| L o

Bibliothéque nationale
du Canada

Direction des acquisitions et

Youw hie Votre reléconce

O e Notre t€*armrce

Bibliographic Services Branch des services bibliographiques
Ottawa, Ontario Otiawa (Ontaro)
K1A ON4 KIAON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si P'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

UNIVERSITY OF ALBERTA

An Object-Oriented Multimedia Database System
for a
News-on-Demand Application

BY

© Chiradeep Vittal

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fuliillment of the requirements for the degree of
Masters of Science.

DEPARTMENT OF COMPUTING SCIENCE

Edmonton, Alberta
Fall 1995

l* . tl;lfatlonal Iaibrary gz%oggg:e nationale

isitions and Direction des acquisitions et

Acqu S
Bibliographic Services Branch des services bibliographiques
395 Wellinglor Street 385, rue Wellington

Ottawa, Onlario Otiawa (Ontario)

K1A ON4 K1A ON4

THE AUTHCR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-06553-7

Canadi

Your file Voire rélérence

Our hie Nacire rélérence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

'NIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Chiradeep Vittal

TITLE OF THESIS: An Object-Oriented Multimedia Database System for a News-
on-Demand Application

DEGREE: Masters of Science
YEAR THIS DEGREE GRANTED: 1995

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only-.

The author reserves all other publication and other rights in association with the
copyright in the thesis. and except as hereinbefore provided neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

!
(Signed) . \//C\ Wh)& ‘r
CMadeep Vittal
616, 15th Cross, 6th Phase,
J.P. Nagar, Bangalore,
India, 560078

Date: . {877\[\/?0"‘&‘ [C}

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Research for acceptance, a thesis entitled An Object-Oriented
Multimedia Database System for a News-on-Demand Application submit-

ted by Chiradeep Vittal in partial fulfillment of the requirements for the degree of
Masters of Science.

Dr. D. Szafron (Co- {

LT
_Dr” Werfer Joerg (External)
——

72 L

Dr. L. Liu (Examiner)

Date: . tg’r‘; Mk“, 19 <

To My Parents

Acknowledgements

I would like to take this opportunity to thank my supervisors, Dr. Ozsu and Dr.
Szafron for their guidance, patience, and funding. It was a great pleasure working
with Dr. Ozsu and he afforded me many opportunities to develop not only my research
skills, but also my personality. Dr. Szafron provided me insight into object-oriented
design and invaluable advice during the course of my research.

I am also grateful to the members of my examining committee, Dr. Werner Joerg
and Dr. Ling Liu, for taking the time to read and comment on this thesis. Thanks
also go to Dr. Jonathan Schaeffer who chaired my thesis defense.

Help and company from my colleague in the multimedia project., Ghada El-
Medani, is appreciated. The members of the Database Research Group provided a
conducive working environment for which I am grateful. I also acknowledge support

from the Department of Computing Science in the form of a teaching assistantship

and the M.Sc Research Award.

Contents

1 Introduction 1
LT Moetivationo L, 1

1.2 Characteristics L 4
1.2.1 Object-oriented Datakases 4

1.2.2 Document Standards 5

1.3 Scope and Organization of the Thesis 6

2 Application Environment 7
2.1 The News-on-Demand Application T
2.2 Project Components 9
2.3 Multimedia News Documents 10
2.4 A Sample Multimedia News Article 10
2.5 System Architecture 13
2.5.1 Distributed System Architecture. 13

2.5.2 Database Architecture 15

26 Query Examples 17
2.6.1 Retrieval Scenario. L., 18

262 Searches, 19

3 Overview of SGML and HyTime 21
3.1 SGML Principles 22

3.1.1 Markups and Logical Structure 22

3.1.2
3.1.3

Why not HTML?

HyTime Overview

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5

Document Type Declaration

DTD Design

....................
............................
.............................

..............................

Architectural Forms

HyTiime Modules

e e & & e 4 s e & s s * s + s B 2 e s s e o e

.........................

Finite Coordinate Spaces

.....................

A DTD Fragment for Closed Captioned Video

HyTime Locators

.........................

4 Design of the Multimedia Type Sy=icm

4.1

Modeling of Monomedia Ob;jeci

4.1.1
4.1.2

Type System for Elements

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5

4.2.6

........................

The Type System for Atomic Types

.- v L e

Storage Model for Text

........................

Design of the Type System

....................

Top Level Hierarchy

.......................

Text Elements

Structured Text Elements

....................

HyTime Elements

.........................

Other Types

............................

5 Implementation Issues

5.1
5.2

Example Design
Implementing the Type System

5.2.1
5.2.2
5.2.3
5.2.4

..............................

.....................

Designing for Persistence

.....................

Abstract Types and Inheritance
Modeling DTD Constraints

.................
...................

Performance Issues

........................

29

6 Related Work

6.1 Database Models for Structured Documents
6.2 Other Multimedia Databases
6.2.1 Presentation-Oriented Multimedia Databases
6.2.2 Miscellaneous Multimedia Databases

7 Conclusions and Future Work
Bibliography
A DTD for Multimedia News Articles

B Type Declarations

B.l1 AtomicTypes R
B.2 Top-Level Element Hierarchy e e e e e e e e e e e
B.3 TypeArticleRoot

B.4 Union Types.

List of Figures

fu—y

N

o] Ha W

-1

10
11

12

13
14

Processing Environment
Sample Multimedia Document
Distributed System Architecture

Conceptual Database Architecture

Axes, Events, and Extents

Extents Along the Time Axis for Events in CC Video

Atomic Types Hierarchy
Annotations to Mark-Up Text Documents
First-Level Element Type Hierarchy
Type Hierarchy for Unstructured Text Elements
Type System for Structured Text Elements
Type Hierarchy for HyTime Elements

Partial Object Composition Hierarchy

Remaining Composition Hierarchy (Synchronous Portion)

.....................

....................

........................

.........................

...............

............

...............

..................

Abstract

Multimedia applications need support from an underlying multimedia storage sys-
tem to store and retrieve multimedia objects. The presence of spatio-temporal and
composition relationships between the objects, their large volume and their iunher-
ent distribution pose interesting modeling and implementation requirements. These
requirements cannot be fully met by conventional means such as file servers and rela-
tional databases. The design and implementation of a multimedia database to satisfy
these requirements is described in this thesis. The design is targeted to a News-on-
Demand application. The features of this work a.ré the use of object-oriented database
technology. and the use of document standards to represent multimedia documents.

News-on-demand is a distributed multimedia application that uses broadband
network services to deliver news articles to subscribers in the form of multimedia
documents. A type system is developed to model the individual media components
(monomedia) of the documents. To capture the composition and spatio-temporal
relationships between the monomedia objects in the news articles, the SGML and
HyTime document standards are used. This is done by designing an SGML/HyTime
document type declaration (DTD) for multimedia news articles. This DTD is mapped
to a type system. An annotation scheme ensure efficient storage of the text component
of the document. These type systems are implemented on an object-oriented database

system and fully satisfy the requirements of the news-on-demand application.

