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Abstract

Graphical models use the intuitive and well-studied methods of graph theory to implicitly repre-

sent dependencies between variables in large systems. They can model the global behaviour of

a complex system by specifying only local factors.This thesis studies inference in discrete graph-

ical models from an “algebraic perspective” and the ways inference can be used to express and

approximate NP-hard combinatorial problems.

We investigate the complexity and reducibility of various inference problems, in part by orga-

nizing them in an inference hierarchy. We then investigate tractable approximations for a subset of

these problems using distributive law in the form of message passing. The quality of the resulting

message passing procedure, called Belief Propagation (BP), depends on the in�uence of loops in

the graphical model. We contribute to three classes of approximations that improve BP for loopy

graphs (I) loop correction techniques; (II) survey propagation, another message passing technique

that surpasses BP in some settings; and (III) hybrid methods that interpolate between deterministic

message passing and Markov Chain Monte Carlo inference.

We then review the existing message passing solutions and provide novel graphical models and

inference techniques for combinatorial problems under three broad classes: (I) constraint satisfac-

tion problems (CSPs) such as satis�ability, coloring, packing, set / clique-cover and dominating

/ independent set and their optimization counterparts; (II) clustering problems such as hierar-

chical clustering, K-median, K-clustering, K-center and modularity optimization; (III) problems

over permutations including (bottleneck) assignment, graph “morphisms” and alignment, �nding

symmetries and (bottleneck) traveling salesman problem. In many cases we show that message

passing is able to �nd solutions that are either near optimal or favourably compare with today’s

state-of-the-art approaches.
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Notation

x , y, z (lower case roman letters) single variables.

X, Y,C (upper case caligraphic letters) sets.

I, J, K (upper case roman letters) sets of variable indices.

f, q, p (lower case sans serif letters) functions over discrete domains (equivalent to arrays/tensors).

P, Q, X (lower case sans serif letters) functionals.

x ,q,P (underline) “tuples” of variables, functions or functionals.

A,B (bold upper case roman letters) Matrices.

qi→I, P̃∂i→I
,SI→i (arrow in the subscript) (tuple of) “messages” as functions or functionals.

p, p̂I→i ,PI→i (variants of letter p) “normalized” marginals or messages as functions or function-

als.

P,NP,PP,#P,PSPACE (blackboard bold letters) complexity classes.

Σ,Φ,Ψ (capital greek letters) inference families.

xiii



Introduction

Many complicated systems can be modeled as a graphical structure with interacting local func-

tions. Many �elds have (almost independently) discovered this: graphical models have been used in

bioinformatics (protein folding, medical imaging and spectroscopy, pedagogy trees, regulatory net-

works [27, 178, 224, 255, 323]), neuroscience (formation of associative memory and neuroplastic-

ity [10, 65]), communication theory (low density parity check codes [106, 290]), statistical physics

(physics of dense matter and spin-glass theory [211]), image processing (inpainting, stereo/texture

reconstruction, denoising and super-resolution [98, 101]), compressed sensing [84], robotics [294]

(particle �lters), sensor networks [76, 143], social networks [203, 307], natural language process-

ing [200], speech recognition [73, 131], arti�cial intelligence (arti�cial neural networks, Bayesian

networks [244, 316]) and combinatorial optimization. This thesis is concerned with the appli-

cation of graphical models in solving combinatorial optimization problems [122, 222, 287], which

broadly put, seeks an “optimal” assignment to a discrete set of variables, where a brute force approach

is infeasible.

To see how the decomposition o�ered by a graphical model can model a complex system, con-

sider a joint distribution over 200 binary variables. A naive way to represent this would require a

table with 2
200

entries. However if variables are conditionally independent such that their depen-

dence structure forms a tree, we can exactly represent the joint distribution using only 200 × 2
2

values. Operations such as marginalization, which require computation time linear in the origi-

nal size, are now reduced to local computation in the form of message passing on this structure

(i.e., tree), which in this case, reduces the cost to linear in the new exponentially smaller size. It

turns out even if the dependency structure has loops, we can use message passing to perform

“approximate” inference.

Moreover, we approach the problem of inference from an algebraic point of view [7]. This is

in contrast to the variational perspective on local computation [303]. These two perspectives are

to some extent “residuals” from the di�erent origins of research in AI and statistical physics.

In the statistical study of physical systems, the Boltzmann distribution relates the probability

of each state of a physical system to its energy, which is often decomposed due to local interactions

[208, 211]. These studies have been often interested in modeling systems at the thermodynamic
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limit of in�nite variables and the average behaviour through the study of random ensembles. In-

ference techniques with this origin (e.g., mean-�eld and cavity methods) are often asymptotically

exact under these assumptions. Most importantly these studies have reduced inference to opti-

mization through the notion of free energy –a.k.a. variational approach.

In contrast, graphical models in the AI community have emerged in the study of knowledge

representation and reasoning under uncertainty [245]. These advances are characterized by their

attention to the theory of computation and logic [17], where interest in computational (as opposed

to analytical) solutions has motivated the study of approximability, computational complexity [74,

267] and invention of inference techniques such as belief propagation that are e�cient and exact

on tree structures. Also, these studies have lead to algebraic abstractions in modeling systems that

allow local computation [185, 279].

The common foundation underlying these two approaches is information theory, where deriva-

tion of probabilistic principles from logical axioms [146] leads to notions such as entropy and

divergences that are closely linked to their physical counter-parts i.e., entropy and free energies

in physical systems. At a less abstract level, it was shown that inference techniques in AI and

communication are attempting to minimize (approximations to) free energy [6, 326].

Another exchange of ideas between the two �elds was in the study of critical phenomenon

in random constraint satisfaction problems by both computer scientists and physicists [103, 215,

216]; satis�ability is at the heart of theory of computation and an important topic to investigate

reasoning in AI. On the other hand, the study of critical phenomena and phase transitions is central

in statistical physics of disordered systems. This was culminated when a variational analysis lead

to discovery of survey propagation [213] for constraint satisfaction, which signi�cantly advanced

the state-of-the-art in solving random satis�ability problems.

Despite this convergence, variational and algebraic perspectives are to some extent comple-

mentary – e.g., the variational approach does not extend beyond (log) probabilities, while the

algebraic approach cannot justify application of message passing to graphs with loops. Although

we brie�y review the variational perspective, this thesis is mostly concerned with the algebraic

perspective. In particular, rather than the study of phase transitions and the behaviour of the set

of solutions for combinatorial problems, we are concerned with �nding solutions to individual

instances.

Part I starts by expressing the general form of inference, proposes a novel inference hierarchy

and studies its complexity in chapter 1. Here, we also show how some of these problems are

reducible to others and introduce the algebraic structures that make e�cient inference possible.

The general form of notation and the reductions that are proposed in this chapter are used in later

chapters.

Chapter 2 studies some forms of approximate inference, by �rst introducing belief propaga-

tion. It then considers the problems with intractably large number of factors and factors with large
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cardinality, then proposes/reviews solutions to both problems. We then study di�erent modes of

inference as optimization and review alternatives such as convergent procedures and convex and

linear programming relaxations for some inference classes in the inference hierarchy. Standard

message passing using belief propagation is only guaranteed to be exact if the graphical struc-

ture has no loops. This optimization perspective (a.k.a. variational perspective) has also led to

design of approximate inference techniques that account for short loops in the graph. A di�erent

family of loop correction techniques can account for long loops by taking message dependencies

into account. This chapter reviews these methods and introduces a novel loop correction scheme

that can account for both short and long loops, resulting in more accurate inference over di�cult

instances.

Message passing over loopy graphs can be seen as a �xed point iteration procedure, and the

existence of loops means there may be more than one �xed point. Therefore an alternative to loop

correction is to in some way incorporate all �xed points. This can be performed also by a mes-

sage passing procedure, known as survey propagation. The next section of this chapter introduces

survey propagation from a novel algebraic perspective that enables performing inference on the

set of �xed points. Another major approach to inference is o�ered by Markov Chain Monte Carlo

(MCMC) techniques. After a minimal review of MCMC, the �nal section of this chapter intro-

duces a hybrid inference procedure, called perturbed belief propagation that interpolates between

belief propagation and Gibbs sampling. We show that this technique can outperform both belief

propagation and Gibbs sampling in particular settings.

Part II of this thesis uses the inference techniques derived in the �rst part to solve a wide range

of combinatorial problems. We review the existing message passing solutions and provide novel

formulations for three broad classes of problems: 1) constraint satisfaction problems (CSPs), 2)

clustering problems and 3) combinatorial problems over permutations.

In particular, in chapter 3 we use perturbed belief propagation and perturbed survey propa-

gation to obtain state-of-the-art performance in random satis�ability and coloring problems. We

also introduce novel message passing solutions and review the existing methods for sphere pack-

ing, set-cover, clique-cover, dominating-set and independent-set and several of their optimization

counterparts. By applying perturbed belief propagation to graphical representation of packing

problem, we are able to compute long “optimal” nonlinear binary codes with large number of

digits.

Chapter 4 proposes message passing solutions to several clustering problems such as K-clustering,

K-center and Modularity optimization and shows that message passing is able to �nd near-optimal

solutions on moderate instances of these problems. Here, we also review the previous approaches

to K-median and hierarchical clustering and also the related graphical models for minimum span-

ning tree and prize-collecting Steiner tree.

Chapter 5 deals with combinatorial problems over permutations, by �rst reviewing the existing
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graphical models for matching, approximation of permanent, and graph alignment and introduc-

ing two novel message passing solutions for min-sum and min-max versions of traveling salesman

problem (a.k.a. bottleneck TSP). We then study graph matching problems, including (sub-)graph

isomorphism, monomorphism, homomorphism, graph alignment and “approximate” symmetries.

In particular, in the study of graph homomorphism we show that its graphical model general-

izes that of of several other problems, including Hamiltonian cycle, clique problem and coloring.

We further show how graph homomorphism can be used as a surrogate for isomorphism to �nd

symmetries.

Contributions and acknowledgment

The results in this thesis are a joint work with my supervisor Dr. Greiner and other researchers.

In detail, the algebraic approach to inference is presented in [256]; the loop correction ideas are

published in [254]; perturbation schemes for CSP are presented in [253]; performing min-max

inference was �rst suggested by Dr. Brendan Frey and Christopher Srinivasa, and many of the

related ideas including min-max reductions are presented in our joint paper [258]. Finally, the

augmentation scheme for TSP and Modularity maximization is discussed in [257].

The contribution of this thesis, including all the published work is as follows:

– Generalization of inference problems in graphical models including:

• The inference hierarchy.

• The limit of distributive law on tree structures.

• All the theorems, propositions and claims on complexity of inference, including

◦ NP-hardness of inference in general commutative semirings.

– A uni�ed treatment of di�erent modes of inference over factor-graphs and identi�cation of

their key properties (e.g., signi�cance of inverse operator) in several settings including:

• Loop correction schemes.

• Survey propagation equations.

– Reduction of min-max inference to min-sum and sum-product inference.

– Simpli�ed form of loop correction in Markov networks and their generalization to incorpo-

rate short loops over regions.

– A novel algebraic perspective on survey propagation.

– Perturbed BP and perturbed SP and their application to constraint satisfaction problems.

– Factor-graph augmentation for inference over intractably large number of constraints.

– Factor-graph formulation for several combinatorial problems including

• Clique-cover.

• Independent-set, set-cover and vertex cover.

• Dominating-set and packing (the binary-variable model)
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• Packing with hamming distances

• K-center problem, K-clustering and clique model for modularity optimization.

• TSP and bottleneck TSP.

– The general framework for study of graph matching, including

• Subgraph isomorphism.
1

• Study of message passing for Homomorphism and �nding approximate symmetries.

• Graph alignment with a diverse set of penalties.

1
Although some previous work [44] claim to address the same problem, we note that their formulation is for sub-

graph monomorphism rather than isomorphism.



Part I

Inference by message passing
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This part of the thesis �rst studies the representation formalism, hierarchy of inference prob-

lems, reducibilities and the underlying algebraic structure that allows e�cient inference in the

form of message passing in graphical models, in chapter 1. By viewing inference under di�erent

lights, we then review/introduce procedures that allow better approximations in chapter 2.



Chapter 1

Representation, complexity and
reducibility

In this chapter, we use a simple algebraic structure – i.e., commutative semigroup – to express a

general form for inference in graphical models. To this end, we �rst introduce the factor-graph

representation and formalize inference in section 1.1. Section 1.2 focuses on four operations de-

�ned by summation, multiplication, minimization and maximization, to construct a hierarchy of

inference problems within PSPACE, such that the problems in the same class of the hierarchy

belong to the same complexity class. Here, we encounter some new inference problems and es-

tablish the completeness of problems at lower levels of hierarchy w.r.t. their complexity classes. In

section 1.3 we augment our simple structures with two properties to obtain message passing on

commutative semirings. Here, we also observe that replacing a semigroup with an Abelian group,

gives us normalized marginalization as a form of inference inquiry. Here, we show that inference

in any commutative semiring is NP-hard and postpone further investigation of message passing

to the next chapter. Section 1.4 shows how some of the inference problems introduced so far are

reducible to others.

1.1 The problem of inference

We use commutative semigroups to both de�ne what a graphical model represents and also to de-

�ne inference over this graphical model. The idea of using structures such as semigroups, monoids

and semirings in expressing inference has a long history[33, 185, 275]. Our approach, based on

factor-graphs [181] and commutative semigroups, generalizes a variety of previous frameworks,

including Markov networks [68], Bayesian networks [243], Forney graphs [100], hybrid mod-

els [83], in�uence diagrams [137] and valuation networks [278].

In particular, the combination of factor-graphs and semigroups that we consider here gener-
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alizes the plausibility, feasibility and utility framework of Pralet et al. [250], which is explicitly

reduced to the graphical models mentioned above and many more. The main di�erence in our ap-

proach is in keeping the framework free of semantics (e.g., decision and chance variables, utilities,

constraints), that are often associated with variables, factors and operations, without changing

the expressive power. These notions can later be associated with individual inference problems to

help with interpretation.

De�nition 1.1.1. A commutative semigroup is a pair G = (Y∗,⊗), where Y∗ is a set and

⊗ : Y∗ × Y∗ → Y∗ is a binary operation that is (I) associative: a ⊗ (b ⊗ c ) = (a ⊗ b) ⊗ c and

(II) commutative: a ⊗ b = b ⊗ a for all a,b,c ∈ Y∗. A commutative monoid is a commutative

semigroup plus an identity element

⊗

1 such that a ⊗
⊗

1 = a. If every element a ∈ Y∗ has an inverse

a−1
(often written

1

a ), such that a ⊗a−1 =
⊗

1, and a ⊗
⊗

1 = a, the commutative monoid is an Abelian
group.

Here, the associativity and commutativity properties of a commutative semigroup make the

operations invariant to the order of elements. In general, these properties are not “vital” and one

may de�ne inference starting from a magma.
1

Example 1.1.1. Some examples of semigroups are:

– The set of strings with the concatenation operation forms a semigroup with the empty string

as the identity element. However this semigroup is not commutative.

– The set of natural numbers N with summation de�nes a commutative semigroup.

– Integers modulo n with addition de�nes an Abelian group.

– The power-set 2
S

of any set S, with intersection operation de�nes a commutative semigroup

with S as its identity element.

– The set of natural numbers with greatest common divisor de�nes a commutative monoid

with 0 as its identity. In fact any semilattice is a commutative semigroup [79].

– Given two commutative semigroups on two sets Y∗ and Z∗, their Cartesian product is also

a commutative semigroup.

Let x = (x1, . . . ,xN ) be a tuple of N discrete variables xi ∈ Xi , where Xi is the domain of xi

and x ∈ X = X1 × . . . × XN . Let I ⊆ N = {1,2, . . . ,N } denote a subset of variable indices and

x
I
= {xi | i ∈ I} ∈ XI be the tuple of variables in x indexed by the subset I. A factor fI : XI → YI is a

function over a subset of variables and YI = {fI (x
I
) | x

I
∈ XI} is the range of this factor.

De�nition 1.1.2. A factor-graph is a pair (F ,G ) such that

1
A magma [247] generalizes a semigroup, as it does not require associativity property nor an identity element.

Inference in graphical models can be also extended to use magma (in de�nition 1.1.2). For this, the elements of Y∗

and/or X should be ordered and/or parenthesized so as to avoid ambiguity in the order of pairwise operations over the

set. Here, to avoid unnecessary complications, we con�ne our treatment to commutative semigroups.
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• F = {fI} is a collection of factors with collective range Y =
⋃

IYI.

• |F | = Poly(N ).

• fI has a polynomial representation in N and it is possible to evaluate fI (x I) ∀I,x I in polyno-

mial time.

• G = (Y∗,⊗) is a commutative semigroup, where Y∗ is the closure of Y w.r.t. ⊗.

The factor-graph compactly represents the expanded (joint) form

q(x ) =
⊗

I

fI (x I) (1.1)

Note that the connection between the set of factors F and the commutative semigroup is

through the “range” of factors. The conditions of this definition are necessary and sufficient to 1)

compactly represent a factor-graph and 2) evaluate the expanded form, q(x ), in polynomial time.

A stronger condition to ensure that a factor has a compact representation is |XI | = Poly(N ), which

means fI (x I) can be explicitly expressed for each x I ∈ XI as an |I|-dimensional array.

F can be conveniently represented as a bipartite graph that includes two sets of nodes: variable

nodes xi , and factor nodes I. A variable node i (note that we will often identify a variable xi with

its index “i”) is connected to a factor node I if and only if i ∈ I –i.e., I is a set that is also an index.

We will use ∂ to denote the neighbours of a variable or factor node in the factor graph – that is

∂I = {i | i ∈ I} (which is the set I) and ∂i = {I | i ∈ I}. Also, we use Δi to denote the Markov

blanket of node xi – i.e., Δi = {j ∈ ∂I | I ∈ ∂i, j � i}.

Example 1.1.2. Figure 1.1 shows a factor-graph with 12 variables and 12 factors. Here x =

(xi ,x j ,xk ,xe ,xm ,xo ,xr ,xs ,xt ,xu ,xv ,xw ), I = ∂I = {i, j,k }, xK = x {k,w,v } and ∂j = {I,V,W}. As-
suming Ge = (R,min), the expanded form represents

q(x ) = min{fI (x I), fJ (x J), . . . , fZ (xZ)}.

Now, assume that all variables are binary – i.e., X = {0,1}12 and q(x ) is 12-dimensional hy-

percube, with one assignment at each corner. Also assume all the factors count the number of

non-zero variables – e.g., for zW = (1,0,1) ∈ XW we have fW (zW) = 2. Then, for the complete

assignment z = (0,1,0,1,0,1,0,1,0,1,0,1) ∈ X, it is easy to check that the expanded form is

q(z) = min{2,0,1, . . . ,1} = 0.

Amarginalization operation shrinks the expanded form q(x ) using another commutative semi-

group with binary operation ⊕. Inference is a combination of an expansion and one or more

marginalization operations, which can be computationally intractable due to the exponential size

of the expanded form.
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Figure 1.1: A factor-graph with variables as circles and factors as squares.

Definition 1.1.3. Given a function q : XJ → Y , and a commutative semigroup G = (Y∗,⊕),
where Y∗ is the closure of Y w.r.t. ⊕, the marginal of q for I ⊂ J is

q(x J\I)
def
=

⊕
x I

q(x J) (1.2)

where
⊕

x I
q(x J) is short for

⊕
x I∈XI

q(x J\I,x I), and it means to compute q(x J\I) for each x J\I, one

should perform the operation ⊕ over the set of all the assignments to the tuple x I ∈ XI.

We can think of q(x J) as a |J|-dimensional tensor and marginalization as performing ⊕ oper-

ation over the axes in the set I. The result is another |J \ I|-dimensional tensor (or function) that

we call the marginal. Here if the marginalization is over all the dimensions in J, we denote the

marginal by q(∅) instead of q(x∅) and call it the integral of q.

Now we define an inference problem as a sequence of marginalizations over the expanded

form of a factor-graph.

Definition 1.1.4. An inference problem seeks

q(x J0 ) =
M⊕

x JM

M−1⊕
x JM−1

. . .

1⊕
x J1

⊗
I

fI (x I) (1.3)

where

• Y∗ is the closure of Y (the collective range of factors), w.r.t.
1
⊕, . . . ,

M
⊕ and ⊗.

• Gm = (Y∗,
m
⊕) ∀1 ≤ m ≤ M and Ge = (Y∗,⊗) are all commutative semigroups.
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• J0, . . . , JL partition the set of variable indices N = {1, . . . ,N }.

• q(x
J0

) has a polynomial representation in N – i.e., |XJ0
| = Poly(N )

Note that

1

⊕, . . . ,
M
⊕ refer to potentially di�erent operations as each belongs to a di�erent semi-

group. When J0 = ∅, we call the inference problem integration (denoting the inquiry by q(∅))

and otherwise we call it marginalization. Here, having a constant sized J0 is not always enough

to ensure that q(x
J0

) has a polynomial representation in N . This is because the size of q(x
J0

) for

any individual x
J0

∈ XJ0
may grow exponentially with N (e.g., see claim 1.2.1). In the following we

call Ge = (Y∗,⊗) the expansion semigroup and Gm = (Y∗,
m
⊕) ∀1 ≤ m ≤ M the marginalization

semigroup.

Example 1.1.3. Going back to example 1.1.3, the shaded region in �gure 1.1 shows a partitioning

of the variables that we use to de�ne the following inference problem:

q(x
J0

) = max

x
J
3

∑
x

J
2

min

x
J
1

min

I

fI (x
I
)

We can associate this problem with the following semantics: we may think of each factor as an

agent, where fI (x
I
) is the payo� for agent I, which only depends on a subset of variables x

I
. We

have adversarial variables (x
J1

), environmental or chance variables (x
J2

), controlled variables (x
J3

)

and query variables (x
J0

). The inference problem above for each query x
J0

seeks to maximize the

expected minimum payo� of all agents, without observing the adversarial or chance variables, and

assuming the adversary makes its decision after observing control and chance variables.

Example 1.1.4. A “probabilistic” graphical model is de�ned using a expansion semigroup Ge =

(R≥0,×) and often a marginalization semigroup Gm = (R≥0,+). The expanded form represents the

unnormalized joint probability q(x ) =
∏

I
fI (x

I
), whose marginal probabilities are simply called

marginals. Replacing the summation with marginalization semigroup Gm = (R≥0,max), seeks the

maximum probability state and the resulting integration problem q(∅) = maxx
∏

I
fI (x

I
) is known

as maximum a posteriori (MAP) inference. Alternatively by adding a second marginalization

operation to the summation, we get the marginal MAP inference

q(x
J0

) = max

x
J
2

∑
x

J
1

∏
I

fI (x
I
). (1.4)

where here

⊗
=

∏
,

1⊕
=

∑
and

2⊕
= max.

If the object of interest is the negative log-probability (a.k.a. energy), the product expansion

semigroup is replaced by Ge = (R,+). Instead of sum marginalization semigroup, we can use the

log-sum-exp semigroup, Gm = (R,+) where a ⊕ b
def

= log(e−a + e−b ). The integral in this case
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is the log-partition function. If we change the marginalization semigroup to Gm = (R,min), the

integral is the minimum energy (corresponding to MAP).

A well-known example of a probabilistic graphical model is the Ising model of ferromag-

netism. This model is an extensively studied in physics, mainly to model the phase transition in

magnets. The model consists of binary variables (xi ∈ {−1,1}) – denoting magnet spins – ar-

ranged on the nodes of a graph G = (V ,E) (usually a grid or Cayley tree). The energy function

(i.e., Hamiltonian) associated with a con�guration x is the joint form

e(x ) = q(x ) = −
∑

(i,j )∈E

xi Ji j x j −
∑
i ∈V

hi (1.5)

Variable interactions are denoted by J and h is called the local �eld. Here each Ji,j de�nes a factor

over xi ,x j : f{i,j } (x {i,j } ) = −xi Ji j x j and local �elds de�ne local factors f{i } (xi ) = −hixi .

Depending on the type of interactions, we call the resulting Ising model:

• ferromagnetic, if all Ji j > 0. In this setting, neighbouring variables are likely to take similar

values.

• anti-ferromagnetic, if all Ji j < 0.

• non-ferromagnetic, if both kind of interactions are allowed. In particular, if the ferromagnetic and

anti-ferromagnetic interactions have comparable frequency, the model is called spin-glass. This

class of problem shows most interesting behaviours, which is not completely understood [212].

As we will see, the studied phenomena in these materials have important connections to di�cult

inference problems including combinatorial optimization problems. Two well studied models of

spin glass are Edward-Anderson (EA [93]) and Sherrington-Kirkpatrick (SK [280]) models. While

the EA model is de�ned on a grid (i.e., spin-glass interactions over a grid), the SK model is a

complete graph.

1.2 The inference hierarchy

Often, the complexity class is concerned with the decision version of the inference problem in

de�nition 1.1.4. The decision version of an inference problem asks a yes/no question about the

integral: q(∅)
?

≥ q for a given q.

Here, we produce a hierarchy of inference problems in analogy to polynomial [288], the count-

ing [302] and arithmetic [264] hierarchies.

To de�ne the hierarchy, we assume the following in de�nition 1.1.4:

– Any two consecutive marginalization operations are distinct (

l
⊕ ,

l+1

⊕ ∀1 ≤ l < M).

– The marginalization index sets Jl ∀1 ≤ l ≤ M are non-empty. Moreover if |Jl | = O (log(N ))

we call this marginalization operation apolynomialmarginalization as here |XJl | = Poly(N ).

– In de�ning the factor-graph, we required each factor to be polynomially computable. In
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building the hierarchy, we require the operations over each semigroup to be polynomially

computable as well. To this end we consider the set of rational numbers Y∗ ⊆ Q≥0 ∪ {±∞}.

Note that this automatically eliminates semigroups that involve operations such as exponen-

tiation and logarithm (because Q is not closed under these operations) and only consider

summation, product, minimization and maximization.

We can always re-express any inference problem to enforce the �rst two conditions and there-

fore they do not impose any restriction. In the following we will use the a language to identify

inference problems for an arbitrary set of factors F = {fI}. For example, sum-product refers

to the inference problem

∑
x
∏

I
fI (x

I
)

?

≥ q. In this sense the rightmost “token” in the language

(here product) identi�es the expansion semigroup Ge = (Q,
∏
) and the rest of tokens identify the

marginalization semigroups over Q in the given order. Therefore, this minimal language exactly

identi�es the inference problem. The only information that a�ects the computational complexity

of an inference problem but is not speci�ed in this language is whether each of the marginalization

operations are polynomial or exponential.

We de�ne �ve inference families: Σ,Π,Φ,Ψ,∆. The families are associated with that “outer-

most” marginalization operation – i.e.,

M
⊕ in de�nition 1.1.4). Σ is the family of inference problems

where

M
⊕ = sum. Similarly, Π is associated with product, Φ with minimization and Ψ with max-

imization. ∆ is the family of inference problems where the last marginalization is polynomial

(i.e., |JM | = O (log(N )) regardless of

M
⊕).

Now we de�ne inference classes in each family, such that all the problems in the same class

have the same computational complexity. Here, the hierarchy is exhaustive – i.e., it includes all

inference problems with four operations sum, min, max and product whenever the integral q(∅)

has a polynomial representation (see claim 1.2.1). Moreover the inference classes are disjoint. For

this, each family is parameterized by a subscript M and two sets S and D (e.g., ΦM (S,D) is an

inference “class” in family Φ). As before, M is the number of marginalization operations, S is the

set of indices of the (exponential) sum-marginalization and D is the set of indices of polynomial

marginalizations.

Example 1.2.1. Sum-min-sum-product identi�es the decision problem

∑
x

J
3

min

x
J
2

∑
x

J
1

∏
I

fI (x
I
)

?

≥ q

where J1, J2 and J3 partition N . Assume J1 = {2, . . . ,
N
2
}, J2 = {

N
2
+ 1, . . . ,N } and J3 = {1}. Since

we have three marginalization operations M = 3. Here the �rst and second marginalizations are

exponential and the third one is polynomial (since |J3 | is constant). Therefore D = {3}. Since the

only exponential summation is

1⊕
x

J
1

=
∑

x
J
1

, S = {1}. In our inference hierarchy, this problem

belongs to the class ∆3 ({1}, {3}).
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Alternatively, if we use di�erent values for J1, J2 and J3 that all linearly grow with N , the

corresponding inference problem becomes a member of Σ3 ({1,3},∅).

Remark 1. Note that arbitrary assignments to M , S and D do not necessarily de�ne a valid infer-

ence class. For example we require that S ∩D = ∅ and no index in D and S are is larger than M .

Moreover, the values in S and D should be compatible with the inference class. For example, for

inference class ΣM (S,D), M is a member of S. For notational convenience, if an inference class

notation is invalid we equate it with an empty set – e.g., Ψ1 ({1},∅) = ∅, because S = {1} and M = 1

means the inference class is Σ rather than Ψ.

In the de�nition below, we ignore the inference problems in which product appears in any of

the marginalization semigroups (e.g., product-sum). The following claim, explains this choice.

Claim 1.2.1. For ⊕M = prod, the inference query q(x
J0

) can have an exponential representation in

N .

Proof. The claim states that when the product appears in the marginalization operations, the

marginal (and integral) can become very large, such that we can no longer represent them in

polynomial space in N . We show this for an integration problem. The same idea can show the

exponential representation of a marginal query.

To see why this integral has an exponential representation in N , consider its simpli�ed form

q(∅) =
∏
x

I

q(x
I
)

where q(x ) here is the result of inference up to the last marginalization step

M
⊕, which is product,

where XI grows exponentially with N . Recall that the hierarchy is de�ned for operations on Q≥0
.

Since q(x
I
) for each x

I
∈ XI has a constant size, say c , the size of representation of q(∅) using a

binary scheme is

⌈
log

2
(q(∅))

⌉
=


log

2

(∏
x

I

q(x
I
)
)
=



∑
x

I

c


= dc |XI |e

which is exponential in N . �

De�ne the base members of families as

Σ0 (∅,∅)
def

= {sum} Φ0 (∅,∅)
def

= {min} (1.6)

Ψ0 (∅,∅)
def

= {max} Π0 (∅,∅)
def

= {prod}

∆0 (∅,∅) = ∅ ∆1 (∅, {1})
def

= {sum − sum,min−min,max−max}



1.2. THE INFERENCE HIERARCHY 16

where the initial members of each family only identify the expansion semigroup – e.g., sum in

Σ0 (∅,∅) identi�es q(x ) =
∑

I
fI (x

I
). Here, the exception is ∆1 (∅, {1}), which contains three inference

problems.
2

Let ΞM (S,D) denote the union of corresponding classes within all families:

ΞM (S,D) = ΣM (S,D) ∪ ΠM (S,D) ∪ ΦM (S,D) ∪ ΨM (S,D) ∪ ∆M (S,D)

Now de�ne the inference family members recursively, by adding a marginalization operation

to all the problems in each inference class. If this marginalization is polynomial then the new

class belongs to the ∆ family and the setD is updated accordingly. Alternatively, if this outermost

marginalization is exponential, depending on the new marginal operation (i.e., min,max,sum) the

new class is de�ned to be a member of Φ,Ψ or Σ. For the case that the last marginalization is

summation set S is updated.

• Adding an exponential marginalization ∀ |XJM | = Poly(N ),M > 0

ΣM+1 (S ∪ {M + 1},D)
def

=
{
sum − ξ | ξ ∈ ΞM (S,D) \ ΣM (S,D)} (1.7)

ΦM+1 (S,D)
def

=
{

min−ξ | ξ ∈ ΞM (S,D) \ ΦM (S,D)
}

ΨM+1 (S,D)
def

=
{

max−ξ | ξ ∈ ΞM (S,D) \ ΨM (S,D)
}

ΠM+1 (S,D)
def

= ∅

• Adding a polynomial marginalization ∀ |XJM | = Poly(N ),M > 1

∆M+1 (S,D ∪ {M + 1})
def

=
{
⊕ −ξ | ξ ∈ ΞM (S,D) ,⊕ ∈ {min,max,sum}

}
(1.8)

1.2.1 Single marginalization

The inference classes in the hierarchy with one marginalization are

∆1 (∅, {1}) = {min−min, max−max, sum − sum} (1.9)

Ψ1 (∅,∅) = {max−min, max−sum, max−prod} (1.10)

Φ1 (∅,∅) = {min−max, min−sum, min−prod} (1.11)

Σ1 ({1},∅) = {sum − prod, sum −min, sum −max} (1.12)

Now we review all the problems above and prove that ∆1,Ψ1,Φ1 and Σ1 are complete w.r.t. P,

NP, coNP and PP respectively. Starting from ∆1:

2
We treat M = 1 for ∆ specially as in this case the marginalization operation can not be polynomial. This is because

if |J1 | = O (log(N )), then |J0 | = Ω(N ) which violates the conditions in the de�nition of the inference problem.
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Proposition 1.2.2. sum-sum, min-min and max-max inference are in P.

Proof. To show that these inference problems are in P, we provide polynomial-time algorithms for

them:

• sum − sum is short for

q(∅) =
∑
x

∑
I

fI (x
I
)

which asks for the sum over all assignments of x ∈ X, of the sum of all the factors. It is easy to

see that each factor value fI (x
I
) ∀I, XI is counted |X\I | times in the summation above. Therefore

we can rewrite the integral above as

q(∅) =
∑

I

|X\I |
(∑

x
I

fI (x
I
)
)

where the new form involves polynomial number of terms and therefore is easy to calculate.

• min−min (similar for max−max) is short for

q(∅) = min

x
min

I

fI (x
I
)

where the query seeks the minimum achievable value of any factor. We can easily obtain this by

seeking the range of all factors and reporting the minimum value in polynomial time. �

Max-sum and max-prod are widely studied and it is known that their decision version are NP-

complete [281]. By reduction from satis�ability we can show that max-min inference [258] is also

NP-hard.

Proposition 1.2.3. The decision version of max-min inference that asks maxx minI fI (x
I
)

?

≥ q is

NP-complete.

Proof. Given x it is easy to verify the decision problem, so max-min decision belongs to NP. To

show NP-completeness, we reduce the 3-SAT to a max-min inference problem, such that 3-SAT is

satis�able i� the max-min value is q(∅) ≥ 1 and unsatis�able otherwise.

Simply de�ne one factor per clause of 3-SAT, such that fI (x
I
) = 1 if x

I
satis�es the clause and

any number less than one otherwise. With this construction, the max-min value maxx minI∈F fI (x
I
)

is one i� the original SAT problem was satis�able, otherwise it is less than one. This reduces 3-SAT

to Max-Min-decision. �

This means all the problems in Ψ1 (∅,∅) are inNP (and in fact are complete w.r.t. this complexity

class). In contrast, problems in Φ1 (∅,∅) are in coNP, which is the class of decision problems in

which the “NO instances” result has a polynomial time veri�able witness or proof. Note that by
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changing the decision problem from q(∅)
?

≥ q to q(∅)
?

≤ q, the complexity classes of problems in

Φ and Ψ family are reversed (i.e., problems in Φ1 (∅,∅) become NP-complete and the problems in

Ψ1 (∅,∅) become coNP-complete).

Among the members of Σ1 ({1},∅), sum-product is known to be PP-complete [194, 267]. It is

easy to show the same result for sum-min (sum-max) inference.

Proposition 1.2.4. The sum-min decision problem

∑
x minI fI (x

I
)

?

≥ q is PP-complete forY = {0,1}.

PP is the class of problems that are polynomially solvable using a non-deterministic Turing

machine, where the acceptance condition is that the majority of computation paths accept.

Proof. To see that

∑
x minI fI (x

I
)

?

≥ q is in PP, enumerate all x ∈ X non-deterministically and for

each assignment calculate minI fI (x
I
) in polynomial time (where each path accepts i� minI fI (x

I
) =

1) and accept i� at least q of the paths accept.

Given a matrix A ∈ {0,1}N×N the problem of calculating its permanent

perm(A) =
∑
z∈SN

N∏
i=1

Ai,zi

where SN is the set of permutations of 1, . . . ,N is #P-complete and the corresponding decision

problem is PP-complete [297]. To show completeness w.r.t. PP it is enough to reduce the problem

of computing the matrix permanent to sum-min inference in a graphical model. The problem of

computing the permanent has been reduced to sum-product inference in graphical models [139].

However, when fI (x
I
) ∈ {0,1} ∀I, sum-product is isomorphic to sum-min. This is because y1×y2 =

min(y1,y2)∀yi ∈ {0,1}. Therefore, the problem of computing the permanent for such matrices

reduces to sum-min inference in the factor-graph of [139]. �

1.2.2 Complexity of general inference classes

Let f(.) denote the complexity class of an inference class in the hierarchy. In obtaining the com-

plexity class of problems with M > 1, we use the following fact, which is also used in the poly-

nomial hierarchy: PNP = PcoNP [14]. In fact PNP
A
= PcoNP

A
, for any oracle A. This means that by

adding a polynomial marginalization to the problems in ΦM (S,D) and ΨM (S,D), we get the same

complexity classf(∆M+1 (S,D∪{M +1})). The following gives a recursive de�nition of complex-

ity class for problems in the inference hierarchy.
3

Note that the de�nition of the complexity for

each class is very similar to the recursive de�nition of members of each class in equations (1.7)

and (1.8)

3
We do not prove the completeness w.r.t. complexity classes beyond the �rst level of the hierarchy and only assert

the membership.
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Theorem 1.2.5. The complexity of inference classes in the hierarchy is given by the recursion

f(ΦM+1 (S,D)) = coNPf(ΞM (S,D)\ΦM (S,D))
(1.13)

f(ΨM+1 (S,D)) = NPf(ΞM (S,D)\ΨM (S,D))
(1.14)

f(ΣM+1 (S ∪ {M + 1},D)) = PPf(ΞM (S,D)\ΣM (S,D))
(1.15)

f(∆M+1 (S,D ∪ {M + 1})) = Pf(ΞM (S,D))
(1.16)

where the base members are de�ned in equation (1.6) and belong to P.

Proof. Recall that our de�nition of factor graph ensures that q(x ) can be evaluated in polynomial

time and therefore the base members are in P (for complexity of base members of ∆ see proposi-

tion 1.2.2). We use these classes as the base of our induction and assuming the complexity classes

above are correct for M we show that are correct for M + 1. We consider all the above statements

one by one:

• Complexity for members of ΦM+1 (S,D):

Adding an exponential-sizedmin-marginalization to an inference problem with known complexity

A, requires a Turing machine to non-deterministically enumerate z
JM
∈ XJM possibilities, then call

the A oracle with the “reduced factor-graph” – in which x
JM

is clamped to z
JM

– and reject i� any

of the calls to oracle rejects. This means f(ΦM+1 (S,D)) = coNPA.

Here, equation (1.13) is also making another assumption expressed in the following claim.

Claim 1.2.6. All inference classes in ΞM (S,D) \ ΦM (S,D) have the same complexity A.

