‘National Library ..
of Canada

I*I du Cana a
Canadian Thesges Service

- Ottawa, Canada

K1A ON4 X

’ -
{ o
S 3 o

, .)
NOTICE

Thgquality of this microformis heavily dependent up t

quality of the original thesis submitted for microfilMfiing.

Every effort has been made to ensure the highest quality of
reproductxon possible. RL

If pages are mrssmg contact the university whrch granted
the degree :

Some pages may have indistinct pnnt especially if. the
original pages were typed with a poor typewriter ribbon or
if the umve[sny sent us an inferior photocopy.

Pre'viously copyrighted materials (journal articles, pub-
lished tests, etc.) are not filmed.

-

Reproduction in {Ull or in part of this micrgform is governed
;by the Canadran Copynght Act, R.S.C. 1970 c. C-30,

PO

""ﬂf .'.' N

4

NL-339 (r. 88/04)

Bibliothéque nationale

Service des théses canadiennes

AVIS | .

]

“ La qualité de cette microforme dépend grandement de la

qualite de la thése soumise au microfilmage. Nous avans
tout fait pour assurer une quahte supérieure de reproduc-
tion.

. ‘S'il manque -des pages, veuillez communiquer avec

Funjversite-qui a conféré le grade.

L'a,','qualil_é d'impression de certaines pagés peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiges a 'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité infégieure.

Les documents qui font déja I'objet d'un droit. d'auteur
(articles de revue, tests publig€, etc-.) ne sont. pas
microfilmés. ’

La reproduction, méme pamelle deéette microforme est

soumise a 'a Loi canadienne sur le drort dauteur SRC
1970, ¢. C-30. .

Canad""

b

v

TheslJ niv%rsity of Alberta

N
3 [

© Parallelism in-Nonmonotonic Multiple Inheritance Systems ‘

. o by

®‘ ' Vickitt Lau

A thesis v
) submitied to the Facultly of Graduate Studics and Research
J ' in partial fulfillment of the requirements for the degree
of Master of Scicnce”

:

Denartment of Computing Science

P4
@
&

Edmonton, Alberta
Fall, 1988

" has

Permission has beéh éranted'\

"to the National Library of
Canada to microfilm this-

"thesis and to ‘lend or sell

copies of the film. -

A

The ‘author (copyright owner)
"reserved other
.publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without Mhis/her
written permission.
: ¢

Lad

v

ISBN

<

-

L'autorisation a é&té atcordbe

a4 la Bibliothéque nationale’
-microfilmer

-du Canada de
cette thése et de préter ou

de vendre des exemplaires du .
- film. : o

‘L*3uteur (titulaire du droit

d'auteur) se réserve les
autres droits de publication;

ni la thése ni ,de 1longs
extraits de telle-ci ne
doivent @&tre imprimés. ou

"autrement reproduits sans son

autorisation écrite.
- : .

0-315-45619-1.

N

124

THE UNIVERSITY OF ALBERTA

\ . RELEASE FORM

NAME OF AUTHOR: Vickitt Lau

TITLI(E OF THESIS: Parallclism in Nonmonotonic Mullfple Inhen‘tance”Systems

DEGREE FOR WHICH THIS THESIS WAS PRESENTED: Master of Science

'

YEAR THIS DEGREE GRANTED: 1988

|
i

) v : |
Permission is hcrcb)}grumcd to The University of Alberta Library to reproduce

single copies of this thesis and to lerd or scll such copies for private, scholarly or
_scientific research purposes only. - \ ' : : ‘

~ The author reserves other publication rights, and neither the thesis nor extensive
extracts from it'may be printed or. otherwise' reproduced without the author’s written
permission. . = ‘

.-

_ (Si;'ncd) MK&%;’ \

Pcrmanent Address:
Box 727, Sub 11 *
Edmonton, Alberta
Canada TSW 4A3

Dated 11 August 1988

o THEUNIVERSITY OF ALBERTA . ‘
. | | |

- FACULTY OF GRADUATE STUDIES AND RESEARCH

4

7

U o ‘%. N . . .

The undersigned certify that they have read; and réc@mmenq o the Faéuity of

-

Graduate Studies and Research, for acceptance, a thesis entitled Parallelism in Nonmqnotonic '
" Multiple Inheritance Systems submitted by 'Vickitt Lau in partial fulfillment of the n:quire-‘

ments for the degree of Master of Science.

Date August 11th, 1988 (.

‘To my Parents and Aunt
\ b

-
.
N
- -
!
;
/
\ K L‘
- v
! : -

v

AR

Abstract

Organizing information in the form of an inheritance hierarchy is a basic concept in
knowledge representation. Nonmonotonic multiple inheritance systems. are the most powerful in

their expressiveness. They allow a class to inherit propertics from multiple superclasses and

exceptions.to those inhcrited propertics are also pcrmitted. However, due to their cbmpTe“Xit\y,

" parallel procéssiné using the Parallel Marker/Propagation Machine (PMPM) is difficult. In this

.

thesis, we Sug‘gest two enhancements 10 the PMPM in order to make it more suitable for inheri-
’ tance reasoning. In the first onc. marker-valuc pairs arc passed around instead of just markers.
Such an enhanépmcnl makes it possible to have a c\omplctcly parallel inheritance algorithm. for
.unambiguou's ﬁetwor'ks, In the sccond cnharicgm'cm, a sct of link-checking and link-setting .com-

mands are provided. By deposiling relevant information to appropriate links, a serial-parallel.

algorithm can be designed for general inhgritance networks.

Acknowledgements

I would like to thank my-supcrvisor Dr. Jia You (or his support of this rcsearch I apprccxate
those numerous hours of msxghtlul discussion with Dr. You when problems were dlscovered and .
"solved. 1 would also like to thank members of my cxammmg committe Dr. Reene Elio, Dr
Duane Szafron and Dr. Emil Girczyc for their valuable suggcsupns that make this a be_tter thesis.

1 am also grafcful for mcvlinzmci’ul Support from lhc\Dcpartment of Computing Science and

the Natural Science and Engincering Rescarch Council of Canada,,

Finally, thanks to Chris Heimers and Brian Wb‘ﬁg for proof-reading my thesis and the moral

support that Christina Lau has given me.

vvi

[N

»

Table of Contents

»”

)

Chapter i - '
Chapter 1: lﬁﬁroduction ... e v

{) .
L1 IRIOGUCHON e
1.2, INNEALANCE SYSICMS ..ot et
1.2.1. A Taxonomy of Inheritance SySICMSoooeovooooooooo
1.2.2. Common-sensc and Inheritance REASONING ..o e
1.2.3. The Inheritance Prncigle ...t
1.3. Parallel Architecture for INhertance SYSIEMS .o.oveoioeeeeeeeeoeeooeeoooo
1.4. Formalizing INheritance SYSICMSoovcovoovoeeoeeesses oo
T~
1.4.1. Meaning 0f IS-A LinKc.ocooiiiiimiiiosooeooeeeee oo
1.4.2. The Shoncst Path ATZOTIIN L. e
L.5. Scope and Overview Of the TRESIS w.oevveeeeoee oo
Chapter 2: Formalizing Inheritance RCASONNGecoveoveooooeoooooooo
& <
+ 2.1 INEROGUCHION ..o
2.2, Default LOZIC oo (e e
€ .
221 DISCUSSION .o
2.3. Nonmonotonic LOZICovuuiiiuieieioeoeeeeeeecee oo
4 e

2.4. Theory Preference et A st b creirereaens ORI ~——eeraaeenn
2.5. Circumscription SR W e e e, S
"+ 2.6. iMathematical Formalism of Inheritance e s et et

2.7. Nbﬁ_r’nonotonic Rules for Inheritance Systems,

Vil

11
13
13
13

19

20 -

21

23
25

31

- e -
2.8. Summary;.....5.x. e “g 33
Chaptcr 3: Parallel In{fcn’tance Algorithms".......... e, e, \ “ ‘35
3.1. Introductlon s perrernn Nh 35
32, The Parahel Markcr Propwauon \/Iachmc '. eeretenn EER 35
32.1. APMPM Langua;,c e 36 |
3.3. The Upscan A]gorimm 38
3.3.1 ‘Orthogonal Class/Proﬁcrw Muluple Inhcnmnce Networks e, 397
3, 3.2. Condmorumz e e RS - | a1
| .
3 4 Pamuonmg and Quasi-Parallcl Inheritance Algorithm .. Bttt e ae e N 42
3. 5 Skeptlcal RcasommT in Inh‘m(CC SYSICMS o oo © 45
3. 6JSummary e M ‘* 48
| Chapter4 Dealmg Wlt.h Unambxguoux Inhcmancc thworks ... [50
o
4.1. Imroducnon e e e . 50
4.2 Unz;m‘;alguous I“H-HCHIJUCC Ncm orks ... USRI SN prreseerans 50
4.3. Problem wuh Unhmbxguous \Juworke .. P, 51
4 4. Enhancing the PMPM s Thsauananas ne e aenanns ' "'5‘3.
4.5. A Parallel Algor}ilhm’ fo'r"Uh;i'n]biguo)us’Inhcn'umcc Nclworkg e, 54
4.6. Examples ; " 55
4 7‘f€onccmess Ak S e ‘59
4.8 Discussxhon _— [| 61 ‘
‘ 4 . . .
Chapter 5: Dealing with General Inheritance thwbrks ‘ - 63
5. 1‘ Intmductxon 7.' (............... S \ | 63

€ ') o
<+ , ,
5.2. Requiremcnt"éf the Algorithm e, ? e eene e s essre e rnaeaessraee seeaatreas
: '5'.3. On-Path Verses Off-Path Preemption e A rreeeeterens

11

5.4. Alternatives in Dtaslgmmy Algorithms for General Inhentance thworks

5.5. Enhancmg the PMPM ettt
5.6. A Serial-Parallcl Algorithm for Gendral Inheritance NCUWOTKS wovoovoreoooooooo O
14
5.6.Y. Summary of the Markers USCd ..o
5.6.2. Structure Of the AIgORINM ©....looooo oo
‘ " ' ~-. N
ST EXAMPIES oo e
r
5.7.1. Examp] B 2
572 EXAMPLE 2 ...t
5.8. The Serial Process in the Aluor{uhm ..
g
59 Correctness //)
5.10 Discussmn ...
T >\.
Chapter 6: Summary and Future ReSearcht ..o
. ¢

6.2. Results of the Thesis and Future Research oo
References e ettt S

3

ix

2° 2

66

6

- 69

72
77
79
79
82
85

86

87 .

89
89

91

92

‘' r . j\) K a7
- > ‘ ! .~ List of Figures ,
Vs ST
Nt . .
Figure : . . ‘ L Page
1.1 A semantic network: illustrating inheritance of propertics :........ et et e 2
1.2 Network illustrating the inheritance principlc et et e erbenenaien 5
- \'\ N -
1.3 Network that the shpricst path algorithm works ... e et ettt e ety e aees 9
1.4 Network with a redundant UK oo 9
- : -
1.5 An AMDIUOUS ACLWOTK ...%. e oo 10
2.1 Network showing fred cannot v ... { ... 16
2.2 Network represented using the Dcl'alul[iogic Formalism RPN ereereenneens e .. 18
2.3 Extension (4, B, ~C) is preferred R S S S 21
) A . . . f) - . . o
2.4 Nodg x3 is intermediary 10 <X |, X4 worios i ©27
' oL - b0 ‘ o U . .
2.5 Network showing the cfect of coufaﬂng-......‘ s S S reeeneni i . .28
3.1 Transitive closure zﬂgomhm S SO SRS el 38
32 A cla’ss/pro'pcriy mhceritance network ... b ‘ 39.
.) L . ‘ 4 ‘ o= _
3.3 Anorthogonal class/property inheritance NCIWOTK it ooty oo e 40
34 A network Lha[fbé‘a’ls, the shortest-path algorithm e i 41
3.5 An additively conditioried network . et s e e o4
- 37»6"Exzimple fbrqﬁdsi-pnralld algorithny .oy [e, w43
3.7 Nixon Diamond e dereraiaens e e 45 .
3.8 thwork.'showing cascaded zlmbigu‘ilvi‘cs e s e e 46
3.9 Procedure ti‘imffor_‘qucry(-x,.y) e, A e 47
4.1 Network showing race condition: nodes u.rq MAKCd COFFECLLY rvvmmmrereeiidionsnn e, '\31)

4.2 Network showing race condition: nodes arc mz'lTkéd-incorrngly

C

4.3 Procedure Selcct_node()

4.4 Aparallel algbrithm for unambiguous inheritance networks

4.5 Example 1 ..

4.6 Example 2

4.7 Network showing the infcrential distance ordering ..

5.1 Network showing the diffcrence between on-path and off—pa"(h preemption

.. 5.3 Suppressing redundant link

54 Subpreséing fake path ,

J »

~. 5.2 Paths have to be considered separately for on-path preemption

. - ' ' %
5.5 Network showing how some of the markers arc used

5.6 Using M, and M to determine ambigunty

i J

I

................

..

......................................

...

5.7 Network showing the use of th& M., and M, markers : :

-5.8 A parallel algorithm_for general ihheritance networks

A 5.9 The problem for the first cxample

510 Example 1

4.

5.11 The problem for the sccond example

5.12 Example 2

5.13 Network showing the scrial process of the algorithm

XU

R

...

52

53

54
56

57

59

65

70 °

70
72

73

74

76

79

79
80
82

83

85

Chapter 1 _

Introduction

1.1. Introduction

-

One major goal of Anificial Intclligence (Al) is to bﬁild intelligent systems. In the earl
days of Al, it was believed that building intelligent systems hinged on a few simple and ;e
powerful techmquesA Rescarch in general search tcchmques and Lheorem proving flourished.
However, after a dccadc or two of cxpcnmcmauon it becomes clear Lhal an intelligent syster
with only 51mple problem 9olvmg techniques is madcqualc An mtelllgem system has to have a
large amount of knowledge which it can use to solvc problems efficiently. This knowledge-based

approach is the current paradigm of Al

As Al systems try to solve more complex rca]-worldproﬁlems, more real-world kno@lcdge
is required. The pro_blvcr_n of how 10 handlc a large amount of k’nowlevdge has been a persistent
problem. There are two facets of the problem: how to represent the large quantities of real-wer
knowledge and how to scarch through the knéwlcdgc base quickly and effectively. As for
knogvledge. fcprescn[a[ion, Siructuring knowledge in a form of hierarchy has emerged as a basic
concept. As for effective retricval of knowledge, parailclism is seen qs a key to solving the prob-

lem. -

1.2. Inheritance Systems

“The basic idea of the hicrarchical approach of knowlc ige reprgscntaliorﬁ’ is the taxonomy of
Structured descn’piion,of knowlcdgc. CAonCéplS uﬁd cmities of a knowledge base are o‘rganized in
the form of an inheritance hierarchy. Wc can think of the concepts and entities as Lhe nodes in the-
inheritance hicrarchy. The rclauomhlp between the: COHCL,p[S and cntities is represented by the
links between the nodes. Vanous links = sentin ¢ inReritance ‘merarchy such as IS-A or

- positive link (—)-and IS-NOT-A or regat ok (45). If there is a poSitive link from node A to

\

node B, then A is said t3 be a subclass of 8. On the other hand, B is said to be a superclass of A
and node A inherits all the prdpcnies of node B. Since the properties of the supe&ss do not

- need to be repeated, economy of information storage is achieved. ‘ /

¢

Eamiliar knowledge representation schemes such as scma;ltic net and frame system incor-
porate properties inheritance. For insmncc', the semantic net shown in Figure 1.1 represents a
knowledge base about vehicle. In Figure 1.1, the purpose of a vehicle is for transportation. Since
we have an [S-A ch:'{ir}’ fromvsports car to vehicle, sbons car inherits the purposé from vehicle,
namely for transportation.” The propertics of a superclass are not explicitly represented in the
subclasses. The purpose and the usage of a sports car are impliciuy represented in the network
and pieces of information aré derived when needed. We call a representation system which incor-

.

porates such a concept'an inheritance system. Well-known inheritance systems include FRL

[Bobrow, Winograd 79], NETL [Fahlman 79] and KL-ONE [Brachman, Schmolze 85']. t0 name

just a few.

purposc

vehicle transportation

Sports car

Figure 1.1 A semantic network: illustrating inheritance of propertics

1.2.1. A Taxonomy of Inheritance Systems

Inheritance systems cati be classified ing different categories aecording to the types of links

o

and structures that the system allows [Tourctzky et al 87]. A unipolar system is one that allows

only posmve,,hnks A bipolar system is one that allows boIh positive and negatlve hnks It is

obvxous that negauve statements can be expressed in a bipolar system but not in a unipolar sys-

tem,
0
In a tree-structured inheritance System, thc nodes can have at most one lmmedlfate ances} '

4

tor. That is, each node can inherit propertics from only one immediate ancestor. In contrast, the

N l

nodes in a multiple inheritance Systcm can have more than one imm.eg‘i\zie ancestor.

We can also distinguish between a nonmonotonic inheritance system and a monotonic
inheritance systcm Ina nonmonotome mhen[ance system, excepuons to 1nhented propemes are
allowed; while in a monotome Inheritance system, a descendant has to inherit all the properties of

l[S ancestors . . ’ g)

.

Fipally we say an inheritance system is homogeneous if it is either monotonic or
Lhoroughly‘ nonrtonoto.'nic. By Lhoroughl}‘/‘ nonmonotonic, we mean that every link in the systemv
is defeasible; i.e., can be overriden by another link. In contrast, a strict lmk 1s one which cannot
be overnden Ina heterogeneous inhcritance sysu.m both strict and defea51b1e lmks are present.

’

[Brachman 85] dlSCUSSCS the need for such systems.

Reasoning with a monotonic inheritance system is quite straizhtforward. However, this
kind of systems is not very interesting because a lot of the real-world knowledge [hal we want {0
encode in an inheritance systcm is normative, that is, ‘Statements that allow for exceptions. Rea-

somngdvlm a tree-structured inheritance system is also quite straightfd®ward. But the application N

Xy oA

of such systems is limited duc to the fact that each node can only mhem properties from one

Y

immediate ancestor.

~~

SR

Nonmonotomc.muluplc inheritance systemvs are, mﬁéh mo;‘e general but albthe same ume
‘much more difficult to dcal with. Firstly, lhc scmantxcs of such systems. s :lot very clear.
Sewndly when the scmanucs is clan ficd, how to do parallcl inference ir such Jystems becomes-a
problem because of their complcxny Th|s lhesns studles thc problcms - crmng nonmonotom\o
-multiple inheritance systems; in p'mlc,ular. how to make parallel mfe ence in. Such mhémancc
systems. Throughout the [hcs15\) an inheritance network or hxerarchy is used as a short hand forv

: ,nonmonotomc muluple inheritance nctwork

1.2.2. Common-sense and Inheritance Reasohing ’

-

The nonmono[omc, naturc ol ‘common- sense rcasonm;a has prompted recent xmeres[in
" developing sysnems for nonmonotonic - rcasonmﬁ Tradmonal reasoning Syslcms are monotomc m'
- the sense that thévaddition of new mfommnon will not 1nvalldate old lnformauon The famxhar
example about the flying ability of Fred dcmonstralcs the point: if we know that Fred is a bird, we;r |
would assume t at it can fly. Howcvcr if we discover that Fred is a p;:ngum upon funher investi- |
gatxon we would conclude Lhdl Frcd cannot fly. Thg old information about Fred bemg a flying
bird is cancelled when we ’havc the udditi/onal information that it is a :Janicular kind of bird,
namely. a penguin. The problcm here is that we are always forced to make inference based on

only pamal mformauon But when more complete or more specific mforrnalxon arrives, we may

want to draw different conclusions.

