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Abstract 

This study looked at the spatial and temporal patterns of lightning-ignited wildfires in 

Western Canada from 1981 to 2018. Studying these sequences are of great importance as 

wildfires have had serious implications on communities, forests, and provide operational issues 

for fire managers. Moreover, with climate change which is predicted to affect these arrangements 

could in turn exacerbate these conflicts. To assess distribution patterns over space and time, the 

nearest neighbors, K-function, Mann-Kendall and the Getis-ord Gi* statistics were employed. 

All lightning attributed wildfires recorded within Western Canada (Alberta, Saskatchewan, 

Manitoba, British Columbia, Yukon, and the Northwest Territories) in the Canadian National 

Fire Database were used in this analysis, where statistics were performed in R and ArcGIS. 

Results suggest that lightning-ignited wildfires are spatially clustering on the Western Canadian 

landscape up to 270 km with an observed overall non-significant decreasing trend seen for NOF 

(number of fires). Moreover, hotspot areas, where lightning fires are showing a trend increase 

and or are clustering spatially over the 37-year period, are displayed in GIS. Although 

determining factors that cause the reoccurrence of spatial and temporal clustering are widely 

speculated, a result of climate and vegetation could be the main influences of these patterns, 

however, further research needs to be undertaken. Wildfires are becoming a force to be reckoned 

with in an earth influenced by anthropogenic climate change. Ecological disasters are on the rise, 

communities are being afflicted, and costly disaster bills are increasing. Understanding lightning 

fires and their distributions within space and time is crucial in quantifying their extents on the 

Canadian landscape and how this interaction is being altered. Further research needs to be 

undertaken to better understand these mechanisms so fire managers can be better equipped in 

dealing with wildfires in a changing climate.  
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Chapter 1 

Introduction 

1.1 Context 

Wildfires have the potential to be an integral ecological disturbance within biological 

communities (Rowe 1983); this can be a result from either human induced fire or from an 

environmental interaction between a lightning strike and vegetation.  Studies looking in 

Australia, North and Central America and Europe date plant adaptations in fire-prone 

environments back to the early Paleocene (Crisp et al. 2011; He et al. 2012), this evolution of the 

fire-vegetation cycle has created multiple fire-adapted traits in vegetation as a result of this 

interaction (Pausas and Keeley 2014). Moreover, this type of disturbance mechanism positively 

influences species richness, diversity, and habitat quality (Thom and Seidl 2016) however, 

anthropogenic climate change is altering this relationship.  

Climate change is transforming the climatic conditions (i.e. temperature, precipitation, 

and relative humidity) an ecological community experiences. This is resulting in rates of change 

in ecosystems being faster than species can adapt too (IUCN 1990). An example of the effects of 

climate change concerning wildland fires, is the theorized increases of lightning strike densities 

which have the potential to increase fire frequencies on the landscape in North America (Romps 

et al. 2014). Another example discusses vegetation composition altering due to fire and climate 

conditions, where certain species are no longer supported by their environment thereby altering 

species migration within these affected areas (Veraverbeke et al. 2017; Hart et al. 2019). 

Moreover, changes in the climate can create variable fuel moisture content in the vegetation 

through less precipitation which leads to severe drought conditions that impacts forest resilience 

(Wotton and Flannigan 1993; Flannigan et al. 2000a; Stocks et al. 2000; Coogan et al. 2018).  
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These small cumulative changes occurring because of climate change can be highlighted, 

especially in recent years as the destructive capacity of wildfires on communities and 

infrastructure has increased. In 2016, the Horse River fire in Fort McMurray, Alberta caused 

extensive damage to the community where it is considered one of the largest natural and costliest 

disasters in Canada. It resulted in insured losses around $3.58 billion dollars (The Conference 

Board of Canada 2017). Fire managers and communities are faced with difficult decisions about 

mitigation, prevention and protection of communities and values of interest. Furthermore, it is 

difficult to quantify and fully understand the patterns of lightning and lightning-ignited wildfires 

on a forested landscape and how climate change is affecting these patterns.   

Therefore, this thesis addresses two questions. 

(1) Do lightning-ignited wildfires exhibit distribution patterns over space and time on the 

Western Canada landscape, between 1981-2018, and  

(2) Characterize the spatial and temporal distribution of lightning fires by;  

i) examining specific locations of high and low values exhibiting clustering between 

1981-2018, 

ii) examining trends associated with these high and low values,  

iii) examining distances (km) of clustering occurring in the data,  

iv) examining these high and low values when looking at different months from 1981-

2018.  
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1.2 Wildland fire in Canada 

As a dominant ecological disturbance in Canada’s boreal forest, fire has historically been 

generated from humans and the natural process of lighting (Rowe and Scotter 1973; Rowe 1983; 

Weber and Flannigan 1997). While these long withstanding fundamental interactions, which has 

been definitively shaping and impacting a community’s ecological health and resilience (Thom 

and Seidl 2016), hasn’t always been realized at the forefront in fire management. The 1871 

Wisconsin and Michigan fires that killed over 1500 people sparked the first misconceptions of 

fires role in forests. Wildfires became perceived in these forested communities as destructive, 

this prompted fire policy into adopting intensive management practices and fire exclusion 

principles from the landscapes (Oberle 1969). It also spurred research concerning wildland fire 

science to quantify and understand the mechanisms fueling wildfires. Fire initiation requires 

heat, oxygen and fuel (Countryman 1972; Pyne et al. 1996; Moritz et al. 2005). Fire behaviour, 

which describes a wildland fires flame development, fire initiation and spread, is described by 

the fire environment concept. This concept considers the elements of fuel, weather and 

topography to be ruling a fire’s behaviour (Countryman 1972). In addition to these factors, one 

can evaluate a fire regime to fully understand and assess the impacts a wildfire is having on a 

given landscape. The concept of a fire regime describes how fires interacts with an ecosystem 

through space and time. The elements used to describe a fire regime are fire frequency, fire type, 

fire size, seasonality, fire intensity, fire severity, and ignition source (Malanson 1987; Merrill 

and Alexander 1987; Weber and Flannigan 1997; Sommers et al. 2011). These elements are 

defined below: Fire frequency is the number of fires based on spatial and temporal factors; Fire 

type refers to where a fire is burning in the stand: (a) ground, (b) surface, (c) crown; Fire size 

describes the amount of area a fire has burned in units such as hectares (acres); Seasonality 

considered the time of year a fire occurs, fire intensity is the amount of energy released in kW/m; 
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Fire severity is the amount of fuel consumed in kg/m2; Ignition source references the cause of a 

fire start which can either be human or lightning (Malanson 1987; Weber and Flannigan 1997; 

Flannigan et al. 2000a; Stocks et al. 2000; Stocks et al. 2003; Sommers et al. 2011; Hanes et al. 

2019). 

 In Canada, the average annual area burned is 2 million ha, with some years 

experiencing up to 7 million ha. A small portion, roughly ~3% of all wildland fires in Canada 

that exceed beyond 200 ha account for ~97% of the area burned (Stocks et al. 2003), this small 

percentage of fires are widely attributed to lightning starts and therefore account for the majority 

of area burned (Stocks et al. 2003; Coogan et al. 2018; Hanes et al. 2019). This is mostly due to 

remote fires that are not easily accessible, detected and actioned (Stocks et al. 2003). Lightning 

and lightning-ignited wildfires in Canada are an integral component when studying wildfire 

science. Lightning regulates the length of a fire season and it determines when an area will see 

fire on a landscape in space and time (Van Wagtendonk and Cayan 2010).  

In Canada, a nationwide system was developed and adopted to predict fire danger ratings, 

fire indices and fire intensities, it is called the Canadian Forest Fire Danger Rating System 

(CFFDRS) and a subsystem, the Canadian Forest Fire Weather Index (FWI) system (Van 

Wagner 1987; Stocks et al. 1989; Taylor et al. 1996). The FWI system is strictly weather based 

and reliant on four weather inputs: (1) noon local standard time (LST) weather observations of 

temperature, (2) 24-hour precipitation, (3) relative humidity, and (4) 10 m wind speed. This 

system generates codes that provide a broad outlook of fuel moisture and expected fire behaviour 

for an area if initiation were to occur. Three of the indices detail the moisture content of the top, 

middle, and bottom layers of fuel on the forest floor, they are the fine fuel moisture code 

(FFMC), the duff moisture code (DMC), and the drought code (DC), respectively. The other 
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indices are indicators of the rate of fire spread (the initial spread index, ISI), the amount of fuel 

available to burn/depth of burn (the build-up index, BUI), and the fireline intensity (the fire 

weather index, FWI) (Van Wagner 1987). 

As mentioned above, wildfire is integral in ecological communities, however conflict 

between fire and humans has been documented since the early 1800s and is only becoming ever 

more apparent within the coming years. Canada has been significantly affected by wildfires; the 

province of British Columbia burned over 1 million hectares of forest in 2017 and in 2018 and 

cost approximately just over $600 million for both years (Government of British Columbia 

2020). The province of Alberta suffered extensive damage and fire suppression costs during the 

Fort McMurray (2016) and Slave Lake (2011) wildfires (The Conference Board of Canada 

2017). Research conducted by Stocks and Martell in 2016, stated that fire management costs 

nation-wide were on the rise. Expenditures in Canada increased from ~$300 million in 1970 to 

~$900 million in 2013. This rise in costs can be attributed to Canada’s primary practice of heavy 

suppression and fire exclusion on the landscape through aggressive resource deployment, 

referenced as initial attack (Wotton et al. 2010). This strategy is employed in part due to the 

continued expansion of the wildland-urban interface; this refers to an area where infrastructure or 

homes are inter-dispersed between wildland vegetation, and when a fire threatens or destroys 

these structures it is considered as a wildland-urban interface fire (Johnston and Flannigan 2018). 

As human development maintains its expansion into forested areas (e.g. urban/rural sprawl and 

industrial expansion) (Radeloff et al. 2005; Campos-Ruiz et al. 2018; Johnston and Flannigan 

2018), stakeholders will only increase the pressure on fire managers and governments to 

prioritize suppression activities. This in turn has the potential to heighten management costs as 

protecting these values from a wildfire threat require a greater number of resources (Stocks and 
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Martell 2016). This dilemma will only amplify in the face of climate change, another problem 

fire managers face today.  

Climate change is predicted to change the way fire interacts on a landscape. Lightning 

strike densities are predicted to increase (Romps et al. 2014), longer fire seasons are theorized 

(Wotton and Flannigan 1993), and an overall increase in extreme fire weather is indicated (Jain 

et al. 2017). These concepts and findings are especially important as the ecological framework 

that determines the spatial and temporal extents of lightning will shift as climate change 

increases its breadth on the earth’s natural systems (Romps et al. 2014; Veraverbeke et al. 2017; 

Coogan et al. 2018).  This has a potential to critically challenge provincial and national fire 

agencies and management practices and strategies due to more fire being realized on the 

landscape (Stocks and Martell 2016).  To understand the repercussions of a changing 

environment one must recognize and explore the foundational interactions of fire with its 

forested environment.  Therefore, lightning is an important component in comprehending how 

climate change is influencing fire on the landscape as it is a main driver of area burned. 

