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Abstract

Topic modelling seeks to uncover the conceptual and thematic content of col-

lections of documents. These topics can be used as features for document

indexing and classification. However, topic models are increasingly important

as tools of applied research. As we seek to develop agents capable of having

real conversations with humans, topic models are needed to control topic drift

and guide the conversation. Unfortunately, the most popular topic models in

use today do not provide a suitable topic structure for these purposes and the

state-of-the-art models based on neural networks suffer from many of the same

drawbacks while requiring specialized hardware and many hours to train.

We take a fundamentally different approach to topic modelling. Our al-

gorithm, Community Topic, is based on mining communities of terms from

term-occurrence networks extracted from the documents. In addition to pro-

viding interpretable collections of terms as topics, the network representation

provides a natural topic structure. The topics form a network, so topic sim-

ilarity is inferred from the weights of the edges between them. Super-topics

can be found by iteratively applying community detection on the topic net-

work, grouping similar topics together. Sub-topics can be found by iteratively

applying community detection on a single topic community. This can be done

dynamically, with the user or conversation agent moving up and down the

topic hierarchy as desired.

We evaluate Community Topic against two contenders. We find that our

algorithm detects topics with the highest coherence as measured by two stan-
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dard automated metrics. Our algorithm has the fastest run time and detects

topics in few seconds with no specialized hardware required. It is hyperparam-

eter free and can detect topics at multiple scales. It finds coherent sub- and

super-topics at multiple levels. This makes Community Topic an ideal topic

modelling algorithm for both applied research and practical applications like

conversational agents.
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Preface

The work done in Chapter 4 has been accepted for publication at the Inter-

national Conference on Computational Linguistics 2022 under the title “Com-

munity Topic: Topic model inference by consecutive word community search.”
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You shall know a word by the company it keeps.

– J.R. Firth, 1957.
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Chapter 1

Introduction

1.1 Motivation

Researchers have long sought ways to discover the themes and concepts of

large collections of unstructured text documents. These topics can fulfill mul-

tiple roles. They can act as features for document classification. They can

serve as indices for information retrieval. However, one of the most important

functions of these topics is to assist in the exploration and understanding of

large corpora. Researchers in history, social science, political science, com-

puter science, and the physical sciences all seek to better understand the main

ideas and themes of document collections too large for a human to manually

read and summarize. This requires topics that are interpretable and coherent

to the human users who study the corpus.

In more recent years, another new area has emerged where topics can pro-

vide a great deal of utility: conversational agents or “chat bots”. A conversa-

tional agent is a computer program that is able to carry on a conversation with

a human. The conversation is an end in itself; the purpose of speaking with

a conversational agent is to converse, to be entertained, to express emotion

and be supported. This goes well beyond asking Siri to set a timer or Alexa

to play a song. One key component of an agent that is capable of having an

actual conversation with a human is the awareness and use of the topic of

conversation. Work has been done on enriching the agent’s response using the

detected topic [26]. However, there is much more that can be done with topics

to improve the functioning of a conversational agent. They can be used to
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detect and control topic drift in the conversation so that the agent’s responses

make sense given the context of a statement. If the user is engaged with the

current topic, then the conversational agent should be able to stay on topic

or quickly detect sub-topics to focus the conversation. The agent should also

be able to quickly detect super-topics to broaden the range of conversation.

As the conversation progresses, the agent should be able to move to related

topics or, if the user becomes bored or displeased, jump to dissimilar topics.

This type of control over the flow of the conversation is crucial to human

communication and is needed for human-computer interaction as well.

The features that would make a topic model useful for a conversational

agent are the same that make it useful as a tool of exploration for applied

researchers. The topics themselves must be coherent and interpretable to be

useful to a researcher and for an agent’s response to fit into a conversation.

A topic is coherent when the terms or documents that share a topic have

related semantics. A topic is interpretable when the semantics of the topic are

accessible from the representation of the topic itself, e.g. a topic represented by

a set of terms is more interpretable than a topic represented by a real number

vector of some latent space. A topic model that has a measure of relatedness

between topics allows for a natural flow to exploration and conversation. A

topic model with a natural hierarchical structure allows both a researcher and a

conversational agent to drill down into more specific sub-topics or find broader

super-topics on the fly as they explore the corpus/engage in a conversation.

Unfortunately, the most widely used topic modelling algorithm, Latent

Dirichlet Allocation (LDA), does not have many of these features. It has

other drawbacks as well. The number of topics to be found must be specified.

Multiple runs with different numbers of topics are thus required to find the

best topics. It performs poorly on short documents. Different runs of the

algorithm on the same corpus can produce different topics, especially if the

order of the documents is different [66]. Common terms can appear in many

different topics, reducing the uniqueness of topics [78].

As in many other fields, neural networks and deep learning have recently

pushed forward the state-of-the-art in topic modelling. While neural topic
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models have produced topics of greater coherence, they retain many of the

weaknesses of LDA, such as the need to specify the number of topics, while hav-

ing a tendency to find models with many redundant topics [13] and demanding

greater computational resources and specialized hardware, i.e. GPUs.

These drawbacks have inspired us to search for an alternative approach to

topic modelling, one that can operate quickly on commodity hardware and

that provides not only a set of topics but their relationships and a hierarchical

structure. Given the growing importance of relational data and graphs in

representing complex systems [100], it seems natural to take a network-based

approach to topic modelling.

1.2 Problem Definition and Challenges

Given a collection of documents, the problem of topic modelling is to find the

topics in the documents, i.e. the prominent concepts, themes, and ideas. A

good topic model should provide the following:

• Interpretable and coherent topics - the topics found by the model

should be interpretable by humans as topic models are used to under-

stand large collections of documents. A collection of terms is inter-

pretable; a 300 dimensional vector is not. The topics must also be co-

herent and group terms that are semantically related.

• Discovery of the number of topics - a user should not have to specify

the number of topics as this is often not known.

• Relationship between topics - different topics are more or less re-

lated. The “movie” topic is more related to the “TV” topic than to the

“farming” topic. The topic model should determing and provide these

similarities.

• Topic hierarchy - Topics do not exist at only one scale. There can

be a “computer” topic at one scale, but this contains “hardware” and

“software” sub-topics. It is also part of a “technology” super-topic with
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topics like “smart phones”. The topic model should provide access to

such a topic hierarchy and allow users to find sub- and super-topics as

desired.

• Fast run time - Topic models are often used by researchers working

with simple, single processor hardware to explore document collections.

The topic model such run quickly on such hardware to make it a practical

tool.

It is a challenge for a topic model to meet all of these requirements and

currently none do. Traditional topic models require a specification of the

number of topics and do not provide topic relationships or a topic hierarchy.

Extensions to find relationships and a hierarchy require specifying features

of the hierarchy such as the depth and are limited in their expressiveness.

Methods to improve topic quality using neural networks drastically increase

the training time even when special hardware such as GPUs are used, and still

do not discover a topic hierarchy.

1.3 Thesis Statements

This thesis focuses on two main subjects: social network analysis and topic

modelling. The thesis hypotheses are:

Thesis Statement 1: Information about relationships between terms is en-

coded in the pattern of co-occurrence in natural language text.

Thesis Statement 2: The patterns of connections in a term co-occurrence

network contains information about the themes and concepts of the text.

Thesis Statement 3: Community detection algorithms are able to extract

topics from the term co-occurrence by finding groups of closely related terms.

Thesis Statement 4: Topics extracted via community detection from term

co-occurrence networks are more coherent than those found by Latent Dirichlet

Allocation.

Thesis Statement 5: The networks structure provides not only a set of

topics but also provides the importance of terms, the relationships between
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topics, and the topic hierarchy.

Thesis Statement 6: The edge weights of a network can be combined with

the presence of common neighbours to get a better measure of the strength of

connections between vertices in a network.

Thesis Statement 7: The SIWO algorithm, for community mining in a

graph, can be extended and improved by incorporating edge weight informa-

tion.

1.4 Thesis Contribution

There are three major contributions in this work:

1. We extend the SIWO community search algorithm to handle weighted

networks. SIWO has already proven itself to be one of the best per-

forming local community search algorithms. By extending it to handle

weighted networks, we have created one of the only community search

algorithms able to work on weighted networks. This also extends the

SIWO+ global community detection algorithm to handle edge weights,

bringing it on par with most other community detection algorithms that

can handle edge weights. We demonstrate that SIWO is one of the best

performing algorithms on weighted networks.

2. We define and analyze term co-occurrence networks that can be extracted

from corpora using not just raw co-occurrence counts as edge weights but

also Normalized Pointwise Mutual Information. These networks can be

created in a single pass over the corpus yet contain information on the

topics of the documents.

3. We develop a novel topic modelling algorithm, Community Topic. This

algorithm finds more coherent topics in a shorter period of time than

its competitors. As well, it provides a topic structure that identifies

the important terms in a topic quantifies the relationships among topics.

Sub- and super-topics can be found dynamically from the topic structure.

It does not require hyperparameter tuning and can find topics at various
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scales. This structure is ideal for downstream applications such as corpus

exploration and conversational agents.

1.5 Thesis Organization

Chapter 2 reviews background and related work for both topic modelling

and social network analysis. It covers early topic modelling methods, La-

tent Dirichlet Allocation, the most widely used topic modelling algorithm,

improvements and extensions of Latent Dirichlet Allocation, recent topic mod-

elling approaches based on neural networks, and evaluation methods for topic

modelling. We also review social network analysis with a focus on community

detection and search. We review SIWO, a community mining algorithm previ-

ously developed at the University of Alberta which we later extend. We cover

evaluation methods for community detection and search.

In Chapter 3, we present our extension of SIWO to handle community

search and detection on networks with weighted edges, SIWOw, and empiri-

cally evaluate it against a range of modern algorithms.

In Chapter 4, we present our novel Topic Modelling algorithm, Commu-

nity Topic. We analyze the structure of the term co-occurrence networks

constructed from the documents. We conduct a thorough investigation of

the possible algorithm configurations and hyperparameters. We compare our

algorithm against two contenders on topic coherence, run time, and stability.
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Chapter 2

Background and Related Work

In this chapter we present a summary of works related to our research into the

application of social network analysis to topic modelling. We first review the

field of topic modelling and the main approaches in use today. We then review

the field of social network analysis, particularly the sub-field of community

detection and search. We pay particular attention to the SIWO algorithm

which we later extend in one of this thesis’ contributions.

2.1 Topic Modelling

The process of topic modelling seeks to uncover the themes and concepts

running through a collection of documents. Topic modelling emerged from the

field of information retrieval where researchers have long worked on methods to

reduce dimensionality and more effectively represent documents for indexing,

query matching, and document classification. In recent years the performance

of topic models on these tasks has been surpassed by deep neural models but

topic models have become extremely popular tools of applied research both

inside and outside of computing science [42]. Topic models enable researchers

to better understand large collections of documents and have been used in

fields as varied as political science [45] and bioinformatics [63].

In this chapter we review the field of topic modelling. We begin by dis-

cussing the origins of the field and some of the first methods developed. Then

we cover Latent Dirichlet Allocation (LDA), by far the most widely used al-

gorithm, and some of its many variants. We then discuss some alternative
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approaches that have emerged in recent years. Finally, we cover evaluation

methods for topic modelling.

The following definitions are necessary:

• A term t is the basic unit of data and are typically words but can also

be combinations of words or words that have been pre-processed in some

way, e.g. stemmed [92].

• A document d is a sequence of terms. As with terms, pre-processing of

documents is common.

• A corpusD is a set of documents. Typically these documents are related

in some way.

• The vocabulary W is the set of all valid terms extracted from the

corpus. This can be every term or a filtered subset.

• The frequency of a term t in a document d is the number of occurrences

of t in d and is denoted ft,d.

2.1.1 Early Methods

Researchers have long sought methods for better representing and reducing the

dimensionality of unstructured text documents for the purposes of classifica-

tion and information retrieval. One commonly used model is the bag-of-words

(BOW), where each document in a corpus can be represented as a vector of

length |W | where the ith entry of the vector is fti,d. This vector representation

can be used as input to various classifiers and as an index for query match-

ing using various similarity measures. However, this representation using raw

counts can give undue weight to common and thus uninformative terms such

as “the”.

To remedy this issue, the term frequency-inverse document frequency (TF-

IDF) model was developed [101]. The term frequency of a term t and a docu-

ment d is the relative frequency of t in d with higher values indicating that t

is a more important feature of d. It is calculated by:

8



tf(t, d) =
ft,d
|d|

(2.1)

The inverse document frequency gives higher weight to terms that appear

in few documents and are thus discriminating. Terms that are very common

throughout the corpus have a low inverse document frequency as they do not

provide information that would help classify a document or retrieve relevant

information for a query. It is calculated by:

idf(t,D) = log
|D|

|{d ∈ D : t ∈ d}|
(2.2)

These two measures are combined to give one scalar value for each combi-

nation of term and document in the corpus that represent how important that

term is as a feature of that document:

tf-idf(t, d,D) = tf(t, d)× idf(t,D) (2.3)

As with the BOW scheme, each document d in the corpus D can be rep-

resented as a vector of length |W | where the ith entry of the vector is the

value tf-idf(ti, d,D). While TF-IDF improves upon BOW as to the quality of

the vector representations, they both suffer from two important drawbacks.

Firstly, the degree of dimensionality reduction is limited. The vectors are

compressed representations of the raw documents, but with large corpora the

vocabulary size can be tens of thousands of terms resulting in vectors with tens

of thousands of dimensions. Secondly, these schemes work with exact terms

such that two documents “The small baby cat is sleeping” and “The tiny kit-

ten is napping” will not have similar vector representations even though they

are conceptually similar since the specific terms they use are different. The

search for representations that reflect the conceptual content of a document

marked the beginning of the development of what we now call topic modelling.

A major step forward arrived when researchers proposed Latent Semantic

Analysis (LSA) and its use as a document index, Latent Semantic Indexing

(LSI) [21]. Either the BOW or TF-IDF scheme can be represented as a term-

by-document matrix X ∈ R|W |×|D| where each column is a document vector.
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LSA uses singular value decomposition (SVD) to decompose X into three

matrices T ∈ R|W |×h, S ∈ Rh×h, and DT ∈ Rh×|D|. For TSDT to perfectly

reconstruct X, h must equal the rank of X. However, h can be chosen to be

smaller than the rank of X by only keeping the largest h singular values that

run along the diagonal of S. T and D are representations of the terms and

documents, respectively, in an h-dimensional space. The value of h should

be large enough that the latent semantic structure of the data can be fully

captured and small enough that noise is eliminated; the authors use 100 as a

value of h. Each dimension in this space can be thought of as a concept or topic,

however they are artificial and cannot be interpreted. So while a document

can be thought of as a linear combination of the h different concepts, there is

no way to examine these topics to understand or explore the corpus.

Another method based on matrix decomposition is Non-negative Matrix

Factorization (NMF) [60]. NMF decomposes the matrix X ∈ R|W |×|D| into

two matrices W ∈ R|W |×h and H ∈ Rh×|D| which are constrained to have all

entries be non-negative. The h columns of W can be viewed as topics with

higher values in the entries corresponding to terms that have higher relevance

to that topic. Each row of H corresponds to a document and the entries along

the row give the weights of each topic in that document. Since all values are

non-negative, it is easier to examine the term composition of topics and the

topic composition of documents.

Another attempt to improve upon LSA is Probabilistic Latent Semantic

Analysis (pLSA) with its corresponding indexing method pLSI [40]. The de-

velopers of this method were unsatisfied with the lack of a solid statistical

foundation to LSA and so rather than use matrix decomposition they devel-

oped their method with a generative probabilistic model of the data. In their

model, documents are mixtures of latent topic variables z and term-document

co-occurrences are generated by the following process:

• select a document d with probability p(d)

• select a topic z with probability p(z|d)

• generate a term t with probability p(t|z)
10



This process is modelled by the following probability distribution:

p(d, t) = p(d)
∑
z

p(t|z)p(z|d) (2.4)

and is shown as a probabilistic graphical model in Figure 2.1.

Figure 2.1: Probabilistic graphical model of pLSA. For each document d in
the corpus D, a topic variable z is sampled from P (z|d) |d| times. For each
sampled z, a term t is sampled from P (t|w). Shaded circles indicate observed
variables while white circles are hidden latent variables.

The algorithm takes as input the BOW term-by-document matrix X and

uses a variation of the Expectation Maximization (EM) algorithm [22] to find

the maximum likelihood distributions. Topics are probability distributions

over terms and are thus interpretable, allowing researchers to gain new insight

and knowledge about collections of documents.

Interestingly, even though they approach the problem from different direc-

tions, NMF and pLSA have been shown to be equivalent [34]. Even though

they can be shown to optimize the same objective function they are distinct

algorithms and will not necessarily converge to the same solution, but both

methods can be combined to improve performance over either one on its own

by alternating optimization steps to avoid getting trapped in local minima

[24].

One major drawback of the pLSA algorithm is the lack of a generative

process for the topic distributions of each document. The topic mixture p(z|d)
11



is estimated separately for each document d, so the number of parameters to

be fit grows with the size of the corpus and these probability functions cannot

be applied to unseen documents.

2.1.2 Latent Dirichlet Allocation

To address the shortcomings of pLSA, researchers developed what has become

by far the most popular and well-known topic modelling algorithm: Latent

Dirichlet Allocation (LDA) [9]. LDA is also a hierarchical probabilistic model,

but it is a fully generative model as it places a Dirichlet distribution prior

on the latent topic mixture of a document (hence the name Latent Dirichlet

Allocation). Rather than estimate a separate p(z|d) for each d, the p(z|d) is a

multinomial distribution over the h possible topics parameterized by θ where

θ is itself a random variable sampled from the prior Dirichlet distribution

parameterized by α. The generative process of a document is thus:

• Sample θ from the Dirichlet distribution p(θ;α)

• For each term position in the document, sample a topic z from the multi-

nomial distribution p(z; θ). Then sample a term t from the multinomial

distribution over the vocabulary p(t|z; β) with β estimated from the cor-

pus.

This generative model is illustrated in Figure 2.2.

The number of topics h must be specified by the user. The algorithm then

works by finding parameters that maximize the probability of the observed

corpus assuming that it was generated by the hidden latent variables of the

model. The probability of a corpus D is modelled as:

p(D;α, β) =
∏
d∈D

∫
p(θd;α)

 |d|∏
i=1

∑
zd,i

p(zd,i; θd)p(td,i|zd,i; β)

 dθd (2.5)

where θd parameterizes the multinomial topic distribution of document d

and zd,i is the topic that generates the td,i, the term at position i in document

d.

12



However, to find these parameters requires computing the probability of

the parameters given the observed terms in the documents taken from the

BOW/TF-IDF term-by-document matrix X. This computation is intractable

[9] and thus one can only approximate the true solution. There are several

methods to do so, including variational inference [46] and Markov chain Monte

Carlo [47]. Once this learning is complete, LDA provides h topics, each repre-

sented as probability distributions over terms and thus interpretable to human

users. The trained model can also be applied to unseen documents to discover

that document’s topic distribution.

Figure 2.2: Probabilistic graphical model of LDA. For each document d in the
corpusD, the parameters θ of a multinomial distribution over topics is sampled
from a Dirichlet prior distribution parameterized by α. For each term position
in d, a topic z is sampled from the multinomial distribution. Given z, a term
t is sampled from a multinomial distribution over all terms parameterized by
β. Shaded circles indicate observed variables while white circles are hidden
latent variables.

While LDA has been extremely successful and is widely used across many

disciplines, there have been many attempts to improve upon it while maintain-

ing the hierarchical probabilistic model framework. The most straightforward

attempts at improvement have been those that do not modify the LDA algo-

rithm itself but rather modify, augment, or re-weight the data. Researchers

have tried first detecting named entities, i.e. specific real-world object such as

13



a person e.g. Donald Trump, in the documents and giving increased weights

in X to those terms so that they become the most frequent terms in the doc-

ument [52]. They found that this tended to improve the quality of detected

topics over baseline LDA. In [115], the authors use a two-step process to iden-

tify and re-weight words that are topic-indiscriminate i.e. those words that

occur in many topics and thus cannot be used to distinguish between topics.

First, LDA is run once with the original TF-IDF term-by-document matrix

X. From the learned topic model, those words that occur in many topics are

idenfied and their frequency weights discounted. Then LDA is run again with

the re-weighted matrix and a new topic model is learned. The authors found

that this tended to outperform baseline LDA. One weak point of LDA is its

performance on corpora that consist of short documents as the algorithm re-

lies on term-document co-occurrences therefore short documents provide less

co-occurrence information. To improve the performance of LDA on Twitter

posts (tweets), the authors of [69] pool tweets into longer documents based

on various schemes such as common author, similar posting time, and same

hashtag (a hashtag is a special label on a tweet that indicates topic or context,

e.g. #blacklivesmatter).

Twitter is a rich source of information but LDA struggles with short docu-

ments such as tweets. This motivation has prompted researchers to go beyond

simple strategies such as pooling tweets to be able to analyse twitter topics.

One attempt is both a data augmentation method and a modification of the

LDA model called MetaLDA [120]. This method can incorporate document

and word meta-information such as document labels, WordNet synonyms [73],

and word embeddings e.g. word2vec [72]. This information is used to condi-

tion the Dirichlet prior of the topic distribution, whereas with standard LDA

the same prior distribution is used for each document. Another approach is

Twitter-LDA [121] which has an author-specific topic distribution for each

Twitter user and restricts documents/tweets to be about a single topic.