N Common-sense reasoning, i general, is difficult. Inference in a;l.inhcritance hicrarchy with

exceptions can be viewed as an insmncc' of common-scnéc reusonihg. The flying bird example
- .

above, for instance, can be vicwed as inheritance reasoning. Some other forms of common-sense

resoning, however, do not fall into the catcgory of inheritance reasoning. For instance, the fol-

lowing h_ﬂe ié called default assignment [RCilcr 78]: "unless you knoW 'oLherwise, assume that a

person’s hometown is that of his/her spouse.” Another form of common-sense reasonmg which

-

also involves nonmonoticity is the closed world assumption Re\er 78], such as "unless you

i, { .
know otherwise, assume lhat Mary is fiot :I[student."” These forms of common-sense reasomhg are
rather common. Nonetheless, they 0 not k:xhxblt lhe hierarchical nature of mhentance reasomng :
Formahsms stich s Dcfault Loglc [cher 80], which attempt to capture Qommon sense reason-
. ing have senous computational problem ‘. Inference i in Default Logic, for mstance is not even
. semi- decxdable in general On the other | and due to us hxerarchlcal naru;‘e mhentance reasoning
is casier to handle compared with general common-sense reasonifig and more efficient reasoning

algonthrgé ‘can be desxgned In addxuon a large amount of real-world knowledge does exhibit a .
\

hierarchical nature. All these makc the heriturce system an interesting and worthwhile topic for

. i : |

stud)‘/‘."
: P

1.2.3. The Inheritance Principle ' ' \

The most 1mponam notion of an inheritance system is that subclass should ovemde super-

| %
class, i.e. the mformanon provnded by q subclass has higher priority than that of a superclass. For
; example, 1fA mhcnts property ~P l"rom B and property P from C, then 4 should have property

~P if B is a subclass of C (sce Figure 1 2) We call this the mhcmance pnnmple

Figure 1.2 Nelwork 1llus1rznm<v the mhentance principle

Suppose we substitute A Iorfrcd B for pengum C for bzrd and P for fly in Flgure 1.2, then

1t is clear why the inheritance pnnmplc should be followed. The reason is lhat'penguin is a sub-

class of bzrd mformanon provrded by penguin rs more spe01ﬁc than that provided by bird.. In
makmg our decision- whether fred can lly or not, we prefer the more specific rnfonnatxon The
idea that information pr&nded by a subclass should override those of a superclass is adapted by
" all inheritance systems such as FRL [Bob\row, Winograd 79] and NETL [Fahlman 79]. However,

this intuitive notion is not formalized until rccently by [Touretzky 86].. We will discuss the need

to formalize this important inwitive notion in Section 1.4.

1.3. Parallel Architecture for Inheritance Systems

[y

For an Al system to deal with any sul’licicntly'complex real-world problems, we can expect
it to have a rather large ltnowlcdgc base However, we do ?\ot want the size of the knowledge base
to hinder the perfonnancc of the ovcrall system. This .leads to interests in desrgnmg parallcl

architecture for 1nhentance systems.

[Fahlman 79] descnbcs a representation system called NETL for inheritance systems and
the Parailel Marker Propagation Machine (PMPM) for parallel mferencmg n an@nhentance net-
work. The essential idea is to make cach node in the inheritance networl; correspona 1o some
hardware processing element and the relationship between the two nodes in the mhentance net-
work cornespond 10 a hardwarc link between the hardware elements The hardware processmg
elements and the hardware links arc convcmcntly called nodes and links respecttvely The
PMPM 1s a Smgle Instructton Strcam Multiple Data Stream (SIMD) machine [Hwang, Bnggs
85]; Both the processing elements and the links respond to commands issucd by a central con-
troller. The purpose of the commands is 10 propagatc marker bits between the nodes. The result
of a sequence of marker propagation commands lies in the markers that the nodes receive. The
primary types of inference supponed by such a machine are property inheritance; transitive clo-

sure, and set intersection.

Inheritance reasoning in a tree-structured monotonic inheritance system is equivalent to

+

| A L
ﬁndmg the n’ansmve closure of the IS- A link. This can be done by the PMPM in time propor-
tional to the depth of the given network Howevcr mhentance reasoning in a mulitiple nonmono-

tonic inheritance system is much more mvolved a@ parailel algomhms are more difficult to

design.
3.4. Formalizing Inheritance Systenis

1.4.1. Meaning of IS-A Link

_ The meaning of an IS-A link depends on the kind of inheritance systems we are talking
about. In a monotonic multiple inheritance system, each link can be "logically” described [Haves

79]. A Imk suchas A — B where A and B are Classes can be described by the first-order Iémcal

.. formula A(x) = B(x). A link such as a — A wherea is an mdlvldual and A is a class, can be

‘descnbid as A(a). This sxmplc translation between the links in a network and first-order formulae.
is p&smble only because the links are not defeasible, i.e. canndt be cancelled When exceptlons.‘
are allowed, the formula A (x) = Bgx) docs not accurately describe what we want to say about
A — B any more.

An IS-A link in a n‘or:imono[onic multiple inheritance system _ha; z; totally different meaning
than that in a monotopic multiple inheritance system. Suppose we have bird ~— fly in a network.
Imuitivély, this means "bird flies". We can think of a number of equally likely interpretations of
this kind of generic senlence (Carlson 82]: ' .

.‘ (1) All birds fly | \

(2) Typical birds can fly

(3) Mot birds can fly
(4) If we find a bird, it iAs likely that it can fly

(5) If we find a bird, assume it can fly uni'ess we know that it cannot -

Strictly speaKing, intcrpretation (1) is incorrect since we allow exceptions to the general
rule. (2) reflects more accuratcly what we want to say about birds. But the problem is that we
need a definition of typicality. Interpretation (3) nceds a vague quantifier "most". In”different

generic statements, the quantificr has different strength. [Rich 83] favors interpretation (4). She

argues that common-sensc or default rcasoning is actually a form of likelihood reasoning. But the
problem is that we need to specify how l'ikcly it is that a bird we find will be able to fly. Specify-
ing that likelihood seems to be arbitrary. (5) sounds more nonmonotomc than others. "blrds ﬂ~)"

‘is 1nterpreted as a default rule Wthh says given a bird, we assume it can fly by default but if more

-

specific information arrives, we arc willing 1o retract the previous assumption.
B . 1

1.4.2. The Shortest Path Algorithm

Early. inheritance systems, such as NETL, suffered from lack of precise semantics. No

v

»

matter how fast we can make inference within an inheritance system and how expressive an inher- .
1tance system is, a lack of prcusc semantics means that we do not understand what we are doing
w1th the 1rihentance system and we do not even know what we are.talking about when we ry to

assert some knowledge usmg the inheritance system. Formal semantics is clearly desirable.

The behavxor of Lhose early inhcritance rcasonmg alﬂomhms 1S shown by gwmg a few
examples. These. examples atc usuallv rclauvcly sxmple and always show the "desired" behawor
of the system. The trouble i8, that for rcal- world problecms, Wthh are far more complex the algo-
rithm used for inferring inhcritance may not bchave as cxpected. Someumcs it may even produce
wrong results. In other words, we cannot claim that we understand an inheritance algomhm or

that an algomhm is correct only by tracing thc bchav:or of an algorithm using a few examples.

Part of the reason Lhat no rigorous semantic's is given for multiple inheritance systems is that
Lhe mhemance principle seems (6] bc 50 intuitive: subclasses should override supérclasses. This

prmcxpl° is, translated into somcthmg like the, followmg Suppose that we want ‘to determine -
' .

)

9

whether node 4 is a subclass of node B. Suppose also that there are two paths from A to B; one
allows us to conclude that 4 is a subclass of 8 while the other allows us to conclude that 4 is not
- a subclass of B. Which one should we choose? Intuitively, we would want to choose the shorter
path. For instance, suppose we know ﬁaat birds are flying things, penguin is & bird, fr¢d is a
penguin and that penguin cannot fty. Graphically, it is representeq as in Figure 1.3}

oA

flying thing

fred

Figurc 1.3 Network that the shortest path algorithm works
The path fred — penguin — bird — ﬂ)mg (hmg is of length Lhree while the path fred — penguin
- flying thing is of length two. The shorter path, in this case, overrides Lhe longer path and we
have the desired conclusxon fred cannot fly. Unfortunately, this shortest path heuristic is not

always cormct The example in Figure 1.4 is shown in [Touretzky 861:

gray thing

elephant

royal elepham

clyde -~

Figure 1.4 NcL\’Jvork with a redundant link
In this éxample. a redundant li‘nk clyde — clephant is present. We say that clyde — elephant is
redundant because we can conclude that civde is an elephant without Lhe’_.,explici[link. The twb
paths clyde — elephant — gray llzin’g “and clyde — royal gl;z[)h(inl - yray thing are both of length
two. Although it seems to be dn ambiguous situation, intuitively w. want to- conclude that clyde
is not gray. The reason is that without the redundant link, we would conclude the same. Another

problem with this shortest path heuristic is shown in Figure 1.5.

elephant

‘Figurc 1.5 An ambiguous network
!

Although the path clyde — elephant — shy thing is shorter than clyde — circus perfS::mer — per-

X

, S | | - 11

former b shy thing , we have no reason to allow the first path to override the second péth. Such a
network is called an ambiguous network (Touretsky 86]. Thus when redundant links are present

or the network is ambiguous, the shortest path algorithm is not very useful.

As we can)see, although the notion of the inheritance principle is intuitive, it is not as sim- -
ple as the inheritance system de$igners once thought. The shortest path algonthm seems to cap-
ture the intuitive notrons naturally. Upon careful consideration, however, we-see that it 1s not
adequate to accomplish the task. Formalizing this intuitive notion allows us 10 say precisely wt....

we mean by subclass overriding supcrclass,

1.5. Scope and Overview of the Thesis

This Lhesis investigates the problcms rclatcd to parallel architectures andjalgorithms for

nonmonotomc multlple inheritance systems? Recently, there has been an explosion of attempts to

formalize mhentance rcasoning. Fomm]mng rnhcntance reasoning allows us to say precrsely
what inheritance is all about. But diffcrent formalisms may have different opinions as 10 what

inheritance should mean. In Chapter 2, we survey the different formalisms for inheritance reason-

N

ing. Since there is a host of different formalisms for inhcn’tuncc reasoning, it is 1mportam to strck

wrth one particular formahsm when we desrgn paralle] architecture and algonthm The goal of

thrs thesis is to design parallel archrteuurc and algorithm for inheritance reasoning as deﬁncd in

[Touretzky 86].

There are a number of open problems related to parallel architectures and algorithms for

inheritance reasoning (Etherington 87a):

3

(1) Are there natural ¢classes of inheritance networks with cxceptions which a. it parallel infer-
ence algonthms vet do not preclude the representatron of our common-sensc knowledge

about taxonomrcs

(2) Define parallel architectures and algorithms for inheritance reasoning and prove their

-correctness. ‘, -

-~

The PMPM described in Section 1.3 is 100 simple as a parallel architecture for inheritance

reasoning for nonmonotonic multiple inheritance networks. Although it supports the shortest

path algorithm for property inhcritanée naturally, we have seen in the previous section that the’

algorithm is not reliable when the given network has redundant links or- when ambiguity is’
involved. Despite its limitation, we do riot need to discard the PMPM as a parallel architecrure
for inheritance reasoning. There arc scveral attemplts to éifcumvcnt the inadequacy of the PMPM.

In Chapter 3, we givc a survey of these atemplts.

All the attempts described in Chuptc‘r 3 usc the PMPM and then try to find vways to do paraj-.

lel or quasi-parallel proccssma in an inheritance nctworl-' In this thesis, we take another
approach. Since the problems of using the PMPM to deal nheritance reasoning stems from
its oversimplicity,.it is natural to consider ways to enhance its power so that it is more suitable as
a parallel architecture for iﬁhcn’umcc reasoning. Two different enhancements of the PMPM are
intmdu‘ced in this thesis. In the first one, cach node is allowcd to pass around an additional
number, cal.led the level number. Using this addluoml mformauon we design a one-pass parallcl
mhemance algorithm for unambiguous nchorks In the second enhancement, links can be
marked by spec1a1 link markers. By depositing relevant information to such links, we design a

serial-parallel inheritance algorithm capable of dealing with general inheritance networks.

Chapter 4 and 5 discuss thesc cnhdnumcnls and algomhms”rcs;)ectively. Finally in Chapter %,

A
9

we summarize Lhe thesis and discuss some future research.

l

Chapter 2

Formalizing Inheritance Reasoninﬁ[

2.1. Introductibn

In this chapter, we survey a number of different attempts to formalize inheritance reasoning.'
Formal systems such as Default Logic [Rciter 80), Nonmonotonic Logic [McDermott and Doyle’
80] and Circumscription [McCarthy 80] attempt 1o formalize common-sense - reasoning. Since
Lhere is a close relauonshrp bctwccn mhcnmncc and common-sense reasonmg. it is not surprising
that these systems are also used (o formalize inheritance rcasomng The problem is [ha[the inher-
1ance principle, which is the most important notion of inheritance reasoning, is not captured in
these formalisms. [Poolc 85] propogcs a [hcorv comparator 0 capture the inheritance pnncrple
inside the semantics of the qu[en’r Although common-sense -and mhentance reasoning are
closely related, the hlerarchrcal nature of inheritance reasoning separates them. Thls makes inher-
itance systéms an interesting subject for study independent of common-sense reasoning.
[Touretzky 86] uses a mathcmatical Aapproach to give a precise formalizatiqn of the inheritance
principle. Finally [Sanchall 86] attempts to incorporate the inheritarqlce principle rnto the infer-

N

ence rules of a nonmonotonic system.

2.2. Default Logic
')

The ﬁrst altcmpt 1o form ize nonmonotonic mUIUple lnhemance systems is done by [Ether-
ington and Reiter 83]. Their approach is 1o estabhsh a correspondence bctwecn nonmonotonic
ihheritahce hierarchies and De fault Logic (Reiter 80]. Linksin a hierarchy are idemiﬁed as either
default rules or ﬁrst-ordcr formulac. Funhermore exceptions to default rules are exphcr[ly

specified by using anolher exception link. ‘In such a way, a formal semantics for nonmomotonic

inheritance hierarchics is provrdcd based on Dchull Logic.

. o 14
A default Lheory A consists of an ordered pair (D W) where D is aset of defaults and W s a

set of first-order formulae A dctault is an expressxon of the following form:
"A(x): Bl(x), . Ba(x)
L) _

whefe'A(x) B,(x) ... Bix) C (x) are first-order formulae The interpfeta[ien of the above
expressmn is: if you bCllCVC Lhat A(x) is true'and it is consistent to assume B (x} through B (x)
then you are entitled to conclude Lha[C{x)is truc. A is called Lhe prerequisite of the default, B;’s

are the JUS[IﬁCH[lOl’lS and € is the consequent of the default,

A deﬁau.lt theory may have ZCro,.0nc or more exiensions An extension can be thought of as
a set of ﬁrst~order formulac which is the.result of cxtcndm" o1 expandmg sty Lhe set of defaulls '
D ofA. In ths sense, dcfaulm are &xed to prov1de amore. complcte database on-the incomplete
database W. An extensxon can be formally dcﬁned Before doing that a few preliminary -
‘._deﬁmtlons are needed. Let L dcnote the sct of first-order well- formed formulae (wjf) A wﬁ’ con—
‘taining no free vanablc is sald 10 be closed. In the default rule shown abovc 1fA(x) B (x)
B, (x) and C (x) contain no frce variable, the defaul[is sald 1o be closed. If each default in D is

closed ycn Als eallcd a closed defaulttheory. Thc logxcal closure TH, (S), given an arblLrary ST

of wffs S, is deﬁned as: . . 4
' s
IIIL(S)_ {w [we L wois closed S}—- w} ‘

An extension for a closed default theory. A = (D, W) is dehned as a mm1mal fixed p01m of an

operator Op . having the following properties: B
() W<Oopes)
@ TH.(OpSH=0p($) | oY

Ax):By(x),.0 .. B (t)

(?) For cach dei'zm.il,‘ IS

1fA(x) € Op(S) and

~B1(xX), ... ~B(x) Op(S), then C (x) is in 0p(S)

15
Consider the following default t. SA=(DO,W) where

{A(x) B(x). B(x): Ax),Clx) Cx): ~A(x}B(x)
Bx) ' C(x) 7 D (x)

} and

W= {A((!)}.

Using A (a) and he first default rule in D, both A(av) and B(a) are in the extension. Applying
‘A(a) B(a) in the second default rulce i m D, [hc extension is mcrcmented to A (a), B(a), and C(a).
The third default rule cannot be apphcd sincc A (a) is in the extension. No more elements can be

added \o the extension and therefore the final extension E= {Aa), B (a), C(a)}.

The above dcfault theory has a unique cxtension. Not all default theories have unique

extensions. For example, a default thcory A = (D, W) where ¢

A IBIx) AX):C) .
P T Em) |
W= (Aa)) \

has two extensions: E, = = {4 (a), ~C (,1)} and E\ = {A(a), ~B(x)}. These cttensnons can be con-

51dered as consistent sets of belief that arc dcnvcd from Lhe default Lhcory A.

Speci cases of defaults exisi which have some iritcrcsting propcrtics. For example, defaults

of the form: i

. A(x):B(x)
B(x)

~ are called normal defaults. A default theory ‘A in which D consists' of normal defaults only is
guaranteed to have at least onc cxtension. This is a desirable propcrty of a default theory because
if it does not have even one utumon that means we _cannot generate a consistent set of Beliefs-
from it and the default theory is quite uscless. Although normal defaults have this Pice‘ property,

~

they are not sufficient for formalizing inheritance [Reiter, Crisuolo 81]. Consider the examiple

shown in Figure 2.1. If the links in the network are rcprevsentcd by normal defaults, we have: -

bird(x): fly(x)
M C fy(x)

penguin (x) : bird (x)
2) + bird(x)

, penguin (x) * ~fly (x) :
3 ~Ay (x) -

Fmally, the starting nodc of the network is represented by the ﬁrst ordered formula
penguin (fred).. From above, two cqually valid condusxons‘c’an be g,eneraled ﬂy(fred) and
~ﬂy(fred) The first conclusion is drawn bv using dclaults (1) and (2) together with the fact that
fred is a penguin. The second conclusion is derived from default (3) and the final fact. In an
inhe{ifance hiérarchy, however, we want to conclude that frcq cannot fly since the other conclu-

sion is derived from a more general rulc.

fly
bird
penguin

fred

N Figurc 2.1 Network showing fred cannot fly

. |
Notice that penguin is actually an e¢xception to the general rule that birds can fly. To handle

this competition among defaults, it is suggested that cxceptions be made explicit. Instead of the
above s>t of defaults, the network in Figure 2.1 may be represented by the following default

theory:

17

a) bird(x) : fly(x) A ~penguin (x)
fiy (x)

penguin (x) : bird (x)
2 bird(x)

penguin (x) : ~fly(x)
o ~fly (x)

@ pénguin (fred)

v

The default the »ry will generate only the desired conclusion ~fly (fred). This is because the
application of default rule (1) is suppressed due to the fact that fred is a péng:a"n. This form of

default, which allows exceptions (0 be made explicit, is called semi-normal default:
- A}

A(x) :Bl(x),...,B,,(x),C(x)
Cx)

The characteristic of semi-normal default is that the Justification of the default rule entails the
cbnsequen[but not vice versa. Unlike normal ‘dcvfiaull theory, semi-normal default theory is not
guaranteed to have any cxtcnsion. [Etherington 87b], however, shows that a subclaSs of semi-
nommal default theory, called ordered semi-normal default theory, does have at le e exten-
sion. Ordered semi-normal default theorics actually correspond to acyclic networks. Graphically, '

semi-normal defaults arc represented as follows:

f . o

A@):~By(x),...,~B,(x).C(x) -

C(x) : N

\ \

~ A =By . ~B
o

A(X\):~Bl(x),...,~B,1(x),~C(x; ' 4 -~

"'C().’)) N \\\

o \

18

In this formalization, strict links and default links arc also distinguished. In a network, they are

represented as:

B
A
Alx):B(x)
B(x)‘ A
L] ‘& B -
*
Alx)=B(x)

\n

So the network shown in Figure 2.1 is represented by this formalism as the network in Figure 2.2.

