature

LV Latent Value

MALDI  Matrix Assisted Laser Desorption Ionization
MS Mass Spectrometry

NIR Near Infrared

NMR Nuclear Magnetic Resonance

OM Organic Makaibari

OVL Overlapping Coefficient

PC Principal Component

PCA Principal Component Analysis
PDF Probability Density Function
PLS Partial Least Squares

PLS-DA  Partial Least Squares Discriminant Analysis

QDA Quadratic Discriminant Analysis

xviii



qMS Quadrupole Mass Spectrometer

RAFFT Recursive Alignment by Fast Fourier Transform
SBE Sequential Backward Elimination

sens Sensitivity of Classification Model

SES Sequential Forward Selection

spec Specificity of Classification Model

SPME  Solid Phase Microextraction

SR Selectivity Ratio

SS Spring Sencha

STIS Segmented Total Ion Spectrum

SVM  Support Vector Machines

™ Tamaryoku Cha

TIC Total Ion Current/Total Ion Chromatogram
TIS Total Ion Spectrum

TOF Time of Flight

UIF Unique Ion Filter

UIF1D  Unique Ion Filter for GC-MS

UIF2D  Unique Ion Filter for GCx GC-MS

Uv Ultraviolet

VIP Variable Importance to Projection

Xix



Ztr

I~
fr

m/z
nsrt

nsp

um/z

Symbols

Second dimension retention time
Smoothing window for Savitsky Golay filter
Optimum density function for null F-ratios
Optimum density function for true F-ratios
Number of modulations

Mask for a raw GC-MS/GC x GC-MS data
Mass to charge ratio

Start number for backward elimination

Stop number for forward elimination
Number of unique ions

Unique mass-to-charge ratio

Null matrix same size as that of GC-MS/GC x GC-MS chromatogram
Relative abundance vector

Number of scans

Sample mean

Matrix containing X dataset

Matrix of Mass spectra for identified peaks
Population Standard deviation

Variance



“The significant problems we have cannot be solved at the

same level of thinking with which we created them”

Albert Einstein

General Introduction

1.1 Motivation

Experiments relying on modern instrumental analyses across many
fields generate huge amounts of data because of the advances made in data
generation and high-throughput acquisition technologies.* These kinds of
data are rich with information that can enable scientists to ask increasingly
difficult questions or probe complex systems. Application of chemometric
techniques to glean useful information from data is becoming increasingly
important.>~** The huge amount of data contains the underlying chemical
information in addition to irrelevant variables or noise. More often than not,
the number of irrelevant and redundant variables is commensurate with the
amount of data.’¥'*° Hence, the data can easily overwhelm the underlying
information. Prior to chemometric analysis, it is important to eliminate

redundant and/or irrelevant variables/noise from the data.'>*°



This is because their inclusion could be detrimental to the discriminating
power of the chemometric models. ** The ability to obtain useful information
out of any kind of data relies heavily on one’s ability to sift through and
eliminate the irrelevant subset.'” This presents the proverbial ‘needle in a
haystack problem’ Even for a small number of variables (i.e., a few hundred),
identifying the relevant subset is not a simple problem, and it becomes much
more challenging as the number of variables increases (e.g., 1 million).
Cluster resolution (CR) is a model quality parameter developed to
estimate the quality of principal component analysis (PCA) models.'®* When
CR is combined with a variable space search algorithm such as sequential
backward elimination (SBE) and sequential forward selection (SFS), a feature
selection algorithm is realized. This algorithm is termed cluster resolution-
feature selection (CR-FS).'®* CR-FS has been used as a feature selection
method for the classification of gasoline and fire debris.'®"*" CR-FS requires
two main inputs which are referred to as the start and stop number for the
SBE and SES stages, respectively. Hitherto, no guidance as to the setting
of these parameters existed other than trial and error. This increases model
optimization time, introduces subjectivity in its implementation and prevents
the true automation of the feature selection process. As the start and stop
number varies with the data, it is important to estimate these numbers using

some statistical parameters from the data.



The motivation of this dissertation is to contribute to the field of data
reduction and feature selection. On the data reduction front, the development
of a reduction tool that retains the advantages of currently available methods
but eliminates some, if not all, of their drawbacks was explored. On the feature
selection front, a complete automation of CR-FS is sought by finding ways to
estimate the start and stop number from the dataset. It is hoped that this will
make the use of raw data more attractive to people that shy away from high

complexity.

1.2 Chemometric Analysis

In 1971, Wold coined the term ‘Chemometrics’, describing it as ‘the
art of extracting chemically relevant information from data produced in a
chemical experiment’** Chemometrics has since been defined as, the chemical
discipline that uses mathematical and statistical methods to design or select
optimal measurement procedures and experiments, and to provide maximum
chemical information by analyzing chemical data.>**37*5 To test a hypothesis,
experiments are designed to generate some measurements (i.e., data) which
are then analyzed to convert the data into information. In that context,
chemometrics guides the number and types of experiments, as well as
the extraction of useful information from the generated data towards new

discoveries or to gain better understanding. 26



Over the years, several reviews have been published highlighting the
development and application of chemometric techniques in several areas.>™**
The field of metabolomics has evolved to become an exploration of
data-rich analytical chemistry measurements with chemometrics.'**7>®
Recently, chemometric techniques have been very instrumental for biomarker

discovery.>®734

1.2.1 Pattern Recognition in Chemical Data

Searching for patterns in data is a fundamental endeavor. Pattern
recognition problems are present in diverse forms in the world and are
extremely important in most decision making processes. Commonly known
techniques such as fingerprint and handwriting analysis are essentially pattern
recognition problems. As the name implies, this is the application of
techniques to identify inherent patterns (information) in data. These
patterns are usually not as apparent in multivariate data as they are with
fingerprints, for example. In chemometrics, the goal of pattern recognition
techniques is ultimately classification of an object/sample.”'* Classification
involves finding a mathematical model with the capability to recognize
the membership of an object (ie, sample) and assign it to the proper
class/ group.35'36 Some of these approaches have been used for source
identification of jet fuels,*” chemical fingerprinting of gasoline,***' tracking

and weathering of oil spills,**** classification of casework arson samples,*°



classification of vinegars and wines,***° biomarker identification,*”** drug
discovery and verification of herbal medicines,*”*° amongst others. In
metabolomics, pattern recognition techniques have aided breath analysis
towards biomarker discovery.**73* Pattern recognitions are categorized into

two main groups namely unsupervised and supervised.*’

1.2.2 Unsupervised Pattern Recognition

Unsupervised pattern recognition, also referred to as explorative data
analysis, encompasses all approaches employed with several goals including
maximizing insights into data, uncovering underlying structures/patterns
and identification of outliers.’*>3*53 These techniques are designated
unsupervised in that they do not take into account the assigned class or
labels of samples. These techniques aid in exploring the otherwise buried
patterns in the data with the primary goals of visualization, clustering
and projection.?® Visualization provides a graphical presentation to give
a qualitative understanding of information content.** Clustering involves
organizing the unlabeled data into groups/clusters. A cluster is a group of
samples/objects that are more similar to each other than they are to objects in
other clusters.*® Hence cluster analysis is a general term for several algorithms
that are used to achieve this goal. The k-means algorithm is arguably the
most popular clustering technique. Like most clustering algorithms, a class

centroid is located amongst the data with samples grouped according to



their distance from the centroid.*® Distance measures such as Euclidean,
Mahalanobis and Manhattan distances are used to guide the grouping of
samples in cluster analysis.*® Hierarchical clustering involves finding clusters
in clusters in order to find their relationships.*>™*7 Clusters are ranked in
a hierarchy to identify those that are subsets of larger clusters. Projection
refers to the decomposition of the original data into a lower-dimensional
space without altering the structure of the data.>*5%5° Principal component
analysis (PCA) is probably the oldest projection technique; first reported
in 1901.>%3%%° PCA offers an approximation of a data matrix X, into two
smaller matrices termed scores (T) and loadings (P’). Visualization by a
plot of columns of T (score plot) and rows of P’ (loading plot) provides the
main patterns in objects/samples and variables, 1respectively.61 Unsupervised

techniques are very useful for probing data to gain new understanding.

1.2.3 Supervised Pattern Recognition

The problem of assigning objects/samples in a data set to groups/ classes
also known as classification, is a very interesting area of research. Recently,
several advances in metabolomics have focused on the use of some
mathematical model to classify subjects into groups such as healthy or
sick.*®%* Supervised pattern recognition techniques require the use of data of
known class/group assignment to train classifiers (usually some discriminant

function) with the aim of assigning new samples to the correct classes.>



Unlike unsupervised techniques, supervised pattern recognition methods
use the class assignment or labels of samples to obtain the optimum
model. A number of discriminant functions have been developed to
solve classification problems.®* The majority of discriminant functions are
boundary based methods. Boundary based methods classify samples by
finding the optimal boundary that separates groups of samples.”® Linear
discriminant analysis (LDA), quadratic discriminant analysis (QDA), partial
least squares—discriminant analysis (PLS-DA), and support vector machines
(SVM) are among the most widely used methods for classification. > The
selection of an optimal discriminant method for a given data set is guided
by the distribution of the samples.”> Goodness of classification methods is

estimated using prediction sensitivity, specificity and accuracy.*®

1.3 Data Preprocessing and Pretreatment

Data collected from analytical instruments combines signal generated by
the chemical information in the sample, as well as artefacts and noise resulting
from stochastic variations in experimental conditions and instruments
itself. This makes preprocessing a prerequisite for chemometric analysis.
Preprocessing involves a series of mathematical transformations performed
on the data with each one aimed at mitigating the impact of a particular

artefact to improve the quality of the data.®” In other cases, preprocessing



is meant to eliminate some offset in the data.®® Preprocessing can have a
significant effect on the outcome of the analysis, so it is important to know the
sources of artefacts in a particular data set to select the appropriate processing
steps.>®% Thus, the chemical analytical technique used as well as the research
question being probed guides the selection of preprocessing methods. There
are various preprocessing techniques available for various kinds of analytical
data.”® These include: baseline drift correction, smoothing, data reduction

(binning/bucketing), scaling and centering amongst others.**~73

1.3.1 Noise Filtering and Baseline Drift Correction

Noise filtering is aimed at eliminating the background signal from matrix,
instrumental interference, measurement noise or baseline distortions from
the data.”* The nature of the measurement signal and noise to be mitigated,
the signal-to-noise ratio, as well as the computational resources available
influence the choice of noise reduction method.”® Several signal smoothing
algorithms are available. Arguably, the two most popular are moving averages
and Savitzky-Golay filters. The Savitzky-Golay filter is generally preferable
for chromatographic data since it preserves the shapes of the peaks.”®7
With chromatographic data, generation of a peak table is one of the simplest
approaches to eliminating noisy regions of the data. Peak tables are generated
with the aid of a peak finding algorithm which usually incorporates signal

smoothing. Baseline drift (i.e., baseline distortion) is a common occurrence



in both chromatographic and spectroscopic data. This is when the ideally
flat baseline has a non-zero slope. The presence of drifts in a baseline can
influence peak detection and thus adversely affect the accurate quantification
of compounds (i.e., signal-to-noise ratio).”® In gas chromatography (GC),
drift may be caused by column bleed because of stationary phase degradation.
It may also be caused by contamination of the stationary phase. In liquid
chromatography (LC), the primary cause of baseline drift, especially in
gradient elution, is the change in the mobile phase composition caused by
the changing ratio of solvents. Elimination of baseline drift is an important
preprocessing step. There are several methods for correction of baseline
drifts.”~** In general, baseline drift correction algorithms fit the baseline
signal as a function of the x-variable (e.g, time or wavelength) and subtract this
function from the original signal. The simplest and most common forms of
baseline correction employ polynomial fitting to the baseline.***** Wavelet
transforms have also been employed for baseline correction, **~*7 as well other
novel algorithms relying on partial least squares.””*® Recently, a probabilistic
peak detection algorithm has been used to estimate the baseline for complex

samples.*

1.3.2 Data Alignment

Multivariate analyses are performed on a data matrices with samples

in rows and variables in columns. It is important to ensure that the



compounds/peaks for all samples in a dataset are aligned. This implies that
the signal for a given compound is registered in the same column of the data
matrix in all samples. For peak tables this is generally not difficult to achieve;
however for raw signals it is somewhat more difhicult. Spurious interpretation
of results will occur if the data is not properly aligned. Subtle shifts in
peak positions do occur in chromatographic and spectroscopic experiments.
In chromatography, shifts in retention times are caused by temperature
variations, column deterioration/contamination, and variations in mobile
phase composition.?® Stochastic variations in experimental conditions may
also contribute to peak shifts. In spectroscopy, temperature variations and
inhomogeneity in applied magnetic fields in nuclear magnetic resonance
(NMR) coupled with variations in the matrix concentration in samples can
cause these variations.”' ™ There are several strategies to correct shifts in
peak positions in both spectroscopic and chromatographic data.”* Alignment
algorithms can be classified as peak-based or raw-data based.’* Peak-based
algorithms align peak-tables generated from raw data. They depend on
prior peak detection and in some cases deconvolution for true peak area
estimations. If the raw data is multivariate, such as GC-MS, similarity scores
based on mass spectral comparison are usually used to guide the correct
identification and matching of peaks.°**” Raw data-based methods use the
complete data for alignment. Raw data here may be a set of vectors such as

spectra or univariate chromatograms such as GC-FID/NPD data, or it may be
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a set of two-dimensional matrices such as with GC-MS data. Algorithms such
as correlation optimized warping (COW),%*~'°° Interval correlated shifting
(Icoshift),"** and recursive alignment by fast fourier transform (RAFFT)***
warp the data with the aim of optimizing the correlation between a reference
chromatogram (the target) and the sample data to be aligned. Alignment
algorithms focused on optimizing correlation between a reference and sample
chromatogram fail when there is lack of correlation between chromatograms.
For example, GC-MS data from different fire scenes will often lack correlation
since the sample matrix varies. For such samples, anchor based methods are
generally used.”'°*'°* Anchor based methods use the location of known
compounds as anchors to find the shifts between the target and the reference
chromatograms. Where anchors may not be consistently located due to high
sample-to-sample variability, compounds such as perdeuterated alkanes can
be introduced to aid correct alignment.*® For chromatographic data with MS
detection, methods that employ pairwise similarity functions between the
total ion chromatogram/total ion current (TIC) and/or mass spectra to find

105,106 Genetic algorithm

optimal similarity scores have also been reported.
(GA)-based peak alignment methods have been successfully used for aligning
raw data.”>°3 Where shifts are minimal, techniques that segment the data
and align sections are useful; however, when peak shifts are severe, global

alignment algorithms are preferred. Peak-based alignment algorithms are

generally faster than raw data based algorithms. Some warping algorithms
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allow peak shifts in only one direction, so knowledge of expected shift

character may be required to aid the selection of peak finding algorithm. **”

1.3.3 Data Size Reduction

Reducing the size of the data simplifies multivariate analysis,
especially where there are several thousands or millions of variables.
For chromatographic data, generation of peak tables where areas estimated
from identified peaks are very common.?”'°%'* The accuracy of peak
area estimation relies on a robust peak-finding algorithm. Different peak
finding algorithms depend on different parameters to identify true peaks,
and these demonstrate varied false discovery rates.''® The use of specific
parameters may result in missing real peaks or the identification of false
peaks. Non-parametric, probabilistic peak finding and multiple testing local
maxima algorithms have also been developed to overcome some of these
problems.”"*”*'* When a multivariate detector (such as MS, UV-diode
array, etc.) is used, the resulting data have two dimensions (retention time
and detector signal ordinate (e.g, 71/z or A); elimination of one dimension
achieves tremendous data reduction. A GC-MS analysis with a run time of
60 min monitoring 100 m/z at a moderate 10 Hz yields 3.6 million variables.
Eliminating either retention or m/z results in 100 or 36,000 data points,
respectively. However, it would be advantageous if the data reduction was

more selective, retaining some of each of the dimensions of the signal.
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Development of a strategy to achieve this style of data reduction for GC-MS
and comprehensive gas chromatography (GCx GC-MS) data is the subject

of Chapter Two.

1.3.4 Centering and Scaling

The appropriate use of centering and scaling contributes to good
models and model interpretation. In general, datasets for chemometrics are
matrices with samples/objects in rows and variables in columns. Centering is
performed on columns while scaling is performed on rows. °***$ Metabolomic
data may have fluctuations even under the same experimental conditions
for the same subjects. Different subjects may have different magnitudes
among measured analytes.''> Centering involves the removal of offsets in
the columns of the data. Mean centering is the most common centering
approach in multivariate analysis. Mean centering implies the mean of each
column is subtracted from each element in the column. This converts all
responses to variations around zero instead of the mean. This adjusts for the
differences in offset between high and low response values (i.e., abundances
or concentrations)."'S Centering must be avoided when analyzing response
data (i, calibration curves).®7>*'S Multivariate techniques are by design
aimed at evaluating the variance/covariance within the data to measure the
(dis)similarity in the data. This makes it imperative to know the variance in

the data before multivariate analysis is commenced.”®
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Scaling methods multiply/divide individual variables by a factor,
thereby adjusting the contribution of different variables to the model.
In metabolomics, where concentrations differ by orders of magnitudes,
the choice of a good scaling technique improves the data interpretation.
Projection methods (e.g., PCA, partial least squares (PLS), etc.), rely heavily
on the choice of appropriate scaling of the data.®*"'® Several scaling methods
are available in the literature with each aimed at a specific goal.®®°*'*$ Auto-
scaling, where each column is mean-centered and then divided by the standard
deviation of the column is the most commonly used scaling method. This
scaling approach tends to make all variables equally important and so each
has an equal chance of influencing the model. Pareto scaling differs from
autoscaling in that it uses division of each column by the square root of its
standard deviation. This reduces and increases the influence of very intense
and weaker signals, respectively.”* Pareto scaling decreases the influence of
noise and artefacts which leads to an improvement in the predictive power of
chemometric model.''” Other data transformation techniques, such as range,
level and vast scaling as well as log and power transformations, are designed
to counter other variations in the data. A comprehensive assessment of these

techniques comparing their advantages and disadvantages has been made."**
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1.4 Feature Selection

Feature selection, also referred to as variable/variable subset selection,
involves the choosing of a subset of features to enable the construction
of robust models while eliminating as much irrelevant and redundant
features from the data as possible.3'%**¥712° Selection of the relevant feature
subset contributes positively to the accuracy and efficiency of chemometric
models.'** Advantages of feature selection include improving performance of
machine learning algorithms, aiding visualization of data, reducing the data
size to limit storage requirements and associated costs, as well as simplified

models. 142!

‘Relevance’ has several meanings within chemometric and
machine learning, the simplest of which describes a feature as relevant with
respect to a target function, task or research problem. If altering that feature in
a sample will alter the output of the target function, the feature is relevant to
the function.*"?

Other concepts such as ‘strongly relevant, ‘weakly relevant” and ‘incrementally

122,

useful’ have also been described.''?'****3 Feature selection algorithms
fall into three main categories namely, filter, wrapper and embedded
methods.'s'7!1%125124 Filter methods employ some characteristics of the
training set data to select and exclude some features. Filter algorithms

assess the merits of features from the data without the inputs of any

induction/learning algorithm.'$*'®'1%*>" Thys, learning is performed
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independent of a classifier. Filter methods are computationally fast, provide
a general variable selection independent of any learning algorithm and avoid
overfitting.'> The lack of interaction with classifiers implies that feature
dependencies are ignored. Some of the popular filter methods employed
are the RELIEF algorithm, "5 the FOCUS algorithm,"*® and correlation-
based filters.'*”"**° Filter feature selection algorithms are merely variable
ranking techniques in that these algorithms compute a ranking metric which
connotes potential importance of the variables. Hence metrics such as t-test,
Mann-Whitney test, mutual information, Pearson’s correlation, as well as
others can be used.”®

Wrappers derive their name from the notion that the feature
subset selection occurs as a wrapper around the induction/learning
algorithm.'>"*%'23*24 Thus, the induction algorithm is used as part of the
feature selection process as an evaluation function to help estimate the worth
of each feature. The feature subspace can be searched via sequential forward
selection (SFS) or sequential backward elimination (SBE).**"** Randomized
subspaces can be employed as well, as is the case with genetic algorithms (e.g,,
GA-SVM, GA-KNN)."*°7'3* Wrapper methods generally perform better
than filter methods since there is an actual evaluation of the features with a
learning algorithm. However, there is a significant risk of overfitting as the
121

feature selection is tuned by the induction algorithm to the specific dataset.

Wrappers are also computationally more expensive.
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In embedded methods, the feature selection is built into the
induction/learning algorithm.'$*3#'35 Thus as part of the learning process,
weights may be applied to features to achieve optimum performance. Typical
examples are the weighting vector of SVM, variable importance to projection
(VIP) and, selectivity ratio (SR) in PLS-DA.*?°""3® Thus the features selected
are only relevant to that specific algorithm. Vieira et al. described a fourth
group which were referred to as hybrid methods which combine filter and
wrapper methods."3* Here a population of variables of potential importance
is first obtained from a filter method and then this population is used by the

wrapper method to optimize the feature selection.”™"3?

