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Abstract

Conventional control of an articulated manipulator such as robot arms involves the

use of sensor measurements of joint values to calculate the position and orientation

of the end-effector and to perform motion control. Conversely, in cases where direct

sensing is not available, a vision-based method can prove to be advantageous. This

thesis deals with one such system, an excavator used regularly at construction sites,

with the long-term goal of enabling fully autonomous operation. For our hardware

experiments, we used a scale excavator model inside a lab setting, using a single

external monocular camera to estimate the joint states of the vehicle in real-time and

using the resulting information to run motion planning.

Our solution employs a computer vision algorithm integrated with numerical op-

timization to perform 2D and 3D pose estimation, respectively, from single RGB

image frames in real-time. We use a limited collection of real images for training, in

contrast to other approaches presented in the literature which require a CAD model

to generate a large set of synthetic data. We leverage geometric constraints of the

manipulator and the camera’s optical parameters within our iterative optimization

step. We also build a custom microcontroller-based system to drive the scale exca-

vator from a desktop computer. The experimental results are benchmarked against

a high-fidelity optical motion capture system installed in our lab to quantify the ac-

curacy of our estimates. Since our proposed method relies only on a small training

dataset and geometric information about the manipulator, it can readily be ported

onto larger manipulator systems, such as large industrial excavators or cranes found

on real construction sites.
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Chapter 1

Introduction

1.1 Background

Robot manipulators have been extensively used in industrial settings for many years.

These manipulator arms are used to automate simple tasks such as pick and place

operations to perform more complex applications such as robotic welding, which re-

quire high precision. The key to their path accuracy is the availability of precise joint

angle measurements using onboard encoders/rotary transducers to solve the inverse

kinematics problem in these automation tasks.

For calculations, these arm joints are assumed to be rigid links and ignore any

flexibility in the drivetrain or the joint which is generally not the case [1]. Further, this

problem is compounded due to the presence of backlash in motors [2] and magnetic

deviations in measurements [3] resulting in further diversion from the true joint state.

These problems restrict the use of some less expensive and flexible robots for use in

non-industrial or household settings due to the presence of even larger errors.

A different problem arises for inexpensive encoder-less manipulators which do not

have any feedback system available or manipulators which are controlled directly

by a person (such as construction equipment). A common practice in this case,

would be to use a precision encoder system or an inertial measurement unit (IMU)

sensor by making alterations to the physical system causing a lot of downtime and

reconfiguring. To automate these machines efficiently the requirement of an external
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joint state estimation system becomes even more imperative.

This is where computer vision can provide a solution. With the continuous ad-

vancement in computation power in recent years, vision-based neural networks are

becoming common for complex applications in object detection [4], autonomous navi-

gation [5] and face recognition [6]. There has been a growing interest to apply similar

techniques in robotic systems as well. Recent works in [7–9] have established the

use of different vision algorithms for the estimation of a robot manipulator using

an externally mounted RGB camera to detect and localize the position. This thesis

takes inspiration from these recent works and uses external camera-based sensing to

estimate the joint configuration of a robot manipulator for position control of the

arm.

1.1.1 Motivation of Research

The recent shift to automation in residential settings has paved way for the develop-

ment of affordable and compact robotic systems. However, for these systems to be

easily operable, they must possess the ability to comprehend their surroundings and

current position for collaboration with other systems or for human-robot collabora-

tion. Even performing a relatively simple motion control requires knowledge of the

current position of the robotic system and a feedback control system to enable the

system to reach the desired final position accurately.

On the other hand, manually operated heavy equipment, such as industrial ex-

cavators and cranes, differ significantly from robotic systems as they are externally

controlled or required direct operation. In these systems, the operator relies on vi-

sual observations and manually moves the joystick to actuate the onboard motors to

move to the final position. This reliance on human operators to control the equip-

ment restricts their use in environments not safe for human operation or hazardous

environments such as mine sites and nuclear reactors.

An external camera in this case can serve as the visual sensor to capture real-time
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images which can be processed by machine learning algorithms to extract the pose

of the robot manipulator. Moreover, vision-based sensing systems also facilitate the

development of more intuitive human-robot interfaces, allowing users to interact with

the robotic systems using natural gestures as in [10].

Previous related work on this topic at the University of Alberta’s Mechatronic

Systems Lab was performed in [11, 12]. These studies explored the detection problem

in depth for joint angle computation of an industrial Baxter robot (hardware overview

in Section 2.1.1.1). This thesis is a step further in the direction and addresses some

of the shortcomings of the previous work. It tries to answer a few questions which

arise in the current studies:

• Can the detection model work with a small training set while limiting any

adverse effects (such as overfitting)?

• How do we train a model where a CAD model of the manipulator is non-

existent?

• What is the required number of keypoints for precise pose estimation?

• How to develop a real-time control for the system, as many of the current

methods are limited to offline processing only?

• How to obtain a transferable method that can be applied to different robotic

systems?

• Can the pipeline be integrated into path-planning applications?

1.1.2 System Overview

Our aim here is to design a vision-based feedback control system for an encoder-free

robot manipulator to be used in real-time applications. We propose a structured

modular methodology as presented in Figure 1.1 consisting of three modules. Here

the main technical challenge is to build a keypoint detection model and then estimate
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Detection Module Angle Estimation Module

Control Module

MoveIt
(IK)

PID
Control

MicrocontrollerMotor
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New/Ref Pose

θm

θref

Training Images

Image ωt
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Imaging Sensor

PWM

x̂ = f(ω; η) θm = g(x̂; ζ)

Figure 1.1: An overview of our entire system in a module based structure. Solid
black boxes represent the successive stage of data computation and information

flow, colored dashed boxes show the physical hardware used.

the joint angles from the extracted keypoints, all using information from a monocular

camera image. The first component, the keypoint detection module consists of a neural

network that computes the keypoint pixel locations, x̂, from a single input RGB image

frame ω, given η, the network weights of the model found while training using the

training images, mathematically x̂ = f(ω; η). The next module is for pose estimation

using keypoint information to solve an iterative optimization problem using known

camera parameters, ζ, to compute the measured joint angles, θm. The final section is

the controller that receives a reference trajectory information, converts it to reference

angles, θref , using an inverse kinematic solver, and compares it with the measured

angles to obtain a PWM signal for motor actuation of the manipulator. The camera

then provides another image ωt+1 and the system runs in a loop for autonomous

control of the system. We refer to this framework as VECTOR (for Vision-based

Estimation and ConTrol Of Robot manipulator).

For the detection and angle estimation stage, the Baxter robot is used as an ini-

tial setup for pipeline verification and comparison purpose, while the entire thesis is

heavily focused on the use of these methods for the control of a scale excavator, used
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in all the sections; a comparative analysis is presented wherever possible.

1.2 Literature Review

Following is a review of relevant works in detection and estimation with an emphasis

on application in the construction industry. Detailed background on the neural net-

work structure used in our work is provided in Chapter 3 and is not included here to

keep the discussion brief.

1.2.1 Vision-based sensing and detection

Over the last decade, due to the availability of constantly increasing computational

power, the exponential growth of Computer Vision in research has been observed.

One of the earliest convolution neural networks (CNN) in computer vision use was in

text recognition [13] which now has expanded to generate multimodel text caption for

images using an m-RCNN [14] or text classification using CNN [15]. These networks

are now used even in medicine for X-ray image classification [16], sports activity

recognition [17], and also real-time defect detection in fabrics [18, 19].

In an industrial setting, vision methods have been used in task recognition and

assessment of the job site utilizing a multi-camera system [20, 21]. [22–24] discuss

vision-based sensing in transportation for object recognition and detection on streets

and highways, with a multi-vision sensor for mapping proposed in [25].

The integration of computer vision in robotics and automation relies on advanced

human-like sensing for tasks like object detection and tracking [26–29], depth esti-

mation from monocular camera [30, 31], face recognition from images [6, 32, 33] and

more recently autonomous detection and grasp [34] or controlling by hand motion

imitation [10].
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1.2.2 Keypoint detection

Object detection has been studied extensively in rigid bodies of known geometries

[35–39] and can be extended to keypoint detection. Many initial pose detection

methods used fiducial markers [40] or depth estimation [41]. Further, sensor fusion

methods [42, 43] were explored to achieve better performance. The use of vision-

based pose estimation gained traction for the application of object localization with

cameras onboard a robot system [4, 44–46]. The problem we try to address here is a

bit different as we try to estimate a robot manipulator in motion which makes it a

non-rigid body as a whole and direct estimation methods do not work effectively in

these cases.

Therefore, we make use of a keypoint detection pipeline to extract the pose. Key-

points are user-defined point locations that are of specific interest in a detected scene.

One of the initial developments in this domain was for human keypoint detection for

pose estimation [47–49]. For our work, keypoints are points on the manipulator which

can be used to compute the current position of each link, generally taken as joint cen-

ters.

The previous state-of-the-art works on a robotic system for 2D keypoint detection

are limited mainly to DREAM (Deep Robot-to-camera Extrinsics for Articulate Ma-

nipulators) [7] and CRAVES (Controlling Robotic Arm with Vision-based Economic

System) [8]. Both of these methods use a stacked hourglass network for the detection

of keypoints. DREAM uses the joint positions as the keypoints and trains the network

on different industrial robots while CRAVES uses a set of 17 keypoints for measuring

the joint pose of an OWI-535 robot (an inexpensive robot with no joint encoders).

Recently, a different method using render and compare instead of keypoints has also

been proposed in RoboPose [9] for joint estimation. Though having a few differences,

all of these studies rely on a CAD model for the robot and a large training dataset

of synthetic images. To the best of our knowledge, the excavator system discussed in
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our study has never been used in any previous work for keypoint detection or pose

estimation.

1.2.3 Pose estimation techniques in construction

Knowledge of an articulate robot movement can significantly enhance human-robot

interactions and simplify safety evaluation at construction sites. Classical image-

processing systems have proven beneficial for improving safety, productivity, and

general monitoring but are still not prominent in the construction industry [50]. Pre-

vious studies have employed computer vision techniques for hard-hat detection [51],

hand protection detection [52], worker-equipment interaction [53, 54] and equipment

pose forecasting [55], to provide and enforce a safe operational environment. Addi-

tionally, they have also been used to assess the productivity of particular equipment

[56] or the entire job site using multi-camera systems [57]. [58] provides a summary

of various studies using image data in construction and equipment tracking.

To estimate the pose and location of construction equipment, two possible tech-

niques can be applied; sensor-based or vision-based. For sensor-based methods, sen-

sors such as Inertial Motion Unit (IMU), Global Positioning System (GPS), Ultra-

Wide Band (UWB), etc. are deployed onboard the physical system. All of these have

significant drawbacks in an urban setting or have large drift after repeated use [59].

On the other hand, vision-based methods analyze the pose from an externally

mounted image-sensing system. These systems are further categorized into two

branches, marker-based and marker-less estimation methods. Marker-based tech-

niques estimate the pose using fiducial markers mounted directly on the equipment

[60, 61], similar to the sensor-based method. [62] achieves an average error of less than

8.5◦ for orientation estimation using CALTag markers mounted at multiple locations

on an excavator.

Marker-less vision-only methods directly extract image features for the detection

and estimation of the pose of these manipulators. Many direct pose estimation ap-
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proaches use geometrical information and conventional computer vision methods, such

as skeleton detection [63] and key node tracking using a stereo camera [64] for exca-

vator pose estimation. These methods heavily rely on specific shapes and viewpoints,

therefore cannot be generalized in complex environmental settings [63].

More advanced methods leverage machine learning models to solve the detection

problem. [65] proposes an R-FCN (Region-based Fully Convolutional Network) for

bounding box detection and localization of construction equipment. A simplistic

vision-based grading control in a simulated environment using an artificial neural net-

work with 3 layers to estimate an excavator’s cylinder displacements is presented in

[66]. Keypoint detection neural network structures for excavators include a regression-

based deep neural network for keypoint detection [67], a comparison of stacked hour-

glass network, cascade pyramid network, and an ensemble version of the two [68], a

unique recurrent neural network [55], a YOLOv5 network for excavator detection and

a SimpleBaseline [69] network with Resnet backbone for keypoint [70], etc. are just

a few of the possible many variations.