Chapter 1

Introduction

1.1 Motivation

Multimedia information systems integrate a variety of data types such as text, im-
ages, sound and video to enable different multimedia applications. These applications
have several requirements, including the storage and retrieval of multimedia objects.
The characteristics of multimedia data make the use of conventional storage systems

(file systems or relational databases) inadequate or problematic. Some of these char-

acteristics are:

1. Large volume. For example, each of the following takes 1 Mbytes of storage in
uncompressed form [Fox91]: six seconds of CD-quality audio, a single 6£0x480
color image with 24 bits/pixel, single frame (1/30 second) CIF video, or one
digital X-ray image (1024x1024) with 8 bits/pixel.

to

The presence of spatial, temporal and logical relationships between components
of a multimedia object. Examples of spatio-temporal relationships include the
synchronization of captioned video and audio. Multimedia data is often pre-
sented in the form of documents. Multimedia documents! are structured com-

plex objects containing a number of primitive objects (monomedia objects) such

1The terms ‘composed multimedia data’ and ‘multimedia documents’ are used interchangeably.

1

as video. digitized voice and images. Document components have logical rela-
tionships betwern themselves: the composition relationships between chapters.
sections and subsections in this document are examples of logical relationships.

These relationships should be modeled explicitly as part of the stored data.

For a database where such multimedia documents are stored. there should be fa-
cilities for (a) accessing objects based on their semantic contents. and (b) access-
ing different components of these objects. Furthermore. there are relationships
among the multimedia objects (i.e.. classification. specialization /generalization.

and aggregation hierarchies) that need to be modeled [WKLS36. D(92. Thur92].

3. Multimedia information systems require an extensible data model that allows
application designers to define new types as part of the schema. For example.
since monomedia objects are not just strings or integers or characters. new tvpes
have to be defined to handle them. Furthermore. the applications themselves
must be able to add and delete new object types dvnamically {Thur92]. There-
fore. multimedia systems must not have static schemas and the storage system

must be able to handle dynamic schema changes.

4. Distribution. The storage requirements of multimedia data and the devel-
opment of gigabit networks and server technology has meant that multiple

servers are used to meet the demands of applications such as news-on-demand

[LGY1. Stev9l. GDC+92].

These characteristics make multimedia information systems excellent candidates
for the use of database management system (DBMS) technology. However, most
current multimedia information systems do not use DBMSs. This implies that sys-
tem support for standard DBMS functions such as querying. update control through
transactions, etc. is absent in these systems. As next generation multi-user systems
are developed (such as news-on-demand. collaborative and interactive work and elec-
tronic publishing) multimedia DBMSs that provide native support for these functions

will become more attractive.

tw

Although several “multimedia file systems™ have been implemented. file systems
do not po-sess the full functionality of DBMSs. File systems leave to the user the
responsibility of formatting the file for multimedia objects as well as the management
of a large amount of data. Even if the multimedia data is stored in files. the spatial.
temporal and logical relationships need to be stored in some DBMS. This has been
the traditional role of DBMSs in multimedia information systems; the term “mul-
timedia database™ often refers to a centralized directory service for data stored in
various file systems. Distributed DBMS technology [OV91] can be used to efficiently
and transparently manage data distribution; distributed file systems are no match for
distributed DBMSs in their functionality. The development of multimedia comput-
ing systems can benefit from traditional DBMS services such as data independence
(data abstraction). high-level access through query languages, application neutrality
(openness). controlled multi-user access (concurrency control). fault tolerance {trans-
actions. recovery), and access control.

However. relational DBMSs are also not adequate to support the requirements of
multimedia systems. Neither is there support for the new media types in relational
systems nor is there a way to extend the type system to incorporate them (extended
relational systems are an exception). The “binary large objects™ (BLOBs) that are
supported in some relational systems are not sufficient to model these entities. One
can store an image, for example. as one BLOB. but it is not possible for the rela-
tional DBMS to interpret this BLOB (i.e., access parts of it or perform image-specific
operations on it). Furthermore, it is difficult to represent the complex structure of
multimedia documents, the spatio-temporal relationships between document elements
and the classification and specialization/generalization relationships in the relational
model.

As a central component of a distributed multimedia information system, a multi-
media database should offer solutions to the storage and retrieval requirements posed
by multimedia applications. News-on-Demand is a typical distributed multimedia

application with the characteristics and requirements mentioned above. This thesis

presents the design and implementation of a multimedia database for the news-on-
demand application. The particulars of the design are the use of object-oriented
database technology and the use of document standards to represent multimedia

documents in the database.

1.2 Characteristics

1.2.1 Object-oriented Databases

Since relational databases fall short in their ability to support the storage and retrieval
requirements of multimedia informations systems, alternate technology must be used.
The emerging object-oriented DBMS technology [D()BSQ4] is specifically targeted for
“advanced” application domains such as multimedia information systems. Object-
oriented DBMS offer solutions to ihe requirements of multimedia data mentioned
above.

In particular. object-oriented systems provide an extensible data model, and can
support dynamic schema changes. Object-oriented DBMSs?, even though they may
not provide native support for the new media types, can at least be extended to in-
clude them as part of the multimedia DBMS extensions. They can model the complex
hierarchical structure of multimedia documents. In addition, the classification, spe-
cialization/generalization and aggregation relationships between multimedia objects
have direct support in an object-oriented system.

There is also an ulterior mctive in the use of OBMS technology. For years, re-
search and development of OBMS technology has been motivated by the claim that
it is best suited to meet the demands of “advanced” applications which include mul-
timedia information systems. Unfortunately, reports of functional applications that
use OBMS technology are scarce. The work on this thesis provides a test for this

claim.

*Henceforth. the term ‘Objectbase Management System (OBMS)" will be used in place of ‘Object-
oriented database management system’.

1.2.2 Document Standards

As indicated before. multimedia data is often presented in the form of docum.nts. For
example, in the news-on-demand application, information providers insert multimedia
news articles in the form of documents into the multimedia database for subsequent
retrieval by subscribers. To ensure a sufficiently open system, international standards
for multimedia document representation are used. This is essential because the tar-
get applicatio.: dernands that a standard representation be used, for which various
authoring tools are available. The tools themselves can be different, but they should
at least be based on the same document representation. This is one way to support
heterogeneity of tools while providing a unified database representation.

SGML [ISO86] and HyTime [ISO92] have been chosen as the standards to follow
because of their suitability for the target application and their relative power. SGML
has widespread use (for example, the Hypertext Markup Language., HTML. that
is the basis of World Wide Web is an application of SGML) and is the basis of
the HyTime hypermedia representation standard. SGML mostly deals with textual
documents while HyTime adds support for hypermedia documents (e.g., links, video,
etc.). The two other alternatives to follow would have been the Office Document
Architecture (ODA) Standard [ISO89] and the MHEG Standard [Pric93]. ODA is
not sufficiently rich (the standard defines formats only for text, and graphics) to be
used in this application and the MBEG standard (even in draft form) was not yet
released when this work was started. While SGML/HyTime is gaining acceptance
and tools are being developed for it, MHEG is still in draft form. The SGML and
HyTime standards are used by designing a document :ype declaration (DTD) for
multimedia news documents. This DTD is used to encode (by means of markups)

complex multimedia news articles. The DTD forms the basis of the design of the

database.

1.3 Scope and Organization of the Thesis

At the core of this thesis is the design and implementation of a iype system which can
be used to store monomedia objects and SGML/HyTime-encoded news-on-demand
documents containing these objects. in an object oriented database. The design
satisfies the requirements of multimedia data, and addresses the following issues in

particular:
e the modeling of monomedia objects,
e the modeling of document structure,
e the modeling of spatio-temporal constraints between document components and

e the modeling of the meta-information required by other system components of

a multimedia information system.