There have been many other hierarchical probabilistic models that are ex-

tensions or variations of the basic LDAmodel. Twitter-LDA is itself a variation

on an earlier algorithm that conditions the topic mixture on document author
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called the author-topic model [107], although the author-topic model allows

for multiple authors per document and multiple topics per document which is

less appropriate for Twitter data.

In LDA, the topic for each term position of a document is sampled inde-

pendently. However, it seems likely that the topics that appear together in

a document are somehow related to each other. The Correlated Topic Model

(CTM) [7] substitutes a logistic normal distribution that models the correla-

tions between topics for the Dirichlet prior. This allows for more expressive-

ness than LDA and the learned correlations between the topics can aid in the

exploration of the document corpus.

The authors behind the Correlated Topic Model also developed the Dy-

namic Topic Model [8] which allows for the modelling of topic evolution over

time. In this model, the time span over which the documents in a corpus were

published is discretized into a series of periods. A separate LDA-like model is

trained on the documents of each different time period, but these models are

chained together so that the topics learned in a given time period influence

the topics learned in the next time period.

Another variation created by a team including two of the original LDA

authors is the Hierarchical LDA model (HLDA) [38], so called not because it

is a hierarchical probabilistic model, which all the models in this section are,

but because it allows for a hierarchy of topics using a tree structure. When

each term is generated, rather than sampling from a multinomial distribution

over all topics, a path is followed down the topic tree and a topic is sampled

from a multinomial distribution over only those topics encountered along that

path. These topics will be conceptually related but with topics higher in the

tree being more general and topics further down the tree being more specific.

An example of such a tree is illustrated in figure 2.3.

A flexible generalization of LDA is the Pachinko Allocation Model (PAM)

[61]. Like HLDA, PAM allows for a hierachy of topics but this hierarchy

is not restricted to being a tree of fixed depth. Like CTM, PAM allows for

correlations between topics but these are not restricted to pairwise correlations.

This is because the PAM represents the topic structure as a directed acyclic
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Figure 2.3: Tree hierarchy of topics in the Hierarchical LDA model. Each term
is generated by a topic that is sampled from those encountered along a path
from the root to a leaf, e.g. β1, β2, β5. These topics are related in that the
topic parameterized by β2 is a sub-topic of the topic parameterized by β1, and
the topic parameterized by β5 is a sub-topic of the topic parameterized by β2.

graph (DAG) where each leaf vertex is a term in the vocabulary and non-leaf

vertices are topics. The topic nodes model correlations between their child

vertices, which can be both term vertices and other topic vertices. This allows

for modelling a variety of relationships between topics and a more flexible

topic hierarchy. An example of such a DAG is illustrated in figure 2.4. This

flexibility allows for a wide variety of possible model architectures, but also

raises the problem of which to choose. The authors elect to evaluate a simple

four level hierarchy with one root topic, a level of super-topics, a level of sub-

topics, and the vocabulary terms. Each level is fully connected to the one below

it and there are no other connections. Even though this architecture does not

take full advantage of the flexibility offered by the DAG, their experiments

show it models the text data better than HDP, CTM, and LDA.

All of the models described in this section are generative probabilistic mod-
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Figure 2.4: An example of a topic hierarchy DAG used by PAM. The leaf
vertices at the bottom are the terms in the vocabulary. Non-leaf vertices are
topics. There are multiple levels of super- and sub-topics but these topics can
be distributions over both topics and terms and the nesting can span multiple
levels.

els that can be seen as variations on the basic LDA framework. These models

typically involve making the LDA model more complex to capture some aspect

of how documents are actually created (e.g. authors, intra-document topic cor-

relations) or how topics should be modelled (e.g. hierarchies). However, these

more complex models do not always outperform vanilla LDA in all situations.

For example, the MetaLDA model was designed to work better on tweet data

than standard LDA, but in [25] the authors applied both models to a corpus of

tweets and found that which model performed best depended on the number

of topics chosen and the topics selected for evaluation. The added complex-

ity and uncertain benefits of these models has meant that standard LDA has

remained the most popular model among researchers using topic models in

applied research [108]. Part of the uncertainty about which model performs

best stems from evaluation metric issues which are reviewed in Section 2.1.4.
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2.1.3 Recent Approaches

In recent years, new types of topic models have emerged. Many of these ap-

proaches are based on the huge advances in neural networks and deep learning

that we have witnessed over the past decade. Some of these new methods

remain close to the LDA framework while others are completely different ap-

proaches. Here we will review a few of these recent approaches.

One algorithm that marries LDA with representations learned by neural

networks is the Embedded Topic Model (ETM) [23]. This model posits a

similar generative process as LDA whereby a document is generated by first

sampling a topic mixture, in this case from a logistic-normal distribution rather

than a Dirichlet distribution, and then sampling a topic from that mixture and

a term from that topic for each term position in the document. Where ETM

fundamentally differs from LDA is how the terms are sampled given a topic.

ETM uses word embeddings trained using the continuous Skip-gram algorithm

[72] to represent the terms in the vocabulary. The word embeddings are vector

representations learned by a neural network that capture linguistic patterns

and semantic meanings. These embeddings can be learned during the training

of ETM or the model can be provided pre-trained embeddings. The model also

learns a vector representation for each topic in the same vector space. Given

a topic z, a term t is sampled from a softmax distribution on MTαz where M

is the matrix whose columns are the word embeddings for each term in the

vocabulary and αz is the embedding of topic z. So the most likely terms for a

topic are determined by the distance between the term and topic embeddings

rather than simple co-occurrence counts. The topics learned by ETM are still

probability distributions over terms so are interpretable to a human user but

the model leverages the expressive power of a distributed term representation

learned by a neural network.

Another approach is to use deep neural networks to learn the probabil-

ity distributions of a generative probabilistic model, rather than variational

Bayes or Markov chain Monte Carlo as in LDA and its variants. This can be

done using a variational autoencoder (VAE) [49, 50]. There have been many
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VAE-based topic models developed, including the neural variational document

model (NVDM) [70], the stick-breaking variational autoencoder (SB-VAE)

[77], ProdLDA [106], and Dirichlet-VAE [13]. These models discover topics

that are qualitatively different than those found by traditional LDA, although

there is debate as to whether they are truly superior [42].

Other approaches use the word embeddings learned by a deep neural net-

work but are not based on generative probabilistic models. An algorithm

presented in [28] first learns 200-dimensional word2vec embeddings [72] on the

text corpus. Then, a document is placed in this vector space by taking the

centroid of all the word embeddings of the terms in the document. Once all

document vectors are calculated, they are clustered using the k-means algo-

rithm. The produced topics are collections of documents rather than terms,

which makes topics less interpretable but potentially still useful for data ex-

ploration.

The top2vec algorithm [3] is also based on embeddings learned by a neural

network, in this case the term and document vectors learned jointly by the

doc2vec algorithm [59]. The authors argue the the semantic embedding space

itself is a continuous representation of topics; every point in that space is a

topic and there is no finite number of discrete topics such as in LDA. Any

vector in that space can be transformed into a probability distribution over

all terms by taking the softmax of the dot product of that vector with the

matrix of all word embeddings. To find the topics for collections of related

documents, first the dimensionality of the document embeddings is reduced to

two dimensions using the UMAP algorithm [68]. Then dense clusters are found

using HDBSCAN [14]. The topic for a cluster of documents is the centroid

of all those document vectors in the original embedding space and the most

relevant terms are those whose embeddings are closest to the topic embedding.

Having seen that a great variety of topic models exist, the question natu-

rally arises of how to compare them. We now turn our discussion to evaluation

methods for topic models.
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2.1.4 Evaluation Methods

There are three main approaches to topic model evaluation: human evaluation,

intrinsic evaluation, and extrinsic evaluation.

Human Evaluation

Human evaluation is the gold-standard and is especially important given topic

modelling’s application as a tool in applied research. However, human evalu-

ation has fallen out of favour in recent years [42] and most recent work relies

solely on automated metrics. Given the extra effort, time, and expense related

to human evaluation, even papers that do incorporate some human evaluation

tend to have a very small number of evaluators, calling in to question the

reliability of the results.

In [79], the authors provide a set of nine human evaluators with a rubric

for evaluating topics on a three-point scale from “useless” to “useful” based on

qualities such as “meaningful”, “interpretable”, and “easy-to-label”. Another

approach was taken in [15] where rather than ask for a subjective opinion

the authors designed two tasks for the human evaluators to perform. The

word intrusion task presented evaluators with five terms from a topic and one

intruder from a different topic with higher rates of intruder detection indicating

a more coherent topic. In the topic intrusion task, the evaluators were given

part of a document and the top words from four topics, three of which were

high probability topics for that document and one of which was not. If the

low probability intruder topic could be reliably detected then model could

be said to be doing a good job of finding the topics of a document. These

experiments were each run with eight evaluators hired on Mechanical Turk1.

Researchers working on a corpus of grant applications and journal abstracts

from the National Institute of Health were able to collaborate with two domain

experts from the National Institute of Neurological Disorders and Stroke [76].

The experts were able to classify and rate topics discovered by LDA and their

ratings correlated positively with word intrusion task scores generated by ten

1https://www.mturk.com/
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other expert evaluators on the same topics.

Intrinsic Evaluation

Given the effort and expense associated with human evaluation, researchers

have sought to develop automated metrics that can measure the quality of

a topic model that agree with human judgements. The first metric used in

the original LDA paper was perplexity, borrowed from the field of language

modelling:

perplexity(D) =
∏
d∈D

∏
t∈d

|d|

√
1

p(t)
(2.6)

This is equivalent to the inverse of the geometric mean of the per-term

likelihood of a sequence of terms with lower scores corresponding to language

models that better model the documents. While perplexity was used early

on for evaluating topic models, the metric does not actually tell us anything

about the semantic content of the topics themselves. In fact, perplexity was

found to be negatively correlated with human assessment of topic quality [15]

and has fallen out of favour. Of course, this raises the question of whether

generative probabilistic models are the best approach to topic modelling since

these find topics that are the latent variables best able to reconstruct the

original documents and the terms most important for that task may not be

the most relevant to the thematic or conceptual information in a document.

Many other automated metrics have been developed that seek to measure

the quality of the topics themselves. We would like to discover topics that

represent an identifiable category and are meaningful, interpretable, and easily

labelled; in other words, topics that are coherent. There have been many

different coherence metrics developed, but all are based on the idea that terms

from the same topic should be likely to co-occur together in some reference

corpus. There are many variations based on different definitions of likeliness

and co-occurrence and which reference corpus is used.

One of the first proposed measures is known as CUCI [79] and is based

on pointwise mutual information (PMI) between the top-N terms in the same
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topic calculated using probabilities derived from the term co-occurrence counts

collected by a sliding window over a Wikipedia corpus:

PMI(ti, tj) = log
p(ti, tj) + ε

p(ti)p(tj)
(2.7)

CUCI =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

PMI(ti, tj) (2.8)

where ε is a small smoothing factor added to avoid taking the log of zero.

The authors show that this coherence measure positively correlates with the

judgements of their human evaluators. This metric was improved upon to get

CNPMI by using normalized pointwise mutual information (NPMI) in place of

PMI [2].

NPMI(ti, tj) =
log

p(ti,tj)+ε

p(ti)p(tj)

−log(p(ti, tj) + ε)
(2.9)

Another coherence metric is CUMass [76] which is based on conditional prob-

ability rather than PMI/NPMI and calculates probabilities from co-occurrence

using the original training documents as a reference corpus and using the entire

document for a co-occurrence window.

CUMass =
2

N(N − 1)

N∑
i=2

i−1∑
j=1

log
p(ti, tj) + ε

p(wj)
(2.10)

Given the proliferation of these coherence metrics, in [97] researchers de-

veloped a general framework to describe the entire space of possible coherence

functions and evaluated their correlation to human ratings previously gathered

in [2, 15, 58]. Interestingly, the coherence metric most highly correlated with

human assessment of topic quality was a new measure found by the authors

as they explored the space of coherence functions they defined. This metric,

CV , uses a sliding window of 110 terms on the Wikipedia corpus to create

NPMI-based context vectors for the top-N terms in a topic. These context

vectors are compared using cosine similarity to determine a topic’s coherence.

The use of context vectors means that this metric does not only check whether
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two terms co-occur often, but also whether they co-occur with the same set of

other terms.

Given that researchers have developed several automated coherence mea-

sures that correlate with previous human evaluations, it would seem that the

problem of evaluating topic models is solved. However, some researchers have

raised doubts about the reliability of these automated metrics. In [25], the

authors show that various coherence metrics do not necessarily agree with

each other and that the LDA topics they rate most highly is sensitive to the

number of topics chosen and the reference corpus used for evaluation. Mo-

tivated by the lack of consistency in the use of these metrics and the very

high scores achieved by neural topic models, the authors of [42] set out to use

fresh human evaluations to check whether the previously reported correlation

between automated metrics and human judgement still holds given the quali-

tatively different topics found by these new models. They found that human

evaluators often judged topics produced by old-fashioned LDA to be superior

even though the automated metrics score the neural topic models more highly.

They conclude that measures designed for older models may be incompati-

ble with new models and that evaluation of models using generic corpora like

Wikipedia may not be appropriate given the use of topic models in specific

research domains. So while these automated metrics may still have some use,

their results should be taken with a grain of salt and we must not fall into the

trap of using a single number to evaluate a model and declaring the model

with the biggest number to be the best.

Extrinsic Evaluation

Topic models can also be evaluated by how well they perform at an external,

downstream task such as sentiment detection [109], information retrieval [114],

and document classification [90]. While topic model approaches could outper-

form methods based on earlier schemes such as BOW and TF-IDF, in recent

years deep neural network algorithms have been the state-of-the-art for these

tasks. The main use of topic models is now as tools for content analysis, explor-

ing and understanding large document collections, assisting applied research
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in various disciplines, and revealing new knowledge and insights. Evaluation

of this function is much more difficult than with a task such as classification

where standard benchmarks and metrics exists. Thus researchers typically fall

back to intrinsic evaluation metrics such as coherence as a proxy for how well

a topic model would facilitate this exploration and knowledge discovery.

One can ask questions about whether the features of the topic model would

enable such exploration and knowledge discovery. Are the topics interpretable

by human researchers? Are the discovered topics coherent? Are the topics

related in some way so that connections between topics can be seen and explo-

ration can be guided? Does the model discover some natural number of topics

or must the user specify how many to find? Is there a natural hierarchy to the

topics so that researchers can request more specific and finely-grained topics

or broader, more general topics as they explore? The more questions that can

be answered “yes”, the more likely the topic model is to be a useful tool for

researchers.

One new application area for topic models is in chatbots and conversational

agents [26]. The qualities that would make a topic model a good research tool

are similar to those that would make the model useful in a conversational

agent. Topics that are coherent to a researcher would also help the agent pro-

vide coherent responses. A topic structure with connections that can guide

exploration between related topics would also enable an agent to guide a con-

versation between related topics. Of course, evaluating a conversational agent

is at least as hard a problem as evaluating a topic model as a research tool

although there are competitions such as the Alexa Prize2 that seek to do just

that.

Now that we have reviewed the field of topic modelling, we move on to

cover social network analysis, the second key area of research that supports

our work, and its sub-field of community detection and search.

2https://www.amazon.science/alexa-prize/socialbot-grand-challenge
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2.2 Social Network Analysis

The study of complex networks is a field that combines ideas from many differ-

ent disciplines such as the social sciences, physics, mathematics, and computer

science. Mathematicians have been studying graphs and their properties at

least since Euler solved the Königsberg bridge problem in 1736 [29, 31]. So-

cial scientists have the longest tradition of studying real-world networks that

dates back to the empirical examination of social groups by Jacob Moreno in

the 1930’s [82]. Subsequently researchers from disciplines such as physics and

computer science have applied themselves to the study of networks and have

brought techniques from their fields to aid the analysis and the field has seen

a rapid growth in the number and sophistication of methods.

A comprehensive review of network theory is beyond the scope of this

work and refer the interested reader to an excellent text on the subject [82].

We present and define sufficient terminology to be able to understand our

contribution to the field.

• A network is represented by a graph G = (V,E) where V is the set of

vertices and E is the set of edges.

• We denote the number of vertices in the network as n, i.e. |V | = n.

• We denote the number of edges in the network as m, i.e. |E| = m.

• A network may be unweighted, in which case there is a binary alter-

native between the existence or non-existence of an edge ei,j between

any two vertices vi, vj ∈ V that indicates a relationship between those

vertices.

• A network may beweighted, in which case an edge ei,j has an associated

weight wi,j which is a numeric value that characterizes in some way the

relationship between vertices vi and vj.

• A network may be undirected, in which case relationships between

vertices vi and vj are symmetrical and represented by ei,j = ej,i
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• A network may be directed, in which case an edge ei,j indicates a rela-

tionship from vi to vj which is distinct from the relationship from vj to

vi represented by ej,i.

• The degree of a vertex vi, denoted ki, is the number of edges connected

to that vertex, i.e. ki = |{ei,j : vj ∈ V }|.

• The weighted degree of a vertex vi, denoted kw
i , is the sum of the

weights of all edges connected to that vertex, i.e. kw
i =

∑
vj∈V wi,j.

This is often referred to as strength in the literature, but this convention

clashes with our own terminology introduced later in the paper so we

use weighted degree to avoid confusion.

• A connected triplet consists of three vertices that are connected. The

triplet is open if if is connected by two edges and closed if it is com-

pletely connected by three edges. A closed triplet is also called a trian-

gle. An example is shown in Figure 2.5.

Social network analysis has revealed various properties that networks ex-

hibit that we would not expect to see if connections between vertices were

random or regular like a lattice [80]. Networks tend to exhibit the small-world

effect : the average path length between any pair of vertices increases only as

the log of the total number of vertices in the network. This explains the quick

spread of, for example, a viral disease through a large population. Real net-

works also tend to exhibit a skewed degree distribution where there are many

vertices of low degree but a long tail of a small number of vertices of a high

degree. Different networks also exhibit differing degree correlations. In some

networks there is positive degree correlation where vertices of high degree tend

to be connected to other vertices of high degree and low with low (think of a

social network in which popular people are friends with other popular people).

In other networks there is a negative correlation where vertices of high degree

will have more connections with low degree vertices and vice versa (think of

a regional hub airport that has many connections to smaller airports in the

region that are themselves not connected).
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The two properties of networks that are most relevant to our work are

transitivity and community structure. Transitivity refers to the tendency of

triangles to form in real world networks. If vj is connected to vi and vi is con-

nected to vk, then it is much more likely that vj and vk are connected than we

would expect if connections were formed randomly. This is illustrated in Fig-

ure 2.5. The level of transitivity, i.e. the proportion of connected triplets that

are closed to form triangles, differs from network to network and is measured

by the clustering coefficient CL [6]:

CL = 3× number of triangles

number of connected triplets
(2.11)

Community structure is the tendency of a network to consist of different

groups of vertices where the density of edges within the group is much higher

than the density of edges between groups. These groups of highly-connected

vertices are called communities. A network with a strong community structure

is illustrated in Figure 2.6. There is no formal definition of a community and

many different methods have been developed to try to find this structure which

we review in the next Section 2.2.1. We note how in Figure 2.6 there are many

triangles within each community but very few that span multiple communities.

This insight into the connection between transitivity and community structure

underlies our own novel approach to community detection which is described

in Section 2.2.2.

2.2.1 Community Detection and Search

Often we are interested in finding all of the communities in the entire network.

This global partitioning of the network into communities is called commu-

nity detection or community mining. In other cases, we are only interested

in finding the local community of a given vertex. This is called community

search. While community detection methods were the first to be developed,

the emergence of very large networks in our age of big data has given ex-

tra importance to local search methods that do not need to detect all of the

network’s communities.
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Figure 2.5: Many networks exhibit transitivity, which is the tendency for two
vertices that have a common neighbour to themselves be connected. Here we
see the closing of a triplet of vertices to form a triangle.

Many different community detection algorithms have been developed over

the years. These algorithms vary across several dimensions and different re-

searchers have developed different taxonomies to classify them. In [19], the

authors classify algorithms according to the properties or features of the net-

work used by the algorithm, for example those that use directly the density of

the edges in a community, those that look for “bridges” as the boundary be-

tween communities, and those that look at how information is diffused within

the network.

We prefer the classification introduced in [31] and updated in [33]. Algo-

rithms based on optimization have received the most attention of researchers.

These algorithms employ a function that measures the quality of a given set

of communities and attempt to maximize the value of this function. By far

the most popular quality function used is modularity, introduced in [83] along

with a greedy optimization algorithm which we refer to as FastGreedy. Modu-

larity compares the actual edge structure of the network to a null model where

vertices have the same degree but edges are distributed randomly. It is defined

as:

Q =
1

2m

∑
ij

(
Ai,j −

kikj
2m

)
δ(Ci, Cj) (2.12)
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Figure 2.6: An example of a network that consists of three communities. We
can see that the density of edges within a community is much higher than the
density of edges between communities.

where Ai,j is the adjacency matrix entry for vi and vj that is equal to 1

when ei,j exists and 0 when ei,j does not exist, Ci and Cj are the assigned

communities of vi and vj, respectively, and δ is an indicator function that

returns 1 when the two arguments are equal and 0 otherwise. The extension

of this formula to the weighted case is straightforward; one simply uses the

value wi,j from the weighted adjacency matrix and the weighted degree.

