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ABSTRACT

Studies of vibrational dynamics have been performed on a two-dimensional
model potential surface V(z, z; R), adapted from the ab initio surface previously
used in this laboratory to analyze dynamics of the bifluoride ion [FHF|~. The
model potential has C;, symmetry, but is strongly anharmonic and nonseparable in
the dynamical variables (z,2); its character changes as the parameter R is varied.
Quantum and classical descriptions of vibrational states in this system are compared
with corresponding Self-Consistent Field (SCF) approximations. Insights provided
by each approach are assessed.

Systematic . ermi resonances appear in the quantum mechanical states (at
energies up to approximately 10,000 cm™!) arising from crossings of quantum SCF
levels with two quanta of vibration exchanged between z and z modes. The lowest
quantum states of each symmetry are well described by the SCF approximation
except near such crossings. Calculations using Configuration Interaction were done
to obtain accurate eigenstates and examine correlations in the quantum mechanics.

The Classical Self-Consistent Field (CSCF) method provides a descrip-
tion of the mechanics similar to that given by its quantum counterpart. Classical
bound state methods based on semiclassical quantization of quasiperiodic trajec-
tories are unable to give a corresponding description. At energies as low as the
quantum ground state, the true classical dynarnics is strongly disturbed by reso-
nant interactions. At higher energies the number and strength of these disruptions
is so great that the motion is largely irregular. The most prominent effect is a 1:1
frequency resonance associated with strong reorganization of the classical motion
along pronounced valleys of the potential surface lying at +£26° to the z-axis. This

phenomenon has been studied by analysis of the true dynamics and by application



of classical canonical perturbation theory to the zero-order CSCF description. It
is found that the latter gives a very accurate account of the true dynamics except
when a reorganization occurs, and that it is able to signal the onset of strong disrup-
tions. The disruption zssoriated with 1:1 frequency resonance is the direct classical
analogue of the Fermi resonance effects in the quantum mechanics of the system

and relevant comparisons between the two descriptions have been made.
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Chapter 1

Introduction

1.1 Classical Vibrational Dynamics

This work is a comparative study of the classical self-consistent field approximation
with exact classical dynamics and corresponding quantum mechanical descriptions
of vibrational motion in a strongly nonharmonic and nonseparable model system.
The model potential is a simplified two-dimensional analogue to a realistic extended
potential surface based on ab initio calculations for the strongly hydrogen-bonded
bifluoride ion, [FHF|~. The latter was developed by Epa and Thorson [1,2,3] for an
analysis of vibrational spectra in bifluoride systems. They showed that an accurate
quantum mechanical description of vibrational energy levels of [FHF]~ (up to about
10,000 cm™! above the ground level) can be based on an adiabatic separation of
proton motions (v;, v3) from the F-F stretch motion (1) followed by an approximate
separation of the proton bending and stretching modes via the self-consistent field
(SCF) method. In particular, the overall success of the SCF description was striking
given the complexity of the potential surface.

In the past 10-15 years, there has been considerable interest in classical
mechanics as a means of understanding molecular vibrational levels. The motivation

for the current investigations arose in an attempt to form similar comparisons for a



system with marked anharmonic and nonseparable character. Except for work con-
cerned specifically with irregular or chaotic metion in very highly excited systems,
most applications of classical dynamics to molecular vibrations have tended to con-
centrate on nearly harmonic systems. Moreover, while the classical self-consistent
field approximation has been used by Gerber and Ratner [16] to compute semiclas-
sical energy levels for some systems, the general vonmections between the classical
self-consistent field representation and the corresponding exact classical dynamics
do not appear to have been explored. In view of the effsctiveness of SCF theory as
a quantum mechanical description for the bifluoride ion, the [FHF]™ model offered
a good opportunity for such exploration.

Some initial computations were carried out using the [FHF]~ potential
itself. Only proton dynamics were treated; the F-F separation coordinate, R(F-F),
was regarded simply as a parameter affecting the bend-stretch potential surface for
proton motion. Even so, the [FHF]™ model system has certain complicating features
which are not essential to the goals of this study. In particular, the angular momen-
tum associated with the v; bending mode and the use of prolate spheroidal coordi-
nates for the proton both complicate the kinetic energy expression. To avoid unnec-
essary difficulties, the complete [FHF]~ surface was adapted to a two-dimensional
model employing Cartesian coordinates; R remains as a variable parameter which
alters the surface as it does in [FHF|~. The analogue problem preserves essential
characteristics of the bifiuoride ion potential surface, but is conceptually and com-
putationally much simpler. Results presented in this thesis were obtained using this
simpler model.

Particular interest in the comparison with quantum results arises from the
fact that systematic crossings of quantum SCF levels occur at certain R separations;

these become avoided crossings of the exact levels due to strong coupling between the



SCF states. Relations to corresponding phenomena in the classical description, such
as frequency resonances and associated transitions between qualitatively different
types of regular motions, have formed the general theme of this work.

This work does not directly address the typical concerns of nonlinear dy-
namics, such as the onset of irregular or chaotic motion. However, some under-
standing of the subject and its nomenclature is relevant, especially as it bears on
Hamiltonian dynamics. We shall see that an interesting aspect of the self-corsistent
field theory is its tendency to suppress or ignore couplings which produce chaotic
behaviour in the true classical dynamics.

Interest in nonlinear dynamical systems and their characteristic behaviour
is extremely widespread since such hehaviour pervades both the natural world and
nearly all scientific models desctibing it. Literature on the subject ranges from
highly technical and theoretical work [4,5] to accounts in popular science magazines
[6]. The field is essentially a modern development, emerging only with the advent
of high-speed digital computers. Most achievements of physical theory until about
1960 employed classic methods based on solving linear equations or approximations
to nonlinear equations which render the systems linear under constraining condi-
tions. Such methods were the only effective ones given the difficulty inherent in
processing a large number of calculations by hand or with the limited computa-
tional tools available. With more powerful computers it became possible to moclel
natural phenomena more realistically. Aided by improved computer graphics, in-
formation is visualized and patterns identified that would otherwise be lost if left
merely as numerical output. The subject of nonlinear dynamics has developed out
of the recognition that wide classes of problems present certain basic similarities in
behaviour.

Nonlinear dynamics proper may be said to have begun in 1963 with Ed-



ward Lorenz (7] who was using the new computing tools to explore models of me-
terological systems with few parameters. In spite of the fact that the equations
of motion for such models were entirely deterministic, he found that the predicted
behaviour depended in a hypersensitive way on the initial conditions. This surpris-
ing result implied that, no matter how extensive or precise the computing or how
accurate the input measurements for initial conditions might be, the weather could
never be predicted beyond a limited time range. Lorenz’s work pioneered the study
of an essential feature of nonlinear dynamics, deterministic chaos. Even though
completely deterministic in an analytical sense, behaviour in a dynamical system
with nonlinear equations of motion cannot be predicted reliably because, in certain
cases, the states of two identical systems with initial conditions arbitrarily close
together will eventually diverge exponentially from one another. In other domains,
depending on the nature of the nonlinear system, regularly predictable phenomena
such as periodic or multiply periodic motion may be stabilized.

Since the original studies of Lorenz, a wide range of natural phenomena
has been shown to exhibit nonlinear dynamical behaviour. Turbulent flow, the
mixing of fluids, the interaction of biological populations, and feedback control in
electrical circuits including the heart and brain are only a representative sample
of problems currently being investigated. Chemical applications have included the
treatment of oscillatory reactions, surface reactions and electrochemistry, as well as
problems in molecular vibrational dynamics: the topic studied here.

In classical Hamiltonian mechanics for a conservative system, possible
solutions to the nonlinear differential equations of motion include periodic and
quasiperiodic solutions for reguler motion and chaotic solutions for irregular mo-
tion. In both cases of regular motion, the system is characterized by the existence

of constants of the motion for each degree of freedom called action variables and co-
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ordinates called angle variables that are canonically conjugate to them. The angles
increase linearly with time and their time derivatives are the frequencies of the mo-
tion. Under these conditions, the coordinates and momenta describing the motion
of the system in phase space may all be expanded as multiple Fourier series based
on the fundamental frequencies. The distinction between periodic and quasiperiodic
motion depends on whether the frequencies associated with different angle variables
are, or are not, rationally commensurate. If the ratios of all frequencies are express-
ible as ratios of integers, then the orbit of the system closes upon itself in a finite
time and the motion is periodic. Otherwise, the motion is quasiperiodic and the or-
bit will never exactly close upon itself. The trajectory over time covers a restricted
region in phase space associated with a surface called the invariant torus for the
motion. The case of irregular or chaotic motion occurs when action-angle variables
do not exist and the motion cannot therefore be characterized by Fourier expan-
sions involving a finite number of frequencies. This use of the term chaos should be
distinguished carefully from the loose vernacular usage associated with concepts of
randomness or noise. In natural systems, chaos is a mechanism for generating neces-
sary variability in a somewhat controlled manner. In nonlinear dynamics, a general
definition of chaos is any irregular behaviour which is deterministic but extremely
sensitive to initial conditions [8]. Chaotic motion appears in transitional regions
separating regular regimes associated closely with particular periodic trajectories
as their paradigms; perhaps it may be viewed as the result of competition between
alternative qualitatively distinct motions. Since periodic orbits are associated with
rational frequency ratios, as the total energy of a dynamical system increases, the
occurrence of chaotic motion is increasingly finely interspersed between shrinking
domains of regularity. It is a widely held view that classical chaos appears to have

little direct bearing on order/disorder in quantum systems, and even the ezistence



of “quantum chaos” is controversial.

This work has no direct interest in chaotic behaviour itself but in the
relations between regular motion and the corresponding quantum mechanical de-
scription of the same system. We have carried out an extensive calculation of the
quantum states for proton motion in this model system and will briefly discuss the
results. The Classical Self-Consistent Field (CSCF) method has been applied with
semiclassical quantization conditions to obtain the analogous semiclassical SCF de-
scription of the quantum states for comparison with the quantum SCF description.
As noted above, for low-lying states of the system, the quantum SCF approxima-
tion gives a remarkably good description. Concentrating on the range of energies
for which this is the case, we have carried out extensive comparisons of the exact
classical dynamics and the CSCF approximation. As classical states may have any
set of action values, it is not necessary to impose semiclassical quantum conditions,
so that a continuous map of the classical phase space can be generated. Canon-
ical perturbation theory has been applied with the CSCF approximation as the
zero-order description and the resulting motion is compared in detail with the true
dynamics where the latter is regular. The general conclusions drawn from such

comparisons are summarized in this thesis.



1.2 The Vibrational Potential Surface

The model potential employed in these studies is for a particle moving in two dimen-
sions with Cartesian coordinates, (z, z). The potential V(z, z; R) has Cy, symmetry
with mirror planes in the Cartesian axes. It also depends parametrically on a third
coordinate R, which is not treated dynamically, but affects the general shape of the
surface. It is an adaptation from a realistic model surface for the bifluoride ion,
[FHF]~, based on extended ab initio quantum chemical calculations for the ground
electronic state of this species performed at the SCF-CID level (Self-Consistent
Field and Configuration Interaction with Double replacement). These calculations
and the construction of the [FHF|~ surface are described fully by Epa, Thorson and
Klobukowski {1] and are briefly summarized here.

Starting from a Dy, symmetry for F-H-F, let R be the F-F separation,
z the stretching displacement of the proton from the geometric centre along the F-
F axis, and (p,¢) the bending displacement and its azimuthal angle in cylindrical
coordinates as displayed in Figure 1.1. Ab initio quantum chemical calculations
were performed for the ion at more than 700 geometries covering a range of R-values
3.60 < R < 7.20 a.u. and all (p, z) values with energies less than 30,000 cm™' above
the potential minimum of the resulting surface. The equilibrium D configuration
occurs at RY, = 4.290513 a.u. and the computed hydrogen bond dissociation energy
(into H-F and F~) is AEf, = 48.13 keal/mol = 0.076694 a.u.

The surface model fitted to this data is based on a skeleton given by a

sum of Morse potentials (one for each F-H interaction),

Vitorse = Vur(r1) + Var(r) = De, [1.1]
Vur(r) = D, [1- e, (1.2



rl r2

F1 R/2 F2

~—0—0~ vl stretch

} v2  bend

o—0o—0 v3 stretch

Figure 1.1: The [FHF]~ System and its normal modes:



where r; is the distance from the proton to the ith fluorine atom. The equilibrium F-
H separation r,, = 1.756088 a.u. and the dissociation energy D, = 0.246429 a.u. =
54083 cm~! were determined by fitting a Morse potential to ab initio SCF-CID data
for the HF molecule.

This skeleton describes the strongest variations on the surface. The cor-
rection needed to fit the ab initio SCF-CID data points for [FHF]" is relatively
smooth and slowly varying. Prolate spheroidal coordinates (£,7, ) for the proton

are well suited to describe the skeleton since

_ (ry +12) _ (r1—r3)
E - R ’ n= R ] [13]
and the correction potential V,,,, was fitted by a 36-term polynomial of the form
2 2 3
Viorr = € #F=Fea) 3757 5" Aiji (6 ~1)'n% (R = Rap)* 1.4]
i=0 j=0 k=0

with an r.m.s. deviation of 65.6 cm™! for all 710 ab initio data points and 26.5
cm™! for the 484 points less than 15,000 cm™! above the minimum. The potential
minimum for the model surface occurs at R., = 4.2875112 a.u. and lies 63.6 cm™*
above the correct ab initio hydrogen bond energy.

The resulting model surface is depicted graphically in Paper I [1] of the
series on [FHF]~. At R-values less than about 4.5 a.u., it possesses a single potential
minimum at the Do, configuration, but as R increases a double well potential with
minima at p = 0,z = £z, and a barrier at (0,0) forms as the system begins to
dissociate into HF + F~. At still larger R values, a pronounced potential valley
appears in each well for bending motion associated with libration of a dipolar H-F
molecule about its equilibrium orientation toward the opposite F~ ion.

This surface was used by Epa and Thorson [2] to do a complete analysis
of vibrational dynamics in the bifluoride system and apply it to the experimen-
tal IR and Raman spectra of botk the free ion and its crystalline salts (KHF;



10

and NaHF;). The F-F (v;) symmetrical stretch associated with coordinate R is
approximately separable from the proton motions by the adiabatic approximation
which requires that the proton dynamics be solved at each R-value. This is anal-
ogous to the Born-Oppenheimer approximation for a diatomic molecule, wherein
the electronic Schrodinger equation must be solved for each internuclear separa-
tion to produce electronic state potential curves and wave functions which depend
parametrically upon the separation. To treat the proton vibrational dynamics, Epa
and Thorson used the Self-Consistent Field (SCF) approximation to separate the
proton asymmetrical stretching motion (vs) (prolate spheroidal coordinate 1) from
the bending/librational motion (v;) (prolate spheroidal coordinate ¢); of course, the
angular momentum associated with the azimuth ¢ is exactly separable. Numeri-
cally accurate protonic eigenstates were then constructed as linear combinations of
exact numerical SCF solutions in a large basis set following the method of Configu-
ration Interaction (CI). For the first 3-5 states of each symmetry type, it was found
that the SCF approximation yields a good description of individual proton eigen-
states except near isolated curve crossings where strong mixing of two or more SCF
states occurs. Avoided crossings of the true adiabatic proton eigenstates occur at
these points. The portion of the IR spectrum accessible in experimental bifluoride
systems lies entirely in this low-lying energy region. Higher levels of the system
are increasingly complex and the SCF approximation is much less adequate as a
zero-order description.

As stated earlier, some initial studies on the classical description of pro-
tonic states and dynamics in the [FHF|~ model system itself were performed. How-
ever, it became evident that the features of the problem of greatest interest for this
study are complicated unnecessarily by the angular momentum associated with the

bending mode and the use of prolate spheroidal coordinates. Therefore, the model
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surface was adapted to a two-dimensional analogue which retains the features of
interest. The analogue surface V(z, 2; R) is constructed by substituting the prolate
spheroidal coordinates by their approximations near the origin. This warp mapping

to Cartesian coordinates (z, z) is accomplished by

9 9
26-1)—z= ix; n—i= iz. [1.5]
With these modifications, the potential has the form
V(I, 25 R) = VMarse(zy 23 R) + Vcorr(zv 25 R), [16]

where

—as?
Vitorse = De. [1 - 427~ R/e =k cosh(az)

+ 262"("-}2/2)6:2%‘3 cosh(2az)], (1.7]
2 2

Viorr = ZE Aii(R) 2% 2%, [1.8]
i=0 j=0

The coefficients A;;(R) at each R-value are given in terms of the 36-parameter set

of fitted coefficients {A;;} from equation [1.4] by
3 2 2+2j
AR =PER Y au(R-R) 2] 2, [L.9]
k=0 R 2

A list of potential parameters appearing in equations [1.8] and 1.9} is given in
Table 1.1.



Conversion parameters: 1 a.u.

2.194746354 x 10° cm™!

l1ceu = 2.795276 x 10~4a.u.
1ceu = 61.34922cm™!
Physical paramctess : R, = 4.28751115a.u.
Teg = 1.756083a.u.
D. = 0.246419a.u.
Fitted parameters : a = 1.197991
B8 = 110
1] ] k aijk ) ] k Qijk
00 0| 0.1045114 {0 0 2| -0.03985370
10 0/[-0.2581777 [[1 0 2} 0.06045994
2 00| 02543577 |2 0 2| 0.05203691
010|-03403733 (|0 1 2| 0.3316855
110{ 2303700 {1 1 2}~1.310734
2 10!|-3.766092 |2 1 2| 2.041520
02 0| 02114033 {0 2 2| ~0.4505100
120[-3.809906 (12 2| 2.345956
2 20| 9768322 |2 2 2|-3.914078
00 1|-0.02280255(0 0 3|-—0.01992940
10 1{-0.2065459 |1 0 3| 0.08256237
2 01| 0.4687226 {2 0 3|-—0.1395932
011 01962620 (0 1 3| 0.04622900
111 1034715 (1 1 3|-0.01855407
21 1/[-3.262457 |2 1 3|-—0.9046483
02 1|-1.185633 |0 2 3| 0.01413139
121] 5651424 |1 2 3|-0.05822805
2 2 1(-9.507244 |2 2 3| 1.616017

Table 1.1: Model Potential Parameters

12
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A sequence of potential contour maps for the surface is shown for the
quarter plane (z,z > 0) in Figure 1.2 for R-values from 3.8 to 4.8 a.u. at intervals
of 0.1 a.u.The contours have a spacing of 25 c.e.u. (“convenient energy units”).
The c.e.u., used widely throughout this work, was originally defined for the [FHF}~
system. It is equal to A2/2ma?, where a is one atomic distance unit (0.5286 A)
and m = 2MyMp/(My + 2MF) is the reduced mass for proton vibrational motion
in [FHF]"; 1.000 c.e.n. = 61.34922 cm™' = 2.79527610~* Hartrees. The zero-point
energy of the ground vibrational state is 25~30 c.e.u. depending upon R.
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Figure 1.2: Potential Surfaces plotted in the quarter plane for 3.80 < R < 4.80 a.u.
in intervals of 0.1 a.u.The asterisk denotes the location of the potential minimum
at each R-value.
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Examination of these contour maps provides some physical insight into
the vibrational dynamics treated in this study. The double well structure seen in
the [FHF]~ surface begins to appear for R 2 4.5 a.u., but is strongly distorted
by the “warp” mapping for the higher contours. Since the relevance of classical
dynamics to the double well region of the potential surface is at best dubious, we
did not extend present studies beyond R ~ 4.6 a.u. The “pass” appearing at large
z for the highest contours near R > 4.4 a.u. also appears on the original (FHF|~
surface where it corresponds to a physically unrealistic rotation of dipolar HF away
from its equilibrium orientation toward the F~ ion by more than 90 degrees; note
that the energies at which it appears are always more than 35,000 cm™! above the
potential minimum. The Cartesian model does preserve the strongly nonharmonic
and nonseparable features of the original [FHF|~ surface. Motion in the z-direction
is more nearly harmonic than in the z-direction at all values of R; the potential for z-
motion also varies more rapidly as R changes so that the fundamental frequencies of
motion vary strongly with respect to one another both as energy and R change. The
most prominent feature is above all the strongly pronounced “corner” in the surface
which corresponds in [FHF]~ to the incipient formation of the valley for libration
of dipolar HF. We shall see that this feature has an especially strong influence on
the classical dynamics of the system, even at the lowest energies studied. At all R-
wvelues there is a strongly stable periodic orbit (“attractor”) which tends to organize
the motion in the direction of this corner and strongly disrupts modal motion in the
original z and z degrees of freedom under certain circumstances. While this effect
eventually makes its presence known in the quantum mechanics of the system, the
disruption appears at relatively much higher energies. A major part of this study
is aimed at comparing classical dynamics and other descriptions of the system in

the presence of this feature.
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1.3 Outline of the Thesis

The thesis will discuss first the quantum mechanics and supporting methods for the
analysis of the quantum energy levels and wavefunctions as developed in the series of
papers published previously by this laboratory [1,2,3). The quantum self-consistent
field and configuration interaction procedures will be developed for and applied
to the new two-dimensional cartesian model potential surface, V(z, 2; R), and the
resulting eigenstates will be presented for discussion. The positions of the narrow
avoided crossings in the energy level spectrum are located and the contributing
states are identified. This is done to introduce the general concepts important to
SCF theory and to illustrate the extent of state mixing evident in the quantum
wavefunctions. It also allows the description of the phase space in terms of well
developed theories.

A semiclassical self-consistent field theory is developed and applied to the
same realistic model potential surface with qualitative and quantitative comparisons
to the quantum results. The classical phase space is explored in a naive separable
approximation evea though the potential is technically nonseparable.