The implementation of the design on a commercial object-oriented database and
its integration with other components of a distributed multimedia information system
validates the choice of OBMS technology and the use of document standards.

The rest of this thesis is organized as follows. Chapter 2 describes the application
environment while highlighting the important characteristics of the target application.
Chapter 2 also gives a running example of a multimedia news-on-demand document
that is used in this thesis. Chapter 3 gives an overview of the SGML and HyTime
standards. Chapter 4 presents the main contribution of the thesis and addresses the
main design issues indicated. Chapter 5 describes details of the implementation of the
design. Chapter 6 reviews related work reported in literature. Chapter 7 concludes
with a discussion of the features and limitations of the design and implementation.

Chapter T also presents future directions for the work.

Chapter 2

Application Environment

2.1 The News-on-Demand Application

News-on-Demand is an application which provides subscribers (or end users) of the
service, access to multimedia ¢ ocuments. These documents are news articles that are
inserted into a distributed database by news providers (or information sources). The
news providers are commercial news gathering/compiling organizations such as wire
services, television networks, and newspapers. The news items that they provide
are annotated and organized into multimedia documents by the service providers
(who may also be news providers). The subscribers access this multimedia database
and retrieve news articles or portions of relevant news articles. This is typically a
distributed service where clients access the articles over a broadband network from

distributed servers (see Figure 1).

The above scenario for the News-on-Demand application brings up two issues:

e There are several news providers inserting documents into the database from
different remote sites, over a network. Although the news providers may em-
ploy various proprietary formats to represent their articles, all articles have
to be ultimately inserted into a database. This means that everybody has to
follow a standard for news article representation and encoding to enable trans-

mission over the network and insertion into the database. This implies that the
7

E Multimedia DBMS

0 DTD’s , Type
8 : System
3 !
2 semy [P
& Compiler : Processor
S !
= !

Service Providers i End Users

SGML/HyTime Ny Database
Processing System g Processing System

Figure 1: Processing Environment

representation of the document in the database should be architecture indepen-
dent. There is a similar concern at the user’s end, where different browsers and

interfaces may be used to access the articles.

The choice of SGML/HyTime as the standard for document representation is
reflected in the overall organization of the News-on-Demand multimedia infor-
mation system application (Figure 1). News providers compose hypermedia
articles on their own authoring svstems. These articles are then translated to
the SGML/HyTime representation. An SGML/HyTime compiler checks the
document being inserted against the document type declaration (DTD) which
describes the acceptable document structure. It then instantiates the appro-
priate objects in the database. Subscribers use a querying interface to access

articles and/or article components from the database, which can also be queried

by various system components! to obtain relevant meta-information. This re-

port deals with the database processing side of Figure 1.

e Once the news article is inserted into the database, it is not updated by either
the news provider or the subscriber. Thus, there is a read-only model for the
database. However, as time progresses the news provider may insert newer
versions of the news article. The database management system would handle

the version management issues.

2.2 Project Components

The work on this thesis is part of a larger project which focusses on researching
broadband services for multimedia information systems. This multi-university project
is supported by the Canadian Institute for Telecommunications Research (CITR)
which is one of the Networks of Centres of Excellence funded by the Government of
Canada. It was started in 1993 and has a five year duration.

In this component of the project, the focus is on the database issues for multimedia
information systems. The other components are the QoS Negotiation component
(Université de Montreal), the Synchronization component (University of Ottawa), the
Continuous Media File Server (CMFS) (University of British Columbia) and Scalable
Encoding for Video (INRS) components.

Within the multimedia database component of the project, two areas were in-
vestigated up to this point. The first is the modeling of multimedia data and the

relaved database issues, and the second was the design of a visual query interface to

the database described in [EM95].

1System components are described in Section 2.5.

2.3 Multimedia News Documents

A document is a structured collection of pieces of information related to a particular
subject. In a multimedia document, these pieces of information are not restricted to
conventional text, but include other media such as audio, video, and images. These
media themselves may be composite, so that we may have combinations of audio
and video, image and text, etc. These individual media objects are cailed monome-
dia. The structure of the document (i.e. the relationships between various document
components) enables the contents of the document to be understood by the reader.

The structure is sirictly hierarchical in nature, with the document itself at the root
of the hierarchy. As an example, a book can be made up of chapters; chapters can
consist of sections; sections consist of paragraphs, and so on. There is a distinction
between the document content and the structure of the document.

Two types of structure can be identified: the logical structure and the presentation
structure of the document. The logical structure vefers to the logical organization of
document components; the presentation structurz refers to the layout of the com-
ponents actually displayed to the reader. The logical structure of a book would be
the organization into chapters, sections, paragraphs and so on; while the presenta-
tion structure has information on the number of colurans of text used to display the
document, the fonts and font sizes used to display the chapter titles, etc.

Documents often have links to other documents or document components. Com-
mon examples of such links in paper based documents are bibliographic references,
footnotes and cross-references. Text overlaid with a link structure is called hypertext.

In the case of multimedia docurnents, this term is changed to hypermedia.

2.4 A Sample Multimedia News Article

This section describes a sample multimedia news document that will be used as a
running example throughout this report. This is an article about the Department of

Computing Science at the University of Alberta. The article is organized as a series of

10

Department of Computing Science

The Department of Computing Science at the University of Alberta is one
of the oldest computer science departments in Canada, having been
established in 1964. The Department is part of the Faculty of Science

together with seven other departments. Its main office is located in 615
General Services Building.

GSB - Home of the CS Department
This is a young and active Department. It is currently made up of 32
faculty, 27 support staff and approximately 100 graduate students. There

are research programs in many areas of computing science. Research ties
exist with TRLabs and Alberta Research Council.

@ . =
Chair’s Welcome =) Tour of Facilities g Research Programs
M.T. Ozsu 10 November 1994

Figure 2: Sample Multimedia Document

news releases which are interlinked. The document components will be described in

terms of the media present in the document; the full document is depicted in Figure 2.

¢ The text portion consists of the title, the (optional) subtitle, the keywords, an
(optional) abstract paragraph, the date and location of the news release, the
paragraphs that make up the article’s content, the author, and the captions of
any images appearing in the text. This information can also contain text that

may not be shown in the presentation of the document, such as the keywords.

e The images in the document are any pictures related to the subject of the
article. In this case, the picture of the building which houses the department is
included in the document. The image can be stored in any format (GIF, TIFF,
JPEG, etc.). The presentation of the image is also independent of the logical

structure, because the user may choose to reproduce the image inline with the

rest of the document, or display it in a separate window.

e The sound or audic component of the document is the recording of a welcome
message from the Chair of the Department. Here again, the representation
format is independent of the logical structure of the document. The tone and

volume of the audio playback are examples of presentation attributes.

e The video component is a tour of the facilities. The representation format of
the video data (MPEG, MJPEG, Quicktime, etc.), and the presentation aspects
(frame rate, size of the window, etc.) may not be information relevant to the
logical structure of the document. Video is seldora displayed on its own —
there are associated media piayed back, or synchronized along with the video.
Therefore, in the video clip about the facilities, the voice of the commentator is
synchronized with the video so that the viewer does not find the displayed video
out of phase with the sound of the voice being played back. There could be text
subtitles displayed with the video and commentary, simultaneously giving the

French translation of the commentary.

e The subscriber typically would like more information on the various events and
people mentioned in the article that may not be found in the document itself.
By providing links to other documents, or document components where further
information can be found, this document enhances its information capacity.
Another possibility is that the user may want to make comments (annotations)

on the text that would be visible the next time the document is retrieved.