Figure 2.2 Network represented using the Default Logic Formalism

pil
As mentioned before, there has been no attempt to give a precise formalization for inheri-
tance hierarchies. As a result, there is no guideline to determine whether the inference produced

by an inferchce algorithm is correct or not. The notion of correctness is formalized in [Ethering-

ten, Reiter 83] as the ability of an infcrence algorithm to derive conclusions that lic 'within a sin-

gle extension of a given default theory.

,) | .
An inference algorithm is also presented which is shown to be correct according to the

-

P » . 19

above definition of;co‘rrccuj‘;less. The algorithm is actually capable of conscructiné all the exten-
sions of an arbisrary finite défault theory. A default theory is said to be finite if it has only finitely
many variables, constant apd prcdicate symbols, and dcfaults (Etherington 82]. The algorithm is
based on a so-catled "relz“ixa'tion style constraint propagation technique". An extension is con-
structed by a numpér of s;lcps. At cach SICp, we generate an approximation o\‘f an extension by
applying an unused and q‘pplicablc defaull. A default is applicable at step i+1 if its brerequisites
are "known" and its j.usti‘ﬁcations arc consistent with the approximations at steps ; and i +1. The
algoﬁthrr; proceeds to the next approximation when there is no more, default that is applicable.

When the approximation at Step ¢+1 is the same as that of step 4, the algorithm is said to con-

verge, and the approximation is an extension of the default theory.

(Etherington 87a] noted that there are some finite default theories which admit nonconverg-
ing compu’[ations. However, a subclass of finite default theory is defined such that the algorithm,
whén appi(icd to such a theory, 1s morc well-behaved. It is called an ordered network theory. Itis
stated as a theorem tpat for finite ordered theorics, the prqccdure given (in [Etherington 87a))

always converges on an extension.

~

2.2.1. Discussion

As has been mentioned, a basicknoli‘on of inheritance hierarchies with exceptions is that
subclasses should overridc superclasses. From the above desbription. it is clear that this intitive
notion is not captured by represénting inheritance in Dcfaullt Logic. [Touretzky 831] complains
that since this intuitive notion is not captured, this formalization does not fully .ex'press the mean-
ing of inheritance. |

Another characteristic of this Default Logic formalism is Lhﬁt exceptions have to be made’
explicit in order to control intcraclions ;ﬁnong defaults: ‘[Tdurctzky 84] observes that this

requisite is rather demanding in the sense that modifications of defaults already present in the

20

knbwledge base have 10 be made as we add new information. This modification'is a complex task
when the kr. ‘wl_dge base is large. In addi[ipn, individual defaults also become increasi‘ngly com-
plex as the knowledge basc grows. Finally, the translation of an individual link in the Default
Logic formalism is not independent of other links in the neLWonk. In other words, répresenring :
inhcxitaﬁce by semi-normal defaults lacks rcgrcscntalionzﬂ concisché\s/g ax'xd does not-facilitate

simple modification of the cxisting network.

2.3. Nonmonotonic Logic

Nonmonotonic Logic developed in [McDermott, Doyle 80] uses a sentential operator M,

instead of an inference rule, to deal with deflault rcasoning. The modal operator M used in the
’ f

system is taken to mean "is logically consistent”. The network in Figure 2.1 can be expressed as

sentences in nmonotonic logic:
(1) bird(x) A Ml[ﬂy (X)) = fly(x)
(@) penguin(x) A M[bird(x)) = bird(x)
(3)‘ penguin(x) A M [~fly (x)] = ~Ay (O

(4) penguin(fred)"

]
L
Y
B

ASs we can §%e. these scniences are very similar o the normal defaults in Default Logic, and e
can expect the same problem with nonmonotonic logic as in Default Logic, namely that excep-

tions have to made explicit. It is more desirable for a formalism to capture the inheritance princi-

ple implicidy rather than explicitly. .'

21

2.4. Theory Preference

,In the Default Logic formalism we associate multiple extensions to an inheritanc(c hierarchy.
As long as an inheritance algorithm produces conclusions that lie within a single extension, we
say that it is correct, chcrth_clcss, in inheritance reasoning, we do not treat all extensions
" equally. Due to the inheritance principle, we prefer some extensions to others. For example in
Figure 2.3, both Eo={A,B,C)and E, = (A, B, ~C“} are extensions. But the inheritance pn’nci! ‘
ple tells us that we want to choosc £, instcad of £y. The Default‘Logic formalism says ndthing
~ about this theory preference. “[Poolc 85] discusses a system in which a theory comparator can be
used to compare different theorics that cxplain a sentence. With this theory comparator, the more
specific theory can be chosen as the pfcfcrred theory and hence Lhe’inhcn'[ance principle is cap-

&tured implicitly.

'Figurc 2.3 Extension (A, B, ~C'} is preferred

In terms of Default Logic, the system dcscnbcd by Poole uses only normal defaults. Thc '
form of defaults is <list_of _ var:uhlm> Asswne <wff > where wff is a first-order well- formed‘for—
mula. Besides dcfaults, .facts can also be expressed in the form of a well-formed formula. An
instance of a default is a default in which the variables in l[stkbf_variables are sﬁbstitutcd by

actual values.

Let F be a set of well-formed formulac or facts and A be a set of defaults. Let D denote a set

of instances of the clements of A, A well-formed formula g is said to be explainable if there is

2 -

some D such that F U D EgandF UD Is consistent. D is then said to be a theory that explains
o . f v
8- «

The set F is further divided into two sets: the set of necessary facts F, and the set of con-

ungent facts F,. Graphicaily, £, corresponds to the.links in the network while £, corresponds to

the starting nodes of the network. The reason for dividing a set of facts into F, and F, is that we

want to be able to reason with_altema[ives. For necessary facts, there are no other alternatives.
But for contingent factsz we want 1o reason with the case whcﬁ somcLﬁing else is true. Given F,,
F. and A, esolution S isapair<D,p> where D is a theory that explains g. ‘Formally we have F,
UF, UDE g. Let ﬁp be somc pbssiblc fact. F, 1s said 1o be adequate to make D c\xplain g if

Fp VFa WD g. Asolution § = <D.g> is said to be applicable if F, U F, UD = g.

1

The theory comparator is defined as follows. Given two solutions §, = <Dy, g> and 52 =

<D3, g2>, 1 is more specific than §, (S, 2 S,),'if for all F,,
F, UD, U F, gland/‘ uD,u/‘ L-glthenf VD, UF, [g,

Tha[is, if for all 1‘ which is not adequa[e to make D, explam &1 but is adequate to make D,

) explam g, then F, is also adequate to make D, explain g Solution S, is said 1o be stnctly more -

specific Lhan S§2(81>82)if Sy 25,and S, 25,. In an inheritance hierarchy, we prefer the most

specific solutidn.

Again, let us consider the network shown in Figure 2.1. The network can be represented as

follows:
(1) () Aslrzlmze bird (x) = flv (A)
(2) (x) Assume penguin (x) = ~fivix)
(3) (x) Assume penguin (x) = bird (x)

- (4) penguin (fred)

With these, fly(fred) can be explained by the theory Dy = {bird (fred) = fly (fred)} and ~Aly (f;ed)

k2

23

by the theory D, ={penguin (}red) = ~fly(fred)}. Theory D, is more specific than D, because
there is an F,, namely bird (fred) which‘can make the solution <D, fly (fréd)> abplicable but
<)‘_‘~ﬂy (fred)> not applicable. Furthermore, D is strictly more specific than D, because we
canrot show that D is more spccilic than D,. We show this by considering the lcoontingem facts
which make <D, ~fly(fred)> applicable. There can qnly be two such facts: penguin (fred) and
~fly(fred). Obviously, ~fly (fred) is adequate to make D, expiéin ~fly (fred). Therefore this con-
tingent fact cannot be used to show that D, is more specific than D,. For the other contingent
fact, <D, fly(fred)> is also applicable, which also means we cannot use this to show that D, is
more specific that D, Since thosc two are the only contingent facts that can make
<D, ~fly (fred)> applicablc, and lhat‘ they do not allow us to conclude that D is more specific that
Dy, Dy is not more specific than D, Therefore D, is strictly more speciﬁc than Dl'and we prefer

.

the conclusion ~fly (fred) which is-drawn from thecory D,.

2.5. Circumscription

Another formallsm that attcmpts ‘lo capture common-sense reasoning is Circumscription
[McCarthy 80] Circumscription was proposed as a rule of conjecture when we need to make a
decision upon incomplete information. The argument for such a rule of conjecture is that in real
life, evenvsimple axioms nced a very long list of qualiﬁcaﬁons. For instance, the rule "bird flies”

3
‘cannot be applied in a <vcncr/al situation since there arc a number of species of bird that cannot fly.
’ Enumeraung these specics sull would not work since we may cncounter some .unexpected birds
such as wingless bird or one- wmﬂcd bird ctc. The idea of circumscription is to' augment the set of |
“axioms of the given domain with a "circumscription formula” so that the set of axioms and the

formula together will limit the objects that satisfy a particular predicate to just those that the

domain says must satisfy that predicate.

For example, supposc we have a sentence: Ay_thing (A) A Ay _thing (B). Circumscribing the

predicate fly_thing in the above formula will result in
-+

24
’ V x fly_thing (x) <> x=A v x=B

which says the only objects that arc fy_thing arc A and B. More general forms of circumscription
also exist, such as letting some predicates vary in addition to those being minimized. This results
in a circurﬁscﬁpﬁon formula which is cven more restrictive than normal circumscribtion. The
reason is that during such a proccss, we are willing to allow different objects to satisfy the vari-

_able predicate, in order to find the minimal number of objects which satisfy the predicate in ques-

tion.

[McCarthy 86] describes how common:sense .rcasomg]g, in particular, default reasoning can
be formalized by using circumscription. Recall the inconvenience of the Default Logic formalism
in which exceptions have to be made cxplicit. The axioms in the da[abase have to be changed
when new information armives. McCarthy suggests that an abnormal predicate, ab, can be used to
more efficiently describe the abnormality of certain objects with respect to a particular aspect.

For instance, we can describe the gencral rule that birds fly by the following formula:
bird(x) A ~ab(x) = flies (x)

The formula says that all birds can fly cxcépt thosc ihat arc abnormal. In here, we only consider
.the case where there is only onc kind of ubnor‘*r.nality. In gcnc;*al, an object may be ébnorr'nal ina
number of aspects. This can bg represenied by something like abnormal (aspect 1(x)), -
abnormal (aspect2(x)), etc, which says x is abnormal wi[ﬁ reSpcct to aspect 1 and aspéct 2. When
exception to the .above>g‘encrul rulc is discovcréd, the general rulé docs not need to be changed.
Instead, only one axiom needs to be added aI/hat Says the exccptional object is abnormal, for

instance: |

/)Cngldn &x)y=ab (x)

‘McCartay calls the above a cancellation of inheritance axiom. One result of this formalism is

~

§ | 25

that the different aspects of abnormalities are being m:fdg:.a_s‘rpart of the inheritance hierarchy.

W

The network of Figure 2.1 can be expressed by the following axioms:

L]

(1) penguin(fred) v \
(2) penguin(x) = bird (x)
(3) penguin(x) = ab (x)

@) bird (x) A —abﬂ (x)= sy

Circumscribing a6 by fetting fty 10 vary we get the circumscriptive formula:

" ab(x) e penguin (x)

. > . . /IC&
which allows us to conclude that penguin cannot (ly.

Similar to the Default Logic formalism, formalizing inheritance reasoning by circumscrip-
tion also does not capture the inheritance principle, Although it is more convenient to add new
axioms in this system, exceptions still need 10 be explicidy menuoncd Another difficulty wnh

ths formalism is how to compute the circumscriptive formula.

2.6. Mathematical Formalism ()fInlxeritilnL:e

The central concem in this mathematical upbronch [Touretzky 86] is to give a precise for-
malization of the intwitive notion of subclasses overriding superclasses in an inheritance network.
Unlike the previous approaches in which the links of an inheritance System are analyzed as some
assertions in a logical systcm, Tourctzky choéscs to analyze inhcritance systems directly in terms
of the links in the nctWork. Inference in such a system can be thought of as constructing mfer-

+

ence paths between the nodess. - . ,)

Touretzky wants to find an ordering in which subclasses are allowed to override superc-

lasses. An ordering which is based on the length of competing inference paths is obviously inade-

=

26

quate. Such an ordeﬁng corresponds to the shortest path algorithm which can be shown to derive

erroneous results.

[Touretzky 86] proposes a partial ordering called the inferential distance ordering which has*

the desired properties. Traditional path length ordering orders the nodes according to the length
of the path between two nodes. The inference distance ordering, on the other hand, orders the
nodes éccording to the "between-ness” of two nodes. Suppose that A can inherit property P fron;

node C and ~P from node B. That is, there are two inference paths p, and p, from A to P which

~allow us to draw conflicting conclusions, Using the inferential distance ordering, we let A inherit

Bt
an 1

prbpcny P from C’if there i.j nicrence path from‘)C '[0. B and not 'vice versa. On the other

‘hand, if there is an inference path from 8 10 ¢ and not vice versa, then we let A inherit property

~P from B. If none‘of the above is true, then we have an ambiguous situation: The reasoning
behind this ordering is that if there is an inference path from B to C: and not vice versa, then node
B can be viewed as a subclass of C. Since subclass should override superclass, A- should inherit
property ~P from node B. Consider Figure 2.1. Since there is an inference path from per.zgluin 1o
bird, penguin is a subclass™of hird. Thc‘rcfore penguin provides mére specific information and

fred should inherit the property ~Av from it.

The path length ordering and the inferential distance ordering coincide when the network is
tree-structured. But for multiple inhcritance system, the two orderings differ when redundant

links are present or when the given network is ambiguous.

»

Since the later study_of this thesis is based on Tourctzky’s formalism, we now give more)

- detailed definitions. A nctwork is speciticd by a sct of inheritance assertiotis or links. Since a

link is formed by two nodcs, we say that a link has a length of two. An inheritance path denoted
by <xy, x2,...,x,>, is a sequence of nodes of length > 2. Nodes are signed. They can be of the

form --x;, —x; and #x; which arc referred (0 as tokens. A link of the form <+x 4y >, <+x,—-y> and

<+x,#y:> says x is a y, x-is not a vy, and no conclusion whether x is y respectively. A path .

1

——

~

A

A : ' ‘ ‘ 27

<Xl X2,...,X>, in which x,, . . . »Xx-1 are all positive is said to be well-formed. In the definitions

below, the followmg notations are used:

I1: the set of all individualé and predicates in an inheritance systern.

8: the set of all tokens derivableTrom IT, i.c., ® = (+,- #} x I1.

X the set of all sequences in ©° of length ac least two.

I": the set of well formed order pairs of tokcns e, g ®xe g Z.

C: an element of ¥,

D, S §ubséts of Z: | L .

x'; tokens that match except forsign, s\;ch as, if the sign of x is +, then x' can be —x or #x.
e
The conclusion set of a set of sequences-®, wrillen C (d), is the set of all palrs <x, y> such that a
A

sequence <x, .y > appears in . For cxample, if ® contains <+fred,+pengum,+bira’ >, then

<+tfred, +bird> isin C ().

A set of sequences ® contradicts the sequence SXpeoxe> 0 <xy x> e C (D) for some ;,
1<i <n. Notice that contradiction occurs only in an i‘nhcmgrfc/hxerarchy with excepuons For

instance, if ® contains <tpenguin, +bird , +fly >, ‘then @ contradlcts <penguin,—fly > and vice versa,

A token z,is an in;ermediary t0 4 scquence <xy, ..., x,> in @ iff eid}cry =&j' for some i, or @
contains a sequence Sl X Y Y Xy > w‘hcrcy =y; forsome j, 1 fj<mand1<i <n,
‘In@itively, y is in[crjncdiary © <Xy, ..., X, >j T there is a path from x Lhroﬁghy to x,. Notice
“ that for a tokén y 10 be intermediary to <X . >, it is ot sufficient for it to appear between
<Xi,Xiy1> Where 1<i <n. Consider the network in Figur. 4. @ hz;s tq contqin the sequencé
» <x1,x2,,r3,;t4> in order for x; 1o be intermediary to <Xy, x> in O, Ifit coﬁtains only <x1,xz,x5>
then x, would net be so. Infcrcnual distance ordering can now be formally descnbed by the

nouon of preclusion: ¢ precludes a suqucnu G=<xy,...,%,>iff® comains a sequence <y,x',l >

Figure 2.4 Node x4 is intermediary 1o <xy, x4> -

where y is an intermediary 0 o in ®. Consider the network in Figure 2.1. & contains
<+fred +penguin ; +bird > and <+penc1un —ﬂv> @ precludes <+fred , +pengu1n +b1rd +Ay > since
penguin is intermediary to <+frcd +per. w .+bird ,+fly> in ®. ‘We will use Lale terms preclusion

and preemption interchangably herealier.

In this thesis, we want to be ablc (© say that a node is preempted by some links. Given a link

2 . :
<x1,Xx,> in®, nodes yy, . . ., Yn, CXCCPL xy. are said 1o be preempted by <x,, x,> if they are
intermediary to <x;,.x,>.

»*

A sequerce ¢ = <x,,...,x,> is inheritable in @ ilf n > 2, ® contains both <Xy, ...,%a-> and

<X2,....%>, and & ncither contradicts nor precludes . This definition may seem .strahge

becau’se it requires overlapping betieen scquences mlhcr than just concatenation. The reason has

to do with coupling which'is the pxopcrtv that a %ubclass is always in agreément with ig superc- »

lasses (when there are no g’xpllcn cxupuons) Supposc’ 'ﬁ/c define mhemabllxty accordmg 10 con-

catenation o‘l’sequenccs then given a network 5hown in qure 2 5 there would be four different

'

grounded expansions (cxpansmn 1s similar to cxtcnsion and i[will be formally %eﬁned shom;.’).

29

Figure 2.5 Network showing the effect of coupling
The difference among thesc cxpansions is that they contain the following sequences:
’ Dy <+B,+C, +E> <+4,+B,+C, +E>
<D« <+B,+C., +E>, <+A,+B , +D,-E >
O <+5,+D,—E>, <+A',+B,‘+C_+E>_
- ' ‘ Dy <+B',;D,—E>, <+A,+B,+D,-E> . T .
Notice that in &, B is an £ vbut A n not ai'i L and in &, B ié not én L while 4 isan E, even .
though in bothvcascs, A is a B. That is, a‘lmOugh A 1s a subclass of B and that there is no explicit’
gxception, A does not inherit all the propertics of 8. .However, if we use our deflnmon ‘D, and &,
are climinated.
‘We say a link <x. y,> is redundant if the path <x. y,. . . . Ya-1, y> Is inheritable iy .
. - .
Using the notion of inheritability, we clm LOW dc!mc the superclass-subclass relauons between
‘ classes and between classes and individuals: g supcrclass of x in & if <x y> is in ¢ or

.

<x,...,y>1is mher][able In @, x is said 1o bL drSlletaSS of y.

tance iff ® contains-cvery sequence inhcnmblc in ®. & is an expansion of asetS g Zif oS

i

30

and @ is closed under inheritance. @ is grounded in a st S ¢ X iff every sequence in &— S is
inheritable in ®. A sct of ordered pairs of tokens I is ambiguous iff it has more than one
B ‘ .

grounded expansion. I is unambiguous i{f it is not ambiguous.

. , N
The above definition of ambiguity is general in the sense that it does not tell us how to detect

ambiguities for a g’iv'cn nclwgrk. The following definition deﬁnes.Lhe notion of stability of an
individual expansion and it is proven that a grounded cxpansion of a [dtally acyclic'l‘ is stable iff
r is unaxhb‘iguous. An expansion & is stable iff it contains a set of sequences of form
SE Yl Ve <X I I > <Vl ,\;»>, and <zy,....z, w'>, -uch that & preAcludcs

neither <x,yy,...,y, w>o0r <x,z,, ..., Im ov'>. D is srable iff it is not unstable.