Furthermore, greater insight and research into lightning and its spatial-temporal patterns in 

Canada could provide valuable information for fire managers and researchers. It could aid in 

identifying hotspot regions within Canada that are susceptible to increases in lightning activity 

and area burned while highlighting vulnerable communities. 
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1.3 Lightning 

A thunderstorm is a naturally occurring weather phenomena created by the interaction 

between moisture in the air, atmospheric instability, and a lifting agent. Thunderstorms are 

extremely variable and all exhibit geographical variations most efficiently explained through the 

environmental conditions (ex. atmospheric conditions) they experience (Flannigan et al. 2000b; 

Todd et al. 2000; Cooray 2014).  

Lightning is an active electrical discharge created by the interaction between positive and 

negative charges in clouds (Latham and Williams 2001). Strikes are categorized by their polarity; 

polarity is the positive or negative nature of a lightning strike. When water droplets rise they can 

collide with particles of ice in the cloud, the particles that have freezing droplets are negatively 

charged. This process is more likely to occur and therefore an excess amount of negatively 

charged ions occur, due to the dipole the positive and negative ions separate resulting in positive 

ions being pulled to the top half of the cloud and the negative ions situating at the lower sections 

of the cloud (Fuquay 1982). This process generates lightning. It was summarized that for North 

America, specifically the United States that roughly 90% of lightning strikes are negative and 

10% are positive strikes (Uman 1985). For the entirety of Canada between 1999-2008 it was 

found that positive strikes comprised of 12-35% of strikes in northern regions and 7-15% of 

strikes in the summer (Burrows and Kochtubajda 2010). There are two predominant types of 

lightning: intracloud lightning (IC) and cloud-to-ground lightning (CG). Intracloud lightning is a 

discharge contained completely within the cloud that connects the negative and positive charges. 

A cloud-to-ground (CG) strike is an ionized path where ions (positive or negative) travel 

between the cloud and ground (Latham and Williams 2001).  
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Typically these strike channels can exceed temperatures of 50,000°F (27,760°C), 

voltages exceeding 200 kA with a median of 33 kA, velocities between 10-30% that of the speed 

of light and are on average 5-12 km long (Hileman 1999). Multiplicity is the number of return 

strokes in a flash of lightning; these strokes are current surges discharged during the lightning 

strike (Kochtubajda and Burrows 2010). A flash of lightning experiences between 1 to 54 

strokes; the average is 3 strokes per flash (Hileman 1999). In Canada, it was recorded that the 

monthly average stroke for negative strikes in the summer months between 1999-2008 was 

between 2-2.4 strokes (Burrows and Kochtubajda 2010).  Negative lightning strikes are 

considered to have one to several return strokes, while positive lightning strikes more commonly 

exhibit only one (Fuquay et al. 1967; Fuquay 1982; Kochtubajda and Burrows 2010).  There is 

evidence that lightning-ignited wildfires are caused primarily by long continuing currents (LCC) 

(Fuquay et al. 1967; Fuquay et al. 1972; Podur et al. 2003). Long continuing currents are when 

the stroke experiences a continuous discharge over a relatively long period of time (Latham and 

Williams 2001), roughly 4 to 542 m/s (Saba et al. 2006). Positive lightning strikes have shown to 

have a higher probability to exhibit LCC (Fuquay et al. 1967; Fuquay 1982; Flannigan and 

Wotton 1991; Saba et al. 2006; Kochtubajda and Burrows 2010; Van Wagtendonk and Cayan 

2010), and are therefore considered to be a main characteristic in starting wildfires. Kochtubajda 

and Burrows (2010) found that flashes with peak currents >100 kA accounted for ~0.9% of 

flashes in Canada between 1999-2008 and mostly were positive strikes. Van Wagtendonk and 

Cayan (2010) found that in California 40% of the negative strikes seen had some type of long 

continuing current.  Flannigan and Wotton (1991) called attention to the fact that negatively 

charged lightning occurs in greater frequencies and therefore its relationship with LCC needs 

greater consideration. Moreover, they state that not every LCC will result in a wildfire and 
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therefore great uncertainty exists concerning what characteristics of lighting are linked to 

wildfire initiation.  

There are three types of thunderstorms: single-cell, multi-cell clustering, and supercells. 

For air-mass thunderstorms which are typically single-cell storms, the thunderstorm can travel 

anywhere between 38 – 63 km/h, have a life span of roughly 5 to 25 mins (Liu and Li 2016), and 

cover an area of ~170 km2 dependent on month and climatic conditions. When looking at 

lightning strike densities, more updrafts are associated with higher discharge activity because it 

can bring the electrically charged particles higher. Although this happens with all three 

thunderstorm types, supercells and multi-cell thunderstorms are bigger and cover larger areas; 

thereby allowing more electrical conditions to take place in the cloud resulting in higher strike 

counts (Meyer et al. 2013).  

Another important aspect about lightning is dry lightning, dry lightning is defined for the 

United States as when 0.3 mm/h or less of precipitation is seen within a 72 to 96 h period after a 

lightning strike. However, this is regional dependent and therefore varies as Northeastern United 

States regions consider dry lightning to be 0.8 mm/h or less within a 2-3 days period (Vant-Hull 

et al. 2018). Ultimately, all these lightning characteristics need to be considered when looking at 

the effects of lightning-caused fire occurrences in forested areas as many variables play a role in 

wildfire initiation (Flannigan and Wotton 1991; Ordóñez et al. 2012).  
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1.4 The non-randomness of lightning and lightning-ignited wildfires 

Multiple studies have investigated the spatial aspects of lightning; it has been found that 

lightning and lightning-ignited fires tend to cluster spatially on the landscape (Vázquez and 

Moreno 1998; Vázquez and Moreno 2001). Podur et al (2003) found that wildfires aggregated in 

spatial cluster sizes of around 150-200 km in Ontario, Canada. Another analysis by Genton et al 

(2006) in Florida, found that wildfires occurred in spatial cluster groups starting at 2 km and up. 

Research by Wang and Anderson (2010) established that lightning-ignited wildfires in Alberta, 

Canada clustered spatially in groups between 50 to 130 km. Furthermore, Masrur et al (2018)  

highlighted that between 2001 and 2015 wildfires in the circumpolar Arctic bioclimatic subzones 

(Yukon, Northwest Territories, Alaska, Greenland, and Russia) exhibited spatial and temporal 

clustering. This study focused primarily on the temporal scale and looked at three different 

scales, (a) 15-year time scale, (b) Aggregation of data between May-October per analysis year, 

(c) Monthly analysis. Overall, these studies demonstrate that lightning attributed wildfires are 

clustering spatially and temporally on the landscape.  

However, uncertainty exists concerning specific variables that are influencing the spatial 

and temporal distributions. Several variables are mentioned in the literature and are considered to 

have merit in wildfire clustering; examples of these variables are mesoscale circulations (Dissing 

and Verbyla 2003), major land-water boundaries (Orville et al. 2002), fuel moisture constrained 

by dead and down fuel size as well as forest type (Renkin and Despain 1991), anthropogenic 

factors (Parisien et al. 2006), drought (Meyn et al. 2010), diurnal heating and cooling cycle 

(Burrows and Kochtubajda 2010).  

 Although multiple elements are proposed, there are some considered to be some major 

factors controlling these spatial and temporal patterns. Podur et al (2003), highlighted elevation 
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as a factor in ignition probability in Ontario, Canada, while Reap (1991), established that there 

was a positive relationship between lightning strike density and elevation below 800 m (2,624 ft) 

in Alaska. Hileman (1999), expressed limitations of whether lightning can occur at altitudes 

above 18,000 ft (5486.4 m), and Van Wagtendonk (1993), conducted a spatial analysis of 

lightning-ignited fires in Yosemite National Park that concluded elevation played a role in 

lightning and wildfire distributions. It was found that the highest percent of strikes occurred 

between 9000 and 10, 000 ft (2,953 and 3,281 m). Moreover, the largest portion of wildfires 

occurred at an elevation between 7,000 and 8,000 ft (2,297 and 2,625 m).  

Despite this, topography and local terrain features need to also be considered as they 

shape the local country which can affect the local elevation within different forested 

communities. Topography is suspected to influence convective activity (thunderstorm 

development) through differential heating (Dissing and Verbyla 2003). Topography also plays a 

role in influencing and altering substrate, topo climate and vegetation (Genet et al. 2013) as well 

as drainage, fuel moisture and vegetation growth (Mundo et al. 2013) which all affect wildfire 

initiation. Likewise, it is suspected that elevated local terrain features play a role in the spatial 

distribution of strike density (Orville et al. 2002). Lightning activity has been impacted and 

highly retailored by local terrain features, elevation, and diurnal heating (Burrows and 

Kochtubajda 2010).  

 Yet, one can look at longitudinal variation as another aspect limiting lightning 

distribution between the north-south extents of North America (Orville et al. 2002). Morissette 

and Gauthier (2008) found significant differing spatial distribution in Quebec, Canada for 

lightning strike densities between the north-south and east-west gradients. They detail that strike 

density is higher in the south and western sections of their study area, highlighting that the strike 



12 
 

densities coincided with longitudinal and latitudinal gradients. In addition, Larjavaara et al 

(2005) detected a strong north-south gradient of lightning-ignited wildfire densities in Finland.  

Vegetation is an additional component that needs to be considered.  Van Wagtendonk and 

Cayan (2010), found that bioregions were a great tool in organizing and distinguishing between 

the spatial patterns of lightning-ignited wildfires in California. They determined that strike 

densities were most prevalent in mountainous and desert regions.  Within mountainous terrain, 

lightning was associated with forests that produce heavy fuel loads. Wierzchowski et al (2002), 

found that the ecoregions of the Cordillera and Interior Plains showed substantial variation in 

lightning and lightning-ignited wildfires in Canada. They found that in British Columbia, only 50 

strikes were required to start one wildfire compared to Alberta’s 1400 strikes to one wildfire. 

This led to the suggestion British Columbia displays a high degree of spatial overlapping of 

lightning fire occurrence. They surmised that the primary variables associated with resulting in 

lightning-ignited wildfires were elevation, a severity rating, lightning strike distributions, and 

vegetation compositions. One study theorized that there is a higher ignition probability 

associated with certain vegetation types depending on their foliage cast (Latham and Williams 

2001). This is emphasized in Renkin and Despain (1991), that saw 34% of their forest study area 

in Yellowstone NP which consists of mature spruce-fir, Douglas-fir and older stands of 

lodgepole pine, accounted for where roughly 60% of lightning-caused fires occurred. Krawchuk 

et al (2006), identified that forest composition played a factor in influencing lightning-ignited 

wildfires in Alberta, Canada. They detected that the probability of ignition was greater in spruce 

dominated landscapes as opposed to deciduous forests. Vegetation is considered to differ in 

terms of its fire intensity seen because each forest type has different characteristics associated 

with a fuel type. These various traits affect how a stand burns; some examples of these traits are 
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the foliar moisture content of a stand particularly between spring and summer, crown base height 

of a typical stand, understory growth and crown bulk densities (Wagner 1977).  

Besides vegetation, climate is a major variation controlling spatial extents of lightning-

caused fires. Reap (1991), suggested that the formation of thunderstorms in Alaska were a result 

of large-scale static instability from local wind and moisture. Dissing and Verbyla (2003), 

established that most lightning-ignited wildfires are initiated by localized air mass thunderstorms 

in Alaska. These storms are driven by mesoscale properties that all influence convection. 