1.4.1 Cluster Resolution Feature Selection (CR-FS) Algorithm

CR is a model quality metric developed for estimating the separation
between two or more clusters of samples in PCA space.’®*' To determine
the CR, confidence ellipses/ellipsoids are generated around the points
representing samples of each class in PCA score space. For a pair of classes,
the size of the confidence ellipses (both calculated at the same confidence
interval (o to 1)) is adjusted until the ellipses are just touching, without
intersecting. For an n-class model, pairwise CR values are calculated for each
pairing of classes, and the product of all pairwise CR values yields a single
metric bounded by o to 1 which estimates the overall model quality. CR can

be used as an objective function to evaluate the impact of variables on PCA
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models. In combination with a SBE and SFS, partial or the entire variable
space can be searched for relevant variables. This produces a hybrid (filter
and wrapper) feature selection algorithm termed CR-feature selection (CR-
FS). The use of CR-FS requires an initial variable subset for the SBE step.
This is obtained by first ranking the variables in order of probable relevance
by a ranking algorithm. Ranking algorithms such as Fisher ratio (F-ratio)
from analysis of variance (ANOVA) and SR for discriminant variable analysis
are usually used."3”**® During the SBE stage, an initial subset of variables
which is defined by the start number (i.e., the number of variables used for the
SBE) is used to construct a PCA model and the CR is evaluated. The effect
of the elimination of the lowest-ranked feature on a new model is evaluated
iteratively through all initial features from the lowest-ranked to the highest-
ranked. Features whose elimination does not negatively affect the model are
eliminated. During the SES, features that were not considered in the backward
elimination are sequentially added, starting with the highest-ranked variable
not included in the initial set of variables. After each addition, the effect of
adding a variable is evaluated based on CR. If a variable improves CR, it is
retained. CR-FS can be performed in both 2D (PC1 vs. PC2) or 3D (PC1
vs. PC2 vs. PC3) score space.'® CR-FS has been applied to various kinds of

18-21,140,141

data yielding very good results.
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1.5 Scope of Dissertation

1.5.1 Unique Ion Filter: A Data Reduction Tool for GC-MS Data

Preprocessing for Chemometric Analysis

A routine to eliminate noise and reduce redundancy in data prior to the
application of feature selection leads to faster and improved feature selection
and better chemometric models. In Chapter Two, a technique termed the
Unique Ion Filter (UIF), a data reduction strategy for raw GC-MS data, is
reported. UIF achieves data reduction without compromising the chemical
and multivariate information in the data. UIF was applied to a gasoline
data where the samples were classified according to their octane rating. UIF
was subsequently made amenable for the analysis of raw GCX GC-MS data
(i.e, UIF 2D). UIF 2D was tested with green tea data to yield classification

according to their country of origin.

1.5.2 Comparison of Total Ion Spectra and Segmented Total Ion
Spectra as Preprocessing Tools for GC-MS Data for the

Chemometric Analysis of Casework Fire Debris Samples

Total Ion Spectrum (TIS) was developed by Sigman et al. as an
alignment-free GC-MS data processing technique which achieves significant
data reduction, preserving the m/z information but eliminating the retention

information.’** In Chapter Three, a new implementation of TIS that
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offers partial preservation of retention information in a technique termed
Segmented Total Ion Spectrum (STIS) is discussed. A comparison of TIS
and STIS was made by analysis of casework fire debris samples to be classified

based on the presence or absence of gasoline.

1.5.3 Estimating CR-FS Start and Stop Number via Probability

Density Function Analysis of True and Null Fisher Ratios

The CR-FS algorithm requires two main inputs: start and stop numbers
for the SBE and SES, respectively. Hitherto, no guidance as to the setting
of these parameters exists other than trial and error. This increased analysis
time and reduced the consistency of the results obtained, as subjectivity was
introduced. The lack of an approach to estimate the start and stop numbers has
also prevented the true automation of the feature selection process. Chapter
Four discusses an approach to estimate the start and stop number for CR-ES

to enable the full automation of the feature selection process is made.

1.5.4 Exploring the Application of CR-FS

The importance of feature selection as a pre-requisite for chemometric
modelling cannot be overstated. The use of the right feature selection method
can improve model prediction accuracies as well as provide new insights.
One example is the prediction of the phase type of binary and ternary

equiatomic compounds from elemental properties for inorganic chemists.
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The ability to predict the strain of bacteria for the microbiologist from
simple analytical experiments is another example. In Chapter Five, CR-FS
in combination with SVM/PLS-DA are employed to predict phases of AB
and AIB compounds from elemental properties. Strain-level prediction of
Lactobacillus reuteri using matrix assisted laser desorption ionization-time of

flight mass spectrometry (MALDI-TOF MS) data is also explored.
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There are sadistic scientists who hurry to hunt down

errors instead of establishing the truth.

Marie Curie

2

Unique lon Filter: A Data Reduction Tool for

GC-MS and GC x GC-MS Data

Preprocessing Prior to Chemometric Analysis

2.1 Introduction

Gas chromatography (GC) is a versatile tool that has been applied in
various fields of chemical analysis including environmental, pharmaceutical,
petrochemical, forensics, amongst others. Comprehensive two-dimensional
gas chromatography (GCxGC) is a much more powerful separation
technique relying on two columns coupled serially by a modulator.

Compounds separated in the first column/dimension ("D) are subjected

Adutwum, L. A. and Harynuk J. J., Anal. Chem. 86.15 (2014): 7726-7733.
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to further separation in the second column/dimension (*D) allowing for
a greatly improved peak capacity.'**"'*° When these techniques (i.e, GC
and GC X GC) are coupled with a mass spectrometer (MS), their separation
potentials are further enhanced by the rich data generated from the detector.
This makes GC-MS and GC X GC-MS arguably the two most powerful tools
in the arsenals of analytical chemists for very complex samples. GC-MS for
a long time has been the go-to analytical tool for the analysis of volatile and
semi-volatile organic compounds. GC-MS is the standard analytical tool for
the analysis petroleum products.'®'*'47'4® GCx GC-MS has been applied
in various areas of analysis such as petroleum, '*°~'** environmental,'$57*5°

metabolomics, 333160161

etc. Recent reviews have highlighted several areas
where GCXGC-MS has been applied.'®*'°® Mass spectrometers such as
time-of-flight MS (TOFMS) or even modern high-speed quadrupole MS
(QMS) systems are capable of rapidly acquiring spectra and generating
data containing several thousands of spectra per sample. This renders data
interpretation daunting, especially when dealing with complex samples. The
raw data are incredibly rich but the sheer data volume, coupled with irrelevant
regions of the chromatogram often bury useful information.

Chemometric techniques involve the use of statistical and
computational methods to extract useful information from complex chemical

data and have become very useful.”**S Supervised pattern recognition

techniques, for example partial least squares discriminant analysis (PLS-DA),
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and unsupervised exploratory techniques such as principal component
analysis (PCA) and cluster analysis have been applied to the interpretation of
various types of GC-MS and GC X GC-MS data. Chemometric techniques
have been used in the identification of jet fuels,’®” classification and
chemical fingerprinting of gasoline,’®*3%394! tracking and weathering of

o

oil spills,*** classification of casework arson samples,* classification of

vinegars and wines,** *° biomarker identification,*”** drug discovery and

168

verification of herbal medicines,*”*° compound identification'*”*°° as well

as metabolomics and breath analysis.3"/'°%*69717*

Raw GC-MS data presents as a two-dimensional matrix with rows
representing mass-to-charge ratio (m/z) and columns representing time
(scan#). GCXGC-MS data on the other hand is presented as a three-
dimensional with 'D time vs. *D time vs. m/z. High data rate mass analyzers
are desirable since they allow for rapid separations and provide sufhicient data
density along the time axis to ensure accurate peak description, especially
for very narrow peaks.'”” In GCXGC separations, much higher data rates
(s0-500 spectra/s) are required due to the narrow (< 100 ms half-height
width) peaks in *D. In both GC-MS and GCx GC-MS, a 10 min separation
monitored at 100 Hz over awindow of 50-3 50 m/z results in 1.8 X 10° variables
acquired per sample. If the entire raw data is used for analysis, the number of

variables will exceed the number of samples by several orders of magnitude.

Furthermore, most of the variables are irrelevant to the intended chemometric
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model (empty mass channels or regions of empty chromatographic space, or
regions containing signals for unimportant compounds).
The data matrix is highly overdetermined and sparsely populated with mostly
irrelevant data. Thus it is difficult (if not impossible) to construct a meaningful
model without choosing a subset of the variables to consider as candidates
for inclusion. The huge volume of data increases the computational demands,
requiring computers with large memories and sometimes parallel computing
techniques to enable data analysis.'”® Prior to chemometric analysis, the
data are subjected to various preprocessing techniques such as retention
alignment, baseline correction, smoothing (noise removal), scaling and data
simplification or reduction.®*'7+

Data reduction is of particular importance for GC-MS and GCx GC-
MS data due to the sheer number of variables. Common approaches to data
reduction include the use of integrated peak areas based on total ion currents
(TICs) or mass spectrally deconvoluted data.3#37:3%431°%199 Thig approach is
very simple and computationally inexpensive, but may oversimplify the data,
losing the m/z dimension, which could otherwise provide useful information.
Selection of signals from one or a few m/z channels, known as extracted ion
chromatograms (EICs), is also a common approach.+*'7* EICs are useful for

well-characterized samples in well-understood systems, but there is a risk of

accidentally removing informative ions if the system is not well-understood.
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Additionally, this approach includes many variables containing only
noise (baseline variables). ~Combined, this makes the EIC approach
somewhat subjective and of little use when modeling a poorly understood data
set (e.g, biomarker discovery). Additionally, regions of empty baseline in the
chosen ion chromatograms are not excluded with this approach. Recently,
a tile-based Fisher ratio analysis approach and local ion signature (LIS) have
been demonstrated to achieve data reduction in the analysis of raw GCx GC-
MS data.'7°"'7® These approaches have the added advantage of reducing the
need for a strict chromatographic alignment. In the tile-based method, careful
selection of the tile size is critical as it must be wide enough to capture the
entire peak as much as possible as well as retention time variation in both first
and second dimensions. Tiles that are too large could increase the impact
of noise in the data and risk the inclusion of multiple peaks in a single tile.
Tiles that are too small may not be able to accommodate slight variations in
peak locations resulting in peaks being registered in different tiles in different
chromatograms due to minor shifts in retention time. For LIS, significant shifts
in chromatograms will lead to spurious interpretation of results.

The advantage of using the entire GC-MS chromatogram has been
demonstrated and applied to very complex samples.’®~*"'%7 In these works,
the entire GC-MS chromatogram is unfolded along one axis into a single

vector, which makes each m/z at each scan an independent variable.
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This results in several thousands or millions of variables for each sample, and
produces a huge data set, which is computationally expensive to manipulate.
The use of raw GC X GC-MS data for chemometric analysis is not very popular
due to the high data volume. Using such a high number of variables for
building chemometric models is prohibitive due to the sheer size of the data;
moreover, the majority of the variables will not provide useful information
for the chemometric model that is being built and their inclusion will be
detrimental to the model.'* To overcome this challenge, relevant variables are
obtained using feature ranking and feature selection protocols. *3%3%167:179,180
Selection of the relevant feature subset contributes positively to the accuracy
and efhciency of chemometric models.”*" Synovec et al. employed a
threshold-based feature selection based on the Fisher ratio from analysis of
variance (ANOVA) and selected a number of top-ranked variables. ' The use
of selectivity ratio as a feature ranking technique has also be reported.''
The ranking metric provides a starting point for identifying the variables with
a high potential to provide useful information, though a highly ranked variable
may not necessarily be the most useful variable in the chemometric model, and
similarly, alower-ranked variable may prove crucial. Thus a strategy to test and
identify a subset of the most informative variables becomes necessary.
Sinkov et al. developed a hybrid sequential backward-
elimination/sequential forward-selection (SBE/SFS) algorithm relying

on cluster resolution as the model quality metric for objective selection
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of a subset of variables to include a chemometric model.’®'*** Briefly, the
algorithm creates an initial model using a fraction of top-ranked variables (e.g,,
by F-ratio or SR). The quality of the model is evaluated using CR.** During
the SBE step, the effect of discarding a single variable is evaluated. If discarding
the lowest-ranked variable improves the model, the variable is discarded,
otherwise it is returned to the model and then the next-lower-ranked variable
is tested. In the SES step, the variables that were not included in the initial BE
step are tested sequentially to see if their inclusion improves the model based
on the variables that survived the BE step. CR is based on the calculation of
the size of the confidence ellipse or ellipsoid that can be described around
each cluster of points without overlap in either PCA or PLS-DA scores space.

In theory an exhaustive test on all variables should be performed;
however this is impractical and unnecessary in the case of GC-MS and
GCx GC-MS datawhere high data rate detectors are used, as the vast majority
of the variables are uninformative. Results from earlier studies showed that
several hundreds or even thousands of variables were selected for a single
chromatographic peak.'®*' This number of variables selected for each peak
points to the potential for excessive redundancy in the selected features.
In principle, redundancy in the data is helpful as the presence of multiple
variables providing identical chemical information would add stability to a

model as the variables would reinforce each other.
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However, there is likely a point where the benefits of redundancy are
outweighed by the additional noise and computing requirements needed to
handle the extra data. This excessive redundancy in the data could lead to
overfitting the training set data and/or confusion of the learning algorithm,
in this case the feature selection process.’*#'34*35'%1 Hence a reduction in the
number of candidate variables and variable redundancy should lead to faster,
more effective and efficient variable selection, and ultimately contribute to the
construction of a more parsimonious chemometric model.

In this research, I developed a preprocessing technique termed unique
ion filter (UIF) for automated data reduction prior to chemometric analysis.
UIFs developed are termed UIF 1D and UIF2D for raw GC-MS and GC X GC-
MS data respectively. In UIF1D for GC-MS, data reduction is achieved by
reducing the number of ions retained for each peak to a few of the most
abundant unique ions um/z within a specified scan window around each
peak apex. In GCXGC-MS the presence of the modulator leads to the
splitting of 1D peaks in smaller peaks termed sub-peaks. Hence UIF2D
automated GC X GC-MS data reduction retains for each identified peak, a
specified number of sub-peaks in 'D, and for all retained sub-peaks a specified
number of spectra in D and few of the most abundant, unique ions um/z
in the m/z dimension. Essentially, the UIF1D and UIF2D objectively filters
each raw GC-MS/GCXxGC-MS chromatogram independently to remove

variables that are likely unimportant or redundant in a chromatographic sense.
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Using this approach, there is the potential for a drastic reduction in the number
of variables passed to the feature selection step without losing the multivariate
nature of the data. There are two expected outcomes of the variable reduction.
Obviously, by reducing the total number of variables under consideration
there should be a significant reduction in computational time for feature
selection. The second outcome is more important, though less obvious. The
number of included variables in the final model should be decreased, with
a concomitant reduction in included noise and artefacts, resulting in more

parsimonious models.

2.2 Experimental Data

2.2.1 Data UIF1D for GC-MS

A dataset used for a previously published work '® was used in the proof-
of-principle work for UIF1D for GC-MS. Briefly, the data comprise a series
of GC-MS chromatograms from a set of gasoline samples to be classified
according to their octane ratings (87, 89, and 91 octane). For each class of
gasoline 24 chromatograms were obtained. The entire chromatogram for each
sample was imported into Matlab®2013a (The Mathworks, Natick, MA) as a
7500X271 (scan# Xm/z) matrix. A detailed sample extraction and analysis

for this data can be found in Appendix A.
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2.2.2 Data for UIF2D for GC xGC-MS

The data used to test UIF2D consisted of five green tea samples from
three different countries, namely Organic Makaibari (OM) - India; Spring
Sencha (SS) - Japan; Tamaryoku Cha (TM) - Japan; Earthly Paradise Jasmine
(EP) - China; and Jasmine Dragon Tears (JD) - China were obtained from
specialty tea suppliers in Edmonton. The tea volatiles were extracted from the
ground, dried tea leaves using headspace solid phase microextraction (SPME)
and analyzed using a Pegasus®GC x GC-TOF MS system (Leco, St Joseph, M1,
USA). A total of 12 chromatograms were collected for each sample except OM,
where 16 chromatograms were collected. The individual raw chromatographic
data from each sample was exported from ChromaTOF (version 4.50.8.0,
Leco, St Joseph, MI, USA) in .csv format and subsequently imported into
Matlab®. Each imported data consisted of 50.054 X10° variables, ie., 'D =
380 (number of modulations), *D = 500 (number of spectra) and m/z = 266.
A data matrix obtained from entire dataset consisted of 64 samplesx 50.54
x10°. The samples were to be classified according to the country of origin, i.e.,
China (EP and JD), India (OM), and Japan (SS and TM). A detailed sample

extraction, analysis and data alignment can be found in Appendix A.
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2.3 Theory

UIF1D and UIF2D are additional preprocessing steps applied to
each individual GC-MS or GCXxGC-MS sample chromatogram prior to
chemometric analysis. This step was applied before feature selection. Figure
2.3.1 shows the data analysis workflow with or without UIF. The fundamental

principle behind unique ion determination is the same for UIF1D and UIF2D.

CHROMATOGRAM ALIGNMENT

A ] B
UIF1D / UIF2D
' v
FEATURE RANKING FEATURE RANKING
:
CLUSTER RESOLUTION CLUSTER RESOLUTION
FEATURE SELECTION FEATURE SELECTION
\ 4
CHEMOMETRIC MODELS
(TRAINING SET)
EVALUATE MODEL
(VALIDATION SET)

Fig. 2.3.1: Data analysis workflow without (A) and with (B) UIF.
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2.3.1  Algorithm for UIF1D and UIF2D

There are two main inputs for UIF1D, which are the maximum number
of unique ions um/z to be retained for each peak and the number of scans
surrounding the peak apex to be included. UIF2D, on the other hand
requires three main inputs, which are the maximum number of sub-peaks,
the maximum number of unique ions um/z to be retained for each sub-peak
and the number of spectra surrounding the apex of each retained sub-peak
to be included. Accurate peak detection is necessary for effective application
of the UIF algorithm. This is because peak apex locations, peak widths, and
for UIF2D, the number of sub-peaks are needed for the implementation of
UIFE. In principle, any peak detection algorithm that is capable of detecting
peak apexes, starts, and stops can be used. In further discussion, the notation
of UIF1D, ,, and UIF2D, , ., are used where m is the number of
modulations in the case of GC X GC-MS data, p is the number of unique ions
to retain for each peak/sub-peak and w is the width of the window around the
peak apex (an odd number). For example, w =5 would indicate that a window
of five spectra (the peak apex plus two spectra to either side of the apex) would

be retained.

2.3.2 Determination of peak parameters and peak groups for UIF1D

The main parameters critical to UIF are peak apex locations, and the

determination of any peak overlap with neighboring peaks.
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Any robust peak finding algorithm can be used for the determination of these
peak parameters. In this proof-of-concept work, a laboratory written peak
detection algorithm based on the aligned total ion current (TIC) signal was
used. The TIC was generated by summing the chromatogram in the m/z
dimension (Equation 2.1), where X is the raw chromatogram, z is the TIC

vector, i is the spectra number, j is the m/z and J is the total number of ions.

Z, — ZX(I’]) (2.1)

A second-derivative Savitsky-Golay smoothing vector (s) is generated and
applied to the TIC vector (z) to generate smoothed second-derivative sdz,
according to Equation 2.2, where sdz is the second derivative vector, s is
the second-derivative Savitsky-Golay smoothing vector, z is the TIC, f’ is the

smoothing window and # is the length of z.

sdz; = s” x 2 £ty (2.2)

f’—1<i<f’—i—1

2 2

Subsequently, peak apex and peak inflection points are identified. Peak
apexes are determined as the lowest valley point with a negative value on sdz.
Peak inflection points are obtained from two positive maxima neighboring a
negative minimum of an apex locations on the sdz vector. For this work, peaks

were assumed to be Gaussian, and the peak widths (40) were estimated from
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the inflection points of each peak.

Three different types of peak groups can be identified from peak start
and peak stop locations as shown in Fig. 2.3.2. Group A are resolved peaks,
where peak start and peak stop locations do not overlap with any adjacent
peaks. Group B1 and B2 are peaks with either front or tail overlap only, and
Group C are sandwiched peaks, i.e., both start and stop locations overlap with
neighboring peaks. The peak resolution information in addition to the user

specified number of um/z and spectra around peak apexes to be used are then

passed to the UIF1D algorithm.

g g -

e
o

.