Todretzk'y’s work here is the firdt formalism that seeks to clearly define the inheritance prin-
ciple. The inheritance pn'néiplc 1S captured in the inferential distance ordering. Recall that in the
Default Logic forrhalism, th(::'minimuni correetness éntcﬁa for an inheritance reasoner is that the
facts returned by it have to lic within a single extension of the default theory that corresponds to

‘the inheritance network. [Ethcrington 87b] shows that the reasoner described in this section does
R : : &

meet the requirement.

Another goal in Tourcukx s work is to provide a precise semarntics for the NETL reprcsen-
tanon language The Parallel Marker Propagation- Mdchmc which 1mp1emems this language is
‘tremen'dously efficient. Ironically, after specifying the semantics for the system, it is found VLhat
efficient algorithm on the PMPM may not produéc the correct answer. The inferential distance

ordering seems to defy parallel implemcntation. We will have more to say about this in the next

chapter. o o ' : , , ’

31

2.7. Nonmonotonic Rules for Inheritance Systems

-

In the last scction, we saw how the pam construction technique is used to describe the inher-
itance principle. Although Lhc Jpproauh overcomes the dllfu.umes of the Default Logic and Non-
monotonic Logic formahsm it has also becn criticized for its own problcm [Sandewall 86]. By
staying-away from logical systecms and dealing only with path construction, it is dlﬂicult to com-
bine Lhe system in [Touretzky 86} with other logic. The approach taken here by Sandewall Is to
incorporate the inheritance principle into the inference rules of a nonmonotonic systcm. The

result is that a more general inference mﬁchincry is produced wiLhou't sacrificing the inheritance
principle. |

The network in this system 1s specified by a sct of propositions, I, of the form isax x,y,5)
and isa(x,y,s) whcrq x and y are nodes and s is a sign, cither + or —. ‘The di.‘s[in‘éti{on» between
isax and isa is subtle. isax is stronger than isa in the sense that isax is isa except that it is
"independem of other links in the network. isax then is used for specifying cxphcx[ly known facts
or facts that are independent ol other links. Two other rcla_lions. precl and cner, are uscd to
describe the inference rulcs. Compuun" extensions in this approach is seen as adding proposn-
llons to the given set of T, Thc infcrence algorithm resembles Etherington’s as described in Sec-
tion 2.2 in thre sense that an cxtension is generated through a‘s‘cquence of steps.. At stép [+1,7n
inference rule is chosen which is apphicable to I, and I'.,, is the union of [; and the consequence
~of the inference rule. The difference is (bzn contradictions méy present in some cxtensiém. These ‘

extensions are not accepted since they represent those that are not preferred. We first present the
, S \

set of inference rules and then we will discuss how they work.
| (1) ifisa(x,y,s)is a memberol T
then vadd tolMisa(x, v,s) : C .
) ifisa(x;y, s)isa fncmbérot' r

then add to I: ~isa (x, ¥, =5

32

(3) ifisa(x,y,+)and isa(y,z,s) are members of I"
and isa(x,z,-s)and cntr(x,y, z, s) are not members oflT K

]
then add to I': tsa(x,z,5) precl(x,y,z,s)and ~cntr(x,y,z,s)

@) ifpreci(x,y,z,s), isa(x, v, +)and isa (v.y,+)are members of I

.

then add to I™: precl(x, v, z, x)

(S)y ifprecli(x,y,z.s5)and isa (_\',-z-, -5) are members of T

then add to T: ~isa (y, 2, —s)

(6) if isa(x,y,+)\ 'i_sa(y.z,‘~), isa(x,z,-) and isa(z,v,s) are mecmbers of T and

isax(y, v, s)is not a member of T°

g

then add to I™: cur (v, v, v, 5)

The p'urposes of rule (1) and (2) arc obvious. For the rest of the rules, the propositions precl
and cntr are involved. The proposition prect (x,y,z,5) can be viewed as saying something like
this: if prec[(x,y,z‘, s) 1o be true. thn we can considér is (3 2, 5) is true but keep in mind that it
may be precluded by isa(y,z,~s). Forcnir(x.y, =, s), we may think of it as saying that it is con-
[radlctory to derive isa(x, z,5). With Lhwc mlcrprcmnons in mind, it is easy 10 see that rule (3) is
used for checking if a derived fact is preempted bv some "intermedi. - links. If not, then the
derived fact is addcd to the extension. Rule &4, uscd to move the intermediary nodes along so
that rule (3) can be used to check all thc’ihtcrmcdiary' nodes. Rule (5) is used to generate a con-
tradiction, Tﬁis situation occurs when the in:(:crcncc rules are applied in such a way that the more
general soh‘ni?n is derived first and when we derive the more specific solution which is in conflict
with Lhev morc general solution. When a contradiction occi_Jrs, we ignore that extension. - How-

“y—
ever, if the specific solution is derived first, the inhibiting ditions of rule (3) will prevent its ’
aplaplication and hence leaving only one extension. Finally rule (6) is used to handle Lhev case
where a isa (x, z, +) can be derived Lhmﬁgh isa(x,y,+) and isa(y, z, +) but is prtempted by a givén

factisa\c,z,-). When this happens, we do not want 1o derive isa(z; v, s) even if isa (z,v,s5)isin

33
‘the original network. '

2.8. Summary

In this chapter, we have pxovxdud 4 Survey on the danercnt formalisms for mhentance rea-
soning. Many of these formalisms arc originally mtcmcd for formahzmg common sense reason-
ing. These formalisms arc morc general and powerful. Nevertheless, they have problems in cap-

Y

turing the inheritance principle implicitly.

The usefulness of inheritance systems and the inability of those formalisms to capture the
inheritance principle motivated Tourcizky 1o 'srudy inheritance systems indcpendently. His
mathematical foﬁnalism provides a precise formalization of the inheritance principle. Recently,
Etherington shows that the inferential distance ordering satisfies the minimal correctness require-
ment of the default logic formalism as discussed in Scction 2.2 [Etherington 87b]. That is, the
results generated by an inferential distance inheritance rcasohc; lic_ within a sjpgle extension of
the default theory that corresponds to the bgivcn inheritance network. Emcringto}l also'dbscrvcs
that a lot of the resulis (i.c. thcorcms=und the mechanism for determining extensxon) in {Touretzky
86] have close correspondence to lhzll of the dcfault logic formalism. Given that the inferential
distance ordering satisfies the n}jnimal correctness rcqui;cmcnt, Etherington argues that the
inferential distance ordcn'ﬁn ‘can be viewed as fast mfcrcncc algorithms for reasoning with the
tractable class of default theories that correspond to inheritance networks." The corne_spondence

(

between the two formalism need o be further explored.

In Scction 2.4, w;: (hscussgd Poole’s theory comparator. He shows that inheritance reason-
ing can be done using the theory comparator. The systcm described is more general since it
allows arbitrary well-formed fommlac in the defaults. Reasoning in a semantic nc'twovrk_is seen as
a restricted form of reasoning using the theory comparator. This kind of restricted reasoning can

be supported by a parallel machine. the Parallel Marker Propag}éon Machine, which will be dis-
. \ |

34

3

cussed in further detail in the next chapter. In addition, Touretzky's formalism is catered to such
. v

form of reasoning and allows us to concentrate on the problems of inheritance reasoning in a

semantic network. The later investigations of this thesis is therefore based on Touretzky's {or-

malism. In Chapter 4 and 5, we present two algorithms which reason according to the

Touretzky’s definition.

Chapter 3

Parallel Inheritance Algorithms

ar
&

3.1. Introduction , -

We have briefly introduced the Parallel Marker Propagation Machine (PMPM) in Chapter 1.
In th;s chapter, we discuss in mose, detail the machine and a language that allows us to write algo-
rithms that run on the PMPM C(»ngnmmly We then give a survey of a number of parallel or
pseudo-parallel inheritance algorithms. In view of the complexity of inheritance reasoning, a

total parallel algorithm scems impossibic. In this chapter, we sce how we can make trade-offs

- between generality of networks and paratlclism; and between correctness and parallelism.

3.2. The Parallel Marker Propagation Machine

The aim of the PMPM is to provide fast inference given a .large database of real-world
knowledge. The idea behind it is s[_r?ghtforward: the nodes and links of a semantic net are
: dg'recuy mapped into hardware processing clements and hardware links respectively. Since the
aim is to capture a \sufﬁcicntly large amount of lénowlcdge, the PMPM is expected to have mil-
lions of nodes. This means that the hardware processing clements have to be very simple; other-

wise, it would be practically impossiblc 10" produce such a machine,

In the PMPM, cach node is very mmp]c Each of Lhcm has a unique id- number for addrcss-
Ing purposes, a number of state bits and a bit wide boolcan logic unit. The state bits can be setor
cleared by the commands (/(.Lw by a central controller. The central controller can broad_cast
comfnands to either an indivvidually ;1ddressc‘d node, or 1o a sct of nodes based on Lheir'imcm.al
state bits. Inference is done by prop:né:uing marker bits around the network foﬁncd by the nodes
and links. ‘The result of the inference is reflected by the marker bits that the nodes received dur-
ing the propagation. The PMPM is ;m‘SIMD machine. At cach time step, multiple ﬁodes can pro-
pagate markers to different no_dcrs and henee parallelism is-achieved.

N
o

. . 36
© 32.1. A PMPM Langusge

[Touretzky 86] develops a language for marker propagation algorithms. The languiaga.is
simple and easy to understand. In Chapter 4 and S, we will present two algorithms that are writ-

ten in this language. It is important for the rcader to understand the material in this section.

Readers who are familfar with the language may skip the section without loss of continuity.

As we have mentioncd, the PMPM is an SIMD machine. Both the processing elements and
the links respond to commands from the central control. There are two sets of commands: node

e

commands and link commands. The marker bits of a node can be set and cleared by the follow-

ing two node commands:
set (M, ... M,]
clear (M, ..., M, .

where M; s are markers. Or, they can be sct and cleared by the following link commands:

set _head[M,,... M,]
set_tail (M, M,
clear head [y[, V)
clear;taii [‘WI,. oML

‘Given alink A — B, A is said 10 be the tail node and B the head node of the link respectively.
‘The above commands arc unconditional statements. Conditional statements are of the form:
,. . « . :J . ’ .

condition, , . . ., condition, = dctiony , ..., daction,,
If condition, through condition, arc satisfied, action, through action,, are performed. Conditions
here refer to marker bits that arc on or off at a node such as:

on{\Ml,....M,,]

off (M, ..., M,]

“any_on{My, ..., M,]

any off(M,,... ,M,]

37

The vonn ("of£") condition is sausfied if all of the markers mentioned are on (off). The
"alny_on" ("any_off") condition is satisfied if any of the markers mentioned are on (off).
Another condition is that a unique name be assigned to a node:
R Y

hame [x] .
The above are tests that are performed by a node. Tests can also be performed by links on their
head nodes and tail nodes: '

on_headM,,. . .. M,]

off_head[M,,..., M,

any_on_head[M,. . i,]

any_off head[M),. .. v]

on_ta.il My, ... M, J>

Off tail (M,,... M, .

any_‘on_tvail"[M.l M, - BN

any_off_tail[ﬂh,u.wa_
Finally, a link cantestifit is of a specific lype:

link_typel:,,..., tn] |
where 4;’s are different typcs of links. Another important construct in the PMPM language allows
us to perform 1terzmon)

loop ‘

body o

endloop
When the loop is enterzd, cach st ement in body is executed. If none of the statements inside
body can be executed, ..~ the bondxuons of these statements are not met, the loop exits. If at

¥

least one statment inside body is exccuted, the loop is repeated.

To illustratc the use of the language, consider the procedure shown n Fxgure 3.1. Itis used

to compute the transitive closurc of the IS A link from a starting node x. At line 3, all nodes

respond to this node command and clear their respective marker Mrc. Atline 4, only the given
node x sets its marker bit M;c on. At cach step inside the loop, all the nodes that have an IS-A .
link as an input link and that the tail node of the link is alregldy marked with My are marked by
- Mrc. When no more nodes can be marked, the loop terminates I'and the procedure exits. The
nodes marked with Mrc is the transitive closure of node x. The run time of the procedure is pro-

portional to the depth of the network and does not dclpcnd on the actual number of nodes that the

network has.
~a —
1 Procedure transitive_closure (x: node)
2 Begin
3 clear (Myc1:
4 name(x] = set[Myc);)
5 loop ’
6 link_type (=i, on_zaillMrc), cff read(Mpc] = set_head [Myc):
7 endloop
8 End.

Figurc 3.1 Transitive closurc algc #ithm

3.3. The Upscan Algorithm

(Tourctzky 86] presents a parallel algorithm called upscan which runs on the PMPM. The
algorithm is basically a shortcst/pulh algorithm which may produce efroneous results. Two
methods are proposed Lo ensure L"hc correct results are obtained. First, let Lhe algorithm run on a
restricted class of inheritance networks. By imposipg certain restrictions on inheritance networks,
it is'possible to guarantec LhC correctness of the shortest path algorithm. A claSs of inherita\ncc
networks that the shortest path algorithm can deal with properly are called orthogonal

class/property inheritance nctworks. The second method involves mddifying the inheritance net-

work sn that the upscan algorithm works correctly. Such a modification is called conditioning the

network,

/\

39

3.3.1. Orthogonal Class/Property Multiple Inheritance Networks

As has been mentioned, the shortest path algorithm is inadequate to deal with general inher-
‘ itance networks. The aim here is 1o characterize a rc\:stricted class of inheritance netwofks that
will not'cause problems for the shortest path algorithm. Due to the simplicity of the shortest path
algorithm, one might cxpect that the restriction would be quite severe. We first describe a class of
' networks which distinguishes class nodes and property nodes. We then discuss a class of net-
works which does not allow a node LO inherit the same properties from multiple superclasses
The first class is callcd class/propcny multiple inhertar.ce networks. The second is called orthog-

onal class/propeny multiplc mhcmancc networks.

- In the most general treatment of inheritance networks, each node can represent either a class
of objects or some propertics of an object. In a class/property inheritance network, we distinguish
nodes which represent classes and nzjcs Wthh represent properties. In such a network, only the
inheritance of propertics can have exceptions. The inheritance of class membership ’is strictly
ihdefeaéible. ngure 3.2 shows 2 class/property inheritance network. Nodes P, and P, represent

properties while nodes C, through C, represent classes.

Py

Figurc 3.2 A clziss/propcity inheritance network

" 40

Class/piopeny inheritance networks }arc still oo complicated for the shortest path algorithm
to work correctly. The reason is that a élass/property inhcﬁtanéc network can be ambiguous. For
instance, the subnet formed by nodes C3, Cs, Cq, Co and P, in Figure 3.2 is an’ambiguous net-
work. An orthogonal class/inheritance inheritance network further restricts general inheﬁtance
© system such that, if a class inherits properties from multiple shperclasses. tﬁese properties have to
be disjoint. More preciscly, suppose there are links A — B and\A - C. Then for an)y node D,
either theré is a pam Frofn 8 1o D or from C to D but not both. Figure 3 3 shows an orthogonal

class/property inheritance nétwork. \'oucc that the network in Figure 3.2 is not orthogonal ’I'hat

is because there are links C3 — Csand C3 - CW go from both Csand Ceto P,.

Figure 3.3 An orthogonal class/property inheritance network
Touretzky, shows that an’ orthogonal class/property inhcritance network is-always unambiguous.
X

He also shows that the upscan algorithm works Lorrculy given an orthogonal class/property

inheritance network’.

41

3.3.2. Conditioning

The second method that is uscd to help the upscan algorithm is called conditioning. Tﬁe

«
-idea is to modify the given inhcritance network so that the shortest path algorithm can work
correctly. In [Touretzky 86], an additive abproach is'taken, i.e. tc}'add new links' to the network
ix‘lstead of restructuring the network. Fi guré 3.4 xénows,a network that beats the shortest path algo-

" rithm. Figure 3.5 shows an additively conditioned version of the network in Figure 3.4,

Figure 3.4 A nctwork that beats the shortest path algorithm

~ Figure 3.5 An additively conditioned network -
Link A -5 D is added to the original network. Notice that the shortest path algorithm will con-

clude that 4 is not a D which is what we want,

42

The conditioning algorithm will add the right link only if it knows what the correct answer

is. The implication is that we have to compute the preferred extensxon) of the given network
first and then let the conditioning algorithm add the appropnate links. Co putmg the preferred

extension(s) and the condmomnfy is done by a Maclisp program called (Topological Inheri-

tance Architecture). Instead of simulating marker propagation in a PMPM, lists of possible /'3
marker propagatron paths arc conqtmclcd and analyzcd This cnsures that the inheritance ordering

\

is preserved by adding links Wthh block problemauc paths,

It is possible to condition any consistent inheritance network using the additive approach.

) _ . ,
The simplest way is 10 connect cach node in the network to every other with an appropriate link.
The result can then be obtained in one parallel step. The problem however is that we have a nef-

work with O (V?) links. [Tourct/ky 80] shows a more. efficient condmomng algorithm._ But in the

worst case, we still cannot have a nctwork with O (V?) links.

3.4. Partitioning and Quasi-Parallel Inheritance Algorithm

The upscan aIOortthm described in the last section is cxtremely efficient: it is completely
parallel Unfortunately, its great cfficiency is 1lso its downfall The approach taken here is to0
trade off some parallcltsm for correctriess. If a rcasoner produces wrong answers, it does not

matter how fast it can reason. Therefore this trade off between parallchsm and correcmess is

. another reasonable approach for dcalm<Y with parallel processing of inheritance networks.

[Ethermgton 87a] suggcests a mcthod for mhcntanee reasomng in which limited parallellsm

d«:x

- can be achieved. Recall that in the Dc[ault Logic approach to formahzmg inheritance reasonmg,» :

exceptions are @ﬂxpltcxtly stated. We can view the problcm with the shonest path algon'thm as the
.

problem of dealing. wrth these exceptions. thhout CXCCpllOI‘l we €an process networks in parat-

lel. The idea of this method 1S 10 partition the "lVLn nctwork into subnets which can be processed

in parallel. A mple (Figure 3.6) is given to show how the method can be used to construct

Ny

43

. extension in quasi-parallel.

/,J*iﬁ:re 3.6 Example for quasi-parallel algorithm

We start by numbering cach node in the network according to the m;r}lber of exception links
upon which itvdcpends. For cxample, nodes A, B, €, D, E and F do not d;:pend on any. excep-
tion link. They are assigned as level 1. NQdc /1'is a speciai node in this network. If we consider
the path £ - G — H, then inodc /1 dcpends on one cxcepuon link: However, if we c()nsider the
path £ -7‘) H, the node docs not depend on any ucccpuon link. When a node can be assxgned tor
different levels, we pick the smallest level number for it. So in ths case, node H is assxgned as
level 1. Nodcs G and / depend on one cxccptxon link and are a551gned as level 2. Finally node J -
depends on two. cxcepuon lmks and.is dssmncd as level 3. If the nodes are assigned to k different
levels, we pcrform,k parallel steps. At cach step n, all the Imks havmg'exccpnons atG.hc_last step
afe 1g.nbred We ‘then process the’ erLnnm(7 neework in paratlel by propagatmg markers from~
those nddes with level nUmbu n - 1‘ Etherington shows that after £ steps, we obtam an exten-
sion. Nonce Lhat links * -8B and4 — . restrict links. ilx is assumed that propagation through

strict lmks is instantancou

Here, we have not _cificd any specific marker propagation scheme. Different schemes

, | , 44

may lead to different extensions. For cxz{mplc, in Figure 3.6, we may have four different exten-

sions depending on the marker propagation scheme:

Eo=1{A,B,C.E.~H.,D,F)
E1={A,B,C,E;~H,D,~F,/,~J}
Ey={A,B,C,E,~H,~D,F.G}

Ey=(A,B,C,E,~ll,~D,~F,1,G,~J)

The m‘émod described above is correct in the scnse that the conclusions drawn lie within a single
extension. Nonectheless, it is not complete since some extensions may never t;é’generatcd no
rriafter what marker propdgalion schcmcvyou usc. - For example, the f%llowing extensions may
never be gegeratédﬂ:
E4s=(A,B,C,E,H,~D,F,G) ' h
Es= {A,B,‘(,“,E,II, ~D . ~F,G,1)

: .