Examples of these properties are albedo, surface roughness, sensible heat flux, and topography. 

Larjavaara et al (2005), observed that Finland experiences differences between its southern and 

northern ranges in terms of wildfires seen in the regions, which could be attributed to climate-

caused variations in fuel moisture and lightning probability. Krawchuk et al (2006), detected that 

weather conditions played an extensive role in lightning-ignited wildfires in the boreal forests of 

Alberta, Canada. It was determined that weather (fuel moisture conditions) explained a large 

proportion of the variation in the ignition probability. Wang and Anderson (2010), identified that 

lightning-ignited wildfires in Alberta were further influenced by thunderstorms, mainly air mass 

thunderstorms. Landscapes and their associated fire regimes can be regulated by various factors 

such as regional climates, landscape variations in physiography and ecosystem structures 

(Kasischke et al. 2010). Veraverbeke et al (2017), constituted that for the Northwest Territories 

and Alaska, tree cover and climate variables (temperature, precipitation, and convective 

precipitation) explained 56 % of the spatial variability for lightning density. Specifically, 68% of 

the spatial variance of lightning density in Alaska is due to the interactions between the climate 

and tree cover; suggesting that surface energy fluxes from the forest influence the probability of 

lightning. All in all, climatic conditions play a major role in wildfire initiation and have a large-
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scale influence on a magnitude of associated variables. In Canada, climatic variables are easiest 

documented and recorded as part of the Canadian Forest Fire Danger Rating (CFFDRS) System, 

specifically the subsystem of the Fire Weather Index (FWI) System. This is due to that fact that 

the four primary inputs of the FWI system are temperature, precipitation, wind, and relative 

humidity (Van Wagner 1987). Flannigan and Wotton (1991), summarized that the DMC is one 

of the most important indicators in explaining lightning-ignited forest fires in northwestern 

Ontario, Canada. Podur et al (2003), found that elevation and a DMC exceeding 20 were factors 

in ignition probability in Ontario, Canada. It was determined that higher DMC and FFMC values 

result in higher fire occurrences leading to the conclusion that drought conditions in the top 

layers of soil influence the number of lightning-ignited wildfires that are realized on a landscape 

(Krawchuk et al. 2006; Portier et al. 2019). As a result, using the indices and codes calculated 

from the FWI system can be a useful tool in determining wildfire initiation.  
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1.5 Climate change 

Climate change and its associated impacts have been a concern for researchers for 

decades. This concern stems from the fact that a climate an ecosystem experiences controls its 

structures and systems; and the rate at which the climate is changing due to anthropogenic forces 

is unprecedented and unquantified (Wotton and Flannigan 1993; Weber and Stocks 1998; Stocks 

et al. 2000). Multiple studies have analyzed and depicted the potential impacts forests could 

experience in an environment influenced by climate change. Price and Rind (1994) estimated 

that in a 2 x CO2 climate change scenario, the US could see the annual mean lightning fires 

increase by 44% and the mean annual area burned increase by 78%. Weber and Stocks (1998), 

stated that all projected climate scenarios concerning the boreal forest generally predicted a 

warmer, drier environment leading to longer fire seasons and increased fire severity due to the 

fuels being directly impacted. They also highlighted the lack of understanding and uncertainty 

around carbon storage and soil-plant relations in a changing ecosystem.   

Research by Flannigan et al (2000a), highlighted the impact climate change could have 

on the ecosystems of the United States by increases in area burned, fire intensity and severity, 

thereby shifting the fire regime. Another study by Weber and Flannigan (1997), proposed that 

the far-reaching impacts of climate change on the boreal forest systems and functions could be 

astronomical due to the unprecedented rate at which the climate is shifting. This is because fire 

behaviour responds quickly to changes in weather components. Gillett et al (2004), determined 

that Canada had experienced increases in area burned over three decades since 1970. This trend 

is likely a result of warming temperatures during the fire season that could be attributed to 

anthropogenic greenhouse gases and sulfate aerosol emissions over the last eighty years. Alaska 

has also seen increases in the frequency of large fire years. This is especially visible during the 
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late-season; leading to higher rates of burning due to large extreme fire events in remote areas 

that are too massive to control (Kasischke et al. 2010). Flannigan et al (2016), indicated that 

increases in temperature will lead to drier fuels which will allow fuels to become more receptive 

to ignition and sustain more vigorous fire spread. In addition, to combat this dryness an even 

greater amount of precipitation would be needed to offset the overall effects of climate change. 

Specifically, an increase in precipitation by 15% is needed to offset each subsequent 1°C rise in 

temperature. Another study by Wotton et al (2017), found similar results of increases of drier 

fuels and fire behaviour in the future starting from 2020 to the end of the century. Moreover, 

they found that crown fires were more likely to occur, leading to days where higher fire 

intensities could be experienced causing problems and exceeding suppression capabilities. 

Portier et al (2019), identified that fire size and fire occurrence is regulated by soil moisture 

which is highly sensitive to temperature shifts. However, as climate change intensifies it will 

continue to modify and reshape the spatial extents of lightning thereby effecting climates, fire 

regimes and wildfires on the landscape (Whitman et al. 2015).   

 Hanes et al (2019), established that in Canada area burned has been on the rise since 

1959; this increase has been primarily observed in Western Canada where there has been 

increases in large lightning-ignited fires. Veraverbeke et al (2017), predicted that lightning 

frequency and convective storm activity will increase in North America by the mid twenty-first 

century. In recent years higher records of lightning-ignitions have been observed and evidence 

has pointed to higher instances of lightning-ignited fires in the northern boreal forest 

(Veraverbeke et al. 2017; Coogan et al. 2018). Romps et al (2014), surmised that with each 1 °C 

global-mean of warming, lightning strike densities will increase by 12%. Whitman et al (2015), 

summarized that ignition cause, burn severity and fire size are highly driven by climate.   
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As climate change continues to alter the environment, biophysical changes aren’t the only 

concern. It is theorized that changes in moisture conditions have the potential to lead to higher 

rates of escaped fire from suppression efforts, resulting in fire agencies unable to manage and 

cope with suppression demands in the future (Portier et al. 2019). Suppression resources may 

reach their threshold for effectiveness leaving values at risk to destruction from wildfires. This 

will require a need to develop and consider alternative management methods, if not, then fire 

managers and their agencies may face crisis management when dealing with fires in the face of a 

changing climate (Wotton et al. 2017). As the need for more suppression and management 

becomes apparent, funding and monetary constraints will be limiting and difficult for fire 

operations (Mitsopoulos et al. 2016). Ultimately, as the climate continues to be affected and 

change its ecosystems functions and structure it can render ecological communities and urban 

areas vulnerable to wildfires events. This reshaping of fire regimes and how fire interacts on the 

landscape is key in understanding how to adapt for the needs of research, management, and 

policy.  

1.6 Research Objective  

This study looks to answer two questions: (1) Do lightning-ignited wildfires exhibit 

distribution patterns over space and time on the Western Canada landscape, between 1981-2018, 

and (2) Characterize these spatial and temporal distributions of lightning fires by; i) Examining 

specific locations of high and low values exhibiting clustering, ii) Examining trends associated 

with these high and low values, iii) Examining distances (km) of clustering occurring in the data, 

iv) Examining these high and low values when looking at different months of the year? 
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Chapter 2 

Data and Methods 

2.1 Study Area 

This study was performed in the forested areas (~ 4,370,205 km2) of the provinces of 

British Columbia, Alberta, Saskatchewan, Manitoba, the Territory of the Yukon, and the 

Northwest Territories referred to hereafter as Western Canada (Figure 2.1). This study region 

was chosen in part due to research by Hanes et al (2019) that found significant trends in total 

area burned, number of large fire events and number of lightning-caused wildfires (≥ 200 ha) to 

be increasing in the western provinces and territories of Canada. This piqued an interest in 

wanting to investigate further in Western Canada concerning wildfire. Moreover, selecting June, 

July and August for the seasonal component in this study was due to Coogan et al. (2018) that 

found lightning fires (≥ 2 ha) peak during June, July and August, as well as trends in the number 

of lightning fires increased by ecozones.  
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    Figure 2.1 Outline of the study area comprised of all provinces and territories considered.  

 

2.2 Data  

Wildfire Data 

The wildfire point data used in this research was obtained from the Canadian National 

Fire Database (Canadian Forest Service 2020) and assorted as follows. All wildfire points that 

were attributed to either human and or unknown causes were excluded from the analysis. 

Therefore, only lightning caused wildfires were looked at, moreover only point data occurring 

between 1981 to 2018 were included in the analysis. We further subdivided the data by only 

considering wildfires that occurred between April 1st – September 30th as is considered the 

official wildfire season in the majority of western provinces of Canada (Government of Alberta 

2020; Government of British Columbia 2020). Moreover, the months of June, July and August 
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were analyzed as Coogan et al (2018) found increases in trends for lightning fires in those 

months within their study. This was also found in the data analyzed, where many lightning fires 

considered (~95 %) in this analysis occurred within these three months throughout the entire 

study period (Figure 2.2).  

 

          Figure 2.2 The total number of lightning caused wildfire points separated by month from 

1981-2018 for Western Canada.   

 

 Only point data was analyzed and all wildfire points within the specific constraints of 

our study (i.e. Time period and seasonal component) were considered. A thing to note, we did 

not disqualify points from our study based on area burned as other studies have done, such as 

Hanes et al (2019) and Robinne et al (2016) who only considered data points (wildfires) that 

burned more than 200 ha, and Coogan et al (2018) who only considered data points (wildfires) 

that burned more than 2 ha. Therefore, a total of 97,921 points were analyzed and considered a 
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large enough data set to provide valuable and representative results. For these reasons, this 

analysis will only consider the number of fires (NOF). All point data within the prairie ecozone 

was not considered in this analysis, it was excluded due to the highly altered habitat within this 

region of large farm and croplands as well as human settlements (Robinne et al. 2016).  

Table 2.1 The total number of lightning caused fire data points based on their area burned from the 

Canadian National Fire Database, between 1981-2018 and between April to September in Western Canada. 

Area burned Number of data points 

All 97,921 

> 2ha 24,084 

> 200 ha 7,633 

 

Some limitations to note, the Canadian national fire database is a compilation of 

provincial and territorial data into one centralized dataset; the lack of one uniform system has let 

to inherent data quality issues especially concerning older wildfire records. These older records 

as well as lightning-caused fire records possess inconsistencies due to under or lack of reporting 

from the fires occurring in northern or remote areas (Stocks et al. 2003). Furthermore, the 

classification of lightning-ignited wildfires may not be as accurate, this is due to mislabeled fires 

and therefore inflation and or deflation of data can occur (Podur et al. 2003; Stocks et al. 2003; 

Larjavaara et al. 2005; Bridge et al. 2005; Hanes et al. 2019).  It has been indicated that data 

reported for fires under 200 ha are subjected to complications surrounding accuracy and 

inconsistency between different fire zones due to their differing policies and fire management 

practices (Bridge et al. 2005). Even with these caveats, this research is concerned about wildfire 

initiation on the landscape and therefore looking at the entire dataset is and can be valuable in 

provide details about the spatial and temporal patterns of lightning fires on the landscape. 
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2.3 ArcGIS Spatial and Temporal Analysis 

 Spatial data has inherent data quality issues associated with it, especially when 

conducting spatial analysis. These errors include issues in accuracy, scope, quality, and 

consistency; however, statistical analysis can eliminate or dampen these issues. Furthermore, 

major advances have occurred within recent years to improve data quality. Some of these 

advances have been undertaken in spatial data programs (Devillers et al. 2010) and are discussed 

below. This study looks to use a spatial data program, ArcGIS 10.7 (ESRI 2020)  to conduct 

spatial analysis.  