[71] utilizes a stacked hourglass network to compute the 3D pose of a robot arm

with an attached bucket in a lab setting to resemble an excavator and employs a fast

dataset collection technique that uses encoder data from the robotic arm to generate

the labeled dataset. [72] uses a DREAM [7]-like method to generate synthetic images

using domain randomization for training an HRNet [73] architecture and testing ac-

curacy on real images for keypoint detection of an excavator. Both these studies [71,

72] acknowledge the sparse image dataset in a construction setting and try to address

the concern using different methods, many of these methods rely on the availability

of a highly realistic CAD model to obtain synthetic images.

Furthermore, many deep CNN structures require expensive computations while

training and have slow operational speeds. Sparse constrained, compact CNN net-

works with fewer parameters are more recently studied [74] and applied in cases where

a limited image dataset is available for construction equipment [75, 76].
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Our work is a step forward towards autonomous excavator detection and control

using a small training dataset and relying only on the physical dimensions of the

excavator, such that a CAD model of the system is not required.

1.3 Thesis Outline

This chapter provides a background on the robot manipulator pose estimation prob-

lem and the motivation to perform the research outlined, along with the questions

this thesis tries to answer. Further, a high-level overview of our system is provided

with a comprehensive literature study of related works in the area.

Chapter 2 lists the hardware and software used in the study, including the robot

manipulators, imaging sensors, and the custom-built ROS packages to successfully

run our network in real-time applications.

Chapter 3 covers the foundations of vision-based neural networks and their ap-

plications in solving complex problems in detection and localization. Following this,

we present the keypoint detection CNN model architecture and its training results

on the Baxter and scale excavator. A benchmark comparison with previous works is

provided for the Baxter on an online detection test run where both models run in

parallel, while only visual qualitative results are presented for the excavator at this

stage.

Chapter 4 provides mathematical preliminaries for the conversion of 2D keypoints

to 3D poses using joint angle estimations. Using camera calibration, intrinsic and ex-

trinsic parameters are obtained and applied in solving the kinematics using a Product

of Exponentials-based formulation in the optimization step. Multiple optimizer equa-

tions are proposed and the best-performing one is selected based on merit. Finally,

the joint angles are compared to ground truth angles obtained from encoders (for the

Baxter) and an optical motion capture system installed in the lab (for the excavator).

Chapter 5 develops a simple digital PID algorithm for joint control of the excavator

and integrates the entire pipeline with the MoveIt package for path-planning capabil-
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ities. It also includes a signal filter design for our measured joint angles. The entire

integration with ROS and MoveIt enforces the generalization to other manipulators,

a claim presented in the thesis. Experimental verification of the entire framework is

tested using random target positions in the workspace and the findings are reported

in Section 5.5.1.

Chapter 6 summarizes the work performed in the thesis and the results obtained.

Possible future directions along with limitations of the current study are discussed.

1.3.1 Statement of Contributions

This thesis claims the following research contributions (listed in the order of appear-

ance):

• Demonstrate the feasibility of using a minimal training dataset to achieve com-

petitive keypoint detection on two different robot manipulators, a Baxter robot

arm and a scale excavator, whereas most existing methods require a very large

collection of synthetic images using a CAD model for training.

• A Product of Exponentials-based optimization algorithm to compute joint an-

gles from 2D keypoint information of a known robot geometry and camera

parameters.

• Real-time computation and implementation of joint estimation framework on

both manipulators with a comprehensive assessment of our work with recent

benchmark studies.

• Development of a custom URDF (Unified Robotics Description Format) for the

scale excavator used within the optimization problem.

• Integration of developed vision-based joint state estimates into a digital PID

feedback controller and a path planning algorithm for precise point-to-point

position control of the end-effector.
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Chapter 2

Hardware and Software
Architecture

2.1 Hardware Background

This section categorizes all the hardware components used in this thesis along with

the specifications of the system and their precise setup.

2.1.1 Robot Manipulator

2.1.1.1 Baxter Robot

The Baxter is a human-size industrial robot developed by Rethink Robotics Inc.

referred to as the ‘Baxter robot’ or ‘Baxter’ in the thesis. It has two arm manipulators,

each of which is a 7-DOF (degree of freedom) system. The robot has two end-effector

variations: a vacuum and an electric gripper; an external air unit powers the vacuum

one, while the robot itself powers the latter. We only use the electrical gripper for

this research to perform initial pick and place tests. In the later stage, the gripper

used becomes irrelevant as it is not controlled/actuated.

The Baxter comes with an onboard display that serves as the face. It also has

multiple sensors: sonar on the head, precise encoders on each revolute joint, and

imaging sensors on the face (camera) and cuffs (camera and IR sensor). Out of the

above list, we only use the encoder joint angle values, which have an average position

accuracy of ±0.1◦, with a maximum variation of ±0.25◦ [77]. The robot comes with
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a laptop PC with a Linux operating system having all the required Baxter SDK

dependencies for ROS. This external laptop is connected over the Ethernet to the

main computer on board the Baxter.

Figure 2.1: Baxter robot with arms in free position without joint actuation

Further, as each of Baxter’s arms is a 7-DOF system where each arm is built up of

a set of 7 isolated revolute joints, making it an RRRRRRR system with a kinematic

redundancy (as the robot DOF is greater than the 3D workspace). This makes it

possible to have multiple configurations with the same end-effector position. Also,

as described in [78], the Baxter has a complex geometry with multiple joint offsets
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making the existence of an analytic solution for the inverse kinematic problem almost

non-possible. As a result of this and other limitations, some joints are considered

rigid/fixed for the current research (details in Section 3.4.2).

2.1.1.2 Scale Excavator

The second robot arm used in this research is a 1:14 scale model of an industrial

excavator. This Huina 15801 excavator model has full operational capabilities using

an RC system working on a 2.4GHz transmitter, such that the excavator can be

controlled from distances up to 50m away, it is referred as the ‘excavator’ or ‘scale

excavator’ throughout the thesis. This model is a 7-DOF system (4-DOF arm and

3-DOF planar motion of base).

Figure 2.2: Huina 1580 1:14 scale model of industrial excavator

The model uses standard DC motors for all joints connected to the central PCB.

These DC motors then move the joint directly (in case of the base) or indirectly

using a screw mechanism to provide linear motion (in case of the arm, wrist and

bucket). As the system uses standard DC motors, we do not have any feedback from

1https://huinaconstructiontoys.com/products/rc-huina-1580-excavator
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the excavator with regard to its current position. Moreover, as discussed later in

Section 3.4.2, only the arm is moved while keeping the excavator rollers stationary.

This makes the reduced system a 4-DOF arm manipulator on a fixed base similar to

the Baxter robot.

2.1.2 Imaging Devices

For the research, we use two kinds of imaging devices, a single camera facing straight

onto the robot and another set of cameras to provide the ground truth values of the

joint estimates.

2.1.2.1 RGB-D Camera

The Intel® RealSense™ D435i RGB-D camera is a commonly available off-the-shelf

camera used as the primary camera for this research. It provides two different kinds

of images; one a standard RGB image and the second a grayscale depth image using

the stereo cameras.

Figure 2.3: RealSense D435i RGB-D Camera with mounting stand and 3D printed
support

It should be noted that the stereo camera component is not used in any part of

this thesis. We only use the RGB image obtained from the camera. The sole purpose

of this specific RGB-D camera is its simple SDK package support for ROS, making it

easy to integrate the live camera feed for use in our system. The RGB image obtained
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has a frame resolution of 1280 X 720 (2 Megapixels) with a 30fps frame rate.

2.1.2.2 Vicon Tracking System

Motion capture systems are tools to dynamically estimate a specific body’s position

and orientation using reflective markers and calibrated cameras. This is widely used

for real-time estimation of human movement in movies for CGI effects, sports, and

healthcare applications [79].

Figure 2.4: Vicon Vera Camera with mounting in the lab setting

Motion capture systems come in various types; here, we use a Vicon Vero v2.2

camera-based system with ten infrared (IR) cameras mounted in the lab, used to

triangulate the 3D position of a retroreflective marker attached to a body with respect

to a pre-set custom origin. This system is used to compute the accurate placement

of the robot arm base wrt the camera and also to provide precise joint state values

for validation of our computer vision system.

The Vicon system in the lab is connected to a stand-alone computer running the

Tracker 3 software to compute the position information. Each marker must be in the

field of view of at least three cameras for triangulation of the position. These cameras

can give near real-time estimates with an average latency of around 3.6 ms [80].
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Figure 2.5: Retroreflective markers for motion capture system

Figure 2.6: Tracker3 software running on a stand-alone desktop connected to the
Vicon Vera cameras in the lab. The left bottom (in green) shows the successful

calibration of all the cameras

The cameras need to be calibrated before use. This process involves using a cali-

bration wand which is moved around the volumetric space under observation. Each

camera then detects at least 1500 frames of the wand to compute the transformation

of each camera with respect to the others, and the software will provide the image
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error and the world error, which should be around 0.5mm. If the error is significant,

the calibration needs to be repeated. Further, the software prompts the selection of

the world origin, which is done by placing the wand at a specific location marking the

center of its cross the origin in this case. After this, the calibration is complete. If the

camera is bumped or moved, the camera will turn red, and the calibration process

must be repeated.

2.1.3 Microprocessor

To integrate the scale excavator with ROS (discussed in Section 5.3), the controller

onboard the excavator is changed to an Arduino Uno Wifi Rev.2 with an Adafruit

Motor shield V2. This setup provided the operation and control of the excavator’s

arm through the central PC instead of the remote controller.

(a) Arduino Uno Wifi Rev.2 Board (b) Adafruit Motor Shield V2 board

Figure 2.7: Microprocessor Components

The Arduino board is connected to the central system using Arduino IDE, as

discussed later in Section 2.2.5. This Arduino board connects to the motor shield,

which drives the four motors on the excavator’s arm.

2.1.4 Central Processor

With extensive computation power to integrate all communication from the micro-

processor, robot manipulation and image sensors to the vision algorithm, a desktop

PC is used as the main central system. This PC is equipped with 64 GB RAM, an 8

17



core Intel® Core™ i9-9900K Processor CPU (Central Processing Unit) running at a

base frequency of 3.60GHz and an NVIDIA GeForce RTX 2070 Super GPU (Graphic

Processing Unit) enabling parallel computing of the neural network algorithm. The

system runs a Linux Ubuntu 18.04.6 LTS operating system.

2.2 Software Background

The following section provides an overview of the software used throughout the re-

search to analyze and integrate data collection and delivery between the hardware

components and the machine learning algorithm.

2.2.1 OpenCV

OpenCV (Open Source Computer Vision Library) provides a cross-platform library

in C/C++ and Python for real-time digital image analysis, processing and feature

recognition. The library was initially developed by Intel and lays a foundation for

further machine learning technologies available now for computer vision problems.

This was used extensively for image visualization, overlapping and camera calibration

process throughout the research.

2.2.2 CUDA

NVIDIA CUDA is a platform providing a parallel computing environment and addi-

tional APIs (application processing units) for software to select a certain GPU. This

platform is used to train and run neural networks (Section 3.4.2) along with their

real-time deployment (Section 3.5).

2.2.3 ROS

Robot Operating System or ROS is an open-source platform that provides exceptional

abilities to operate and program a robot. The name might mislead into the belief that

it is an alternative operating system (OS) whereas it is an add-on system working
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alongside the traditional OS. It has the ability to run across multiple machines along

with a combination of different hardware attachments and multiple robots.

ROS provides a simple infrastructure where everything is linked to a central

roscore having the required communication information for bridging the commu-

nication across platforms. The system consists of a set of nodes publishing data

through unique transmission carriers called topics in its program code. The platform

is set in a way that any node can subscribe to any published/to-be-published topic

containing real-time data. This makes it possible to break down a massive program

into small chunks of code that can be used repeatedly and independently much more

efficiently than traditional methods. Also, cross-platform abilities allow the data

published by one node accessible by any other node irrespective of the language (say

C++ with Python) used. All ROS programs are compiled under a specific package

containing the build and execution files. Multiple ROS packages used throughout the

research are listed below.

2.2.3.1 vicon bridge

The vicon bridge package is a ROS wrapper used to broadcast data from the Tracker

3 software connected to the Vicon system. It publishes the location and orientation

of rigid bodies as defined in the tracker software along with each marker position.

The package can be run on any machine connected to the same network making

the marker information available across various machines. The package runs on the

central system receiving data from the stand-alone PC running the Tracker 3 software.

Further, only the marker locations in 3D (w.r.t. the origin) are used/ recorded for

the entire thesis and no other information is collected from the system.