‘The bias towards ccrtai’g extension depends on how we partition tSe network and hence depends

on the exception links. In the examiple, if the exception link E(X? : %((’:c))’ D) is removed, then
° ¥

extensions £4 and £ can be gencrated. This makes it very difficult to characterize the bias of the
algorithm. This is in sharp contrast with computing the preferred extension which is based on the

well understood notion of infcrential distance ordering.

45

3.5. Skeptical Reasoning in Inheritante Systems

The inheritance reasonér as defined in (Touretzky 86] is a credulous reasoner in the se -
: A

that it tries to conclude as much as possible given an inheritance network, For example, consider

the Nixon Diamond in Figurc 3.7.
-]

Paciﬂst.

Republican

Nixon

Figure 3.7 \Jlxon Diamond
“Ina credulous reasoner, {two prefcrred uucnsnons dare generated. In one extension, we would con-
clude that Nixon is a Pacifist whilc in the other, he is not. On the other hand, a skeptical reasoner
refuses to conclude ahything- when multiple preferred cx[cnsioné arc discovered. For thefietwork

in Figure 3.7, a skeptical reasoner would refuse to conclude anything about wheLhcr Nixon is a

B

e e Pacxﬁst ornot. A result of this is that a skeptical reasoner will gencrate a unique extension while
g) 4
a sredulous reasoncr may generate mulliple extensions. -Since a skeptical reasoner need not con-

sider multiple cxlensioqs’f:-vlékcpticul reasoning algorithm should be less complicated than credu-

lous reasoning algo:_rithms.
Con51dcr for a moment the prmucal nmplcmc.nutmn of a crcdulous reasoner using the

PMPM. As has becn mcnuoncd s dlfﬁcult to usc the “MF' 1 to compute the preferred exten-

sion of a glven network. thn muluplc prelerred extensions exist, the problem becomes even
moure‘djfﬁcult. The strategy adopted in [Tourctzky 86] i designing TINA (see Section 3.1) is 1o
."f'_jét‘—the program abort and return a message whencver multiple preferred cxtensions are found. At
: » i .

R

first giance,, this seems (o result in a rcagoner that is similar to a skeptical reasoner. But the

46

4

diffcrenf between concluding ambiguity and conéludfng nothing has a significant impﬁt 6n the

processing of the rest of the network. For instance, consnder the network shown in Fxgure 3.8 .
i\ Coh
(from [Touretzky et al 87]). o ‘} =

Nixon

Figure 3.8 Network showing cascaded ambiguitics X

P
YAy

For a credulous reasoner, there arc three prcfcrrcd‘g:x\tc‘nsions:
Eqo = {Nixon, Quaker , Republican , Pacifist, Football fan, Anti-military)

' E, =\{Nonn, Quakcr, Rc}.mb/ican , Pacifist, Football fan ~Anti -military }

&

Ez = {Nonn Quaker , R(apublzcan —-Pac:fm Football fan ~Anlz —military }
TINA will be aboncd when it cncounters lhc node Pacifist. This is bccause in Eg and EI, Nixon is
a Pacifist whlle; in Ez, Nixon"is not. The skeptical reasoner in [Horty et al 87], on the other hand,
simply refuses l(; cbncludc nbout whcth.cr Nixon is a Pacifist or not. The effect of this .is Lﬁ’at'il

will conclude that ‘Nixon is ~Anti =militagy since -nothing is passed from the link Pacifist -

Anti—military 10 opposc the input [rom the link Football fan - Anti—military .

[Horty et al 87) presents a scrial-parallel algorithm running on the PMPM for skeptical
inheritance reasoning. In the previous two scctions, the algorithms are concemed with computing
or reconstructing the wholc extension for a network. But in real applications, ‘what we want to

know is whether node x is a subclass of node \ﬁ processing such a query, we do not want the-

wer

47

System to consider links that are irrclevant to that pamcular query. By restm.:tmg the attention to
only relevant links, an inheritance reasoner may analyze-a smaller and possibly less complex net-
work. [Horty et al 87] specifies a restriction of a net T with respect to the particular kind of
query. This query-restricted nctwork ™ contains all the links that are necessary to determine

NJ

whetherx isay. Formally, ™7 is dclineq as the minimal net containing:
(1) every link on every pathinT from x to y, and
(2) everylink on every path in T from x to w, for all nodes w occurring in I'*7,

The purposc of the proccdurc trim for_query(x,y) isto determine [** for a pamc-

ular query. After mnmnﬂ the procedure shown in Figure 3.9, cach node w in I will be marked
¥

with M, iff w = x and w occurs in 7 In subsequent proccssmg, we only need to restrict atten-

tion to those nodes tha[arc marked with M,

‘ -

1 Procedure trim for_gquery(x,v: node)

2 Begin

3, clear([M,, My, My, Moy

4 name[x] = set(M,];

5 name(y] = set[/ﬂyl, ‘ S

6 \loop

7 link_type["—"], any - on _all[ﬂx M), off _head (M)

8 = set_head([M,); :

9 endloop; s .
10 link_type["—", "5, on_tail (M], on__head[My] = set_head[M;)]
11 loop)
12 link_type("—", "], on_head [M,], on_tail[M,], off tail [(M,)
13 = set_tail(M.];
14 endloop »
15 End.

Figure 3.9 Procedure trim_for_query(x, y)
[Horty ct ai 87) in[rodﬁccs the idea &f the Degree*” of a path. Basiczilly it Tefers to the
length of the longest path between node x and node y. At step n, the serial-parallel algorithm
will coﬁsider all the nodes with degrec n. When there are nodes that have conflicting inputs, the

. algorithm considers them one by one, i.c. scrially. The algorithm trics to determine if any of the

. T8

i

48

immediate links to a node dominatc. This is donc by propagating a marker from all the immedi-
ate links. Those immediate links that receive the marke{ after the propagation are preempted. If
only one is left as unpreempted, then the node in question is marked by the marker that is passed
from that link. If moré than one such link is found and they are ot?differem types, thenﬁ% node
in question is ambiguous. If there arc no conflicting inputs at step n, markers are propagated in
paraile] to nodes at degree n+1. So as we can sce, parailel processing is used whenever it is possi- -

ble but occasionally, serial processing is used to check for ambiguity.

3.6. Summary

In this chapter, we have discussed a number of parallel algorithms for inheritance reasoning.

We can summarize these as follows:

(1) Restrict the class of inhcritance networks so that the simple shortest path algorithm is ade-

quate.

(2) Modify the given inheritance network so that the simple shortest path algorithm can work

properly.

(3) Sacrifice completeness to provide a quasi-parallel algorithm.

(4) Redefine and simplify inhcritance reasoning so that a serial-parallel algorithm can be

tricted class of inheritance networks: orthogonal class/property inheritance networks. Besides

" theoretical interest, it is doubtful that this class of inheritance networks can be practically useful.

The problem with the sccond approach is that the conditioning process cannot be done in parallel
and reconéitioning has to be done every time the network is being updated. In addition, using the
additive approach to, conditioning, the number of links added is O (V?) in the worst case, where N

is the total number of nodcs in the nctwork. Other kinds of conditioning methods have not been

WL 49\
. . . ¥ .
Investigated. For instance,restructuring the network may lead to a simpler network. However

such a conditioning algorithm might be comphcatcd snrugce 1t involves both deletmg unnecessary

links and addlng useful connections. In the third appro:mh. ‘Ethc_:nngton abandons the idea of hav-

ing a totally parallcl mher_xmncc al gorithm due to the inadequacy of the simple shortest path algo-
rithm and the complcxity‘fof thg imheritance reasoning. He observes that although we cannot pro-
cess the entire network in parallel, it is possible to process subnets in parallel by ignoring excep-
tion links. It turns out that we have 10 sacrifice more than _]US[some of Lhe parallelism in order to

" get a correct algonthm The quasi-parallel algorithm is incomplete and it is difficult to character-

ize howlthe algorithm favors which cxlcnsions. [n the fourth approach, Horty and his colleagues

" argue that the skeptical Lhcory of inhcritance reasoning is equally, well-motivated as the credulous
theory. It has anomcr advantage: duc 1o its relative simplicity, simpler and more efficient 1nher1-’/
tance algorithms for skcptical reasoning can be designed. However, the question of Whelher we
can have a parallel or cven a scrial- -parallel algorithm for inheritance rcasomng as originally.

v

defined in [Touretzky 86] is still left unanswered. - i

Chapter 4

Dealing \Vltf‘x‘q.’fnamblguous Inheritance Networks

4.1. Introduction

The PMPM is originally proposcd as a parallel m;xchme for Amﬁcm(l /Intelhgence A
nuymber of useful inference such as sct interscction, transiLi/ve closure and property inhgitance rcan
be done in parallel using such a machine. Unfortunately, due to the compléxity of nonmonotonic
multiple inheritance systcms, simple algorithms running on %;MPM is madequatc for the _]Ob
In the last chapter, we saw 11‘ number of mcmp@s to circumvent the situation such as preprocessing
Lhe given network or limiting the applmauon o{ the shortes[path algonlhm to some simple class
of networks, etc. In this chapter, we consider another approach. Since part of the reason why the

P_MPM is not able to deal with nonmonotonic multiple inheritance systems is its~oversimplicity, it

is reasonable 1 investigatc a possxblc cnhancement of the PMPM such that it is more suitable for

the _]Ob The idea of [hc approar .\kcn here is to let cach node pass additional information
besides markers to other nodes. We allow nodes to pass marker-value pairs instead of just simple
markers and also allow them to do some simple unalysis from these .markcr-value pairs. Thg
result ig that we can have a totally paralicl algorithm forvunambigubus networks running on such

a machine. We also provide an argument for the correctness of the algorithm according to the

definition of inheritance in [Tourctzky 86].

4.2. Unambiguous Inheritance Networks

The class of unambiguous inheritance networks is a major class of inheritance networks
- which includes the class ol orthogonal class/property inheritance networks. The networks in this
class have one extension. To be cxact, these networks have only onc preferred extension. The

preferred extension is dctermined by the inferential distance ordering as defined in [Touretzky

86]. From now on, extension refers 1o preferred extension unless explicidly stated otherwise. The

51

class of unambiguous inheritance nctworks is useful since most of our knowledge is unambigus

ous, i.e. we can determine whether an entity is a subclass of another.

N

Smce Lhere is only one preferred cxtension én an unambiguous inheritance network, algo-
rithms g with om%namblguous mhcl%;:c nchorks should be simpler. One extreme-is

c, nctworks The class is so restrictive that the

the class of@é‘nbgom& clags

v, inherita

%, the ?M e is sufﬁcxcml)%@erful Nevertheless,

b, C4
»

orthogonal cla&/ﬂropcny mhcmamc nuworks arg ,ts:mple General unambiguous networks ‘
< et d

are more useful and intercsting. A complctcly pamllcl inheritance algorithm for unambiguous
. ‘ r
networks is desirable, '

4.3. Problem with Unambiguous Networks |

Recall that there are two problems ggsociated with the simple shortest path algorithm in
dealing with general inheritance networks, The first results when redundant links are present in~
-the network. The sccond ;v:h(;n ambiguity is involved. When there are redundant links, the shor-
te:; path algorithm may produce incorrect answers. When ambiguity is involved, the algorithm

would bias towards certain cxtensions. Since in this chapter we restrict our attention to only

unambiguous networks, we do not need (o worry about the second problem. .

Computationzﬂly, the problem with redundant links is that they provide shortcuts in the net-
work. Throug.h these shortcuts, some miarkers c/;m “jump the line" and cause trouble. We need to
restrict this kind of problematic zlxcnvil_v. We .Lan also logk at the problem in anoth;zr way., We’
can view the marker ;jrdpagzuion as a race betﬁvccn LhL markers to reach a node. For i instance, in

~Figure 4.1, starting from node A . an My can peach fode C in onc step while an MT marker can

reach node C in two steps. Node C is therefote marked as Me.

/
/

52

’ L3

Figure 4.1 Network showing race condition: nedes are marked correcdy

In Figure 4.2, an My marker reaches node £ in two steps while it takes three steps for an Mg
marker to reach £. Node £ is incorrectly marked as Mr. That is, we have a race condition

between the markers. We need (o control this race condition in order to solve the problem.

B

Figure 4.2 Newwork showing race condition: nodes are marked incorrectl !
o - .

53

-
1“7

~ 4.4. Enhancing the PMPM

¢

o

The ﬁ?gpagarion of markers can be scen as in firing of nodés. For instance, in Figure 4.2,
the firing of node 4 results in the propagau’on‘of an Mr marker to both node B and node D.
Therefore, controlling t. race condition between markers is equivalent to synchronizing the
firing of nodes. .We do not allow a node to _Qre until all its inputs have arrived. We cz;n modify
the machir;c so that each processing clement will not propagate a marker until all of its inputs

-have arrived. But what we arc looking for is g minimum change in the PMPM. Ift ¢ synchroni-

i

zation can be done by a softwarc method and that it is not too expensive to implement, then we

prefer an algorithm which can do the Job. [Horty ct al 87] presents an algorithm called
R . & o

select_r;ext__degree which is adcquate for our purpose. Since we want the algorithm to

- . 5 . .
select all tho~~ nodes that can fire, we will call the algorithm select node. The procedure is

used in conjunction with trim for quer: (:2,y) which markes all the nodes in the uery-
3 _ g Y Y query

restricted network I™* with the M, marker (see Scction 3.5). /7
- e 7
1 Procedure select_node ()
2 Begin
3 clear (M-,]‘g \ ‘_
4 link_type(—, %], any_on_tail (M, , M1, oh_head'[hfz] ,
5 off head(M ;] = set_head (Mg,); o ’
6 link_type(—, -], on_head[Mp,,], on_tail [M 25 ,
7 off tail (M, M,y = clear head (M,];
8 on(Mri] = set(Myl;
9 End.

Figure 4.3 Procedure select_node()

Basically, we want the algorithm 1o mark all the nodes that can fire by the marker MF,-,,V and all
those that havgalrcady been lired by the marker M. At cach call to the procedure, all nodes
with at least onc child node fircd during the previous step are marked with M. . This is done at

lines 4 and 5. Butif onc\ol\hc child nodes is not fircd during the last step, the marker is cleared.

. 54
é

This is done at line 6 and 7. Finally, the statement in line 8 sets all the nodes that are ready to fire

with marker M,,; preparing for the next iteration.

When the firing of cach node is not controlled, cach node w111 be marked by the marker that
arrives ﬁrsL’ But now we control cach node such that it w111 wait for all of i ns input. The problem
is h0w it should be markcd when conflicting input arnves For example, in Figure 4.2, node £
would receive both an My and M. Tt hns to choose between one of them. Thé decision has to be
made using some additional information. It turns out that an additional number is adequate for
the nodes to make the correct decision. Instcad of passing jus\t markers, each node now passes a
marker-value pair to the an{‘ccstor. Hence, the enhanced PMPM is liké a combination of\mérkcﬁ
passing and value-passing machinc.[Fa’hlman. Scjnowski 83). The resulting machine is similar to
Thistle except that here we explicitly try to use such a h);brid mgchiné 10 p(;rform correct inheri-
tance reasoning. Sincc cach node passcs a marker-valuc pair, we nced to modify the node and
link commands which sct the marker of a node so Lha‘t they now set the marker and the value of a
node. In addition, dmrc are. two morc node commands: max_level() and
min_level_markér. The max_lewvel command finds the maximum level number among

" the chﬂd nodes. The min level marke*‘ command finds the marker of the child who has

the smallest Ievel number among the children wnh marker M+ and MF

Parallel Algorithm for Unamhng,uous Inheritance Nefworks

In this section, we prcscm a parallel algorithm which runs on the enhanced PMPM We iwill

assume that the qucstz%msed forthe algorilhm is of the form: "tell me ifx is a subclass of y."

Whep. th,e proccdurc subclass (i, y) 1s called, node x is marked with an initial level
number 1 and an My marker at linc 4. Then cach node in the network repeats the following until -

" no node can be fired. Each node cheeks if ol its children have provided information. If any cne

of its children has not arrived vel, it does nothing. In the prOccdurg, this is done by éalling

55

1 Procedure subclass(x,y: node)

2 Begin

3 trim_for_query(x,y):

4 name [x] = set [MT_#I];

5 loop

6 select_nodes () ; ,

7 on (Mg,) = set_level_[ma::_level() + 1], set [min_ level _marker()];
.8 link_type[—], on 'tail[MF‘,, M7l = set head[MT, level],

9 link_type(-], on_tail [Mp,, Mr] = set _head{Mp, 'level];

10 link_®@pe[—,], on _tail (Mg, Mr] = set head[MD, level],

11 ‘endloop .

12 End

Figurc 4.4 A parallcl algorithm for unumb;glxous inhe;mari'cc:networks
select_node(). select node () marks all the nodes whose inputs have arrived with an

: o . v

Mg, marker. When all of the children of the node have arrived, the node has to propagate a level
number and a marker to the next level, The level number to be passed is equal to one plus the

.max1mum of the lcvcl numbers of the children.” To decide what markc:; to propagate, it finds,
among the children with cither My or Me, the one with the smallest level number. It can be .shown

that if the child is not unique, j.c., iI‘ there is more than one child having Lhe- same lowest level

. numb_er, then the markers of Lhcs‘c child nodes must bc the same; otherwxsc the network is ambx-

'gnOUS‘ (see Section 4.7). If there i 1s one, then it is marked with that marker When the propagation

s done, if node y is marked with My, then x is a subclass of y, otherwise it is riot.

4.6. Examples

v " This section presents somec éxumplcs showing how Lhc algorithm works on an inheritance
ﬁétwor'k‘..ln tﬁc foll‘owinw diagrams, the rectangular nodes represent processing elements in the
enhanced PMi’M In terms of an inheritance hicrarchy, each node represents either an individual
or a class. The marker-v:@b pairs and markers inside the node indicate Lhzit the markers are

turmed on. In each of the cxalmpics below s a [Mr, #1] marker-value pair is given, at time T=1, to

the node x.

56

Examble 1. shows a simple inhcrimncc hicrarchy with exceptions. Athough royal elephant

is an elephant it does not inherit the property of an elephant , namely bemg a gray thing . At time
T=1, node royal elephant is given a marker-value pair [Mr, #1] and it is the only node that is
marked with Mpgire. - At T=2, node ele};lzam is marked with Mg, and receives [_M,—. #2] from node
royal elephant. Node gray thing reccives [MF,‘_#2] from royal elephant, 100. At the final step,
gray thing receives [M.T, #3] from elcplzaﬁr. Since [Mr, #2) has a smaller level number, this input

: V%

from royal elephant is choscn. This nctwork can be handled by a shortest path algorithm as well

as our algorithm.
gray thing | - : gray thing gray thing
R
i MFirc
Mg, #3]
4 4 4)
clephant B clcp‘hyu clephant
MY Mo
My, #2] | M, #2]
A 4 : 4
royal elephant " . royal clephant royal elephant
MPpire _ Moia Maig
M, #1) Mo, #1] (M, #1]
Tz 1 T=2 T=3

Figuré 4.5 EX(lr;lplC 1

The second example shows a more complex nctwork. A redundant link, namely Lhat clyde
‘1s an elephan(is present in the nctwork Without this link, we can infer that clyde is a subclass of
circus elgphant, royal elephant und elephant, and [hql clyde is not-a gray thing. But when Lheb
redundant link is added, a shoncst‘ path d]gorithm will infer that clyde is a subclass of everything,
including gray thing. Condmonmg is required in this network for a shortest path reasoner to infer
correctly [Touretzky 86]. Our algorithm, however, is able_to produce the nght answer wuhout
preprbcessing the nctwork. This network also shows Lhz’x[whether a node is a subclass of another
doés not depend on-the length ol the inference path; rather, it dqpénds on the structure of the

4

. <
~ .-

, ‘ 57
~

_inheritance network’” _;n here, t@fer that clyde is a gray thing takes only two steps while infer-

ring it not being a gray thing takes three steps. Nevertheless, the structure of the‘ network -

demands that we choose the longer inference path. -
’A.. ,
Jo

gray thing

clephant

roval clephant

kircus elephant

gray thing

clephant

| royal clephant

ircus clephani| .