How to analyze spatial patterns 

 There are multiple issues and concerns about spatial data when conducting spatial 

analysis. An important concept to discuss when conducting research is scale. Scale is defined as 

a function of both extent and grain. Grain is considered the highest quality of spatial resolution 

that can be obtained within a given dataset. Extent is the size of the study area or the time of the 

study period (Turner et al. 2001). To determine an appropriate scale to use, consideration of 

one’s research goals and objectives need to be assessed. The objectives of this thesis are: (1) Do 

lightning-ignited wildfires exhibit distribution patterns over space and time on the Western 

Canada landscape, between 1981-2018, and (2) Characterize these spatial and temporal 

distributions of lightning fires by; i) Examining specific locations of high and low values 

exhibiting clustering, ii) Examining trends associated with these high and low values, iii) 

Examining distances (km) of clustering occurring in the data, iv) Examining these high and low 

values when looking at different months of the year? 

There is an inherent link between lighting, climate, and lightning-initiated wildfires. 

There are finer (i.e. small) scale climatic conditions that influence weather patterns and 
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connectivity. However, this research looks to conduct a study over a large area and time-period 

in the hopes to capture larger spatial and temporal patterns of lightning-ignited wildfire. This is 

considered a broader scaled (i.e. large) approach; a broad scale is defined as encompassing a 

larger area to provide a more generalized spatial analysis of the desired study landscape (Pearson 

1993; Turner et al. 2001). The modifiable areal unit problem, first mentioned by Openshaw and 

Taylor (1979), outlines two major issues when spatial data is aggregated over space. The first 

concern is about zone sizes, as you change the size and shape of your zone your observed pattern 

changes. This indicates that models are scale dependent, meaning that a model applied at one 

scale may not be suitable at another scale therefore changing the observed spatial pattern seen 

(Lloyd 2014). The second issue is known as the ecological fallacy, this references issues that 

arise when making inferences about the nature of individuals from the groups those individuals 

are a part of (Robinson 1950). This concerns our study as this can produce misinterpretations of 

the results about individuals when looking at landscape spatial scale events, and therefore 

maintaining the same scale for all the data and analysis is crucial. To account for this bias, 

multiple regression (Turner et al. 2001) can be employed as well as Moran’s I (Moran 1950) to 

test for spatial autocorrelation of the data. Although there are more tools out there to test for bias, 

creating and striving for robust results in terms of the data’s sensitivity to changes in shapes and 

sizes of zones is also key (Lloyd 2014). It was summarized well by Openshaw (1977) when 

discussing solutions to this problem that spatial zones need to be able to represent both mapping 

of a model on to the data and vice versa. This can create a robust model overcoming fundamental 

spatial scale-dependent issues.  

To deal with the spatial scale issues stated above within ArcGIS 10.7 (ESRI 2020), all 

point data was aggregated into a hexagon vector layer. The hexagon shape was employed as it is 
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less ambiguous than rectangles and provides a better visualization of the data. Hexagons are less 

ambiguous by provide a foundational platform for visual understanding and education about 

large amounts of synthesized data (Bodzin and Anastasio 2006), while also when computing 

cluster statistics, a hexagon models the data dispersal more accurately due to its shape (Birch et 

al. 2007). Therefore, extensive pre-analysis was conducted to determine the optimal grain (hexel) 

size to be used to create a robust and best fitting model. In order to determine an accurate hexel 

size, finding a compromise between the loss of information due to averaging while also 

representing adequate environmental variability is vital (Parisien et al. 2011; Robinne et al. 2016; 

Johnston and Flannigan 2018).  

Hexagon  

For the purposes of this analysis, each hexagon (hereafter hexel) contains a 30 km-width 

(77900 ha) and all hexagons together generated a hexagon vector grid (Figure 2.3) using the tool 

“Repeating shapes for ArcGIS” (Jenness 2012). This sized hexel was found to provide more 

robust results when considering the broad-scaled approach of the study during the exploratory 

analysis phase. Spatial data preparation and analysis was done using ArcGIS 10.7.1 (ESRI 2020) 

and R 3.1.1 (Team 2005). 
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Figure 2.3 Location of study area overlaid with hexagon grid used in analysis  

 

All data was projected using the Canada Lambert Conformal Conic coordinate system. 

Two types of maps are produced using two different data mining toolkits in ArcGIS. The 

optimized hotspot analysis which is based on the Getis-ord Gi* statistic, and the space-time data 

mining toolbox with the Space-Time Cube and the Emerging Hotspot analysis tools is based on 

both the Getis-Ord Gi* and the Mann-Kendall statistic. These two analyses are described as 

follows. 

Optimized Hotspot Analysis 

A hexagon grid was created for each study year with each hexel containing a centroid. 

Moreover, a hexagon grid was created for each analysis year for the months of June, July, and 

August. Then all the lightning fire data points were segregated by year and or month and each 
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year/month was spatially joined to the hexagon layer based on the aggregation of point counts 

per hexel. A distance band limit of 120 km was added to limit the k-means neighboring function 

between adjacent polygons; this was done to limit overfitting of data to the model. A distance 

band limit of 120 km was chosen as air-mass thunderstorms cover roughly 170 km2 (Liu and Li 

2016). This provided the basis of the analysis for the hotspot tool which analyzed each hexel and 

created a map that shows hexels in the 99th %, 95th %, and 90th % for significant clustering based 

on a z-score and p-value. All maps are displayed by their z-score computed.  

Space-Time Cube & Emerging Hotspot Tool 

All wildfire point data was inputted into the aggregate space-time cube to create a file 

used in the emerging hotspot analysis. The space-time cube counts each data point per hexel per 

year and stores it in a cube where it determines the counts of points in each hexel over the study 

period. The emerging hotspot tool is used where it computes the Getis-Ord Gi* to determine hot 

and cold hexels and the Mann Kendall statistic looks at the Getis-Ord Gi* z-scores and 

determine whether the hexel trends are increasing or decreasing. Maps are then generated that 

exhibit hexel clustering and trend statistic z-scores which are displayed by the st. deviation.  

Moreover, a space-time cube and emerging hotspot analysis was created for each analysis year 

for the months of June, July, and August.  

 

2.4 Spatial Statistics  

  This thesis follows several previous studies that have looked at and analyzed spatial-

temporal point and polygon processes. A spatial-temporal point process is a random collection of 

points, where each point represents an event in space and time. These spatial-temporal point 

processes are referred to as spatio-temporal point patterns (Genton et al. 2006). A spatio-
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temporal analysis can look at both space and time within non-point data, such as polygons 

(Delmelle et al. 2013). This study will look at both point patterns and non-point analysis of 

lightning wildfire ignitions in Western Canada, which consists of 97,921 wildfire points between 

the period of 1981-2018.  

 Podur et al (2003) analyzed spatial patterns of lightning-initiated wildfires in Ontario, 

Canada using spatial point statistical methods. They applied the statistical tool of the K-function 

to detect spatial dependence and the kernel estimation to study the distributions of lightning fires. 

Furthermore, the kernel estimation provided a visual presentation of the clustering pattern within 

the data. Genton et al. (2006) also analyzed spatio-temporal patterns of lightning and human 

wildfire ignitions in Florida using spatial point statistics. They used the nearest-neighbors 

statistic and the K and L-functions. Wang and Anderson (2010) looked at spatial and temporal 

distributions of lightning and human caused forest fires in Alberta from 1980-2007. They 

employed the K-function, L-function, and the kernel estimate of intensity. The K and L-functions 

can assess the distribution patterns of the data, while the kernel estimate can generate maps of 

estimated spatial intensity. They identified hotspots in Alberta through the kernel estimates of 

locations where human or lightning fires occur frequently. Coogan et al (2018) used 90%, 95% 

and 99% confidence interval thresholds for their analysis as well as the median to evaluate their 

trends in the data. Moreover, they used the Mann-Kendall statistic to evaluate trends in the data 

for human and lightning-caused wildfires >2 ha from 1981-2018. Jain et al (2017) also used the 

Mann-Kendall statistic with the Theil-Sen slope to assess trends in the data in the context of 

extreme fire weather and fire season length. Hanes et al (2019) looked at area burned and NOF in 

Canada using the Mann-Kendall trend statistic to test for possible serial correlation in the data 

and they used a bootstrap hypothesis test for significance. Masrur et al (2018) looked at 
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circumpolar spatial and temporal patterns of wildfire activity in the Arctic tundra from 2001-

2015. They analyzed the spatial patterns of the data by employing the spatial tools of 

clusters/hotspot, spatial outliers (Moran’s I) and spatial association (LISA autocorrelation 

measures) in ArcGIS 10.7 (ESRI 2020). They also looked at temporal patterns using correlation 

and regression statistics at three temporal scales, (a) 15-year period, (b) 6-month periods, (c) 

monthly periods. Robinne et al (2016) looked at area burned in Alberta, Canada in ArcGIS 10.7 

(ESRI 2020) using hexels to display their biophysical model (in s.d. units) and area burned.  

This research looks to build on these spatio-temporal patterns and point process statistics 

used, and looks to apply this to Western Canada, a larger spatial analysis over a longer temporal 

period (1981-2018). We looked to analyze point patterns as well as conduct broader (hexel) 

spatial statistics to detect lightning-initiated wildfire patterns.  

 A typical data analysis establishes its study with a test for complete spatial randomness 

(CSR), coupled with thereafter modelling the lack of spatial randomness. The nearest-neighbors 

statistic and the Kinhom(r) k-function were used, which tests a data’s spatial distribution. The 

Getis-Ord Gi* allows you to visually present the spatial components of the data, while the Mann-

Kendall trend statistic provides insight into the temporal trends of the data. In ArcGIS 10.7 

(ESRI 2020), the optimized hotspot tool (Getis-ord Gi* statistic) and the space-time cube (Getis-

ord Gi* and Mann-Kendall statistic) maps provide a visual pattern of the spatial and temporal 

features of the data. Moreover, the Moran I tool was used to test for spatial autocorrelation of the 

data. These statistics are discussed in-depth below. 
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(A)Spatial Point Pattern Statistics 

K-Function 

 The K-function is a spatial descriptive statistic used to detect deviations from spatial 

homogeneity at different scales. K-function is defined as the number of extra points within 

distance t of a point calculated as follow (Dixon 2002):  

1( ) (.)K t E−=  

where  is the density (mean number of points per unit area), E(.) is the expected value of the 

number of extra points within distance t of a randomly chosen event. Because this data is 

inherently spatial and evaluating the spatial model is key, employing the function L(t) to test 

complete spatial randomness (CSR) the Ripley’s K-function (Dixon 2002), edge effect is used. 