The analysis of the classical trajectories obtained by :ategration of Hamil-
ton’s equations will follow with comparative references to the preceding theories.
The action-angle methods used to analyze these representations of the complete
classical Hamiltonian will be developed and tested for accuracy and precision. De-
termination of the fundamental frequencies, integration of the classical actions, and
identification of the Fourier components of the motions are the primary investiga-
tive techniques. The types of trajectories that are encountered in the exploration of
the phase space are presented and the specifics of their analysis are detailed. Once
this information is displayed, it is possible to begin investigations into the global
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dynamics. The identification of structures in the phase space is accomplished by
understanding the interactions between the frequencies, the actions, the energies,
and the coordinate tracks.

The classical self-consistent field Hamiltonians are used as the zero-order
Hamiltonians for a classical perturbation theory based on coordinate expansions.
The theory improves the separable approximation by incorporating the inherent
coordinate correlation removed by the SCF procedure in much the same way that
the CI procedure corrected the quantum SCF eigenstates. The effectiveness of this
combination of methods will be tested in the different regions of the phase space.
Finally, all of the classical methods are compared. The effectiveness of the classical
SCF and perturbation procedure is tested in the light of the classical trajectory
analysis. Attempts are made to improve the theories with more appropriate coordi-
nate systems. The correspondence between the classical phase space structure and
the quantum eigenvalue spectrum is discussed with a hope of illuminating future

methods of investigation.



Chapter 2

Quantum Mechanical Calculations

2.1 Introduction

Quantum mechanical eigenstates for the two-dimensional model system have been
computed for values of the F-F separation parameter R between 3.80 a.u. and 4.70

a.u. If energy is expressed in c.e.u., the classical Hamiltonian has the form
H=pi+p,+V(z,%R) [2.1]

and the corresponding Schrodinger equation HY¥ = EV has eigenstates

[—- (-a%j;) - (58;;) + V(z,z;R)] U,s(2, 2 R) = Ens(R)¥ns(z, 2 R).  [2.2)
The subscripts s and n denote, respectively, the symmetry type of the state and
its ordering with energy starting with the lowest at n = 0. Ca, symmetries are Ay
(invariant), A, (transforms like zz), By (transforms like z), and B, (transforms like
z).

For each symmetry, solutions to equation [2.2] are constructed as expan-
sions in an adequate set of zero-order states of that symmetry. Here, as in the
treatment of the [FHF]~ system by Epa and Thorson (2], the zero-order states used
as expansion basis are the Self-Consistent Field (SCF) eigenstates. Such a pro-

cedure is called Configuration Interaction (CI) in analogy with common usage in

20
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quantum chemistry, although there are some technical differences. Sections 2.2 and
2.3 discuss the SCF equations for vibrational states and numerical methods used
to solve them. In Section 2.4, results of the SCF calculations are presented and
discussed. In Section 2.5, details of the CI computation are briefly discussed and

Section 2.6 presents the results of calculations.
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2.2 SCF Approximation in Vibrational Dynamics

The essential idea in the SCF approximation for any dynamical system is that the
motion in each individual degree of freedom, for an appropriate coordinate system,
is (1) approximately independent of (i.e. separable from) the detailed motion in
other degrees of freedom, and (2) is determined by a suitably chosen average of
the system Hamiltonian over all other degrees of freedom. Self-consistency is the
requirement that equations of motion in each degree of freedom and the averages
over the resulting motions which produce them are mutually consistent.

In quantum mechanics, the SCF approximation to a time-independent
Schrodinger equation H¥ = EV is generated by applying the Rayleigh-Ritz vari-
ation-principle to a trial wave function which is a product of independent compo-
nents for each degree of freedom. The expectation value of the Hamiltonian is made
stationary for arbitrary variations of the components subject to the usual normal-
ization constraints. This procedure leads to a set of one-dimensional Schrodinger
equations whose solutions are the required optimum factors and determine the ef-
fective Hamiltonians for these equations in a mutually self-consistent manner.

In the cases most familiar to chemists and many physicists, the SCF
method is applied to a many-electron or other many-particle system to reduce the
problem to a system of one-particle equations. The earliest applications, due to
Hartree [9] and others, incurred very large errors since the approximation ignored
the permutation symmetry requirements associated with systems of identical par-
ticles. For electrons and other fermions, the Pauli principle is fundamental to elec-
tronic structure. The method was later modified by Fock to satisfy the permutation
symmetry and leads to the well known Hartree-Fock SCF equations [10].

In contrast to the many-electron case, applications of the SCF method to



23

vibrational states of molecules are usually uncomplicated by the requirements of per-
mutation symmetry; each degree of vibrational freedom is physically distinguishable
from all others. Hence, unlike the Hartree-Fock SCF case, the SCF approximation
to a vibrational stationary state is a simple product of independent factors for each
degree of freedom. A distinct one-dimensional SCF equation results for each factor.

In the context of equation [2.2], SCF equations are < tained by making
the approximation

¥ ~ &%CF = X(z; R) - Z(z; R), {2.3]

and requiring that

(QSCFl I“.II(I,SCF)
B = (§SCF|@SCF) {2.4)

be made stationary for arbitrary variations of the factors X and Z, subject to the
normalization constraints

(X|X), = /+°°X2(x;R)dx=1,

-0

(212), = /_+°° 2z R)dz = 1. [

o0

en

e Yy

[ 80

The resulting SCF equations in cartesian coordinates are

[_ (aé:‘z) VSCF (g R) - E,] X(zR) = 0,
[_ (g) + VSOF (2 R) - E] Z(zR) = 0, 2.6

where the effective potentials are defined as SCF averages of the true potential
V(z,z; R),

V(5 R) = (Viz,5R), = [ Viz,zRZ(a R)de

V5°F(z;R) = (V(z,z;R)), = [_ .‘: V(z, z; R)X*(z; R)dz. 12.7)



Self-consistency requires that

(V(z,5R)) = (VP (i R), = (VF(z R)),,

+00  pto0 .
/ / V(z, z; R)®*(z, z; R)dzdz. 2.8]

Solutions of the SCF equations [2.6] to [2.8] may be characterized by the nodal
quantum oumbers (n.,n;). The separable approximate Hamiltonian having the

solution ®,_ ., as an eigenstate is given by

HSF = [_ (_‘f_) + VSOF (g R)] + [— (-5,—) + V> (z; R)] = {(V(z, % R,y

dz?
[2.9]
and the corresponding approximation to the total energy is
Eff:,f; = E,(ng,nz; R) + E:(nzyns; R) — ((V(z, 25 )19)) I [2.10]

As the notation in equations [2.9] and [2.10] implies, the SCF effective potentials,
the SCF Hamiltonians HSCF and the corresponding eigenvalue problems posed by
equation (2.6] are all distinct for each choice of the quantum numbers (nz,n.). As
a consequence, the eigenstates {&,,4,} do not form an orthogonal set of functions,
and there is also no formal guarantee that the set is complete. Symmetries of the
SCF eigenstates are determined by the parities of (nz,n,): Ay if both are even, A,
if both are odd; B, if n. is odd and n, is even, and B, if n; is odd and n, even. In
practice, two SCF states ®n, ., and @y », with the same symmetry but different
quantum numbers will be nearly orthogonal.

For a given set of quantum numbers, the SCF equations are solved by

1. guessing initial values of expectation values to compute an effective SCF po-

tential for one degree of freedom (for example, V:3°F(z; R));

2. solving the resulting SCF equation (in this case, Z,,(2; R));
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(3]

3. computing expectation values to determine the effective SCF potential for the

other degree of freedom (here, V.5€F(z; R));
4. solving the resulting SCF equation (X,, (z; R));

5. computing expectation values to recompute the first effective SCF potential
(VR (z; R));

6. iterating steps (2) to (5) until all #zenvalues and expectation values are con-

verged to within the desired accuracy.

While there is no guarantee that this procedure is necessarily convergent or
that the solutions are unique, our computations always converged provided that care
was taken to ensure precise determination of expectation values. Solutions obtained
do not depend on the initial sequence ordering of the two degrees of freedom in the
iterative process. For computational feasibility, it is essential that the potential
function V{z, z; R) have the form of a finite sum of simple products of functions of
each coordinate (z or z): the model potential has such a form.

The connection to a Classical Self-Consistent Field (CSCF) method is
made by recognizing that an SCF problem is defined by establishing values for
the action variables. Associated with each (assumed separable) one-dimensional
motion in the chosen coordinate system, the actions are strictly analogous to the
concept of a nodal quantum number and its relation to a corresponding quantal
action. Definitions of the resulting CSCF equations of motion and classical averages
of dynamical variables over the SCF motions may then be contrived in a fashion
strictly analogous to their counterparts in quantum mechanics.

The use of the quantum mechanical SCF method to form approximate

molecular vibrational eigenstates for comparison with accurate eigenstates has been
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explored by Bowman and a few other workers [11]. With the exception of the
[FHF|~ study by Epa and Thorson [2] in this laboratory, most systems studied
have been more nearly harmonic or more nearly separable in some obvious sense.
In addition, the methods used to solve the one-dimensional SCF equations have
usually employed expansions in basis sets of suitably chosen harmonic oscillator
functions. The computations done here used rapid numerical methods to solve the

SCF equations [2.6] “exactly”.
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2.3 Rapid Numerical Solution of SCF Equations

As was done by Epa and Thorson [2] for {FHF] ™, the SCF equations [2.6] were solved
using the quantal momentum scheme (a modification of Milne’s method [14]). Both

equations have the form

-
%{}2—1 + K u)F(u)=0, -—oo0<u<+oo. [2.11]

For the one-dimensional problem with given mode energy E, the square of the clas-
sical momentum, k%(u) , has positive values in one or more domains of its argument
u. Acceptable solutions exist only for discrete eigenvalues E, with corresponding

bound state eigenfunctions F,(u). Because k%(u) is an even function of u, only two

cases occur:

(a) k*(u) is positive in a single domain with zeroes located at classi-
cal turning points *u,;, and has a maximum at ug = 0 (single-well

potential with a minimum at the origin); or,

(b) k*(u) has two symmetrically placed maxima at %uo and a local min-
imum at u = 0 (double-well potential with minima at £u and a
barrier maximum at the origin). For sufficiently high energy, k*(u)
has a single positive domain and only tw6 turning points at Fu,; for
energies below the top of the barrier at u = 0, it has two symmetri-
cally placed positive domains bounded by zeroes at outer and inner

turning points (+u,, tu,).

For simplicity, only the first case is discussed in detail. Let a pair of solutions to
equation [2.11] be defined with the form

Fi(u) =ezp [ii f q*(m')du'] . [2.12]
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Substitution into equation [2.11] provides the Riccati equations

L ;das(v) _

£ () + K =0, 23]

and putting q+(u) = gre(u) £ iqrm(u) gives the relation

qlm(u) = %}E{%’
0 = —ghe(u)+ gin(¥) = ghm(u) + F*(u). [2.14]

with conjugate solution pairs

Fi(u) =

exp [:ti /u qge(u')du'] . [2.15]

qRe(u)
These solutions are completely determined by the single real function gg.(u) and a
general solution is a linear combination of the two. Classically forbidden domains
are regions where k*(u) < 0; for case(a), where —co < u < —u; or +u < u < +oo.
It was shown by Milne [14] that solutions of equation [2.11] which are regular in a

classically forbidden domain have the forms

Fu) = C

sin ©(u), [2.16]

1
Vare(u)

O(u) = /ﬂ; qre(u')du’, [2.17)

where gre(u) is any particular solution of equations [2.14]. Eigenvalues of equation

[2.11] are determined by the quantization condition

+co
[Camlwdu= s n=012... [2.18]

-00
Efficiency of the scheme rests on the fact that one particular solution of equations

[2.14], the quantal momentum, is nonoscillatory and closely resembles the corre-

sponding classical momentum function k(u) in the classically allowed region where
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k?(u) is positive. It can be computed efficiently in the regions where k?(u) is neg-
ative and tends strongly to zero as u — *oo0. It can be shown [12] that classical

zero-order approximations

K (u;)
2k(u;)’

suffice as initial conditions to generate an extremely accurate approximation to the

q?ie = k(u,‘), q(l)m(ui) = [2‘19]

particular solution, gg.(u;), provided that the point of initiation u; is taken to be a
local maximum of k*(u) (here, ug = 0).

The phase integral or quantal action function

SE)= | " dre(u)du, [2.20]

-00
is a continuous, monotonically increasing function of the mode energy E and may
be rapidly computed in tandem with the solution of equations [2.14] for gre(u).

Application of the quantum eigenvalue condition {2.18]
S(Es)=(n+)r [2.21]

then yields the mode energies and corresponding eigenfunctions defined by (2.16].
Because of bilateral symmetry, equations need only be solved on the positive axis
0<u<+o0.

In the more complicated situations covered by case(b), an analogous pro-
cedure can be developed with the following modifications (see for example Lee and
Light [13]). Initial conditions [2.19] are applied at uo, the local maximum of k2 (u),
and equations [2.14] and [2.17] are intégra.ted from up outward to +oco0 and inward

to u = 0. The corresponding solution {2.16] regular as u — +o0 is

1
Fr(u) = sin f qre(u')du; (2.22]
Vare(u) 7™ ’
there exists a mirror image solution on the —u axis regular as u — —oo. Since the

eigenstates are either symmetric or antisymmetric about u = 0:
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(i) for even parity states (n = 0,2,4...), the derivative of the eigenfunc-

tion F'(u) = 0 at u = 0 and the eigenvalue condition is

/-m7 qre(u)du + cot™ [QImEO; ] ( 5 + 1) ; [2.23]

or,

(ii) for odd parity states (n = 1,3,5.. ), the eigenfunction itself vanishes

at u = 0, Fy(u) = 0 and the eigenvalue condition is

/:Q qre(u)du = [n -2*- 1] . [2.24]

30

It can be shown that case (b) eigenvalues obtained by these rules agree

accurately with the results of the simpler formula for case (a) in situations where the

energy E is far above the barrier. Since equations [2.14] and [2.17] can be integrated

at the speed of Hamilton's equations for the corresponding classical one-dimensional

problem, this method is especially efficient for states with large quantum actions.
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2.4 Analysis of Quantum SCF Results

In the SCF calculations done here, all SCF states with energies less than approxi-
mately 750 c.e.u. (= 45,000 cm™!) were computed for R-values 3.80 < R < 4.50 a.u.
at intervals of 0.05 a.u. Over this domain of R, about 300 states have energies below
the cutoff energy roughly occupying a domain of quantum numbers 0 < n, < 28
and 0 < n, < 14. Figure 2.1 shows a contour diagram depicting ESCF vs. ngyn.
at R = 4.30 a.u. as a typical example. Note that simultaneous excitation of both
modes tends to lower the energy, corresponding to states located in the region of
the marked “valley” appearing on the potential contour maps (see Figures 1.2). For
4.55 < R < 4.70, both the cutoff energy and the number of SCF levels decreased
with increasing R since care must be taken to ensure that all states lie below the top
of the unphysical “pass” or saddle seen on the potential surface at larger R-values.
By R = 4.70 a.u., the cutoff energy has dropped to 500 c.e.u. and only 215 SCF

levels were computed. The contour diagram at this R-value is plotted in Figure 2.2.

In calculations, SCF solutions for the lowest levels were determined first
and these were used to provide extrapolated input guesses for the higher levels.
After SCF results for three adjacent R-values were obtained, these provided very
efficient extrapolated input guesses for the next R-point.

The lowest SCF energy levels plotted against R are presented in Figures
2.3 through 2.6 for each of the four C;, symmetry types. These are approximately
the first few levels ranked at R, = 4.30, but the sequencing of quantum anumbers
(nz,n,) listed at the right margin of each figure is in order of increasing energy at
R = 4.70 a.u. for the first 20 states. All energies are plotted relative to the absolute
minimum of the surface at R., rather than with respect to the minimum surface
potential energy at each R. For 3.80 < R £ 4.70 a.u,, the ground state zero-point
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Figure 2.1: Quantum SCF energies vs. nz, n, at R = 4.30 a.u. with contour spacings
of 50 c.e.u.
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Figure 2.2: Quantum SCF energies vs. nz,n; at R = 4.70 a.u. with contour spacings
of 50 c.e.u.
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energy varies between 36. and 15. c.e.u.

The most important features in Figures 2.3-2.6 are the curve crossings
involving two or more SCF levels at particular R-values. At such points, the SCF
states involved will interact strongly producing avoided crossings of the CI energy
levels and corresponding strong mixing of these SCF states in the CI eigenfunctions.
Concentrating on the A; states in Figure 2.3 as an example, one can see that
the SCF levels are organized into families of curves showing qualitatively similar
behaviour against R. This grouping reflects mostly the different relative shape and
R-dependence of the potential surface in the z and z directions and its influence
on the corresponding mode exditation energies. Excitation energy for the z-mode
varies much more strongly with R than for the z-mode. The complicated crossing
structure is thérefore systematic and always involves one member from each of a
limited set of families. Of special interest to this thesis are the crossings involving
swappings of two quanta of z-mode excitation for two quanta of z-mode excitation.
The first is between (2,0) and (0,2) at R ~ 4.50 a.u. A family of such crossings can
be observed: (4,0) with (2,2), (6,0) with (4,2), (8,0) with (6,2), etc. This structure,
complicated by multiple crossings involving still other families with swapping of
two or more quanta, continues to higher energy. Eventually the pattern of level
crossings becomes so complex that the utility of an SCF description is obviously
in question. These crossings and the strong CI mixing they produce between SCF
states swapping two quanta between modes are related to phenomena in the classical
dynamics of this model system. Classical mouion is strongly affected in this region
by a family of trajectories centering on a stable, periodic, and almost linear orbit
lying in the direction of the potential valley or “corner” on the potential surface:
this is associated directly to a 1:1 frequency maiching er resonance and resulting

correlated motion in = and z directions. The CI wavefunctions resulting from the
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mixing at such crossings display the quantum mechanical effects of the valley’s

powerful reorganization of the motion produced by this potential.
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Figure 2.3: Quantum SCF energy level diagram in A; symmetry. Labels to the
right are states listed in order of increasing energy at R = 4.70 a.u.
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Figure 2.5: Quantum SCF energy level diagram in B, symmetry. Labels to the
right are states listed in order of increasing energy at R = 4.70 a.u.
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B2 SCF STATES
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Figure 2.6: Quantum SCF energy level diagram in B; symmetry. Labels to the
right are states listed in order of increasing energy at R =4.70 a.u.
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2.5 Configuration Interaction

The set of SCF eigenstates {3y, »,} is used as an expansion basis for solving the
Schrodinger equation [2.2]. As stated earlier, this set of functions is not strictly an
orthogonal set, and there is also no formal guarantee of its completeness. However,
if sufficiently large basis sets are used, there is some copﬁdence that the method
may give reliable results for at least the lower lying levels. By comparison, Epa
and Thorson [2] achieved sufficiently accurate results for at least the lowest five CI
states with a basis of only 21 SCF states for each symmetry.

For a given symmetry s, a solution ¥, to equation [2.2] is expanded in the
subset of SCF states {<I>" } of that symmetry:

Nz Nz

U,(z,2;R) = Z C;",,(R)Q;',,.n,(z, z; R). [2.25]

Nz Nz
Substituting [2.25) into the Schrédinger equation [2.2], multiplying by 8 (2,7 R)
and integrating over z, z yields the equations

Y [H(n, )y nzyns; R) = ES(ng, 10y T R)C:. . (R) =0, [2.26]

Nz, Ng

or [H-ES|C=0. [2.27]

The diagonal elements of the Hamiltonian and overlap matices H and S are defined

by

Il
—

S(nza Tzy Nzy Ny R)

H(ng,nzynzynsiR) = Eaca(R) [2.28]

ng, Ny

and the off-diagonal elements by

S(n, N, Mgy N R) = (Xn’,lxnz>z : (Zn',|zn-)z
400 00
= [T K@ R R - [ (s BB 229
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and

H(n;,n;vnz’nz;R) = (0 . |H|®: ..)

=[Ta [Ta e enR [EE,@R)]. R

To evaluate [2.30], we used the relationship

H(n,,nine,ne R) = S(ng,n},nzyns; R)[Eace (R) + ((V(z, 2 R)) . n)
= (Zu|Zn.), - (Xu[V7OF (23 R)X,,),
+ (Xn's ans),,- : <Zn{.,|VzSCF(Z3 R)an)z

+ V(n,,nl;nzn.;R), 2

!.w.‘
[ ]
fravd
[ S

where

V(n,,nl;n;,n; R) = [_ :o dz /; b dz®;, .. (2,2, R)V(z,2; R)®; ., (2,2 R)

) [2.32]
and the SCF effective potentials V.3°F(z; R), V.5¢(z; R) appearing in the third and
fourth terms of equation {2.31] are those associated with the SCF state &7, .

A measure of the overall precision of computations is obtained by testing
the Hermiticity of the matrix H defined by equation [2.31]. In a survey of the
pre;:ision test results at R = 4.30 a.u., approximately 12-15 matrix elements (in an
approximately 75x75 matrix, depending on the symmetry) have a nonhermiticity
capable of producing maximum precision errors of 10~% in one or more eigenvec-
tors and 10~7 c.e.u. in corresponding eigenvalues (estimates based on perturbation
theory).

To solve equation [2.27], an adaptation of the Givens-Householder [10]

method for nonorthogonal basis sets was used. Compute the matrix S~% and define

C' =SiC 2.33]



with inverse

c=5"tC. [2.34)
Substituting C from [2.34] into [2.27) and multiplying on the left by S-1, one obtains
[H' - E1]C' =0 [2.35]

where

H' = S-i1HS"%, [2.36]

Finally, solve equation [2.35] for eigenvalues En, and eigenvectors

C,, = S~1C.,. [2.37]
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2.6 Analysis of CI Results

Figures 2.7 to 2.10 show the lowest CI energy levels plotted agaimst R for each of
the four symmetries. In accordance with the non-crossing rul, the crossings that
appear on the SCF energy level diagrams (Figures 2.3 to 2.6) have here become
avoided crossings. Note that some of these are extremely narrow indicating that
the crossing states interact very weakly; this was alsowbserved by Epa and Thorson
for the [FHF]~ system [2]. The lowest 4-6 states of each symmetry can still be
assigned unambiguously to corresponding SCF levels. With increasing energy, this
simple connection disappears, as may be expected from the high density of states
and the occurrence of crossings almost everywhere.