In Figure 2, the links to other documents are marked by underlined text. There
could be other more obvious icons used to denote the link. This may depend on the
preferences of the viewer, the type of terminal and the author’s own choice. These are
issues of presentation, and are not related to the logical structure of the document.

It is important to note that Figure 2 represents only one possible “rendition” of

the news article. The user for example, may prefer not to see any text at all, or if

12

the available display is an ASCII terminal, only the text portion may be presented,

causing the system to skip the retrieval of the image, audio, and video components

of the documents.

2.5 System Architecture

The stored multimedia data are classified as continuous media and non-continuous
media. Continuous media refers to those types which have to be presented at a
particular rate for a particular duration of time. These include audio and video. Non-
continuous media such as text and still images do not have the real-time constraints
of audio and video. Typically, continuous media are stored on a separate storage
server which is designed to meet the real-time constraints of the data. In this system,

continuous media and non-continuous media are stored on different servers.

2.5.1 Distributed System Architecture

Figure 3 shows the architecture of the distributed multimedia system with data dis-
tributed between a number of non-continuous media servers (NCM servers) and a
number of continuous media servers (CM servers). The distribution of data is trans-
parent to the users since they interact with a querying facility [EM935, OSEV95] at the
client, rather than directly accessing individual servers. The client machines contain
the query interface, the multimedia object-oriented DBMS client, synchronization
modules, and the decoders for MPEG and Motion JPEG data streams. All accesses
to the servers are routed through the client OBMS.

The current architecture however, does not integrate the continuous media servers
with the database. Instead, the database stores meta-information about the files on
the continuous media file server. The database is queried by other system components
to determine the location of a particular piece of a multimedia object. After obtaining
the file name and the server on which it resides on, the file is accessed directly from

the file server. This architecture is necessary since the database system chosen for

13

Clients

ATM Network

Servers

NCM NCM CcM CM
Server #1 Server #n Server #1 Server #m

A

Figure 3: Distributed System Architecture

implementation of the application does not provide any native support for continuous
media objects.

The retrieval of the document involves several system components, each of which
must access the database to determine information necessary for the completion of
its tasks.

Briefly, the user chooses a document to display on the client workstation after hav-
ing browsed the database through a Visual Query Interface [EM95]. The user negoti-
ates through the Quality of Service (QoS) Negotiator [HBB*94] with the distributed
system for the desired level of quality and cost of access. Then the Synchronization
component [LG94] takes over by coordinating, over the network, the delivery of several

streams of monomedia data contained in the document to the client. For continuous

14

media, it has to request the Continuous Media File Server (CMFS) [NY94] to retrieve
the appropriate files and start the streams. Non-continuous media components of the
document are retrieved by the client OBMS.

The QoS negotiation module has to determine the media types in the document,
their QoS parameters, the capabilities of the user’s hardware and the bandwidth
availability in order to perform its task. The synchronization component needs a rep-
resentation of the temporal constraints between the media types in the document in
order to determine the schedule of delivery of data over the network. The continuous
media file server needs to know the names and locations of the files it is supposed to
retrieve.

To determine the media types in the document and their quality of service param-
eters (cost, quality, delay, size, etc), the QoS negotiation module queries the database.
The temporal constraints are represented in the structure of the document according
to the HyTime standard. The database responds to a query by the Synchronization
system component by translating this representation into the desired data structure.
The database stores a unique file identifier assigned by the CMFS for each monomedia
object it stores. The continuous media server uses this to determine the name and
location of the file(s) containing the monomedia object.

There are four types of information. The types of information mentioned in the
last paragraph are meta-information i.e. information about information. The meta-
information is not part of the document content, and is not visible to the user. There
is also presentation information, which is also not part of the document content, as
explained in Section 2.4. Then there is the actual document consisting of the individ-

ual monomedia objects and, finally, the logical relationships between the components

of a document.

2.5.2 Database Architecture

The current prototype of the multimedia DBMS is an extension of a generic object-

oriented DBMS called ObjectStore [LLOW91]. The extensions provided by the mul-

timedia DBMS include specific support for multimedia information svstems. The
conceptual architecture. omitting many components not vet developed. is depicted
in Figure 4. The development of a type system that supports common multimedia
types is at the heart of the multimedia extensions. This research has focussed on
this central issue as well as the develocpment of a compatible visual query processing
interface. These two components enable high-level modeling and access capability
for application developers and end users. Future work. as discussed in Chapter 7.
includes the development of an application-independent APl and a more powerful
query model that supports content-based queries of images and video. as well as an
optimizer for these queries.

The fact that this work currently uses a generic object-oriented DBMIS introduces
some important restrictions. There is no native multimedia support and there is no
access to source code. Therefore. the only way to extend the generic DBMS is to use
standard object-oriented techniques to huild a multimedia laver.

Currently. the visual query interface [EM95. OSEV'95] interacts directly with the
ObjectStore query processor via the multimedia tvpe system. Each menu item is
linked to an ObjectStore query which is invoked when the selection is made. As the
application-specific query processor and optimizer development progresses. the visual
query interface will interact with it rather than with the ObjectStore system. The
new interaction is shown by a dashed line (Figure 1).

This arci:ii~cture is open so that it can accommodate various multimedia serveis.
Many of these servers are file system servers without full database management func-
tionality (e.g., querying). If file system servers are used, but the applications require
database functionality. then a multimedia DBMS layer can be placed on top of the
file system servers and the underlying storage system can be modified accordingly.

As indicated earlier. this is a distributed system where a number of clients access
a number of servers over a broadband network. In the prototyping environment. the
clients and servers are IBM RS6000/360 machines interconnected by a broadband

ATM network. This is a multiple client/ multiple server sy-stem (Figure 3).

16

17

End Users
Applications
: Appilication]
Visual Query Interface Independent AP J

~ >
N >

Query Processor &
Optimizer

XMultimedia 1%e System

v

ObjectStore

Multimedia DBMS
Extensions

Figure 4: Conceptual Database Architecture

2.6 Query Examples

The larger database project aims at developing query languages, access primitives,

and visual query facilities [OSEV95] that would allow sophisticated querying of these

databases, including content-based querying of all types of media. While the work

on the thesis is about logical modeling of multimedia databases, the work on the

query interface deals with querying the database in greater detail. Since the type

and frequency of the queries also affect the design of the logical model. a few sample

queries are described here. As noted before, queries on the document are read-only

in nature with no updates after the document is inserted. In the following. examples

of queries on multimedia news articles are provided. A more detailed description is

found in [EM95].

