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Abstract

Composite materials arc replacing conventional materials in various engineering

applications. The damage of these materials is considered in this work.

The strain energy can be used as a fatigue failure criterion for unidirectional
fiber reinforced composite materials. The relation between the strain energy and
the number of reversals to failure was found to be of a power law type which applies
to different material types. To include the effect of the stress ratio in the formulation,
a non-dimensional form of the strain energy is used. This parameter correlates fairly
well with the experimental data obtained for five diflerent fibers orientation angles

under three different values of the stress ratio.

The strain energy may also be used as a criterion to predict crack growth
direction in a lamina under static off-axis and in-plane mixed-mode loading.
Comnarison of experimental results with different established criteria from the

literature indicates that the present criteria lead to more consistent results.

To extend the use of the strain energy criterion to laminates, an existing theory of
isotropic laminated elastic plates is extended to include the effect of anisotropy. This
theory satisfies all the interlaminar interface tractions and displacements continuity
conditions as well as the zero traction condition on the lateral surfaces. The only
restriction would be that the boundary conditions are satisfied in an average manner.
The results obtained using this method are presented and the problems arising from
the use of thick laminates with high anisotropy are discussed. These results are also

compared to those obtained using the three dimensional finite element analysis.
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Chapter 1

Introduction

1.1 Introduction

Composite materials have a long history of usage. Their beginnings are unknown,
but all recorded history contains some references to some form of composite
materials. For example, plywood was used by the ancient Egyptians when they
realized that wood could be rearranged to achieve superior strength and resistance
to thermal expansion as well as to swelling owing to the presence of moisture.

Medieval swords and armour were constructed with layers of different materials [1].

More recently, early military applications during World War II led to large scale
commercial applications, particularly in the marine industry during the late 1940’s
and early 1950’s.

The first widespread use of fiber-and-resin technology took place in the early
1950’s, when glass fiber and polyester resins became available. The versatility, and
comparatively simple methods of use, of this combination soon led to its appearance

in boats, car bodywork, and many other industrial applications.

Recent advances in composite materials technology are largely due to the

aerospace industry which found the properties of these materials (for example, high



strength-to-weight and stiffness-to-weight ratios) attractive for their applications.

On the other hand, race-car manufacturers require low weight, high-mechanical-
performance components, but do not have to follow specifications as strict as is the
case in the aerospace industry. Therefore, they were able to develop techniques at
a faster pace.

The versatility of composite technology can be observed in its many applications,
ranging from the experimental Spitfire fuselage built in World War II through
the much later applications, such as advanced sports equipment, tennis rackets,
golf clubs, etc, to advanced aerospace structures and race-care chassis, show the

great advances that have been made during the first 35 years of modern composite

development.

1.2 Definition and Classification of Composites

Composite materials can be defined as follows [2]:

A Composite Material is a material system composed of a mixture or
combination of two or more macroconstituents differing in form and/or

material composition and that are essentially insoluble in each other.

Several classification systems have been used to differentiate between different

types of composites, including:
e By basic material combinations (metal-organic or metal-inorganic)
¢ By bulk-form characteristics (matrix system or laminates)

e By distribution of constituents (continuous or discontinuous)

among others. The classification used here is based on the form of the structural

constituents (Fig. 1.1) [3]:



1. Particle-Reinforced Composites (particulate composites) which are composed

of particles, fillers or thin flakes in a matrix

2. Fiber-Reinforced Composites (fibrous composites) which consist of fibers in a

matrix

1.2.1 Particle-Reinforced Composites

A particle, by definition, is non-fibrous and, with the exception of platelets, has
generally no elongated dimension. The dimensions of the reinforcement determine
its capability of contributing its properties to the composite. Particles of rubber-
like substances in brittle polymer matrices improve fracture resistance by promoting
and then arresting crazing in the brittle matrices. Other types of particles, such
as ceramic, metal, or inorganic particles, produce reinforcing effects in metallic
matrices by different strengthening mechanisms. The particles and matrix material
in a particulate composite can be any combination of metallic or nonmetallic
materials. The choice of a particular combination depends on the desired end
properties.

Inorganic fillers are very effectively used to improve various properties of plastics,
such as to increase surface t.ardness, reduce shrinkage and eliminate crazing after
moulding, improve fire retardancy, provide colour and improve appearance, modify
the thermal and electrical conductivities, and, most importantly, greatly reduce cost

without necessarily sacrificing the other desirable properties.

Thin flakes offer attractive features for an effective reinforcement. They
primarily have a two dimensional geometry and thus impart equal strength in all
directions in their plane compared to fibers that are unidirectional reinforcements.
Flakes, when laid parallel, can be packed more closely than fibers or spherical

particles.
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Although particulate composites form an important class of composite materials,
they are not further discussed in this work since discussion is limited to fibrous

structural composites.

1.2.2 Fiber-Reinforced Composites

It is well known that the measured strengths of most materials are found to be
much smaller than their theoretical strengths. The discrepancy in strength values
is believed to be due to the presence of imperfections or flaws in the material. An
attempt to minimize or eliminate flaws enhances the strength of a material. Flaws
in the form of cracks that lie perpendicular to the direction of the applied loads
are particularly detrimental to strength. Therefore, compared with the strength of
the bulk material, man-made filaments or fibers of non-polymeric materials exhibit
much higher strengths along their lengths since large flaws, which may be present in
the bulk material, are minimized because of the smail cross-sectional dimensions of
the fiber. In the case of polymeric materials, orientation of the molecular structure

is responsible for high strength and stiffness.

Fibers, because of their small cross-sectional dimensions, are not directly usable
in engineering appiications. They are, therefore, embedded in matrix materials to
form fibrous composites. The matrix serves to bind the fibers together, transfer
loads to the fibers, and protect them against environmental attack and damage
due to handling. In discontinuous fiber-reinforced composites, the load-transfer
function of the matrix is more critical than in continuous fiber composites. Fibrous
composites have become the most important class of composite materials as they
are capable of achieving high strengths.

Fibrous composites can be broadly classified as single-layer and multi-
layer (angle-ply) composites on the basis of studying both the theoretical and

experimental properties. Single-layer composites may actually be made from several



distinct layers with each layer having the same orientation and properties, and thus
the entire laminate may be considered a single-layer composite.

Most composites used in structural applications are multi-layered; that is, they
consist of several layers of fibrous composites. Each layer or lamina is a single-layer
composite, and this orientation is varied according to design. Each layer of the
composite is usually very thin, and hence cannot be directly used. Several identical
or different layers are bonded together to form a multi-layered composite usable
for engineering applications. When the constituent materials in each layer are the
same, they are called simply laminates. Hybrid laminates refer to multi-layered

composites consisting of layers made up of different constituent materials.

Reinforcing fibers in a single-layer composite may be short or long compared to
its overall dimensions. Composites with long fibers are called continuous-fiber-
reinforced composites and those with short fibers, discontinuous-fiber-reinforced
composites. The continuous fibers in a single-layer composite may be all aligned in
one direction to form a unidirectional composite. Such composites are fabricated
by laying the fibers parallel and saturating them with resinous material, such as
polyester or epoxy resin, which holds the fibers in position and serves as the
matrix material. Such forms of preimpregnated fibers are called prepregs. The
unidirectional composites are very strong in the fiber direction but are generally
weak in the direction perpendicular to the fibers.

The continnous reinforcement in a single layer may also be provided in a second
direction to provide more balanced properties. The bidirectional reinforcement may
be provided in a single layer in mutually perpendicular directions as in a woven
glass fabric. The bidirectional reinforcement may be such that the strengths in two
perpendicular directions are approximately equal.

The orientation of short or discontinuous fibers cannot be easily controlled in a

composite material. In most cases the fibers are assumed to be randomly oriented



in the composite. However, in the injection moulding of a fiber-reinforced polymer,

considerable orientation can occur in the flow direction.

1.3 Scope of the Thesis

Damage of fiber reinforced composites are considered in this thesis (¥ig. 1.2). In
chapter 2, the different failure modes for fiber reinforced composites under static
tension and compression are reviewed. The fatigue failure mechanisms as well as the
factors influencing failure under cyclic loading are then presented. The propertics
of composites can be determined using two different approaches: phenomenological
and mechanistic. At the end of the chapter the two approaches are introduced and

o

compared to one another.

Damage in the form of cracks will initiate in a component made of composite
material when it is subjected to cyclic loading. These cracks will generally initiate in
the weakest lamina with respect to the direction of the applied load. The first crack
initiation in a laminate may be viewed equivalent to the failure of a unidirectional
lamina. This lamina will have the same fiber orientation angle as the weakest lamina
in the laminate. In chapter 3, a fatigue failure criterion for fiber reinforced laminac
under oscillatory states of off-axis loading is developed. This criterion is based on
the strain energy. The predictions are compared to experimental data, and are
shown to be in good agreement. The effect of the stress ratio (omin /Omaz) is also

considered.

A laminated component containing an initial crack in one of its laminae is
investigated in chapter 4. This chapter deals with an idealized situation and
attempts to predict the crack growth direction in a unidirectional fiber reinforced
composite lamina. Comparison between the theoretical prediction of the crack
extension direction (also based on the strain energy) and experimental results

indicates that the f)roposed criterion correctly predicts the direction of crack growth
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for the test cases considered.

To analyse the damage in a laminated component, a theory for laminate
formulation is required. The Classical Laminate Theory is not adequate since it
does not provide values for the interlaminar stresses and through-the-thickness stress
distribution. In chapter 5, an attempt is made to develop a theory of laminated
plates. An approximation involved in this theory is that the edge boundary

conditions are satisfied only in an average form.

Verification of the theory of laminates developed in chapter 5 is presented in
chapter 6. For the isotropic case, the results obtained are comparable to the isotropic
formulation found in the literature. In particular, an isotropic laminated plate
with a stress-free circular hole subjected to a uniaxial tension at infinity is studied
in details. The similar problem is then considered for the case of an anisotropic
laminated plate. For this case, the effects of anisotropy and laminate thickness
are addressed. The results are finally compared to those obtained using a three-

dimensional finite element analysis and the main differences are presented.



Chapter 2

Damage in Composite Materials

2.1 Introduction

Composite materials are heterogeneous materials and are characterized by the
presence of several types of inherent flaws. These are usually broken fibers, voids in
the resin, misaligned fibers, resin-rich zones, debonded interfaces, etc. The relative
presence of each type of defect depends on the manufacturing process used to make
each particular laminate. Therefore, composite materials generally exhibit a variety
of failure modes including matrix crazing or microcracking, fiber failures resulting
from statistically distributed flaws, debonding, delamination and void growth. In
addition, several of these failure modes are generally present at any given time prior

to failure.

2.2 Tensile Failure Modes in Unidirectional Fiber

Reinforced Composites

The typical sequence of fracture modes leading to tensile failure in unidirectional

glass-fiber epoxy is [4]: formation of fiber breaks probably corresponding to the

10



11

lower tail of the probability distribution of the strengths of the fibers, development
of matrix microcracks beyond a certain initiation stress (these microcracks increase
in density as loading proceeds); and, before failure, a rapid increase in fiber failures
leading finally to coalescence of fiber breaks by transverse cracking followed by

interfacial shearing and failure.

The various modes of fracture in an idealized composite laminate are shown
schematically in Fig. 2.1 [4]. Fracture characteristic of brittle fibers in a brittle
matrix is shown at 1 while fiber pull-out characteristic of a weak interface is shown
at 2. In 3, the main crack has left the fiber intact by crack bridging, and 4 shows
additional matrix microcracks bridging fibers; the latter occurs for brittle matrices
in which fracture initiation occurs at strains greater than the failure strain of the
matrix. The ductile failure of a fiber is shown at 5, while 6 shows fiber fracture at a
flaw and the associated plastic strain distribution (or craze) in the matrix. 7 shows
the plastic distribution (due to o) at the tip of the main crack, 8 is the plastic
shear strain distribution (under influence of 7,,) and 9 is a longitudinal matrix or
interfacial crack caused by the influence of the o, stress distribution. Finally the
dotted outline 10 shows a possible zone of interlaminar shear failure between the

ply shown and the adjacent off-axis lamina.
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Figure 2.1: Possible Tensile Failure Modes in a Unidirectional Fiber
Reinforced Composite
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2.3 Compressive Failure Mcdes in Unidirectional Fiber

Reinforced Composites

Compression failure modes in unidirectional fi \~r reinforced composites can be
classified in three groups (Fig. 2.2); failure modes in fibers, failure modes of matrices
(or resins) and failure modes of composites as a whole [5].

Fibers fail differently depending on their internal structure. Higih modulus
graphite fibers fracture in shear along a maximum shear plane, while Kevlar fibers,
on the other hand, fail in a kink mode because of Kevlar’s characteristic weak bond
in the radial direction that permits individual fibers to split into fibrils. Both shear
failure and fiber kinking are characteristic failure modes for fibers with well-aligned
fibrillar structure. The basic mechanism for the two failure modes secems to be the
same; that is, they are both the result of aligned fibrillar structure and a weak
radial bond. However, the low ductility for graphite fibers leads to fracture while
the development of fibrils for Kevlar fibers results in kinking. Brittle fibers with
amorphous structure such as glass do not usually fail in the aforementioned failure
modes. These fibers can fail in bending, starting from the tension side. Medium to
high-strength fibers may also fail in bending. The failure modes strongly depend
upon the lateral support provided to the fiber during loading. In the absence of
a strong lateral support, all fibers would fail by buckling. As the support stifiness
increases, buckling is suppressed and the fiber begins to fail in shear.

Compression tests on bulk resins reveal two types of failure. For ductile resins,
plastic flow is frequently observed in a broad band oriented 45-deg to the loading
axis. For brittle resins, however, shear banding, namely narrow zones of shear
yielding, can precede ultimate failure.

Because of the weakness of the matrix and the fiber/matrix interface compared
with the strength of the fibers, unidirectional composites can fracture along the

fibers even when loaded by compression. Transverse tensile stresses develop in the
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matrix due to Poisson’s ratio differences between the matrix and fibers, and stress

concentrations caused by voids can initiate fracture in the fiber/matrix interface.

If a fiber buckles, the matrix/fiber interface may fracture in shear and lead
to ultimate failure. However, if the matrix is ductile and the interface is strong,
the fiber can bend without matrix failure and eventually fracture in bending. The
eccentricity introduced by such fiber fracture may lead to longitudinal splitting with

continued compression loading.

A more likely failure mode of composites associated with fiber buckling and
kinking is shear crippling. Macroscopically, shear crippling looks like a shear failure
on a plane at an angle to the direction of loading. Microscopic inspection, however

indicates shear crippling is frequently the result of kink-band formation (Fig. 2.3).

A third failure mode of composites is associated with pure compression failure
of fibers. In this case, the fracture surface is likely tc be at an angle , about 45-deg,
to loading.

The failure sequence for a composite would likely start with kinking of a few
fibers. The kinked fibers disrupt the stability of the neighbouring fibers so that the
neighbouring fibers also fail in the kinking mode. This damage propagation process
continues until the composite completely fails. In some case, fiber kinking may
be initiated at several different locations and eventually converge. The transverse
tensile stress in the region where the two advancing kink bands meet may be

sufficiently high to cause longitudinal splitting.

Several other failure modes have been distinguished in compression tests on
unidirectional specimens [6]. Three of these (transverse, branched transverse, and
split transverse) are very similar. Others were brooming, shear failure, shear
crippling, etc.

A transverse failure mode is typified by a fracture surface parallel to the thickness

direction of the specimen, but typically oriented at an angle in the width direction



Figure 2.3:Kink Band
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of the specimen. The branched transverse failure mode is readily recognizable since
a portion of the gauge section will be missing if the two halves of the failed specimen
are placed together. The split transverse failure mode is a transverse failure mode
with the additional feature of very coarsely spaced splits in the composite parallel
to the fiber orientation. That is, the splits are parallel to the axis of compressive

loading, perpendicular to the primary failure plane.

The brooming failure mode does not create a distinct failure surface. In this
mode the two halves of the failing specimen splay out and then are pushed together
since testing machine movement continues slightly as the applied loading is dropping

off and the computer control is sensing failure.

The shear failure mode forms at an angle to the normal to the mid-plane.
Furthermore, this failure can be parallel to or at an angle to any of the edges

of the mid-plane.

The failure modes discussed here depend on various material properties and
geometrical parameters. Some properties and parameter values may promote one

failure mode while other values may favour another.

2.4 Fatigue Damage Mechanisms in Composite Materials

Fatigue damage mechanisms in composite materials are quite complex and difficult
to describe in a general way. The damage state is formed by various combinations
of fiber, matrix, and interfacial damage; however, the ways in which these damage
components interact and combine govern the fatigue response of composites.
The mechanism type, and distribution of damage, depend upon the material
system (combination of fiber and matrix materials), stacking sequence of plies,
fabrication techniques, geometry of the components, stress state, and the load
history. Furthermore, the mechanisms are sensitive to a number of other parameters,

including type of loading, frequency of cyclic loading, temperature and moisture.
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Fatigue failure modes and the sequence of damage accumulation depend on the
stress level [7). Early in the specimens’ life, matrix microcracks between fibers
normal to the applied load occur. These microcracks are not deleterious in that
they neither trigger fiber failures nor grow bridging the fibers. At medium and high
cyclic stresses, degradation in the form of fiber failures is observed. At low stress

levels, only matrix microcracks and a few scattered fiber failures are seen.

2.4.1 Debonding

Studies have shown that fatigue damage initiation is associated with interactions
of the fibers and matrix at the fiber-matrix interface [8] - [10]. The respective roles
which the fibers, matrix, and interface play in the fatigue damage initiation process
depend upon the material system, loading mode, and the amplitude of the cyclic
stress. In glass fiber reinforced plastics, Owen [8] has observed damage initiation
due to debonding between fibers and matrix under tensile loading. The debonds
appeared as cracks spreading from one ply interface to the next. Subsequently,
the debonds develop by spreading along the ply interface and among the aligned
fibers. He also followed the progress of fatigue damage under fully reversed stress
and found that it was possible to produce conventional S— N curves for debonding,

resin cracking as well as for the final separation of the specimen.

2.4.2 Matrix Cracking and Local Fiber Breakage

Under conditions of high cyclic stress, crack initiation can occur on the first cycle
and new cracks develop as loading continues. Dharan [10] noted three regions in
the S-N curve for unidirectional glass fiber composites. When the applied cyclic
stress is large enough to be within the strength distribution of the fibers, local fiber
failures occur on the first cycle. Upon the application of additional cycles, the local

failures join together until fracture of the specimen occurs within a few cycles. If
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the applied stress is not sufficiently large to cause a large number of fiber fractures,
matrix microcracks initiate and propagate during cycling until delamination of the
ply interfaces begins. Although some fiber breaks may occur early in the life of the
material, they do not appear to have a major influence on the fatigue response. If
the applied stress level is below that required to initiate matrix microcracks, fatigue
lives greater than one million cycles can be obtained, although some microcracks
do develop in the matrix during cyclic loading.

The macroscopic behaviour of unidirecticnal composites closely follows from
the microscopic observations. Awerbuck and Hahn [11] report that unidirectional
graphite-epoxy specimens, cyclically lnaded parallel to the fibers, failed abruptly,
without early warning, and in a mode typical of static failures at maximum cyclic
stresses within the scatter band of tensile strength data. At cyclic stresses slightly
less than this level, fatigue damage was in the form of longitudinal matrix cracks
between fibers near the edge of the specimens; however, most of these specimens
survived 10° and 108 cycles with no measurable reduction in strength.

The fatigue strength of unidirectional composites suffers when the loading
direction is not parallel to the fiber direction. At large deviations from the loading
directions, the fibers become less effective in carrying load and the fatigue behaviour
is much more sensitive to local inherent defects such as resin-rich regions and
fabrication irregularities. Fatigue tests performed by Stinchcomb et al. [12] on 90-
deg graphite-epoxy specimens produced fatigue and residual strength test failures
which were parallel to the fibers with no visible evidence of fatigue darnage on the
fracture surface of the specimen.

Because the properties of a composite lamina are highly anisotropic, most
structural applications require that several laminae be stacked together to form
a laminate with fibers in individual plies having a specific orientation. Some
strengthening may be realized if the angle between the load direction and fiber

direction is small. In general, reducing the degree of anisotropy improves the
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transverse strength and stiffness of the laminate while reducing the overall strength.
It could also be shown that, although a simple cross-ply 0/90 deg stacking sequence
laminate is in a state of biaxial in-plane stress in interior regions, near the free edges,
the presence of interlaminar shear and normal stresses creates a three-dimensional
state of stress. When the external loading is cyclic, the cyclic multiaxial stresses
cause a variety of damage modes which interact to form a complex state of damage.
Variations of the 0/90 deg stacking or other stacking sequences, such as quasi-
isotropic (combinations of 0,+45,-45,90-deg plies), produce different stress states
and therefore different damage states.

Tension-tension fatigue in cross-ply and quasi-isotropic laminates begins with
cracks in the 90-deg plies. In many engineering situations, these cracks may initiate
on the first loading cycle and increase in density and extend in a fashion dependent
on the loading history, stacking sequence, and material system as observed by
Tanimoto and Amijima [13] and Stalnaker and Stinchcomb [14]. These authors
report that the density of transverse cracks increases with stress or cycles until a
stable density for a particular laminate configuration is reached. It also appears that
achieving a stable or saturation density of cracks in the 90-deg plies corresponds
to the proportional limit in the static stress-strain curve. Grimes [15] has found
the proportional limit stress to be the endurance limit for cross-ply graphite-epoxy

laminates.

2.4.3 Delamination

Additional fatigue damage develops by delamination between plies and crack growth
into adjacent plies. Under cyclic tensile loads, laminates with tensile interlaminar
normal stresses at the free edges, such as those with basic [0/90], and [0/ 3 45/90],
stacking sequences, develop delaminations which interact with the transverse cracks

in the 90-deg plies. The delamination then progressively grow along the length and
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through the width of the specimen.

Seneckyj and Stalnaker [16] have noted that delaminations are an important
fatigue failure mode; however, they may not significantly influence residual strength
or the site of residual strength test failures [8]. The tendency for a composite
material to delaminate is strongly dependent on the stacking sequence and mode of
loading. For example, the two basic laminates mentioned previously would develop
compressive interlaminar normal stresses upon compression loading and would not

be expected to delaminate.

Gustafson et al. [17] investigated the cyclic delamination crack growth of
a unidirectional composite. They showed that the growth could be expressed
as a power law relationship and showed little dependence on the stress ratio
(0.1 < R < 0.5). Their results were applied to both mode T and mixed mode

situations.

2.4.4 Effect of the Frequency of Cyclic Loading

Sendeckyj and Stalnaker [16] have also studied the effect of frequency on the fatigue
behaviour of unnotched composites. Using two zero-to-tension-to-zero trapezoidal
waveforms differing only in the length of time at load, they have found that the
longer hold time reduced the fatigue life.

Reifsnider et al. [18] mentioned that the effect of frequency of cyclic loads (or
strains) was found to significantly influence the fatigue response of boron/epoxy
and boron/aluminum plate specimens with a center hole. They found that low
frequency fatigue loading produced more concentrated local, hole-related damage
with corresponding greater stiffness reduction. In contrast, high-frequency loading
produced more dispersed damage with more axial micro-structure-related damage

and less stiffness reduction.