• M = 0: the fact that q(x ) can be evaluated in polynomial time means that A = P.

• M > 0: ΞM (S,D) \ ΦM (S,D) only contains one inference class – that is exactly only one

of the following cases is correct:

– M ∈ S ⇒ ΞM (S,D) \ ΦM (S,D) = ΣM (S,D)

– M ∈ D ⇒ ΞM (S,D) \ ΦM (S,D) = ∆M (S,D)

– M < S ∪ D ⇒ ΞM (S,D) \ ΦM (S,D) = ΨM (S,D).

(in constructing the hierarchy we assume two consecutive marginalizations are distinct

and the current marginalization is a minimization.)

But if ΞM (S,D) \ ΦM (S,D) contains a single class, the inductive hypothesis ensures that

all problems in ΞM (S,D) \ ΦM (S,D) have the same complexity class A.

This completes the proof of our claim.

• Complexity for members of ΨM+1 (S,D):

Adding an exponential-sized max-marginalization to an inference problem with known complex-

ity A, requires a Turing machine to non-deterministically enumerate z
JM
∈ XJM possibilities, then
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call the A oracle with the reduced factor-graph and accept i� any of the calls to oracle accepts.

This means f(ΨM+1 (S,D)) = NPA. Here, an argument similar to that of claim 1.2.6 ensures that

ΞM (S,D) \ ΨM (S,D) in equation (1.14) contains a single inference class.

• Complexity for members of ΣM+1 (S ∪ {M + 1},D):

Adding an exponential-sized sum-marginalization to an inference problem with known complexity

A, requires a Turing machine to non-deterministically enumerate z
JM
∈ XJM possibilities, then call

the A oracle with the reduced factor-graph and accept i� majority of the calls to oracle accepts.

This means f(ΨM+1 (S,D)) = PPA.

• M = 0: the fact that q(x ) can be evaluated in polynomial time means that A = P.

• M > 0:

– M ∈ D ⇒ ΞM (S,D) \ ΣM (S,D) = ∆M (S,D).

– M < D ∪ S ⇒ ΞM (S,D) \ ΣM (S,D) = ΨM (S,D) ∪ ΦM (S,D): despite the fact

that A = f(ΨM (S,D)) is di�erent from A′ = f(ΦM (S,D)), since PP is closed un-

der complement, which means PPA = PPA and the recursive de�nition of complexity

equation (1.15) remains correct.

• Complexity for members of ∆M+1 (S,D ∪ {M + 1}):

Adding a polynomial-sized marginalization to an inference problem with known complexityA, re-

quires a Turing machine to deterministically enumerate z
JM
∈ XJM possibilities in polynomial time,

and each time call the A oracle with the reduced factor-graph and accept after some polynomial-

time calculation. This means f(ΨM+1 (S,D)) = PA. Here, there are three possibilities:

• M = 0: here again A = P.

• M ∈ S ⇒ ΞM (S,D) = ΣM (S,D).

• M ∈ D ⇒ ΞM (S,D) = ∆M (S,D).

• M < D ∪S ⇒ ΞM (S,D) = ΨM (S,D) ∪ΦM (S,D), in which case since PPNP
B
= PPcoNP

B
,

the recursive de�nition of complexity in equation (1.16) remains correct.

�

Example 1.2.2. Consider the marginal-MAP inference of equation (1.4). The decision version

of this problem, q(∅)
?

≥ q, is a member of Ψ2 ({1},∅) which also includes max−sum − min and

max−sum−max. The complexity of this class according to equation (1.14) isf(Ψ2 ({1},∅)) = NPPP.

However, marginal-MAP is also known to be “complete” w.r.t. NPPP [241]. Now suppose that the

max-marginalization over x
J2

is polynomial (e.g., |J2 | is constant). Then marginal-MAP belongs to



1.2. THE INFERENCE HIERARCHY 21

∆2 ({1}, {2}) with complexity PPP. This is because a Turing machine can enumerate all z
J2

∈ XJ2
in

polynomial time and call its PP oracle to see if

q(x
J0

| z
J2

)
?

≥ q

where q(x
J0

| z
J2

) =
∑
x

J
2

∏
I

fI (x
I\J2

,z
I∩J2

)

and accept if any of its calls to oracle accepts, and rejects otherwise. Here, fI (x
I\J2

,z
I∩J2

) is the

reduced factor, in which all the variables in x
J2

are �xed to z
J2∩I

.

The example above also hints at the rationale behind the recursive de�nition of complexity

class for each inference class in the hierarchy. Consider the inference family Φ:

Here, Toda’s theorem [296] has an interesting implication w.r.t. the hierarchy. This theorem

states that PP is as hard as the polynomial hierarchy, which means min−max−min− . . . − max

inference for an arbitrary, but constant, number of min and max operations appears below the

sum-product inference in the inference hierarchy.

1.2.3 Complexity of the hierarchy

By restricting the domain Y∗ to {0,1}, min and max become isomorphic to logical AND (∧) and

OR (∨) respectively, where 1 � true,0 � false. By considering the restriction of the inference

hierarchy to these two operations we can express quanti�ed satis�ability (QSAT) as inference in

a graphical model, where ∧ � ∀ and ∨ � ∃. Let each factor fI (x
I
) be a disjunction –e.g., f (x i,j,k ) =

xi ∨ ¬x j ∨ ¬xk . Then we have

∀x
JM
∃x

JM−1

. . . ∃x
J
2

∀x
J
1

∧
I

fI (x
I
) � min

x
JM

max

x
JM−1

. . .max

x
J
2

min

x
J
1

min

I

fI (x
I
)

By adding the summation operation, we can express the stochastic satis�ability [194] and by

generalizing the constraints from disjunctions we can represent any quanti�ed constraint problem

(QCP) [36]. QSAT, stochastic SAT and QCPs are all PSPACE-complete, where PSPACE is the

class of problems that can be solved by a (non-deterministic) Turing machine in polynomial space.

Therefore if we can show that inference in the inference hierarchy is in PSPACE, it follows that

inference hierarchy is in PSPACE-complete as well.

Theorem 1.2.7. The inference hierarchy is PSPACE-complete.

Proof. (theorem 1.2.7 on page 21) To prove that a problem is PSPACE-complete, we have to show

that 1) it is in PSPACE and 2) a PSPACE-complete problem reduces to it. We already saw that

QSAT, which is PSPACE-complete, reduces to the inference hierarchy. But it is not di�cult to
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input :
M⊕

x JM

M−1⊕
x JM−1

. . .
1⊕
x J1

⊗
I fI (x I)

output: q(x J0 )

for each zJ0 ∈ XJ0 do // loop over the query domain

for each ziN ∈ XiN do // loop over XiN

.

.

.
for each zi1 ∈ Xi1 do // loop over Xi1

q1 (zi1 ) :=
⊗

I fI (zI);
end

qi2 (zi2 ) :=
j (i1)⊕

xi1
q1 (xi1 )

.

.

.

qN (ziN ) :=
j (iN−1)⊕

xiN−1
qN−1 (xiN−1 )

end

q(zJ0 ) :=
j (iN )⊕

xiN
qN (xiN )

end
Algorithm 1: inference in PSPACE

show that inference hierarchy is contained in PSPACE. Let

q(x J0 ) =
M⊕

x JM

M−1⊕
x JM−1

. . .

1⊕
x J1

⊗
I

fI (x I)

be any inference problem in the hierarchy. We can simply iterate over all values of z ∈ X in nested

loops or using a recursion. Let j (i ) : {1, . . . ,N } → {1, . . . ,M } be the index of the marginalization

that involves xi – that is i ∈ J j (i ) . Moreover let i1, . . . ,iN be an ordering of variable indices such that

j (ik ) ≤ j (ik+1). Algorithm 1 uses this notation to demonstrate this procedure using nested loops.

Note that here we loop over individual domains Xik rather than XJm and track only temporary

tuples qik , so that the space complexity remains polynomial in N .

�
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1.3 Polynomial-time inference

Our de�nition of inference was based on an expansion operation ⊗ and one or more marginaliza-

tion operations

1

⊕, . . . ,
M
⊕. If we assume only a single marginalization operation, polynomial time

inference is still not generally possible. However, if we further assume that the expansion opera-

tion is distributive over marginalization and the factor-graph has no loops, exact polynomial time

inference is possible.

De�nition 1.3.1. A commutative semiring S = (Y∗,⊕,⊗) is the combination of two commu-

tative semigroups Ge = (Y∗,⊗) and Gm = (Y∗,⊕) with two additional properties

• identity elements

⊕

1 and

⊗

1 such that

⊕

1 ⊕ a = a and

⊗

1 ⊗ a = a. Moreover

⊕

1 is an annihilator

for Ge = (⊗,Y∗): a ⊗
⊕

1 =
⊕

1 ∀a ∈ Y∗.4

• distributive property:

a ⊗ (b ⊕ c ) = (a ⊗ b) ⊕ (a ⊗ b) ∀a,b,c ∈ Y∗

The mechanism of e�cient inference using distributive law can be seen in a simple example:

instead of calculating min(a+b,a+c ), using the fact that summation distributes over minimization,

we may instead obtain the same result using a +min(b,c ), which requires fewer operations.

Example 1.3.1. The following are some examples of commutative semirings:

– Sum-product (R≥0,+,×).

– Max-product (R≥0 ∪ {−∞},max,×) and ({0,1},max,×).

– Min-max (S,min,max) on any ordered set S.

– Min-sum (R ∪ {∞},min,+) and ({0,1},min,+).

– Or-and ({true,false},∨,∧).

– Union-intersection (2S ,∪,∩) for any power-set 2
S

.

– The semiring of natural numbers with greatest common divisor and least common multiple

(N , lcm,gcd).

– Symmetric di�erence-intersection semiring for any power-set (2S ,∇,∩).

Many of the semirings above are isomorphic –e.g., y ′ � − log(y) de�nes an isomorphism

between min-sum and max-product. It is also easy to show that the or-and semiring is isomorphic

to min-sum/max-product semiring on Y∗ = {0,1}.

The inference problems in the example above have di�erent properties indirectly inherited

from their commutative semirings: for example, the operation min (also max) is a choice func-
tion, which means mina∈A a ∈ A. The implication is that if sum of the semiring is min (or

4
That is when dealing with reals, this is

⊕
1 = 0; this means a × 0 = 0.
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max), we can replace it with argx
JM

max and (if required) recover q(∅) using q(∅) =
⊗

I
fI (x∗) in

polynomial time.

As another example, since both operations have inverses, sum-product is a �eld [247]. The

availability of inverse for ⊗ operation – i.e., when Ge is an Abelian group – has an important

implication for inference: the expanded form of equation (1.1) can be normalized, and we may

inquire about normalized marginals

p(x
J
) =

⊕
x
\J

p(x ) (1.17)

where p(x )
def

=
1

q(∅)
⊗

(⊗
I

fI (x
I
)
)

if q(∅) ,
⊕

1 (1.18)

p(x )
def

=
⊕

1 if q(∅) =
⊕

1 (1.19)

where p(x ) is the normalized joint form. We deal with the case where the integral evaluates to

the annihilator as a special case because division by annihilator may not be well-de�ned. This

also means, when working with normalized expanded form and normalized marginals, we always

have

⊕
x

J

p(x
J
) =

⊗

1

Example 1.3.2. Since Ge = (R>0,×) and Ge = (R,+) are both Abelian groups, min-sum and sum-

product inference have normalized marginals. For min-sum inference this means minx
J

p(x
J
) =

sum

1 = 0. However, for min-max inference, since (S,max) is not Abelian, normalized marginals are

not de�ned.

We can apply the identity and annihilator of a commutative semiring to de�ne constraints.

De�nition 1.3.2. A constraint is a factor fI : XI → {
⊗

1,
⊕

1} whose range is limited to identity and

annihilator of the expansion monoid.
5

Here, fI (x ) =
⊕

1 i� x is forbidden and fI (x ) =
⊗

1 i� it is permissible. A constraint satisfaction
problem (CSP) is any inference problem on a semiring in which all factors are constraints. Note

that this allows de�nition of the “same” CSP on any commutative semiring. The idea of using

di�erent semirings to de�ne CSPs has been studied in the past [33], however its implication about

inference on commutative semirings has been ignored.

Theorem 1.3.1. Inference in any commutative semiring is NP-hard under randomized polynomial-

time reduction.

Proof. To prove that inference in any semiring S = (Y∗,
⊕

1,
⊗

1) isNP-hard under randomized poly-

nomial reduction, we deterministically reduce unique satis�ability (USAT) to an inference prob-

lems on any semiring. USAT is a so-called “promise problem”, that asks whether a satis�ability

5
Recall that a monoid is a semigroup with an identity. The existence of identity here is a property of the semiring.
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problem that is promised to have either zero or one satisfying assignment is satis�able. Valiant

and Vazirani [298] prove that a polynomial time randomized algorithm (RP) for USAT implies a

RP=NP.

For this reduction consider a set of binary variables x ∈ {0,1}N , one per each variable in

the given instance of USAT. For each clause, de�ne a constraint factor fI such that fI (x
I
) =

⊗

1 if

x
I

satis�es that clause and fI (x
I
) =

⊕

1 otherwise. This means, x is a satisfying assignment for

USAT i� q(x ) =
⊗

I
fI (x

I
) =

⊗

1. If the instance is unsatis�able, the integral q(∅) =
⊕

x

⊕

1 =
⊕

1 (by de�nition of

⊕

1). If the instance is satis�able there is only a single instance x∗ for which

q(x∗) =
⊗

1, and therefore the integral evaluates to

⊗

1. Therefore we can decide the satis�ability of

USAT by performing inference on any semiring, by only relying on the properties of identities.

The satisfying assignment can be recovered using a decimation procedure, assuming access to an

oracle for inference on the semiring.

�

Example 1.3.3. Inference on xor-and semiring ({true,false},xor,∧), where each factor has a

disjunction form, is called parity-SAT, which asks whether the number of SAT solutions is even

or odd. A corollary to theorem 1.3.1 is that parity-SAT is NP-hard under randomized reduction,

which is indeed the case [298].

We �nd it useful to use the same notation for the identity function 1(condition):

1(cond.)
def

=




(+,×) (min,+) (min,max)

cond. = true 1 0 −∞

cond. = false 0 +∞ +∞

(1.20)

where the intended semiring for 1(.) function will be clear from the context.

1.4 Reductions

Several of the inference problems over commutative semirings are reducible to each other. Sec-

tion 1.4.1 reviews the well-known reduction of marginalization to integration for general commu-

tative semirings. We use this reduction to obtain approximate message dependencies in perform-

ing loop corrections in section 2.4.

In section 1.4.1, we introduce a procedure to reduce integration to that of �nding normalized

marginals. The same procedure, called decimation, reduces sampling to marginalization. The

problem of sampling from a distribution is known to be almost as di�cult as sum-product inte-

gration [151]. As we will see in chapter 3, constraint satisfaction can be reduced to sampling and
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therefore marginalization. In section 2.6.3 we introduce a perturbed message passing scheme to

perform approximate sampling and use it to solve CSPs. Some recent work perform approximate

sampling by �nding the MAP solution in the perturbed factor-graph, in which a particular type

of noise is added to the factors [125, 239]. Approximate sum-product integration has also been

recently reduced to MAP inference [96, 97]. In section 2.3, we see that min-max and min-sum

inference can be obtained as limiting cases of min-sum and sum-product inference respectively.

Section 1.4.2 reduces the min-max inference to min-sum also to a sequence of CSPs (and there-

fore sum-product inference) over factor-graphs. This reduction gives us a powerful procedure to

solve min-max problems, which we use in part II to solve bottleneck combinatorial problems.

In contrast to this type of reduction between various modes of inference, many have stud-

ied reductions of di�erent types of factor-graphs [90]. Some examples of these special forms are

factor-graphs with: binary variables, pairwise interactions, constant degree nodes, and planar

form. For example Sanghavi et al. [274] show that min-sum integration is reducible to maximum

independent-set problem. However since a pairwise binary factor-graph can represent a maximum

independent-set problem (see section 3.7), this means that min-sum integration in any factor-graph

can be reduced to the same problem on a pairwise binary model.

These reductions are in part motivated by the fact that under some further restrictions the

restricted factor-graph allows more e�cient inference. For example, (I) it is possible to calculate

the sum-product integral of the planar spin-glass Ising model (see example 1.1.4) in polynomial

time, in the absence of local �elds [99]; (II) the complexity of the loop correction method that we

study in section 2.4.2 grows exponentially with the degree of each node and therefore it may be

bene�cial to consider reduced factor-graph where |∂i | = 3; and (III) if the factors in a factor-graphs

with pairwise factors satisfy certain metric property, polynomial algorithms can obtain the exact

min-sum integral using graph-cuts [41].

1.4.1 Marginalization and integration

This section shows how for arbitrary commutative semirings there is a reduction from marginal-

ization to integration and vice versa.

Marginalization reduces to integration

For any �xed assignment to a subset of variables x
A
= z

A
(a.k.a. evidence), we can reduce all the

factors fI (x
I
) that have non-empty intersection with A (i.e., I ∩ A , ∅) accordingly:

fI\A (x
I\A
| z

A
)

def

=
⊕
x

I∩A

fI (x
I
) ⊗ 1(x

I∩A
= z

I∩A
) ∀I s .t . A ∩ I , ∅ (1.21)
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where the identity function 1(.) is de�ned by equation (1.20). The new factor graph produced by

clamping all factors in this manner, has e�ectively accounted for the evidence. Marginalization or

integration, can be performed on this reduced factor-graph. We use similar notation for the integral

and marginal in the new factor graph – i.e., q(∅ | x
A
) and q(x

B
| x

A
). Recall that the problem of

integration is that of calculating q(∅). We can obtain the marginals q(z
A
) by integration on reduced

factor-graphs for all z
A
∈ XA reductions.

Claim 1.4.1.

q(z
A
) = q(∅ | z

A
) (1.22)

Proof.

q(z
A
) =

⊕
x
\A

⊗
I

fI (x
I\A
,z

A∩I
)

=
⊕
x

(
1(x

A
= z

A
) ⊗

⊗
I

fI (x
I\A
,z

A∩I
)

)

=
⊕
x

⊗
I

(
fA (x

A
) ⊗ 1(x

I∩A
= z

I∩A
)

)
=

⊕
x

⊗
I

fI\A (x
I\A
| z

A
) = q(∅ | z

A
)

�

where we can then normalize q(x
I
) values to get p(x

I
) (as de�ned in equation (1.17)).

Integration reduces to marginalization

Assume we have access to an oracle that can produce the normalized marginals of equation (1.17).

We show how to calculate q(∅) by making N calls to the oracle. Note that if the marginals are not

normalized, the integral is trivially given by q(∅) =
⊕

x
J

q(x
J
)

Start with t = 1, B(t = 0) = ∅ and given the normalized marginal over a variable p(xi (t ) ), �x

the xi (t ) to an arbitrary value zi (t ) ∈ Xi (t ) . Then reduce all factors according to equation (1.21).

Repeat this process of marginalization and clamping N times until all the variables are �xed. At

each point, B(t ) denotes the subset of variables �xed up to step t (including i (t )) and p(xi (t ) |

z
B(t−1) ) =

q(xi (t ) |zB(t−1) )

q(∅|z
B(t−1) )

refers to the new marginal. Note that we require i (t ) < B(t − 1) – that is at

each step we �x a di�erent variable.

We call an assignment to xi (t ) = zi (t ) invalid, if p(zi (t ) | z
B(t ) ) =

⊕

1. This is because

⊕

1 is the

annihilator of the semiring and we want to avoid division by the annihilator. Using equations (1.17)

to (1.19), it is easy to show that if q(∅) ,
⊕

1, a valid assignment always exists (this is because
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⊕
xi (t )

p(xi (t ) | z
B(t−1) ) =

⊗

1). Therefore if we are unable to �nd a valid assignment, it means

q(∅) =
⊕

1.

Let z = z
B(N+1) denote the �nal joint assignment produced using the procedure above.

Proposition 1.4.2. The integral in the original factor-graph is given by

q(∅) = *
,

⊗
I

fI (z
I
)+
-
⊗ *

,

⊗
1≤t ≤N

p(zi (t ) | z
B(t−1) )

+
-

−1

(1.23)

where the inverse is de�ned according to ⊗-operation.

Proof. First, we derive the an equation for “conditional normalized marginals” for semirings where

⊗ de�nes an inverse.

Claim 1.4.3. For any semiring with normalized joint form we have

p(x ) = p(xi ) ⊗ p(x
\i | xi )

where p(x
\i | xi ) =

q(x
\i |xi )

q(∅|xi )

To arrive at this equality �rst note that since x = x
\i ,xi , q(x\i | xi ) = q(x ). Then multiply

both sides by q(xi ) = q(∅ | xi ) (see claim 1.4.1) to get

q(x ) ⊗ q(∅ | xi ) = q(xi ) ⊗ q(x
\i | xi ) ⇒

q(x )
q(∅)

=
q(xi )
q(∅)

⊗
q(x

\i | xi )

q(∅ | xi )
⇒

p(x ) = p(xi ) ⊗ p(x
\i | xi )

where we divided both sides by q(∅) and moved a term from left to right in the second step.

Now we can apply this repeatedly to get a chain rule for the semiring:

p(x ) = p(xi1 ) ⊗ p(xi2 | xi1 ) ⊗ p(xi3 | x {i1,i2 } ) ⊗ . . . ⊗ p(xiN | x {i1, ...,iN−1 }
)

which is equivalent to

p(x ) = p(xi (1) ) ⊗ p(xi (2) | x
B(1) ) ⊗ . . . ⊗ p(xi (N ) | x

B(N−1) ) =
⊗

1≤t ≤N

p(x i (t ) | xB(t−1) )
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Simply substituting this into de�nition of p(x ) (equation (1.18)) and re-arranging we get

⊗
1≤t ≤N

p(x i (t ) | xB(t−1) ) =
1

q(∅)

⊗
I∈F

fI (x
I
) ⇒

q(∅) = *
,

⊗
I

fI (z
I
)+
-
⊗ *

,

⊗
1≤t ≤N

p(zi (t ) | z
B(t−1) )

+
-

−1

�

The procedure of incremental clamping is known as decimation, and its variations are typi-

cally used for two objectives: (I) recovering the MAP assignment from (max) marginals (assuming

a max-product semiring). Here instead of an arbitrary z
J
∈ XJ, one picks z

J
= argx

J

max p(x
J
).

(II) producing an unbiased sample from a distribution p(.) (i.e., assuming sum-product semiring).

For this we sample from p(x
I
): z

J
∼ p(x

J
).

1.4.2 Min-max reductions

The min-max objective appears in various �elds, particularly in building robust models under

uncertain and adversarial settings. In the context of probabilistic graphical models, several min-

max objectives di�erent from inference in min-max semiring have been previously studied [140,

162] (also see section 2.1.2). In combinatorial optimization, min-max may refer to the relation

between maximization and minimization in dual combinatorial objectives and their corresponding

linear programs [276], or it may refer to min-max settings due to uncertainty in the problem

speci�cation [5, 16].

In part II we will see that several problems that are studied under the class of bottleneck
problems can be formulated using the min-max semiring. Instances of these problems include

bottleneck traveling salesman problem [242], K-clustering [119], K-center problem [87, 164] and

bottleneck assignment problem [121].

Edmonds and Fulkerson [92] introduce a bottleneck framework with a duality theorem that

relates the min-max objective in one problem instance to a max-min objective in a dual problem.

An intuitive example is the duality between the min-max cut separating nodes a and b – the cut

with the minimum of the maximum weight – and min-max path between a and b, which is the

path with the minimum of the maximum weight [104]. Hochbaum and Shmoys [136] leverages

the triangle inequality in metric spaces to �nd constant factor approximations to several NP-hard

min-max problems under a uni�ed framework.

The common theme in a majority of heuristics for min-max or bottleneck problems is the

relation of the min-max objective to a CSP [136, 237]. We establish a similar relation within the

context of factor-graphs, by reducing the min-max inference problem on the original factor-graph

to inference over a CSP factor-graph (see section 1.3) on the reduced factor-graph in section 1.4.2.
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In particular, since we use sum-product inference to solve the resulting CSP, we call this reduction,

sum-product reduction of min-max inference.

Min-max reduces to min-sum

Here, we show that min-max inference reduces to min-sum, although in contrast to the sum-

product reduction of the next subsection, this is not a polynomial time reduction. First, we make a

simple observation about min-max inference. Let Y =
⋃

I∈F YI denotes the union over the range

of all factors. The min-max value belongs to this set maxI∈F fI (x∗
I
) ∈ Y . In fact for any assignment

x , maxI∈F fI (x
I
) ∈ Y .

Now we show how to manipulate the factors in the original factor-graph to produce new

factors over the same domain such that the min-max inference on the former corresponds to the

min-sum inference on the later.

Lemma 1.4.4. Any two sets of factors, {fI} and {gI}, over the identical domains {XI} have identical

min-max solutions

argx min max

I

fI (x
I
) = argx min max

I

gI (x
I
)

if ∀I, J ∈ F ,x
I
∈ XI,x

J
∈ XJ

fI (x
I
) < fJ (x

J
) ⇔ gI (x

I
) < gJ (x

J
)

Proof. Assume they have di�erent min-max assignments
6

–i.e., x∗ = argx min maxI fI (x
I
), x ′∗ =

argx min maxI gI (x I ) and x∗ , x ′∗. Let y∗ and y ′∗ denote the corresponding min-max values.

Claim 1.4.5.

y∗ > max

I

fI (x ′∗I ) ⇔ y ′∗ < max

I

gI (x
∗
I
)

y∗ < max

I

fI (x ′∗
I
) ⇔ y ′∗ > max

I

f ′
I
(x∗

I
)

This simply follows from the condition of the Lemma. But in each case above, one of the

assignments y∗ or y ′∗ is not an optimal min-max assignment as there is an alternative assignment

that has a lower maximum over all factors. �

This lemma simply states that what matters in the min-max solution is the relative ordering in

the factor-values.

6
For simplicity, we are assuming each instance has a single min-max assignment. In case of multiple assignments

there is a one-to-one correspondence between them. Here the proof instead starts with the assumption that there is an

assignment x∗ for the �rst factor-graph that is di�erent from all min-max assignments in the second factor-graph.
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Let y[1] ≤ . . . ≤ y[|Y |] be an ordering of elements in Y , and let r( fI (xI )) denote the rank in

{1, . . . , |Y |} of yI = fI (x I) in this ordering. Define the min-sum reduction of {fI}I∈F as

gI (x I) = 2r(fI (x I)) ∀I ∈ F

Theorem 1.4.6.

argx min
∑
I

gI (x I) = argx minmax
I

fI (x I)

where {gI}I is the min-sum reduction of {fI}I.

Proof. First note that since д(z) = 2z is a monotonically increasing function, the rank of elements

in the range of {gI}I is the same as their rank in the range of {fI}I. Using Lemma 1.4.4, this means

argx minmax
I

gI (x I) = argx minmax
I

fI (x I). (1.24)

Since 2z >
∑z−1
l=0 2

l , by definition of {gI} we have

max
I∈F

gI (x I) >
∑

I∈F \I∗
gI (x I) where I∗ = argI max gI (x I)

It follows that for x1,x2 ∈ X,

max
I

gI (x
1
I ) < max

I
gI (x

2
I ) ⇔

∑
I

gI (x
1
I ) <
∑
I

gI (x
2
I )

Therefore

argx minmax
I

gI (x I) = argx min
∑
I

gI (x I).

This equality, combined with equation (1.24), prove the statement of the theorem. �

An alternative approach is to use an inverse temperature parameter β and re-state themin-max

objective as the min-sum objective at the low temperature limit

lim
β→+∞

argx min
∑
I

f
β

I (x I) = argx minmax
I

fI (x I) (1.25)

Min-max reduces to sum-product

Recall that Y =
⋃

I∈F YI denote the union over the range of all factors. For any y ∈ Y , we reduce

the original min-max problem to a CSP using the following reduction.
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Definition 1.4.1. For any y ∈ Y , py-reduction of the min-max problem:

x∗ = argx min max
I∈F

fI (x I) (1.26)

is given by

py (x )
def
=

1

qy (∅)

∏
I∈F

1(fI (x I) ≤ y) (1.27)

where qy (∅) is the normalizing constant.7

This distribution defines a CSP over X, where py (x ) > 0 iff x is a satisfying assignment.

Moreover, qy (∅) gives the number of satisfying assignments. The following theorem is the basis

of our reduction.

Theorem 1.4.7. Let x∗ denote the min-max solution and y∗ be its corresponding value –i.e., y∗ =

maxI fI (x
∗
I ). Then py (x ) is satisfiable for all y ≥ y∗ (in particular py (x∗) > 0) and unsatisfiable for

all y < y∗.

Proof. (A) py for y ≥ y∗ is satisfiable: It is enough to show that for any y ≥ y∗, py (x∗) > 0. But

since

py (x
∗) =

1

qy (∅)

∏
I

1(fI (x
∗
I ) ≤ y)

and fI (x
∗
I ) ≤ y∗ ≤ y, all the indicator functions on the rhs evaluate to 1, showing that py (x∗) > 0.

(B) py for y < y∗ is not satisfiable: Towards a contradiction assume that for some y < y∗, py

is satisfiable. Let x denote a satisfying assignment –i.e., py (x ) > 0. Using the definition of py -

reduction, this implies that 1(fI (x
I
) ≤ y) > 0 for all I ∈ F . However this means that maxI fI (x

I
) ≤

y < y∗, which means y∗ is not the min-max value. �

This theorem enables us to find a min-max assignment by solving a sequence of CSPs. Let

y[1] ≤ . . . ≤ y[|Y |] be an ordering of y ∈ Y . Starting from y = y[�N/2�], if py is satisfiable then

y∗ ≤ y. On the other hand, if py is not satisfiable, y∗ > y. Using binary search, we need to solve

log( |Y |) CSPs to find the min-max solution. Moreover at any time-step during the search, we have

both upper and lower bounds on the optimal solution. That is y < y∗ ≤ y, where py is the latest

unsatisfiable and py is the latest satisfiable reduction.

However, finding an assignment x∗ such that py (x∗) > 0 or otherwise showing that no such

assignment exists, is in general, NP-hard. Instead, we can use an incomplete solver [160], which

may find a solution if the CSP is satisfiable, but its failure to find a solution does not guarantee

7 To always have a well-defined probability, we define 0
0
def
= 0.
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unsatisfiability. By using an incomplete solver, we lose the lower boundy on the optimal min-max

solution.8 However the following theorem states that, as we increase y from the min-max value

y∗, the number of satisfying assignments to py -reduction increases, making it potentially easier to

solve.

Proposition 1.4.8.

y1 < y2 ⇒ qy1 (∅) ≤ qy2 (∅) ∀y1,y2 ∈ Y

where qy (∅) ( i.e., partition function) is the number of solutions of py -reduction.

Proof. Recall the definition qy (∅) =
∑

x

∏
I 1(fI (x I) ≤ y). For y1 < y2 we have:

fI (x I) ≤ y1 → fI (x I) ≤ y2 ⇒

1(fI (x I) ≤ y1) ≤ 1(fI (x I) ≤ y2) ⇒∑
x

∏
I

1(fI (x I) ≤ y1) ≤
∑
x

∏
I

1(fI (x I) ≤ y2) ⇒

qy1 (∅) ≤ qy2 (∅)

�

This means that the sub-optimality of our solution is related to our ability to solve CSP-

reductions – that is, as the gap y − y∗ increases, the py -reduction potentially becomes easier to

solve.

8To maintain the lower bound one should be able to correctly assert unsatisfiability.



Chapter 2

Approximate inference

2.1 Belief Propagation

A naive approach to inference over commutative semirings

q(x
J
) =

⊕
x
\J

⊗
I

fI (x
I
) (2.1)

or its normalized version (equation (1.17)), is to construct a complete N -dimensional array of q(x )

using the tensor product q(x ) =
⊗

I
fI (x

I
) and then perform ⊕-marginalization. However, the

number of elements in q(x ) is |X|, which is exponential in N , the number of variables.

If the factor-graph is loop free, we can use distributive law to make inference tractable. As-

suming q(x
K
) (or q(xk )) is the marginal of interest, form a tree with K (or k) as its root. Then

starting from the leaves, using the distributive law, we can move the ⊕ inside the ⊗ and de�ne

“messages” from leaves towards the root as follows:

qi→I (xi ) =
⊗
J∈∂i\I

qJ→i (xi ) (2.2)

qI→i (xi ) =
⊕
x
\i

fI (x
I
)
⊗
j ∈∂I\i

qj→I (x j ) (2.3)

where equation (2.2) de�nes the message from a variable to a factor, closer to the root and simi-

larly equation (2.3) de�nes the message from factor I to a variable i closer to the root. Here, the

distributive law allows moving the ⊕ over the domain XI\i from outside to inside of equation (2.3)

– the same way ⊕ moves its place in (a ⊗ b) ⊕ (a ⊗ c ) to give a ⊗ (b ⊕ c ), where a is analogous to

a message.

By starting from the leaves, and calculating the messages towards the root, we obtain the
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Figure 2.1: The figure shows a loop-free factor-graph and the direction of messages sent between variable and
factor nodes in order to calculate the marginal over the grey region.

marginal over the root node as the product of incoming messages

q(xk ) =
⊗
I∈∂k

qI→k (xk ) (2.4)

In fact, we can assume any subset of variables xA (and factors within those variables) to be the

root. Then, the set of all incoming messages to A, produces the marginal

q(xA) = �
�
⊗
I⊆A

fI (x I)
�
�
��
�
⊗

i ∈A,J∈∂i,J�A
qJ→i (x i )

��
� (2.5)

Example 2.1.1. Consider the joint form represented by the factor-graph of figure 2.1

q(x ) =
⊗

A∈{I,J,K,L,O,T,U,V,W,X,Y,Z}
fA (xA)

and the problem of calculating the marginal over x {i,j,k } (i.e., the shaded region).

q(x {i,j,k } ) =
⊕
x \{i,j,k }

⊗
A∈{I,J,K,L,O,T,U,V,W,X,Y,Z}

fA (xA)

We can move the ⊕ inside the ⊗ to obtain

q(x {i,j,k } ) = fI (x I) ⊗ qL→i (xi ) ⊗ qK→i (xi ) ⊗ qV→j (x j ) ⊗ qW→j (x j ) ⊗ qK→k (xk )
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where each term qA→i factors the summation on the corresponding sub-tree. For example

qL→i =
⊕
xw

fL (x
L
)

Here the message qW→j is itself a computational challenge

qW→j =
⊕
x
\j

⊗
A∈{W,U,Y,X,O,T,Z}

fA (x
A
)

However we can also decompose this message over sub-trees

qW→j =
⊕
x
\j

fA (x
A
) ⊗ qe→W (xe ) ⊗ qr→W (xr )

where again using distributive law qe→W and qr→W further simplify based on the incoming mes-

sages to the variable nodes xr and xe .

This procedure is known as Belief Propagation (BP), which is sometimes pre�xed with the cor-

responding semiring e.g., sum-product BP. Even though BP is only guaranteed to produce correct

answers when the factor-graph is a tree (and few other cases [8, 22, 310, 313]), it performs sur-

prisingly well when applied as a �xed point iteration to graphs with loops [106, 225]. In the case

of loopy graphs the message updates are repeatedly applied in the hope of convergence. This is

in contrast with BP on trees, where the messages – from leaves to the root – are calculated only

once. The message update can be applied to update the messages either synchronously or asyn-

chronously and the update schedule can play an important role in convergence (e.g., [94, 173]).

Here, for numerical stability, when the ⊗ operator has an inverse, the messages are normalized.

We use ∝ to indicate this normalization according to the mode of inference

p̂I→i (xi ) ∝
⊕
x
\i

fI (x
I
)
⊗
j ∈∂I\i

p̂j→I (x j ) ∝ PI→i (̂p
∂I\i→I

) (xi ) (2.6)

p̂i→I (xi ) ∝
⊗
J∈∂i\I

p̂J→i (xi ) ∝ Pi→I (̂p
∂i\I→i

) (xi ) (2.7)

p̂(x
I
) ∝ fI (x

I
)
⊗
i ∈∂I

p̂iI(xi ) (2.8)

p̂(xi ) ∝
⊗
I∈∂i

p̂I→i (xi ) (2.9)

Here, for general graphs, p̂(xi ) and p̂(x
I
) are approximations to p(xi ) and p(x

I
) of equation (1.17).

The functionals Pi→I (̂p∂i\I→i ) (.) and PI→i (̂p
∂I\i→I

) (.) cast the BP message updates as an operator

on a subset of incoming messages – i.e., p̂
∂i\I→i

= {p̂J→i | J ∈ ∂i \ I}. We use these functional

notation in presenting the algebraic form of survey propagation in section 2.5.
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Another heuristic that is often employed with sum-product and min-sum BP is the Damping
of messages. This often improves the convergence when BP is applied to loopy graphs. Here a

damping parameter λ ∈ (0,1] is used to partially update the new message based on the old one –

e.g., for sum-produt BP we have

p̂I→i (xi ) ∝ λp̂I→i (xi ) + (1 − λ)

(∑
x
\i

fI (x
I
)

∏
j ∈∂I\i

p̂j→I (x j )

)
(2.10)

p̂i→I (xi ) ∝ λp̂i→I (xi ) + (1 − λ)

( ∏
J∈∂i\I

p̂J→i (xi )

)
(2.11)

(2.12)

where as an alternative one may use the more expensive form of geometric damping (where λ

appears in the power) or apply damping to either variable-to-factor or factor-to-variable messages

but not both. Currently – similar to several other ideas that we explore in this thesis – damping is

a “heuristic”, which has proved its utility in applications but lacks theoretical justi�cation.

2.1.1 Computational Complexity

The time complexity of a single variable-to-factor message update (equation (2.2)) is O ( |∂i | |Xi |).

To save on computation, when a variable has a large number of neighbouring factors, and if none

of the message values is equal to the annihilator

⊕

1 (e.g., zero for the sum-product), and the inverse

of ⊗ is de�ned, we can derive the marginals once, and produce variable-to-factor messages as

p̂i→I (xi ) = p̂(xi ) ⊗
(̂
pI→i (xi )

)−1

∀I ∈ ∂i (2.13)

This reduces the cost of calculating all variable-to-factor messages leaving a variable from

O ( |Xi | |∂i |
2) to O ( |Xi | |∂i |). We call this type of BP update, variable-synchronized (v-sync)

update. Note that since max is not Abelian on any non-trivial ordered set, min-max BP does

not allow this type of variable-synchronous update. This further motivates using the sum-product

reduction of min-max inference. The time complexity of a single factor-to-variable message update

(equation (2.3)) is O ( |XI |). However as we see in section 2.2, sparse factors allow much faster

updates. Moreover in some cases, we can reduce the time-complexity by calculating all the factor-

to-variable messages that leave a particular factor at the same time (e.g., section 5.2). We call this

type of synchronized update, factor-synchronized (f-sync) update.