The Ripley’s edge correction was used to account for the bias associated with function and the 

shape of the study area. L(t) function is defined as:   

�̂�(𝑡) = [�̂�(𝑡)/𝜋]1 2⁄  

Under CSR, ( )L t t= . To show clustering, one can graph L(t) against t. Because incident point 

data of lightning-ignited wildfires are being analyzed for their spatial pattern at various distances 

and spatial scales, patterns vary, indicating the importance of spatial processes at work.  

Therefore, the inhomogeneous K-function was used to account for the spatial interaction of the 

point pattern (interpoint interactions) due to the data sets non-parametric properties. The 

inhomogeneous K-function, Kinhom(r) is a generalization of the “ordinary” K-function and the 

bootstrap confidence bands for the summary function was calculated to provide a lower and 

upper confidence band. The equation is defined as follows (Baddeley et al. 2000); 
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�̂�𝑖𝑛ℎ𝑜𝑚(𝑟) = (1/𝐴) ∑ ∑
1{𝑑𝑖𝑗 ≤ 𝑟}𝑒(𝑥𝑖, 𝑥𝑗, 𝑟)

𝜆(𝑥𝑖)𝜆(𝑥𝑗)
𝑗𝑖

  

Where A is a constant, dij is a constant denominator, xi and xj are the distances between points i 

and j and e(xi,xj,r) is an edge correction factor. The edge correction is Ripley’s (isotropic 

correction) defined as; 

e(𝑥𝑖, 𝑥𝑗, 𝑟) =
1

𝑎𝑟𝑒𝑎(W)g(x𝑖x𝑗)
 

Where g(xixj) is the fraction of the circumference of the circle with center xi and radius 

 ||𝑥𝑖 − 𝑥𝑗|| which lies inside the window (W). If the hypothesis of complete spatial randomness 

(CSR) is rejected, then the data’s tendency is towards clustering. To calculate Kinhom(r) in R 

3.1.1 (Team 2005), the package spatstat is used due to its functionality in handling non uniform 

study areas and its use at indicating data clustering at various spatial scales. 

(B)Spatial Statistics 

Average Nearest Neighbour ratio & Nearest Neighbour distance 

 The average nearest neighbour ratio (ANN) measures the Euclidean distance between 

each feature centroid and its nearest neighbour’s centroid location. It averages all these distances 

and provides a nearest neighbour ratio. If the ratio is less than 1, then the average distance is less 

than the average for the hypothetical and the point data is showing clustering patterns. If the ratio 

is greater than 1, then the average distance is greater than the hypothetical and the point data is 

showing dispersal patterns. A p-value and z-score are also computed to provide evidence of 

statistical significance of the patterns indicated by the nearest neighbour ratio (Clarke and Evans 

1954; Cover and Hart 1967; Bailey and Jain 1978; Pinder et al. 1979; Ebdon 1980): 
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Where ED is the expected mean distance for the features given in a random pattern: 
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id  equals the distance between feature i and its nearest neighboring feature, n is the total number 

of features, and A is the area of a minimum enclosing rectangle around all features, or its user-

specified area value.  

The nearest neighbor z-score statistic is calculated as: 

𝑧 =
�̅�𝑂 − �̅�𝐸
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To calculate NN statistic and distances in R 3.1.1 (Team 2005), the package spatstat and 

SpatialEco was used due to their functionality in handling inherently spatial data and their use at 

indicating data clustering at various spatial scales.  
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Getis-ord Gi* statistic 

 The Getis-ord Gi* statistic was used to determine significant clustering patterns of 

lightning-ignited wildfires within the study area per year. The Getis-ord Gi* analysis, tests 

spatial clustering of high and low values compared to its surrounding features; it characterizes 

either the high or low clustering of lightning-ignited wildfires within the study area. The Gi* 

statistic compares the local sum for each point i and its neighbors to the sum of all points, which 

is computed as follows (Ord and Getis 1995):  
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where i is the subject feature, jx is the coordinates in space for one of the neighboring feature  j, 

ijw is the spatial weight between subject i and the neighboring subject j determine by the K 

nearest neighbor statistic (i.e., each feature must have 5 neighbors), X  is the average distance 

value between all features within the study area per year, n is the total number of features within 

the study area per year, and S is the standard deviation of the entire study area per year given by:   

𝑆 = √
∑ 𝑥𝑖𝑗𝑛

𝑗=1
2

𝑛
− (�̅�)2 

Gi* is calculated as a sum of the differences between individual values and the mean of all 

individuals; therefore, Gi* is a standard normal distribution z-score. Gi* produces a statistically 

significant result if the local sum and the expected sum are too largely different to be caused by 

random chance. Positive and large Gi* indicate “hotspot areas” of data clustering and low 

negative values indicate “cold spot areas” of data exhibiting no pattern or dispersal patterns on 
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the landscape. Because this statistic was based on the K nearest neighbors, we ensured during the 

analysis that each point possessed at least one neighbor to be considered a part of a cluster in the 

analysis. 

Mann-Kendall Statistic  

 The Mann-Kendall trend statistic is a non-parametric rank correlation test between the 

rank observations and their time sequence which is computed as a test statistic S given as follows 

(Mann 1945; Kendall 1975): 

𝑆 = ∑ ∑ 𝑎𝑖𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 

where  𝑎𝑖𝑗 = sgn(𝑥𝑗 − 𝑥𝑖) = (

1 𝑥𝑖 < 𝑥𝑗
0 𝑥𝑖 = 𝑥𝑗

−1 𝑥𝑖 > 𝑥𝑗
) 

ix and jx are the rank of observations ith and jth values of the series, n is the length of the series. 

Positive value of S indicates an increase in trend while a negative value of S indicates a decrease 

in trend. If S is 0 then there is no trend detected. We applied the Mann-Kendall trend statistic to 

the lightning-ignited wildfire data set to test the trends in data. This statistic was employed due to 

its lack of requirements for data having a normal distribution (normality), as wildfire data is 

highly zeroed. A Pre-whitening procedure was used to account for type 1 errors. This process 

entailed using the nonparametric block bootstrapping and bias corrected prewhitening method 

and a modified Mann-Kendall test to account for type 1 errors and serial correlation in the data 

(Hamed 2009) using the modifiedmk package in R (Team 2005). The theil-sen slope was also 

calculated for the trend line.  
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 In ArcGIS, a space-time cube was generated, and the emerging hotspot tool was used to 

identify the trends in clustering of the hexels. The space-time cube is generated by aggregated 

points into hexels, a count of data points that fall in each hexel per year for the entire study area 

and study period is calculated. The emerging hotspot analysis tool was used to display the spatial 

trends of the data over time. The clustering patterns of the hexels are analyzed over time by using 

the space time cube created as its input and conducts the Getis-Ord Gi* statistic for each hexel. 

The hot and cold trends detected are then evaluated by the Mann-Kendall statistic to determine 

whether those trends are increasing or decreasing over time. This produced a visual map in 

ArcGIS and is displayed in the results (Terrell and Scott 1985; Shimazaki and Shinomoto 2007; 

ESRI 2020).  

Moran’s I  

 Moran’s I is a correlation coefficient that measures overall spatial autocorrelation of a 

data set based on a given set of features and its associated attributes. It then evaluates whether 

the pattern being exhibited by the data is clustering, dispersal or random. It calculates a Moran’s 

I Index value, a z-score and a p-value, equation is given as follows (Moran 1950; Cliff and Ord 

1981; Anselin 1995; Ord and Getis 1995);  

𝐼 =
∑

𝑖 = 𝑛
𝑖 = 1

∑ 𝑤𝑖𝑗(𝑥𝑖 − �̅�)(𝑥𝑗 − �̅�)
𝑗=𝑛
𝑗=1

∑ (𝑥𝑖 − �̅�)2
𝑖=𝑛

𝑖=1

− 
n

𝑆𝑜
  

 

where  𝑆𝑜 = ∑
𝑖 = 𝑛
𝑖 = 1

∑ 𝑤𝑖𝑗
𝑗=𝑛
𝑗=1  
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x is the variable of interest, �̅� is the mean of x, n is the number of spatial units indexed by i and j, 

𝑤𝑖𝑗 is a matrix of spatial weights whereby convention, 𝑤𝑖𝑗 = 0. For a null hypothesis of no 

spatial autocorrelation, the expected value is; 

𝐸(𝐼) =
−1

𝑛 − 1
 

Under the assumption of normality, the variance is given as; 

 

𝑉𝑎𝑟𝑅(𝐼) =
({𝑛⌊(𝑛2 − 3𝑛 + 3)𝑆1 − 𝑛𝑆2 + 3𝑆𝑜

2⌋} − {𝑘⌊(𝑛2 − 𝑛)𝑆1 − 2𝑛𝑆2 + 6𝑆𝑜
2⌋})

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)𝑆𝑜
2 − 𝐸𝑅(𝐼)2 

 

where  𝑆1 =  
∑

𝑖=𝑛
𝑖=1

∑ (𝑤𝑖𝑗+𝑤𝑗𝑖)2𝑗=𝑛
𝑗=1

2
,  

and 𝑆2 =  ∑ (𝑤𝑖. +𝑤. 𝑖)2𝑖=𝑛
𝑖=1  The sum of the (ith column plus ith row) 2 of weight matrix. 

𝑘 =  
[∑ (𝑥𝑖−�̅�)4/𝑛𝑖=𝑛

𝑖=1 ]

[∑ (𝑥𝑖−�̅�)2/𝑛𝑖=𝑛
𝑖=1 ]

2    This indicates the sum of each value within the matrix minus the mean. 

 

The standard deviation and the standard z-score of I is given as; 

𝑆𝐷𝑅0(𝐼) =  √𝑉𝑎𝑟𝑅0(𝐼)                                     𝑧 =  
(𝐼 − 𝐸0(𝐼))

√𝑉𝑎𝑟𝑅0(𝐼)
 

I is given as values ranging between -1 to +1 where values near -1 indicate a negative spatial 

autocorrelation, values near +1 indicate positive spatial autocorrelation and values near 0 

indicate no spatial autocorrelation.  

To account for non-normal data, the Monte Carlo approach was used. A Monte Carlo test 

randomly assigns attribute values to polygons and for each permutation a Moran’s I is computed. 
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The output is a sample distribution of Moran’s I under the null hypothesis that values are 

randomly distributed across the entire study area. The observed Moran’s I is then compared to 

the sampling distribution and a p-value is computed for significance. To calculate Moran’s I and 

the Monte Carlo simulation functions in R 3.1.1 (Team 2005), the packages spdep and sp was 

used due to its functionality in handling inherently non normal and spatial data.  
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Chapter 3 

Results 

3.1 Spatial point pattern statistics 

3.1.1 Getis-Ord Gi* Statistic (Hotspot Tool) in ArcGIS  

All thirty-seven years of data were aggregated together and shown in Figure 3.1, to 

display one map that highlights the Getis-Ord Gi* analysis over the entire 37-year period. This 

was then conducted for the specific three months (June, July, and August) for all thirty-seven 

years and shown in Figure 3.2, 3.3 and 3.4 respectively. The blue indicates cold clustering and 

red indicates hot clustering of hexels with 90% confidence over the thirty-seven-year period.  

