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B = RdS/EAL]

NOTATION

local coordinate system

area of bar

horizontal projection of bar
vertical projection of bar

length of bar

vector of residual forces or error in equilibrium

equations; modulus of elasticity.
strain energy
equilibrium equation (function)

vector of equilibrium equations (functions);

vi

vector of total loads applied to augmented structure

nonlinear portion of stiffness matrix
pseudo-load stiffness matrix
augmented stiffness matrix

th load increment

stiffness matrix for r
stiffness matrix of spring support system
vector of equivalent loads

vector of equivalent load increments ‘
vector of equiva]ent.loads on the unstiffened
structure

load parameter

nondimensional load parameter
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vii

vector of pseudo-loads

Toad increment index

external truss load

external truss load

nondimensional load parameter

iterate index

total number of iterations for load increment k
total number of iterations after (r-1)

load increments

transformation matrix between local and

global coordinates

displacements in £ and n directions
nondimensional displacements in £ and n directions
displacement coordinate |

vector of displacement coordinates

reference configuration

over-relaxation factor

a relaxation parameter; nondimensional coordinate
a]/d

increment; deflection of piston

stiffness of spring

geometric parameter for two-bar truss

dummy variable for perturbation formulation;

angle in radians



Solution Techniques for

Geometricaliy'Nonlinear Structures

CHAPTER I  INTRODUCTION

§1. Secope of Report

A1l ductile structures respond in a nonlinear manner immediately
prior to and during collapse. In order to accurately predict maximum
load carrying capacity it is therefore necessary to be able to assess the
effects of this nonlinear response. In addition, in an indeterminate
structure, individual components may have passed their maximum load
carrying capacity prior to an overall collapse, and the behavior of these
components in their unloading range may be critical to the overall behavior
of the assemblage. Their capacitylto deform in a ductile manner during
collapse, without significant reduction in load carrying capacity, and
their interaction with other structural components, therefore becomes a

subject of interest to the structural analyst.

Nonlinearities in structural response may arise from material
effects or from geometric effect;. In general both types of nonlinearities
are present during collapse. However, the true behavior of a structure
beyond the range of Tinear response is often very difficult to predict.

A prerequisite to solving the 'real’' problem is the ability to predict

the nonlinear geometric effects. This report is concerned with an
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assessment of the suitability of various techniques of nonlinear analysis
to predict highly nonlinear geometric response, and in particular the
unloading behavior. The response of simple pin-jointed structures is

used to form a basis for this assessment.

Many techniques of nonlinear structural analysis have been
proposed (2, 6, 8, 10, 14, 15, 17) and it is not possible to consider all
of these in a single report. The report is therefore confined to an
examination of the formulation and application of some of the most common

techniques which appear to be in vogue in the recent Ijterature.

Prior to applying the various techniques to some illustrative
pin-jointed structures, an attempt is made to derive the basic equations
of each technique in a unified manner, so that the inter-relationships

between them can be examined.
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§2. Symbolic Statement of Problem

Most general nonlinear analyses are based on computer oriented
numerical solutions of the equilibrium equations, in which the dependent
variables are a discrete set of displacement coordinates. Each equili-
brium equation will therefore be assumed to be express%b]e as a function
of the discrete set of displacement coordinates (x], Xp3 oo xn), and a

loading parameter p. These equations will be written symbolically, as

£ (Xys X505 wees x5 P) = 0
fz (x]s xzs ey xns P) = 0
| (2-1a)
= 0 R

fn (x], Xos ey Xos p)

Define the vector of displacement coo}dinates X, and the vector of equili-

brium functions F, as

T <X'l’ XZ, ceoey Xn>

X

and

< f]’ fzg R fn > .

Eqs. (2-1a) may then be represented as

F(X,p) = {0} . © (2-1b)



TR

REERT P
£y

3

4.

A solution occurs when, for any specified value of the load parameter p,

the vector X has been determined such that Eqs. (2-1) are satisfied.
If Eqs. (2-1) are not satisfied by a given (X,p), we may write
F(X,p) = -E # {0} (2-2)

where E is the vector of 'residual force effects' (or 'unbalanced forces',
or 'error in forces') for ‘the given configuration. It is often useful to

be able to visualize the effects of a particular procedure on these
equations. A schematic representation may be obtained if the vector X is
assumed to be composed of only a single displacement coordinate and the
vector F is assumed to consist of only a single equilibrium function. This
artifice will be used throughout the report. F(X,p) may then be represented
as a surface in 3-space as shown in Fig. 1. The intersection of this
surface with the coordinate plane represents a solution to the set of
equilibrium equations (ie. F(X,p) = {0}). The value of the function

F(X,p) # {0} represents the unbalanced forces as indicated by Eq. (2-2).

In the particular case where loading and geometric effects can

be separated, the functions of Eqs. (2-1) may.be.represented as
F(X,p) = G(X) - P(p) . , (2-3)

Using the artifice described above, the curve G(X) may be graphed in 2-spéce
as shown in Fig. 2, and the point of intersection of the horizontal line
for any P(p) with the curve G(X) represents the solution for that value of

the load parameter. Note that in this case
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oF 26 (2-4)
3 axi axi
which is represented by the slope of the G(X) curve, and the unbalanced
force -E is represented by the vertical difference between the magnitude
of G(X) and the magnitude of P(p). (The negative sign on E disappears
when P(p) exceeds G(X).)



CHAPTER II  SOLUTION TECHNIQUES

83. Solution Techniques Arieing Directly From Taylor's Series (7)

Many of the commonest solution techniques arise in a natural
manner from a Taylor's series expansion. For any specified values of
X,p, say (X*,p*), the value of F(X,p) at a point sufficiently close to

(X*,p*) may be determined from the Taylor's series expansion

F(X,p) = F(X*,p*) + % (x;-x¥) + g; (p-p*)
*
2 2
1 2%F 3°F
tooT 3axiax. (x;-x¥) ("j"‘g) 2 55 ;9P |
Jlx
. o + (x —x¥) (X4=X%) (x,-x¥)
a_pZ "" X ax ax i™ i7" k™ k
3 2F | (x(-xt) (pop*) + 3 2F (x -x¥) (p-p*)2
9X; X ;3P L FTITY ax, ap2
3 ' |
+ &F -p*)3§ +* ... (3-1)
p _ .

where x,i is an element of the vector X and the summation convention has.

been adopted.
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To find an equilibrium position it is necessary that F(X,p)
be zero. Designating the point (X*, p*) by (Xr, pr), an approximate
equilibrium position (Xr+], pr+]) can be estimated from Eq. (3-1) by
retaining only the linear terms on the right hand side and requiring that
;-

POy 2 R p") + 3] I + 3 7T = 0 (3-2)
1

r r
Using matrix notation and so]v{ng for Xr+1 results in
AL P [ AR (3-3)
_[oF . . . r r.ry s
where [K]r"E%T] is known as the stiffness matrix; E' = - F(X' ,p' ) is
. idp
the vector of residual forces at (x", pr); and APr+] = - %g- (pr+]-pr)
r
is the change in the effective force vector.
F oF
P=-f55-dp. - (3-4)
0

Eq. (3-3) is the basic equation for a modified incremental analyeis as

illustrated in Fig. 3b.

If it is assumed that the equilibrium equations are exactly
satisfied at (Xr,pr), then E' = {0}, and the equation for simple

ineremental analysis results, namely

M I [K];‘ oy, © (3-5)
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Solution by this equation is illustrated in Fig. 3a.

1_.r

When the load is applied in a single increment, pr+ p

r+l

and Ap =0 for r > 0. Eq. (3-3) then becomes the recursion equation

for Newton-Raphson iteration which is expressed by the equations

X1 = X0+ [k];‘ ap! for r =0 (3-6a)

and

Xr+] = X'+ [k];] E" . for r>0. (3-6b)

This procedure is illustrated in Fig. 3c. Since Newton-Raphson iteration

requires the evaluation and inversion of the matrix [K]r = [?f€] for
r

X
i
every iterate, less computation may result if the matrix [K]0 is used

throughout. Eqs. (3-6) then become

X1 = x°+ [k];] AP! for r=0 (3-7a)

and

UL L [k];‘ E" for r>0, © (3-7b)
which is the modified Newton-Raphson procedure illustrated in Fig. 3d.