2.1.2 The limits of message passing

By observing the application of distributive law in semirings, a natural question to ask is: can we

use distributive law for polynomial time inference on loop-free graphical models over any of the
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inference problems at higher levels of inference hierarchy or in general any inference problem

with more than one marginalization operation? The answer to this question is further motivated

by the fact that, when loops exists, the same scheme may become a powerful approximation tech-

nique. When we have more than one marginalization operations, a natural assumption in using

distributive law is that the expansion operation distributes over all the marginalization operations

– e.g., as in min-max-sum (where sum distributes over both min and max), min-max-min, xor-or-

and. Consider the simplest case with three operators

1

⊕,

2

⊕ and ⊗, where ⊗ distributes over both

1

⊕ and

2

⊕. Here the integration problem is

q(∅) =

2⊕
x

J
2

1⊕
x

J
1

⊗
I

fI (x
I
)

where J1 and J2 partition {1, . . . ,N }.

In order to apply distributive law for each pair (
1

⊕,⊗) and (
2

⊕,⊗), we need to be able to commute

1

⊕ and

2

⊕ operations. That is, we require

1⊕
x

A

2⊕
x

B

g(x
A∪B

) =
2⊕

x
B

1⊕
x

A

g(x
A∪B

). (2.14)

for the speci�ed A ⊆ J1 and B ⊆ J2.

Now, consider a simple case involving two binary variables xi and x j , where g(x
{i,j } ) is

x j

0 1

xi
0 a b

1 c d

Applying equation (2.14) to this simple case (i.e., A = {i},B = {j}), we require

(a
1

⊕b)
2

⊕(c
1

⊕d ) = (a
2

⊕b)
1

⊕(c
2

⊕d ).

The following theorem leads immediately to a negative result:

Theorem 2.1.1. [91]:

(a
1

⊕b)
2

⊕(c
1

⊕d ) = (a
2

⊕b)
1

⊕(c
2

⊕d ) ⇔
1

⊕ =
2

⊕ ∀a,b,c

which implies that direct application of distributive law to tractably and exactly solve any inference

problem with more than one marginalization operation is unfeasible, even for tree structures. This

limitation was previously known for marginal MAP inference [241].
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Min and max operations have an interesting property in this regard. Similar to any other

operations for min and max we have

min

x
J

max

x
I

g(x
I∪J

) , max

x
I

min

x
J

g(x
I∪J

)

However, if we slightly change the inference problem (from pure assignments x
Jl
∈ XJl to

a distribution over assignments; a.k.a. mixed strategies), as a result of the celebrated minimax

theorem [300], the min and max operations commute – i.e.,

min

s(x
J
)
max

s(x
I
)

∑
x

I∪J

s(x
J
)g(x

I∪J
)s(x

I
) = max

s(x
I
)

min

s(x
J
)

∑
x

I∪J

s(x
I
)g(x

I∪J
)s(x

J1

)

where s(x
J1

) and s(x
J2

) are mixed strategies. This property has enabled addressing problems with

min and max marginalization operations using message-passing-like procedures. For example,

Ibrahimi et al. [140] solve this (mixed-strategy) variation of min-max-product inference. Message

passing procedures that operate on graphical models for game theory (a.k.a. “graphical games”)

also rely on this property [161, 232].

2.2 Tractable factors

The applicability of graphical models to discrete optimization problems is limited by the size and

number of factors in the factor-graph. In section 2.2.1 we review some of the large order factors

that allow e�cient message passing, focusing on the sparse factors used in part II to solve com-

binatorial problems. In section 2.2.2 we introduce an augmentation procedure similar to cutting

plane method to deal with large number of “constraint” factors.

2.2.1 Sparse factors

The factor-graph formulation of many interesting combinatorial problems involves sparse (high-

order) factors. Here, either the factor involves a large number of variables, or the variable domains,

Xi , have large cardinality. In all such factors, we are able to signi�cantly reduce the O ( |XI |) time

complexity of calculating factor-to-variable messages. E�cient message passing over such factors

is studied by several works in the context of sum-product and min-sum inference classes [123, 249,

269, 291, 292]. Here we con�ne our discussion to some of the factors used in part II.

The application of such sparse factors are common in vision. Many image labelling solutions to

problems such as image segmentation and stereo reconstruction, operate using priors that enforce

similarity of neighbouring pixels. The image processing task is then usually reduced to �nding the

MAP solution. However pairwise potentials are insu�cient for capturing the statistics of natural

images and therefore higher-order-factors have been employed [168–170, 174, 183, 234, 268].
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The simplest form of sparse factor in combinatorial applications is the Potts factor, f{i,j } (xi ,x j ) =

1(xi = x j ). This factor assumes the same domain for all the variables (Xi = Xj ∀i, j) and its tabular

form is non-zero only across the diagonal. It is easy to see that this allows the marginalization of

equation (2.3) to be performed in O ( |Xi |) rather than O ( |Xi | |Xj |). Another factor of similar form

is the inverse Potts factor, f{i,j } (xi ,x j ) = 1(xi , x j ), which ensures xi , x j . In fact any pair-wise

factor that is a constant plus a band-limited matrix allows O ( |Xi |) inference (e.g., factors used

for bottleneck TSP in section 5.2.2).

Another class of sparse factors is the class of cardinality factors, where Xi = {0,1} and the

factor is de�ned based on only the number of non-zero values –i.e., fI (x
I
) = g(

∑
i ∈∂I

xi ). Gail

et al. [105] proposes a simple O ( |∂I| K ) method for f (x
I
) = 1((

∑
i ∈∂I

xi ) = K ). We refer to this

factor as K-of-N factor and use similar algorithms for at-least-K-of-N fI (x
I
) = 1((

∑
i ∈∂I

xi ) ≥ K )

and at-most-K-of-N fI (x
I
) = 1((

∑
i ∈∂I

xi ) ≤ K ) factors.

An alternative is the linear clique potentials of Potetz and Lee [249]. The authors propose

a O ( |∂I| |Xi |
2) (assuming all variables have the same domain Xi ) marginalization scheme for a

general family of factors, called linear clique potentials, where fI (xI) = g(
∑

i ∈∂I
xiwi ) for a non-

linear gI (.). For sparse factors with larger non-zero values (i.e., larger k), more e�cient methods

evaluate the sum of pairs of variables using auxiliary variables forming a binary tree and use the

Fast Fourier Transform to reduce the complexity of K-of-N factors to O ( |∂I| log( |∂I|)2) (see [292]

and references in there).

Here for completeness we provide a brief description of e�cient message passing through

at-least-K-of-N factors for sum-product and min-sum inference.

K of N factors for sum-product

Since variables are binary, it is convenient to assume all variable-to-factor messages are normalized

such that p̂j→I (0) = 1. Now we calculate p̂I→i (0) and p̂I→i (1) for at-least-K-of-N factors, and then

normalize them such that p̂I→i (0) = 1.

In deriving p̂I→i (0), we should assume that at least K other variables that are adjacent to the

factor fI are nonzero and extensively use the assumption that p̂j→I (0) = 1. The factor-to-variable

message of equation (2.6) becomes

p̂I→i (0) =
∑
x
\i

1
(
(
∑
j ∈∂I\i

x j ) ≥ K

) ∏
j ∈∂I\i

p̂j→I (x j )

=
∑

A⊆∂I\i, |A | ≥K

∏
j ∈A

p̂j→I (1) (2.15)

where the summation is over all subsets A of ∂I \ i that have at least K members.

Then, to calculate p̂I→i (1) we follow the same procedure, except that here the factor is replaced
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by 1
(
(
∑

j ∈∂I\i x j ) ≥ K − 1

)
. This is because here we assume xi = 1 and therefore it is su�cient for

K − 1 other variables to be nonzero.

Note that in equation (2.15), the sum iterates over “all” A ⊆ ∂I \ i of size at least K . For

high-order factors fI (where |I| is large), this summation contains an exponential number of terms.

Fortunately, we can use dynamic programming to perform this update in O ( |∂I| K ). The basis for

the recursion of dynamic programming is that, starting from B = I \ i , a variable xk ∈ xK
can be

either zero or one ∑
A∈{K⊆B, |K | ≥k }

∏
j ∈A

p̂j→I (1) =

∑
A∈{K⊆B\k, |K | ≥K }

∏
j ∈A

p̂j→I (1) + p̂k→I (1)
*.
,

∑
A∈{K⊆B\k, |A | ≥K−1}

∏
j ∈A

p̂j→I (1)
+/
-

where each summation on the r.h.s. can be further decomposed using similar recursion. Here,

dynamic program reuses these terms so that each is calculated only once.

K of N factors for min-sum

Here again, it is more convenient to work with normalized variable-to-factor messages such that

p̂j→I (0) =
⊗

1 = 0. Moreover in computing the factor-to-variable message p̂I→i (xi ) we also normal-

ize it such that p̂I→i (0) = 0. Recall the objective is to calculate

p̂I→i (xi ) = min

x
\i

1
(
(
∑
j ∈∂I

x j ) = K

) ∑
j ∈∂I\i

p̂j→I (x j )

for xi = 0 and xi = 1.

We can assume the constraint factor is satis�ed, since if it is violated, the identity function

evaluates to +∞ (see equation (1.20)). For the �rst case, where xi = 0, K out of |∂I\i | neighbouring

variables to factor I should be non-zero (because 1((
∑

j ∈∂I
x j ) = K ) and xi = 0). The minimum is

obtained if we assume the neighbouring variables with smallest p̂j→I (1) are non-zero and the rest

are zero. For xi = 1, only K − 1 of the remaining neighbouring variables need to be non-zero and

therefore we need to �nd K − 1 smallest of incoming messages (̂pj→I (1) ∀j ∈ ∂I \ i) as the rest of

messages are zero due to normalization.

By setting the p̂I→i (0) = 0, and letting A(K ) ⊂ ∂I \ i identify the set of K smallest incoming

messages to factor I, the p̂I→i (1) is given by

p̂I→i (1) =

( ∑
j ∈A(K )

p̂j→I (1)

)
−

( ∑
j ∈A(K−1)

p̂j→I (1)

)
= p̂jK→I

(1)
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where jK is the index ofK th
smallest incoming message to I, excluding p̂i→I (1). A similar procedure

can give us the at-least-K-of-N and at-most-K-of-N factor-to-variable updates.

If K is small (i.e., a constant) we can obtain the K th
smallest incoming message in O (K |∂I|)

time, and if K is in the order of |∂I| this requires O ( |∂I| log( |∂I|)) computations. For both min-sum

and sum-product, we incur negligible additional cost by calculating “all” the outgoing messages

from factor I simultaneously (i.e., f-sync update).

2.2.2 Large number of constraint factors

We consider a scenario where an (exponentially) large number of factors represent hard constraints

(see de�nition 1.3.2) and ask whether it is possible to �nd a feasible solution by considering only

a small fraction of these constraints. The idea is to start from a graphical model corresponding

to a computationally tractable subset of constraints, and after obtaining a solution for a sub-set

of constraints (e.g., using min-sum BP), augment the model with the set of constraints that are

violated in the current solution. This process is repeated in the hope that we might arrive at a

solution that does not violate any of the constraints, before augmenting the model with “all” the

constraints. Although this is not theoretically guaranteed to work, experimental results suggest

this can be very e�cient in practice.

This general idea has been extensively studied under the term cutting plane methods in

di�erent settings. Dantzig et al. [77] �rst investigated this idea in the context of TSP and Gomory

et al. [118] provided a elegant method to identify violated constraints in the context of �nding

integral solutions to linear programs (LP). It has since been used to also solve a variety of nonlinear

optimization problems. In the context of graphical models, Sontag and Jaakkola [284] (also [286])

use cutting plane method to iteratively tighten the marginal polytope – that enforces the local

consistency of marginals; see section 2.3 – in order to improve the variational approximation. Here,

we are interested in the augmentation process that changes the factor-graph (i.e., the inference

problem) rather than improving the approximation of inference.

The requirements of the cutting plane method are availability of an optimal solver – often an

LP solver – and a procedure to identify the violated constraints. Moreover, they operate in real

domain Rd ; hence the term “plane”. However, message passing can be much faster than LP in

�nding approximate MAP assignments for structured optimization problems [325]. This further

motivates using augmentation in the context of message passing.

In sections 4.5 and 5.2, we use this procedure to approximately solve TSP and graph-partitioning

respectively. Despite losing the guarantees that make cutting plane method very powerful, aug-

mentative message passing has several advantages: First, message passing is highly parallelizable.

Moreover by directly obtaining integral solutions, it is much easier to �nd violated constraints.

(Note the cutting plane method for combinatorial problems operates on fractional solutions, whose

rounding may eliminate its guarantees.) However, due to non-integral assignments, cutting plane
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methods require sophisticated tricks to find violations. For example, see [12] for application of

cutting plane to TSP.

2.3 Inference as optimization

The variational approach is concerned with probabilities, and therefore this section is limited to

operations on real domain. In the variational approach, sum-product inference is expressed as

p̂ = argp̂min D (̂p | pβ ) (2.16)

where D (̂p | pβ ) is the KL-divergence between our approximation p̂ and the true distribution p

at inverse temperature β (see example 1.1.4). Here p̂ is formulated in terms of desired marginals.

Expanding the definition of KL-divergence and substituting p from equation (1.18), equa-

tion (2.16) becomes

p̂ = argp̂min
∑
x

p̂(x ) log (̂p(x )) − β
∑
x

p̂(x ) log(p(x )) ≡ (2.17)

argp̂min
∑
x

p̂(x ) log (̂p(x )) − β
∑
x

p̂(x ) ��
∑
I

log(fI (x I))
�
� (2.18)

where we have removed the log partition function log(q(∅,β )) = log
(∑

x

∏
I fI (x I)

β
)
from equa-

tion (2.17) because it does not depend on p̂. This means that the minimum of equation (2.18) is

log(q(∅,β )), which appears when D (̂p | pβ ) = 0 – i.e., p̂ = pβ .

The quantity being minimized in equation (2.18), known as variational free energy, has two

terms: the (expected) energy term

U (̂p,p)
def
= −

∑
x

p̂(x ) ��
∑
I

log(fI (x I))
�
�

and the entropy term

H (̂p) = −
∑
x

p̂(x ) log (̂p(x )) .

Different families of representations for p̂(.) (in terms of its marginals) produces different inference

procedures such as BP, Generalized BP and Mean-field method [303].

Max-product (or min-sum) inference is retrieved as zero-temperature limit of sum-product
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inference:

p̂(.) = lim
β→+∞

argp̂min βU (̂p,p) − H (̂p)

≡ argp̂min−
∑
x

p̂(x )
(∑

I

log(fI (x I))
)

(2.19)

where the energy term is linear in p̂ and therefore the optima will be at a corner of probability

simplex, reproducing the MAP solution.

Here by defining f ′(x ) ← 1
f (x ) , we get the min-sum form

p̂(.) = argp̂min
∑
x

p̂(xI)
(∑

I

log(f ′I (x I)
)

We observe that using a second parameter α ,min-max inference is also retrievable1

p̂(.) = lim
α→+∞

argp̂min
∑
x

p̂(x )
(∑

I

log(fI (x I))
α
)

≡ argp̂min
∑
x

p̂(x I)
(
max

I
log(fI (x I))

)
(2.20)

where again due to the linearity of the objective in p̂, the optima are at the extreme points of the

probability simplex.

To retrieve sum-product BP update equations from divergenceminimization of equation (2.16),

wewill reparameterize p̂ using itsmarginals p̂(x I) and p̂(xi ). Here, we present this reparametriza-

tion in a more general form, as it holds for a any commutative semiring where (Y∗,⊗) is an abelian
group.

Proposition 2.3.1. If the ⊗ operator of the semiring has an inverse and the factor-graph is loop-free,

we can write p(x ) as

p̂(x ) =

⊗
Ip̂(x I)⊗

i

(
p̂(xi )�( |∂i | − 1)

) (2.21)

where the inverse is w.r.t ⊗ and the exponentiation operator is defined as a�b def
= a ⊗ . . . ⊗ a︸�������︷︷�������︸

b times

.

Proof. For this proof we use the exactness of BP on trees and substitute BPmarginals equation (2.9)

1Here we assume there are no ties at the min-max solution i.e., fI (x
∗
I ) > fJ (x

∗
J ) ∀J � I.
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into equation (2.21):

⊗
I
p̂(x

I
)⊗

i

(
p̂(xi )�( |∂i | − 1)

) =

⊗
I
fI (x

I
)
⊗

i ∈∂I
p̂i→I (xi )⊗

i

(⊗
I∈∂i p̂I→i (xi )�( |∂i | − 1)

) =

⊗
I
fI (x

I
)
⊗

i ∈∂I
p̂i→I (xi )⊗

i

(⊗
I∈∂i p̂i→I (xi )

) =
⊗

I

fI (x
I
) = p(x )

where we substituted the variable-to-factor messages in the denominator with factor-to-variable

messages according to equation (2.2) and used the de�nition of inverse (i.e., a ⊗ a−1 =
⊗

1) to cancel

out the denominator. �

Intuitively, the denominator is simply cancelling the double counts – that is since p̂(xi ) is

counted once for any I ∈ ∂i in the nominator, the denominator removes all but one of them.

2.3.1 Sum-product BP and friends

Rewriting equation (2.21) for sum-product ring p̂(x ) =
∏

I
p̂(x

I
)∏

i p̂(xi ) |∂i |−1
and replacing p̂ in the varia-

tional energy minimization, we get

p̂ = argp̂ min β
∑

I

p̂(x
I
)fI (x

I
) (2.22)

−
*.
,

∑
I

∑
x

I

p̂(x
I
) log (̂p(x

I
))+/

-
−

*.
,

∑
i

(1− | ∂i |)
∑
xi

p̂(xi ) log (̂p(xi ))
+/
-

(2.23)

such that

∑
x\i

p̂(x
I
) = p̂(xi ) ∀i, I ∈ ∂i (2.24)∑

xi

p̂(xi ) = 1 (2.25)

where the energy term equation (2.22) is exact and the quantity that is minimized is known as

Bethe free energy [30, 328]. The constraints equations (2.24) and (2.25) ensure that marginals

are consistent and sum to one. Following the lead of Yedidia et al. [328], Heskes [132] showed that

stable �xed points of sum-product BP are local optima of Bethe free energy.

The optimization above approximates the KL-divergence minimization of equation (2.18) in

two ways: (I) While the marginal constraint ensure local consistency, for general factor-graphs

there is no guarantee that even a joint probability p̂ with such marginals exists (i.e., local con-

sistency conditions outer-bound marginal polytope; the polytope of marginals realizable by a

join probability p(x )). (II) Bethe entropy is not exact for loopy factor-graphs. Using the method

of Lagrange multipliers to enforce the local consistency constraints and setting the derivatives

of equation (2.23) w.r.t. p̂ to zero, recovers sum-product BP updates [327, 328]. This optimiza-
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tion view of inference has inspired many sum-product inference techniques with convex entropy

approximations and convergence guarantees [113, 126, 134, 206, 293, 304, 319, 329].

2.3.2 Min-sum message passing and LP relaxation

LP relaxation of min-sum problem seeks marginals p̂(x
I
)∀I

p̂ = argp̂ min

∑
I

p̂(x
I
)fI (x

I
) (2.26)

such that

∑
x\i

p̂(x
I
) = p̂(xi ) ∀i, I ∈ ∂i (2.27)∑

xi

p̂(xi ) = 1

If integral (i.e., p̂(xi ) = 1(xi = x∗i ) for some x∗ = {x∗
1
, . . . ,x∗N }), this LP solution is guaran-

teed to be optimal (i.e., identical to equation (2.19)). Taking the zero temperature limit (lim β →

∞) of the Bethe free energy of equations (2.22) and (2.23), for any convex entropy approxima-

tion [126, 133, 304, 305], ensures that sum-product message passing solution recovers the Lin-

ear Programming (LP) solution [311]. Moreover, replacing the summation with maximization

(which again corresponds to temperature limit) in the resulting convex message passing, produces

the convex min-sum message passing, which agrees with LP relaxations, under some conditions

(e.g., when there are no ties in beliefs). The general interest in recovering LP solutions by message

passing is to retain its optimality guarantees while bene�ting from the speed and scalability of

message passing that stems from exploitation of graphical structure [324]. One may also interpret

some of these convex variations as replicating variables and factors while keeping the correspond-

ing messages identical over the replicates [271]. After obtaining message updates, the number

of replicates are allowed to take rational values (Parisi introduced a similar trick for estimation of

the partition function using replica trick [55, 211]).

Another notable variation for approximate MAP inference is max-product-linear-program ,

which performs block coordinate descend in the space of duals for equation (2.26). MPLP is guar-

anteed to converge and is often able to recover LP solution [114, 285]. Finally dual (and primal)
decomposition methods minimize factors separately and combine their estimates in a way that

agrees with sub-gradient in each iteration [42, 155, 175, 176].

2.3.3 Min-max and other families

By rephrasing the variational min-max inference of equation (2.20)

p̂ = argp̂ min

∑
x

p̂(x
I
)
(

max

I

log(fI (x
I
))
)
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in terms of marginals p̂(x
I
) and enforcing marginal consistency constraints, we obtain the follow-

ing LP relaxation

p̂ = argp̂ min y (2.28)

such that

∑
x

I

p̂(x
I
)fI (x

I
) ≤ y ∀I∑

x\i

p̂(x
I
) = p̂(xi ) ∀i, I ∈ ∂i∑

xi

p̂(xi ) = 1

which surprisingly resembles our sum-product reduction of min-max inference in section 1.4.2.

Here

∑
x

I

p̂(x
I
)fI (x

I
) ≤ y is a relaxation of our sum-product factor 1(fI (x

I
) ≤ y) in equation (1.27).

Claim 2.3.2. y in equation (2.28) lower bounds the min-max objective y∗. Moreover, if p̂ is integral,

then y = y∗ and x∗ is the optimal min-max assignment.

Proof. The integral solution p̂, corresponds to the following optimization problem

x∗ = argx min y (2.29)

such that fI (x
I
) ≤ y

≡ argx min max

I

fI (x
I
)

which is the exact min-max inference objective. Therefore, for integral p̂, we obtain optimal min-

max solution. On the other hand by relaxing the integrality constraint, because of the optimality

guarantee of LP, the LP solutiony can not be worse than the integral solution and its corresponding

value y∗. �

This lower bound complements the upper bound that we obtain using a combination of sum-

product reduction and an incomplete solver (such as perturbed BP of section 2.6.3) and can be used

to assess the optimality of a min-max solution.

The only other extensively studied inference problem in the inference hierarchy of section 1.2

is max-sum-product (a.k.a. marginal MAP) inference [80, 152, 202]. In particular variational

formulation of max-sum-product inference [195], substitutes the entropy term in equation (2.17)

with conditional entropy.

2.4 Loop corrections

In this section we �rst review the region-based methods that account for short loops in section 2.4.1

and then show how to perform loop correction by taking into account the message dependencies
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in section 2.4.2. In section 2.4.3 we introduce a loop correction method that can benefit from both

types of loop corrections, producing more accurate marginals. While the region-based techniques

can be used to directly estimate the integral, the approximation techniques that take message

dependencies into account are only applied for estimation of marginals.

2.4.1 Short loops

We consider a general class of methods that improve inference in a loopy graphical model by

performing exact inference over regions that contain small loops.

The earliest of such methods is junction-tree [148, 186], which performs exact inference with

computation cost that grows exponentially in the size of largest region –i.e., tree width [57]. Here,

regions form a tree and the messages are passed over regional intersections. While this algorithm

is still popular in applications that involve certain class of graphs [35] or when the exact result is

required, most graphs do not have a low tree width [157, 167].

An extension to junction tree is the junction graph method [6] that removes the require-

ment for the regions to form a tree. For this, the proxy between two regions is a subset of their

intersection (rather than the whole intersection) and one still requires the regions that contain a

particular variable to form a tree. Similar ideas are discussed under the name of cluster graphs in

[171].

Inspired by the connection between Bethe free energy and belief propagation (see section 2.3),

Yedidia et al. [328] proposed Generalized BP that minimizes Kikuchi approximation to free en-

ergy (a.k.a.Cluster Variational Method [165, 246]). Here the entropy approximation is obtained

from a region-graph.

A region ρ is a collection of connected variables V (ρ) and a set of factors F (ρ) such that

each participating factor depends only on the variables included in the region. To build the CVM

region-graph2, one starts with predefined top (or outer) regions such that each factor is included in

at least one region. Then, we add the intersection of two regions (including variables and factors)

recursively until no more sub(inner)-region can be added. Each region is then connected to its

immediate parent.

A region-graph, reparameterizes p̂(.) in terms of its marginals over the regions

p̂(x ) =
∏
ρ

p̂(xV (ρ ) )
c(ρ ) (2.30)

where c(ρ) is the counting number for region ρ and ensures that each variable and factor is

2Here we are making a distinction between a general region graph and a CVM region-graph.
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counted only once. This number is recursively defined by Möbius formula for inner regions:

c(ρ) = 1 −
∑
ρ′⊃ρ

c(ρ) (2.31)

where ρ ′ is an ancestors of ρ in the region graph.3

Similar to BP, by substituting the reparametrization of equation (2.30) into the variational free

energy minimization of equation (2.18) we get

p̂ = argp̂min
∑
ρ

c(ρ) ���
∑
xV (ρ )

p̂(xV (ρ ) )
��
�
( ∑
I∈F (ρ )

fI (x I)
)
− p̂(xV (ρ ) ) log (̂p(xV (ρ ) ))

��
�
��
�

s.t.
∑

x \V (ρ )

p̂(xV (ρ′) ) = p̂(xV (ρ ) ) ∀ρ ⊂ ρ ′ (2.32)

which is known as Kikuchi approximation to free energy [165]. The constraints of equa-

tion (2.32) ensure that marginals are consistent across overlapping regions. Solving this constraint

optimization using the method of Lagrange multipliers, yields a set of recursive equations that

are known as Generalized BP equations [328]. Again a region-based approximation is exact only

if the region-graph has no loops.

A region-graphwithout restrictions on the choice of regions generalizes junction-graphmethod

as well. The general construction of the region graph only requires that the counting numbers of

all the regions to which a variable (or a factor) belong, sum to 1 [327]. For different criteria on the

choice of regions see also [235, 314, 317].

2.4.2 Long loops

In graphical models with long-range correlation between variables, region-based methods are in-

sufficient. This is because their complexity grows exponentially with the number of variables in

each region and therefore they are necessarily inefficient account for long loops in the graph.

A class of methods for reducing long-range correlations are methods based on cut-set condi-

tioning [245], where a subset of variables are clamped, so as to remove the long-range correlations

that are formed through the paths that include the cut-set. For example, consider a Markov net-

work in the form of a cycle. By fixing any single variable, the reduced factor graph becomes a tree

and therefore allows exact inference. Several works investigate more sophisticated ideas in per-

forming better inference by clamping a subset and the resulting theoretical guarantees [78, 89, 312].

A closely related idea is Rao-Blackwellization (a.k.a. collapsed MCMC; see section 2.6.1), a hy-

brid approach to inference [108] where particles represent a partial assignment of variables and

inference over the rest of variables is performed using a deterministic method. The deterministic

3 More accuratelyV (ρ) ⊆ V (ρ ′).
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inference method such as BP is used to calculate the value of the partition function, for each pos-

sible joint assignment of the variables that are not collapsed. Then collapsed particles are sampled

accordingly. This process in its general form is very expensive, but one could reduce the cost,

depending on the structure of the network [32].

The loop calculus of Chertkov [60][61] expands the free energy around the Bethe approxi-

mation, with one term per each so-called generalized loop in the graph. Since the number of loops

grows exponentially in the number of variables, this expansion does not provide a practical solu-

tion. Some attempts have been made to to make this method more practical by truncating the loop

series [117]. While the original loop series was proposed for binary valued and pairwise factors,

it has been generalized to arbitrary factor-graphs [315, 320] and even region-graphs [334].

Another class of approximate inference methods perform loop correction by estimating the

message dependencies in a graphical model [217, 220, 262]. These methods are particularly in-

teresting as they directly compensate for the violated assumption of BP – i.e., corresponding to

independent set of incoming messages.

For the bene�t of clarity, we con�ne the loop correction equations in this section and its gen-

eralization in the next section to Markov networks (i.e., |∂I| = 2); see [254] for our factor-graph

versions. Although the previous works on loop corrections have been only concerned with sum-

product inference, here we present loop corrections for a general commutative semiring (Y∗,⊕,⊗)

in which the operation ⊗ has an inverse (i.e., (Y∗,⊗) is a group). In particular this means these

loop corrections may be used for min-sum class of inference.

Here we rewrite BP update equations (2.2) and (2.3) for Markov networks
4

p̂i→j (xi ) ∝
⊕
\xi

⊗
k ∈∆i\j

f{k,i } (x {k,i } ) ⊗ p̂k→i (xk ) (2.33)

p̂(xi ) ∝
⊕
\xi

⊗
k ∈∆i

f{k,i } (xk,i ) p̂k→i (xk ) (2.34)

Figure 2.2(left) shows the BP messages on a part of Markov network. Here if the Markov

network is a tree, BP’s assumption that p̂s→i , p̂o→i and p̂n→i are independent is valid, because

these messages summarize the e�ect of separate sub-trees on the node i . However if the graph has

loops, then we use ĥ(x∆i\j ) to denote message dependencies. If we had access to this function,

we could easily change the BP message update of equation (2.33) to

p̂i→j (xi ) ∝ ĥ(x∆i\j ) ⊗
⊕
\xi

⊗
k ∈∆i\j

f{k,i } (x {k,i } ) ⊗ p̂k→i (xk )

Since it is not clear how to estimate h(x∆i\j ), we follow a di�erent path, and instead estimate

4
Note that p̂i→j (xi ) is over Xi rather the conventional way of de�ning it on Xj . This formulation is the same as

original BP equation for Markov network if the graph does not have a loop of size two.
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the so-called cavity distribution, which we denote by ĥ(xΔi ), which is simply the joint marginal

over the Markov blanket after making a cavity – i.e., removing a variable i and its neighbour-

ing factors fI ∀I ∈ ∂i . However, since the missing information is the “dependence” between the

messages, ĥ(xΔ(i ) ) has a degree of freedom w.r.t. individual marginals – i.e., it can be inaccurate

by a factor of
⊗

j ∈Δ(i ) gj (x j ) for some gj∀j, without affecting the loop-corrected message passing

procedure. This degree of freedom is essentially equivalent to the freedom in initialization of BP

messages. In the following, we show the resulting loop-corrected message passing. But first we

write BP updates in a different form.

Figure 2.2: (left) BP messages on a Markov network and the ideal way dependencies should be taken into
account. (right) BP marginal over extended Markov blanket ∇j for node j and the message dependencies over
the Markov blanket Δi for node i .

Define the extended Markov blanket ∇i = Δi ∪ {i} be the Markov blanket of i plus i itself,

see figure 2.2 (right). We can write BP marginals over ∇i

p̂(x∇i ) ∝
⊗
k ∈Δi

f{i,k } (x {i,k } ) ⊗ p̂k→i (xk ) (2.35)

Using this, equation (2.33) simplifies to:

p̂i→j (xi ) ∝
⊕
\xi

p̂(x∇i )/f{i,j } (x {i,j } ) (2.36)

p̂(xk ) ∝
⊕
\xi

p̂(x∇i ) (2.37)

Now assume we are given the dependency between the messages p̂k→i (xk ) ∀k ∈ Δi in the

form of ĥ(xΔi ). This means we can re-express equation (2.35) as

p̂(x∇i ) ∝ ĥ(xΔi )
⊗
k ∈Δi

f{i,k } (x {i,k } ) ⊗ p̂k→i (xk ) (2.38)
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By enforcing the marginal consistency of p̂(x
∇i ) and p̂(x

∇j ) over xi (and x j )⊕
x
\i,j

p̂(x
∇i )/f{i,j } (xi ,x j ) =

⊕
x
\i,j

p̂(x
∇j )/f{i,j } (xi ,x j )

we retrieve a message update similar to that of BP (in equation (2.33)) that incorporates the de-

pendency between BP messages

p̂(t+1)
i→j (xi ) ∝

⊕
\xi p̂(x∇i )/f{i,j } (x {i,j } )⊕
\xi p̂(x∇j )/f{i,j } (x {i,j } )

⊗ p̂(t)i→j (xi ) (2.39)

It is easy to verify that this update reduces to BP updates (equation (2.33)) when ĥ(x∂i ) is

uniform – that is we do not have any dependency between messages. The loop-correction method

of Mooij et al. [220] is similar, however this interpretation does not apply to their updates for factor

graphs. We extend the same idea to perform loop-correction for overlapping regions of connected

variables in section 2.4.3 where we pass the messages from one region to the outer boundary of

another region.

The main computational cost in these loop correction methods is estimating ĥ(x∆i ), the mes-

sage dependencies. We use clamping to perform this task. For this we remove xi and all the

immediately depending factors from the graph. Then we approximate the marginal ĥ(x∆i ) by re-

duction to integration; see section 1.4.1. Note that the ĥ(x∆i ) obtained this way contains not only

dependencies but also the individual marginals in the absence of node i (̂h(x j ) ∀j ∈ ∆i). However

since the messages updates for p̂j→i (x j ) ∀j ∈ ∆i , perform “corrections” to this joint probability,

we do not need to divide ĥ(x∆i ) by the individual marginals.

2.4.3 Both message dependencies and short loops

Section 2.4.1 presented loop correction methods that improve loopy BP by considering interactions

within small clusters of variables, thus taking small loops within these clusters into account. The

previous section showed how to account for dependency between BP messages – thus taking long-

range correlations into account. In this section we introduce a generalization that performs both

types of loop correction.

The basic idea is to form regions, and perform exact inference over regions, to take short loops

into account. However in performing message passing between these regions, we introduce a

method to perform loop correction over these messages.

We start by de�ning a region ρ = {i, . . . ,l } as a set of connected variables. Note that this

de�nition is di�erent from de�nition of region for region-based methods as it only speci�es the

set of variables, and not factors. Let ∆ρ = {i ∈ ∆j,i < ρ | j ∈ ρ} be the Markov blanket of region

ρ, and as before let ∇ρ = ρ ∪ ∆ρ.
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Figure 2.3: (top) seven regions ρ1, . . . ,ρ7 and the domain of messages sent from each region to ρ1. Here
ρ5:1 is the domain of message from region 5 to region 1. (bottom) the message region-graph shows how these
overlapping messages are combined to prevent double-counts.

Region ρ1 is a neighbour of ρ2 with neighbourhood ρ1:2 iff ρ1:2
def
= (Δρ1) ∩ ρ2 � ∅ – i.e., the

Markov blanket of ρ1 intersects with ρ2 (note that ρ1:2 is different from ρ2:1). The messages are

exchanged on these neighbourhoods and p̂1→2 (xρ1:2 ) is a message from region ρ1 to ρ2.

Example 2.4.1. Figure 2.3 shows a set of neighbouring regions (indexed by 1,2,3,4,5,6 and 7).

Here the region ρ1 receives “overlapping” messages from four other regions. For example the

message p̂6→1 (xd,i ) overlaps with the message p̂5→1 (xd,e ) as well as p̂7→1 (xh,i ). Therefore simply

writing p(x∇ρ ) in terms of the factors inside ∇ρ and the incoming messages (as in equation (2.5))

will double-count some variables.

Message region-graphs

Here, similar to section 2.4.1, we construct a region-graph to track the double-counts. However,

here we have one message-region-graph per region ρ. The construction is similar to that of cluster

variational methods; we start with the original message-domains (e.g., ρ2:1) and recursively add the

intersections, until no more message-region γ can be added. Each message-region γ is connected

to its immediate parent. figure 2.3 shows the two-layered message-region-graph for region ρ1.

Here, for discussions around a particular message-region-graph we will drop the region-index 1.
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Let m(xγ )
def
= p̂π→1 (xρπ :1

) ∀π be the top regions in the region-graph, consisting of all the in-

coming messages to region of interest ρ1. The Möbius formula (equation (2.31)) gives counting

number for message-region (here again the top regions’ counting number is one). A downward

pass, starting from top regions, calculates the belief m(xγ ) over each message-region, as the av-

erage of beliefs over its parents.

Example 2.4.2. In figure 2.3 the beliefm(xe ) is the average of beliefs overm(x {d,e } ) = p̂5→1 (xρ5:1 )

andm(x {e,h } ) = p̂4→1 (xρ4:1 )whenmarginalized over xe . Here the counting number of xe is c({e}) =
1 − (1 + 1) = −1.

We require the ⊗ operator of the semiring to have an inverse. Recall the power operator

� y�k def
= y ⊗ . . . ⊗ y︸�������︷︷�������︸

k times

. For sum-product and min-sum semirings, this operator corresponds to

exponentiation and product respectively and it is well-defined also for rational numbers k . Now

define the average as

avg({y1, . . . ,yk })
def
=
(⊗

i

yi
)
�
1

k
(2.40)

Using Pa(γ ) to denote the parents of region γ , in the downward pass

m(xγ ) ∝
⊗

γ ′∈Pa(γ )
avg(
⊕
x \γ

m(γ ′)) (2.41)

where m(xγ ) for top regions are just the incoming messages.

Let fA (xA) =
⊗

I⊆A fI (x I) be the semiring-product of all the factors defined over a subset of A.

For example in figure 2.3, f∇ρa (x∇ρa ) is the product of 9 pairwise factors (i.e., all the edges in the

figure).

After a downward pass, the belief over ∇ρ (analogous to equation (2.35)):

p̂(x∇ρ ) ∝ f∇ρ (x∇ρ ) ⊗
(⊗

ρ

m(xγ )�c(γ )
)

(2.42)

that is p̂(x∇ρ ) is the semiring product of all the factors inside this region and all the beliefs over

message-regions inside its message-region-graph, where double counts are taken into account.

For our example, assuming sum-product ring,

p̂(x∇ρa ) = f∇ρa (x∇ρa )m(x4,5) . . .m(x9,4)

(
m(x4)

−1 . . .m(x9)
−1
)

where the semiring-product and inverse are product and division on real domain.