Moreover, all aggregated data points into yearly hexel layers are shown in Figure 3.5, 

and for the months of June, July, and August per year was computed into hexel layers, shown in 

Figure 3.6, 3.7, and 3.8 respectively, where the Getis-Ord Gi* statistic was calculated for each 

hexel and is displayed by the calculated z-score. A p-value and z-score of significance for 

clustering or dispersal patterns was computed. The orange hexels indicate positive and 

significant z-scores at the 90, 95 and 99% confidence intervals. The light grey hexels indicate 

non-significant z-score values. The blue hexels indicate significant negative z-scores at the 

90,95, and 99% confidence intervals. Positive z-scores indicated significant spatial clustering of 

the data, where the negative z-scores signify significant dispersal patterns of the data. The prairie 

ecozone was excluded and is shown as white hexels.  
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Figure 3.1: Getis-ord statistic computed for all years (1981-2018) for lightning-ignited wildfires in Western 

Canada. Red denotes significant (>90% confidence) clustering of hot spots, blue denotes significant (>90% 

confidence) clustering of cold spots and grey indicates not significant clustering.  
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Figure 3.2: Getis-ord statistic computed for the month of June for all years (1981-2018) for lightning-ignited 

wildfires in Western Canada. Red denotes significant (>90% confidence) clustering of hot spots, blue denotes 

significant (>90% confidence) clustering of cold spots and grey indicates not significant clustering.  
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Figure 3.3: Getis-ord statistic computed for the month of July for all years (1981-2018) for lightning-ignited 

wildfires in Western Canada. Red denotes significant (>90% confidence) clustering of hot spots, blue denotes 

significant (>90% confidence) clustering of cold spots and grey indicates not significant clustering.  
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Figure 3.4: Getis-ord statistic computed for the month of August for all years (1981-2018) for lightning-

ignited wildfires in Western Canada. Red denotes significant (>90% confidence) clustering of hot spots, blue 

denotes significant (>90% confidence) clustering of cold spots and grey indicates not significant clustering.  
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Figure 3.5: Getis-ord statistic computed for lightning-ignited wildfires for Western Canada by year, 1981-

2018.  Each graph is represented by its z-score for significance, where orange denotes significant positive z-

scores at 90, 95 and 99% confidence intervals. Gray indicates no significant z-score, blue signifies significant 

negative z-scores at 90, 95, and 99% confidence intervals and white indicates that it was excluded from the 

analysis.  
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Figure 3.6: Getis-ord statistic computed for lightning-ignited wildfires in June for Western Canada by year, 

1981-2018.  Each graph is represented by its z-score for significance, where orange denotes significant 

positive z-scores at 90, 95 and 99% confidence intervals. Gray indicates no significant z-score, blue signifies 

significant negative z-scores at 90, 95, and 99% confidence intervals and white indicates that it was excluded 

from the analysis.  
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Figure 3.7: Getis-ord statistic computed for lightning-ignited wildfires in July for Western Canada by year, 

1981-2018.  Each graph is represented by its z-score for significance, where orange denotes significant 

positive z-scores at 90, 95 and 99% confidence intervals. Gray indicates no significant z-score, blue signifies 

significant negative z-scores at 90, 95, and 99% confidence intervals and white indicates that it was excluded 

from the analysis.  
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Figure 3.8: Getis-ord statistic computed for lightning-ignited wildfires in August for Western Canada by 

year, 1981-2018.  Each graph is represented by its z-score for significance, where orange denotes significant 

positive z-scores at 90, 95 and 99% confidence intervals. Gray indicates no significant z-score, blue signifies 

significant negative z-scores at 90, 95, and 99% confidence intervals and white indicates that it was excluded 

from the analysis. 
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3.2 Temporal statistics in ArcGIS 

3.2.1 Temporal Statistic (Emerging Hotspot Tool) in ArcGIS  

 The Mann Kendall statistic computed per hexel based on the Getis-Ord Gi* statistic for 

the number of lightning wildfires over the 37-year study period and study area is displayed in 

Figure 3.9. Each hexel computed a tau trend statistic, p-value and z-score to indicate if the trend 

was significant or not. The map is displayed by the standard deviation of the mean of each hexels 

z-score, where blue indicates a negative z-score and orange indicates a positive z-score. Z-scores 

that are <-1.8 and -1.8 to -1.5 indicate significant (negative) decreasing temporal trend scores of 

hexels, while >2.5, 2.2 to 2.5, 1.8 to 2.2 and 1.5 to 2.2 z-scores indicate significant (positive) 

increasing temporal trend scores of hexels. 1.5 to (-1.5) z-scores indicate no trend for those 

hexels. Therefore, these maps are detecting temporal trends in the hexels but, do not make any 

inferences about the spatial clustering components of the hexels and therefore do not indicate 

whether the increasing or decreasing hexels are hot or cold spots.  Therefore, there are significant 

decreasing temporal hexel trends in central eastern Alberta, central eastern British Columbia, 

southern parts of Manitoba and Saskatchewan as well as western north and south portions of the 

Northwest Territories. In addition, there are significant increasing hexel trends in northern 

Manitoba along the Hudson Bay, northern and northwestern areas of Alberta, small pockets of 

the Northwest Territories around Great Slave Lake and along the south eastern edge as well as 

small groupings in northern Yukon and northeastern and central BC shown in Figure 3.9.  
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Figure 3.9: Mann-Kendall statistic computed per hexel based on the Getis-Ord Gi* z-scores for the number 

of lightning-ignited wildfires in Western Canada, per year, 1981-2018. Hexels are represented by the 

standard deviation of the z-score where orange is a positive (increasing trend) st. deviation of z and blue is a 

negative (decreasing trend) st. deviation of z. Dots show statistical significance based on p-values.   

 As for the months of June (Figure 3.10), July (Figure 3.11), and August (Figure 3.12) the 

temporal trends in hexels are displayed over the 37-year period with statistical significance 

indicated.  
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Figure 3.10: Mann-Kendall statistic computed per hexel based on the Getis-Ord Gi* z-scores for the number 

of lightning-ignited wildfires in June in Western Canada, per year, 1981-2018. Hexels are represented by the 

standard deviation of the z-score where orange is a positive (increasing trend) st. deviation of z and blue is a 

negative (decreasing trend) st. deviation of z. Dots show statistical significance based on p-values.   
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Figure 3.11: Mann-Kendall statistic computed per hexel based on the Getis-Ord Gi* z-scores for the number 

of lightning-ignited wildfires in July in Western Canada, per year, 1981-2018. Hexels are represented by the 

standard deviation of the z-score where orange is a positive (increasing trend) st. deviation of z and blue is a 

negative (decreasing trend) st. deviation of z. Dots show statistical significance based on p-values.   
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Figure 3.12: Mann-Kendall statistic computed per hexel based on the Getis-Ord Gi* z-scores for the number 

of lightning-ignited wildfires in August in Western Canada, per year, 1981-2018. Hexels are represented by 

the standard deviation of the z-score where orange is a positive (increasing trend) st. deviation of z and blue is 

a negative (decreasing trend) st. deviation of z. Dots show statistical significance based on p-values.   
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3.3 Temporal point pattern statistics 

3.3.1 Temporal Statistic  

 The Mann Kendall statistic was computed for the entire 37-year period for the number of 

lightning fires with the theil-sen slope and is displayed in Figure 3.13. The Mann Kendall trend 

(tau) value for the data was -0.17, the p-value was 0.05 and the z-score computed was -1.5. 

Although the p-value is indicating a significance value at a confidence interval of 95%, the z-

score does not and therefore the null hypothesis cannot be rejected. This indicates that there is a 

slight decreasing trend over the 37-year period, shown by the blue dotted line, in the data 

concerning the total number of lightning fires. However, it is a non-significant trend.  

 

 

Figure 3.13: Mann-Kendall trend statistic computed for number of lightning-ignited wildfires in Western 

Canada between 1981-2018. The dark red line indicates the number of fires per year and the blue dotted line 

indicates the trend line. This statistic was computed with a theil-sen slope. The tau computed was -0.17, 

bootstrap p-value 0.05, z-score -1.5 and the sen slope -20.44.  
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The Mann Kendall statistic was computed for the months of June, July, and August for 

the entire 37-year period for the number of lightning fires with the theil-sen slope and is 

displayed in Figure 3.14. For the month of June, the Mann Kendall trend (tau) value for the data 

was -0.15, the p-value was 0.105, the z-score computed was -1.29 and the Sen slope is -5.04. 

This indicates that there is a non-significant decreasing trend over the 37-year period, shown by 

the blue dotted line, in the data concerning the total number of lightning fires. For the month of 

July, the Mann Kendall trend (tau) value for the data was      -0.039, the p-value was 0.36, the z-

score computed was -0.32 and the Sen slope is -1.69.  This indicates that there is a non-

significant decreasing trend over the 37-year period, shown by the blue dotted line, in the data 

concerning the total number of lightning fires. For the month of August, the Mann Kendall trend 

(tau) value for the data was -0.048, the p-value was 0.33, the z-score computed was -0.4 and the 

Sen slope is -3.5.  This indicates that there is a non-significant decreasing trend over the 37-year 

period, shown by the black line, in the data concerning the total number of lightning fires. 

Overall, for the months of June, July, and August we found non-significant decreases in the 

trends for NOF’s for all three months. 
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Figure 3.14: Mann-Kendall trend statistic computed for number of lightning-ignited wildfires per month 

(June, July, and August) in Western Canada between 1981-2018. For all months, the tau computed was 

between -0.15 to -0.039, bootstrap p-value was between 0.105 to 0.36, z-score was between -1.29 and -0.326 

and the sen slope was between -5.0 and -1.69 for all three months.  
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3.4 Spatial point pattern statistics 

3.4.1 Kinhom(r) K-function  

 The inhomogeneous Kinhom(r) K-function of a non-stationary point pattern was 

calculated and then graphed in Figure 3.15. The null hypothesis is that the data is exhibiting a 

spatial random point process. The black line represents the summary function of actual values 

from the data, while the line in red represents the expected values of a point pattern under CSR. 

If the black line is below the confidence bands (red line) then the spatial point pattern is 

deviating from the null and the data is exhibiting spatial clustering. If the black line is above the 

confidence bands (red line) then the spatial point pattern is deviating from the null and is 

showing a dispersal pattern. By determining where the red and black lines cross will indicate at 

what spatial scale, in kilometres, data points are clustering at, if clustering. This was computed 

for each analysis year (1981-2018) and shown in Figure 3.15. The median Kinhom(r) statistic 

for all years is 227.5 km. The highest value was 270 km in 1996 and the lowest values was 165 

km in 2000 and therefore clustering is occurring between 165-270 km. All years showed a 

deviation from CSR indicating spatial clustering occurring within the data for each study year.  
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Figure 3.15: Kinhom(r) function for Western Canada lightning-ignited wildfires by year, 1981-2018. In each 

graph, the grey lines represent the upper and lower limits of the envelope based on 1000 simulations under 

the assumption of an independent distribution. The red line is the estimated Kinhom(r) function, while the 

black line represents the observed Kinhom(r) function.  
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3.5 Spatial statistics 

3.5.1 Average Nearest Neighbour Ratio and Nearest Neighbour Statistic  

 The average nearest neighbour ratio (ANN) was computed and is presented in column 

two of Table 3.1. The associated z-score and p-value for each study year to assess significance in 

the spatial patterns of the data is also presented. In addition, the nearest neighbour (NN) distance 

statistic was calculated for each year which is seen in column three of Table 3.1. For the average 

nearest neighbour ratio (ANN), if ANN is greater than 1, the data is showing dispersal patterns 

and if the ANN is less than 1 then the data is showing clustering patterns. Confidence-intervals 

of 90% (+/- 1.65), 95% (+/- 1.96), and 99% (+/-2.58) were computed for the z-scores and 

negative z values indicate clustering patterns, while positive z-scores indicate dispersal patterns. 