2.6.1 Retrieval Scenario

The following retrieval scenario elaborates on the type of queries the user and the

system may perform.

e The retrieval process is started by a search on the article database by the user.
As an example, the user wishes to see some articles about educational insti-
tutions. Alternatively. the request may be to view some articles featuring the
University of Alberta. Therefore, the database is queried for all documents
with the kevword ¢ducation in them (or University of Alberta). Section 2.6.2

discusses searches in greater detail.

e Asa result of the above query, the database returns a list of titles of articles with
the required keywords. Along with the title, the user may also see an abstract
paragraph of the article. Other information displayed could be the list of media
typesin the article. and the nominal cost of retrieval of the document. This cost
changes as the user negotiates the quality of service desired (or that can be paid
for) with the system. Note that each of these additional pieces of informaticn
is obtained through the user interface by querying over the documents in the

list.

e The user then selects one particular article (for example, the one described in

Section 2.4). and retrieves the document after negotiating the cost of access.

e The retrieval process itself triggers additional queries to fetch the necessary
information for accessing and displaying the document. This includes fetching

meta-information and presentation information as described in Section 2.5.

o

19

e The user can perform queries on the displayed dccument as well. Text string
matching is a common example. Following the links within the document could

trigger a new set of queries by the system to determine the meta-information

associated with the new document.
2.6.2 Searches

Attribute Based Queries

An attribute based search is the most iikely scenario. in which queries are predicated

on news article attributes such as ‘date” and “title’. For example:
e select documents with the words ‘Department’ or ‘Science’ in their titles,
e select documents with the location ‘Edmonton’, published within the last vear.
e select documents by authors whose names contain ‘Smith’.

e select documents in the category ‘Education’ and having the keywords ‘Re-

search” and ‘Databases’. with a date later than January 1. 1993, etc.

Content Based Queries

Examples of these queries include “select documents with the string ‘graduate stud-
ies’ within the text of the article,” “select documents with buildings in their images.”
and “select documents with video clips containing scenes of people walking.” While
searching text is possible and efficient, searching the contents of images and video
still remains a major area of research. This work has so far concentrated on elabo-
rate searching of textual parts of documents and provides means for accessing other

monomedia objects by means of keywords.

Queries Based on the Structure of the Document

Since documents are structured, it is possible that queries based on the structure

of the document will be posed [CACS94]. For example, the query could be: “select

documents with video. but no text”. It is also possible that the query retrieves only
logical components of a document rather than the complete document. This leads to
more complex queries. For example: “select the abstracts and first authors of articles
having a section containing the words ‘Research’ and ‘Canada’”.

Queries can also be posed without a precise knowledge of the structure: “select all
paragraphs in articles with titles containing the word ‘Department’ in them.” Here,
paragraphs could be sub-components of more than one document element, say, section
and abstract. The query does not specify whether the desired paragraphs should be
subcomponents of sections or the abstract. The resulting set of paragraphs can be
found by following these two different paths in the article composition hierarchy.

The HyTime standard describes a query language known as “HyQ” [I3092, DD94].
HyQ is intended to handle the hierarchical structures of SGML documents. Although
the utility of HyQ lies in its ability to locate SGML document components. content
based queries are also possible in HyQ.

Queries which are combinations of the above types of queries are not excluded. For
example: “select paragraphs from documents which have images containing buildings
in them™. However, as noted before, attribute based, and content based queries are

considered to be the most likely scenario.

20

Chapter 3

Overview of SGML and HyTime

The logical structure of the document is necessary for the contents of a document
to be understood. For example. document presentation, certain queries (Section 2.6)
and hyperlinks, all rely on the logical structure of the document. SGML uses markups
to represent this information. Other document representation formats use markups
to represent both logical and presentation information (e.g., IATEX uses \section to
mark up sections, and \bf to present text in bold font).

SGML is intended for publishing in its broadest definition, ranging from conven-
tional publishing to multimedia database publishing [ISO86]. HyTime [ISO92], uses
SGML representation syntax; it is thus admirably suited to work with SGML docu-
ments. HyTime provides a standard way of representing links, and also defines their
processing. In particular, it deals with structured information and the ability to link
from and to structured information [DD94]. HyTime also provides a way to represent
scheduling and rendering information.

One of the reasons for the success of the World Wide Web (WWW) is the use
of the Hypertext Markup Language (HTML) standard for document representation.
HTML is an application of SGML. The concept of the WWW is close to the idea of
open hypermedia, in which links can be made to any piece of information including

non-hypermedia representation. HyTime is an attempt at following open hypermedia
[DD94].

21

3.1 SGML Principles

3.1.1 Markups and Logical Structure

Markups were traditionally used in document formatting programs to indicate pro-
cessing instructions to the formatter. For example, before the beginning of each
paragraph, there would be a markup indicating the amount of indentation for the
first line of the paragraph, the number of blank lines to leave before starting the
paragraph, and so on. This is known as procedural markup in which the presentation
information is mixed with document structure and document content.

SGML is a meta-language which describes the logical structure of a document by
using markups to mark the boundaries of its logical elements. The generalized markup
approach of SGML separates the description of structure from the processing of the
structure. The philosophy is that processing instructions can be bound to the logical
element at the time of formatting, or display. Descriptive (or generalized) markup
identifies logical elements using start tags and end tags to mark their boundaries.
The elements are identified by their generic identifiers (GI), or tags. In the following

example, the Gl is hdline, and marks off the headline of the sample news document:

<hdline> Department of Computing Science </hdline>

The processing instruction which is stored separately, in this case could be, “set
all hdline elements in 18pt bold Helvetica font.”

The markup in SGML is rigorous [Gold90] in that elements can only contain other
elements to form a hierarchy with constraints on the type of elements which can occur
at a particular position in the hierarchy. Thus, chapter elements can only contain
title and section elements; section elements can contain paragraph elements and
so on. The hierarchy is a tree, and whole subtrees can be manipulated as one unit. In
other words, an SGML document consists of instances of document elements arranged

in a hierarchical structure.

[\
N

3.1.2 Document Type Declaration

SGML does not specify what these elements should be, or what the hierarchy should
look like. Instead, the list of elements types, and the relationships between them is
expressed as a formal specification called a Document Type Declaration (DTD). A
DTD is written in SGML by the document designer for each category of document
being designed. For example, a DTD represents the HTML standard for hypertext
documents. For the news-on-demand database, it is necessary to write a DTD for

multimedia news articles, but there could be DTDs for books, letters, technical man-

uals etc.

A DTD specifies the element types, the hierarchical relationships between element
types, and attributes associated with them. Attributes contain information that
is not part of the document content. In the example multimedia news document
of Figure 2, the following element types can be identified: article, headline, date,
paragraph, figure, figure caption, emphasis, author, and link. Note that the article
itself is considered an element and there may be other elements (e.g.. keywords) that
are not demonstrated in the rendition of Figure 2. Omitting the audio and video

elements, the marked-up sample news document is:

<article>

<front>

<author> M.T. Ozsu </author>

<keywords> computer science, University of Alberta, education
</keywords>

<hdline> Department of Computing Science </hdline>

<date> 10 November 1994 </date>

<location> Edmonton, Alberta, Canada </location>

</front>

<body>

<paragraph> The Department of Computing Science at the University of
Alberta is one of the oldest computer science departments in Canada,
having been established in 1964. The Department is part of the
Faculty of Science together with seven other <link
linkend=sci_depts.sgml>departments</link>. Its main office is
located in 615 General Services Building.

</paragraph>

<figure filename=gsb.gif>

<figcaption>GSB -~ Home of the CS Department</figcaption>
</figure>

<paragraph> This is a young and active Department. It is currently
made up of 32 <link linkend=faculty.sgml>faculty</link>, 27 <link
linkend=faculty.sgml>support staff </link> and approximately 100
graduate students. There are research programs in many areas of
computing science. Research ties exist with
<emphasis>TRLabs</emphasis> and <emphasis>Alberta Research
Council</emphasis>.