The Louvain algorithm [10] is another modularity-optimization algorithm

that represented a large step forward in the speed and quality of community

detection and is still one of the most popular algorithms in use today. The
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algorithm begins with every vertex in its own community and proceeds in two

phases that are repeated until no improvements to modularity are possible. In

the first phase, the gain in modularity is calculated for each potential move of

vi into the community of each of its neighbours vj with vi being moved into the

community that provides the greatest increase or not moving if no increase is

possible. Then, a new network is constructed by combining each community

into a single vertex and the edges between these new vertices have weight equal

to the sum of all the combined edge weights and the process repeats on this

new network.

The Leiden algorithm [112] is an improvement upon Louvain that improved

upon both Louvain’s speed and quality. Leiden integrates several previously

proposed improvements to Louvain such as the smart local move [113], the fast

local move [88], and the random neighbour move [110]. Leiden also employs

an extra refinement step to guaranteed that detected communities are well

connected, which is not always the case with Louvain.

Methods based on modularity optimization have been shown to be among

the best performing community detection algorithms [116]. However, they

suffer from two major issues: the resolution limit [32] and the field of view

limit [54, 103]. The resolution limit means that small communities cannot be

found and are combined into larger communities. The field of view limit is the

opposite problem where large communities cannot be found and are broken up

into smaller communities. Attempts have been made to mitigate these issues

by introducing a resolution parameter [4] to the modularity formula that can

be tuned to find communities of larger or smaller sizes. However, this adds a

parameter to tune and does not completely solve the problem as using a value

of the parameter that reduces the resolution limit will make the field of view

limit worse and vice versa. Another way to avoid these problems is to use

a different function for optimization that does not suffer from the resolution

limit such as the constant Potts model [111].

Another category of algorithms are those that examine how a dynamical

process, such as diffusion or a random walk, operates on the network. One such

algorithm is WalkTrap [91] which is based on the idea that a short random
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walk is likely to get stuck in a community as there are many more edges

within the community than those that connect to another community and

therefore the verticess encountered on a short random walk are likely to be

part of the same community. The Infomap algorithm [98] is also based on

random walks. It uses random walks as a model of how information would

flow in the network and then uses information theory to find a code that can

efficiently describe the information flow while maintaining unique “names” for

important features of the network. These important features correspond to

the network’s communities and finding an efficient code corresponds to finding

good communities. The Label Propagation algorithm [95] begins with each

vertex assigned a unique label. At each step of the algorithm, each vertex

takes the label of the majority of its neighbours, with ties broken randomly.

Vertices that are densely connected quickly come to a consensus on their label

and vertices with the same label are identified as a community.

Another category is spectral algorithms. These algorithms use the eigenval-

ues and eigenvectors of some matrix representation of the network to identify

communities. The leading eigenvector algorithm of Newman [81] uses the mod-

ularity matrix to detect communities. However, spectral methods fail when

the network is sparse, which is the case for many real world networks [33].

Community search methods are only concerned with finding the commu-

nity of a given query vertex, not the community structure of the entire net-

work. This is particularly useful for very large networks where partitioning

the entire network would take too long or use too much memory. The trade-

off is that these methods do not have access to global information and must

find a community using only local information gained by exploring the sur-

roundings of the query vertex. This means that different algorithms taking

different approaches must be used for community search than community de-

tection. Community search algorithms can be grouped into three families:

cohesiveness-base algorithms, motif-based algorithms, and optimization-based

algorithms.

The first family includes algorithms that attempt to find a connected sub-

graph that contains the query vertex and satisfies a certain cohesiveness metric.
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These metrics are typically relaxations of the clique, which is the maximally

cohesive sub-graph where every vertex is connected to every other vertex. The

metrics used include the k-core [105] which has been used in an algorithm able

to find communities in large networks with different vertex types [30]. Another

metric used is the k-truss [18] which has been used in an algorithm able to

find communities in large networks that change dynamically over time [44]. A

third metric is the k-edge connected component [36] which has also been used

in algorithms able to find communities in large networks [43].

The second family of algorithms uses the presence of “motifs” [75], i.e.

patterns of connections, to find communities. These motifs occur with higher

probability in real complex networks than in random networks and are used as

indicators of community structure. The Motif-based Approximate Personal-

ized PageRank (MAPPR) algorithm [117] uses a modified version of PageRank

[12, 89] and motif-based clusters to find the community of a query vertex.

As with community detection, there is a family of community search algo-

rithms based on optimizing a quality function. Again, the most popular choice

of quality function is modularity but with formula 2.12 adapted to calculate

the local modularity of the query vertex and explored surroundings. Modu-

larity R [17] and Modularity M [64] are two algorithms that use different local

modularity functions to find the community of a given query vertex.

In the next Section 2.2.2 we review an algorithm that is able to perform

both local community search and global community detection.

2.2.2 SIWO: Strong Inside, Weak Outside

The SIWO (Strong Inside, Weak Outside) algorithm was first introduced in

[35] for global community detection. The algorithm has been subsequently

refined and changed into a local search algorithm that can also perform global

community detection. In this section, we describe the current version of the

algorithm. As one of the contributions of this thesis is the extension of SIWO

to work with weighted networks, we present the algorithm in sufficient detail

that our contributions can be understood.

Like motif-based search methods, SIWO uses the presence of higher-order
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edge structures, in this case triangles, in the network to identify community

structure. However, it is a member of the optimization-base search family as it

uses these triangles to compute a strength function for the edges and uses the

greedy maximization of the total strength of the edges in a sub-graph to find

the community. The following definitions are necessary for the description of

the algorithm:

• The support of an edge ei,j is the number of triangles of which ei,j forms

a part, in other words the number of common neighbours shared by the

vertices vi and vj and is calculated by:

supi,j = |{vk ∈ V : ei,k, ej,l ∈ E}| (2.13)

• The neighbourhood of a vertex vi is the set of its adjacent vertices:

V N
i = {vj ∈ V : ei,j ∈ E} (2.14)

• The strength of an edge ei,j quantifies the tendency for the edge to be

an intra-community edge versus an inter-community edge, i.e. a high

strength value indicates that ei,j connects two vertices in the same com-

munity whereas a low strength value indicates that ei,j connects two

vertices in different communities. It is calculated by:

si,j =
supi,j

supi,max

+
supi,j

supj,max

− 1 (2.15)

where supi,max = maxvj∈V N
i
supi,j. Edge strength is bounded in the range

[-1, +1]. It takes on negative values when ei,j is a part of relatively few

triangles and positive values when ei,j is part of relatively many triangles.

The strength of a community C is the sum of strengths of all the edges

connecting vertices within the community:

sC =
∑

vj ,vi∈C

si,j (2.16)

• The shell of a community C is the set of vertices that are not in C but

are connected to at least one vertex within C:

SC = {vi ∈ V : vi /∈ C, ∃vj ∈ C, ∃ei,j ∈ E} (2.17)

33



This is illustrated in Figure 2.7 where the vertices in C are green and

the vertices in SC are purple.

• A dangling vertex is a vertex vi that is connected to exactly one other

vertex, i.e. ki = 1. This is illustrated in Figure 2.7 by the red vertex.

Figure 2.7: A community (colored in green) and its shell (colored in purple).
Dangling vertices (colored in red) are special cases as they have no common
neighbours with their single neighbour but can only logically belong to the
community of that neighbour.

The SIWO algorithm begins by placing the query vertex into the commu-

nity and all of its neighbours into the shell. Strength values must be computed

in Equation 2.15 for all the edges connecting the community to the shell, which
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Algorithm 1 SIWO

Require: Network G, query vertex vq, Boolean mergeOutliers
C ← {vq} ▷ Community begins with only the query vertex
vbest ← vq ▷ Track most recently added vertex
SC ← ∅ ▷ Shell is initially empty
while True do

SC ← SC ∪ (V N
best - C) ▷ Update shell set

for ei,j ∈ {ei,j : vi ∈ C, vj ∈ SC} do ▷ Assign strength values
if si,j not calculated then

Calculate si,j ▷ Includes computing required support values
end if

end for
vbest ← argmaxv∈SC

sC∪{v} ▷ Best vertex adds the most strength
if sC∪{v} ≤ sC then

break ▷ Stop expanding community if no strength added
end if
C ← C ∪ {vbest}

end while
if mergeOutliers then

for vi ∈ SC do ▷ Reform community by adding dangling vertices
if ki == 1 then

C ← C ∪ {vi}
end if

end for
end if
return C

involves calculating the necessary support values according to Equation 2.13.

These values are saved and so only need to be calculated once. Adding a vertex

from the shell to the community increases (or decreases) the total community

strength by the sum of the strengths of all edges connecting that vertex to the

community. Thus selecting the best vertex to add to the community is simply

a matter of calculating this sum for each vertex and taking the maximum. In

fact, the entire sum does not need to be calculated for each vertex in the shell

set every iteration. The previous sum can be saved and updated only when a

vertex is added to the community that connects to the shell vertex. Once the

best vertex is found, it is added to the community only if its strength contribu-

tion is positive. If not, the search stops as no increase to community strength

is possible. Optionally, any dangling vertices in the shell can be merged into
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the community. The edge connecting a dangling vertex to a community will

have a strength value of -1, as it will be part of no triangles, so the vertex will

not be added to the community. This is desirable if the user wants to consider

them outliers. However, a user may want to merge the dangling vertex into

the community as this is the only larger community to which the dangling

vertex could possibly belong. The SIWO algorithm is detailed in Algorithm

1.

The SIWO algorithm performs local community search, but can be adapted

for global community detection by iteratively performing search on the parts

of the graph that have not yet been added to any community. This introduces

some stochasticity into the algorithm as the starting vertices for each com-

munity search are chosen randomly rather than provided by the user. This

variant is called SIWO+ and is detailed in Algorithm 2.

Algorithm 2 SIWO+

Require: Network G, Boolean mergeOutliers
P ← ∅ ▷ Set of detected communities
U ← V ▷ Set of nodes needing to be added to a community
while |U | > 0 do

vq ← vertex uniform randomly selected from U
C ← SIWO(G, vq, mergeOutliers)
P ← P ∪ {C}
U ← U − C

end while
return P

Both SIWO and SIWO+ have been shown to work well at their respec-

tive tasks. However, as defined they only work with unweighted networks.

Extending these algorithms to work with weighted networks is one of the con-

tributions of this thesis and is detailed in the next chapter. First, we review

evaluation methods for community detection and search.

2.2.3 Evaluation Methods

There are many different methods for evaluating the quality of a clustering or

community partition [20, 96]. We cover the most popular methods here. The
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evaluation of a detection or search algorithm differs depending on whether the

network being used has ground truth communities and, if so, whether these

ground truth communities are reliable. When ground truth is available, it is

possible to compare the detected community or communities to the ground

truth to see how close the detected community structure is to the actual com-

munity structure.

When performing community search we only need to compare the detected

community of the query vertex to the ground truth community of the query

vertex. This can be done using precision which measures the proportion of

vertices in the found cluster c that are true members of the ground truth

community g:

Precision(c, g) =
|c ∩ g|
|c|

(2.18)

Recall measures the proportion of vertices in g that are correctly placed in

c:

Recall(c, g) =
|c ∩ g|
|g|

(2.19)

These measures are typically combined into the F score:

F (c, g) =
2× Recall(c, g)× Precision(c, g)

Recall(c, g) + Precision(c, g)
(2.20)

Precision, recall and F score are all bounded within the range [0, 1] with

higher values indicating a better found community.

When performing community detection, we need to compare the entire

detected community structure to all the ground truth communities. To do so

we use Normalized Mutual Information (NMI):

NMI(DC,GT ) =
−2

∑|DC|
i=1

∑|GT |
j=1 Bi,jlog

(
Bi,j |V |
BiBj

)
∑|DC|

i=1 Bilog
(

Bi

|V |

)
+
∑|GT |

j=1 Bjlog
(

Bj

|V |

) (2.21)

where DC is the set of detected communities, GT is the set of ground truth

communities, B is a confusion matrix whose rows correspond to the ground
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truth communities and columns correspond to the detected communities, Bi

is the sum over row i of B, Bj is the sum over column j of B, and Bi,j is

the number of vertices found in both the ith ground truth community and

jth detected community. NMI is bounded within the range [0, 1] with higher

values indicating a detected community structure closer to the ground truth.

However, it is often the case that we do not have access to ground truth

communities for a network. When working with synthetic networks such as

those generated by the LFR benchmark [53, 55] the ground truth is always

available. With real world networks, it can be much more difficult to determine

the ground truth and even when it is available, there can be questions about its

reliability. In some smaller social networks, such as the classic karate [118] and

dolphin [65] networks, the researchers documenting the network have chosen to

study well-defined communities so the ground truth is reliable. In other cases

there is a real-world organizational structure that corresponds to a community

structure in a network representation, such as the departments of a research

institution or the conferences of a sports league [37]. In other cases it is more

difficult to try to define a ground truth. Consider an online social network

such as Facebook or Twitter. Ground truth communities can by constructed

by forming communities out of users who have “liked” the same post or tweeted

the same hashtag, but just because two users both clicked “like” on the new

Disney movie trailer or tweeted the same “#blacklivesmatter” hashtag does

not mean that they ever interact or have any connection themselves.

In cases where no reliable ground truth is available one must use different

metrics that attempt to measure the intrinsic quality of the detected commu-

nities. One such measure is called silhouette and can be used to both provide

a scalar measure of how well an object lies within its cluster as well as visualize

the relative quality of clusters [99]. Silhouette was developed for evaluating

clusterings and so uses the language of generic objects and dissimilarities. To

calculate the silhouette score s(i) for some object i one must calculate the

average dissimilarity of i to all other objects in its own cluster A:
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a(i) = average dissimilarity of i to all other objects in A (2.22)

For every other cluster B ̸= A one must calculate the average dissimilarity

of i to all objects in B:

d(i, B) = average dissimilarity of i to all objects in B (2.23)

Then one takes the smallest average dissimilarity of all the other clusters:

b(i) = minimumB ̸=Ad(i, B) (2.24)

Then the silhouette score is calculated as:

s(i) =
b(i)− a(i)

max(a(i), b(i))
(2.25)

The silhouette score is bounded in the range [-1, +1]. Scores close to +1

indicate that i is much more similar to the other objects in its own clustering

than the objects in the next most similar clustering, indicating that it has

been properly clustered. Values close to 0 indicate that i is about as similar to

the objects in its own cluster as another cluster and could fit in either. Values

close to -1 indicate that i is more similar to objects in another cluster and is

therefore assigned to the wrong cluster.

When clustering points in a Euclidean space there is a clear dissimilarity

measure to use: distance. However, for vertices in a network there is no such

obvious choice. Several different possible choices for the distance between two

vertices dist(vi, vj) were proposed in [93, 94] including:

• the inverse edge weight,

dist(vi, vj) =
1

wi,j

(2.26)

• the maximum edge weight minus the edge weight,

dist(vi, vj) = maxvx,vy(wx,y)− wi,j (2.27)
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• the shortest path between the vertices,

• the adjacency relation,

dist(vi, vj) =

√∑
x ̸=i,j

(wi,x − wj,x)2 (2.28)

• the neighbourhood overlap,

dist(vi, vj) = 1−
∑

x wi,xwj,x∑
x

(
w2

i,x + w2
j,x − wi,xwj,x

) (2.29)

• the topological overlap,

dist(vi, vj) = 1−
∑

x ̸=i,j(wi,xwj,x) + w2
i,j

min
(∑

x w
2
i,x,

∑
x w

2
j,x

) (2.30)

• the Pearson correlation where µi is the average of all weights of edges

adjacent to vi and σi is their standard deviation,

dist(vi, vj) = 1−
∑

x(wi,x − µi)(wj,x − µj)

|V |σiσj

(2.31)

• and the number of paths shorter than a certain length between them.

Now that we have reviewed social network analysis, community detection

and search, and the SIWO algorithm, we move on to discuss the first contri-

bution of this thesis: the extension of SIWO to handle weighted networks.
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Chapter 3

SIWOw

The topological structure of a network, i.e. the arrangement of vertices and

edges, can provide a great deal of information about the system represented

by a network. However, many complex systems are defined not only by the

presence or absence of connections between their elements but also by the

intensity of those connections. When we represent these systems as unweighted

networks for study and analysis, we are missing a crucial dimension of the

underlying real system. A friendship in a social network is not simply a binary

relationship but is characterized by an intensity of feelings and interaction

which can be quantified and added as an edge weight. The various channels

in an information network are not all equal but have varying capacities which

make them more or less important to the flow of information. Often there

will be a positive correlation between the areas of the network where there is a

high density of connections and higher edge weights. However, the correlations

between edge weights and topology can vary between networks and so taking

the edge weights into consideration is crucial to understanding and analyzing

the network and the system it represents [5].

There is a risk in network analysis of being misled when only consider-

ing network topology and ignoring edge weights, which is highlighted by the

study of important airports using network betweenness centrality conducted

in [85]. Betweenness centrality measures the importance of a vertex in a net-

work using the number of shortest paths between pairs of vertices that run

through that vertex. Using this measure on an unweighted airport network,
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where edges represent the presence of a flight route between the two airport

vertices, the authors found that the Anchorage, Alaska airport was the third

most important in the world, after Frankfurt and Paris. Of course, it does not

seem sensible that the airport of a relatively small and isolated city in the far

northern reaches of North America would be one of the most important in the

entire world. This is the result of ignoring edge weights. A route between An-

chorage and Fairbanks, Alaska is not the same as a route between New York

and London. The former will have less frequent flights and use smaller air-

planes that can carry fewer passengers. In the case of an airport network, the

“length” of a shortest path should be influenced by the number of passengers

that can flow between the vertices. Using edge weights that reflect passenger

capacity, the authors find that the three most important airports are London,

Los Angeles, and New York.

Considering edge weights would also be key for our goal of applying social

network analysis and community mining to term co-occurrence networks for

topic modelling. There is a great difference between a pair of terms that co-

occur in one sentence in a corpus of tens of thousands of documents and a

pair of terms that co-occur in hundreds of sentences. Without assigning and

using edge weights, this difference is ignored. Very few of the local community

search algorithms discussed in the previous chapter are able to handle weighted

networks but all of the discussed global community detection algorithms are.

As presented in Chapter 2, the SIWO and SIWO+ algorithms are not able to

handle weighted networks. Thus the first contribution of this thesis is to extend

SIWO (and so SIWO+) to be able to work with weighted networks. This

contribution provides the community with one of the few weighted community

search algorithms, gives SIWO+ functionality that is expected for community

detection, and allows us to use this algorithm for our community mining-

based approach to topic modelling. We call the extended algorithms SIWOw

and SIWOw+. In this chapter we explain our approach to handling weighted

networks and present experiments that demonstrate the competitiveness of

this approach.
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3.1 Weighted Support

Many of the properties of edges, vertices, and networks have been generalized

to the weighted case and many community detection algorithms have been ex-

tended to work with weighted networks. For example, the modularity formula

in Equation 2.12 can handle weighted edges simply by using the weighted de-

grees kw
i and kw

j in place of ki and kj and having m =
∑

i,j wi,j, et voilà, the

Louvain and Leiden algorithms can handle weighted networks.

The SIWO algorithm does not only consider edges but higher-order struc-

tures, i.e. triangles, so the extension of the algorithm to handle edge weights is

less straightforward. Fortunately, as we have already noted, there is a similar-

ity between SIWO’s support and strength notions and the clustering coefficent

CL (formula 2.11). Researchers have already worked on several approaches

for generalizing CL to the weighted case [5, 41, 84, 86, 119] so we are able to

build off of their work to extend SIWO.

Given that there are several approaches, the authors of [102] compared

these various weighted clustering coefficients both by qualitatively evaluat-

ing their properties and quantitatively evaluating their values on various net-

works. They concluded that rather than there being one ultimate version of

the weighted clustering coefficient, the different measures capture different as-

pects of the networks. While none of these measures are perfectly suited for

our purposes, some have properties that make them less appropriate for use

in SIWO. The measures of [6, 86, 119] do not take into account the weights of

all three edges of the triangle, only two. Our notions of support and strength

are edge centric, not vertex centric, so we want to use all three edge weights,

not only the two connected to a certain vertex. The measure of [41] is not

equivalent to the unweighted value when all weights are equal to 1. This is

problematic as we would like SIWO to find the same communities in the un-

weighted case and the equivalent weighted network with all edge weights equal

to 1. This leaves the measure of [84] as the best fit but with two changes. We

do not normalize the edge weights by the maximum edge weight of the network

as that global information is not available to a local search algorithm, and we
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do not normalize by the degree of the connected vertex as we are finding a

value for an edge and the SIWO strength formula in Equation 2.15 includes

normalization of the support values. The modification of SIWO to be able to

handle edge weights is thus as simple as changing the support calculation from

a counting of triangles to a sum over triangle values:

supi,j =
∑

vk∈V N
i ∩V N

j

f(wi,j, wi,k, wj,k) (3.1)

where f is one of the arithmetic mean, geometric mean, harmonic mean,

and minimum. Most of the weighted clustering coefficients use the geometric

mean. We would like to evaluate different functions as they have varying sen-

sitivity to very small or very large outlier edge weights and may find different

community structures.