Tsai et al. [19] examined the frequency effect on the fatigue of graphite/epoxy



22

composites through stress controlled fatigue tests at different frequencies and
different stress levels. They showed that fatigue damage is governed by the strain
level and that frequency effects enter only in stress controlled situations and only
through the frequency dependence of the Young’s Modulus. They measured the
dynamic modulus and the creep strain and found that changes in both correlate
with damage.

Ellyin and Kujawski [20, 21] tested [+45]s, fiberglass-epoxy laminates under
undirectional cyclic loading. They concluded that the fatigue life of these laminates

is affected by the frequency of loading and they explained that effect in terms of

cyclic creep.

2.4.5 Stiffness Analysis

While fatigue strength and fatigue life are important properties of composite
materials, stiffness is also an important property, and in some engineering designs
(such as those in which stability is important), it may be a critical design factor.
Broutman and Sahu [22] have presented data showing the correlation between the
amount of fatigue damage, modulus change, and strength reduction. Salkind [23]
suggested that the change in stiffness could be used as a definition of fatigue failurein
composite materials. O'Brien and Reifsnider [24] have used experimental debonding
and fiber breakage data along with a reduced stiffness analysis to predict stiffness
changes in boron-epoxy laminates. The amount of matrix damage correlates well

with stiffness change and fiber breakage correlates well with strength reduction.

2.4.6 Compression Fatigue

The response of composite materials when loaded in modes other than tension-
tension fatigue have been studied less extensively, although currently there is some

interest in tension-compression and compression-compression fatigue behaviour. It



23

appears that cyclic compression loading is more detrimental than cyclic tension at
the same stress level. Dharan [10] noted that the graphite-polyester specimens
cycled in one-way-four-point bending always failed on the compression side.
Damage was observed to initiate at a zone of fiber buckling and develop by local

delamination, crack propagation into the specimen, and large scale delamination.

A major damage mode in compression fatigue is delamination followed by out-
of-plane buckling. Although delaminations can develop in tension-tension loading
of quasi-isotropic laminates, as noted previously, they are more critical when the
cyclic loading contains compression excursions as pointed out by Ryder and Walker
[25]. They discussed the effect of compressive loading on the properties of a quasi-
isotropic graphite/epoxy composite. For tension-tension tests, they defined failure
as breakage of the coupon, while for tension-compression tests, failure was defined
as coupon breakage or instability to sustain load due to severe delamination. Their
primary observation was that significant visible delamination often did not occur in
tension-tension testing prior to failure, but when such delamination did occur, the
remaining cycles to failure could be small or large. However, specimens tested in
tension-compression loading usually failed soon after delaminations formed. They
suggested that delamination might be used as a definition of failure in tension-
compression fatigue. They also noted that coupons tested in tension-compression
fatigue failed similarly to those tested in tension-tension, but large out-of-plane
buckling of the outer plies also occurred reducing life after the onset of delamination.
They also mentioned that all coupons tested in tension-compression fatigue failed
during the compression portion of the load cycle.

Rosenfeld and Huang [26] looked into the significance of compressive loading
in fatigue of graphite/epoxy laminates. They concluded that compressive loads
in fatigue produced a significant reduction in fatigue life when compared with the
results for tension-tension loading. They described the mechanism of failure as

progressive local fatigue failure of the matrix near a stress riser, thus causing fiber
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split, progressive delamination, and fiber buckling, which then precipitates laminate
failure. 71hey also found that the delamination process was delayed if angle plies
rather than 0-deg plies were used as outer plies.

Rotem and Nelson [27] compared the fatigue behaviour of graphite/epoxy
laminates under tension-compression loading with their behaviour under tension-
tension and compression-compression loading. @ They demonstrated that by
presenting the experimental data for a given fatigue life in the form of a fatigue
failure envelope, it is possible to reveal the fatigue behaviour for all types of loading

and to distinguish between tensile and compressive failure modes.

2.4.7 Effect of Biaxial Loading

A major problem encountered in characterizing the properties of composite
materials is the difficulty in testing these materials especially under combined stress
conditions. Owen and Griffiths [28] state that the problem is even more significant
when fatigue tests are being conducted. Difficulty in obtaining experimental results
covering a particular region of the fatigue failure envelope and specimens failing
outside the gauge area (mainly in the grip section) are examples of the problems
encountered. Such difficulties probably account for the sparsity of published
experimental results for these materials.

There are two basic specimen types that are suitable for fatigue testing under
biaxial loading conditions. The cruciform specimen subjected to biaxial in-plane
loading and the thin walled cylindrical specimens subjected to combined loading,.

Fawaz [29] tested cruciform-type specimens under static and cyclic biaxial
loading. He used the experimental results to obtain the parameters required in

his biaxial static and fatigue failure criterion for fiber-reinforced laminae [30].

Krempl et al. [31, 32] tested thin-walled graphite/epoxy tubes under uniaxial

and biaxial (axial-torsion) cyclic loading. Their tests showed much steeper fatigue
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curves under biaxial loading compared to the uniaxial case.

Most of the experimental data on biaxial loading using thin walled cylindrical
tubes have been obtained by subjecting the specimens to cyclic axial and torsional
loading for which the in-plane principal strains vary in a narrow range. To cover all
possible strain ratios, thin-walled tubes subjected to cyclic axial loading as well as

cyclic differential pressure are more appropriate [33].

2.4.8 Effects of Environmental Conditions

The effects of environmental parameters, such as moisture and temperature, on
fatigue mechanisms is another area which is also starting to receive needed attention.
Hofer et al. [34] have examined the effect of moisture on fatigue and residual
properties of an S-glass/graphite-epoxy hybrid composite and found no basic
alteration in response due to moisture. From tests at cryogenic temperatures, Kasen
et al. [35] have found fatigue response of boron-epoxy to be similar to that at room
temperature, and Tobler and Read [36] report the fatigue life of glass-epoxy at 4°K

to be an order of magnitude greater than that at room temperature.

Sumsion and Williams [37] performed torsional and bending fatigue tests on both
uniaxial (0-deg) and crossplied (= 45-deg) graphite-epoxy materials at temperatures
of 24°C and 74°C in an environment of air and water. The results of the torsion
testing showed that the number of cycles to cause an initial decrease in stiffness as
well as the rate of stiffness loss was a function of temperature and environment: the

most significant losses were noted at the higher temperature in water.

Mahulikar et al. [38] carried out mixed-mode tensile and fatigue crack
propagation tests on a boron reinforced titanium composite for the as-received,
vacuum heat-treated, and air heat-treated conditions. The vacuum heat treatement
had minimal effect on the tensile properties of the composite but improved the

fatigue crack propagation properties. The air heat treatment degraded the fibers
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and the interface, resulting in a loss of longitudinal strength but improvement of
fatigue crack propagation properties. Humid environment accelerated the fatigue
crack growth considerably compared to the vacuum and inert gas environments.

Failure stress intensity ( Kr ) appeared to have a lower value in a humid environment.

Tennyson et al. [39] tested unidirectional AS4/3501-6 graphite-epoxy laminates
(0-deg and 90-deg) under fatigue for both an ambient and a hot-wet environment.
Their specimens were tested under tension fatigue and compression fatigue loading.
For the 0-deg specimens under tension fatigue, the hot-wet S-N curve leveled off at a
slightly higher stress than the ambient case. They concluded that it might be due to
the normal variation present in all fatigue testing and therefore found that there was
little or no effect of the hot-wet environment on the 0-deg tension fatigue properties.
For the 90-deg tension fatigue tests, they found that the reduction in ambient fatigue
strength due to hot-wet environment was proportional to the reduction in static
strength. The results for the 0-deg specimens tested under compression fatigue
showed that the hot-wet S-N curve decays rapidly before levelling out at a relatively
low number of cycles (approximately 1000 cycles). This was unlike the behaviour
of the ambient 0-deg compression fatigue behaviour which exhibits a more gradual
decrease in stress with the number of cycles to failure. The 90-deg compression
fatigue tests under ambient and hot-wet conditions showed some differences. The
ambient fatigue tests had more scatter and the fitted S-N curve decreased more

gradually but produced a large difference between the average and minimum curves.

2.5 Phenomenological Approach

Two different disciplines may be adopted to determine the physical properties of

composites; they are, the mechanistic approach and the phenomenological approach.

The mechanistic approach relates the physical properties of the composite

to the properties of the constituent materials through established methods of
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analysis (e.g., continuum mechanics). This approach is particularly adaptable to
the computation of composite properties which characterize the averaged global
material responses, such as deformation and conductivity. A particular useful
result from the mechanistic approach is the prediction of composite compliances
from micromechanics analyses [40]. However, for composite properties which are
governed by local material responses such as strength and interfacial phenomena,
the mechanistic approach is less fruitful.

The phenomenological approach treats the heterogeneous composite as a
continuum, and a mathematical model is used to correlate the occurrence of the
material responses without necessarily explaining the mechanisms which lead to
these material responses. If attention is paid to mathematical requirements of the
model, the phenomenological approach is suitable for engineering characterization of
the material properties governed by either the averaged global or the local material
responses. Treatment of unidirectional composites as homogeneous anisotropic

plates [41] exemplifies characterization in a global sense.

In order to establish a failure criterion from the mechanistic approach,
the local irregularity of fiber-matrix geometry must be characterized, detailed
analysis methodology beyond the realm of classical continuum mechanics must be
established, and the physical mechanism of failure of the individual isotropic phases
must be known. Since these basic ingredients, particularly the last, have yet to
be firmly established, the mechanistic approach to composite failure appears to be
intractable at present.

A phenomenological failure criterion may be considered as a mathematical model
relating the external excitation to the material response. Failure is interpreted here
as the occurrence of any definable discontinuity in the material response. The
external excitation can be mechanical, thermal, chemical, or others. Thus, if the
material parameters in the mathematical model are measured in a manner consistent

with the discontinuity to be characterized, the failure criterion can be used in an
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isolated context, to characterize yield or rupture.

Various theories [42], using this approach, have dealt with damage as a whole
without studying the different damage modes. The tensor polynomial method
[43, 44], the strain energy density ratio method [45], and the normal Tsai-Hill

method [46] are examples of these theories.



Chapter 3

A Fatigue Failure Criterion for
Unidirectional Fiber Reinforced

Composite Laminae

3.1 Introduction

The problem of damage and crack initiation in a fiber reinforced component
subjected to cyclic loading is of importance in design and inspection, especially
in the aerospace industry.

The first crack initiated in a laminate can be simulated by the failure of a
unidirectional lamina. This lamina will have the same fiber orientation angle as the
weakest lamina in the laminate. It seems therefore necessary to establish a fatigue
failure criterion for unidirectional laminae.

Some of the earlier attempts to investigate the fatigue of the fiber reinforced
composite laminae will be briefly outlined. Hashin and Rotem [48] - [50] have shown
that the use of fatigue functions based on simple static quadratic failure relations

can, in certain instances, yield reasonable correlation with test data. They used

29
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a criterion expressed in terms of three S-N curves obtained from fatigue testing of
off-axis unidirectional specimens under uniaxial oscillatory load. The form of this
criterion has suggested using two distinct experimentally observed failure modes:
fiber failure mode and matrix failure mode.

Toth [51, 52] studied the fatigue behaviour of unidirectional (off-axis) and cross-
plied composites. He discussed the failure mechanism in terms of buildups of stress

concentration in the matrix to stress levels capable of fracturing proximate filaments.

Awerbuch and Hahn [53] have also performed some off-axis fatigue tests on
composite laminae in an effort to characterize the matrix/interface - controlled
failure. They used a homologous stress ratio to analyze their 5-N data, and then
attempted to fit their data using a power law but concluded that a more detailed
investigation was necessary.

Tennyson [54] and Tennyson et al. [39] concluded that there was a reasonable
cause to believe that their tensor polynomial criterion for the static failure can be
modified to incorporate “fatigue functions” which will permit preliminary estimates
of the fatigue life for a given lamina or laminate under axial load condition. Later,
Tennyson et al. [55] developed a numerical procedure to estimate the fatigue life
of laminates subject to constant amplitude and spectrum loading. A discussion of
other static failure criteria such as the maximum stress and the maximum strain
criteria, Hill-type criteria and tensor polynomial criteria are presented in a review
paper by Labossiére and Neale [42].

The response of unidirectional composite laminae loaded in modes other than
tension-tension fatigue has not been systematically investigated, although, some
results have been reported for cross-ply composite laminates.

Rosenfeld and Huang [26] performed a number of tests for R = 0,~co and —1
loading to determine the significance of the compressive loading. These test results

indicated a significant life reduction for both R = —co and R = —1 compared to
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the tension-tension loading, with the life reduction for R = —1 being greatest.

Rotemn and Nelson [27] studied the tension-compression fatigue behaviour of
graphite/epoxy laminates. They showed that tension-compression fatigue was
more important than tension-tension or compression-compression fatigue in that
it combined the behaviour of both. They also mentioned that the failure was
dependent on the specific lay-up of the laminate as well as the difference between
the tensile static strength and the absolute value of the compressive static strength.

Meanwhile, Ellyin et al. [56) and Ellyin [57) reported that, for metals, the
fatigue process can usually be divided into two phases, viz. initiation of cracks
and their subsequent propagation until failure occurs. They also stated that it
would be extremely useful if one could find a unifying damage parameter which can
describe these two processes. They thus introduced and successfully used strain
energy criterion for fatigue failure of metals. The predicted results were in good
agreement with the test data.

In the following it will be demonstrated that the strain energy approach is also
an appropriate failure criterion for the fiber reinforced materials (FRM) under cyclic

loading.

3.2 Stress-Strain Relation for Composite Laminae

For a plane stress condition, the elastic stress-strain relation for a unidirectional

orthotropic lamina shown in Fig. 3.1, may be presented in the form [1]:

€z ?1 1 :9-12 —glﬁ O
€y = _§12 -gzz .§26 Oy (3.1 )
Vzy §16 _§26 -566 Tzy

where:

S are the transformed compliances (Si; = Sj) :

S = Sum*+(2S12+ 5'66)”’121'&2 + Saan’,
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Sz = Si(m*+nt) + (Su + Saz2 — Ses)m®n?,

22 = Sun'+ (2512 + Ses)m?n? + Spom?,

Sie = (251 — 2812 — Ses)m>n — (252, — 2512 — Seg)mn®,
26 = (2511 —2512—~ See)mn> — (2533 — 2512 — Sse)man.,
See = 2(2S811 +2S2; — 4512 ~ See)m?n® + See(m* + nt),

and
Sn = 1/E,
Sy = 1/Ey,
Ses = 1/Es,
Si2 = —via/Ey = —va1/ En,
Sie = 0,
S = 0,

m,n  are the cosine and the sine of the angle 0 of Fig. 3.1 respectively
E,,E, are the moduli of elasticity in the principal directions of the lamina
E¢ is the shear modulus of elasticity

vi2,vn1  are the major and minor Poisson ratios respectively with respect

to the principal directions of the lamina

Note that for a general anisotropic lamina,

S = mai/Er = ma2/Ee
S = mz2/E2 = m212/FEs

where:
Maz » N2a2  are the coefficients of mutual influence of the first kind [41]

Mz1 » M2z are the coefficients of mutual influence of the second kind [41]
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3.3 Critical Strain Energy Criterion

Numerous proposals have been made to correlate fatigue test data. The multiplicity
of the proposed criteria is an indication of the complexity of the problem and the
lack of agreement on a unified approach.

Most of the proposed criteria are either stress or strain based. These criteria do
not account for the interaction between stress and strain in a material deformation
process. Furthermore, some of these criteria are not invariant with respect to the
changes in the coordinate system.

Therefore, Ellyin [58] concluded that a better formulation was to use the strain
energy as a fatigue failure criterion. He also explained that, in the low- and
high- cycle fatigue failures, the total fatigue life can be divided into two parts:
the nucleation of “starting” cracks, and their subsequent propagation until failure
occurs.

For smooth specimens, the first process is primarily controlled by the amplitude
of cyclic strain and/or stress of the bulk material. In the case of notched members,
the crack nucleation process at the notch root is controlled by the nominal stress

and/or strain and the notch geometry.

In the second phase, the crack propagation process is generally dominated by the
local stress/strain field ahead of the crack tir. In the single parameter description of
this process, the controlling parameters become the range of stress (strain) intensity

factor, AK or the range of the path-independent J-integral, AJ.

In another study [59], Ellyin also showed that the cyclic strain energy AW, can
describe both the critical damage (demarcation between initiation and propagation
phases) and fatigue life. He proposed a fatigue failure criterion relating the total
(elastic + plastic) cyclic strain energy AW* to the number of cycles to failure Ny;

this criterion can be expressed as: AW* = g(N;). He also suggested a power law



type relation of the form:

AW'=kN§ +C (3.2)

where:

k, &, C  were shown to be materials constants. In particular, & is a function

of the triaxiality constraint.

We wish now to investigate whether the strain energy could also be used
as a damage function for composite materials. A major portion of the useful
life of a composite structure/component involves subcritical damage accumulation
which is finally manifested in various combinations of matrix cracking, fiber-
matrix debonding, delamination and fiber breakage failure modes. A precise
characterization of a composite material would therefore require a knowledge of
the way the energy dissipates throughout the inhomogeneous structure as damage
is being arcumulated. The strain energy is a parameter which can be related to this

damage process. This approach will be followed in this chapter.

For elastic plane stress problems, the strain energy can be expressed in terms of

the stresses and strains as:
W = (0z€; + oy€y + Try Yoy )/ 2 (3.3)

Subst.ituting from (3.1) in (3.3) we can get an expression of the strain energy for

composite laminae in terms of stresses only, i.e.

W = [Ux (§110: + S0y + —S_xe’hy) + oy (_5_'12% + Snoy + .5;267::1;) +
Try (:S'-ma, + §260y + -§667zy)] /2 (3.4)

Rearra.'nging (3.4), we get:
W = [?110': + 2§120=ay + §22U: + 2§160z72y+

2?260',,7':” + —§667'2 ] /2 (35)

zy
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Assuming that the stress-strain relation for a lamina is essentially elastic, for the
case where both the maximum and minimum stresses are positive, the cyclic strain
energy is equivalent to the area under the stress-strain curve associated with the

tensile stress (Fig. 3.2):
e, [(L4R)
|50t 2m]
(1 - R-TRV)
o)

1 (1+ R.)
+ - 2
AW* = 3Bubel| TR

1z , » [+ R,)
2566AT,,-V [(1 _ R,)

] + _S-lea,Aa,,

St [T 2] + bt [ )
(3.6)
where:
A before a symbol indicates its range,
R; are the stress ratios = Opmin/Omaz (t = z,y,8)
For the uniaxial case:
AW* = %E,Aa: [8—'_*-23] (3.7)

Thus, the LHS »f /3.2) can be calculated once the applied stress range is specified.
The constants ou iz RHS of (3.2) have to be determined from test data. For the
general case, the expression of AW in terms of R would have to be determined

through experiments (see section 3.6).

3.4 Comparison with Experimental Data (R ~0)

Tests performed by Hashin and Rotem [48] for different values of the fibers
orientation angle, were used to validate the power law type relation (3.2) for the
case of fiber reinforced laminae. The material used in [48] was E-glass fibers in

an epoxy matrix with 0.6 volume fraction of fibers (E; = 54739.8M Pa, E, =
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17756.1M Pa, E, = 6013.5M Pa and v = 0.285). The stress ratio used was 0.1

under uniaxial condition. For this value of the stress ratio, eq. (3.7) reduces to:

= Ac?
M}"‘ —-— z
A = Su [1.636] (3.8)

Using eq. (3.2) and setting the constant C' = 0, we get
AW* = k(2N;)* (3.9)

where a and & in this case will depend on the fiber orientation and 2N, represents
the number of reversals to failure (1 cycle = 2 reversals).

The correlation with the experimental data seems to indicate that eq. (3.9) is an
appropriate fatigue criterion to be used for the composites (Fig. 3.3). In this figure,
the experimental data in the form of Ao vs 2N; were replotted in AW? vs 2Ny
coordinates, where AW* was calculated from (3.7). The lines represent the best fit
regression curves for each fiber orientation angle, 8. Having established a correlation
between the cyclic strain energy, AW, and the number of reversals to failure, 2Ny,

the next step is to get a general expression for @ and & as a function of the fibers
orientation angle.

The following expressions appear to correlate with the experimental observations:

a = a,+ab,

log = logk, + b6P, (3.10)
where:

a,b,f are material properties,
a,,K, are the values of a and & respectively at § =0,

0 is the fibers orientation angle in degrees.
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From the test data in [48], the constants of eq. (3.10) are found to be (sce Figs.
3.4, 3.5):

a = —0.1494 + 0.00086,
loge = 2.2240 — 0.9208 67812 (3.11)
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Using the values of a and & given by (3.11) in eq. (3.9), the calculated results
could be compared to the experimental data. Such a comparison is shown in Fig. 3.6,
where the solid lines are now the predicted values from egs.(3.9) and (3.10).

A second set of fatigue tests on unidirectional composites was taken from Toth
[51, 52). The material used was a 25 % volume boron filaments in a matrix of 6061
aluminum ( E; = 139700M Pa, E, = 81360M Pa, E, = 68950M Pa and v = 03). A
stress ratio of 0.1 was used. The correlation seemed to indicate that eq.(3.9) is also
appropriate in this case (Fig. 3.7).

The procedure described earlier was then repeated to obtain the constants of eq.

(3.10) for the data given in [51, 52] which yielded (Figs. 3.8, 3.9):

a = -—0.0436 + 0.000478,
logk = —0.6937 — 0.2766 6°134, (3.12)

Using these relations in eq. (3.9), the calculated values are compared with the
experiment data as shown in Fig. 3.10. It is seen that the experimental data of

the fatigue life of this metal matrix composite, is well represented by egs.(3.9) and

(3.10).
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A third set of fatigue tests for different angles of orientation was performed by
Awerbuch and Hahn [53]. This time, the material used was AS/3501-5A graphite-
epoxy with a nominal fiber content of 70% by volume ( E; = 135000M Pa, E, =
9600M Pa, E, = 5240M Pa and v = 0.3). A stress ratio of 0.1 was used. Again the
correlation with this set of data seems to indicate that eq. (3.9) is an appropriate

criterion for fatigue life prediction (Fig. 3.11).

The same procedure was repeated and the constants of eq. (3.10) calculated for

the test data in [53] were found to be (Figs. 3.12, 3.13):

a - —0.0746 — 0.000450,
loge = 1.7063 — 0.5946 6°25°7 (3.13)

Using these values in eq. (3.9), the calculated results are compared with the

experimental data as shown in Fig. 3.14.

Using eq. (3.10), the three sets of data under consideration led to average
correlation coefficients of 0.2529 for the first equation (a) and an average of 0.9756

for the second equation (logk).
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3.5 Normalization of the Results

A comparison of fitted eqs. (3.11) to (3.13) indicates that the term a6 in the
first of egns. (3.10) is small compared to a,, and we may neglect the second term.
In doing so, then all predicted life curves for various fiber orientations will have
a constant slope @ = a,. We may now collapse all these parallel lines by an

appropriate normalization, i.e.