P-values computed provided confidence intervals of 90% (0.1), 95% (0.05) and 99% (0.01). The 

nearest neighbour (NN) statistic calculates the distance in kilometers from one neighbour to 

another. The mean nearest neighbour distance per year was calculated. 

All years had an average nearest neighbour ratio (ANN) under 1 (median ANN ratio was 

0.474) indicating that each data year exhibited deviations from the null and thus the data points 

showed spatial clustering patterns. Moreover, all years had significant negative z-scores (median 

-48.12) indicating significant clustering of the data, coupled with significant p-values (median 

0.0001). The lowest NN statistic was 104.94 km in 1994 and the highest NN statistic was 271.58 

km in 2011 and therefore a range of 104-271 km of clustering was seen. The mean nearest 

neighbor statistic for the entire study area was 154.115 km.  
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Table 3.1: Average nearest neighbour ratio (<1 indicates clustering and >1 indicated dispersal) and mean 

nearest neighbour (km) with associated z-score (- is clustering and + is dispersal with confidence intervals of 

90% (+/-1.65), 95%(+/-1.96), 99%(>+/-2.58)) and p-value (confidence intervals of 90%(<0.1), 95%(<0.05), and 

99%(<0.01)) was computed for lightning-ignited wildfires in Western Canada, by year, 1981-2018. 

Year NN Ratio Mean NN (km) Z-Score P-value 
1981 0.45 110.87 -63.57+ 0.0001* 

1982 0.496 156.71 -47.523+ 0.0001* 

1983 0.51 189.85 -38.75+ 0.0001* 

1984 0.46 112.15 -65.46+ 0.0001* 

1985 0.43 118.09 -59.11+ 0.0001* 

1986 0.489 180.24 -40.7+ 0.0001* 

1987 0.47 131.52 -53.49+ 0.0001* 

1988 0.455 151.88 -45.9+ 0.0001* 

1989 0.49 115.83 -63.7+ 0.0001* 

1990 0.46 115.46 -65+ 0.0001* 

1991 0.508 164.2 -45.6+ 0.0001* 

1992 0.43 113.01 -65.4+ 0.0001* 

1993 0.478 175.14 -43.9+ 0.0001* 

1994 0.46 104.94 -71.2+ 0.0001* 

1995 0.5 186.75 -38.7+ 0.0001* 

1996 0.5 184.82 -40.5+ 0.0001* 

1997 0.45 188.89 -40.1+ 0.0001* 

1998 0.45 107.41 -69.3+ 0.0001* 

1999 0.47 147.12 -49.9+ 0.0001* 

2000 0.48 159.32 -41.4+ 0.0001* 

2001 0.51 179.52 -36+ 0.0001* 

2002 0.43 130.16 -52.33+ 0.0001* 

2003 0.44 124.39 -54.5+ 0.0001* 

2004 0.511 127.31 -52.9+ 0.0001* 

2005 0.52 198.66 -35+ 0.0001* 

2006 0.44 159.32 -61.1+ 0.0001* 

2007 0.46 165.77 -45+ 0.0001* 

2008 0.448 135.38 -54.3+ 0.0001* 

2009 0.42 109.25 -61.4+ 0.0001* 

2010 0.47 145.32 -51.8+ 0.0001* 

2011 0.51 271.58 -26.9+ 0.0001* 

2012 0.533 172.54 -42.4+ 0.0001* 

2013 0.515 156.35 -46.4+ 0.0001* 

2014 0.52 165.88 -42.8+ 0.0001* 

2015 0.5 137.08 -52.66+ 0.0001* 

2016 0.49 208.95 -37.2+ 0.0001* 

2017 0.49 166.78 -45.1+ 0.0001* 

2018 0.46 141.79 -52.9+ 0.0001* 

*Significant P-value + Significant Z-score 
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3.5.2 Moran’s I Tool of spatial autocorrelation  

 Moran’s I statistic of spatial autocorrelation was computed for the data set where the null 

hypothesis is that the spatial process being exhibited by the data is by random chance. The 

Moran’s I statistic needs to be evaluated along with its p-value and z-score for significance. The 

results are shown in Table 3.2. The median value for Moran I is 0.85 with a median p-value of 

0.00167 and a median z-value of 117, indicating that the data for the entire study period (1981-

2018) exhibits some form of spatial autocorrelation and spatial clustering of like values. The 

Moran I values were between 0.91 and 0.72.  The z-score ranges were between 98 and 124, with 

the highest z-score in 1994 and 2009 and the lowest in 2018. All p-values for each year showed a 

significant value of 99% confidence interval (<0.01) and all z-scores for each study year showed 

a significant value of 99% confidence interval (>2.58).  
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Table 3.2: Moran I’s correlation coefficient of spatial autocorrelation with the Monte Carlo simulation for 

lightning-ignited wildfires in Western Canada, per year, 1981-2018. A p-value and z-score were also 

computed for significance, where z-score (+ is clustering and - is dispersal with confidence intervals of 90% (+/-

1.65), 95%(+/-1.96), 99%(>+/-2.58)) and p-value (confidence intervals of 90%(<0.1), 95%(<0.05), and 

99%(<0.01)).   

Year Moran I P-value Z-score 
1981 0.86 0.00167* 118+ 

1982 0.82 0.00166* 112+ 

1983 0.77 0.00166* 105+ 

1984 0.88 0.00167* 120+ 

1985 0.88 0.00167* 120+ 

1986 0.83 0.00166* 114+ 

1987 0.86 0.00167* 118+ 

1988 0.85 0.00166* 116+ 

1989 0.87 0.00167* 119+ 

1990 0.86 0.00166* 117+ 

1991 0.81 0.00166* 111+ 

1992 0.9 0.00167* 123+ 

1993 0.77 0.00166* 105+ 

1994 0.9 0.00167* 124+ 

1995 0.79 0.00166* 107+ 

1996 0.78 0.00166* 107+ 

1997 0.79 0.00166* 108+ 

1998 0.89 0.00167* 121+ 

1999 0.87 0.00167* 118+ 

2000 0.85 0.00166* 117+ 

2001 0.83 0.00166* 113+ 

2002 0.85 0.00166* 117+ 

2003 0.89 0.00167* 122+ 

2004 0.86 0.00166* 118+ 

2005 0.79 0.00166* 107+ 

2006 0.87 0.00167* 119+ 

2007 0.85 0.00166* 116+ 

2008 0.87 0.00167* 119+ 

2009 0.91 0.00167* 124+ 

2010 0.83 0.00166* 114+ 

2011 0.72 0.00166* 98+ 

2012 0.81 0.00166* 110+ 

2013 0.86 0.00166* 117+ 

2014 0.80 0.00166* 110+ 

2015 0.87 0.00167* 119+ 

2016 0.80 0.00166* 110+ 

2017 0.82 0.00166* 112+ 

2018 0.86 0.00166* 117+ 

*Significant P-value  + Significant Z-score 
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Chapter 4 

Discussion 

4.1 Overview 

Determining trends and spatial characteristics of lightning fires is a challenge as records 

are incomplete across Canada. Significant efforts from multiple researchers has led to a more 

comprehensive look and standardized dataset which is being used to conduct research on 

wildfires in Canada. The idea of lightning-caused wildfires clustering over space and time is not 

a new concept, however, few studies have used ArcGIS to quantify these spatial-temporal 

patterns.  Using ArcGIS to analyze this data was a challenging process. However, using this 

spatial program to visualize the data is a valuable tool in presenting research and can broaden the 

understanding of statistics to multiple audiences.  Moreover, few studies have considered 

analyzing the entire Canadian National fire database, as most studies that used this database 

excluded points from the analysis based on the size of the area burnt per fire. Although there are 

inherent data quality issues (incomplete and missing records), looking at all fires, no matter what 

size of area they burned, is extremely valuable in understanding the natural processes of 

lightning-caused wildfires as well as how climate change is affecting these interactions. 

Furthermore, the dataset was quite large (97,921 data points) indicating that results from this 

analysis could be considered representative of the population being analyzed.  

For Kinhom(r) K-function, we found that the data was exhibiting spatial clustering from 

165 km to 270 km and for the NN statistic we found clustering from 104 km to 271 km for 

lightning-ignited fires in Western Canada from 1981-2018. These results are like other studies 

who have looked at spatial patterns and found similar results of clustering, examples include, 

2km and up in Florida, USA (Genton et al. 2006), up to 200 km in Alberta (Wang and Anderson 
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2010) and approximately 200 km in Ontario (Podur et al. 2003). Even though this research 

looked at a broader study area than previous studies, similar results were seen.  

We found significant hotspot clustering occurring each year of the study for lightning-

ignited wildfires. Specifically, over the 37-year period we can see that hexels containing hot spot 

clustering occurred in Northern Alberta, Saskatchewan, and South eastern British Columbia.  

This spatial clustering pattern of lightning fires is similar to other studies such as Podur et al. 

(2003); Genton et al. (2006); Wang and Anderson (2010); Masrur et al. (2018) in terms of the 

spatial distribution on the landscape. However, these studies used kernel density estimations to 

spatially display their lightning patterns and this research used the Getis-ord Gi* statistic. Both 

statistics are slightly different, where kernel density tests and displays the intensity of the point 

pattern at certain locations, and the Getis-ord Gi* statistic measures spatial association in the 

data. However, they both test the data’s spatial distribution patterns, and similar spatially 

significant areas on the landscape were found between this research and the four mentioned.   

We found that for Moran’s I spatial autocorrelation statistic for all years (1981-2018) 

lightning-ignited wildfire intensities are significantly spatially autocorrelated. These results are 

similar to Masrur et al. (2018) who found that wildfires in the circumpolar tundra from 2001 to 

2015 showed significant spatial autocorrelation.  

We found that for the entire study area, the NOF showed an overall non-significant 

decreasing trend over time. This is similar to Hanes et al. (2019) who found a non-significant 

decreasing trend in the data for NOF nationally since 1959, found in their Figure 3 b). Moreover,  

Coogan et al. (2018) saw an overall decrease in NOF over Canada from the same time period, 

1981-2018. Campos-Ruiz et al (2018) found a non-significant decreasing trend for NOF caused 
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by lightning, but also observed that NOF by lightning showed strong oscillation peaks every ~ 12 

years in Wood Buffalo National Park, Alberta. Although these results are similar, a step further 

was taken in this analysis by using ArcGIS to map the trends per hexels over space and time. 