~\1F|re - !
M, #2]

-

clyde

M, #1]

gray thing

T2

gray thing

MFm:
Mp, #5)

clephant

4

MFire
(M, #4]

clephant

4

Mold
M, #4)

royal elephant

Motg
(M, #3]

royal efephant

4

. .\1Fxr:
M, #3]

4

kircus elephant,

Mola ™ .
(M, #2]

oY

kircus clephant

Moy
Mg #2}

clyde

Moy
M, #1]

T=s

I;'igure 4.6 Example 2

Mold _/

o

gray thing

royal elephupt]

M‘Fl‘f‘
M1, #3]

kircus elephant

Molg
{Mr, #2]

4

clyde

Mola

(M7, #1]

T=3

Iz

58

59

4.7. Correctness

In this section, we provide an argument for the correctness of the algorithm. Before we do
so, let us discuss the intuitive reason :\A"hy‘ the algorithm works. Recall that thg inferendal dis-

tance ordering allows us to resolve :1mbvigui"ly of a nctwork when possible. Basically, it is a par-
o

4

tial order. For instance, the nodes in the network as shown in Figure 4.7 are number&d according

to the inferential distance ordering.

\ . [

Figurc 4.7 Network showing the inferential distance ordering

v

Itisa pan'i'a’l7 o‘r‘dcr since nodes £ and £ arc both numbered the same. Node # is ambigﬁous since
node £ does not have preference over node & and vice versa. Now when we restrict our attention
to only unambxguous network, the inferential distance ordering becomes a total order The algo- -
rithm shoWn abovc basically num ers the nodcs accordmg to the inferential distance order. When
the nodes are so ordered, the nodc withg smaller number overrides the ones with larger number

when dispute ariscs. ‘

Given I, an unambxguous sct of well-formed inheritance asscmons let x be the node of
which we want 1o find the superclasses. Let w be an ancestor node ofx, Le., Lherc exists a path
<X, Y1 ..., Yo, w> In b, Supposu there is morce than one path from x t0 w. Let L denote the

maximum path length of x, i.c., the length of the longest path from x to w. Suppose we start the

PRy

60

.

execution of the algorithm at time®= 1. Then according to the algorithm, a node with maximum ‘
path length L w1151 be fired at time = L. Also, all nodes with maximum path length less than L

must have been ﬁred before time = L. This isin sharp contrast with the shortest path alggrithm in
£/ .“g@

which anod&wuh a minimurm path length L' will always be fired at time = L.
7 e 2

Before we show the correciness of the algorithm, we show that if there is more than one’

child that arrives the earlicst and that the markers of these child nodes are not the same, then the
' . :

network is ambiguous. Notice that the child who arrives first has the lowest level number. Sup-

pose an expansion @ of T contiins - the scquczx;ccs X, Y1 Ya>, <X, Zy, ..., Zm>,

D1 Yaew>and <z, Lz, w'> and that both y, and z,, arrive at w at the sarme time. We

then have n=m. Since n=m, there is no v;, 1<i<n such that yi s intermediary to

.

. s ! R
<x,zy,...,2n,w'>. Otherwise, m >n. Similarly, there is no zj, 1<j<m, such that z; is

intermediary to <x,y;,....y,,w>. Otherwise, n >m. Therefore @ neither precludes

YL WY W TIOT <X, 2,0, 2y, w ') L., & is unstable. Therefore T is ambiguous.

N 5

)e

. Now we show the correctness by induction. The- base case is trivial. Suppose at time

‘8

every node is marked corrculv, and -at time t+1, «nodc w 1s fircd. We show that w is correctly

ﬂ
1 '

‘marked Accordmg to the al”omhm nod¢ w wilk plck the mpu[from a child, say y, who has

arrived first. The algomhm 19 LOFILL[i (b ptcdudw the path of othcr ¢hildren but not the paLh of

the fastest chll(f Let <x Vlhe Ve W > lx the pd[h of Lhc fastest child. Consider a path
<X,Zy,...,2, w'> which arrives :mu V. Snm lh&, nclwork 15 unamblguous < either precludes
<X Yleeh Yoy W> OF <X, 2y, .. ,:",,’w',>_’. ’th; is, cither

[

(1)" thereexists z; 1</ < such that =, i8 ntermediary 1o <y,,w> in ®, or

Bl

2) there exists ; 1< <n suchihat™y is intermediary to <Zmov > ind. .
b _ gL . drary -

-~
However, since <x,z,, ...,z,.w'> arfves after <X, ¥u.--..¥,w> & must preclude

Xy Zis ey I W', *

4.8. Discussion

,

The shom;,st pzit‘ll algorithm can deal correctly with orthogonal clags/pmpcny inheri[ance
networks. As mentioned carlier, the class of onhononal class/property inheritance networks is a
subset of unambiguous networks. Therefore, Lhc algorithm prescnted here can handle a larger
class of networks than the simple shortest path afgomhm The run- ume of our algorithm is pro-
pomonal to the depth of the network while the run- -time of the shortest path algorithm depends on

o Lhe shortest path. So in a scnse, the shortest path algorithm is more efficient. But in the worst

. *‘W'

4

a§€: oth algonthms have the same cmucncv
¢

R " The shortcoming of our algorithm is that it cannot detect ambiguity except in the special
case where the ambiguous paths arc of cqual length. In contrast with the conditioning method,

this algorithm docs not nced preprocessing. Condilion,ir;gwis cxpensive. It has to compute the
. ¥

extension for the network and then add the appropriate links accordingly; and it has to detect if
ambiguity is involved. When ambiguity is detected, it is assumed that there is an error and the
condmomng process is aborted. As a rCsult when conditioning is successful, the resulting condi-
tioned network has only one preferred extension. Thus, the Shortest path algorithm iisv,"’c'issemially

used to reconstruct extension of unmnbnwuoEs nciworks only. In addmon it has been remarked

@

that condmonmg 1S not amenable in Lhc PMPM [Etherington 87b] whilé our algorithm can com-

Q

putc exitns_lon using the cnhanced PMPM given an unambiguous network.

s

Comparing with Etherington’s quasi-parallel algoritl’}m, our algorithm is totally parallel.

Another important difference is that-our algogithm compuics the preferred extension’ according 10 .
’ A
the: inferential distance ordering whereas the quasi-parallel algorithm computes arbitrary

' eitension(s). Computing extensions other than the preferred one may be uscful becausc at umes,

we may want to analy7c and compure dilferent cxiensions.
4

< The skeptical rcasoner by Horty ;md his collcagues is based on a definition .which is

-

different from TouretzRy’s credulous delinition. There are networks where the credulous reasoner

Y

) 62
would conclude ambiguit}} whilc the skcptical reasoner would conclude that we have an unambi-
guous situation. Thc difference results from a dlfﬁ,rcn[conceplion of what preemption should be.
We will discuss this in morc dcunl in Chapter 5. For now, it is sufficient to know that when a
credulous reasoner says there is no ambi guity, a skeplical reasoner will agree with it. In such a
situation, our algorithm performs betier since it is totally parallel while the skeptical reasoner is

- o :
serial-parallel. Nevertheless, mc\ skeptical reasoner is capable of detecting ambiguous situation
while ours cannot, cxcept in’ a spcc’ial case. Aiso. both their algoriLmn and the one presented in
Llﬁs chapter employ a similar synchronization mechanism. The two 8lgorithms differ in the way
“that conflict is handled. Let us consider unambiguous networks. When a node receives both an
Mz and an M marker, an algorithm has to decide which marker to choose. In [Horty et al 87], a
check preemption algorithm is used. Essc;mally. it propagates markers through a subnet
which is necessary to determine the relationship between the immediate child nodes, i.c., which
preempts which. In addition, if a numbcr of nodes can fire in one time step and there is conflict in
the input, then the check_préempt ion algorithm has 1o be njh for each of these nodes seri-
ally. In contrast, the algorithm presented here w'omd solve the conflict by usiﬂg the level numbers
-of the child nodes and hence no time is wasted for performing additional marker propagation..
_Also, nodes do not need to be processed serially since the decision is localized. "The approach of
. !

enhancing the PMPM has the potential advnrﬁagc of allowing a looscly coupled architecture
t
\w

without resorting to a central controller.

«

Chapter 5

YR .
Dealing with General Inheritance Networks

5.1. Introduction

In the previous chapter, we have scen how a shght extcnsmn [o Ihe PMPM can facrlxtate
c@mplg}ely parallel processing for ummblguous nctworks By rcsmcung attcnuon to only unam-
- biguous networks, Lhc solunon 15 rchmvc]y stralghtforward In ths chapter we wrll mvesugate

on the requirements of a markcr-propugauon-styk machmc SO 1hat parallel algonthms can bc :

o
[-

o)

written to deal with general nc’[Works.} _ L R

AR

Ideally, we want [he behavior 0‘1 our algonlhm to be similar to the‘one that deals ‘with unam-
biguous nétworks. Each node dclcrmmcs ils own status by using only Lhe local information pro- |
v1ded by its child nodes. That 15 WC want a onec-pass- p‘@allcl algonLhm Lhat depends only on
local information. yWe will discuss different allcmauvcs in dcsrgmng such an algomhm “Unfor-
tunately, due to the 1mcmcuons of multiple C‘(ICILSI()HS of a gcncml nctwork such an algomhm 1S

difficult, if not 1mpossrb]c to dcqr« n.o | : N S - o

In view of this difficulty, we follow m¢ approach ©of [Hotty et al 87). We want 10 design a
hybrid serial-paralicl algorithm so lhdl W¢ can cxplox[the parallelism of the marker propagation
as much as.we can, and resort 1o <cnal proccssmn only when'it is ncccssary The mhentancc rea-
soner descnbed in [Horty ct al 87] is an oif-pa[h prcemptor. We will discuss the difference
between on-path and Off—palh preemption and why on—puth precmption as dcscribe“d n [Tourctzky
86] is more difficult LAo hunrjl'c. We .\‘u;'gcst an cnhanccrrncm to the PMPM in which a set of link-
chec.king‘ and link-sct;timY \commands are provrdud so that a serial- pdrallel algorithm can. be

' dcmgned for general inheritance networks.

4

o

63

‘v, ' 64
G |
5.2. Requirement of the Algorithm
Before we discuss the algorithm for computing the peferred extension(s) for general net-

works, let us first examine the requircments of such an algorithm. As we have discussed earlier in

this thesis, we want the marker-propagation machine to store real-world knowledge and to answer

.

5
questions about the relationship among various entitics.. When the user wants to w whether

entity x is a subclass of entity y, he would pose the question as subclass (x,y). If the in ation
(i.e. the entities and their rclationship to cach othcr) stored in L-he machine forms an unambiguous
network, then the answer .lo subclass (¢, v) will cither be yes or no. The answer is yes if node y in
Lhezmgl__chine is marked with an My marker by the algorithm, otherwise the answer is no. However,
when fhc underlying network is ambiduous, the machine has to decide which extension the user
wants. This is because in one extension the answer 10 subedass (x, y) may be yes but in another
extension, the answer may be no. This would put a very heavy burden on the machine and the
algorithm. Instead, we requirc our algorithm to retum yCS Or no to subclass(x,y) when the
' query-restrictad?nc[work ¥ is unambiguous and o abort when T'*” is ambiguous. So the

behavior of the marker propagation algorithm would be similar to TINA as mentioned in Section

3.3.2.

'53. On-Path Verses Off-Path Preemption

-

J Consider the status of a node y with respect 1o a node x in an inheritance network. We say
the status of y is ambiguous if there arc (preferred) extensions of the' network where x is a y in

one extension and x is not a y in another. In order to design marker-propagation algorithm, we

need to know the kind of information that node v requires o determine its own status. The infor-

+ ‘mation required, However, depends on what inheritance system we have in mind. For example

(Sandewall 86] and (Horty ct al 87) promote a kind of preemption called o pallr Dreemption
while in [Ifbfihrctzky 8_6:],‘(“)n-path preemption is uscd. The difference betwe: 1 these tw - types of
e , ,

preemption can best be illustrated by the network shown in Figure 5.1.

‘65

Figure 5.1 Network showing the djffc'rcncvc bc;wecn on-path -and"off-path preemption

A

In an mhcntancc system in whl(,h olf—pa/{h preemption is performed, A is not an £. But for
an on- paLh preemptor, whether 4 is an £ ornot is dmbmuous The argumcnt for on-path preemp-
uon is“as follows. There are Lhrcc dllfgrcnt paths cadmg from node A tonode E: A - B -5 E,
A —>B - D — £ and A'SC>D —>"L~‘, The palh A —>B —/-) E overrides or preempts the path .
A—>B 5D > Esince8 4 F isan nnmcdmlc llnk and hcnce prov1dcs more specific informa-)
tion than the path B - D — £ - Howoev er, A — B +> £ docs not preempt A>C->D > E The

reason is that B $ L docs not]u, on the pdn ofC' D £, Thercfore we have two extensions,

one in which A isan & and one in which A isnot an' & .

- The argument for ofT—puth prcgn%Qn is that sincc B8 -5 E is a more specific picce of infor-
’ \

mation. while C -D —>E is nol we sho \d alow A 58 5 E 10 override A 5 C 5D S E

-
/x
sr

also. Hence we can concludc let A is Hot ’an £. As we can see, in this type of preempuon a
greater dcgrcc of preemplting powu is granted to 1mmcdxatc links. In doing so, we prefer a rea-

a
soner to draw deﬁnitc conclusion rather that causing ambiguity.

Which of the two types of preemption is more intuitive is debatable. Their respective argu-
\ ,
ments seem to be cqually sound. This represents one aspect of the "clashes of intuition™ in the

[

66
§

.

T
links to 1t namely BbHEandD »E. In off—pguh precmption, in order to check whether B +> E

overrides D — £, all we need (o do is o check il there is any path from node B to node E that
passes through nodc D. If there is, B -5 £ ovcfridcs D —E. In other words, we only need to
know the interrelationship between the immediate links to a node in order to determine the status.
We do not have to worry about links such as ¢ — D . For on-path preemption, however, not only
do we need to consider the rclduonshlp between the immediate links, we also need to consider
how the 1mmednatc links arc actuallv constructed. For the network in Fxgurc 5.1, the immediate
link D - £ of node £ can be constructed cither as A -8 5D -E or A »C D —E.
According to oq-plalh preemption, we need to consider whether or not B -+ E preempts
A-SB-5DosEandA-C D oE scparately. This makes the task of designing on-path

preemptor much morc diflicult.

.

\ : J

5.4. Alternatives in Designing Algorithms for General Inheritance Networks

Suppose we want to design a onc-pass parallel algorithm so that each node can determine its
status by using only the information carricd by its immediate child nodes. A naive way is to let
each node pass the whole trace of the paths that Icad to it [Fahlman ct al 81). For instance, npde
D in Figurc.)‘S.l would pass somcthing like [(+4 +8 +D),(+A +C +D)] to node E and node B
would pass [(+4 +8)] to node £. Node £ in tum has to determine which input should override
which one from these information structures. As we £0 up the network, the amount of informa-
tion grows. This is becausc as we 2o up the network, the number of paths that reach a pamcular

node mcrcases and we have to record the construction of cach of these paths separately., Smce

#izdesign of nonmonotonic multiple inheritance systems. For a more detailed discussion of these '

S

“

each node is a processing clement, adopting this naive approach would mean that each processing

' ~
- element is a complicated computer capable of analyzing complex information. This excessive -
requirement on the processing elements makes this simple and naive approach practically impos-

sible. ¥

e

2]

The next attractive approach is similar 1o the ~c taken in designing the algorithm lin'
Chapter 4: pass around some additional information - » docs not grow so that each node can
use this aaditional information o makc the correct inference. Since we do not want tﬁe amount

- ‘
of information to grow as we £0 up the network, this approach amounts to encoding the actual
construction of each path in to a nice, small picce of information. This picce of informaticn may
be in the form of an additional number or an additional marker:;: What such an encoding scheme
wants to achieve is to transform somc unstructured inl’brmalion which is growing rapidly as the
derivation of a path gets longer, to some information which is constant and structured. To make
this clear, let us consider node O in Figure 5.1 again. The encoding scheme has to condense -
((+A +B +D),(+4 +C +D)] into some structured information. and let node D pass this to node E.
Node £ then has to extract from that information to do the infc‘rcncc. Sucﬁ an encoding scherﬁe
seems.datpossible t6 design. Even if it is possil;Ic. “cncoding and decoding information would be

. - . - . ¢
complex, which again require complicated processing clements. *

From the above discussion, we can sce that although one-pass parallel algorithm for inheri-
tance rc/asom'ng Is attractive for its tremendous cmcicncy; it is practically impossible to design.
The common characteristic of the above approaches is to let cach node pass sufficient information
to its parent nodes so that the parcnt nodes. can make {urther inference. The p'roblcm is that the
amount of information grows 100 rapidly as we go up the hierarchy. To get around this problem,
we have to generate the information “on-linc”. This is the approach uscd in the skeptical reasoner
in [Horty ct al 87). Thc idca is that when a node is unsure of its status, a check-preemption algo-

rithm is run. Basically, the algorithm performs some ‘marker propagation through part of the net-

68

(o3

0

work to extrﬁct the necessary information to determine the status. Since the skeptical réasoner
performs off-path prcemption, the Check-preemption algorithm is relatively simple. It 6nly needs
to determine if one immcdiate link (to the node in question) ovemdcs other immcdiate links or
not. This serial-parallcl approach is obviously lIess efficient than ﬁonc-pass parallel algorithm
because when a node has trouble in detcrmining its status, other nodes have to wait until it has
solved the problem. However, in view of the difficulty for designing one-pass parallel algorithm,
it seems that we have 1o sctile for such a scrial-parallel approach. In here: x;le want to design an

algorithm which performs on-path preemption according to the definition in (Touretzky 86] rather

than off-path preemption.

5.5. Enhancing the PMPM

In this section, we discuss the enhancement of the PMPM that is required for the parallel

inheritance algorithm described in the next section.

As mentioned in the previous section, when problem arises, an off-path preemptor, such as
the skeptical rcasonc¢1§rcécr11cd m {Horty ¢t al 87], performs some marker propagation through
| part of the network to extract the necessary inforniation 10 solve the problcr.n. However, for an
on-path preemptor, such as the credulous reasoner presenied in [Touretzky 861, the simple check-
preemption algorithm is not sufficient. The rcason is {hzlt in order 1o extract the necessary infor-

mation, we may necd to check the entire network. To get around the problem, we suggest a sim-

ple enhancement of the PMPM which allows us to dcposi%inforfmtion onto the links as we go up

the network.

In the PMPM, the links between the nodes are cither of type "—" or "-A6". While we can
mark a node with a node marker. we cannot explicitly mark a link with a link marker. In our

enhancement, commands arc provided so that we can mark a Tink with a specific link marker, test

whether a link marker is on a link ctc. That is, we provice a sct of link-marking and link-

>

checkmg commands which arc counterparts of those node-marking and node-checking com-

»

69
-

mands. This enhancement allows us o indicate whether a link is redundant, or preempted, etc.

Using these information, more efficicnt inheritance algorithms can be designed.