For problems where nonlinearities are more severe, the above
procedures may not perform satisfactorily and it may then be desirable to
incorporate the iterative procedure of Eqs. (3-6) or (3-7) into the
incremental loading procedure expressed in Eq. (3-3). Let r be the number

of the load increment and s be the number of iterations from the beginning



of that load increment. Let Sk be the total number of iterations occuring

during'load increment k and

be the total number of iterations after r-1 load increments. Then Eq. (3-3)
yields the equations for the inecremental Newton-Raphson procedure which

consists of

t +1 t t
X' = xT+ [K];‘ {E r s Aprf for s =0 (3-8a)
r
and
: + ' +
et s, EK]E]+ ;Etr Sz for s >0 (3-8b)
Y‘S

which are simply Eqs. (3-6) applied to each load step as illustrated in

Fig. 3e. This technique suffers from the same deficiency as the Newton
Raphson method and if the iteration is carried out with the matrix at the
beginning of the load step the mod:ified incremental Newton-Raphson technique

results, as expressed by the equations

t +1 t t
X' = xT4 [g];‘ zE L APrf for s=0 . (3-9a)
r .
and
t_+s+] ot 4s t +s
x'¥ = X" 4 [k];‘ 35 r f for s >0 . - (3-9b)
r U .

This procedure is illustrated in Fig. 3f.
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A1l iterative techniques, such as those represented by Egs.
(3-6), (3-7), (3-8) and (3-9), assume that iteration will be continued
until some measure of the displacement increments such as AXT-AX,
or some measure of the unbalanced forces such as ET-E, becomes

sufficiently small,

A static perturbation technique (14,17) may be derived directly
from Eq. (5) by assuming that X5 - x? and p - p* are functions of a
single parameter 6 (with 6 = 0 at X*, p*), and expanding by Taylor's series

in the forms

Ax o BX;

MX; = BR; 8+ o0 +§.le3 (3-10a)
Ap = Ape+2£’-ez+§?— o3 +.... (3-10b)

where (*) = d/dé and 6 < 1. Substituting Eqs. (3-10) into Eq. (3-1),
assuming F(X,p) = F(X*,p*) ={0}, and grouping terms with like powers of

8, requires that the following equations be satisfied.

oF oF| » _
T Ax + = ap Ap = {0} (3-11a)
Tix
F ) gk, + X %F | g
oX. i op 0X . OX « i
1 * 1 J *
2 2
o F aF _
2 axiap . AX,‘ Ap + ;2- = {0} ; (3-]]b)
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aF e e aF TR 3 F o . a F oo o . o0
ax;| M *ap| AP * 3 gk (Bxgaxg) + 3 gom—| (8X;dp + Ax;4D)
T % * T J)% *
2 3 3
a F L ] [ X ] a F [ ) [ ] [ ] a F L] ®* - L ]
3 BpAp + et  AX.AXAX, + 3 —ot | Ax.AX.Ap
apﬁ . axiaxjaxk . LA B 3xiaxjap . i
2 . 3%F| .3
AX,(Ap) + <3| (2p)° = {o} (3-11c)
ax, ap ap° |,

If 6 is taken as the load parameter p, Ap = 1, Ap = 2p' = ... = 0,
and Eq. (3-11a) becomes

F o+ &< o) (3-12a)
X
i | * .
which is sufficient to determine Ax providing ai is nonsingular. Eq.
i
(3-11b) becomes *
2 2 2 |
oF o F . °F | o 3°F
;| A ’[ax.ax Bxibxy * 2 gl X F —z] (3=12h)
1% 1 %* LI P ap

which is sufficient to determine Aii once Aii is now known. Similarly Eq.

(3-11c) may be solved for Kk}. Only the matrix %;— need be inverted
i

*

in this procedure.

A similar procedure can be carried out if 6 is taken as one of

the displacement coordinates.
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84, Relaxation Factors

The rate of convergence of an iterative scheme may sometimes be
improved by applying an arbitrary multiplier, usually called a relaxation
factor, to either the displacement increment or the unbalanced forces.

If a relaxation factor of B is applied to displacement increments, Eq.
(3-3) becomes

UL f+sEW{€+MM} (4-1a)

and, if applied to the unbalanced forces, Eq. (3-3) becomes

xr1 - ﬂ+[ﬂj{%r+wﬁw ) (4-1b)

A1l of the iterative schemes of section 3 can be modified to include

relaxation factors.

When convergence is monotonic the factor should be greater than
one and is called an over-relaxation factor. When convergence is oscillatory

the factor should be less than one and is called an under-relaxation factor.
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§5, Pseudo-Load Techniques (2,3)

A common technique in nonlinear analysis is to retain only
linear terms on the left hand side of the equation and transfer quadratic
and higher order terms to the right hand side. In structural analysis
these higher order terms may be interpreted as additional loads and hence
may be referred to as pseudo-loads. To implement such an approach it is
necessary that the linear terms of F(X,p) be separated from the higher

order terms.

Assuming the restricted form of F(X,p) in Eq. (2-3), the

Taylor's series expansion of Eq. (3-1) becomes

2
_ aF 1 o F
F(X,p) = F(X*,p*) + 5};’ (x;-x3) + 27 aX{ 3% (xi-xﬁ) (xj-xg)
- * * *

3
] o F
1773 k&
4[RO N i [ e LI A (5-1)
op P-p T 2| \PP 3T 3| PP eee
1 P |« X" |4

If it is further assumed that P is linear with respect to p, and using the

notation AX = X - X*, Eq. (5-1) may be written in matrix notafion as
F(X,p) = F(X*,p*) + [K(O)]* AX + [K(”]* AX + [K(z)]* AX ...

- AP (5-2)
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where the superscript on the K matrices indicates the degree of dependence

of the elements of the matrices on AX.

Using Eq. (5-2) and assuming (X*,p*) as the origin, Eqs. (2-1)

may be written as

[K(o] X + [K] X - P(p) = {0} ‘ (5-3)

where [k] includes the effects of all [k(1X] for i > 0, Designating
the second term as the 'pseudo-load', Q(X), Eq. (5-3) becomes

[ x+am - pp) = (5-4)

and the reason for the terminology becomes apparent when the last two terms
are transferred to the right hand side. Pseudo-loads represent the
departure of the force-deformation relationship from linearity as indicated

schematically in Fig. 4.

The vector X which satisfies Eq. (5-3), for any specified value
of p, represents an equilibrium configuration. However, since Q is a
function of X, this vector is not known 'a priori', and Eq. (5-4) must be

solved iteratively through the recurrence equation

xr+] [K(O)] -1 (5-5)

where Q = Q(Xr). This iterative pseudo-load technique is illustrated
in Fig. 4a. To relate the pseudo-load technique to the methods of section
3 we note that until convergence has been attained, after say m iterates,

Eq. (5-4) is not completely satisfied and may therefore be written as
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[K(O)] XF+qQ -pP = - (5-6)

where -E” is the unbalanced force vector at (X",p). However, Eq. (5-5)

requires that

[K(O)] X" +Q™1 - p = {0} (5-7)
Subtracting Eq. (5-7) from Eq. (5-6) yields

Qr - Qr-1 -’ (5-8)
and this relationship is apparent on Fig. 4a.
Since Q° = {0} we have

Q" = ) -Ef. (5-9)
A comparison of Figs. 4a and 3d, and the corresponding equations, indicates
that the incremental pseudo-load solution is essentially the same as a
modified Newton-Raphson solution. - Pseudo-loads often arise in a natural
way from a consideration of nonlinear material response in the form of

initial etrains. They may be evaluated in total, if the nonlinear

expressions are explicit, or accumulated through an equation such as Eq. (5-9).

If the load is incremented for every iterate the preceding equations

(Egs. (5-5) and (5-9)) become

Q" = Q"' - (r > 0) (5-10a)

UL [K(o)]-] {P”‘ - Q‘”} (r > 0) | (5-10b)
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This incremental pseudo-load procedure is illustrated in Fig. 4b. A
comparison of Fig. 4b with Fig. 3a indicates that these results are
similar to those obtained from a simple incremental analysis but, since

K(o) is retained throughout, they are not identical.

When the initial point (X*,p*) is not the origin, but is some

point on the equilibrium path, so that F(X*,p*) = {0}, Eq. (5-2) yields

[k(o{]* AX + [E]* AX - AP = {0} (5-11a)
or .