Other than using Equation 3.1 in place of Equation 2.13 for the support

calculation, the SIWOw (SIWOw+) algorithm remains identical to the SIWO

(SIWO+) algorithm. The strength formula in Equation 2.15 still normalizes

to values in the range [-1, +1] regardless of the magnitude of the edge weights.

Now that we have a version of SIWO that can handle networks with weighted

edges, we empirically evaluate the algorithm on both real-world and synthetic

networks.

3.2 Weighted Karate Network

Unfortunately, there is a distinct lack of real-world networks with both weighted

edges and ground truth communities. Fortunately, one of the oldest and most

widely used networks in the literature, Zachary’s karate network [118], has

both. The karate network is a social network representing a university karate

club that split into two new clubs following a dispute between the instructor

and club president. The vertices in the network represent the individuals in

the clubs. Edges exist between individuals who have personal relationships.

The weights given to edges are the number of contexts in which the two indi-

viduals interact, e.g. if individuals 1 and 2 hang out on campus, attend the
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same karate lessons, and meet at the student bar, then w1,2 = 3. The edge

weights provide useful information about the intensity of the relationships and

are thus valuable for detecting the communities of the social network.

While some authors use this network as the sole dataset for evaluation [1],

we believe that nothing definitive can be said about a community detection or

search algorithm using the results from a single, small network. Also, many

algorithms have an element of randomness and will give different results on

the same network. Evaluations should be conducted over a variety of net-

works with multiple runs on each network to give the results some statistical

power. We conduct these types of experiments in the next section. Here, we

use a single run of several algorithms on the karate network to not only show

that SIWOw+ can find high quality communities but also to be able to visu-

alize the results and analyze some of the qualitative differences between the

communities found by SIWOw+ and other algorithms.

We compare SIWOw+ (using the geometric mean) to Louvain, Leiden, and

Infomap. We use SIWOw+ as the network is small and thus global community

detection presents no issues and most weighted algorithms are also global com-

munity detection algorithms. The performance in terms of NMI is presented in

Table 3.1. We can see that SIWOw+ does the best job of finding communities

that are close to the ground truth. However, one run on one network is far

from enough evidence to declare SIWOw+ “better” than the others. Infomap

performs nearly as well as SIWOw+. Louvain and Leiden have very similar

performance that is significantly below that of SIWOw+ and Infomap. Since

the karate network is small, we can go beyond comparing summary metrics

and visualize the results of the community detection to get a sense of how the

algorithms work, where they fail, and what their differences are.

The communities found by each of the four algorithms are illustrated in

Figures 3.1 and 3.2. In Figure 3.1a we can see the community structure de-

tected by SIWOw+. SIWOw+ does a good job detecting the community of the

karate instructor, coloured green. The only missed vertex is v8, which has been

incorrectly assigned to the community of the club administrator, coloured or-

ange. However, all the algorithms make this mistake and v8 actually has more
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(a) SIWO communities

(b) Louvain communities

Figure 3.1: Community structure of weighted karate network detected by
SIWO and Louvain
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(a) Leiden communities

(b) Infomap communities

Figure 3.2: Community structure of weighted karate network detected by Lei-
den and Infomap
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Algorithm NMI
SIWOw+ 0.697
Louvain 0.587
Leiden 0.588
Infomap 0.691

Table 3.1: NMI scores of four different community detection algorithms on the
weighted karate network

connections to the orange community than the green so this may be a case of

a vertex that could belong to either community or a mistake in the ground

truth. Vertex v11 is a dangling vertex and has been correctly assigned to the

green community thanks to the merge outliers step of the algorithm. How-

ever, SIWOw+ has found two small communities, {v9} and {v24, v25}, that

the ground truth includes in the orange community. SIWOw+ does not assign

v9 to either ground truth community as it is not connected to any vertices

that are themselves connected, i.e. neither edge connected to v9 forms part of

any triangle. Thus s9,2 = −1 and s9,33 = −1 so adding v9 to any community

would reduce that community’s total strength. The same is true for v24 and

v25. They each have multiple connections to the orange community but none

of the edges form parts of any triangles.

These failure cases could be addressed by adding another post-processing

merge step to SIWO+. In the case of v9, the edge weights could be used as a tie-

breaker to include it in a larger community. As w9,33 = 3 > w9,2 = 2, v9 would

be correctly added to the orange community, increasing NMI. In the case of v24

and v25, a rule that merged a small community with a larger community if all

the vertices in the small community are only externally connected to that larger

community would correctly add them to the orange community, increasing

NMI. However, adding these sort of rules adds complexity to the algorithm

and while this type of information may be available once the global community

detection is complete, when using SIWO as a local search algorithm the nature

of the connections between vertices in the shell set and other communities is

unknown. We also run the risk of myopically trying to optimize a single

number and overfitting to a dataset. It may actually be beneficial for our
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downstream application of community mining, topic modelling, that these

types of peripheral vertices are excluded from larger communities. Topics are

meant to represent concepts or ideas and should be easy for humans to identify

and label. Adding in terms that are only loosely connected to the core concept

dilutes the topic and makes it less interpretable and coherent. So while one

can think of ways to modify the algorithm to force these types of vertices

into larger communities, for the purposes of topic modelling we view this as a

feature, not a bug.

The communities found by the Louvain algorithm are illustrated in Figure

3.1b. We can see that Louvain breaks up each ground truth community into

two smaller communities. Like SIWOw+, Louvain does not include v24 and v25

into the orange community, but also groups in three more vertices with them,

even though those vertices have more connections to the orange community

than v24 and v25. The green community looks less coherent as a group and in

this case the lower NMI score seems justified.

In Figure 3.2a, we see that the Leiden algorithm also splits each ground

truth community into two smaller communities. Here the split of the green

community makes more sense as the red vertices are only connected to one

green vertex, v0. As with Louvain, several of the vertices that should be

in the orange community are in the purple community. This may be the

result of modularity’s resolution limit which makes it difficult to detect small

communities such as {v24, v25} as SIWOw+ did.

In Figure 3.2b, we see that the Infomap algorithm does a very good job

at finding the orange community. Infomap splits the green community in two

exactly as Leiden does. In Leiden’s case, the modularity is lower if the red

and green vertices are in the same community as there is a very low density

of edges between them. In Infomap’s case, a random walker is unlikely to

visit both red and green vertices on the same walk as there is a bottleneck

between them. It is SIWO’s use of the higher-order structure of triangles that

allows the algorithm to join them into one community. Most vertices in the

red community have multiple common neighbours with v0, so their connecting

edges are strong and they should be in the same community. Similarly, most
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other vertices in the green community have common neighbours with v0, so

their connecting edges are strong and they should be in the same community.

Thus SIWO recognizes v0 as a hub of a single community, which aligns with

v0’s role in the real network as karate instructor and central figure of one of

the two clubs.

Of course, only so much can be said about the quality of an algorithm when

using a single dataset for evaluation. In the next section, we will conduct a

more thorough empirical evaluation of several algorithms on a wide range of

benchmark networks.

3.3 Evaluation on LFR Benchmark

Given the lack of real-world networks with ground truth communities, we must

turn to synthetic substitutes for comprehensive algorithm evaluation. Early

synthetic network generators such as that used in [37] created small networks

with unrealistic structures such as equal sizes for all communities and equal

degrees for all vertices. To remedy this, Lancichinetti, Fortunato, and Radic-

chi introduce their LFR benchmark generator [55] which is able to generate

networks whose community size and degree distributions follow power laws

and are thus more realistic. They later extended their benchmark to gener-

ate weighted networks [53]. While there are some properties of real networks

that the generator does not capture, such as degree correlations, efforts to

improve the benchmark have fallen short as it is difficult to control the vari-

ous network properties simultaneously [87] and the LFR benchmark remains

the standard. The dynamics of the complex systems represented by real-world

networks are probably impossible to capture with a handful of equations so we

cannot expect perfect realism from synthetically generated networks. Knowing

this, we should evaluate our algorithms on a varied set of networks generated

with different parameters to lessen the risk that our results are based on some

unrealistic features of a particular network or parameter setting.

In this section, we evaluate SIWOw+ against eight other community de-

tection algorithms. We are evaluating using community detection as most
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community search algorithms cannot handle weighted networks and the ones

that do are older and tend to perform less well on unweighted networks com-

pared to their more modern peers. Most detection algorithms can handle

weighted networks so evaluating SIWOw+ allows for a more comprehensive

comparison. Also, our topic modelling application will use global community

detection as vocabularies tend to be a few thousand or tens of thousands of

terms, so the co-occurrence networks will be small enough that a local ap-

proach is not needed. As SIWOw+ is simply an iteration of the local SIWOw

search, we can infer the performance of the search from the quality of the

global detection.

3.3.1 Datasets

We generated a total of 1,530 weighted synthetic networks of 10,000 vertices

using the LFR benchmark generator. Five networks were generated for each

parameter combination of average degree in {15, 20, 25}, maximum degree in

{50, 75, 100}, exponent for weight distribution β in {1.5, 2}, and topology

mixing parameter µt and weight mixing parameter µw in {0.10, 0.15, 0.20,

0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90}.

The average and maximum degree control the density of the network as well

as the distribution of community sizes. β controls how the edge weights vary

with the degree of a vertex. The mixing parameters control the proportion

of the edges and total edge weight of a vertex that are connected to vertices

outside its own community, e.g. µt = 0.30 means that on average 30% of a

vertex’s edges will connect to a vertex in a different community and µw = 0.60

means that on average 60% of the total edge weights connected to a vertex

will be on edges connected to vertices in a different community. A higher

mixing parameter results in a less well-defined community structure and a

more challenging network for community detection.

3.3.2 Algorithms

We compare SIWOw+ using the arithmetic mean, geometric mean, harmonic

mean, and minimum against Infomap, WalkTrap, Label Propagation, Louvain,
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Fastgreedy, Leading Eigenvector, and Leiden using both modularity and CPM

optimization functions. Leiden has a resolution parameter that can vary the

scale of the communities found to combat either the resolution or field of view

limits. A simple grid search found the best values of 3.0 for modularity and

0.03 for CPM.

3.3.3 Results

Table 3.2 presents the results of the community detection of all algorithms

on all 1,530 synthetic networks. The results are grouped by the resolution

parameter so each column is an average over 90 networks at a particular value

of µt = µw. The average modularity Q of the ground truth community is

presented to illustrate the degradation of the true community structure as the

mixing parameter increases which makes community detection more difficult.

The average NMI plus/minus the standard deviation is given for each algo-

rithm with the best score bolded. SIWOw+ with arithmetic mean, geometric

mean, harmonic mean and minimum are denoted SIWOw+(a), SIWOw+(g),

SIWOw+(h), SIWOw+(m), respectively. Leiden using modularity and CPM

are denoted Leiden(m) and Leiden(c), respectively. We can see from the table

that all the algorithms perform best when µw is small and that performance

drops as µw increases, although the pattern of decline is different for the dif-

ferent algorithms. Infomap, SIWOw+, and WalkTrap begin as the best per-

formers. Infomap remains the best performer across the range of µw values.

SIWOw+ performs just as well as Infomap until µw = 0.40 and remains a

close second until µw = 0.65. Past this point WalkTrap and Leiden outper-

form SIWOw+. The older algorithms, Fastgreedy and Leading Eigenvector,

are by far the worst performers. It is interesting to see that the random walk-

based algorithms, Infomap and WalkTrap, outperform the modularity-based

methods, Leiden(m), Louvain, Fastgreedy, and Leading Eigenvector.

The difference between the different versions of SIWOw+ is small. For

smaller values of µw there is no real difference. Only at µw = 0.65 does

the difference start to become significant. Interestingly, the ranking of the

different means by performance matches their ranking by sensitivity to large
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Table 3.2: Average NMI scores ± the standard deviation computed over 90
runs, as a function of mixing parameters µw = µt. Bold numbers indicate the
best score for each dataset. Modularity of the ground truth communities Q
indicates level of community structure available for detection.
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Table 3.3: Average absolute number of communities found ± the standard
deviation computed over 90 runs, as a function of mixing parameters µw = µt.
Bold numbers indicate the closest to true number for each dataset. Average
number of ground truth communities N̄ ± standard deviation given as refer-
ence.
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outlier values. SIWOw+(a) performs best and the arithmetic mean is the most

sensitive to large values, while SIWOw+(m) performs worst and is completely

insensitive to large outliers. For example, a triangle with three edge weights

of 5, 5, and 100 would be given a value of 36.7 by the arithmetic mean, 13.6

by the geometric mean, 7.3 by the harmonic mean, and 5 by the minimum.

Reducing the impact of these larger edge weights seems to reduce performance

which makes sense when we expect there to be larger edge weights within

communities.

Table 3.3 presents results for the same algorithms and networks in terms of

the number of communities detected. We can compare the number of detected

communities to the number of ground truth communities N̄ to get one per-

spective on how the different algorithms struggle to find the ground truth. The

modularity-based algorithms find fewer than the true number of communities

which is the result of the resolution limit. This is true even of Leiden(c) with

a resolution parameter of 3.0 which makes the algorithm favour smaller com-

munities. This is because the parameter was selected based on NMI. Higher

values for the resolution parameter would help find the smallest communities,

but would also cause the algorithm to break up the larger communities at an

overall cost to performance. While the scale at which the modularity func-

tion defines communities can be tuned, this is a good reminder that it cannot

simultaneously be tuned for large and small communities and highlights the

importance of testing algorithms on realistic and varied synthetic networks.

In contrast, Leiden(m) finds too many communities even though its resolution

parameter of 0.03 is tuned for finding larger communities. Again, these net-

works have communities of varying sizes and the parameter cannot be tuned

for both large and small communities at once. The random walk-based al-

gorithms are closer to the ground truth but eventually they find too many

communities, with the older WalkTrap algorithm doing worse than Infomap.

The changes for SIWOw+ and Label Propagation are non-monotonic. The

number of communities found by Label Propagation decreases, then increases,

then decreases again as µw increases. The number of communities found by

SIWOw+ increases and then decreases. As the mixing parameters increase,
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the number of triangles in a community will decrease so SIWOw+ is more

likely to find sub-communities of the remaining pockets of triangles. As the

community structure deteriorates further, there becomes even less of a distinc-

tion between inter- and intra-community connection patterns so the algorithm

struggles to distinguish communities.

3.3.4 SIWOw+ vs SIWO+

Given that the weighted version of SIWO still depends on the presence of

triangles and that the difference between the different mean functions is small,

one could ask the question of whether considering edge weights adds much

to the way SIWO works. To answer this, we conducted another experiment

on a different set of LFR networks. These networks of 5,000 vertices were all

generated using an average degree of 20, a maximum degree of 50, a µw of

0.30, β in {1.5, 2}, and µt in {0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65,

0.70}. 20 different networks were generated for each parameter combination

for a total of 360 networks. The different β allow for different distributions

of edge weights. By keeping µw constant we force a majority of the weight

to remain on intra-community edges. As µt increases, there will be fewer

intra-community edges and more inter-community edges. Thus the weights

remain a strong signal of a community throughout all the networks while the

topology provides less information about community structure. Comparing

the performance of SIWOw+(a), which is most sensitive to the edge weights,

to unweighted SIWO+ allows us to see how much added information the edge

weights provide to our algorithm.

The results of this experiment are presented in Figure 3.3. When the value

of µt is small the performance of SIWOw+(a) and SIWO+ are very similar. As

SIWO+ is able to find an almost perfect community structure there is no room

for the weights to offer improvement. As µt increases the performance of both

decreases. However, the drop in performance of SIWO+ is much more severe

and a big gap in performance opens up. This demonstrates that incorporating

edge weight information does provide valuable information to SIWO over and

above that offered by the network topology and that while edge weight values
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Figure 3.3: NMI score as a function of µt keeping µw = 0.30 constant for
SIWOw+(g) and SIWO+. The difference in performance is small when there
is a strong topological community structure, but as µt increases the difference
in performance becomes large.

and the density of connections are often correlated, we should take advantage

of edge weight information whenever possible.

These experiments are not meant to provide a definitive ranking of commu-

nity detection algorithms. Rather, our goal is to demonstrate the effectiveness

of our extension of SIWO to the weighted case and to show that SIWOw+ is

competitive with other modern, widely used community detection algorithms.

Having shown this, we can also expect SIWOw to perform well on weighted

local community search where there are far fewer competitors, although evalu-
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ation of this is beyond the scope of this thesis as our goal is to apply community

detection to topic modelling. These experiments also highlight that different

algorithms function in very different ways and their performance is impacted

by the properties of the network. Moreover, which algorithm may be best to

use can also depend on the goals of the analysis. If one wants to find all the

small communities of the network then a modularity-based method would not

be the best choice. However, if one were interested in grouping the vertices

into fewer, larger communities and was planning on merging small communities

anyway, then a modularity-based algorithm could be best. This is important

to keep in mind as our ultimate purpose is to mine term co-occurrence net-

works for topic communities and the structure of those networks may differ

from syntheric LFR benchmark networks.

Having evaluated SIWOw+ and seen the cases where the algorithm fails, it

is natural to try to improve upon the algorithm although it is already among

the best performing. In the next section we analyze two cases where SIWO is

weak and one possible improvement.

3.4 Min-Max SIWO

We have seen that SIWOw+ performs extremely well at detecting a network’s

community structure. However, there are cases where our approach fails. One

case is very sparse networks. SIWO relies on triangles to determine which edges

should lie within a community and which should lie between communities. In a

very sparse network, there will be very few triangles even within communities.

A simple example of such a network is illustrated in Figure 3.4a. A modularity-

based algorithm such as Louvain is able to detect the two communities but it

is impossible for SIWO to do so as there are no triangles in the network so

every edge will have -1 strength. Some sort of small community merging step

could correct this, but as we discussed with the karate network, it is not always

desirable to do this if we want to identify the strong core of a community.

Another example can be seen in Figure 3.4b. Here the communities are

only distinguished by the edge weights. The thicker edges connecting two
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(a) Sparse community structure that lacks triangles.

(b) Network where only indication of community structure is edge weights.

Figure 3.4: Sparse networks that present a challenge to SIWO.
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vertices within the same community have weights of 5 while the thin edge

between the two communities has a weight of 1. Again, Louvain is able to

distinguish these communities but it is impossible for SIWOw to do so.

Ultimately, SIWO fails in these cases as their communities do not conform

with the idea of a community underlying the algorithm. SIWO was devel-

oped with a view that communities are collections of vertices that share many

common neighbours and so looks for triangles as indications of community

structure. So while SIWOw+ has proven to be a top performer on the LFR

benchmark, it is not suitable for very sparse networks with few triangles that

may nevertheless have some sort of community structure.

The opposite extreme of an extremely dense network can also present prob-

lems for SIWO. We came across this issue in our search for real-world weighted

networks with ground truth communities. One commonly used network in the

literature is the college football network introduced in [37] where edges con-

nect teams that play each other. However, it is not possible to adapt this

to be a weighted network as a pair of college teams plays each other at most

once a season. We decided to construct our own network from a professional

ice hockey league, the National Hockey League (NHL), where teams play each

other multiple times per season. In fact, every team plays every other team

at least twice so an edge would exist between each pair of vertices. The only

way to distinguish different relationships between teams are the edge weights

corresponding to the number of times the teams play each other. The NHL

consists of 32 teams. It is divided into two conferences of 16 teams each. Each

conference is divided into two divisions of eight teams each. Teams in different

conferences play twice. Teams in the same conference but different division

play three times. Teams in the same division play three or four times.

As the difference in edge weights is more distinct between the conferences

than the divisions we expected the conference structure to be more easily

detectable than the division structure. And indeed, Louvain is able to detect

the conferences as communities. In contrast, SIWOw+ only finds one large

community consisting of the entire network. Given the great performance of

SIWOw+ on other networks this warranted some investigation. The reason
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Figure 3.5: Network representing the National Hockey League with edge
weights corresponding to the number of times teams play each other. The
league is divided into two conferences with two divisions in each conference.

for this is that when there are so many connections even the edges connecting

vertices in different communities have a high support value. Unless there is a

very large difference in weights all of the support values will be close to the

maximum. In this case, two teams in the same division have support of 92 while

two teams in a different conference will have support of 73.3. Plugging these

values into Equation 2.15 gives us a strength value of 0.6 for edges between

teams in different conferences. If the teams in the same division played each

other 30 or 40 times instead of 3 or 4 times then this would not be a problem

but the effect of the slightly higher triangle values for within division teams is

small compared to the cumulative effect of the large number of slightly lower

value inter-division and inter-conference triangles.

We proposed modifying the strength Equation 2.15 to use min-max nor-

malization. As currently formulated, Equation 2.15 normalizes the support

value of an edge using the range [0, supi,max]. In most cases, that is a realistic

range. However, in a completely connected network like the NHL network,
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all of the support values cluster near the upper end of the range. Modify-

ing strength to use min-max normalization results in the following updated

strength formula:

si,j =
supi,j

supi,max − supi,min

+
supi,j

supj,max − supj,min

− 1 (3.2)

where supi,min is the minimum support value of any edge connected to vi.

In many cases this will be 0, but in the NHL network this will be the support

value for the inter-conference games.

Using this strength formula did allow SIWOw+ to find the four divisions

of the NHL as a community structure, which seemed a success. However, in

testing on other networks this new strength formulation did not perform any

better that the original version and oftentimes worse. The reason for this is

that most networks are not nearly so dense as the NHL network and the parts of

the network that are very densely connected are the communities themselves.