AW
K

Pt = = (2N;)® (3.14)

where k = £(0) is given by the second of egs.(3.10).

A comparison between the normalized cyclic strain energy, AW /K, versus
number of reversals to failure, 2Ny, (3.14) and experimental data for the three
materials, is shown in Figs. 3.15- 3.17. It is observed that within a reasonable

scatter band, the fatigue life of composite laminae could be predicted by (3.14).

3.6 Effect of the Stress Ratio, R

Although tension-compression fatigue is extremely important in many composite
structures, most fatigue studies have been performed either in tension-tension or in
compression-compression (most probably because of the difficulties in conducting a
tension-compression fatigue test).

It is to be noted that, in this chapter, all the previous relations were obtained for
a stress ratio of about zero (tension loading). For a more general loading condition,
the cyclic strain energy may be related to the number of reversals to failure and the

stress ratio through a general form:

AW = G(2Ny, R;, 0) (3.15)
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The functional form of this relation would have to be determined using a series of

fatigue tests employing different values of the stress ratio.

3.6.1 Experimental Results

Unidirectional fiber reinforced specimens were cyclically tested at room temperature
under load controlled conditions. Fiber orientations of 0°,19°,45°,71° and 90° were
used to prepare the specimens. The material used was the Scotchply Reinforced
Plastic type 1003 which is a non-woven fiberglass reinforced epoxy resin materials. A
full description of the material properties, specimens’ fabrication, testing procedure
and experimental results are given in Appendix A.

The specimens with different orientations were tested under different stress ratios
(R =0.5,0 and —1). For each case, the experimental results of the maximum cyclic

stress vs. number of reversals to failure are tabulated and plotted in Appendix B.

Most of the tests were conducted using a loading frequency of 3.3 Hz (200
CPM). The effect of loading frequency was investigated on specimens with 45° fiber
orientation angle. These specimens were tested under frequencies of 3.3 Hz (200
CPM) as well as 0.426 Hz (25 CPM). The frequency effect observed was minimal
(see appendix A).

For the off-axis tests, failure was defined as the separation of the coupon, while
for 0° specimens it was defined as a 10% drop in the load carrying capacity of
the specimen. These definitions were used rather than, say, the change in stiffness
because no modulus reduction was observed during the life regardless of the off-axis

angle or the stress level (see Appendix A).
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3.6.2 Negative Stress Ratios

Figure 3.18 shows that the value of &, for positive values of the stress ratio (R =0
and R = 0.5), is about the same as the maximum monotonic strain energy under
tensile load, W, for the same fiber orientation angle, 8. The solid curves in this
figure are the best fit curves using the second of eq. (3.10). Equation (3.14) can

therefore be written as:

AW
vt = Wi

= 2N® (3.16)

where U+ is the non-dimensional form of the strain energy under positive stress
ratios, AWfJr , shown in eq.(3.7). The normalized strain energy (¥+) for R = 0 and
R = 0.5 is plotted vs the number of reversals to failure in Fig. 3.19.

For positive stress ratios, the damaging strain energy is represented by the
shaded areas of Fig. 3.2. For the negative stress ratios, if it is assumed that only the
energy associated with the tensile loading causes d2mage, then t}: di-1aging encrgy
would be represented by the shaded area of Fiz. 3.20. A plot «* ‘u. energy values,
associated with the positive'stress, obtained from the experiments with R = —1
together with the best fit obtained from the positive stress ratio case, is shown in
Fig. 3.21. It is noted that all the experimental data lie under the best fit of positive
ratio tests. This suggests that the compressive part of the load also contributes to
the damage. By a direct analogy, the corresponding form under positive or negative

stress ratio can be written as:

NN
wi Wy

v =yt + ¥ = (317)

where:

AW~ is the area under the stress-strain curve associated with the

compressive stress (Fig. 3.22).
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W, is the monotonic value of the strain energy under compressive load.

and AW* and Wj'" have been defined earlier.
The normalized strain energy can be related to the number of reversals to failure

by:

¥ = (2N))® (3.18)

which is a generalized form of (3.14). The fatigue failurc criterion (3.18) with the
normalized energy on the LHS, given by (3.17), takes into account the effect of
the stress ratio (positive or negative). The normalized strain energy parameter ¥
is plotted vs. the number of reversals to failure in Fig. 3.23. This plot includes
test results obtained from different fiber orientation angles as well as positive and
negative values of the stress ratio. It is observed that, within a reasonable scatter

band, the fatigue lives of composite laminae culd be predicted by (3.18).

A relationship for the (non-normalized) strain energy for any value of the stress
ratio, R, can be obtained by multiplying both sides of (3.17) by the monotonic

value of the strain energy under tensile load:

W+
AW = YW} = AW* + W%AW‘ (3.19)
The above equation implies that, in general, the tensile and compressive parts of
the stress do not contribute equally to the damage. The ratio Wf /W; depends on
the orientation angle of the fibers. For certain fiber orientation angles, the damage
caused by compressive loads might be higher than or equal to the damage caused

by the tensile loads while in other cases the damage caused by compressive loads is

so low that it could be neglected. Substituting from (3.19) into (3.18), we get

+
AW* 4 YL AW = WHEN,)* (3.20)
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To calculate the LHS of (3.20), the vaiues of Wf and W7 can be obtained for
the required orientation tron: the monotonic stress-strain diagrams under uniaxial
tension and compression, respectively. The value of AW is obtained from (3.7)
while the value of AW~ can be obtained using the compressive value of the
compliance in the same equation. The RHS of (3.20) shows that, to predict the
fatigue curve at any value of the stress ratio, we only nced the curve for a positive
(or zero) stress ratio. At least, two cyclic tests will be necessary to determine the
relationship between o and the fiber orientation angle, 8, (3.10). For positive stress

ratios, AW~ = 0 which transforms (3.20) to the particular case given by (3.9).

It could be therefore concluded that, within a reasonable scatter band, the
fatigue life of composite laminae for different fibers orientation angles and under

various values of the stress ratio, can be predicted by (3.18; or (3.20).

3.7 Concluding Remarks

The strain energy may be used s a fatigue failure criterion for FRM. Since this
parameter does not rely on the different failure modes obtained in composites,
it gives equally good results independent of the failure mechanism. The relation
between the strain energy and the number of reversals to failure was found to be of
a power law type which applies to different material types. However, in contrast to
metals, the constants are now functions of the fibers orientation angle. To include
the effect of the stress ratio in this formulation, a normalized form of the strain
energy (V) is used (see Fig. 3.23). This parameter correlated fairly well with the
experimental data for five different fibers orientation angles under three different

values of the stress ratio.

For positive stress ratic:, a simpler version of this relation (eq. 3.14) are shown
to correlats well with the experimental data for three different composite materials:

glass/epoxy, boron/aluminum and graphite/epoxy (see Figs. 3.15 - 3.17).



Chapter 4

Predicting Crack Growth
Direction in Unidirectional Fiber

Reinforced Composite Laminae

4.1 Introduction

A laminated component containing a cracked lamina is considered. To predict the
component failure, it is necessary to determine the direction of crack growth in that
lamina.

This chapter is concerned with predicting the direction of crack growth in
unidirectional laminae. The material under inve tigation will be assumied to be
elastic, homogeneous and anisotropic.

Three of the theories that have been used for predicting the direction of the crack
extension in the homogeneous, anisotropic materials are: the tensor polynomial
criterion [43], the minimum strain energy criterion [60] and the normal stress ratio
criterion [61). There are certain problems with each of the above mentioned criteria

as will be shown later on.
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A new criterion based on a critical value of the strain energy will be presented,
and shown to accurately predict the direction of crack growth for the test cases

considered.

4.2 Anisotropic Elasticity Analysis of Crack Tip Stress
Fields

The stress analysis of an elliptical hole in an anisotropic plate can be directly related
to a crack by reducing the minor axis dimension to zero. This problem has been
extensively investigated since the late 1930’s. A summary of these investigations

can be found in [41].

Lekhnitskii’s formulation of this problem, which is analogous to that of
Muskhelishvili’s counter-part in isotropic elasticity, is adapted in the following
discussion.

For a plate made of a linear elastic anisotropic material where the plane
under consideration is a plane of elastic symmetry, generalized Hooke’s law can

be expressed as:

€1 A Ap Ass 0
€2 = Al2 A22 Azs [0 (41)
"2 Ay Az Aes T12

where A;; are components of compliance tensor for plane stress (or plane strain).
For such a plate, shown in Fig. 4.1 the equations of stress equilibrium and strain
compatibility can be represented in terms of Airy’s stress function , ® . in the

familiar form:

5% e\ 7%
A2 (—a};) — 2Az (m) + (2A12 + Ass) (W)

0'd e
2t (5z3) + 42 (5¢) =0 o
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Figure 4.1:Infinite Center Cracked Plate with Far Field Stresses
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The solution of equation (4.2) for an anisotropic plate containing a crack can be
obtained in terms of two holomorphic functions,U;(Z;) and Uz(Z;), of the two

complex variables in the following form:

b =2 R[F(Z:) + F2(22)) (4.3)
where
Ui(Z)) = dI:;‘(lex)

and the complex variables are defined as:
Zl =T+ Sly Z2 =TI+ Sgy (44)

In (4.4) S; and S; are the roots of the characteristic equation of (4.2). These

roots can be written in the form:
Si=a; + 2,31 S =ay+ lﬁg (45)

From these, the stress and displacement components in an anisotropic plate

expressed in terms of the complex potentials Uy(Z;) and Uz(Z;) are:

0. = 2R[SIUI(Z) + 5:U5(22))
o, = 2R[Uy(Z1)+ Uy(Z)]
Ty = —2R [SIUI'(Zl)._+ SU3(Z,)] (4.6)

and

v = 2R[pUi(Z1) + p2Ua(22)]
v = 2R[qUi(Z)) + q2U2(Z2)] (4.7)
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where

n = AnSi+ Az — AS

P2 = AuSg + A1z — A6
A28 + Axp — AeS)

Q = S,
_ AnSi+ An — AxS

Using conformal mapping reduces the problem tc that of obtaining the solution to
the first fundamental problem for the circle. Then the holomorphic functions U3 (1)
and U((z) which satisfy a given set of boundary conditions can be determined eiii.er
by expanding them in Fourier Series or, by means of Schwartz Formula, expressed
in terms of Cauchy Integrals. Assuming ® = e+5¥ , the characteristic equation of

4.2 takes the form:

A St - 2A4:65° + (2452 + A66)52 —2A26S + A =0 (4.8)

The roots of the characteristic equation, S; and S;, are complex, and are functions
of the material properties and the orientation of the crack relative to the principal
material direction. Considering the -ase where S; # S, evaluaion of the
complex potentia. lunction near the crack tip yields expressions for the -tress and

displacement ¢is.- utions of the form:

i u”\/ER{ $15, fgz__i'}JrToo\/a%{ 1 's_g__s_f‘}
i Vor 51—52_%%' 1%4 V2r 51—52_§ ¢1%4
- 0% +oy
0®\/a 1 [S Sz'} rwﬁ{ 1 [1 1’}
= R 22 R —_—
il b R b
0’°°\/E 5152 (1 1-} T°°\/E { 1 -Sl 52.}
wy = R i R < -1
Tav \/ér {S] - Sz -1/J5 ¢;_ + \/2_1' 51 - Sz 2 2

1
(4.9)



(4.10)

(4.11)

and
1
u = a°°\/2ar§R{S 5 I-Slpgzb-}l - Sgpub,%
1—o2] J
1
'r°°\/2ar32{s 3 pgz,bz% -—pﬂpf]}
1 — V2L
[ 1
v = 0‘°°V20TR{S 1 S Sﬂ]z’lbz% - qull/)f
1— o2
1 -
1'°°\/2ar§)?{s 5 qu/)é - qlt,b,;‘;]}
1— o2
where 0® and 7% refer to the far field applied stresses, and
Y1 = cos¢+ Sising
Yo = cos¢+ Sysing
{ 'mpared to the isotropic case:
o = TVE O é-_‘?i)_
* Vor 2 27 2
T°Va . ¢ é
or sin 5 <2+cos2cos )
L %e ¢ ¢
e, T \/Q?c 2(1+sm2sm >+
Ve . ¢ 3¢
Tor sm2coszcos 5
o™ ¢ ¢ 3
Tey = \/2_; cos2sm2cos 2 +
Ve ¢ ¢ . 3¢
TS cos2 (l—sm2sm 2)

and
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. = i’f‘gﬁca g((l—u (1+u)sm=¢)
‘/2—“—’sm§(2+ 14v) cos’él
v = \/-—smg(2 (1+u)cosz¢)
T2 cos 5((11 — 1)+ (1 + v)sin® g) (4.12)

As in the isotropic case, the crack tip stresses exhibit a singularity of 1/4/T.
However, the magnitude of the stresses is not simply a function of the siress intensity
factors (K; = 0®y/ma and Kj; = 7°+/7a). The quantities S; and S; also affect
the magnitude of the stresses. This is an important difference between anisot-
and isotropic fracture. In anisotropic fracture, the magnitude of the cr
stresses is a function of not only the applied load, specimen geometry ana
length, but also the material properties and the orientation of the crack relative to

the principal material direction.

The problem under consideration (Fig. 4.2) has no restrictions as to the
orientation of the crack defined by the angle a, or the principal material directions
defined by the angle §. Complete biaxial loading is allowed. The ouly constraint is
that the crack is assumed to have a finite width. The problem defined in Fig. 4.2,
can be solved by transforming the far field stresses to a crack tip coordinate system
[62) as shown in Fig. 4.3, and observing that the far field stress parallel to the crack
does not contribute to the singularity (this fact is discussed in [65]). The elasticity

solution can then be applied to solve this general problem.
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Figure 4.2:Infinite Center Cracked Plate Under Biaxial Loading
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4.3 Criteria for Predicting Direction of Crack Growth

4.3.1 Tensor Polynomial Criterion

Tsai and Wu [43], Tennyson et al. [44], and others have presented a tensor
polynomial as an anisotropic failure criterion. This criterion is based on the

existence of a failure surface in the stress-space in the form of:
f(U.') = Fioi + F.'J‘U.'Uj + F.’jkO’.'O’jO’k +..=1 (i,j, k= 1,2, 6) (413)
where

Fi,F;;,Fi;x are strength tensors of second, fourth and sixth order respectively,

and

o; is the contracted form of the stress tensor.

Sce the review by Labossiére and Neale [42] for a discussion of various tensor
polynomial criteria. The application of the tensor polynomial to fracture problems
ttilizes the assumption that the direction of crack extension corresponds to the
radial direction of maximum f(o;). The stress components, o;, must be evaluated

at a finite distance, r,, from the crack tip.

4.3.2 Minimum Strain Energy Criterion (MSE)

The minimum strain energy criterion is based on variations in the energy stored
along the boundary of a core region surrouading a crack. This criterion was first
proposed by Sih [66] for isotropic fractare and later modified for the application to
anisotropic problems [60]. Sik defined the strain energy factor, S, by the expression:

v, S
W=(5) =2 (4.14)

where



-
(dU/dV) is the strain energy function, and

r is the radial distance from the crack tip.

For plane stress problems, the strain energy function can be expressed in terms of

the stresses and strains near the crack tip as:

Wo=(0rec+ e+ Tey¥ry)/2 (4.15)
As a result, the strain energy factor can be defined explicitly as:

S =71 (06z +0Oy€y + ToyVey)/2 (4.16)

The factor S was interpreted as the arca under the (dU/dV') versus r curve [67)].
The basic postulates of the minimum strain energy criterion are:

a) failure by fracture is assumed to initiate at sites corresponding to the

maximum value of the local minima of the strain energy function,i.e.

(&) | womer wr

b) crack extension occurs when (dU/dV )min reaches its respective critical value:

@@,

c) postulates (a) & (b) are sufficient for determining where and when unstable
crack propagation occurs in a two-dimensional problem in which all the elements at
the same distance r. from the straight crack front are assumed to fail simultancously.
In the three-dime isional case, the crack front is generaly curved and the distance r,
may vary from one point on the crack border to the next. The location of the initial
fracture points is described by a locus of elements with coordinates determined in

accordance with the following conditions:

dU\ S5 S _ _§,~__ _ S
(dv)c' === (4.19)
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such that for unstable fracture:
Nn<n<.<rn<.<r

and

51<85<..<5;<...< 8,

4.3.3 Normal Stress Ratio Criterion (NSR)

Buczck and Herakovich [61] have proposed the normal stress ratio as a crack
growth criterion. Using the isotropic results, where the cracks generally grow in
the direction of the maximum normal stress, their model assumes that the direction
of crack growth is controlled by the ratio of normal stress to tensile strength on a

given plane. The normal stress ratio is defined as:

R(ro,¢) = -,j:g (4.20)

where

ogs mnormal stress acting on the radial plane defined by ¢ at a distance

r, from the crack tip (Fig. 4.4),and

T4s tensile strength on the plane ¢.

Buczek and Herakovich postulated that the crack will grow along the plane for
which this ratio is maximum. Since the strength T44 on an arbitrary plane is very

difficult to measure, they defined it as:

T¢¢ = Xt sin27 +Yr 6082‘7 (4.21)

where



Figure 4.4:Normal Stress Ratio Parameters
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X1  the longitudinal tensile strength of the material
Yr the transverse tensile strength of the material

v the angle from the plane of interest to the fiber direction (Fig. 4.4).

The definition of T4 satisfies the following necessary conditions:
a) for isotropic materials, Ty4 does not depend on @.
b) for crack growth parallel to the fibers in a composite material, Ty, is equal to
the transverse tensile strength, Yr.

c) for crack growth perpendicular to the fibers of a composite material, Ty4 is equal

to the longitudinal strength, X7.

4.3.4 Critical Strain Energy Method - Present Criterion
(CSE)

The critical strain energy method is based on the assumption that crack initiation
takes place when the value of the strain energy defined by 4.15 reaches a critical

value, i.e.

W = (0-€z + 0y€y + ToyVey) /2 = Werit (4.22)

The value of W will depend on the material properties and the fibers direction.
The direction of crack growth will correspond to the radial direction having the
maximum value of the strain energy. Thus the direction of crack extension ¢ = ¢.,

is ohtained from :

ow s>w
—67 =0 and W < 0 (423)

It should be stated that although both Sih’s method and the present criterion use
strain energy as a criterion for crack growth direction, each method utilize a unique
interpretation, c.f. 4.17 - 4.19 and 4.23. The physical basis of the proposed criterion

is as follows: When a material element is loaded by an external agency, part of the
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supplied energy is dissipated into heat and the remaining part is stored in the

material. Damage is caused by the irrecoverable part of the stored energy {63), i.c.
‘{‘Vdamage = dWJuppIied - (dQ + du,rccoucrable) (424)

Each material has certain capacity to absorb damage, and failure results as a
su't of dariage accumulation. Because of the difficulty in measuring the heat loss,

dQ. it is generally asened that damage ‘s proportional to the supplied energy, i.c.

dwdama_.:' X deuppﬁcd (‘1.25)

In front oi the crack, the strain energy varies with the distance r and angle
é. Its variation at the crack tip, r <« a, can be calculated from 4.22. Crack
propagation will ensue when the strai. energy reaches the material critical value
(absorption caparity), Weri. The location at which this critical value is first reached

is obviously the one where the strain energy is maximam, i.e. condition 4.23.

4.4 Analysis of Off-Axis Unidirectiona! Tensile Coupons

Numerical results (from {62, 68} and from tae prese.nt criterion) are presented for
graphite-epoxy tensile coupons containing central cracks. Lamina properties of the
material considered, as well as specimen dim-usions, are given in {62, 68].

In comparing the predictions of aforementicned criteria for the crack growth
direction, the tenscr polynomial criterion will be exciuded. This is mainly due to
the dramatic dependence of the results of this method on the distance from the
crack tip, r, . Herakovich et al. [62] have shown that a small change in the value

of r, can affect the predicted crack growth direction by as much as 40°.

The independence of ¢. from r, allows the prediction of the crack extension

dircction in unidirectional composites without prior knowledge of a proper r,



Table 4.1: Comparison Between Different Criteria and Experimental

Results for Off-Axis Unidirectional Coupons

Test Dato.

NSR

MSE

CSE

Experimental
Results

Case(1): T360/5208
0=120° a=0°
2a = 5.08mm

r, = 0.00mm

o, = 6.9M Pa

301°

350°

296°

300°

Case(2): AS4/3501-6
60 =105° a=0°

2a = 5.08mm

r, = 0.05mm

oy = 6.9M Pa

286°

60°

284°

285°

Case(3): AS4/3501-6
0=120° a=15
2a = 5.08mm

r, = 0.05mm
gy = 6.9M Pa

271°

320°

270°

270°

Case(4): AS4/3501-6
0=90° a=0°
2a = 0.2.55mm

r, = 1.06dmm
o, = 6.9M Pa

88°

15°

87°

90°
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value. The remaining three methods are compared with the experimental results of

different off-axis tests in Table 4.1.

It is noted that the present model (critical strain energy) predictions are very
consistent with the experimental results. This is in contrast to the minimum strain
energy criterion of Sih which was shown in [62] as well as in Table 4.1, to be

inconsistent in predicting the direction of crack growth.

The variation of the three crack growth criteria as a function of ¢, for the various

tests are shown in Fig. 4.5 through Fig. 4.7.
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In another work, Zhang et al. [64] presented a strain energy ratio criterion for
composite materials. They compared that criterion with some of the well-known
criteria (NSR, MSE, Tsai-Hill) for two types of materials: graphite fiber reinforced
epoxy AS4/3501-6 and glass fiber reinforced polyester (GRP). Tables 4.2 and 4.3
show a comparison between the present method (CSE) and the aforementioned
criteria. Once more the present method seems to compare very well with other
presented methods exept for one case (GRP with 3 = 30°). The diserepancy
observed for that case can be related to the properties of the GRP used. Although
the ratio between the moduli of elasticity in both principal directions (F,/E,) is
about 3.0, the ratio between the material strengths in the same directions (S, /S,,)
is 65.7 (For the AS4/3501-6 material, these ratios were 11.1 and 28.2 respectively).
This might suggest that the material properties reported for this case could be

Inaccurate.



Table 4.2: Comparison Between Different Criteria for Off-Axis
AS4/3501-6 Unidirectional Coupons

Orientation | NSR|MSE|SER|(CSE
B =5° 6.75° | 40.5° 8.7° 5°
B = 45° 43.5° 87° 38.5° 50°
B = 105° 100.5° | 59° 112° 104°

Table 4.3: Comparison Between Different Criteria for Off-Axis GRP
Unidirectional Coupons

Orientation | NSR | Tsai-Hill | SER|[CSE
B = 30° 30° 26° 27° 301°
B = 45° 45° 39° 39° 52°
B = 60° 60° 52° 52° 64°
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4.5 Unidirectional Laminae Subjected to Mixed-Mode
Loading

In an attempt to verify the consistency of the proposed critical strain energy
criterion, and to study crack growth of fibrous composites under more general
loading conditions, unidirectional laminae were analyzed for various mixed-mode
loading. The predicted values of ¢., together with the experimental results [68, 69]

are presented in Table 4.4.