[k(o)]* AX + Q(AX) - AP = {0} (5-11b)

where AX and AP are departures from point (X*,p*) and Q(AX) represents
the deviation from the linear 'tangent plane' at (X*,p*) as shown in Fig.
4c. The equilibrium point for the load P* + AP may then be determined

from the recursive equations

Q® = 571 .S (s > 0) (5-12a)

ﬁ“ =x*+hwﬂj{w-qﬁ (s > 0) (5-12b)

as illustrated in Fig. 4c, where s is the iterate number from the time of

application of the load increment AP.

If this ‘tangent stiffness' concept is applied with an increment
of loading occuring for every iterate, the modified incremental pseudo-
load technique results, as illustrated in Fig. 4d. The recursive equations

are
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Q" = Q"o (r > 0) (5-13a)

-1
AL U [K(")]lr PTARLIIN SRS (5-13b)

A comparison of Fig. 4d with Fig. 3b indicates that the results from this

analysis are essentially the same as those from the modified incremental

:

analysis of section 3.

If, on the other hand, iteration is continued to convergence

oot e e P bl b e S it Fodal L i
¥ e 4

after each load increment, we may use the indices of section 3 to write

QS = ¢8-S (s > 0) (5-14a)

t_+s+] t -1
| x T = X'+ [K(O)]t {AP” - QS} (s > 0) (5-14b)
: r
which is the iterative incremental pseudo-load procedure illustrated in
Fig. 4e. A comparison of this figure with Fig, 3f indicates the results

are essentially the same as those from the modified incremental Newton-

Raphson analysis.

Although it has been shown that pseudo-load and modified Newton-
Raphson methods produce essentially the same results, there may be
considerable difference in application. When closed form expfessions are
available to estimate E" for any configuration, these differences Jre
minor. However E" may also be estimated as the departure from linearity
in a small load increment. In this case the pseudo-load methods have no
overall equilibrium check beyond the first load increment, since tHe
convergence is checked against AP rather than P, They are, however, very

useful for path dependent studies.
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§6, Initial Value Techniques (2, 3, 11, 12)

Returning to Egs. (2-1), another family of solution techniques
may be derived by differentiating the equilibrium equations and applying
numerical integration procedures. Assume the load parameter p, and the
resulting displacements X, are continuous functions of some parameter 6.
Also assume that the initial point (X*,p*) does not completely satisfy

equilibrium so that Eq. (2-2) is in effect. Differentiating with respect

to 0 yields
oF | =« oF| =« _ >
%] X ‘tap| P -E. (6-1)
1% *

Designating the initial point as (Xr,pr), and using the notation of

section 3, Eq. (6-1) becomes

[ -5 < -¢ (6-2)

Any numerical integration technique applicable to Znitial value problems

may now be applied.

In particular, applying the Euler approximation

r+l r
v = X - X
X X (6-3)
a solution for Xr+] is obtained as
Xt = X [K];‘ {15 - F:} A0 ~ (6-4)

Since A6 is the change in the parameter 6 associated with the increment

from configuration r to configuration (r+1), the value of PAD is APr+]
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and if it is desired to eliminate the unbalanced force at Xr, EAB = - E'.
Eq. (6-4) then becomes

I oL BN N [k];] {Apr+] + Er} | (6-5)

which is identical to the modified incremental analysis of section 3.
More sophisticated integration schemes, such as Runga-Kutta methods,

may be applied to Eq. (6-2).

Haisler (2, 3, 11, 12) has applied a variety of iﬁitia] value
techniques to pseudo-load finite element formulations. The pseudo-load
form of the equilibrium equations has been derived in this report from
the Taylor's series expansion displayed in Eq. (5-1), and resulted in
Eq. (5-4), However, if equilibrium is not completely satisfied at a

configuration, Eq. (5-4) becomes

[ x+ a0 - o) = - ) (6-6)

Proceeding in the same manner as above and differentiating this equation

with respect to 6 yields

[K(O)] X+Q-P = -t (6-7)

- Assuming P is a linear function of 6 and differentiating once more yields

[ ¥+ - -¥ (6-8)

A variety of pseudo-load initial value schemes may now be obtained
by using a variety of finite difference approximations of the derivatives

in Eqs. (6-7) and (6-8). In particular Haisler has presented the following.



(a) An Initial Value Three-Point Difference Form

and

Assuming E=0, 6=p ,

U (x™ x")

e
=~

n
|_a

r r-1

Eq. (6-7) yields the forward stepping equations

-1
oo gy [K(O)] {Aprﬂ _ Q"+ Qr-]}
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(6-9a)

(6-9b)

(6-9c)

This difference form becomes unstable for more than moderate nonlinearities.

Eq. (6-9a) is a forward difference approximation while Eq. (6-9b) is a back-

ward difference.

(b) An Initial Value Five-Point Difference Form

which, if

Assuming E=0, 6=p ,
v _ 1 r r-1 r-2
X = m‘ (3X - 4X + X )

6r . zér-l _ 6r-2

the Q are assumed of the same form as (6-10a), becomes

Oe
-
1

2%5_ {GQr'] _ ]]Qr-z + GQr-B _ Qr-4} ,

(6-10a)

(6-10b)

~ (6-10¢)
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then Eq. (6-7) becomes
-1
o= Ayl 1y, '}(o)] {200 _oqrl 4 L qr2 L o

+ 4 (6-100)

This difference form is apparently reasonably accurate and results from a
Tinear extrapo]at1on of Q (Eq. (6-10b)) and then the application of a 3

point backward d1fference form for first derivatives (Eq. (6-10a)).

If the error is not assumed to be zero, ’'self-correcting' initial

value forms can be derived. By assuming
E = -2zE (6-11a)

where z is a scalar multiplying factor, and using Eq. (6-6) to evaluate E,

Eq. (6-7) becomes

[K(Oﬂ {x ¥z x} = {13 2z P} -{6 +2z Q} i (6-11b)

Using the chain rule of differentation 6 may be expressed as

Q = Qx) =] 2—31— X = [K*] X | (6-11c)

which defines the matrix [k{]. Substituting into Eq. (6-11b) yields

[[K(O)] + [K{n X + 2 [K(O)] X - P+zP-2Q. (6-11d)

Again various difference forms can be used.
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Haisler (2, 3, 11, 12) also derives a "self correcting" initial
value form from the second order differential equation, Eq. (6-8), by

assuming
E = -(zE+cE) : (6-12a)
where z and c are scalar multipliers. In this case Eq. (6-8) becomes

IE((O)] .X.= -b.+zE+cl:I

Substituting from Eq. (6-6) for E, and from Eq. (6-7) for E; Eq. (6-12b)

becomes

[K(o)]{.)(.+c).(+zX} = {zP+cr'>}-{zQ+c6+°Q°} (6-12¢)

(e) A Self-Correcting Initial Value Four Point Difference Form

Assume now that 6 = p. Neglect b. and assume the four point

backward difference form

L {2x" x4 g2 L x"'3} : (6-13a)

Express X"by Eq. (6-10a) and Q" by the form in Eq. (6-10b), that is

Q" = 20" - "2 - (6-13b)
Express Q" by Eq. (6-9b) and use Eq. (6-13b) to obtain

Q" - 313 @' - q™?) . . (6-13¢)

Then Eq. (6-12c) becomes
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-1 .
X' = [(Ap)_2 k@] {armec oz @™ - Q™) - & @ - QD)

+ (5+2cap) X - (4+c B x‘”‘2+x‘”‘3]/(2+%czsp+zAp2)

ee. (6-13d)

1 )

Starting values for the solution may be obtained by one of the previously
discussed iterative techniques. Haisler, from numerical experiments,

recommended the values

10/ (ap /' ap - P ) (6-13e)

B oS i S et L e - e A

|
N
n

and

¢ = %22 (6-13)
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§7, The Alpha-Constant Technique (6)

The alpha-constant technique is a method of deriving a matrix of
constants to estimate the displacement increments AX derived from a
'tangent stiffness' matrix, such as that in Eq. (3-6b), from the displace-
ment increments AX derived from an 'initial tangent stiffness' matrix,

such as that in Eq. (3-7b). To fix ideas, we may look at the a constants

- as 'over-relaxation factors' applied to modified Newton-Raphson displacement
increments in an attempt to estimate the displacement increments that

would occur in an unmodified Newton-Raphson process.