Table 2.1 compares SCF and CI energies for the first ten levels of each
symmetry at R = 4.30 a.u. The close correspondence found for most of these levels
suggests that a comparison of the classical SCF approximation with exact classical

mechanics would be of some interest.
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Figure 2.7: Quantum CI energy level diagram in the A; symmetry:
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Figure 2.8: Quantum CI energy level diagram in the A; symmetry:
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B1 Cl STATES
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Figure 2.9: Quantum CI energy level diagram in the B, symmetry:
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1 # | CI Energy || n.,n. | SCF Energy || A2 # | CI Energy || ns,n, | SCF Energy
1 25.411101 0 O 25.42807( 1 76.60425( 1 1 76.75836
2 70.28719| 2 0 7048677 2 11767971 3 1 118.79055
3 95.12556 | 0 2 05.14007 )| 3 153.01057 ) 1 3 153.07449
4 116.32323 || 4 0 117.53655 || 4 159.70450 || 5 1 163.05422
5 131.54316 4 2 2 131.495521| & 187.47639 || 3 3 188.23010
6 160.97411( 6 0 165.86834 | 6 200.94638 || 7 1 208.79346
7 172.76869 || 4 2 171.74418 | 7 225.23023 | 5 3 227.17212
8 184.40935(|| 0 4 184.37798 | 8 240.18877) 1 & 243.67398
9 201.66509 )| 2 4 212.17032{ 9 24407632 9 1 255.52207
10 | 21191334} 6 2 214.42599 || 10 | 264.06043] 3 5 272.43536
B1 # | CI Energy || nz,n. | SCF Energy B2 # | CI Energy || n,,n, | SCF Energy
1 56.92371 0 1 56.97717| 1 4759729 1 0 47.64844
2 96.93935 | 2 1 97.43053 | 2 93.27696 || 3 0 93.81499
3 137.63161( 0 3 13790111 3 11273077 1 2 112.67926
4 138.87999 | 4 1 140.69952 | 4 139.05298 5 O 141.57512
5 169.72266 || 2 3 170.05085 | S 151.50913 | 3 2 151.250568
6 180.50793 | 6 1 185.77399 )| 6 181.80855f 7 O 190.3639%4
7 206.05335 || 4 3 207.33220| 7 194.88519 || 5 2 192.83728
8 220.89978 ) 8 1 232.05824¢{ 8 197.68488 || 1 4 196.97619
9 233.95281|1 0 5 233.95514| ¢ 220.58154 |1 3 4 228.81672
10 | 244.80960) 6 3 247.61685] 10 | 228.62144| 7 2 236.42885

Table 2.1: Quantum CI and SCF State Energies at R = 4.30a.u.
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Figure 2.11 shows contour plots of CI wave functions ¥n,n,(z, 2; R) for
18 states of A, symmetry at R=4.30 a.u. From their nodal structure, it is evident
that the first three correspond directly with the SCF states (0,0), (2,0) and (0,2);
similarly states 4 and 8 correspond respectively to (4,0) and (0,4) SCF levels. Al-
though its nodal structure appears more complex, state 5 is primarily SCF level
(2,2) (95% contribution). Note the buildup of the amplitude along the two diagonal
potential valleys lying at 26° to the x-axis (see potential contour plots in Figure
1.2), a feature which will become more pronounced with increasing energy. States 6
and 7 may also be regarded (at this R-value) as the daughters of the SCF states
(6,0) and (4,2), respectively, but again with a buildup along the potential valleys.

We next consider Figure 2.12 which shows two CI wave function contour
plots for a strong avoided crossing of SCF states (2,0) and (0,2) occurring at R =
4.54805 a.u. At this R-value the SCF energies differ by 8.9x10~4 c.e.u. (0.05 cm™!)
while the two CI levels are split by 3.05 c.e.u. (187 cm™!). The lower of the two states
has only radial nodes, with pronounced buildup in the direction of the potential
valleys; the upper one could be better described as having angular nodal character.
The first distribution would correspond to a stable classical motion oriented along
the potential valleys, while the second state with its resemblance to a “d-orbital”
suggests a classical motion in an elliptical orbit about the origin.

Next consider the pair of wave functions given in Figure 2.13 associated
with the avoided crossing of SCF states (4,0) and (2,2) at R = 4.45 a.u. This
crossing is the next instance in the sequence of crossings involving “swapping” of
two quanta between the two modes, initiated with the (2,0)x(0,2) crossing at R =
4.55 a.u. In contrast with the corresponding plots for states 4 and § at R = 4.30 a.u.
where these are dominantly the SCF states (see above), strong mixing of the two

components is present. Again the lower state 4 is essentially “radial” in its nodal
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structure while the upper state 5 is “angular”. Notice in particular for state 4, the
splitting of the outer maxima into two peaks located along the potential valleys; the
central maximum of the SCF state (2,2) is replaced in state 5 by a saddle point, with
the result that the maxima in probability are thrust out from the origin, reminiscent
of an elliptical orbital motion.

Figure 2.14 shows the wave function contours for the three CI states 6, 7,
and 8 at R = 4.40 a.u. associated with the nearby “triple” crossing of SCF levels
(6,0), (4,2) and (0,4). CI energies for these levels are 155.6, 164.1 and 168.5 c.e.u.
respectively. The coefficients of the corresponding dominant SCF components are

as follows:

o Cl state 6: (4,2), 0.80; (6,0), 0.54; (2,4), 0.20.
e ClIstate 7: (0,4), 0.99.

o Clstate 8: (6,0), 0.83; (4,2), 6.32; (2,4), 0.16.

Evidently, the SCF level (0,4) interacts only very weakly with the other two, which
are strongly mixed and split by 791 cm™!. Smaller contributions from more diétant
SCF states are present leading to an overall depression relative to the original SCF
energies. The wave function contour plots tell the same story. State 7 is essentially
the SCF state (0,4) with a very small distortion toward the valleys; again, states 6
and 8 are the radial and angular CI states seen in previous instances of the sequence
of SCF crossings (n+2,0) and (n,2). Note that at R = 4.30 a.u. , the CI state 6 is
primarily SCF state (6,0), state 7 is primarily (4,2), and 8 is almost entirely (0,4);
obviously the weakly interacting states 7 and 8 have interchanged SCF character
completely between 4.30 and 4.40 a.u., while the stronger interaction between SCF
levels (6,0) and (4,2) is already affecting the wave functions for these states at 4.30

a.u.(see Figure 2.11).
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Now return to Figure 2.11 and consider the plots for CI states 9, 10 and
11 at R = 4.30 a.u. Again these states arise from a nearby triple crossing of the
SCF levels (8,0), (6,2) and (2,4). Roughly the same interpretation holds here as
was given for the previous triple crossing. State 10 is mostly the SCF level (2,4);
states 9 and 11 are split strongly (1074 cm™') by interaction of (8,0) and (6,2),
with state 9 the radial member and state 11 the angular member of the pair as
usual. Admixture from other SCF levels needed to produce this characteristic nodal
structure has increased significantly; for states 9 and 11, 13 and 8 SCF coefficients
have magnitudes greater than 0.05. The remaining CI wave functions (n 2> 12),
shown in the series of 18 states at R = 4.30 a.u. (Figure 2.11), have a complex
nodal structure and, with the exception of the “z-oscillation” state 17 which is
dominated by SCF component (0,6), typically involve 20 or more significant SCF
contributors.

We shall see that the radial and angular nodal structures seen in CI states
at the avoided crossings considered here do in fact have classical analogues. In the
treatment of exact classical dynamics discussed in the chapters to follow, motions
which are essentially modal in z and = directions are strongly reorganized to center
instead around strongly stable classical periodic orbits which move up and down the
potential valleys. In the transition region where the reorganization is taking pl- e,
unstable elliptical orbits figure prominently in the trajectories. Kovswr in contrast
to quantum mechanics where their effects occur widely only at higher eneryes, these

phenomena all appear in classical dynamics at even the lowest energies.



o
N

Figure 2.11: The series of plots given on the following 18 pages are the lowest 18
A, CI eigenstates of the system at R = 4.30 a.u. The state number, R-value, en-
ergy, and symmetry are the physical parameters provided on each diagram along
with information on the contour selections: number of contours (Nd), contour spac-
ing (DS), maximum positive and negative contour levels (Ymax, Ymin), and the
spacings of SCF wave function points selected to generate the CI wave functions
(Dx, Dz). The red contours indicate negative values of the wave functions and
black positive. The blue marks indicate the maximum negative (x) and positive

(+) regions.
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Figure 2.12: The notation used in this set of plots is the same as that described
in Figure 2.11. Displayed here are the quantum CI wave functions at the narrow
avoided crossing of SCF states (2,0) and (0,2) at R = 4.54805 a.u. The energy
splitting in the SCF domain is 8.910~* c.e.u. = 0.05 cm™!; the energy splitting in
the CI states is 3.05 c.e.u. or 187 cm™.
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Figure 2.13: The notation used in this set of plots is the same as that described in
Figure 2.11. Displayed here are the quantum CI wave functions near the narrow
avoided crossing of SCF states (4,0) and (2,2) at R =4.45 a.u.



X—Axis

.76 4

C! Wave(z,x) Sym:A1

E=111.910 Dz= 0.040

Ymax= 3.208 Ymin= -2.587 DS= 0.166

Dx= 0.040

Rz 4.45 Nstate= 4

Nd= 33

-1028

-0088

-0048

Z—-Axis

-0008

0.32

0.72

l

.12



X—Axis

Cl Wave(z,x) Sym:A1 R= 4.45 Nstate= 5 i
E=119.373 Dz= 0.040 Dx= 0.040 Nd=33
Ymax= 2.120 Ymin= -3.085 D0S= 0.148

gy T

1.28 -
1.08 A
0.88 -
0.68 - Il
0.28 - \; )\__/ @L@

0.08 -
-0.12 A
-0.32 A
-0.52 -

-0.72 - 3@§§%%%

"0 092 -

-1.12 -
-1032 -

-l asz -




Figure 2.14: The notation used in this set of plots is the same as that described in
Figure 2.11. Displayed here are the quantum CI wave functions near the narrow
avoided crossing of SCF states (6,0), (4,2) and (0,4) at R = 4.40 a.u. The states
(6,0) and (4,2) are split by a greater amount than (0,4) is from either indicating a
stronger CI interaction between the former two. For further comparison, consider
the states 9 through 11 in the R = 4.30 a.u. series of figures. These states are
associated with the triple crossing between (8,0), (6,2) and (2,4) and contain the
same trends as indicated at this R-value.
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Chapter 3

Semiclassical SCF Theory

3.1 Introduction

The Self-Consistent Field (SCF) approximation replaces the actual Hamiltonia:
for a system by an approximate Hamiltonian which is separable in the selected
coordinates. Hence, it is not difficult to construct a Classical Self-Consistent Field
(CSCF) approximation [15]. Such an approximation to motion in 2 system with N
degrees of freedom is defined by specifying the set of actions associated with the

particular chosen coordinates {¢;},

1 .
Ji= E;fp"dq,', t=1,...N. (3.1]

Each integral is associated with a one-dimensional motion and is taken over a com-

plete period T; of that degree of freedom,
dg; .
T,=¢dt= ¢ —, t=1,...N. 3.2
fa=g= (3.2

Given the SCF effective potential V;°¢¥(¢;) and a value for the associated separation
constant E;, the momentum p; conjugate to g; is determined by the classical ana-

logue of the corresponding one-dimensional Schrédinger equation for the quantum

SCF problem,

pi=VE-V5F(g) i=1,..N. [3.3]
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The average value for a dynamical variable, F' (¢:), may be defined as a time-average
over a period,
_ 1 F(q:)dg;
(F (q'))i = T' di ’

(except at critical points where T; may be infinite). With this apparatus, iterative

3.4]

procedures like those described in the previous chapter may be used to determine
CSCF approximations.

Particular semiclassical approximations to the energies of quantum SCF
states are obtained if semiclassical quantization rules are used like those of one-
dimensional JWKB theory, which assign classical actions {J;} to each nodal quan-
tum number {n;}. Obviously, the accuracy of semiclassical SCF is limited by the
errors inherent in the JWKB approximation as well as by anomalies in the definition
of classical average values (such as arise for motion near a critical point).-.

The Classical SCF approximation has been used by Gerber and Ratner
[16] to compute semiclassical approximations to the energies of quantum SCF states
for molecular vibrational systems, mostly in cases with nearly harmonic potentials.
Their work always assumed semiclassical quantization of actions according to the
JWKB method and results were compared with other computations of quantum
energy levels. They did not consider the comparisons between CSCF theory and
true classical dynamics which are a focus of this study.

This chapter describes application of the CSCF approximation to the re-
alistic model poteatial used here and assesses its utility as a method for predicting
quantum vibrational energy levels. As might be expected, the nonharmonic nature
of the potential surface introduces significant errors because of deficiencies in the
JWKB approximation, but these do not appear to be aggravated by using classicel
instead of quantum averagp values for dynamical variables. While the true potential

has only a shaliow double-well structure for R < 4.70 a.u., the one-dimensional SCF
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effective potentials have pronounced double-wells generated by the decided corner
or valley in the potential surface; SCF energy levels of interest may lie above or
below the barrier separating the two wells. There are technical problems regard-
ing continuity of classical calculations in a one-dimensional double-well at energies
near the barrier maximum but no major difficulties arise from this provided the

semiclassical quantization rules are suitably adapted for the double-well problem.
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3.2 Classical SCF Equations

For this model system, the classical SCF equations analogous to equation 2.6 are

P+ VF(mR) = E,

i+ V(% R)

E.. [3.5)

Since ¢; = 2p;, the SCF effective potentials are given by

SCF(. . D\ ) 1 rV(z,zR)
VSCF(z;R) = (V(z,% R)); = 2T,){ _—

1 V(z,z; R
VzSCF(z;R) = (V(z,2;R))s = 5T f ( . )dz, (3.6]

Self-consistency requires as before that
(V(z,% R))) = (V0 (z; R)), = (V" (2; R))... [3.7]

To determine a particular CSCF solution, values are assigned to the actions (J;, J;)
and one follows the classical analogue to the SCF iteration procedure outlined in
Section 2.2.

As before, the SCF effective potentials V;°¢F(g;) are symmetric functions
of their arguments and either have a single minimum or a double-well form with
a barrier maximum E, at ¢; = 0. With reference to Figure 3.1, the two cases are

discussed below.

Case (a):

VSOF (g;) has a single minimum at ¢; = 0 and p} defined by [3.5] has
zeroes at +q; (classical turning points). The action J ‘s given by

the integral

9 r
= da;. 3.8
J.--7r A pidq (3.8]



The value of E; orresponding to a specified value of J; is to be
determined. The period integral and average values for dynamical

variables are defined as

T,=2 /0 " %‘:’- 3.9]
and
(Fla= 3 [ TEEL 310

The associated classical SCF frequency is defined as w; = 2r/T:.
Case (b):

V5CF (g;) has a double-well with minima at ¢; = g, and a barrier
maximum at ¢; = 0. The energy associated with a particular choice

of action may lie above or below the critical energy E.:

(1) If E; > E. (above barrier maximum), there are just two turning
points at £q; and the action, period, and average values are defined

as in Case (a) above.

(2) If E; < E, (below barrier maximum), the motion is restricted to
either the left or the right well with outer (+¢;) and inner (Zg;)
classical turning points. In this case, one should normally define the
action as an integral over a period of motion in a single well, but
to maintain continuity at E. we define it here as having twice that

value:
2 M
5= [" pds. (3.11]
The true period of motion changes by a factor of 2 from the value it

has just above the barrier; for convenience, we define T; as twice the

85
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actual period of motion in a single well,

u dg;
Li=2] — 3.12
L5 =
Averages of dynamical variables are given by
2 o F(qi)dg
Flg)i==| ——, 3.13
(Flai=7 [ —, [3-13]

but their values are independent of the convention used for T; since
the factor of 2 divides out in normalization. The only quantities
which appear in Classical SCF computations are the actions {J;}

and average values (F(¢;));; these quantities are continuous across

E..

We now consider the behaviour of the action and average value integrals in the

neighbourhood of E..

The action J; as defined by equations [3.8] and [3.11] is a continuously
increasing function of the energy E; across the critical point at the barrier top,
E; = E.. From the definitions it is obviously an increasing function. However, its
behaviour near E, is not analytic. If we approximate the potential V5°F(g;) near

the top of the barrier by a Taylor expansion about ¢; =0 then

VSCF (i) = B, = VO + V2 + ..., [3.14]
where
1 dZVSCF(q.)
VO = i\ >0,
1 2 dq{z gi=0
1 d"VSCF(q')
V0 = p——i B etc. [3.18]
2 24 dq;‘ qi=0

Analytical expressions can be derived for the action in the neighbourhood of E; ~

E.. f E; = E. + §, the action can be shown to have the form

Ji(E;) = J(E) ~ [:1_6\/7 + 0(6’)] In [%—I] + 516 +0(8%) (3.16]
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Figure 3.1: Diagramatic representation of a typical double well situation for a
one-dimensional potential surface.
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where corrections not given explicitly are expressible as analytic Taylor series in §.
§. is a parameter determining the range of energies over which the effects of the
logarithmic term are significant and has a magnitude of the order of 0.01 c.e.u. (=
1 cm~'). While the derivative [dJi( E;)/dE;] is singular at E., the action itself is
continuous, and the coefficient S, is sufficiently large and positive that the action
is uniformly increasing,

Since the top of the barrier is a critical point for the classical motion, the
period integral diverges logarithmically there (it is essentially equal to the derivative
[dJi( E;)/dE:]). Correspondingly, the classical average value of a dynamical variable
F(q:) as defined by equations [3.10] and (3.13] exhibits a cusp-like behaviour near
the barrier energy E. with the cusp value at E itself equal to F(0). Figure 3.2
depicts the behaviour of the classical average (g?) in the neighbourhood of E, for
a representative double-well potential. It can be seen that significant effects of the
barrier appear for a moderate range of energies on either side of E.. Such a dip in
average values when E; = E, is a real physical effect that can also be seen in some
quantum SCF eigenstates we computed; it is associated with long dwell times at
¢; ~ 0. In quantum mechanics, the cusp singularity appearing for a classical average
is s_moothed out by the finite width of the quantum probability distribution.

There remains the question of the actual effect of the sharp cusp itself on
the convergence and stability of classical SCF calculations; one might suppose that
an unfortunate choice of actions and corresponding SCF effective potentials could
lead to a case where iteration of the SCF computational cycle would fail to converge
to a stable result. As is perhaps implied by Figure 3.2, the neighbourhood of the
cusp proper is extremely narrow (given that similar dips in quantum mechanics
are on the order of 25-50% of the depth) and we found that this problem never

actually occurred in any of the hundreds of CSCF states computed. Empirically,
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we found that the CSCF procedure zppears to be just as stable and convergent as
its quantum counterpart; at first, both procedures showed some minor convergence
problems arising from the dip in average values for E; = E., but these were easily
avoided in either case by recognizing the existence of the effect and reducing its

influence on the iteration process.
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3.3 Comparison of SCF Theories

For comparison with quantum SCF results, semiclassical SCF energies can be com-
puted provided a consistent set of quantization rules can be invoked to define the
classical action J; corresponding to a quantum energy level with nodal quantum
number n;. Gerber and Ratner [16] followed such a procedure for the nearly har-
monic model systems they studied, using semiclassical quantization rules defined
by the usual JWXB approximation for motion in a single potential well {10,17].

This procedure is developed here for a one-dimensional Schrodinger equa-
tion of the form

fdizﬁf_) = —pi(z)f(z) —o0<z<+oo. [3.17]

First assume that the conditions jor Case (a) of the preceeding section are satisfied;
that is, p?(z) > 0 in only a single domain a < z < b, and p*(z) <0 and unbounded
asr  :00. In the classically forbidden regions where p*(z) is negative, there are
two solutions of [3.17) which are regular as z — +oo having semiclassical JWKB

approximations given by

fulz) = C [5(z)]""/? exp [+ /; i n(z’)dz'] , =oo<zfa,

fr(z) = C [n(a:)]"ll 2 exp [— /b : n(x')dz'] , b<z< +00, (3.18]
where k2 = —p®. In the classically allowed region where p?(z) is positive, the
well-known JWKB turning-point connection formulas [17] prescribe semiclassical

approximations to the analytic continuations of equations [3.18]. These two solu-

tions have the forms:

fu(z) = C"[P(x)]'m“s[ P(z')dz - ]
fr(z) = C'[p(:c)]'lncos [— /b p(z')dz' +Z] [3.19]
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The eigenvalue condition that these solutions be the same yields the well-known

formula

b
Jiw = / pi(z)dz = (n,- + %) T n; =0,1,2,... [3-20]

Hence, the semiclassical quantization rule must be J; = n; + } for Case (a) and also
for Case (b) if E; > E..

When the JWKB approximation is applied to motion deep within a double-
well, corresponding to Case (b) with energy far below the barrier E; <« E., the
argument above may be used again in one of the symmetrically equivalent wells.

With the action J; defined by equation [3.11], the quantization rule is
1 n; . .
Ji=2 (m,- + ;,-) , m; =+ (integer truncation); [3.21]

this yields degenerate level pairs for n; = (0,1);(2,3); etc. The problem, of course,
is the discontinuity between this rule and that obtained for E; >> E..