2.2.3.2 baxter

The baxter SDK provides all the basic platforms for the development and use of the

Baxter robot. The most common file used is baxter.sh used to initialize the Baxter
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robot and establish a connection between the robot master system with the laptop

PC.

2.2.3.3 baxter tools

The baxter tools repository provides the basic operational and maintenance tools

for the Baxter, such as calibration protocol for the arms, enabling the robot to estab-

lish further communication with other tools to run the Baxter.

2.2.3.4 baxter common

The baxter common repository provides all the URDF and mesh files that are required

to simulate the Baxter in a virtual environment and to replicate the movement and

path planning from the simulated environment to the physical Baxter robot. The

URDF describes the position, orientation and type of each joint and the mesh file

provides the 3D representation of each of the robot links.

2.2.3.5 baxter examples

The baxter examples repository provides an extensive list of programs to run the

Baxter robot in different ways; like using a

joystick (joint position joystick.py),

keyboard (joint position keyboard.py) or

waypoints (joint position waypoints.py);

record and replay a manual trajectory (joint trajectory file playback.py); or

other different aspects of its motion.

The trajectory feedback is used for initial testing and keyboard control is used

extensively during the data collection for the ML model.

2.2.3.6 MoveIt

MoveIt is a robot manipulation framework for ROS. It provides a repository to in-

corporate motion planning, manipulation, inverse kinematics, control, 3D perception,
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and collision checking under one big structure.

The basic task considered in the design of MoveIt is the control of a robot manip-

ulator from a given configuration to a goal state while taking note of all the physical

and dynamic constraints for the motion [81]. MoveIt has been successfully used in

various industrial robots and has a pre-built repository for the Baxter robot, making

path planning for the Baxter robot very convenient. MoveIt uses a URDF file for the

robot to define the joint type and location and a mesh file that has a 3D model of

all the links. The interactive interface Rviz is used to define planning scenes and to

show the path planned with object avoidance and self-collision detection if required.

The thesis describes the use of MoveIt for our work in detail in Section 5.3.

Following is the list of primary packages developed by the author and maintained

by Dr. Martin Barczyk under the Mechatronic Systems Lab GitLab repository,

2.2.3.7 keypoint rcnn

The keypoint rcnn package includes a comprehensive list of Python scrips for train-

ing the PyTorch model, as well as the code for deploying the system in real-time using

the camera feed.

2.2.3.8 rscam calib

The camera calibration package is the repository for all the calibration steps presented

in our work. Using this package we find the intrinsic and extrinsic parameters of the

camera with respect to the base of the robot manipulator used in the optimizer

algorithm.

2.2.3.9 vicon angle

This repository provides the fundamental tools to compute the ground truth angles for

the excavator and the joint angle based controller design, with the following essential

scripts:
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• angle vicon cal.py: This Python script is a set of functions that uses the

Vicon markers position in 3D space to find the angle between lines and planes

for computation of highly precise joint angle for the excavator.

• exc control.py: This Python script is the digital controller of our system that

takes the reference and estimated joint angles as input to compute the output

signal to the motors on board the excavator.

2.2.3.10 mmm ros

The repository is the keyboard motion control for the excavator where a set of keys

are used to actuate the robot arm. teleop control.py is the main script for the

actuation with different speeds and joints to move the excavator links randomly, this

code is used in training and assessment of the keypoint detection model.

2.2.3.11 angle estimate

The is the package constituting the C++ scripts and libraries for the iterative joint

angle optimization algorithm using the LM optimizer (Section 4.3.1). This package

consists solely of C++ scripts for real-time execution with minimal delay.

2.2.3.12 exc arm config

This package is generated using the MoveIt setup wizard for control of the excavator

inside the MoveIt environment.

All these packages discussed are linked together using ROS subscribers and publishers

for real-time data transfer.

2.2.4 MATLAB

MATLAB is a numeric computing software and programming language developed by

MathWorks. It serves as a powerful tool for complex mathematical problems, such as

matrix computations, linear algebra, optimization, and signal processing, while also
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providing a range of functions for data analysis, visualization, and simulation. Matlab

also has a large library of toolboxes that make its use even further in the domains

of robotics and machine learning. One other advantage is its ability to interact with

other programming languages like C++ or Python.

Matlab is used here to perform Fourier transforms and to build the signal filter

and the Robotics toolbox is used to verify the inverse kinematic equations for the

optimization problem.

2.2.5 Arduino IDE

Arduino IDE (Integrated Development Environment) is a software tool used to write

and upload code to Arduino boards and many different microcontrollers. It is an

open-source platform based on very simple hardware and is designed to control simple

electronics. Further, the IDE can auto-detect the connected board and its serial port.

We use a custom-made exc control test.ino script to bridge the data from the

central processor to the onboard Arduino Uno Wifi Rev.2 connected to the excavator’s

motors.

2.2.6 SOLIDWORKS

SOLIDWORKS is a 3D CAD software by Dassault Systèmes used commonly to model,

simulate and extract technical drawings from solid models. It is feature-based design

software that helps create models based on the shape and size of each part which can

then be combined with other individual parts to form a complex assembly. Another

advantage to SOLIDWORKS is the scale-back feature which allows one to scale back

the features in a model and make changes to a previous version without affecting and

subsequent feature utilizations.

Here we use SOLIDWORKS only to modify an existing CAD model and then use

the SW2URDF plugin to build and export the URDF file for the scale excavator with

the required joint positions and types.
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Chapter 3

Vision-Based Detection Model

3.1 Overview

This chapter covers the foundation of pose estimation and the development of a

machine learning based neural network for detection of the robot manipulator in the

camera frame. First, we explore the advancements in computer vision algorithms that

use deep learning platforms and models. Subsequently, a brief description is made

regarding the various neural network structures used in the computer vision problem

and how they all link to form the final model used. Finally, the model is tested in

real-time and extensive comparison is provided with other relevant works.

3.2 Machine Learning

Machine Learning (ML) is a broad subfield under the umbrella term of Artificial

Intelligence (AI). It explores the various ways for computer systems to process, an-

alyze and extract relevant information from data. Today, ML systems are used for

extracting features from an image, automation of voice-to-text systems, and provid-

ing content suggestions online [82]. Conventional algorithms to obtain similar results

require extensive engineering background and complex optimizations, resulting in

substantial expertise and time commitment to a single problem. The ML algorithms

are classified into three categories based on the input information to the algorithm:

supervised, semisupervised, and unsupervised learning. This research focuses on the
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use of supervised learning; learning based on correctly labeled information.

With the advancement of computation power and data availability ML has seen

significant advancements over recent years. This paved way for the development of

Deep Learning platforms that use deep neural networks (DNN) with multiple lay-

ers of neurons to automatically detect the “representations” for the classification or

detection problem [82].

3.2.1 Machine Learning Frameworks

3.2.2 TensorFlow

TensorFlow provides an open-source library developed by Google Brain for the build-

ing and training of machine learning models. It provides a high-level system with

implementation details that allow for a simplified model design. Further, it provides

a wide range of tools for deploying, visualizing, and evaluating models.

3.2.3 Pytorch

PyTorch is also an open-source library for machine learning developed by Facebook

AI. PyTorch provides a more Python-based approach using the torch library for model

development and it also comes with a wide range of pre-trained models. For this

thesis, PyTorch is used for all deep learning model designs for its easier use and

prebuilt backbone structures for the keypoint detection problem.

3.3 Deep Neural Network

3.3.1 Convolutional Neural Networks

The development of CNN started with the introduction of LeNet [13] in 1998 for

document recognition specifically for handwritten characters. This is when the power

of CNN was realized for image processing and detection. But due to the limited

computation power available at that time to perform successive convolutions quickly,

the use only became prominent with the development of AlexNet [83] in 2012.
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AlexNet image classification network consisted of 5 convolution layers with 60

million parameters and achieved much better error rates compared to the previous

state-of-the-art networks available during the time. With such an enormous network

that may result in overfitting, two solutions were proposed to overcome the problem,

data augmentation and dropout layers [84]. Where “dropout” refers to the setting of

a neuron’s weight to zero which has a probability of 0.5, this way each neuron was

trained more robustly and reduced system complexities [83]. This laid the foundation

for the development of more deep and complicated convoluted neural networks.

Here we discuss two of the recent networks which are used in some capacity in the

thesis.

3.3.2 VGG-19

With CNN developing into one of the preferred networks for computer vision, further,

attempts were underway to improve performance on the ImageNet database [85]. The

VGG group [86] (VGG-11, VGG-13, VGG-16, VGG-19) of networks were designed

with more layers and a filter with a smaller receptive field of 3X3 (compared to 11X11

and 5X5 used in AlexNet) to extract even more features. The VGG group also are

one of the biggest networks with 144 million parameters for VGG-19, with 19 weight

layers [86].

3.3.3 ResNet-50

After the success of VGG net, further studies focused on exploring the possibility of

even deeper networks. But the solution to better performance is not as simple as

stacking multiple layers in a single thread.

First, we start facing a problem of vanishing/exploding gradients as the depth

increases [87], which results in poor performance as the weights go unstable. This

specific problem was addressed with the development of Inception v1 which provided

two auxiliary classifiers connected to the intermediate layers for computing an auxil-

26



iary loss, which gets weighted to the total loss during the training phase [88]. These

auxiliary classifiers were then dropped at the implementation stage. Second, when

these deep networks start to converge, a “degradation problem” is encountered [89].

This is witnessed as a decreased accuracy with increasing network depth (this is not

caused due to overfitting as degradation leads to a substantial increase in the training

error also). This problem was addressed with the development of a “deep residual

learning framework”, which is a feedforward system where the input is connected to

the output of one of the following layers using a direct connection. This model has

fewer filters and is less complicated than VGG nets while having more than twice as

many layers [89]. ResNet-50 with 50 layers has only 26 million parameters.

All the above networks discussed the use of standard CNN for image classification

problems. Another interesting computer vision problem is object detection, local-

ization, and semantic segmentation. The major difference between object detection

and classification problem is the presence of multiple objects in one image make a

standard CNN ineffective in the case of the former as the output length is no longer

constant, another problem is the presence of an object in a different aspect ratio, size

or view. A possible solution is to find specific areas in an image and use a CNN on

this specific area. The next list of models is a successive improvement on this basic

baseline.

3.3.4 R-CNN

Contrary to the approach of localization of image sections using a regression solver,

this section follows the pattern of “recognition using regions” from [90] to build the

R-CNN [91] network: “Regions with CNN Features”.

This model follows a modular design for object detection and localization by first

extracting around 2000 region proposals using the selective search [92] method fol-

lowed by feature extraction CNN as described in [83]. For passing all the region
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proposals of random shape and aspect ratios to the CNN these regions are wrapped

in a bounding box of the required size [91]. Finally, a fixed-length feature vector

for each selected region is passed through class-specific SVMs for classification and a

regressor for the 4 corners of a bounding box.

This is a very long process and takes huge amounts of time to train and classify

2000 regions. Also, real-time implementation is impossible as it takes around 47sec

per image with a VGG16 layer CNN [93].

3.3.5 Fast R-CNN

Fast R-CNN [93] is developed by Girshick (author of the R-CNN paper [91]) to

improve some of the drawbacks in the R-CNN structure. The major difference is

that the image along with region proposals are directly fed into a CNN network to

produce a feature map. After which, every specific object proposal passes through an

RoI (region of interest) pooling layer to reshape the RoI that finally goes through a

set of fully connected layers successively which branch out to two output layers; one

with softmax classifier and the other a bounding box regressor.

This model is much faster than R-CNN in training as well as at run time because we

don’t have to feed 2000 object proposals through a CNN each time. Also, the change

from SVM fitting via multi-stage training to a softmax layer’s one-shot fine-tuning is

sufficient and has a slightly higher mAP score. Fast R-CNN is 9X faster in training

a VGG16 network, while 219X faster at runtime compared to R-CNN network [93].

3.3.6 Faster R-CNN

Both R-CNN and Fast R-CNN use selective search for region proposals, this search

process is slow and is based on an algorithm that is not learned during training making

it complex even in the case of simpler images with fewer features. Faster R-CNN [94]

is a tweaked version of Fast R-CNN with a fully convolutional network that proposes

regions and a base of Fast R-CNN structure. A Region Proposal Network (RPN) is
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used to generate the region proposals. This is done by sliding a small CNN network

over the feature map output by the previous convolution layer [94]. These regions

along with the feature maps are sent to the RoI layer the same way as in Fast R-CNN.