[ Eq. (3-6b) of the Newton-Raphson process may be written as
L [K];] e L (7-1)

Expressing the tangent stiffness [K]r as
) (o>] o
(K], = [K + K], o (1-2)

where [K(O)] is some reference stiffness and [k]r‘ represents the
departure of [K]r from this reference stiffness at X', Eq. (7-1) may be

“written as

[[K(O)] + [k]r] VAL (7-3)

-1
multiplying by [K(O)] yields

a . - A
A E<(°)] k1. ax™ - [K(O)] =A™ (7-)

r
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ad is the displacement incremenf that would be predicted using

where AX
only the reference matrix-[K(O)J . This may be computed immediately

when E' is known.

Now assume

r+l _ [a3r+1 ® r+1

AX AX (7-5)

and we wish to determine the a for which this is true. If Eq. (7-5) is
substituted into Eq. (7 4), but in the second term Ea]r * is approximated
by [al", Eq. (7-4) becomes

~ -] ~ ~
3™ ax™1 4+ k9 (K1, Fai" axrtl = axm (7-6)
Since AXr+] and [aJ" are known, the second term of Eq. (7-6) may be
eva]uated. Representing this vector by AUr+], Eq. (7-6) yields
r+]
Au,
r+l 3
aj = 1 - W (7'7)
| J
and Fod™!

can be determined through this equation.

The iterative procedure is, therefore,

(a) Evaluate E

. ~ I -]
(b) Find Ax"”_ = [K(O)] 3 (7-8a)
-1~ R
(c) Evaluate AUH] = [K(O)] [K]r fad” AXH] (7-8b)
Auf+]
(d) Evaluate Ea3r+] from u§+] = 1 - Z;%;T - (7-8¢)
X

(e) Find o x4 g™ (7-8d)
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The application of this Fechnique essentially converts a modified
Newton-Raphson method to an approximate Newton-Raphson method. Similarly,
it may be applied to convert the incremental modified Newton-Raphson
method to an approximate incremental Newton-Raphson method (see Section 3).

The advantage is the elimination of the need to invert the stiffness

matrix at every iterate.
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§8. The Augmented Stiffness Technique (10, 15)

Many structures respond in such a way that they become unstable

-after reaching a particular critical configuration. Such a ‘critical

point' is indicated as point A on the response curve G(X) in Fig. 5a.
From O to A the 'tangent stiffness' matrix is positive definite and the
structure is stable. The point A is characterized by the fact that the
'‘tangent stiffness' matrix becomes singular (ie. - det [KT] = 0).

If the structure becomes 'unstable' at this point, as indicated in Fig.
5a, there is a deformation path originating from point A along which
increases of displacement must be accompanied by decreasing loads if
equilibrium is to be maintained. Along such a path, indicated as A-B in
Fig. 5a, the tangent stiffness matrix is negative definite. If the structure
reaches a point, such as B in Fig. 5a, where increases of displacement
must again be produced by positive load increments, the stiffness matrix

again becomes positive definite,

A complete study of the behavior of such structures is rather
complex and prediction of response is generally difficult. The critical

point A is of the type occuring in 'snap-through' problems and is often

‘ referred to as a 'limit point'. On the other hand instability may occur

in a precipitous manner associated with deformation components that are
not induced by the loading in the initial response of the structure.
Such a point, normally referred to as a 'bifurcation point', is shown as
point A* in Fig. 5a, and the critical response in this case may be the
curve A*-B*. There may be multiple equilibrium paths emanating from a

bifurcation point.
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The introduction of loads or initial deformations which induce
displacements associated with the bifurcation behavior in the initial
response converts bifurcation points to 1imit points., Therefore attention

is focused on this type of behavior,

If the load is not decreased at point A, but increased, the only
solution available on G(X) in Fig. 5a is a displacement along the curve
C-E. In this case an analysis would predict the displacement, say D, and
the unloading response of the structure along path A-B-C would be completely
lost. On the other hand, an equilibrium position may exist for a negative
displacement, say at D', and under monotonic loading the predicted
structural response might be 0-A-D'-E' rather than 0-A-D-E. In addition,
since the matrix at A is singular, the numerical method may simply fail

to converge to any value at A (ie. - the solution 'diverges' or 'blows up').

Without attempting to overlook the difficulties inherent in
such a problem, it can be said that ii'the response curve G(X) is locally
unique one method of eliminating numerical problems at A is to artificially
stiffen the structure. The stiffness of the basic structure is augmented
by a series of elastic springs such that the stiffness of the augmented
structure is always positive definite. A solution for this structure is
then carried out and is represented by the curve 0-A'-B'-C' in Fig. 5a.
Once this solution has been obtained, the loads that the structure equili-
brates may be determined by subtracting the 'spring forces' from the loads
that the augmented structure equilibrates. This results in the response
curve G(X). For such a technique to work the spring forces must be
proportional to the specified applied forces. The detailed formulation

follows.
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Let P, 3 and F be the loads equilibrated by the basic structure,

the augmenting springs, and the augmented structure, respectively. Then

~

F = P+P. (8-1)

Assume that the loads F are proportional to the specified forces P. It

ijs therefore necessary that
P = aofF (8-2)

where o is a constant to be determined by the stiffness of the spring

system.

One physical arrangement for achieving such a system of spring
supports is shown in Fig. 5b. Assuming the ratio of the elements of F
remain the same, restraining forces proportional to the applied forces are
obtained from a closed hydraulic system in which the areas (Ai) of the

pistons providing support are such that

A1-/Aj = pi/pj = fi/fj | (8-3)

where 6} and fi are elements of P and F, respectively. Eq. (8-2) is

then valid.

To determine the constant o, we note that by Eq. (8-2)

(8-4)

Assume the pressure in the hydraulic system is controlled by an elastic

spring as indicated in Fig. 5b, such that
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= yA (8-5)

where y is the spring constant and A is the deflection of the piston.

Combining Eqs. (8-4) and (8-5) to evaluate a in terms of yA, and
substituting into Eq. (8-2) yields

. (8-6)

Since the work done by the restraining forces is stored in the elastic

spring we have, from Eq. (8-6),

f‘ 12T A T 1,2
ZP X 3 =X FTx = yyal (8-7)
L |f; |
i=1
f and the last equality requires that
T ' -
~ Flx
= o ~ | . (8-8)
I f,
i=1
Substituting Eq. (8-8) into Eq. (8-6) yields
R T
p = XEF (8-9)
(z1f;1)

Denoting the stiffness matrix of the spring system by [Ks], Eq. (8-9) yields



g
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(K] = —Z'Y FFT . 8-10
L A _—

and the stiffness of the spring system such that Eq. (8-2) is satisfied
has been determined. The elements of [KS] are p}oportional to the spring
stiffness y but are independent of a scalar multiplication of F and only

the ratios of the elements in this vector are significant.

Any of the previously discussed solution techniques may now be

-applied with the augmented stiffnees technique. The technique is:

(a) to apply the loads F to a structure with an augmented stiffness matrix,

defined by

[Kyd = [KI + [K] | (8-11)

where [KA] is the augmented stiffness matrix, [K] is the normal stiffness
matrix and [KS] is the spring stiffness matrix of Eq. (8-10). (b) Solve
for the displacements X required to equilibrate the loads F. (c) Determine
the loads P from Eq. (8-1). This last operation is carried out by noting

that Eq. (8-1) can be written as
P=F-P (8-12)

which, from Eq. (8-9) may be written as

T T
p=r-LEFX) . p yEX) (8-13)
;1) ;1)

or

P = AF ' (8-14)
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where

T
=1-XEX . (8-15)
(2|f1|)

The constant of proportionality, A, is therefore, different for every
loading condition,

The following points should be noted:

1. The spring stiffness y must be carefully selected, generally to

make 0 < A < 0.5,

2. Since KS may be full, the banded nature of the stiffness matrix

may be destroyed.

3. If the determinant of the augmented stiffness matrix becomes negative,
the load should be decremented, which is also the case with unstiffened

structures, as will become apparent in Chapter III.
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CHAPTER III  APPLICATIONS TO A TWO-BAR TRUSS

§9, Introduction to Two-Bar Truss (8, 9)

In this chapter the solution methods of Chapter II are applied
to a simple two-bar truss in an attempt to assess their suitability for
solving geometrically nonlinear problems. The problems are unrealistic in
the sense that the material is assumed to be infinitely linear elastic,
that changes in the bar areas do not occur (ie. -v = 0), and that member
instabilities do not occur. However, they form a convenient vehicle to
study the ability of the solution technique to respond in highly nonlinear

situations.