Fig. 2.3.2: Peak groups for UIF for GC-MS data. Peaks are grouped according to
their resolution. A - resolved peaks, B1, peaks on the left of two co-eluting peaks, B2
- peaks on the right of two co-eluting peaks and C - peaks sandwiched between two
peaks. The group determines how the um/z are identified.
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2.3.3 Identification of Unique Ions for GC-MS chromatogram

The signals at all peak apexes for a chromatogram are extracted into
a matrix (Y) with dimensions of number peaks (N)x m/z. The extracted
signals in Y are converted into a mass spectrum matrix, Yuys , according to
Equation 2.3 where Yy are the mass spectra at the apexes, n is the peak

number, and j is m/z.

YMS(mj) = ]Y(;Y]) (2-3)
j=1 T (n, f)

The group (A, B, C) into which a peak falls controls how um/z are
identified for that peak. Unique ions are stored in U (initially a matrix of zeros
having the same dimensions as Yys). Thus, for n = 1, 2, 3, .., N, where N is
the total number of peaks in the chromatogram, if peak n belongs to Group A,
then all m/zin Yys (n,j = 1, 2, 3, .., J) are um/z to peak n and all ions above a
minimum threshold are retained in U by setting their coordinates in U = 1.

If peak n is a member of B1 or B2, the relative abundance vector v is

generated according to Equations 2.4 or 2.5, respectively, where j is the m/z.

Yums(n. i

v — MS(n, j) (2.4)
YMS(n—l,j)
Ynms(n i

v= Sty (2.5)
YMS(n+1,j)
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Since v is a vector of the relative abundances of m/z, elements of v greater
than 1 have higher abundances in peak n relative to (n — 1) in (Equation 2.4)
or (n + 1) in (Equation 2.5). Truly unique ions in v will have a value of 0o,
while pseudo-unique ions will have alarge value. Elements of vabove a certain
uniqueness threshold are deemed to be um/z of peak n and their coordinates
in U are set to a value of 1.

Finally, if peak nisin Group C (i.e., a peak with a co-elutant on both sides)
two abundance vectors v, and v, are calculated using equations 2.4 and 2.5,
respectively, and ions in v, and v, that exceed the uniqueness threshold are
set to a value of 1. A third vector v, is then generated from the diagonal of
the outer product of vFand v,. This vector v, is comprised of zeros, with ones
located at positions indicating ions that are unique (or pseudo-unique) to peak
nin the cluster of three peaks. The coordinates of these um,/z are set to a value
of 1 in U. The resulting matrix U is a sparse matrix of zeros and ones with the
ones indicating the positions of um/z for each peak. A Hadamard product of
U and Yy yields V (V = U o Yy ), a matrix of the raw abundance of each
um/z. Based on the user-input number of unique ions to be chosen, p, the m/z

positions of the p most abundant unique ion(s) for each peak can be obtained.

2.3.4 Generation of new UIF1D filtered chromatogram

In the final step of the UIF, a mask of zeros, M, of same size as the original

data is generated and modified such that ones are placed at the coordinates
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where the p most-abundant unique ions in each detected peak for a width of w
in the spectra direction, centered on the peak apex. A Hadamard product of M
and the original data matrix X results in the unique ion filtered data, UIF, ,,

=MoX.

2.3.5 Determination of peak parameters and peak groups for UIF2D

A similar peak detection approach is used for the identification of peaks
in GC X GC-MS data. This is because the raw data obtained from GCx GC-
MS is actually a 2D data represented as m/zx spectra/time. Thus once the
data is summed in the m/z dimension, the TIC obtained is analogous to that
of 1D GC-MS. Thus a similar routine for peak detection applied to 1D GC-
MS data earlier can be used (Equations 2.1 and 2.2). Fig. 2.3.3 shows a typical
TIC obtained from the 2D data (m/zxscan) of a GCx GC-MS separation.
However, since the peaks in the 'D are split into subpeaks, it is important to
identify the subpeaks which belong to the same compound. Thus after peaks
and peak parameters have been determined, the chromatogramis folded into a
3D matrix (Ga ) with the aid of the modulation period and the data rate of the
MS detector. For a peak modulated three times, three apexes will be identified
in three successive modulations. Sub-peaks from sequential modulations
belonging to the same compounds are identified based on second dimension
[

retention time (*t,) and peak width comparison described by of Peters et a

in addition to mass spectra matching using the weighted cosine correlation
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score by Kim et al..’®* Compared to a GC-MS, GC x GC separation provides
a two-dimensional separation space in which a peak can theoretically be
surrounded by more than two neighboring peaks. Thus for a GCX GC, the

possible peak groups identified are shown in Fig. 2.3.4.

Signal Intensity

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
x10°

Spectra

Fig. 2.3.3: A 1D version of a TIC generated from GCxGC-MS separation. The peak
apexes are marked with red dots.
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second dimension

Two peak cluster Three peak cluster

Four peak cluster Five peak cluster

first dimension

Fig. 2.3.4: Peak groups for UIF2D for GCx GC-MS identification.
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2.3.6 Identification of Unique or Pseudo-unique Ions for UIF2D

Theoretically, in GCXGC separation an unresolved peak can be
surrounded by several peaks, unlike GC-MS. The identification of um/z for
D and E in Fig. 2.3.4 are analogous to that of B and C in Fig. 2.3.2. However
for peak falling into groups F and G, pairwise comparisons of all mass spectra
from the apex of all co-eluting peaks are used to determine the most unique or

pseudo-unique ion.

2.3.7 Generation of UIF2D filtered chromatogram

To generate a new UIF2D filtered GCXGC chromatogram, a null
matrix, M, the same size as the folded GCx GC-MS data is generated. M
is modified such that ones are placed at the coordinates of the m sub-peaks
centered on the base peak in 'D, p most-abundant um,/z in each of the m sub-
peaks within a w scans/spectra in *D centered on the peak apexes of the sub-
peaks being retained. M is thus a mask for the original data. A Hadamard
product of M and the aligned original GC X GC chromatogram results in the

unique ion filtered data.

2.3.8 Chemometric analysis

The GC-MS data consisted of gasoline samples to be classified according
to their octane ratings. Each sample chromatogram was imported as a

data matrix from .csv files and aligned using an algorithm written in-house
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which is based on a piecewise alignment algorithm.*** A data set matrix, 72
samples X 2,032,500 variables resulted. Variable positions where all samples
had no signal intensity above a minimum threshold (in this work 150 counts)
were removed from consideration.

For the GC X GC-MS data, individual chromatograms were imported
into Matlab® as the unfolded GC-MS chromatogram, a matrix of 190,000 rows
X266 columns (i.e., number of spectra x m/z). Each chromatogram was folded
into a 3D cube using the modulation period (s s) and the data rate (100 Hz)
and aligned. A data set matrix consisting of 64 rows x 50.054 X 10° columns
(samples x variables) resulted. Columns representing m,/z where no signals
were detected above a set threshold (200 for this data set) for all samples were
removed from further computation. Asindicated earlier, the tea data was to be
classified according to the country of origin.

For both UIF1D and UIF2D, two experimental pathways were explored
to determine the effect of UIF on the data. Fig. 2.3.1. shows the two
experimental routes explored. In pathway A (benchmark pathway), UIF was
not implemented. In pathway B, UIF1D and UIF2D were applied to GC-
MS and GC x GC-MS, respectively, before feature selection. Each dataset was
split into two-thirds for training and one-third for validation sets. The training
set data was used for variable ranking and optimization. Feature ranking
was performed with the training set data using an ANOVA-based ranking

technique reported earlier.'*%°
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Specificity, sensitivity, and accuracy of each optimized model were
calculated based on validation data and used as an objective parameter
in comparing model quality for both routes.’® Sensitivity measures the
model’s ability to correctly classify positive results, i.e.,, true positive rate
(Sensitivity = True Positives/Number of Positives). Specificity is the measure
of model’s ability to correctly classify or predict negative results/true negative
rate (Specificity = True Negatives/Number of Negatives). Accuracy is the
measure of true results (Accuracy = (Sensitivity + Specificity)/2). These
parameters present values on a scale of o to 1, with o being the worst model

and 1 being the best model.

2.4 Results and Discussion

The UIF1D offers a convenient approach for automated, objective
reduction of GC-MS data that preserves the multivariate information
contained in the m/z dimension. Two principal inputs, the number of
um/z (p) and the scan window (w) are required. Since the user does not
decide which ions are unique to each peak, subjectivity and the risk of losing
otherwise relevant data are largely reduced. UIF reduces the number of
variables per peak by focusing on ions unique to each peak at the peak apex.

For the GC-MS data set used in this study, unfolding the 72

chromatograms without UIF application resulted in a matrix of 72
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samples X 2,032,500 variables. After removing null variables, ie,
columns having no signal above a minimal threshold (150 counts) for
all chromatograms, the number of variables was reduced to 1,668,403 (i.e., 72
samples X 1,668,403 variables). When the UIF was applied and all the um/z
across the entire width of each peak were retained, the maximum number
of variables was reduced to 225,830 (i.e, 72 samplesx 225,830 variables)
representing an 86% reduction in the number of variables from the original
data set (after removal of null variables). Selecting only a few um,/z for only a
few central scans on each peak will further reduce the size of the matrix to be
considered by subsequent feature ranking and selection routines.

For comparative purposes, I benchmarked this work without the UIF1D
at the minimum number of top-ranked variables that must be tested to achieve
an excellent model prediction quality (sensitivity, specificity, and accuracy
of 1) for all classes using ANOVA ranking and our hybrid BE-FS approach.
I chose this approach because it was readily available and has demonstrated
success in handling entire raw GC-MS chromatograms.'®*' Fundamentally,
the feature selection method used on the GC-MS data is of little-to-no
importance to the efficacy or applicability of the UIF. Regardless of the feature
selection (and possible variable ranking) methods used, the UIF will improve
the situation as it will reduce the number of candidate variables that must be

considered, typically by 1-3 orders of magnitude (as will be shown below).
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In Fig. 2.4.1, an increase in the model sensitivity, specificity and overall
accuracy are observed, commensurate with an increase in the number of top-
ranked variables checked during the feature selection process. A model that
achieved a sensitivity, specificity, and accuracy of 1.0 was achieved when
30,000 top-ranked variables were tested. Increasing the maximum number of

features tested also increases the computation time for the feature selection
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Fig. 2.4.1: Feature Selection time and model quality plot for benchmark pathway
GC - MS. The number of variables evaluated during the application of CR-FS was
increased until the PLS-DA prediction accuracy on the external validation set was
100%. The total number of variables evaluated until this was achieved was 30000.
The error bars indicate the standard deviation for n = 5.
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To compare the effect of UIF1D on the feature selection process and
ultimately the quality of the chemometric model to that of the benchmark,
multiple combinations of p (number of um/z) and w (window about apex)
were investigated. p ranging from 1 to 10 and w of 1 to 17 (odd numbers
only) were investigated. The number of variables to be passed to the feature
selection algorithm after the application of the UIF ranged from 3,717 for
UIF1D(, ,) to 107,982 for UIF1D ,, ,,. Due to this reduction in the
total number of variables, the number of top-ranked variables submitted to
the variable selection process was limited to s00. These experiments show
that at w = 1 (i.e,, only ions at the peak apex are retained), an increase in p
considered does not improve the model (Fig. 2.4.2). However, increasing
w to 3, even when considering a single um/z per peak, significantly improves
model quality. This is likely due to lessening the effects of minor shifts in peak
position, and allowing some additional reinforcing variables containing nearly
identical information to be considered. The increase in w may also allow some
information about the peak’s profile to be retained. For this particular data set,
aminimum of two (2) um/zand three (3) spectrais necessary to achieve 100%

model prediction sensitivity, specificity and accuracy.
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Fig. 2.4.2: Sensitivity (a), Specificity (b), and Accuracy (c) of UIF1D experiments.
m and w were varied from 1 to 10 and 1 to 17, respectively. CR-FS was performed on
the variables obtained after UIF application. The variables obtained after CR-FS were
used to construct PLS-DA models. Sensitivity, specificity and accuracy were obtained
from the PLS-DA model prediction of external validation set.
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UIF1D, ;) was chosen as the optimum to be compared to the
benchmark pathway. The PLS-DA y-predicted plots for the three classes of
samples when UIF1D, ;) and the benchmark (no UIF1D) are shown in Fig.
2.4.3 a and b. These two results are comparable since they all demonstrate
a model prediction sensitivity, specificity and accuracy of a 100%. However,
the model presented in Fig. 2.4.3 b-1 to b-3 is likely a more robust model
since the validation data for 87, 89 and 91 project further away from the
class discrimination barrier (red line in plots). Additionally, the y-predicted
positive and negative values for the samples are much closer to the ideal
values of 1 and o, respectively and have clustered closer together relative to
the benchmark case. This indicates a significant reduction in within-class
variance, likely due to the exclusion of redundant variables and excess noise.
The number of variables retained for the the benchmark and UIF1D, ,)were

3001 and 53, respectively.
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Fig. 2.4.3: PLS-DA y-predicted plot for benchmark pathway (a-1 to a-3) and
optimum for UIF1D (UIF1D;, 5)) (b-1 to b-3). Models were generated using
features obtained after feature selection. The number of variables retained for the the
benchmark and UIF1D, 5 were 3001 and 53, respectively. Red circles, blue squares
and green triangles indicate 87-, 89- and 91- octane ratings gasoline respectively.
Hollow markers indicate training and optimization while solid markers indicate
validation set.
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The overall effect of applying UIF(, ;) to a sample region of a
chromatogram is shown in Fig. 2.4.4. The overall reduction in the number
of candidate variables is obvious. The m/z dimension in Fig. 2.4.4b and 2.4.4¢
is restricted to that showing the majority of ions. Thus in some cases where
only one um/zis apparent for a given peak in Fig. 2.4.4, the other um/z is ata

m/z value > 140.
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Fig. 2.4.4: Effect of UIF1D 7 5 on an example segment of a chromatogram. (a)
TIC trace, (b) unfiltered GC-MS data matrix, (c) data matrix after being filtered by
UIF1D; 5.
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Comparing the features selected with and without the application of the
UIF1D, the features correspond largely to the same compounds (Fig 2.4.5).
These features have been tentatively identified as 4-methyl heptane, toluene,
and an unknown compound. This observation indicates that the use of the

UIF does not alter the underlying chemical information in the data.
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Fig. 2.4.5: Features selected by feature selection without(A) and with UIF1D(B).
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To demonstrate the need for feature selection, PLS-DA models were
generated on the raw chromatograms with no feature selection or filtering. The
overall model quality was poor. UIF1D was also tested on a more challenging
data set. The optimum UIF setting for this work (i.e, UIF1D, ), wasapplied
to a data set comprising GC-MS chromatograms of casework fire debris
samples from a previous study.*® In this case, features were being selected to
permit the identification of gasoline in casework arson data using PLS-DA. A
model with similar performance to that found previously was achieved and the

resultant y-predicted plot is presented in Fig. 2.4.6.
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Fig. 2.4.6: PLS-DA y-predicted plots for predicting the presence or absence of
gasoline in casework fire debris sample from a previous study.?® Red circles indicate
samples containing gasoline and blue squares indicate samples that do not contain
gasoline, Hollow and filled markers are for training and validation sets, respectively.
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Table 2.4.1 presents a comparison of the optimum benchmark and
UIF1D conditions. Even though excellent model quality was achieved
without the UIF1D, this required the testing of 30,000 top-ranked variables
and prolonged the feature selection process to over 6 h. As expected, data
unfolding time when the UIF1D is applied is slightly longer than for the
benchmark algorithm due to the additional computations applied by the
UIF1D. However, the total number of candidate variables was reduced by two
orders of magnitude over the non-UIF case and excellent model quality was
achieved after testing only 500 variables. This is attributed to the reduction in
irrelevant and/or redundant features in the data by the UIF 1D, making it easier
for the learning algorithm to focus on the relevant data. Due to this reduction
in the variables tested, excellent model prediction accuracies were achieved
from the resulting variables when a fewer number of top-ranked variables were
tested. 'This reduced the overall feature selection time to 9 min including
application of the UIF1D. Results in Table 2.4.1 also show that without the
use of the UIF, testing only the 500 top-ranked variables led to poorer overall

model quality.

Table 2.4.1: Results of feature selection and model quality for optimum benchmark
and UIF1D

Data unfolding Feature Selection Model Quality
Condition | Time/sample(s) Total Checked | Passed | Time/min Accuracy
UIF1D, ) 0.56 (0.02)* 0.01X10° 500 53 9 (1)* 1.00
NO UIF 0.027 (0.002)* 1.67X10° 500 116 8.4 (0.9)* 0.83
NO UIF 0.029 (0.004)* | 1.67X10° | 30000 3001 370 (20)* 1.00

*mean and standard deviationatn =35
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The two-dimensional version of UIF (i, UIF2D), is a pre-filter for
raw GC X GC-MS data. Like UIF1D, its implementation provides a data set
that is orders of magnitude smaller than the raw GCx GC-MS data, while
preserving the multivariate information in the data. For each identified peak
in the chromatogram, UIF2D retains a specified number of unique m/z for a
specified number of sub-peaks in the 'D and scans/spectra in the *D. Thus the
peak is represented by the signal closest to the apex which is the purest section
of the peak.

Figure 2.4.7 shows a series of TIC plots from a representative
chromatogram before and after UIF2D application. Eight (8) peaks are
identified in this region, numbered 1 to 8. Subscripts indicate sub-peaks in
order of decreasing prominence, with the base peak marked s1. Peaks 2, 4, 6-8
were trace components with only one detectable modulated peak, while peaks
1, 3,and s had two detectable sub-peaks each. In Fig. 2.3.4a (UIFzD(L 10, 1))
one spectrum is retained for the base peak for each identified peak while
all other information about the peak is eliminated. When the number of
spectra/width in D is increased to 15 (i.e, UIF2D, ,,, , 5)), the number of
spectra included by UIF2D is increased accordingly. Fig. 2.3.4a. Fig. 2.3.4d
depicts the results of UIF2D with m = 3, p = 10 and w =1. When present,
sub-peaks from compounds present in multiple modulations (peaks 1, 3, and

5) are included. Fig. 2.3.4e shows the results of UIF2Dy; ,, ).
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Fig. 2.4.7: Application of UIF2D to GCxGC-MS chromatogram. This shows
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peaks/modulations (p) and the number of scans/spectra (w) retained as these
parameters are altered in the induction of UIF2D. a - raw data, b - UIF2D(; ;¢ 1),
C - U|F2D(17 10, 15), d- U|F2D(3, 10, 1) and e - U"-"2D(37 10, 15)-
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Increasing m and w results in retention of a greater portion of the peak, and

thus the appearance of the filtered data approaches that of the unfiltered data.
Only um/z are retained in Fig. 2.3.4b-e. Even though the *¢, of peaks (1, 5)
and (3, 7) are quite close, UIF2D is able to identify each of the peaks and
assign them correctly. Application of UIF2D reduces the number of variables
remaining for subsequent computations to between 6,518 (UIFzD(I, . 1))
and 418,086 (UIF2D; ,, ,;)); representing reductions of 99.9 and 99.2%,
respectively.

To investigate the effect of UIF2D data reduction on the feature selection
process, a similar experimental workflow used for UIF1D(Fig. 2.4.1) was
applied: the benchmark pathway (A) where the filter was not used and the
UIF2D pathway (B). Performing feature selection on the entire raw data was
not possible as this overwhelmed the computing power of the system used for
this work. I resorted to reducing the number of variables by applying an ion
count threshold of 200. Variables for which ion counts in all samples were less
than this threshold were removed. The number of variables was thus reduced
from 50.54 X 10° to 1.98 X 10° representing a 96.1 % reduction. The threshold
of 200 was selected as that was the ion count threshold used in the peak finding
algorithm. Increasing the ion count threshold would reduce the number of
variables further; however, there is an increased risk of losing informative

signals from analytes with weak signals as the threshold is raised.
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Datasets were generated with UIF2D applied using a permutation of m = 1, 2,
3, p=1,2,4, 10and w=1, 3, 5,7, 9. The resulting data sets generated were
subjected to feature selection. In the case of the dataset from the raw data, the
number of top-ranked variables evaluated by CR-ES was varied from 500 to
20,000, while only 500 top-ranked variables were evaluated when UIF2D was
applied.