3.3.7 Mask R-CNN

Mask R-CNN [95] is based on the same underlying strategy of Faster R-CNN discussed

in the previous section. It has the same first level of RPN followed by a second level

which has an additional parallel layer to predict the binary mask of each RoI.

The multi-task loss is defined by an extra term Lmask in addition to the classifica-

tion and bounding box loss. Another distinctive feature is using the RoIAlign layer

instead of the RoIPool layer. The former use bi-linear interpolation rather than the

quantization feature to estimate the exact features. This leads to a large improvement

in object detection as shown in [95].

The Mask R-CNN network also explores the backbone with a Feature Pyramid

Network (FPN) as presented in [96]. This method takes in an input image and

outputs feature maps of proportional size at multiple levels. The system is a bottom-

up CNN pathway with a top-down network with lateral connections using strong

semantic feature maps from high pyramid layers, refer to [96] for detailed structural

information and usage. This additional FPN structure produces the best results on

the COCO dataset [97].

3.4 Keypoint Detection Model

Section 3.3 provides a background of convolutional neural networks in computer vision

problems for object detection. The final remarks on Mask R-CNN demonstrate the

application in semantic segmentation and mask of each object in an image. This is still

not what we need as the mask or bounding box of an object can help in localization

but the pose estimation requires the detection of keypoints (points of interest in an

image). Here we present the keypoint detection model used for the thesis and the

29



underlying training process.

3.4.1 Network Architecture

Keypoint Mask

Class Score

Box Offsets

Input Image ResNet-50-FPN
(Backbone)

Feature Map

RPN

Set of all variable
size feature maps

ROI Align

conv layers

fc layers

fc layers

fc layers

Figure 3.1: Keypoint R-CNN structure layout with a ResNet-50-FPN backbone
including all components without specific layer dimensions

We use an extension of the Mask R-CNN model for our work with slight additions.

For using a similar structure in keypoint detection, the location of each keypoint is

assumed as a ‘one-hot’ mask, which then extends to the n keypoints in any image

instance. While training, only a single pixel is labeled as a foreground one-hot binary

mask subsequent to each keypoint. These n keypoints are treated independently as

in the case of instance segmentation masks. Other networks were also tested (such as

MobileNet [98], etc.) but these did not provide accurate results in our case which is

why we opted for the use of Mask R-CNN structural baseline for keypoint detection.

Different backbone structures for this Keypoint R-CNN were explored, and the

ResNet-50-FPN backbone opted for its effective and accurate detection results. A

deeper ResNet could have been deployed (like ResNet-101) but a tradeoff between

the accuracy and computation time makes the ResNet-50-FPN variant optimal in this

case. Also, this network is used as a backbone for feature extraction and a different

head structure convolutional neural network is used for keypoint and bounding box

which is a stack of 8 conv layers (3X3 filters) followed by a deconv layer with bilinear

upscaling, resulting in a final output resolution of size [c,n,56,56] where c is the number
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of classes (in this case 2, for background and object/keypoint) and n is the number

of detected keypoints with an output resolution of 56X56. The optimizer parameters

for stochastic gradient descent are set with a learning rate of 0.01, a momentum of

0.9, and a weight decay of 0.0005. The learning rate decays by 0.3 every 5 epochs for

each parameter group.

This model serves as our first module/function f for estimating 2D keypoints (x̂)

given an image input (ω) to solve x̂ = f(ω; η), where η consists of the model weights

learned during training of the model. Here, x̂ ∈ Rn×2 is a 2D pixel coordinate matrix,

where n = 5 for the Baxter and n = 4 for the excavator.

3.4.2 Training

Contrary to the commonly used large datasets for training, as in [95], the study here is

focused on situations where a labeled dataset is not available. This problem is mostly

solved by the use of a small dataset with data augmentation or by the generation of

a simulated dataset where a highly realistic 3D CAD model is available [7–9, 11, 12],

which requires a transfer learning step for domain adaptation to a real-world setting.

We explore the possibility of using a different approach where a highly realistic CAD

model is unavailable, we use a very small set of hand-labeled (auto-labeled in the case

of Baxter) real environment image datasets for supervised learning for training. The

common problem with using a smaller dataset is the overfitting of the model on the

training images, but with the advanced level of CNN architecture used the model is

expected to perform well in operational situations.

The model training loss is defined as a sum of three loss as follows,

L = Lcls + Lbox + Lkp (3.1)

where Lcls is the classification loss, Lbox is the bounding-box loss, and Lkp is the

keypoint loss. Though including the mask enhances the keypoint accuracy [95], the

mask output is not used to train the model as the collection of ground truth data for
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the mask requires more computation and effort to label. The loss in each case is the

binary cross-entropy loss (Eq. (3.2)) or mathematically known as the log loss. The

penalty on estimation increases logarithmically with the increase in error.

Losslog = −(yilog(f(xi)) + (1− yi)log(1− f(xi))) (3.2)

s0

s1

e1

w1

ee

Figure 3.2: Baxter joints along with names used in the keypoint detection algorithm
(s-shoulder, e-elbow, w-wrist, ee-end effector)

The keypoints are auto-computed for the Baxter based on the joint feedback from

encodes (with known intrinsic and extrinsic parameters for the camera, further in-

formation in Section 4.1), the location of each keypoint is the exact location of the

joint center based on the URDF file for the Baxter. We label a total of 5 keypoints

(one each for joint s0, s1, e1, w1, and an end effector point) on the right arm and only
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move these joints to replicate a 4-DOF system. In the case of the excavator, the base

remains stationary and all other joints are rotated randomly. The keypoints here are

labeled manually corresponding to highly visible points or joint positions on the front

face and not the 3D centroid, as in the case of Baxter. Here we only hand-label 4

keypoints, corresponding to the minimum required number of keypoints for detection

and control in a 4-DOF system.

3.4.3 Evaluation Techniques

For evaluating the performance of the keypoint detection model two strategies are

used; Percentage of Correct Keypoints (PCK) and Mean Absolute Error (MAE).

PCK@0.2 (pixel error< 0.2 max(h,w); height, width of the bounding box) score is

used to evaluate the performance of the model in real-time tests for the Baxter robot,

as ground truth keypoints can be computed directly from the available data. In the

case of the excavator, no such way to compute real-time ground truth keypoints is

available, necessitating only the provision of qualitative results at this stage. How-

ever, in the subsequent chapters, more robust performance metrics will be utilized to

provide a more quantifiable assessment.

3.5 Experimental Setup and Results

3.5.1 Dataset

The dataset for the entire training is collected in the lab environment with a backdrop

of single color separators exactly behind the manipulator for easy distinguishment of

the joint from the lab background. The training is done with this as the background

for extracting as many features as possible of the manipulator arm using the limited

training dataset. For both the Baxter and the scale excavator we move the 4 joints

randomly to cover a wide trajectory operation range and collect image data from the

RealSense D435i camera facing front directly towards the arm with an image size of

640 X 480.
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Also throughout the process, the Baxter joint states are recorded along with the

image to obtain the ground truth keypoint positions. However, for the excavator, no

such encoder data is available so the keypoints are hand-labeled. We capture 650

images of the Baxter and 350 images of the excavator in random joint orientations.

Then we randomly divide the training and test set in a 9:1 ratio, respectively.

3.5.2 Results and Discussion

We first evaluate the model training based on the calculated loss. Training and test

loss are shown in Figure 3.3 representing a competitive final test loss compared to

training. This shows that our model works well with limited real-case training images

while avoiding overfitting. The training is done for a total of 20 epochs and the batch

size used is 20 images.
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Figure 3.3: Training and test loss for 20 epochs, total loss is the sum of all losses as
described in Equation (3.1)

For the training, we also report the average precision (AP) score as per COCO

evaluation metrics on the test images at the end of 20 epochs. We edit the OKS

sigma to correspond to the correct number of keypoints for our problem and report

the AP for bounding box and keypoint for both the models in Table 3.1

After evaluating the model accuracy using the loss functions in training, the fi-

nal model is deployed for real-time estimation. Tables 3.2 and 3.3 summarizes the
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Table 3.1: AP on test images for box and keypoint detection. The backbone is
ResNet-50-FPN (higher the better)

AP bb AP bb
50 AP bb

75 AP kp AP kp
50 AP kp

75

Baxter 0.738 0.99 0.95 0.948 0.99 0.99

Excavator 0.928 0.99 0.99 0.987 0.99 0.99

accuracy for keypoint detection in the case of the Baxter robot from our method

compared to a popular keypoint detection method DREAM (using the VGG-Q CNN

structure) [7]. This data is collected to estimate the joint position in real-time using

the two models and comparing them with ground truth joint angles recorded using

the onboard encoders. Our model performs better in detection accuracy in three

of the total five detected keypoints (namely shoulder, wrist, and hand) with a huge

difference in the results for the hand keypoint where our model has 50% less error

compared to DREAM. Our model represents a more robust and consistent detection

with a PCK@0.2 score higher than 90% in all joint detection cases.

Table 3.2: PCK@0.2 for each joint position in real-time estimation of Baxter robot
(higher the better)

Base Shoulder Elbow Wrist Hand

DREAM
[7]

0.99 0.98 0.98 0.95 0.76

VECTOR
(Ours)

0.96 0.99 0.94 0.97 0.91

Table 3.3: MAE (in pixels) for each joint position in real-time estimation of Baxter
robot (lower the better)

Base Shoulder Elbow Wrist Hand

DREAM
[7]

22.49 23.38 28.10 38.93 86.89

VECTOR
(Ours)

42.55 19.11 33.82 30.44 42.52
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The same test results are also used to plot the absolute PCK(%age) in Figure 3.4

and compare the relative accuracy. The black solid line represents the average PCK

value which is comparable for both models. This shows our model trained on a much

smaller training set performing almost as well as or even better in some cases than

DREAM.

One possible reason for DREAM to have lower accuracy, in this case, is the images

used in training are synthetic simulated images and do not represent the exact lab

environment, whereas our model is trained on images captured in the same lab as

the real-time test environment. This makes the direct generalized comparison not

applicable as DREAM might possibly work better in a different setting than our lab

as it is trained on a wider range of images. Having mentioned that, our study’s focus

is not to compare benchmark detection models with ours but to showcase a possible

way of keypoint detection where no pre-trained model exists or the available training

set is small.

All these quantitative real-time assessment results cannot be obtained for the exca-

vator as the ground truth keypoint position is unknown in this case. This restriction

makes only qualitative assessments to be presented in this chapter. We use the same

setup and move the excavator to random positions in the work area and collect im-

ages with keypoint overlay in real-time (Figure 3.5). The four detected keypoints are

connected with lines with the base keypoint found using the extrinsic parameters as

described in Section 4.1.2 corresponding to the absolute location of the first joint or

the base of the excavator. Low-light detection results are shown in Figure 3.6 and

some cases where the detection is not accurate are shown in Figure 3.7.
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(b) VECTOR (Ours)

Figure 3.4: PCK Scores with respect to pixel distance in real-time estimation of
Baxter robot
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Figure 3.5: Qualitative results in real-time assessment of the excavator in random
positions in the work area, keypoints are connected with green solid lines where the

base keypoint is fixed and calculated using the extrinsic parameters
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Figure 3.6: Results in real-time assessment of the excavator; low-light (left),
low-light and dynamic background (right)

Figure 3.7: Low accuracy detection cases in real-time assessment of the excavator,
major error in detection of end-effector while other keypoints are still accurate
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Chapter 4

Joint State Estimation from
Detected Keypoints

This chapter details the process implemented to find the joint state estimates from the

2D keypoints detected using the neural network discussed in the previous section. We

first introduce the image formation and mathematical models used to find the relation

between 2D image pixel coordinates and their corresponding 3D world coordinates.

Following this, the forward kinematic equations for the specific robot model are listed

along with the various iterative optimization techniques used. Finally, joint angle

computation is carried out in real-time and results are compared for both robot

manipulators.

4.1 Image Formation

We deploy a digital camera that includes transparent lenses to form a visual image

on a sensing surface. This is done by directing the light through the lens. In terms of

optics, the light is directed in three different ways: reflection, refraction, and deflection

[99]. For our research, we only consider the effect of refraction and further use a thin

lens model to represent the monocular camera in the study.

The thin lens is defined by an axis passing through the center of the lens, known as

the optical axis. The functionality of this thin lens is governed by two characteristics.