An example of this is illustrated using the Les Misérables network [51] in Figure

3.6. This is a network of characters who co-appear in chapters of a novel.

Vertices v44, v46, v47, v48, v49, and v50 all co-appear almost exclusively together

so clearly belong in the same community. The min-max normalization breaks

these vertices up into separate communities, though, which hurts performance.

Clearly this is a case of overfitting a solution to the problems of a specific

network. The min-max normalization allows for SIWOw+ to handle the NHL

network, but this is an unusually dense network and the effects of this change

hurt performance on many other more common network structures. Rather

than expanding the capability of SIWO, min-max normalization changes it

into an algorithm specialized only for super-dense networks. While this was

an unsuccessful experiment, it does shed light on the difficulty of designing a

community mining algorithm that works best on all networks.

In this chapter we have presented on of the contributions of our thesis:

the extension of the SIWO algorithm to handle weighted networks. This has

contributed one of the few local community search algorithms able to handle

weighted networks. It has also added another global community detection
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Figure 3.6: Network of characters who co-appear in the novel Les Misérables
and the community structure detected by SIWOw+ using min-max normal-
ization in strength formula.
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algorithm for weighted networks that outperforms many of the most commonly

used today, such as Louvain. Our experiments have shown the effectiveness of

our approach on a range of networks. We have also noted the weaknesses of

our algorithm, specifically very sparse and very dense networks. We keep in

mind that the best performing algorithms in this chapter may not prove to be

the best when it comes to applying community detection for topic modelling,

to which we now turn.
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Chapter 4

Community Detection for Topic
Modelling

The field of topic modelling has been dominated by generative probabilistic

models, in particular Latent Dirichlet Allocation. While LDA remains ex-

tremely popular, it suffers from several weaknesses. The number of topics

must be specified but a natural number of topics for a corpus is often not

known so many different values must be tried. The topics found by LDA

are often not stable, i.e. repeated runs of LDA on the same data can gener-

ate different topics and the topics found are sensitive to the ordering of the

documents in the corpus [66]. LDA assumes that terms in a document are

exchangeable, i.e. their ordering does not matter, and thus does not consider

the proximity of two terms within a document. LDA does not produce topics

in a hierarchy and there is no natural relationship between the topics. LDA

struggles with short documents such as tweets.

We reviewed several extensions of LDA in Chapter 2 that address some

of these shortcomings. However, these models add complexity and there is

no one model that addresses them all and the question still remains over

whether the terms that are most important for reconstructing the original

documents with a generative model are also the most important for finding

coherent and interpretable topics. Given topic modelling’s use as a tool in

applied research outside of computing science, LDA’s simplicity and the avail-

ability of thoroughly-tested and easy-to-use implementations has meant that

LDA remains the topic model of choice.
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In recent years, deep neural networks have achieved state-of-the-art per-

formance in many areas including natural language processing. They have

been used for sentiment analysis, document classification, translation, response

generation, text summarization, and language modelling. It seems natural to

apply the power of neural networks to the problem of topic modelling and

indeed several of the approaches reviewed in Chapter 2 do just that. However,

these neural models also suffer from weaknesses. Neural networks require

large datasets to learn and must train for long periods of time on special-

ized hardware. Neural topic models can produce highly redundant topics [13].

Moreover, while neural topic models have achieved higher coherence scores

than LDA, there are questions over whether these higher scores on automated

metrics reflect a genuine improvement in topic quality [42].

Given these weaknesses, we have taken a different approach to the problem

of finding interpretable topics from a corpus of documents. Our approach

is based on a network representation of the documents and uses community

detection to discover the topics. Networks are a flexible representation for

interconnected data. Many different complex systems can be represented by

networks from which communities with real-world meaning can be mined. For

example, in biology protein complexes have been discovered from protein-

protein interaction networks [62].

A network representation and community detection provide several advan-

tages over other topic modelling approaches:

• Discovery of the number of topics - The topics are the discovered

communities and the community detection algorithm finds the commu-

nities according to the network, not a user-specified hyperparameter.

• Natural hierarchy - The communities found are not only collections

of vertices, but are themselves networks on which community detection

can be applied to find sub-topics. The communities are also vertices in

a network with edge weights being the sum of the edge weights of the

member term vertices. Community detection can be applied to this topic

network to find super-topics.
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• Natural relationship between topics - Since the topics are vertices

in a network, the edges and edge weights provide information on the

relationships between topics. This can be used to guide exploration of

a corpus in applied research or the topic of conversation for a chat bot.

This information can also guide the merging of topics if the user desires

a smaller number.

• Time and resource efficient - Processing the corpus to build the

network and performing community detection is possible in a short time

without specialized hardware.

• Stability - Different community detection algorithms have different lev-

els of stochasticity but the communities found over different runs tend

to be stable.

• Minimal hyperparameters - Many topic models have several hyperpa-

rameters to set, especially neural topic models. In contrast, community

detection algorithms have few or none at all.

• No redundancy - LDA and neural topic models can find redundant

topics, i.e. those that are very similar to other topics, and common words

tend to appear in many topics. While finding overlapping communities

is possible, we focus on detection algorithms that partition the network

so that every vertex is in exactly one community and thus every term is

in exactly one topic.

In this chapter we develop the second and third contributions of this the-

sis, the term co-occurrence networks and our community detection-based topic

modelling algorithm. We evaluate the claimed advantages as well as the quality

of the detected topics. We compare our algorithm against LDA as a standard

benchmark as well as a recently developed algorithm based on word embed-

dings learned by a neural network. First, we describe how we get the network

from a corpus and analyze some of the properties of these networks.
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4.1 Term Co-occurrence Networks

The network that we construct from a collection of documents has terms as

vertices. An edge exists between a pair of vertices if the terms co-occur. Co-

occurrence can be defined in multiple ways. The first definition that we use is

that two terms co-occur if they both occur in the same sentence. This is based

on the assumption that two terms in the same sentence are more likely to be

related than two terms in different sentences. This definition also results in an

insensitivity to document length as the corpus could be split into documents

of one sentence each and the resulting network would be unchanged. However,

it is likely that two terms in adjacent sentences of the same document are also

related so an alternative definition of co-occurrence is that two terms co-occur

if they both occur within a fixed-size sliding window over a document. We will

empirically evaluate topics found from networks based on both definitions to

determine whether one definition is superior.

The weights of edges come from the frequency of co-occurrence. One

method is to use the raw count as the edge weight. However, this does not

adjust for the frequency of the terms themselves so more common terms will

tend to have higher edge weights. This may impact the community detection

algorithms. An alternative weighting scheme is to use NPMI (Equation 2.9).

This adjusts for the frequency of the terms and assigns high values to terms

that co-occur more frequently than expected. These edge weights encode more

information than the raw counts and are bound to the range [-1, +1]. However,

as we saw in Section 3.4, the performance of a community detection algorithm

can be impacted by the relative magnitude of the edge weights so it is not

obvious which of these edge weight formulations results in better topics so we

empirically evaluate both.

Our notion of relatedness based on co-occurrence is supported by the dis-

tributional hypothesis. The distributional hypothesis was proposed in the field

of linguistics and posits that words that occur in similar contexts tend to have

similar meaning [39]. This relationship has been studied in human language

understanding, for example in [74] where the authors show that there is a neg-
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ative correlation between the subjective judgement of semantic similarity of

pairs of nouns and the ease of discriminating between their sentence contexts.

This relationship between meaning and context has also been studied and

exploited in computational linguistics and natural language processing. Meth-

ods reviewed in Chapter 2 such as LSA and NMF use the document context to

produce vector representations of terms. Many other vector space models that

attempt to capture word meaning have also been developed [27]. A major step

forward occurred when neural networks were applied for learning these vec-

tor representations, commonly called word embeddings. Rather than devise

a vector based on counts, the word2vec model learns the embedding through

predictions. The word2vec model can learn either by predicting the surround-

ing terms in a given context window given a term (the skip-gram model) [72],

or by predicting a term given the surrounding context (the continuous bag of

words model) [71]. Many different forms of pre-training for neural language

models also involves some form of prediction of terms given a context.

Given the relationship between co-occurrence and meaning, we expect there

to be a greater density of edges and higher edge weights between groups of ver-

tices in our network that represent terms with similar meanings. Community

detection algorithms such as SIWO are able to find these densely-connected

groups of vertices. The common concept or idea that connects the meaning

of these related terms is a topic, so detecting a community in our network is

really finding a topic in the document corpus.

We fully describe our algorithm and compare against two other topic mod-

elling algorithms on a range of corpora later in this chapter. First, we discuss

some common text preprocessing techniques that we perform on the corpus

prior to building the network. Then we analyze some of the properties of

the co-occurrence networks themselves and compare with the synthetic LFR

networks used to benchmark the community detection algorithms in Chapter

3.
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4.1.1 Preprocessing

There are many different methods for preprocessing a text corpus and we

follow practices that have been found to work well for topic modelling in

the literature. We use spaCy1 to lowercase and tokenize the documents and

to identify sentences, parts of speech, and named entities. We only detect

noun-type entities, i.e. EVENT, FAC (buildings), GPE (geo-political entities),

LOC (non-GPE locations), ORG (organizations), PERSON, PRODUCT, and

WORK OF ART, which are merged into single tokens e.g. the terms “united”,

“states”, “of”, and “america” become “united states of america”. While stem-

ming and lemmatization have been commonly used in the topic modelling

literature, the authors of [104] found that stemming and lemmatizing do not

improve topic quality and hurt model stability so we do not stem or lemmatize.

We remove stopwords and terms that occur in > 90% of documents. Following

[42], we remove terms that appear in fewer than 2(0.02|d|)1/log 10 documents.

This formula removes more terms from larger corpora, but the number of terms

removed only grows proportionally to
√
|d|. It was shown in [67] that topic

models constructed from noun-only corpora were more coherent so we detect

and tag parts-of-speech to be able to filter out non-noun terms as in [16]. This

is intuitive as adjectives and verbs can be used in many different contexts,

e.g. we do not think of dogs and football as related even though we can say

“the big dog” and “the big touchdown”; one can “play the piano”, “play base-

ball”, “play the stock market”, and “play with someone’s heart”, but music,

sports, finance, and romance are separate topics. However, we compare the

quality of topics with and without this filtering as different algorithms may be

more sensitive to the presence of generic terms and there may be some topical

adjectives and verbs or n-gram combinations using them. Even using only

nouns, there are still issues with polysemy, i.e. words with multiple meanings

and thus multiple different common contexts. To help with this problem, we

use Gensim2 to extract meaningful n-grams using NPMI [11]. An n-gram is

a combination of n adjacent tokens into a single token so that a term such as

1https://spacy.io/
2https://radimrehurek.com/gensim/
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“microsoft windows” can be found and the computer operating system can be

distinguished from the windows you would find on a building. We apply two

iterations so that longer n-grams such as “law enforcement agencies” can be

found.

4.1.2 Datasets

We use three datasets to evaluate the different topic modelling approaches:

20Newsgroups3, Reuters-215784, and BBC News5. The 20Newsgroups dataset

consists of 18,846 posts on the Usenet discussion platform which come from 20

different topics such as “atheism”, “motorcycles”, and “hockey”. The Reuters-

21578 dataset consists of 21,578 financial articles published on the Reuters

newswire in 1987 and have economic and financial topics such as “grain”,

“copper”, and “interest”. The BBC News dataset consists of 2225 articles

published by the BBC in five categories: “business”, “entertainment”, “poli-

tics”, “sport”, and “tech”.

4.1.3 Properties of the Co-occurrence Networks

Networks representing different real-world complex systems can have very dif-

ferent properties and structures. The co-occurrence networks that we generate

from text documents may be very different from the synthetic LFR bench-

mark networks that we used to evaluate the community detection algorithms

in Chapter 3. Here we examine two examples of co-occurrence networks and

contrast their structure and properties with a network used in Chapter 3.

The two co-occurrence networks were created from the 20Newsgroups cor-

pus preprocessed as described in Section 4.1.1. Their properties and those

of the LFR benchmark network as described in Table 4.1. The vocabulary

size and number of vertices was 2,929. Co-occurrence was defined based on

sentences and one network had count edge weights while the other had NPMI

edge weights. We also tried thresholding the edges, i.e. removing edges whose

3https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch 20newsgroups.html
4https://huggingface.co/datasets/reuters21578
5https://www.kaggle.com/competitions/learn-ai-bbc/data
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Count NPMI LFR
Threshold n/a > 2 n/a > 0.35 n/a
|E| 389,904 56,195 389,904 71,681 123,246
Average k 266.2 38.4 266.2 48.9 24.6
Average kw 470.9 198.3 68.1 20.0 945.6
CL 0.343 0.444 0.343 0.096 0.214

Table 4.1: Number of edges, average degree, average weighted degree and
clustering coefficient for a term co-occurrence network with raw count edge
weights with no thresholding and thresholding at 2, a network with NPMI edge
weight with no thresholding and thresholding at 0.35, and a LFR benchmark
network. The co-occurrence networks have 2,929 vertices each while the LFR
network has 10,000 vertices.

weight is below a certain value. For the count network, we used a threshold of

> 2 as co-occurrence once or twice in thousands of documents is likely noise

rather than a relationship. This greatly reduces the number of edges in the

network. For the NPMI network, we picked a threshold of > 0.35 to remove a

similar number of edges which are presumably the low information edges. The

LFR network of 10,000 vertices was generated with an average degree of 25,

maximum degree of 100, mixing parameters µt = µ2 = 0.4, and edge weight

parameter β = 2.

We can see from the table that the original networks have many more

edges than the LFR network even though they have fewer vertices. They

are much more densely connected and have an average degree an order of

magnitude greater than the LFR network. The thresholding greatly reduces

the number of edges and average degree, although they remain more densely

connected than the LFR network. There is a large difference between the

average weighted degrees of the co-occurrence networks given the difference in

scale of the edge weights. The maximum edge weight of the raw count network

is 118; the maximum edge weight of the NPMI network is 0.992. The weights

of the LFR network are closer to those of the count network but have an even

greater range with a maximum weight of 392.6.

We also see that the unweighted clustering coefficient of the co-occurrence

networks is appreciably higher than that of the LFR network. SIWO relies

on the presence of triangles to detect communities so this could be helpful,
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but as we saw in Section 3.4 when the network is too dense and there are

too many triangles, SIWO struggles to detect communities, particularly if

the differences between edge weights are not large. With thresholding, the

clustering coefficient of the count network increases, indicating that the edges

being removed are not those that are part of triangles. However, the clustering

coefficient of the NPMI network drops significantly, so more of the edges being

removed are those that form parts of triangles. This could negatively impact

SIWO’s ability to detect communities.

In addition to summary statistics like average degree, we can examine the

distributions of these properties. We first examine the distribution of edge

weights as this is the most obvious difference between the count and NPMI

networks. Figure 4.1 shows the edge weight distribution of the LFR network.

We see there are more edges with low weights than high weights. This is similar

to the distribution of the count network shown in Figure 4.2a. However, the

weights of the count network drop off much more quickly and they actually

follow a power law distribution unlike the LFR weights. This can be seen

in Figure 4.3 where the log-log plot has a close to linear slope for the count

network but not the LFR network. The edge weight distribution for the NPMI

network illustrated in figure 4.2b is even more distinct. It is a symmetrical,

bell-shaped distribution. NPMI values are bound within [-1,+1] but we see

that there are very few negative edge weights. This shows that two terms are

likely to co-occur more often than chance conditioned on co-occurring in at

least one sentence together, so the presence of an edge does carry meaningful

information about relationships between terms.

When we apply thresholding to the co-occurrence networks we greatly re-

duce the number of edges. When we remove edges with weight 1 or 2 from

the count network, we get the distribution in Figure 4.4a. The distribution

looks extremely similar, which is a characteristic of power law, or “scale-free”,

distributions. The hope is that removing edges of low weight does not re-

duce the amount of information available for finding topics while making the

community detection faster and more reliable. When we apply thresholding

at > 0.35 on the NPMI network we remove a similar amount of what should
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Figure 4.1: Edge weight distribution of LFR network.

be the least important edges and get the distribution shown in Figure 4.4b.

However, as the very different clustering coefficients in Table 4.1 show, the

edges being removed are not the same.

We now look at the degree distributions. The LFR generator creates degree

distributions according to a power law which we can see in Figure 4.5b. This

is modeled on real world networks that exhibit this property. However, we can

see regular gaps in the distribution which must be an artifact of the network

generation process. The unweighted degree distribution for the count and

NPMI co-occurrence networks are of course identical and illustrated in Figure

4.5a. This is not quite a power law distribution and there are very few edges

with a very low degree, unlike the LFR network which has many dangling

vertices. It is still heavily skewed with very few vertices having very high

degrees.

After thresholding, the degrees fall across the distribution for both net-

works. The distribution of the count network becomes similar to that of the
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(a) Count co-occurrence network.

(b) NPMI co-occurrence network.

Figure 4.2: 20Newsgroups count and NPMI co-occurrence networks edge
weight distributions with no thresholding.
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(a) Count co-occurrence network.

(b) LFR network.

Figure 4.3: Log-log plot of edge weight distributions of the count co-occurrence
network and LFR network.
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(a) Count co-occurrence network.

(b) NPMI co-occurrence network.

Figure 4.4: Count and NPMI co-occurrence networks edge weight distributions
with thresholding at > 2 and > 0.35, respectively.
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(a) Count and NPMI co-occurrence networks.

(b) LFR network.

Figure 4.5: Co-occurrence and LFR networks unweighted degree distributions
with no thresholding.
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LFR network with many low degrees as we see in Figure 4.4a; many of the

vocabulary terms have few frequent co-occurrences. We do not see this pattern

with the NPMI network in Figure 4.4b. There is no long tail of high degrees

and the distribution is close to symmetrical. Most vertices have both more

and less important relationships once the NPMI formula is applied as their

edge weights no longer correlate with term frequency.

The weighted degree distributions of the count and NPMI networks are also

quite different from each other and the LFR network. The LFR generator gives

higher weights to edges connected to higher degree vertices according to the

β parameter so the weighted degree distribution in Figure 4.7 follows a power

law with an even more extreme skew than the unweighted degree distribution

in Figure 4.5b. As with unweighted degree, the weighted degree distribution of

the count co-occurrence network, illustrated in Figure 4.8a is not a true power

law distribution as the most common weighted degree are not the lowest. We

do see that the distribution is more skewed than the unweighted distribution,

indicating that the edges connected to higher degree vertices do have higher

weights as in the LFR network. This makes sense as terms that occur more

frequently will be more likely to co-occur with a higher number of terms and to

co-occur with each term more frequently. The weighted degree distribution for

the NPMI co-occurrence network is shown in Figure 4.8b and is a less skewed

version of the unweighted degree distribution, which follows from the fact that

the edge weights are less than 1.

We can see the changes to the distributions when thresholding in applied

in Figure 4.9. The count network’s distribution becomes more similar to that

of the LFR network as the majority of vertices now have the lowest weighted

degrees. The distribution of the NPMI network, however, retains more of a

bell curve. Again, this is consistent with vertices having a mix of low and high

edge weights as removing low weight edges does not create a great bulk of low

weighted degree vertices.

Clearly, the structures of the two networks are very different and we should

expect them to contain different information about the relationships among

the terms of the corpus. We can see this clearly when we examine the terms
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(a) Count co-occurrence network.

(b) NPMI co-occurrence network.

Figure 4.6: Count and NPMI co-occurrence networks unweighted degree dis-
tributions with thresholding at > 2 and > 0.35, respectively.
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Figure 4.7: Weighted degree distribution of LFR network.

and relationships that are most important in each network. Table 4.2 shows

the top 10 terms for both the count and NPMI co-occurrence networks when

ranking by either unweighted degree or weighted degree. Rankings are shown

before and after thresholding. The table also presents the top ten edges ranked

by edge weight for each network. The top terms by unweighted degree are of

course the same for both networks. These terms are quite general and are single

words that could be seen in many different contexts. In the count network,

six of the 10 top terms are the same when ranking by weighted degree. In the

weighted degree ranking, the terms “program”, “data”, “file”, and “god” seem

a bit less generic than the terms they replace, “years”, “case”, “number”, and

“things”. There is less overlap in the case of the NPMI network with only

four of the 10 carrying over from the unweighted to weighted degree ranking.

Again, the new terms might be considered less generic than the terms they

replace, e.g. “space” is more specific than “things”, but not by much.

After thresholding, the top terms when ranked by unweighted degree for the
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(a) Count co-occurrence network.

(b) NPMI co-occurrence network.

Figure 4.8: Count and NPMI co-occurrence networks weighted degree distri-
butions with no thresholding.
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(a) Count co-occurrence network.

(b) NPMI co-occurrence network.