§9.1 Formulation of Equilibrium Equations

In large deformation problems an energy formulation is usually
considerably simpler than an approach bésed on statics. Consider the truss
in Fig. 6a. This truss has two displacement coordinates associated with
joint B, which are designated as u and v. The deformed configuration is
shown in Figs. 6b and 6c. The displaced configurations of the bars are

shown in Figs. 6d and 6e.

Let ays 3, be the local coordinates of a point on the bar before

deformation, and X1 %o be the coordinates of the same point after deformation,

Let ﬁ] and 62 be the displacements in these local coordinate systems shown

in Figs. 6d and 6e. Since the extensions of the bars are uniform we may write
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(i) for bar AB

i = (- v sin & + u cos 8) a; / d (9-1a)
ﬁz = (-vcos ®-usin @) CH / d (9-1b)
(ii) for bar BC .
: ﬁ] = (+ vsin 6 + u cos 8) ay / d (9-1c¢)
E‘ i, = (- v cos & +u sin @) a / d. (9-1d)

§ Using Green's strain tensor the strain energy may be written as

ol 3l \2 3, \2
= _ 1 1 1 1 1 2

i - AB

with a similar expression for éBC' Differentiating Eqs. (9-1) with
respect to a, simply removes 3 from the expressions. Substituting the

derivatives into Eq. (9-2) and simplifying results in

€= €AB+€BC
1 -vsin®+ucos 6,1 v2 u2 ’
pene (rumspiee g (40
1 v sin 8 + u cos 6 1 v2 u2 ?
+ » EAd { g +§-(Ez + '52-)} (9-3)

" Differentiating Eq. (9-3) with respect to u and v, and simplifying, results

in

€ _ Eg {(v - ¢) v2 - 2vc + uz}. ' . ' (9-4a)
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€ Eé- u {v2 + 2(b2 - ve) + uz} (9-4b)

B
Fo - %%; | (9-5a)
and
B _ 3f
e o= € (9-5b)

If we consider the load R to be conservative (it retains its
1ine of action) while the load S is nonconservative (it always remains

normal to bar AB'), we have, from Fig. 6b,

:
| fyB = R+S cos 6 (9-6a)
| |

E

: and

? B . . .,

{ F, = Ssine . (9-6b)

Evaluating cos 6' and sin 8' from Fig. 6d

(b + u) / d* | (9-7a)

cos 6' =

sin ' = (¢ - v) / d* _ (9-7b)
where

¢ = Jb+u) + (c - v)° (9-7c)

Combining Eqs. (9-4), (9-5), (9-6) and (9-7) yields the equilibrium equations
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E% (v - ¢) {vz - 2vc + uz}- = R+S (b+u)/d* (9-8a)
ﬁé- u {vz +2(% - ve) + v } = s (c-v)/d* (9-8b)

These eqﬁations are more conveniently solved by putting them

into non-dimensional form. Defining

v = v/b (9-9a)

i = u/b . | (9-9b)

7 o= RAVEADS (9-9¢)

5 = s d3eab’ | (9-9d)

u = c¢/b (9-9e)
and

RN R O (9-9f)

Eqs. (9-8) become

(v - u) (\72 - 2uv + 62) = F+5 (1+a)/d (9-10a)

Q@2 (W) i) = 5 (u-V)d (9-10b)

Let us now consider some special cases.

(1) CASE A: Ioad S =0

For this condition Egqs. (9-10) become

(v -u) (V- 208 + @) = (9-11a)
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u (Vz + 2 (1'- uv) + ﬁz) = 0 (9-11b)

(ii) CASE B: Load S=0,u=1landu=20

Constraining the u displacement results in a symmetric structure
at all times. Eq. (9-10b) is identically satisfied and Eq. (9-10a)

becomes (forb=¢ , oru=1)

v(v-1)v-2) = r (9-12)

§9.2 Solutions for Speecial Cdse B (Vertical Load and Symmetric

Deformation Only)

In this case we may identify the variables in Eq. (9-12) with
the notation of Chapter II as follows. Let us denote r in Eq. (9-12)

as p to avoid confusion with the iteration index.

X = v (9-14a)
P = P(R) = : ' (9-14b)
F(X,p) = F(V,R) = v(v-1)(v-2)-p (9-14c)
G(X) = G(V) = V(v-1)(Vv-2) (9-14d)
P(p) = P(R) =5 = RdEADS (9-14e)
(K] = g% = 2 -6+ 37 (9-14F)

The tangent stiffness matrix [K] will be singular when

W -6y +2 = 0 (9-15a)

or when
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v = 8 :-,Sg =28 . g, . (9-15b)

L
/3

Eqs. (9-15b) and (9-14c) yield critical points (corresponding to points
A and B of Fig. 5a) of (0.365, 0.379) and (1.635, - 0.379).

The solution for this structure is shown in Fig. 7. This
solution may be obtained by substituting values for v into Eq. 9-12 and

computing the corresponding value of p. !

§9.2(a) Simple Incremental Analysis

Using the correspondence between variables established in Egs.

(9-14), Eq. (3-5) becomes

-1
AL +{? - 6V + 3(0”)2} ™) (9-16)

Solution by this technique is shown in Fig. 8. The increment in p for
this solution was 0.05. The solution is adequate for the 'prebuckling’
region but under monotonic loading predicts a response of the type shown

by 0-A-D'-E' in Fig. 5a.

§9.2(b) Modified Incremental Analysis

The modified incremental analysis adds the force unbalance from

step r to the load increment for step r+1. Eq. (3-3) becomes
=r+] -r -r N LAY r
v = v + {2 -6v + 3(v) } {Ap +E } (9-17a)

where E' is evaluated from Eq. (9-14c) as
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EN = pr -V (V-1 (V' -2) - (9-17b)

The load displacement curve is shown iq Fig. 8. Under monotonic loading
this method attempted to follow a curve such as 0-A-D-E of Fig. 5a.
Again the prebuckling curve can be obtained reasonably well but the snap

through phenomenon is missed.

§9.2(ec) Incremental Newton-Raphson Analysis

Eqs. (3-8) become

t_+1 t +1 t t -1 t

vhoo= v {2 - 6v "+ 3(V ")2} {Aﬁ" +E ”} (9-18a)

t_+s+] t +s+ t +s t4s )71  to+s

R A L AR 2) e (9-18b)
where

t s t+s t s t _+s

EF = p" " " -nET -2 (9-18¢)
After convergence occurs for iterate Sy of load increment r,

t, =ty ts, (9-18d)
and

s = 0. ' (9-18e)

The load increment was again set to 0.05. As indicated on Fig. 8, this

procedure predicts the prebuckling range and jumps to point D of Fig. 5a

 without the disturbance observed in the modified incremental procedure.
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However, it is also inadequate to detect the snap-through phenomenon

since the load increments are monotonic.

§9.2(d) Modified Incremental Newton-Raphson Analysis

. (3-9) yield recursive equations identical to Eqs. (9-18)
except for Eq. (9-18b) which becomes

t +s+] t +s t t -1 t.+s

v ' = v’ +{2-6\7‘”+3(\7‘”)2} E" . (9-19)
Results correspond to those of the incremental Newton-Raphson method for
prebuckling response. However, the procedure 'blows up' at a loading of

0.4 (the first load above the critical load of 0.379).

§9.2(e) Incremental Newton-Raphson with Gradient Test

This procedure uses the recursive equations previously presented
as Eqs. (9-18). However the determinant of [K]t +s is checked.for sign.
(In this problem the determinant of [K]t +s is equal to
{2 - 6vt s + 3(vtr S) } ). When this s1gn is negative the load is
decremented. When the sign is positive the load is incremented. The

test for sign is called a ‘'gradient test’.

The results are shown on Fig. 8 and indicate that unloading and

postbuckling behavior can be readily determined with this type of procedure,
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§9.2(f) Combined Newton-RaRhson and Modified Newton-Raphson with

Gradient Test

The computational inefficiency of the Newton-Raphson method was
mentioned in section 3, name]y,'it is necessary to reform and invert [K]
for every iterate. This suggests that the following procedure would be

more efficient than that above.

(i) The modified Newton-Raphson technique (Equations (19-18)
with Eq. (9-19) replacing Eq. (9-18b)) is used as long as convergence

for a load increment is obtained.

(i1) If for load increment m the method begins to diverge,

1 and initiate the Newton-Raphson technique with

return to displacements v
a gradient test as discussed above until the first point beyond the critical

point is determined.