From the comparison, it is clear that the present model yields good predictions
of the crack growth direction for all of the five cases studied. The variation of the
crack growth criteria as a function of ¢, for some of the cases presented in Table

4.4, are shown in Fig. 4.8 through Fig. 4.11.



Table 4.4: Comparison Between Different Criteria and Experimental
Results for Unidirectional Laminae Subjected to Mixad-
Mode Loading

Test Data NSR|{MSE|CSE | Experimental
Results

Case(5): AS4/3501-6
0=175° a=0°

2a = 5.08mm 72° 335° 73° 75°
r, = 0.05mm

oy = 110M Pa

Toy = 24.3M Pa
Case(6): AS4/3501-6
0=175° a=-15°
2a = 5.08mm 88¢ 20° 88° 90°
r, = 0.05mm

oy = 110M Pa

Tzy = 24.3M Pa
Case(7): AS4/3501-6
0=175 a=0°

2a = 5.08mm 13° 315° 75° 75°
r, = 0.05mm

oy, = T6MPa

Tzy = 8M Pa
Case(8): AS4/3501-6
0=175° a=-15°
2a = 5.08mm 88° 330° 90° 90°
r, = 0.05mm

oy =T6MPa

Tzy = 8M Pa
Case(9): AS4/3501-6
=175 a=-15°
2a = 5.08mm 88° 320° 90° 90°
r, = 0.05mm
o, = 65M Pa
Tey = 2.6M Pa
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4.6 Limitations of the Normal Stress Ratio Criterion

Although the normal stress ratio criterion gives results comparable to those obtained

when using the critical strain energy method, it has some limitations.

The case illustrated in Fig. 4.12 is that of an infinite unidirectional graphite-
epoxy plate with a center-crack along the fibers direction and subjected to pure
shear loading in the coordinate system of the crack. For the positive shear case
illustrated, the direction of crack extension measured with respect to the crack
predicted by the normal stress ratio theory is —12° if the theory is applied within
the sharp crack analysis of Lekhnitskii.

For this loading case, it appears that the normal stress ratio theory is incapable of

correctly predicting the direction of crack extension obtained from the experiments.

Beuth and Herakovich [70] mentioned that this result was valid for any notched
anisotropic material regardless of its elastic and/or strength properties. They thus
concluded that the apparent discrepency between the theory’s prediction and the
experimental behaviour for this case was not due to potential inaccuracics, but
instead due to a fundamental error in either the theory itself or in its method of

application within the sharp crack analysis.

When using the critical strain energy criterion to predict the crack growth
direction of that same problem, the value obtained was similar to the experimental

value for that case (0°).



97

Figure 4.12:Infinite Center Plate Under Pure Shear Far-Field Stress



a8

4.7 Concluding Remarks

A criterion based on the critical strain energy has been presented to predict the

crack growth direction in a lamina.

The comparison of the experimental results with the different criteria for the
crack growth direction indicates that the proposed critical strain encrgy method
can be used to analyze the problem of a through-the-thickness central crack in a

unidirectional composite.

The present approach leads to more consistent results than the minimum strain
energy of Sih [60]. The advantage of the energy approach is in its universality by
being a frame indifferent quantity. It is more general than the normal stress ratio
criterion sir.ce it can be used even if inelastic behaviour are considered. In the elastic

case, both methods give very comparable results.



Chapter 5

Theory of Symmetric Anisotropic

Laminated Elastic Plates

5.1 Introduction

As mentioned in chapters 3 and 4, using the strain energy density criterion for a
lamina was a first step towards using this criterion for a laminate. But to calculate
the strain energy density of a laminate, the values of all stress components (including
interlaminar stresses) must be determined.

The Classical Laminate Theory (CLT) described by, for example, Jones [1] is
the most commonly used approach to the stress analysis of laminated elastic plates.
This theory replaces the laminated plate by an equivalent plate of the same overall
geometry with elastic constants which are appropriate weighted averages of the
elastic constants of the individual laminae.

Although this theory gives satisfactory results for the mid-surface deflection
of a plate, the average in-plane displacement and stress components, it gives no
information about either the through-the-thickness distribution of stresses and

displacements or the values of the interlaminar shear stresses. A more refined theory

99
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of laminates is required to provide that missing information.

A second approach for obtaining this required information is through numerical
techniques. Three dimensional numerical solutions have been obtained using either
finite elements [71] or finite difference [72] methods. These methods provide accurate
results but require a large number of computations which might be beyond the

capacity of the available computer.

To get an analytical three dimensional solution, the so-called higher-order
theories have been used [73] - [76]. In these theories, the displacement components
are approximated through the plate thickness by polynomials in z, the coordinate

normal to the plate.

Bonser [77] showed that this approach sometimes gave unsatisfactory results.
Some of those theories fail to satisfy shear continuity conditions at the interlaminar

interfaces while others do not satisfy the zero shear condition on the lateral surfaces.

Spencer et al. [78] presented an elasticity theory for isotropic elastic plates.
In their work, a two dimensional CLT based on the equivalent plate was used to
generate a three dimensional solution in each lamina of the laminate. The two
dimensional solution could be obtained using any analytical or numerical method
for solving plane elastic problems. The final solution was found to satisfy all traction
and displacement continuity conditions at the interfaces as well as the zero traction

condition on the lateral surfaces.

Two approximations were involved: The edge boundary conditions were specified
only on an average rather than point-by-point, and the value of o,,, the stress in the
direction normal to the laminate was assumed to be zero throughout the laminate.
The expansion of this method to the anisotropic case was introduced without too
many details in [79].

In this chapter, a generalization of the approach presented in [78] will be

attempted in detail for the case of anisotropic laminates. The distribution of ¢,,
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throughout the laminate will also be considered rather than assuming that this

component of the stress is non- existent.

5.2 Stress-Strain Relation for an Orthotropic Lamina in

the Principal Directions of a Laminate

Let us consider an anisotropic linear elastic layer; using cartesian coordinates
X,Y,Z such that Z = 0 coincides with the mid-plane of that layer. U,V and

W denote the displacement components in the X,Y and Z directions respectively.

The stress-strain relation for such a layer could be expressed as:

( Oz | [ Cu Ci2 Ciz 0 0 Gl ( U.x
Oy Ci2 C2 Cys O 0 Cu% Viy
J O:: Ciza C3 Ciz 0 0 Cs W,z
f { r (5.1)
Oys 0 0 0 Cu Cys O (Viz+Wy)
Oz 0 0 0 045 055 0 (UaZ +w/aX )
| Ozy ) | Cis Cx% Ci 0 0 Ce] | Uy+Vix) )

where a comma denotes partial differentiation with respect to the suffix variables.

Using a method similar to the classical approximate solution of the three

dimensional problem attributed to Kirchhoff and used by Reissner [80], we assume

0. = 0 in the constitutive relations (5.1). This will lead to:

CiaU,x +C23Vyy +C33W,2 +C3(Uyy +V,x ) =0

or,

W,z = —(1/Cs3) [C1aUsx +Ca3Viy +Css(Uyy +Vix )]

(5.2)

(5.3)

Relation 5.3 implies that the strain in the Z-direction is related to the plane
components of the strain (Reissner neglected the effect of o..,0,.,0.. in the

constitutive relations).



Substituting from 5.3 into the first, second and sixth equations of 5.1, we get:

C? CasC , Ch1aCse
CiaC C? .
Oy = (Cl2 - —lgf) Ux+ (Cn - 5;-:‘) Vir + (C'ZG - %ﬁ) (My +Vix)
C13C Ca3C: 2
Ozy = (CIG -2 36) UaX + (CZG -z 36) V,Y + (066 - ggﬁ) (Uﬂ' +V'X )
Caa Cas Ca
(5.4)
Define
C;aC; ..
Q"j = C‘j B 63,3;3 (1'?] =1,2,6)

The stress-strain relations will now have the form:

( 02z ) [ Qu Q12 0 0 0 Q] ( U,x )
Oyy Qiz Q2 0 0 0 Q2 Vi
sz 0 0 0 O 0 0 W,z
< p = 4 ; (5.5)
Oyz 0 0 0 Cu Css O (Viz+Wyy)
Oz 0 0 0 C45 CSS 0 (U,Z +W,x )
| Tzy | | Qs Qs 0 0 0 Qes] | (Ur+Vix) |

Although it was arsumed that o,, = 0, its gradient, 0., z, need not be zero, the

three dimensional equilibrium can then be written as:

U:J.'.X + O'z:y,Y + a;r:z'z = 0
Oryx +Opy +0uz = 0 (5.6)
Ozz,X + Oyz2Y + Cz:,2 = 0

The above implies that while ¢,, may be small, its gradient need not be small.
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5.3 Analysis of Stress and Deformation in a Homogeneous

Layer

A distinction should be made between a homogeneous layer and a plate, which can
be an assemblage of a number of layers of different materials. Consider a layer with

uniform thickness 2k, and define the following non-dimensional variables:
r=X/a y=Y/a z=2Z[h

u=Ula v=Vfe w=W/a

where a is a typical in-plane linear dimension.

Note that the plane Z = 0 (or z = 0) coincides with the mid-plane of the layer

while z = %1 coincide with the upper and lower surfaces of the layer respectively.

Define a non-dimensional parameter ¢ as:
e=h/a
which leads to:
z=1Z[ae

writing 5.5 in terms of the non-dimensional variables, the stress-strain relation takes

the form:
[ 02z ) [ Qn Qiz 0 O 0 Q] | U,z )
Tyy Qiz Q22 0 0 0 Q% Vyy
J Osz 0 0 0 O 0 0 w,,
Oys 0 0 0 Cu4 Css 0 (C_I'U,z TW,y )
(o 0 0 0 Cys Css 0 (e‘lu,, +w,; )
L Oy J L QIG Q26 0 0 0 QGG_ \ (uw +‘U,;) J
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The equations of equilibrium become:

Ozrr,x + Ozyy + c-la.rz.z = 0
Ozyr + Oyyy + 5_1%:,: = 0 (5.8)
Ozz,x + Oyz,y + (—lau,z = 0
and from eq. 5.3, we get:
C_lwaz = —(1/033) [CISU,: +C23vw +C36(uw +vor )] (59)

Substituting eq. 5.7 into the first two of eqgs. 5.8, we obtain

¢ [Qllu)zz +Ql2v$1‘y +Q16(2uu:y +v,zz ) + Q26vaw +Q66(U,w +V,zy )] +
€ [C4Swmz +Csswmz] + [0451)," +055u,zz ] = 0

52 [QlGuwz +Q12u,zy +Q26(uayy +2v,zy ) + Q22va +Q66(u11'y +V,2r )] +
€[Caaw,ye +CasW,z: | + [CaaVyzz +Cast,ys, ] = 0
(5.10)

in addition eq. 5.9 can be expressed as:
[Caaw,z] + € [Cwu,;- +023‘U,y +C35(u,y +v,, )] =0 (5] 1)

Assuming that in a layer, the displacement components can be expressed by a

power series in € as:

u(z’y’zae) o un(zay,z)

v(z,y,2,€) p = Zc" vn(z,y,2) (5.12)
n=0

w(z,y’z’ 6) w"(x’y’z)

which is the same form used in {78] for the isotropic case. At this point there is

no indication as to the validity of this form for the anisotropic case. A converging
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scries would require decreasing values of ugn,v, and w, as n increases. This series

would then have to be demonstrated as the true solution of the problem.

A solution is obtained by substituting from eq. 5.12 into 5.10 and 5.11, and for
different. values of n, equating the coefficients of €*. The terms independent of ¢

give:
Cdsvo,zz +Cs5uo,zz = 0

C4dvoyzz+045uoazz = 0 (5'13)

0337-‘)0,: = 0

The solution of these equations (without restricting the values of Cj;) indicates

that u, and v, are linear functions of z while w, is a function of only z and y. i.e.

U, = F](.’E,y)Z'*‘Uo(l',y)
v, = Fp(z,y) z 4 vo(z,y)

wo(-”’s y)

w,

The functions Fj(z,y) and Fy(z,y) will be given a value of zero. The reason
for this will be discussed below. The general form for u,,v, and w, can therefore

be written as:
Up = U(Z,Y), Vo = vo(z,¥), w, = wy(z,y)
Equating the terms of order 1 in the expansion gives:

CisV1y22 +C55U1,2: +Cia5Wosyz +Co5Wose: = 0
C44U1 122 +C45uhzz +C44wo’yz +C45wou:z = 0 (514)
Cstl )z +Cl3uo,x +C23'any +036(u07y +vo’= ) = 0



Using the third of egs. 5.14, it can be shown that:
1
Wi, = _C— [0131‘0,: +C23voay +036(uoay +vo,r )]
a3

Integrating,

1
w; = "‘"Cgs' [013'“.01:: +Ca300,y +C36(Ugsy +Vorz Yz + Si(z,y)
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(5.15)

(5.16)

where S;(z,y) is as yet an undetermined function of x and y. This equation can be

simplified as:

wy = [A]z + Si(z, y)

where
[A] = —(1/C33) [Cr3tiorz +C23V0sy +Ca6(tosy +Vosz )]
Now integrating the first two equations of 5.14,

Casv1y: +Cssu1,; = —[CasWoyy +CssWoyz | + Fa(z,y)
Cuvi,: +Casur,; = — [CaaWoyy +Caswo,z | + Fu(z,y)

which leads to:

Caa Cas

M Pi(2,y) + e Fy(z,
Cds — C4aCss (o) Cls — CaaCss =)

Ulyz = —Wosr —
or, without loss of generality could be written as:
Uy = —Wo,z +G(Z,Y)
Integrating with respect to z,
w1 = [~Wo,z +G(2,¥)] 2 + Bi(z,y)

Similarly,

vny = ["‘wow +H(Ia y)] z+ BZ(I’ y)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)
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where B; and B, are yet undetermined functions of x and y.

The functions G(z,y) and H(z,y) will be assigned a value of zero and again
the rcason will be discussed below. The general form of u; and v; will then take

the form:

U = W2+ Bi(z,y)
vy = —woayz+B2($ay) (5.23)

Now from eq. 5.12 for n > 2, equating the terms of order n gives:

CasVn,zz +Csstin,z: +Cdswn—layz +Cs5Wn-1,z2

+ +

Qllun—%xr +Ql2vn—-2axy +Q16(2un-—21zy +Vn-242z )

il
o

Q26vn-—21yy +Q66(un—2,yy +Vn_2,zy )

C44vmu +C45umzz +C44wn—1 w2z +C45wn—11xz

+ +

Q16Un—2,zz +Q12Un—2,2y +@26(2Vn—2,zy +Un-2,yy )

il
o

Q22Un—2vyy +Q66(un-27:r:y +Vn-2yzz )

C33Wn,z +Ci3tn—1,z +C23Vn-1,y +C36(Un-1,y +Vn-1,z) = 0 (5.24)
From the third of eq. 5.24 with n = 2,

Caswy,; +Ciatt,z +Ca3v1,y +Cas(U1,y +01,: ) =0 (5.25)

Differentiating egs. 5.23 with respect to x and y,

U,y = —Woyrr2+ Bl,z
Uy = —WopuryZ+ Blay
Uy = —Wopy2+ By (526)

V,y = —woayyz+B2,y



Substituting from egs. 5.26 into 5.25,

Cawsyyy = [CiaWossr +C23Woyy +2Ca6Wosry ) 2

— [Ci3Biyz +C23Bayy +Ca6(Biyy + B2yr )] (5.27)

Integration of the previous equation leads to the expression for w; :

1

Css
1

- 0—33 [C13B1yz +C23Ba,y +Cas( Bryy + Basr )}z + Ba(z,y) (5.28)

2
r4
w; = [Cl3woa:z +C23wowy +2C:56wo,xy] '5

where B; is a yet unknown function of x and y. This equation can be simplified as:
22

Now using the first two of egs. 5.24 with n = 2, the values of u; and vz can be

obtained.
CisV2,2: +Cs5u2,2; = — [Caswiyyz +Cs5W1szz +Q11Uoszr +CQh2V0,zy
+ Q16(2uaaxy +von::: ) + Q26v01w +Q66(uoaw +anry )]
Ciqvayes +Castz,z: = — [Caawiyye +Caswi,z: +Qi6Uorrs T Q@ 12U0szy ]

+ Q26(2voary +uo’yy ) + Q22voayy +Q66(uoyzy +Vo,zr )]
‘ (5.30)

which leads to:

1
U2yzz = —Wihze —m (Caa@n1 — CasQhe) Uorex
45
+ (CiaQes — C15Q26) Uoryy + (2C44Q16 — Ci5Q12 — CasQes) Uorzy
+ (CiuQi6 — Cu5Qes) Vorzz + (C14Q26 — CasQ22) Voryy
+

(Cia@r2 + CaaQe6 — 2C45Q26) Voyzy | (5.31)
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also differentiating eq. 5.15 with respect to z, we get:

Wyyzz = "'cz [Clauo,zz ‘+C'23vou:y +036(“oazv +Voy2z )] (5'32)

Substituting from eq. 5.32 into 5.31 then integrating, we obtain the expression for

uz,

ool ([ (Ge ]
" 044055"0425{[ (C’ss) (CadCss — Cs) + (@u1Cus C45Q16)] Uoyrs

+  [CuuQes — CasQ26] Uoyyy + [CasQ26 — CasQ22] Voyyy

C.
+ ( (C:) (Ca4Css — C2) + (2C44@Qr6 — CasQrz — C45Q66)] Uoszy
Css 2
+ Cus (044055 045) + (C44Q16 — CasQe6)| Vo=
023 22
+ (CaaCss — 045) + (C44Qi12 + C14Qos — 2C15Q26) | Vorzy 7
+ SQZ + 54 (5.33)
Similarly,

1 C.
vy C4Css — C¥; { l_(C:) (CaaCss ~ Cls) + (CasQes — C55Q26)] Uoryy

+ [045Qll - CSSQIG] Uoyrzx + [C4SQ16 - CSSQGG] Voyzz

C
+ ( 13) CuaCss — Ck) + (2C45Q16 — Cs5Qes — LssQu)] Uoyzy

C.
+ ( 2 (C4aCss — Cj5) + (Q26Cas — Csstz)] Voyyy

2

+ (033) (C«Css 45) + (Cas@12 + CysQes — 2055Q26)] Voszy } ‘2-2-
+ 532 + Ss (534)

where S;,S3,S5¢ and S5 are yet unknown functions of £ and y. Equations 5.33

and 5.34 can simply be written as:
u; = [D] + S2z+ 54

[E] + S3z + Ss (5.35)

V2
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From the third of eq. 5.24 with n = 3,
Casws,; +Ch3uz,r +Ca3v2,y +1 wi(Uzyy +02,2) =0 (5.36)

Differentiating eqs. 5.35 with respect to x and y,

~2
Uy = [D,x] ";2' + 52,1 2+ bl.‘,,
22
U2,y = [D,y] '2— + Szw z+ 54,,,
22
Ve = [E,x] ":?'— + Sa,x z+ S:,,,_-
22
vay = [Eyl ) + S3,y 2+ Ssyy (5.37)

Substituting from eq. 5.37 into eq. 5.36, we get:
22
033w31z = - {CIS ([D,x] _2' + S2u' z+ S4ar)
22
+ Cu ([E,y] 5 + Sa,y 2z + Ss,y)

2
+ C35 ([Dv}’ + E,x] f2— = lSZW +S3az] z4 [S4,y +Ss,;- ])} (538)

Integrating the previous equation, we obtain a relation for ws:

-1 °

wy = O {(013 [D,x] + Ca3 [Ey] + Cas [D.y + Ewx]) -2-6_
33

2

(C13852,z +C23S3,y +C36 (S2,y +S53,c ) '{2'
(CISSM: +CZ3SSW +C36 (S'hv +S571‘ )) z
+ S (5.39)

where Sg is a yet undetermined function of z and y. This equation can be simply

written as:
28 22
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From the first two of eq. 5.24 with n =3,

Usyer = —Wiyss —m [(Caa@n1r — CusQ16) 1,22
+  (C14Qes — CusQ26) sy + (2C44Q16 ~ CiusQ1rz — CasQes) U1y
+ (Ca4Qir6 — CisQes) V112 + (CsaQ26 — CusQ22) V1syy
+ (Cau@r2 + C14Qes — 2C15Q26) V1ray ] (5.41)
where:
Wayez = -ét—a [C13Woszzz +CasWorzyy +2C36Warzzy ) 2 + [Cix] (5.42)

and the equations for the second derivative of u; and v; can be obtained by

differentiating eqs. 5.26 with respect to = and y. Integrating eq. 5.41, we get:
{ [Cls CiaQu — C-tsle] [044Q26 - C45Q22]
- 012TT + o yyyy

v = Css  CuCss — Ck C44Css — C
[2036 _ 3C44Q16 — Cas@uz — 2045Q66] w
Ca3 C14Css — C%; i
+ [_C_'zg _ 2C44Qes + C44Q12 — 3C45Q26] } fj
Cs3 C44Css — Cks i
CsaQn1 — C45Q16] [C«st - C45Q26]
- 07 + B [F 14 B ’
{[ x| [ C44Css — C¥ ez + Cu4Css — C; vy
2C44@he — Ca4sQ12 — C45Q66] [044Q16 - C45Q66]
+ B 'z B zT
[ CarCiss — Ch bev | T CuCos— Ch |
+ [C«st - C45Q22] By + [C«le + C44Qes — 2045Q26] B _3_2
Cy4Css — Ck 2wy C44Css — C%; 2y (9
+ Byz+ Bs (5.43)
Similarly,
_J1Cus@Qu — Cssle] [023 CasQ26 — Csstz]
U3 { [ CusCos — C}s Woyzrr + Cus + CasCos — C}s Wo,yyy

Ciz . 3C45Q16 — Cs5Q12 ~ 2Cs5Qss

+ 033 + 044055 _ 0425 wO Ty

[2036 2C45Q6s — 3C55Q26 + C45Q12] } 23
+ Woyzyy 'E

Cs3 CuCss ~ Cfs
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C45Ql1 - CSSQ]G] [C4SQ66 - CSSQ?G
bl C F of of ’
+ { [Coyl+ [ CuCo—C% | Pt | TCuCm =2, | Prw

2C45Q16 — Css@h2 — Cssts] [C4SQ16 - Cssts]
+ B LF 3 B wrr
[ CuCss — Cls byt | T CCn = Ch |

C. -C C C - 2C
+ [ 45Q26 55Q22] Bayy [ 45Q6s + CasQn2 55Q26] ng}

2

2]

CasCss — C}; CauCss — Ck 2
+ Bsz+ By (5.44)
These last two equations can be simply written as:
u3 = [I] — [J] + Baz + Bs
w o= KT+ {L} Byt By (5.45)
where By, Bs, B¢ and B; are yet undetermined functions of r and y.
From the third of eq. 5.24 with n =4,
Caawy,, +Craua,z +Ca3v3,y +Ca6(Us,y +v3,z) =0 (5.46)
Differentiating egs. 5.45 with respect to x and y,
Uzyy = [I,x] + [J ,x] + B,z z + Bsy:
Usy = [I,y] + [J,y] + By, z + Bgyy
Vi = [K,x] - [L,x] - Bs,z 2+ Bry
Vs = [K,y] + [L,y] + Bs,, z + By, (5.47)

Substituting from eq. 5.47 into eq. 5.46, we get:
Cawy,: = — {Cl3 ([I,x] + [J,x] + Byyz z + Bs,z)
+ ([K,y] + [L,y] + Bsyz + BM)
+ Cs ([I,y + K,x] 4 3y + L,x]

+ [Buy+Bsi]z+ [Bs,y+B7,,])} (5.48)
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Integrating the previous equation, we obtain a relation for wy:

4

1
we =~ {(Cullal + Cu Kyl + Calley + Ko 3
3
+ (C13[Jx] + Caa[L,y] + C36 [J,y + Lix]) %
2
(C]:;th +CzaBs,y +C36 (B-hy +BS’= )) f:2"
(C13Bs,z +C23B7,y +C36 (Bsyy +Br1.z ) 2
Bs(z, y)} (549)

where Bjs is a yet undetermined function of z and y. This equation can be simply

written as:

we =M + N5 +(0] 5 + [P}z + By (5.50)

From the first two of eq. 5.24 with n =4,

Ugyzz = —Wahes —-674;6,5:—_'6,:55' (CaaQ11 — CusQh6) U2,z
4 (C1aQes — CusQas) Uzsyy + (2C14Q16 — Cus Q12 — CasQes) Uz1ay
+  (C14Q1s — C15Qe6) V2yzz + (CaaQ26 — CasQ@22) V21
+  (Cia@iz + CaaQe6 — 2C45Q126) v2,2y ] (5.51)
where:
wasee = (Fxl 5 + (Gl + [Ha (552)

and the equations for the second derivative of u; and v; can be obtained by

differentiating eqs. 5.37 with respect to z and y. Integrating eq. 5.51, we get:

- _ 044Q11 - C45Q16
w = —{wal+ (G Cede) D)

C14Qes — CusQ26 2C44Q16 — Cas@12 — CusQes
+ ( CuCss — Ck, ) Doyl + ( C4aCss — Cls (D]

CaaCre — C45Q66> (C«st - C45Q22)
* ( C44Css — CZ; [Eyxx] + CiuCss — CZ, [E.yy]
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I\DIN

C44Css — C;

CaaQu — CasQis
S2y22
Gl + (Cadn =i 5,1

+ (C«le + C4aQe6 — 2C15Q26> [E,xy]} !