Fig. 2.4.8 shows the model quality plots for the benchmark pathway.
An increase in feature selection time commensurate with the number of top-
ranked variables checked was observed, due to the added time required for
checking each additional variable. A model prediction accuracy (red line)
of 1.00 was achieved after 15,000 top-ranked variables were checked. This
required 3.5 h. The number of variables included in this model was 1108,
which represents 7.4 % of the total variables evaluated. This implies that the
majority of the computer time was used to evaluate variables that were not
helpful (over 90% of 3.5 h). When UIF2D was applied, the number of features
retained was 199 (£47). Thus in addition to the shorter processing time, the
computer is used more efficiently. Approximately s0% of the time is used to

evaluate variables that are included in the model (50% of 6.8 min).
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Fig. 2.4.8: Feature selection time and model quality plot for benchmark pathways for
GCxGC-MS data. The number of variables evaluated during the application of CR-FS
was increased until the PLS-DA prediction accuracy of the external validation set was
100%. The total number of variables evaluated until this was achieved was 15000.
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Fig. 2.4.9 shows the model prediction accuracy for various values of m
=1,2and 3,p=1,2,4and 1oand w = 1, 3, 5, and 7 . In the region of
p = 1, an increase in model accuracy occurs when w and/or p is increased.
This is attributed to a modest increase in the number of variables retained per
identified peak which contributes to the robustness of the model as more than
one variable contributes information about a peak. Subtle variations in the
order of um/z from one sample to the next, caused by differences in coelutions
from one sample to another is the most likely reason why using only one um/z
does not result in very robust models. When p is increased to 2, excellent

model prediction accuracy was obtained for all values of m and w evaluated.

1

Fig. 2.4.9: PLSDA model prediction accuracy for UIF2D experiments for m = 1,
2and3,p=1,2,4and 10 and w = 1, 3, 5, and 7. CR-FS was performed on the
variables obtained after UIF application. The variables obtained after CR-FS were
used to construct PLS-DA models. Model accuracy were obtained from the PLS-DA
model prediction of the external validation set.
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Fig. 2.4.10 shows the class prediction plot for the PLS-DA model
constructed using the 1108 variables that survived with the benchmark

pathway on the left (Fig. 2.4.10 a-1 to a-3) and UIF2D( where 87

1,2, 5)
variables were selected on the right (Fig. 2.4.10b-1to b-3). Tea samples from

India cluster closer to each other in UIF2D, relative to the optimum of

2,1, 5)
the benchmark. This is due to the reduction in within-class variance, which
is attributable to the extreme reduction and elimination of overly redundant
variables in the data by the filter.

Thelocation of the features that survived in the benchmark optimum and
the UIF2D(, , ;) are shown in Fig. 2.4.11a and Fig. 2.4.11b, respectively. Fig.
2.4.11 shows that all the features that were selected by UIF2D¢, , ) in Fig.
2.4.11b are also included in the features that were selected in the benchmark
pathway. This was confirmed by comparing the vector of features selected.
Thus, in addition to the 87 variables that were passed, there are over a 1000
variables that are either irrelevant/noise or redundant to the models. Table

2.4.1 shows the comparison of UIF2D, , ;) and the benchmark optimum

with respect to data unfolding and feature selection results.
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Fig. 2.4.10: PLS-DA y-prediction plot for optimum benchmark pathway and
UIF2D(; 5. Models were generated using features obtained after feature selection.
The number of variables retained for the the benchmark and UIF2D(; > 5) were
1108 and 87, respectively. Blue circles, red squares and green triangles indicate teas
samples from, China, India and Japan, respectively. Hollow markers indicate the
training and optimization set while solid markers indicate the validation set.
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Fig. 2.4.11: Comparison of selected features for optimum benchmark pathway(a) and
UIF2D; 5 5 (b).

Table 2.4.2 shows the comparison of UIF2D, , ;) and the benchmark
optimum with respect to data unfolding and feature selection results. As
observed in the use of UIF1D, evaluating only the top soo variables leads to
a 100% model prediction accuracy when UIF2D is applied. However, this is
not the case without the application of UIF. This indicates that the application
of UIF2D eliminates noise as well as irrelevant variables, allowing the more

useful and unique features of the peaks to be ranked higher.

Table 2.4.2: Results of feature selection and model quality for optimum benchmark
and UIF2D

Data unfolding Feature selection Model Quality
Condition | Time/sample (s) Total Checked | Passed | Time/min Accuracy
UIF2D(, , 2.68 (0.02)" 0.02X 10° 500 87 6.8(0.5)" 1
NOUIF 27 (2)* 1.98%X10° 500 168 6.5(0.8)" 0.96
NOUIF 27 (2)* 1.98X10° 15000 1108 229(13)" 1

? mean and standard deviationatn =5

62



2.5 Conclusions

UIF is a novel feature reduction approach for preprocessing of
multivariate data. The filter does not require a priori knowledge of the
samples being analyzed. The algorithm selects unique features that contain
the relevant chemical information for each peak, while reducing redundancy
in the number of variables considered per peak by at least an order of
magnitude. This leads to the reduction in the number of candidate variables
for subsequent feature selection and chemometric analysis. Consequently,
feature selection time is greatly reduced, as is the amount of noise for which
the model must account. The reduction in noise results in an overall increase
in model quality and reduces the need to check a higher number of top-ranked
variables.

Application of the UIF does not alter the fundamental chemical
information in analytical data upon which models are ultimately based.
With the increase in the use of mass analyzers, UIF provides an avenue
for researchers to reduce the initial number of variables without losing the
multivariate nature of the data. It must however be emphasized that UIF also
relies on the user having a robust peak detection algorithm.

While UIF1D and UIF2D were applied to GC-MS and GCx GC-MS
data in this study, it can be adapted to other chromatographic data with a

multivariate detector.
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“Study without desire spoils the memory, and it retains

nothing that it takes in”

Leonardo da Vinci

3

Comparison of Total Ion Spectra and
Segmented Total Ion Spectra as Preprocessing
Tools for Gas Chromatography-Mass
Spectrometry Data for the Chemometric

Analysis of Casework Fire Debris Samples

3.1 Introduction

Analysis of fire debris for the presence or absence of ignitable liquids is
an essential step in the forensic investigation of fires. These analyses provide

information that can aid fire investigators in ascertaining the causes of fires.

Adutwum L. A., Abel R. J. and Harynuk J. J., J. Forensic Sci. under review, reference number: JOFS-17-
303
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Where there is suspicion of malice, ascertaining the presence and identity
of ILs in the debris is a critical step in the investigation. Ignitable liquids
tend to be petroleum-based mixtures of volatile organic compounds (VOCs)
which are easily collected via headspace sampling. The collected VOCs,
comprised of pyrolysis products from the matrix as well as compounds from
any ignitable liquids present, are subsequently analyzed by gas GC-MS.*#7'%>
Interpretation of the resulting data to determine the presence of ignitable
liquids can be challenging due to the myriad of pyrolysis products generated
from the various materials in the substrate and the highly variable nature of
fire. 478515 These frequently mask the presence of ignitable liquids, which
are inherently complex and subject to alteration by the fire and fire suppression
efforts. 147185186

Conventional interpretation of fire debris data involves the
visual inspection of various extracted ion chromatograms for the
fingerprints/signatures of suspected ignitable liquids, examination of
the mass spectrum for each questioned peak, and a peak-to-peak visual and
mass spectral comparison with reference chromatograms.'#”**%'%7 This
process relies heavily on the experience of the individual performing the
interpretation and can introduce some degree of subjectivity. To reduce
the risk of error, most labs employ a peer review system where two or more

analysts will perform their own independent interpretations of the data to

arrive at a consensus decision. All of these factors limit throughput and
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increase the number of person-hours required for data interpretation.

The use of chemometric techniques (ie., classification and pattern
recognition) for identifying ignitable liquids in simulated 7594585189 and
casework*>*! fire debris samples is an area of active research. The
motivation is that a reliable chemometric approach could largely automate
the interpretation process, saving time and reducing/eliminating subjective
biases. A secondary benefit would be that the forensic scientists would
be free to perform other tasks, thereby increasing sample throughput and
decreasing sample turn-around time for multiple types of analyses throughout
the laboratory.

One of the challenges for the application of chemometric methods to
chromatographic data is the need for signal alignment, which aims to ensure
as much as possible that the signal for each compound in the mixture is
registered in the same location in the data matrix in every analysis. For gas
chromatographic data, this is particularly challenging due to the narrowness of
chromatographic peaks and the many factors that can introduce subtle shifts in
retention times from one run to the next. While it is possible to use the entire
raw data set, possibly with some feature selection step, to identify ignitable

20,

liquids in fire debris samples,**** there are challenges that remain. The size of
the data files may be a technical hurdle for some computers; however, the need

to account for sample-to-sample shifts in retention times coupled with the

highly unpredictable and inconsistent chromatographic patterns present in
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the data present a more significant challenge. Due to alack of reliable retention

time markers, algorithms that require landmarks or anchors”**°*

%4 struggle
with fire debris chromatograms. Algorithms such as correlation optimized
warping (COW),*°° interval correlated shifting (Icoshift),'** and recursive

102

alignment by fast Fourier transform (RAFFT) *°* are similarly defeated by the
inherent lack of correlation between fire debris chromatograms. Finally, with
any alignment algorithm, there is the potential for artefact generation, which
could influence the resulting chemometric model."*****

In an effort to avoid the need for strict chromatographic alignment,
Sigman et al. introduced summed ion spectrum/total ion spectrum (TIS)
as an alignment-free preprocessing step for raw GC-MS data.'** A TIS is
generated by summing the raw GC-MS data in the mass-to-charge ratio
(m/z) dimension. The TIS data are analogous to those obtained from
headspace - mass spectrometry (HS-MS), the direct injection of the headspace
of a sample into a mass spectrometer as neither contains chromatographic
information.*** However, TIS has the advantage that the chromatographic
separation limits the mass flux of material to the M, unlike direct HS-MS. This
minimizes the risk of saturating the MS detection system for mass channels
of high abundance. Any saturation would result in skewed data and an
increase in chemically meaningless variations that would degrade the results.

TIS eliminates the need for chromatographic alignment, facilitating inter-

laboratory transfer and utilization of data and chemometric models. In fact,

67



with TIS, successful comparison of data between laboratories is achievable
even if they use vastly different separation conditions and/or completely
different stationary phases. Furthermore, there is a huge reduction in the
total number of variables and thus the redundancy in the data which could
confuse the learning algorithm.'*" For example, a 20 min GC-MS experiment
with a data rate of 20 Hz and a m/z range of 300 u would result in 7.2 X 10°
variables per chromatogram. The TIS of these chromatograms would shrink
each sample 99.99% to a mere 300 data points.

However, it may be advantageous to retain some chromatographic
information in the data, which could aid in the identification of regions of
the chromatogram from which important signals originate. This can aid
in confirming or refuting the results of ambiguous samples, as the general
separation region of features used for identifying different ignitable liquids are
known.

Additionally, in the original implementation of TIS, there is no
preprocessing step (i.e., any attempt to eliminate noise from the data).'** In
the case where an ignitable liquid is present at a very low concentration, the
addition of background noise signals could mask or alter signals originating
from the ignitable liquid. Furthermore, inclusion of empty chromatographic
space will contribute meaningless ions to the TIS, which could negatively
influence the chemometric model. I hypothesize that the elimination of

inactive regions and noise from the raw GC-MS signal data prior to the
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generation of TIS could improve the resulting models.

Herein I present the segmented total ion spectrum (STIS), which is
similar to TIS, except it partially preserves the chromatographic separation
while avoiding the need for strict chromatographic alignment. STIS is an
alternative to both the TIS and the use of the entire raw data set. The
performance of TIS and STIS for the classification of casework fire debris
samples for the presence of gasoline is compared. I envisage that the
partial preservation of the chromatographic separation by STIS will lead to
improved chemometric models and facilitate the identification of regions of
the chromatogram responsible for those signals important to the classification.

Further, I investigate the effect of a noise-reduction preprocessing step
on both TIS and STIS. Regions of interest are identified via the application
of a peak finding algorithm to each mass channel prior to TIS and STIS
generation.''* Using these sets of data, cluster resolution-feature selection
(CR-FS) was used to identify relevant features.'* Model prediction sensitivity,
specificity and accuracy from partial least squares discriminant analysis (PLS-

DA) were used to compare the results of TIS and STIS.

3.2 Experimental

Data used for this proof-of-concept work was part of a dataset from

a previously published work. Details of the sample preparation and
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analysis conditions are reported elsewhere.*® Briefly, the data comprises
of a series of GC-MS chromatograms (226 samples) obtained from the
analysis of casework fire debris samples. Samples were analyzed by passive
headspace sampling using activated carbon strips *** which were subsequently
eluted with CS, containing a perdeuterated alkane ladder of n-C, to n-
C,, (odd alkanes only) and analyzed by GC-MS. Trained experts in the
Trace Evidence Services Laboratory of the Royal Canadian Mounted Police
National Centre for Forensic Services established the ground truth for
each chromatogram based on forensic interpretation following established
protocols.  Sixty-four samples were confirmed to contain gasoline, while
162 were confirmed to not contain gasoline. Each sample chromatogram
was imported into Matlab®2016a (The Mathworks, Natick, MA) using in-
house written algorithms. TIS and STIS were generated from samples with
and without the application of the noise reduction step. Each dataset was
subjected to the feature selection and chemometric analysis. Feature selection
was performed in Matlab®using in-house algorithms. The CR-FS algorithm
described in Chapter 1 was used to identify relevant features. Chemometric
models were constructed using PLS Toolbox 8.1.1 (Eigenvector Research
Inc., Wenatchee, WA). All chemometric analyses were performed on a 64-bit

Windows 7 Enterprise running on a core i7 - 4790K Intel processor and 32 GB

RAM.
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3.3 Generation of TIS and STIS

Each sample chromatogram was imported as a data matrix D" x"(R),
where m is the number of m/z and n is the number of spectra for the entire
chromatogram. As a noise reduction step, a peak finding algorithm was
applied to each mass channel. A null matrix of the same size as the sample
chromatogram was generated. Using the peak apexlocations and peak widths,
the null matrix was modified by setting locations defined by the peak to a value
of 1. This resulted in a binary masking matrix, M. The Hadamard product of
the mask, M and the original data matrix D (i.e. M o D), yields a de-noised
chromatogram.

TIS for the samples were generated as previously described by Sigman et
al.*#»'93 Two TIS datasets were generated for the samples, Xtys.4 and Xryg_p.
In the case of Xrys.4, the GC-MS data matrix for each sample was summed in

m/z dimension as shown in Equation 3.1.

i
XTIS-A = ZD(i,]’) (3.1)

where x115_a (a vector of 271 elements) is the TIS of a sample, i is the m/z
index and j is the scan number. For the generation of xrs.p, the sum is
calculated over the Hadamard product of the sample chromatogram, D, and
the mask, M, which was described earlier. The calculated TIS for every sample

. . SXV SXV
were compiled intoXr ¢ , and X7 ¢ g, where sand vare the number of samples
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(226) and variables (271), respectively.
Similarly, two STIS datasets were also generated, Xgr1s.4 and Xgrys-g. To
generate Xgrys.a, the perdeuterated alkane ladder compounds were located in

the chromatogram as previously described Sinkov et al.>*

The chromatogram
was subsequently segmented into nine (9) regions by the eight (8) deuterated
n-alkanes as shown in Fig. 3.3.1. Each segment of the chromatogram was
then summed in the m/z dimension, creating a set of nine (9) sequential TIS
segments, each covering a portion of the chromatographic space. This results
inavector of 2,439 (i.e, 271 X 9) variables per sample. The overall data matrix
Xsris-a with 226 samples X 2,439 variables was obtained by collecting the
calculated STIS vectors for each sample in the data set. As described earlier,
in the case of xgr15.8, the STIS is calculated on the output of the Hadamard

product of D and M. Xgrys.p is also generated from the calculated xs715_p

yielding a data matrix same size as Xgris-a.

3.4 Results and Discussion

In the chemometric analysis of GC-MS data, there are advantages
to using the raw data, as opposed to a peak table that may have artefacts
introduced from integration errors and/or the loss of small peaks/peak
shoulders that are problematic for integration algorithms.'** However, raw

GC-MS data presents several challenges to conventional chemometric tools.
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Fig. 3.3.1: A TIC of a typical fire debris sample chromatogram (blue) showing

locations of perdeuterated n-alkane anchors (red). Perdeuterated alkanes were from
n-C, to n-C,,
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Chromatographic alignment of signals is one challenge, and several groups
have come up with alignment algorithms, that are useful for some sample
types.>@9%1°919L194 The sheer number of variables in an entire raw GC-
MS chromatogram necessitates data reduction strategies to remove those
variables that are primarily noise (e.g, segments of empty baseline) or

149 This is critical, as without feature

to reduce redundancy in the data.'>
selection strategies, the noise in unimportant variables completely masks the
information buried in the relatively few important variables.

The TIS algorithm, essentially presents the average signal for each mass
channel over the course of the chromatogram. It is an aggressive, alignment-
free data reduction strategy that also offers excellent intra-laboratory model
portability; but at the cost of losing all chromatographic information. Hence,
interpretation of the resulting chemometric models to identify specific sources
ofions is a challenge, and overall model quality may sufter due to the loss of all
separation information. Using a suite of clearly defined retention time marker,
the chromatogram can be defined by segments. By generating TIS for each
segment of the chromatogram (hence a segmented TIS, or STIS), the data size
is reduced in addition to partial preservation of the retention information. The
motivation being an improvement in model accuracy and easier interpretation
of the chemical significance of the data.

Fig. 3.3.1, shown earlier, depicts a TIC of a fire debris sample (blue)

showing the location of perdeuterated n-alkane anchors (red). For each
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sample chromatogram, a TIS was generated by summing each ion along the
time axis. A typical TIS for a fire debris sample is shown in Fig. 3.4.1. TIS
reduces the number of variables in the entire chromatogram to the number
of m/z monitored. In this data the number of variables for each sample

chromatogram was reduced from 4.336 X 10°toa271.

T T T T T

30 80 130 180 230 280
m/z

Fig. 3.4.1: A TIS of a typical fire debris sample. The TIS response is generated by
summing the raw GC-MS data in the time dimension. The retention information in
the data is eliminated.

The apexes of the eight (8) perdeuterated n-alkane signals divide the
chromatogram into nine (9) sections. A TIS is generated for each section.
Concatenation of the nine TIS segments yields the STIS for the sample with

2439 variables as shown in Figure 3.4.2.

75



1 i L Ll Ls L |
0.75} B
—
]
=
o 0.5 E
o
)
0.25 -
0
0 500 1000 1500 2000 2500
variable#

Fig. 3.4.2: An STIS of a typical fire debris sample. The STIS response is obtained by
generating separate TIS for each of the nine segments and concantenating.

Each version of the dataset (i.e., X11s.a, Xt15-8, Xst15-4 and Xgris-B)
was subjected to feature selection and the evaluation routine as described
above. Each row was normalized to 1 and the columns scaled to unit variance.
Each dataset was split, with two thirds randomly assigned to the training
set (150 samples) and one third to the validation set (76 samples). Using
a third of the training set data, variables were ranked based on their F-
ratios.'®'%7 The entire training set data was used for feature selection based on
a cluster resolution-guided hybrid sequential backward-elimination/forward-
selection algorithm.'® The variables retained after feature selection were used
to construct PLS-DA models. The models were evaluated using the prediction

sensitivity, specificity and accuracy calculated for the validation set data. The
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number of latent values (LVs) retained for the PLS-DA model was selected
based on the minimum root mean square error for the cross validation. Feature
selection and model validation steps were repeated ten times for each dataset.
The data were randomly re-partitioned into training and validation groups
for each iteration. The mean sensitivity, specificity and accuracy for Xrrs.a,
Xr11s-B, Xstis-a and Xgrrs.p across all iterations were then calculated. The

results of these comparisons are shown in Fig. 3.4.3.
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Fig. 3.4.3: Average model prediction sensitivity, specificity and accuracy for Xts.a,
XT1i1s-B, XsTis-a and Xgsts-g for the external validation set. The models were
constructed using the variables selected after the implementation of CR-FS. These
model quality and error bars indicate the averages and standard deviations for n = 10,
respectively.

Xr11s-a, X11s.B, Xst1s-a and Xgrys.p all perform quite well, with a

prediction sensitivity, specificity and accuracy all above 0.85 (85%). With
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the exception of prediction specificity, STIS provides better prediction
sensitivity and accuracy relative to TIS. Even though both methodslead to data
reduction, the extreme reduction in the data by TIS coupled with the loss of
chromatographic information leads to a small number of variables that fails to
accurately capture the variance in the casework fire debris samples. In general,
the application of the noise elimination step in the form of eliminating regions
where peaks are not detected tends to increase the overall model accuracy
as Xtrs.p > Xt1s-a and Xgris.p > Xgr1s.a- The order of performance for the
comparison for sensitivity and accuracy were Xgris.p > Xsr18.4 > X1I18.B >
Xris-a (Figure 3.4.3).

Since a new training and validation set were used for the ten
permutations for feature selection, a different subset of features were
retained each time for both TIS and STIS. To consolidate and compare all
the features that survived for all iterations, the frequency of survival for the
features were considered. Fig. 3.4.4. shows the feature survival frequency for
TIS. Features which survived less than six permutations were eliminated. For
Xr1s.a and Xyyg_p thirty-six and seventeen features, respectively, were above
this threshold. This implies that the application of the noise reduction step
led to approximately §3% reduction in the number of variables exceeding the
threshold. TIS generation combines the noise as well as relevant information
for any particular m/z into a single variable. Hence the presence of noise at

any point in the chromatogram for a given mass channel will influence the
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entire mass channel. For this reason, far more variables are included in the
model during the training step to account for the higher level of noise.