This resulted in a visual representation of each hexel (Figure 3.9) showing where it was 

significant, non-significant, increasing, decreasing and no trend from 1981-2018. These maps 

along side the Getis-Ord Gi* maps can indicate if the increasing or decreasing trend hexels are 

hot or cold spots. This provided a detailed analysis for trends and indicated variability on the 

landscape. Hanes et al (2019) produce a similar spatial visual map showing NOF (>200 ha) in 

Canada delineated by homogeneous fire-regime zones and the associated trend. Although their 

study only looked at fires over 200 ha, similar geographical areas were found between their study 

and this one. For hot and cold spot clustering, it was found that for the entire study area and 

period, Northern Alberta, Saskatchewan, and British Columbia experiences temporal hot spot 

clustering, while Northern Manitoba experiences cold spot clustering. In conjunction, it can be 

assessed that the hot spot clustering in Alberta is increasing in its temporal trend, the hot spot 

clustering in Saskatchewan is decreasing in its temporal trend, the cold clustering in Northern 

Manitoba is increasing in its temporal trend and for British Columbia’s hot spot clustering there 

is not trend detected. As for the seasonality component, it can be seen that Northern Alberta is 

experiencing an increase in temporal hot spot clustering hexel trends for the months of June and 

July, while British Columbia is experiencing hot spot clustering for the 37-year period for both 

the months of July and August. These areas could be of major concern for fire managers and 

more information and research is needed to determine the extent of the increase in fire activity 

over this period.  
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A thing to note about the Northern Areas (Northern Alberta, Manitoba and the Northwest 

Territories) is that since these places cover large areas with minimal population and with 

increases in technology and awareness of wildfires records, these results could be showing 

increases in trends in these areas due to an increase in reporting and more resources available. 

Therefore, these areas should be researched further as, if the case concerning NOF are increasing 

then investigating the cause of these increases are valuable in determining how climate change is 

changing these vulnerable areas and what these landscapes could experience in the future. This is 

important as northern regions are facing extensive changes to their ecosystems due to climate 

change (Turetsky et al. 2017). Examples include spruce dominated forests in Alaska becoming 

vulnerable due to more frequent fire-return intervals and late season burning (Kasischke et al. 

2010), northern treelines are moving into previous occupied tundra ecosystems (Weber and 

Flannigan 1997), increased in frequency of extreme fire weather in Canada is projected for 

northern fire zones (Wang et al. 2015), warming in the north could create a risk of permafrost 

thaw (Schuur et al. 2013) and areas burned by severe wildfires will affect the resilience of 

permafrost and could lead to vegetation changes where grasslands and or deciduous dominated 

forests could be favoured (Chapin et al. 2010).  

The results of this study suggest that lightning fires are variable over space and time but 

show significant spatial clustering patterns on the landscape over time in certain areas within 

Western Canada. This clustering could be due to large-scale climatic patterns (Gedalof et al. 

2005) such as El Nino (Fauria and Johnson 2006), mesoscale circulations (Dissing and Verbyla 

2003), fuel moisture (Larjavaara et al. 2005), anthropogenic factors (Parisien et al. 2006), 

drought (Meyn et al. 2010), diurnal heating and cooling cycle (Burrows and Kochtubajda 2010), 

type of tree cover (Krawchuk et al. 2006; Veraverbeke et al. 2017), localized thunderstorm 
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activity (Liu and Li 2016), associated temperature, precipitation present (Mundo et al. 2013; 

Whitman et al. 2015), and increased lightning densities and distributions (Wierzchowski et al. 

2002; Romps et al. 2014). Further research looking into a broad scaled study on what is causing 

these recurring spatial and temporal patterns and why it is being cause could provide a huge 

amount of details into understanding the processes of why lightning fires initiate in certain areas, 

what drivers are causing changes in theses patterns, and how this will look in a changing climate.  

In terms of this research study, it can be speculated that various factors are contributing to 

the spatial and temporal clustering patterns observed, although further investigative research is 

needed to fully understand the factors playing a role in these spatial patters. For spatial 

distribution patterns, Veraverbeke et al (2017) found that for Alaska and the Northwest 

territories, climate (temperature, precipitation and convective precipitation) and vegetation cover 

accounted for 56% of the variability seen in lightning strike densities, while 48% was attributed 

to climate alone. Vázquez and Moreno (1993) found that temperature and precipitation were the 

best predictors of total area burned and NOF within their study in Spain. Van Wagtendonk and 

Cayan (2010) found that bioregions were an excellent indicator in distinguishing differences in 

spatial patterns of lightning within their study in Yosemite, US. Masrur et al (2018) found a 

significant association between climate conditions and NOF in Alaska and Northwest Territories, 

as well as an increase in NOF associated with a decrease in soil moisture level, precipitation and 

an increase in surface temperatures. Campos-Ruiz et al (2018) also found that mean annual 

temperature and relative humidity was correlated to lightning-caused fires in Wood Buffalo 

National Park, Alberta. Therefore, potential variables driving spatial distributions of lightning 

fires on the western Canadian landscape are climate (temperature and precipitation) as well as 
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vegetation type. However, further research needs to be undertaken to determine the exact 

variables affecting the spatial distribution patterns for this landscape.  

As for temporal clustering, major land-water boundaries (Orville et al. 2002), elevation 

(Reap 1991; Van Wagtendonk and David 2009), topography (Dissing and Verbyla 2003), and 

elevated terrain features (Orville et al. 2002) all play a role in wildfire initiation. Masrur et al  

(2018) found that most of their wildfire events occurred in June, July and August. Podur et al 

(2003) suggested elevation and local elevated terrain features play a role in ignition probability 

in Ontario, Canada. Van Wagtendonk and Cayan (2010) also found elevation had a direct effect 

in lightning distributions, where lightning strike densities occurred at high rates in mountain and 

desert regions. Kilinc and Beringer (2007) found that vegetation and elevation played a role in 

lightning density, where differential heating associated with vegetation cover resulted in 

mesoscale circulation patterns that create and influence lightning strikes. Moreover, Larjavaara 

et al (2005) observed north-south gradients for lighting fires in their study area of Finland over 

time and attribute this to latitude/longitude. In terms of this research study, it can be speculated 

that for the temporal distribution patterns, large scale climatic patterns, local terrain features, 

topography and forest cover play a role in the temporal distributions within the study area.  

Climate and forest coverage are the biggest variables in determining the spatial and 

temporal patterns of lightning fires. However, they are highly influenced by various factors that 

are theorized to be exacerbated and shift with climate change (Wotton and Flannigan 1993; 

Weber and Stocks 1998; Stocks, et al. 2000). It is predicted that with anthropogenic climate 

change, warmer and drier environments will be experienced (Weber and Flannigan 1997; Weber 

and Stocks 1998; Stocks, et al. 2000), drier fuels will occur on the landscape (Flannigan et al. 

2016; Wotton et al. 2017) and lightning densities with increase (Romps et al. 2014; Blouin et al. 



66 
 

2016; Veraverbeke et al. 2017) leading to longer fire seasons (Wotton and Flannigan 1993; Jain 

et al. 2017; Hanes et al. 2019), more larger mega wildfires on the landscape (Kasischke et al. 

2010) which will affect the human expansion into forest areas increasing the WUI (Wang and 

Anderson 2010; Robinne et al. 2016; Campos-Ruiz et al. 2018; Johnston and Flannigan 2018). 

Further research needs to be conducted on how these spatial and temporal patterns will be 

affected in a changing climate as this could have serious implications for forest health, 

communities, and fire managers.  

 

4.2 Limitations  

 Like multiple long-term national dataset studies data quality is an issue, notably with 

respect to incomplete datasets and mapping accuracy (Stocks et al. 2003; Robinne et al. 2016; 

Coogan et al. 2018; Hanes et al. 2019). A shortcoming of this study is the fact that we considered 

all wildfires, even small fires (< 200ha). These fires are considerably unreliable for NOF as they 

are severely underreported due to inconsistencies within differing fire management agencies 

(Bridge et al. 2005; Magnussen and Taylor 2012). However, fires below <200 ha account for 

~97% of wildfires (Stocks et al. 2003) and are therefore valuable when determining lightning-

initiated wildfires and how they are clustering on a landscape over space and time. Moreover, 

they are a huge part to play as they have the potential to provide important information to 

wildfire research (Coogan et al. 2018; Hanes et al. 2019). Therefore, it was deemed that valuable 

information could still be obtained by looking at the entire data set without subsetting by area 

burned due to the amount of data points available and the objective of gaining further insight into 

spatial and temporal patterns of lightning-caused wildfires.  
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 Other limitations of the data include the distinction between lightning and human-cause 

fires. This distinction is highly variable as it is decided by workers on the ground and therefore 

the accuracy relies on their knowledge. Furthermore, fire management and policies drive this 

distinction as well and since these regulations change over time, looking at large time scaled 

datasets are difficult to decipher for accuracy (Robinne et al. 2016; Campos-Ruiz et al. 2018; 

Coogan et al. 2018; Hanes et al. 2019). There have been significant upgrades in the dataset since 

1980 to increase its reliability. The results concur with other research that have attempted to 

navigate these data quality issues (Podur et al. 2003; Wang and Anderson 2010; Masrur et al. 

2018; Coogan et al. 2018; Hanes et al. 2019), giving confidence that the spatial and temporal 

clustering patterns of lightning-initiation wildfires in Western Canada are representative.  

 Another caveat to consider is that this study did not consider human-caused wildfires 

which have been of major concern within recent years, due to their destructive capacity and 

effects on the landscape. Although various studies compare the two types of wildfire causes such 

as Wang and Anderson (2010); Campos-Ruiz et al (2018); Coogan et al (2018); Hanes et al 

(2019), this was not considered in the study due to the focus on lightning and its effects on the 

Canadian landscape and how it is changing with anthropogenic climate change (Flannigan and 

Wotton 1991; Wotton et al. 2010; Romps et al. 2014).  

 Lastly, we did not consider area burned in this study. This is a major factor when 

considering the effects of wildfires on the landscape, forest mosaics, reburn, changes in forest 

composition, pyro cumulous clouds and how wildfires spread (Whitman et al. 2015; Jain et al. 

2017; Hanes et al. 2019; Rodrigues et al. 2019). Also, fires based on area burned are more 

accurately reported and are therefore considered more reliable when conducting research (Podur 

et al. 2003; Hanes et al. 2019). Although areas burned on the landscape play a factor in wildfire 



68 
 

initiations, this aspect was not considered and therefore could be an area of further study to 

quantify how burned area affect the processes underlining spatial and temporal patterns of 

lightning strikes and densities which result into wildfires.  
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Chapter 5 

Conclusion 

5.1  

This study has illustrated that lightning-caused wildfires vary over a broader spatial and 

temporal scale in Western Canada from 1981-2018. We found evidence to support that lightning 

fires are spatially clustering between 104 - 270 km. Moreover, we found that over the thirty-

seven-year period, Northern Alberta, parts of Saskatchewan and British Columbia experienced 

consistent hot spot clustering of lightning-ignited wildfires. Specifically, Northern Alberta saw 

an increase in the trend of hot spot clustering. August and July saw hot spot clustering of 

lightning fires in British Columbia, while June and July saw an increasing trend in hot spot 

clustering in Northern Alberta.  Overall, there is a non-significant decreasing trend for the total 

NOF as well as for the months of June, July, and August. Further research is needed to answer 

questions about what variables are contributing to this clustering and how this clustering will be 

affected by climate change. As a broad scale study, looking at broad scale factors such as global 

weather phenomena’s (i.e. El Nino), forest cover and topography could provide interesting 

information on reasons behind lightning fire occurrences. This is especially relevant and 

important as lightning densities are projected to increase (Romps et al. 2014; Veraverbeke et al. 

2017) and move further north, into regions where wildfires have the capacity to be destructive 

for ecosystems and communities (Turetsky et al. 2015; Masrur et al. 2018).   
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