G o) L e v L
+ Cagame) s (Cagma®) o
) :
v (Peeg e ) s} 5
- (i (Gl i
o (Yt ) tun+ (P 2 O 1)
v (G e+ (i) o)
¢ (Qeaf et ) 5
4 Sz+4 S, (5.53)
Similarly,

) [Dxx]

(204st = Css@ia = CssQ“) (Dxy)
(

)

CasQu — Cs5Q16
CuCss — C%;
CisQes — Cs5Q26
C44Css — Cs ) Doyl +
CisQi6 — Cssts)
C44Css — Cs [Eooc]
Cis@12 + Cs5Qes — 2Cs5Q26 E ]}
CuCss — Ck d

- {-
(
(
(
o oo (Couste) g,
(
(
(

CuCss — C%;
CasQ26 — Csstz) E.yy]
Yy

C44Css — C3,

C«CSS - C45
CasQes — Cssts) 2CssQhe — CssQ12 — Csste)
S '\ z
CuCoa —C3, ) Som 1t Corss— Ch (2120

CisQrs — CssQes) (Ssree] + (045Q26 - Csstz) [Sanyy ]

C44055 - 0425
[53 'zzy ] }

C4aCss — Cls
Cis@Q12 + CasQes — 2C55Q26
C«CSS - C45
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b4sQn - Cssle)
H, Styzz
+ {-img) e (G Cede ) s,
CisQes — Cssts) (2C4SQ16 — CssQh2 — Csste)
S4, Sarz
* ( CuCr =3, ) w1 CurCos — OB [Sas2y]
CisQie — Cssts) (C4SQ26 - Csstz)
S "w7wr S ]
+ ( CuCo =3, ) o=l TG en ™ (S5 ]
(045Q12 + CysQe6 — 2C55Q 26 [Ss120]
C44Css — C% By
+ Z + SlO (554)

where S7, 58,59 and Sjo are yet undetermined functions of z and y. The last two

equations can be simplified as:

U4

QU+ R Z 4 (815 + Srz + 5,

(T) g;:— +[U] 2 g +[v)Z 5 + S8z + Sio (5.55)

Wy

Collecting the terms of the series, the complete solution (up to n = 4) is

u u.(z,y) u Uy us Ugq
v|=|v(zy) | +e|lv |+ v |+ |va|+et{va|+...... (5.56)
w wo(z,y) wy ws ws wy

For a symmetric laminate, the solution shown in eq. 5.56 can be decomposed
into the sum of two independent solutions, which could be termed as stretching
and bending solutions. In the stretching solution, w, = 0, while in the bending
solution u, = 0 and v, = 0. In anticipation of this decomposition, the arbitrary
yet undetermined functions have been denoted so that S relate to stretching while

B relate to bending. We can then deal with each solution separately.
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5.4 Stretching Solution for a Lamina

The stretching solution for a lamina can be obtained from eq. 5.56. The

displacements u and v will have the form:

u uo(z,y @ u
= ) + ¢ : + ¢ ! + .o (5.57)
v vo(zv y) V2 V4
while the expression for w will be:
w=ew; + Swz+...... (5.58)

-
{

The corresponding expressions for the stresses can be calculated using eq. 5.7.

5.5 Bending Solution for a Lamina

The bending solution for a lamina is obtained from eq. 5.56. The displacements u

and v will have the form:

u uy Uz
=€ +é Foeen (5.59)
v V1 V3
while the expression for w will be:
w=w,(z,y) + Cwa+ twg+...... (5.60)

The corresponding expressions for the stresses can also be calculated using eq. 5.7.

5.6 Laminate Geometry

Let’s now consider a laminated plate comprised of 2N — 1 laminae, each of which
is of an anisotropic linear elastic material. In general, these laminac would have
different fiber orientations and thus different elastic constants. For convenience, we

confine our attention to laminates symmetric about the mid-plane Z = 0, so that
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Z=H
zZMN=1
i=

ZN=-1 N A Z=Hi

|
zi=1 v 4 2=0
zi=0 ith lamina 2 hi
zi=-1 ‘
z1=0 i =1 '

mid-plane

Figure 5.1:Laminate Geometry and Notation

the ith lamina above the mid-plane would have the same thickness and properties
to the ith lamina below the mid-plane. Since we are dealing with a symmetric
laminated plate, we will only be considering half of that plate.

Any quantity related to the ith lamina will be identified by the index ¢. The
layers are numbered as shown in Fig. 5.1; the layer i = 1 contains the mid-plane of
the laminated plate and the layer i = N is the layer adjacent to the upper surface.

The overall thickness of the laminate is denoted by 2H, such that:

N
H=h+2) h (5.61)

=2
We also denote by H; the distance from the mid-plane of the plate to the mid-

planc of lamina i, so that:

H] = 0

H, hy + h,
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N-1
Hi = h+2) h+hi (i=3,4,.,N)
r=2
Hy = H-hy (5.62)

We also use scaled variables z,y,z,u,v and w similar to those introduced in

section 5.3 as follows:
r=X/a y=Y/a z=Z[H
u=U/a v=V/a w=W/a

where now H is the overall laminate half-thickness, and Z = 0 coincides with the
mid-plane of the laminated plate. In addition, a scaled local coordinate z; in the

z- direction in each lamina, is introduced:

zi = Zifh
Z = Z-H (i=1,2,3,....,N) (5.63)

Thus z; = 0 is the mid-plane of the lamina i, and 2z; = %1 are the upper and lower
surfaces of layer i respectively. In addition a parameter ¢ similar to the one used

in section 5.3 is introduced,

e=Hla
and
€ = hifa (i=1,2,..,N) (5.64)
From eq 5.61 it then follows that:
N
e=a+2) (5.65)

=2
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5.7 Solution of the Two-Dimensional Classical Thin Plate

Theory - The Equivalent Plate

5.7.1 The Equivalent Plate

In the Classical Laminate theory (CLT), the laminated plate is replaced by a
homogeneous plate which can be termed the equivalent plate. This egnivalent
plate has the same overall geometry as the laminate (for example it has a thickness
of 2I1). For stretching deformations, the elastic constants of the equivalent plate
are such that for homogeneous deformations under specified edge tractions, the
mean in-plane displacements of the laminate and the equivalent plate coincide. For
bending deformations, the constants are chosen such that in pure bending under
given edge moment, the mid-plane deflection of the laminate and the equivalent

plate are the same. These material properties are as follows:

. N h/2
(QijaQt'j)=/ Qf-;)(l,zz) dz (5.66)

—h/2

where:
Q.; are called the extensional stiffnesses

Qi; are called the bending stiffnesses

5.7.2 The Stretching Case

The equations of equilibrium governing the average in-plane displacements (i, %)

for the stretching case are as follows:

Quiityzz +20161,zy +Q66f‘wy +Q16Dyex +(Q12 + st)f),zy +Q269yy = 0

Qu6ttyrs +(Qx2 + st)ﬁ,xy +Qetl wy +Qe60 52z +2Q265,zy +Q225yy = 0
(5.67)



The stress resultants for the equivalent plate are:

Nex = Quits +Quzdyy +Que(iy +0,z)
N = leﬁ,z +Q22ﬁ,y +Q26(ﬁ,y +0,z)
Neo = Quetlye +Qas0,y +Qes(ity +1e)
(5.68)

5.7.3 The Bending Case

The deflection ¥, associated with bending, for the equivalent plate is governed by

the relation:
Qllwwxzz ‘+4Q16ﬁ’,::zy +2(Q12 + 2@66)'“.),::!;!; +4¢26wazyyy +Q22’I),ywy =0 (569)

The resultant moments for the equivalent plate are defined as:

-~

My = Quibyee+Qi2thyy +2Q 161,y
My = Quoder +Qa2,yy +2Q261iay
Mye = Qreyer +Q26,yy +2Q66W,zy
(5.70)

5.8 Three Dimensional Theory for Laminates - Stretching

Deformations

In the theory presented next, the three dimensional field equations and interface
conditions are exactly satisfied (up to n = 4). The only limitation, as mentioned
before, is that in this theory the edge boundary conditions are satisfied only in an
average fashion, rather than point by point.

Considering the stretching deformations of the laminate, we seek a solution in

which, in each lamina, the displacements are of the form of eq. 5.57 and eq. 5.58
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with € replaced by ¢;, the material constants ij by Qg'k) and z by z;. Also the
functions S,, Sz, ... should be replaced by S{‘),Sgi), ... for the lamina i since these

functions, in the general case, can have different values in each lamina.

The functions u,(z,y) and v,(z,y) are required to satisfy the two dimensional
solution. Because the CLT appears to give satisfactory results for the average values
of u and v, we can choose these displacements to be those of the equivalent plate
under the given boundary conditions. Thus, in the layer ¢, the displacements u and

v will be assumed to have the form:
i - (i) (9
[Z:‘:} = [:} + € [:;)] +¢ [:zi)] +oieenn (5.71)
while the expression for w will be:
w? =gl + Swl +...... (5.72)
The corresponding expressions for the stresses can be calculated using eq. 5.7.

The remaining task now is to determined the unknown functions S,(c‘)(x,y). To

accomplish that, the following conditions have to be satisfied:

e Symmetry conditions at z; = 0:
w) =0 el =0 cr,(,‘,) =0 at z=0
o Continuity of displacement and traction at each interface between layer (i —1)
at z;_; =1 and layer (i) at 2; = -1 (i=2,3,...,N):
w1 = 4 =1 ) 61 = 0
ol = o)

oD = o, oV = o),

o The traction condition on the upper surface (zy = 1) should vanish:

o’=0, ofV=0, ol’=0



5.8.1 Two-Dimensional Solution

In solving eq. 5.13, the functions Fi(z,y) and F3(z,y) were assumed to be zero.

The reason for that will be shown here.

For this first step assume that:

u = Fz,y)z+i(z,y)
o) = FQ('.)(z,y)z; + 90)(z, y)
w? = W(z,y) (5.73)

1. Due to symmetry, w!) =0 at z =0, i.e.
w(z,y) =0 (5.74)
2. Continuity of w at each interface, i.e.

0= =

using eq. 5.74, we get:
wN(z,y) =0 (5.75)

3. Due to symmetry, both o,, and o, =0 at z=0

04(;) [U,gl) +w’£l) ] + Cé;) [U,gl) +w,£.l) ] = 0
C [ 40,0 ] + 0 [V +w0] = 0 (5.76)

from eq. 5.73, taking into consideration eq. 5.74, we get:

cOFM + cQIFM = o (5.77)
CRFP +cPFY = o0 (5.78)
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For no restrictions on the values of the coefficients C{}, c{) and cly,

FV=FM=9 (5.79)

4. Continuity of o, and oy, at each interface, making use of eq. 5.75, these

equations reduce to:
CEIFED 4 GRS = CYR + OO
CEVFT 4oV = CQFP+CRRY (5.80)
making use of eq. 5.79, the last relation implies that:

FO=F9 =0 (5.81)

5.8.2 First Approximation

For this first approximation, assume that:

u(i) = ﬁ(z, y)
v(") = 6('7:, y)
w? = qul = %" {[A](i)zi + SY)(-’C,!/)} (5.82)

1. Due to symmetry, w() =0 at z =0, i.e.

b Al + s} =0

which leads to:
s =9 (5.83)

2. Continuity of w at each interface, i.e.

ki

bor g o By
hi- i- i— h; i i
o g st0) = B {0
hi- i- i— h; i i
=2 a0y + 860} = ZH{[A10-1) + 50}

(5.84)



leading to a reccurence formula of the form:

iy _ hi- i i- i :
s =22 (A0 4 s} 4 (A0 (=2.3,.,N)  (5:89)

5.8.3 Second Approximation

For this second approximation, assume that:

o = (,y)+e{[E]”'+S"Z-+S J
w = e,-{[A](")z.'+S§)} (5.86)

Since the expression for w() has not changed, the conditions presented in the first

approximation are still valid.
1. Due to symmetry, both o,, and 0,, =0 at z2=10
o {."_ o2, b, m]} +CW { fup ) +w,,<;>]}
ciy {h‘ [v2,$ 4wy “’]} +CY {;‘ [ug,V +w,,9>]} = 0 (5.87)
which would lead to:

e (B0 + 5+ Ay 100 + 50} +
c® {IDIV©0) + 59 + (A1) + 5,0} = 0

o {[E100) + 50 + Ay 100 +Si0 } +
cy {[D](‘)(O) +5M + AN + 5.0 = 0 (5.88)

For no restrictions on the values of the coefficients Cﬁ,,) , C(5 and C',(,? )

S =51 =9 (5.89)



125

2. Continuity of o, and g,, at each interface.

C(I—l){h [ (l 1) +w (l—l)]} +C('-l){h'_ [u (‘ l) +w (' 1) =
a

cld) {7{ [v2,8) 42y ,,‘,"]} +cf { [z, 410y,

0] }
(i-1) [ hic1 ¢ -1 (i-1) (i-1) h:-l (i-1) -
Cis — [v2,) Fwi,y ] ¢+ Cqs == [u2,8V 4wy, ¢ =

i h; ] { i i b
CL) {-a— [vg,g') +w1,£)]} + C£5) {—(—z- [u2,£)+w1 (i) (5.90)
For the continuity of o,., we get:
hl— — - - - f
( ‘)c‘ D{EID)+ 5857 + AL 10 + 8,60 )+
h 1— - 1— t— [
(Bt) 0t {10 + 5570+ 4]0 + 5,67} =
h s | ] H
(%) o {91+ 59+ Ay 10D+ 5.6} +
(%) e {Dr-1+ 50 + A1 + 5.0} G
The equation for the continuity of ., reduces to:
hi- i i- i i— i
(—h—‘) {6 (BN + 86 + (A 10+ 5,6-9) 4
C('-l) ([D](' ])+S("1)+[A ]("1)+S ('—1))} +
{CQ (B +[ay10-5.,0) +
¢ (ID1 +[Ax]? - 5,9 )} =
cs 4 cWsH (5.92)

Similarly, for the continuity of oy,

h;. i- i i- i- i-
(Bet) {oti (16D + 567 + (A 10+ 5060) 4

CEV (DI + 857 4+ [Ax ]V + 5,60} 4



{ (') ([E](') + [A ]() -‘)) +
08 (P19 + 1Al - 5,0)) =
ciusP+clsy) (59

Solving the last two equations for 7 = 2 —+ N the expressions for Sgi) and S:(,‘)
are obtained.
3. Continuity of u and v at each interface, i.e.
hi- i- AN
+< 1) N u+(:) ul)

( > [D]("’)z -1 + Sg.'-x)z‘_l_*_sgi-l)}

2
(&) ford o) v

il

which leads to:

1 ht'— ? 1 t— - - ' l
54>=<_h__1) {§[D]( D4 561 4 8¢ "} [D]"+S” (5.95)

Similarly for the continuity of the displacement v,

S = (hhf )2 {%[E]“'” +8§70 4 sg"-‘)} - %[E](‘) +59  (5.96)
To obtain the values of Sgi) and Séi), an extra condition is required for each
of the two displacements. A possible choice could be to require that the mean
in-plane displacement components #(z,y) and ¥(z,y) to coincide with the
mean displacement components i(z,y) and 9(z,y) of the equivalent plate.
This would seem to be the natural condition to use when the mean in-plane

displacements are prescribed at the edge of the plate.

Another condition could be that the stress resultants ( Nzz, Ny, Nz, ) coincide

with the corresponding stress resultants (N, NW,NI,,) of the equivalent
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plate. This would be the natural condition to use if traction boundary

conditions at the edge of the plate are prescribed.

From one of the previous two conditions together with eq. 5.95 and eq. 5.96,

the values of S,gi) and Sg‘) for i =1 — N are determined.

5.8.4 Third Approximation
For this third approximation, assume that:
W0 = ite,)+ & {DIVF + 5P+ 517
W0 = s(e)+ @ (B0 + 5Px+ )
w = ¢ {[A](i)z; + Sf'.)}
+ & {[F]“’%‘s + [c;]“%*2 +[H]2 + sé"} (5.97)
1. Due to symmetry, w") =0 at 2 =0, i.e.

2{a100 + sV} + (h‘) {F1V0) + (61" + V() + 50} =0

which leads to:
s =0 (5.98)

2. Continuity of w at each interface (taking into account the first approximation),
i.e.
that leads to:

hiai\° 1) (ki > @
(—a—) W3 = -E- Wj (599)
hia

M G 1 G- i- i-
(Bt ) {FR6D + a1 + o0 4 s

}
(E)a { :G_I[F]u) + %[G]m —EP 4 5g>}

a

(5.100)



—
to
o

leading to a reccurence formula of the form:

59 = (h_h__l)“{ (F)6-) 4 [G]"")+[H](' D(1) + SU- n}

1 .
+ =[F)® - —[G]") + [H]D (i=23,..,N) (5.101)
6 2
5.8.5 Fourth Approximation
For this fourth approximation, assume that:
, 22 . :
W = dzy)+¢ {[Dl"’—' + 530z + Si')}
+ {[Q]" + [R]"”" + 8] 2 3 o+ S92z + S"’}
W0 = (e + @ {BOF + s+ sé"}
)2 )2 02 i
+ ¢ {[T]‘ e+ U192+ (VIO 4+ 502+ sfo’}
wl) = ¢ {[A](‘)z; + Sf‘)}
3[R0 3 Q0 ®, 4 ol
+ € <[F] s + [G] 3 + [H]"z + Sg (5.102)

Since the expression for w{*) has not changed, the conditions presented in the third

approximation are still valid.

1. Due to symmetry, both o¢,, and 6,, =0 at z=10

c“’{(%l) 02,8 41,7 ] + (';‘) [v4,{" 4wy, “’]} +

a) ) (I )y, () MY oy )
Css . [uz +Wi,y ]+ — [u472 +ws,, ] = 0

1 h\?

( ) ) [’U ,(1)+wl (l) + ("a—) v41z1) +w31(1)] +

W) (h M), R\ o 4, O]
o4 (%) i run ]+ () 41 = o020
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Taking the results of the second approximation into consideration, and

subsituting for u,(i),vg) and w:(;) from eq. 5.102, at z = 0 these equations

reduce to:

C(’)s(l)_'_cs(;)sgl) = 0
C(I)S(l) C}Q)S?) = 0 (5.104)

For no restrictions of the values of the coefficients C}? , C,g? and Cé?,

S = s =9 (5.105)

2. Continuity of o, and oy, at each interface. For the case of, 0.,

f— hi— t— hl— - =
CE =) [o2, 87 4w, 1] + -1 v,g Vw0 b+
a a

C(t 1){(h ) [u ,(;—1) +w, ’(1—1) ( 1) }
@) (Y, 6 0] D 4y, 0]
Ces i " [vz +wi,y, - [04,, +wa,, +

i h; h;
e {(2) ot o >]+( ) o m )

Taking the results of the second approximation into consideration, and
subsituting for uﬁ),v4 and w; @) from eq. 5.102, the equation for o., reduces

to:

hict \° f Ati=1) (L prenG=1) & 1 ppatie i i
(Bt) {ot (aen + U + VI 4 s 4

1 i-1) , 1 i- i i
E[F,y]‘ 1’+§[G,y]‘ V4 H,y 408, ”) +

i-1) (1 6- i i i
cl-n (E[Q]( ) +_;_[R]( D 4[]0 4 56D 4



1 i 1 i i '
SFx] 451G )0 4 [ [0 4 ss,g'-”>}
i 1@, Loomes i
{o (~5m + 5u1® - v
1 0,1 i i i
1Py 10+ 3Gy 10 = (1 )0+ 50 )
o 1am | g i
g (—5Q1" + 3R~ [s)
6 2
1 iy, 1 i i i
P10 4 5G]~ (1] 4 500 )|
o5t + CLst
Similarly for the continuity of oy,,

(B2 ot (glmrt=n -+ o=+ vy 4 s
IE 1670 4 2, 197+ H,y 1670 4 S0 )

Ol (HQIF + ZIRI + (56 4 50

%[F,x]““’ + %[G,x]“'” + [Hox ] 4 S0 )}

{C,Si) (—%[T](‘) + -;—[U](‘) _ [V](‘)

%[F,y 19 4 %[G,y]m _[H, P+ 56’9_1))

o) (311 + 3R - (51

$E10 4 5G]~ H) + 500 )}

cOs{ + clysyy
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(5.107)

(5.108)

Solving the last two equations for i = 2 —+ N the expressions for $% and S,(,i)

are obtained.
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3. Continuity of u and v at each interface. The continuity of u:

\ hizs\? o) hiaa N Geny _ ARND) IANNY
u+(—-a—-) u; '+ ~ Uy =u+ a uy’ + a ug’ (5.109)

taking into consideration the second approximation :

hiot ) {1 oq6-1) , Lip-n | Lgil-1) 4 oli-1) 4 gli-n ) _
() {G1Q + IR 4 3810 4 560 4 S =

a
RN (1 @ L@ Lia i i
(;) {*ﬂ[Q]( - E[R]( )+ E[S]( )5+ 55)} (5.110)
from which we can ge a recurrence formula for Sg(,i) of the form:

: hi N[ 1 . 1 . 1. ) .
1) -1 = (i-1) , * (i-1) 4 Zrqii-1) (1-1) (i-1)
s = (m){%m] + IRIED 4 281677 4 5 4 }

o _ Ligi 4 Ligi) _ ot
- - - = = - J11
Similarly, using the continuity condition for v, we get:

Rioa N [ 1 i), VoG- o LxorG- i- i-
(B ) e me o JU160 4+ VI 570+ 5557}

- {0 - o+ v - s} 112)

S0

As was the case for the second approximation, to find Sg) and S{g, an extra
condition is required for each of the two displacements. As before the choice
could be to require that the mean in-plane displacement components #(z,y)
and ©(z,y) to coincide with the mean displacement components i(z,y) and
#(z,y) of the equivalent plate. This would seem to be the natural condition
to use when the mean in-plane displacements are prescribed at the edge of the
plate. Another condition could be that the stress resultants (Nzz, Ny, Ny )
coincide with the corresponding stress resultants (N,,,]Vw, JV,,,) of the
equivalent plate. This would be the natural condition to use if traction

boundary conditions at the edge of the plate are prescribed.
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From one of the previous two conditions together with eq. 5.111 and eq. 5.112,

the values of Sé‘) and S{:,) for i=1— N are determined.