JWKB connection formulas valid for reflection/transmission coefficients
near the barrier top have been derived by Connor [18] (see also Child [19]). The
discussion is based on asymptotic properties of parabolic cylinder functions and
assumes that the shape of the barrier is approximately parabolic near its maximum.
Based on these relations, semiclassical quantization rules valid for the symmetrical
double-well problem can be obtained for energies E; = E. both below and above
the barrier. If the classical action J; is defined as before by [3.11], these rules are

as follows:
For n; even (symmetrical eigens:ates),
1
Ji= (i 3) +[doe) + xole)l I [3.22)

for n; odd (antisymmetrical eigenstates),

Ji= (mi+ 5) +[do(0) = xolel) /. (3.23
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The barrier phase corrections, ¢o and xo, are defined by

dole) = e—elnle]| +arg [I" (31,- +ie)] ,
Xo = arctan [e"’“’] 0<x0 < g [3.24)

The parameter ¢ is positive for E; > E. and negative for E; < E. It is defined for

enexgies below and above the barrier, respectively, by
n
re = —2/0 s(g)dg &=E;~E.<0,
re = +2/;|'p(iy) |dy &=E;~E,>0. [3.25]
The integration limits ave gy, the inner turning point defined previously for Case (b),

and @ which is a zero of p*(iy), the analytic continuation of p*(g) on the positive

imaginary axis. In particuiar, if the barrier is parabolic,

§
—F _10.2 = —
Vi =E-Wr,  e= =

[3.26)

At the expense of the additional quadrature in one of equations [3.25] needed to
determine these phase corrections, the CSCF method can be used to obtain semi-
classical SCF energy levels which are consistent across the critical point at E..
Consistency is maintained as follows: The phase correction ¢ is zero at
E; = E. and tends to zero when | § |=| E;~E, |~ oo. It has a maximum magnitude

of about 0.15 when € =~ 0.2. Hence,
o For E; >> E., xo — 0 and [3.22] and [3.23] are consistent with [3.11];
e For E; << E., xo — 7/2 and {3.22] and [3.23] are consistent with [3.8].

At the critical point itself, xo takes the interpolating value 7/4; it is interesting
that in this neighbourhood the logarithmic term in the classical action (see equation

[3.16)) is matched by an exactly corresponding term in do.
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We have computed semiclassical SCF approximations to about 300 SCF
energy levels for R = 4.30 a.u. Figure 3.3 provides the semiclassical energy level con-
tour map that corresponds to che quantum SCF map shown previously in Chapter
2; they are virtually indistinguishable. The error in the semiclassical value is usually
less than 0.2-0.3 c.e.u.(12-20 cm™!) and is always less than 2.5 c.e.u.(150 cm™!).
The cases where larger errors occur are of two types. Levels where one SCF mode
has n; = 0 or 1 produce errors due mainly to the JWKB approximation for anhar-
monie potentials although these are normally less than 1.0 c.e.u.Larger errors occur
for states in which a mode energy E; happens tc fall close to E.. We attribute these
mostly to errors in the “cusp” behaviour of the resulting classical average values,
relative to their quantum counterparts, which are amplified in the SCF effective

potentials dependent on such average values.

Such extensive semiclassical SCF energy level calculations were not car-
ried out at other R-values. Although the semiclassical SCF scheme is about an
order of magnitude faster computationally than the corresponding quantum com-
putation, it offers no further useful information for energies where configuration
interaction is widespread and the SCF description is a poor one anyway. As shown
in Chapter 2, this is always true for SCF levels beyond the first 10-12 states of each
symmetry. Figures 3.4-3.7 show the first few semiclassical SCF energy levels as a
function of R for each symmetry type. As expected, these compare closely with the
corresponding quantum SCF levels, exhibiting the same curve crossing structure.
In cases where SCF description is generally valid, the semiclassical SCF energies do
correctly anticipate th ' - ::ions of avoided crossings where it is expected to fail.

In the ren. . of this work, we concentrate mainly on comparisons

between the classicul SCF spproximation and the corresponding exact classical dy-
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Figure 3.3: Semiclassical SCF energy surface at R = 4.30 a.u. plotted at pairs of
ne, n, With contour spacings of 50 c.e.u.
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namics for the same system. It was seen in Chapter 2 that for the lower states
of each symmetry, the quantum SCF approximation offers a surprisingly accurate
description of the “exact” quantum states of this system, except at isolated curve
crossings; similar comparisons in classical dynamics appeared to merit further study.
In such comparisons, semiclassical quantization is not of primary interest and is not,
in fact, used. Our particular interest is the capacity of the SCF approximation to
sustain a description of the motion which is closer in many cases to the actual
behaviour of the quantum system than the exact classical mechanical description.
This occurs because the latter is “chaotically” disrupted by system perturbations at
energies far below those at which corresponding effects are observable in quantum

mechanics.



Chapter 4

Classical Vibrational Dynamics

4.1 Introduction

In this chapter we study the classical dynamics of this model potential system; that
is, Hamilton’s equations are solved numerically and information is obtained from
resulting classical trajectories. Attention is focussed on cases involving regular
(quasiperiodic or periodic) motion and the associated constants of the motion.

A dynamical system with N degrees of freedom can be described with
canonical coordinates {q;} and the conjugate momenta {p;}, i = 1,. ..N. In the
present case, N = 2 and the coordinates and momenta are (z,2) and (p,p:). The
state of the system at any time ¢ is fully defined by specifying the set (g, pi), 1 =
1,...N, and is represented as a point moving in the 2N-dimensional phase space for
the system. A solution of Hamilton's equations (which defines the coordinates and
momenta as functions of time) with a given set of initial values {¢f,p{} constructs
a phase-space trejectory. If, as is the case here, the Hamiltonian function H(g;, p:)
does not depend explicitly on time ¢, the system is said to be conservative and its
energy E = H(gi,pi) is a constant of the motion.

Near the turn of the century, Poincaré [20] and other celestial mechani-

cians had observed that a conservative system of coupled oscillators exhibits regions
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of very different dynamical motions: regular and irregular. For regular motion, the
system has N distinct constants of the motion, one for each degree of freedom. This
restricts the trajectory in the 2N-dimensional phase space to an N-dimensional sur-
face called an invariant torus. In irregular motion, N constants of the motion do not
exist and the phase-space trajectory is correspondingly unrestricted. For example,
for N = 2, irregular motion is restricted only by energy conservation.

The formal apparatus of Hamilton-Jacobi theory is directed precisely at
the case of regular motion [see, for example, H. Goldstein “Classical Mechanies”,
Chapters 8-10]. The Hamilton-Jacobi partial differential equation arises from the
condition that there exist a canonical transformation from old dynamical variables
{gi,p:} to new dynamical variables {Q;, P} such that the N' new momenta are
all constants of the motion. In fact, the existence of a complete solution to the
Hamilton-Jacobi partial differential equation is equivalent to the existence of N
constants of the motion. The new momenta aud coordinates are called action and
angle variables, respectively; they exist if and only if the motion is regular. No
practical use of the Hamilton-Jacobi formalism is made here and the details of
the theory are not presented, but regular motions in this work are described using
action-angle variables. We will introduce these variables in the context of separable
systems. They play the role of parameters describing the invariant torus which is
always associated with regular motion.

In the past two decades, these concepts of classical mechanics have been
extensively applied to the study of molecular vibrations. Initially most studies fo-
cussed on the quantization of regular classical motions to obtain information about
quantum energy levels (“classical bound state theory”). More recent work has in-
cluded irregular or “chaotic” motion and its relation, if any, to quantum behaviour.

The general background theory of classical mechanics is well presented in the text by
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Herbert Goldstein [21] which will be often cited here where relevant. Aspects of the
subject especially relevant to this study have been reviewed by Noid, KoszyLowski,
and Marcus [22] which covers work on both quasiperiodic and irregular motions in
molecular dynamics to about 1980, and a second review by Noid and Marcus {23]
covers work current to 1986. A useful review relevant to bound state theory in
particular has been given by Percival [24]. As the present work focusses primarily
on regular motion, these sources and the references they cite describe most con-
cepts and methods used in this thesis, but some of the major points will be covered
for completeness. As emphasized in Chapter 1, the model system studied here is
strongly anharmonic, much more so than most systems studied previously. Com-
parisons with classical SCF theory (discussed in Chapter 5) are an entirely novel
aspect of the present work.

Section 4.2 presents the basic theoretical elements of the classical methods
used in this work and Section 4.3 summarizes the associated computational meth-
ods used to determine dynamical quantities of interest. The main results of these
computations will then be presented and discussed in Section 4.4 by illustrating
specific examples of trajectories important to this system. A deeper appreciation
can be given only in Chapter 6, following the application of canonical perturbation

theory to the classical SCF approximation, which is developed in Chapter 5.
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4.2 Classical Theory

The Hamiltonian of this system (N = 2) has the form

H(.’B, <3Pz P2y R) = Etotal = P:- + pg + V(.‘B, <5 R)i [41]

where the parameter R is fixed. A trajectory is obtained by integrating Hamilton’s

equations of motion [21],

L_0H _, . 8H _ dV(z,5R),
- apz = 2Pz Pz = az - 63 )
_OH _, . _ OH _ 9V(z,z;R)
2= ap= = = p:=- az - = 62 [ [4.2]

for a given set of initial conditions.
As an introduction to action-angle variables, consider a one-dimensional

oscillator with coordinate q, momentum p and Hamiltonian

H(q,p)=p*+V(9)- (4.3]

Define the orbit of the system in (q,p) phase space by expressing the momentum as
a function of q at a specified constant H = E:

p=\/E -V(q) = p(g; E)- [4.4]

For V(q) with p? > 0 in a finite domain bounded by classical turning points (41, 2),
the orbit is a closed curve and both ¢ and p are periodic functions of time. This is

called kbrational motion and the action integral,

7= 5 §pda, (4.5]

is performed over a complete period of motion. The action is obviously a constant
of the motion depending only on E; conversely, E = E(J). The problem posed
by Hamilton-Jacobi theory is that of finding a canonical transformation to new
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momentum and coordinate such that the new momentum is a constant of the motion
and the transformed Hamiltonian does not depénd on the new coordinate, but
only on the momentum. (see Goldstein [21], especially Sections 9.1-9.3 and 10.1-
10.5). These are the action and angle variables J,4, respectively. Since Hamilton’s

equations of motion remain true in the transformed coordinates,

_ 0B _, 5. 0%H0)
J= =0 b==5;

% = w = constant. (4.6]

The angle coordinate 8 simply increases linearly with time,
8 = wt + constant. (4.7)

The utility of such a representation lies in the fact that as g and p move through
one complete period of motion, the angle @ changes by 2 ; hence, the period of
motion is T = 27/w. w is called the frequency of the motion.

Consider next a two-dimensional case where V(z, z; R)is separable,
V(z,2; R) = Vi(z; R) + Vz(z; R), 4.8]
giving the Hamiltonian a form
H = H,(z,ps; R) + H.(2,p:i R) = E: + Es, [4.9]

where, by equations [4.2], E; and E, are each independently constants of the mo-
tion. As before, the solution of the Hamilton-Jacobi problem leads to action-angle
variables labelled here as (J;, J;, 0;,0.). The actions are defined as before by

1 1
o= 5 }( pedz,  Ji=5 f padz. [4.10]

with angles, periods and frequencies as given earlier.
The constants of the motion (J:, Ji) restrict the motion of the trajectory

of the system in phase space. If phase space is described in action-angle variables
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instead of the original coordinates, the motion of the system is clearly limited to
a two-dimensional manifold characterized by the constant actions but allowing the
variation with time of the angles 6., 8.. This two-dimensional manifold on which
regular motion occurs is called the invariant toroid associated with the motion. In
the four-dimensional phase space it is topologically equivalent to a torus in three-
dimensional space, as depicted in Figure 4.1. To describe the location of any point
on a torus in 3-space (assuming the orientation and centre of the torus are given),
one need only specify the two constant radii characterizing the two topologically
distinct circles on the torus (Cy, C; in the Figure) and the angle of rotation along
each circle. For the invariant toroid, the constants of the motion J;, J; (here,
Jr, J:) specify the circle radii (more strictly, the areas of the circles), while the
angle variables 6,, 0, specify the location of the moving system on its trajectory
through phase space.

Regular motion on a torus is called quasiperiodic (or multiply periodsc)
since any dynamical variable, and the old coordinates and momenta (z, z, p;, p:)

in particular, can be expressed as multiple Fourier series in the two angles (6, =

6:, 03 = 03):

- ) 00 . .

ky==00 kp=-00

) ) . .
Y 3 o), btk [4.11]

ky=-00 kp=-00

9

b;
where Hamilton's equations §; = 2p; imply that
. i .
by = 5 (ko + kgwn) al,. [4.12]

Complex Fourier series are employed to indicate the general series structure, al-
though the variables (g;,p;) are necessarily real. The term guasiperiodic, rather

than periodie, 78 used because in general the two frequencies w;, w; are rationally
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Figure 4.1: Invariant torus pictured in 3-space. C; and C; indicate the two topo-
logically distinct circles associated with the constant actions J;, J; and the angles
0; and 03.
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incommensurate. That is, there is no pair of integers m;, m2 such that

MWy = Mawy, [4.13]

and the system trajectory will never exactly return to its position on the toroid at
t = 0. Over time, it will eventually cover a path which covers every point on the
toroid and will return arbitrarily closely to iis position at ¢t = 0 after a sufficiently
long time. Cases where a relation of the form [4.13] holds are truly periodic since the
trajectory will return ezactly to its position at ¢ = 0 after a recurrence time given
by r = myT; = m,Ty; in this case, it will trace out a restricted path on the toroid
which does not cover every point on its surface. Of course, since the set of rational
numbers is embedded in the set of all points on a line in an intimate manner, any
particular quasiperiodic trajectory is arbitrarily close to some simply periodic one.
The distinction between them in a computational study is ultimately not relevant
unless the rational relation {4.13] involves integers m;, m, that are small. For a
system which is nearly but not quite separable, such periodic resonances may play a
strongly disruptive part in the classical motion of a system even at very low energies.
In many cases, the role of the resonance is largely irrelevant to the behaviour of the
corresponding quantum mechanical system, at least at low energies.

We have discussed the case of an exactly separable potential here pri-
marily to introduce the ideas of action-angle variables, quasiperiodic and periodic
regular motion and the associated invariant toroids. This is an extremely simple
example and there are more complex cases of fully separable systems where the
formal apparatus of Hamilton-Jacobi theory may be used to derive a transforma-
tion to action-angle variables. Of special interest tc this thesis is that the classical
SCF approximation always generates a strictly separable approximation to the po-

tential V(z, z; R) and the motion it creates is always regular; in that sense, it is a
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toroid-preserving approximation.

The concepts of action-angle variables remain applicable even to truly non-
separable systems such as the one studied here because such systems exhibit regular
motion of some kind over a wide domain of dynamical conditions, even though the
Hamilton-Jacobi equation cannot be fully solved via a general separability of some
kind. The motion may have fewer than N constants of the motion, classifying it as
irregular. Irregular mot:ia ¢oes occur but it is by no means dominant for at least
some domains.

While Poincaré and other mathematicians concerned with coupled oscil-
lator systems in classical dynamics observed very early (1900-1910) that regular
motion appears in such systems, during the first half of the present century the
prevailing view was that irregular motion is the dominant behaviour expected in
a nonseparable system. This general perspective was profoundly altered by more
recent work and, above all, by the theorer proved (independently) by Kolmogorov,
Arnold and Moser (KAM) [25,26,27]. (For some appreciation of the implications of
the KAM results, see [24].) While the level of presentation of KAM is highly math-
ematical and certainly well beyond the scope of this work, the essential point of the
theorem for this study is that regular motion is more frequent in a nonseparable
problem than was previously thought. KAM consider nonseparable systems whose
Hamiltonians consist of an unperturbed part Ho with only quasiperiodic trajecto-
ries and a general nonseparable pertuvibation H;. They prove that, for “sufficiently
small” perturbations, most of the regular trajectories of the unperturbed system
persist as regular trajectories in the perturbed system. While irregular trajectories
occur, they are “outnumbered” by the regular ones. For Jarger perturbations (or,
in molecular systems, at higher energies), irregular trajectories increase in number

and eventually dominate the phase space. It is not clear what is meant by a “small”
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perturbation but numerical studies by many authors [28] have verified this general
feature of nonseparable system dynamics. In particular, Marcus and others [29]
interested in molecular vibrations have observed that molecular vibrational systems
that deviate only slightly from harmonicity have perturbations that are small in the
KAM sense; regular motion is common at lower energies and irregular motion is
not widespread for energies near the lower lying vibrational levels. As emphasized
in Chapter 1 of this thesis, the system studied here is an adaptation of a realis-
tic vibrational potential surface for the hydrogen-bonded [FHF]~ ion. It is both
nonseparable and strongly nonharmonic in comparison with the great majority of
molecular systems treated previously; this formed part of the motivation for this
work.

Hence, it may occur that regular motion is encountered in a nonseparable
system but there is no obvious relation between the action-angle variables and the
physical coordinates used for the system. Understanding of the dynamics can begin
by observing the two-dimensional coordinate (or momentum) space projection of
the trajectory as time passes. If the relation between ihe toroid and the physical
coordinates, (z, z) say, is simple, the projection will be in the shape of a “box”, as
is seen for this syskem in the example in Figure 4.2. It is possible to visualize that
the toroid has been fiattened onto the projection plane, and the trajectory winding
endlessly around it now appears as lines repeatedly crossing from one side of the box
to the other. The four sides of the box where one of the momenta will be icentically
zero are called the caustic curves and are reminiscent of the turning po.nts in the
classical description of a one-dimensional well. Accordingly, the four corners of
the box lying exactly on the equipotential curve correspond to the only points at
which both momenta are zero. Other trajectory points are constrained to lie within
these toroidal boundaries at this energy. Obviously, the action-angle variables for
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this case are appropriately labelled (J;, J;,6;,0;). A more complicated, but still
quasiperiodic, motion is illustrated in Figure 4.3. The directions of basic motion
have been rotated relative to the physical coordinates (z,z). The true caustics
are not simply related to the outlines of the figure. It is no longer obvious what
relation exists between the action-angle variables and the working coordinates and

momenta. Far more complicated trajectory projections are obtained in still other

situations such as those associated with degenerate systems [23].

In this work, the Poincaré surface-of-section method [30,31,32] is used to
compute the actions associated with the regular motions studied. This method
relies on a fact pointed out by Einstein [33]; on the surface of any invariant toroid,

the differential quantity

Z:Pid%‘ = ; JxdBs [4.14]

i

is a canonical invariant. The integral of this quantity around any closed curve on
the invariant toroid is then a constant of the motion even if the curve is not a
trajectory. In the surface-of-section method, a particular set of closed curves is
selected so that each cuts the torus in a manner topologically equivalent to one of
its distinct invariant circles Cy as previously illustrated in Figure 4.1. The resulting

constants must be the associated actions:

1
Ji = o i‘:‘ ;P:‘d%'- [4.18)

For simple boxes like the one in Figure 4.2, the planes z = 0 and z = 0 achieve this
with curves along which the integrals [4.15] can be conveniently evaluated.
Numerical construction of these curves takes place as a trajectory unfolds
in time; the values of p, and z are recorued each time the point passes through
the plane ¢ = 0 with a given direction (p, > 0, say). These points are then

plotted on the (2, p,) plane resulting in a surface-of-section plot. A similar procedure
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Figure 4.2: A typical boxlike trajectory is plotted for E = 24.0 c.e.u. & 1470 cm™!
and f; = 0.3. See Section 4.3 for a definition of f.
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CLASS:CAL TRAJECTORY

Figure 4.3: A typical 1:1 resonant family trajectory is plotted for
E = 240 ceu. = 1470 cm~! and f; = 0.6. See Section 4.3 for a definition of

fz.
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is carried out for the z = 0 plane. For a quasiperiodic box-like trajectory, the
corresponding surface-of-section points eventually delineate a closed curve on each
(¢, p) plane; if the motion is exactly periodic, the points are isolated. Figure 4.4
and the composite diagrams of Figure 4.6, shown for the sequence of trajectories
paraded in Figure 4.3, illustrate the types of closed curves that can be generated.
More complicated trajectory projections have correspondingly more complicated
surface-of-section curves. In simple box cases, actions are calculated by applying
[4.15] to the closed curve on each surface; for example, at = = 0 the section points

(z,p:) form a curve C; with dz = 0 so that

1
Jo= o fb pud [4.16)

The integral is the area enclosed by the curve. Irregular motion is characterized
by surface-of-section points that no longer lie on a single closed curve but form a
“shotgun” pattern that can no longer be accurately integrated; Einstein’s invariant
[4.14] does not hold and constants of the motion do not exist.

Marcus and coworkers [29] have shown that in more complicated cases it is
often possible to select surfaces-of-section such that the closed curves are simple and
the associated actions can be conveniently calculated. In all cases where actions have
been determined in this thesis, the surface-of-section method is used successfully by
cutting the toroid with suitably chosen planes passing through the origin.