At this point we can also introduce an estimate for message dependencies ĥ(x∂ρ ) into the
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equation above, and generalize the update of equation (2.39) to

p̂
(t+1)
b→a

(xρb :a ) ∝

⊕
\x ρb :a

p̂(x∇ρb )/f∇ρa∩∇ρb (x∇ρa∩∇ρb )⊕
\xsρb :a

p̂(x∇ρa )/f∇ρa∩∇ρb (x∇ρa∩∇ρb )
⊗ p̃

(t)
b→a

(xρb :a ) (2.43)

One last issue to resolve is to define the “effective” message p̃
(t)
b→a

(xρb :a ), which is different

from p̂
(t)
b→a

(xρb :a ). Since we did not directly use p̂(t)
b→a

(xρb :a ) in the previous iteration, we should

not include it directly in this update. Instead we use the message region-graph for region a to

calculate the effective message:

p̃b→a (xρb :a ) =
⊗
γ ⊆ρb :a

(
m(xγ )�c(γ )

)
(2.44)

The effective message, as defined above (equation (2.44)), can be efficiently calculated in an

upward pass in the message region-graph. Starting from the parents of the lowest regions, update

the beliefm(xγ ) obtained in downward pass equation (2.41) using the new beliefs over its children:

m̃(xγ ) = m(xγ )
⊗

γ ′∈Ch(γ )

m̃(xγ ′ )⊕
x \γ ′

m(xγ )
(2.45)

where Ch(γ ) is the set of children of γ in the message region-graph. After the upward pass, the

new beliefs over top regions gives us the effective messages

p̃a→b (xρa:b ) = m̃(xρa:b ) (2.46)

Example 2.4.3. In our example of figure 2.3(bottom), assuming a sum-product ring, since the

message-region-graph only has two layers, we can write the effective message p̃h→a (x {4,9} ) as

p̃h→a (x {4,9} ) = p̂h→a (x {4,9} )
m(x4)m(x9)

(
∑

x4 p̂h→a (x {4,9} )) (
∑

x9 p̂h→a (x {4,9} ))
(2.47)

This form of loop correction, which we call Generalized Loop Correction (GLC), generalizes

both correction schemes of sections 2.4.1 and 2.4.2. The following theorem makes this relation to

generalized BP more explicit.

Theorem 2.4.1. 5 For Markov networks, if the regions {ρ} partition the variables, then any General-
ized BP fixed point of a particular region-graph construction is also a fixed point for GLC, when using

uniform message dependencies ( i.e., ĥ(xΔi ) ∝ 1 ∀i,xΔi ).
5See [254] for the proof.
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2.4.4 Experiments

This section compares di�erent variations of our generalized loop correction method (GLC) for

sum-product ring against BP as well as Cluster Variational Method (CVM; section 2.4.1), loop cor-

rection of [220] (LCBP), which does not exactly account for short loops and the Tree Expectation

Propagation (TreeEP) [214] method, which also performs some kind of loop correction. For CVM,

we use the double-loop algorithm [133], which is slower than Generalized BP but has better con-

vergence properties.
6

We report the time in seconds and the error for each method as the average

of absolute error in single variable marginals – i.e.,
1

N
∑

i
∑
\xi | p̂(xi ) − p(xi ) |. For each setting,

we report the average results over 10 random instances of the problem. We experimented with

grids and 3-regular random graphs.
7

Both LCBP and GLC can be used without any information on message dependencies. with an

initial cavity distribution estimated via clamping cavity variables. In the experiments, full means

message dependencies ĥ was estimated while uniform means ĥ was set to uniform distribution

(i.e., loop-correction was over the regions only). We use GLC to denote the case where the regions

were selected such that they have no overlap (i.e., ρa ∩ ρb = ∅ ∀a,b) and GLC+ when overlapping

clusters of some form are used. For example, GLC+(Loop4, full) refers to a setting with message

dependencies that contains all overlapping loop clusters of length up to 4. If a factor does not

appear in any loops, it forms its own cluster. The same form of clusters are used for CVM.

Grids

We experimented with periodic spin-glass Ising grids of example 1.1.4 on page 12. In general,

smaller local �elds and larger variable interactions result in more di�cult problems. We sampled

local �elds independently from N (0,1) and interactions from N (0,β2). Figure 2.4a summarizes

the results for 6x6 grids for di�erent values of β .

We also experimented with periodic grids of di�erent sizes, generated by sampling all fac-

tor entries independently from N (0,1). Figure 2.5a compares the computation time and error of

di�erent methods for grids of sizes that range from 4x4 to 10x10.

Regular Graphs

We generated two sets of experiments with random 3-regular graphs (all nodes have degree 3) over

40 variables. Here we used Ising model when both local �elds and couplings are independently

sampled fromN (0,β2). Figure 2.4b shows the time and error for di�erent values of β . Figure 2.5b

shows time versus error for graph size between 10 to 100 nodes for β = 1.

6
All methods are applied without any damping. We stop each method after a maximum of 1E4 iterations or if the

change in the probability distribution (or messages) is less than 1E-9.

7
The evaluations are based on implementation in libdai inference toolbox [221].
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(a) spin-glass Ising grid (b) spin-glass Ising model on a 3-regular graph

Figure 2.4: Average Run-time and accuracy for 6x6 spinglass Ising grids and 3-regular Ising model for di�erent

values of β . Variable interactions are sampled from N (0,β2) and local �elds are sampled from N (0,1).
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(a) spin-glass Ising grid (b) spin-glass Ising model on 3-regular graph

Figure 2.5: Time vs error for Ising grids and 3-regular Ising models with local �eld and interactions sampled

from a standard normal. Each method in the graph has 10 points, each representing an Ising model of di�erent

size (10 to 100 variables).

Our results suggest that by taking both long and short loops into account we can signi�cantly

improve the accuracy of inference at the cost of more computation time. In fact both plots in

�gure 2.5 show a log-log trend in time versus accuracy which suggests that taking short and long

loops into account has almost independently improved the quality of inference.

2.5 Survey Propagation: semirings on semirings

Survey propagation (SP) was �rst introduced as a message passing solution to satis�ability [48] and

was later generalized to general CSP [47] and arbitrary inference problems over factor-graphs [208].

Several works o�er di�erent interpretations and generalizations of survey propagation [46, 177,

199]. Here, we propose a generalization based the same notions that extends the application of BP

to arbitrary commutative semirings. Our derivation closely follows and generalizes the variational

approach of Mézard and Montanari [208], in the same way that the algebraic approach to BP (using

commutative semirings) generalizes the variational derivation of sum-product and min-sum BP.

As a �xed point iteration procedure, if BP has more than one �xed points, it may not converge

at all. Alternatively, if the messages are initialized properly BP may converge to one of its �xed

points. SP equations, take “all” BP �xed points into account. In our algebraic perspective, this

accounting of all �xed points is using a third operation

_
⊕ . In particular, we require that ⊗ also

distribute over

_
⊕ , forming a second commutative semiring. We refer to the this new semiring as

SP semiring.
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Table 2.1: The correspondence between BP and SP

Belief Propagation Survey Propagation
domain:

x p̂
·→·

∀i xi p̂i→I , p̂I→i ∀i, I ∈ ∂i

X P

expanded form:

q(x ) Q (̂p
·→·

) (∅)

integration:

q(∅) =
⊕

xq(x ) Q (∅) (∅) =
_⊕

p̂
·→·

Q (̂p
·→·

) (∅)

marginalization:

p(xi ) ∝
⊕

x\ip(x ) S (̂pI→i ) ∝
_⊕
\̂p

I→i
P (̂p

·→·
)

factors:

∀I fI (x
I
) P̃I (̂p

∂I→I

) (∅), P̃i (̂p
∂i\I→i

) (∅) and P̃i↔I (̂pi→I, p̂I→i ) (∅)
−1 ∀i, I ∈ ∂i

Let p̂
·→·

be a BP �xed point – that is

p̂
·→·
= {∀i, I ∈ ∂i p̂i→I = Pi→I (̂p

∂i\I→i
), p̂I→i = PI→i (̂p

∂I\i→I

)}

and denote the set of all such �xed points by P. Each BP �xed point corresponds to an approxi-

mation to the q(∅), which we denote by Q (̂p
·→·

) (∅) – using this functional form is to emphasize

the dependence of this approximation on BP messages. Recall that in the original problem, X is

the domain of assignments, q(x ) is the expanded form and ⊕-marginalization is (approximately)

performed by BP. In the case of survey propagation, P is domain of assignments and the integral

Q (̂p
·→·

) (∅) evaluates a particular assignment p̂
·→·

to all the messages – i.e., Q (̂p
·→·

) (∅) is the new

expanded form.

In this algebraic perspective, SP e�ciently performs a second integral using

_
⊕ over all �xed

points:

Q (∅) (∅) =
_⊕

p̂
·→·
∈P

Q (q
·→·

) (∅) (2.48)

Table 2.1 summarizes this correspondence.

Our derivation requires (Y∗,⊗) to be an Abelian group (i.e., every element ofY∗ has an inverse

w.r.t. ⊗). The requirement for invertablity of ⊗ is because we need to work with normalized BP

and SP messages. In section 2.5.4 we introduce another variation of SP that simply counts the BP

�xed points and relaxes this requirement.
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2.5.1 Decomposition of the integral

In writing the normalized BP equations in section 2.1, we hid the normalization constant using ∝

sign. Here we explicitly de�ne the normalization constants or local integrals by de�ning unnor-

malized messages, based on their normalized version

p̃I→i (xi )
def

=
⊕
x
\i

fI (x
I
)
⊗
j ∈∂I\i

p̂j→I (x j )
def

= P̃I→i (̂p
∂I\i→I

) (xi ) (2.49)

p̃i→I (xi )
def

=
⊗
J∈∂i\I

p̂J→i (xi )
def

= P̃i→I (̂p
∂i\I→i

) (xi ) (2.50)

p̃I (x
I
)

def

= fI (x
I
)
⊗
i ∈∂I

p̂
i→I

(xi )
def

= P̃I (̂p
∂I→I

) (x
I
) (2.51)

p̃i (xi )
def

=
⊗
I∈∂i

p̂I→i (xi )
def

= P̃i (̂p
∂i→i

) (xi ) (2.52)

where each update also has a functional form on the r.h.s. In each case, the local integrals are

simply the integral of unnormalized messages or marginals – e.g., p̃I→i (∅) =
⊕

xi p̃I→i (xi ).

De�ne the functional P̃i↔I (̂pi→I, p̂I→i ) as the product of messages from i to I and vice versa

p̃
i↔I

(xi )
def

= p̂i→I (xi ) ⊗ p̂I→i (xi )
def

= P̃i↔I (̂pi→I, p̂I→i ) (xi ) (2.53)

Theorem 2.5.1. If the factor-graph has no loops and (Y∗,⊗) is an Abelian group, the global integral
decomposes to local BP integrals as

q(∅) =
⊗

I

p̃I (∅)
⊗
i

p̃i (∅)
*.
,

⊗
i,I∈∂i

p̃
i↔I

(∅)+/
-

−1

(2.54)

or in other words q(∅) = Q (̂p
·→·

) (∅) where

Q (̂p
·→·

) (∅) =
⊗

I

P̃I (̂p
∂I→I

) (∅)
⊗
i

P̃i (̂p
∂i→i

) (∅) *.
,

⊗
i,I∈∂i

P̃i↔I (̂pi→I, p̂I→i ) (∅)
+/
-

−1

(2.55)

Proof. For this proof we build a tree around an root node r that is connected to one factor. (Since

the factor-graph is a tree such a node always exists.) Send BP messages from the leaves, up towards

the root r and back to the leaves. Here, any message qi→I (xi ), can give us the integral for the sub-

tree that contains all the nodes and factors up to node i using qi→I (∅) =
⊕

xiqi→I (xi ). Noting that

the root is connected to exactly one factor, the global integral is⊕
xr
q(xr ) =

⊕
xr

⊗
I∈∂r

qI→r (xr ) = qI→r (∅) (2.56)
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On the other hand, We have the following relation between qi→I and p̂i→I (also corresponding

factor-to-variable message)

qi→I (xi ) = p̂i→I (xi ) ⊗ qi→I (∅) ∀i, I ∈ ∂i (2.57)

qI→i (xi ) = p̂I→i (xi ) ⊗ qI→i (∅) ∀i, I ∈ ∂i (2.58)

Substituting this into BP equation (2.2) we get

qi→I (xi ) =
⊗
J∈∂i\I

qJ→i (∅)p̂J→i (xi ) (2.59)

qI→i (xi ) =
⊕
x
\i

fI (x
I
)
⊗
j ∈∂I\i

qj→I (∅)p̂j→I (x j ) (2.60)

By summing over both l.h.s and r.h.s in equations above and substituting from equation (2.50) we

get

⊕
xi
qi→I (xi ) =

*.
,

⊗
J∈∂i\I

qJ→i (∅)
+/
-
⊗

*.
,

⊕
xi

⊗
J∈∂i\I

p̂J→i (xi )
+/
-
→

qi→I (∅) = p̃i→I (∅)
⊗
J∈∂i\I

qJ→i (∅) (2.61)

and similarly for equation (2.60) using integration and substitution from equation (2.49) we have

⊕
xi
qI→i (xi ) =

*.
,

⊗
j ∈∂I\i

qj→I (∅)
+/
-
⊗

*.
,

⊕
x

I

fI (x
I
)
⊗
j ∈∂I\i

p̂j→I (x j )
+/
-
→

qI→i (∅) = p̃I→i (∅)
⊗
j ∈∂I\i

qj→I (∅) (2.62)

Equation (2.61) and 2.61 are simply recursive integration on a tree, where the integral up to

node i (i.e., qi→I (∅) in equation (2.61)) is reduced to integral in its sub-trees. By unrolling this

recursion we see that qi→I (∅) is simply the product of all p̃I→i (∅) and p̃I→i (∅) in its sub-tree, where

the messages are towards the root. Equation (2.56) tells us that the global integral is not di�erent.

Therefore, equation (2.61) we can completely expand the recursion for the global integral. For this,

let ↑ i restrict the ∂i to the factor that is higher than variable i in the tree (i.e., closer to the root r ).

Similarly let ↑ I be the variable that is closer to the root than I. We can write the global integral as

q(∅) =
⊗

i,I=↑i
p̃i→I (∅)

⊗
I,i=↑I

p̃I→i (∅) (2.63)

Proposition 2.5.2 shows that these local integrals can be written in terms of local integrals of
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interest – i.e.,

p̃I→i (∅) =
p̃I (∅)

p̃
i↔I

(∅)
and p̃i→I (∅) =

p̃i (∅)
p̃
i↔I

(∅)

Substituting from the equations above into equation (2.63) we get the equations of theorem 2.5.1.

�

Proof. (proposition 2.5.2 on page 63) By de�nition of p̃I (x
I
) and p̂i→I (xi ) in equation (2.49)

p̃I (xi ) = p̃I→i (xi ) ⊗ p̂i→I (xi ) →
⊕

xi
p̃I (xi ) =

⊕
xi
p̃I→i (xi ) ⊗ p̂i→I (xi ) →

p̃I (∅) = p̃I→i (∅) ⊗
(⊕

xi
p̂I→i (xi ) ⊗ p̂i→I (xi )

)
→ p̃I (∅) = p̃I→i (∅) ⊗ p̃

i↔I

(∅)

where in the last step we used equation (2.53).

Similarly for the second statement of the proposition we have

p̃i (xi ) = p̃i→I (xi ) ⊗ p̂I→i (xi ) →
⊕

xi
p̃i (xi ) =

⊕
xi
p̃i→I (xi ) ⊗ p̂I→i (xi ) →

p̃i (∅) = p̃i→I (∅) ⊗
(⊕

xi
p̂I→i (xi ) ⊗ p̂i→I (xi )

)
→ p̃i (∅) = p̃i→I (∅) ⊗ p̃

i↔I

(∅)

�

2.5.2 The new factor-graph and semiring

The decomposition of integral in theorem 2.5.1 means Q (̂p
·→·

) (∅) has a factored form. Therefore,

a factor-graph with p̂
·→·

as the set of variables and three di�erent types of factors corresponding to

di�erent terms in the decomposition – i.e., P̃I (̂p
∂I→I

) (∅), P̃i (̂p
∂i\I→i

) (∅) and P̃i↔I (̂pi→I, p̂I→i ) (∅)
−1

can represent Q (̂p
·→·

) (∅).

Figure 2.6 shows a simple factor-graph and the corresponding SP factor-graph. The new factor-

graph has one variable per each message in the original factor-graph and three types of factors as

discussed above. Survey propagation is simply belief propagation applied to the this new factor-

graph using the new semiring. As before BP messages are exchanged between variables and fac-

tors. But here, we can simplify BP messages by substitution and only keep two types of factor-to-

factor messages. We use Si→I and SI→i to denote these two types of SP messages. These messages

are exchanged between two types of factors, namely P̃I (̂p
∂I→I

) (∅) and P̃i (̂p
∂i\I→i

) (∅). Since the

third type of factors P̃i↔I (̂pi→I, p̂I→i ) (∅)
−1

are always connected to only two variables, p̂i→I and
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Figure 2.6: Part of a factor-graph (left) and the corresponding SP factor-graph on the right. The variables in SP
factor-graph are the messages in the original graph. The SP factor-graph has three type of factors: (I)̃PI (.) (∅),
(II) P̃i (.) (∅) and (III)̃Pi↔I (.) (∅)

−1
. As the arrows suggest, SP message updates are simplified so that only two

type of messages are exchanged: Si→I and SI→i between factors of type (I) and (II).

p̂I→i , we can simplify their role in the SP message update to get

Si→I (̂pi→I, p̂I→i ) ∝
�⊕
\̂pi→I,p̂I→i

��
�

P̃i (̂p
∂i→i

) (∅)

P̃i↔I (̂pi→I, p̂I→i ) (∅)

⊗
J∈∂i\I

SJ→i (̂pi→J, p̂J→i )
��
� (2.64)

SI→i (̂pi→I, p̂I→i ) ∝
�⊕
\̂pi→I,p̂I→i

��
�

P̃I (̂p
∂I→I

) (∅)

P̃i↔I (̂pi→I, p̂I→i ) (∅)

⊗
j ∈∂I\i

Sj→I (̂pj→I, p̂I→j )
��
� (2.65)

where in all cases we are assuming the messages p̂
·→·
∈ P are consistent with each other –

i.e., satisfy BP equations on the original factor-graph. Note that, here again we are using the

normalized BPmessage update and the normalization factor is hidden using∝ sign. This is possible
because we assumed ⊗ has an inverse. We can further simplify this update using the following

proposition.

Proposition 2.5.2. for p̂
·→·
∈ P

P̃i (̂p
∂i→i

) (∅)

P̃i↔I (̂pI→i , p̂i→I) (∅)
= P̃i→I (̂p

∂i\I→i
) (∅) (2.66)

and

P̃I (̂p
∂I→I

) (∅)

P̃i↔I (̂pI→i , p̂i→I) (∅)
= P̃I→i (̂p

∂I\i→I
) (∅) (2.67)
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Proof. By definition of p̃I (x I) and p̂i→I (xi ) in equation (2.49)

p̃I (xi ) = p̃I→i (xi ) ⊗ p̂i→I (xi ) →
⊕

xi
p̃I (xi ) =

⊕
xi
p̃I→i (xi ) ⊗ p̂i→I (xi ) →

p̃I (∅) = p̃I→i (∅) ⊗
(⊕

xi
p̂I→i (xi ) ⊗ p̂i→I (xi )

)
→ p̃I (∅) = p̃I→i (∅) ⊗ p̃

i↔I
(∅)

where in the last step we used equation (2.53).

Similarly for the second statement of the proposition we have

p̃i (xi ) = p̃i→I (xi ) ⊗ p̂I→i (xi ) →
⊕

xi
p̃i (xi ) =

⊕
xi
p̃i→I (xi ) ⊗ p̂I→i (xi ) →

p̃i (∅) = p̃i→I (∅) ⊗
(⊕

xi
p̂I→i (xi ) ⊗ p̂i→I (xi )

)
→ p̃i (∅) = p̃i→I (∅) ⊗ p̃

i↔I
(∅)

�

The term on the l.h.s. in the proposition above appear in equation (2.64) and the terms on the

r.h.s are local message integrals given by equation (2.49). We can enforce p̂
·→·
∈ P, by enforcing BP

updates p̂i→I = Pi→I (̂p
∂i\I→i

) and p̂I→i = PI→i (̂p
∂I\→I

) “locally”, during the message updates in the

new factor-graph. Combining this constraint with the simplification offered by proposition 2.5.2

gives us the SP message updates

Si→I (̂pi→I) ∝
�⊕

p̂
∂i\I→i

(
1
(
p̂i→I = Pi→I (̂p

∂i\I→i
)
)
⊗ Pi→I (̂p

∂i\I→i
) (∅)
⊗

J∈∂i\I
SJ→i (̂pJ→i )

)
(2.68)

SI→i (̂pI→i ) ∝
�⊕

p̂
∂I\i→I

(
1
(
p̂I→i = PI→i (̂p

∂I\i→I
)
)
⊗ PI→i (̂p

∂I\i→I
) (∅)
⊗

j ∈∂I\i
Sj→I (̂pj→I)

)
(2.69)

where 1(.) is the identity function on the SP semiring, where 1(true) =
⊗
1 and 1(false) =

�
⊕
1 .

Here each SP message is a functional over all possible BP messages between the same variable

and factor. However, in updating the SP messages, the identity functions ensure that only the

messages that locally satisfy BP equations are taken into account. Another difference from the

updates of equation (2.64) is that SP messages have a single argument. This is because the new

local integrals either depend on p̂i→I or p̂I→i , and not both.

Example 2.5.1. In variational approach, survey propagation comes in two variations: entropic

SP(ξ ) and energetic SP(y) [208]. For the readers familiar with variational derivation of SP, here

we express the relation to the algebraic approach. According to the variational view, the partition

function of the entropic SP is
∑

p̂
·→·

e
ξ log(Q (̂p

·→·
) (∅)) , where Q (̂p

·→·
) (∅) is the partition function for

the sum-product semiring. The entropic SP has an inverse temperature parameter, a.k.a. Parisi

parameter, ξ ∈ R. It is easy to see that ξ = 1 corresponds to
�
⊕ = +,⊕ = + and ⊗ = × in our

algebraic approach. The limits of ξ → ∞ corresponds to
�
⊕ = max. On the other hand, the limit
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of ξ → 0 amounts to ignoring Q (̂p
·→·

) (∅) and corresponds to the counting SP; see section 2.5.4.

The energetic SP(y) is di�erent only in the sense that Q (̂p
·→·

) (∅) in

∑
p̂
·→·

e
−y log(Q (̂p

·→·
) (∅))

is

the ground state energy. This corresponds to

_
⊕ = +,⊕ = max and ⊗ =

∑
, and the limits of the

inverse temperature parameter y→ ∞ is equivalent to

_
⊕ = min,⊕ = min and ⊗ =

∑
. By taking an

algebraic view we can choose between both operations and domains. For instance, an implication

of algebraic view is that all the variations of SP can be applied to the domain of complex numbers

Y∗ = C.

2.5.3 The new integral and marginals

Once again we can use theorem 2.5.1, this time to approximate the SP integralQ (∅) (∅) =
_⊕

p̂
·→·

Q (̂p
·→·

) (∅)

using local integral of SP messages.

The SP marginal over each BP message p̂i→I or p̂I→i is the same as the corresponding SP mes-

sage – i.e., S (̂pi→I) = Si→I (̂pi→I). To see this in the factor-graph of �gure 2.6, note that each

message variable is connected to two factors, and both of these factors are already contained in

calculating one SP messages.

Moreover, from the SP marginals over messages we can recover the SP marginals over BP

marginals which we denote by S (̂p) (xi ). For this, we simply need to enumerate all combinations

of BP messages that produce a particular marginal

S (̂p) (xi ) ∝
_⊕

p̂
∂i→i

1 (̂p(xi ) = P (̂p
∂i→i

) (xi ))
⊗

I∈∂i
SI→i (̂pI→i ) (2.70)

2.5.4 Counting survey propagation

Previously we required the ⊗ operator to have an inverse, so that we can decompose the BP integral

q(∅) into local integrals. Moreover, for a consistent decomposition of the BP integral, SP and BP

semiring previously shared the ⊗ operation.
8

Here, we lift these requirements by discarding the BP integrals altogether. This means SP

semiring could be completely distinct from BP semiring and (Y∗,⊗) does not have to be an Abelian

group. This setting is particularly interesting when the SP semiring is sum-product over real

8
This is because if the expansion operation

_
⊗ was di�erent from the expansion operation of BP, ⊗, the expanded

form Q (̂p
·→·

) in the SP factor-graph would not evaluate the integral q(∅) in the BP factor-graph, even in factor-graphs

without any loops.
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domain

Si→I (̂pi→I) ∝
∑

p̂
∂i\I→i

1
(
p̂i→I = Pi→I (̂p

∂i\I→i
)
) ∏

J∈∂i\I

SJ→i (̂pJ→i ) (2.71)

SI→i (̂pI→i ) ∝
∑

p̂
∂I\i→I

1
(
p̂I→i = PI→i (̂p

∂I\i→I

)
) ∏
j ∈∂I\i

Sj→I (̂pj→I) (2.72)

Here, the resulting SP integral Q (̂p
·→·

) =
∑

p̂
·→·

1 (̂p
·→·
∈ P) simply “counts” the number of

BP �xed points and SP marginals over BP marginals (given by equation (2.70)) approximates the

frequency of a particular marginal. The original survey propagation equations in [48], that are

very successful in solving satis�ability correspond to counting SP applied to the or-and semiring.

Example 2.5.2. Interestingly, in all min-max problems with discrete domains X, min-max BP

messages can only take the values that are in the range of factors – i.e.,Y∗ = Y . This is because any

ordered set is closed under min and max operations. Here, each counting SP message Si→I (̂pi→I) :

Y |Xi | → R is a discrete distribution over all possible min-max BP messages. This means counting

survey propagation where the BP semring is min-max is computationally “tractable”. In contrast

(counting) SP, when applied to sum-product BP over real domains is not tractable. This is because

in this case each SP message is a distribution over a uncountable set: Si→I (̂pi→I) : R |Xi | → R.

In practice, (counting) SP is only interesting if it remains tractable. The most well-known

case corresponds to counting SP when applied to the or-and semiring. In this case the factors are

constraints and the domain of SP messages is {true,false} |Xi | . Our algebraic perspective extends

this set of tractable instances. For example, it show that counting SP can be used to count the

number of �xed points of BP when applied to xor-and or min-max semiring.

2.6 Messages and particles

The contrasting properties of stochastic and deterministic approximations make a general hybrid

method desirable. After reviewing the basics of MCMC in section 2.6.1, we discuss some particle-

based approaches to message passing and introduce our hybrid inference method that combines

message passing and Gibbs sampling in section 2.6.3. The discussions of this section are limited

to sum-product inference.

2.6.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a technique to produce samples from a target distribution

p, by exploring a Markov Chain which is constructed such that more probable areas are visited

more often [11, 227, 263].



2.6. MESSAGES AND PARTICLES 67

A Markov Chain is a stochastic process x (0) , . . . ,x (t)
in which:

p(x (t) | x (t−1) , . . . ,x (1) ) = kt (x (t) ,x (t−1) ) (2.73)

that is the current state x (t)
is independent of all the history, given only the previous state x (t−1)

.

For a homogeneous Markov chain, the transition kernel kt (x (t) ,x (t−1) ) is the same for all t . In

this case and under some assumptions
9
, starting from any arbitrary distribution x (0) ∼ p(0) (x ) after

at leastTmix transitions by the chain, we have x (Tmix) ∼ p(x ). Given a set of particles x[1], . . . ,x[L]

sampled from p(x ), we can estimate the marginal probabilities (or any other expectation) as

p̂(xi ) ∝
1

L

L∑
n=1

1(x[n]i = xi ) (2.74)

For a given transition kernel, the following condition, known as detailed balance, identi�es

the stationary distribution p:

p(x (t) )k(x (t) ,x (t−1) ) = p(x (t−1) )k(x (t−1) ,x (t) ) ⇒

p(x (t) ) =
∑
x

p(x ) k(x (t)
;x ) (2.75)

which means that p(.) is the left eigenvector of k(., .) with eigenvalue 1. All the other eigenvalues

are less than one and themixing time,Tmix, of the chain depends on the second largest eigenvalue;

the smaller it is, the faster consecutive transition by k(., .) shrinks the corresponding components,

retaining only p.

Metropolis-Hasting Algorithm and Gibbs sampling

Many important MCMC algorithms can be interpreted as a special case of Metropolis-Hasting

(MH) [124, 207]. Similar to importance sampling, MH uses proposal distribution m(x (t) | x (n−1) ),

but in this case, the proposal distribution is to help with the design of transition kernel k(., .). After

sampling x (t)
from the proposal x (t) ∼ m(x ), it is accepted with probability

min




1 ,
p(x (t) )/p(x (t−1) )

m(x (t) | x (t−1) )/m(x (t−1) | x (t) )




(2.76)

where, if the proposed sample is not accepted, x (t) = x (t−1)
.

The kernel resulting from this procedure admits the detailed balance condition w.r.t. the sta-

tionary distribution p(x ). An important feature of MCMC, which allows for its application in

9
The assumptions are: (I) Irreducibility: There is a non-zero probability of reaching all states starting with any

arbitrary state and (II) Aperiodicity: The chain does not trap in cycles.
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graphical models, is the possibility of building valid transition kernels as the mixtures and cy-
cles of other transition kernels. If p, is the stationary distribution for k1 and k2, then it is also the

stationary distribution for k1k2 (cycle) and λk1 + (1 − λ)k2, 0 ≤ λ ≤ 1 (mixture) [295].

Cycling of kernels gives us Gibbs sampling in graphical models [109], when kernels are

ki (x
(t)
i ,x

(t−1)
∆i ) = p(x (t)

i | x
(t−1)
∆i ) ∀i (2.77)

where as before ∆i is the Markov blanket of node i . It is also possible to use block MH-kernels with

graphical models. In MH-samplers, when highly correlated variables are blocked together, mixing

properties improve. In fact, the Gibbs sampler is such a method, with the proposal distribution

that results in acceptance with probability 1.

Similar to the general MH-methods, Gibbs sampling can fail if the kernel does not mix properly.

This could happen if variables are strongly correlated. In principle one can assemble neighbouring

variables into blocks and update them as one [147]. However in di�cult regimes the number of

variables that should be �ipped to move from one local optima to another, is in the order of total

number of variables [208], which makes this approach intractable.

Mixture of kernels can be used to combine a global proposal with a local proposal (e.g., [81,

88]). In fact if we could view a message passing operator as a transition kernel (at least when

message passing is exact), then the mixture of kernels – e.g., with Gibbs sampling – could produce

interesting hybrid methods. In section 2.6.3, by combining BP and Gibbs sampling operator (when

rephrased as message update) we introduce a new hybrid method.

2.6.2 Hybrid methods

Stochastic methods are slow in convergence but they are guaranteed to converge. Even if the

kernel is reducible, samples will cover a subset of the true support – i.e., MCMC still converges to

a single sub-measure when the Gibbs measure is not unique.

On the other hand, deterministic approximations are fast but non-convergent in di�cult regimes.

Modi�cations that result in convergence are either generally intractable (e.g., SP), slow (e.g., loop

corrections and the methods that tighten a bound over the free energy) and/or degrade the quality

of solutions.

Moreover, sampling methods are �exible in representing distributions. This has motivated

growing interest in nonparametric approach to variational inference [110] and in particular vari-

ations of Belief Propagation [141, 142, 144, 172, 231, 282, 283]. However, in the sense that these

methods do not rely on a Markov chain for inference, they are closer to variational inference than

MCMC methods.

To better appreciate this distinction, consider two closely related methods: Gibbs Sampling
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and hard-spin mean-�eld [10], that uses the following update equation

p̂(xi ) ∝
∑
x
\i

∏
I∈∂i

fI (x
I\i ,xi )

∏
j ∈I\i

p̂(x j )

Interestingly, the detailed balance condition of equation (2.75) for Gibbs sampler gives us the

same equation:

p̂(xi ) ∝
∑
x
\i

∏
I∈∂i

p̂(xi | x
I\i )

∏
j ∈I\i

p̂(x j )

However, given enough iterations, Gibbs Sampling can be much more accurate than hard-spin

mean �eld method. Here the di�erence is that, with Gibbs sampler, this equation is enforced by

the chain rather than explicit averaging of distributions, which means the correlation information

is better taken into account.

2.6.3 Perturbed Belief Propagation

Consider a single particle x̂ = x[1] in Gibbs Sampling. At any time-step t , x̂i is updated according

to

x̂ (t)
i ∼ p̂(xi ) ∝

∏
I∈∂i

fI (xi , x̂
(t−1)
∂I \i ) (2.78)

Here we establish a correspondence between a particle in Gibbs Sampling and a set of variable-

to-factor messages in BP –i.e., x̂ ⇔ {p̂i→I (.)}i,I ∈∂i , by de�ning all the messages leaving variable xi

as a delta-function

p̂i→I (xi )
def

= 1(xi = x̂i )
def

= Gi→I (̂p
∆i→∂i

) (xi ) ∀I ∈ ∂i (2.79)

where Gi→I (̂p∆i→∂i ) is the Gibbs sampling operator that de�nes variable-to-factor message p̂i→I

as a function of all the messages from Markov blanket of i (∆i) to its adjacent factors (∂i). To

completely de�ne this random operator, note that x̂i is a sample from the conditional distribution

of Gibbs sampling

x̂i ∼ p̂(xi ) ∝
∏
J∈∂i

fI (xi , x̂∂I\i )

∝
∏
I∈∂i

∑
x\i

fI (x
I
)

∏
j ∈∂I\i

p̂j→I (x j ) (2.80)
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Combining the operators

Now, lets write the BP updates for sum-product semiring once again; by substituting the factor-

to-variable messages (equation (2.6)) into variable-to-factor messages and the marginals (equa-

tions (2.7) and (2.9)) we get

p̂i→I (xi ) ∝
∏

J∈∂i\I

∑
X∂J\i

fJ (x
J
)

∏
j ∈∂J\i

p̂j→J (x j ) ∝ Pi→I (̂p
∆i→∂i

) (xi ) (2.81)

p̂(xi ) ∝
∏
I∈∂i

∑
X∂I\i

fI (x I )
∏
j ∈∂I\i

p̂j→I (x j ) (2.82)

where, similar to equation (2.7), Pi→I (.) denotes the message update operator, with the distinc-

tion that here, the arguments are also variable-to-factor messages (rather than factor-to-variable

messages).

By this rewriting of BP updates, the BP marginals equation (2.82) are identical in form to

the Gibbs sampling distribution of equation (2.80). This similar form allows us to combine the

operators linearly to get perturbed BP operator:

Xi→I (̂p
∆i→∂i

)
def

= γ Gi→I (̂p
∆i→∂i

) + (1 − γ )Pi→I (̂p∆i→∂i ) ∀i, I ∈ ∂i (2.83)

The Perturbed BP operator Xi→I (.) updates each message by calculating the outgoing message

according to BP and GS operators and linearly combines them to get the �nal massage. During T

iterations of Perturbed BP, the parameter γ is gradually and linearly changed from 0 towards 1.
10

Algorithm 2 summarizes this procedure. Note that the updates of perturbed BP are compatible

with variable synchronous message update (see section 2.1.1).

Experiments

Perturbed BP is most successful in solving CSPs; see chapter 3. However we can also use it for

marginalization by sampling (equation (2.74)). Here we use the spin-glass Ising model on 8×8 grids

and Erdős-Rény (ER) random graphs with N = 50 and 150 edges. We sampled local �elds inde-

pendently fromN (0,1) and interactions fromN (0,θ 2), where we change θ to control the problem

di�culty – higher values correspond to more di�cult inference problems. We then compared the

average of the logarithm (base 10) of mean (over N variables) marginal error

log(
1

N

∑
i,xi

|p(xi ) − p̂(xi ) |) (2.85)

Figure 2.7 compares perturbed BP, Gibbs sampling and BP where larger circles correspond to

10
Perturbed BP updates can also be used with any �xed γ ∈ [0,1].
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input : a factor graph, number of iterations T.

output: a sample x̂ .

Initialize messages

γ ← 0

repeat
for each variable xi do

calculate p̂(xi ) using equation (2.80)

calculate BP messages p̂i→I (.) using equation (2.81) ∀I ∈ ∂i
sample x̂i ∼ p̂(xi )
combine BP and Gibbs sampling messages:

p̂i→I (xi ) ← γ p̂i→I (xi ) + (1 − γ ) 1(xi = x̂i ) (2.84)

end
γ ← γ + 1

T−1

until T iterations

return x̂
Algorithm 2: Perturbed Belief Propagation

(a) Ising grid (b) Random ER graph

Figure 2.7: Log mean marginal error (x and y axes) comparison between Perturbed BP, BP and Gibbs sampling

for (le�) 8x8 periodic Ising grid; (right) random graph with 50 variables, 150 edges and spin-glass interactions.

The size of each circle is proportional to the di�culty of that problem.

more di�cult instances θ ∈ {0.5,1,2,4,8}. All methods are given a maximum of 10,000 iterations.

Perturbed BP and Gibbs sampling use T = 100 iterations to obtain each sample, while BP is ran

once until convergence or until the maximum number of iterations is reached.

The results shows that Perturbed BP as a sampling method is generally better than Gibbs

Sampling. Also, for some cases in which BP’s result is very close to random (i.e., ∼ −.3 in log

marginal error), Perturbed BP produces relatively better results. Note that for di�cult instances,

increasingT even by 100 folds does not signi�cantly improve the results for either Gibbs sampling

or perturbed BP. For Gibbs sampling, this can be explained by formation of pure states that result

in exponential mixing time [192, 208].
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2.6.4 Perturbed survey propagation

When the SP operators are sum-product – i.e.,

_
⊕ = sum and

_
⊗ = prod – we can apply a perturba-

tion scheme similar to perturbed BP.

Recall that sum-product SP de�nes a distribution over BP �xed point. Therefore sampling

from this distribution amounts to randomly selecting a single BP �xed point. This corresponds to

sampling a single message p̂i→I[1] ∼ Si→I (̂pi→I)
11

and bias the SP message Si→I (.) towards this

random choice – i.e., (analogous to equation (2.84) in algorithm 2)

Si→I (̂pi→I) ← γ Si→I (̂pi→I) + (1 − γ )1 (̂pi→I = p̂i→I[1]) (2.86)

where p̂i→I[1] ∼ Si→I (̂pi→I)

An alternative form of perturbation is to perturb SP messages using implicit SP marginals.

Recall that in using counting SP, the SP marginals over BP marginals (S (̂p) (xi ); see equation (2.70))

are simply the frequency of observing a particular marginal in BP �xed points. This implicitly

de�nes SP marginal over the original domains Xi ;∀i , which we denote by S(xi )

S(xi ) ∝
∑
p̂

S (̂p) (xi ) (2.87)

After obtaining a sample x̂i ∼ S(xi ), we bias all the outgoing SP messages accordingly

Si→I (̂pi→I) ← γ Si→I (̂pi→I) + (1 − γ ) 1
(
p̂i→I (.) = 1(x̂i , .)

)
∀I ∈ ∂i (2.88)

where x̂i ∼ Si (xi )

where, similar to perturbed BP,γ is gradually increased from 0 to 1 duringT iterations of Perturbed

SP. We use this form of perturbation in section 3.3 to obtain a satisfying assignment x̂ , to CSPs.

We show that although computationally more expensive than perturbed BP, this method often

outperforms all the other well-known methods in solving random CSPs.