The PLS-DA y-predicted plot for the Xrys_a (with the 36 variables) and
X1s.p(with the 17 variables) are show in Fig. 3.4.5. Comparing Fig. 3.4.5a
and 3.4.5b, the training set misclassification reduced from five to four when
the noise reduction was applied. However, with the validation set the previous
misclassification of two samples was corrected by the implementation of the
noise reduction step. This demonstrates that the application of some noise
reduction technique prior to the generation of TIS does improve the quality

of the chemometric model.
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Fig. 3.4.4: Variable survival frequency for Xtis.a(a) and Xtis.g(b). Shows the
number of times a variable survives in the ten CR-FS iterations.
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Fig. 3.4.5: PLS-DA y-predicted (gasoline) for X1is.a(a) and Xtis.g(b). The model
was constructed using features that were retained in at least six of the ten iterations
of CR-FS which were 36 and 17 for Xtis.a and Xts.g, respectively. Red circles
and blue squares markers represents gasoline and no gasoline containing samples,
respectively. Hollow markers and filled markers are for training and validation sets,
respectively. The red line indicates the discrimination boundary.
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The variable survival frequency plot for STIS is shown in Fig. 3.4.6.
When a similar threshold was applied as in the TIS, the number of features

retained were thirty four and thirty six for Xgr1s.4 and Xgr1s.p, respectively.
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Fig. 3.4.6: Variable survival frequency for Xs1is.a(a) and Xstis.g(b).

Comparing the difference in features that survived for TIS (X154 = 36 and
Xr1s.p = 17) and that of STIS (Xgris.a = 34 and Xgris. = 36, the impact of
the noise reduction step was less for STIS than for TIS. In STIS, the signal for
eachion is distributed across multiple segments of the chromatogram. Hence,
each m/z is represented by nine (9) independent variables. For this reason,
the overall impact of noise on a mass channel is reduced. PLS-DA y-predicted
plots using the variables that were above the threshold are shown in Fig. 3.4.7.
The number of misclassifications reduced from seven samples in Xgrys. to

three Xgr1s.g. This shows that STIS also benefits from noise reduction.
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Fig. 3.4.7: PLS-DA y-predicted (gasoline) for Xstis.a(a) and Xstis.g(b). The
model was constructed using features that were retained in at least six of the ten (10)
iterations of CR-FS which were thirty-four and thirty-six for Xgtis.a and Xstis.B,
respectively. Red circles and blue squares markers represents gasoline and no gasoline
containing samples, respectively. Hollow markers and filled markers are for training
and validation sets, respectively. The red line indicates the discrimination boundary.
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Fig. 3.4.8: A plot of features that survived more than five feature selection iterations
(Xt1s.a - blue circles, Xts_g-red squares and both Xtjs.a and Xts.g-green
diamonds).

Finally, we attempted to associate the selected variables (m/z)with the
compounds from which they may have originated. This is important since
the visual evaluation of fire debris chromatograms involves the identification
of retention patterns. Fig. 3.4.8 shows a plot of selected feature for Xryg.a
(blue circles), Xrs.p (red squares) and those common to both Xrys.4 and
X1s.p (green diamonds). The eight ions common to both were m/z = 8o,
105, 106, 119, 120, 134, 135, and 175. Amongst these, 105 and 106 can be
attributed to the C, alkylbenzenes (0-, m- and p-xylene) and C, alkylbenzenes
such as 3- and 4-ethyltoluene. m/z = 119, 120 and 134 and potentially its
protonated product 135 could be attributed to C,-alkyl benzenes such as 1, 2,

3, s-tetramethylbenzene and 1, 2, 4, 5-tetramethylbenzene. The true sources
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of these ions cannot be confirmed since there is no retention information.
With STIS, selected variables can be narrowed down to a specific
segment straddled by n-perdeuterated alkanes. This permits interpretation
of signals with retention index regions. The features that survived at least six
iterations for Xgrys.4 and Xgrys.p are shown in the Appendix B. Twenty three
of these features that survived in at least six iterations were common to both

Xsris-a and Xgris-p and are shown in Fig. 3.4.9.
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Fig. 3.4.9: A plot of features that survived in both Xg1is.a and Xst1is-g. The
segments indicates the region of the chromatogram from which these features
originated from. The eight perdeuterated alkane anchors segments the chromatogram
into nine segments.
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In segment three, the ions retained included m/z = 105, 106 and 120.
In TIS above these ions were attributed to the C, alkylbenzenes like xylenes,
C, alkylbenzenes such as 3- or 4-ethyltoluene and 1, 3, s-methylbenzene.
Segment three is bordered by C, and C,,. Thus one can eliminate xylene as
the potential source of these ions since the retention index of xylenes on HP-
1MS columns is 878+1,'5 and thus elutes before C,. This makes the 3-/4-
ethyltoluene and 1, 3, 5-methylbenzene the more probable sources, as they
have a retention index of 948+5."9° In segment four, m/z = 39, 79, 103, 106,
118 and 120 were retained. This makes 1, 2, 3, 5-tetramethylbenzene, with

19¢ the most likely source

retention index of 1096 - 1109 on HP-1MS columns
of these ions since segment four is bordered by C,, and C,,. Thus, unlike
TIS where only the m/z information is retained, the additional retention

information aids model interpretation and ensuring the chemical logic of the

models.

3.5 Conclusions

STIS was presented as an improved alignment-free preprocessing step
for the chemometric analysis of GC-MS data from fire debris. STIS retains the
advantages of T1S in addition to partial preservation of retention information.
Although both STIS and T1IS are capable of distinguishing gasoline-containing

and gasoline-free fire debris samples, STIS outperforms TIS. Applying noise
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reduction to TIS leads to a reduction in the number of features retained
and reduces the number of misclassifications in validation data. After
feature selection Xrys.a and Xyyg_p retained thirty six and seventeen features,
respectively. In STIS application of noise reduction did not reduce the
number of features retained but reduced the number of misclassified samples.
The partial preservation of retention information helps in identifying the

potential source of selected variables.
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“The significant problems we have cannot be solved at the

same level of thinking with which we created them”

Albert Einstein

4

Estimation of Start and Stop Numbers for

CR-FS Algorithm; An Empirical Approach
using Null Distribution Analysis of Fisher

Ratios

4.1 Introduction

Throughout this thesis, I have been relying on the CR-FS algorithm.
Opver the course of my research, I have made minor refinements to the code to
improve performance. I have also made contributions towards the complete

automation of CR-FS algorithm.

Adutwum L. A, de La Mata A. P, Bean H. D,, Hill, E. J. and Harynuk J. J., Anal. Bioanal. Chem. under
review, reference number: ABC-01259-2017
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As has been previously explained in the earlier chapters, CR-FS is an
automated hybrid feature selection algorithm based on a model parameter
termed cluster resolution (CR).'®'® CR measures the separations between
clusters of samples in different classes in a reduced dimensionality space.
Irrespective of the number of classes a single quality parameter bounded
by o and 1 is computed to estimate the overall model quality. This makes
it useful for the simultaneous optimization of multi class problems. The
search of variables which improve the CR of a model is achieved through
an initial sequential backward elimination (SBE) followed by a sequential
forward selection (SFS). During the SBE, an initial population of highly
ranked variables are used to generate a principal component analysis (PCA)
model. The number of highly ranked variables used is termed the start number.
SBE then proceeds, testing each of the initial variables in order from the lowest-
ranked to the highest-ranked with CR being evaluated at each step. Variables
whose elimination leads to a deterioration of the model are discarded. In
the SFS, variables that were not tested in the SBE are evaluated in order of
decreasing F-ratio (i.e., reducing relevance). Features whose inclusion do not
improve the CR are eliminated. The total number of variables evaluated in
both the SBE and SFS is termed the stop number. Algorithms based solely
on SBE are known to be greedy while those based on SES are likely to suffer
a nesting problem.'*"** Nesting implies that once a variable is added through

SFS or removed through SBE, it is permanently included in (or excluded from)
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the final model. This makes the start and stop number for SBE and SES critical
parameters for the CR-FS algorithm.

CR-FS has been successfully applied to various types of problems
and has always led to improved model prediction sensitivity, specific and

accuracy. 18-20,140,141,197

In all the previous studies, setting the start and stop
numbers has been a matter of trial and error, relying on the experience of
the user. This introduces subjectivity in the feature selection process, slows
down the process, and prevents the true automation of CR-FS. When the
total number of variables in the dataset is not very high (e.g, a few hundreds),
the effect of each on CR can be evaluated. Evaluating all variables becomes
prohibitive when several thousands or millions of variables exist for each
sample, as is the case with raw chromatographic data. Previous experience
with CR-FS demonstrates that the start and stop numbers can influence which
features are retained. This makes it very important to find an objective and
unbiased approach to the choice of the start and stop number for CR-FS.
When class labels are uncoupled from a data set and reassigned
randomly, the F-ratios calculated from these misclassified datasets are termed
null F-ratios. This is because they are generated under a distribution where
the new class means vary from the true class means. Comparison of the
distribution of null and true (obtained with correct class assignments) F-ratios

can provide useful information in determining the limit below which a true F-

ratio may not be as informative. This technique has been applied to the analysis
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of comprehensive two-dimensional gas chromatographic data to reduce false
positive rates.””

Overlapping coefficient (OVL), also known as Weitzman’s measure,
is a measure of similarity (and for that matter dissimilarity) between
two probability distributions represented by continuous probability density
functions (PDFs)."?*"9° OVL was first used by Weitzman to determine
the degree of overlap of income distributions between families in the
United States.’*® Even though other similarity measures such as Matusita’s
and Morisita’s are available, OVL is preferred due to its simplicity and
naturalness. '*°7>°* OVL compares the density functions for two probability
distributions and relates the similarity to the overlapping regions of the area
under the two density functions. %"

In this study, I drew inspiration from OVL to find the “dissimilarities”
between two PDFs from the true and null F-ratios from a dataset. The degree
of dissimilarity is used as a guide to determine the number of variables which
have a higher probability of being from the true F-ratios. Parameters obtained
from the two density functions are used to devise empirical equations to
estimate the start and stop numbers for CR-FS. The empirical equations are
then tested with real data with the aim of finding the optimal parameters. It is
hoped that this will eliminate the subjective and trial and error approach to the

implementation of CR-FS.
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4.2 Theory

As indicated earlier, the start and stop numbers for CR-FS are critical
parameters. ‘The availability of an empirical equation to estimate these
parameters will make CR-FS fully automated. In the context of categorizing
variables into whether they are truly relevant or not, a comparison of the
probability density functions of the true F-ratio and the null F-ratio can be
very informative. A higher probability in the true distribution relative to the
null distribution implies they are relatively more likely to come from the true
distribution. Since the aim is to find F-ratios belonging to the true F-ratio, the

focus is on the non-overlapping region of the two density functions.

4.2.1 True and Null F-ratios

The F-ratio (f) is ratio of between class variance (¢3,) to within class

variance (0? ) and it is calculated as shown in Equations 4.1, 4.2 and 4.3."7

f=—>x (4.1)

_ Z ni(‘ii - 9_6)2 (4.2)

== =% 4 (43)



where n; is the number of variables in the i class/ group, x; is the mean of
the ith class, X is the data mean, x; is the jth observation in the i out of K
class/group, and N is the sample size.

True F-ratios (frrug) are calculated from a subset of the training set data.
Null F-ratios (fyurs) are calculated from the same subset after swapping the

class assignments of approximately 10-15% of the data in each class.

4.2.2  Proposal of Empirical Equation for Estimating Start (nsr) and

Stop (nsp) Numbers

frrue and fyury, are fitted to a selection of continuous PDFs. Density
functions for continuous probability distributions were evaluated. These
included Weibull, chi-square, inverse gaussian, log-normal, logistic, log-
logistic, Gumbel and Frechet. To determine the optimum PDEF, the Akaike
Information Criteria (AIC) was used. After fitting the data, the AICs of
all the PDFs were estimated. Based on the lowest AIC, the optimal PDF
is selected.”*>*°* If fr and fy are the optimal PDFs for frryug and fyurr,
respectively, then a simultaneous plot of these two PDFs provides very useful
information (Fig. 4.2.1 - f1 - blue line, f - red line). The point of intersection
(b) of the two PDFs can be determined by equating the two functions (i.e., fr
(b) =fn (b)). The area under fy (x), shaded in red, and fr (x) where x > b
are estimated from Fig. 4.2.1. The area represented by the blue region is also

determined. The area of the blue region relates to the cumulative density of
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fr(x), where b < x < k, and k is the maximum frrug.

From the analysis of Fig. 4.2.1 and based on my experience with CR-FS,
I proposed two empirical equations (4.4 and 4.5) to estimate ngy and ngp. All
but one parameter in the proposed equations can can be obtained from Fig.

4.2.1.

(b, f(b)

Probability Density

F - ratio

Fig. 4.2.1: Simultaneous plot of optimum PDFs for frrue(fT) and fnur(fn). The
optimum PDF is selected based on the AIC. Red region and blue region are area
under the optimum PDF of fyyLL, (fN) and fyRuE, (fT) with F-ratios > b and b is
the F-ratio value where f+ = fiy intersect.

nst = ngp + (b x fr(b)) (4.4)

 Jifal®)dx — [ ()

C (4.5)
Fhd +

nsp
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where ngr is the start number for SBE; ngp is the stop number for SFS; fr is
the optimal PDF for frryg; f is the optimal PDF for fxypy; kis the maximum
value of frryg; m is the maximum fiyyyr; Cis the number of variables in fyur 1,

> b; and d is a constant.

4.3 Chemometric Analysis

4.3.1 Datasets

Five different data sets were used for this study. Dataset 1 (bac - bacteria)
was obtained from the GCXGC-TOF MS analysis of the volatilome (i.e.,
volatile metabolites) of a suite of bacterial samples. The data consisted of 63
samples and 1673 variables to be classified as Type 1 vs. Type 2, having 35
and 28 samples, respectively. Dataset 2 (ucp-unwashed cotton polyester) was
obtained from GCX GC-TOF MS analysis of volatile compounds extracted
from worn cotton and polyester fabrics which have not been washed. The
data consisted of 80 samples and 2781 variables and was to be classified
as unwashed cotton vs. unwashed polyester. Dataset 3 (wcp-washed
cotton polyester) was obtained from GCX GC-TOF MS analysis of volatile
compounds from worn cotton and polyester fabrics after they have been
washed. This data consisted of 80 samples and 2781 variables and was to be
classified as unwashed cotton vs. unwashed polyester. Dataset 4 (coff - coffee)

was a peak table obtained from the LC-MS analysis of coftee which consisted

94



of 78 samples and 701 variables. The coffee data was to be classified as Arabica
(Ara.) vs. a mixture of Arabica and Robusta (Ara. + Rob.). Dataset 5 (cvp-
cotton vs. polyester) was obtained from GC x GC-TOF MS analysis of volatile
compounds obtained from worn fabric and was made up of 168 samples and
27781 variables to be classified as cotton vs. polyester. Detailed experimental
conditions about datasets 2, 3 and § can be obtained from an earlier published
work.?7 Datasets 1 and 4 were obtained from collaborators and were used
as received.”** Datasets 1, 2 and 3 were used to find the optimum value for
the constant, d, in Equation 4.4. Using the optimum value of d, the validity
of the approach was tested with datasets 3 and 4. Data importation and
all computations were performed in Matlab® 2016b using in-house written
algorithms. Chemometric models were constructed using PLS Toolbox 8.2.1
(Eigenvector Research Inc., Wenatchee, WA). All chemometric analyses were
performed on 64-bit Windows 7 Enterprise running on a core i7 - 4790K Intel

processor and 32 GB RAM.

4.3.2 Estimation of the constant d and ngt

Each of the three datasets (i.e, 1, 2 and 3) were split into two-thirds for
training and one-third for external validation sets. Using half of the training
set data, F-ratio analysis was performed as previously described. ngr and ngp
were estimated from the optimum PDF. ngy is determined for a set of d values,

as shown in Equation 4.4, such that 0.05 < d < 0.95. Using these ngy and ngp
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values, CR-FS was implemented on the entire training set data. This step was
repeated ten times. During each iteration, a different subset of the training
set data was used for F-ratio analysis and model optimization. Variables that
were selected in at least six iterations were used for model evaluation. PCA
and PLS-DA models were constructed with the training set data using only
the selected variables. The validation set data was projected into the PCA
model and the validation set CR (cryax) determined. The PLS-DA model
prediction accuracy of the validation set was also determined. The product
of the validation set CR (crmax) and PLS-DA prediction accuracy (acc) was

used as the objective parameter in determining the best value for d.

4.4 Results and Discussion

CR-FS is a hybrid (filter and wrapper) feature selection algorithm
which has been useful for improving classification accuracies of chemometric
models. The two main parameters required by the algorithm are the ngr
and ngp, for the SBE and SES, respectively. The lack of a guidance as to the
choice of these parameters introduces subjectivity and increases the feature
selection time due to the trial-and-error nature of the optimization of these
parameters. The aim of this study was to devise an empirical approach to the
determination of ngy and ngp. This would eliminate subjectivity and allow for

the true automation of the entire feature selection process.
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The ngr and ngp in an optimization with CR-FS varies with the data set. It was
also observed that the probability density of the F-ratio also varies with the
data set. Hence, it is possible to generalize the ngr and ngp by connecting it to
the PDFs of the F-ratios. Comparison of the PDFs obtained from fygryg and
fnuLL was made using concept of OVL to guide the proposal of two empirical
equations for the determination of ngr and ngp (Equations 4.4 and 4.5).

The optimum density function, i.e, ft and fy, varies with the dataset.
Hence to determine the optimum PDF for frryg and fyyry for a dataset,
several continuous density functions were tested. Amongst the distributions
evaluated were Weibull, chi-square, inverse gaussian, log-normal, logistic,
log-logistic, Gumbel and Frechet. Since the optimum PDF is unknown,
determination of the AIC provided a means to evaluate the PDFs. AIC
is a measure of relative quality of statistical models used to fit the same
data,?9*2°320572°7 The use of AIC to determine the optimum PDF eliminates
the risks associated with overfitting or underfitting the data. The two PDFs
i.e, fr and fN, do not necessarily have to be the same. Thus irrespective of the
density functions, a figure similar to Figure 4.2.1 results.

Allbut one parameter (i.e., d), in the empirical equations can be obtained
from the analysis of the density functions obtained from fryg and fyury. It
can be deduced from Equation 4.4 that a lower d value yields a smaller ngr
and the feature selection is dominated by SFS. A higher d value on the other

hand yields a higher ngp which makes CR-FS SBE-dominated. Three of the
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datasets were used to determine the optimum value of d in Equation 4.4. To
simultaneously compare the results of PCA and PLS-DA models, the product
of the validation from PCA and prediction accuracy of the PLS-DA (i.e., crmax
X acc), was used as the objective model quality parameter. A plot of the results
is shown in Fig. 4.4.1a and 4.4.1b.

From Fig. 4.4.1a, lower d values seem to lead to better models; however,
Fig. 4.4.1b shows the standard deviation of the crpmax X acc is higher at lower
d values. During each iteration, a different subset of the training data was
used for training and optimization. If ngy is too low, retained features tend to
overfit the model to that specific subset. Hence when applied to the external
validation set, high variability in prediction accuracies occurs. The standard
deviation decreases as the ngr is increased (Fig. 4.4.1b). As dincreases beyond
0.65, the model prediction capability for all datasets starts to deteriorate.
This is because at high d values, ngr tends to be high (Equation 4.4). CR-
ES performed with ngr are dominated by SBE. Since SBE is greedy, several
variables that may not be highly relevant end up in the model and lead to poor
prediction accuracies. Fig. 4.4.2 shows a z-score (mean/c) plot which shows
a region of good model prediction accuracies with lower standard deviations.
The region for d such that 048 < d < 0.57, tend to have a higher model

prediction quality with an accompanied lower standard deviation.
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Fig. 4.4.1: A plot of overall model quality (a) and standard deviation (b) as a
function of d (0.05 < d < 0.95). Model quality crmaxxacc vs. d. Variation in
d influences the ngt for SBE according to Equation 4.4. ngp was determined by
Equation 4.5. The optimum d region are shaded in green.
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Fig. 4.4.2: A z score plot for the determination of optimum value of d (0.05 < d <
0.95) The optimum d region are shaded in green.

Thus if CR-FS implemented with ngr estimated from d is between
0.48 and 0.57, a core number of features are retained which leads to
good predictions irrespective of the subsets of the training data used for
optimization.