Figure 4.9: Count and NPMI co-occurrence networks weighted degree distri-
butions with thresholding at > 2 and > 0.35, respectively.
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Count network
No threshold > 2

Top edges by wi,jTop terms by k Top terms by kw Top terms by k Top terms by kw

time
people
way
system
information
years
year
case
number
things

people
time
system
way
information
program
data
file
god
year

people
time
system
way
information
program
data
year
years
file

people
time
system
information
file
way
program
data
god
government

(people, god)
(people, time
(people, government)
(way, people)
(people, lot)
(people, things)
(people, world)
(jesus, god)
(file, program)
(bible, god)

NPMI network
No threshold > 0.35

Top edges by wi,jTop terms by k Top terms by kw Top terms by k Top terms by kw

time
people
way
system
information
years
year
case
number
things

system
time
data
people
use
control
information
space
program
power

new
san diego
observatory
telescope
array
transportation
green
research center
imaging
institute

san diego
new
observatory
telescope
green
array
transportation
cleveland
research center
imaging

(gordon banks skepticism chastity, intellect)
(white house office press secretary, release april)
(24x, speedstar)
(tor, det)
(francis, jagr)
(terrorists, drug dealers)
(jet, propulsion)
(prime, minister)
(int, char)
(det, que)

Table 4.2: Top 10 terms ranked by unweighted and weighted degree for both
the count and NPMI co-occurrence networks before and after thresholding
along with the top 10 edges by weight for each network.

count network are extremely similar to the non-thresholded weighted degree

ranking, which is expected as the low weight edges are exactly those that

contribute to degree without contributing much to weighted degree. The top

terms by weighted degree are very close to the top terms by degree and the non-

thresholded top-terms by weighted degree, which tells us that the thresholding

of the count network does not have a major impact on the most important

vertices in the network.

As in the count network, thresholding the NPMI network causes the top

terms by unweighted and weighted degree to become more similar. Unlike

the count network, the top terms after thresholding the NPMI network are

completely different than those with no thresholding. The terms become

much less general, e.g. “telescope”, and include some n-gram terms, e.g. “re-

search center”. When we use NPMI for edge weights, the low edge weights

are those that indicate a weak relationship which removes many of the edges

connected to generic terms. With raw count edge weights, an edge weight of

5 may not be significant if connected to terms that occur hundreds of times

while and edge weight of 2 could be significant connected to terms that occur
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only a handful of times.

That the raw count and NPMI weights provide very different information

on the importance of the relationships between terms can be clearly seen by

looking at the top 10 edges by weight for each network in Table 4.2. Looking

at the top edges for the count network, there is an obviously strong relation-

ship between terms such as “god” and “bible” and “god” and “jesus”. Some

of the relationships are between terms that are so generic that it is hard to

argue that their connections should be some of the most important for finding

a topic, e.g. “people” and “things”. The top edges for the NPMI network

are completely different and are relationships one would expect to see in a

topic given the categories of the dataset. The terms in edges like (“terrorists”,

“drug dealers”), (“prime”, “minister”), and (“jet”, “propulsion”) are quite ob-

viously related and could come from categories related to guns, politics, and

space science. (“tor”, “det”) and (“det”, “que”) are NHL teams and (“fran-

cis”, “jagr”) are NHL players which come from the hockey category. (“24x”,

“speedstar”) comes from the name of a piece of computer hardware and (“int”,

“char”) are data types; these could come from one of several computer technol-

ogy related categories. (“white house office press secretary”, “release april”)

seems to come from a political category and an April release by the White

House Office of the Press Secretary. The greatest weight is on the edge (“gor-

don banks skepticism chastity”, “intellect”). This seems to come from the sig-

nature of a user, Gordon Banks, who includes a quote by George Santayana:

“Skepticism is the chastity of the intellect, and it is shameful to surrender it

too soon.” The n-gram extraction is picking up on this repeated pattern as is

the edge weight between the terms.

Our analysis demonstrates that these co-occurrence networks do encode

information about conceptually related terms and thus we should expect to

be able to extract topics from the networks. The information carried by the

edge weights differs greatly between the raw counts and NPMI. The effect of

thresholding is also different for the two different types of networks. The topics

found in each network may thus differ. The structure of the count network is

much closer, but not identical, to that of the LFR networks while the NPMI
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network is very different. The algorithms that performed best in Chapter 3

may not perform the best on the topic modelling task given these differences.

We now present our community detection-based algorithm for topic modelling

that operates on these networks.

4.2 Community Topic

We call our community detection-based topic modelling algorithm Community

Topic. The algorithm takes in a corpus of documents that have been prepro-

cessed as described in Section 4.1.1. First, a network is constructed from the

document corpus. The user can select whether to use a sentence-based co-

occurrence window or a sliding window of a fixed size. The user can also select

whether to assign edge weights based on raw co-occurrence counts or NPMI

and whether to threshold the edge weights. As a practical matter, the NPMI

edge weights should at minimum be thresholded at 0 as negative edge weights

cannot be handled by most community detection algorithms. As we see from

Figure 4.2b, very few NPMI edge weights are negative so the impact of this

thresholding on network structure is small. After the network is constructed,

Community Topic applies a community detection algorithm such as SIWO or

Leiden to find the communities in the network. Communities of size 1 or 2 are

filtered out as outlier terms that belong to no proper topic. Finally, each topic

is sorted based on vertex properties so that the most important and relevant

terms for the topic come first and the topics are returned.

Sorting and ranking the terms in a topic is important as topics are com-

monly labelled by the top few terms and evaluation of topic model quality is

usually done using only a fixed number of top terms from each topic. The

topics produced by LDA are probability distributions over terms so the top

terms are simply those with the highest probabilities. The topics produced by

Community Topic are groups of vertices so we use the properties of the vertices

to rank the terms by importance. There are several choices for which property

to use. The degree k of the vertex can be used as the most central terms

for a topic should occur relatively frequently and will thus occur with many
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other terms rather than being related to only a few other terms. However, this

ignores edge weights so weighted degree kw can be used to rank terms instead.

One problem with both k and kw is that they make no distinction between

connections within the same topic and between topics. As we saw in Table

4.2, the terms with the highest unweighted and weighted degrees are often the

most generic which we would expect to connect to other terms in many dif-

ferent topics. We can thus use the internal unweighted and weighted degrees

to rank vertices. These measures only take into account edges that connect

to other vertices in the same community and so do a better job measuring

the centrality of a term to a topic. These degree measures are all biased to

more frequent terms, as are the probabilities of LDA. One could argue that

more frequent terms are not necessarily the most representative but rather we

should look at the proportion of a vertex’s edges that connect to vertices within

the same community. This is the embeddedness [56] of a vertex, defined as

the internal degree divided by degree where either the unweighted or weighted

degrees can be used. All these measures take advantage of the information in

the network structure to measure the importance of a term.

Algorithm 3 Community Topic

Require: Preprocessed corpus D, parameters window, weight, threshold
G← buildNetwork(D,window,weight, threshold)
Communities← communityDetection(G)
Topics← {}
for community ∈ Communities do

if community.length() > 2 then
sort(community)
Topics.add(community)

end if
end for
return Topics

4.3 Parameter Evaluation

One of our goals is an algorithm for topic modelling that has a minimal num-

ber of hyperparameters for the user to have to tune. As described so far, our
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algorithm can vary in the co-occurrence window, the edge weights, the weight

threshold, the community detection algorithm (and any parameters for that

algorithm), and the term ordering. Before we can compare to other topic mod-

elling approaches, we first must evaluate whether different parameter settings

have a impact on the quality of the topic model and if so which parameters

work best.

4.3.1 Evaluation Metrics

To compare different topic models, we use two coherence measures: CV and

CNPMI . Both measures have been shown to correlate with human judgements

of topic quality with CV having the strongest correlation [97]. Even though CV

has stronger correlation that CNPMI with human evaluations, CNPMI is more

commonly used in the literature [42], possibly due to the extra computation

required by CV . We prefer the CV measures as, in addition to being more

highly correlated with human judgement, it considers the similarity of the

contexts of the terms, not just their own co-occurrence. Synonyms such as the

terms “movie” and “film” have similar contexts and co-occur with terms such

as “director” and “actor”, though they may not co-occur together frequently

themselves as one would typically choose to use one term or the other. We

use Gensim6 to compute both measures. Table 4.3 shows that the scores

are correlated when various Community Topic models are evaluated, but not

perfectly so. We thus present scores from both. Each dataset has a train/test

split. We train all models on the train documents and evaluate using the

test documents. We use the standard 110-term window for CV and 10-term

window for CNPMI .

Typically, topic coherence is evaluated by taking the top-N topic terms for

fixed N , e.g. N = 10, and computing the measure only on those terms. It

has been shown that the robustness of evaluation is improved by using several

different values for N and averaging the scores for each [57]. We average over

scores using N ∈ {5, 10, 20}.

To measure the quality of a topic hierarchy, we use two measures proposed

6https://radimrehurek.com/gensim/models/coherencemodel.html
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Pearson’s r p-value

20Newsgroups
Noun only 0.720 6× 10−208

No filtering 0.588 2× 10−121

Reuters-21578
Noun only 0.575 5× 10−115

No filtering 0.383 1× 10−46

BBC News
Noun only 0.460 1× 10−68

No filtering 0.123 1× 10−5

Table 4.3: Pearson correlation coefficient between CV and CNPMI . A sta-
tistically significant positive relationship exists as indicated by the p-values,
although the strength of relationship varies by dataset and with parts-of-speech
filtering.

in [48]: topic specialization and hierarchical affinity. Topic specialization mea-

sures the distance of a topic’s probability distribution over terms from the

general probability distribution of all terms in the corpus given by their occur-

rence frequency. We expect topics at higher levels in the hierarchy closer to

the root to be more general and less specialized and topics further down the

hierarchy to be more specialized. Hierarchical affinity measures the similarity

between a super-topic and a set of sub-topics. We expect higher affinity be-

tween a parent topic and its children and lower affinity between a parent topic

and sub-topics which are not its children.

4.3.2 Community Detection Algorithms

The evaluation of the weighted community detection algorithms in Chapter

3 gave us some idea of their relative performance, but as we saw in Section

4.1.3 the structure and edge weights of the synthetic LFR networks are quite

different than those of the count and NPMI co-occurrence networks. We can-

not assume that the best performing algorithms will be the same on both sets

of networks, and indeed our experiments show this. Infomap was the best

performing algorithm in Chapter 3, but when applied to the co-occurrence

networks tended to find only one or two large communities, which is clearly

not what we desire from a topic model and precludes iteratively applying the

algorithm to find sub-topics. Conversely, Leiden with the CPM objective func-

tion tended to find several hundred very small topics with only a few words
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each. Decreasing the resolution parameter to induce larger topics did shrink

the number of communities but did so by increasing the size of only one com-

munity, which is also not consistent with a good topic model.

We want the algorithm to be able to find a reasonable number of topics

as a starting point, from which sub- or super-topics can be found. We thus

limit our evaluation to SIWO, Leiden with the modularity objective function,

and WalkTrap. Leiden has the tunable resolution parameter which we vary as

well.

4.3.3 Parameter Combinations

We have three datasets. We train on each using both no parts-of-speech filter-

ing and filtering all non-nouns. We create co-occurrence networks using both

raw count and NPMI edge weights and threshold at 0 and 2 for the count net-

works and 0 and 0.35 for the NPMI networks. We use a sentence co-occurrence

definition as well as sliding windows of size 5 and 10. We detect communities

using Walktrap, SIWOw+(a), SIWOw+(g), and Leiden(m) using resolution

parameters of 1, 1.5, 2, and 2.5. We try ordering topics by degree, weighted

degree, internal degree, internal weighted degree, embeddedness, and weighted

embeddedness. We evaluate with CV and CNPMI with top-N ∈ {5, 10, 20}.

This gives us a total of 18,144 different evaluations which we use as data for

comparing the various settings.

4.3.4 Term Ordering

The terms in a topic need to be ordered so that the most important can be

used for labelling, evaluation, and human understanding. Vertices in a network

have many properties that can be used to measure importance. In Table 4.4

we present the CV and CNPMI coherence scores for each community detection

algorithm for six different term ordering schemes. The best performing for

all algorithms are internal weighted degree and internal degree. These take

into account only the connections within a community, not those between

communities whereas weighted degree and degree would give undue importance

to terms that connect to many terms in other topics. Weighted embeddedness
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Ordering Coherence SIWOw+ Leiden WalkTrap

Internal Weighted Degree
CV 0.478± 0.003 0.533± 0.002 0.545± 0.007
CNPMI −0.131± 0.005 −0.058± 0.004 0.041± 0.007

Internal Degree
CV 0.476± 0.003 0.521± 0.002 0.545± 0.007
CNPMI −0.134± 0.005 −0.064± 0.004 0.042± 0.007

Weighted Degree
CV 0.471± 0.003 0.458± 0.002 0.492± 0.006
CNPMI −0.146± 0.005 −0.146± 0.005 −0.020± 0.011

Degree
CV 0.470± 0.003 0.450± 0.002 0.489± 0.006
CNPMI −0.146± 0.005 −0.150± 0.005 −0.023± 0.010

Weighted Embeddedness
CV 0.471± 0.003 0.470± 0.003 0.481± 0.006
CNPMI −0.155± 0.005 −0.277± 0.004 −0.223± 0.011

Embeddedness
CV 0.469± 0.003 0.470± 0.003 0.484± 0.006
CNPMI −0.158± 0.005 −0.295± 0.004 −0.245± 0.011

Table 4.4: Average coherence scores for each community detection algorithm
by ordering scheme ± the standard error of the mean. Bold indicates best
result for each algorithm.

and embeddedness consider the proportion of internal connections, but by

ignoring the absolute values they give undue importance to infrequent terms.

This negatively impacts the CNPMI scores more than the CV scores as the

CNPMI is calculated with a smaller sliding window so is less likely to capture

the co-occurrence of infrequent terms.

We see that the best ordering schemes are those that rank highly terms

that are more frequent and more connected to other terms in the same topic,

which matches our intuition of what an important term should be. We favour

the weighted version as it has a slight edge in scores and incorporates more

information even though the difference is very small or nonexistent.

The sorting scheme has a much smaller impact on SIWOw+ than Leiden

or WalkTrap. We saw in Table 3.3 that SIWOw+ finds more, smaller com-

munities than Leiden which finds fewer, larger communities. There will be a

greater overlap between the terms being evaluated across the different ordering

schemes when the communities are small and so the ordering scheme will have

less of an impact on score. WalkTrap found a similar number of communities

to SIWOw+ in Table 3.3 so the algorithm may be behaving differently on these

co-occurrence networks. We will investigate this further when we examine the

topics themselves.

For the rest of our experiments, we use only the evaluation scores found

using the internal weighted degree ordering.
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POS Coherence SIWOw+ Leiden WalkTrap

All
CV 0.472± 0.004 0.515± 0.003 0.554± 0.010
CNPMI −0.129± 0.007 −0.082± 0.006 0.051± 0.012

Noun only
CV 0.483± 0.004 0.549± 0.003 0.537± 0.009
CNPMI −0.132± 0.008 −0.035± 0.006 0.031± 0.009

Table 4.5: Average coherence scores for each community detection algorithm
by parts-of-speech (POS) filtering ± the standard error of the mean. Bold
indicates best result for each algorithm.

4.3.5 Parts-of-Speech Filtering

Different parts-of-speech (POS), e.g. nouns, verbs, adjectives, serve different

functions in language and may be more or less important to the topical con-

tent of a document. Some stop words such as “the” are so general and carry

such little information about the content of a document that they are removed

from the corpus prior to topic modelling as a matter of course. Research has

also shown that removing non-noun terms can improve the quality of topics

discovered with LDA [67]. We would like to check whether this is true of Com-

munity Topic. While non-noun terms may not be the most important terms

in a topic, their presence or absence in a corpus could impact the structure

of the co-occurrence networks and the discovered communities, for better or

worse.

We can see in Table 4.5 that filtering out non-noun terms can have an

impact on the quality of the discovered communities. The topics found by

Leiden tend to be significantly more coherent when non-noun terms are filtered

out. The topics found by SIWOw+ on the noun-only corpora are slightly more

coherent when measured by CV but there is no significant difference in CNPMI .

There is no significant difference in either measure for the topics found by

WalkTrap.

Even without filtering, many of the top topic words are nouns and filtering

non-nouns improves the running time so we prefer to keep only nouns. Still, it

is encouraging that our approach is fairly robust to the presence of non-noun

terms.
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Window Coherence SIWOw+ Leiden WalkTrap

Sentence
CV 0.484± 0.005 0.533± 0.004 0.541± 0.011
CNPMI −0.125± 0.009 −0.069± 0.008 0.042± 0.013

Sliding 5
CV 0.473± 0.005 0.530± 0.004 0.542± 0.012
CNPMI −0.137± 0.009 −0.049± 0.007 0.037± 0.014

Sliding 10
CV 0.476± 0.005 0.535± 0.004 0.553± 0.011
CNPMI −0.131± 0.012 −0.057± 0.008 0.044± 0.012

Table 4.6: Average coherence scores for each community detection algorithm
by co-occurrence window ± the standard error of the mean. There are no
significant differences between the co-occurrence windows for any of the algo-
rithms for either coherence measure.

4.3.6 Co-occurrence Window

Community Topic operates on a term co-occurrence network, but there is no

fixed universal definition of co-occurrence. We evaluate three different defini-

tions to see whether they cause a large difference in the quality of communities

found. The first definition of co-occurrence is terms occurring in the same

sentence. This takes advantage of the information embedded in the sentence

structure of the document; a sentence typically expresses at most one idea so

terms in the same sentence will be related. However, adjacent sentences in

the same document are likely to be related so terms in those sentences are

likely to be related. Therefore a definition based on a sliding window over

the document could capture information about term relationships missed by

sentence co-occurrence. However, one must define the size of the sliding win-

dow. If the window is too large, there is a greater chance of unrelated terms

co-occurring. If the window is too small, there is a chance that related terms

will not co-occur. We evaluate sliding windows of size 5 and 10.

We can see in Table 4.6 that there is no significant difference between

any of the co-occurrence definitions for any of the algorithms for either of the

coherence measures. As we can see from Figures 3.1 and 3.2, communities do

not consist solely of vertices that are all fully connected as in a clique. Vertices

that are not themselves connected can be a part of the same community when

they both connect to the same vertex. The community detection algorithms

are thus robust to small changes in patterns of connections and edge weights
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caused by the differenct co-occurrence definitions.

4.3.7 Edge Weight Type and Thresholding

We saw in Section 4.1.3 that the properties of the co-occurrence networks are

very different depending on whether the raw count or NPMI edge weights are

used and that these properties change when we use thresholding to remove

edges with low weights. In Section 3.4 we saw that the performance of SI-

WOw+ is sensitive to the density of the network and the relative magnitude

of the weights. SIWOw+ is not the only algorithm sensitive to the structure

of the network, as illustrated by the fact that Infomap was the best perform-

ing on the LFR networks in Section 3.3 but fails to find distinct communities

on most co-occurrence networks. We thus expect the edge weight type and

thresholding to have a large impact on the performance of the community

detection algorithms and topic quality, and indeed our experiments confirm

this.

The results in Table 4.7 show that SIWOw+ performs best by the CV

measure on the count co-occurrence networks with no thresholding. By the

CNPMI measure, SIWOw+ performs best on both the count and NPMI net-

works without thresholding. It is interesting to see that thresholding has a

negative impact on topic quality for both network types when Table 4.1 shows

that the thresholding has the opposite impact on the clustering coefficient for

the count and NPMI networks. The difference in performance for SIWOw+ on

the count and NPMI networks shows that the magnitude of the edge weights

is not having a major impact on the algorithm’s ability to detect communities.

WalkTrap’s scores are similar to those of SIWOw+. The performance

on the non-thresholded networks is better with generally better performance

on the count networks rather than the NPMI networks. The pattern is the

opposite for Leiden where the resulting topics are more coherent when mined

from the thresholded networks. Leiden performs equally well on the count and

NPMI networks when measured by CV but best on the count networks when

measured by CNPMI .
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Weight Type Threshold Coherence SIWOw+ Leiden WalkTrap

Count
> 0

CV 0.517± 0.008 0.521± 0.004 0.577± 0.016
CNPMI −0.072± 0.010 −0.045± 0.008 0.113± 0.012

> 2
CV 0.474± 0.004 0.534± 0.004 0.537± 0.009
CNPMI −0.113± 0.006 −0.003± 0.006 0.051± 0.016

NPMI
> 0

CV 0.498± 0.004 0.535± 0.005 0.557± 0.012
CNPMI −0.085± 0.007 −0.081± 0.010 0.071± 0.007

> 0.35
CV 0.422± 0.003 0.541± 0.005 0.509± 0.013
CNPMI −0.254± 0.006 −0.104± 0.008 −0.070± 0.011

Table 4.7: Average coherence scores for each community detection algorithm
by edge weight type and threshold ± the standard error of the mean. Bold
indicates best result for each algorithm.

Mean Coherence SIWOw+

Arithmetic
CV 0.476± 0.005
CNPMI −0.136± 0.007

Geometric
CV 0.479± 0.004
CNPMI −0.126± 0.007

Table 4.8: Average coherence scores for the communities found using SIWOw+
with either the arithmetic or geometric mean ± the standard error of the mean.
There are no statistically significant best results.

4.3.8 Community Detection Hyperparameters

SIWOw+ and Leiden have hyperparameters which can impact the results of

the community detection. In the case of SIWOw+, the function used to com-

bine the three edge weights of a triangle can be varied. In the case of the

LFR networks, we did not see a significant difference between using different

average functions until the network structure became very weak and the arith-

metic and geometric means performed slightly better than the harmonic mean

and minimum. We evaluate the arithmetic and geometric means in Table 4.8

and do not find a statistically significant difference, indicating that the topic

modelling is robust to the choice of mean.