The first is that a ray parallel to the optical axis entering the aperture of the lens
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Figure 4.1: Thin lens refraction model for a point p

intersects the optical axis at a distance f (focal length) from the optical center. This

point is called the focus of the lens and is a fixed property for each lens. The second

is that any ray passing through the optical center remains undeflected.

Figure 4.1 shows a point p at a distance Z from the lens projected on the image

plane of the camera as a point q, located at a distance z from the lens. This point q

is the image of the point p.

Using similar triangles in Figure 4.1 yields the fundamental equation of thin lens

[99],

1

Z
+

1

z
=

1

f

4.1.1 Intrinsic Parameters

To simplify this model further, it is assumed that the aperture of the thin lens is

almost zero. In such conditions rays from a point p will pass only through the optical

center and in turn will remain undeflected. This model is known as the pinhole camera

model. In this model, the distance between the lens and the image frame is fixed as

f (focal length of the pinhole camera), because all rays from the lens at the optical

center will pass through the focal length as per design characteristics.

In Figure 4.2, we attach a lens-fixed reference frame C at the optical centre of

the thin lens and a frame I on the image plane with origin at the intersection of
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Figure 4.2: Pinhole camera refraction model for a point p in 3D space

image plane with the optical axis. The axis are chosen as per the standard camera

convention. Assuming, the location of point p to be (X,Y,Z ) in frame C and its

corresponding image point q as (x,y) in frame I. Using similar triangles we have,

x = −f X
Z
, y = −f Y

Z
(4.1)

The negative sign in the equation represents that the image we obtain on the

camera sensor array is a mirror-flipped, upside-down version of the point p in front

of the camera. This effect is compensated inside the firmware of the camera such

that we obtain a corrected version of the point. To represent this mathematically we

assume the image frame to be in front of the lens (Figure 4.3), this flips the sign of f

in Equation (4.1), and the new image point (x,y) in frame I will be,

Optical Axis

c1
c2

c3 i1i2

C I

p

Image Plane

f

q

Figure 4.3: Frontal pinhole camera refraction model for a point p in 3D space

x = f
X

Z
, y = f

Y

Z
(4.2)
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Where f>0 is the focal length of the lens. Additionally, Figure 4.3 is only to rep-

resent the mathematical relation of the image point as seen on the output image and

has no physical meaning. This map from 3D points(X = [X, Y, Z]T ) to corresponding

2D image points(x = [x, y]T ) is represented as a map h,

h : R3 −→ R2; X ↦→ x

This map in homogeneous coordinates can be represented as,

⎡⎢⎢⎢⎣
x

y

1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
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Z
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=
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0 f 0
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⏞ ⏟⏟ ⏞

Kf

⎡⎢⎢⎢⎣
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0 1 0 0
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X

Y

Z

1

⎤⎥⎥⎥⎥⎥⎥⎦

(4.3)

To maintain dimensional homogeneity in Equation (4.3) units of (x,y), f, (X,Y,Z )

should be consistent, such as m (or cm, or in). But, as we are using a digital camera

the output image will have units of pixels (px) with the origin at the top-left of

the image frame. Due to this inconsistency in units and origin location, another

transformation is required to represent (x,y) coordinates in their corresponding pixel

coordinates (u,v). This transformation is done by scaling the image from m to px

and then by translating the origin to the top-left corner. This is mathematically done

using,

u = sxx+ cx

v = syy + cy

where sx, sy is the scaling factor having units px/m and (cx, cy)are the coordinates

of the optical centre. We can write this in matrix form as,
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Combining Equation (4.3) and Equation (4.4) gives:
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where K is the intrinsic camera matrix, governed by the physics of the camera and

is fixed. Further, we define the projection matrix for the camera P:=K Π0.

4.1.1.1 Camera Calibration

Equation (4.5) is the ideal transformation between the 3D world coordinates and the

2D image points, it does not account for distortions in the image, which warps the

image in different ways. Different methods are used to remove this distortion from

the image of which we use the default model using the OpenCV libraries known as

the plum bob model where the input is the distorted image in the image frame (xd, yd)

and outputs the corrected image in the image frame as (x, y) by using the following,

r2 = x2
d + y2d

x = xd(1 + k1r
2 + k2r

4 + k3r
6) + 2p1xdyd + p2(r

2 + 2x2
d)

y = yd(1 + k1r
2 + k2r

4 + k3r
6) + 2p2xdyd + p1(r

2 + 2y2d)

(4.6)

where k1, k2, k3 model the effect of radial distortion created by wide angle lens, and

p1, p2 model the tangential distortion created by nonparallel lens and imaging sensor

planes.

The above parameters as well as the intrinsic camera matrix K can be found using a

camera calibration process with a checkerboard that has precisely known dimensions

and number of squares.
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The distortion is auto-rectified after performing the calibration step and therefore

the distortion coefficients are not reported here. The intrinsic camera matrix K is

essential for solving Equation (4.5) and is found out as follows,

K =

⎡⎢⎢⎢⎣
918.6686 0 639.3897

0 918.4182 361.0150

0 0 1

⎤⎥⎥⎥⎦ (4.7)

4.1.2 Extrinsic Parameters

Let us now consider the point p again but with coordinates Xw = [Xw, Yw, Zw]
T ∈ R3

relative the the world frame. The transformation from the world to the camera frame

for the point p can be represented as a rigid-body transformation gcw = (cRw,
ctw) ∈

SO(3)× R3 := SE(3) (known as the Special Euclidean Group).

X = cRwXw + ctw

Here we use gcw, the transformation of the point in world frame to the camera frame,

converse to most common practice to use the reference frame as the world. This makes

the matrix multiplication and substitution easier with the previously discussed camera

parameters. From this coordinate transform we can write,⎡⎢⎢⎢⎢⎢⎢⎣
X

Y

Z

1

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
cRw

ctw

0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

Xw

Yw

Zw

1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.8)

Combining Equation (4.8) and Equation (4.5), the overall model is,

Z

⎡⎢⎢⎢⎣
u

v

1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
sxf 0 cx

0 syf cy

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

cRw
ctw

0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

Xw

Yw

Zw

1

⎤⎥⎥⎥⎥⎥⎥⎦
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Figure 4.4: Checkerboard used for camera calibration and extrinsic parameter
identification with each square of size 10cm× 10cm

Figure 4.5: Checkerboard with detected corner points labeled using a Python script
and OpenCV PnP computations

or,

Zx = KΠ0X = KΠ0gcwXw (4.9)
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The matrix gcw is computed using a special multi-stage method where we first

compute the transformation between the camera frame and the checkerboard frame

h (gch) and then the checkerboard with the Vicon tracker origin frame o (gho) and

finally the Vicon tracker origin and world frame (gow); in our case the base of each

robot to give,

gcw = gch × gho × gow

where for the Baxter robot,

gcw =

⎡⎢⎢⎢⎢⎢⎢⎣
0.03318 −0.0693 −0.9969 2.0951

0.9993 0.0084 0.0327 −0.1358

0.0061 −0.9975 0.0695 0.1866

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.10)

and for the excavator,

gcw =

⎡⎢⎢⎢⎢⎢⎢⎣
0.0548 −0.0306 −0.9980 0.9539

0.9985 0.0014 0.0548 −0.0052

0.0033 −0.9995 0.0309 0.0770

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.11)

4.2 Manipulator Kinematics

A manipulator consists of a set of rigid links connected by different joints. The

kinematics describes the relation between the rigid links in motion. Throughout this

thesis we only use one kind of joint mechanisms known as the revolute joints.

A revolute joint has only one degree of freedom, rotation along a fixed axis. As

we will be using twist coordinates to represent the motion of the joints in 3D space,

each revolute joint can be represented as a screw motion with zero pitch.
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Figure 4.6: RRRR Manipulator in reference configuration

4.2.1 Exponential Coordinates for rigid motion

We define axis of rotation as ω ∈ R3, ||w|| = 1, and p ∈ R3 is a point on this axis

[100].

ξ̂ =

⎡⎣ ω̂ v

0 0

⎤⎦ ∈ R4×4

where ω̂ ∈ so(3) is a skew-symmetric matrix of ω, and v = −ω × p (specific only for

revolute joint). Using this we define ξ̂ ∈ se(3). Each transformation with angular

change can be represented in terms of the reference frame as:

gab(θ) = eξ̂θgab(0) (4.12)

Expanding the Equation (4.12) for multi joint manipulator, with n joints and angle

of rotation of of each joint as θ1, θ2, θ3 ... θn. Starting from the last and moving down

to the first we have the following,

gab(θn) = eξ̂nθngab(0)

gab(θn−1, θn) = eξ̂n−1θn−1eξ̂nθngab(0)

gab(θ1 · · · θn) = eξ̂1θ1 · · · eξ̂nθngab(0)

(4.13)
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Equation (4.13) is only based on ξ̂ and gab(0) which is a representation of the

physical constraints and the reference position (base w.r.t. end-effector) respectively.

This method to compute the forward dynamics known as POE (Product of Expo-

nentials) formulation has an edge over the most commonly used Denavit-Hartenberg

formulation [101] of kinematics. The Denavit-Hartenberg formulation computes a

relation between the successive links of a manipulator which multiply to form the full

end-to-end forward kinematics. For solving the inverse kinematic problem Denavit-

Hartenberg formulation becomes cumbersome to solve while the POE forms an elegant

formulation of a group of the canonical problems [100].

4.3 Joint Angle Computation Methodology

4.3.1 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm [102, 103] or widely known as the LM algorithm

is a technique used to find the optimal solution to non-linear least square problems.

The technique is a combination of the Gauss-Newton method and the Gradient De-

scent method [104]. It behaves like the gradient descent, that is reducing the sum of

squared errors by changing the parameter in the steepest-descent direction, when the

initial value is far from the optimal solution. After the error is small and the estimated

value is close to the optimal solution the algorithm weights more to decrease the sum

of squared error by assuming the function to be quadratic locally and then computing

the minimum, which is in line with the Gauss-Newton method. This method is faster

and more robust to find an optimal solution than using the Gauss-Newton method.

But the problem of getting stuck at a local minimum is still persistent as is the case

with almost any iterative optimization algorithm.

We consider the problem of finding the joint state estimates from the keypoint data

using the LM algorithm. We use the error term d and define the problem of finding
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the optimum solution as follows,

argmin
θ1,θ2,θ3,θ4

dTd

where, d =
[︂
d1 d2 d3 d4

]︂T (4.14)

Following is a discussion of the different equations used to find the optimal solution.

4.3.2 3D Distance Method

This is a way where we use the mathematical foundations of manipulator kinematics

to compute the estimated 3D world coordinate (Xi
ˆ ) of ith joint center corresponding

to each CNN estimated 2D pixel location (xî) and then leverage the rigid dimension

constraints between joints to estimate the joint angles. This method closely resembles

a depth estimation from an available 2D image and a known transformation of a point

on the camera frame. Rearranging Equation (4.9) we have,

Xi
ˆ = ZigwcKaxî (4.15)

where gwc = g−1
cw and Ka = (KΠ0)

−1.

Denoting the distance between two successive joints i and i+ 1 (or link length) as

li, ⃓⃓⃓⃓⃓⃓
Xi
ˆ −Xi+1

ˆ
⃓⃓⃓⃓⃓⃓
=li

(Xi
ˆ − X̂i+1)

T (Xi
ˆ − X̂i+1) =l2i

(4.16)

Simplifying Equation (4.16) using Equation (4.15) gives,

aiZ
2
i + biZiZi+1 + ciZ

2
i+1 = l2i (4.17)

where,

ai = xî
TMxî,

bi = −(xî
TMx̂i+1 + x̂T

i+1Mxî),

ci = x̂T
i+1Mx̂i+1, and

M = (KaK
T
a )

−1
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are all known. Using Equation (4.17) for four known link lengths and known Z1,

the problem reduces to a set of four equations with four variables, and solving them

simultaneously yields the Zi for the remaining points. This can then be used to solve

Equation (4.15) and obtain Xi
ˆ for joint estimation.

This method was tested initially but ignored later due to inconsistent results with

low accuracy.