In principle, as Equations {4.11] imply, the frequencies of motion w; can be
found from Fourier transform spectra of dynamical variables. Ezra and coworkers
[34] have used the Fast Fourier Transform (FFT) method on trajectory data to
illustrate how the Fourier spectrum changes when a transition to irregular motion
occurs. While we were able to use the FFT method to obtain frequencies in this

manner, we found that they are most reliably determined by a method using surface-
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of-section data, and also provide thereby an important criterion for selecting distinct

toroidal sections.
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4.3 Technical Methods

Hamilton’s equations {4.2] were solved by numerical integration starting from spec-
ified inital conditions (g7, p}). Essentially all trajectories studied here were initiated
at the origin (z,z = 0,0). While there are trajectories which never pass through
the origin, they are not included within the scope of this work. At the zero of the

potential, the total energy is simply the sum of the momenta squared,

Etotal = (pg)2 + (Pg)2 ) [417]

so that fixing the energy and one other parameter will suffice to specify the tra-
jectory and the constants of the motion completely. This parameter is chosen, as
suggested by Marcus et al [31], to be the initial fraction of the kinetic energy in the

z-oscillator,

p2
= =, 4.18
f E!otcl [ ]

The parameter f., of course, is not a constant of the motion but is oscillatory over
the trajectory’s path. The initial momenta (p2,p) are chosen non-negative.

The differential integrator used for this purpose is based on the extrapo-
lation predictor/corrector algorithm developed by Bulirsch and Stoer [36] to solve
coupled first-order differential equations (FORTRAN subroutine DIFSYS). This
routine is able to vary the local step-size in response to the behaviour of the equa-
tions being solved. We use it to integrate from one fixed time-point to the next
with spacings of 0.01 or 0.02 time unifs (= 20-40 points over a typical period of
motion in either coordinate; frequencies wy usually lie between 15.0 and 35.0). Pre-
cision errors in the sequential values of (g;, p;) were controlled by a parameter in the
program and maintained at a relative value of 1x10~°. Poincaré surface-of-section

data were generated by establishing the planes of intersection and integrating the



117

equations of motion from the nearest logged trajectory data point to the point at
which the surface of interest was crossed. The guaranteed tolerance of error in the
distance from the plane was less than 1x10~? distance units (1x10~'° time units or
better). The transit time of the intersection and the momentum and coordinate
(q,p) in the section plane were then recorded as data.

Following the procedures of Ezra et al [34], we at first employed the Fast
Fourier Transform (FFT) method [35] to determine the frequencies of motion from
the trajectory data. However, these were subject to significant error due to “win-
dowing” and “biasing” errors inherent in the FFT algorithm. In fact, the precision
error in the fundamental frequencies for regular motion obtained by FFT methods
was no better than that obtained by running the trajectory for the same period,
locating all surface-of-section transit times, and averaging these without weighting.
Much more accurate estimates of the period of motion are obtained by selecting
only those transits which retsarn close to the origin with momenta near their initial
values at ¢ = 0 — hence, corresponding to near-recurrences on the toroid. The
total time elapsed at a transit is divided by the number of complete cycles through
the surface of interest to give an estimate of the period transverse to it. Weighted
averages of these values provide associated frequencies with relative errors between
5x10~7 to 1x10~°, usually 2-3 orders of magnitude better than the result obtained
by FFT. Since all of the data used are also required for computing actions, frequen-
cies are obtained at little extra cost and, in addition, provide a convenient test that
the surfaces used are indeed topologically distinct sections of the torus. Frequencies
determined by this procedure aze sufficiently accurate that further refinement of
their values is not required though, in principle, an additional improvement could
be obtained if Fourier series exgpasions for the dynamical variables are also known.

Figuse 4.4 shows two characteristic types of Poincaré surfaces encountered
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in this work. The first closed curve (a) is bilaterally symmetric about both ¢ = 0
and p = 0. This is an z = 0 surface-of-section from the simple box trajectory given
in Figure 4.2 which also shows two mirror planes. The second curve (b) is one
section from the complex trajectory of Figure 4.3 with only a centre of symmetry.
The plane of section is normal to a vector oriented at an angle of 26° to the z-axis
which is essentially the direction of the pronounced valley on the potential surface
maps shown in Chapter 1. The resulting closed curve is bilaterally symmetric about
q = 0 but not about p = 0. Two closed curves are actually seen; the second is a
mirror image of the first and is made up of data collected for transits of the section
plane in the reverse direction; after reflection about p = 0 it serves to augment the
data base for the first.

In both cases, the integral [4.15] to be computed is proportional to the
enclosed area; this integration proceeds as described below.

(1) It is important to normalize the input data by dividing with the max-
imal values since the magnitudes of the two axes are very different;
hence, § = ¢/qmas 20d § = p/Pmas-

(2) If the curve is of type (b) such that it shows a mirror image, all points
are reflected into the single curve taking full advantage of available
data. As both types of curves have reflection symmetry about ¢ =0,
surface data is folded across the coordinate axis. Further folding

(across the momentum axis) is performed for curves of type (a).

(3) Since the data (g,p) will not come from the integrator in any ar-
ranged order, the next step is to sort the points with respect to
some continuous variable. For each scaled point, (§,5), an angle

¥ = arctan([j/p] is computed which runs 0 < ¥ < /2 for type (a)
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and 0 < 9 < 7 for type (b). A scaled square radius p* = p* + §* is
also computed.

(4) It is necessary to ensure that a point is fixed at each limit. Since
the trajectory is started at the origin, the point at g =0 with p > 0
is known precisely as the initial condition data for both types, but
the point ¢ > 0,p = 0 for type (a) or ¢ =0,p < 0 for type (b) needs
to be determined numerically. A restricted set of data points about
the needed point is fit to a low-order power series and interpolation

provides the new data point. It is then inserted as the first point of

the 9 ordered set.

(5) Scaled sets of § and p data are fit to Fourier series appropriate for
their symmetry properties in 9 and the integral is evaluated ana-
lytically. Another independent method that should yield the same
result for the action is to fit the scaled radius g? as a Fourier series
in ¥ to extract the constant term as the area enclosed. Comparison
of these methods provides a measure of the precision of the compu-
tation which lies normally between 5x10-% and 1x10~®, though this
can vary with the magnitude of the action and the orieatation of the
section plane. Cases of irregular motion can be readily identified by

the poor quality of the Fourier fits above.

The Fourier series [4.11] for the variables (z, 2, pz,p:) were constructed
as a useful tool for comparison of trajectories obtained by other methods (such
as the canonical perturbation treatment of SCF trajectories described in Chapter
5). If precise frequencies are known, this can be accomplished for any d;aimival

variable. For each data point on a sufficiently long trajectory run, determine tiae
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angle variables

b =wt; Oy=wit (mod2rm). 4.1

A set of expansion indices (ki,k;), adequate for the symmetry and compliity of
the trajectory, are selected. The coefficients are then fit to the data by the nivihod
of linear least squares. Systematic errors in the frequencies will cause the data
points later in time to be less reliable and usually a set of 4000-8000 points at most
is best; the r.m.s. deviation in the fit clearly deteriorates when more are used.
The precision error is estimated by the r.m.s. error in canonicity measured by the
comparison of an actual fit to the momentum variable with the form calculated by
equation [4.12]. A further check on the significance of the expansion coefficients
is obtained by computing the actions Jj, J; analytically by equation [4.14]. Both
criteria were well satisfied. In most cases, the resulting coefficients fit the canonicity
requirement to better than 1x10~7 and actions typically agree with those obtained
by the surface-of-section method to 5x10-2 or better. The relative uncertainty in
the Fourier expansion coefficients themselves ranges from 5x10~* down to about
1x10~% or even 5x10~ in highly favourable cases.

For any continuous domain of regular motion for which actions exist,
there is a relationship between the trajectory’s initial conditions E, f and the set of
actions Jy, J, such that values may be interpolated from known points. An iterative
method allows a trajectory specific for a given set of actions to be determined to

any desired accuracy for regular motions.
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4.4 Trajectory Analysis

This study of clessical dynamics originated in an attempt to use methods of classical
bound state theory to compute vibrational eigenvalues for the proton motion in the
[FHF]~ zodel system. The quantum mechanical calculations of Epa and Thorson
[2] had shown that the SCF approximation yields eigenvalues for the first fw en-
ergy levels which very closely approximate the true eigenvalues, indicating that the
system might be in some sense “separable” for these low-lving energies. Perhaps
naively, we therefore expected that the methods reviewed by Marcus et. al. [22,23]
would allow the determination of the ground state and first few excited states be-
fore the essential nonseparability of the system would produce widespread irregular
motion. While the simple boxlike quasiperiodic trajectories discussed in the above
literature did appear in a fragmented way, new families of quasiperiodic trajectories
involving strong reorganizations of the motion also appeared. Moreover, irregular
motion emerged prominently at very much lower energies than expected. To study
these phenomena in their simplest terms, we decided to avoid the complications
introduced in the [FHF]~ system, by the azimuthal angular momentum and prolate
pheroidal coordinates, by simplifying the mode! problem to the two-dimensional
Cartesian model H(z,z; R). As expected, the simplified model shows essentially

the same phenomena as follows:

In a study of the ground state, which is so obviously identifiable as
the SCF level (n.,n,) = (0,0) in quantum calculations, classical bound
state methods were applied successfully for a continuous range of values
3.80 £ R £ 4.35 by the usual rules (J; = n;+1/2; : = z, z). Eigenvalues
agree very closely (1-2 cm~!) with those found by the Classical SCF
(CSCF) method with semiclassical quantization, developed in Chapter
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3. The differences are of the same magnitude as corresponding differ-
ences between exact quantum eigenvalues and quantum SCF eigenvalues
for the same state. This tends to support the idea that the motion is
somehow separable. However, for R > 4.40, it is impossible to determine
classical bound state eigenvalues, even for the ground state, because box-
Like trejectories with required values (J;, J:) = (1/2,1/2) do not ezist.
Instead, the motion is completely reorganized in one of the prominent
potential valleys lying at 26° to the z-axis. In addition, a region of ir-
regular motion surrounding the “seam” or bifurcation between the two
types of motion begins to spread as R increases.

Attempts to study the first and second excited states (which cor-
respond closely with the SCF levels (1,0) and (0,1) in quantum cal-
culations) are even more disappointing. At small R-values, there are
additional strong reorganizations of the motion (apparently associated
with higher order resonances) at energies close to the first excited level.
While there remain irulated domains in R where quantization of box-
like trajectories yields eigenvalues for these levels, they are interrupted
frequently by these resonances, by the reorganized 1:1 motion already
seen at the ground state energy, and by associated seams of irregular
behaviour at boundaries separating distinct motions. At energies above
that of the second excited state, the motion is so disrupted by chaos
that no coherent results can be obtained.

This unexpected result makes clear the first conclusion to be drawn from
this study, which is that classical bound state methods have little practical utility
as a scheme for computing vibrational eigenvalues for molecules with significantly
anharmonic and nonseparable potential surfaces. In fact, not even the ground state
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can be located effectively. This is in sharp contrast with Classical SCF calculations
of semiclassical eigenvalues for such systems which (as shown in Chapter 3) give
a good qualitative account of at least the low-lying energy levels of the system.
It appears that classical bound state methods may be less effective for molecular
vibrationai systems shuwing strong anharmonicity and nonseparability if the present
system is at ali representative.

Therefore the remainder of this study is aimed at understanding this very
different behaviour of classical dynarnics and, if possible, relating it to corresponding
phenomena in the quantum mechanics of the same system. Hence interest focusses
not on the quantization of trajectories or the rules for doing so, but on the dynamics
itself and its relation to other descriptions, both ciassical and quantum mechanical.
We will pay particular attention to the strong reorganization of the motion about the
potential surface valley, which is found even at the energy of the ground state, and
its relation to curve-crossings or Fermi resonance phenomena seen at much higher
energies in the quantum mechanics of the system. While the entire region below
E = 70 c.e.u. has been broadly surveyed for 3.80 < R < 4.50, detailed investigations
CSCF energy levels: E® =~ 24.0 ce.u.,E' ~ 46.0 ceu.,, E® = 56.0 ce.u. All
the phenomiena of specific interest to this study are adequately displayed by these
samplings.

Previous sections of this chapter have emphasized analytical understand-
ing of regular motion. However, as has been stressed by several authors [37), con-
ceptual understanding has been greatly accelerated by computer graphics display
of trajectories and other pictures arising from them. Through modern computer
graphics, the trajectory may be observed as it unfolds in time, and the character-

istics and limiting properties of the motion can be inspected visually. Correspond-
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ingly, a pictorial presentation of results rather than a focus on formal, analytical
information can convey most effectively an understanding of essential aspects of the
problem, and also provides a framework for deeper appreciation. Still further in-
sights are provided by a dynamical generation of trajectories which cannot be easily
visualized in the static “snap-shot” presentations. It is impossible to share these
fully in context of a written document; in such cases, we shall have to rely on a
combination of pictorial and analytical information with text commentary.

Figure 4.5 presents a sequence of trajectory projections on the (z, z) plane
for R = 4.30 a.u. and E = 24.0 c.e.u. (near the CSCF ground state). The chosen
trajectories all pass through the origin (0,0) and are shown with increasing param-
eter f., the fraction of initial kinetic energy in the z-oscillator (0 £ f; £ 1). For
f. = 0, the trajectory (not shown) corresponds simply to periodic oscillation on
the z-axis; for 0 < f, < 0.56, a series of boxlike quasiperiodic trajectories appears.
Even though they exhibit an increasing distortion of the caustics into a “butterfly”
shape, all retain two mirror planes (z = 0,z = 0) and exhibit full C;, symmetry.
At f, = 0.5678, a complete change called a bifurcation occurs and a strongly re-
organized family of trajectories appears in the region 0.56 < f: < 0.98, which is
quasiperiodic but not related to the box family in any obvious way. We call this the
1:1 resonant family of regular motions; at its centre lies a simple periodic trajectory
with f, & 0.795 which corresponds to a resonant, in-phase oscillation in both z and
z. The resonant trajectory is nearly a straight line and lies almost exactly in the
direction of the pronounced potential surface valley at 26° to the z-axis. Finally,
another bifurcation (not seen in the figure) occurs at f ~ 0.983 and simple boxlike
trajectories reappear in the rest of the region, ending with periodic oscillation on

the z-axis for f, = 1.00.
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Figure 4.5: Classical trajectories at R = 4.30 a.u. and E = 24.0 c.e.u. for a series
of f, values (0.05 to 0.80 in 0.05 steps) on the (z, z) plane.



fx 0.05
CLASSICAL TRAJECTORY

g
@
g..
(=]
gg
go
o
&) V
q
3
Q-
<
q-o.zo 312 004 004 012 020
X(T)
fx = 0.15

\\

CLASSICAL TRAJECTORY

O et e LN IS Y

, ".';~:\“\\‘~
I OSIRRNS
RS R
R RN
QUL

ORI
0 9.9.9, ‘0 Y,
‘qp‘pq‘
*&
§\

R
Qs’

/\../\‘

20 .12 0%
X(T)

Z (T)

3-

fx = 0.10
CLASSICAL TRAJECTORY

84
S
&
(=1
=1 il
(-] ) 4
000K
& AN
?'
3!
012 04 004 0. 0
X(T)
£x = 0.20

CLASSICAL TRAJECTORY

”1 A
0 ‘&V&“
‘0 0

o“o '0‘

’l\ ‘ ’
'\i“\

0

’

025 015 005 005
X(T)

05 02



Z(T)

Z(T)

fx

= 0.25

CLASSICAL TRAJECTORY

fx = 0.30
CLASSICAL TRAJECTORY

g 1
S S
S [—]
& 38
© =° N
; p 4
=1 >
< E
S 3
® <
g g
< Sl
To40 024 -008 008 024 @  pw do J8 obs 0% oA
X(T) X(T)
fx = 0.35 £x = 0.40
CLASSICAL TRAJECTORY CLASSICAL TRAJECTORY
g
g.d
[—]
&4
- 0‘:‘0’0
0000 ) ‘s
g_ “‘VQ et ‘Qa”&’
3|
<
q N Y,
040 024 008 058 02¢ 040



129

fx = 0.50
CLASSICAL TRAJECTORY

fx = 0.45
CLASSICAL TRAJECTORY

&,
X/
"0&\ “~o
00\500\\\
0&»&5
I s\\ v\\

0.40

024

0.

040 024 -0.08

0. 0 0.

24 008

ov0 +C0 800 800 +T0-  OF

ql
-0.40

X(T)

X(T)

fx = 0.60
CLASSICAL TRAJECTORY

fx = 0.55
CLASSICAL TRAJECTORY




130

fx = 0.70
CLASSICAL TRRJECTORY

fx = 0.65
CLASSICAL TRAJECTORY

0.10 30 050

<0.10

0

30 010 010 030 050
X(T)

05

T0-

X(T)

.80

0

b 4

4
CLASSICAL TRAJECTORY

.75

fx = 0
CLASSICAL TRAJECTORY

§TO

(L)z

0.40

0

030

o.io
X(T)

05 030 -olo



131

Poincaré surfaces-of-section for the planes z = 0 and z = 0 are shown in
Figure [4.6] for the series of trajectoriés described above. This composite diagram
contains sections from all of the families introduced through the series. The boxlike
trajectories have sross-sections that possess mirror symmetry about both ¢; = 0 and
p; =0, and the planes present topologically distinct sections of the toroid for this
family. This is confirmed by the distinct frequencies computed from transit times for
near returns to the origin. Sections for boxlike trajectories with f= > 0.983 are not
seen in the plot but show the same behaviour and same symmetry characteristics.
In these, cases, the areas enclosed by the surface-of-section curves for each plane
determine the values of the actions; the area enclosed on the plane z = 0 provides
J: whﬂé that for z = 0 provides J.. The notation (J,J:) is clearly appropriate
and there is a one-to-one relation between the specifying parameters (E, f;) and

the constants of the motion.
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In the regions where motion belongs to the 1:1 resonant family, the Poincaré
surface-of-section curves have been split into two libes which are mirror images of
each other. One of them corresponds to transits of the plane in a positive sense
and the other in a negative sense. Strictly speaking, therefore, only one of the pair
should be considered. We shall see that the planes £ = 0 and z = 0 do not present
topologically distinct surfaces-of-section for the 1:1 resonant family of motions.

Fourier analysis of the dynamical variables (z, z, p,, p;) clearly reveals the
characteristic symmetry of the boxlike family of motions. This symmetry is dis-
played in the coefficients shown in Tables 4.1 and 4.2 for the case f; = 0.3. For r
and p., k. is odd and k, is even, while the reverse holds for z and p,. The strongj,
distorted "butterfly” trajectories seen near the bifurcation are still a part of the
boxlike family. If the only terms present in the Fourier series were those with even
index equal zero, the resulting trajectory projection would be a rectangular box
on the (z, z) plane. The distortion to a butterfly shape is produced by substantial
terms in which neither index is zero. It is useful to compare the magnitudes of coef-
ficients in Tables 4.3 and 4.4 with those given for more rectangular boxlike motions.
For all the boxlike trajectories, actions computed using Poincaré surface-of-section
data are reconfirmed to an accuracy of accuracy of 1x10~% to 1x10~° by explicit
calculation from the Fourier coefficients. Values for both calculations are given in
Table 4.5. It is interesting that, while the Fourier fits show a r.m.s deviation of
about 1x10~%, the actions are known so precisely. This is analogous to the well
known fact in quantum mechanics that energy eigenvalues are always known to
higher accuracy than the associated wavefunctions.

We now discuss the 1:1 resonant family of quasiperiodic motions. Poincaré
surfaces-of-section for z = 0,z = 0 do not form topologically distinct sections of

the toroid (as frequencies obtained from near returns to the origin agree within



2D — Coefficients X

X] 2 Z | 2D — Coefficients

1| 0] 3.03665958 x10~1 || 5| 2| 3.86591912x 10~

3| 0]-3.23586780x10"* | 5| 4|-4.11127671 x 10~°

5| 0| 2.41553576x10~% || 5| 6|—5.23696008 x 10~1°
7| 0] 1.87204141x10°* | 5| 8|-—6.50517039 x 10~°
9| 0}-5.60406539 x 10~1° i 5{-2| 307060660 x 10-8

11| 0| 1.59663589 x10~°} 5|—4| 1.91413273x10*

1] 2| 1.91215661x10~3 | 5|—6| 1.73411050 x 10~°

1| 4]-3.19202319x10"% | 5|—8|—3.54143542 x 10~7

1| 6| 6.59283717x10°7 | 7| 2| 8.33484319 x 1071
1| 8}-1.45614504%10-% || 7| 4| 7.95905761 x 10~*°
1| 10| 279718898 x10~°f| 7{ 6| 6.33881557 x 10~1°
1| 12{-1.00067187 x 10~ || 7|-2| 5.84458007 x 10~7 .
1| -2| 1.74293418x10°% § 7|4 !-7.17608372x 10~
1| —-4|-9.21186820x10~% | 7| -8

1| -6| 2.64191155x10°% | 9| ° |
1| -8|-8.15727604x10~% § 9| 4 U876 x 1010
1|-10| 2.89634030 x10-° | 9|—2 | —6.0163510% x 10-?