The Leiden algorithm can be used with modularity or CPM as the objective

function. As previously discussed, the topics found using CPM were very poor

so we do not consider it for Community Topic. Leiden also has a resolution

parameter which impacts the size of communities detected and can combat

either modularity’s resolution limit (by increasing the parameter to detect

smaller communities) or its field of view limit (by decreasing the parameter
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Resolution Coherence Leiden

1.0
CV 0.562± 0.005
CNPMI 0.037± 0.005

1.5
CV 0.552± 0.005
CNPMI −0.025± 0.007

2.0
CV 0.519± 0.004
CNPMI −0.097± 0.008

2.5
CV 0.499± 0.003
CNPMI −0.148± 0.008

Table 4.9: Average coherence scores for the communities found using Leiden
with various resolution parameters ± the standard error of the mean. Bold
indicates best results.

to detect larger communities). Leiden already finds rather large communities

on the co-occurrence networks with the default resolution parameter of 1.0, so

we experiment with increasing the parameter to find smaller communities and

thus more specific topics.

In Table 4.9, we see that the coherence of the discovered topics decreases as

the resolution parameter increases and the discovered topics become smaller

and more specific. This may be an artifact of how topic model evaluation is

conducted, using only the top few terms from each topic. This may hide the

incoherence of larger topics, most of whose terms will not impact the evaluation

but may not be related to the top topic terms. We will investigate this further

in our comparisons with LDA and top2vec.

4.3.9 Community Detection Algorithm

Our evaluations in this section so far have revealed that at least one parameter

choice for our Community Topic algorithm has a clear best choice. The order-

ing of terms in a topic by the internal weighted degree of the corresponding

vertex in the network matches our intuition as to what makes a term impor-

tant to a topic and empirically gives the most coherent results. In other cases,

there is no clear best choice as the aggregate results are not sensitive to the

parameter. The type of edge weight scheme to use and whether to threshold

depend upon the community detection algorithm being used. In the results

presented so far, the WalkTrap algorithm has tended to have the highest co-
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herence scores, followed by Leiden and then SIWOw+. However, these results

have been averaged over many different runs on different datasets with dif-

ferent parameters. To determine which algorithm performs best, we compare

each using the best parameter settings for that algorithm. For each commu-

nity detection algorithm, we find the best performing parameter combination

both on the individual datasets and aggregated across datasets. We use CV to

determine the best combination but also present results for CNPMI . In some

cases CV and CNPMI agree but not always.

For SIWOw+, we can see the coherence results averaged across all three

datasets as well as for each dataset individually in Table 4.10. The individual

dataset results are presented with both the best parameters for the average,

denoted PAV G, and the best parameters for that individual dataset, denoted

PDS. The best parameter combination averaged across all three datasets is

noun-only POS, arithmetic mean, sentence co-occurrence window, count edge

weights, and no thresholding. These parameters are only the second best

performing on the 20Newsgroups dataset, where slightly better results are

achieved by not filtering non-noun POS but otherwise keeping the parameters

the same. On the Reuters corpus, the best performing parameters are quite

different than the best average parameters: no POS filtering, geometric mean,

sliding window size 10, and NPMI edge weights with no thresholding. These

different parameters make quite a difference to performance, especially when

measured by CNPMI . On the BBC dataset, the best performing parameters

are close to the average best with only the geometric mean being the differ-

ence. This one change does make a difference to performance, though. That

the best performing parameter combinations on two of the three datasets are

similar both to each other and the best average combination is encouraging.

However, the best combination on Reuters is very different and indicates that

Commuity Topic is not as insensitive to these parameters as the aggregate

results suggested, at least when using SIWOw+ as the community detection

algorithm.

The ranking of the parameter combinations by CV and CNPMI tends to be

close. The exception is the PAV G parameters on the Reuters dataset. These
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Coherence Average
20NG Reuters BBC

PDS PAV G PDS PAV G PDS PAV G

CV 0.569 (1) 0.686 (1) 0.665 (2) 0.536 (1) 0.513 (6) 0.573 (1) 0.528 (6)
CNPMI -0.022 (2) 0.148 (1) 0.134 (2) 0.007 (2) -0.138 (27) -0.038 (2) -0.062 (5)

Table 4.10: Best coherence scores when using SIWOw+ as the community
detection algorithm. Average results for all three datasets as well as results
on each corpus using both the best parameters for that corpus PDS as well as
the best parameters for the average PAV G. The rank of that combination is
given in parentheses next to the score.

Coherence All Datasets
20NG Reuters BBC

PDS PAV G PDS PAV G PDS PAV G

CV 0.655 (1) 0.665 (1) 0.665 (1) 0.642 (1) 0.642 (1) 0.676 (1) 0.659 (2)
CNPMI 0.114 (1) 0.106 (4) 0.106 (4) 0.113 (2) 0.113 (2) 0.028 (16) 0.122 (1)

Table 4.11: Best coherence scores when using Leiden as the community de-
tection algorithm. Average results for all three datasets as well as results on
each corpus using both the best parameters for that corpus PDS as well as the
best parameters for the average PAV G. The rank of that combination is given
in parentheses next to the score.

parameters get the 6th best score by CV but are middle of the pack by CNPMI ,

27th out of 48. This is also the only case of the PAV G parameters performing

very poorly on a dataset for SIWOw+.

For Leiden, the best average parameters PAV are noun-only POS, resolution

parameter of 1.0, sentence co-occurrence window, NPMI edge weights, and no

thresholding. We can see in Table 4.11 that these achieve the best CV and

CNPMI . These parameters are also the best on the 20Newsgroups corpus by

CV , although they do not achieve the best CNPMI . The same is true for the

Reuters corpus. For the BBC corpus, the PAV G parameters get the second

best CV and best CNPMI . The PDS parameters for BBC are quite different:

no POS filtering, resolution parameter of 1.0, sliding window of size 10, NPMI

edge weights, and thresholding at 0.35. These do not achieve a very high

CNPMI , however.

Compared to SIWOw+, the Leiden topics achieve worse scores on the

20Newsgroups dataset but better scores on Reuters and BBC. Also, Leiden

performs well with the same set of parameters on all three datasets whereas

SIWOw+ performs best with different parameter settings on each.
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Coherence All Datasets
20NG Reuters BBC

PDS PAV G PDS PAV G PDS PAV G

CV 0.632 (1) 0.759 (1) 0.720 (2) 0.621 (1) 0.576 (5) 0.683 (1) 0.598 (6)
CNPMI 0.150 (1) 0.235 (1) 0.185 (5) 0.274 (1) 0.199 (3) 0.031 (11) 0.067 (6)

Table 4.12: Best coherence scores when using WalkTrap as the community
detection algorithm. Average results for all three datasets as well as results
on each corpus using both the best parameters for that corpus PDS as well as
the best parameters for the average PAV G. The rank of that combination is
given in parentheses next to the score.

WalkTrap performs best on average with PAV G parameters of no POS fil-

tering, sliding window of size 5, count edge weights, and no thresholding.

These best average parameters are second best by CV on the 20Newsgroups

dataset, but the PDS are only slightly different with the only change being the

use of the sentence co-occurrence window. The PAV G parameters are only the

5th best performing by CV on the Reuters corpus, but the PDS best param-

eters differ only in thresholding the edge weights at 2. On the BBC corpus,

the PAV G parameters only achieve the 6th best scores for both CV and CNPMI .

The PDS parameters are quite different with noun-only POS filtering, a sliding

co-occurrence window of size 10, and NPMI edge weights with no thresholding.

Comparing the three algorithms, we can say that Leiden is the most ro-

bust as it achieves good CV ans CNPMI scores using the same set of PAV G

parameters. SIWOw+ performs worse on average than Leiden and worse on

the Reuters and BBC corpora. However, SIWOw+ outperforms Leiden on

both CV and CNPMI on the 20Newsgroups corpus. The fact that SIWOw+

performs best with different parameters on each dataset is a drawback. Walk-

Trap achieves the highest scores on 20Newsgroups and BBC, but like SIWOw+

it suffers from having a different best performing parameter combination on

each dataset.

While using automated metrics such as CV and CNPMI is the only practical

way to evaluate thousands of different topic models, we do not want to blindly

follow what a single number is telling us. This is true when using coherence

metrics on LDA models. Given the tendency of LDA and neural topic models

to produce redundant topics, the authors of [78] introduce a uniqueness metric
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to measure the overlap between topics as another view on topic model quality.

This is not a concern with our approach as there is no overlap between topics.

However, we want to examine the number of topics found, the sizes of these

topics, the ability to find super- and/or sub-topics, and the proportion of terms

that are included in the topics rather than discarded as outliers.

We examine the topics found on the BBC network as this corpus consists of

news articles written for general consumption and so should be interpretable

without needing any special familiarity with the corpus. The news articles

come from five categories (“business”, “entertainement”, “politics”, “sport”,

“tech”), but these are so broad that there should be many identifiable sub-

topics.

Figure 4.10: Distribution of community sizes found by SIWOw+. The al-
gorithm detects many small communities and excludes a large proportion of
terms as outliers.

As we see in Figure 4.10, SIWOw+ finds many small communities. The

algorithm also eliminates the majority of terms as outliers. Of the 2,547 vo-

cabulary terms, SIWOw+ discards 2,093 (82%) as outliers. While not every
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term in the vocabulary is necessarily relevant to some definite concept or topic,

it seems unlikely that < 20% of the vocabulary is relevant to the topics of the

corpus, especially given that stop words and very common and uncommon

terms have been removed already.

We can see the topics found by SIWOw+ in the first column of Table 4.13

labelled by the three top terms. On the whole, the topics are coherent and

are recognizable as sub-topics of one of the five categories. They are perhaps

too specific, for example topics 22 and 36 both relate to Russian oil and gas

companies and 53 and 58 both deal with police.

Figure 4.11: Distribution of community sizes found by WalkTrap. The algo-
rithm detects fewer large communities and discards no terms as outliers.

WalkTrap achieves higher CV and CNPMI scores than SIWOw+. As we

can see from Figure 4.11, it finds fewer, larger topics than SIWOw+. Walk-

Trap does not discard any terms as outliers, i.e. 100% of the terms in the

vocabulary are part of a topic. The topics appear coherent and identifiable

from the top three terms in Table 4.13. Topic 1 corresponds to the “business”

category, topic 2 corresponds to the “politics” category, topic 4 corresponds to
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SIWOw+ WalkTrap Leiden (1.0) Leiden (1.5)
1. year, people, time
2. game, opening, xbox
3. number, week, meeting
4. film, director, comedy
5. firm, market, analyst
6. company, shareholders, investigation
7. music, artists, itunes
8. labour, election, party
9. way, languages, colleague
10. nations, england, scotland
11. services, operators, music download
12. minister, chancellor, iraq war
13. court, judge, arbitration
14. technology, intel, industry experts
15. software, microsoft, windows
16. growth, eurozone, explosion
17. chelsea, everton, mourinho
18. coach, woodward, lions
19. try, ball, corner
20. group, consortium, merger
21. london, headquarters, east
22. yukos, sale, auction
23. games, console, league
24. oil, gas, barrels
25. sprinters, katerina thanou, iaaf
26. economy, china s, consumer spending
27. tel aviv, chicago, athens
28. sales, volume, utility
29. information, port, techniques
30. aid, countries, charities
31. companies, business, fault
32. home secretary, detention, david blunkett
33. scurity, intelligence, security firm
34. report, mission, religion
35. industry, consolidation, employee
36. state, rosneft, gazprom
37. players, squad, dressing room
38. britain, races, luck
39. definition, dvds, tvs
40. new zealand, blacks, lions tour
41. service, provider, providers
42. cabinet, allies, suspicion
43. google, blogger, amazon
44. benitez, liverpool, rafael
45. wall, shot, stage
46. day, boxing, green
47. computer, methods, server
48. mail, spam, attachment
49. arsenal, fulham, arsene wenger
50. france, switzerland, chinese
51. hodgson, charlie, lewsey
52. parents, children, teachers
53. law, enforcement, police officers
54. deal, iran, venture
55. fraud, witness, tax evasion
56. phone, motorola, vodafone
57. secretary, general, david davis
58. suspects, house arrest, police
59. consumer electronics, ces, las vegas
60. dollar, slide, weakness
61. china, beijing, washington

1. growth, firm, economy
2. government, labour, minister
3. people, year, time
4. film, award, awards
5. england, win, chelsea
6. users, technology, software
7. team, france, player

1. government, minister, labour
2. england, game, time
3. firm, year, economy
4. people, technology, users
5. film, award, awards

1. people, technology, users
2. england, game, wales
3. film, award, actor
4. labour, election, party
5. economy, growth, dollar
6. firm, company, deal
7. police, law, court
8. aid, countries, disaster
9. olympics, athens, tribunal
10. serena williams, round, lleyton hewitt
11. pension, money, pensions
12. schools, teachers, children
13. channel, viewers, bbc
14. college, london, university
15. way, coaches, kids
16. mass, bills, names
17. living, pundits, mini
18. identity, convention, documents
19. result, enthusiasm, time

Table 4.13: Topics labelled by top 3 terms found by each community detection
algorithm on BBC corpus.
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the “entertainement” category, and topic 6 corresponds to the “tech” category.

Topics 5 and 7 both relate to the “sport” category, with topic 5 focused on

soccer and topic 7 on other sports such as tennis and rugby.

Leiden achieved better coherence scores than both SIWOw+ andWalkTrap

on the BBC corpus, and it found the fewest communities as we see in Figure

4.12. This may point to an issue with automated coherence metrics: a bias

to large topics. Since only the top few terms are used in evaluation, the bulk

of the terms in a topic are not considered. As we can see from Table 4.13,

the five topics are coherent and identifiable and there is a nice correspondence

between the five discovered topics and the five categories of articles.

Figure 4.12: Distribution of community sizes found by Leiden with resolution
parameter 1.0. The algorithm detects fewer large communities and discards
no terms as outliers.

SIWOw+ finds many small topics while WalkTrap and Leiden find few

large topics. Unlike SIWOw+ and WalkTrap, Leiden has a parameter to

control the size of discovered communities. The best coherence scores for

Leiden in Table 4.11 all came with the default resolution parameter of 1.0, but
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if the automated metrics are biased to large topics then this may not be the

best parameter to use. Keeping in mind the use case of a researcher exploring

a corpus or a conversational agent talking to a human, a few very broad topics

are less useful than many specific topics. Thus we examine the topics found

by using a resolution parameter of 1.5. This finds 19 topics with a wide range

of sizes, from several hundred terms to just a handful, illustrated in Figure

4.13.

Figure 4.13: Distribution of community sizes found by Leiden with resolution
parameter 1.5. The algorithm detects fewer large communities and discards
only 5 terms as outliers.

As with the SIWOw+ topics, the top three terms for each topic in the

fourth column of Table 4.13 are coherent and identifiable as a sub-topic of one

of the five categories of article. While these topics achieve a lower automated

coherence score, they may offer more insight and be of more practical use to

a researcher or conversation agent.

Clearly, we cannot simply take the highest CV or cNPMI score and declare

a best algorithm as the topics they produce are qualitatively very different.
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Automated coherence may give us an idea of the quality of the topics, but

questions have been raised here and in other work [25, 42] as to the reliability

of these measures. We must also keep in mind the utility of the topic model

in a given application area, the run time of the algorithm, the stability of the

discovered topics, and the hierarchy of the topics. We next look at the topic

hierarchy before comparing with LDA and top2vec on quality, run time, and

stability.

4.3.10 Topic Relationships and Hierarchy

One of the major advantages of the network representation is that it provides

a natural way to produce sub- and super-topics. A community is a sub-graph

with its own network structure. Applying the community detection algorithm

on the community sub-graph produces a new set of smaller communities, which

are the sub-topics of the topic represented by the original community. The

original detected communities also form a network where each vertex repre-

sents a community, edges exists between community vertices where there is at

least one edge between a vertex of one community and a vertex of the other,

and edge weights are the sum of the edge weights connecting vertices of each

community. Super-topics can be found by applying community detection to

this network to group related topics together.

SIWOw+ initially produces many small communities so finding sub-topics

is not possible. Finding super-topics should be possible, however when we

have tried applying SIWOw+ on the community network, only a handful of

topics are grouped together. Some of these topics seem related, but others do

not. As SIWOw+ takes the longest time, has the lowest coherence scores, only

finds very small and specific topics, and is unable to find sub- or super- topics,

we conclude that it is not an appropriate community detection algorithm for

Community Topic on the datasets we tested on. This is surprising as it was

one of the best performing algorithms both in our experiments of Chapter

3 and in previous work on unweighted community search. Other algorithms

such as Infomap also performed well on the LFR benchmark and other real

networks but failed to work on the co-occurrence networks. The network
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structure analyzed in Section 4.1.3 must present uncommon difficulties for

these algorithms.

WalkTrap achieved the highest coherence scores. Unlike SIWOw+, the

topics it finds are large enough that there should be sub-topics to discover.

Applying WalkTrap a second time on a community does indeed find another

set of small communities. However, these sub-topics tend to consist of one

large sub-topic and a handful of small sub-topics of only a few terms. Each

community found on the original network is denser and has higher edge weights

than the network as a whole, by definition. WalkTrap seems to struggle on

these denser sub-graphs and does not find very plausible sub-topics. So even

though WalkTrap finds topics that score very highly on automated coherence,

the inability to access the hierarchical structure of the networks is a weak

point.

Leiden is able to find sub-topics at multiple levels, illustrated in Figure 4.14.

For example, the first run on the BBC corpus finds five topics corresponding

to the five categories of articles. Applying Leiden to the “Business” topic sub-

graph results in sub-topics about the economy, employment, the stock market,

international trade, the automotive industry, and the airline industry. Leiden

finds “Tech” sub-topics of video games, the web, cellphones, internet service

providers, e-commerce, gadgets, and enterprise software. Even more specific

topics can be found by mining the sub-topics. The “web” sub-topic yields

topics about email, web search, security, software, and internet companies.

This is not limited to what is illustrated in Figure 4.14. The “Sport” topic has

a sub-topic about the olympics; the “olympics” sub-top has sub-topics about

different sports and also doping scandals.

The modularity formula used by Leiden finds densely connected groups of

vertices, where “dense” is relative to the vertex degrees. Thus Leiden can find

more densely connected groups of nodes on very sparse or very dense networks.

This enables more effective discovery of sub- and super-topics.

With the default resolution parameter of 1, Leiden finds five broad top-

ics which can be mined for sub-topics. If we first search for narrow topics

by using a higher resolution parameter, then we can instead find super-topics
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Figure 4.14: Hierarchy of BBC corpus topics found by iteratively applying
Leiden algorithm. Topic labels assigned by authors.

by performing community detection on the network of communities. With a

resolution parameter of 2, Leiden finds 48 topics on the BBC corpus. Per-

forming community detection on a 48 vertex network of these communities

with a resolution parameter of 2 only reduces this to 43 super-topics; as with

SIWOw+, only a few vertices actually get combined into new super-topics.

However, reducing the resolution parameter to 1.15 results in 9 super-topics.

5 of these roughly correspond to the 5 article categories, although they are

slightly different from those found starting with a resolution parameter of 1.

There are also 4 smaller super-topics. This is illustrated in Figure 4.15.

This ability to move up and down the topic hierarchy on the fly is the

main advantage of using Leiden in Community Topic. Imagine a researcher

first exploring a corpus. They could start with large topics and drill down
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Figure 4.15: Super-topics found by applying community detection on network
of small topics.

into the sub-topics of a topic of interest. Or they could start with many small

topics, and find the super-topics to get more related terms to a topic of interst.
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This mechanism could also be used by a conversational agent to guide the flow

of a conversation, narrowing or broadening the topic of discussion as necessary.

Given that Leiden provides the richest topic hierarchy, is able to find com-

munities of different sizes as desired using the resolution parameter, works well

on all datasets with the same set of Community Topic hyperparameters, and is

extremely fast, we conclude that it is the best community detection algorithm

to use in Community Topic.

4.4 Topic Model Comparisons

We compare our Community Topic algorithm to LDA as a standard bench-

mark. We also compare to a recent algorithm based on word embeddings

learned by a neural network, top2vec. We compare the algorithms on topic

quality, as measured by CV and CNPMI , as well as run time and stability of

topic quality over multiple runs.

4.4.1 Coherence

We run LDA on all three datasets with both noun-only POS filtering and no

POS filtering for 5, 10, 20, 50, 100, and 200 topics. We run LDA for 2000

iterations with symmetric dirichlet prior of α = 1/number of topics. Unlike

[67], we do not find a significant difference in coherence for LDA based on POS

filtering, shown in table 4.14. The best performing set of parameters for each

dataset and the resulting coherence scores are presented in Table 4.15.

Coherence Noun-only No POS filter
CV 0.415± 0.010 0.402± 0.011
CNPMI −0.076± 0.010 −0.068± 0.010

Table 4.14: LDA coherence by POS filtering. There is no significant difference
between no POS filtering and noun-only filtering.

CV and CNPMI agree on the best performing parameters on the 20News-

groups and Reuters datasets. However, on the BBC dataset the best per-

forming model on CV is the worst performing model by CNPMI . On all three
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20Newsgroups Reuters BBC
Number of topics 10 5 200
POS filtering No filtering Noun-only Noun-only
CV 0.510 (1) 0.471 (1) 0.366 (1)
CNPMI 0.027 (1) 0.025 (1) -0.191 (12)

Table 4.15: Best LDA coherence on each dataset by CV . CNPMI also given.
Rank out of 12 parameter combinations given in parentheses.

datasets, the coherence of the LDA models is much worse than that of the

Community Topic models using any of the community detection algorithms.