(iii) Switch back to the modified Newton-Raphson technique and
continue to decrement the load until the method again begins to diverge,

at which time return to (ii).

The load deflection curve obtained by this procedure is the same

as in (e) and is shown on Fig. 8.

§9.2(g) Initial Value Five-Point Difference Form

The initial value five-point difference form of section 6 is a
pseudo-load procedure. To put Eq. (9-14c) into pseudo-load form the
equation must be written so the terms correspond with those of Eqs. (5-3)

and (5-4). Thus Eq. (9-14c) is
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2 3

F(vp) = 2v-3v"+Vv  -p =0 (9-20a)

which, in the notation of Eq. (5-3) is

k@15 +K17-5 = o (9-20b)
where

k(@7 = 2 (9-20¢)
and

K] = ¥ -3V (9-20d)

Then, identifying the second term as Q,
Q = [KIV = ¥ (v -3) | (9-20e)
The initial-value procedure of Eqs. (6-10) then becomes

o= %_vr-l 2 .1 ‘{2 —r ZQr-l 11 or-2 _ 2Qr-3

1 cr
-3V tz - 30

+ ‘? Q"‘4} (9-21)

where Q is evaluated from Eq. (9-20e). Initial values for the first three
points were obtained by iteration and Eq. (9-21) was solved for Ap = 0.01
and Ap = 0.005. Results are shown on Fig. 9. Prebuckling is predicted

reasonably well but postbuckling predictions are erratic,
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§9.2(h) Self Correcting Initial Value Four Point Difference Form

This procedure, summarized in Eqs. (6-13), is based on the
second order differential equation presented in section 6. Eq. 6-13d

becomes

o= [(Ap) 1 {c + 25 -2z Q" -1, Qr-Z _c (Qr-1 . Qr—Z)}

5
+ (5 + 2 cKﬁ)Vr'1-(4+—ZP- r-2 'r'] (2+%c753.+2(A52))
. (9-22)

where Q is given by (9-20e), and Egs. (6-13e) and (6-13f) define z and c.
Results are shown on Fig. 9 for a load increment of 0.005. Starting
values were again determined by iteration. This method predicts the post-
buckling region more accurately than the five point form used above but

cannot detect the snap through behavior.

§9.2(1) The Alpha-Constant Technique (6)

f The alpha constant technique has been tested with the modified

incremental Newton-Raphson technique. Eq. 7-3 becomes

[[K(o)] + [EJr] o= g | (9-23)

j where [K(O)] is given by Eq. (9-20c), [K] is given by Eq. (9-20d) and Er
5 is obtained from Eq. (9-17b). The procedure follows Eqs. (7-8) and is:

1. Set VO = 0 and ao = 1,
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2. Evaluate E" from (9-17b)
EN = -V (V-1 -2) (9-24a)

3. Find Av from Eq. (7-8a)

AV = ?E". | (9-24b)

4, Compute Au from Eq. (7-8b)

2 R |
Al = _]2_{3(vr) - 6vr} qr L Av" (9-24c)
5. Compute o = 1 - au'"/av" | (9-24d)
6. Find ¥ = ¥V 4o AV (9-24d)

7. Return to step 2.

The alpha constant technique.app1ied to the modified incremental
Newton-Raphson method reduces the number of iterations required for each
load increment as shown in Table 1. The solution is the same as that for

the modified incremental Newton-Raphson method discussed in (b) above.

§9.2(7) The Augmented Stiffness Technique (10,15)

As described in Section 8, fhe augmented stiffness technique
consists of applying the forces F to a stiffened (or augmented) structure
for which the stiffening system is such that its resistance is always
proportional to the applied loads. The stiffness of the augmented structure

is expressed by Eqs. (8-11) where [KS] is given by Eq. (8-10).
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For the present problem [K] is given by Eq. (9-14f). The
technique may be applied with any of the previously presented solution
techniques. It is applied here with the modified incremental technique

of section 9.2(b). Eq. (3.3) becomes

AL R AN {E" + _A?“”} _ (9-25)

where, from Egs. 9-14,

F= 24 a? . (9-26a)
EA D
From Eq. (8-10)
T
[Ks = .;IJiJijf = v. (9-26b)
(z|£;1)
The matrix [KA] then becomes
(KD, = 2- 67 +3 (W2 +y (9-26¢)
and Eq. (9-14c) yields
s L) -2) - W (9-26d)

The loads on the basic structure are given by Egs. (8-14) and (8-15) which

become
5= E (9-26¢e)

where
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. (9-26f)

An initial value of y to make A = 0.4 was selected. The load-deflection
curve is shown in Fig. 10c and 10b, The determinant of the incremental
stiffness matrix remains positive and the snap-through phenomenon is

detected without any special precautions.

89,3 Solutions for Special Case A (Vertiecal Load Only)

The equilibrium equations for this condition are Eqs. (9-11).
The previous solutions have assumed that the response of the truss was
symmetric under vertical load. Eq. (9-11b) indicates that u = 0 is
certainly a condition under which equilibrium is maintained and is there-
fore a valid equilibrium solution. However the truss may respond in an
unsymmetric manner, even with symmetric loading. The conditions under
which this may occur are when the term in parentheses in Eq. (9-11b) is

equal to zero. That is, when

2

=4}

92 +2 (1 - uv) +

For a real nonzero value of u to occur, Eq. (9-27a) can be satisfied only

if
Wr2(1-m) <0 (9-27b)
or
W-o2uW+2 <0 | (9-27¢)

This equation can be factored, if u is set to 2.25, and yields

= 0 ’ (9-27a)



(v-4)(v-05) <0,

Eq. (9-27d) is satisfied only if

0.5 < v < 4,

Therefore, for u = 2.25, nonzero u can occur (ie. an unsymmetric

47,

(9-27d)

(9-27e)

equilibrium configuration is possible) when v is in the range expressed

by Eq. (9-27e).

The objective of the following example is to determine

if the more successful techniques of section 9.2 can detect this behavior.

Setting u = 2.25, and again designating r by p, Eqs. (9-11)

may be identified with the variables of Chapter II as

X =

P(p)

F(X,p)

G(X)

|

3

<1

[ =3

P(R)

= F(X,R)

hel]

|

G (V2 - 457+

(V - 2.25) (V¥ - 4.5 ¥ + @2)

G2 -45V+0

2

2

3R a3/eA b3

(V - 2.25) (¥ - 4.5 ¥ + 3°) - §

+ 2)

+ 2)

(9-28a)

(9-28b)

(9-28c)

(9-28d)
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oX

[K] = [ﬁf] = [ (3 - 13.5¢ + 3% + 10.125) 23 (V - 2.25)
1

(9-28e)
20 (¥ - 2.25) (V2 - 4.5 + 33 + 2)

L. o
Note that for v = 0.5 and u = 0, the first equilibrium equation from Egs.

(9-28c) predicts a load of p = 3.5. This load therefore corresponds to
the lower limit at which u displacements can be initiated as indicated

by inequality 9-27e.

The problem was solved with the aid of the augmented stiffness
technique. The spring stiffness matrix for thé load vector of Eq. (9-28b)
is, from Eq. (8-10)

bt v
k] = Y0 <1 0>, (9-29)
s (£]1])% -

and Eqs. (9-28c) and (9-28e) become

Fa(Xop) = [ (¥ - 2.25) (V2 - 4.5V + G%) +y7 - f
(9-30a)
i (W - 4.5V + 3% + 4.5)
and
(K, = (372 - 13.57 + G2 + 10.125 + y) 20 (v - 2.25)
s -2 .2
2u (v - 2.25) (v - 4.5v + 30" + 2)

(9-30b)
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From Eqs. (8-12) and (8-15)

N (F) [ f
RS R
0 0 0 0
where
¥0>§‘7f £y
A = I-X—EW— a) = -’(fl]_cl‘)’z (9-30d)

The solution of the augmented structural equations, Eqs. (9-30),
without special precautions, was attempted using the Newton-Raphson
procedure., The results, shown in Fig. 11, predict a response with u = 0
and v identical to that obtained for one degree of freedom. This is not
the correct solution and a direct application of the augmented stiffness
technique therefore fails. If, however, a nonzero u displacement is
artificially introduced into the solution at the beginning of the load
increment for which nonzero u can occur, the load on the augmented structure
continues to increase while the correct loading path is followed. This

result is also shown in Fig. 11,

For a more general problem, the load at which an artificial
displacement should be introduced is unknown, and an attempt was therefore
made to follow the correct loading path by maintaining a small lateral load
associated with the u disp]acement.'.Results for a lateral load of
%x = 0.0001 are shown iﬁ Fig. 12. Although nonzero U displacements occur,
this is not the proper solution, and the vertical response again follows

a curve of the type for U = 0 (see also the solid line of Fig. 13a). However,



il il e o e ihinzs ol L L oaale Lot g

| il B b aade o

50.

when a lateral load -of ?x = 0.01 is applied, the augmented structure
response is that shown by the dashed lines of Fig. 13a and Fig. 13b. This
is the desired solution. The response of the augmented structure, predicted
by the Newton-Raphson technique, is therefore profoundly influenced by

the magnitude of the disturbing force.