Since ngp was estimated from the empirical equation, it was also
important to check if the estimated values are below the optimum (i.e., was
SFS being stopped too early). To check this, CR-FS was implemented using
ngt estimated for five d values from 0.48 to 0.57 with ngp set to be equal to the

total number of variables. For each of the five values of d, F-ratio analysis and
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the feature selection with CR-FS was performed ten times. During each of the
ten iterations, a different subsets of training data was used for F-ratio analysis
and model optimization. Feature survival rate was calculated as the number of
times a variable was retained after CR-FS. A feature with a survival rate of 100%
indicates it was selected in all the ten iterations performed for each of the five
d values (i.e, 5o times). Fig. 4.4.3 a - c shows the overall feature survival rate
for bac, ucp and wep datasets. The ngp estimated from F-ratio analysis of each
dataset is indicated by the red vertical line. A sharp drop in feature survival is
observed right after the where the search should have been stopped (red line)
can be seen.

Ifeach of the ten replicates for the values of d, is treated as an independent
feature selection and a survival threshold of six as used earlier for PLS-DA and
PCA plots, then the feature survival plot is as shown in Fig. 4.4.4. In Fig. 4.4.4
a-c,inall the three datasets (i.e., bac, ucp and wep), beyond ngp (i.e., red vertical
line), no variable survives at more than one d value. This indicates that the ngp

values obtained from F-ratio analysis are very good estimates.
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nsp was estimated from the optimum values of d, all variables were evaluated. Only
features that survived at least six (6) iteration are shown.
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Finally, CR-FS was implemented on two new datasets, 4 (cof) and s
(cvp). Each of the datasets was split into two-thirds for training and one-
third for external validation sets. Using the training set, true and null ratio
analysis were performed using half of the training set data. ngr and ngp were
estimated from the F-ratio analysis using d = 0.48. This was followed by feature
selection with the CR-FS algorithm. The process was repeated ten times using
a different subset of the training set data for the F-ratio analysis. For the coffee
data, ngr and ngp were 17 and 160, respectively, while for the cvp data the
values were 28 and 580, respectively. Features that survived at least six times
were used to construct final PCA and PLS-DA models. For the coffee data, 13
out of 701 features met this criteria. Fig. 4.4.5 compares the PCA and PLS-
DA results for coffee data before (701 features) and after feature selection (13
features). In the PCA model, the explained variance in the first and second
principal components for before and after feature selection were 35% and 76%,
respectively. The prediction accuracy for the PLS-DA model improved from
96.3% to 100% after feature selection. For the cvp data, 35 out of 580 features
survived. The PCA and PLSDA models for the cvp data before (2781 features)
and after feature selection (35 features) are shown in Fig. 4.4.6. The PCA
model shows an increase in the explained variance for the first two principal
components from 14% to 28%. The PLS-DA prediction accuracy for before

and after feature selection were, 90% and 100%, respectively.
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Fig. 4.4.5: PCA and PLS-DA models of Coffee data to be classified as Arabica vs.
mixture of Arabica and Robusta. Depicts PCA and PLS-DA models before and after
feature selection using 701 and 13 variables, respectively. Feature selection were
performed using ngt and ngp estimated from Equations 4.4 and 4.5, respectively.
Red markers represents Pure Arabica whiles blue markers represent a mixture of
Arabica and Robusta coffee samples. Hollow and filled markers represents training
and validation set data, respectively.
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Fig. 4.4.6: PCA and PLS-DA models for fabric data to be classified as cotton vs.
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This figure depicts PCA and PLS-DA models before and after feature selection using
2781 and 35 variables, respectively. Feature selection were performed using ngt and
ngp estimated from Equations 4.4 and 4.5, respectively. Red markers represents
cotton whiles blue markers represent polyester samples. Hollow and filled markers
represents training and validation set data, respectively.
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4.5 Conclusions

Through the analysis of true and null F-ratios obtained from a dataset
for classification models, an empirical equation was developed to estimate the
start and stop number for CR-FS. All but one of the parameters in this equation
are obtained by comparing the probability density functions of the true and
null F-ratios. The constant to be determined was estimated to be in the range of
0.48 <d <o0.57. Thevalidity of this empirical equation was confirmed by testing
two new data sets. Using start and stop numbers obtained from the empirical
equations, excellent model prediction accuracies were achieved with variables
obtained after implementation of CR-FS. The use of this empirical equation
can now be used as a guidance in setting the start and stop number for CR-ES,

enabling a true automation of the feature selection process.

107



“A teacher is one who makes himself progressively

unnecessary”

Thomas Carruthers

Applications of Cluster Resolution Feature

Selection

Since its invention, the CR-FS algorithm has been applied largely to
the raw or peak tables data obtained from GC-MS or GC X GC-MS analysis.
CR-FS however has tremendous potential for applications in other fields
of scientific research where classification is the ultimate goal. This chapter
explores other classification problems where CR-FS is applicable. My role
in the various research work presented in this chapter is the chemometric
analysis and machine learning performed on the data from collaborators.
In the first two sections of this chapter, synthesis and characterization of
inorganic compounds were done by collaborators from the Departments of
Chemistry of the following institutions: University of Alberta, University of

Houston and Technical University of Munchen. In the final chapter, the strains

Oliynyk A. O., Adutwum L. A., Harynuk J. J. and Mar A., Chem. Mater., 2016, 28(18), 6672-6681.
Oliynyk A. O., Adutwum L. A., Rudyk B. W,, Pisavadia H., Tehrani M. A., Hukhyy V., Harynuk J. J., Mar A.
and Brgoch J., J. Am. Chem. Soc., under review, reference number: ja-2017-08460p).
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of Lactobacillus reuteri were cultured by collaborators at the Department of
Agricultural Food and Nutritional Science at the University of Alberta.

The aim of the first project was to develop chemometric models that
would predict the crystal structures from elemental properties. Since not
all the properties may be relevant to the prediction, CR-FS was employed
to identify relevant features. The initial study involved the prediction of the
crystal structures of binary (AB) compounds. The model obtained was used
to predict the structure of an entirely new compound. Subsequently, the new
compound was synthesized by our collaborators to determine the accuracy of
the prediction made from my analysis of the elemental properties. A summary
of this study is presented in the first section of this chapter. Due to the success
of the structural prediction of binary (AB) compounds, a second study was
commissioned to extend the approach to the much more complex ternary
(ABC) compounds. In the second section of this chapter, I present the
findings of the structural predictions of ternary (ABC) compounds.

Matrix assisted laser desorption ionization-time of flight mass
spectrometry (MALDI-TOF MS) is rapidly becoming the instrument of
choice for the identification of bacteria. Automation of bacterial identification
protocols is also desirable. However, not all the variables in the entire
spectrum obtained from MALDI-TOF MS analysis may be relevant to the

correct identification of the bacteria.
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Using the concept of exploratory data analysis (EDA), strain level
identification/classification of 12 strains of of Lactobacillus ruteri was
explored. The results of this study are reported in the third section of this

chapter.

5.1 Classifying Crystal Structures of Binary Compounds

AB through CR-FS and SVM

For any combination of elements, the prediction of the resulting
compounds and their crystal structures are important goals of X-ray
crystallographers. For the simplest case of equiatomic binary compounds AB,
where A and B are any elements in the periodic table, these predictions are
still not simple. This is because of the many factors that influence structure
formation. By correlating atomic properties and systematizing empirical
structural information, it is hoped that crystal structures can be accurately
predicted without X-ray diffraction patterns.**® Earlier attempts were made
to relate atomic size factors to rationalize the structures of ionic solids AB
and their preferred coordination geometries. This could not be generalized
as it failed to account for NaCl-type structures which tend to be far more
prevalent than predicted.>* Atomic properties such as electronegativities
and valence electron numbers gave a more favorable picture in generating

structure maps (e.g. Mooser-Pearson,*'° Phillips-van Vechten,*'" Pettifor,***



Zunger,”** Villars*'#>'). These structural maps succeeded in segregating
structure types. Empirical equations have been used to compute descriptors
with the aim of finding patterns in binary AB compounds. These patterns
can be used as guides to make predictions for new compounds. Focusing on
intermetallic compounds AB, Villars considered 182 descriptors and tested
their mathematical combinations to identify three expressions; namely the
difference in Zunger pseudopotential radii sums, the difference in Martynov-
Batsanov electronegativity, and the sum of valence electrons.”'#>*® This
separated 988 compounds into 20 structure types with <3% violations.>'#
The availability of atomic properties and other empirical descriptors presents
an opportunity for chemometric techniques to be used to predict crystal
structures.

CR-FS was used to identify descriptors/variables which can be used
to predict crystal structures. Using the selected descriptors, support vector
machine (SVM) and partial least squares discriminant analysis (PLS-DA)
models were constructed and validated. The validated models were used
to predict a completely new compound. The new compound was then
synthesized by collaborators and characterized to validate the structural

prediction by SVM and PLS-DA.



s.1.1  Data Extraction and Organization

Crystallographic data for AB compounds were extracted from Pearson’s
Crystal Database, ASM Alloy Phase Diagram Database and SciFinder.>*”*'®

AB compounds that met the following criteria were included in the study:

1. They did not contain hydrogen, a noble gas or elements with Z > 83

(radioactive elements and actinides).
2. They must exhibit exact 1:1 stoichiometry.

Out of 107 classes that met these criteria, only those with at least 30
compounds in a class were chosen for subsequent analysis. This final dataset
consisted of 706 AB compounds crystallizing in seven crystal types and 356
variables, and is shown in Table 5.1.1 below. The list of the variables are shown

in Appendix C.

Table 5.1.1: Structure types and number of samples in each class for AB compounds

Class  Structure Types Number of Compounds

1 CsCl 257
2 NaCl 205§
3 TII 102
4 p-FeB 42
5 NiAs 36
6 7ZnS 33
va CuAu 31
Total 706




5.1.2 Chemometric Analysis

The dataset was split into two parts: two-thirds (470) for training
and one-third (236) for external validation. Using half of the training set
data (235), variables were ranked according to their F-ratio scores from
ANOVA. "7 The CR-FS algorithm was implemented in a three-dimensional
PCA score space (PC1 vs. PC2 vs. PC3)."%"° A start number of 20 was used
for the SBE stage and the rest of the variables evaluated during the SFS. PLS-
DA and SVM models were constructed with samples from the training set
using variables selected by CR-FS. The SVM classification was performed with
aradial basis function. A venetian blind cross-validation with 10-fold data split
was used to optimize the model. The SVM and PLS-DA models were validated
with the external validation set data. The validated models were then used to

predict the crystal structure of a completely unknown compound, RhCd.

5.1.3 Synthesis of RhCd and X-ray Diffraction Analysis

A pressed pellet of Rh powder (99.95%, Alfa-Aesar) and filed Cd pieces
(99.95%, Alfa-Aesar) in a 1:1 molar ratio with a total mass of 0.2 g was placed
in a fused-silica tube, which was evacuated and sealed. The tube was heated to
800 °C. It was kept at that temperature for a week and quenched in cold water.
The product was examined by powder X-ray diffraction (XRD) performed on
an Inel diffractometer equipped with a curved position-sensitive detector and

by energy-dispersive X-ray (EDX) analysis on a JEOL JSM-6010LA scanning
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electron microscope.

§.1.4 Results and Discussion

A chemometric approach to the prediction of the structure of binary AB
compounds with experimental validation was investigated. CR-FS algorithm
is well suited for the simultaneous optimization of multiple-class problems.
CR-FS identifies relevant variables by determining their contribution to the
separations of clusters in PCA score space.'®"*° The optimization was for a
seven-class problem, with each class representing one of the seven common
structure types adopted by binary compounds AB which are, CsCl, NaCl,
ZnS, CuAu, TII, B-FeB, and NiAs. After feature selection with CR-FS, thirty-
one out of fifty-six variables were retained. This included highly ranked
variables such as average Martynov-Batsanov or Mulliken electronegativities,
Pauling electronegativities (and expressions derived from them), interatomic
distances, and differences of Zunger radii sums (r; + r,). Other low-ranked
variables such as average number of valence electrons and some expressions
derived from Zunger radii sums were also retained. Thus variables included
in the final model after feature selection consist of those retained in the
backward elimination step and those added in the forward selection step (blue
circles) (Fig. 5.1.1). A complete list of all the variables for the study of AB
compounds can be found in the Appendix C. PLS-DA and SVM models were

generated with the training set using the thirty-one variables retained. In both
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models, internal cross validation was performed using venetian blinds with a
ten-fold data split. Both SVM and PLS-DA models were validated with the
validation set data. The model was then used to predict the crystal structure of

a completely unknown compound, RhCd.
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Fig. 5.1.1: Fisher ratio scores for all variables (identified in the legend) selected
during backward elimination (red stars) and forward selection (blue circles).

Class predicted probability for PLS-DA is shown in Figure s.1.2. The
PLS-DA model predicted the training set data with sensitivity of 95.9% and
specificity of 66.6%. Although the model predicts the CsCl-type structure
correctly, the false positive rate is high with an overall accuracy of 77.2%.
When the model was applied to the validation set, the sensitivity and

specificity were 965% and 66.0%, respectively, and an accuracy of 77.1%.
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Fig. 5.1.2: PLS-DA class predicted probability for CsCl-type. Hollow and filled
markers indicates training and validation sets, respectively. The class predicted
probability for RhCd is circled.

The prediction probability for the test compound RhCd was 0.669,
which is only slightly higher than the decision boundary as shown in Fig.
5.1.2. The SVM classification model was generated to predict various structure
types. The prediction probabilities for the CsCl-type structure were much
stronger (Fig. 5.1.3). For the training set data, the sensitivity was 100%, the
specificity was 99.3%, and the accuracy was 99.6%; for the validation set data,
the sensitivity was 94.2%, the specificity was 93.2%, and the accuracy was 93 %.
Thus, the model performance was significantly better with SVM than with
PLS-DA methods. RhCd was predicted to be a CsCl-type with a predicted
probability of 0.918 by SVM (Fig. 5.1.3). The refined crystallographic data for

RhCd can be found in Appendix C.
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Fig. 5.1.3: SVM class predicted probability for CsCl-type. Hollow and filled markers
indicates training and validation sets, respectively. The class predicted probability for
RhCd is circled.

RhCd was synthesized by collaborators in Dr. A. Mar’s group at the
University of Alberta. The synthesized RhCd product was examined by SEM,
EDX, and powder XRD (Fig. 5.1.5). Small single crystals, < so pm in their
longest dimension, were obtained. Their average composition was 47(2)% Rh
and 53(2)% Cd, in excellent agreement with the formula RhCd. The powder

XRD pattern confirms that RhCd adopts the CsCl-type structure.
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Fig. 5.1.4: New binary compound RhCd. (a) SEM image of crystals, (b) EDX
spectrum indicating presence of equal ratios of Rh and Cd in crystals, and (c) powder
XRD pattern confirming CsCl-type structure.
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5.1.5 Conclusion

Using supervised learning methods PLS-DA and SVM, models were
obtained which could predict the structural types from elemental properties
selected by CR-FS with a high degree of accuracy. In general, SVM performs
better than PLS-DA. Using the same approach, a new compound RhCd was
predicted to adopt a CsCl-type structure. This was further confirmed by

analyzing the synthesized compound.
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5.2 Machine-learning structural characterization of
ABC ternary equiatomic compounds and their

polymorphs

Metallic phosphides that contain transition metals are known to possess
superior mechanical properties. These include wear resistance and hardness in
corrosion-resistant films which correlate with the phosphorus content.*****°
Transition metal phosphides also exhibit wide ranges of physical properties
that are interesting for magnetic and electronic applications.”*'** In
addition, they have catalytic applications in hydroprocessing, with higher
catalytic activity for hydro-denitrogenation and hydro-desulfurization
reactions relative to those reported with sulfides.?** Ternary phosphides
exists in various structural types. A large number of them exist as ZrNiAl-
type or TiNiSi-type. TiFeP equiatomic phosphide has both ZrNiAl-type
and TiNiSi-type even under the same synthetic conditions.>*s™>** Several
other ternary phosphides exist as polymorphs under various synthetic
conditions.***7*3% The prediction of the structure type adopted by these
compounds from a chemometric perspective has not been explored.

As presented in the earlier section 5.1, CR-FS in combination with
SVM classification proved to be a very useful in predicting the structure

type of binary AB equiatomic compounds.'#" Synthesis of a new compound

that was predicted further confirmed the reliability of the prediction. This
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section illustrates a similar approach towards the prediction of the structures
of ternary equiatomic ABC equiatomic compounds, where A, B and C are
the constituent elements, with emphasis on ternary phosphides. Descriptors
obtained from atomic properties and mathematical transformations thereof
were subjected to CR-FS. Features retained by CR-FS were used for

classification models using SVM.

s.2.1 Data Extraction and Organization

Crystallographic data of equiatomic ABC compounds were extracted
from Pearson’s Crystal Data (2014 and 2015 editions) and ASM Alloy Phase
Diagram Database.*3**3* Compounds were included in the study if they

satisfy all of the following:

1. A, B, and C are not hydrogen, a noble gases, or elements with Z > 83

(radioactive elements and actinides).

2. The compound exhibit exact 1:1:1 stoichiometry, without

crystallographic site mixing,
3. ABC structure has been confirmed experimentally.

In total, 1556 unique individual compounds belonging to seven structure
types were selected. Table 5.2.1 shows the number of compounds in each

structure type used for this study. Variables representing atomic properties
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and mathematical transformations thereof for the selected compounds were

obtained from open sources.

Table 5.2.1: Structure types and number of samples in each class of ABC
compounds

Class  Structure Types Number of Compounds

1 TiNiSi 670
2 ZrNiAl 502
3 PbFCl 154
4 LiGaGe 74
5 YPtAs 69
6 UGeTe 49
va LaPtSi 38
Total 1556

5.2.2 Chemometric Analysis

The data was presented in a 1556 X 990 matrix, where 1556 is the
number of compounds and 99o is the number of variables. The 9go variables
were as a result of 33 elemental properties combined with 30 formulae each
(Appendix C). The data was split into two parts: two-thirds (1037) for training
set and one-third (519) for external validation set. Feature selection was
performed as described section 5.1.2. Optimization was performed in three
dimensions. In this case however, a start number 100 was used for the SBE
stage and the rest of the variables evaluated during the SES. To avoid overfitting
the training data, the feature selection was repeated twenty times. In each
iteration, a different subset of the training set data was used for variable ranking

and optimization.
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Variables that were selected at least 11 out of the 20 iterations (i.e., >55%)
were used for SVM models. The SVM classification was performed with a
radial basis function. A venetian blind with 10-fold data split cross-validation
was used. The model was evaluated with the external validation set. The
processing method employed was row normalization and autoscale (mean

center and scale to unit variance).

5.2.3 Results and Discussion

Crystal structure formation is a complex process, which is influenced by
several factors. Ultimately, the structure type that any crystalline compound
prefers is dictated largely by its constituent elements. The knowledge of
compounds with known structure types can aid future predictions. Feature
selection offers a path to identify which atomic properties (or combinations
thereof)) are relevant in determining preferable structure types. CR-FS and
SVM was successfully employed to predict the structure type of binary AB
compounds with experimental validation.'#' Prediction of structure type of
ternary equiatomic ABC compounds were explored using a similar approach.
The variables was initially ranked according to their F-ratio from ANOVA. Fig.
5.2.1 shows the results of the F-ratio scores. After feature selection with the
CR-FS algorithm, 113 variables out 990 were selected. The selected features

are shown in Fig. 5.2.1 (red).
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Fig. 5.2.1: F-ratio scores of all variables. Variables that were retained after feature
selection are shown in red.

Fig. s.2.1 shows that not all highly ranked features were retained.
Conversely, not all variables with low rank were ignored. This buttresses
the point that F-ratios and for that matter, ranking methods are indicative
of potential relevance and do not guarantee that the variable will actually
be important for the question at hand. Forty variables (over one third of
all variables selected) are related to atomic size descriptors. The variables
obtained after feature selection (i.e., 113) were used to generate SVM model
for prediction. The validation set prediction sensitivity and specificity were
97.3% and 96.9%, respectively, with an error rate of 3.10%. Table 5.2.2 shows
the details of the predictions are shown for all the seven structure types
studied. TiNiSi and ZrNiAl are predicted to a higher degree of specificity

relative to the other structure types.
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Table 5.2.2: SVM model sensitivity, specificity and accuracy for structure types

Structure type TiNiSi ZrNiAl PbFCl LiGaGe YPtAs UGeTe LaPtSi mean

Training set
Sensitivity 100 100 100 100 100 100 100 100
Specificity 100 99.1 99.0 96.1 100.00 100 100 99.1
Accuracy 99.8 99.6 99.9 99.8 100.0 100 100 99.9
Error Rate 0.20 0.40 0.10 0.20 0.00 0.00 0.00 0.12
Validation Set
Sensitivity 94.0 96.9 99.6 99.4 100 99.6 100 98.5
Speciﬁcity 91.96 93.41 96.1 88.0 100 87.5 100 93.9
Accuracy 93.1 95.0 96.7 97.3 99.0 99.2 98.3 96.9
Error Rate 6.9 5.00 3.30 2.70 1.00 0.80 1.70 3.10

The SVM prediction probabilities for TiNiSi-types before feature
selection (990 variables) and after feature selection (113 variables) are shown
in Fig. 5.2.2. The SVM prediction probabilities for ZrNiAl-types before feature
selection (990 variables) and after feature selection (113 variables) are shown
in Fig. 5.2.3. Some ternary phosphides can exist as polymorphs with both
TiNiSi- and ZrNiAl-types. The predicted probabilities of known polymorphs
using thirty-five known polymorphs are shown in Fig. 5.2.4. Compounds that
exist as polymorphs under the same synthetic conditions were predicted with
lower probabilities (0.7). Compounds whose preferred structural type varies
with synthetic method were predicted with a higher degree of confidence (>
0.8). This indicates that for co-existing polymorphs, preferred structure types

are determined largely by their elemental composition.
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Fig. 5.2.2: SVM predicted probabilities for TiNiSi-type structure. Models were
constructed using 113 features retained after feature selection with CR-FS. The hollow
and filled markers represent training and validation sets, respectively.
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and filled markers represent training and validation sets, respectively.
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structure.