</paragraph>

</body>

</article>

This document is declared to be an article type. Thus, the legality of its mark-
up is determined according to the article DTD which defines the acceptable article

document structure. The following is a segment of the aiticle DTD:

<1ELEMENT article - - (fromnt, body) >
<1ELEMENT front - - (author, keywords. nlline, date, location)>
<!ELEMENT body - - (paragraphl|figure)* >

The first line of the DTD (known as an element type declaration) declares an
article element as consisting of a front element and a body element. The article
element is said to have a content model consisting of a front element and a body
element. The connector *,” implies “followed by”. Note that a document structure hi-
erarchy is emerging here with the article element at the root with children elements
front and body. This hierarchy is important when the type system is created to rep-
resent the document structure. Element front represents the front-matter of articles
and, as specified in the second line of the DTD, must consist of author, keywords,
hdline, date, and location elements. The document structure hierarchy should
now be obvious. Finally, the last DTD line indicates that the body element consists
of zero or more occurrences (symbol ‘*’) of a paragraph or (symbol ‘|’) a figure
element in any sequence. Note that the example mark-up obeys the DTD fragment
shown here except that definitions for paragraph and figure must be added. The

example given here is a simplified form of the full DTD for the multimedia news

articles that is given in Appendix A. An outline of the DTD development process is

presented here.

3.1.3 DTD Design

Once the logical elements of the document are identified, their content models need
to be defined. This will be done for the elements occurring on the right hand side
in the DTD fragment above. The elements keywords, hdline, date, emphasis, and
author do not have other elements within them; they only contain text strings. In
SGML syntax, these strings are called #PCDATA. Since these elements have identical
content models, only the left hand side of the element type declaration will differ.

When all these cleclarations are combined into one :

<!ELEMENT (keywords|hdlineldatelemphasis|author) - - (#PCDATA) >

In the sample document, paragraph elements contain strings of text (#PCDATA)
interspersed with emphasis and 1ink elements. Both of these sub-elements can be
optional. The figure element contains one sub-element, the figure caption element,
figcaption. This element just contains text strings, or #PCDATA. It can be assumed

that this sub-element to be always present. Using these inferences and assumptions :

<!ELEMENT paragraph - - (#PCDATA | emphasis | link)+>
<!ELEMENT figure - - (figcaption)>
<!ELEMENT figcaption - - (#PCDATA)>

The next step is to define attributes for the element types, if any. Looking back at
the marked up document, 1ink and figure elements have start tags with attribute

values in them. Writing the attribute lists for link and figure elements in the DTD:

<!'ATTLIST link

linkend CDATA #REQUIRED>
<V'ATTLIST figure

filename CDATA #REQUIRED>

25

‘The CDATA refers to the data type of the attribute (character data in this case).
The #REQUIRED value means that any instance of the link element has to have a value
associated with the linkend attribute!.

To summarize, the DTD contains element type declarations and attribute lists.
There are several optional features of SGML not mentioned here; they will not be
used. The design of the DTD is based on our concept of a multimedia news document
and the requirements of the application, since there isn’t an extensive base of pre-
existing documents iv analyze. The complete DTD based on this concept is presented

in Appendix A.

3.2 Why not HTML?

The complex DTD design process raises the obvious question: Aren't there DTDs
already written for this purpose, for which standard tools and browsers are available?
The HTML DTD for example, is a highly popular application of SGML, and is used
to represent a wide range of documents for information transfer over the internet.
There are two reasons why the HTML DTD was not used.

First, the HTML DTD has no support for specifying spatio-temporal constraints
on the continuous media present in the document. This requires HyTime support as
explained in the remainder of this chapter.

Second, the HTML DTD is designed to represent a wide range of documents. In a
database however, it is advantageous to use application-specific DTDs. Application-
specific DTDs identify elements with significant semantic importance in the appli-
cation. For example, the HTML DTD does not have the logical elements date,
abstract, hdline and authors.

If the news article was represented in the database using the HTML DTD, there

would be no way of determining the authors of a document. Note however, that

1Other options are #IMPLIED (attribute need not be instantiated), and #FIXED (attribute can
be instantiated to only one value).

26

an easy translation to the HTML standard can be achieved by mapping the ele-
ments author, hdline, abstract, date in the multimedia news DTD to the ele-
ments headingl, address, blockquote, emphasis respectively in the HTML DTD.

Once this translation is done, a standard HTML browser can be used to view the

multimedia news document.

3.3 HyTime Overview

3.3.1 Architectural Forms

The above discussion cmitted any discussion of links, audio, and video objects. These
are the domain of the HyTime standard. HyTime also uses DTDs to represent doc-
ument categories. This leads us to the idea that one catch-all DTD could be defined
for hypermedia documents which would allow us to represent links, temporal infor-
mation, and other special needs of hypermedia documents. The DTD would contain
element type declarations for these special elements needed by hypermedia documents
(for example, 1link elements). The syntax defined by this DTD together with the se-
mantics for the special elements, would be our hypermedia “language.” A similar
strateg= i~ seen in the design of the HTML standard, for example. This approach
is too restrictive — document designers would like to use their own names for these
special elements, the semantics defined for the elements may be too basic to be useful
for certain applications, etc.

Instead, the HyTime standard uses a meta-DTD. The meta-DTD defines several
special hypermedia elements, called architectural forms (AF), that can be used in
DTDs. For example, there is an architectural form called clink which defines a
so-called contextual link. A contextual link is a link with an anchor rooted in a
particular context, exactly like the links shown in the sample news document. To
use architectural forms in HyTime document instances, eleinent types are defined
which conform to the specification of the architectural forms. Then instances of

these conforming element types are used. If the clink architectural form (AF) were

to be used as the basis for a link element in the news article DTD, the following

declarations would exist in the DTD :

<'ELEMENT link - - (#PCDATA)>

<VATTLIST link
HyTime NAME #FIXED “clink"
linkend CDATA #REQUIRED>

The value of the HyTime attribute of link is fixed to clink. This informs the
HyTime parser that the element is supposed to conform to the clink architectural
form. To conform to an AF, an element declaration (or instance) must have the
HyTime attribute set correctly, and also have the other attributes declared for the
AF in the H:\'Time standard. For the clink AF, there is a linkend attribute declared

in the standard; therefore the 1link element must also define that -attribute in the
DTD.

3.3.2 HyTime Modules

The HyTime standard is divided into modules, each of which describes a group of
concepts and architectural forms. These modules are the base module, the measure-
ment module, the location address module. the hyperlinks module, the scheduling
module, and the rendition module. Each module may use certain features of other
modules lower down in the hierarchy; thus the location address module does define
AFs which are used in the rendition module. Each HyTime-compliant DTD must
declare the names of the modules it requires.

In the D'Y'D for multimedia news articles, certain features of the base module (as
in all HyTime documents), some features of the location address module, some of
the features of the hyperlinks module, and some of those of the scheduling module
are used. The description of these modules is skipped, except for the scheduling
and location modules. Concepts needed from other modules will be defined where

required.

28

3.3.3 Finite Coordinate Spaces

To represent relatively simple spatial and temporal constraints between document
elements, the finite coordinate space (FCS) architectural form defined in the schedul-
ing module is used. This, in turn, requires features of the measurement and location
modules. In the discussion that follows, several architectural forms will be used in the
examples but not explained. It is hoped that the relevant ideas can be understood.
The following convention is used: whenever an element type name appears with a
‘my_" prefix in an example, then it conforms to the architectural name that follows
the ‘my_" prefix.