The observation that the determinant of the augmented structure
remains positive for-a disturbing force of 0.01 which follows the correct
response, and is negative for a disturbing force of 0.0001 where incorrect
response is obtained, prompted the use of a gradient check with the
augmented stiffness method. When this technique is applied with ?x = 0.0001
the correct response of Fig. 14 is obtained. It should be noted, however,
that in all of the app]iéations discussed in this section, the load on

the augmented structure continues to increase.
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§9.4 Solutions for Nonconservative Loading

The equilibrium equations, Eqs. (9-10) contain the nonconserva-
tive load s. In this example the load r is set to zero and only the
| nonconservative load is considered. This example differs from the previous
é examples since it is impossible to write F(X,p) in the special form
é indicated in Eq. (2-3). However, none of the techniques contained in this
report require the special form of Eq. (2-3), even though it has often
been assumed for convenience. Using the notation of section 3, Egs.

E
;
é
?
% (9-10) with ¥ = 0,and denoting now S by p, we have
]

FX,p) = F(X,8) = {(¥-n) (¥ -2uv+i2) -5 (1+0)/d
‘ (9-31a)
E:. -
L P20 -w) +d@) -Fw-9)/4d
: Now [K] = 3F 1 where x. =¥, X, = 0 , becomes
] 3x1 ’ 1 > "2 ’
i - L 2
- | Wi Pl el 04D (-0 za(v-u)-%+ﬂ“—a-3“-£)—
e 2 - -
=_ 20 (7 -y) +B- B 0 2450 -5+ ai? - RO 20 - u)
i d d d
! _
, ... (9-31b)

and

-zﬁf_i = {0 +0)/d

(u-ﬂ/al (9-31c)
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The incremental Newton-Raphson equations, Eqs. (3-8), may now be used with

the above expressions for [K], AP = - fﬁ; Ap , and - E" evaluated from

ap
Eqs. (9-31a). Egs. (9-31) may also be used with any of the other techniques

of section 3.

Displaced configurations for zero applied load may be determined
by setting F(X,p) of Eqs. (9-31a) equal to zero. This requires the

simultaneous satisfaction of the equations

(V-u) (¥ -2+ = 0 (9-32a)

'..2)

(W r2 (1 -+ =0 (9-32b)

[~

Eq. (9-32b) is satisfied for U = 0, and in this case Eq. (9-32a) becomes
v(iv-p(v-2uy) = 0. (9-32¢)

Selecting simple geometry, let u =2, and the equilibrium positions
(v, u) available for u = 0 are then (0,0), (0,2) and (0,4). For u # 0,

Eqs. (9-32) require the simultaneous satisfaction of

W2 -4y + @8

[}
o

(9-33a)

Woaved® = -2 (9-33b)
providing v # 2. Egs. (9-33) are obviously inconsistent and possess no
solutions. Therefore it is sufficient to look for additional solutions
only for v = 2, in which case (9-32a) is identicaily satisfied and Eq.

(9-32c) requires
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o= -4-20-4) = 2

The additional solutions therefore are ( + V2 , 2) and ( - V2, 2).
In summary, the equilibrium positions possible with zero load are (0,0),
(0,2), (0,4), (1.414, 2), (-1.414, 2). These solutions may be contained

on possible equilibrium paths of the structure,

The-load deflection curve obtained by the combined Newton-Raphson,
modified Newton-Raphson technique, with gradient test is shown in Fig. 15.
Fig. 16 shows the displaced configurations of the truss along the loading
paths and the displacements for configurations A, B, C and D are indicated
on Fig. 15. The ability of this technique to follow complex 1oaa-

deformation response is apparent.

The solution by thg self-correcting initial value four point
difference form is also indicated on Fig. 15 for &p = 0.05. This
solution oscillates after the 1imit load is reached and cannot be used to

determine the post-buckling region.

Fig. 17 shows the load-deflection curve obtained by the augmented
stiffness approach. This solution diverged at the load of 2.0 between

configurations C and D of Fig. 16,
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89.5 Discussion of Results

The applications of the techniques of Chapter 2 to the problems

associated with a two-bar truss, considered in this section indicate

that the following conclusions can be drawn.

(1)

(2)

(3)

(4)

In order to follow an unloading path it is necessary to include a
gradient.check in the analysis. This follows from the results of
§9.2 where the Qn]y successful techniques, other than the augmented
stiffness technique, were those using a gradient test. However the
auQmented stiffness technique failed to detect a bifurcation point
in §9.3 when no gradient test was used (on the augmented stiffness

matrix). Therefore the conclusion is a general one.

Initial value and numerical integration techniques do not seem to be

suitable for structures which unload.

In order to detect a bifurcation point, it is necessary that a nonzero
load be associated with every degree of freedom. This fo]léws from
the first analysis of §9.3. These 'disturbing forces' may be small
compared to those in the normal applied load vector, This in itself

is insufficient and a gradient test must also be included. (Fig. 12).

The modified Newton-Raphson, Newton-Raphson, technique with a gradient
test (§89.2f) appears to be the most versatile and reliable technique.
This may be applied to either the primary or the augmented structure,
However, an augmented structure technique, by itself is less versatile
(see the last result in §9.4). The alpha-constant method may be

included in this technique to reduce the number of iterations.
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CHAPTER IV  APPLICATION TO A SPACE TRUSS

§10. Introduction to Space Truss Problem

The examples of Chapter III were simple ones with one or two
degrees of freedom. In this chapter the more general problem of
formulation and solution of geometrically nonlinear space trusses is
considered. The forﬁu]ation is based on the same simplifying assumptions

as were employed in Chapter III.

Shallow reticulated shell structures often display instability
phenomena of the snap-through or bifurcation type. This is illustrated
schematically in Fig. 5a where the response curve exhibits a 1imit point
at A and a bifurcation point at A*. Hangai and Kawamata (17, 18, 19)
have solved for the nonlinear response for a reticulated shell structure
by static perturbation methods. The augmented stiffness approach of

Chapter III is applied to this type of problem in this chapter.
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§11, Formulation of Equilibrium Equations

A pin-jointed bar is shown in an arbitrary spatial orientatioﬁ
in Fig. 18a, with ends designated as joints i and j. Adopting the notation
of Chapter II, let ays 3, and a3 be a local coordinate system with origin
at joint i, as shown in Fig. 18a. Let I, V and W be the displacements.
of an arbitrary point on the bar in these local coordinate directions.
The bar has six displacement degrees of freedom designated as Uys Yy and
W15 at joint i, and Uys Vs and Wy s at joint j, as shown in Fig. 18b. For

uniform extension of the bar

g = Uy (1 -8) + uy B (11-1a)
Vv = Vi (1 -B) + \Z) B ’ ) (11-1b)
W= (1 -8) + W, B (11-1¢)

where B is the nondimensional coordinate a]/£.

But as in Eq. (9-2), the strain energy of the bar is

1 2

£= 7 M e (11-2)
where
wl 2 ~\2 N2
. ol 1 )/30 oV AW
e = ﬁ'{*i}(aa1) +(aa]) +(aa]) (11-3a)
Substituting Egqs. (11-1) into Eq. (11-3a) yields
U, - U
. @ 1 1 2 2 2
e A ((“2‘“1) *“’2"’1"*‘”2""1))

.. (11-3b)
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which may be written in the symbolic form

where €L and EyL are identified as the corresponding terms in Eq.
(11-3b) and are the linear and nonlinear components of strain,

respectively.