11
Recall that the SP marginal over each message p̂i→I is identical to the corresponding message Si→I (̂pi→I).
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Combinatorial problems
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Message Passing algorithms of di�erent semirings are able to solve a variety of combinatorial

problems: (I) To solve constraint satisfaction problems (CSPs) the sum-product message pass-

ing is often used, where p(x ) de�nes a uniform distribution over solutions and the objective is to

produce a single assignment x∗ s.t. p(x∗) > 0. (II) Here the estimates of the partition function,

either using the approximation given by the Bethe free energy (section 2.3.1) or the decomposition

of integral in section 2.5.1, is used for approximate counting of the number of solutions. This

estimate to the partition function is also used for integration problems such approximating the

permanent of a matrix (see chapter 5). (III) The min-sum semiring is often used for (constrained)
optimization and we formulate (IV) bottleneck problems as min-max inference.

This part of the thesis studies the message passing solutions to combinatorial problems under

three broad categories. (1) Chapter 3 studies the constraint satisfaction problems, where we use

perturbed message passing (section 2.6.3 and 2.6.4) to produce state-of-the-art results in solving

random instances of satis�ability and coloring problems in section 3.3. This chapter then stud-

ies several other NP-hard problems including set-cover, independent set, max-clique, clique-cover

and packing for construction of non-linear codes. (2) Chapter 4 studies variations of clustering

problems including k-median, k-center, k-clustering, hierarchical clustering and modularity opti-

mization. (3) In chapter 5 we study problems that involve enumeration, constraint satisfaction or

constrained optimization over permutations. This includes (bottleneck) travelling salesman prob-

lem, matching, graph alignment, graph isomorphism and �nding symmetries.

Note that this classi�cation of combinatorial problems into three categories is super�cial and

is made solely to provide some organization. In several places we violate this categorization in

favour of better �ow. For example we study some constraint satisfaction problems such as (sub)-

graph isomorphism and Hamiltonian cycle in chapter 5 rather than chapter 3. We investigate the

“optimization” counterpart of some CSPs in chapter 3 and review message passing solutions to

�nding trees rather than clusters in chapter 4. Moreover, many of the graphical models presented

here are proposed by other researchers and they are included here only for completeness. As a

�nal remark, we note that many of the statements in the following are assuming P , NP.



Chapter 3

Constraint satisfaction

We saw in section 1.3 that “any” semiring can formulate Constraint Satisfaction Problems (CSPs).

In particular, aswe saw in section 1.3, several semirings are isomorphic to the and-or ({false,true},∨,∧)
semiring and therefore result in equivalent BP procedures. The BPmessage update over the and-or

semiring is called warning propagation (WP). WP marginals indicate whether or not a partic-

ular assignment to each variable is allowed, and therefore indicate a cluster of solutions. However,

the success of warning propagation highly depends on initialization of messages. In contrast, if

convergent, the fixed points of BP on the sum-product semiring (R≥0,+,×) are less dependent on
initialization.

Example 3.0.1. K-coloring: Given a graph G = (V ,E), the K-coloring (K-COL) problem asks

whether it is possible to assign one color (out of K) to each node s.t. no two adjacent nodes have

the same color. Here, xi ∈ Xi = {1, . . . ,q} is a K-ary variable for each i ∈ N , and we haveM = |E |
constraints; each constraint fi,j (xi ,x j ) = 1(xi � x j ) depends only on two variables and is satisfied

iff the two variables have different values. Here the identity function 1(xi � x j ) depends on the

semiring (see section 1.3).

Figure 3.1: (a) The set of all possible assignments to 3 variables. The solutions to the 3-SAT problem of equa-
tion (3.1) are in white circles. (b) The factor-graph corresponding to the 3-SAT problem of equation (3.1). Here
each factor prohibits a single assignment.



76

Example 3.0.2. K-Satis�ability (K-SAT): Given a conjunction of disjunctions with K literals,

K-satis�ability seeks an assignment that evaluates to true. Here, all variables are binary (Xi =

{true,false}) and each clause (factor fI) depends on K =| ∂I | variables. A clause evaluates to

zero only for a single assignment out of 2
K

possible assignment of variables [107].

Consider the following (or-and semiring formulation of) 3-SAT problem over 3 variables with

5 clauses:

q(x ) = (¬xi ∨ ¬x j ∨ xk )︸               ︷︷               ︸
fI

∧ (¬xi ∨ x j ∨ xk )︸             ︷︷             ︸
fJ

∧ (xi ∨ ¬x j ∨ xk )︸             ︷︷             ︸
fK

∧ (3.1)

(¬xi ∨ x j ∨ ¬xk )︸               ︷︷               ︸
fL

∧ (xi ∨ ¬x j ∨ ¬xk )︸               ︷︷               ︸
fH

The factor fI corresponding to the �rst clause takes the value

⊗

1 (for or-and semiring this corre-

sponds to

∧

1 = true), except for x
I
= (true,true,false), in which case it is equal to

⊕

1 (

∨

1 = false).

Figure 3.1 shows this factor-graph and its set of solutions:

S =
{
(true,true,true), (false,false,false), (false,false,true)

}
.

When using sum-product semiring, where fI (x ) ∈ YI = {0,1}, p(x ) (equation (1.17)) de�nes a

uniform distribution over the set of solutions and the partition function q(∅) counts the number of

solutions. The challenge is then to sample from this distribution (or estimate q(∅)). The common

approach to sample from p(x ) is to use decimation (see section 1.4.1). Here one repeatedly applies

sum-product BP to estimate marginals p̂(xi ). Then one �xes a subset of variables x
A

according

to their marginals. For this one may sample x∗i ∼ p̂(xi ) or select xi with maximum marginal

x∗i = argxi max p̂(xi ). Sum-product BP is then applied to the reduced factor-graph in which fI (x
I
)

is replaced by fI (x
I
)1(x

I∩A
= x∗

I∩A
). This process, called sum-product BP-guided-decimation

(BP-dec), is repeated to obtain a complete joint assignment x∗.

However, using BP-guided-decimation is solving a more di�cult problem of marginalization.

In fact, in section 1.4.1 we showed how using decimation one may estimate the partition function

(which is a #P problem). This suggests that decimation may not be the most e�cient approach

to solving NP-complete CSPs. Here, instead we consider using the perturbed belief propagation

(section 2.6.3) to sample from the set of solutions, where the semiring used by perturbed BP is the

same as sum-product BP-dec.

To better understand warning propagation, sum-product BP-dec, and perturbed BP, when ap-

plied to CSPs, consider the following examples.

Example 3.0.3. Here we apply three di�erent message passing methods to solve the simple 3-SAT

example of �gure 3.1.
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(I) Warning Propagation:

We use the max-product semiring ({0,1},max,prod) version of warning propagation for this ex-

ample. As �gure 3.1 suggests, the set of solutions S clusters into two subsets

{{true,true,true}} and {{false,false,false}, {false,false,true}
}
. Here, each of the clusters

is a �xed point for WP – e.g., the cluster with two solutions corresponds to the following �xed

point

p̂i→A (true) = p̂(xi = true) = 0

p̂i→A (false) = p̂(xi = false) = 1 ∀A ∈ ∂i

p̂j→A (true) = p̂(x j = true) = 0

p̂j→A (false) = p̂(x j = false) = 1 ∀A ∈ ∂j

p̂k→A (true) = p̂(xk = true) = 1

p̂k→A (false) = p̂(xk = false) = 1 ∀A ∈ ∂k

where the messages indicate the allowed assignments within this particular cluster of solutions.

Depending on the initialization, WP messages may converge to any of its �xed points that also

include the trivial cluster, where all (alternatively none) of the assignments are allowed.

(II) BP-dec:
Applying BP to this 3-SAT problem (starting from uniform messages) takes 20 iterations to con-

verge – i.e., for the maximum change in the marginals to be below ϵ = 10
−9

. Here the message,

p̂I→i (xi ), from fI to xi is:

p̂I→1 (xi ) ∝
∑
x j,k

fI (x
1,2,3) p̂j→I (x j ) p̂k→I (xk )

Similarly, the message in the opposite direction, p̂k→I (xi ) is

p̂i→I (xi ) ∝ p̂J→i (xi ) p̂K→i (xi ) p̂L→i (xi ) p̂H→i (xi )

Here BP gives us the following approximate marginals: p̂(xi = true) = p̂(x j = true) = .319

and p̂(xk = true) = .522. From the set of solutions, we know that the correct marginals are

p(xi = true) = p(x j = true) = 1/3 and p(xk = true) = 2/3. The error of BP is caused

by in�uential loops in the factor-graph of �gure 3.1(b). Here the error is rather small; it can be

arbitrarily large in some instances; sometimes it ca prevent converging at all.

By �xing the value of xi to false, the SAT problem of equation (3.1) collapses to:

SAT (x
{j,k } | xi = false) = (¬x j ∨ xk ) ∧ (¬x j ∨ ¬xk ) (3.2)
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BP-dec applies BP again to this reduced problem, which give p̂(x j = true) = .14 (note here

that p(x j = true) = 0) and p̂(xk = true) = 1/2. By �xing x j to false, another round of decima-

tion yields a solution x∗ = {false,false,true}.

(III) Perturbed Belief Propagation:
Perturbed BP can �nd a solution in T = 4 iterations (see algorithm 2 on page 71). Our implemen-

tation shu�es the order of updates for variables in each iteration.

In the �rst iteration, γ = 0, which means updates are the same as that of sum-product BP. In

the second iteration, the order of updates is x j , xk , xi and γ = 1/3. At the end of this iteration

p̂(t=2) (x j = true) = .38. Perturbed BP then samples x̂ j = false from this marginal. This sample

in�uences the outgoing message according to the perturbed BP update equation (2.84), which in

turn in�uences the beliefs for xi and xk . At the end of this iteration p̂(t=2) (xi = true) = .20 and

p̂(t=2) (xk = true) = .53. At the �nal iteration γ = 1 and the order of updates is xi ,x j and xk . At

this point p̂(t=3) (xi = true) = .07 and the sample x̂i = false. This means the outgoing message

is deterministic (i.e., p̂i→A (false) = 1 and p̂i→A (true) = 0, for all A ∈ ∂i). This choice propagates

to select x̂ j = false. Finally p̂(t=3) (xk = true) = p̂(t=3) (xk = true) = .5, which correctly shows

that both choices for x̂k produce a solution.

To compare the performance of sum-product BP-dec and Perturbed BP on general CSPs, we

considered all CSP instances from XCSP repository [189, 270], that do not include global con-

straints or complex domains. All instances with intensive constraints (i.e., functional form) were

converted into extensive format for explicit representation using dense factors. We further re-

moved instances containing constraints with more that 10
6

enteries in their tabular form. We also

discarded instances that collectively had more than 10
8

enteries in the dense tabular form of their

constraints.
1

Figure 3.2(a,b) compares the time and iterations of BP-dec and Perturbed BP for successful

attempts where both methods satis�ed an instance.
2

Overall Perturbed BP, with 284 solved instances, is more successful than BP-dec with 253 suc-

cessful runs. On the other hand, the average number of iterations for successful instances of BP-dec

is 41,284, compared to 133 iterations for Perturbed BP. This makes Perturbed BP 300 times more

1
Since our implementation represents all factors in a dense tabular form, we had to remove many instances because

of their large factor size. We anticipate that Perturbed BP and BP-dec could probably solve many of these instances

using a sparse representation of factors.

2
We used a convergence threshold of ϵ = .001 for BP and terminated if the threshold was not reached after T =

10 × 2
10 = 10,240 iterations. To perform decimation, we sort the variables according to their bias and �x ρ fraction of

the most biased variables in each iteration of decimation. This fraction, ρ, was initially set to 100%, and it was divided

by 2 each time BP-dec failed on the same instance. BP-dec was repeatedly applied using the reduced ρ, at most 10 times,

unless a solution was reached – i.e., ρ = .1% at �nal attempt.

For Perturbed BP, T = 10 at the starting attempt, which was increased by a factor of 2 in case of failure. This was

repeated at most 10 times which means Perturbed BP used T = 10,240 at its �nal attempt. Note that Perturbed BP at

most uses the same number of iterations as the maximum iterations per single iteration of decimation in BP-dec.
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Figure 3.2: Comparison of number of iterations (left) and time (right) used by BP-dec and Perturbed BP in
benchmark instances where both methods found satisfying assignments.

efficient than BP-dec. 3

3.1 Phase transitions in random CSPs

Random CSP (rCSP) instances have been extensively used in order to study the properties of

combinatorial problems [1, 103, 179, 215] as well as in analysis and design of algorithms [213, 277].

Studies of rCSP, as a critical phenomena, focus on the geometry of the solution space as a

function of the problem’s difficulty, where rigorous [2, 70] and non-rigorous [209, 210] analyses

have confirmed the same geometric picture.

When working with large random instances, a scalar α associated with a problem instance,

a.k.a. control parameter – e.g., the clause to variable ratio in SAT– can characterize that in-

stance’s difficulty (i.e., larger control parameter corresponds to a more difficult instance) and in

many situations it characterizes a sharp transition from satisfiability to unsatisfiability [59].

Example 3.1.1. Random K-satisfiability Random K-SAT instance with N variables and M =

αN constraints are generated by selecting K variables at random for each constraint. Each con-

straint is set to zero (i.e., unsatisfied) for a single random assignment (out of 2K ). Here α is the

control parameter.

Example 3.1.2. RandomK-coloring The control parameter for a randomK-COL instances with

N variables and M constraints is its average degree α = 2M
N
. We consider Erdős-Rény random

3 We also ran BP-dec on all the benchmarks with maximum number of iterations set to T = 1000 and T = 100
iterations. This reduced the number of satisfied instances to 249 forT = 1000 and 247 forT = 100, but also reduced the
average number of iterations to 1570 and 562 respectively, which are still several folds more expensive than Perturbed
BP. see Appendix xyz for more details on these results.
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graphs and generate a random instance by sequentially selecting two distinct variables out of N

at random to generate each of M edges. For large N , this is equivalent to selecting each possible

factor with a fixed probability, which means the nodes have Poisson degree distribution Pr( |∂i | =
d ) ∝ e−ααd .

While there are tight bounds for some problems [3], finding the exact location of this transition

for different CSPs is still an open problem. Besides transition to unsatisfiability, these analyses have

revealed several other (phase) transitions [179]. Figure 3.3(a)-(c) shows how the geometry of the

set of solutions changes by increasing the control parameter.

Here we enumerate various phases of the problem for increasing values of the control param-

eter: (a) In the so-called Replica Symmetric (RS) phase, the symmetries of the set of solutions

(a.k.a. ground states) reflect the trivial symmetries of problem wrt variable domains. For example,

for K-COL the set of solutions is symmetric wrt swapping all red and blue assignment. In this

regime, the set of solutions form a giant cluster (i.e., a set of neighboring solutions), where two

solutions are considered neighbors when their Hamming distance is one [2] (or non-divergent

with number of variables [210]. Local search methods (e.g., [277]) and BP-dec can often efficiently

solve random CSPs that belong to this phase.

Figure 3.3: A 2-dimensional schematic view of how the set of solutions of CSP varies as we increase the control
parameter α from (left) replica symmetric phase to (middle) clustering phase to (right) condensation phase.
Here small circles represent solutions and the bigger circles represent clusters of solutions. Note that this view
is very simplistic in many ways – e.g., the total number of solutions and the size of clusters should generally
decrease from left to right.

(b) In clustering or dynamical transition (1dRSB4), the set of solutions decomposes into an

exponential number of distant clusters. Here two clusters are distant if the Hamming distance

between their respective members is divergent (e.g., linear) in the number of variables. (c) In the

condensation phase transition (1sRSB5), the set of solutions condenses into a few dominant clus-

ters. Dominant clusters have roughly the same number of solutions and they collectively contain

almost all of the solutions. While SP can be used even within the condensation phase, BP usually

41st order dynamical RSB. Symmetry Breaking is a general term indicating a phenomenon during which a system
is breaking the symmetry that governs its behaviour by selecting a particular branch. The term Replica Symmetry
Breaking (RSB) originates from the technique –i.e., Replica trick ([211])– that was first used to analyze this setting.
According to RSB, the trivial symmetries of the problem do not characterize the clusters of solution.

51st order static RSB.
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Figure 3.4: This schematic view demonstrates the clustering during condensation phase. Here assume x and y
axes correspond to xi and x j . Considering the whole space of assignments, xi and x j are highly correlated. The

formation of this correlation between distant variables on a factor-graph breaks BP. Now assume that Perturbed

BP messages are focused on the largest shaded ellipse. In this case the correlation is signi�cantly reduced.

fails to converge in this regime. However each cluster of solutions in the clustering and conden-

sation phase is a valid �xed-point of BP. (d) A rigidity transition (not included in �gure 3.3)

identi�es a phase in which a �nite portion of variables are �xed within dominant clusters. This

transition triggers an exponential decrease in the total number of solutions, which leads to (e) un-

satis�ability transition.
6

This rough picture summarizes �rst order Replica Symmetry Breaking’s

(1RSB) basic assumptions [208].

3.1.1 Pitfalls of decimation

Previously we gave an argument against decimation, based on the complexity of marginalization

and integration. Some recent analyses draw similarly negative conclusions on the e�ect of dec-

imation [71, 218, 261]. The general picture is that at some point during the decimation process,

variables form long-range correlations such that �xing one variable may imply an assignment for

a portion of variables that form a loop, potentially leading to contradictions. Alternatively the

same long-range correlations result in BP’s lack of convergence and error in marginals that may

lead to unsatisfying assignments.

Perturbed BP avoids the pitfalls of BP-dec in two ways: (I) Since many con�gurations have

non-zero probability until the �nal iteration, perturbed BP can avoid contradictions by adapting

to the most recent choices. This is in contrast to decimation in which variables are �xed once and

are unable to change afterwards. Some backtracking schemes [240] attempt to �x this problem

with decimation. (II) We speculate that simultaneous bias of all messages towards sub-regions,

prevents the formation of long-range correlations between variables that breaks BP in 1sRSB; see

�gure 3.4.

6
In some problems, the rigidity transition occurs before condensation transition.
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3.2 Revisiting survey propagation

SP is studied on random (hyper) graphs representing CSPs at thermodynamic limit (i.e., asN → ∞).

Large random graphs are locally tree-like, which means the length of short loops are typically in

the order of log(N ) [145]. This ensures that, in the absence of long-range correlations, BP is

asymptotically exact, as the set of messages incoming to each node or factor are almost inde-

pendent. Although BP messages remain uncorrelated until the condensation transition [179], the

BP equations do not completely characterize the set of solutions after the clustering transition.

This inadequacy is indicated by the existence of a set of several valid �xed points (rather than

a unique �xed-point) for WP as an instance of BP. For a better intuition, consider the cartoons

of �gure 3.3(middle) and (right). During the clustering phase (middle), xi and x j (corresponding

to the x and y axes) are not highly correlated, but they become correlated during and after con-

densation (right). This correlation between variables that are far apart in the factor-graph results

in correlation between BP messages. This is because it implies that even if loops are long, they

remain in�uential. This violates BP’s assumption that messages are uncorrelated, which results in

BP’s failure in this regime.

This is where survey propagation comes into the picture in solving CSPs. Going back to our

algebraic notation for SP, using counting SP with warning propagation semiring ({0,1},max,prod)

as the initial semiring and sum-product (R≥0,sum,prod) as the SP semiring, is computationally

tractable. This is because Y∗ = {0,1} in the initial semiring is �nite, and therefore each message

can have �nite number of 2
|Xi |

values

p̂i→I (xi ), p̂I→i (.) ∈
{
(0, . . . ,0), (0, . . . ,0,1), (0, . . . ,1,0), . . . , (1, . . . ,0), . . . , (1, . . . ,1)

}
∀i, I ∈ ∂i

This means each SP message is a distribution over these possibilities Si→I (̂pi→I) ∈ R
2
|Xi |

. How-

ever since (0, . . . ,0) indicates an unfeasible case, where no assignment is allowed, we explicitly

ignore it in SP message updates. This gives us the following update equations and marginals for

SP when applied to CSPs

Si→I (̂pi→I) ∝
∑

p̂
∂i\I→i

1
(
p̂i→I (.) =

∏
J∈∂i\I

p̂J→i (.)
) ( ∏

J∈∂i\I

SJ→i (̂pJ→i )
)
∀i, I ∈ ∂i (3.3)

SI→i (̂pI→i ) ∝
∑

p̂
∂I\i→I

1
(
p̂I→i (.) =

∑
x\i

fI (x
I
)

∏
j ∈∂I\i

p̂j→I (.)
) ( ∏

j ∈∂I\i

Sj→I (̂pj→I)
)

(3.4)

S (̂pi ) =
∑
p̂
∂i→i

_
1 (̂pi (.) =

∏
I∈∂i

p̂I→i (.))
∏
I∈∂i

SI→i (̂pI→i ) (3.5)

SI→i ((0, . . . ,0)) = 0 and Si→I ((0, . . . ,0)) = 0

Example 3.2.1. Consider the SP message Si→I (̂pi→I) in factor-graph of �gure 3.1 on page 75. Here

the summation in equation (3.3) is over all possible combinations of max-product BP messages
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p̂J→i p̂K→i ,̂pL→i ,̂pH→i . Since each of these messages can assume one of the three valid values –

e.g., p̂J→i (xi ) ∈ {(0,1), (1,0), (1,1)} – for each particular assignment of p̂i→I, a total of 3
4

possible

combinations are enumerated in the summations of equation (3.3). However only the combinations

that form a valid max-product message update have non-zero contribution in calculating Si→I.

3.2.1 Flavours of SP-guided decimation

The SP-marginal over WP marginals (equation (3.5)) also implies a distribution S(xi ) over the origi-

nal domain (see equation (2.87)). Similar to BP-dec we can use either the implicit marginals of equa-

tion (2.87) or the SP marginals of equation (3.5) to perform decimation. In the former case, which

we call SP-dec(S) we select x∗i = argxi max S(xi ) during decimation, and in the later case, which we

call SP-dec(C), we clamp p̂∗i = argp̂i max S (̂pi ). This means all the outgoing messages from this

variable node in the factor-graph are clamped in the same way – i.e., Si→I (̂pi→I) = p̂∗i ∀I ∈ ∂i .

In the �rst case, SP-dec(S), we expect a single assignment x∗, while for SP-dec(C) at the end

of decimation we should obtain a cluster of solutions, where a subset of assignments is allowed

for each xi . However, during the decimation process (in both SP-dec(S) and SP-dec(C) ), usually

after �xing a subset of variables, SP marginals, S(xi ), become close to uniform, indicating that

clusters of solution have no preference over particular assignment of the remaining variables. The

same happens when we apply SP to random instances in RS phase (�gure 3.3(left)). At this point

(a.k.a. paramagnetic phase) solutions form a giant cluster and a local search method or BP-dec

can often e�ciently �nd an assignment to the variables that are not yet �xed by decimation.

The original decimation procedure for K-SAT [48] corresponds to SP-dec(S). SP-dec(C) for

CSP with Boolean variables is only slightly di�erent, as SP-dec(C) can choose to �x a cluster to

p̂i = (1,1) in addition to the options of p̂i = (1,0) and p̂i = (0,1) (corresponding to xi = 0

and xi = 1 respectively), available to SP-dec(S). However, for larger domains (e.g., K-COL), SP-

dec(C) has a clear advantage. For example, in 3-COL, SP-dec(C) may choose to �x a variable

to p̂i→I = (0,1,1) (i.e., the �rst color is not allowed) while SP-dec(S) can only choose between

p̂i ∈ {(0,0,1), (0,1,0), (1,0,0)}. This signi�cant di�erence is also re�ected in their comparative

success-rate on K-COL.
7

(See section 3.3)

3.2.2 Computational Complexity

The computational complexity of each SP update of equation (3.4) is O (2 |Xi | − 1) |∂I |
as for each

particular value p̂i→I, SP needs to consider every combination of incoming messages, each of which

can take 2
|Xi |

values (minus the empty set). Similarly, using a naive approach the cost of update

of equation (3.3) is O (2 |Xi | − 1) |∂i | . However by considering incoming messages one at a time,

we can perform the same exact update in O ( |∂i | 2
2 |Xi | ). In comparison to the cost of BP updates

7
Previous applications of SP-dec to K-COL by [49] used a heuristic for decimation that is similar SP-dec (C).
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(i.e., O ( |∂i | |Xi |) and O ( |XI |) for two types of message update; see section 2.1), we see that SP

updates are substantially more expensive for large domains |Xi | and higher order factors with

large |∂I|.

3.2.3 Perturbed survey propagation for CSP

Similar to SP, we use perturbed SP with ({0,1},max,prod) as the �rst semiring and (R,sum,prod)

as the second semiring. Since perturbed SP seeks a single assignment, rather than a cluster of

solutions, it can �nd satisfying solutions to paramagnetic instances. This is in contrast to SP-dec,

which in paramagnetic cases returns a trivial WP �xed point in which all assignment are allowed.

This means as opposed to SP-dec, which is mostly applied to random CSPs in the clustering and

condensation phase, perturbed SP can be used to solve non-random and also random instances in

RS phase.

To demonstrate this, we applied perturbed SP to benchmark CSP instances of �gure 3.2, in

which the maximum number of elements in the factor was less than 10.
8

Here perturbed SP solved

80 instances out of 202 cases, in comparison to perturbed BP that solved 78 instances, making

perturbed SP slightly better, also in solving real-world problems.

3.3 Satis�ability and coloring

In examples 3.1.1 and 3.1.2, we introduced the random procedures that are often used to produce

instances of K-satis�ability and K-coloring problems.

Here we report the results on K-SAT for K ∈ {3,4} and K-COL for K ∈ {3,4,9}. We used the

procedures to produce 100 random instances with N = 5,000 variables for each control parameter

α and here report the probability of �nding a satisfying assignment for di�erent methods – i.e., the

portion of 100 instances that were satis�ed by each method.
9

Figure 3.5(�rst row) visualizes the success rate of di�erent methods on 3-SAT (right) and 3-

COL (left). �gure 3.5(second row) reports the number of variables that are �xed by SP-dec(C) and

(S) before calling BP-dec as local search. The third row shows the average amount of time that is

used to �nd a satisfying solution. This does not include the failed attempts. For SP-dec variations,

8
The number of iterations and other settings for perturbed SP were identical to the ones used to compare BP-dec

and perturbed BP.

9
For coloring instances, to help decimation, we break the initial symmetry of the problem by �xing a single variable

to an arbitrary value. For BP-dec and SP-dec, we use a convergence threshold of ϵ = .001 and �x ρ = 1% of variables

per iteration of decimation. Perturbed BP and Perturbed SP use T = 1000 iterations. Decimation-based methods use a

maximum of T = 1000 iterations per iteration of decimation. If any of the methods failed to �nd a solution in the �rst

attempt, T was increased by a factor of 4 at most 3 times – i.e., in the �nal attempt T = 64,000. To avoid blow-up in

run-time, for BP-dec and SP-dec, only the maximum iteration,T , during the �rst iteration of decimation, was increased

(this is similar to the setting of [48] for SP-dec). For both variations of SP-dec (see section 3.2.1) after each decimation

step, if maxi,xi p̂(xi ) −
1

|Xi |
< .01 (i.e., marginals are close to uniform) we consider the instance para-magnetic, and run

BP-dec (with T = 1000, ϵ = .001 and ρ = 1%) on the simpli�ed instance.
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Figure 3.5: (first row) Success-rate of different methods for 3-COL and 3-SAT for various control parameters.
(second row) The average number of variables (out of N = 5000) that are fixed using SP-dec (C) and (S) before
calling local search, averaged over 100 instances. (third row) The average amount of time (in seconds) used
by the successful setting of each method to find a satisfying solution. For SP-dec(C) and (S) this includes the
time used by local search. (forth row) The number of iterations used by different methods at different control
parameters, when the method was successful at finding a solution. The number of iterations for each of 100
random instances is rounded to the closest power of 2. This does not include the iterations used by local search
after SP-dec.
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this time includes the time used by local search. The �nal row of �gure 3.5 shows the number of

iterations used by each method at each level of di�culty over the successful instances. Note that

this does not include the iterations of local search for SP-dec variations. Here the area of each disk

is proportional to the frequency of satis�ed instances with particular number of iterations for each

control parameter and inference method
10

.

Here we make the following observations:

(I) Perturbed BP is much more e�ective than BP-dec, while remaining ten to hundreds of time

more e�cient. (II) As the control parameter grows larger, the chance of requiring more iterations

to satisfy the instance increases for all methods. (III) Although computationally very ine�cient,

BP-dec is able to �nd solutions for instances with larger control parameter than suggested by

previous results (e.g., [208]). (IV) For many instances where SP-dec(C) and (S) use few iterations,

the variables are �xed to a trivial cluster p̂i = (1,1, . . . ,1), in which all assignments are allowed.

This is particularly pronounced for 3-COL. For instances in which non-trivial �xes are zero, the

success rate is solely due to local search (i.e., BP-dec). (V) While SP-dec(C) and SP-dec(S) have a

similar performance for 3-SAT, SP-dec(C) signi�cantly outperforms SP-dec(S) for 3-COL.

Table 3.1 reports the success-rate as well as the average of total iterations in the successful

attempts of each method, where the number of iterations for SP-dec(C) and (S) is the sum of it-

erations used by the method plus the iterations of the following BP-dec. Here we observe that

perturbed BP can solve most of easier instances using only T = 1000 iterations (e.g., see perturb

BP’s result for 3-SAT at α = 4., 3-COL at α = 4.2 and 9-COL at α = 33.4). The results also show

that most di�cult instances (that require more time/iterations) for each method approximately

correspond to the control parameter for which half of the instances are satis�ed. Larger control

parameters usually result in early failure in satis�ability.

Table 3.1 suggests that, as we speculated in section 3.2, SP-dec(C) is in general preferable to

SP-dec(S), in particular when applied to the coloring problem. The most important advantage of

Perturbed BP over SP-dec and Perturbed SP is that it can be applied to instances with large factor

cardinality (e.g., 10-SAT) and variable domains (e.g., 9-COL). For example for 9-COL, the cardinality

of each SP message is 2
9 = 512, which makes SP-dec and Perturbed SP impractical. Here BP-dec is

not even able to solve a single instance around the dynamical transition (as low as α = 33.4) while

perturbed BP satis�es all instances up to α = 34.1.
11

10
The number of iterations are rounded to the closest power of two.

11
Note that for 9-COL condensation transition happens after rigidity transition. So if we were able to �nd solutions

after rigidity, it would have implied that condensation transition marks the onset of di�culty. However, this did not

occur and similar to all other cases, Perturbed BP failed before rigidity transition.
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Table 3.1: Comparison of di�erent methods on {3,4}-SAT and {3,4,9}-COL. For each method the success-

rate and the average number of iterations (including local search) on successful attempts are reported. The

approximate location of phase transitions are from [219, 330] .

BP-dec SP-dec(C) SP-dec(S) Perturbed BP Perturbed SP
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3-SAT

3.86 dynamical and condensation transition

4.1 85405 99% 102800 100% 96475 100% 1301 100% 1211 100%

4.15 104147 83% 118852 100% 111754 96% 5643 95% 1121 100%

4.2 93904 28% 118288 65% 113910 64% 19227 53% 3415 87%

4.22 100609 12% 112910 33% 114303 36% 22430 28% 8413 69%

4.23 123318 5% 109659 36% 107783 36% 18438 16% 9173 58%

4.24 165710 1% 126794 23% 118284 19% 29715 7% 10147 41%

4.25 N/A 0% 123703 9% 110584 8% 64001 1% 14501 18%

4.26 37396 1% 83231 6% 106363 5% 32001 3% 22274 11%

4.268 satis�ability transition

4-SAT

9.38 dynamical transition

9.547 condensation transition

9.73 134368 8% 119483 32% 120353 35% 25001 43% 11142 86%

9.75 168633 5% 115506 15% 96391 21% 36668 27% 9783 68%

9.78 N/A 0% 83720 9% 139412 7% 34001 12% 11876 37%

9.88 rigidity transition

9.931 satis�ability transition

3-COL

4 dynamical and condensation transition

4.2 24148 93% 25066 94% 24634 94% 1511 100% 1151 100%

4.4 51590 95% 52684 89% 54587 93% 1691 100% 1421 100%

4.52 61109 20% 68189 63% 54736 1% 7705 98% 2134 98%

4.56 N/A 0% 63980 32% 13317 1% 28047 65% 3607 99%

4.6 N/A 0% 74550 2% N/A 0% 16001 1% 18075 81%

4.63 N/A 0% N/A 0% N/A 0% 48001 3% 29270 26%

4.66 rigidity transition

4.66 N/A 0% N/A 0% N/A 0% N/A 0% 40001 2%

4.687 satis�ability transition

4-COL

8.353 dynamical transition

8.4 64207 92% 72359 88% 71214 93% 1931 100% 1331 100%

8.46 dynamical transition

8.55 77618 13% 60802 13% 62876 9% 3041 100% 5577 100%

8.7 N/A 0% N/A 0% N/A 0% 50287 14% N/A 0%

8.83 rigidity transition

8.901 satis�ability transition

9-COL

33.45 dynamical transition

33.4 N/A 0% N/A N/A N/A N/A 1061 100% N/A N/A

33.9 N/A 0% N/A N/A N/A N/A 3701 100% N/A N/A

34.1 N/A 0% N/A N/A N/A N/A 12243 100% N/A N/A

34.5 N/A 0% N/A N/A N/A N/A 48001 6% N/A N/A

35.0 N/A 0% N/A N/A N/A N/A N/A 0% N/A N/A

39.87 rigidity transition

43.08 condensation transition

43.37 satis�ability transition
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3.4 Clique-cover problem

The K-clique-cover C = {C1, . . . ,CK } for a graph G = (V ,E) is a partitioning of V to at most

K cliques – i.e., ∀i, j,k i, j ∈ Ck ⇒ (i, j ) ∈ E.

NP-completeness of K-clique-cover can be proved by reduction from K-coloring [159]: A K-

clique-cover for G′, the complement of G (i.e., G′ = (V ,E ′ = {(i, j ) | (i, j ) < E})), is a K-coloring

for G, where all the nodes in the same clique of G′ are allowed to have the same color in G.

The relation between K-clique-cover and K-coloring extends to their factor-graphs. While in

K-coloring, factors f{i,j } (xi ,x j ) = 1(xi , x j ) ∀(i, j ) ∈ E ensure that the connected nodes have

di�erent colors, for k-clique-cover factors f{i,j } (xi ,x j ) = 1(xi , x j ) ∀(i, j ) < E ensure that nodes

that are not connected can not belong to the same clique. Here xi ∈ {1, . . . ,K } represents the

clique of node i .

The factors, f{i,j } (xi ,x j ) = 1(xi , x j ), in both K-clique-cover and K-coloirng are inverse Potts

factors that allow e�cient O (K ) calculation (see section 2.2.1). Using E (i, ·) = {(i, j ) ∈ E} to denote

the set of edges adjacent to node i , the following claim states the complexity of BP updates.

Claim 3.4.1. Each iteration of BP with variable-synchronous message update for K-clique-cover

factor-graph is O (K (N 2 − |E|)), while asynchronous message update is O (K
∑

i ∈V (N − |E (i, ·) |)2).

Proof. Here the complexity of calculating factor-to-variable message (̂p{i,j }→i ) is O (K ). Since there

are N 2 − E factors (one for each edge in G′) the total cost of factor-to-variable messages becomes

O (K (N 2 − |E|)).

The time complexity of each variable-to-factor message (̂pi→{i,j }) isO (K |∆i |), where∆i , Markov

blanket of i in the factor-graph, is the set of nodes inV that are not adjacent to i in G – i.e., |∆i | =

N − E (i, ·). Using variable-synchronous update the total cost of variable-to-factor messages be-

comes O (K
∑

i ∈V N − |E (i, ·) |) = O (K (N 2 − 2|E |)). This means the cost of all messages in BP

update is in the order of O (K (N 2 − |E|)).

However, using asynchronous update, at each node i , we have to calculate N − |E (i, ·) | mes-

sages. Since each of them is O (N − |E (i, ·) |), the total cost of variable-to-factor dominates the cost

of BP update which is O (K
∑

i ∈V (N − |E (i, ·) |)2). �

Our experimental results for K-clique-cover are within the context of a binary-search scheme,

as the sum-product reduction of the min-max formulation of K-clustering.

3.5 Dominating set and set cover

TheK-dominating set of graph G = (V ,E) is a subset of nodesD ⊆ V of size |D| = K such that

any node inV\D is adjacent to at least one member ofD – i.e.,∀i ∈ V\D ∃j ∈ D s .t . (i, j ) ∈ E.
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Figure 3.6: (left) an induced 2-set-cover problem and the solution D = {i,k }. (right) The factor-graph repre-
sentation of the same problem, where leader factors are grey squares, consistency factors are in black and the
K-of-N factor is in white.

The dominating set problem isNP-complete [107] and has simple reductions to and from set cover

problem [158]. As we see, the factor-graph formulations of these problems are also closely related.

Given universe setV and a set of its subsets S = {V1, . . . ,VM } s .t . Vm ⊆ V , we say C ⊆ S
coversV iff eachmember ofV is present in at least onemember of C –i.e.,

⋃
Vm ∈C Vm = V . Now

we consider a natural set-cover problem induced by any directed graph. Given a directed-graph

G = (V ,E), for each node i ∈ V , define a subsetVi = {j ∈ V | (j,i ) ∈ E} as the set of all nodes
that are connected to i . Let S = {V1, . . . ,VN } denote all such subsets. An induced K-set-cover of

G is a set C ⊆ S of size K that coversV . Equivalently, The induced K-set-cover of G = (V ,E)
is a subset of vertices D ⊆ V , with |D| = K , such that every node not in D is connected to at

least one node in D. For example in figure 3.6(left), S = {{n,m,i}, {i, j}, {j,k,l }, {l ,m,n}, {n}} and
its induced solution C = {{n,m,i}, {j,k,l }} is indicated by grey nodes D = {i,k }.

If we consider an undirected graph G as a directed graph with edges in both directions, then

K-dominating set of G is equivalent to an induced K-set-cover problem on G. Moreover given

any K-set-cover problem instance S = {V1, . . . ,Vm }, we can construct a directed graph G such

that the “induced” K-set-cover on G is equivalent to the given K-set-cover problem. For this, let

V = (
⋃
Vm ∈S Vm )∪{u1, . . . ,uM } be the collection of nodes in S plus one nodeum per each subset

Vm ∈ S. Now define the directed edges in E to connect every i ∈ Vm to its representative um .

Moreover connect all representatives to each other in both directions – i.e., E = {(i,um ) | ∀m,i ∈
Vm }∪{(um ,um′ ) | ∀m �m′}. It is easy to show that the induced K-set-cover on this directed graph

defines a set-cover for S.

3.5.1 Factor-graph and complexity

For both problems we have one variable per edge xi :j ∈ {0,1} ∀(i, j ) ∈ E. Note that the G for in-

duced K-set-cover problem is a directed graph, while the G for the K-dominating-set is undirected.