4.3.3 Inverse Kinematic Solution

4.3.3.1 2D Euclidean Distance Method

Assuming the estimated 2D pixel location of ith joint center (with frame ji) from

the CNN as x̂i and the location calculated using the forward kinematics as xi where

xi := f(gsji ; θ1 · · · θi). And formulating the elements of d as,

d1 =
[︂
x̂1 − x1

]︂
; d2 =

[︂
x̂2 − x2

]︂
d3 =

[︂
x̂3 − x3

]︂
; d4 =

[︂
x̂4 − x4

]︂ (4.18)

Going back to Figure 4.6 and using the POE formulation as discussed in Equa-

tion (4.13), we define the ith joint position in the 3D world frame Xi as follows,

X1 = eξ̂1θ1gsj1(0) (4.19)

X2 = eξ̂1θ1eξ̂2θ2gsj2(0) (4.20)

X3 = eξ̂1θ1eξ̂2θ2eξ̂3θ3gsj3(0) (4.21)

X4 = eξ̂1θ1eξ̂2θ2eξ̂3θ3eξ̂4θ4gsj4(0) (4.22)

Using the above in Equation (4.9), the 2D image pixel xi based on manipulator

kinematics is,

xi =
1

Zi

KΠ0gcwXi ∀ i = 1, 2, 3, 4 (4.23)

The entire iterative process to find the solution is depicted in Figure 4.7.
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Figure 4.7: Iterative optimization process for angle estimation depicting step-wise
computations

4.3.3.2 2D Pixel Matching using Object Keypoint Similarity

This is another possible way that can help improve the error tolerance of the numerical

solver. We use a modified version of the object keypoint similarity (OKS) (as defined

by MS-COCO [97]) error term instead of a mean squared error term.

OKS = exp

(︃
− d2i
2k2

i

)︃
where , di =

[︂
x̂i − xi

]︂
∀ i = 1, 2, 3, 4

similar to the di in Eq. (4.18). The underlying idea of using this term is that the

error should take into account the scale of the image, thus making it more sensitive
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to changes in size and keypoint location based on the central position. This tech-

nique is commonly applied in human keypoint detection, where keypoints on the face

require more precise localization compared to keypoints on the arms or legs, which

can tolerate a larger degree of error in the image frame.

We use the direct 2D euclidean distance inverse kinematic method for our joint es-

timation optimization problem. We use the URDF file to find the mathematical

relation between the joints to compute the gsji for the Equations (4.19) to (4.22). For

the Baxter robot, the URDF file is readily available from the manufacturer, whereas

for the excavator no such arm dimensions are available. This is where we generate our

own URDF file based on physical measurements and a CAD file in Solidworks, more

details on the specifics are in Section 5.3.1. Further, for the excavator the points are

hand labeled which are not corresponding to the joint centers, this requires an extra

transformation from the joint center to the detected keypoint location for optimiza-

tion. In the case of the Baxter robot, keypoints are at the joint center so no such

transformation is required.

4.4 Experimental Results

Using the information from Section 4.1, the intrinsic parameters of the camera are

calculated using the camera calibration (Section 4.1.1.1), and the extrinsic param-

eters using the code for the camera to base transformation using Vicon markers

and a checkerboard. The 3D pose estimation is a non-linear non-convex problem

to solve for joint angles θm = g(x̂, ζ) where x̂ ∈ Rn×2, θm ∈ Rn×1 and ζ is a

set of equations consisting of K, gcw, gsji and ξ̂i; all the geometric information of

the robot manipulator. For all of the results, direct 2D Euclidean distance (Sec-

tion 4.3.3.1) optimization is used. The direct 3D distance method is a more con-

ventional way to estimate depth using a 2D RGB image but doesn’t work as effi-

ciently for our case due to the additional variables in the optimization; (X, Y, Z)
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Algorithm 1 Joint angle optimization for robot arm manipulator

Input: N joint keypoints (x̂)
Output: Estimated joint angles (θm)

1: procedure Angle Optimize(x̂)
2: //Initialization

3: ξ(θ)← P.O.E. ▷ Forward kinematics equations
4: θ(0) ← θguess ▷ Initial guess
5: Λ← K, gcw ▷ Camera transformation parameters
6: j ← 0
7: //Optimization iterations

8: while j ≤ max itr − 1 do
9: Xj ← ξ(θj)
10: xj ← ΛXj

11: θj+1 ← optimize(xj, x̂) ▷ LM Optimizer
12: εj+1 ← error(xj, x̂)
13: θm ← θj+1

14: if ε(j+1) ≤ εtol then
15: break
16: end if
17: j ← j + 1
18: end while
19: end procedure

in 3D coordinate system for each keypoint compared to (x, y) in 2D image coordi-

nates. A possibly advanced version of the optimization of the 2D keypoint method

was also explored by using Object Keypoint Similarity (OKS) replacing the mean

square error term (used commonly as a performance evaluation matrix in human

keypoint detection) but the presence of other highly sensitive free parameters (such

as ki) that have to be manually adjusted with changing robot pose in the cam-

era frame makes the use very restricted and therefore ignore in this study. We

include the standard C++ files unsupported/Eigen/NonLinearOptimization and

unsupported/Eigen/NumericalDiff with the LM parameters set as maxfev =350,

xtol = 1.0e-10, factor = 0.1 to build the iterative optimizer loop. All the results

presented here are real-time assessment results as was done in Chapter 3.
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4.4.1 Baxter Robot

The joint estimation for the Baxter is straightforward using Equation (4.18) and

Equation (4.23) as no extra computation is required other than the URDF-derived

twist coordinates of the joints being actuated. The keypoint detected is corresponding

to the 3D centroid of the joint and no further transformation is required. The results

also present a comparison of our method with DREAM [7] using the same optimization

step.

Table 4.1: MAE (in degree) for each joint angle in real-time estimation of Baxter
robot (lower the better)

θ1(s0) θ2(s1) θ3(e1) θ4(w1)

DREAM
[7]

4.548 3.328 6.251 4.491

VECTOR
(Ours)

3.997 5.758 6.515 3.233

Table 4.1 provides the mean absolute error for all the joint angles over a time

frame of 185 sec in real-time angle computation from detected keypoints compared

with joint angles directly from the encoders (ground truth in this case). The accuracy

of our model is better than DREAM for θ1 and θ4 whereas for the other two DREAM

performs better.

An important factor to note for the error in Table 4.1 and angle plot in Figure 4.8

is that these results are only for angle values where DREAM provides a good keypoint

detection.

There are many orientations of the Baxter arm where DREAM is unable to detect

a keypoint with certain accuracy, resulting in a substantially inaccurate joint angle

estimate (mostly of the order of 104) outside the optimizer bounds of ±π. Figure 4.9

shows the angle (θ3, θ4) result for a different orientation where DREAM results are

incorrect and joint detection unstable (time 0-17 sec and 24-34 sec). All these results

were ignored in the calculation of the total MAE in Table 4.1.
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Figure 4.8: Joint angle vs time plot from our estimation, DREAM estimation, and
Ground Truth values (Successive motor actuation) in real-time estimation of Baxter

robot

Further, this comparison is just to show the accuracy of our method compared to

other popular methods and cannot provide a true reflection of model performance as

the training data for both methods vary largely. DREAM is trained on more than 10k

synthetic images and uses transfer learning for implementation on real-world images,

contrarily our model is trained on 650 images in a lab setting.

56



0 5 10 15 20 25 30 35

Time (sec)

-60

-40

-20

A
ng

le
 (

de
gr

ee
)

1
(s

0
)

0 5 10 15 20 25 30 35

Time (sec)

0

50

100

A
ng

le
 (

de
gr

ee
)

3
(e

1
)

0 5 10 15 20 25 30 35

Time (sec)

0

50

100

A
ng

le
 (

de
gr

ee
)

4
(w

1
)

Figure 4.9: Joint angle vs time plot from our estimation, DREAM estimation, and
Ground Truth values in real-time estimation of Baxter robot; where results from

DREAM are highly inaccurate and not used in comparison metrics

4.4.2 Scale Excavator

In this case, the keypoint detection is not corresponding to the exact joint center.

This requires the use of a second transformation from the joint center to the position

of keypoint detection for gcw in Equation (4.23). This is done by altering the URDF

file with the measured dimensions on the physical system between the joint center

and the detected keypoint to the best guess. The edited URDF (Appendix A) file is

then used to compute the twist coordinated.

4.4.2.1 Ground Truth Angle Calculation

The excavator uses common DC motors with no servo feedback or encoders onboard

the system. This makes the system only a one-way communication to receive a voltage

for motor movement with no possible way to know its current position.

To generate a ground truth joint angle testbed for our model comparison, three

Vicon markers are mounted on each link of the arm (Figure 4.10) and another four on

the base (Figure 4.11) to compute the joint angles based on the angle between planes
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Figure 4.10: Scale Excavator - Rear view with three reflective markers on each link
of the arm manipulator for ground truth angle calculation

θ3

θ4

θ2

θ1

Figure 4.11: Scale Excavator - joint angles mentioned in green, reflective markers on
the base for ground truth angle calculation

and 3D lines using the positions of the markers in a 3D world coordinate system. The

motion capture system requires a minimum of three markers to define a rigid body,

which in this case is each link. Also, these markers are positioned on the side not
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visible from the camera frame, which makes them not a part of the training images

and can be removed in the real-time implementation where error data is not logged.

Tables 4.2 to 4.5 provide the joint angle mean absolute error for the excavator in

multiple cases from successive joint motion (one motor at a time, Figure 4.12) to

the simultaneous joint motion of all four motors (Figure 4.15). In common practical

motion cases, only two or three joints are actuated at a given time but these results

focus on all possible conditions of motion.

Table 4.2: MAE (in degree) for each joint angle in real-time estimation of the exca-
vator (Successive motor actuation)

θ1 θ2 θ3 θ4

Unfiltered 2.270 0.836 2.405 5.192

Filtered 2.410 0.974 2.719 5.347

Table 4.3: MAE (in degree) for each joint angle in real-time estimation of the exca-
vator (Multi motor actuation - 2 motors simultaneously)

θ1 θ2 θ3 θ4

Unfiltered 3.020 1.437 2.411 4.316

Filtered 3.126 1.843 2.880 4.887

Table 4.4: MAE (in degree) for each joint angle in real-time estimation of the exca-
vator (Multi motor actuation - 3 motors simultaneously)

θ1 θ2 θ3 θ4

Unfiltered 4.832 1.072 3.276 5.188

Filtered 5.051 1.235 3.823 5.896

A common trend of increased error with an increase in the number of simultane-

ously moving motors is observed with a slight variation in the last case in Table 4.5.

Further, we also use a Butterworth filter to smooth the output signal. More infor-

mation on filter design and implementation is given in section Section 5.2, the results
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Table 4.5: MAE (in degree) for each joint angle in real-time estimation of the exca-
vator (Multi motor actuation - all motors simultaneously)

θ1 θ2 θ3 θ4

Unfiltered 4.552 1.346 2.353 4.899

Filtered 4.861 1.656 2.897 5.724

are provided here as a comparison of the unfiltered signal with the one after using the

Butterworth filter. The filter causes a further time shift as the signal responds with

a delay in the joint detection as seen in Figures 4.12 to 4.15, but provides a smooth

transition from one angle to the other without noise in the angle output.

To the best of the authors’ knowledge and at the time of writing this thesis, no other

joint estimation technique is implemented on the same system or a similar dataset.

Therefore, no direct comparison of our results can be made with other publications.

Table 4.6 only presents results from the systems closely related to an excavator or a

similar 4-DOF system.
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Figure 4.12: Joint angle vs time plot from Estimated, Refined/Filtered, and Ground
Truth values in real-time estimation of the excavator (Successive motor actuation)
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Figure 4.13: Joint angle vs time plot from Estimated, Refined/Filtered, and Ground
Truth values in real-time estimation of the excavator (Multi motor actuation - 2

motors simultaneously)
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Figure 4.14: Joint angle vs time plot from Estimated, Refined/Filtered, and Ground
Truth values in real-time estimation of the excavator (Multi motor actuation - 3

motors simultaneously)
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Figure 4.15: Joint angle vs time plot from Estimated, Refined/Filtered, and Ground
Truth values in real-time estimation of the excavator (Multi motor actuation - all

motors simultaneously)
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Table 4.6: Review of different detection/angle estimation studies and a comparison
with ours

Method Description Results

CRAVES [8] 4-DOF robot; 17
keypoints; joint angle and

camera parameter
estimation

Joint angle error: 7.13◦

(synthetic) and 4.18◦

(refined) in offline image
processing

RoboPose [9] multiple robots; render
and compare method;
joint angle and camera
parameter estimation

Joint angle error 5.4◦ in
offline image processing

J. Zhao et al. [62] Industrial Excavator;
marker-based detection;
3D pose estimation

Position Error: 22mm,
Orientation Error: 8.5◦

S. Zhang et al. [70] Industrial Excavator; 10
keypoints; 2D pose

estimation

Keypoint AP:0.965

C.-J. Liang et al. [71] 4-DOF KUKA robot
with bucket attachment;
4 keypoints; 2D and 3D

pose estimation

3D position error: 144.65
mm (mean for 3 detected

positions; offline
processing)

J. Xu et al. [66] Virtual excavator;
cylinder displacement

measurement

End-effector maximum
error: 6.02-19.09 cm
(Horizontal-Vertical)

VECTOR (ours) Scale Excavator; 4
keypoints; joint angle

estimation

Keypoint AP: 0.987,
Joint angle error: 3.28◦

(real-time processing)
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Chapter 5

Control System Design and
Implementation

With the joint angle estimation using the vision algorithm combined with the opti-

mization, the 3D pose estimation problem is addressed. This chapter extends to the

use of joint angle estimation to solve the control problem. In most manipulators, the

simplest task of moving a manipulator from an initial point to a target end effector

pose/final point is a common task. Here we first design a digital PID controller for

control of the robot manipulator using commonly available open-source microproces-

sors and then present a way to combine our modular detection and control approach

with a ROS-based path planning algorithm (MoveIt) for easy extension of our system

to sophisticated motion planning and collision avoidance architectures.