5.2.4 Conclusion

A machine-learning approach has been used to classify ternary
equiatomic structure types based on parameters obtained from the elemental
composition of structure type representatives. Variables important for the
classification model were selected with the CR-FS algorithm. Out of 990
initially proposed features, 113 were selected. Compounds were classified
using SVM with two-thirds and one-third for training and validation,
respectively. The validated accuracy, sensitivity, and specificity is 96.9%,
97.3%, and 93.9% respectively. The variables important for segregation of

ternary ABC structure types are mainly associated with A and C elements.
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5.3 Strain Level Distinction of Lactobacillus reuteri
through successive feature selection and principal

component analysis

Arguably, the most important task in the study of bacteria is the

236 Several approaches to the identification

classification and identification.
of bacteria have been reported over the years.**° In a clinical setting, the
accurate and rapid identification of bacteria is crucial to diagnosis and
management of bacterial infections. Earlier methods for classification and
identification of bacteria have been based on morphology, substrate utilization

236 Substrate utilizations for fastidious bacteria

and staining characteristics.
with specific growth requirements are used to isolate and identify some types
of bacteria. Gram staining, developed by Hans C. Gram, determines the
presence or absence of peptidoglycan in the cell wall, and is the most popular
staining method for bacterial classification.**” Analysis of volatile organic
compounds (VOCs) (eg, fatty acid) profiles towards the identification

and classification of bacterial have been reported.*>*~>+°

Sequence analysis
of the ribosomal RNA genes is the most acceptable method for bacterial
species identification.**'~*#3 Matrix assisted laser desorption ionization-Time
of Flight Mass Spectrometry (MALDI-TOFMS) has become a standard

tool for protein and lipid analysis.*** Analysis of proteins / lipids provide

unique patterns that are specific to some organisms. These patterns can serve
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as fingerprints for the identification of bacteria.***"*** MALDI-TOFMS is
a high-throughput technique with ease of automation, and hence presents
as a simple, convenient and reliable approach to bacteria identification.
Comparison of the protein or lipid profile/spectrum from a sample to
that of a database is the rapid way of automating the identification with
MALDI-TOEMS data. Rapid and automated application of MALDI-TOFMS
spectra for bacterial identification require the use of some computational
and statistical techniques. This presents an opportunity for chemometric
techniques to be employed. However, the lack of reproducibility of spectra
from run-to-run may contribute to inconclusive results.**> In addition, it
may be difficult to distinguish between closely related strains using the entire
spectrum. Under such conditions, it is relevant to identify regions of the mass
spectra that are more useful for the intended identification. After all, the use of
MS to identify bacteria relies on the presence of some particular compound(s)
in the spectrum.

Distinguishing between organisms and for that matter bacteria, becomes
increasingly difficult as one moves down the taxonomic rank. MALDI-TOF
MS has a reputation for typing/identification of bacteria at the species level
but has not been widely tested for phylogenetic groups below the species level
(i.e, strain). The aim of this study was to explore the capabilities of MALDI-
TOF MS to distinguish between twelve closely related strains of Lactobacillus

reuteri.
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Spectra of samples are obtained via MALDI-TOFMS analysis of whole
cell extracts. The analysis involved the use of exploratory data analysis
in combination with CR-FS for the identification of relevant variables.
Lactobacillus reuteri was chosen since its genome has been sequenced
and characterized with respect to their taxonomic position below the
species level.*#7>5* The strains of Lactobacillus reuteri studied were 100-
23, TMWi1.112, TMW1.656, LTH2584, FUA3108, FUA3168, FUA3324,

FUA3400, FUA3401, LTH5448, Ipuph and mlc3.

5.3.1 Bacterial Culture and Sample Preparation

The strains of bacteria were grown separately on MRS agar at 37 °C under
anaerobic conditions for two days prior to extraction. A 300 pL portion of
water was pipetted into a 1.5 mL Eppendorf tube and a colony of micro-
organisms were added. A goo uL portion of ethanol was added and the tube
vortexed thoroughly. The mixture was centrifuged at 15000 rpm for 2 min.
The ethanol layer was decanted and the residue centrifuged an additional
2 min. All excess ethanol was removed with the aid of Eppendorf pipette.
FiftyuL of 70% formic acid was added, vortexed thoroughly and allowed to
stand for approximately 5 min. A so pL portion of acetonitrile was added and
vortexed thoroughly. The mixture was centrifuged at 15000 rpm for 2 min.

The supernatant was isolated for MALDI-TOF MS analysis.
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5.3.2 MALDI-TOF MS Analysis

A 1pL aliquot from the samples was spotted on a Bruker Daltonics
M™ AC800 Anchorchip™ target plate and air-dried. A 1uL portion of a-
cyano-4-hydroxycinnamic acid (5 mg/mL in 50% H,O) and 50% acetonitrile
(containing 2.5% trifluoroacetic acid) was spotted on top and allowed to dry.
Mass spectra were obtained in the positive linear mode of ionization using a
Bruker Daltonics (Bremen, GmbH) UltrafleXtreme MALDI-TOF/TOF MS
with m/z range of 2000 to 20000. Each sample was spotted five times on the
target plate and five spectra were acquired for each spot (25 acquisitions /
sample). Each spectra was an average of 1000 shots. Acquisition was done
in automated mode using the Bruker Flex Control (Ver. 3.4 Build13s) and
Bruker WARP-LC (Ver. 1.3 Build 136.138) software packages. Data was

exported using the Bruker FlexAnalysis software (Ver. 3.4 Build 76).

5.3.3 Chemometric Analysis

Each spectrum was imported into Matlab®as a vector of 84992 elements.
All the spectra were compiled into a matrix of 1050 x 84992 (sample x
variables). The baseline drifts in the data were corrected using the airPLS
algorithm.” Noise in the spectra were minimized by applying a Savitsky-
Golay smoothing (polynomial order = 2, window = 33).7° During the analysis,
the dataset (or subsets thereof ) was split into two-thirds for training and one-

third for validation.
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Variables were ranked using the F-ratio scores obtained from the training
set data. The preprocessing method used was normalization to unity and
autoscale (mean center and scale to unit Variance). The entire data was
projected into a PCA score space to identify clusters. Cluster separations were
optimized to increase model parsimony. Where clusters were well separated,
an F-ratio threshold was used to reduce the number of variables in the model.
Otherwise, feature selection was performed using the CR-FS algorithm.*®"*
Where CR-FS was used, the optimization was done in three-dimensional

score space (PC1 vs. PC2 vs. PC3) using start and stop numbers of 2000 and

10000, respectively.

5.3.4 Results and Discussion

Identification of bacteria towards diagnosis and management of
infectious diseases is a crucial clinical goal. Rapid and accurate identification
is needed to determine the ideal antibacterial agent to administer. In this
regard, the need for a fast and efficient technique cannot be over emphasized.
MALDI-TOEMS is becoming an accepted tool for bacteria identification and
strain typing. In combination with chemometric analysis, a fast, objective
and automated workflow can be realized. This study explored the potential of
MALDI-TOEMS for bacteria typing/identification below the speices level.
This initial study focused on strain level identification of twelve strains of

Lactobacillus reuteri, a well-characterized bacterium.>#77>5*
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Relevant variables are selected with either an F-ratio threshold (filter method)
or CR-FS method based on the initial separation of the clusters in principal
component analysis (PCA) score space. The use of a metric to rank variables
in order of relevance without an induction algorithm falls under the filter
methods of feature selection described earlier. Where the filter method
is used, variables with F-ratio values greater than a factor (a) of standard
deviation (o) of all F-ratios were kept (i.e.,, F-ratio > o x a). The factor (a)
is set at a value above which an increase brings no appreciable increase in
the explained variance captured in the first two principal components (<5%).
Otherwise, CR-ES is employed on the training set data. Variables retained by
either F-ratio threshold or CR-FS on the training set are used to construct PLS-
DA models.

A PCA score plot for all the samples in the twelve classes showed three
distinct clusters as shown in Fig. s.3.1. Each cluster contained at least two
strains and were denoted Class A (two strains: FUA3108 & FUA3401), Class
B (two strains: TMW1656 & mlc3) and Class C (eight strains: 100-23,
TMWi1112,LTH2584, FUA3168, FUA3324, FUA3400, LTH5448 & Lpuph).
A PLS-DA model was constructed to classify the samples into either Class
A, B or C. Fig. 5.3.2 shows the results of the PLS-DA model using all the
variables. A class predicted sensitivity, specificity as well as accuracy were

100%. Samples in Class A have unusually high hotelling T* and their y -
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Fig. 5.3.1: PCA Plot of MALDI-TOF MS data from analysis of bacterial samples.
The data is separated in three distinct groups, A - FUA3108 & FUA3401, B -
TMW1.656 & mlc3, and C - 100-23, TMW1.112, LTH2584, FUA3168, FUA3324,
FUA3400, LTH5448 & Lpuph.
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predicted shows samples too close to the discrimination barrier.
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Fig. 5.3.2: PLS-DA y-predicted and Q residuals plot for bacteria samples belonging
to Class A, B and C. These models were constructed using all the variables in the
MALDI-TOF MS spectrum for all samples. Class A - red diamonds, Class B - blue
squares and Class C - green circles. The hollow and filled markers represents samples
in the training and validation sets, respectively.

To improve on the previous model, feature selection was performed with
an F-ratio threshold as previously described. An a value of two was used which
reduced the number of variables to 4278. A PLS-DA y-predicted plot for Class
A, B and C using only the features retained is shown in Fig. 5.3.3. In Fig. 5.3.3,
prediction sensitivity, specificity and accuracy for the validation sets were
100% each. Unlike Fig. 5.3.2, fewer variables were used (ie, 4278). Inaddition

the samples in Class A and Class B are further away from the discrimination
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line. The hotelling T* of Class A is within the 95% confidence limit. Plots of
the background corrected and smoothed average spectra of samples in Class

A, B and C are shown in Fig 5.3.4. The 4278 variables retained are shown in

d.
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Fig. 5.3.3: PLS-DA y-predicted plot for bacteria samples in Class A, B and C. Model
was constructed using only variables retained after the application of F-ratio threshold
at a = 2. Total variables retained were 4278. Class A - red diamonds, Class B - blue

squares and Class C - green circles. Hollow markers and filled markers are for training
and validation sets, respectively.
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Fig. 5.3.4: Plots of average background-corrected spectra of classes A, B, and C
showing m/z that survived the feature selection (4278 variables). Portions shown in
red indicates variables that were retained after feature selection.
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Class A data consisted of the strains FUA3108 and FUA3401. PCA
and PLS-DA models constructed using all the variables are shown in Fig.
5.3.5. Model sensitivity, specificity and accuracy were all 100%. Since a
more parsimonious model is desirable, an F-ratio threshold with a = 5 was
used. All but 817 variables were eliminated. Fig. 5.3.6 shows the PCA
and PLS-DA models constructed using the 817 variables. Again a similar
prediction accuracies are obtained using approximately 10% of the total
variables. Moreover, there is an increase in the explained variance captured in
the first two PCs, from 63.5% to 99.2%. The y-predicted values from the PLS-
DA models are close to ideal (i.e., 1). A plot of normalized average spectra for

FUA3108 and FUA3401 are shown in Fig. 5.3.7. Variables retained are shown

in red.
800 T T T 1.2
FUA3108-train
! [ .
FUA3408-train | 2O e I.
6001 o FyA3108-val I 10T P ¢ o,
= FUA3408-val :
400 | 95% Confidence Le»{el o 4 g 0.8
- - ! b
2 <
S 200 \ ! £ 12 06
© A ™
< 4 | & L
ot *
o wt | N °
N oFt-----x S - — — - e ¢ e 5 o4l
o % I § i 3
o ® | 3 e
L Parar o o
-200 | > 02 FUA3108-train
i O FUA3401-train
LA - - ® FUA3108val o o,
400 | I 0F = FUA3401-val —l‘“'”t%fwf' b g - - - - i
: Discrim Y 1
600 1 L . L 1 1 L 1 1 0.2 L i I " 1 L "
-400 -300 -200 -100 0 100 200 300 400 20 40 60 80 100 120 140
PC 1 (37.86%) Sample

Fig. 5.3.5: PCA and PLS-DA models for Class A before feature selection. To
distinguish between FUA3108 and FUA3408 using all the variables. Purple markers
and blue markers represents FuA3108 and FUA3408, respectively. Hollow and filled
markers represents training and validation sets, respectively.
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Fig. 5.3.6: PCA and PLS-DA models for Class A after feature selection. To
distinguish between FUA3108 and FUA3408 using the variables retained after at

an F-ratio threshold (a = 5).817 variables were retained. Purple and blue markers
represents FUA3108 and FUA3408, respectively. Hollow and filled markers represents
training and validation sets, respectively.
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Fig. 5.3.7: Plots of average background-corrected spectra of Classes A (FUA3108
and FUA3408) showing m/z that survived the feature selection. Portions shown in red
indicate variables that were retained (817 variables) after feature selection.
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A similar approach to the classification of the strains of bacteria in Class A
was used for Class B. This time however, the optimum value for a was 3. This
led to 2757 variables being retained. PCA and PLS-DA models constructed
using all the variables and the 2757 retained after feature selection are shown in
Fig. 5.3.8 and Fig. 5.3.9, respectively. Once again, a much more parsimonious
model with a prediction sensitivity, specificity and accuracy at par with using
all the variables was obtained. A plot of the normalized average spectra for the

two strains (TMW1.656 and mlc3) are shown in Fig. 5.1.10.
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Fig. 5.3.8: PCA and PLS-DA models for Class A before feature selection. To
distinguish between TMW1.656 and mlc3 using all the variables.Blue and red
markers represents TMW1.656 and mic3, respectively. The hollow and filled markers
represents training and validation sets, respectively.
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Fig. 5.3.9: PCA and PLS-DA models for Class B after feature selection. To
distinguish between (TMW1.656 and mlc3) using the variables retained after an F-
ratio threshold (a = 3). 2757 variables were retained. Blue markers and red markers
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Fig. 5.3.10: Plots of average background-corrected spectra of Classes B (TMW1.656
and mlc3) showing m/z that survived the feature selection. Portions shown in red
indicate variables that were retained (2757 variables).

142



Class C consisted of eight (8) strains with an initial PCA plot shown
in Fig. s.3.11. In PCA score space, three clusters could be identified and
named Class C1 (s strains: TMW1.112, LTH2584, FUA3168, FUA3324 and

LTHs448), Class C2 (1 strain: lpuph) and Class C3 (2 strains: 100-23 and

FUA3400).
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Fig. 5.3.11: PCA score plot of samples in Class C without feature selection. Class C1
(5 strains: TMW1.112, LTH2584, FUA3168, FUA3324 and LTH5448), Class C2 (1
strain: Ipuph) and Class C3 (2 strains: 100-23 and FUA3400).

The PLS-DA model constructed using all the variables is shown in Fig.
5.3.12. Due to the high within class variances in the classes, CR-FS was used
for feature selection which led to the retention of 2102 variables. PLS-DA
model constructed with the 2102 features retained showed 100% classification
accuracy (Fig.s.3.13) with fewer variables. A plot of the average spectra from

C1,C2and C3 showing the 2102 variables retained is also shown in Fig. 5.2.14.

143



Y Predicted 1 (Class 1)

L 2

0 0.5 1 1.5 2 25 3
Hotelling T2 Reduced (p=0.950) (62.80%)

Q Residuals Reduced (p=0.950) (37.20%)

15
— ©
o~ o 2]
w 2]
g 1 a ‘ ]
a O
o -
S L 0 o
N T
©0.5 o
2 -
° L
= T
3 8
& >
>

-0.5

Sample

Fig. 5.3.12: PLS-DA models for Class C before feature selection. To distinguish
between samples in Class C1, C2 and C3 using all the variables. Class C1 - red
markers (5 strains: TMW1.112, LTH2584, FUA3168, FUA3324 and LTH5448), Class
C2 - green markers (1 strain: Ipuph) and Class C3 - blue markers (2 strains: 100-

23 and FUA3400). Hollow and filled markers represents training and validation sets,
respectively.
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Fig. 5.3.13: PLS-DA models for Class C before feature selection. To distinguish
between samples in Class C1, C2 and C3 using variables retained after feature
selection with CR-FS (2102 variables). Class C1 - red markers (5 strains: TMW1.112,
LTH2584, FUA3168, FUA3324 and LTH5448), Class C2 - green markers (1 strain:
Ipuph) and Class C3 - blue markers (2 strains: 100-23 and FUA3400). Hollow and
filled markers represents training and validation sets, respectively.
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Fig. 5.3.14: Plots of average background-corrected spectra of Classes C1, C2 and
C3 showing m/z that survived the feature selection. Portions shown in red indicate
variables that were retained (2102 variables).
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APCA score plot of samples in Class C1 consisting of five strains showed
two groups, namely, C1A (two strains: TMW1.112 and LTH2584) and C1B
(three strains: FUA3168, FUA3324 and LTHs448). PCA and PLS-DA
models of class C1 before feature selection is shown in Fig. 5.3.15. CR-FS
was used and only 2008 variables were retained. PCA and PLS-DA models
constructed using the variables retained after feature selection are shown in
Fig. 5.3.16. Averaged spectrum of the samples in Class C1A and C1B showing

variables retained after features selection with CR-FS is shown in Fig. 5.3.17.
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Fig. 5.3.15: PCA and PLS-DA models for Class C1 before feature selection to
distinguish between Class CIA(TMW1.112 and LTH2584) and C1B (FUA3168,
FUA3324 and LTH5448) using all the variables. Blue and red markers represents C1A
and C1B, respectively. Hollow and filled markers represents training and validation
sets, respectively.
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Fig. 5.3.16: PCA and PLS-DA models for Class C1 after feature selection to
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Fig. 5.3.17: Plots of average background-corrected spectra of Classes C1A and C1B
showing m/z that survived the feature selection with CR-FS. Portions shown in red
indicates variables that were retained (2008 variables).
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Feature selection on C1A consisting of two strains (i.e, TMW1.112 and
LTH2584), was performed with CR-FS algorithm. After feature selection
1115 variables were retained. Figure 5.3.18 and 5.3.19 show the PCA and PLS-
DA y-predicted plot for before and after feature selection. A plot of average
mass spectra showing the m/z locations of the retained features are shown in

Fig. 5.3.20.
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Fig. 5.3.18: PCA and PLS-DA models for Class C1A before feature selection to
distinguish between TMW1.112 and LTH2584 using all the variables. Red and blue
markers represents TMW1.112 and LTH2584, respectively. Hollow and filled markers
represents training and validation sets, respectively.
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Fig. 5.3.19: PCA and PLS-DA models for Class C1A after feature selection to
distinguish between TMW1.112 and LTH2584 using the variables retained after
feature selection with CR-FS. 1115 variables were retained. Red and blue markers
represents TMW1.112 and LTH2584, respectively. Hollow and filled markers
represents training and validation sets, respectively.
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Fig. 5.3.20: Plots of average background-corrected spectra of TMW1.112 and
LTH2584 showing m/z that survived the feature selection with CR-FS. Portions shown
in red indicate variables that were retained (1115 variables).
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Class CiB which consisted of strains FUA3168, FUA3324 and

LTHs448, was also optimized using CR-FS. The number of variables retained

was 2008. PLS-DA y-predicted for the three classes are shown in Fig. 5.3.21

and 5.3.22, respectively.
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Fig. 5.3.21: PCA and PLS-DA models for Class C1A before feature selection to
distinguish between FUA3168, FUA3324 and LTH5448 using all the variables. Blue,
green and red markers represents, FUA3168, FUA3324 and LTH5448, respectively.
Hollow and filled markers represents training and validation sets, respectively.
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Fig. 5.3.22: PCA and PLS-DA models for Class C1A after feature selection to
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after feature selection with CR-FS. 1108 variables were retained. Blue, green and red
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The cluster identified as Class C2 contained only one strain. Class C3
was composed of two strains (100-23 and FUA3400). Feature selection was
performed with CR-ES. Results of PLS-DA models for Class C3 before and
after feature selection are shown in Fig. 5.3.21 and 5.3.22, respectively. A plot
of average spectra for 100-23 and FUA3 400 showing the m/zlocations for the

1119 variables selected are shown in Figure 5.3.23.
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Fig. 5.3.23: PCA and PLS-DA models for Class C3 before feature selection to
distinguish between 100-23 and FUA3400 using all the variables. Red and blue
markers represents 100-23 and FUA3400, respectively. Hollow and filled markers
represents training and validation sets, respectively.