5.8.6 Determination of o,

In the work done by Spencer and co-workers [78] for isotropic materials, the value
of 0,,, the stress in the direction normal to the laminate was assumed to be
zero throughout the laminate. But due to the importance of o, in affecting
delamination, this stress component cannot be neglected.

In this section, the third equilibrium equation of 5.8 will be used, together with
the fact that the stress o,, vanishes on the lateral boundary of the laminate and
the continuity of this stress through each interface, to account for this component

in the analysis under consideration.

From the third of egs. 5.8,

020 = =€ [0, 4042, ] (5.113)
Integrating, we get:
. h ;
ol = —/ (a> [020) 4042, ] dz + 53z, v) (5.114)

Substituting for the expressions of u® v and w') from the fourth approximation

in the expressions for o, and oy, given in eq. 5.7, we obtain:

U:E:'z) = i's) {e.vg,z)-l-c v4’£‘) +C.‘Ull,( ) '*'6 Wa,,, ) }

+ Cé? {€'u2’2) t€; u4,£') +c.w1,( )+€ w3, ,. o }

0'3:) = Cg;) {fthaz) +€ V4,, )+thl,(') +C W3,( ) }
+ CP {eiun,? +€ue, +euw, P +uws, L) } (5.115)

Substituting for the values of w0l u) LY o8 and v{9, and differentiating,
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then substituting in eq. 5.115, we get:

= -(5) (%)3{012 ([E,x]“’ + 550 2 + [Apy 92 +Sl,(')z,)
4 <[D ](->f_+ 2.9 2 + [Ae ]('_+ 51,(')2.)
+ cf ([E |0 +5'3,(')z.'+[A g5 +S,,('>z.>
+ cf ([D ](' +Sz, @ 2 + [Axy ](')—'+Sl,(')z,)}
aclo) g O e R A
+ [F,xy]"’ +[G,xy]“—+[H ]“—+S,§'3
" ([Q,x]") FRaIVZ 4 [52105 4 5,0
+ P2 +[G,xx]"—+[H Ok +56,(')z,)

+ CY ([T,y]“) +[U,y1<' L4 [V 1"’ : + 55,9 2

+ [F,yy](' +[G,yy](' +[H ](' +S’§;y))

+ ([Q,y]" " [R,y]" L Sy ]" +5.9
+ [Fyxy!" ..: + [Gxy ](' + [H,x ](' e + Ss,(') 2')}
+ 8Q(=z,9) (5.116)

Now use the following condition, for no stress condition on the lateral boundary of

the laminate:
o) =0

in eq. 5.116, to obtain the value of the function Sﬁv). Knowing this function, the

o) continuity condition at every interface will enable us to determine S{';) for i =

,2,..,.N-1.
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5.9 Three Dimensional Theory for Laminates - Bending

Deformations

Considering the bending deformations of the laminate, we seek a solution in which,
in each lamina, the displacements are of the form of eq. 5.59 and eq. 5.60 with
¢ replaced by ¢;, the material constants ij by Qg'k) and z by z;. Also the
functions B, By, ... etc should be replaced by Bfi),Bgi), ... for the lamina 1 since
these functions, in the general case, can have different values in each lamina.

The function w,(z,y) is required to satisfy the two dimensional solution.
Because the CLT appears to give satisfactory results for the average value of w,
we can choose this displacement to be that of the equivalent plate under the given
boundary conditions. Thus, in the layer ¢, the displacements u and v will be

assumed to have the form:
) (" ()
u u u
d=al L1+l 2 [+...... (5.117)
v(®) o) of)
while the expression for w will be:
w® = w,(z,y) + vl + el +...... 5.118)
t V2 {Shad |

The corresponding expressions for the stresses can be calculated using eq. 3.7.
The remaining task now is to determined the unknown functions B,(‘i)(a:,y). To

accomplish that, the following conditions have to be satisfied:

e Symmetry conditions at z, = 0:
uW=0 vW=0 o=0 o)=0 o)=0at z=0
e Continuity of displacement and traction at each interface between layer (i —1)
at zi_; = 1 and layer (z) at z; = -1 (i=23,...,N):

w01 = u(‘), L1 = v(‘), w1 = )
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o = o), o =of), o = ol

o The traction condition on the upper surface (zy = 1) should vanish:

ag) =0, al(,’,v) =0, a‘ﬁv) =0

5.9.1 First Approximation

For this first approximation, assume that:
- o _hif - ;
u = euf) = 2 { -+ B (z,9)}

o = eofd = 2 {dy, 2+ B(z,y) }

w® = (z,y) (5.119)

1. Due to symmetry, u® = v = of) = o)) = 6{)) = 0 at 2 = 0. For the

displacement u:

which leads to:
BM =0 (5.120)

Similarly, the symmetry condition for v leads to:

BV =0 (5.121)

Note that satisfying the symmetry condition for u and v, automaticelly

satisfies that condition for o.,0y, and o,

2. Continuity of u at each interface, i.e.

(Ber) s -
(ﬁa_—l) {“tﬁ,z(l) + B;.-_l)}

i ug.')

SCINIES

NS

{-w,z (1) + B§"’}
(5.122)

NN
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leading to a reccurence formula of the form:

i hi_ . - N )
B = (T‘-) {—w,,+B§ ”} — b,z (i=23,..,N)  (5.123)

Similarly, for the continuity of the displacement v,

BY = (L’h;‘) {_a;,,,+}3§"*"} ~ 1,y (i=23,..,N) (5.124)

. The traction condition on the upper surface (zy = 1) should vanish.

In eqgs. 5.21 and 5.22, two fuctions G(z,y) and H(z,y) were assumed to
be equal to zero. The reason for that will be shown here. The values of
o) = a,sjzv) = 0. Substituting from the values of u{"),v(") and w) from the

first approximation in the form of these two stress components from eq. 5.7,

leads to:
o™ = OB (0, M +d,,) + CF (V) +,.)
o = U (0, 4+, ) + CF (ur, N+ ) (5.125)

Substituting for the values of u; and v, from egs. 5.21 and 5.22, we get:

o = O (i +HN () + by ) + O35 (—bse +G Tz, 9) + 0,2

ol

C™ (=, +HM(z,y) + 1B,y ) + C (=b,e +GN(z,y) + .z )

(5.126)
which finally leads to:
o) = CFHM(z,y)+C55"GM(z,y)
o = CHHN(z,y)+CE M (z,y) (5.127)
But since o) = o{l') = 0, for general unrestricted values of va)’ C}Q’) and
oW
55 »

HM(z,y) = GM(z,y) =0 (5.128)
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Also, since the stress components in eqs. 5.126 are independent of z, the

continuity of these stresses at every interface will show that:

HY(z,y) = G)(z,y) =0 (5.129)

5.9.2 Second Approximation

For this second approximation, assume that:
u) = ¢ {""ﬂ),x zi+ Bf‘)}
W = ¢ {—ﬁim zi + Béi)}

. 22 . ;
a(e)+ ¢ {BIOZ + 05+ B |

w

(5.130)

Since the expressions for u() and v() are the same as for the first approximation,

the conditions satisfied in the first approximation are still valid.

1. Continuity of w at every interface results in:
.22 ) _
B(z,y) + 6?{[13]("%'+[C]("z;+B:§')}
-1) 21 i -
= i(z,y) + €, {[B]" D252 410 Mz + B U}

(5.131)

which leads to the following reccurence formula for Bg"):

B{) = (%)2 {%{;3]"’"’ +[C)¢Y +B§"”}—{%[B]“’ - [c1<‘>} (5.132)

Another condition is required for the full determination of the functions Bé") .
A possible choice is to require that the mid-surface deflection coincides with

the deflection of the equivalent plate; i.e.

w® lt=0= O
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This would be the natural choice if edge boundary conditions are imposed on
the deflection.

Alternatively, if the edge moments are specified as boundary conditions, we
may specify that the resultant bending moments (M., My,, M.,) coincide
with those of the equivalent plate (Mcz, My, Mz,).

Using one of the above-mentioned conditions together with eq. 5.132 the values

of all Bgi) for : =1 — N are determined.

5.9.3 Third Approximation

For this third approximation, assume that:
. . \ 23 \ 22 . .
W = ¢ {—11:,,,. s+ B} +¢ {[1]"’% + @05 + Bz + B,‘;)}
i i )z )2t i i
v = 6.‘{—U~szi+Bz)}+e?{[K]()F+[L]()E2—+B§ )2-'+B-$)}

. \ 2?2 . .
wh = 15(3,1/)-!-6?{[B](’)%'+[C]")z.-+B§‘)}
(5.133)

Since the expression for w() is the same as for the second approximation, the

conditions satisfied in the second approximation are still valid.

1. Due to symmetry, u® = v = of) = o{8) = 6{8) = 0 at z = 0. For the

displacement u:

hyf . @y , P ) (1) M\ _
2 a0+ B} + 2 {70 + 10 + BP0 + B} =0

(5.134)

which leads to:
BM =0 - (5.135)



139

Similarly, the symmetry condition for v leads to:

BV =90 (5.136)

Note that satisfying the symmetry rondition for u and v, automatically
satisfies that condition for 0;,0y, and oz,
2. The tractions on the upper surface (zy = 1) should vanish:

e =y, a'y,v) =0

Expanding the above conditions, we get:

o) (N)

IZ

(v,
+ C(N) (uy (N)+6Nu3 N 1, +5Nw2’(N))
oM = CE (01, +edva, ™+, +eqwa,) )
n C,(N) (u1 (N)+6Nu3 M 4+, +€Nw2,(N))
(5.137)

Substituting for the values of u;,u3,v;,v3 and wz from egs. 5.133 replacing

zy by 1 leads to:

o = & (e {(3) K+ By I 4L +Cy 1+ B+ B |
1
+ "‘”{(2) I+Byx )™ + [T+ Cx]™ + B + B, W’})
o = (‘”>

()M+nﬂw+m+qnw+%m+&$q
DN

+Bx ™M+ [+ Cx]™M 4+ BM 4 B, })
(5.138)

For both of these stresses to be zero and for no restrictions on the values

of C}P,C’(N) and C’55 , equations for determining B,SN) and BéN) are now
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obtained:
1
BM = - { (5) [+Bx]™ + (34 Cx )™ 4 By, W }
1
B™M = - { (§> K+By]™ 4+ [L+Cyl™ 4 By,M } (5.139)

3. Continuity of tractions at each interface between layer (i —1) at 2,.; =1 and

layer (2) at z; = -1 (i=2,3,...,N):

oD = of), i) = o

Expanding the above conditions, we get:
¢ (Cﬁ? { (%) [K+B,y]?-[L+Cy]"+ B + By, }
+ Cf { (%) M4+ Bx]? —[3+Cx]¥+ BY + By, })
= €, (Cﬁ'” { (%) K +B,y ]V + [L+Cpy )¢V 4 BV 4 By - }

i 1 i- i- i- i-
+ Cs "{(5) [+ Bx]“ 4 [1 4+ Co ]V + BTV + By "})

9 [ (1 ) i i i
& (e {(3) m+BalO - L+ 01+ 5O+ B |
i 1 i i i i
i 1 - i i i-
= €. (C£4 "{(5) [K+Byl¢+[L+Cy )"V + B + By, "}

i— 1 i— — — -
+ c§ 1){(5) M+ B0+ [T+ Cx ]V 4 B 4 B, "})
(5.140)

The values of Bf) and Béi) are then determined from:

OB + OB

hi 2 )1 i J ‘ ‘
- (5) (055’{-2-[K+Bw1”~lL+Cw1"+B§’+33’5’}
1—1
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+ G5 { (%) [1+Bx]? - [J+Cx]¥+ B + B9 })
i-1 [ 1 i i i
- (c‘ N {5[1{ +By )+ [L+Cy ¢ + By i }

+ cv {(%) I+ B ]+ 34 Cx ]V 4 By -1 })

CE-D g1 4 o1 gli-n
hi \ (A 1 i i i i
= (h_-—) (C§4){'2-[K+BW]()—[L+Ca}’]()+B§)+B3’l(I)}

-1
+ O { (%) [+ Bx]® - 7+ Cx ] + BY + By, })
- 1 i- i— -
- (C‘ ) {§[K +By 0 +[L+Cy ¢ + By, {7 }

+ c{Y { (%) M+ B ) + [+ Cx 6 4 By, Y })
(5.141)

The two previous equations together with the formula of eq. 5.139, allow us

to determine Bi‘) and Béi) for i=1,2,...,N.
4. Continuity of u and v at every interface, i.e.

Using the results given by the first approximation, two reccurence formulae

for Béi) and B.f.i) are obtained:

BY = (h_-_l)s{ ey 4 [J]("“l)_*_B(' D 4 pl- :)}
- {-mO+ e - Bﬂ}
ﬂ”==( ){—WW”+§mW“+B$”+m“ﬁ
{

~§{KI? + 3L - 57}
(5.142)



Making use of egs. 5.135 and 5.136, Béi) and Bg‘) are determined.

5.9.4 Determination of o,,

As was the case for the stretching problem, in this section, the third equilibrium
equation of 5.8 will be used, together with the fact that the stress o,, vanishes on
the lateral boundary of the laminate and the continuity of that stress through each

interface, to account for that stress component in the analysis under consideration.

Integrating the third of egs. 5.8,

Uﬁ‘z) = -/ (_}';_I) [UIZ7z) +0yz, (¢ )] dz + B( )(.’L' y) (5143)

Substituting for the expressions of u(?,v( and w") from the fourth approximation

in the expressions for 0., and o,, given in eq. 5.7, we obtain:

G,_(,.'z) = C(') {‘Ul,(:) +E?‘Us,£i) +lf),y +C LU2,V) }
+ C(){ul,()-{»e uz,\) 41,; +ciws,) }
af,",) = C’,g,,) {v;, ) +evg £)+w,y +¢? Wz, () }

+ C(') {ula(‘) +C u3,,(z') +w9.‘l: +C W2z © }
(5.144)

Substituting for the values of w2 ,ug'),u:(,'),vf‘ and v ) and differentiating, then

substituting in eq. 5.143, we get:

0 = =) (&) {0 (sarmmt o 4 0 41
+ ([I,x +B,xx ]“ 54 [Tx+Coxx ]" 24 B 485, )
+ Cﬁ) ([K,y +Bayy](‘)'z'é; +{Buy- + [35’3) +B3’£2] z")

+ BB (I,y)

(5.145)
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Now wse the following condition, for no stress condition on the lateral boundary of
the laminate:
oll) =0

in eq. 5.145, to obtain the value of the function BE(,N). Knowing this function, the

oy continuity condition at every interface will enable us to determine Bé'.) for : =

,2,.,.N-1.

5.10 Limitation of the Present Method

The general series solution assumed for the isotropic case always converges. This
is obviously due to the fact that the series terminates after three terms. Using
the same form of solution for the anisotropic case, resulted in an infinite (non-
converging) series; thus reducing our goal to obtain an approximate rather than an
“exact” solution.

In order to handle the size of the equations, the series was only expanded up
to the fourth order in €. Since ¢ is a function of the laminate thickness and the
coeflicients of the series (u;,v; and w;) are functions of the position (z,y and z)
and the material properties @,;, the convergence of the solution would depend on
these aformentioned factors. For example, away from a hole (or a free edge) or when
using a very thin laminate, the higher terms of the infinite series will be negligible
and the solution converges. This is not the case near the hole or for a laminate with
a hole size to thickness ratio (R/t) of less than 10.

Mathematically, the convergence and divergence for the different cases can
be explained by comparing the isotropic solution to the solution of the general

anisotropic problem as follows:

The plane isotropic equilibrium equations can be written as

2(n 4+ Duyzz +(20 + Dvyey +tyyy = 0
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va:r.r ’{‘(27’ + l)uu‘y +2(77 + l)ku = 0

where 7 is an average property of the laminate. Due te the special nature of the
coefficients of these two equations, the displacements satisflying them will have the
following properties:

Uszr = —Usry = ~Uyyy
and

Vyzz = —Uyzy = —Uyyy
For a specific lamina () in the laminate the terms:

[2(77(i) + Dtyer +(277(i) + 1)v,zy '*'uayy]

and

[0yez +(201 + Dy +2(n" + 1)v,y, ]

and their dezivatives will always be equal to zero no matter what the value of nt*) is.
These terms and their derivatives appear numerous times in the present formulation

in terms like [D], [E],... and their derivatives.

For the anisotropic case, the plane equations of equilibrium can be written as:

Qlluazz +Ql2v,xy +Q16(2us:y +vazz ) + Q26”ayu +Q66(u1w +vazy ) = 0
QlGuazz +Q12u’zy +Q26(uayy +2v1zy ) + Q22vaw +Q66(un'y +V,z2 ) = 0

where Q;; are average properties of the laminate. Since there is no apparent
relation between the various coeflicients in these equations (they depend on the fiber
orientation), then no special form of displacements can be obtained. Furthermore,

for a specific lamina (z) in the laminate, the terms:

[Qgil)uvzz +Q§'2)”vtv +Q§|6)(2“vzv +V,22 ) + Qg‘e)vvw +Q£‘2(uaw +V,zy )
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and
[nguarz +Q§2“wv +Qg2(“ayu +2v,2 ) + Qg‘gvaw +Qé2(ua=v +Vyzz )]

and their derivatives will, in general, not be equal to zero. The accumulation of
the error obtained by using these non-zero values create the erroneous results to be

reported in the next chapter.

5.11 Concluding Remarks

An attempt is made to extend a theory for stretching and bending of laminated
isotropic elastic plates to the anisotropic case. The laminae were in general of
diflerent anisotropic elastic materials. The form of the solution chosen (eq. 5.12) is
the same as for the isotropic case [78]. At this point, there is serious doubt as the
validity of this form for the anisotropic case.

The solution is generated using the two-dimensional CLT, and e¢nough unknown
functions are cbtained to satisfy all traction and displacement continuity conditions
at the interlaminar interfaces as well as the zero traction condition on the lateral
surfaces. The only approximation involved in this approach is that edge boundary

conditions can only be satisfied in an average manner rather than point by point.



Chapter 6

Applications

6.1 Introduction

As an illustration of the theory of laminated anisotropic plates presented in chapter
5, two cases will be considered. First, The reduction of the anisotropic case to the
isotropic solution is observed. The anisotropic solution, if correct, would have to
reduce to the isotropic solution shown in [78] when isotropic material propertiss are
used.

Another case considered here is that of an anisotropic laminated plate containing

a traction-free circular hole and subjected to uniaxial tension at infinity.

6.2 Reduction to the Isotropic Case

The theory of anisotropic laminates introduced in chapter 5, has to reduce to the
isotropic case if the properties of the material considered are isotropic. Furthermore,

these results should reduce to those obtained in [78].

The stress-strain relation (similar to eq. 5.!) for an isotropic material can be

146



written as:
(02) [ (A+2p) A A0
Oyy A (A4 2p) A 0
Oz: A A (X! %) 0
Oyx (= 0 0 0 ®
Oz: 0 0 i 0
| 02y | | 0 0 0 0

0
0
0
0
[

0
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Uy

Usy

W,
(vyz +wyy )
(s +w,2 )
pl U (uytvz) )

o O O O o

where A and g are the Lamé constants and commas denote partial differentiation

with respect to the suffix variables. As before, assuming that o.. = 0, we obtain:

Aty +Av,, +(A + 2p)w,, =0

which can be written as:

w,z=—( 2 )(u,z+v,y)

A+2u

We obtain a stress-strain relation similar to eq. 5.5 for the isotropic material:

(022 ) [ (V' +2u) X 00

Tyy N (M+2p) 00

Oz 0 0 00

< Oyr (= 0 0 0 u

Oz 0 0 00

Oy ) i 0 0 0 0

where:
21
X = O +l?‘.u)

Fu: ihe purpose of coinparing with [V}, let:

f,‘: =

o R O O o ©o

T O O o o o

w,z
< > (6.2)
(v’z +w,y )
(uyz +w1: )

\ (uw +v,z ) y




148

Substituting for the properties of eq. 6.1 in the expressions for u(),v(? and w(®
of the anisotropic case, and reducing the functions S,‘k)(:c,y) and B}k)(x,y) to
constants S,-(k) and B, the isotropic solution of [78] should be recovered.

It is worth noticing here that the present formulation uses two of the three
equilibrium equations (as shown in eq. 5.10) and using eq. 5.11 as a third equation
in the formulation. The third equilibrium equation is used later on to determine
Ozz.

In the isotropic work [78], 0., was assumed to be zero throughout the laminate.
So four equations seemed to have been used to obtain the solution. But a second
look at these four equations would reveal that only three equations are sufficient
to obtain the solution. The fourth equation automatically satisfies the solution

obtained; this fourth equation can therefore be termed redundant.

6.2.1 First Order Solution (n =1)

The anisotropic form of the equation for wg'.) is shown in 5.16 as:

i 1 i i i i
wi ) = _C_(S {Cl(s)uoaz +C§3)vo7y +C§6)(uow +'anz: )] z+ Sl( )(z,y) (63)
33

Substituting for the values of CJ(;;) from eq. 6.1, the equation reduces to:

i 1 i
wg ) = ——m [Au,,,, +A‘U°,y +0(uo,y +vo,z: )] 24 + Sf ) (64)

Rearranging,

w = [uo,, +v,,,v] z, + .Cgi) (65)

A
(A +2p)
Define:

An = Unyz +vmy
the previous equation can be written as:

wl® = — [z.- + s{"’] 18, (6.6)
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which is similar to eq. 2.44 in [78]. The anisotropic form of the equations for ug")
and vii) is shown in 5.23 as:

uf) = —wez+B(zy)
vf‘) = —Wey 2 + Béi)(z y) (6.7)

Reducing the two functions Bf") and B to one constant Bf"), these two equations

can be written as:

ugi) = - [z.- + B{")] Woozr
o) = - [z,- + Bf‘)] Wo,y (6.8)

which are similar to the equation of the isotropic case shown in eq. 2.44 in [78].