This is the only difference that affects the factor-graph representation of these two problems. Here,
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xi :j = 1 indicates that node j ∈ D and node i is associated with node j. Three types of constraint

factors ensure the assignments to xi :j de�ne a valid solution to K-dominating-set and induced

K-set-cover:

• Leader factors ensure that each node i is associated with at least one node j (where j = i is

admissible). Let E+ (i, ·) = {(i, j ) ∈ E} ∪ {(i,i )} be the set of edges leaving node i plus (i,i ). Then

fE+ (i, ·) (x E+ (i, ·) ) = 1((
∑

(i,j )∈E+ (i, ·)

xi :j ) ≥ 1) ∀i ∈ V (3.6)

is the leader factor associated with node i .

• Consistency factors ensure that if node j is selected as the leader by node i , node j also selects

itself as leader:

f{i :j,j :j } (xi :j ,x j :j ) = 1(xi :j = 0 ∨ x j :j = 0) ∀(i, j ) ∈ E (3.7)

An alternative form of this factor is a high-order factor that allows e�cient O ( |E (·,i ) |) factor-

to-variable update

fE ( ·,i ) (x E ( ·,i ) ) = 1(xi :i = 1 ∨
∑

(i,j )∈E ( ·,i )

x j :i = 0) ∀i ∈ V (3.8)

• At most K-of-N factor ensures that at most K nodes are selected as leaders (|D| ≤ K ):

f{i :i,j :j, ...,l :l } (x {i :i,j :j, ...,l :l } ) = 1(
∑
i ∈V

xi :i ≤ K ) (3.9)

Figure 3.6 shows an example of induced K-set-cover problem and its corresponding factor-

graph. In section 2.2.1 we saw that it is possible to calculate sum-product factor-to-variable BP

messages for leader factors in O ( |E (i, ·) |) and each at-most-K-of-N factor in O (KN ). This cost for

consistency factors is O (1) for the pairwise and O ( |E (·,i ) |) for the alternative formulation.

Claim 3.5.1. The time-complexity of message passing for the factor-graph above depending on the

update schedule is O ( |E |+KN ) for factor-synchronous (f-sync; see section 2.1.1) update and O (KN 2+∑
i ∈V |E (i, ·) |

2 + |E (·,i ) |2) for asynchronous update.

Proof. We assume the consistency factors are in the higher order form of equation (3.8). Here,

each variable xi :j is connected to at most three factors and therefore the cost of variable-to-

factor messages is O (1). If we calculate factor-to-variable messages simultaneously, the cost is

O (
∑

i ∈V |E (i, ·) |) for leader and O (
∑

i ∈V |E (·,i ) |), giving a total of O ( |E |). Adding this to the cost

of K-of-N factor the total cost per iteration of BP is O ( |E | + KN ).
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On the other hand, if we update each factor-to-variable separately, the previous costs are mul-

tiplied by |∂I|, which gives O (KN 2 +
∑

i ∈V |E (i, ·) |
2 + |E (·,i ) |2). �

3.6 Clique problem, independent set and sphere packing

Given graph G, the K-clique problem asks whether G contains a clique of size at least K . The

K-clique problem is closely related to K-independent-set. Given graph G = (V ,E), the K-

independent set problem asks whether V contains a subset of size at least K , s.t. there is no

connection between nodes in D – i.e., ∀i, j ∈ D (i, j ) < E. The relation between K-clique

problem and K-independent-set is analogous to the connection between K-coloring and K-clique-

cover problems: the K-clique problem on G is equivalent to K-independent-set problem on its

complement G′.

K-independent-set is in turn equivalent to (N-K)-vertex cover problem. A vertex cover D ′ ⊆

V is a subset of nodes such that each edge is adjacent to at least one vertex in D ′. It is easy to

see thatD is an independent set i�D ′ = V \D is a vertex cover. Therefore our solution here for

independent set directly extends to vertex cover.

K-packing is a special case of sub-graph isomorphism, which asks whether a graph G1 is a

sub-graph of G2. For packing, G2 is the main graph (G) and G1 is the complete graph of size K (see

section 5.3) K-independent-set and K-clique problems are also closely related to sphere packing
and �nding nonlinear codes. To better motivate these problems, here we start with the problem

of K-packing formulated as min-max problem in (several) factor-graphs. We then show that the

sum-product reduction of K-packing is K-independent-set and K-clique problems. By doing this

we simultaneously introduce message passing solutions to all three problems.

Given a symmetric distance matrix A ∈ RN×N between N data-points and a number of code-
wordsK , theK-packing problem is to choose a subset ofK points such that the minimum distance

Ai,j between any two code-words is maximized. Here we introduce two di�erent factor-graphs

such that min-max inference obtains the K-packing solution.

In order to establish the relation between the min-max problem and the CSPs above, we need

the notion of y-neighbourhood graph

De�nition 3.6.1. The y-neighborhood graph for (distance) matrix A ∈ RN×N is de�ned as the

graph G (A,y) = (V ,E), whereV = {1, . . . ,N } and E = {(i, j ) | Ai,j ≤ y}.

3.6.1 Binary variable factor-graph

Let binary variables x = {x1, . . . ,xN } ∈ {0,1}
N

indicate a subset of variables of size K that are

selected as code-words. We de�ne the factors such that the min-max assignment

x∗ = argx min max

I∈F
fI (x

I
)
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is the K-packing solution. Define the factor-graph with the following two types of factors:

• K-of-N factor (section 2.2.1)

fN (x ) = 1((
∑
i ∈N

xi ) = K )

ensures that K code-words are selected. Recall that definition of 1(.) depends on the semiring

(equation (1.20)). The K-packing problem is defined on the min-max semiring. However, since we

plan to solve the min-max inference by sum-product reductions, it is important to note that the

py reduction of 1(.) for any y is 1(.) as defined for sum-product ring.

• Pairwise factors are only effective if both xi and x j are non-zero

f{i,j } (xi ,x j ) = min
(
1(xi = 0 ∨ x j = 0), max

(
1(xi = 1 ∧ x j = 1), −Ai,j

))
∀i, j (3.10)

where the tabular form is simply

x j

0 1

xi
0 −∞ −∞

1 −∞ −Ai,j

Here the use of −Ai,j is to convert the initial max-min objective to min-max.12 Recall that

G (A,y) defines a graph based on the distance matrix A, s.t. two nodes are connected iff their dis-

tance is “not larger than”y. This means G (−A,−y) corresponds to a graph in which the connected

nodes have a distance of “at least” y.

Proposition 3.6.1. The py -reduction of the K-packing factor-graph above for the distance matrix

A ∈ RN×N defines a uniform distribution over the cliques of G (−A,−y) of size K .

Proof. Since py (x ) is uniform over its domain it is enough to show that:

• Every clique of size K in G (−A,−y) corresponds to a unique assignment x∗ with py (x
∗) > 0:

Given a clique C ⊆ V of size K in G (−A,−y) = (V , {(i, j ) | Ai,j ≥ y}), define x∗ = {xi = ident (i ∈
C) | i ∈ V}. It is easy to show that py (x∗) > 0. For this we need to show that all the constraint

factors in py are satisfied. The K-of-N factor is trivially satisfied as |C| = K . The py -reduction of

the pairwise factor of equation (3.10) becomes

f{i,j } (xi ,x j ) = 1(xi = 0 ∨ x j = 0) +
(
1(xi = 1 ∧ x j = 1)1(−Ai,j ≤ −y)

)
∀i, j (3.11)

where we replaced min and max with + and . operators of the sum-product semiring and thresh-

olded −Ai,j by −y. To see that all pairwise constraint factors are satisfied consider two cases: (I)

12The original objective is max-min because it aims to maximize the minimum distance between any two code-words.
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Figure 3.7: Using message passing to choose K = 30 out of N = 100 random points in the Euclidean plane
to maximize the minimum pairwise distance (with T = 500 iterations for PBP). Touching circles show the
minimum distance

nodes i, j ∈ C, and therefore x∗i = x∗j = 1. This also means i and j are connected and definition of

G (−A,−y), this implies Ai,j ≥ y. Therefore the second term in factor above evaluates to one. (II)

either i or j are not in C, therefore the first term evaluates to one. Since both pairwise factors and

the K-of-N factors for x∗ are non-zero py (x
∗) > 0.

• every assignment x∗ with py (x
∗) > 0 corresponds to a unique clique of size K in G (−A,−y):

equation (3.11) implies xi = 1 ∧ x j = 1 ⇒ Ai,j ≥ y. On the other hand, py (x ) > 0 means

K-of-N factor is satisfied and therefore exactly K variables xi are nonzero. Therefore the index

of these variables identifies subset of nodes in G (−A,−y) that are connected (because Ai,j ≥ y),

forming a clique. �

Claim 3.6.2. The time-complexity of each iteration of sum-product BP for the factor-graph above is

– O (NK + |E |) for variable and factor synchronous update.
– O (N 2K ) for factor-synchronous (f-sync) message update.

– O (N 3) for completely asynchronous update.

Proof. The cost of f-sync calculation of factor-to-variable messages for the K-of-N factor is O (NK )

and the cost of factor-to-variable messages for pairwise factors is O (1). Since there are |E | such
factor, this cost evaluates to O (NK + |E |). Since each node is adjacent to |E (i, ·) | other nodes, the
variable-synchronous update of variable-to-factor messages is O (

∑
i ∈V |E (i, ·) |) = O ( |E |), which

gives a total time-complexity of O (NK + |E |).
In asynchronous update, the cost of factor-to-variablemessages for the K-of-N factor isO (N 2K )

as we need to calculate each message separately. Moreover, updating each variable-to-factor mes-

sage is O ( |E (i, ·)), resulting a total of O (
∑

i ∈V |E (i, ·) |2) = O (N 3). Since K ≤ N , when all the

updates are asynchronous, this cost subsumes the factor-to-variable cost of O (N 2K ). �
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A corollary is that the complexity of finding the approximatemin-max solution by sum-product

reduction is O ((NK + |E |) log(N )) using synchronous update. Figure 3.7 shows an example of the

solution found by message passing for K-packing with Euclidean distance.

3.6.2 Categorical variable factor-graph

Define the K-packing factor-graph as follows:Let x = {x1, . . . ,xK } be the set of K variables where

xi ∈ {1, . . . ,N }. For every two distinct points 1 ≤ i < j ≤ K define the factor

f{i,j } (xi ,x j ) = max
(
− Axi ,x j ,1(xi � x j )

)
(3.12)

Here each variable represents a code-word and this factor ensures that code-words are distinct.

Moreover if xi and x j are distinct, f{i,j } (xi ,x j ) = −Axi ,x j is the distance between the nodes that xi

and x j represent.

The tabular form of this factor is

x j

1 2 · · · N − 1 N

xi

1 ∞ −A1,2 · · · −A1,N−1 −A1,N

2 −A2,1 ∞ · · · −A2,N−1 −A2,N

· · ·
...

...
. . .

...
...

N − 1 −AN−1,1 −AN−1,2 · · · ∞ −AN−1,N

N −AN ,1 −AN ,2 · · · −AN ,N−1 ∞

The following proposition relates this factor-graph to K-clique problem.

Proposition 3.6.3. The py -reduction of the K-packing factor-graph above for the distance matrix

A ∈ RN×N defines a uniform distribution over the cliques of G (−A,−y) of size K .

Proof. Since py defines a uniform distribution over its support, it is enough to show that any

clique of size K over G (−A,−y) defines a unique set of assignments all of which have nonzero

probability (py (x ) > 0) and any assignment x with py (x ) > 0 defines a unique clique of size at

least K on G (−A,−y). First note that the basic difference between G (A,y) and G (−A,−y) is that
in the former all nodes that are connected have a distance of at most y while in the later, all nodes

that have a distance of at least y are connected to each other. Consider the py -reduction of the

pairwise factor of equation (3.12)

f{i,j } (xi ,x j ) = 1
(
max(−Axi ,x j ,1(xi � x j )) ≤ y

)
(3.13)

= 1(−Axi ,x j ≤ y ∧ xi � x j )
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where, basically, we have replaced max from min-max semiring with ⊗ operator of the sum-

product semiring and thresholded Axi ,x j .

• Any clique of sizeK in G (−A,−y), definesKunique assignments, such that for any such assignment

x∗, py (x∗) > 0:

For a clique C = {c1, . . . ,cK } ⊆ V of size K , define x∗i = cπ (i ) , where π : {1, . . . ,K } → {1, . . . ,K } is
a permutation of nodes in clique C. Since there are K such permutations we may define as many

assignments x∗. Now consider one such assignment. For every two nodes x∗i and x∗j , since they

belong to the clique C in G (−A,−y), they are connected and Axi ,x j ≥ y. This means that all the

pairwise factors defined by equation (3.13) have non-zero values and therefore py (x ) > 0.

• Any assignment x∗ with py (x
∗) > 0 corresponds to a unique clique of size K in G (−A,−y): Let

C = {x∗1 , . . . ,x
∗
K }. Since py (x

∗) > 0, all pairwise factors defined by equation (3.13) are non-zero.

Therefore ∀i, j � i Ax,x j ≥ y, which means all xi and x j are connected in G (−A,−y), forming a

clique of size K . �

To put simply, in acquiring the py -reduction, we set the values in the table form above to zero

if their value is less than y and set them to one otherwise. The resulting factor-graph, defines a

distribution py (x ), s.t. py (x ) > 0 means x defines a clique of size K in a graph G (−A,−y) which
connects nodes with distance larger than y.

Claim 3.6.4. Each iteration of BP for this factor-graph with pairwise factors isO (N 2K2), for synchro-

nized update and O (N 2K3) for asynchronous update. Using the sum-product reduction of min-max

inference this suggests a O (N 2K2 log(N )) (for sync. update) and O (N 2K3 log(N )) (for asynchronous

update) procedure for K-packing problem.

Proof. (claim 3.6.4 on page 95) Since the factors are not sparse, the complexity of calculating a

single factor-to-variable message is O ( |XI |) = O (N 2), resulting in O (N 2K2) cost per iteration of

variable-synchronous update for BP. However if we update each message separately, since each

message update costs O (N 2K ), the total cost of BP per iteration is O (N 2K3)

Since the diversity of pairwise distances is that of elements in A – i.e., |Y | = O (N 2) – the

general cost of finding an approximate min-max solution by message passing is O (N 2K2 log(N ))

for sync. message update and O (N 2K3 log(N )) for async. update. �

The py -reduction of our second formulation was first proposed by [252] to find non-linear

binary codes. The authors consider the Hamming distance between all binary vectors of length n

(i.e., N = 2n) to obtain binary codes with known minimum distance y. As we saw, this method is

O (N 2K2) = O (22nK2) –i.e., grows exponentially in the number of bits n. In the following section,

we introduce a factor-graph formulation specific to categorical variables with Hamming distance

whose message passing complexity is polynomial in n = log(N ). Using this formulation we are

able find optimal binary and ternary codes where both n and y are large.
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Figure 3.8: The factor-graph for sphere-packing with Hamming distances, where the distance factors are white
squares and z-factors are in black.

3.6.3 Efficient Sphere packing with Hamming distance

Our factor-graph defines a distribution over theK binary vectors of length n such that the distance

between every pair of binary vectors is at least y. 13

To better relate this to K-clique problem, consider 2n binary code-words of length n as nodes

of a graph and connect two nodes iff their Hamming distance is at least y. Finding a K-clique

in this graph is equivalent to discovery of so-called nonlinear binary codes – a fundamental

problem in information theory (e.g., see [75, 193]). Here assuming y is an odd number, if at most
y−1
2 digits of a code-word are corrupted (e.g., in communication), since every pair of codes are at

least y digits apart, we can still recover the uncorrupted code-word. The following is a collection

of K = 12 ternary code-words of length n = 16, obtained using the factor-graph that we discuss in

this section, where every pair of code-words are different in at least y = 11 digits.

2 1 2 1 0 1 1 2 2 1 2 1 2 1 0 2

1 1 1 2 1 0 0 2 2 1 1 1 0 2 1 0

0 0 1 2 0 1 2 0 2 1 2 2 1 0 2 0

0 0 0 2 1 0 1 2 1 0 1 0 2 1 0 1

2 2 0 2 2 2 1 1 2 0 2 2 1 2 1 2

0 2 0 0 0 2 0 2 0 0 2 1 0 0 0 0

1 1 2 0 0 1 2 2 0 0 1 0 1 2 2 1

2 0 2 0 2 1 0 1 1 2 0 1 1 1 2 0

0 2 1 1 1 1 1 1 0 1 0 0 0 0 1 2

1 0 0 1 0 2 0 0 1 2 0 0 2 2 1 2

1 2 2 1 1 0 2 1 1 2 2 2 2 0 2 1

1 0 1 0 2 2 2 1 0 1 1 2 2 1 0 2

13 For convenience we restrict this construction to the case of binary vectors. A similar procedure may be used to
find maximally distanced ternary and q-ary vectors, for arbitrary q.
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The construction of this factor-graph is more involved than our previous constructions. The

basic idea to avoid the exponential blow up is to have one variable per digit of each code-word

(rather than one variable per code-word). Then for each pair of code-words we de�ne an auxiliary

binary vector of the same length, that indicates if the two code-words are di�erent in each digit.

Finally we de�ne an at-least-y-of-n constraint over each set of auxiliary vectors that ensures every

two pair of code-words are at least di�erent in y digits. Figure 3.8 shows this factor-graph.

More speci�cally, let x = {x
1:·
, . . . ,xK :·

} be a set of binary vectors, where x i :· = {xi :1, . . . ,xi :n }

represents the ith binary vector or code-word. Additionally for each two code-words 1 ≤ i < j ≤

K , de�ne an auxiliary binary vector zi :j :· = {zi :j :1, . . . ,zi :j :n } of length n.

For each distinct pair of binary vectors x i :· and x j :·, and a particular digit 1 ≤ k ≤ n, the

auxiliary variable is constrained to be zi :j :k = 1 i� xi :k , x j :k . Then we de�ne an at-least-y-of-n

factor over zi :j :· for every pair of code-words, to ensure that they di�er in at least y digits.

The factors are de�ned as follows

• Z-factors: For every 1 ≤ i < j ≤ K and 1 ≤ k ≤ n, de�ne

f{i :k,j :k,i :j :k } (xi :k ,x j :k ,zi :j :k ) = 1
((
(xi :k , x j :k ) ∧ zi :j :k = 1

)
∨

(
(xi :k = x j :k ) ∧ zi :j :k = 0

))

This factor depends on three binary variables, therefore we can explicitly de�ne its tabular form

containing 2
3 = 8 possible inputs. Here the only di�erence between binary and ternary (and q-ary)

codes in general is in the tabular form of this factor. For example for ternary codes, the tabular for

of this factor is a 3 × 3 × 2 array (zi :j :k is always binary).

• Distance-factors: For each zi :j :· de�ne at-least-y-of-n factor (section 2.2.1):

fi :j :· (zi :j :·) = 1(
∑

1≤k≤n

zi :j :k ≥ y)

Claim 3.6.5. Each iteration of sum-product BP over this factor-graph is

– O (K2ny) for variable and factor synchronous update.

– O (K2n2y) for variable-sync update.

– O (K3n + K2n2y) for completely asynchronous BP update.

Proof. (claim 3.6.5 on page 97) We �rst consider the complexity of variable-to-factor updates: Each

auxiliary variable zi :j :k is connected to three factors and each xi :j is connected to O (K ) z-factors.

Since there are O (nK ), xi :j variables a variable-sync. update of variable-to-factor messages is

O (nK2), while async. update is O (nK3).

Next we consider two possibilities of factor-to-variable updates: We have O (nK2) z-factors,

and factor-to-variable update for each of them is O (1), this cost is subsumed by the minimum

variable-to-factor cost. The factor-graph also has O (K2) distance factors, where the cost of each
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factor-to-variable update is O (ny). Since |∂I| = K for a distance factor, a factor-sync. update is

O (K2ny) in total, while an async. update is O (K2n2y).

Adding the cost of variable-to-factor and factor-to-variable in di�erent scenarios we get the

time-complexities stated in the claim. �

The following table reports some optimal binary codes (including codes with large number of

bits n) from [193], recovered using this factor-graph. We used Perturbed BP with variable-sync

update and T = 1000 iterations to �nd an assignment x∗,z∗ with p(x∗,z∗) > 0.

n K y n K y n K y n K y

8 4 5 11 4 7 14 4 9 16 6 9

17 4 11 19 6 11 20 8 11 20 4 13

23 6 13 24 8 13 23 4 15 26 6 15

27 8 15 28 10 15 28 5 16 26 4 17

29 6 17 29 4 19 33 6 19 34 8 19

36 12 19 32 4 21 36 6 21 38 8 21

39 10 21 35 4 23 39 6 23 41 8 23

39 4 25 43 6 23 46 10 25 47 12 25

41 4 27 46 6 27 48 8 27 50 10 27

44 4 29 49 6 29 52 8 29 53 10 29

3.7 Optimization variations of CSPs

This section brie�y reviews the optimization variations of the CSPs, we have studied so far. The

optimization version of satis�ability is known as max-SAT or maximum weighted SAT, where

each clause has a weight, and the objective is to maximize the weighted sum of satis�ed clauses.

Here, simply using factors fI (x
I
) : XI → {0,−wI}, where wI is the positive weight of clause I,

min-sum BP will attempt to �nd the max-SAT solution. Note that here fI is not a “constraint”

factor anymore (see de�nition 1.3.2). Alternative approaches using variations of energetic survey

propagation has also been used to improve max-SAT results [63, 64]. A less studied optimization

variation of satis�ability is adversarial SAT which corresponds to min-max-sum inference [54].

For minimum coloring – a.k.a. chromatic number – and minimum clique-cover problem,

since the optimal value 1 ≤ K∗ ≤ Kmax is bounded, by access to an oracle for the decision version

(or an incomplete solver [160] such as message passing), we can use binary search to �nd the min-

imumK inO (τ log(Kmax)) time, where the decision problem has aO (τ ) time-complexity. In partic-

ular, since the chromatic number is bounded by the maximum degree [51], approximating the chro-

matic number using binary search and message passing gives aO (log(maxi ( |E (i, ·) |)) maxi ( |E (i, ·) |) |E |)

time procedure.
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The same binary-search approach can be used for minimum dominating-set, minimum set-

cover, maximum clique, maximum independent set and minimum vertex cover. However, these

optimization variations also allow a more e�cient and direct approach. Note that both min-max

variation and the minimization (or maximization) variations of these problems use binary search.

For example both minimum clique-cover and K-clustering (see section 4.3) can be solved using

binary-search over K-clique-cover decision problem. The parameter of interest for binary search

is K in the former case, and y in the later case, where y is a threshold distance that de�nes connec-

tivity in G (see de�nition 3.6.1). However, often both variations (i.e., min-max and minimization

or maximization over K ) also allow direct message passing solutions.

For minimum dominating-set and set-cover, we replace the sum-product semiring with

min-sum semiring and drop the K-of-N factor. Instead, a local factor fi :i (xi :i ) = −xi :iwi gives

a weight to each node i ∈ V . Here, the min-sum inference seeks a subset of nodes that form

a dominating set and have the largest sum of weights

∑
i ∈D wi . Also note that by changing

the semiring to min-sum, the identity functions 1(.) change accordingly so that the leader factor

and consistency constraints remain valid. This gives an e�cient O ( |E |) synchronous procedure

for minimum set-cover and minimum dominating-set. This problem and the resulting message

passing solution are indeed a variation of K-medians and a�nity propagation respectively (see

section 4.1).

The same idea applies to maximum clique and maximum independent set: as an alter-

native to �xing or maximizing the “size” of a clique or an independent set, we may associate each

node with a weight wi ∀i ∈ V and seek a subset of nodes that form an independent set (or a

clique) with maximum weight. Sanghavi et al. [274] study the max-product message passing so-

lution to this problem and its relation to its LP-relaxation. In particular they show that starting

from uniform messages, if BP converges, it �nds the solution to LP relaxation.

Here we review their factor-graph for maximum independent set using min-sum inference.

Let x = {x1, . . . ,xN } ∈ {0,1}
N

be a set of binary variables, one for each node in V , where xi = 1

means i ∈ D, the independent set.

• Local factors capture the cost (negative weight) for each node and is equal to −wi if xi = 1 and

zero otherwise

fi (xi ) = min(−wi ,1(xi = 0)) ∀i ∈ V

• Pairwise factors ensure that if (i, j ) ∈ E, then either xi = 0 or x j = 0

f{i,j } (x {i,j } ) = 1(xi = 0 ∨ x j = 0) ∀(i, j ) ∈ E

It is easy to see that using a variable synchronous update, message passing can be performed

very e�ciently in O ( |E |).
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Weigt and Zhou [309] (also see [333]) propose an interesting approach to minimum vertex
cover using energetic survey propagation. Here, again x = {x1, . . . ,xN } ∈ {0,1}

N
has one binary

variable per node i ∈ V and a pairwise factor ensure that all edges are covered by at least one

node in the cover

f{i,j } (x {i,j } ) = 1(xi = 1 ∨ x j = 1) ∀(i, j ) ∈ E

Using the xor-and semiring, the resulting �xed points of warning propagation reveal minimal (but

not necessarily optimal) vertex covers. The authors then suggest using survey propagation, and

decimation to �nd the warning propagation �xed points with lowest energy (i.e., smallest size of

cover).



Chapter 4

Clustering

Clustering of a set of data-points is a central problem in machine learning and data-mining [4, 102,

180, 184, 191, 230, 236, 248, 251, 266, 318, 322]. However many interesting clustering objectives,

including the problems that we consider in this section are NP-hard.

In this section we present message passing solutions to several well-known clustering objec-

tives including K-medians, K-clustering, K-centers and modularity optimization. Message passing

has also been used within Expectation Maximization to obtain some of the best results in learn-

ing stochastic block models (a hidden variable model for clustering) [82]. The message passing

solution to K-medians and its generalization, clustering by shallow trees are proposed by other

researchers. However, for completeness, we review their factor-graphs in sections 4.1 and 4.2. ex-

pressing K-clustering and K-centers problems as min-max inference problems on factor-graphs in

sections 4.3 and 4.4.

4.1 K-medians

Given a symmetric matrix of pairwise distances A ∈ RN×N between N data-points, and a number

of clusters K , K-medians seeks a partitioning of data-points into K clusters, each associated with

a cluster center, s.t. the sum of distances from each data-point to its cluster center is minimized.

This problem is NP-hard; however, there exists several approximation algorithms for metric

distances [15, 58]. Here we present the binary variable factor-graph [112] for a slightly di�erent

version of this objective, proposed by Frey and Dueck [102]. The simpli�ed form of min-sum

BP messages in this factor-graph is known as a�nity propagation. Here, instead of �xing the

number of clusters, K , the objective is modi�ed to incorporate each cluster’s cost to become a

center. This cost is added to the sum of distances between the data-points and their cluster centers

and used to decide the number of clusters at run-time.

Let A be the distance matrix of a directed graph G = (V ,E), where (i, j ) < E ⇔ Ai,j = ∞.
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Moreover let Ai,i denote the willingness of node i to be the center of a cluster. A simple heuristic

is to set this value uniformly to mediani,jAi,j .

De�ne x = {xi :j ,∀ (i, j ) ∈ E} as a set of binary variables – one per each directed edge (i, j ) –

where xi :j ∈ {0,1} indicates whether node i follows node j as its center. Here node i can follow

itself as center. The following factors de�ne the cost and constraints of a�nity propagation: •

Leader factors ensure that each node selects exactly one cluster center.

fE+ (i, ·) (x E (i, ·) ) = 1((
∑

(i,j )∈E+ (i, ·)

xi :j ) = 1) ∀i ∈ V

where as before E+ (i, .) = {(i, j ) ∈ E} ∪ {(i,i )} is the set of edges leaving node i .

]indexfactor!consistency • Consistency factors as de�ned by equation (3.8) ensure that if

any node i ∈ E (., j ) selects node j as its center of cluster, node j also selects itself as the center

At this point we note that we used both of these factor-types for set-cover and dominating set

problem in section 3.5. The only addition (except for using a di�erent semiring) is the following

factors.

• Local factors take distances and the willingness to become a center into account

fi :j (x (i,j ) ) = min

(
Ai,j ,1(xi :j = 0)

)
∀(i, j ) ∈ E ∪ {(i,i ) | i ∈ V}

where in e�ect fi :j (xi :j ) is equal to Ai,j if xi :j = 1 and 0 otherwise

See equation (1.20) for de�nition of 1(.) in min-sum semiring and note the fact that ⊕ = min

in this case. This means extensions to other semirings (e.g., min-max) need only to consider a

di�erent 1(.) and use their own ⊕ operator. However, direct application of min-max inference to

this factor-graph is problematic for another reason: since the number of clustersK is not enforced,

as soon as node i becomes center of a cluster, all nodes j with Aj,j ≤ Ai,i can become their own

centers without increasing the min-max value. In section 4.4, we resolve this issue by enforcing the

number of clusters K and use inference on min-max semiring to solve the corresponding problem

known as K-center problem.

The complexity of min-sum BP with variable and factor synchronous message update isO ( |E |)

as each leader and consistency factor allows e�cient O ( |E (., j ) |) and O ( |E (i, .) |) calculation of

factor-to-variable messages respectively. Moreover, all variable-to-factor messages leaving node

i can be calculated simultaneously in O ( |E (i, .) |) using variable-synchronous update of equa-

tion (2.13).

4.1.1 Facility location problem

A closely related problem to K-medians is the facility location problem, where a matrix A ∈
R |V1 |× |V2 |

speci�es the pairwise distance between two parts of bipartite graphG = (V = (V1,V2),E).
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The goal is to select a sub-set of facilities D ⊂ V1 to minimize the sum of distances of each cus-

tomer i ∈ V2 to its associated facility in D.

The uncapacitated version of this problem (no restriction on |D|) can be solved as special K-

median problem where Ai,i = ∞ ∀i ∈ V2. Message passing solution for min-sum variations of

this problem are discussed in [187, 188]. We discuss the min-max facility location as a special case

of k-center problem in section 4.4.

4.2 Hierarchical clustering

By adding a dummy node ∗ and connecting all the cluster centers to this node with the cost

Ai,∗ = Ai,i , we can think of the K-median clustering of previous section as �nding a minimum

cost tree of depth two with the dummy node as its root. The shallow trees of Bailly-Bechet

et al. [18] generalize this notion by allowing more levels of hierarchy. The objective is to �nd a

tree of maximum depth d , that minimizes the sum over all its edges. An alternative approach to

hierarchical clustering based on nested application of a�nity propagation is discussed in [111, 289].

Previously we presented the binary-variable model for a�nity propagation. However, it is pos-

sible to obtain identical message updates using categorical variables [102]. Here x = {x1, . . . ,xN },

where xi ∈ Xi = {j | (i, j ) ∈ E} selects one of the neighbouring nodes as the center of the clus-

ter for node i . In this case we can ignore the leader factors and change the consistency and local

factors accordingly.

The idea in building hierarchies is to allow each node i to follow another node j even if i itself

is followed by a third node k (i.e., dropping the consistency factors). Also xi = i is forbidden.

However, this creates the risk of forming loops. The trick used by Bailly-Bechet et al. [18] is to

add an auxiliary “depth” variable zi ∈ {0, . . . ,d } at each node. Here, the depth of the dummy node

∗ is zero and the depth factors ensure that if i follows j then zi = zj + 1:

fi,j (x i ,zi,j ) = 1
(
zi = zj + 1 ∨ xi , j

)
4.2.1 Spanning and Steiner trees

Although �nding trees is not a clustering problem, since one could use the same techniques used

for clustering by shallow trees, we include it in this section. Given a graph G = (V ,E), a penalty

wi :j < 0 per edge (i, j ) ∈ E and a prizewi > 0 per node i ∈ V , the prize-collecting Steiner tree’s

objective is to select a connected sub-graph G′ = (V ′ ⊆ V ,E ′ ⊆ E) with maximum sum of prizes∑
i ∈V′wi +

∑
(i,j )∈E′wi :j . Since the optimal sub-graph is always a tree, a construction similar to

that of shallow trees (with min-sum BP) �nds high-quality solutions to depth-limited versions of

this problem in O (d |E |) [19, 20, 23, 31].
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The main difference with factor-graph of shallow trees is that here the root node is a pre-

determined member of V and several tricks are used to find best (set of) root(s). However, since

the |V′| may be smaller than |V |, a different dummy node ∗ is introduced, with zero cost of

connection to all nodes i ∈ V s.t. xi = ∗means node i is not a part of the Steiner tree (i ∈ V \V′).

Alternatively, if we do not introduce this dummy node such that V′ = V and moreover, set

the node penalties to zero, the result is a depth limited spanning tree. Bayati et al. [24] show

that if the maximum depth is large enough (e.g., d = N ) and BP is convergent, it will find the

minimum spanning tree.

4.3 K-clustering problem

Given a symmetric matrix of pairwise distances A ∈ RN×N between N data-points, and a number

of clusters K , K-clustering (a.k.a. min-max clustering) seeks a partitioning of data-points that

minimizes the maximum distance between all the pairs in the same partition.

We formulate this problem asmin-max inference problem in a factor-graph. Letx = {x1, . . . ,xN }
with xi ∈ {1, . . . ,K } be the set of variables, where xi = k means, point i belongs to cluster k . The

Potts factor

f{i,j } (xi ,x j ) = min
(
1(xi � x j ),Ai,j

)
∀1 ≤ i < j ≤ N (4.1)

is equal to Ai,j if two nodes are in the same cluster and −∞ otherwise. It is easy to see that

using min-max inference on this factor graph, the min-max solution x∗ (equation (1.26)) defines a

clustering that minimizes the maximum of all inter-cluster distances.

Recall that the y-neighborhood graph (definition 3.6.1) for a distance matrix A is the graph

G (A,y) = (V ,E (A,y) = {(i, j ) | Ai,j ≤ y}).

Claim 4.3.1. The py -reduction of the min-max clustering factor-graph above is identical toK-clique-

cover factor-graph of section 3.4 for G (A,y).

Proof. The py -reduction of the K-clustering factor (equation (4.1)) is

f{i,j } (xi ,x j ) = 1
(
min
(
1(xi � x j ),Ai,j

)
≤ y
)
= 1(xi � x j ∨ Ai,j ≤ y)

Recall that the K-clique-cover factor-graph, defines a pairwise factor between any two nodes

i and j whenever (i, j ) � E (A,y), – i.e., whenever Ai,j ≤ y it does not define a factor. However,

Ai,j ≤ y means that the reduced constraint factor above is satisfied and therefore we only need to

consider the cases whereAi,j > y. This gives f{i,j } (xi ,x j ) = 1(xi � x j ), which is the K-clique-cover

factor between two nodes i and j s.t. (i, j ) � E (A,y). �
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We use binary-search over sum-product reductions to approximate the min-max solution (see

section 1.4.2). Considering the O (N 2K ) cost of message passing for K-clique-cover, this gives

O (N 2K log(N 2)) = O (N 2K log(N )) cost for K-clustering, where the log(N 2) is the cost of binary

search over the set of all possible pairwise distance values in A.

Figure 4.1 compares the performance of min-max clustering using message passing to that of

Furthest Point Clustering (FPC) [119] which is 2-optimal when the triangle inequality holds. Note

that message passing solutions are superior even when using Euclidean distance.

Figure 4.1: Min-max clustering of 100 points with varying numbers of clusters (x-axis). Each point is an average

over 10 random instances. The y-axis is the ratio of the min-max value obtained by sum-product reduction (and

using perturbed BP withT = 50 to �nd satisfying assignments ) divided by the min-max value of Furthest Point

Clustering (FPC). (le�) Clustering of random points in 2D Euclidean space. The red line is the lower bound on

the optimal result based on the worst case guarantee of FPC. (right) Using symmetric random distance matrix

where Ai,j = Aj,i ∼ U (0,1).

4.4 K-center problem

Given a pairwise distance matrix D ∈ RN×N , the K-center problem seeks a partitioning of nodes,

with one center per partition such that the maximum distance from any node to the center of its

partition is minimized.

This problem is known to be NP-hard, even for Euclidean distance matrices [201], however

K-center has some approximation algorithms that apply when the distance matrix satis�es the

triangle inequality [87, 135]. The method of Dyer and Frieze [87] is very similar to furthest point

clustering and extends to weighted K-center problem in which the distance from any point to all

the other points is scaled by its weight. The more general case of asymmetric distances does not

allow any constant-factor approximation (however o(log(N ))-approximation exists [66, 237]).

Here we de�ne a factor-graph, whose min-max inference results in the optimal solution for

K-center problem. For this consider the graph G (V ,E) induced by the distance matrix A s.t.

V = {1, . . . ,N } and Ai,j = ∞ ⇔ (i, j ) < E.
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Figure 4.2: The factor-graph for K-center problem, where the local factors are black squares, the leader factors
are light grey, consistency factors are white and K-of-N factor is dark grey.

Let x = {xi :j | (i, j ) ∈ E} be the set of variables, where xi :j ∈ {0,1} indicates whether j is the
center of cluster for i . Define the following factors:

• Local factors:

f(i,j ) (xi :j ) = min
(
Ai,j ,1(xi :j = 0)

)
∀(i, j ) ∈ E

• Leader, Consistency and at-most-K-of-N factors as defined for the sum-product case of

induced K-set-cover and K-independent set (section 3.5). Here we need to replace sum-product

1(.) with the min-max version (equation (1.20)).

For variants of this problem such as the capacitated K-center, additional constraints on the

maximum/minimum points in each group may be added as the at-least/at-most K-of-N factors.

Claim 4.4.1. The py -reduction of the K-center clustering factor-graph above is identical to K-set-

cover factor-graph of section 3.5 for G (A,y).

Proof. Leader, consistency and at-most-K-of-N factors are identical to the factors used for K-set-

cover (which is identical to their py -reduction), where the only difference is that here we have

one variable per each (i, j ) ∈ E whereas in K-set-cover for G (A,y) we have one variable per

(i, j ) ∈ E | Ai,j ≤ y. By considering the py -reduction of the local factors

fi :j (xi :j ) = 1
(
min
(
Ai,j ,1(xi :j ) = 0)

)
≤ y
)
= 1(Ai,j ≤ y ∨ xi :j = 0)

we see that we can assume that for Aij > 0, xi :j = 0 and we can drop these variables from the

factor-graph. After this we can also omit the py -reduction of the local factors as they have no

effect. This gives us the factor-graph of section 3.5 for set-cover. �
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Figure 4.3: (left) K-center clustering of 50 random points in a 2D plane with various numbers of clusters (x-
axis). The y-axis is the ratio of the min-max value obtained by sum-product reduction (T = 500 for perturbed
BP) over the min-max value of 2-approximation of [87]. (right) Min-max K-facility location formulated as an
asymmetric K-center problem and solved using message passing. Yellow squares indicate 20 potential facility
locations and small blue circles indicate 50 customers. The task is to select 5 facilities (red squares) to minimize
the maximum distance from any customer to a facility. The radius of circles is the min-max value.