1|-12]| 2.34370401 x10-°f| 9|—4| 4.00273000 x 10~7

3| 2| 2.00076123x10~% [|11| 2| 1.37074564 x 10~
3| 4|-5.85542005 x 10~7 | 11| -2 —3.73927356 x 10~°
3| 6| 1.83907678 x107®

3| 8|-1.26930273 x 10~'°

3| 10{ 4.73694950 x 10-1°

3| -2| 3.81624635x 102

3| -4| 4.89130197 x 10~*

3| -6|-—5.66334364 x 10~°

3| -8| 1.80240709 x 10~7

3| -10| —-7.81829760 x 10~*?
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Table 4.1: 48 X-oscillator 2D-coefficients at E = 24.0 c.e.uw., R=4302.u, f; = 0.3:
Fundamental Frequencies: w, = 21.803706292  ;w, = 28.069912655
at r.m.s.= 5.0672610-* with maximum deviation= 1.4402210~*



X | Z|2D — Coefficient X | Z]2D — Coefficients
01 1| 2.64667703x10T] 2| 5| 2.40180538 x 10~°
ol 3!1-5.07032822x10-*§ 4| 5| 1.81811708 x 10~
ol 51 1.01696915x10~*| 6| 5| 1.40544459 x 10~°
0ol 71-2.15065537 %10} 8| 5|—1.70679598 x 10~°
ol 9| 5.00901546 x 10~ 2| 5| —3.58010657 x 10~*
0l11] 237041020 x10° | —4| 5| 2.49555473 x 10~*
01131 2.62369402 x 10-° | =6 | 5| —~3.48387157 x 10~°
9| 1| 2.06474930 x 10-3 | =8| 5| —3.01305757 x 10~
4! 11 -8.01561320 x 10-7 || 2} 7|-7.31142044 x 10~
6| 11-5.67866614x10-8| 4| 7| 1.49876604 x 10-1°
sl 1] -492710273x10° | 6| 7|-6.26747189 x 10~°
10] 1] 3.48394796 x10-° || -2 7| 1.18455459 x 10~°
-2! 11 -1.06140087 x 10-2 | -4 | 7|—1.84487770 x 10~°
—4] 1] -2.64276750x10~* || =6| 7| 1.00412424 x 10~%
-6! 1| 5.74406834 x10-7 2| 9]-8.16202266 x 10~'°
-8| 11-1.65881414x10-% || 4| 9| 273890652 x 10~°
-10] 1| -3.47107619x 10~° || —2| 9| —3.65028119 x 10~7
9| 3|-7.50068665x10~5 || -4| 9| 8.74256146 x 10~7
4| 3! -287532850 x 10~7 | 2|11} -3.53155992 x 10~°
61 31 5.32174364x10~° | -2|11| 7.22887301 x 10~°
8| 3| -3.15923183 x 10-° || —4 | 11 | —3.13190236 x 10~*
10] 3| 3.21874396 x 10-° || -2 | 13 | -2.56912691 x 10~°
~2| 3| 7.78750257 x 1073
—4| 3|-3.49388544 x 10-4H
—6| 3] -4.20074437 x 10~%
-8| 3| 1.34317852x 104
-10] 3| 1.62216266 x 10~
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Table 4.2: 49 Z-oscillator 2D-coefficients at E = 24.0 c.e.u., R = 4.30 a.u., f, == 0.3
Fundamental Frequencies: w, = 21.803706292  ;w, = 28.069912655
at r.m.s.= 1.8642310~* with maximum deviation= 5.5610610~*



X Z | 2D — Coefficients X | Z|2D — Coefficients

1 01 3.60358050x 10~'{ 5| 2| 8.82044318 x 10°°

3 01-5.14351002x 10~* }§§ 5| 4] 1.07702975 x 10~

9 0| 3.12438039x10-¢l 5| 6{—1.01350357 x 10-7

7 0! —-7.08855684 x 10~2 | 5| 8| 6.65601796 x 10-8

9 0]-1.03912268 x 10~7 | 5| -2 —8.13785085 x 10-5
11 0|—1.08048741 x 10~7 i 5| -4 1.84597031 x 10°3

1 2| 1.71068550 x 10-3| 5{-6| 6.23005583 x 10~

1 41-1.01948606 x 10~5 | 5| -8 | —1.08503980 x 10~°

1 6! 1.64586471 x10=7{ 7| 2} -1.70349076 x 10-8

1 8| -5.42036008 x 10-8 || 7| 4| 6.94101083 x 10~°

1! 10| 9.20548238x 10-*|| 7| 6| —9.95980500 x 10-8

11 12| -1.04080821 x 10-7 || 7|-2| 1.33722401 x 10-8

1| =2| 3.70469430 x 10-2 | 7| —-4|-2.16243752 x 10-%

1| -4]-3.16839001 x 10~* || 7|-6| 3.07596139 x 10~

1] =6 3.62172845x 10%H 9| 2| 4.84814297 x 10~8

1| -8{~-7.11106061 x 10-* || 9| 4| 1.09231030 x 10-*

1]-101~1.08939172x 10-7 || 9| -2 1.63846971 x 10~7

1]-12] 8.19043489x10-%]| 9|—-4| 243566373 x 10~7

31 2| 2.38042246x 10~% 11| 2| 9.16467129 x 10-%

3] 4|-4.40777653x 10~7 11| -2| 9.97578143 x 10~

3 6 | -5.95017103 x 10~

3 8| 1.02247440 x 10™°

3| 10| 4.78290716 x w-e

3| —21- 131065593 x 16~ 1

3| -4| 4.38789432x 10~

3| -6|-5.79037750 x 10~%

3| -8| 2.61902616 x 10~°

3| ~10| —1.78897556 x 10~7
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Table 4.3: 48 X-oscillator 2D-coeflicients at E = 24.0 c.e.u.,R = 4.30 a.u.,f; = 0.55:

Fundamental Frequencies: w, = 22.536420579

swe = 25.418120155

at r.m.s.= 3.0515410~* with maximum deviation= 1.1120110~3



X | Z]2D — Coefficient X | Z|2D - Coefficients
0| 1| 2.10938447x 10~'|| 2| 5| 1.65953764 % 10~°
0] 3}-3.15320836 x 10~ || 4| 5| 3.31631020 x 10~
0| 5| 3.29776024 x 10~*| 6| 5| —-1.59647752 x 108
0] 7|-1.01552374 x 10~ {{ S| 5| -3.49162544 x 10~
0| 9] 1.80177105x 102 || -2| 5| —-1.18017505 x 10-3
0111 2.11375637x 10~°(| -4| 5| 443780397 x 10-3
0]13|-2.86117598 x 10~2 | -6 | 5| —3.10609687 x 10~*
2] 1| 249169521 x 1073 | -8 5| —3.32072531 x 10~%
4] 1| 5.61262454x10°¢|| 2| 7|—7.98093301 x 10~*
6] 1]-1.70624744 x 10~ || 4| 7| -3.46351801 x 10~
8| 1{-4.42624545x10°% | 6| 7|-1.28503812 x 10~
10| 1]|-1.98306850 x 108 || =2| 7| 2.71385010 x 10—
=2| 1|-1.05805347 x 10~2 || —4| 7| -3.03050954 x 10~*
-4 1|-4.15780911 x10~* | -6| 7| 6.70792181 x 10~*
-6 | 1]-9.56880588 x 10~7 || 2| 9| 4.20133034 x 10-*
-8| 1| 2.54889988 x 10~ ]| 4| 9| 4.47389917 x 10~
=10 1| 127251754 x 10~% || -2 | 9| —4.63247283 x 10~7
2| 3|-7.05661147 x 10~5 | —4| 9| 1.08041867 x 10~%
4] 3|-5.10624707 x 10-7 | 2|11 |-2.13382059 x 10~*
6| 3| 4.58622717x10°% | -2|11| 3.19220486 x 10~*
8| 3| 4.69722806 x 10~ || -4 | 11 | -2.40181554 x 10~7
10} 3| 3.95717987 x 10~% || -2 13 | —4.24366018 x 10~*
-2| 3] 3.00177840 x 10~?
-4| 3{-1.71537525 x 103
-6| 3| -1.09506349 x 10~*
~-8| 3|-2.19882867 x 107
-10{ 3| -4.85263976 x 10-®
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Table 4.4: 49 Z-oscillator 2D-coefficients at E = 24.0 c.e.u.,R = 4.30 a.u.,f; = 0.55:
Fundamental Frequencies: w, = 22.536420579  ;w, = 25.418120155
at r.mz3.= 1.5982610~* with maximum deviation= 9.9097310~*
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0.493588064
0.387735007
0.363886378

139

Table 4.5: Actions determined by Poincaré surface-of-section integra.tion.and by
explicit calculation from the Fourier series for a series of boxlike trajectories near
the ground state are compared. The associated frequencies are also provided.
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statistical error). It also would follow that the area enclosed by one of the lobes
(as shown in Figure 4.6), for either plane, would give the same constant of motion.
To obtain topologically distinct sections of the toroids for this family, 'we rotated
the planes of section to a plane (q; = 0) normal to the periodic 1:4 trajectory at
J= = 0.795, and a plane (g, = 0) at right angles to the first one. Poincaré surfaces-
of-section are shown for the planes ¢y = 0,¢, = 0 in Figure 4.7 for the trajectory
with f, = 0.6. The two closed curves shown correspond, respectively, to transits of
each plane in positive and negative senses. Only one curve in each case should be
used to evaluate the actions as the enclosed areas. We denoted the action obtained

from the plane q; = 0 as J; and from the plane ¢, =0 as J,.

The asymmetry seen in the closed curves of Figure 4.7 implies that a
single trajectory possesses two distinct momentum vectors (p,p ') passing through
the origin with positive components (pz,p.) and (p.,p.). This means that one
and the same trajectory corresponds to two values of the parameter f;, one on
each side of the 1:1 periodic trajectory at fr ~ 0.795. For f, = 0.6, for example,
the alternative f; value is 0.9612. Thus, f; is not a single-valued function of the
constants of motion (Jy, J;), which makes it inappropriate as a parametric variable
for this family. Table 4.6 shows the actions Jj, J; and frequencies wy, w» as a function

of f. for the region 0.568 < f, < 0.983.

The difficulty in using the f; parameter as a running variable across the
phase space at a given energy is illustrated in Figure 4.8. This shows the classical
action data from Tables 4.5 and 4.6 for E = 24.0 c.e.u. and R = 4.30 a.u. as a
function of the parameter f;. Actions Jy, J; for the 1:1 resonant family must be
sharply distinguished from the actions J;, J, appropriate to the box family. Data
for corresponding frequencies are displayed in Figure 4.9. The double-valuedness in
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Figure 4.7: The Poincaré surfaces-of-section from a rotated coordinate axis frame for
a resonant quasiperiodic trajectory at R = 4.30 a.u., E = 24.0 c.eu., and f; = 0.6.
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22.514132365 |

22.726222558
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24.502518620
25.066392964
26.413373524
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27.877660557
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27.839640121
27.510532290
26.736118932
26.456487342
26.068966404
25.382708513
25.261080153
25.101163209
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0.983 |l 0.0914099385 | 0.12298309200 || 23.123369912 | 24.847087021

i f: J;F'ounef JF ourter
"'0.600 0.962208881 | 0.0806378080
0.700 || 1.037527650 | 0.0176540225

Table 4.6: Actions and frequencies are given for the 1:1 resonant family at
E =24.0 c.e.u.,R = 4.30 a.u. and over a range 0.568 < f, < 0.983.
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f. is evident. Note that the two frequencies w;,w; take their extreme values at the
periodic attractor. The bifurcation point is indicated by the apparent aiscontinuities
of both actions and frequencies. This discontinuity shows that the two sets of
constants of the motion are not simply related. On the other hand, it is observed
in the figure that the sum of the actions J; + J: or J1 + J2 is continuous across the
bifurcation.

As is shown in Figure 4.5, the 1:1 resonant family of motion has trajectory
projections with a lower symmetry; they are centro-symmetric but have lost the
full C;, symmetry of tiwe box family. There is an exactly equivalent set of 1:1
trajectories which are mirror images of those shown in the figures and correspond
to motion in the mirror image potential valley. Accordingly, the Fourier series for
dynamical variables z, z, p., p; show reduced symmetry properties. While the sum of
the indices k,, k; is necessarily odd to preserve central symmetry, there is no longer
any parity restriction on either index alone. Tables 4.7 and 4.8 show the coeficients
for f; = 0.6. Again, the actions Jj, J» obtained explicitly from the Fourier series
agree with the Poincaré surface-of-section area calculations (to within 1x10-7).

An interesting way of depicting the reduced symmetry of this family is
to construct “correlation tracks”. An average of the variables z and z over either
angle (6;,6,) leads to two tracks in the (z, z) plane defined respectively by (< z >y,
,< 2 34) 0r (< £ >4,< z >g,). For the boxlike family, these tracks are identically
the z and z axes, which is a result of the symmetry of the Fourier series. Figure
4.10 shows the tracks for the trajectory at f; = 0.6. They are neither orthogonal

nor are they exactly straight lines.

The region in the neighbourhood of the bifurcation between boxlike and

1:1 trajectories is of particular interest to this work. Figure 4.11 shows a series
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Figure 4.8: Classical actions J. and J, plotted against f; = (0, 1) at
R = 4.30 a.u.,, E = 24.0 c.e.u. The points marked with an ‘X’ indicate the sum
of actions (Jy + Jz) or (J: + J;) which appears to be continuous across the bifurca-
tion.
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Table 4.7:
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71 X-oscillator 2D-coefficients at E = 24.0 ¢ e.u.,, R = 4.30 a.u., f, = 0.6:
Fundamental Frequencies: w; = 22.806343215
at r.m.s.= 7.6637810~% with maximum deviation= 2.9930710*

1wy = 26.413337926
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Table 4.8: 77 Z-oscillator 2D-coefficients at E = 24.0 c.e.u., R = 4.30 a.u., fy = 0.6:
Fundamental Frequencies: w; = 22.806343215  ;w. = 26.413337926
at r.m.s.= 1.4604510* with maximum deviation= 6.2538810*
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Figure 4.10: A depiction of the nonorthogonal average tracks obtained at
R =4.30 a.u., E = 24.0 c.e.u., and f, = 0.6.



149

of trajectory plots near the bifurcation at f; = 0.5687 for £ = 24.0 c.e.u. and
R = 4.30 a.u.. While it is known from general theory [38] that at least a seam
of irregular or chaotic motion must exist at the bifurcation between two distinct
quasiperiodic families, this seam was undetectable here, with a width in f; smaller
than 10~%. In the neighbourhood of the bifurcation, the dynamics undergoes a
sequence of changes that can be observed statically in Figure 4.11, but are best
seen dynamically (using computer display). A relatively large proportion of the
trajectory (in time) is concentrated in an elliptical motion about the origin, which
appears prominently in trajectory plots on either side of the bifurcation. In this
region we used Fast Fourier Transforms (FFT's) of the dynamical variables (z,2)
to see if the results show any evidence of this elliptical motion. Table 4.9 present
FFT frequencies and associated peak heights for trajectories with fr values lying
on either side of the bifurcation and near to it. Numerous smaller peaks and the
broadening of the “fundamentals” seem to appear only in the neighbourhood of the
bifurcation where the elliptical motion is also prominent. This elliptical motion is
an important transitional motion between the two stable quasiperiodic families of
motion. Further clarification of its meaning will be given after the discussion of

work presented in Chapter 5.
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Figure 4.11: Classical trajectories at R = 4.30 a.u., E = 24.0 c.eu. for a series of
f- values between 0.5 and 0.6 on the (z, z) plane.
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Examination of this transitional behaviour is not as feasible at higher
energies or larger R-values than 4.30 a.u. because the seam of chaotic or irregular
motion at the bifurcation expands rapidly. For R = 4.30 a.u., the seam has a width
Af, =~ 0.05 by E = 46.0 c.eu. and Af; ~ 0.1 at 56.0 c.e.u.; at 70.0 c.eu. this
has grown to more than 0.30. Figure 4.12 maps out domains of boxlike and 1:1
quasiperiodic motions and chaos on the (E, f;) plane at R = 4.30 a.u.; note that
the portion of the region occupied by the 1:1 resonant family expands as E increase,
the bifurcation meving to lower f; values. In general, even at low energy the chaotic
seam also expands rapidly for R-values increasing beyond approximately 4.40 a.u.;
this may be an effect associated with the development of a double-well structure in

the potential for R > 4.45 a.u.

In conclusion we emphasize that classical bound state theory has little
utility for determining semiclassical vibrational eigenvalues in anharmonic, nonsep-
arable systems like the model studied here. As has been shown in many previous
studies, it does work well for nearly harmonic systems. But since there are many
other means by which nearly harmonic cases may easily be analyzed, the utility
of classical bound state methods in general remains questionable. Perhaps this is
the tacit reason for the rapid decline of interest in eigenvalue computations by this
method in recent literature. An understanding of the classical dynamics for its own
sake (at energies low enough to avoid swamping by chaotic motions) does offer some
indirect comparisons to be made with quantum mechanical behaviour in the same
system, and this has been the main focus of the studies of classical dynamics made
here.

In Chapter 5, we further develop the description of the same system via
Classical Self-Consistent Field theory. Using canonical perturbation theory we show

that the CSCF approximation offers some important insights into the classical dy-
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fe e | £ —~peak | Notes| w, |z =~ peak , Votes |
0.555 | 3.5300]  0.014 3.8795 0.014 :

3.5645 0.045 4.0039{  0.093 '
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3.6133 0.130 40527  0.019
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Table 4.9: Discrete FFT frequencies are provided for a number of trajectories on
either side of the bifurcation at f, = 0.5678 with E = 24.0 c.e.u. and R = 4.30 a.u..
Broad peaks are indicated with brackets. (These values are divided by 27 from
other notation in the text.)
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Chapter 5

Canonical Perturbation Theory

5.1 Introduction

The Classical Self-Consistent Field (CSCF) approximation was introduced in Chapter
3 where it was used to obtain semiclassical approximations to quantum SCF energy
levels. The total Hamiltonian of a system is replaced by an approximation which is
ezactly separable in the chosen coordinates {g;}. The actions {J;}, one associated
with each degree of freedom, are the constants of the motion for the system and are

defined by
_ 1 . .
Ji= = fp,dq,, (t=1,2). (5.1)

The conjugate mornentum p; is defined as a function of g; in the classical SCF equation
for that degree of freedom. The actions {J;} determine the energy parameters E;
associated with the classical SCF equations through equation [5.1] and, therefore, the
resulting SCF Hamiltonian depends functionally on the actions.

From the perspective of the classical dynamics presented in Chapter 4, the
classical SCF method defines a class of regular motions for the systems approximated.
Because the separated Hamiltonians are derived from the true Hamiltonian by the
SCF averaging procedure, the constants of the motion are linked in a one-to-one

fashion with a specific set of coordinates. Although there is no formal proof that a
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solution to the CSCF problem always exists or that it is unique, the broad range of
experience shows that it is as “robust” as the quantum SCF approximation with re-
spect to existence, uniqueness and stability. It appears that the CSCF approximation
defines a continuous (or piecewise continuous) set of invariant toroids for the phase
space. Associated quasiperiodic motions for the system are obtained as a function
of the defining actions. It remains to determine how these are related to the true
classical motion of the system.

It was found in Chapter 2 that lower quantum states of this system are
extremely well approximated by their quantum SCF counterparts. Furthermore, in
Cl;apter 3 it was shown that, except for the errors inherent in the one-dimensional
JWKB approximation, semi-classical quantization of the classical SCF approximation
gave a reasonable account of the corresponding quantum SCF behaviour. Hence,
it is at least plausible that a close approximation to the true classical dynamics
of the system may be provided by the classical SCF approximation in cases where
(Jz,J:) appear to be appropriate labels for the constants of regular motion. As
illustrated in Chapter 4, the class of regular motions characterized by box or butterfly
trajectories occurred in a situation where the actions are legitimately labelled (J;, J:).
We shall show that this type of motion is indeed described well by the classical SCF
approximation.

If the Hamiltonian for the system is represented as the sum of the separable
Classical SCF (CSCF) Hamiltonian plus a “small” perturbation, classical canonical
perturbation theory may be used to compute the influence of the perturbation on the
motion and the energy of the system. Since the action-angle variables generated by
the CSCF approximation are necessarily canonical, they provide a starting point for
a succession of canonical transformations to the true action-angle variables at least

in those cases where the zero-order CSCF description is “close” to the corresponding



159

true motion. The sequence of successively higher order corrections to the energy and
trajectory of the system is analogous to successive perturbative corrections to the
energy and wave function of a nondegenerate quantum mechanical stationary state
(17). The first-order correction to the motion and second-order correction to the
energy are not hard to carry out on the classical SCF motion for this system; these
perturbative calculations are compared with the true motion and energies and, as
expected, the comparison is extremely close in favourable cases.

Perhaps more intriguing is that we also find that even when the canonically
perturbed SCF results do not closely simulate the true classical motion, relevant
features of the system dynamics are retained. In particular, in cases where the classical
motion is disrupted by weak periodic resonances, the first-order perturbed CSCF
motion retains a motion associated with the original invariant toroid while suppressing
the effects of such weak disturbances. In addition, at the bifurcation associated with
the strong reorganization of motion about the periodic resonant trajectory moving
in the direction of a potential valley at 26° to the x-axis in this system, the first-
order perturbed CSCF trajectory clearly “signals” the bifurcation in certain ways
even though it continues to describe motion related to the original toroid. These and
other aspects of the comparison between perturbed SCF motion and the true classical
dyﬁauﬁw are presented here.

The canonical time-independent pertubation theory is developed in Section
5.2 using the CSCF approximation as the zero-order description of the system; the
presentation is essentially parallel to the general development given by Goldstein [21]
(Sections 11.4-11.5). Following in Section 5.3 is a general comparison of perturbed
CSCF with classical dynamics. Broader questions raised by these results and other

aspects of this work are discussed later in Chapter 6.
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5.2 Perturbation Calculations

Time-independent canonical perturbation theory in classical mechanics is designed to
treat the case of stable regular motion in a conservative system whose Hamiltonian
has the form

H({g:,p:}) = Ho({gi, i}) + eHc({gi,pi}) + - - -, (5.2)

where the motion for a system with the Hamiltonian Hy alone is fully integrable
and the perturbation term H, is in some relevant sense small. Normally, as is the
case here, the zero-order problem is exactly separable; the theory assumes the per-
turbed motion remains regular. In particular, a one-to-one correspondence is assumed
between the action-angle variables describing the zero-order motion and the true
action-angle variables describing the actual regular motion. The analogous situation
in quantum mechanics is the application of time-independent perturbation theory to
a nondegenerate stationary state.

In the present case, the »nperturbed Hamiltonian Hy is the SCF Hamilto-
nian and the perturbation term H, is the difference between the true potential and
that generated by the SCF calculation. All higher-order terms in € are zero. However,
¢ is retained as a formal parameter which permits the assignment of first, second, etc.
orders of perturbative correction; it is set equal to unity at the end.