Using the notation of Chapters I and II, we identify the
displacement coordinates for a single bar in the local coordinate system

as

T
X' = < X19XgsX30XgsXgsXg > = < Up,V sy sls VoW, > (11-4)

Then the components of strain in Eq. (11-3c), may be obtained by substituting
Eqs. (11-1) into Eq. (11-3b) and result in

T

= L X (11-5a)

€L
where L is the vector defined as
R U (11-5b)

and

N =

X" HX (11-6a)

where
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1 . — .
. 1 — .
W o -%? . . 1 . — ' (11-6b)
) -1 . . 1 . .
-1 . 1 .
-1 . . 1

Equation (11-2) now can be introduced into the potential

energy expression for the bar and results in

L = €-pTx (11-7a)

Where P is the vector of element nodal forces in the (a], 3y, a3)
coordinate system. Substituting Eq. (11-3c) into the expression for

strain energy, Eq. (11-2), and using Egs. (11-5) yields

T

. |
e _ EAL T XTHXy T XTHX, T
o= Bl BHAy T x s 20N CpTy (11-8a)
EAL [T, To .1 T, T T XTH X X7 H X
-xTp
or
e =E’Z‘i(xTLLTm;—xT(LxTH+LTXH+HXLT)x
1.T XTHXH T T
rext X oy xTwy x - xTe (11-80)
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The energy expression may be written in many different ways such that

the first, second and third terms on the right hand side are symmetric.

The equilibrium equation for the element is then obtained
from Eqs. (11-8b) or (11-8¢) by differentiating with respect to the

displacement coordinates. In the notation of Chapter II

e
e (X,p) = {%(“—}= e {ZLLTX+(LXTH+LTXH+HXLT)X
K

+ (HXXTH) X- (P} = {0} (11-9a)
or
' e
F® (X,p) = {%}:—}= EAz{LLTx+;—(LxTH+LTXH+HXLT)x
K

‘o (X—T——”z—x—”-+HxxTH)x-{P}='{0} (11-9b)
Eqs. (11-9a) and (11-9b) are the equilibrium equations obtained by differenti-
ating the energy expressions of Eqs. (11-8a) and (11-8b) respectively.
Eq. (11-9a) and Eq. (11-9b) represent identically the same equilibrium
;quations but they are written in two different symmetric ways. In
obtaining Eq. (11-9) the symmetry of H has been recognized and it is also
recognized that scalar products and quadratic forms can be commuted as
normal scalars. Ed. (11-9) is the set of equilibrium equations for a
single bar and corresponds to Eq. (2-1b). When equilibrium is not completely
satisfied it may be used for the evaluation of residual forces as indicated

in Eqs. (2-2).
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Mallet and Marcal (5) have introduced special notation for

Eq. (11-9) and written the form

[[K]e+%[N]]e+;—[N2]e] X¢ - p® = {0} . (11-10)
where
[KI® = EAL L LT
N 1e = AL [LXTH+LTXH+HXLN
and
e X" H X H T
1% = eae |[RHEXH ooyxxTy|

To write an approximate incremental equation such as Eq. (3-2),
using the Taylor series expansion, it is necessary to evaluate

[B'Fea—‘Li).(’ )] AX

1

Differentiating either Eq. (11-9a) or Eq. (11-9b) results in

e
[BF a(X,E)] = EAR [L LT + (L xT H + LT XH+HX LT)
Xn

» (HXH Ly H)] (11-11a)

2

Identifying the matrices in this equation with those in Eqs. (11-10)

we may write
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f—aﬂzﬁ = [KI® + [N, 23° + [N, (11-11b)
Xq 1 2
The neat relationship of Mallet and Marcal such as
£ o= X []7 (K1 + & [N + 1 [sze] X -xp
0® + L on® + 1 [sze] X = P (11-12a)
L[K]e + NI+ [Nzle] AX = AP (11-12b)

will exist only if the energy expression is written as Eq. (11-8b).
Writing the energy expression having proper symmetry of the resultant
matrices above will not insure that the above neat relationship is valid

at all times.

Upon expansion, using the definitions of X, L and H in Egs.

(11-4), (11-5) and (11-6) the matrices in Egs. (11-10) and (11-11) are

p— -

1 . . =1

we = 20 T (11-12a)




Where

A

' 2 1
Usy Vo Usq W1 Uym -z Uy Yy
2 1 2
Vo1  * 78V Wy Vo1 Upy Vo1 -
Wl +la .U Wi U
21 72 21 Uy 21 Uz
2 1
Upp" + 38 Uy Vo
2
Vo ¥
2 2 2

Upy ™ + Vop * Wy

P—;b21 Vo1 Wy Uy -V - ”;;_-
Upr = -V - Uy y
U1 - ¥y y - Uy
Uy V21 Way
SYM, Uy, ]
Uz
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(11-12b)

el
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A1l the matrices associated with a truss element for a total or linear
incremental solution have now been determined. However, it remains to

assemble the equilibrium equations for the structure.

The above equations are in the local coordinate system. If
£, n, ¢, represent the global axes in Fig. 18a, the coordinate trans-

formation from the (a], a5, a3) axes to the local axes may be written as

£ (37 3 33 3
n a1 A9 a?3 a1 = [A] a, (11-13)
33 a3

Where aij are the direction cosines between the axis aj and the

axis £, where (£, &, 53)—> (E, n, ¢). The force transformation to the

global axes at the node i of a bar is then (Fig. 18c).

e e
U u
vt o= [AT v | (11-14a)
W, W

and the displacement transformation is

u e gy

¥ O UL I T Y S L (11-14b)
n n

w i W; ; Wc
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Transforming all elements to the global system of coordinates,

and assembling, Eqs. (11-10a) and (11-11d) become

F(X,p) = [K+gh +EN,1X-P = {0} (11-152)

FOCH, ™) = FOC, ) DK+ N+ N, T AX -

1,r

;= {0} | (11-15b)

Where X is the asembled vector of global displacement coordinates, P is

the assembled vector of global forces, and

N
K = § [T1 K1 (1" (11-16a)
m=1
N e T ' -
Ny o= 3 [TIINSI [T (11-16b)
m=1
N e o
N, = 1 MM _ (11-16¢)
m=1
and ‘ [(T] = |[A] .
. IAD | (11-16d)

A variety of solution procedures may be used to solve these equations,



65.

§12. Solution of Reticulated Shell Structure

The reticulated shell structure solved by Hangai and Kawamata
(18) is shown in Fig. 19. Results for the vertical displacement of
joint 1, obtained by the augmented stiffness modified Newton-Raphson,
Newton-Raphson, technique with a gradient test, are also compared to
those of reference 19 in Fig. 19. The displacements of joint 2 are

plotted in Fig. 20.

It is apparent that the technique employed is capable of
producing results for reasonably complex problems. The results of Ref.
18 were obtained by a ;tatic perturbation technique. The discrepancy
of results between the two approaches can be attributed to two causes:
(a) Ref. 18 employed a different strain measure in the constitutive
relation, and (b) the static perturbation technique does not have an overall

equilibrium check.
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SUMMARY

The formulation of a number of different techniques for
carrying out the solution of geometrically nonlinear structural problems
has been presented. These techniques have been implemented and results
compared for a number of simple structures exhibiting pronounced geometrically

nonlinear response,
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Load Modified Newton- Alpha-Constant -
Raphson Stiffness Method

0.05 . 6 4

0.10 6 4

0.15 7 5

0.20 7 5

0.25 8 6

0.30 10 9

TABLE 1 Comparison of Alpha-Constant Stiffness

and Modified Newton-Raphson Technique
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E
STRUCTURAL
RESPONSE

D G(x)

a) RESPONSE OF AUGMENTED

STRUCTURE

FIG. 5 - AUGMENTED STIFFNESS ANALYSIS



A=2A,+'A2 + Ay + A,

b) AUGMENTED STRUCTURE

FIG. 5 - AUGMENTED STIFFNESS ANALYSIS
(CONTINUATION)
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AND MODIFIED NEWTON-RAPHSON

A\'/} FOR COMBINED NEWTON-RAPHSON
WITH AQ =02

ou

@V FOR SELF CORRECTING INITIAL
VALUE WITH AQ = 0.05

FIG. 15 - SOLUTIIONS FOR TWO BAR TRUSS (n=2.0)
WITH NON-CONSERVATIVE LOADING
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FIG. 16 - DISPLACED CONFIGURATIONS OF TWO
BAR TRUSS (1=20) WITH
NONCONSERVATIVE LOADING
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