6.2.2 Second Order Solution (n = 2)

The anisotropic form of the equation for wg") is shown in eq. 5.28 as:

1 1 i i i Z?
wg ) = C—3(;)- [01(3)1”0,::: +C§3)wo,w +2C:<(;e)wou:y ] ?
1 i) Rl i) pi i) i i i
- g (OB +CRBY, +CL (B + B )] %+ B(z,3)
33
(6.9)
For the isotropic case, the previous equation reduces to:
W - 1 z_ D 250 Y], go
. 2 .
wf) = n(Vw,) 52'— + Cinzi + BY (6.10)

This could be rearranged as:

B 1 i 8
wy) = (5"-" + Bz + B; ’) nVw, (6.11)
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which is the form shown in eq. 2.46 of [78]. The anisotropic form of the equations

for ug‘) and vg'.) are shown in egs. 5.33 and 5.34 as:

() ( -1 )(‘)
Uy = 7
044055 - 045

c )
{ [_ (C_:) (C44Css — CJ5) + (Q11Cas — C“le)] Uorze
+ [044Q66 - C45Q26](i) Uoyyy + [Cl4Q26 _ C‘Ssz](i) Voryy

X C ()
+ |- (Z’f) (044055 — Cfs) + (2C44Q16 — CasQh2 — C45Q66)] Uoyzy

[ C (s)
+ ( 36) (Ca4Css — Cls) + (CaaQis — C45Q66)] Voyzz

Css
[ 023 2 () Z?
+ (033) (C44Css — Cs) + (C14@Qrz + CaaQes — 2C45Q26)] Vorry 5
+ SPz+5)
o) = (___—1_____) ¥
C44055 - 045
Css
(C«Css - 045) (045Q66 - Cssts) uowy
+ [C4sQ11 — Cs5Q16]” Uorzz + [C15Q16 — Cs5Qes) voyzz
C )
+ ( 13) (Ca4Css — Cis) + (2C45Q16 — Cs5Qes — Cssle)] Uoyzy
[ ( Cas ) ()
+ @ (C«Css - C45) + (Q26C4as — Cs5Q22)|  Vouyy
: Cas (i) 2
+ ( ) (C44Css — Cls) + (Cas@r2 + CusQes — QCsste)] Voszy 2
+ Sz + 80 (6.12)

For the displacement u, substituting using the material properties of 6.1, we get:
G (A4 24) - A2 ph "
uy” = uo,w'*‘ H# "+t A+ 2#“ 01z

/\2 #A 2-2 (5) i)
—_——— z = i 1
[A A+2l[+” A+2]vo,y}2+522+54 (6 3)

1
+ —
u
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which reduces to:

. 2 1 ]
uf) = = [(n+2) Aore ~oy | 5 + Sz + 5 (6.14)
where:
Qo,y = Voyzy —Uosyy
and

Aoyz = Uoyzz HVoyzy
Equation 6.14 can finally be written as:
o) = = (34 5050+ 59) [0+ 2) Bore =] (6.15)
Similarly, the equation for v, reduces to:

N 1 [ s
o = (22. + 89z 4+ 5§ ) (7 +2) Aoy +00re] (6.16)

which are the same equations as 2.46 shown in [78] for the isotropic <ase.

6.2.3 Third Order Solution (n = 3)

The anisotropic form of the equation for w( 9 is shown in eq. 5.39 as:

o = Z5{(ceog]+o [mf)+ oo +ug]) §

22

+ (C"’S“’,,+C"’ ), +CY {Sg)mJr :))?
+ (C08,.+CRsP,, +08 (59 +580.2)) =
+

a0 (6.17)
For the isotropic case this equation reduces to:
0 - _ O E®) = {¥) () i
o = i (Emg]) T o (\sersu]) 3

+ (A[ ). +59 )z,-+S§‘)} (6.18)
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Using the isotropic form of [D] and [E],

[D’x] = - [(77 + 2) Aows —Qoa:y ]
Byl = ~[(n+2)A0y +Q0zy ] (6.19)

the form of ws reduces to:

M - __A 2 (e Lo YA
Wy = X+ 24 {()"*'2) (Doyzz + 0y ) 6 + (52 r+53 w) 2
i i 1 i
+ (,\S,ﬁ ) e +S8) y) zi+ Xsé ’} (6.20)

where:

Aoazz +Qowy = V2Aa:: =0
and all the derivatives of S,(c‘) reduce to zero (since they arc now constants rather

than functions of z and y). The final form will then be:

@_ 1 (3)
wy’ = (A+2#)Ss (6.21)

Due to symmetry at 2 =0,

w=0 or SS) =0

which, because w # w(z) would lead to:
s& =0

eq. 6.20 now reduces to:

wl) =0 (6.22)
which has the same form as for the isotropic case. The anisotropic form of the

equations for u:(,i) and vg‘) are shown in eqs. 5.43 and 5.44. Reducing the equation

for us for the isotropic case we get:

W= - { [(/\ :2;1) - ((A 32/1) - #(/\ﬁ: 2#))] oz

A (A + 2u) A2 2 0w A
* [('\ + 2p) A p(X + 2p) Worwwy [ g +C; 9 T Cy'zi + Cy
(6.23)
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Rearranging,
5 2/\ + 2 /\ + 2 Zia H Z? s §
ug) = - [77 - A _E_ 24 ”)] (wo,:z: FWosyyy ) -6— + Cl )5_ + C2 )z.- + C:S)
(6.24)
which finally leads to:
32 . .
uf) = (7+2) Vw2 + 02 + 0z + 0 (6.25)
Similarly for v,
o) = (9 + 2) V2w, 2 i oz 2 5+ Ccz +cP (6.26)
Y6

The last two equations are similar to those given in [78] for the isotropic case.

6.2.4 Fourth Order Solution (n = 4)
The anisotropic form of the equation for wgi) is shown in eq. 5.50 as:
[M(‘)] Ly [N(' 1< Ly [o<'>] + [P9] z + BY) (6.27)
The term [M“’] contains terms that would eventually reduce to:
(Worzzzz +Woryyyy +2Woszzyy )

which are equal to zero for the isotropic case. The other terms of eq. 6.27 will also
reduce to zero since they are differentials of constants. It should be noted that for

any order higher than four the same arguments will hold true. i.e.

w =0 forn>4 (6.28)

The anisotropic fozm of the equations for u ) and v are shown in egs 5.55 as:

W) = [Q(-')] 2 [Rm] Dy [s(')] + 892+ 59
o) = [Tw [U(“] [v"]5'+5" zi+ S{g (6.29)
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The terms [Q(‘)] and [T(‘)] contain terms that contain fourth derivatives such as
Up,zzzz OF in other words terms which only contain expressions such as (V2A,),:.
These equations reduce to zero since, in the isotropic case, (V2A,) = 0.

The other terms of eq. 6.29 will also reduce to zero since they are differentials
of constants. It should be noted that for any order higher than four the same

arguments will hold true. i.e.
ul) =) =0 forn2>4 (6.30)

which are the same results obtained in [78]. As a result, the method presented in
chapter 5 for anisotropic materials reduces to the case of isotropic materials when

the isotropic material properties are used.

6.3 Stretching of an Anisotropic Plate Containing a

Traction-Free Circular Hole

In this section, an anisotropic plate containing a traction-free circular hole and
subjected to uniaxial tension at infinity is considered. The two- dimensional solution
for this problern for a homogeneous plate is given in [81]. This solution will be chosen

as the equivalent plate solution.

6.3.1 The Equivalent Plate Solution

It is assumed that an infinitely large anisotropic elastic plate contains an elliptical
hole. The coordinates axes OX and OY are chosen in the directions of the axes of
the ellipse and the semi-axes of the ellipse are denoted by a and b. Let the stress
state at infinity be tensile and of amount P acting at an angle ¢ to the OX axis as

shown in Fig. 6.1. The expressions for the stress components close to the hole are:
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Figure 6.1: Plate with an Elliptical Hole Subjected to a Stress P at
Infinity

oo = Poost(+ 2R [SIg(m) + SHHL(e0)]
oy = Psin®(+2R[g(21) + ¥i(2)]
o0ry = Psincos¢—2R[514,(z1) + Savp,(22)] (6.31)

where:

S] = +lﬁ1

S2 = 2 + iﬂg
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are the roots of the equation:

A11S* —2A165% + (2A12 + Aes)S? — 24365 + A22 =0 (6.32)
and
n=z+ 51y
2=z + Szy

and the functions ¢, and 1, are:

o= — iP(a —i81b) | b(S2sin2¢ + 2cos*()
’ 451 = 52) | 2 + /22 - (a® + SPb?)
ia(28S, sin? ¢ + sin 2(¢)

ot VA= (@ 5T

o = iP(a—15;0) | b(S1sin2( + 2cos*()
° 451 — S2) | 2o + /22 — (a2 + S3b?)
1a(2S) sin? ¢ + sin 2¢) }

VA (@15 |

(6.33)

The displacement components for the same problem are:

u = 2R[md(z1) + p2b(22)] — Yoy + o
v = 2R[gid(z1) + @¥(22)]+ 1z + Bo (6.34)

where:

n = AnS? + Ay — A1eSi
P2 = AuSZ + A2 — A5

A12512 + Az — AS)

Q1 =
S1
AuS§ + A — A5

S2
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The coefficients a,, B, and 7, are arbitrary real constants where (—7,y + a,) and
(voz + B,) are the expressions for the rigid body displacement of the entire body
and can be disregarded when investigating elastic equilibrium. For stresses given at

infinity, we can define:

#(z1) = B z1+ ¢.(21)
P(z) = (B"+iC")z; + tho(z2) (6.35)

where:

B p {c052 ¢ + (o + B3)sin?{ + azsin 2(}

2[(az — en)? + (83 — B})]
- p { [(a? — B?) — 2ay2] sin? { + cos? { — asin2( }
B 2[(az ~ e1)? + (85 — )]
p (1= o ol 80— )
2B2[(e2 — en)? + (B3 - B})]
[(a} = B7) — (of — B)] SinCCOSC}
2Bs[(az — en)? + (B3 — BY)]

BI-

Clt —

+

These values of u(z,y) and v(z,y) will be considered as @ and 9 (as explained in

chapter 5) respectively.

6.3.2 Reduction to the Isotropic Case

For the isotropic case, the same general equations, developed in the previous section
for the anisotropic case, can be used.

It should be noted however that a slight modification in the computer program is
necessary. This deals with the fact that the anisotropic formulation is not equipped
to deal with the case when S; = S; = i (see eq. 6.33). The solution to that problem
is presented in [82]. This solution involves replacing the original values of S; and S
by S; = 1.000001 : and S; = 0.999959 i. The apparent indeterminacy in eq. 6.33

is thus avoided while introducing negligible errors in the stress results. It should



be noted however that values of S; = 1.001 ¢ and S, = 0.999 ¢ did not result in

stresses comparable to those in [78].

6.3.3 Sclution of the Isotropic Laminated Plate Problem

In [78] , although no numerical values were given, an example was presented. This
example considered a laminated plate containing a traction-free circular hole of
radius R and subjected to uniaxial tensile stress P at infinity. T he laminate of
thickness t was chosen to comprised of three layers each of equal thickness 2h,, the
inner layer having elastic constants A}, x; and the two outer layers having clastic

constants Ay, p2.

Denoting by 7; the shear traction between layers (i — 1) and (7), then 7y has r
and y components ol) and or,(,? evaluated at z; = —1.

The magnitude of the shear traction at the interface between the two layer was

calculated to be:

S deypr(m — 7)) P
'TORA(2h+1)

(6.36)

where:

(i =5 [ (G

Giving the following numerical values,

E, = 69 GPa (107 psi)
E, 107.6 GPa (1.56 x 107 psi)
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141 = 0.33
vy = 0.355
(51 ’ U-02

P = 1.0 MPa (145 psi)

the interlaminar shear traction resulting from eq. 6.36
is 0.1246 x 10~>M Fa (0.1809 psi). Numerically, using the anisotropic formulation
with terms up to the second order in ¢, the value of the same interlaminar shear
traction was calculated to be 0.1242 x 102 M Pa (0.1801 psi).

It shouid also be noticed that using terms up to the fourth order in € is not
supposed to make any difference in the calculsted values of the stresses (as explained
in 6.2.4), which was icund to be the case since the values of the stress obtained using
higher orders in e did not alter the‘results.

The value of the interlaminar normal stress component, o,;, was calculated for
this case and its value of 0.105 x 107 M Pa (0.1523 x 10~* psi) confirmed the
initial assumption of 7., = 0.

In [78] it was mentioned that the value of the interlaminar shear traction was

independent of the angle §. This was confirmed using the present formulation.

The value of the radial compenent of the stress, o,,, at the hole is supposed
to be zero. But since the boundary conditions are not satisfied point by point, the
values obtained is non-zero but very small when compared to the applied stress. It
should however be noted here that if the ratio R/t decreases, a significant increase
of this ..ress component at the hole results. For example, for R/t = 8.33, the
maximum value of o,, at the hole is about 5% of the applied load. If a thicker
laminate is used ( R/t = 0.833), the maximum value of the same stress component

at the hole increases to 42% of the applied load.
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6.3.4 Soluticn of the Anisotropic Laminated Plate

Prohlen:

To determine the suitability of the present method (presented in chapter 5) for the
case of anisotrapic elastic plates, a problem similar to the one considered {or the
isotropic case was studied. The problem of an anisotropic laminated plate containing
a traction-free circular hole and subjected to a uniaxial tensile stress P at infinity,
will be attempted (Fig. 6.2). Two symmetric laminates made of the same material
will be considered here: [0/90], and [+45],. These laminate configurations were

not chosen for any specific reasons, but just to be used as examples.

Parametric Mumerical Study

In this section, the two aforementioned laminates containing a traction-free circular
hole of radius R and subjected to uniaxial tensile stress P at infinity will be
consicered. The effects of the layer thickness ¢ and the anisotropy factor (A.F.)
on the results will be addressed; The anisotropy factor can be defined as the ratio
between the modulus of elasticity in the fiber direction (£;) and the modulus of

elasticity in the direction perpendicular to the direction of the fibers (E3), i.e.

Two materials will be used to demonstrate the anisotropy effect: Material A with
au anisotropy factor of 3 and Material B with an anisotropy factor of 7. The
mechanical properties of these materials can be for a Graphite/Epoxy or an E-
Glass/Epoxy. Some of the properties used for the two materials are shown in Table

6.1. For each of these materials, the effect of the plate thickness will be addressed.

For each of the materials and laminates examined, cases of R/t = 5,10 and

920 are considered. For an applied stress of P = 1M Pa, the values of the different
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Table 6.1: Mechanical Properties of Different Materials Under

Consideration
Material
A B
E; (GPa) 36 | 84
Eg, Es (GP&) 12 12
Gl,Gg,Ga (GPa) 5.5 5.5
Vi, V13, V23 0.20 | 0.20
A.F. 3 7

stress components are evaluated around the hole at different values of th~ normalized
radial distar < (r/R) and position angles ().

For the [0/90], laminate constructed using Material A, the variations of the
normalized (with respect to the applied stress) plane stress components obtained
at the centerline of the laminate vers:s the normalized radial distance are shown
in Figs. 6.3-6.5. The normalized values of the same stress componenis obtained
using the classical laminate theory are included as solid lines in the same figures.
The distribution of che plane stress components for the same laminate built using
Material B are shown in Figs. 6.6-6.8.

From Figs. 6.3-6.8, a few observations can be made. For the same material, as
the laminate becomes thinner ( R/t increases) and as we move further away from the
hole (higher r/R), the values of the various plane stres; components approach those
of the CLT. Also, for the same laminate thickness (constant It/t}, the maximum
deviation from the CLT occurs at the hele for a position angle, 4, of 90°. T%is trend

is very clear for the radial stress component, o,,, distributi:~ .» ¥4 6.3 and 6.6.
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It can also be shown that this deviation increases with the increase of the anisotropy
factor. For example, at the hole, o,, = 1.5P for Material A but increases to 115P
if Material B is used. Close to the hole, for thicker laminates (R/t = 5) made of
Material B, the circumferential stress component, ogg, also deviates from the CLT
with the larges deviation observed at § = 90° (Fig. 6.7). The value of the plane

shear component, o,9, does not show any discrepency to that obtained using the

CLT.



164

3.6 e
8.0
LEGEND
5 R/t=10 620
= (®) /= =
=.5 A R/t=20 6=0
C.LT. 6=0_
X R/t=5 6=45
2.0- o R/t=10 6=45
v R/t=20 6=45
C. LT &=45
1.5- * t= =90
e R/t=10 6=90
y ® R/t=20 6=00
\,;\ 104 C.L.T. 9=80
5~
=)
0.5
—1.5‘* I T 1 Jl
1.00 1.05 1.10 1.16 1.20

r/R

Figure 6.3: Radial Distribution of o,, at the Mid-Plane of the [0/90],
Laminate Arcund the Hole (Material A)
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For the [+45], laminate, the distribution for the plane stress components
is shown in Figs. 6.9-6.11 and Figs. 6.12-6.14 for Material A and Material B

respectively.

Similar trends are observed in this case with the maximum variation from the
CLT observed at § = 45°. The radial stress component, o,,, shows the largest
deviation from the CLT. This deviation increases with the increase of the laminate
thickness and the anisotropy factor. For Material B, at the hole, the plane shear

stress component, 0,4, also shows a departure from the CLT.
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Although these results are only for the few cascs considered here (two anisotropy
factors and two laminate geometries), it seems that this method will give acceptable
results (for the plane stress components) for the case of a very thin laminate made
with a highly anisotropic material or a thicker laminate built with a material with

smaller anisotropy.

Interlaminar Stresses

For each material and laminate geometry, the variation of the normalized values
(with respect to the applied stress) of the interlaminar stress components arc
presented next. The normal interlaminar stress (02:) is calculated at the centerline
of the laminate while the interlaminar shear stresses (o,. and 04, ) are calculated at
the interlaminar interface between the first and second layer (since they are cqual

to zero at the centerline of a symmetric laminate).

For the case of the [0/90], laminate built using Material A, the interlaminar
shear distributions for different values of the normalized radial distance (r/R) and
of the position angle (§) are shown in Figs. 6.15-6.17. The stress distributions for the

same laminate geometry constructed using Material B, are shown in Figs. 6.18-6.20.

Similar to the plane stress components, the values of the interlaminar stress
components depend on the laminate thickness ( R/t), the anisotropy factor (A.F.),
the position angle (&) and the radial distance from the hole (r/R). For the same
material, the maximum of the stress components o,, and o, at the hole was
observed at § = 90°. The values of these two components were observed to increase
with the increase of the anisotropy factor (for example, for Material A, the maximum
value of o,; at the hole is about 0.12P, this value increases to 5.8P for Material
B). For both materials, the stress components o,. and o,, decreased rapidly as we
move away from the hole. The stress component o, existed only at 6§ = 45° and

did not reduce to zero away from the hole.
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For the [£45], laminate, the interlaminar stress distributions using Material A
and Material B are shown in Figs. 6.21-6.23 and Figs. 6.24-6.26 respectively.

For the same material, the maximum of the stress components ¢, and o,, was
observed at 6§ = 45°. The values of all components were higher with an increase
of the anisotropy factor. For example, for Material A, the maximum value of o,
at the hole was about 0.03P, this value increased to 1.19P for Material B. As was
the case for the [0/90], laminate, the stress component gy, had a non-zero value

for the case of 6 = 45° only.
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For comparison sake, Fig. 6.27 shows the normalized stress components (with
respect to the applied load) obtained in a [0/90], laminate made from Material
A with an R/t = 10 at the position angle § = 90°. The plane stresses and the
interlaminar normal stress are calculated at the centerline of the laminate, while
the interlaminar shear sti~sses are calculated at the interlaminar interface. The
lines, once more, represent the results obtained using the classical laminate theory.
From this figure it can be noticed that the values of the interlaminar stresses are

much smaller compared to the plane stresses.

The solution obtained, as mentioned previously, salisfies edge boundary
conditions only in an average sense. Therefore the results obtained might not be very
reliable close to the hole. However the interior solution is also important since it can
give some information about the magnitude of the stress components at the edge.
To satisfy the edge conditions point by point, it might be necessary to superpose
some sort of boundary layer solution. This solution would decay exponentially with

the distance from the edge [84].
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Table 6.2: Material properties of the Graphite/Epoxy Composite
Used by Lucking et al.

Properties

Ei;, (GPa) 145
Ezz,Esa (GPa) 10.7
Gh2,Gis (GPa) | 4.5

G23 (GPa) 3.6
V12, V13 0.31
Va3 0.49

6.3.5 Comparison of the Present Solution and the Three-

Dimensional Finite Elements Method Solution

From the previous section, it was determined that the present method will be more
successful if the laminated plate is thin. The solution would seem to get even better

if the anisotropy of the material was not very high.

Lucking et al. [83] studied the effect of geometry on the interlaminar stresses
of [0/90], composite laminates with a traction-free circular hole. They used a
Graphite/Epozy with an A.F. of 13.55. The properties of the material they used
is shown in Table 6.2. One of the laminates they considered had an R/t ratio of
12.5. The only reported in-plane stress component was the angular distribution of
the tangential component, ogs for each layer in the laminate. Figure 6.28 shows
a comparison between the finite element analysis results and the results obtained

using the present method, the CLT results are also included.

The normalized interlaminar stresses o,,,05, and 0., at various values of
the position angle () obtained using the present method, are compared to the

finite element analysis results in Figs. 6.29-6.31. As expected, since the boundary
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conditions are only satisfied on average, the values of the interlaminar stresses
obtained at the hole are not accurate. It should also be noted that, near the hole, the
solution does not converge. Therefore it does not satisfy the equilibrium equations
for every lamina in the laminate (Fig. 6.31). Away from the hole, the results
obtained are comparable to those obtained using the three dimeunsional FEM. In
this case, the higher terms of the solution reduce to zero and the solution converges

satisfying the equilibrium equations for each lamina.
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6.4 Concluding Remarks

The theory of symmetric anisotropic laminated elastic plates nresented in chapter
5 was used to obtain the stress components for both an isotropic and an anisotropic
laminated plate containing a traction-free circular hole subjected to a uniform tensile

stress at infinity.

The results obtained for the isotropic case were the same as those reported in
[78). This method was found to give very reasonable results even in the cases where
the properties of the isotropic materials forming the laminate were very different.
The value of o,, obtained at the hole depends on the R/t ratio. If the laminate
is thin enough (R/t > 10), this value is negligible but if a thicker plate was used,

significant non-zero values result.

For the case of anisotropic laminated plates, the results were unacceptable for
most of the cases considered. These results were found to depend on numecrous
factors such as anisotropy, thickness of the laminate, as well as the position
considered. Close to the hole, the assumed form of the solution did not convergc.
Because of that, the equilibrium equations for the different layers were not satisfied.

These results worsened when a thick laminate with a high anisotropy was considered.