Although essentially all applications made in this work are in the context
of an SCF approximation in the original conrdinates (z, z), for convenience we will
formally designate coordinates as {g;},i = 1,2, with conjugate momenta {p;}. In this

notation, the SCF Hamiltonian is given by

Ho = H5°F = Hi(q1,;) + Ha(g2o 22) — (V). (5.3)
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The separate terms H; for each degree of freedom (see Equations 3.5-3.7) are defined
H:i=pt+VF ()= Ei, (5.4)

with the SCF effective potentials given by the averages of the true potential over the

ignored degree of freedom:

VS (q) = (V(qup e = = }( Vaua)

T; g2
e = (Vapla = 7~ Blay, (55)
dg;
I, = ¢—. 5.6
f g (56)

The integrals in each case are taken over a period of the SCF motion in the designated

coordinate. The last term in [5.3] is the double average

(V) = (W (@a = (" (@) (5.7)

It follows that the perturbation or “correction potential” is given by
H. = V(g q) - V7 (@) = V7% () + {(V)), (5.8)

and it is evident that its average value over the SCF motion is zero,

((Hc)) = 0; (5.9)

a result which always holds for SCF approximations.
The action-angle variables {Jy;,00;} describe the zero-order SCF motion

with the frequencies
dH,

wo,°=-a7;.

In the SCF system, the actions {Jo;} are constants of the motion and the angles {fo:}

(5.10)

simply increase linearly with time. Under the true Hamiltonian, however, neither
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condition is true although {Jo;,8;} still form a canorical set of momenta and coor-
dinates for the unperturbed system. Since the perturbed motion is regular, there is
a new set of action-angle variables {J;,8;} such that {J;} are constants of the motion
and {6;} are cyclic coordinates. The problem is to find a canonical transformation
from the old set {Jpi, 8} to the required new set {J;,0;}. To do this, we employ the
apparatus of Hamilton-Jacobi theory as outlined by Goldstein [21].

For any conservative system described by canonical variables (q;, p;), the
problem posed by Hamilton-Jacobi theory is to find a function W({q:, pi}), called
Hamilton’s principal function, which is the generating function of the canonical trans-
formation to the desired set of canonical coordinates {Q;, P;}. If the new momenta
are all constants of the motion and the new coordinates are all cyclic, then the Hamil-

tonian expressed in the new variables is a function only of the momenta,

: oH
P’"'E'Q'.-"O’ (5.11)
and the new coordinates simply increase linearly with time,
3 aH
Ql - O_P: =W,
Qi = wt+ constant. (5.12)

For such a transformation, the equations relating the old and new variables are

= W
pl - aqi’

ow .
Qi = 3P = w;t + f;. (5.13)

and the generating function W({qi,p;}) satisfies the time-independent Hamilton-

Jacobi partial differential equation,

(o (Z) = 510
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We will now apply this formalism to the two-dimensional case considered here.

In the old SCF variables, the true Hamiltonian has the form
H(Jo, 60, €) = Ho(Jo) + eHe(Jo, ), (5.15)

where Jo, 00 are N(= 2) vectors whose components are the zero-order actions and
angles, respectively. When expressed in terms of the new variables, the Hamiltonian

depends only on the new momenta,
H=of,€) = ao(J) + ey(J) + () + ..., (5.16)

and the new frequencies are
o = Oa
T = a ‘I" .

The Hamilton’s principal function for this perturbative transformation has the form

(5.17)

-

Y(J, o, €) = B+ T + e¥a(J, B0) + €Ya(,00) + .. (5.18)

the leading term
Bo-J =3 0uidi, (5.19)

corresponds simply to the identity transformation and reflects the fact that ase — 0
and the Hamiltonian reduces to the zero-order term Hp, the action-angle variables
reduce to the old SCF action-angle variables.

The function Y is determined by solviag the Hamilton-Jacobi equation

H(fo ,6) = el o). (5.20

09,
This is accomplished by expanding both sides of this equation in powers of € using
equations [5.15] for H and [5.16] for a. Coefficients in each power of ¢ are equated

to obtain expressions in successively higher order; the results are given in detail here
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for second-order comfections only. From the transformation equations [5.13], the old

momenta can be written as

) S S L)

ETe 300. 300.- +...; (5.21)

this can be use§ to expand both Hp and H. in a Taylor series about j; =J Ina

compact nqkdtion and to second order only, these expansions are written:

i (ay) _ 4+ O [eaxfl N ,aY,]
0, a7 a8, "€ o0,
1({ oY\ &°H, (asq)
+ -~ ¢ - - ~— 1y —.'22
2( 9, ) 9797 \ 90, (5:22)
oy aY, OH,
a, (4, = H (G, T)+eZL. 9% 5.23
(°aoo) (6 ) <96, o7 (5.23)

These forms are substituted into equation [5.15] and with [5.16] both are inserted
into the Hamilton-Jacobi equation [5.20]. Equating terms with equal powers of ¢, the

following sequence of perturbation equations is obtained:

a = Ho(J), (5.24)

o = (:’o . 6Y1 +H( o,j) (525)
960

a = o z? + @2(00,]), (5.26)

where
0v, 0H, 18Y, &Ho oY
90, o7 2 88, aJoJ o

The equations can be solved in succession to yield the first-order perturbation energy

9, = (5.27)

@, then the generating function Y; and next the second-order energy az. Ths is the

limit of the present calculations.

The transformation equations [5.13] define the new coordinates by

v _, . om o
bi= 57, =it eqy T €57,

3 T (5.28)
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Since both 8; and 8;; must pass through 27 whenever the motion passes through a
complete period of motion T;, it follows that the generating functions (Y}, Yz,etc.)
must themselves be quasiperiodic function of the angle variables {6y;}. In particular,
they cannot contain any terms which are independent of {60i}; that is, ¥; must have

the form

Yi(o, J) = Y By(J) exp(ik - fo), (5.29)
E

where ¢*.e coefficient for (ky, k;) = (0,0) vanishes.

It can be shown from equation [5.25] that the first-order perturbation energy
o, vanishes. The terms to the right contain quasiperiodic terms arising from both
components but, since no term in {5.29] can appear with k = (0,0), any constant

terms can arise only from H.. It therefore follows that
o (J) = Fh(lo,J), (5.30)

where the average is over a full period in both angles. From equation [5.9], this
average is known to vanish also; hence, a = 0.
Equation [5.25] can now be solved for ;. Let the correlation potential H,

be expanded in Fourier series,

Ho(fo, ) = ¥ Ce(J) explik - 6y). (3:31)
k
Using [5.29] to compute the partial derivative term, substitution into [5.25] reveals
that
By(J) = zg.b(—{)- (5.32)
k- Wo

The form of the correction potential [5.8] places restrictions on the coefficients Ce(J)
and, hence, on the generating function Y;. It has already been shown that there are

no terms with £ = (0,0). In addition, there can be no terms with k = (k1,0) or (0, k)
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since these are precisely the terms retained from the true potential V(q, g;) by the
two effective SCF potentials.

Similarly, sinc2 no constant terms in [5.26) can arise from the partial deriva-

tive, the second-order perturbation energy is found to be

@ =8+, (5.33)
where
s _ o Cr [0 ,9C
3, 2223@ 5)[k =37 +k’3J. (5.34)
=5 1 C,% 3wzo gaw.o Owzo
) 2};(5 %)2[ an+k,aJ + 2k, k. aJ,] (5.35)

The computation of the perturbed trajectory is not trivial and is described
briefly here. All of the information needed to compute the correction to the trajectory
is contained in the first-order generating function Y;. In the zero-order approximation,

the working coordinates and momenta are

2 ;Q.-.(J‘o) exp [ilfod], (5.36)

pi = Y Pu(Jo) explilfo}. (5.37)
1

Using equation [5.28], the Fourier coefficients can be expanded in Taylor series about

Jo=1J,

e ooow 0Qudh  0QudN
Qu(Jo) = Qu(J) + 3 7. 98, T 37 96, (5.38)
Substituting [5.32] into equation [5.29] yields the explicit result
0Qu , , 0Qu| s
Qu(Jo) = Qu(J) - Z 7 [ 137, +k T, ] ’ (5.39)

and a similar expression is obtained for P.-;(j;).
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Using equation [5.21] in [5.36), the oscillatory factors can be expressed as

exp [il0i] =~ exp[ilb)] l—zleg? +O(e2)]
~ exp[iw,] Zl[aa £/0J -Cg ((:wzﬁ)aJ)} “:5} (5.40)

When [5.39) and [5.40] are substituted into [5.36] and the terms are regrouped, the

perturbed Fourier expansion becomes

g = }; Q,E(j) exp [z; : 00:'], (5.41)

with an analogous expression for p;. These may be compared with the expansions
obtained by Fourier analysis of the true trajectory for the same set of actions (compare
with equation [4.11}]).

The Cj, symmetry of the potential surface guarantees that there are certain
restricting symmetries in the Fourier expansion for H.; in particular, the indices
(ky, k,) in [5.31] are both even. It then necessarily follows that the expansions of the
form [5.41] for ¢; and p, have k; = odd, k, = even, while the parities are reversed
for g2 and p;. This restriction leads to an important property of the perturbed
SCF trajectories when projected on the coordinate plane; namely, these trajectories
always possess Cy, symmetry and can never show the asymmetry characterizing the
true trajectories when the motion is reorganized into the family of quasiperiodic
trajectories associated with one or the other of the potential surface valleys.

Numerically, the calculation of the second-order perturbation energy (5.33]
and first-order perturbed trajectory [5.41] requires first the calculation of the JSCF
solution at a particular set of actions (Jy, J2). This must include frequencies wo; and
the Fourier expansion coefficients for both H. and the dynamical variables (qi, pi).
In addition the partial derivatives with respect to the actions are needed for all

these quantities. Centered on the point (Ji,Jz), a “cross” of CSCF calculations was
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performed at 17 neighbouring points (J1 + mé, J2), (Ji,Ja+mé),m = £1... £ 4; the
spacing § was normally taken to be 0.01 or 0.005. A high-order interpolation formula
was then used to compute the partial derivatives from the 9 data points in each
direction. We were able to show that the resulting partial derivatives are accurate to
a relative error of about 1x10=7 or better in essentially every case. Since much of the
time required for a CSCF calculation is spent on iterating approximate input guesses
to convergence, the ability to forecast very good estimates from the data already
obtained for nearby points on the cross results in faster overall computational speed

for these calculations than might otherwise be expected.
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5.3 Classical Perturbation Results

We first compare zero-order and perturbed Classical SCF motions with the corre-
sponding true classical motion for representative “boxlike” trajectories where the
actions (J;,J;) exist as constants of the motion. Figure 5.1 presents (z,z) plane tra-
jectory projections and Poincaré surfaces-of-section computed using perturbed CSCF
theory for six states of motion at R = 4.30 a.u. and E = 24.0 c.e.u. Actions char-
acterizing each state were determined from analysis of the true dynamics for values
of the parameter f; = 0.15 to 0.55 at intervals of 0.05; for this energy and R-value,
the bifurcation occurs at f, = 0.568. These figures can be compared with the cor-
responding true trajectories shown in the sequence in Figure 4.5 and the composite
Poincaré surface-of-section curves of Figure 4.6; they resemble each other very closely.
The zero-order CSCF trajectory projections (not shown) are, of course, simple rect-
angular boxes in all cases since the z and z motions are completely independent. By
contrast, the ‘irst-order corrected description is a strikingly accurate visual reproduc-
tion of the true motion-even in the case of the rather strongly deformed trajectory
with f; = 0.55 which lies quite close to the bifurcation. First-order perturbation
theory is able to reproduce caustic and Poincaré surface-of-section curves accurately

despite the fact that SCF frequencies are not exactly the classical ones.
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Figure 5.1: Classical perturbation trajectories and accompanying Poincaré surfaces-
of-section at R = 4.30 a.u. and E = 24.0 c.e.u. for pairs of actions in the boxlike
quasiperiodic regime. Trajectories are provided near the classical f; values of 0.05 to
0.55 in steps of 0.05.
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Further demonstration of the accuracy of the perturbed SCF description
in these cases is presented in Table 5.1. Zero-order and perturbed CSCF energies
and zero-order frequencies are compared with the corresponding true values for R =
4.30 a.u. and actions (J,J;) determined from classical dynamics for states with
E = 24.0, 46.0 or 56.0 c.e.u. and representative f; values in the boxlike domain.
Second-order perturbation corrections to the energy are less than 0.05 c.e.u.even for
cases quite close to the bifurcation and the resulting perturbed SCF energies agree
with the true classical energies to within 0.002 c.e.u. in all cases. The CSCF zero-order
frequencies, which are not corrected by the perturbation calculation, approximate the
actual frequencies with relative errors of 5% or less. As a final, more quantitative
comparison, Fourier series coefficients for the dynamical variables (z, =) are listed in
Tables 5.2 and 5.3 for two cases at E = 24.0 c.e.u.; one is a motion only slightly
perturbed from the CSCF box (f; = 0.30) and the other is strongly distorted ( f; =
0.35).

The ¢iriking similarity between perturbed SCF and true classical motions
is evidence that the choice of a CSCF zero-order Hamiltonian using coordinates (z, z)
is appropriate in the boxlike regime where the actions (J;,J;) are constants of the
motion; the low-order perturbed CSCF description provides a remarkably accurate
representation of the motion both qualitatively and quantitatively. This is true in
spite of the fact that the frequencies of SCF motion are the uncorrected zero-order
values. The perturbed SCF trajectory is traced out on a different time scale from the
true one but closely agrees with its phase space characteristics. The SCF perturbztion
results show little or no indication of the strong reorganization which occurs in the
classical motion at the bifurcation point; no divergence is observed since the CSCF
frequencies are still far from their 1:1 resonance.

Previously, the classical SCF approximation was described as “torus-preserving”
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Jz

Je

EQCF

EFT

0.100
0.150
0.200
0.250
0.300
0.350
0.400
0.450
0.500
0.550
0.553
0.560
0.565
0.567

0.12731871

-0.19083687

0.25374782
0.31644345
0.37899588
0.44196935
0.50490088
0.56918467
0.63594738
0.71053221
0.71925321
0.72854521
0.73893789
0.74378646

0.76433971
0.72170051
0.67841472
0.63416522
0.58883129
0.54190037
0.49358834
0.44262476
0.38773523
0.32352223
0.31575699
0.30740146
0.29791490
0.29336818

23.993479
23.991291
23.9897%3
23.988780
23.988277
23.988108
23.988049
23.987635
23.985611
23.975929
23.973347
23.969787
23.963831
23.958607

23.999919
23.999841
23.999758
23.999685
23.999634
23.999622
23.999677
23.999852
24.000281
24.001123
24.001107
24.000870
23.999569
23.996968

(o4 §

fz

W

UCT

SCF
wz

il

0.100
0.150
0.200
0.250
0.300
0.350
0.400
0.450
0.500
0.550
0.555
0.560
0.565
0.567

20.82650
20.98973
21.15193
21.31417
21.48019
21.64891
21.82357
22.01201
22.22440
22.53745
22.58920
22.65938
22.76801
22.60542

31.40260
30.88712
30.35825
29.80917
29.23744

28.63238

27.99227
27.29374
26.49714
25.41695
25.25276
25.05109
24.75309
24.51361

20.780167
20.950656
21.119667
21.288638
21.458195
21.630389
21.804585
21.985518
22.177807
22.400295
22.427060
22.455824
22.488415
22.503963

31.393197
30.873650
30.340675
29.788723
29.214258
28.608135
27.969786
27.277646
26.506506
25.563552
25.446142
25.318956
25.173560
25.103685

-1

-t

Table 5.1: Classical SCF-PT energies and frequencies are presented at a series of
f- values corresponding to boxlike quasiperiodic trajectories. The actions were de-
termined from true classical trajectories at the given low f; initial conditions for
Ecr = 24.0 and R = 4.3. For comparision, the frequencies from the actual trajecto-
ries and the CSCF analysis are provided.
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[ X ~ Oscillator [ Z — Oscillator |

X | Z[2D = Coefficients X | Z|2D - Coefficients

1] 0] 1.42941538 x10~*| 0| 1| 1.374015553 x 10~!
3! 0]-2.39030893 x 10| 0| 3| -2.643922012 x 10~}
5| 0|-4.62405886 x 10~ |l 0| 5| 35.563901748 x 10~°
71 0] 1.49506128 x 10~° || 0| 7| -1.272784102 x 10~°
1| 2]-1.02851702x 102} O 9| 3.097056777 x 10~3
1] 4| 5.76206699 x 10~°|| 0|11|—7.915756427 x 10~'°
1| 6|-2.65842529x 106 | 2| 1} -9.847780279 x 10~*
1{ 8| 1.10994155 x 10~7 | 4| 1] -—2.381430636 x 10~¢
1] 10| —-4.33447099 x 10~° | 6| 1} 1.308204921 x 10-8
1| -2| 9.77101497 x 10~3 || -2 | 1| —2.860792504 x 103
1] -4 -1.06492492 x 104 || -4 | 1| 2.008921795 x 10~3
1{-6| 2.82054995x 10~% || -6 1| -3.878721873 x 10-*
1| -8 -8.39513287x 10" || 2| 3| 4.842136713 x 10~°
1] 10| 2.55616248 x 10~° || 4| 3| 4.193133196 x 10~7
3|1 2| 752419946 x10~¢fl 6| 3| 4.112042012x 10°°
3| 4| 6.35054170 x 10~7 || —=2| 3| 2.798900617 x 10~}
3| 6|-5.30632049 x 108 || -4 | 3| 7.269305747 x 10~
3! 8| 285440018 x 10~° || -6| 3| 2.491193824 x 10~°
3| -21 1.23917811x10~3|| 2| 5|-1.972076142 x 10~¢
3| -4 -1.73199453 x 10~5 || 4| 5| —4.141888341 x 1078
3| -6| 6.00626462 x 10~7 || =2| 5| -1.208277162 x 10~*
3| -8 -2.32386613 x 10~8 || -4 | 5| ~1.122292420 x 10~®
5| 2]-4.92080587 x 10~7 || 6| 5| 1.302276675 x 10~°
5/ 4] 3.83878935x 10~ 2| 7| 8.646363481 x 10~°
5| 6|-2.00773057x 10=* || 4| 7| 2.543003404 x 10~?
5(-2|-1.12809896 x 10~5 || =2 | 7| 3.766557103 x 10~°
5| —4]-1.56797996 x 10-7 || -4 | 7| 4.421435488 x 10~®
5|-6|-3.02110483 x 10-° || 2| 9|~3.800108136 x 10~°
71 21 -2.11895980 x 10-° || 2| 9| —1.087071577 x 107
71 =21 -4.08401040 x 10~ || -4 | 9| —1.443920685 x 10~°
71 -4| 5.01458421 x 10-°{| -=2{11| 3.045184253 x 10~°

Table 5.2: Classical SCF-Perturbation Fourier series corresponding to a boxlike
quasiperiodic trajectory for f; = 0.30at E = 24.0 c.e.u. and R=4.30 a.u. E(SCF) =
93.98810781 c.en;E(PTN) = 23.99962196 c.eu. and J. = C.44196935 J. =
0.54190037; w, = 21.63038857 w, = 28.60813452



[ X - Oscillator || Z — Oscillator |

X | Z|2D - Coefficients X | Z 12D - Coefficients

1] 0] 1.780966309x 10-'] 1] O] 1.123749387 x 10~!
3| 0|-3.888313642x 10~ || 3| 0|—1.746655724 x 103
5| 0]~-1.409867215x10~¢| 5] 0| 2.925164374 x 10~°
71 0| 4.020516776 x 10=° || 7| 0| -—3.266064036 x 10~
1! 2] -1.020082854 x 10-3 |} 9| 0| 1.002775027 x 102
1| 4| 5.365458038 x 10~5 11| 0 {—2.026964573 x 10~1°
1! 61-2.037143879x 10°8 | 1| 2|-1.264680651 x 102
1| 8| 6.876115817x 108 1| 4|-6.976293681 x 10~°
1| 101 -2.150033011 x 10~° | 1| 6| 2.402537365 x 10~
1| -2 2.040067968 x 10~? || 1} -2|-2.778350210 x 10~3
1] -41{-8.010847284 x 10~3 || 1| —-4| 3.326485306 x 10~°
11—-6| 1.576533091x10-¢} 1}-6|—5.758919573 x 10~°
1| -8} -3.621360261 x 10~8 || 3| 2| 6.164795065 x 10~°
3! 2| 7.871718635x10~7| 3| 4| 7.014681892 x 10~7
3| 4| 1.438230741x10~%} 3| 6| 7.940521070 x 10~°
3| 6!-7.6852647T23x 10°8 | 3| -2] 1.471184026 x 10~*
| 3] 8| 3.038389861x 10~ 3|-4| 1.001125596 x 10~°
3| -2 6.661086582x 103 || 3| -6|—-1.524639707 x 10~®
3| -4]-2.658269121 x 105 || 5| 2|-2.271341769 x 10~°
3|-6| 5.870656175x 10~7| 5| 4|-5.062107444 x 103
3| -81-1.719216029 x 108 | 5| -2 | —5.975445465 x 10~*
5| 2| -9.187840838 x 10~7 || 5| —4 | —3.862806398 x 10~¢
50 4| 5.784295997x10~%|| 5| -6! 6.642275333 x 10~*?
5| 6]-2.370750255 x 10~° || 7| 2| 8.221627925 x 10~°
5] -2]-6.327080833 x 10~3 || 7| 4| 2.402264903 x 10~°
5| —-4|-1.459286586 x 106 || 7|-2| 1.612097316 x 10~3
71 2|-6.800588310 x 10~* | 7| -4| 1.405953750 x 107
71-21-2.338778243 x 10~7 || 9| 2|-—-2.843873396 x 10~?
71-4! 2.002116137x 10~ | 9| —2|-3.984030869 x 107
9|<2| 1.793239708 x 10-° || 9| —4 | —3.728470976 x 10~°

177

Table 5.3: Classical SCF-Perturbation Fourier series corresponding to a boxlike
“butterfly” quasiperiodic trajectory for f; = 0.55 at £ = 24.0 ce.u. and R
4.30 a.u. E(SCF) = 23.97592881 c.e.u; 3(PTN) = 24.00112253 c.e.u. and J;
0.71053221 J, = 0.32352223; w, = 22.40029465 w, = 25.56355204
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since it guarantees the existence of an action associated with each chosen degree of
freedom. This property can be seen in a study of its behaviour in the neighbourhood
of “accidental” periodic resonances [39]. These interrupt the basic quasiperiodic mo-
tions associated with a dominant torus because of local commensurability of the
frequencies, but do not depart from its essential symmetry. As an example consider
the 3:5 resonance that interrupts the classical (z, z) boxlike quasiperiodic motions at
R = 4.30 a.u. and E = 46.0 c.e.u. This interruption occurs for a small domain of
initial conditions near f; = 0.20 (width +0.005). True trajectories are compared in
Figure 5.2 with the corresponding CSCF perturbed trajectories for three values of f;
near this domain; for the intermediate trajectory, lying inside the resonant domain,
actions for the SCF calculation were determined by interpolation of (J., J.) data ver-
sus f on either side of the disruption. A composite Poincaré surface-of-section plot is
provided for both sets of trajectories in Figure 5.3. For the intermediate case, the true
motion displays the isolated “islands” structure characteristic of such resonant mo-
tions, while the perturbed system maintains the single closed curve characteristic of
the dominant boxlike family. Evidently, the CSCF approximation ignores this type of
“weak” periodic resonance. The SCF frequencies are not in 3:5 resonance for actions
in this region but even near such a high-order resonance of SCF frequencies, small
magnitudes of the corresponding Fourier coefficients in the perturbation Hamiltonian
severely restrict or completely suppress the effects of the resonance on perturbed SCF
motion. Only those terms in the Hamiltonian which sample prominent aspects of the
correction potential will tend to have strong effects.