. The commands that we can usc after the cnhancement arc:

set__link (L, .o L,

clear linki{L, ..., L] ’
any_on_linki{L...,L,] .

on_link([L,,... v L

any off link{L,...,L,]

ofAf_link Ly, ..., L)

wl’iere L;’s are link markers,

’

5.6. A Serial-Parallel Algorithm for General Inheritance Networks

- In this section, we present a serial-parallel algorithm for general nonmonotonic multiple
inheritance networks. To facilitale understanding of the algorithm, we first discuss the intuition

behind the design of the algorithm. .

We call Lhe'sub'nct forrﬁcd by the immediate links of a given node w Ihe immediate Subnet
of w. An immediate subnet of a node w 1$ lhc net formed by the immediate-child nodes Uyy ...,
u, of w and all the nodes which lic in llﬂc paths between u, and w,uzandw, ..., u, and w. For
.instance. consider node G in Figure 5.2. Nodc 8 and node £ are immediate child nodes of G.
The immediate subnet of node G is marked by dotted arows, Notice that node £ -is also m the
immediate subnet since there 45 3 path between node B and node' G through node E- thn a
' node wants to determine its status. not only do we need to consider the 1mmedlate subn t, but we

also need to con51dcr all mc paths leading to cach node in the subnet. For instance, in Figure 5.2,

we can easity determinc that B -4 ¢ preempts B — £ — F — G from the immediate subnet.of G.

70
o

Besides, we need to consider alLLmdlc paths from node 4 to node G, Wthh do not go through
node B, such as A —v>C L >F >5CGandA -D - F — G. The idea of the algonthm is to.do
the checking in two steps. First wg check if there is any immediate link that is not prcempted by
other immediate links. If there is more than one such link and that their input conflicts with each
other, then the node in question is ambiguous. On the other hand 1f there is only one such'link «
. w, theri we have 1o carry out the second step. Esscnually, the purpose of the second step is 19
find out if there is any. other alternatc path that does not go through 4 — w. To do this, we pro-
pagate a special markcr from thosc links whosc head node is in the 1mmcdlate subnet of w, excepl‘. .
Lhose that are part of the immediate subnet of w and thosé: that lead to node u. If such a marke'r.
reaches the node in question, then we know that rhere is a path that the link &« — w\-caﬁno{ -

v

preempt. If Lhe input from the path does not agrec with that of 1 — a, then the stanis. of wis”

ambiguot%' B S

Ra2ain. Afler we decided that the link B 5 G prcemptis B - E - F —

ig a special marker from links C - £ and D — F upto G. We do not start

b

propagating the marker from link 4 — B since 8 is the tail node of the only non-precmpted

immediate link of G .

.

A nurhber of subtletics necd 10 Be cqnsidcrcd. In the sccond step described above, the con-
dition for which a link would propagale the special markér’ is not really sufficient. For instance,
consider the nétwork_ in Figure 5.3. According to the dcﬁnition in [Touretzky 86], node¢ A is not a
node D. Notice that link 4 — € is not in the immediate subnet of node D. But if we allow the
link A — C to propagate the special marker up to node D, we woufld conclude that the status of D
is ambiguous. Notice also that the link A — € is a redundant link, Thcrefore, we want to res-
train redundant links, such as 4 — C. from propagaling the special marker. ThlS is where the

hnk -setting commands arc used. Redundant links are marked by some special link markers as we

go up the network.

71

o Flgurc 5.2 Paths have to be considered separately for on- paLh preempuon

o

mec 5.3 Supprcssmg rcdundam link

Therg are oLhcr lmks ‘which we¢ s also do not want thcm to propagate Lhe special marker, such

b

as Lhose lhat have been p'rcumptud by othus and thosc that do not form\a well- formed:path For

A

. .
examplc, in the network shown in qum 5.4, we do not/w’jﬂt link C D" to pass the specml
marker upward since we cannot €o from node A 1o node 77 th ough node C. Thc pathA - C -

D — E - F is not well- lormc_d These special lmks are also markcd as we go up ‘the netwo;k

PRy

o

5.6.1. Summary of the Markers Used

subsection, we describc the purposcs of these markers in order to ease the understanding of the

algorithm. The markers are presented roughly according to the Srder in which they first appear in

72

} " Ficure 5.4 Suppressing fake path

-

In the algqrithm, 4 total of seventecn node markers and three link markers are used. In this

the algorithm.

M,:

‘M

Mg :

To id(‘mify node x ‘given a call to subclass (x,l’y), tic. node x is marked by the

marker M, . - ST o 5

To identify nodc'y given a call 1o sﬁbc;ass (x,v), ie. nodc y is marked by the
‘marker M, .

% R

Used in the procedure trim_for query (+£,y) to mark the nodes in the query-

restricted network I {scc@ection 3.5).

1 >

Used in the procedurc’ s=lect_node () to mark all the nedes whose inputs have all

arrived (see SLcﬁon 4.4). Y o N

4

73

"

s

b

M,q: Used in the procedure select_node () to mark all the nodeé that hav= be- ﬁred.
My : Used to mark the nodes which are marked by Mr;,, and have more than one child node.

M.: When therc is more than one node which is marked by Mg;,, and has me. . than one child

node, we nced to process these nodes separately (Scction 5.8 will discuss this in further

~detail). The M, ‘marker is used to identify the node which the algorithm is currently pro-

-

. |
- cessing.
C R
b Y

Ma-: Used to mark those nodes which are the immcdiate child nodes of a given node with the

marker M. . -

Myt Used to identify those nodes that are preempted.

Consider the network in Figure 5.5.

qurc 5.5 Ncmolk showm«7 how Somc of lhc markcrs are used

- \ -

Suppose that a caII to- SUbClaSS (A, E) is made, i.c., we want o know 1fA is a subclass -

of E. Hence node A and node £ arc nmrkcd with Al “and M respccuvcly Notice lhat nodes F,
»

G and H arc not rclcvam in determining the rclauonshnp between.A and E. Therefore the

74
trim for_query (A,E) proccdure will only mark nodes A, B, C, D and E with the marker
M,. Now suppose that we arc currently processing node £. Nodes A, B, C and D are marked
with M,y since they have been processed alrcady and node E is marked with Mg, by
select _node (). Node £ is also marked with My since it has more that one immediate child

node, namely B and D. Finally, nodc £ is marked with M. since we are currently processing it.

Nodes B and D are marked with M, since they are the immediate cpild nodes of E. After some

S

processing, nodes C and D arc marked with M, which indicates that are preempted.

Mgmm: This is used for checking il there is a redundant link. If a node w has more than one
immediate child node and if anv onc of the child nodes is preempted, then node w .is

marked with M, .
Lya: Ta mark a link which is redundant (see Section 2.6 for the definition of a redundant link).

s For a given node w wilh an A7, marker, it is marked with M, if there is a positive link

between itself and any onc of its immediate child nodes which is not marked with a Mﬂ,,

marker. o '//

_ /ﬂ’:.

Mg: For a given node w with an /. marker, it is marked with My if there is a ncg?’ive link
. : . o &]

> between itsclf and any onc ot ils immediate child nodes which is not marked with a M,,,

- marker. : e o }

Using the M, and M; markers, some cascs of ambiguity such as the one shown in Figure 5.6 can

be detected. . e \

75

+ [
N g NG
, -

Figure 5.6 Using M, and My 10 determine ambiguity

B

Suppose that we are processing node D. Both nodes B and C are marked with M, but not with-

M. Hence node D is marked with both A, and My . This indicates that v'vhether"ﬁ:bdc Alisa

v

subclass of node D is ambiguous because neither 8 nor C is preempted.

'
4
7

My Supposethat we arc processing a node w with multiple -child nodes and that only one of
these child nodes, «, is not preemptéd.” The M,,, marker is used to check if there 1% any

L4
other path from node x 10 node w which does not go through node ». Basically, the nodes

which are immediate child nodes of the nodes in the immediate subnet of w is marked

with M, except
1. those nodes which arc part of the immediate subnet of w : 7

2. those that have direct [j nks 1o node u .

3. those that arc the head nodes of redundant links.

. L e B . .] y
4, those that are the head nodes ot prcempted links. ’
. 4 ., v
. 3. those that do not form a well-formed path with node .
' ' . . o <
The algorithm. then tries 10 propagate My, up to node w: If w rcg:cw%s e markerjthcn -7
\ ' g J ’ '

- there is.a-positive path from x 1o w which dees riot go (hrough node -

— ’
o : . ‘ . . -

My Used in »Accg‘njunét‘ion'wiyx)ﬂi:,,'{ (6 handle negaijve links. _If the tail. of a negative link is

I3

.marked with an Mub,r marker, an M, marker is p_ropag‘a[_cd to the hcad of the link. If w

+ feceives the marker, then there is a negative path from x to w which does not go through

PR
;

P

 Figure 5.7. ‘ - o

R \

node u.

— F /
M v K

. , _ . /.
The reason why we nced both M,,, and M,,, markers is that we do not want either of tHese mark-

ers to reach node w when there is nd actual or well-formed path between node x and w ;v\' Consider
% :

%

‘.

X

N

: ,Figvu/re 5.7 Network shy/\vin" the usc of the M,,, and M, markers

Suppose Lhat we are proccssmw nodu G. Node E is markcd with Mm smcc it is an immediate

child 1 node of F which is in the lmmCdldlL subnet of nodc G. Howcvcr there is no path be[ween

'r?aeA and G through L. (A >»C—> E - 1‘ — G isnota wcll formcd path See Section 2.6.)

Y

pre - Given a node w .-~lhc ljnk i = wois marked-as L, if w is marked with M,,.. Notice Lhat u

~

L

is marked with My, 100 since it is dn immediage child node of w. Therefore, L, is used

to mark an immediate link as being preempted. - o N
[‘
3

: M'T:‘ - Anodé w is marked with.an M; marker il it is a superclass of x.

v

v -

Me: A node w is rharked With an M, markerif it is not a superclass of x.

\]
- .. i . . . - . . - 4T

Mp: When the path between node v and node x is mot well formed, w is marked with Mp.

Node w is not a superclass of node x.

W

i /v\

. - 77

Luopan: A link u — w (u -5 w) 18 marl\cd with a L,,,.» marker if the path X =Du-w(x

. >y -Aw) 1S not \\(,ll [ormed.

5.6.2. Structure of the Algorithm

- Given a call to the procedure subclass (x, y), it first’marks the initial node x with
markers Mr. It then calls the proccdure trim for _query(x,vy) (scc Section 3.5) so that all

the relevant nodcs aré'marked with marker wa

The mainﬂloop from Iinc 5 1o linc 46 ifégpcatcd until cither node y is correctly marked or

' ambiguity is detected as markers are)'ropamm,d from node x to node y. The main loop is com-

posed of two parts. The for loop between line 9 and bne 41 is used for two purposes: to detect
ambiguous situation and to mark spectal lvinks with somc special markers. The second part of the
main loop, from line 42 fo linc 43, is used I'orh'propagati,ng markers upward.

The for loop can also be decomposed into Lwo subparts. The commands between line 10
and lme 23 are used to check if there is only one link Lha[is not preempted If there is more than

one and that their inputs conflict with cach other, then the network is ambiguous and the pro-

“cedure is aborted at line 23. The commands between line 25 and line 40 are used to check if there

is any other path from node x lo the curr nt node thaL does not go through the only non-
pneempted link. If there'is, amdd Lhd(lhc, Anput”from tte non- prccmptcd link conflicts with the

ut of the path, the network is ;1mblguous and the proccdurc is stopped.

57

Procedure subclass (x, i ‘no_de)
Begln o '
name [x] ='set (Mr];

on{Mgi,], more_than_one child() = set[Myl: - ~

t:lm_for_qUe;y (%, y);
" loop .
clear (M, , Mpre o My, My, M.Y1;

select node(); - '
for ¢ in <on{My > do begin
set [Mc 1.
link_ typel[—, »1, on_tail[Mr], on_head[M.] = set_tail (Mg,)
loop -) : ‘
link_type[—], any_on_tail (My,, My 1, on_head [Mr)
any_on_head{M,y, Mp,.] = set_head[M,.,]:
endloop

,

o

link_type[—, -], >n_tail {(Myel, on_head(M,] = set_head (Mym | ;
tink_type[—,], cn_nead[\MWr], off_head[Mr, Mp], on_tail (Mg,

on_head [Myy,m), off tairl (Mpe] = set link[L,g):
link_trpel[—], on_tail{My,], off_tail[M,,] = set_head[M,];
link type[-], on_tail[My], off_tail (Mpe] = set_head{Mﬁ 1:
on[M.], en{My]., on{My) = abort ();

link_type[—], on_head[/ﬂp,,], on_tail (M}, off__tail[Mp,‘, Mg,
off_link[Lyy, Lugpan. Lpre} = set_tail [My,);

loop .
link_t pe[—»] . on_tail{Mu}, any_on_head (M., M),
t{ ; > Link{lra. Lpre] = set _head[Mg]:

i&-‘ink type[-&] on_zail (M, any_on_head(M,,. M,],
of £ linkil,y. Ly.] = set_head[Mgya);
encloop; .
on(Mg. My, My, = aboz=():
on(M,, My, My\), = abozz();

on{M,} = cleariMy, Mgl;
OA[AMC], en{M,], off Myt = sec{Mp);
on{M.1, on[My1, ofilMy] = set[M;) .
lire_type(—, =), on _al‘.tlfl,,,, ,\Ip*,‘]‘ = set llnk[Lp,,‘};
end Zor}] :
link_typel—), on_=arl Mg, , My = ser;__':iead[M'f\] ;
link_type{-4}, cn_za:ll, \I;‘,,, .\ITL':: ser nead(Mg]; . !
link _iypel—, =, =n sail ! W, et @ny an tall (Mg, Mp 1
= set head{M,, i ‘

S e

- Liai 7L, .\u,,j:‘

s

endlicor {main oo

End.

Togure Sy A paniel sdgonthay tor seneral inhentance networks

.

¢

’ “ 79
5.7. Examples
57.1. Examplel | -
The problem that we want to solve here is the familiar network shown in Figure 5.9.

Figurc 5.9 Thc'pr tilas for the first example
A /td

It is an unambxguous network. A mdundmtz ;!

3

K fred — bird) 1s present but its prcsenjéé does
7 .
not change Lhe fact that fred s not a ﬂ)'[ng thing . Since this is an unambiguous network, the algo-

rithm shown in Chapter 4 can also produce the correct answer.

LR ﬁf’he algorithm starts by marking rode fred with My (Figure 5.10a). Smce 1t is a leaf node, it

-has no Chlld Therefore, it is not marked with My atline 8. Theé for loop between line 9 and
line 41 is skipped. An .11»,- marker s then propagated to nodes penguin and bird at lin'e 42. We

.

then enter the main loop again. The e=lz: ands () procedure marks node penguin with
Mg, but not node bird since the “hput l’mm nodce pengwun 10 bird has not arrived yet. Again,

since node’ pcngum ha\ onl\ one child nmic_ 11 1s not marked mm My The fo loop 1$ skxppcd
An M7 markcr 18 propamuu m ﬂ()uC Pird .md G M marker s prOpd”alLd 0 nodu Ay Ilnn,(f at line
42 and 4J>fCSpCCl‘1\"Cl}’ (Frzure § 10 AT the NEXE ileration, n-odc. Iard s Lhc'only node that.is

.héarkcd_-’wim Mepe DY selenn IRy I addinon, it xx.nmr-\cd swath My, at line N because o

has two child nodes. TIL - time we cnter the for loop.

We first mark -node bird with M.. Linc 11 marks botl: nodes penguin‘ and fred with Mg, . |
~ The result of the loop in line 12 to line 15 is that node penguln 1s marked with M,,,. After execut- .

ing the commands between lmc 17 and linc 19, link frca’ — bird is nﬁed withy L,.4. "An M,

w

“n

marker is then propagatcd 10 node ‘/)l{;(z, at line 21 (Figure 5.10¢). Since there is no alternate path
from node fred o bird, nothing happens between li_nQ' 25 and line 35. Node bird is marked as M7
at line 38 and link penguin — bird is marked as Lpre at line 40 (Flgurc 5.10d). Node penguin is

Lhe only node that has My, marker on, thucforc we cxit the for loop and a My marker is passed

to node Ay thing atlinc 42, ’

'We now enter the final itcration. N’<’>dc Ay thing has more than one child node and so the
commands inside the for smumun are execuled. As a result of cxcculmg line iO to line 15,
© node bird is marked both as Ay, dnd M, and nod<. penguin is marked with My, . Node fly thing
1s marked with M, at lmc 22 but not wim M, atline 21 (Figure 5.10¢). Since link fred — bird is
marked' with L, picviously(,_ lines 25 1026 arc not cxccuted. Hence, fred is not marked with
Ma,,,. Nothing happens from linc 27 1o line 35 cither; because no node has been marked with

. Node fly thing 15 markcd with My at line 39 and hnc bird — fly thing is marked with L,,,, at

[0

line 40 (Figure 5.100. No funllgr commands are cxccutcd and the process is done.

fly thing

bird

penguin

fred

MEire
My

(a)

bird

Mpie
My

fly thing

Mt , Mol

Mt Mo

fred
Mold

—

My

(e)

Figure 5.10 ‘Example 1

(@

fly thing -

Mg

Lpre

bird

Mold
My

Lpre

penguin

Mold
MT

/ fred

Mo
My

(f)

v

5.7.2. Example 2

The problem that we want to solve in the sccond cxample is shown in Figure 5.11. It is ori-
ginally presented in [Touretzky et al 87]. It is uscd as a "real” example which demonstrates the
usefulness of on-path precmption. Using off-path precmp[ioﬁ, Tom is not a Beer Drinker. But
since whether Tom drinks beer or not rcally depends on the rate of beerldrinking among Marines

and that of a Chaplain, Tourctzky and his collcagucs argue that we should be more cautious and

conclude that we have an ambiguous situation, just like what an on-path preemptor ‘would ¢on- -

c_lude.

Since this is an ambiguous nctwork. the algorithm in Chapter 4-behaves like a shortest path

algorithm and concludcs that Tom is not a Beer Drinker .

- Beer Drinker

Figure 5.11 The problem for the sccond example

Since nodes Tom, Chaplain and-Marine all have only one child node, the first two iterations

~

are simple. The result is that nodes Tom. Chaplain and Marine arc marked with My and node

£ -

Beer Drinker is temporarily marked with My (Figure 5.7a). In the next itc’:ratigl, node Man is.
marked with Mg, and My and we enter the Zo- loop. As a result-of executing line 10 to'line
15, both node Chaplain and Marime are marked with My, . After line 21, node Man is marked with

M, (Figure 5.7b). Node Man is then marked as M, at line 38 (Figure 5.7¢).

83

-

In the final itera;ion, only nodc Beer Drinker is marked with %j""" After executing line 10
- . Qb line 15, node Chaplain is marked ag Mg, ar;d node Man is marked with Mgy and M,,,. Node
Beer Drinker is ma?ked with ('Mf’ at line 22 (Figure 5.7d). vThc link Marine — Man satisfies the
conditions at line 25 and 26 and therefore node Marine is marked WiLh M, (Figure 5.7¢). After
the loop fré)m line 27 to line 31 is cxecuted, node Beer Drinker is marked §vilh Mgy (Figure 5.76).
This indicates that there is an alternate pmh from node Tom to Beer Drinker, namely Tom —
-Marine — Maﬁ — Beer Drinker, which docs not ‘go through node Chaplain. Since the inputs
from Chaplain - Beer Drinker and the alternate path are in conflict, we have an ambiguous situa-

tion. The procedure is aborted at line 35.