Also, since the boundary conditions were only satisfied on average through the
thickness of a laminate, the values of the stress components obtained at a specific
point on or close to the boundary were not accurate. This is a serious problem since
the main interest is the determination of the interlaminar stresses at the edges.

The natural recommendation for any further expansion of this work would be
the use of a different form of series. This form should take into consideration the
mismatch between the properties of the different layers in the laminate. This might

lead to a better convergence even when the materials used are highly anisotropic.



Chapter 7

Conclusion

This work deals with damage of unidirectional fiber reinforced composite materials.
A fatigue failure criterion for unidirectional coupons was presented. It is intended
that the failure of a coupon represents the initiation of damage in a larger
component. This fatigue criterion was based on the Strain Energy. The predictions
obtained using this criterion were compared to published experimental results for
different materials. In all cases the predictions were quite accurate. Since most of
the available data was for a stress ratio of 0.1, a series of cyclic tests under different
values of the stress ratio (0, 0.5 and -1) was conducted. The failure criterion was
modified to include the effect of the stress ratio. The modified criterion was shown

to accurately fit the experimental data.

The existing crack in the component will now start to propagate. The
Strain Energy Criterion was also used to predict the direction of crack growth
in unidirectional composites loaded monotonically under both uniaxial and general
biaxial plane conditions. The predictions obtained using the present criterion were
compared to those obtained using some other well-known criteria used for this
purpose. The results obtained using the present theory were shown to consistently

predict the direction of crack growth as well as or better than the other criteria.

200
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The Classical Laminate Theory (CLT) is simple but is unable to predict the
through-the-thickness components of the stress. To extend the use of the strain
energy density criterion to the laminates, these stress components would have
to be determined in order to calculate the value of the strain energy. The use
of finite difference method and finite element analysis leads to accurate results.

Unfortunately these methods often require high computing power.

A three dimensional anisotropic theory based on the easy-to-use CLT was
developed. In this theory, the displacement and interlaminar stress continuity
conditions through the interlaminar interfaces were satisfied. The zero traction
condition on the lateral surfaces was also satisfied. The boundary conditions were
satisfied in an average manner. When isotropic material properties were used, the
present theory was seen to reduce to the isotropic form obtained by other rescarchers
[78].

The problem of a symmetric laminate containing a traction-free circular hole
and subjected to a tensile stress at infinity was investigated. For the isotropic
case, the results obtained were identical to those obtained in [78]. The use of a
thicker laminate resulted in a non-zero radial stress component at the hole. For
the anisotropic case, the results obtained were unacceptable. These results were
influenced by several factors such as the material properties and the thickness of
the laminate. Close to the hole the solution did not converge and did not satisfy

the equations of equilibrium for each layer.

The anisotropic results were then compared to those obtained using the three
dimensional finite element analysis. Near the hole, where the interlaminar stresses
are important, the present method gave erroneous results (due to the fact that the
boundary conditions were only satisfied in an average sense). At a distance from

the hole (equal to the laminate thickness), both methods gave comparable results.

The natural recommendation for improving the results obtained using the
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present method, would be the use of a different form of solution. This new form

would take into consideration the properties of the different layers in the laminate.
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Appendix A

Experimental Investigation

A.1 Introduction

As mentioned in Chapter 3, due to the lack of of published experimental data,
tests were conducted to determine the effect of the stress ratio on the fatigue of
unidirectional fiber reinforced composites. In this chapter, the material used, the
different stages of the specimen development as well as the experimental apparatus

used will be presented.

A.2 Material

The material used was “Scotchply Reinforced Plastic type 1003” which is a 3M
product. This composite is a non-woven fiberglass reinforced epoxy resin material
designed for high performance structural applications. This material was chosen
because of its availability and its low cost. The fiberglass used has a continuous
filament of “E” type. The uncured prepreg is supplied in rolls of unidirectional
orientation of widths 150 mm (6 inches) to 300 mm (12 inches) with a standard roll
length of 65.8 m (72 yards). The average uncured thickness of the prepreg is 0.275

mm (0.011 inches) and reduces to 0.25 mm (0.010 inches) after curing. Some of
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Table A.1:Mechanical Properties at Various Stress Angles

“ Stress Angle

0° | 45° | 90°

Flexural Strength (MPa) 1,150 | 145 | 75
Flexural Modulus (GPa) 38.6 |13.8 | 11.1

I Tensile Strength (MPa) 965 | 24 | 20
Tensile Modulus (GPa) 393 | 9.7 | 9.7

Compressive Strength (MPa) | 880 | 240 | 195

the main mechanical properties of the material at various stress angles taken from
the manufacturer’s literature are shown in Table A.1. The experimental values of

the monotonic strength as a function of the fibers orientation angle is presented in

Fig. A.1.

A.3 Specimen

A.3.1 ASTM Standards

The ASTM standards for fatigue testing of fiber reinforced composites are only
available for tension-tension fatigue specimens. No standards were found for tension-
compression fatigue tests. The standard tension-tension was ruled inadequate
since buckling would be expected under any compressive loads. Therefore different

configurations were explored.
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Figure A.1: Variation of Monotonic Strength with Fibers Orientation
Angle

A.3.2 Specimen Design
Initial Design

The first specimen to be constructed (Fig. A.2) was a dogbone-type specimen with a
reduced test section in the thickness direction. Twenty layers of prepreg were used
to form the ends while ten layers were present in the test section. Two design
configurations were attempted. Unfortunately both were not successful. Both
configurations were built with enlarged ends containing a pin-hole permitting the

use of the grips shown in Fig. A.3.
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Figure A.2:Initial Specimen Design

Width Waisted Specimen

The specimen was next modified to a “width-waisted” [85] type as shown in Fig. A.4.
Twenty layers were once more used with the test section having the same thickness
but a smaller width than the specimen ends. The ends had once more pin-holes to
grip the specimen using the same grips as before (Fig. A.3).

This specimen performed well for all off-axis specimens but not for the 0°
specimens. In this case, higher loads were applied to the specimens creating

premature failure. This configuration was also discarded.
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Figure A.3:Two-Part Grips

Final Configuration

Straight parallel sided specimens were finally chosen (Fig. A.5). These specimens
had 20 layers for all the off-axis tests but only 10 layers for the 0° specimens where
the required stresses to failure were considerably higher. According to Curtis et
al. [85] chis shape of specimen was not found to have any adverse influence on the

properties obtained when.compared to “width-waisted” specimens.

Due to the hardness of the composite material tested, tabs were found necessary
for gripping purposes. Aluminum tabs were chosen because they are cheap, available

in appropriate dimensions and needed only minor machining before being used.
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Figure A.4:Width Waisted Specimen

These tabs were glued on the specimen ends using “Loclite Black Max” a one-
part room-temperature-curing adhesive. It reaches 80% of its maximum strength
(20.69M Pa(3000pst)) after 24 hours and 100% of its maximum strength after 120

hours.

Although this glue proved effective with the off-axis specimens, it could not
sustain the loads applied to the 0° specimens. So for these specimens an alternative
glue, The “Fixmaster” twin weld adhesive was used. This Fiberglass Reinforced

Epoxy adhesive reached its peak lap shear strength of 26.2M Pa(3800psi) after 3

hours at room temperature.
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Figure A.5:Final specimen design

The final shape of the specimen used is shown in Fig. A.5.

A.4 Grips

Grips capable of withstanding both tensile and compressive loading were required.

Two configurations were contemplated: the two-part grips and the modified tension

.

grips.
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A.4.1 Two-part Grips

The first type of grips tested were those mentioned in the previous section (Fig. A.3).
These grips, although attractive for use with specimens with large ends, were not
appropriate (the width of the specimen was reduced and so was the gripping area).
The load carried by the bolts was sometimes too high. This caused a relative motion
between the two parts of the grips causing a continuous movement of the specimen
during the tests. The required grips should be in one piece, bulky and capable of

carrying both tensile and compressive loads without any slip of the specimen.

A.4.2 Modified Tension Grips

Regular wedged tension grips would have been appropriate for this application in
the absence of compressive loads. With the increase in tensile load, these grips
tightened very well on the specimen, allowing no slippage, but under compressive

loads the wedges would open and release the specimen.

A modification was implemented into these wedged tension grips allowing them
to function in compression as well as in tension. Small steel plates were added
inside the grips as shown in Fig. A.6. These plates prevented the wedged grips from

opening when the specimen s subjected to compressive loads.

In the work done by Rosenfeld et al. [26] and by Rotem et al. [27],
antibuckling devices were used to prevent buckling of the specimens under
compressive loading.Here, for the off-axis testing, the specimens were designed with
a minimal free length, thus, decreasing the possibility of buckling. For the 0°
specimens, an antibuckling device had to be used, since in this case, the specimens
were thinner and they were subjected to much higher loads than those of the off-
axis specimens. Several configurations (Fig. A.7) were examined. The one that was

finally used is shown in (Fig. A.8).
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Figure A.7:Different Configurations for the Antibuckling Device
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A.5 Specimen Manufacturing

The female part of the mould (Fig. A.9) was sprayed with “Sprayon” a heavy duty
silicone mould release. A 0.5 mm (0.02 inches) thick layer of “Wrightlon 4600
release film was then placed inside each of the three cavities of the mould (The

mould allows for the manufacturing of three specimens at the same time).

Prepreg strips with the required width, length and fiber orientation were then
cut and carefully laid down on top of one another. Some pressure was consistently

applied to assist in the removal of trapped air.

After reaching the required number of strips (twenty for the off-axis specimens
and ten for the 0° ones), another sheet of release film was placed on top of the
prepreg. The male part of the mould was then sprayed with the silicone mould
release and placed on top of the female part. Pressure was applied on the prepreg

by tightening the six bolts connecting the two parts of the mould.

The mould was then put in a time-regulated oven and the prepreg was cured
according to the manufacturer’s specifications. Once the curing cycle was finished,

the mould was left to cool inside the oven until it reached room temperature.

To take the specimen out of the mould, the male part was first removed by
unscrewing the six bolts. Screws on the bottom of the female part of the mould
were then used to uniformly push a stripper-bar under each of the cured specimens.
This last step had to be done very carefully since any large difference between those
screws’ displacement could result in a bent specimen. Any extra-resin was then cut
and the whole specimen was filed. The tabs were finally glued onto the specimen

which was now ready for testing
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Figure A.9:Mould
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A.6 Experimental Apparatus and Results

The apparatus used was an MTS testing machine controlled by an IBM PC. The

entire test configuration in shown in Fig. A.10.

Unidirectional specimens with various fiber orientation angles were subjected to
off-axis cyclic loading. Specimens used had fiber orientation angles of 0°, 19°, 45°,
71° and 90° with respect to the direction of loading. Tests were performed at room
temperature for stress ratios of 0.5,0.0 and —1.0. Most of these tests have been
conducted under a frequency of 3.33 Hz (200 CPM). The effect of loading frequency
on the fatigue life of 45° off-axis specimens was considered by running tests under
two frequencies (3.33 Hz and 0.426 Hz). The observed effect was minimal (scc
Fig. A.11).

Figs. A.12 - A.15 show the failed specimens in the case of the off-axis cyclic
tests. All these specimens had an identical brittle failure mode. Fig. A.16 shows
the different failures obtained when testing the 0° specimens; in this case the failure
mode depended on the magnitude of the applied stress. At high stress levels (close
to the monotonic strength), the failure mode was an abrupt broom-like shape failure
accompanied by fiber breakage. At lower stress levels, delamination was observed

and failure occured over an extended period of time.

During the tests, both strain and stress were recorded. This allowed for the
plotting of the hysteresis loops and monitoring the change of stiffness with time.
Using Fig. A.17 as an example (71° off-axis, R = 0, Opmaz = 24.14 MPa,
Ny = 72,298 Cycles), it is seen that no significant modulus degradation was
observed (a slight increase of 2.3% was observed in this case). In Fig. A.17, the solid
line is a reference line with E/E, = 1 and the dashed line is a possible extension
to this relation until failure (since no readings were available in that range). The
trend shown in Fig. A.17 was observed in all of the off-axis cases. The 0° specimens

showed a maximum modulus drop of about 10% before the tests were stopped.
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Figure A.10:Experimental Apparatus
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Figure A.12:Failure of a 19° Specimen under Cyclic Loading
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Figure A.13:Failure of a 45° Specimen under Cyclic Loading
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Figure A.14:Failure of a 71° Specimen under Cyclic Loading
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Figure A.15:Failure of a 90° Specimen under Cyclic Loading
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Figure A.16: Different Failure Modes of a 0° Specimen under Cyclic
Loading.
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For each value of the stress ratio, the maximum stress was plotted vs. the
number of reversals to failure for the different fiber orientation angles as shown in
Figs. A.18 - A.20. The complete tabulated values of stresses vs. number of cycles
to failure as well as the individual plots of every fiber orientation angle and every
stress ratio is shown in appendix B.

It should be noted here that although the failure of some specimens occurred
close to or under the tab rather than in the middle of the specimen, the difference
between the life of those specimen and the ones which failed in the mid-section was

found to be within the expected scatter common to the fatigue tests.
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Appendix B

Experimental Data

This appendix contains the experimental results obtained from the cyclic testing

of laminae with different fiber orientation angles under various values of the stress

ratio:

42



243

Table B.1:Uniaxial Fatigue Results for 0° Specimens at R = 0.5

LEGEND
®=R=0.5
[ »¥=MONOTONIC

Maximum Cyclic Stress (MPa)

Specimen | Frequency Stress Cycles to | Failure
Number [CPM] | (Maximum/Minimum) | Failure | Mode
[MPa)
R05DG001 200 689.66/344.83 605 Fiber Breakage
R05DG002 200 620.70/310.35 12,018 | Delamination
R05DG003 200 758.63/379.31 281 Delamination
R05DG004 200 586.21/293.11 46,939 | Dclamination
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Table B.2:Uniaxial Fatigue Results for 0° Specimens at R =0

Maximum Cyclic Stress (MPa)

Specimen | Frequency Stress C. ¢Jes te.| Failure
Number [CPM] | (Maximum/Minimum) | Faixrje | Location
[MPa)
RODGO001 200 551.73/0 80,956 | Delamination
R0ODG002 200 613.80/0 8,964 Delamination
RODGO003 200 662.07/0 5,969 | Delamination
RODGO004 200 689.66/0 2,372 Delamination
RODGO005 200 758.63/0 68 Fiber Breakage
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Table B.3:Uniaxial Fatigue Results for 0° Specimens at R=-1
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Specimen | Frequency Stress Cycles to | Failure
Number [CPM] | (Maximum/ Minimum) | Failure | Location
[MPa]
R-1DG001 200 344.83/-344.83 176,697 | Delamination
R-1DG002 200 413.80/-413.80 125,000 | Delamination
R-1DG003 200 482.76/-482.76 14,304 | Delamination
R-1DG004 200 379.31/-379.31 75,000 | Delamination
R-1DGO005 200 517.25/-517.25 753 Buckling
R-1DG006 200 331.04/-331.04 240,451 | Delamination

Maximum Cyclic Stress (MPa)

P

10" Rt
1

Figure B.3: Maximum Applied Stress vs.

Number of Reversals To Failure

LEGEND
V=R=-1 |
- »=MONOTONIC
10 100 1000 10000 100000 1000000 10000000

Number of Reversals to
Failure for 0° Specimens at R =—1



246

Table B.4:Uniaxial Fatigue Results for 19° Specimens at R = 0.5

Specimen | Frequency Stress Cycles to | Failure
Number [CPM] | (Maximum/Minimum) | Failure Location
[MPa]

R05DG191 200 124.14/62.07 53,650 | Partially Under Tab
R05DG192 200 137.93/68.97 26,978 | Middle of Specimen
R05DG193 200 151.73/75.86 90 Middle of Specimen
R05DG194 200 144.83/72.41 5,209 | Partially Under Tab
R05DG195 200 131.04/65.52 17,041 | Partially Under Tab
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Table B.5:Uniaxial Fatigue Results for 19° Specimens at R = 0

-
Specimen | Frequency Stress Cycles to | Failure
Number [CPM] | (Maximum/Minimum) | Failure | Location

[MPa)

RODG191 200 124.14/0 259 Partially Under Tab
RODG192 200 110.35/0 5,469 | Partially Under Tab
RODG193 200 96.55/0 549 Inside Tab
RODG194 200 96.55/0 14,710 | Partially Under Tab
RODG195 200 89.66/0 15,600 | Middle of Specimen
RODG196 200 82.76/0 14,906 | Middle of Specimen
RODG197 200 82.76/0 43,353 | Partially Under Tab
RODG198 200 131.04/0 907 Partially Under Tab
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Table B.6:Uniaxial Fatigue Results for 19° Specimens at R = -1

Specimen | Frequency Stress Cycles to | Failure
Number [CPM] | (Maximum/Minimum) | Failure | Location
[MPa)
R-1DG191 200 110.35/-110.35 252 Partially Under Tab
R-1DG192 200 96.55/-96.55 713 Middle of Specimen
R-1DG193 200 82.76/-82.76 2,287 | Partially Under Tab
R-1DG194 200 68.97/-68.97 3,257 | Inside Tab
R-1DG195 200 68.97/-68.97 3,450 | Middle of Specimen
R-1DG196 200 62.07/-62.07 32,860 | Middle of Specimen
R-1DG197 200 55.17/-55.17 02,582 | Middle of Specimen
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Table B.7:Uniaxial Fatigue Results for 45° Specimens at R = 0.5

Specimen | Frequency Stress Cycles to | Failure
Number [CPM] | (Maximum/Minimum) | Failure | Location
[MPa]

R05DG451 120 41.38/20.69 849,720 | Middle of Specimen
R05DG452 200 55.17/27.59 2,256 Near Tab
R05DG453 120 55.17/27.59 940 Middle of Specimen
R05DG454 200 48.28/24.14 25,622 | Near Tab
R05DG455 200 58.62/4250 1,313 Middle of Specimen
R05DG456 200 62.07/31.04 942 Near Tab
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Table B.8:Uniaxial Fatigue Results for 45° Specimens at R =0

Specimen | Frequency Stress Cycles to | Failure
Number [CPM] | (Maximum/Minimum) | Failure | Location
[MPa]
RODG451 200 48.28/0 1,910 Near Tab
R0ODG452 200 41.38/0 8,420 | Near Tab
RODG453 200 34.48/0 44,040 | Near Tab
RODG454 200 27.59/0 2,500,000 | NO FAILURE
RODG455 200 58.62/0 70 Middle of Specimen
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Table B.9:Uniaxial Fatigue Results for 45° Specimens at R = -1

Maximum Cyclic Stress (MPa)

10
1

Figure B.9: Maximum Applied Stress vs.

Ayl

LEGEND
=MONOTONIC

Lo gl

Specimen | Frequency Stress Cycles to | Failure
Number [CPM] | (Maximum/Minimum) | Failure | Location
[MPa]
R-1DG451 120 48.28/-48.28 1,826 Middle of Specimen
R-1DG452 120 48.28/-48.28 1,073 | Near Tab
R-1DG453 120 41.38/-41.38 10,300 | Near Tab
R-1DG454 120 34.48/-34.48 22,200 | Near Tab
R-1DG455 216 34.48/-34.48 24,170 | Middle of Specimen
R-1DG456 200 27.59/-27.59 433,290 | Near Tab
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Table B.10:Uniaxial Fatigue Results for 71° Specimens at R = 0.5

Specimen | Frequency Stress Cycles to | Failure
Number [CPM] | (Maximum/Minimum) | Failure | Location
[MPa)
R05DGT711 200 34.48/17.24 1,638 | Middle of Specimen
R05DG712 200 31.04/15.52 2,500,000 | NO FAILURE
R05DG713 200 41.38/20.69 50 Near Tab
RO5DG714 200 37.93/18.97 4,218 | Near Tab
R0O5DG715 200 34.48/17.24 645,846 [ Near Tab
R05DG716 200 36.21/18.10 50,265 | Inside Tab
RO5DGT717 200 41.38/20.69 137 Middle of Specimen
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Table B.11:Uniaxial Fatigue Results for 71° Specimens at R =0

Specimen | Frequency Stress Cycles to | Failure
Number [CPM] | (Maximum/Minimum) | Failure | Location
[MPa]
RODG711 200 27.59/0 1,844 | Middle of Specimen
RODG712 200 41.38/0 32 Near Tab
RODGT713 200 34.48/0 231 Near Tab
RODGT714 200 27.59/0 8,863 | Inside Tab
RODG715 200 24.14/0 72,298 | Near Tab
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Table B.12:Uniaxial Fatigue Results for 71° Specimens at R = —1

Specimen | Frequency Stress Cycles to | Failure
Number [CPM] | ‘Maximum/Minimum) | Failure | Location
[MPa)
R-1DG711 200 31.72/-31.72 361 Middle of Specimen
R-1DG712 200 27.59/-27.59 1,069 | Middle of Specimen
R-1DG713 200 24.14/-24.14 1,680 | Middle of Specimen
R-1DGT714 200 20.69/-20.69 130,490 | Inside Tab
R-1DG715 200 24.14/-24.14 34,154 | Middle of Specimen
R-1DG716 200 27.59/-27.59 3,368 | Middle of Specimen
R-1DGT717 200 34.48/-34.48 216 Middle of Specimen
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Table B.13:Uniaxial Fatigue Results for 90° Specimens at R = 0.5

Specimen | Frequency Stress Cycles to | Failure
Nuniber [CPM] | (Maximum/Minimum) | Failure | Location
[MFal
R05DG901 200 31.04/15.52 155,245 | Middle of Specimen
R05DG902 200 41.38/20.69 22 Middle of Specimen
RO5DG903 200 36.21/18.10 21,804 | Near Tab
R05DG904 200 37.93/18.97 706 Near Tab
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Table i’.14:Uniaxial Fatigue Resuits for 90° Specimens at R=0

r = ‘][
Specimen | Freguency Stress Cycles to | Failure
Number [CPM] | (Maximum/Minimum) | Failure Location
fMPa]
RODGY{1 200 31.04/0 4,954 | Near Tab
RODG90C2 200 24.14/0 16,677 | Near Tab
RODG203 200 20.69/0 32,500 [ Middle of Specimen
RODGO04 | 200 13.79/0 2,500,000 | NO FAILURE
ROD3605 200 34.48/0 16 Middle of Specimen
RODGS06 200 7 76/0 20€ Near Tab
RODGY07 200 27.59/0 174,966 | Near Tab
RODG908 290 25.86/0 1,140 | Middle of Specimen
RODG909 200 25.86/0 4,265 | Middle of Specimen
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Failure for 90° Specimens at R =10



Table B.15:Uniaxial Fatigue Results for 90° Specimens at R = -1

Specimen | Frequency Stress Cycles to | Failure
Number [CPM] | (Maximum/Minimum) | Failure | Location
[MPa]

' R-1DG901 200 31.04/-31.04 1,867 | Middle of Specimen

R-1DG902 200 24.14/-24.14 26,448 | Middle of Specimen |
R-1DG903 200 20.69/-20.69 21,070 | Near Tab

R-1DGIY04 200 17.24/-17.24 225,000 | Near Tab

R-1DG905 200 34.43/-34.48 8 Near Tab
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