5.1 Modular Control System Design

PID System
u

Measurements

r e y

−

ym

Figure 5.1: A general PID control structure
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For point-to-point motion or a pick-and-place operation, the required control is

a position control system. This control can be simplified to a joint angle control

where we use a set of desired/reference joint angles (θr) and compare them with

the current measured joint angles (θm), the error (eθ) is fed to the controller which

provides an input to the system, here a PWM (Pulse Width Modulation) signal.

This setup is shown in Figure 5.2 with an indirect connection between the motors

(robot manipulator) and the measurement sensor (vision algorithm) as contrary to a

sensor on the robot manipulator, an external neural network-based joint computation

pipeline is used. In our case, as we control four joint angles and four distinct motors

therefore all the parameters θr, θm, eθ, PWM are ∈ R4×1.

PID Motors
PWM

Camera/Image Sensing

θr eθ

−

θm

Figure 5.2: Control Structure in our case where the dashed line between motor
output and camera/vision model represent no direct physical feedback through a

sensor but rather an external camera-based angle estimation

The PID control is designed as a digital control in Python as a ROS node. The PID

controller is chosen for its simple implementation in this conceptual proof. While this

control system is adequate for simple problems the ROS node can be easily tweaked

to use a different and more complex control. Here we solve for four joint angles and

three control gains (kp, ki, kd) for each which gives a total of 12 gain values that need

to be tuned.
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5.2 Filter Design

A signal processing technique is used here to provide a steady and smooth transition

between joint estimations rather than a noisy output. Keypoint pixel detection jitter-

ing in real time causes the optimizer to compute varying joint angles for a stationary

scene. To prevent this noisy signal for feedback to the controller a filter design is

explored to minimize this effect on the controller output to the system, in this case,

the PWM signal to the motor.

The first step in the design of a filter is to calculate the FFT (Fast Fourier Trans-

form) for the signal, which here is all the measured joint estimations (θm). The FFT

provides a graph of all the frequencies present in the signal along with the magnitude

for each on the y-axis. Figure 5.3 is the Discrete Fourier Transform (DFT) using the

FFT algorithm (fft() function in MATLAB) for the θ1 in the case of the excavator.

It is clear that the signal is made up of very low frequencies close to 0 and diminishes

to a low value for higher frequencies.

0 0.5 1 1.5 2 2.5

f (Hz)

0

5
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15
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Amplitude Spectrum of 
1
(t)

Figure 5.3: Amplitude spectrum plot for estimated θ1 of the excavator using a
Discrete Fourier Transform
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Figure 5.4: Bode plot for the designed Butterworth filter

We design a simple second-order low-pass Butterworth filter to eliminate the higher

frequencies’ contribution. A general analog low-pass Butterworth filter is given as a

magnitude-squared function,

| HLP (jΩ) |2=
1

1 + Ω2N
(5.1)

where N is the order of the filter. We design the filter with a cutoff frequency of 0.7

Hz using the butter() function in MATLAB which gives us the transfer function of

the filter (Equation (5.2)) in discrete time as required for a digital filter. Figure 5.4

shows the bode plot of the designed filter with the required cutoff frequency.

H(z) =
0.1174 + 0.2347z−1 + 0.1174z−2

1− 0.8252z−1 + 0.2946z−2
(5.2)

Figure 5.5 provides the comparison of the filtered signal with the initial signal

output angle. Note the slight time shift between the unfiltered signal with the one

after being filtered, this is a common problem as the filter is a causal system and can

work only based on past information, this results in a small latency in the response.

The same filter parameters are used for all four angle values as the same cutoff

frequency is used in all cases.
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Figure 5.5: Joint angle (θ1) vs time plot from unfiltered signal and signal after
Butterworth filter implementation which has a smother output with lower noise

5.3 ROS Integration

The control system works on the error signal between the reference and measured

angle, but in a point-to-point control problem, we only have the end effector’s final

position. This final pose needs to be converted to joint states for the manipulator

using inverse kinematics.

One conventional way to move forward is to write a custom inverse kinematic (IK)

solver to compute the angles using trigonometric relations. Another advanced way is

to use ROS and MoveIt which provides a very interactive IK solver in RViz (a robot

simulation environment for ROS). MoveIt here provides a path-planning algorithm

to give successive joint angle signals to reach the final orientation and position and

RViz shows the planned path in simulation.

To use this strategy we require a CAD file of the robot in our case the excavator

along with dimensions and joint limits. All the kinematics information needed for

MoveIt is stored in a special XML file known as a URDF file.
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Figure 5.6: Excavator CAD model in home configuration (for the URDF) with
edited dimensions and a fixed base to replicate our physical system and constraints

5.3.1 Excavator 3D CAD Model Design

To design the CAD file for the excavator an open-source Caterpillar 390F excavator

model1 was edited in SOLIDWORKS to represent the exact dimensions of the 4-

DOF excavator arm in the study. It is important to note that a very simple system

with planar links can also be used to represent the model and its geometrical relation

between links but this model is used to represent the excavator motion realistically in

simulation. In no part, this CAD model has a contribution in training the keypoint

detection model conversely to other popular keypoint models.

This model in SOLIDWORKS is then used to build the URDF file using the

SW2URDF plugin in SOLIDWORKS by manually naming all the joints and links.

After obtaining the CAD file and URDF, the next step is to build a custom robot

setup in MoveIt Setup Wizard and define all the arm links, joints, and home config-

urations. This provides us with a special ROS package for the specific robot with all

the required files.

We use the demo.launch file to run all the required ROS nodes with a minor change

1https://grabcad.com/library/caterpillar-390f-1
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with the \joint state ROS topic which is replaced with the joint states obtained

from the vision algorithm from our measured angles. This change is directly reflected

in RViz where the current orientation of the excavator can be seen and any planning

group node can be activated to move from the current position and orientation.

Another advantage of integrating MoveIt into our system is the easy extension of

simple point control to exploit the full range of path planning algorithms with object

detection and collision avoidance for more complex motion paths.

5.4 Experimental Procedure

To implement the discussed ROS controls on the excavator, a change in the hardware

setup to control the motors that move the links is required. For this, the central

controller on board is replaced with an Arduino Uno Wifi board with Adafruit Motor

Shield that can control four DC motors as required in this case. The Arduino board

is connected to the central processor using a USB cable to facilitate communication

between the central processor and motor actuation.

To establish ROS communication with Arduino, a rosserial arduino protocol is

used to send serialized messages and topics to the board. As no feedback is available

from the motor or the board, a one-way communication of the PWM signal from

the digital PID controller for all four joints is sent from the central PC via a USB

port with a 115200 baud rate to the Arduino board for actuating the motors. The

feedback loop is through the camera-based video stream collecting data to estimate

joint angles.

The biggest challenge in the design of a controller for this application is tuning

the control gains is not very straightforward. A basic model identification cannot be

applied and for the transferability of the control to any other robot, no mathematical

relations are used here. Other physical tests such as the drop test were also not

performed to limit a very harsh motor movement that might result in damage to

the motor. Additionally, as the joint is not directly controlled by motors but with
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a rather intricate system of screw motion attached at one end to the motor and the

other to a position on the link not corresponding to the exact location of the joint the

exact relation between motor rotation and arm angle is nonlinear. Due to all these

constraints only manual tuning of gains is performed.

5.5 Joint Control Assessment

The setup is the same as in the previous chapter where the camera is facing head-

on to the robot arm. We only design our controller for the excavator and real-time

assessment is also done for the same. We ignore any control on the Baxter as the

major focus was to verify the detection on Baxter (where encoder-based angles can be

found) and transfer the tools to an unknown angle environment; the excavator. More

than 20 random positions are chosen in the operational range of the excavator that

forms the initial and final positions of the excavator for the control validation study.

We use simple pid package to implement the control equations. After manually

tuning the gain values the gains are set as kp = 180, ki = 0.5, kd = 2 for θ1, θ2, θ3,

and kp = 180, ki = 0.8, kd = 2 for θ4. Further, a set of physical constraints are also

applied to the control output (PWM signal). The max-min PWM signal is chosen as

[−200, 200] rather than the maximum operation PWM limit of [−255, 255] to limit

a very aggressive motion at full capacity. The motors also have a deadband at low

PWM values (< ±50) due to motor friction and friction in the screw. To overcome this

problem of no-motion zone even when the error is still significant a set of conditional

statements is proposed as discussed in Algorithm 2.

5.5.1 Results and Discussion

The entire pipeline is verified for point-to-point motion control using RViz and MoveIt.

The major control goal is to reach a desired position and orientation in the least

possible time. The camera is fixed as in the rest of the cases. The random positions

are selected to cover a wide range of points in the operational and detectable range
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Algorithm 2 Joint angle control for robot arm manipulator with constraints

Input: Reference and measured angles (θref ,θm)
Output: Control signal to manipulator (PWM)

1: procedure PID Control(θref ,θm)
2: //Initialization

3: PID.limits ← ±200 ▷ Forward/Backward Maximum Speed
4: kp, ki, kd ← gains
5: εtol ← 0.05 ▷ 0.05 rad
6: j ← 1
7: //Control signal computation

8: while j ≤ 4 do ▷ For 4 joints
9: εj ← θjref − θjm
10: PWMj ← PID(εj, kp, ki, kd)
11: if abs(PWMj) < 50 then
12: if abs(PWMj) ≥ 30 then
13: if PWMj > 0 then
14: PWMj ← 50
15: else
16: PWMj ← −50
17: end if
18: else
19: PWMj ← 0
20: end if
21: end if
22: if θjref − θjm ≤ εtol then

23: PWMj ← 0
24: end if
25: j ← j + 1
26: end while
27: end procedure

of the camera.

For the entire test run, reference angles (θr) from MoveIt (move group/fake -

controller joint states), measured angles (θm) from our vision-based estimation,

and ground truth angles (θgt)from the motion capture system are recorded to collect

quantitative results. These results for two successive orientation control are shown

in Figure 5.8. After obtaining the results graphically, the absolute error |θgt − θr|

(ground truth and reference) and |θm − θr| (measured and reference) is recorded in
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Figure 5.7: Excavator simulation in RViz environment for simplified motion
planning, the translucent body represents current excavator position and the solid

body represents the final target position for a particular planning scene

steady state conditions i.e. the error after the control cycle is complete. These results

are reported in Table 5.1 where the average error for the final angle obtained and the

reference is 3.7° with a maximum of 7.4° for θ4. The error compared to the measured

angle from vision algorithm is also reported showing the joint angles values used in

the controller.

Table 5.1: Steady state error (in degree) for each joint angle in real-time control of
the excavator, comparison of ground truth and estimated angle with the reference
angle shows the accuracy of the final position achieved

Error |θgt − θr| |θm − θr|

θ1 2.393 1.675

θ2 0.716 0.674

θ3 4.308 1.405

θ4 7.367 3.630

Average 3.696 1.846
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Figure 5.8: Joint angle vs time plot from Estimated, Ground Truth and Reference
values in real-time control of the excavator
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Finally, we also report a few other parameters for comparison with other published

results on a similar system. Table 5.2 records the end effectors’ mean absolute 3D

position error based on the reference end effector position. The success rate, in this

case, is the percentage of times when all the joints reach a final angle in close proximity

to reach the required end effector position and remain stationary thereafter.