P

84

Beer Drinker Beer Drinker Bosr Drinker
Mg e Mp Mp
’ L
Man ~ Man Man
—— M. ! MM ' —_ MFire
T MEir, Mu MT
Chaplain " Marine Chaplain Marine Chaplain Marine
My Moy Moia Moia
M+, Mad Mt . Mod
Tom
Magq Mora
Mt MT
(a) ®) (c)
Beer Drinker I Beer Drinker - Beer Drinker
M ' MM M. | My T M My My,
MFin- My . !\{F‘", My MFim ‘\{"
X
' Man Man T ~
1 Mar, My, 40 Man M, Mgy Mpre
Mt , Mo) My, Mad 1T Mr M, My,
TR
Chaplain Marine . Chaplain Marine | Chaplain Marine
Mg, Mg My, Mads Map | My, Morg, Mon)
Mt . Mo Mt My, Mad MT M, Moud Mr
)
Tom Tom Torm
Mg Maia Maq
Mt \ MT L * M
(&) (e) 0

rigure 5.12 Example 2

.

[yt

. , -85
x< . - '

58. The Sex‘ihl Probess in the Ag’lgorithm ; |
At any moment, when there 13 more Lhan onc node. which has more than one chlld node and
that all of the mputs have amvcd wc have to proceqs these nodcs one by one serially. That is the

purpose of Lhe for 1oop in the proccdurc To' illustrate why this serial processmg is required, 4

consider the network shown in Figure.5.13. ' . =

4 Figure‘ 5.13 Network .:?lowing the serial 'processfof the :algorithm) \
Notice that node D should be ml.ll‘de with M while node‘E is ambiguo'us, After Lhe‘ first itera-
tion, nodes A, B and C arc marked with M, In th next iteration, nogp'D and E are.marked thh,
Mgy, bY s/elect node (). Supposc wc proeess thc two nodcs at dm;ame ume Nodes A,B
and C axe}&arked with' M, . The result of exceuting the loop between lme 12 and 15 is that node‘
B is marked wuh M,,,e 'rhls will prohibit nodc B from propagating. a M, marker” to node E
_Node E wﬂl Lhen‘bc marked mcorrcctly as MF sinee Lhcrc 1s;o’€5ffm‘cung input. Processmg 3

,

nodes D and %one after the other prevents such a problem.

Fa

5.9. Correctnesé , v S J

-~

In this section, we provnde an mtumve argument as to why the algonthm works accordmg t%t

the mhentance rcasomng as defined in [Tourctzky 66] g

.

First of all, we want 10 arguc that only redundant links are marked erh the L, .4 marke;.from

lme 17 to 19 Recall lhat a link <\ Va> 18 rcdundant if Lhe path <x, yy, ..., y,,_l, Ya> is mhent-‘

\ [0

able in the grven ®etwork. Notice that for a node ¥ 10 have a redundant lmk there must be a

node y,_ where Lhe lmk <yn-1 ¥.> is in the network and.that yn-] 1s marked with M,,,, by line 10

«

'through 15 That is, there must he a path, Irom x lo y, lhrough Fn-i in' the network Line 17
. makes sure Lhat ths condmon is satisficd. . If the condmon is sansﬁed. node ¥~ is marked with -

Md,,,,,. Another candition is that there should only be posmve links leadmg t0 yn. Obv1ously, if

there are dlfferem types of link Ieadmg t0 y,., 'there is no redundant lmk In addmon only
1mmed1ate lmks to node y, can be redundam Linc 18 and-19 makc sure that these condmons are

’

sansﬁeu If they are, we ha.vc found a rcdundam link and it is marked with L,,d

« Next, we want to argue that ngcn a link <y,,_1, Ya>, it is m,urkcd with L,,.a if the path <x,-
, . : , N

Yt s Ya-ls y,‘> is not w'cﬁ-l-fomred A path.<r, yi, ..., Yau1, ¥a> is not well-formed if any of |

the lmks <x, y1> <yi, ,+1> whcxe 1<i<n,isa ncgauve link. In line 44 and 45 whenever a

node y; is marked with an Mg (i.c. <\ il y,> is a ncvanvc link), an Mp marker is propagated to

“

¥i+1,» and in turn fo y,-+2, cte. C’ﬁ]c link Vi Yier> 18 dlso markcd as Lm,,a,;. The Mp and L,.,,,,,,,,,

AN

markers are propa ated unul nodce v, xs’*markcd with MD and the link <y,-i, y.> is marked with

AN
“

Lacpasr -
_Finhl'ly, we nvam 10 dr(ruc"lh:u links <wy, v, >, 0L ,.< Vi s Va > QrC marked with L,,, markers: "
. ! ~
_ if podes w,, o s W,y arc precmpled 15« alink <x, .\z >. At line 11, nodes Xy Wi w of;Lhe
v‘dlrect links <x-y,,> <w;, Ya>>, '.‘. Wy Ya> 1O y,, are marked wnh e . Tha{ is, the tail nodes“ ;.‘

»

of the direct links of y, arc marked with My, . Supposc lhaL link <x, y,> preempts all other links.

" The loop from life 12 1o 15 mu:’ks‘ :xll the nodes with M,re Which arc intermadiary to <x, y,>,

JA N

except node x 1tsclf All links 1o y,, whosc tail node 1is marked with an M,,, marker, is marked

with a lmk marker L,,,, at line 40.

In detetrmmng the status of a nodc Ya,» We need to consider all the paths from node x to y,

that are well formed non- rcdundam and non- prccmptcd Lincs 10 through 15 and lmes 21

through 23 in the algonthm consider a subsct of Lhcse paths Theyﬁeterrm,ne 1f there is an

1mmedlate link <y._i, y»> which prcunpls other xmmcdrate lmks OMusly, if there is no such a

link and’ that the mputs from the nnmcdmtc links conflict wuh each oLher then the status of Ya iS
y -

amblguous But if there is indccd an muncdmte link <y._;, y.> that preempts others, we need to

P l

consrder the, remammg subsct of the paths Whl(.h are well-formed, non-redundant and non- .

preempted. This subset may or may not be crp,'pty. The paths in the subset are found by pro-
pagating the My, and Mao markers to nodcuy,‘. IfMabl reaches node y,, that rneans that there is a
posmve path from% to y, which docs not ¢o through y,_,. If the link <y,,_,,y,,> ts negative, then
’thq status of y,‘ is amblguous Tlus condition is eheckcd by linc 34. If M,,“ reaches node y,, that .

means that therc is a negative. path {from x to y, which. docs not go through Ya-1. If the link

<Ya-1, ¥ > is positive, then the status of Np 18 umbigious.f:-rThis condition is checkec/bﬁe 35.

5.10. Discussion . . ~
‘ e ' A& X
In this chapter, we have discussed and analyzed certain p;oblcms concemning the design of

'

parallel 1nference algorithms for inheritance rcasonmg, A srmple modlﬁcauon to the traditional

s -parallel marker propagation machine is \uu‘_‘c\led and an algonthm running on such a machmc is

5
presented ‘In this section, we compme thrs aluonlhm wuh othicr rclatcd parallel algbnthms for
/ .
mhenmnce reasoning. N
PR &%
Due to the srmphcxty of the PMP\A the shoxtcé?’ﬁhth algomhm is the most natural algo-

rithm to be 1mplemcmcd Qn sueh & machme Howevcr thc shoncst~path alvonthm does not

always produce the corract answcr for nonmonotonic multiple mhemance systems-'fThe best lt can .

-xJ .

~

.

: ' = . L S I L
unique extension for any inheritance nctwork. This rehcves the burden of a skeptical reasoner to -

-

T

. do is to deal with onho;_.,qnal cla%s/propcny mhcmance nctworks Our algonthm is certamly less -

efficient than lhe snmple upscan algonlh,m But wc qacnﬁcc speed in order that we can deal with’

general mhemance networks, A nCLWOl‘k has to, bc "conditioned" in order that the upséan algo7 _

. . . .\ .
rithm can run correctly. The conditionlipg is donc by a rcasoner called TINA. It has another func-

tion: to cqmpute' the preférred extension(s) of a given inheritance nctwork. If multiple eXtensions

-

are detected, éI'INA will respond wnh an error message. 'If there is only one extension, TINA will

(modlfy the network S0 lhat the upscan a gomhm can work corrcCLly Hence Lhe PMPM and the

i

- upscan algorithm arc used only 10 rcconstruct Lhe e‘(tcnsmn while the difficult _]Ob of computing

o

the extension is lcf[for TINA ‘whi_ch does not do any parallel processing. The parallel algorithm
presented in this chaplcr does not reqmrc the given mhcmance nctwork to be modlﬁed The

extensmn is computed rather than lcconszruelcd by runmng the algorithm on the enhanced

PMPM. No experisive rcconditi*oning i$ rcquircd wlicn Lhc given inheritance network is»updatedi

‘The skeptical approach [Horty ct al 87} 1o inheritance reasoning will always produce a

1

worry about multiple extensions. In addition, as wc have discussced carlier in this section, the oﬂ'

path preempuon pcrformcd by the skeptical reasoncr is casxcr to deal with by marker-propaganon

- than on-path precmpuon. “The credulous reasoner presemcd in [T_ourctzky 86] has caused a lot of

| problems for the PMPM since-it Has 10 cvonsidcr mulliplc exiensions and it is an on- ‘path preerhp- -

~ -

°

the mhentance rcasoncr dcﬁncd in [’I‘ourct/kv b()]

Lo

- 88

tor We have shown ho}(a shight extension 01 Lhc PMPM allows a scnal—parallel algonthm for

W

e

A . - Chapter 6

Voo . . ! T
. , © Summary and Future Research
. .\
6.1. Summary *

&

. Organizing information in lLlC form of -a hicrarchy is a common practice in khowledge”
A » S8 < 5

- representation. ‘The most important concept in such'rcprcsentatiorf/éystcms is inheritance: a sub-

class irherits all the propertics of its superclass. The concept of inhéritancc is extremely useful as

T

it allows us to represent knowledge 1mp11cnly Thc propcmes of a superclass are not repeated in

a subclass. Rather, when the mformauon is nceded, Lhosc propertics arc extractca from theé super-

-~

. . Y .
M X e o
class. Economy in storage is achicved. . ' : oo

In a monotonic multiplc inheritance system or a trée-structured inheritance system, the

problefn of whether one class is a subclass of -another does not arise.. ~Ahother advthtége of these
systems is that parallel proccssm" can be achicved by usmg snmple parallcl archltectures such as

Lhe PMPM. Nevertheless, these systems are 100 restrictive.

Nonmonotonic multiple inheritance systems are the most general inheritance systems. They

.

allow a class to inherit propertics from multipic supcrclasses and exceptions to those inherited

properties are also permitted. Thesc " flexibility makes them very attractive for knowl‘e}ige

representation. Howevcrathese (lexibility dags not\;dme witgout a cost. Firstly, given an inheri- °

{0

tance network, it is not as clear as other simpler sys.kéms whether a class is a subclass of another.

Different systcm designers may have different inttition as to what a link in a nonmonotonic mul-

. tiple inheritance network means and how the inheritance principle, riamciy that subclass should

s

somng. espccmlly for nonmonotonic multiple mhcmancc systems In ths thesxs. we have pm-

¢ Lt
.

vided a survcy on the different altempts o ronmhm inhcritance rcasonmg ‘The second problem

A

with ncnmonotomc mulllplc mhumncc wstc’ms is tlmt parallel proccssmg in such systems 1s
AT N
’ ‘ \ D -

8y

E¥ 1)

override superclass, should bc ixxtcrprctcd; Thisnpr.ompled interest i,;n formalizing inhen'tahce rea- Q

e - difficult. The usefulncss of nonmonotomc mhentance systems combmed with the efﬁmency and
mmphcxty of the PMPM have promptcd mtcrcsts in using the PMPM to do parallel mference in
' nonmonotomc multiple inheritance systems. However, the result of such a combmanon. IS _
‘dxspomtmg It is soon dlscovered ,that simple parallel algorithm running on the PMPM, such as
| ~the. shortest path algorithm, is not adequate for mhentancc rcasomng Evenin some sltple inher-
* Jitance networks the shortest path algorithm may produce Incorrect answer. -
. ' U
Desplte thxs shortcommg ol the PMPM, marker propagatlon as a mechanism for paralle].
.1nferencmg 1S sull/zttracuvc because ol ils slmphuty There’ have been a number of atternpts to
circumvent the,sntqauon. We have provided a survey upon’-thesc attempts. The common charac-
teristic of these attempts is that they start with the PMPM and then try to find ways to do parallel
processing or quasi-parallel proccssm" for inheritance networks. In this thesis, we'fouo'w a
<dtﬂ°erent approach Smce thc problcms with thc PMPM to deal with inheritance reasoning is its
oversxmplicit‘y. we tr)) 1o invcstiualc if we can cnhancc the ‘PMPM SO as to make it more suitable |

v

A for inheritance reasoning. In this thesis, we havc ;/u"gcstcd two different enhancements. In the

ﬁrst one, marker—value pairs arc passcd -around instcad of just markers. Such an enhancement
makes it possible to have a complctcl) parallel inhcritance algorithm for unamblguous nerworks.

In the second enhancement, a set of lmk-checkm«z and"link-sctting commands are provided $O that

lmks can be marked with link m.1rkcrs and: Lhcv can be checked if they are marked\wnh parncular | "
o
markers Usmg such art enhanced PMP\/I., a scrml pttrallcl alvonthm is prescntcd whxch reasons
accordmg to the deﬁmuor})of [Tourctykv &6} Ar"uments for the corrccm ss »f he algonthms are\
" el

" s . o . ol | . : R N ..
SOLprO AU PV £ \} ‘ .)
N N n\‘\ A TR L -

6.2. Results of the Thesis and Future Research 3 et -

N
v S

As for bthe open problem whether there arc natural E:Iziéses' of inhexitgncé networks which

Vit

-admit parallel inference algorithms, this thesis has provchd-a.pzmihl answer. Since the ciass 6f y

unambiguous network is a natural class of inheritance networks, we have demonstrated that paral-
le] inference @Jgorith is possible, provided that the PMPM is enhanced as suggested. -~

p v v ~

As for general inheritance networks, we have demonstrated that a serial-parallel algorithrh is

b4

possible, given that a sct of link—sciting and link-chccking commands are added to the PMPM.

v

We have also analyzed if it is possible to pass around somre addmondl information so that totally

parallel algorithms can be demgncd Bu[from our analy51s it seems that it is extremely difficult,

.

considering the demand on the capability -of fthc))ro'ccssing clements to analyze the additional

-~ -

information. - e ' .

. The two approaches uscd in dcaling with unambiguous and general inheritance networks are

different. For unambiguous nciworks, additional information is passed around. For géneral net-

works, information is deposited onto the links. It is worthwhile 1o investigate if it is possible to

combine the two approaches in order 1o have a:more efficient algorithm for general inheritance

nctworks. : o

ta

In ths LhCSIS we have dmm"umh buwucn an unambnguous and a general inheritance net-_,

work Thxs is'a coarsc characlcmauon As it turms out Lhc algonthm for general mhemance net-

. i . - .

_ works 1s qmtc complcx A natural quusuon is wllcthcr we can funher dxvxde Ihe class of general

v ~

mhemance networks so that less (.0l11plu< ainomhmq can bu dcsmncd

References

\ 4

[Bobrow, Winograd 79] Bobrow, D. and Winograd, T., "An Overview of KRL, a Knowledge
. Representation Languagc " Cogmuvc Seicnce 1 (1979) pp. 3-48. ‘

[Brachman 85] .Brachman, R., "I Licd about lhe Trees’ Or, Defaults and Deﬁnmons in
' Knowledge Represcntation,” The AlMaga’me Fall 1985 pp. 80- 93 -

[Brachman Schmolze 85] Brachman, R and Schmolze [., "An Overvxew of ;he KL-ONE
Knowledge Represcentation Systcm,” Cognitive Scicnce 9 (1985), pp. 171-216.

{Carlson 82] Carlson, G., "'Gcncn'c\crms and Generic Sentences,” Journal of Philosophical .
Logic 11 (1982), pp. 145-181. A ‘ :

[Ethermgton Rciter 83) Etherington, D W. dl’ld Reiter, R., "On Inheritance Hierarchies With
Exceptions,” AAAI-83, pp. 104 108, °

[Et.henngton 82] Etherington, D. W., "Finite Delault Theones M.Sc. thesis, Department of
Computer Scxencc. University of Brmsh Columbia, 1982. L

'[Ethenngton 87a] Etherington, D. W., Foxmalf-zing Nonmonotonic Reasoning Systems,"
Artificial Intelligence 31 (1987) pp- 41 85. ' ' ' .

[Etherington 87b] Etherington, D. W., "More On Inheritance Hicrarchies with Excepuons
Default Theones and Infercntml Dnsmncc " AAAI-87, pp. 352-357.

[Fahlman 79] Fahlman S A Syslcm for chrcscmmg and Using Real-World Knowledge," MIT -
' Press, Cambridge, MA, 19‘79 ' - - .

) [Fahlman SCJHOWSKI 83] Fahlman, S., Sejnowskl T., "Massively Parallel Architectures For AL
. NETL, Thistle, and Boltzmann Machines,” AAA/- 83, pp. 486-490.

[Fahlman et al 81] Fahlman, S., Tourcizky, D. and Van Roggen, W., "Cancellation in a Parallel
Semantic Network," [JCAI-S1, pp. 257- ”63

[Hayes 79] Haycs, P., "A Logic of Framus in Frame Conceptions and Text Understahding,
Walterde Gruytcrand Co 11979 . S

(Horty et’al 87] Horty, 5., Thomdson R. and Touretzky, D.; "A Skeptical Theory of Inhentance in
Nonmonotonic Semantic Networks," Cameigic Mecllon Umvcrsuy ‘Computer Science Technical
'Report CMU CS 87- 175 Oclobcr 1987. L :

[Hwang. Bnggs 85] Hwang, K. and Briggs, F : 'Corﬁp’ui_c-r' @-réhit_c’btu;c and ﬁarfillel Proccs’sing'v." L

' McGraw'Hall B00k C@pany, 1985.

’[McCarthy 80] McCanhy. I ercumscnpuon ~ A Form of Non-‘Mo'no'tonic Reasoning," .
Artzﬁczal Intellzgence 13 (1980) pp- 27 39 o ‘

i -

[McCarthy 86] McCarthy, J., "Applications of ercumscnphon‘ to Formahzmg Common-Sense -

Knowledge," Artificial Intelligence 28 (1986), pp. 86-116.

[McDemott, Doyle 80) McDcrmott, D. and Doyle J., "Non Monotomc Logic1," Arnﬁczal Intelli-
gence 13 (1980), pp. 41-72.

“[Poole 85] Poole, D., "On the Compurison of Tlmoncs Prcfemng the Most Specific Explana-
tion," IJCAI-8S, pp. 144 147. :

'[Reiter 78] Reiter, R "On rcasoning by defaull," Proceedings of the Second Symposzum on

. Theoretical Issues indlatural Langua"e Processing 1978, pp. 25- 27.
132.

'276.

[Rich 83] Rich, E., "Default Reasoning as Likelihood Rcusoning." AAAI-83, pp. 348-351. -

{Sandewall 86] Sandewall, E., "Nonmonotonic Inlerence Rules of Mulnple Inhemzmce wxm '

Excepuons," Proceedings of the [EEE. vol. 74. no. 10, Ocz 1986, pp. 1345-1353.

[Touretzky 84] Tourctzky. D., "Implicit Ordering of Dc['auhs in Inheritance Systems," AAAI-84,
pp. 322-325. ‘ ' , " .

.
<

%umaky 86]—’Nuretzky, D., "The Mathematics of Inheritance Systcms. Research Notes in

Artificial lntellzgence Morgan K aulmann, 1986.

‘[Touretzky et al 87] Tourctzky D., Horty J. and Thomason R., "A Clash of_IntuiLions‘: Thc
Current State of Nonmonotonic Multiple Inheritance Systems," [JCAI-87, pp. 476-482.

A

93

[Reiter 80] Reiter, R., "A Logic lor Dcfault Rcasoning," Artificial Intelligence 13 (1980), pp. 81-

/\ '
_{Reiter, Criscuolo 81] chcr R. and Criscuolo G., "On Intcracung Defaulls," 1JCAI-§1, pp. 270-