153



40 ; 12 r
I
! 0 %0 QaGRma®s P
30 i } 18585 %j’gﬁ%&”&g m
L -0 - : 4=
2 . 08
z 10f 7 o | 18
@ / | _ e T R
¢S oft-—------- & ——t - - [ 1o
\ @
8 R 9 | S04t
a -0 5% | 13
g | &
20b R |5 02 L
! oF——————— === %ﬂgﬁg —————— 5 ;
=30 : @y Fom
40 1 1 1 L 1 0.2 1 I 1 1
-100 -50 0 50 100 50 100 150 200
PC 1 (85.33%) Sample
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Fig. 5.3.25: Plots of average background-corrected spectra of 100-23 and FUA3400
showing m/z that survived the feature selection with CR-FS. Portions shown in red
indicates variables that were retained (1119 variables).
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A summary classification scheme for Lactobacillus reuteri strains,
showing the feature selection used (i.e., F-ratio threshold or CR-FS), as well

as the number of variables retained is shown in Fig. 5.3.26.

Lactobacillus reuteri strains
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Fig. 5.3.26: Hierarchical flow chart for the classification of Lactobacillus reutri
strains. The feature selection method used at each branching point on the flow chart
is stated. Where the F-ratio is used for feature selection, the a value is specfied,
otherwise, CR-FS is used. The number of features retained by whichever feature
selection technique is shown in red.
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5.3.5 Conclusion

Classification of twelve strains of Lactobacillus reuteri was achieved
using MALDI-TOF-MS spectra. The number of variables retained for the
various feature selection steps ranged from 817 to 4278. Compared to the
total number of variables, this represents 0.1 - 5%. Hence a large portion
of the MALDI-TOF MS spectrum contained variables irrelevant to the
identification of the various strains of Lactobacilus reutri. Using the concept
of exploratory data analysis, sub clustering allowed each strains to be classified
correctly. This presents an opportunity for the creation of hierarchical model
with each sub-model employing the most relevant variables. Even though this
is a preliminary study, the potential of this work to contribute to an automated

approach to bacterial identification using MALDI-TOF-MS is palpable.
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“To every thing there is a season....”.

Ecclesiastes 3

6

General Conclusions and Prospects for Future

Work

6.0.1 General Conclusions

The need for feature selection prior to the application of chemometric
techniques can not be over-emphasized. This means that for data sets with a
large number of variables, it is beneficial to find smart ways of reducing the size
of the data prior to the analysis. Smart data reduction implies reducing the data
size while maintaining as much as possible the integrity of the original data.

The large data size challenge associated with the use raw GC-MS and
GCXGC-MS data was addressed by the development of a data reduction
strategy termed unique ion filter (UIF) in Chapter 2. UIF is a novel feature
reduction approach for preprocessing of multivariate data. UIF1D and UIF2D
were successfully applied to GC-MS and GC X GC-MS data, respectively. UIF

eliminates redundant features and noise from the data. Consequently, feature
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selection time is greatly reduced. The implementation of UIF does not alter
the chemically relevant information in the data.

The challenge of the high number of variables associated with raw GC-
MS data is re-visited in Chapter 3. This time a data reduction technique that
builds on TIS was developed as an improved alignment-free preprocessing
step for GC-MS data for fire debris analysis. STIS retains the advantages of TIS
in addition to partial preservation of retention information. In general, STIS
performs better than TIS. The partial preservation of retention information
by STIS helps in identifying the potential source of selected variables which
is not possible with TIS. Even though both TIS and STIS benefit from noise
elimination, the effect is much more pronounced in TIS.

In Chapter 4, an empirical approach towards the estimation of start and
stop number for the CR-ES algorithm was successfully developed. This was
achieved though the analysis of true and null F-ratios obtained from a dataset
for classification models. This resulted in the development of two equations to
estimate the start and stop numbers for CR-FS. Allbut one of the parametersin
this equation are obtained by comparing the PDFs of the true and null F-ratios.
Through various experiments the final parameter, d, was estimated to be 0.48
< d < o.57. The validity of these empirical equations was experimentally
confirmed.

In Chapter s, the CR-FS algorithm was demonstrated as a feature

selection algorithm which is useful in other fields of chemistry. Prediction of
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crystal structure of binary (AB) and ternary (AIB) compounds were achieved
by using their elemental properties. Strain level classification of Lactobacillus
reutri was shown to be achievable with 100% prediction sensitivity, specificity

and accuracy using MALDI-TOFMS data.

6.0.2 Prospects for Future Work

The completion of this dissertation does not in anyway suggest the
completion of the research reported here. On the contrary, the progress made
here has sprung up new research ideas to be explored.

In Chapter 3, STIS were generated using perdeuterated anchors which
were added to the samples before analysis. However, it is possible to identify
markers common to a particular dataset to use as a guide in the generation
of STIS. This idea can be explored especially in the case of fire debris where
some compounds produced as a result of pyrolysis of substrates are always
present. In human metabolomic samples, there exist compounds that are
always present in almost all subjects. This can be employed in an attempt to
generate STIS for metabolomic data analysis. Exploration of STIS for use as a

data reduction tool in GC X GC-MS data is also an interesting project.
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The null F-ratio analysis in the estimation of start an stop number was
developed for a binary class classification problem. From the content of this
dissertation, it is obvious that CR-FS is well suited for n-class problems, where
n > 2. Hence, it is very relevant to develop an approach to the estimation of
start an stop number when there are more than two classes in the dataset to be
optimized.

The classification/identification of Lactobacillus reutri was performed
on data obtained from a short period of study. The MALDI-TOF MS data
were collected within the same period. Primary and secondary metabolites
produced by micro-organism can be altered by the growth conditions.***
Hence, testing the robustness of the selected features by perturbing the growth
conditions could provide some useful information towards the validation of

this technique.
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Appendix A

Extraction and Preparation of Fire Debris Samples

Samples were, stored, extracted, and analyzed using established protocols at the
Royal Canadian Mounted Police (RCMP)1 trace analysis laboratory. Protocols. These
protocols were in line with ASTM methods E1618 and E1412. The headspace of samples
were extracted with activated carbon strips onto (Albrayco Technologies, Cromwell, CT)
for 16 h at 60 °C. An elution solution of CS, containing perdeuterated alkane ladder,
namely, of n-heptane (d16), n-nonane (d20), n-undecane (d24), n-tridecane (d28), n-
pentadecane (d32), n-heptadecane (d36), n-nonadecane (d-40) and n-heneicosane (d-44)
(CDN Isotopes, Pointe-Claire, QC) at concentrations of 16 pg L—1 was prepared. This
elution solution was used to elute the content of the activated carbon strips. Eluted with

CS2 and the eluent injected into GC-MS for anlaysis.2

GC-MS Separation Conditions for Fire Debrist Samples

The eluates were analyzed with Agilent Technologies 7890A gas chromatographs
(GC) with 5975 quadrupole mass spectrometers (MS) and 7683 auto samplers (Agilent
Technologies, Mississauga, ON). Automation and data acquisition was done with MSD
ChemStation (Agilent). Separation was performed ona 30 m X 250 pm X 0.25 pm HP-
1MS columns (Agilent). The GC oven temperature program was an initial 40 °C (held for
3.0 min) and a ramp to 250 °C at a rate of 8 °C min—1, and held at 250 °C 0.75 min. Split
mode sample injection was used with an injection volume of 1 pL, a split ratio of 20:1 and
injector temperature of 250 °C. The carrier gas was High Purity Hydrogen with a flow rate
of 1.1 mL/min. The MS source and transfer line temperatures were set at 230 and 300 °C
°C, respectively. Chemometric classification of casework arson samples based on gasoline

content Sinkov, Nikolai A. et al. Forensic Science International , Volume 235 , 24 - 31.
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Solid Phase Micro Extraction (SPME) of Green Tea Samples

A 200 mg portion of tea sample was weighed into a 6 mL clear headspace
(Chromatgraphic Specialties Inc, Brockville, ON, Canada) and caped. The vial was
inserted about 1.5 cm deep into an oil bath set on a hotplate stirrer (VWR, Edmonton,
AB, Canada). It was allowed to equilibrate for 10 min at 60 °C. Volatiles in the headspace
were extracted using a DVB/CARB/PDMS SPME fibre (Supelco, Bellefonte, PA,USA)

for 20 min at 60 °C.

Chromatographic Separation and TOF MS Conditions for Green Tea Samples

A Pegasus®4D GCXxGC-TOFMS equipped with a liquid nitrogen cryogenic
modulator (Leco, St Joseph, MI) was used. Sample was desorbed for 2 min via splitless
injection with the injector temperature kept at 230 °C. Separation was performed with a
30m X 250 pm internal diameter X 1 pm Rtx s film (Restek, Bellefonte, PA, USA) and a
1.44 m X 250 pm internal diameter X 0.18 pym DB Wax (Agilent / ] & W Technologies,
Santa Clara, CA, USA) as primary and secondary columns, respectively. Ultra high purity
helium (Praxair, Edmonton, AB, Canada) was used as the carrier gas at a constant flow of
1.5 mL/min. A temperature program was used with an initial oven temperature setat 40 °C
for 3 min and ramped at8 °C/min until it reached 230 °C. It was held at this temperature
for 5 min giving a total run time of 31.75 min. The secondary oven and modulator were
set to be 10 °C above the primary oven with a cap at 240 °C. A modulation period of 5 s
was used with 0.8 s and 1.7 s for hot and cold jets, respectively. The ion source was set at
200 °C with an optimized detector acquisition voltage of 1495 V and 200 V offset. Signals

within the range of 35 - 300 amu were collected at 100 spectra/s.
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Identification of Anchors for GC X GC-MS alignment

Aset of thirteen (13) compounds present in all chromatograms were used as anchors
to model the shift in each modulation. One chromatogram was selected and the apexes
of the anchor compounds were manually identified. The compounds were grouped into
lower (<1.5 - 7 anchors) and higher (>1.5 - 6 anchors) retentions (Fig. A1). The peak
apexes of the lower and higher retention compounds were fitted separately to a first degree
polynomial (Fig. A2). The anchors are located in the chromatogram to be aligned by
comparing the mass spectra using the weighted cosine correlation score described by Kim
et. al. (S. Kim, A. Fang, B. Wang, J. Jeong, and X. Zhang, An optimal peak alignment for
comprehensive two-dimensional gas chromatography mass spectrometry using mixture
similarity measure, Bioinformatics, vol. 27, no. 12, pp. 1660 - 1666, 2011). Lower and
upper anchors in the chromatogram to be aligned are also fitted separately to a first degree

polynomial.

Modulation to Modulation Alignment for GC X GC-MS Chromatogram

Since these fitted lines runs across the length of the entire chromatogram, each
modulation is segmented into three (parts), providing six (6) anchor points for each
modulation. Each modulation in the sample chromatogram is aligned to that of the target

chromatogram using the six (6) anchor points.
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Fig. A2 - Anchors fitted to a first degree polynomial
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Appendix B

Sample Chromatograms
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Fig. B1 - Chemometric analysis work flow for TIS and STIS datasets
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10.

11.

12.

eFElectronegativity difference
(Pauling scale)

* Electronegativity difference
(Martynov-Batsanov scale)
eFElectronegativity difference
(Gordy scale)
eFElectronegativity difference
(Mulliken scale)

% Electronegativity difference
(Allred-Rochow scale)
eMean electronegativity
(Pauling scale)

% Mean electronegativity
(Martynov-Batsanov scale)
eMean electronegativity
(Gordy scale)

% Mean electronegativity
(Mulliken scale)

% Mean electronegativity
(Allred-Rochow scale)

Ionic character

(Pauling scale)

% Ionic character
(Martynov-Batsanov scale)

13.
14.
15.
16.

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

Ionic character (Gordy scale)

Ionic character (Mulliken scale)

Ionic character (Allred-Rochow scale)
e Sum of valence electrons

Mean number of electrons

e Atomic number sum

Atomic number difference

Mean atomic number

Atomic weight difference

Mean atomic weight

Atomic weight sum

e Atomic radius sum (0x.g)

Mean atomic radius

Y Atomic radius ratio

2xatomic radius difference (Gy.5 - Os.p)
eCovalent radius sum (dj.p)

Mean covalent radius

e Covalent radius ratio

e2xcovalent radius difference (@45 - Os-5)
Zunger radius sum (/s+/p) sum

Mean Zunger radius sum (/g+/p)

Y Zunger radius sum (/g+/p) ratio

Y% 2xZunger radius sum (/s+/p) difference
Zunger radius sum (/gt/p) difference

37.
38.
39.
40.

41.
42.
43.
44.

45.
46.
47.
48.
49.
50.
S1.
52.
53.
54.
55.
56.

Tonic radius sum (d,_g)

Mean ionic radius

% Ionic radius ratio

% 2xionic radius difference (.
- Q.P.mv

oCrystal radius sum (0y.g)
Mean crystal radius

oCrystal radius ratio

e2xcrystal radius difference (dj.5
- Q>.mv

Period number sum

Mean period number

ePeriod number difference

% Group number sum

Mean group number

o Group number difference

% Family number sum

Mean Family number

Family number difference
eQuantum number (1) sum
Mean quantum number (1) mean
eQuantum number (1) difference

Fig. C1 - A complete list of all the 56 variables. Blue cirles indicates features that

were retained during the SBE stage whiles red starts indicates those added during the

SFS.
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Table C1 - Refined Crystallographic Data for RhCd

Formula RhCd

fw (amu) 215.31

Space group Pmm (No. 221)

a(A) 3.2191(7)

V(&) 33.358(13)

Z 1

"Peated(cm ™) 10.718

T (K) 296(2)

crystal dimensions (mm) 0.05 X 0.03 X 0.03

radiation graphite monochromated Mo Ka, A = 0.71073

“w(Mo Ka)(mm™)

transmission factors

2”0limits

data collected

no. of data collected

no. of unique data, including F? <o

27.489

0.285-0.666

17.96-65.48
4<h<4,4<k<4,4<1<34
234

13 (Ryy = 0.0152)

no. of unique data, with F2 >20(F?) 13
no. of variables 4
R(F) for F2>20(F2)" 0.0086
Rw(Fg)l’ 0.0185§
goodness of fit 1.297
(AP)max (Ap)min (€AT3) 0.617 - 0.339
Positional and displacement parameters °
Rhat 1a (0, 0,0)

U—iso (A%) 0.02(2)
Cdat1b (1/2,1/2,1/2)

U—iso (A*) 0.016(14)
Interatomic distances (A)
Rh-Cd (x8) 2.7878(6)
Cd-Cd (x6) 3.2191(7)
Rh-Rh (x6) 3.2191(7)

"R(F) = 2 |Fo [=| Fell /122 Fel [ [w(

F: — F2)")] /| S wF]:

where w™' = [0*(F?) + (Ap)* + Bp] ,and p = [max(F?,0) + 2P]/3
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33 properties of elements, used to calculate descriptors

1. Atomic number

2. Atomic weight

3. Atomic radius

4. Covalent radius

5. Metallic radius

6. Single bond radius

7.Zunger radii sum

8. lonic radius

9. Crystal radius

10. Pauling electronegativity

11. Martynov-Batsanov electronegativity
12. Gordy electronegativity

13. Miilliken electronegativity

14. Allred-Rochow electronegativity
15. Metallic valence

16. Number of valence electrons

17. Outer shell electrons
18. Period number

19. Group number

20. Family number

21. L quantum number
22. Melting point

23. Boiling point

24. Density

25. Firstionizationenergy
26. Electrical conductivity
27. Specific heat

28. Heat of fusion

29. Heat of vapourization
30. Thermal conductivity
31. Heat atomization

32. Polarizability

33. Mendeleev number

30 formulae, used to calculate descriptors

1. Average number (of 3)
2.Number A

3.NumberB

4. Number C

5. Number sum of Aand B

6. Number sum of Aand C
7.Number sumofBand C

8. Number difference of Aand B
9. Number difference of Aand C
10. Number difference of B and C
11. Number ratio A/B

12. Number ratio A/C

13. Number ratio B/C

14. Number average A and B
15. Number average Aand C

16. Number average Band C

17.Sum of two largest numbers

18. Sum of two smallest numbers

19. Difference of two largest numbers
20. Difference of two smallest numbers
21. Ratio of two largest numbers

22. Ratio of two smallest numbers

23. Average of two largest numbers
24. Average of two smallest numbers
25. Sum of two extremes

26. Difference of two extremes
27.Ratio of two extremes

28. Average of two extremes

29. Smallest number

30. Largest number

Fig. C2 - A list of descriptors/variables for the ABC structure prediction study.

The first part of the list are the elemental properties considered. The second part
show the mathematical transformations of the properties to generate new variables.
For example for the first property, i.e. atomic number, the first calculated descriptor
will be the average atomic number for A, B and C. The second, third and fourth
descriptors are the atomic numbers of A, B and C, respectively and so on.

197




	Abstract
	Preface
	Dedication
	Acknowledgement
	Figures
	Tables
	Abbreviations
	Symbols
	General Introduction
	Motivation
	Chemometric Analysis
	Pattern Recognition in Chemical Data
	Unsupervised Pattern Recognition
	Supervised Pattern Recognition

	Data Preprocessing and Pretreatment
	Noise Filtering and Baseline Drift Correction
	Data Alignment
	Data Size Reduction
	Centering and Scaling

	Feature Selection
	Cluster Resolution Feature Selection (CR-FS) Algorithm

	Scope of Dissertation
	Unique Ion Filter: A Data Reduction Tool for GC-MS Data Preprocessing for Chemometric Analysis
	Comparison of Total Ion Spectra and Segmented Total Ion Spectra as Preprocessing Tools for GC-MS Data for the Chemometric Analysis of Casework Fire Debris Samples
	Estimating CR-FS Start and Stop Number via Probability Density Function Analysis of True and Null Fisher Ratios
	Exploring the Application of CR-FS 


	Unique Ion Filter: A Data Reduction Tool for GC-MS and GCGC-MS Data Preprocessing Prior to Chemometric Analysis
	Introduction
	Experimental Data
	Data UIF1D for GC-MS
	Data for UIF2D for GCGC-MS

	Theory
	Algorithm for UIF1D and UIF2D
	Determination of peak parameters and peak groups for UIF1D
	Identification of Unique Ions for GC-MS chromatogram
	Generation of new UIF1D filtered chromatogram
	Determination of peak parameters and peak groups for UIF2D
	Identification of Unique or Pseudo-unique Ions for UIF2D
	Generation of UIF2D filtered chromatogram
	Chemometric analysis

	Results and Discussion
	Conclusions

	Comparison of Total Ion Spectra and Segmented Total Ion Spectra as Preprocessing Tools for Gas Chromatography-Mass Spectrometry Data for the Chemometric Analysis of Casework Fire Debris Samples
	Introduction
	Experimental
	Generation of TIS and STIS
	Results and Discussion
	Conclusions

	Estimation of Start and Stop Numbers for CR-FS Algorithm; An Empirical Approach using Null Distribution Analysis of Fisher Ratios
	Introduction
	Theory
	True and Null F-ratios
	Proposal of Empirical Equation for Estimating Start (nST) and Stop (nSP) Numbers 

	Chemometric Analysis
	Datasets
	Estimation of the constant d and nST

	Results and Discussion
	Conclusions

	Applications of Cluster Resolution Feature Selection
	Classifying Crystal Structures of Binary Compounds AB through CR-FS and SVM
	Data Extraction and Organization 
	Chemometric Analysis
	Synthesis of RhCd and X-ray Diffraction Analysis
	Results and Discussion
	Conclusion

	Machine-learning structural characterization of ABC ternary equiatomic compounds and their polymorphs
	Data Extraction and Organization
	Chemometric Analysis
	Results and Discussion
	Conclusion

	Strain Level Distinction of Lactobacillus reuteri through successive feature selection and principal component analysis
	Bacterial Culture and Sample Preparation
	MALDI-TOF MS Analysis
	Chemometric Analysis
	Results and Discussion
	Conclusion


	General Conclusions and Prospects for Future Work
	General Conclusions
	Prospects for Future Work


	References
	Appendix A
	Appendix B
	Appendix C