Similar to the K-clustering problem, we use the sum-product reduction to find near-optimal

solutions to this problem. The binary search seeks the optimal y ∈ Y (where Y is the collective

range of all the factors). Here, since only local factors take values other than ±∞, the search is over
their range, which is basically all the values in A. This adds an additional log(N ) multiplicative

factor to the complexity of K-set-cover (which depends on the message update).

We can significantly reduce the number of variables and the complexity by bounding the

distance to the center of the cluster y. Given an upper bound y, we may remove all the vari-

ables xi :j where Ai,j > y from the factor-graph. Assuming that at most R nodes are at distance

Ai,j ≤ y from every node j, the complexity of min-max inference with synchronous update drops

to O (NR2 log(N )). This upper bound can be obtained for example by applying approximation

algorithms.

Figure 4.3(left) compares the performance of message-passing and the 2-approximation of [87]

when triangle inequality holds. The min-max facility location problem can also be formulated as

an asymmetric K-center problem where the distance to all customers is ∞ and the distance from

a facility to another facility is −∞ (figure 4.3(right)).

4.5 Modularity maximization

A widely used objective for clustering (or community mining) is Modularity maximization [229].

However, exact optimization of Modularity is NP-hard [45]. Modularity is closely related to fully

connected Potts graphical models [259, 332]. Many have proposed various other heuristics for

modularity optimization [34, 67, 228, 259, 265]. Here after a brief review of the Potts model in

section 4.5.1, we introduce a factor-graph representation of this problem that has a large number
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of factors in section 4.5.2. We then use the augmentation technique (section 2.2.2) to incrementally

incorporate violated constraints in these models.

4.5.1 The Potts model

Let G = (V ,E) be an undirected graph, with M = |E |, N = |V | and the adjacency matrix

B ∈ RN×N , where Bi,j , 0⇔ (i, j ) ∈ E. Let A be the normalized adjacency matrix where

∑
i<j A =

1. Also let AE (i, ·)
def

=
∑

j Ai,j denote the normalized degree of node vi . Graph clustering using

modularity optimization seeks a partitioning of the nodes into unspeci�ed number of clusters

C = {C1, . . . ,CK }, maximizing

m(C)
def

=
∑
Ci ∈C

∑
i,j ∈Ci

(
Ai,j − ζAE (i, ·) AE (j, ·)

)
(4.2)

The �rst term of modularity is proportional to within-cluster edge-weights. The second term is

proportional to the expected number of within cluster edge-weights for a null model with the

same weighted node degrees for each node i . Here the null model is a fully-connected graph. The

resolution parameter ζ – which is by default set to one – in�uences the size of communities,

where higher resolutions motivates a larger number of clusters.

In the Potts model, each node i ∈ V is associated with a variable xi ∈ {1, . . . ,Kmax}, where

Kmax is an upper bound on the number of clusters. Here, each pair of variables have a pairwise

interaction

f{i,j } (x {i,j } ) =




ζ (AE (i, ·) AE (j, ·) ) − Ai,j xi = x j

0 xi , x j
(4.3)

where min-sum inference on this fully connected factor-graph gives an assignment of each node

to a cluster so as to maximize the modularity.

4.5.2 Clique model

Here, we introduce an alternative factor-graph for modularity optimization. Before introducing

our factor-graph representation, we suggest a procedure to stochastically approximate the null

model using a sparse set of interactions.

We generate a random sparse null model with Mnull < αM weighted edges (Enull), by ran-

domly sampling two nodes, each drawn independently from Pr(i ) ∝
√
AE (i, ·) , and connecting

them with a weight proportional to Bnull

i,j ∝
√
AE (i, ·)AE (j, ·) . If they have been already connected,

this weight is added to their current weight. We repeat this process αM times, however since some

of the edges are repeated, the total number of edges in the sparse null model may be less than αM .
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Finally the normalized edge-weight in the sparse null model is

Anull

i,j
def

=
Bnull

i,j∑
k,l Bnull

k,l
.

It is easy to see that this generative process in expectation produces the fully connected null

model.
1

Factor-graph representation

Here we use the following binary-valued factor-graph formulation. Let x = {xi :j ∈ {0,1} | (i, j ) ∈

E ∪ Enull} be a set of binary variables, and let L denote the cardinality of E ∪ Enull. The variable

xi :j is equal to one means the corresponding edge, (i, j ), is present in the �nal model, where our

goal is to de�ne the factor-graph such that the �nal model consists of cliques. For this, de�ne the

factors as follows:

• Local factor for each variable are equal to the di�erence between the weighted adjacency and

the null model if an edge is present (i.e., xi :j = 1)

fi :j (xi :j ) = min

(
1(xi :j = 0),Anull

i,j − Ai,j

)
(4.4)

By enforcing the formation of cliques, while minimizing the sum of local factors the negative

sum of local factors evaluates to modularity (equation (4.2)):

• For each three edges (i, j ), (j,k ), (i,k ) ∈ E ∪ Enull,i < j < k that form a triangle, de�ne a clique
factor as

f{i :j,j :k,i :k } (xi :j ,x j :k ,xi :k ) = 1(xi :j + x j :k + xi :k , 2) (4.5)

These factors ensure the formation of cliques – i.e., if two edges that are adjacent to the same

node are present (i.e., xi :i = 1 and xi :k = 1), the third edge in the triangle should also be present

(i.e., x j :k = 1). The computational challenge here is the large number of clique constraints. For

the fully connected null model, we need O (N 3) such factors and even using the sparse null model

– assuming a random edge probability a.k.a. Erdos-Reny graph – there are O ( L
3

N 6
N 3) = O ( L

3

N 3
)

triangles in the graph (recall that L = |E ∪ Enull |).

Brandes et al. [45] �rst introduced an LP formulation with similar form of constraints. How-

ever, since they include all the constraints from the beginning and the null model is fully connected,

their method is only applied to small toy problems.

1
The choice of using square root of weighted degrees for both sampling and weighting is to reduce the variance. One

may also use pure importance sampling (i.e., use the product of weighted degrees for sampling and set the edge-weights

in the null model uniformly), or uniform sampling of edges, where the edge-weights of the null model are set to the

product of weighted degrees.
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Simpli�ed message update and augmentation

Here, we give technical details as how to simplify the min-sum BP message update for this factor-

graph. The clique factor is satis�ed only if either zero, one, or all three of the variables in its

domain are non-zero. Therefore, in order to derive message updates p̂{i :j,j :k,i :k }→i :j from the clique

factor f{i :j,j :k,i :k } to variable xi :j for a particular value of xi :j (e.g., xi :j = 0), we apply ⊕ operator

(i.e., minimize) over all the valid cases of incoming messages (e.g., when xi :k and x j :k in clique

factor f{i :j,j :k,i :k } are zero). This gives the simpli�ed factor-to-variable messages

p̂{i :j,j :k,i :k }→i :j (0) = min{0, p̂j :k→{i :j,j :k,i :k }, p̂i :k→{i :j,j :k,i :k }}

p̂{i :j,j :k,i :k }→i :j (1) = min{0, p̂j :k→{i :j,j :k,i :k } + p̂i :k→{i :j,j :k,i :k }} (4.6)

where for xi :j = 0, the minimization is over three feasible cases (a) x j :k = xi :k = 0, (b) x j :k =

1,xi :k = 0 and (c) x j :k = 0,xi :k = 1. For xi :j = 1, there are two feasible cases (a) x j :k = xi :k = 0 and

(b) x j :k = xi :k = 1.

Here we work with normalized messages, such that p̂I→i (0) = 0
2

and use p̂I→i to denote

p̂I→i (1). The same applies to the marginal p̂i :j , which is a scalar called bias. Here p̂i :j > 0 means

p̂i :j (1) > p̂i :j (0) and shows a preference for xi :j = 1. Normalizing clique-factor messages above we

get the following form of simpli�ed factor-to-variable messages for clique constraints

p̂{i :j,j :k,i :k }→i :j =min{0, p̂j :k→{i :j,j :k,i :k } + p̂i :k→{i :j,j :k,i :k }}− (4.7)

min{0, p̂j :k→{i :j,j :k,i :k }, p̂i :k→{i :j,j :k,i :k }}.

In order to deal with large number of factors in this factor-graph, we use the augmentation

approach of section 2.2.2. We start with no clique-factors, and run min-sum BP to obtain a solution

(which may even be unfeasible). We then �nd a set of clique constraints that are violated in the

current solution and augment the factor-graph with factors to enforce these constraints. In order

to �nd violated constraints in the current solution, we simply look at pairs of positively �xed edges

(xi :j = 1 and xi :k = 1) around each node i and if the third edge of the triangle is not positively �xed

(x j :k = 0), we add the corresponding clique factor (f{i :j,j :k,i :k }) to the factor-graph. See algorithm 3

(in the appendix) for details of our message-passing for Modularity maximization.

Experiments

We experimented with a set of classic benchmarks
3
. Since the optimization criteria is modu-

larity, we compared our method only against best known “modularity optimization” heuristics:

2
Note that this is di�erent from the standard normalization for min-sum semiring in which minxi p̂I→i (xi ) = 0.

3
Obtained form Mark Newman’s website: http://www-personal.umich.edu/~mejn/netdata/

http://www-personal.umich.edu/~mejn/netdata/
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Figure 4.4: (left) Clustering of power network (N = 4941) by message passing. Di�erent clusters have di�erent

colors and the nodes are scaled by their degree. (right) Clustering of politician blogs network (N = 1490) by

message passing and by meta-data – i.e., liberal or conservative.

Table 4.1: Comparison of di�erent modularity optimization methods.
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P
r
o

b
l
e
m

W
e
i
g

h
t
e
d

?

N
o

d
e
s

E
d

g
e
s

L C
o

s
t

M
o

d
u

l
a
r
i
t
y

T
i
m

e

L C
o

s
t

M
o

d
u

l
a
r
i
t
y

T
i
m

e

M
o

d
u

l
a
r
i
t
y

T
i
m

e

M
o

d
u

l
a
r
i
t
y

T
i
m

e

M
o

d
u

l
a
r
i
t
y

T
i
m

e

M
o

d
u

l
a
r
i
t
y

T
i
m

e

polbooks y 105 441 5461 5.68% 0.511 .07 3624 13.55% 0.506 .04 0.525 1.648 0.467 0.179 0.501 0.643 0.489 0.03

football y 115 615 6554 27.85% 0.591 0.41 5635 17.12% 0.594 0.14 0.601 0.87 0.487 0.151 0.548 0.08 0.602 0.019

wkarate n 34 78 562 12.34% 0.431 0 431 15.14% 0.401 0 0.444 0.557 0.421 0.095 0.410 0.085 0.443 0.027

netscience n 1589 2742 NA NA NA NA 53027 .0004% 0.941 2.01 0.907 8.459 0.889 0.303 0.926 0.154 0.948 0.218

dolphins y 62 159 1892 14.02% 0.508 0.01 1269 6.50% 0.521 0.01 0.523 0.728 0.491 0.109 0.495 0.107 0.517 0.011

lesmis n 77 254 2927 5.14% 0.531 0 1601 1.7% 0.534 0.01 0.529 1.31 0.483 0.081 0.472 0.073 0.566 0.011

celegansneural n 297 2359 43957 16.70% 0.391 10.89 21380 3.16% 0.404 2.82 0.406 5.849 0.278 0.188 0.367 0.12 0.435 0.031

polblogs y 1490 19090 NA NA NA NA 156753 .14% 0.411 32.75 0.427 67.674 0.425 0.33 0.427 0.305 0.426 0.099

karate y 34 78 562 14.32% 0.355 0 423 17.54% 0.390 0 0.417 0.531 0.393 0.086 0.380 0.079 0.395 0.009
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(a) FastModularity[67], (b) Louvain [34], (c) Spin-glass [259] and (d) Leading eigenvector [228].
4

table 4.1 summarizes our results (see also Figure 4.4). Here for each method and each data-set,

we report the time (in seconds) and the Modularity of the communities found by each method.

The table include the results of message passing for both full and sparse null models, where we

used a constant α = 20 to generate our stochastic sparse null model. For message passing, we also

included L = |E + Enull | and the saving in the cost using augmentation. This column shows the

percentage of the number of all the constraints considered by the augmentation. For example, the

cost of .14% for the polblogs data-set shows that augmentation and sparse null model meant

using .0014 times fewer clique-factors, compared to the full factor-graph.

Overall, the results suggest that our method is comparable to state-of-the-art in terms both

time and quality of clustering. Although, we should note that the number of triangle constraints in

large and dense graphs increases very quickly, which deteriorates the performance of this approach

despite using the augmentation. Despite this fact, our results con�rm the utility of augmentation

by showing that it is able to �nd feasible solutions using a very small portion of the constraints.

4
For message passing, we use λ = .1, ϵmax = median{|Ai,j − Anull

i,j |}(i,j )∈E∪Enull and Tmax = 10. Here we do not

perform any decimation and directly �x the variables based on their bias p̂i :j > 0⇔ xi :j = 1.



Chapter 5

Permutations

5.1 Matching and permanent

The integration and maximization problems over unrestricted permutations de�ne several impor-

tant combinatorial problems. Two notable examples of integration problems are permanent and
determinant of a matrix. Determinant of matrix A ∈ RN×N is de�ned as

det(A) =
∑
x ∈SN

sign(x )
N∏
i=1

Ai,xi

whereSN is the set of all permutations of N elements (a.k.a. symmetric group) and xi ∈ {1, . . . ,N }

is the index of ith element in particular permutation x . Here the sign(.) classi�es permutations

as even (sign(x ) = 1) and odd (sign(x ) = −1), where we can perform an even (odd) permutation

by even (odd) number of pairwise exchanges. The only di�erence in de�nition of permanent is

removal of the sign function

perm(A) =
∑
x ∈SN

N∏
i=1

Ai,xi

Here, we see that both permanent and determinant are closely related with two easy combi-

natorial problems on graphs – i.e., perfect matching and spanning sub-tree. While calculating the

permanent for A ∈ {0,1}N×N is #P-hard [297], the determinant can be obtained in O (N 3) [116].

The matrix-tree theorem states that the number of spanning trees in a graph with adjacency

matrix A is equal to det(L(i,i )) for an arbitrary 1 ≤ i ≤ N . Here L = A − D is the Laplacian of A,

where D is a diagonal matrix with degree of each node on the diagonal (i.e., Di,i =
∑

j Ai,j ) and

L(i,i ) is the (N − 1) × (N − 1) sub-matrix of L in which row and column i are removed.

An intermediate step in representing the permutation as a graphical model is to use a bipartite
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graph G = (V = (V1,V2),E), where |V1 | = |V2 | = N and the edge-set E = {(i, j ) | i ∈ V1, j ∈

V2}. A perfect matching is a one to one mapping of elements ofV1 toV2 and can be represented

using the corresponding edges E ′ ⊂ E. It is easy to see that any perfect matching E ′ ⊂ E identi�es

a permutation x . Here the maximum weighted matching (a.k.a. assignment problem) problem

is to �nd a perfect matching x∗ = argx ∈SN max

∏N
i=1

Ai,xi , while the bottleneck assignment

problem seeks x∗ = argx ∈SN min max
N
i=1

Ai,xi . The factor-graph representation of the next section

shows that bipartite matching and bottleneck assignment problems correspond to the max-product

(min-sum) and min-max inference, and computation of permanent corresponds to sum-product

inference over the same factor-graph.

Interestingly min-sum and min-max inference in this setting are in P [121, 182] while sum-

product is in #P. Indeed the application of max-product BP to �nd the maximum weighted match-

ing [22] (and its generalization to maximum weighted b-matching [138]) is one of the few cases

in which loopy BP is guaranteed to be optimal. Although MCMC methods (section 2.6.1) can pro-

vide polynomial time approximation schemes for permanent [150] (and many other combinatorial

integration problems [149]), they are found to be slow in practice [139]. This has motivated ap-

proximations using deterministic variational techniques [62, 308] and in particular BP [139], which

is guaranteed to provide a lower bound on the permanent [301].

5.1.1 Factor-graph and complexity

Here we review the factor-graph of Bayati et al. [22] for maximum bipartite matching. Given the

bipartite graph G = ((V1,V2),E) and the associated matrix A ∈ RN×N with non-negative entries,

de�ne two sets of variables x = {xi ∈ V2 | i ∈ V1} and z = {zj ∈ V1 | j ∈ V2}, where xi = j and

zj = i both mean node i is connected to node j. Obviously this representation is redundant and

for (i, j ) ∈ E a pairwise factor should ensure xi and zi are consistent:

Figure 5.1: The factor-graph for matching where the local factors are black and consistency factors are white

squares.
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• Consistency factors ensure the consistency of x and z

f{i,j } (xi ,zj ) = 1
(
(xi = j ∧ zj = i ) ∨ (xi � j ∧ zj � i )

)
∀(i, j ) ∈ E

• Local factors represent the cost of a matching

f{i } (xi ) = Ai,xi ∀i ∈ V1

where if i and j are connected in amatching, two local factors f{i } (x j ) =
√
Ai,j and f{j } (xi ) =

√
Ai,j

account for Ai,j . Figure 5.1 shows this factor-graph.

It is easy to see that the joint form q(x ,z) is equal to
⊗N

i=1 Ai,xi for any consistent assignment

to x ,z and it is equal to
⊕
1 otherwise. Therefore sum-product and max-product (i.e.,

∑
x,z q(x ,z)

and maxx,z q(x ,z)) produce the permanent and max-weighted matching respectively.

The cost of each iteration of both max-product and sum-product BP in the factor-graph above

is O (N 2). Moreover, for max-product BP, if the optimal solution is unique, BP is guaranteed to

converge to this solution after O ( Ny∗

ϵ
) iterations, where ϵ is the difference between the cost of

first and second best matchings and y∗ is the cost of best matching [22].

An alternative is to use a binary variable model in which each edge of the bipartite graph

is associated with a binary variable and replace the consistency factors with degree constraint

to ensure that each node is matched to exactly one other node. However this model results in BP

updates equivalent to the one above (the simplification of updates discussed in [25] is exactly the

updates of binary variable model).

For min-max semiring, q(x ,z) = maxNi=1 Ai,xi for a consistent assignment to x ,z and it eval-

uates to
min
1 = ∞. Therefore min-max inference here seeks an assignment that minimizes the

maximum matching cost – a.k.a. bottleneck assignment problem.

5.1.2 Arbitrary graphs

We can also use message passing to solve max-weighted matching in an arbitrary graph G =
(V ,E) with adjacency matrix A. Zdeborová and Mézard [331] proposed a factor-graph for the

related task of counting of the perfect matchings in an arbitrary graph. For this, each edge (i, j ) ∈ E
is assigned to one binary variable xi :j ∈ {0,1} and the degree factors on each node restrict the

number of non-zero values to one

fE (i, .) (x E (i, .) ) = 1((
∑

(i,j )∈E (i, .)
xi :j ) ≤ 1)

where E (i, .) is the set of all the edges adjacent to node i .
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Sanghavi [273] consider the problem of maximum weighted b-matching in arbitrary graphs

by changing the degree factor to

fE (i, .) (x E (i, .) ) = 1((
∑

(i,j )∈E (i, .)

xi :j ) ≤ b)

and also local factor fi :j (xi :j ) = xi :jAi,j that takes the weights into account. They show that if the

solution to the corresponding LP relaxation is integral then BP converges to the optimal solution.

Moreover, BP does not converge if the LP solution is not integral.

Matchings in an arbitrary graph G is also related to the permanent and also (vertex disjoint)

cycle covers; a set of directed cycles in G that cover all of its nodes exactly once. The number

of such cycle covers in an un-weighted graph is equal to perm(A), which is in turn equal to the

square of number of perfect matchings [222, ch. 13].

In fact a directed cycle cover with maximum weight is equivalent to the maximum weighted

bipartite matching in the construction of the previous section. In section 5.2 below we will use

message passing to obtain a minimum weighted “undirected” cycle cover and further restrict these

covers to obtain a minimum weighted cover with a single cycle – i.e., a minimum tour for TSP.

5.2 Traveling salesman problem

A Traveling Salesman Problem (TSP) seeks the minimum length tour ofN cities that visits each city

exactly once. TSP is NP-hard and for general distances, no constant factor approximation to this

problem is possible [238]. The best known exact solver, due to Held and Karp [128], uses dynamic

programming to reduce the cost of enumerating all orderings from O (N !) to O (N 2
2
N ). The

development of many (now) standard optimization techniques are closely linked with advances

in solving TSP. Important examples are simulated annealing [56, 166], mixed integer linear pro-

gramming [118], dynamic programming [28], ant colony optimization [85] and genetic algorithms

[115, 120].

Since Dantzig et al. [77] manually applied the cutting plane method to 49-city problem, a

combination of more sophisticated cuts, used with branch-and-bound techniques [21, 233] has

produced the state-of-the-art TSP-solver, Concorde [13]. Other notable results on very large in-

stances have been reported by Lin-Kernigan heuristic [130] that continuously improves a solution

by exchanging nodes in the tour. For a readable historical background of the state-of-the-art in

TSP and its applications, see [12].

The search over the optimal tour is a search over all permutations of N cities that contains no

sub-tours – that is the permutation/tour is constrained such that we dot not return to the starting

city without visiting all other cities. Producing the permutation with minimum cost that may

include sub-tours is called the (vertex disjoint) cycle-cover and is in P (see section 5.1.2).
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We provide two approaches to model TSP: section 5.2.1 presents the �rst approach, which

ignores the subtour constraints – i.e., �nds cycle covers – and then “augment” the factor-graph

with such constraints when they become violated. This augmentation process is repeated until a

feasible solution is found. The second approach, presented in section 5.2.2, is to use the variables

that represent the time-step in which a node is visited. By having the same number of time-steps

as cities, the subtour constraint is automatically enforced. This second formulation, which is

computationally more expensive, is closely related to our factor-graph for sub-graph isomorphism

(see section 5.3). This is because one can think of the problem of �nding a Hamiltonian cycle in

G as �nding a sub-graph of G that is isomorphic to a loop of size |V |.

5.2.1 Augmentative approach

Let G = (V ,E) denote a graph of our problem with the positively weighted symmetric adjacency

matrix A, s.t. Ai,j = 0 ⇔ (i, j ) < E. The objective is to select a subset of E that identi�es shortest

tour of N cities. Let x = {xi :j | (i, j ) ∈ E} be a set of M binary variables (i.e., xi :j ∈ {0,1}), one for

each edge in the graph (i.e., M = |E |) where xi :j = 1 means (i, j ) is in the tour. We use xi :j and x j :i

to refer to the same variable. Recall that for each node i , E (i, ·) denotes the edges adjacent to i .

De�ne the factors of the factor-graph as follows

• Local factors represent the cost associated with each edge

fi :j (xi :j ) = min

(
1(xi :j = 0),Ai,j

)
∀(i, j ) ∈ E (5.1)

where fi :j (xi :j ) is either Ai,j or zero.

Any valid tour satis�es the following necessary and su�cient constraints – a.k.a. Held-Karp
constraints [127]:

• Degree factors ensure that exactly two edges that are adjacent to each vertex are in the tour

fE (i, ·) (x E (i, ·) ) = 1
(
(

∑
(i,j )∈E (i, ·)

xi :j ) = 2

)
(5.2)

• Subtour factors ensure that there are no short-circuits – i.e., there are no loops that contain strict

subsets of nodes. To enforce this, for each S ⊂ V , de�ne E (S, .)
def

= {(i, j ) ∈ E | i ∈ S, j < S} to

be the set of edges, with one end in S and the other end in V \ S. We need to have at least two

edges leaving each subset S. The following set of factors enforce these constraints

fE (S, ·) (x E (S, ·) ) = 1
(
(

∑
(i,j )∈E (S, ·)

xi :j ) ≥ 2

)
∀S ⊂ V , S , ∅ (5.3)

These three types of factors de�ne a factor-graph, whose minimum energy con�guration is the
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smallest tour for TSP. Therefore we can use min-sum inference to obtain the optimal tour. Note

that both subtour and degree constraints depend on large number of variables, however, due to

sparsity they allow e�cient linear time calculation of factor-to-variable messages; see section 5.2.1.

The more signi�cant computational challenge is that the complete TSP factor-graph has O (2N )

subtour factors, one for each subset of variables. In section 5.2.1 we address this problem using

factor-graph augmentation.

Simpli�ed messages

In section 2.2.1, we introduced the K-of-N factors for min-sum inference. Both degree and subtour

factors are di�erent variations of this types of factor. For simplicity we work with normalized

message p̂I→i :j = p̂I→i :j (1) − p̂I→i :j (0), which is equivalent to assuming p̂I→i :j (0) = 0 ∀I,i : j ∈ ∂I.

The same notation is used for variable-to-factor message, and marginal belief. As before, we refer

to the normalized marginal belief, p̂i :j = p̂(xi :j = 1) − p̂(xi :j = 0) as bias.

Recall that a degree constraint for node i (fE (i, ·)) depends on all the variables xi :j for edges (i, j )

that are adjacent to i . Here we review the factor-to-variable message for min-sum BP

p̂E (i, ·)→i :j (xi :j ) = min

x
\i :j

fE (i, ·) (x E (i, ·) )
∑

(i,k )∈E (i, ·)\(i,j )

p̂i :k→E (i, ·) (xi :k ) (5.4)

We show that this message update simpli�es to

p̂E (i, ·)→i :j (1) = min

(
p̂i :k→E (i, ·) | (i,k ) ∈ E (i, ·) \ (i, j )

)
∀i ∈ V (5.5)

p̂E (i, ·)→i :j (0) = min

(
p̂i :k→E (i, ·) + p̂i :l→E (i, ·) | (i,k ), (i,l ) ∈ E (i, ·) \ (i, j )

)
(5.6)

where for xi :j = 1, in order to satisfy degree constraint fE (i, ·) (x E (i, ·) ), only one other xi :k for

(i,k ) ∈ E (i, ·)\ (i, j ) should be non-zero. On the other hand, we know that messages are normalized

such that p̂i :j→E (i, ·) (0) = 0, which means they can be ignored in the summation of equation (5.4).

Forxi :j = 0, in order to satisfy the constraint factor, two of the adjacent variables should have a non-

zero value. Therefore we seek two such incoming messages with minimum values. Let min
k A

denote the kth smallest value in the set A – i.e., minA ≡ min
1A. We combine the updates

above to get a “normalized message”, p̂E (i, ·)→i :j , which is simply the negative of the second largest

incoming message (excluding p̂E (i, ·)→i :j ) to the degree factor fE (i, ·) :

p̂E (i, ·)→i :j = p̂E (i, ·)→i :j (1) − p̂E (i, ·)→i :j (0) = −
2

min{p̂i :k→E (i, ·) | (i,k ) ∈ E (i, ·) \ (i, j )} (5.7)
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Following a similar procedure, factor-to-variable messages for subtour factors is given by

p̂E (S, ·)→i :j = −max

(
0,

2
min{p̂i :k→E (S, ·) | (i,k ) ∈ E (S, ·) \ (i, j )}

)
(5.8)

While we are searching for the minimum incoming message, if we encounter two messages

with negative or zero values, we can safely assume p̂E (S, ·)→i :j = 0, and stop the search. This

results in significant speedup in practice. Note that both equation (5.7) and equation (5.8) only

need to calculate the second smallest incoming message to their corresponding factors, less the

current outgoing message. In the asynchronous calculation of messages, this minimization should

be repeated for each outgoing message. However in a factor-synchronous update, by finding three

smallest incoming messages to each factor, we can calculate all the factor-to-variable messages at

the same time.

Figure 5.2: The message passing results after each augmentation step for the complete graph of printing board
instance from [260]. The blue lines in each figure show the selected edges at the end of message passing. The
pale red lines show the edges with the bias that, although negative (̂pi :j < 0), were close to zero.

Augmentation

To deal with the exponentially large number of subtour factors, we use the augmentation proce-

dure of section 2.2.2. Starting with a factor-graph with no subtour factor, we find a solution x∗

using min-sum BP. If the solution is feasible (has no subtours) we are done. Otherwise, we can

find all subtours in O (N ) by finding connected components. We identify all the variables in each

subtour as S ⊂ V and add a subtour factor fE (S, ·) to ensure that this constraint is satisfied in the

next iteration of augmentation. Here to speed up the message passing we reuse the messages from

the previous augmentation step. Moreover in obtaining x∗ from min-sum BP marginals p̂(xi ), we

ensure that no degree constraint is violated (i.e., each node has two neighbouring edges in x∗). Fig-

ure 5.2 shows iterations of augmentation over a print board TSP instance from [260]. Algorithm 4

in the appendix gives details of our message passing solution to TSP, which also uses several other

minor tricks to speed up the BP message updates.
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Figure 5.3: Results of message passing for TSP on different benchmark problems. From left to right, the plots
show: (a) running time, (b) optimality ratio (compared to Concorde), (c) iterations of augmentation and (d) num-
ber of subtours constraints – all as a function of number of nodes. The optimality is relative to the result reported
by Concorde. Note that all plots except optimality are log-log plots where a linear trend shows a monomial re-
lation (y = axm) between the values on the x and y axis, where the slope shows the powerm.
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Experiments

Here we evaluate our method over �ve benchmark datasets
1
: (I) TSPLIB, which contains a variety

of real-world benchmark instances, the majority of which are 2D or 3D Euclidean or geographic

distances.
2 (II) Euclidean distance between random points in 2D. (III) Random (symmetric) dis-

tance matrices. (IV) Hamming distance between random binary vectors with �xed length (20 bits).

This appears in applications such as data compression [153] and radiation hybrid mapping in ge-

nomics [29]. (V) Correlation distance between random vectors with 5 random features (e.g., using

TSP for gene co-clustering [69]). In producing random points and features as well as random

distances (in (III)), we used uniform distribution over [0,1].

For each of these cases, we report the (a) run-time, (b) optimality, (c) number of iterations of

augmentation and (d) number of subtour factors at the �nal iteration. In all of the experiments, we

use Concorde [13] with its default settings to obtain the optimal solution.
3

The results in �gure 5.3

(2nd column from left) reports the optimality ratio – i.e., ratio of the tour found by message pass-

ing, to the optimal tour. To demonstrate the non-triviality of these instance, we also report the

optimality ratio for two heuristics that have (1 + dlog
2
(N )e)/2- optimality guarantees for metric

instances [154]: (a) nearest neighbour heuristic (O (N 2)), which incrementally adds to any end of

the current path the closest city that does not form a loop; (b) greedy algorithm (O (N 2
log(N ))),

which incrementally adds a lowest cost edge to the current edge-set, while avoiding subtours.

All the plots in �gure 5.3, except for the second column, are in log-log format. When using

log-log plot, a linear trend shows a monomial relation between x and y axes – i.e., y = axm . Here

m indicates the slope of the line in the plot and the intercept corresponds to log(a). By studying

the slope of the linear trend in the run-time (left column) in �gure 5.3, we observe that, for almost

all instances, message passing seems to grow with N 3
(i.e., slope of ∼ 3). Exceptions are TSPLIB

instances, which seem to pose a greater challenge, and random distance matrices which seem to

be easier for message passing. A similar trend is suggested by the number of subtour factors and

iterations of augmentation, which has a slope of ∼ 1, suggesting a linear dependence on N . Again

the exceptions are TSPLIB instances that grow faster than N and random distance matrices that

seem to grow sub-linearly.

Overall, we observe that augmentative message-passing is able to �nd near-optimal solutions

in polynomial time. Although powerful branch-and-cut methods, such as Concorde, are able to

1
In all experiments, we used the full graph G = (V ,E), which means each iteration of message passing is O (N 2τ ),

where τ is the number of subtour factors. All experiments use Tmax = 200 iterations, ϵmax = median{Ai,j | i, j}
and damping with λ = .2. We used decimation, and �xed 10% of the remaining variables (out of N ) per iteration of

decimation. Note that here we are only �xing the top N variables with positive bias. The remaining M − N variables

are automatically clamped to zero. This increases the cost of message passing by an O (log(N )) multiplicative factor,

however it often produces better results.

2
Geographic distance is the distance on the surface of the earth as a large sphere.

3
For many larger instances, Concorde (with default setting and using CPLEX as LP solver) was not able to �nd the

optimal solution. Nevertheless we used the upper bound on the optimal produced by Concord in evaluating our method.
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exactly solve instances with several thousands of variables, their general run-time on random

benchmark instances remains exponential [13, p495], while our approximation on random in-

stances appears to be O (N 3).

5.2.2 Using pairwise factors

Here we present an alternative factor-graph for �nding permutations without subtours. This for-

mulation has O (N 2) factors and therefore the complete factor-graph remains tractable. However

in practice, the min-sum inference over this factor-graph is not as e�ective as the augmentation

approach. Therefore, here we use this factor-graph to solve min-max version of TSP, known as

bottleneck TSP through sum-product reductions.
4

Given an asymmetric distance matrixA ∈ RN×N , the task in the Bottleneck Traveling Salesman

Problem (BTSP) is to �nd a tour of all N points such that the maximum distance between two

consecutive cities in the tour is minimized [156]. Any constant-factor approximation for arbitrary

instances of this problem is NP-hard [242].

Let x = {x1, . . . ,xN } denote the set of variables where xi ∈ Xi = {0, . . . ,N − 1} represents the

time-step at which node i is visited. We assume modular arithmetic (module N ) on members ofXi

– e.g., N ≡ 0 mod N and 1 − 2 ≡ N − 1 mod N . For each pair xi and x j of variables, de�ne the

factor

f{i,j } (xi ,x j ) = min

(
1( |xi − x j | > 1),max(Ai,j ,1(xi = x j − 1)),max(Aj,i ,1(x j = xi − 1))

)
(5.9)

where the tabular form is

x j

0 1 · · · N − 2 N − 1

xi

0 ∞ Ai,j −∞ · · · −∞ −∞ D j,i

1 Aj,i ∞ Ai,j · · · −∞ −∞ −∞

2 −∞ Ai,j ∞ · · · −∞ −∞ −∞

...
...

...
...

. . .
...

...
...

N − 3 −∞ −∞ −∞ · · · ∞ Ai,j −∞

N − 2 −∞ −∞ −∞ · · · Aj,i ∞ Ai,j

N − 1 Ai,j −∞ −∞ · · · −∞ Aj,i ∞

Here,

⊗

1 = ∞ on diagonal enteries ensures that xi , x j . Moreover |xi − x j | > 1 means cities i

and j are not visited consecutively, so this factor has no e�ect (

⊕

1 = −∞). However if two cities are

4
A binary-variable formulation with similar symantics is proposed in [306]. However the authors applied their

message passing solution to an instance with only �ve cities.
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visited one after the other, depending on whether i was visited before j or vicee-versa, Ai,j or Aj,i

represent the distance between them. This factor can be easily converted to min-sum domains by

replacing the identity values −∞,+∞ with −∞,0 in the tabular form above. Alternatively we can

replace the identity, min and max operations in equation (5.9) with their corresponding min-sum

functions.

Here we relate the min-max factor-graph above to a uniform distribution over Hamiltonian

cycles and use its sum-product reduction to find solutions to Bottleneck TSP. Recall G (A,y) is a
graph in which there is a connection between node i and j iff Ai,j ≤ y.

Proposition 5.2.1. For any distance matrix A ∈ RN×N , the py -reduction of the BTSP factor-graph

above, defines a uniform distribution over the (directed) Hamiltonian cycles of G (A,y).

Proof. First note that py defines a uniform distribution over its support as its unnormalized value is

only zero or one. Here w.l.o.g we distinguish between two Hamiltonian cycles that have a different

starting point but otherwise represent the same tour. Consider the py -reduction of the pairwise

factor of equation (5.9)

f{i,j } (xi ,x j ) = 1( |xi − x j | > 1) + 1(xi = x j − 1 ∧ Ai,j ≤ y) (5.10)

+ 1(xi = x j + 1 ∧ Aj,i ≤ y) (5.11)

• Every Hamiltonian cycle over G (A,y), defines a unique assignments x with py (x ) > 0: Given

the Hamiltonian cycle H = h0,h2, . . . ,hN−1 where hi ∈ {1, . . . ,N } is the ith node in the path, for

each i define xi = j s .t . hj = i . Now we show that all pairwise factors of equation (5.10) are

non-zero for x . Consider two variables xi and x j . If they are not consecutive in the Hamiltonian

cycle then f{i,j } (xi ,x j ) = 1( |xi − x j | > 1) > 0. Now w.l.o.g. assume i and j are consecutive

and xi appears before x j . This means (i, j ) ∈ E and therefore Ai,j ≤ y, which in turn means

f{i,j } (xi ,x j ) = 1(xi = x j − 1 ∧ Ai,j ≤ y) > 0 Since all pairwise factors are non-zero, py (x ) > 0.

• Every x for which py (x ) > 0, defines a unique Hamiltonian path over G (A,y): Given assignment

x , construct H = h0, . . . ,hN−1 where hi = j s .t .x j = i . Now we show that if p(x ) > 0, H defines a

Hamiltonian path. If p(x ) > 0, for every two variables xi and xi , one of the indicator functions of

equation (5.10) should evaluate to one. This means that first of all, xi � x j for i � j, which implies

H is well-defined and hi � hj for i � j. Since all xi ∈ {0, . . . ,N − 1} values are distinct, for each
xi = s there are two variables x j = s−1 and xk = s+1 (recall that we are using modular arithmetic)

for which the pairwise factor of equation (5.10) is non-zero. This means Aj,i ≤ y and Ai,k ≤ y

and therefore (j,i ), (i,k ) ∈ E (the edge-set of G (A,y)). But by definition of H , hs = i , hs−1 = j and

hs+1 = k are consecutive nodes in H and therefore H is a Hamiltonian path. �

This proposition implies that we can use the sum-product reduction of this factor-graph to

solve Hamiltonian cycle problems. The resulting factor-graph for Hamiltonian cycle problem is an



5.2. TRAVELING SALESMAN PROBLEM 124

special case of our graph-on-graph technique, where the adjacency matrix of one graph is directly

used to build factors in a second graph. Here, as the tabular form of the factor above suggests, the

second graph is a simple loop of length N (see section 5.3).

As expected, due to sparse form of this pairwise factor, we can perform BP updates efficiently.

Claim 5.2.2. The factor-to-variable BP messages for the sum-product reduction of factor of equa-

tion (5.9) can be obtained in O (N ).