With this idea in mind, consider next the possibility of extending the per-
turbed CSCF calculations into a region where the true motion has been reorganized
into the 1:1 resenant family of quasiperiodic motions. A procedure similar to that

described above was used to construct perturbed SCF trajectories for comparison
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Figure 5.2: Classical and SCF perturbation trajectories are presented at three mitial
conditions about the accidental 3:5 resonance at R = 4.30 a.u. and £ = 46.0 c.e.u.
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Figure 5.3: Composite Poincaré surfaces-of-section on the z = 0 plane for true clas-
sical and SCF perturbed motion are compared at R = 4.30 a.u. and E = 46.0 c.e.u.
about a 3:5 accidental resonance.
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with true motions in the resonant 1:1 region at R = 4.30 a.u. and £ = 24.0 c.e.u.
Previously (see Chapter 4), action pairs, either (J;, J:) or (Jj, J;), were plotted as
functions of f; for the same R and E. The parameter f; is not a single-valued func-
tion of the actions characterizing the 1:1 resonant family and distorts the mapping
of the actions characterizing the boxlike families. Plotting J. against J, as in Fig-
ure 5.4 provides a more rational mapping procedure. The two piece-wise continuous
segments on the plot are obtained from classical analysis of the two boxlike regions
on either side of the 1:1 region lying within 0.568 < f; < 0.983. It is immediately
evident that the two sections belong tc a common curve. Additional constraints on

the function may be obtained from the quotient relation

oJ, 0H oH Wy
P |22 = 2
8. [aJ,L/ [aJ,]J, o (542)

Using a three-term polynomial all of the (J;,J;) data were successfully fitted by

the least squares method with an r.m.s. error of less than 1x10~* whether the data
points from the smaller segment were included or not. The polynomial fit was used
to generate interpolating values for the hypothetical action pairs (J;, J;) inside the
“gap” region, where the true motion is reorganized into the 1:1 resonance and the
actual constants of the motion are (Ji,J;). Using these hypothetical values, classical
SCF'states of motion in the gap region were computed for comparison with the true
dynamics.

A number of interesting features are evident in the results. Table 5.4 lists
CSCF energies and frequencies, and the perturbation energies at the projected action
pairs as the gap region is traversed. Throughout the gap region, the zero-order CSCF
energies are within 0.05 c.e.u. of the projected energy E = 24.0 c.e.u. The second-
order perturbation energy corrections increase gradually as the gap is entered, with no

discontinuity or singularity as the bifurcation is cros~d. As the SCF 1:1 resonance,
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at (Jz,J:) = (N.8710,0.1734), is approached, small divisors in the perturbation en-
ergy expression produce the expected divergence in a small neighbourhood about the
resonance. On the other side of the resonance, the second-order corrections again de-
crease and gradually approach the small values found in boxiike regions as the second
bifurcation is passed. This behaviour is completely in accord with the predictions of
the perturbation formalism, whicl: places the source of the disturbance at the SCF
1:1 resonance. Curiously, this resonance is located almost exactly at the point on the
curve where the sum of the projected actions is a maximum. For the true 1:1 periodic
resonance, the sum (J; + J;) is ezactly at its maximum.

It is worthwhile to compare the coordinate plane projections of perturbed
SCF trajectories in the gap region with an imagined “superposition” of true classical
1:1 resonant family trajectories and their mirror images which would correspond to
motion in the other potential valley. Such a superposition would retain the C,, sym-
metry which necessarily characterizes the perturbed SCF motion. Figure 5.5 shows a
sequence of perturbed and true trajectories (none with superpositions). While there
is no exact relation between corresponding members in each sequence, they have heen
chosen at regular intervals between the bifurcation and the 1:1 resonance for each set.
Given that the full C,, symmetry cannot be removed from the perturbation calcula-
tion, it is remarkable that perturbation theory is able to qualitatively reproduce the
distribution of the imagined superposition of the two equivalent but asymmetric true
trajectories. This suggests that the perturbation terms are attempting to accomo-
date the effects of the two pronounced potential valleys. However, as the resonance

is approached, the difference between the two descriptions becomes much greater.
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Jz
0.76610679
0.78777633
0.80910438
0.83009244
0.85073902
0.87104661
0.89100929
0.9106™293
0.92991559
0.94885733

Iz
0.27336816
0.25336816
0.23336816
0.21336816
0.19336816
0.17336816
0.15336816
0.13336816
0.11336816
0.09336816

Escf
23.962733
23.960035
23.957579
23.955470
23.953832
23.952849
23.952546
23.953239
23.955093
23.958348

Epin
24.017666
24.044357
24.103477
24.254680
24.836266
33.641967
29.802395
24.698921
24.220739
24.085513

wic!
22.573147
22.642167
22.711291
22.780588
22.850133
22.920015
22.990323
23.061172
23.132685
23.205009

w;‘f
24.789215
24.468937
24141424
23.806019
23.461974
23.108432
22.744429
22.368811
21.980251
21.577174

Table 5.4: Classical SCF-perturbation theory results across the “gap” at Ecr = 24.0
and R = 4.30 a.u.
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Figure 5.53: Classical SCF perturbation trajectories and “corresponding” classical
trajectories in the 1:1 resonant region at R = 4.30 a.u. and E = 24.0 c.e.u. crossing
the bifurcation from the boxlike region into the resonant region or “gap”.
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In spite of the apparent continuity of the SCF calculation across the bi-
furcation, Figure 5.6 shows that Poincaré surfaces-of-section on the (z,z) planes for
perturbed SCP trajectories signal precisely the onset of the 1:1 resonant bifurcation.
The figure shows sequences of five surfaces-of-section for the plane z = 0 after the first
bifurcation near f; = 0.568 at R = 4.30 a.u. and E = 24.0 c.e.u. The “pinching-in”
of the sides is preliminary, in the case of the true motion, to the splitting of single
curves into two closed loops characterizing the z = 0 sections for the 1:1 resonant
family. The SCF perturbation sequence accurately reproduces the pinching-in of the
true sections up to the bifurcation point (as seen in Figure 5.1). However, at the bi-
furcation, & topological change occurs and the pinches suddenly snap into small inner
circles. In contrast to its suppression of the weak 3:5 periodic resonance described
earlier, canonically perturbed CSCF theory is able to detect the onset of this strong

reorganization of the motion rather accurately.
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Figure 5.6: Poincaré surfaces-of-section for SCF perturbation traiectories for f. >
0.568 (inside the 1:1 resonant region) for R = 4.30 a.u. and £ = 24.0 c.e.u..
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While the pronounced elliptical motion seen in the true dynamics near the
bifurcation appears to have a counterpart in the perturbed SCF trajectories shown
in Figure 5.5, this appearance is deceiving. The perturbed SCF trajectory does not
actually spend a lot of time in an elliptical orbit, as it does in the true dynamics.
Instead the SCF trajectory has a rocking motion whose successive passes etch out an
elliptical contour similat to the dimensions of the ellipse seen in the true dynamics.
This difference between the perturbed SCF and the true motions is most evident in
a real-time display ?4 the motion on the (z,z) plane. It is possible, of course, to
create an elliptical SCF trajectory. Using the CSCF amplitudes for motion at the
CSCF 1:1 periodic resonance and introducing an arbitrary phase shift of /2 between
the z and z motions, we were able to synthesize a zero-order SCF elliptical periodic
trajectory. This orbit resembles the true elliptical metion at the bifurcation in a
qualitative fashion but it is not clear that this relates anything important about such
motions; in any case, the frequency is seriously in error since this CSCF ellipse was
concocted at precisely the 1:1 resonance and not at the bifurcation.

Finally one may ask whether additional insight might be provided by a
study of zero-order and perturbed SCF dynamics using a rotated system of coordi-
nates gy, ;) oriented parallel with and transverse to the pronounced potential valley
which is responsible for the strong reorganization of motion. Unfortunately, such a
calculation is computationally intractable using this model potential, which consists
of a finite string of terms each of which is a separable product in the original co-
ordinates; there is no simple corresponding representation in the rotated coordinate
frame. Professor Thorson has done some calculations using a five-term polynomial
model potential which simulates the true potential at R = 4.30 a.u. reasonably well
for energies up to about 100 c.e.u. abeve the minimum. All the qualitative behaviour

observed here in both CSCF and true dynamics is also reproduced by the polynomiai
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model, and in addition it is possible to perform CSCF calculations in these rotated
coordinates. While the perturbation energies are substantially larger and the first-
order trajectories which result are correspondingly less accurate, the asymmetrical
shape of the 1:1 family of true trajectories is qualitatively reproduced in these ro-
tated CSCF perturbation calculations. This suggests that the actions Jy, Jo which
form the defining constants of the motion for the 1:1 family are assignable in some
crude way to the degrees of freedom ¢, g2, but further investigation of such an idea
is beyond the scope of this study.

In the concluding chapter, we summarize the results of this and previcus
chapters, focussing in particular on the comparison of quantum reorganizations of
states at avoided crossings (Fermi resonances) with the analogous effects seen at

much lower energies in the classical dynamics.



Chapter 6

Conclusions

This study has compared classical and quantum descriptions of vibrational dynam-
ics for a strongly nonharmonic, nonseparable potential. It was stimulated by quan-
tum mechanical calculations of Epa and Thorson [1,2,3] for the strongly hydrogen-
bonded bifluoride ion [FHF|~ using an extended ab initio potential surface. Some
preliminary work on classical proton dynamics for [FHF]~ was done, but was re-
placed by a two-dimensional adaptation chosen to remove unnecessary complications
of the bifluoride problem while retaining the physical features of essential interest
here. The resulting model surface V(z, z; R) has C,, symmetry and Cartesian co-
ordinates. In the bifluoride system the parameter R is the F-F separation and has
similar effects in this model: as it is varied the potential surface changes from a
single-minimum well at small R-values to a symmetrical double-minimum structure
with intervening potential barrier at z = 0 for R > 4.45 a.u. The most important
feature of the surface is the emergence of prominent “corners” or valleys lying at
direction £26° to the z-axis. On the original bifluoride surface, these correspond
to the potential valleys for librational oscillation of a dipolar HF molecule about its
equilibrium orientation to the opposite F~ ion, which forms as the [FHF]~ system
begins to dissociate.

The quantum mechanical calculations of Chapter 2 recover essentially the

196
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same features as results obtained by Epa and Thorson for [FHF]~. Since compar-
ison with classical dynamical calculations in the high-barrier, double-well region
flor R > 4.60 a.u. was not expected to be either feasible or instructive, our com-
putations were restricted to regions of smaller R-value. However, the number of
eigenstates computed accurately is larger because of the expanded SCF basis used,
and detailed attention has been given to nodal structure of eigenfunctions. The
SCF approximation is a surprisingly accurate zero-order description of vibrational
eigenstates with energies up to about 10,000 cm~'above the ground level ezcept at
R-values near crossings of SCF levels of the same symmetry. These become avoided
crossings of true eigenstates which strongly mix the SCF states and reorganize the
nodal structure.

This study concentrated especially on a prominent series of avoided cross-
ings of SCF levels differing by the exchange of two quanta between the z and z de-
grees of freedom (for example, for A; symmetry, the sequence of pairs [(2,0)x(0,2)]
y [(4,0)x(2,2)], [(6,0)x(4,2)], etc.) Except at such crossings, these eigenfunctions
are essentially of simple SCF type with nodal planes perpendicular to the z and =
axes. The mixed eigenfunctions at avoided crossings have a different nodal struc-
ture: for the stabilized member of each pair, the structure corresponds to a classical
radial oscillation along the prominent potential valleys, and to an elliptical classical
orbit for the destabilized member. At still higher energies (15,000 cm™'to 20,000
cm~'depending on symmetry), the numbers and types of crossings increase rapidly,
making the SCF description far less appropriate for all but a few eigenstates in this
disordered region.

The Classical SCF method was applied to the same system to calculate
semiclassical SCF eigenvalues. These parallel the quantum SCF results. How-

ever, even when the full potential V(z, z; R) has a single minimum, the effective
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SCF potentials for z and z exhibit a strong double-well structure produced by the
prominent surface valleys. If the semiclassical quantization formulas are modified
to include effects of tunnelling through the potential barrier, resulting semiclassical
eigenvalues differ from their quantum counterparts by errors due mainly to the one-
dimensional JWKB approximation for anharmonic oscillators. Such errors may be
as large as 80-100 cm™! in exceptional cases but are usually about 5-20 cm™'. The
semiclassical SCF calculation provides a stable, qualitatively accurate description
of the quantum results correctly locating level crossings and the general behaviour
of SCF energy levels for the system. Both quantum and classical SCF descriptions
are limited by their common assumption of an z, z mode separation.

Since the quantum SCF approximation gives such an accurate account
of the low-lying levels of this system, and the classical SCF results are essentially
parallel to these, we had hoped that classical bound state methods involving quan-
tization of classical actions would yield semiclassical eigenvalues, derived from full
two-dimensional dynamics, which would closely agree with CSCF results. Such
eigenvalues can indeed be calculated for the ground state for 3.80 < R < 4.35 a.u.
and they are as close to the classical SCF values as the quantum CI energies are
to the quantum SCF values (1-5 cm™!). However, the method fails entirely for all
higher energy levels, and beyond R = 4.35 a.u. for even the ground state. Clas-
sical motions of the simple “boxlike” type for which the actions J,,J, have the
required values do not exist; instead, the system is strongly reorganized into a fam-
ily of quasiperiodic motions centered on a 1:1 resonant periodic trajectory correlated
with one of the potential valleys. As the energy is increased, this and other dis-
ruptive resonances become more prominent at all R-values; at still higher energies,
irregular trajectories fill increasing domains in phase space.

The nearly-harmonic, nearly-separable systems mostly studied in the lit-
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erature are typical illustrations of the famous KAM theorem, which states that for
a system whose Hamiltonian consists of an exactly separable part plus a sufficiently
small nonseparable perturbation, most phase space trajectories will remain regular.
This explains the success of classical bound state methods for eigenvalue calculation
in such systems. Given the results for our model system, the nonseparable terms
are clearly not “small” in the sense of the KAM theorem. Obviously then the sort of -
separability implied in the success of the SCF approximation has no simple relation
to the KAM concept of separability.

In the remainder of this study, attention therefore focussed on the proper-
ties of classical dynamics in this system with no reference to quantum eigenvalues.
Comparison with classical SCF theory remained of interest and was made for a con-
tinuous range of dynamical conditions. It was necessary to develop a repertory of
the methods and numerical techniques used in the literature for the investigation of
regular motions and also some further tools for describing detailed motion. System-
atic investigations were made at energies near the three lowest CSCF semiclassical
energy levels: E = 24.0,46.0,56.0 c.e.u., and mostly at the equilibrium R-value
4.30 a.u. Some studies were done at other R-values and energies to map out the
overall classical dynamics. Actions, frequencies, and Fourier series expansions for
dynamical variables were computed for both boxlike and 1:1 resonant families of
quasiperiodic motion. The segregation of phase space into these two competing
types of motion and the quantum mechanical curve crossings involving exchange of
quanta between modes are both related to the prominent valleys or “corners” on
the potential surface. It is interesting that at the lowest energy studied irregular
motion is practically absent from the bifurcation region separating the two fam-
ilies. This allowed a detailed study of the transition between them, unobscured

by classical chaos. An unstable elliptical orbit appears in trajectories just in this
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neighbourkood. Fast Fourier Transforms of the dynamical variables (z, z) revealed
that additional frequencies (distinct from the fundamentals characterizing stable
quasiperiodic motion) appear and fundamental peaks broaden when this elliptical
motion is evident.

A much closer and revealing comparison between classical SCF and true
classical dynamics is obtained by the application of canonical perturbation theory
to the zero-order CSCF Hamiltonian, to obtain first-order corrections to the mo-
tion and second-order perturbation energies. When the true classical motion is
boxlike, with constants of the motion J;, J;, the perturbed SCF approximation is
extremely accurate. It quantitatively reproduces Poincaré surfaces-of-section, tra-
jectory projections including caustics and closely approximates the Fourier series
expansions of dynamical variables. The “torus-preserving” character of the CSCF
and perturbed SCF descriptions suppresses or ignores higher-order periodic reso-
nances which cause frequent disruption of the motion, as was illustrated for a 3:5
resonance at R = 4.30 a.u. and E = 46.0 c.e.u. We even found it possible to ex-
tend perturbed SCF descriptions based on boxlike motion into regions where the
actual motion belongs to the 1:1 quasiperiodic family. This was done by plotting
J. against J. for regions where the true motion is boxlike and interpolating a poly-
nomial fit across the “gap” between them. The interpolated “actions” were used
to construct zero-order and perturbed CSCF solutions hypothetically valid when
the true motion is of the 1:1 resonant type. The second-order perturbation ener-
gies are continuous across the bifurcation and increase gradually until the expected
divergence is encountered in a narrow region about the 1:1 resonance of the SCF
frequencies. The first-order perturbed SCF trajectories were compared qualitatively
with a sequence of true motions by doubling each with its mirror-image trajectory

for motion in the alternate potential valley. The perturbation analysis made a re-
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markable effort to localize trajectories in the diagonal valleys. Surprisingly, it was
also able to pinpoint the location of the bifurcation through topological changes in
Poincaré surface-of-section curves. The enhancement of the CSCF description by
low-order perturbation theory results in deeper understanding of the nature of the
classical dynamics.

We conclude first of all that the utility of classical bound state methods to
determine eigenvalues by quantizing quasiperiodic trajectories is severely limited for
a molecular oscillator system of this type. In contrast to the nearly harmonic sys-
tems studied in most previous molecular applications, this system does not exhibit
the necessary “separability” in the stringent, KAM sense. If the surface studied
here is at all representative of strongly nonharmonic vibrational systems, classical
bound state eigenvalue methods may not be widely useful in such systems. Recent
literature shows a decline of interest in calculating classical eigenvalues themselves,
but there is continuing interest in more general relations between periodic trajecto-
ries, chaotic motion and quantum behaviour. In anharmonic nonseparable systems
of the type we have studied, classical mechanics is hypersensitive at even the lowest
enexgies to details of the potential surface which reorganize the motion [40]. By
contrast, quantum mechanics is unable to view these details at such low energies
beca:use of coherence and symmetry of eigenfunctions and limited resolution asso-
ciated with de Broglie wavelengths. The mode separation enforced by the classical
SCF scheme suppresses the host of interactions that complicate the true classical
dynamics, and therefore more closely simulates the quantum behaviour for cases
where an SCF separation is physically appropriate.

It is interesting to note, however, that the features picked up in detail by
the classical mechanics at low energies do have analogies in quantum behaviour at

higher energies [41]. The unstable elliptical orbit seen in the true motion at the



202

bifurcation and the 1:1 periodic orbit lying at the centre of the 1:1 resonant family
of regular motions each correspond to quantum mechanical analogues. These are
respectively the “angular” (de:stabilized) and “radial” (stabilized) eigenfunctions
which are formed at avoided crossings between SCF levels differing by the exchange
of z and z quanta. This shows clearly that unstable as well as stable periodic orbits
in the classical dynamics have counterparts in quantum eigenstates.

It may be asked in conclusion whether an exhaustive study of the true
classical dynamics in a nonseparable, nonharmonic system of this type has any
ultimate utility for an understanding of its quantum behaviour. While this study
permits little or nothing to be said about the meaning of the term “quantum chaos”
[42,43], it is clear that the appearance of classical chaos in such a system has no
connection to what happens in the quantum system at similar energies [44]; whether
any relation exists between phase space distributions of irregular trajectories and

quantum behaviour at higher energies [45] has not been shown in this work.
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