In some cases, the joint angles keep on fluctuating around the reference and are

unable to reach a constant final stationary position; shown in Figure 5.9. This is

caused by the latency (≈ 1.33 sec) in the joint computation by our framework, result-

ing in an active control action even when the desired angle value has been achieved,

the amplitude of this periodic fluctuation is around ±4 − 5°. The average time is

reported as the time taken to achieve steady state conditions after a new orientation

is broadcasted to the controller.
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Figure 5.9: Joint angle (θ4) vs time plot from Estimated, Ground Truth and
Reference values in real-time control of the excavator, showing an oscillatory steady

state with a phase difference between the estimated and ground truth angles

Table 5.2: Quantitative results for the position control problem in our case, distance
error is the average steady-state error and average time is the time required to achieve
steady-state

Agent Input
Type

Distance
Error
(cm)

Success
Rate

Average
Time (s)

VECTOR
(Ours)

Camera 1.78 88.6% 6.5
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As stated previously, to the best of the authors’ knowledge no other keypoint

detection and control algorithm is performed on the same robot arm or any other that

closely resembles this system. A 4-DOF encoder-free robot arm control was performed

in CRAVES [8], the control results of which are presented in Table 5.3 to give a slight

sense of comparison of our results with a state-of-the-art system. CRAVES results are

not directly comparable with our results due to many differences, one of the major

ones being the use of completely different robot arms and training sets. Further,

CRAVES results are based on moving the end effector above a set of certain reference

points which is why they were able to provide a comparative study between human

performance and the algorithm they used. Conversely, in our case, we chose random

positions for control where a comparative study with human performance is not easy

to make.

Table 5.3: Quantitative results from CRAVES [8] for completing a reaching task
problem

Agent Input
Type

Distance
Error
(cm)

Success
Rate

Average
Time (s)

Human Direct 0.65 100% 29.8

Human Camera 2.67 66.7% 38.8

CRAVES Camera 2.66 59.3% 21.2

78



Chapter 6

Conclusion and Future Work

6.1 Summary of Thesis

This thesis was successful in the development of a control strategy for an excavator

model using purely vision-based sensing along with a digital PID controller. The

entire work serves as a proof of concept for the possibility of using the developed

toolchain to provide a solution for the autonomous control of sensorless manipulators,

without requiring modifications or additions to the existing hardware.

The vision-based system provides the excavator’s joint localization using keypoint

detection for pose estimation in the camera frame using only a single RGB image

frame. A special extension of the Mask R-CNN [95] network is used for the keypoint

location which was originally proposed for human keypoints. This model is trained

on a limited number of images collected in the lab environment. Real-time qualita-

tive and quantitative test results were presented and compared with state-of-the-art

methods.

The joint angle optimization algorithm was proposed to establish the 3D pose from

the available camera and geometric information. Ground truth joint angle information

was obtained using an indoor motion capture system. Again, a qualitative assessment

was recorded.

A simple digital controller (PID) was established using a ROS MoveIt-based in-

verse kinematic solution and visualization of the path-planning system. This simple
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position control using motor actuation provides a transferable setup with reusable

modules which can be adapted to a different robot manipulator. Finally, our con-

trol results were compared with the related work performed in [8] (though the direct

comparison is not possible due to the use of different robot manipulators), and our

framework was shown to perform better in position control of the end-effector.

6.2 Limitations of Work

While the results presented in each stage of the thesis show improved performance

relative to existing work, a few limitations were observed:

• Due to low variation in training images, as all datasets were collected in the

lab environment and with restriction on the maximum angular motion to avoid

occlusion of keypoints, results at this stage cannot be directly used for an in-

dustrial excavator in a construction environment.

• As we tried to use minimal keypoints, we have no redundant information for

fine-tuning the joint computation or estimating the camera-to-robot base trans-

formation, i.e., no extrinsic knowledge can be extracted.

• Precise position control could not be achieved due to the motor actuators on

the scale excavator, which exhibited significant deadband and backlash, and

furthermore the entire toolchain still exhibits latency in processing a new input

image such that the controller works on delayed signals. This is reflected in the

estimation plots as a time shift of the detected joint angles as compared to the

ground truth.

6.3 Future Work

The work in this thesis can be used as a basis for many prospective projects. To

reiterate, the work presented is a proof of concept and can be ported for use in a
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more complex setting and eventually for real excavator control. Field testing of the

detection system is one of the first steps toward the possibility of autonomous control

in a job site.

More advanced ways to obtain the extrinsics in real-time which do not involve more

keypoints can be explored; one possible method is proposed in [105].

Upgrades to the current software architecture to reduce the computation time of

the pipeline and the development of a better control system for the excavator model

using higher-quality motors for enhanced position control are the logical immediate

next steps to improve overall performance.

Also, this entire study can be extended to include object avoidance, perform more

sophisticated path planning (already supported within MoveIt), and integration with

vision-based object detection and grasping. Together these would lead to fully au-

tonomous operation of encoderless manipulators, such as excavators or cranes.
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[40] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Maŕın-
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Appendix A: URDF for the scale
excavator

Listing A.1: excavator assembly.urdf
<?xml ve r s i on="1.0" encoding="utf -8"?>
<!−− This URDF was automat i ca l l y c r ea ted by SolidWorks to URDF Exporter !

Commit Vers ion : 1.6.0−4− g7 f 8 5 c f e Bui ld Vers ion : 1 . 6 . 7995 . 38578
For more in format ion , p l e a s e s ee http : //wiki.ros.org/sw_urdf_exporter -->

<robot
name="Excavator_Assembly">
< l i n k

name="base_link">
< i n e r t i a l >

<o r i g i n
xyz="0.54903 6.6613E-16 -0.26501"

rpy="0 0 0" />
<mass

value="1994.8" />
< i n e r t i a

ixx="420.67"
ixy="7.0217E-14"
i x z="0.54095"
iyy="1085.5"
i y z=" -4.1458E-14"
i z z="1412" />

</ i n e r t i a l >
<v i sua l>

<o r i g i n
xyz="0 0 0"

rpy="0 0 0" />
<geometry>

<mesh
f i l ename="package :// my_arm_xacro/meshes/base_link.STL" />

</geometry>
<mate r i a l

name="">
<c o l o r

rgba="0.79216 0.81961 0.93333 1" />
</mater ia l>

</v i sua l>
<c o l l i s i o n >

<o r i g i n
xyz="0 0 0"

rpy="0 0 0" />
<geometry>

<mesh
f i l ename="package :// my_arm_xacro/meshes/base_link.STL" />

</geometry>
</ c o l l i s i o n >

</l ink>
< l i n k

name="body_link">
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< i n e r t i a l >
<o r i g i n

xyz="0.70971 0.011983 0.4433"

rpy="0 0 0" />
<mass

value="2158.1" />
< i n e r t i a

ixx="609.47"
ixy="82.787"
i x z=" -86.856"
iyy="1169.7"
i y z=" -5.0784"
i z z="1507.7" />

</ i n e r t i a l >
<v i sua l>

<o r i g i n
xyz="0 0 0"

rpy="0 0 0" />
<geometry>

<mesh
f i l ename="package :// my_arm_xacro/meshes/body_link.STL" />

</geometry>
<mate r i a l

name="">
<c o l o r

rgba="0.79216 0.81961 0.93333 1" />
</mater ia l>

</v i sua l>
<c o l l i s i o n >

<o r i g i n
xyz="0 0 0"

rpy="0 0 0" />
<geometry>

<mesh
f i l ename="package :// my_arm_xacro/meshes/body_link.STL" />

</geometry>
</ c o l l i s i o n >

</l ink>
< j o i n t

name="joint_1"
type="revolute">
<o r i g i n

xyz="0 0 0"

rpy="0 0 0" />
<parent

l i n k="base_link" />
<ch i l d

l i n k="body_link" />
<ax i s

xyz="0 0 -1" />
< l im i t

lower=" -0.7"
upper="0.7"
e f f o r t="2000"
v e l o c i t y="0.4" />

</j o i n t>
< l i n k

name="arm_link">
< i n e r t i a l >

<o r i g i n
xyz=" -1.2299 0.020523 0.90616"

rpy="0 0 0" />
<mass

value="258.64" />
< i n e r t i a

ixx="31.757"
ixy="0.062089"
i x z="51.714"
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iyy="153.57"
i y z=" -0.042295"
i z z="125.08" />

</ i n e r t i a l >
<v i sua l>

<o r i g i n
xyz="0 0 0"

rpy="0 0 0" />
<geometry>

<mesh
f i l ename="package :// my_arm_xacro/meshes/arm_link.STL" />

</geometry>
<mate r i a l

name="">
<c o l o r

rgba="0.79216 0.81961 0.93333 1" />
</mater ia l>

</v i sua l>
<c o l l i s i o n >

<o r i g i n
xyz="0 0 0"

rpy="0 0 0" />
<geometry>

<mesh
f i l ename="package :// my_arm_xacro/meshes/arm_link.STL" />

</geometry>
</ c o l l i s i o n >

</l ink>
< j o i n t

name="joint_2"
type="revolute">
<o r i g i n

xyz=" -0.1942 -0.020757 0.5673"

rpy="0 0.076088 0" />
<parent

l i n k="body_link" />
<ch i l d

l i n k="arm_link" />
<ax i s

xyz="0 1 0" />
< l im i t

lower=" -0.17"
upper="0.4"
e f f o r t="2000"
v e l o c i t y="0.4" />

</j o i n t>
< l i n k

name="wrist_link">
< i n e r t i a l >

<o r i g i n
xyz="0.11376 -0.020757 -0.48183"

rpy="0 0 0" />
<mass

value="136.5" />
< i n e r t i a

ixx="40.101"
ixy=" -6.0778E-08"
i x z=" -4.6951"
iyy="41.634"
i y z=" -4.1983E-07"
i z z="2.5564" />

</ i n e r t i a l >
<v i sua l>

<o r i g i n
xyz="0 0 0"

rpy="0 0 0" />
<geometry>

<mesh
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f i l ename="package :// my_arm_xacro/meshes/wrist_link.STL" />
</geometry>
<mate r i a l

name="">
<c o l o r

rgba="0.95686 0.68235 0.043137 1" />
</mater ia l>

</v i sua l>
<c o l l i s i o n >

<o r i g i n
xyz="0 0 0"

rpy="0 0 0" />
<geometry>

<mesh
f i l ename="package :// my_arm_xacro/meshes/wrist_link.STL" />

</geometry>
</ c o l l i s i o n >

</l ink>
< j o i n t

name="joint_3"
type="revolute">
<o r i g i n

xyz=" -2.7107 0 1.3011"

rpy="0 -0.98702 3.1416" />
<parent

l i n k="arm_link" />
<ch i l d

l i n k="wrist_link" />
<ax i s

xyz="0 1 0" />
< l im i t

lower="0.24"
upper="1.24"
e f f o r t="2000"
v e l o c i t y="0.4" />

</j o i n t>
< l i n k

name="bucket_link">
< i n e r t i a l >

<o r i g i n
xyz="0.37286 0.15186 0.02067"

rpy="0 0 0" />
<mass

value="70.075" />
< i n e r t i a

ixx="7.3387"
ixy="1.013"
i x z="0.001331"
iyy="9.1696"
i y z="0.0014523"
i z z="7.4771" />

</ i n e r t i a l >
<v i sua l>

<o r i g i n
xyz="0 0 0"

rpy="0 0 0" />
<geometry>

<mesh
f i l ename="package :// my_arm_xacro/meshes/bucket_link.STL" />

</geometry>
<mate r i a l

name="">
<c o l o r

rgba="0.79216 0.81961 0.93333 1" />
</mater ia l>

</v i sua l>
<c o l l i s i o n >

<o r i g i n
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xyz="0 0 0"

rpy="0 0 0" />
<geometry>

<mesh
f i l ename="package :// my_arm_xacro/meshes/bucket_link.STL" />

</geometry>
</ c o l l i s i o n >

</l ink>
< j o i n t

name="joint_4"
type="revolute">
<o r i g i n

xyz=" -0.027179 0 -1.7083"

rpy=" -1.5708 -0.060798 3.1416" />
<parent

l i n k="wrist_link" />
<ch i l d

l i n k="bucket_link" />
<ax i s

xyz="0 0 1" />
< l im i t

lower="0.30"
upper="2.47"
e f f o r t="2000"
v e l o c i t y="0.4" />

</j o i n t>
</robot>
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