Proof. The py -reduction of the min-max factors of equation (5.9) is given by:

f{i,j } (xi ,x j ) = 1(f{i,j } (xi ,x j ) ≤ y) (5.12)

= 1( |xi − x j | > 1) + 1(xi = x j − 1 ∧ Ai,j ≤ y) (5.13)

+ 1(xi = x j + 1 ∧ Aj,i ≤ y) (5.14)

The matrix-form of this factor (depending on the order ofAi,j , Aj,i ,y) takes several forms all of

which are band-limited. Assuming the variable-to-factormessages are normalized (i.e.,
∑

xi p̂j→I (xi ) =

1) the factor-to-variable message is given by

p̂{i,j }→i (xi ) = 1 − p̂j→{i,j } (xi )+

1(Ai,j ≤ y) (1 − p̂j→{i,j } (xi − 1))+

1(Aj,i ≤ y) (1 − p̂j→{i,j } (xi + 1))

Therefore the cost of calculating factor-to-variable message is that of normalizing the variable-

to-factor message, which is O (N ). �

Since there are N 2 pairwise factors, this gives O (N 3) time-complexity for each iteration of

sum-product BP in solving the Hamiltonian cycle problem (i.e., the sum-product reduction) and

O (N 3 log(N )) for bottleneck-TSP, where the log(N ) factor is the cost of binary search (see sec-

tion 1.4.2).

Figure 5.4 reports the average performance of message passing (over 10 instances) as well as

a lower bound on the optimal min-max value for tours of different length (N ). Here we report the

results for random points in 2D Euclidean space as well as asymmetric random distance matrices.

For Euclidean problems, the lower bound is the maximum over j of the distance of two closest

neighbors to each node j. For the asymmetric random distance matrices, the maximum is over all

the minimum length incoming edges and minimum length outgoing edges for each node.5

5If for one node the minimum length in-coming and out-going edges point to the same city, the second minimum
length in-coming and out-going edges are also considered in calculating a tighter bound.
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Figure 5.4: The min-max solution (using sum-product reduction) for Bottleneck TSP with di�erent number

of cities (x-axis) for 2D Euclidean space (left) as well as asymmetric random distance matrices (right) with

T = 5000 for Perturbed BP. The error-bars in all �gures show one standard deviation over 10 random instances.

5.3 Graph matching problems

Consider two graphs G = (V ,E) and G′ = (V ′,E ′), with (weighted) adjacency matrices A,

A′ respectively. Here we enumerate several of the most important problems over permutations

based on two graphs [72]. Section 5.3.1 introduces the graphical model for the problems of (sub-

graph) isomorphism and monomorphism. Then we study the message passing solution to graph

homomorphism, use it to �nd symmetries in graphs. In section 5.3.5 we introduce a general factor-

graph for graph alignment based on the previous work of Bradde et al. [44] and show how it can

model other problems such as quadratic assignment problem and maximum common subgraph.

The common idea in all these settings is that a “variation” of the adjacency matrix A′ of graph

G′ is used as a pairwise factor over the edges (or/and non-edges) of graph G (with adjacency A),

de�ning a Markov network (a factor-graph with pairwise factors).

5.3.1 Sub-graph isomorphism

The graph isomorphism problem asks whether G = (V ,E) and G′ = (V ′,E ′) are identical up to

a permutation of nodes (written as G � G′). That is, it seeks a one-to-one mapping π : V → V ′

such that (i, j ) ∈ E ⇔ (π (i ),π (j )) ∈ E ′. With some abuse of notation we also write π (G) = G′.

Although, there have been polynomial time solutions to special instances of graph isomorphism

problem [95], the general case has remained elusive. So much so that we do not know whether

the problem is NP-complete (e.g., see [222]).

A permutation π ∈ SN (recall SN is the symmetric group) such that π (G) � G is called an

automorphism. The automorphisms of G, under composition form a group, called the automor-
phism group Aut(G). The automorphism group also de�nes a natural notion of symmetry on

the nodes of graphs. Here, the orbit of each node, is the set of nodes that are mapped to i in any

automorphism – i.e., orbit(i )
def

= {π (i ) | π ∈ Aut(G)}. The orbits partition the set of nodesV into
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group of nodes that are in a sense symmetric, which makes them a prime candidate for de�ning

symmetry in complex networks [198, 321].

Sub-graph isomorphism asks whether G′ is isomorphic to a vertex induced subgraph of G.

– i.e., it seeks an injective mapping π : V ′ →V where

(π (i ),π (j )) ∈ E ⇔ (i, j ) ∈ E ′ ∀i, j ∈ V ′

When dealing with sub-graph morphisms, we assume that the mapping is from the smaller graph

to the larger graph and therefore |V | ≤ |V ′ |.

The factor-graph for subgraph isomorphism is de�ned as follows: We have one variable per

i ∈ V , where the domain of each variable xi isV ′ – i.e., x = {xi ∈ V
′ | i ∈ V}. The factor-graph

has two types of pairwise factors:

• Edge factors: ensure that each edge in G = (V ,E) is mapped to an edge in G′ = (V ′,E ′)

f{i,j } (x {i,j } ) = 1((xi ,x j ) ∈ E ′) ∀(i, j ) ∈ E (5.15)

where assuming the tabular form of this factor for sum-product semiring is simply the adjacency

matrix A′ ∈ {0,1} |V
′ |× |V′ |

of G′.

• Non-edge factors: ensure that each non-edge in G = (V ,E) is mapped to a non-edge in

G′ = (V ′,E ′)

f{i,j } (x {i,j } ) = 1((xi ,x j ) < E ′ ∧ xi , x j ) ∀i, j ∈ V ,i , j, (i, j ) < E (5.16)

where again for sum-product semiring, the tabular form takes a simple form w.r.t. the binary

valued adjacency matrix of G′ – i.e., 1 − A′. Using sum-product semiring, this fully connected

Markov network de�nes a uniform distribution over the (subgraph) isomorphisms from G to G′.

We could use sum-product BP with decimation or perturbed BP to sample individual assignments

x∗ ∼ p(x ). Here, each assignment x ≡ π is an (injective) mapping from V to V ′, where xi = j ′

means node i ∈ V is mapped to node j ′ ∈ V ′.

In particular, for G = G′, the integral is equal to the cardinality of the automorphism group

q(∅) = |Aut(G) | and two nodes i, j ∈ V are in the same orbit i� the have the same marginals – i.e.,

p(xi ) = p(x j ) ⇔ i ∈ orbit(j )

This also suggests a procedure for �nding (approximate) symmetries in graphs. We can use sum-

product BP to �nd marginals and group the nodes based on the similarity of their marginals.

However, the cost of message passing in this graphical model is an important barrier in practice.

Claim 5.3.1. Assuming |V | ≤ |E| ≤ |V |2 and |V ′ | ≤ |E ′ | ≤ |V ′ |2 and using variable syn-
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chronous update, the time complexity of each iteration of sum-product BP for subgraph isomorphism

is O ( |V |2 |E ′ |).

Proof. First, we calculate the cost of sending sum-product BP messages through the edge and

non-edge factors. For the edge factors (A′), we can go through each row of the tabular form of

the factor and multiply the non-zero entries with corresponding message – i.e., g{i,j } (xi ,x j ) =

p̂i→{i,j } (xi )f{i,j } (xi ,x j ). Then we add the values in each column, to obtain the outgoing message

– i.e., p̂{i,j }→j (x j ) =
∑

xi g{i,j } (xi ,x j ). This procedure depends on the number of non-zero en-

tries – i.e., O ( |E ′ |). The procedure is similar for non-edge factors. Therefore the overall cost of

sending sum-product BP messages through all O ( |V |2) factors is O ( |E ′ | |V |2). Using variable

synchronous update, calculating all variable-to-factor messages takes O ( |V |2 |V ′ |). Using the as-

sumption of the claim, the overall cost is therefore O ( |E ′ | |V |2). �

However it is possible to improve this complexity by considering sparse mappings. For exam-

ple, we can restrict the domain of each variable xi to all the nodes j ′ ∈ V ′ that have the same

degree with node i , or furthermore to all the nodes that also have neighbours with same degree as

the neighbours of node i .

5.3.2 Subgraph monomorphism and supermorphism

Sub-graph monomorphism relaxes the constraint of the subgraph isomorphism to

(i, j ) ∈ E ⇒ (π (i ),π (j )) ∈ E ′ ∀i, j ∈ V (5.17)

where π : V ′ → V has to be injective – i.e., nodes in V ′ are mapped to distinct nodes in V .

However, G′ is allowed to cover a “subset” of edges in an induced subgraph of G. We note here

that previous graphical models introduce in [43, 44] for isomorphism in fact de�ne monomorphism.

The only di�erence between this factor-graph and that of sub-graph isomorphism is that the non-

edge factors are replaced by the following uniqueness factors.

• Uniqueness factors are inverse Potts factors that ensure disconnected nodes are mapped to

di�erent nodes (– i.e., the mapping is injective)

f{i,j } (x {i,j } ) = 1(xi , x j ) ∀i .j ∈ V , j , i, (i, j ) < E (5.18)

Despite this di�erence, when G = G′ – that is when we are interested in automorphisms – or

more generally when |E | = |E ′ | and |V | = |V ′ |, the distribution de�ned by the monomorphism

factor-graph is identical to that of isomorphism factor-graph.

Claim 5.3.2. Assuming |V | ≤ |E| ≤ |V |2 and |V ′ | ≤ |E ′ | ≤ |V ′ |2, using variable synchronous up-

date, the time complexity of each iteration of sum-product BP for sub-graphmonomorphismO ( |E | |E ′ | +



5.3. GRAPH MATCHING PROBLEMS 128

|V ′ | |V |2).6

Proof. The complexity of sending sum-product BP messages through the edge factors is O ( |E ′ |)

(see proof of claim 5.3.1). However, the uniqueness factors are inverse Potts factors and allow

O ( |V ′ |) calculation of messages. This means the overall cost of sending messages through all

the factors is O ( |E | |E ′ | + |V ′ | |V |2). The cost of calculating variable-to-factor messages

using variable-synchronous update is also O ( |V |2 |V ′ |), which gives the overall complexity of

O ( |E | |E ′ | + |V ′ | |V |2) per BP iteration. �

So far we have seen two variations of mapping a graph G to a subgraph of G′. In subgraph

isomorphism, the image of G strictly agrees with a sub-graph of G′. In monomorphism, the image

is contained within a sub-graph. A third possibility is to ask for a mapping such that the image of

G “contains” a sub-graph G′:

(i, j ) ∈ E ⇐ (π (i ),π (j )) ∈ E ′ ∀i, j ∈ V (5.19)

where again π : V ′ → V has to be injective. Due to lack of a better name, we call this mapping

subgraph supermorphism.

The factor-graph for sub-graph supermorphism has two types of factors, both of which we

have seen before: 1) The non-edge factors between non-edges (equation (5.16)) ensure that the

image contains a sub-graph of G′ while 2) uniqueness factors between the edges (i, j ) ∈ E ensure

that the mapping is injective.

Claim 5.3.3. Assuming |V | ≤ |E| ≤ |V |2 and |V ′ | ≤ |E ′ | ≤ |V ′ |2, using variable synchronous

update, the time complexity of each iteration of sum-product BP for subgraph supermorphism is

O (( |V2 | − |E |) |E ′ | + |V ′ | |V |2)

Proof. The complexity of sending sum-product BP messages through the non-edge factors isO ( |E ′ |)

(see proof of claim 5.3.1) and each uniqueness factor require O ( |V ′ |) computation. This means the

overall cost of sending messages through all the factors is O (( |V2 |− |E |) |E ′ | + |V ′ | |E |). The cost

of calculating variable-to-factor messages using variable-synchronous update is also O ( |V |2 |V ′ |),

which gives the overall complexity of O (( |V2 | − |E |) |E ′ | + |V ′ | |V |2) per BP iteration. �

5.3.3 Graph homomorphism

Graph homomorphism [129] further relaxes the constraint of the sub-graph monomorphism such

that a homomorphic mapping can map two distinct nodes inV to the same node inV ′. However,

equation (5.17) should hold, and therefore if two nodes in V ′ are adjacent, they should still be

6
Bradde et al. [44] suggest a trick to reduce this time-complexity to O (( |E | |V |) |V ′ |), but unfortunately details are

omitted and we are unable to follow their route.
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mapped to distinct and adjacent nodes inV . Compared to other areas of graph theory, the study

of rich structure and surprising properties of homomorphisms is relatively recent. Study of graph

homomorphisms covers diverse areas including property testing [9], graph sequences and lim-

its [37, 39, 40, 197] and constraint satisfaction problems [223]. Many of these areas are interested

in “counting” the number of homomorphisms [38] from a graph G to G′. As we see shortly, graph

homomorphism reduces to many interesting CSPs and therefore it is not hard to show that it is

NP-complete. Moreover, counting the number of homomorphisms is #P-complete [86]. The set of

all homomorphisms π of a graph G to itself –i.e., its endomorphisms – under composition form en-
domorphism monoid (see de�nition 1.1.1 for monoid). Here, the identity element simply maps

each element to itself. Our interest in endomorphism is because through the conjecture 5.3.4, we

can use it (instead of automorphism) to approximate symmetries in graphs.

The graphical model representation of homomorphism has been investigated in di�erent con-

texts [50, 52], but to our knowledge, message passing has not been previously used for counting

and �nding homomorphisms. The Markov network for homomorphism resembles that of isomor-

phism and monomorphism: The variables are x = {xi | i ∈ V} where xi ∈ V
′
, and the factor-

graph only contains edge-factors of equation (5.15). Assuming |V ′ | ≤ |E ′ | and |V | ≤ |E|, it is easy

to see that the complexity of variable-synchronous message passing is O ( |E | |E ′ |), which makes

this method very e�cient for sparse graphs. This graphical model can be extended to represent

homomorphism in weighted graphs [38]. For this de�ne the edge-factors as

f{i,j } (x {i,j } ) = A
A′xi ,xj
i,j ∀i, j ∈ V ,i , j,Ai,j > 0

For small graphs we can exactly count the number of homomorphisms and endomorphisms. To

evaluate the accuracy of message passing, we compared the BP estimates with the exact number of

endomorphisms, for all isomorphically distinct graphs with |V | < 9 (i.e., > 13,000 instances); Fig-

ure 5.5 reports this result as well as the accuracy of BP marginals, suggesting that despite existence

of short loops in these graphs BP estimates are relatively accurate.

Reduction to other CSPs

The relation between homomorphism and other CSPs is well-known [223]. Here, we review this

relation between the factor-graphs of this section and other CSP factor-graphs we encountered in

this thesis.

Coloring and clique cover: (see example 3.0.1 and section 3.4) K-coloring of G corresponds to

�nding a homomorphism from G to KK , the complete graph of order K . Similarly the homo-

morphism from the complement of G to Kk corresponds to K-clique-cover. The relation is also

re�ected in the corresponding factor-graphs as the adjacency matrix for KK is the inverse Potts

model, used in K-coloring.
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Figure 5.5: (le�) The number of endomorphisms for all distinct graphs up to 8 nodes compared to the BP

integral. Here, larger disks represent graphs with smaller number of nodes. (right) Comparison of normalized

BP marginals and the exact marginals for endomorphism graphical model.

Clique problem and independent-set: (see section 3.6) Recall that K-clique problem corre-

sponds to �nding a clique of size K in G. This is a special case of sub-graph isomorphism from

KK to G which is in this case identical to sub-graph monomorphism and homomorphism from

KK to G. The (sum-product reduction of the) categorical-variable model of section 3.6.2 is a fully

connected Markov network with edge factors that we used for isomorphism, monomorphism and

homomorphism equation (5.15). Similarly, the K-independent set problem is equivalent to �nding

homomorphisms from KK to the complement of G. Independent set has an alternative relation

with graph homomorphism: any homomorphism from G to a graph with two connected nodes

and a self-loop on one of the nodes de�nes an independent set for G.

Hamiltonian cycle problem corresponds to sub-graph monomorphism from C|V | , the cycle of

length |V |, to G. Alternatively, we can formulate it as subgraph supermorphism from G to C|V | .

The sum-product reduction of our min-max formulation for bottleneck TSP in section 5.2.2 is

indeed the factor-graph of sub-graph supermorphism from G to C|V | .

5.3.4 Finding symmetries

One may characterize a graph G using the “number” of homomorphism from/to other graphs

G′. This characterization is behind the application of graph homomorphism in property testing

and de�nition of graph sequences. Let Hom(H ,G) be the set of homomorphism from H to G –

i.e., the set of all assignments x where p(x ) > 0. Let H1, . . . ,HM be the sequence of all graphs

whose number of nodes is at most |V |. Then, the Lovász vector of G which is de�ned as

v(G) = ( |Hom(H1,G) |, |Hom(H2,G) |, . . . , |Hom(HM ,G) |) (5.20)

uniquely identi�es G up to an isomorphism [196].



5.3. GRAPH MATCHING PROBLEMS 131

Figure 5.6: The table on the right shows the unnormalized endomorphism marginals for the graph on the left.

Here row i corresponds to q(xi ) (normalization of which gives p(xi )), and the number at row i and column j is
the number of times node i is mapped to j in an endomorphism. The total number of endomorphisms for this

graph is q(∅) = 78. Here, the orbits are {2,3}, {5,6}, {1,7}, {4}. However, q(x1) = q(x7) = q(x4) – that is node

4 maps “to” other nodes with the same frequency as nodes 1 and 7. However, the mappings to node 4 ( i.e., the

4
th

column of the table) remains di�erent from the mappings to 1 and 7. Here, as predicted by conjecture 5.3.4,

nodes with similar rows and columns belong to the same orbit.

Here, rather than identifying a particular graphG within the set of all graphs, we are interested

in identifying a node i ∈ V of a single graph G within the set of all nodesV . Note that here both

identi�cations are up to an isomorphism. Our objective is equivalent to �nding the orbits of G

and our approach in �nding the orbits using graph homomorphism (rather than isomorphism) is

founded on the following conjecture.

Conjecture 5.3.4. Given the uniform distribution over the endomorphisms of G:

p(x ) ∝
∏

(i,j )∈E

1((xi ,x j ) ∈ E)

the necessary and su�cient condition for i and j to be in the same orbit is

p(xi ) = p(x j ) and ∀k ∈ V : p(xk = i ) = p(xk = j ) ⇔ orbit(i ) = orbit(j )

Note that p(xi = k ) is simply the relative frequency of mapping of node i to node k in an

endomorphism. Therefore this conjecture simply states that for node i and j to be equivalent up

to an automorphism of G, it is necessary and su�cient for them to have the same frequency of

mapping to/from all other nodes ofG. While it is trivial to prove necessity (⇐), we found it di�cult

to prove the statement in the other direction.

Therefore, similar to other related conjectures [163, 204], we turn to computational veri�ca-
tion. For this, we experimented with distinct graphs with up to 9 nodes (i.e., > 286,000 instances).

Here, we obtained the exact marginals p(xi ) ∀i ∈ V and constructed the orbits as suggested by

conjecture 5.3.4. We then obtained the exact orbits using the software of McKay and Piperno [205].

In all cases two partitioning of the nodes to orbits were identical.

We also note that in conjecture 5.3.4 restricting the condition to p(xi ) = p(x j ) – i.e., similar

frequency of mappings “to” other nodes – is not su�cient. Figure 5.6 shows a counter-example
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Figure 5.7: Coloring of nodes by reducing the dimensionality of marginals to three dimensions of RGB using

PCA with whitening. (le�) The marginals are calculated using sum-product BP. (right) The marginals of the

Kronecker graph is obtained using Gibbs sampling and annealing. The graph in the middle is the product of

two graphs on the top and right – i.e., G = G1 × G2. Two nodes in G are connected i� the corresponding nodes

in G1 and G2 are connected. Note that the product of each two colors produces the same color in the product

graph and similarly colored nodes have similar neighbours.

for this weaker condition.

Example 5.3.1. In �gure 5.7(left) we used the homomorphism marginals to �nd approximate

symmetries in a graph with visible symmetries, known as Thomassen graph. Here, after obtaining

the marginals we used Principle Component Analysis (PCA) with whitening [226] to extract three

values for RGB colors. As the �gure suggests, this approach is able to identify similar nodes with

similar colors.

For dense graphs, message passing is no longer accurate. In �gure 5.7(right) we use Gibbs

sampling with annealing to estimate the endomorphism marginals in Kronecker product[190]

of two random graphs. Here again, we use PCA to color the nodes. Note that the algorithm is

unaware of the product format. The choice of the product graph is to easily observe the fact that

the product of similarly colored nodes produce similarly colored nodes in the product graph.

An alternative is to use spectral clustering on the matrix of marginals to obtain clusters. In

a related context Krzakala et al. [180] use the matrix of non-backtracking random-walks to �nd

symmetric clusters in stochastic block models. Note that the basic di�erence with our approach

is the matrix used with the spectral clustering. Other notable matrices that are used within this

context are the Laplacian matrix [299], the modularity matrix [228] and the Bethe hessian [272].

The relation between the clustering (in its conventional sense) and orbits of a graph is better

understood in the extreme case: when clusters form isolated cliques, they are identical to orbits.
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5.3.5 Graph alignment

The graph alignment problem can be seen as the optimization counterpart of the decision prob-

lems of isomprphism, monomorphism and homomorphism. In the past, di�erent methods have

tried to optimize a variety of di�erent objectives [53, 72]. In the context of message passing two

distinct approaches have been used: 1) Bayati et al. [26] propose a factor-graph for “sparse” graph

alignment and show that it scales to very large instances. Here the term sparsity both refers to

the number of edges of G and G′ and also to the restricted possibility of matching nodes of V

toV ′ – i.e., each node inV can match only a few predetermined nodes inV ′. The factor-graph

used by the authors resembles the binary version of the maximum bipartite matching factor-graph

of section 5.1.1. 2) Bradde et al. [44] used the min-sum BP to minimize the number of misalign-

ment in a factor-graph similar to that of graph monomorphism above. Here we follow their route,

with the distinction that we suggest using the min-sum semiring with “sub-graph isomorphism”

factor-graph and account for di�erent matching costs using several tricks.

Here we consider a general objective function that evaluates the mapping π : V ′ → V ∪

{null}. We then show how to optimize this objective using max-sum inference in a factor-graph.

• Node matching preference for matching node i ∈ V to j ′ ∈ V ′: φ (i, j ′) : V ×V ′ → R.

• Edge matching preference for matching (i, j ) ∈ E to (i ′, j ′) ∈ E ′: ς ((i, j ), (k ′,l ′)) : E×E ′ → R.

• Node merging preference for mapping nodes i, j ∈ V to the same node k ∈ V ′: ϑ (i, j,k ′) :

V ×V ×V ′ → R.

• Node deletion preference δ (i ) : V → R, is the penalty for ignoring the node i ∈ V –

i.e., mapping it to the null node.

• Edge deletion preference is the preference for dropping (i, j ) ∈ E: ϖ (i, j ) : E → R.

• Edge insertion preference is the preference for adding an edge (i ′, j ′) ∈ E ′, when it is not

matched against any edge in E: υ (i ′, j ′) : E ′ → R.

We can de�ne these preferences in such a way that the optimal solution is also a solution to

an interesting decision problem.

Example 5.3.2. The optimal alignments with the following parameters reproduce Hom(G,G′):

• node matching φ (i, j ′) = 0 ∀ i ∈ V , j ′ ∈ V ′

• edge matching ς ((i, j ), (k ′,l ′)) = 1 ∀ (i, j ) ∈ E, (k ′,l ′) ∈ E ′

• node merging ϑ (i, j,k ′) = 0 ∀ i, j ∈ V ,k ′ ∈ V ′

• node deletion δ (i ) = −∞ ∀ i ∈ V

• edge deletion ϖ (i, j ) = −∞ ∀ (i, j ) ∈ E

• edge insertion υ (k ′,l ′) = 0 ∀ (k ′,l ′) ∈ E ′
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Alternatively, using positive and uniform node and edge matching preferences, if we set the

merge cost to −∞ and allow node deletion at zero cost, the optimal solution will be themaximum

common subgraph. In particular, for maximum-edge common subgraph we use

• node matching φ (i, j ′) = 0 ∀ i ∈ V , j ′ ∈ V′

• edge matching ς ((i, j ), (k ′,l ′)) = 1 ∀ (i, j ) ∈ E, (k ′,l ′) ∈ E′

• node merging ϑ (i, j,k ′) = −∞ ∀ i, j ∈ V ,k ′ ∈ V′

• node deletion δ (i ) = 0 ∀ i ∈ V

• edge deletion ϖ (i, j ) = 0 ∀ (i, j ) ∈ E

• edge insertion υ (k ′,l ′) = 0 ∀ (k ′,l ′) ∈ E′

Given two weighted adjacency matrices A and A′ (for G and G′ respectively), where Ai,j is

the “flow” between the facilities i and j, while A′
k ′,l ′

is the “distance” between the locations k ′ and

l ′, the quadratic assignment problem, seeks a one-to-one mapping π ∗ : V → V′ of facilities
to locations in order to optimize the flow

π ∗ = argπ max
∑
i,j ∈V

Ai,jA
′
π (i ),π (j )

Here w.l.o.g. we assume all weights are positive and set the alignment preferences so as to optimize

the quadratic assignment problem:

• node matching φ (i, j ′) = 0 ∀ i ∈ V , j ′ ∈ V′

• edge matching ς ((i, j ), (k ′,l ′)) = Ai,jA
′
k ′,l ′

∀ (i, j ) ∈ E, (k ′,l ′) ∈ E′

• node merging ϑ (i, j,k ′) = −∞ ∀ i, j ∈ V ,k ′ ∈ V′

• node deletion δ (i ) = −∞ ∀ i ∈ V

• edge deletion ϖ (i, j ) = −∞ ∀ (i, j ) ∈ E

• edge insertion υ (k ′,l ′) = −∞ ∀ (k ′,l ′) ∈ E′

Now we define the factors based on various alignment preferences. The factor-graph has one

variable per node i ∈ V : x = {xi | i ∈ V}, where xi ∈ V′ ∪ {null}. Here, xi = null corresponds

to ignoring this node in the mapping. The alignment factor-graph has three type of factors:

• Local factors: take the node matching preferences and node deletion preference into account:

fi (xi ) =
⎧⎪⎪⎨⎪⎪⎩

δ (i ) xi = null

φ (i,xi ) otherwise
∀i ∈ V

• Edge factors: are defined for each edge (i, j ) ∈ E and partly account for edge matching, node
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merging and edge deletion:

fi (xi ,x j ) =




0 xi = null ∨ x j = null

ϑ (i, j,xi ) xi = x j

ς ((i, j ), (xi ,x j )) (xi ,x j ) ∈ E
′

ϖ (i, j ) otherwise

∀(i, j ) ∈ E

• Non-edge factors: are de�ned for non-existing edge i, j , i ∈ V , (i, j ) < E and partly account

for node merging and edge insertion:

fi (xi ,x j ) =




0 xi = null ∨ x j = null

ϑ (i, j,xi ) xi = x j

υ (xi ,x j ) (xi ,x j ) ∈ E
′

0 otherwise

∀i, j , i ∈ V , (i, j ) < E

This factor-graph in its general form is fully connected. The cost of max-sum message-passing

through each of these factors is O ( |V ′ | log(V ′ |)), which means each iteration of variable syn-

chronous max-sum BP is O ( |V |2 |V ′ | log(V ′ |)). However, if the matching candidates are limited

(a.k.a. sparse alignment), and the graphs G and G′ are sparse, this cost can be signi�cantly reduced

in practice.

Example 5.3.3. Figure 5.8 shows a matching of E-coli metabolic network against a distorted ver-

sion, where 50% of edges were removed and the same number of random edges were added. Then

we generated 10 matching candidate for each node of the original graph, including the correct

match and 9 other randomly selected nodes. We used graph alignment with the following prefer-

ences to match the original graph against the distorted version
7

• node matching φ (i, j ′) = 0 ∀ i ∈ V , j ′ ∈ V ′

• edge matching ς ((i, j ), (k ′,l ′)) = 1 ∀ (i, j ) ∈ E, (k ′,l ′) ∈ E ′

• node merging ϑ (i, j,k ′) = −∞ ∀ i, j ∈ V ,k ′ ∈ V ′

• node deletion δ (i ) = −∞ ∀ i ∈ V

• edge deletion ϖ (i, j ) = 0 ∀ (i, j ) ∈ E

• edge insertion υ (k ′,l ′) = 0 ∀ (k ′,l ′) ∈ E ′

We observed that message passing using our factor-graph was able to correctly match all the

nodes in two graphs.

7
We usedT = 100 initial iterations with damping parameter λ = .2. After this, we used decimation and �xed ρ = 1%

of variables after each T = 50 iterations. The total run-time was less than 5 minutes.
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Figure 5.8: Matching the E-coli metabolic network against a highly distorted version using message passing.

Here 50% of |E | = 4306 edges in the original network (left) are removed and the same number of random

edges are added, to produce the distorted network ( i.e., |E ′ | = |E |). Each node had 10 random candidates for

matching (including the correct choice) and message passing was able to identify the correct matching with

100% accuracy.



Conclusion

This thesis studied a general form of inference in graphical models with an emphasis on algebraic

abstractions. We organized an important subset of these inference problems under an inference

hierarchy and studied the settings under which distributive law allows e�cient approximations

in the form of message passing. We investigated di�erent methods to improve this approximation

in loopy graphs using 1) variational formulation and loop correction; 2) survey propagation; 3)

hybrid techniques. We then studied graphical modelling of combinatorial optimization problems

under di�erent modes of inference.

As with any other inference and optimization framework, graphical modeling has its pros and

cons. The cons of using graphical models for combinatorial optimization are twofold a) imple-

menting message passing procedures, when compared to other standard techniques such as using

Integer Programming solvers, is more complex and time consuming. This is further complicated

by b) the fact that there is no standard guideline for designing a factor-graph representation, so

as to minimize the computational complexity or increase the quality of message passing solu-

tion. Indeed we used many tricks to e�ciently approximate the solution to our problems; example

include simpli�cation of BP messages through alternative normalization, augmentation, variable

and factor-synchronous message update, introduction of auxiliary variables, using damping and

decimation etc.

On the other hand, when dealing with large scale and di�cult optimization problems, one has

to resort to conceptual and computational decomposition, and graphical modelling and message

passing techniques are the immediate candidates. Message passing is mass parallelizable, scalable

and often �nds high-quality solutions. By providing factor-graphs for a diverse set of combinato-

rial problems, this thesis also was an attempt to establish the universality of message passing. Of

course some of these problems better lend themselves to graphical modelling than some others,

resulting in better computational complexity and quality of results. Table 5.1 summarizes some

important information about the message passing solutions to combinatorial problems that are

proposed or reviewed in this thesis.
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Table 5.1: Summary of message-passing solutions to combinatorial problems. The time complexity is for one

iteration of message passing. We report di�erent costs for di�erent update schedules for the same problem. See

the text for references. Here, N is the number of nodes andM is the number of constraints/factors.

Problem Semiring ops. Complexity Schedule relation to others

Belief Propagation * O (
∑

i |Xi | |∂i |
2 +

∑
I
|XI | |∂I|) async. -

not (min,max) O (
∑

i |Xi | |∂i | +
∑

I
|XI | |∂I|) v-sync.

* O (
∑

i |Xi | |∂i | +
∑

I
|XI |) f-sync.

Perturbed BP (+,×) O (
∑

i |Xi | |∂i |
2 +

∑
I
|XI | |∂I|) async. reduces to Gibbs samp. & BP

O (
∑

i |Xi | |∂i | +
∑

I
|XI | |∂I|) v-sync.

Survey Propagation * O (
∑

i 2
|Xi | |∂i |2 +

∑
I
2
|XI | |∂I|) async. reduces to BP

K-satis�ability (+,×) O (K2M +
∑

i |∂i |
2) async. -

O (K2M ) v-sync.

O (KM ) (f,v)-sync.

K-coloring (+,×) O (K
∑

i |E (i, ·) |
2) async. K-clique-cover

O (K |E |) v-sync.

K-clique-cover (+,×) O (K
∑

i (N − |E (i, ·)) |
2) a-sync. ≡ to K-coloring on Gc

(+,×) O (K (N 2 − |E|)) v-sync.

K-dominating-set (+,×) O (KN 2 +
∑

i ∈V |E (i, ·) |
2 + |E (·,i ) |2) async. -

& K-set-cover O (KN + |E |) f-sync.

min set-cover (min,+) O ( |E |) (f,v)-sync. similar to K-median

K-independent-set (+,×) O (N 3) async. binary var. model

& K-clique O (KN 2) f-sync. ≡ K-independent-set on Gc

O (KN + |E |) (f,v)-sync.

K-packing (min,max) O (log(N ) (KN + |E |)) (f,v)-sync. (+,×) reduction ≡ K-independent-set

(min,max) O (KN + |E |) (f,v)-sync. min-max BP

K-independent-set (+,×) O (K3N 2) async. categorical var. model

& K-clique O (K2N 2) v-sync. ≡ K-independent-set on Gc

K-packing (min,max) O (K2N 2
log(N )) v-sync. (+,×) reduction ≡ K-independent-set

max independent set (max,+) O ( |E |) (f,v)-sync.

& min vertex cover ≡ max independent-set

sphere-packing (+,×) O (K2
2

2n ) v-sync.

(Hamming) O (K3n + K2n2y) async. -

n: digits O (K2n2y) v-sync.

y: min dist. O (K2ny) (f,v)-sync.

K-medians (min,+) O ( |E |) f-sync. a.k.a. a�nity propagation

facility location (min,+) O ( |E |) f-sync.

d-depth min span. tree (min,+) O (d |E |) v-sync.

prize-coll. Steiner tree (min,+) O (d |E |) v-sync.

K-clustering (min,max) O (KN 2
log(N )) v-sync. (+,×) reduction ≡ K-clique-cover

K-center (min,max) O (log(N ) (KN + |E |)) f-sync. (+,×) reduction ≡ K-set-cover

O (KN + |E |) min-max BP

Modularity max (min,+) - clique model, using augmentation

O (KmaxN
2) Potts model

max matching (min,+) O (N 2) v-sync -

& cycle cover

bottleneck assignment (min,max) - - -

max b-matching (min,+) O (bN 2) v-sync -

TSP (min,+) O (N 2τ ) or ∼ N 3
(f,v)-sync -

bottleneck TSP (min,max) O (N 3
log(N )) async (+,×) reduction ≡ Hamiltonian cycle

subgraph isomorphism (+,×) O ( |V |2 |E ′ |) v-sync. G → G′

subgraph monomorphism (+,×) O ( |V |2 |V ′ | + |E | |E ′ |) v-sync. G → G′

subgraph supermorphism (+,×) O (( |V2 | − |E |) |E ′ | + |V ′ | |V |2) v-sync. G → G′

homomorphism (+,×) O ( |E | |E ′ |) v-sync. G → G′

graph alignment (max,+) O ( |V |2 |V ′ | log( |V ′ |)) v-sync. G → G′ with general costs

max common sub-graph a variation of graph alignment

quadratic assignment a variation of graph alignment
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Future work

Due to breadth of the models and problems that we covered in this thesis, our investigation lacks

the deserved depth in many cases. This is particularly pronounced in the experiments. More-

over, we encountered many new questions and possibilities while preparing this thesis. Here, we

enumerate some of the topics that demand a more in depth investigation in the future work

• Many of the problems that we discussed also have e�cient LP relaxations that some times

come with approximation guarantees. A comprehensive experimental comparison of mes-

sage passing and LP relaxations for these problems, both in terms of speed and accuracy is

highly desirable.

• Our algebraic approach to inference suggests that all message passing procedures discussed

here, including survey propagation, are also applicable to the domain of complex numbers.

Extensions to this domain not only may allow new applications (e.g., using Fourier coef-

�cients as factors) but may also produce better solutions to many problems that we have

studied here (e.g., in solving CSPs).

• Our study of using graph homomorphism and its application to �nding symmetries is a work

in progress. In particular its relation to other methods such as stochastic block models and

spectral techniques needs further investigation.

• Although some preliminary results on Ising model suggested that using sum-product reduc-

tions for min-max inference performs much better than direct min-max message passing,

an extensive comparison of these two approaches to min-max inference is missing in our

analysis.

• In section 3.7, we noted that several optimization counterparts to CSPs allow using binary-

search in addition to a direct optimization approach. While using binary search is more

expensive for these problems, we do not know which approach will performs better in prac-

tice.
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input : Graph G = (V ,E) with normalized (weighted)adjacency A, maximum iterations

Tmax, damping λ, threshold ϵmax.

output: A clustering C = {C1, . . . ,CK } of nodes.

construct the null model

p̂i :j ← 0 ∀(i, j ) ∈ E ∪ Enull

while true do // the augmentation loop

ϵ ← 0, T ← 0

while ϵ < ϵmax and T < Tmax do // BP loop

ϵ ← 0

for (i, j ) ∈ E ∪ Enull do
p̂′i :j ← p̂i :j
p̂i :j ← (Ai,j − Anull

i,j )

for I ∈ ∂i : j do // update beliefs

calculate p̂I→i :j using equation (4.7)

p̂i :j ← p̂i :j + p̂I→i :j

end
ϵ ← max{ϵ , |̂pi :j − p̂′i :j |}
for I ∈ ∂i : j do // update msgs.

p̃i :j→I ← p̂i :j − p̂I→i :j
p̂i :j→I ← λp̃i :j→I + (1 − λ)p̂i :j→I

end
end
T ← T + 1

end
for i ∈ V do

for (i, j ), (i,k ) ∈ E ∪ Enull do
if p̂i :j > 0 and p̂i :k > 0 and p̂i :k ≤ 0 then add the corresponding clique factor

to the factor-graph

end
end
if no factor was added then break out of the loop

else p̂i :j→I ← 0 ∀I,i : j ∈ I

end
C ← ConnectedComponents((V , {(i, j ) ∈ E ∪ Enull | p̂i :j > 0}))

Algorithm 3: Message Passing for Modularity Maximization.
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input : Graph G = (V ,E), weighted (symmetric) adjacency matrix A, maximum

iterations Tmax, damping λ, threshold ϵmax.

output: A subset T ⊂ E of the edges in the tour.

construct the initial factor-graph

initialize the messages for degree constraints p̂i :j→E (i, ·) ← 0∀i ∈ V , j ∈ E (i, ·)
initialize p̂i :j ← Ai,j ∀(i, j ) ∈ E
while true do // the augmentation loop

ϵ ← 0, T ← 0

while ϵ < ϵmax and T < Tmax do // BP loop

ϵ ← 0

for each fI do // including fE (S, ·), fE (i, ·) (updates all the
outgoing messages from this factor)

�nd three lowest values in {p̂i :j→I | i : j ∈ ∂I}
for each i : j ∈ I do

calculate p̃I→i :j using equation (5.7)

ϵI→i :j ← p̃I→i :j − p̂I→i :j
p̂I→i :j ← p̂I→i :j + λϵI→i :j
p̂i :j ← p̂i :j + ϵI→i :j
ϵ ← max(ϵ , |ϵI→e |)

end
end
T ← T + 1

end
T ← {(i, j ) ∈ E | p̂i :j > 0} // respecting degree constraints.
C ← ConnectedComponents((V ,T ))
if |C| = 1 then return T

else augment the factor-graph with fE (S, ·) ∀S ∈ C
initialize p̂E (S, ·)→i :j ← 0 ∀S ∈ C,i : j ∈ E (S, ·)

end
Algorithm 4: Message Passing for TSP
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