HyTime models space and time using axes of finite dimensions. A finite coordinate
space 1s a set of such axes. All measurements are associated with axes. The units of
measurement along axes are called quanta. There are various types of quanta defined

in HyTime, besides the normal units of measurement — including characters, words,

nodes in trees, etc.

A Y Axis
X Axis

Event

~Extent

Z < >
> 7

Time Axis

Figure 5: Axes, Events, and Extents (adapted from [DD94])

The following element declaration in a DTD defines a time axis conforming to the

axis architectural form and having an addressable range from 1 to 100,000 seconds.

<!'ELEMENT time - - EMPTY >

<'ATTLIST time
HyTime NAME #FIXED "axis"
axismeas CDATA #FIXED "SISECDND"
axisdim CDATA #FIXED '""100000"

>

The quantum used in this example for axes measurement is the Sl second. An FCS
can be considered to be a Cartesian product of HyTime axes which is mapped to the
real world space and time at the time of presentation/rendition. Figure 5 describes
the various concepts used. The finite coordinate space shown here has three axes:
two spatial. and one temporal.

In HyTime. an ertent is a set of ranges along the various axes defining the FCS.
An event corresponds to an extent in the FCS. An erent srhedule consists of one or
more events. Extents are specified using the extlist architectural form. Events are
created using the event AF: event schedules using the evsched architectural form.
The document instance associates a data object with the event. The semantics and
the manner in which the events are rendered can be defined by the application. The

(meta) element type declarations used for these architectural forms are:

<!ELEMENT axis - - EMPTY>
<!ELEMENT fcs - - (evsched+)>
<!ELEMENT evsched (event+)>
<!ELEMENT event (%HyBrid;)>

The */HyBrid;’ content model means that the content model is unrestricted. Any
element. including non-HyTime elements can appear in the content model. Although
the attribute lists are not given above. note that the event AF has an attribute called
exspec which is of the type IDREFS. This means that this attribute gives the IDs of
various HyTime elements conforming to the extlist architectural form. These extlist

elements give the extents of the event along the axes of the FCS.

30

3.3.4 A DTD Fragment for Closed Captioned Video

In the sample document shown in Figure 2, there is an icon to indicate that there
is a video presentation associated with the article. This could be, for example, the
recordiiitg of a department tour. along with French subtitles displayed at intervals at
the bottom edge of the screen. This is called closed captioned video (CC Video). The
design of the DTD fragment corresponding to the CC Video concept is illustrated
here to demonstrate the use of FCSs for storing spatio-temporal constraints.

In the CC Video document. there are three types of events, which roughly corre-
spond to the three tvpes of media present — audio, video. and (synchronized) text.
Figure 6 shows only the time axis to display the extents of these events. for the first
65 seconds of the presentation. There are five events of type text (because the number
of subtitles is assumed to be five, in the 65 seconds). and one each of the audio and
video types. There are spatial extents also — two axes are created to represent the
X and Y coordinates on the workstation screen (the time axis was presented in the

previous section).

<!ELEMENT X - - EMPTY>

<!'ATTLIST X
HyTime NAME #FIXED "axis"
axismeas CDATA #FIXED "virspace"
axisdim CDATA #FIXED "1024" >

The DTD declaration for the Y axis is similar, except for the value of the axisdim
attribute which is 900. The measurement units are in a HyTime defined unit called
“virtual space,” or virspace, which is used when there are no other pre-defined units
available. In this case, the virspace corresponds to pixels on a workstation screen
(assumed to be 1024 x 900).

As mentioned before, there are three types of events, which have extents along all

three axes (although the audio event will not use the spatial axes). All three DTD

entries are collapsed into one:

<!ELEMENT (audiol|videoltext) - - EMPTY>
<IATTLIST (audiolvideoltext)

31

file CDATA #REQUIRED

-- HyTime Attributes--

HyTime NAME #FIXED "event"
exspec IDREFS #REQUIRED>

In this case. a file has been associated with each event. It could also have been a

portion of a file. or an object in a database. The filename is given by the value of the

file attribute in the element instance.

% Text
Audio
Video

10 20 22 30 33 42 44 56 59 70 75 Time

Figure 6: Extents Along the Time Axis for Events in CC Video

The event schedule which can represent the timeline shown in Figure 6, which

consists of one audio, one video. and several text events can be defined as:

<'ELEMENT my_evsched - - (video, audio, text+)>

For a complete DTD, including attribute lists, refer to the Appendix A. What

remains is the declaration of the FCS:

<!ELEMENT my_fcs - - (my_evsched+)>

Finally, the CC Video document is declared (which is called audio-visual to make

it more general) to be:

<!ELEMENT audio-visual - - (x,y,time,my_fcs,my_extlist+)>

The my_extlist element instances are used to specify the extents of the event

instances.

The marked up document representing the schedule in Figure 6. conforming to
the DTD fragment just written is:

<audio-visual>

<x></x>

<y></y>

<time></time>

<my._fcs>

<my_evsched>
<video file="tour.mpg", exspec=video_exspec>
<audic file="welcome.au", exspec=audio_exspec>
<text file="subtitlel.txt", expspec=textl_exspec>
<text file="subtitle2.txt", expspec=text2_exspec>
<text file="subtitle2.txt", expspec=text2 exspec>
<text file="subtitle3d.txt", expspec=text3_exspec>
<text file="subtitled.txt", expspec=textd_exspec>
<text file="subtitle5.txt", expspec=text5_exspec>
</my_evsched>

</my_fcs>

<my_extlist ID=video_exspec>10 63</my_extlist>

<my_extlist ID=audio_exspec>10 63</my_extlist>

<my_extlist ID=textl_exspec>10 10</my_extlist>

<my_extlist ID=text2_exspec>22 8</my_extlist>

<my_extlist ID=text3_exspec>33 9</my_extlist>

<my_extlist ID=text4_exspec>44 12</my_extlist>

<my_extlist ID=text5_exspec>59 11</my_extlist>
</audio-visual>

3.3.5 HyTime Locators

Links represent relations between locations in documents. In HyTime, data objects
are located using the architectural forms (or locators) defined in the location address
module. To achieve the flexibility required in hypermedia information system, there
are several losiors defined [DD94]. These locators can be classified according to the
method used to locate the object. }

Objects can be located by name (by assigning IDs to the objects), by counting (as

in, “third element in the list”), and by querying (“paragraphs which are sub-elements

33

of sections and contain the string ‘Canada’™). Although all three can be reduced to
queries, the distinction is maintained in the standard. An example of the second kind
of locator is the treeloc locator which is used to locate data items in tree structured
documents. A treeloc locator works by specifying how to navigate to the element
from the root of the tree. For example, this is the second paragraph of the fifth
subsection of the second section of the third chapter in this thesis. This would be

written as? (here, thesis body is the ID of the thesis body element):

<my_treeloc locsrc=thesis_body>
<my_marklist>3 2 5 2</my_marklist>
</my_treeloc>

Treeloc locators are considered to be the simplest and most intuitive location
method. in the absence of IDs [DD94]. Other locators are fairly complex. For locators
which are queries, the HyQ query language is used. This is a type-less, LISP-like
language. Although locators are not used in the multimedia news article DTD, they
are mentioned here because, in the future, DTDs will be designed which use some of
these features. A hypermedia database based on the HyTime standard needs to be

able to support these locators indirectly or directly.