The top2vec algorithm7 does not take any parameters but like Community

Topic finds the natural number of topics given the data. We present coherence

results for all three datasets in Table 4.16.

20Newsgroups Reuters BBC
POS filtering No filtering No filtering Noun-only
CV 0.625 0.532 0.638
CNPMI 0.052 0.016 -0.023

Table 4.16: Best top2vec coherence on each dataset by CV and CNPMI .

The best results for all algorithms are consolidated and presented in ta-

ble 4.17. The top2vec outperforms LDA by a large margin on CV but the

difference is smaller measured by CNPMI . Community Topic using SIWOw+

outperforms top2vec on the 20Newsgroups but top2vec achieves similar or bet-

ter scores on the Reuters and BBC datasets. Community Topic with Leiden

and WalkTrap handily outperform top2vec and LDA. These results demon-

strate that Community Topic can find topics that are more coherent than old-

fashioned LDA and a modern algorithm based around neural network word

embeddings.

As previously mentioned, we do not want to myopically follow a single

metric when evaluating a topic model. That a topic model produces coherent

topics is important, but we also must consider the run time, stability, and

features of a model that make it useful for downstream applications.

7https://github.com/ddangelov/Top2Vec
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Algorithm Coherence 20Newsgroups Reuters BBC
Community Topic
(WalkTrap)

CV 0.759 0.621 0.683
CNPMI 0.235 0.274 0.031

Community Topic
(Leiden)

CV 0.665 0.642 0.676
CNPMI 0.106 0.113 0.028

Community Topic
(SIWOw+)

CV 0.686 0.536 0.573
CNPMI 0.148 0.007 -0.038

top2vec
CV 0.625 0.532 0.638
CNPMI 0.052 0.016 -0.023

LDA
CV 0.510 0.471 0.366
CNPMI 0.027 0.025 -0.191

Table 4.17: Best coherence scores achieved by all algorithms on all datasets.

4.4.2 Run Time and Stability

The run time of Community Topic is dominated by the run time of the com-

munity detection algorithm used, but also includes the time it takes to parse

the corpus and build the network and the time to sort the communities. The

creation of the co-occurrence networks is deterministic but the community

detection algorithms have varying levels of stochasticity.

To compare the run times and stability of the algorithms over repeated

runs, we ran 10 runs of each algorithm on the 20Newsgroups corpus with

no POS filtering and noun-only filtering. The co-occurrence networks were

created using the sentence co-occurrence window and count edge weights. The

edge weights were not thresholded on the corpus with no POS filtering and

were thresholded at > 2 on the noun-only corpus. This will demonstrate the

sensitivity of the community detection algorithm run times to the size of the

networks. Results of this experiment are presented in Table 4.18.

We can see that the run times of LDA and top2vec are virtually unaffected

by the POS filtering that reduces the number of tokens in each document. The

network creation and topic sorting steps of Community Topic are also the same

for the larger corpus and network. However, the run times of the community

detection algorithms are greatly affected by the size of the network. Leiden

is that fastest, taking only 50 ms on the smaller network. WalkTrap takes

under 2 seconds and SIWOw+ about 3 seconds. On the larger network, the
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run times of the algorithms all increase by about one order of magnitude. This

only takes Leiden up to about half a second. WalkTrap takes over 20 seconds

and SIWOw+ close to a minute. LDA takes about 7 seconds on both corpora

and top2vec takes about 65 seconds.

So on the smaller network, the total run time of Community Topic is

comparable to LDA with WalkTrap and SIWOw+ and about twice as fast

using Leiden; both LDA and Community Topic are much faster than top2vec.

On the larger network, Community Topic is still fastest with Leiden, but slower

than LDA with WalkTrap and about as slow as top2vec with SIWOw+.

Noun-only, threshold > 2 No POS filter, no threshold
Time CV Time CV

Community
Topic

Network creation 3.12± 0.02 3.12± 0.01
Sorting 0.07± 0.00 0.08± 0.01
WalkTrap 1.88± 0.08 0.535± 0.000 21.34± 1.21 0.690± 0.000
Leiden 0.05± 0.00 0.539± 0.039 0.55± 0.11 0.565± 0.022
SIWOw+ 3.11± 0.01 0.510± 0.000 56.47± 0.12 0.657± 0.000

top2vec 65.52± 3.54 0.516± 0.115 65.60± 3.45 0.535± 0.088
LDA 6.93± 0.13 0.483± 0.021 6.96± 0.09 0.492± 0.025

Table 4.18: Run times and stability of all algorithms on smaller filtered
20Newsgroups corpus with thresholding and larger non-filtered 20 Newsgroups
corpus without thresholding. All times in seconds.

The CV results in Table 4.18 are not meant to compare performance as

these networks were not created with the best parameters for each algorithm.

Rather, the standard deviation of the score indicates the stability of the topic

models. LDA is more stable than top2vec, which has a high standard er-

ror, particularly on the noun-only corpus. Community Topic with WalkTrap

and SIWOw+ is effectively deterministic. When using Leiden, however, the

stability is comparable to LDA but better than top2vec.

4.4.3 Document Clustering

The primary goal for developing the Community Topic algorithm is to pro-

vide a topic model that discovers interpretable, coherent topics with a natural

structure that facilitates navigation and exploration of the topics either by

a researcher or an agent having a conversation. Providing features for docu-

ment classification is not the purpose of Community Topic as deep learning
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approaches such as recurrent neural networks and transformers have surpassed

topic modelling-based approaches. However, our model must be able to deter-

mine the topics of documents as a researcher would want to find documents

relevant to an interesting topic and a conversational agent must be able to

determine the topic of the utterances of the interlocutor.

To cluster documents by topic, we first create a mapping from terms to

topics which can be done in a single pass through the topics. The topic pro-

portions of a document can be computed in a single pass over the document,

counting the number of terms of each topic to get the topic proportions. We

then assign the document to a topic cluster based on the topic with the largest

proportion in the document. We perform this clustering on the BBC corpus,

which has five document categories, with noun-only POS filtering. We use the

topics discovered by Community Topic with the network constructed with a

sentence co-occurrence window, NPMI edge weights and no thresholding as

this produces five topics. We compare to LDA trained on the same corpus

for five topics. LDA provides topic proportions for documents as well, and we

take the top topic for each document as the cluster, just as with Community

Topic. We compare the quality of the clusterings using Normalized Mutual

Information. We can see in Table 4.19 that the similarity of the Community

Topic clusterings is much greater than that of the LDA clusterings. The top-

ics produced by LDA have significant overlap of top terms, with general terms

such as “year” and “government” appearing in most topics. Community Topic

has no overlap between topics, making the distinctions between the topics of

a document clearer.

Community
Topic

LDA

NMI 0.790 0.098

Table 4.19: Document clustering NMI performance of Community Topic and
LDA on BBC dataset.

We have shown that Community Topic is able to find topics that achieve

far better coherence scores than LDA. Community Topic is able to find these
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topics in a shorter time and with similar stability when using Leiden. Commu-

nity Topic is effectively deterministic with WalkTrap and SIWOw+, although

these algorithms take longer. While top2vec finds more coherent topics than

LDA, it does not match the coherence scores of Community Topic, takes sig-

nificantly longer and is much less stable over repeated runs. Community Topic

also outperforms LDA on clustering the documents of the BBC corpus. Com-

munity Topic also provides a natural topic hierarchy and allows the user to

move up and down the hierarchy by finding sub- and super-topics on the fly.

4.4.4 Hierarchical Topics

We compare CT to two probabilistic graphical topic models, HLDA and PAM8.

As the implementation of PAM only allows for two non-root topic layers in

the hierarchy we generate a three-level hierarchy for each algorithm for fair

comparison, where level 0 is the root topic of all terms in the corpus, level 1 are

the super-topics, and level 2 are the sub-topics. PAM requires the number of

super- and sub-topics to be specified. We used the number of topics discovered

by CT at each level for PAM.

HLDA produces topics at both levels that are probability distributions

over vocabulary terms and are thus compatible with our evaluation metrics

without modification. CT produces a list of terms ranked by the internal

weighted degree. To calculate specialization and affinity, we convert these to

probability distributions by dividing each value by the sum of the values. The

super-topics discovered by PAM are distributions over sub-topics. We convert

these to distributions over terms by taking the expectation for each term in

the sub-topics given the super-topic distribution over sub-topics. Each PAM

super-topic distribution gives some non-zero probability to all sub-topics so

we need a way to distinguish children from non-children. We do this by taking

the top 6 most likely sub-topics as the children of a super-topic since we are

positing a topic hierarchy with an average of 6 sub-topics per super-topic.

Using a Leiden resolution parameter of 1.0, CT finds 5 or 6 super-topics on

all datasets and 5, 6, or 7 sub-topics per super topic and we use these average

8https://bab2min.github.io/tomotopy/v0.12.2/en/
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values to guide the PAM model. HLDA finds hundreds of super-topics and

about 3 times as many sub-topics. This tendency to find many small topics

at all levels leads to poor performance on our evaluation metrics and leads

to a poor hierarchy where it is common for a child topic to appear in more

documents than its parent. PAM performs better, but benefits from using the

number of topics discovered by CT.

CT is the fastest of the algorithms, finding the topic hierarchy in under 5

seconds on all datasets. HLDA takes between 30 seconds and 5 minutes while

PAM ranges from 10 seconds to 2 minutes. All experiments were run on the

same laptop with 2.7 GHz dual core processor and 8 GB RAM.

The coherence results are presented in Table 4.20. We can see that CT

achieves the highest coherence scores on all datasets as measured by both

metrics except for CNPMI on the 20Newsgroup corpus where PAM comes out

on top. PAM acheives the second highest scores in all other cases. HLDA is a

distant third with much lower scores. This demonstrates that the topics found

by CT will be more interpretable to a human user.

BBC 20Newsgroups Reuters
CV CNPMI CV CNPMI CV CNPMI

CT 0.641 0.079 0.645 0.044 0.702 0.182
HLDA 0.448 -0.162 0.444 -0.133 0.451 -0.093
PAM 0.600 0.063 0.636 0.090 0.555 0.056

Table 4.20: Coherence scores for CT, HLDA, PAM on three document corpora.
Bold indicates best score for each metric and dataset.

Figure 4.16 shows the specialization scores for each algorithm on the three

datsets. We see that both the super-topics (level 1) and the sub-topics (level

2) found by HLDA have a very high specialization. This is consistent with the

large number of topics found at both levels but does not match our intuition

that topics higher in the hierarchy should be general. PAM produces general

topics at level 1 and more specialized topics at level 2, however the super-

topics are so general and similar to the overall frequency distribution as to

not provide useful information for the user. CT also produces sub-topics that

are more specialized than the super-topics. Unlike PAM, the super-topics are
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themselves specialized and thus useful and informative themselves.

Figure 4.16: Topic specialization scores for CT, HLDA, and PAM on three
corpora.

Figure 4.17 shows the hierarchical affinity scores for each algorithm on the

three datasets. We see that HLDA has a higher affinity between parent topics

and their children than non-children. However, the affinity is very low so the

relationship between a super-topic and its sub-topics is very weak. PAM has

the opposite problem with high affinities between parent topics and both child

and non-child topics. This is because PAM super-topics are distributions over

all sub-topics and is consistent with the super-topics being non-specialized. CT

parent topics exhibit a high affinity with their children and zero affinity with

non-children. This is because the sub-topics are a partition of the super-topic

and thus do not overlap with any other super-topic.

Figure 4.17: Hierarchical affinity scores between parent and children and be-
tween parent and non-children for CT, HLDA, and PAM on three corpora.

Our experimental results show that CT produces the most coherent and

thus interpretable topics and the best topic hierarchy. CT topic hierarchies

exhibit higher specialization for sub-topics than super-topics but with enough

specialization at both levels to make the topics useful. CT super-topics have
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a high affinity with their own sub-topics and no affinity with non-child sub-

topics. CT is able to produce this coherent topic structure in less time than

the other algorithms on commodity hardware.

4.5 Discussion

In this chapter, we presented the second major contribution of our thesis:

Community Topic, our community detection-based community modelling al-

gorithm. We have conducted a thorough analysis of the term co-occurrence

networks constructed from document corpora. We have empirically evaluated

the performance of Community Topic with various hyperparameters and com-

munity detection algorithms. We have compared Community Topic to LDA

as a standard benchmark as well as the more recently developed top2vec al-

gorithm.

We conclude that Community Topic works best with the Leiden algorithm.

As Leiden performs well on all datasets with the same set of hyperparameters,

we can use a sentence co-occurrence window, NPMI edge weights, no thresh-

olding, and noun-only POS filtering as a standard and eliminate the need

for hyperparameter tunig. Using Leiden also results in Community Topic be-

ing faster than both LDA and top2vec, and much faster than Variational

Autoencoder-based topic models that require hours of training on special

hardware [42]. Community Topic finds more coherent topics than LDA and

top2vec. However, the greatest advantage may be the natural hierarchy af-

forded by the network representation with both sub- and super-topics able to

be found using the same community detection. Community Topic achieves all

of the goals set out at the beginning of the chapter:

• Discovery of the number of topics - Community Topic discovers the

number of topics, and topics at different scales can be found by using

the Leiden resolution parameter.

• Natural hierarchy - Community Topic can find sub- and super-topics

from the network structure and original topics.
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• Natural relationship between topics - The edge weights between

the topics in the community network gives the degree of relatedness.

• Time and resource efficient - Community Topic is faster than LDA

and top2vec.

• Stability - Community Topic is no less stable than LDA and much more

stable than top2vec.

• Minimal hyperparameters - Using Leiden, Community Topic has no

hyperparameters to tune. The user can use the Leiden resolution pa-

rameter to control the scale of discovered topics.

• No redundancy - Community Topic partitions the vocabulary into

topics with no redundancy.
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Chapter 5

Conclusion

In this thesis, we review the fields of topic modelling and social network anal-

ysis with the goal of combining them to develop a novel topic modelling algo-

rithm, Community Topic, that overcomes the deficiencies of the most popular

approach in use today, LDA. The first step to that goal is the extension of

SIWO to the weighted case as the edge weights contain vital information in

the term co-occurrence networks. SIWO has proven itself to be a top per-

former on unweighted networks so we have good reason to believe it would be

a useful component of Community Topic.

We successfully extend SIWO into SIWOw to handle edge weights. We

empirically demonstrate that this incorporating edge weights improves per-

formance and that SIWOw is competitive with state-of-the-art algorithms for

community detection.

We define and analyze term co-occurrence networks. We show that the

properties of these networks are quite different from the synthetic and real

networks previously used to evaluate SIWOw. This difference in structure

may explain why some of the best performing community detection algorithms

in Chapter 2, such as Infomap, completely fail on these networks and why

SIWOw+, which outperforms Leiden and WalkTrap on the LFR networks,

finds less coherent topics.

We develop and evaluate Community Topic, our novel approach to topic

modelling. We first evaluate the various possible configurations and hyperpa-

rameter settings to determine that the Leiden algorithms works best. This

119



results in Community Topic being hyperparameter free as the same settings

perform well on all tested datasets.

We show that Community Topic outperforms both the standard bench-

mark LDA as well as the recently developed top2vec, which relies on word

embeddings learned by a neural network. Community Topic is faster and pro-

duces more coherent topics. It also provides a topic structure that can be

utilized in downstream tasks such as corpus exploration and conversational

agents. Sub- and super-topics can be found and there are relationships be-

tween topics which can all be used to guide a researcher exploring a corpus or

an agent having a conversation.

5.1 Future Work

The fact that only one community detection algorithm, Leiden, is able to fully

take advantage of the term co-occurrence networks to find coherent topics with

a robust hierarchy indicates that there is still work to be done improving SIWO

and other community detection algorithms, or at the very least adapting them

to work better on the structure of the co-occurrence networks. Modularity

based methods have weaknesses such as the resolution limit and field of view

limit, but they are able to find communities for very sparse or very dense net-

works as they compare the actual network structure to a hypothetical random

network of the same average density. Our attempt to adapt SIWO for denser

networks, Min-Max SIWO, failed but there is no reason to think that it or

other community detection algorithms could not be further improved to work

better with Community Topic.

That most community detection algorithms struggle on the term co-occurrence

networks could also be an indication that the networks themselves could be

improved. We already took the step of converting raw counts to NPMI edge

weights and while varying the co-occurrence window and thresholding do not

have a material positive impact on topic quality, other improvements may be

possible.

Part of the difficulty that community detection algorithms seem to have is
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with polysemy as a single term with multiple meanings may connect strongly to

terms in different topics. We attempt to combat this using n-grams, but other

methods to disambiguate such homonyms could further improve Community

Topic.

While we evaluated the quality of the topic hierarchy found by Community

Topic on several measures, a more comprehensive evaluation of the quality of

the hierarchy is possible. One possibility is to look at the specificity of the

terms used for labelling a topic using an external reference such as WordNet.

The label terms higher in the topic hierarchy should be more generic and those

labelling deeper sub-topics should be more specific.

Of course, the problem of labelling the topics is another area of research.

In our work, we have used subjective human judgement or the top few terms

to label a topic. Investigating better methods for labelling would enable new

forms of evaluation for the topic hierarchy which we claim is one of the best

features of our algorithm.

Many of these future projects rely on some way to compare topic quality

such as automated coherence metrics. However, these metrics are only a proxy

for human judgements of topic quality. As we have shown, there are also

features beyond topic coherence that make for a good topic model and should

be considered and compared. The real test of a topic modelling algorithm is

in its implementation and use as a tool. Integrating Community Topic and

other algorithms into a conversational agent allows for a comparison of topic

quality, run time, topic hierarchy, and the relationships between topics. This

is much more difficult and involved than comparing coherence scores, but the

proof of the pudding is in the tasting and we should not stop at automated

metrics for evaluating our topic models.
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[116] Zhao Yang, René Algesheimer, and Claudio J Tessone. “A comparative
analysis of community detection algorithms on artificial networks.” In:
Scientific reports 6.1 (2016), pp. 1–18. doi: 10.1038/srep30750.

[117] Hao Yin, Austin R Benson, Jure Leskovec, and David F Gleich. “Lo-
cal higher-order graph clustering.” In: Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. 2017, pp. 555–564. doi: 10.1145/3097983.3098069.

[118] Wayne W. Zachary. “An Information Flow Model for Conflict and Fis-
sion in Small Groups.” In: Journal of Anthropological Research 33.4
(Dec. 1977), pp. 452–473. doi: 10.1086/jar.33.4.3629752.

[119] Bin Zhang and Steve Horvath. “A general framework for weighted gene
co-expression network analysis.” In: Statistical Applications in Genetics
and Molecular Biology 4.1 (2005). doi: 10.2202/1544-6115.1128.

132

https://doi.org/10.1103/physreve.92.032801
https://doi.org/10.1103/physreve.84.016114
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1140/epjb/e2013-40829-0
https://doi.org/10.1140/epjb/e2013-40829-0
https://doi.org/10.1145/1148170.1148204
https://aclanthology.org/C16-1211.pdf
https://doi.org/10.1038/srep30750
https://doi.org/10.1145/3097983.3098069
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.2202/1544-6115.1128


[120] He Zhao, Lan Du, Wray Buntine, and Gang Liu. “MetaLDA: A Topic
Model that Efficiently Incorporates Meta Information.” In: 2017 IEEE
International Conference on Data Mining (ICDM). 2017, pp. 635–644.
doi: 10.1109/ICDM.2017.73.

[121] Wayne Xin Zhao, Jing Jiang, Jianshu Weng, Jing He, Ee-Peng Lim,
Hongfei Yan, and Xiaoming Li. “Comparing twitter and traditional
media using topic models.” In: European Conference on Information
Retrieval. Springer. 2011, pp. 338–349. doi: 10.1007/978- 3- 642-
20161-5_34.

133

https://doi.org/10.1109/ICDM.2017.73
https://doi.org/10.1007/978-3-642-20161-5_34
https://doi.org/10.1007/978-3-642-20161-5_34

	Introduction
	Motivation
	Problem Definition and Challenges
	Thesis Statements
	Thesis Contribution
	Thesis Organization

	Background and Related Work
	Topic Modelling
	Early Methods
	Latent Dirichlet Allocation
	Recent Approaches
	Evaluation Methods

	Social Network Analysis
	Community Detection and Search
	SIWO: Strong Inside, Weak Outside
	Evaluation Methods


	SIWOw
	Weighted Support
	Weighted Karate Network
	Evaluation on LFR Benchmark
	Datasets
	Algorithms
	Results
	SIWOw+ vs SIWO+

	Min-Max SIWO

	Community Detection for Topic Modelling
	Term Co-occurrence Networks
	Preprocessing
	Datasets
	Properties of the Co-occurrence Networks

	Community Topic
	Parameter Evaluation
	Evaluation Metrics
	Community Detection Algorithms
	Parameter Combinations
	Term Ordering
	Parts-of-Speech Filtering
	Co-occurrence Window
	Edge Weight Type and Thresholding
	Community Detection Hyperparameters
	Community Detection Algorithm
	Topic Relationships and Hierarchy

	Topic Model Comparisons
	Coherence
	Run Time and Stability
	Document Clustering
	Hierarchical Topics

	Discussion

	Conclusion
	Future Work

	References