2This is not strictly true. Figures, lists, titles, and other elements which would increment the
counts are neglected.

Chapter 4

Design of the Multimedia Type

System

The design of the type system actually involves the conceptual design of the multi-

media database. There are four issues in designing a multimedia database:

1.

tv

The different media components of the document (i.e., text, image. audio. and
video) need to be modeled and stored in the database. These are called mono-

media objects and their storage structures in the database is critical for good

performance.

A representation is needed for the document’s logical structure. Not every mul-
timedia information system represents the document structure explicitly. For
example, a multimedia system that uses postscript files for text documents con-
taining images ignores the hierarchical structure of the document. It is impor-

tant to represent this structure explicitly both for querying and for presentation.

. In multimedia documents, one has to deal with the representation of the spatial

and temporal relationships between monomedia objects. These relationships are
important for presentation purposes - spatial relationships are used to model the

placement of the various components on the screen while temporal relationships

35

are essential for the synchronization of monomedia objects during presentation

(e.g., audio synchronization with video or captioned text with video).

4. The meta and descriptive information necessary for the operation of the sys-
tem components needs to be determined and stored in the database. As well,
access routines need to be provided (as part of the API) for easy access to this

information.

This chapter focusses on the first three issues which are central to the database
design. As indicated earlier, an object-oriented approach is being used. The design of
the type system aims for flexibility, portability and extensibility (to other document
types and to other applications). The choice of the implementation medium (i.e.,
xI€"/ObjectStore) is another influence on the design of the type system.

Types have methods and atiributes. In the following, the motivations behind
each type. the implementation of the types (in terms of attributes and methods) and
the influence of the implementation on the design (if any), are discussed. When a
method is said to be declared. it is not necessarily defined (implemented). However,
every method in a typc has to be defined to be able to instantiate it. Although the
type hierarchy was arrived at with a mostly bottom-up approach (with iterations in

the design), it is described in a top-down fashion.

4.1 Modeling of Monomedia Objects

The storage of continuous media such as audio and video is a challenging problem,
particularly if content-based indexing of these media is considered. Since the con-
tinuous media file server is not yet integrated with the multimedia database, only
descriptive information about audio and video objects is stored in the database.

As mentioned before, ObjectStore does not provide native support for multimedia
data other than text (or strings). Instead, the multimedia DBMS that sits on top of

ObjectStore implements these data types as atomic types.

36

4.1.1 The Type System for Atomic Types

Figure 7 illustrates the type hierarchy for atomic types. Instances of atomic types
hold the raw (mono) media representation along with other information relevant to

the QoS and synchronization system components.

Atomic
CMType
Image Text SyncText

Figure 7: Atomic Types Hierarchy

There are two subtypes of type Atomic — one modeling non-continuous media
(NCMType) and another modeling continuous media (CMType). The difference be-
tween the two types is that instances of NCMType actually stere the raw media in the
object. Instances of CMType only have meta information about the files which store
continuous media. The attributes and methods which are common to both kinds of
media are in the Atomic type. The attributes are the size and QoS parameters such
as cost and delay [HBB+94].

From the database perspective, there are two kinds of QoS parameters. The first
set consists of the intrinsic properties of the media themselves. For example, the
width, height and color of an image instance are part of the QoS information required
by the QoS negotiation component when accessing an Image instance. The second
set of QoS parameters are those not directly related to the media, such as cost and
delay. The values of these parameters however depend on the server (also called host)

on which the monomedia is physically stored. These QoS parameters are grouped

into a separate type HostQoS. For every unique server (host) and monomedia type
combination, the y,)yes of the second set of QoS parameters are constant. A single
instance of the HogtQoS type stores these values for every such combipation. This
avoids duplication 4,4 maintains consistency of the QoS data. An added advantage
of isolating these pg .o meters is the insulation of the design from the changing requiré-
ments of the QoS Negotiator design group. Therefore, type Atomic has an attribute
which is a reference 1o a HostQoS instapce.

In the present g ,¢c of implementation of the distributed multimed;ja information
system, every S¥stem component assigns or requires an identifier for every logical
monomedia instance, The type AtOmic has an identifier attribute (attribute name),
that acts as a logjc,] jdentifier; multiple copies of the same logical object have the
same identifier. l\’Iult.iple copies do not always imply physical copies: for example,
the same image cay, pe stored in three different image formats. The jssue of who
assigns identifiers, ;14 who manages myitiple copies is a topic for research. Ideally.
the dist:ibuted DR)\{g should handle jdentifiers and not the users. Currently, the
DBMSE does not haye control over all the components of the distributed multimedia
system. In the abgepce of any consensyg, the use of a logical identifier is an ad-hoc
solution to the prohjem.

The NCMType e dija are further Subtyped into Text and Image media types. NCM-
Type has the attrih;ie content which is an array of characters. The Text subtype has
additional methodg. Match which irIlplements a pattern matching algorithm, and
Substring which retyrps a portion of the text object given the two integers represent-
ing the start and en jocations. The Image type has additional attributes such as the
width, height and cq|or, which describe an image’s intrinsic properties, independent
of storage format, Tpe Image typPe can be further subtyped to reflect the different
storage formats poggiple.

A similar subty ;o scheme is seen on the CMType side of the type hierarchy. The
CMType type repregents monomedia instances stored on the continuous media file

server (CMFS). It 1,5 attributes storing meta-information such as filename, location

38

and UOI (another identifier used by the CMFS). The location attribute is actually
an instance of another type which has the host name, network address and directory
location as attributes. Synchronized text (SyncText) is not subtyped from Text, since
it is stored on the file system and not as an object in the database. The methods
Match, and Substring cannot be applied to the synchronized text media. The Temporal
supertype of Video and Audio is defined because both have a duration attribute. In
addition to the width, height and color attributes, the Video has frame rate and bit
rate as attributes. These properties are indepeident of storage format. Similarly, the
type Audio has attributes number of channels, sample rate and bits per sample. Both

types can be subtyped to represent the actual storage format.

4.1.2 Storage Model for Text

Text (a character string) is an atomic type which is supported in the database system.
However, in the news documents, the text component of the article is richly struc-
tured. consisting of many hierarchically arranged components (also called elements).
One alternative for representing text components of a multimedia document is to
define object types for each of these structure components and associate with each of
them a fragment of the complete text of the article. This is a direct mapping of the
document type definition to the object oriented database schema.

Storing the text content of the article by fragmenting it in this manner can have
serious performance implications. For example, to store the second instance of the
paragraph element in the sample document of Figure 2, three fragments are needed
— the emphasis element, the link element and the rest of the text. Accessing the text
of the paragraph now involves three accesses to persistent store.

Although there are strategies such as clustering to improve performance, with
large objects, these techniques may be inadequate. In any case, the pointer swizzling
overhead of these objects cannot be overcome by clustering. Furthermore, if pattern-
matching methods are defined on text elements, it would be necessary to reassemble

the entire text component of the document. This has performance implications.

39

In addition to performance issues, there are modeling complications as well. One
problem is to decide what the granularity of the fragmentation should be — para-
graphs? sentences? words? The granularities can be determined by the granularities
of the logical elements of the document. Thus, each logical element would contain
a fragment of the text. For example, there would be an Emphasis type for instances
of logical emphasis elements. This can cause several copies of the same piece of text
to reside in various logical element instances. The second probleir: which arises is
as follows: suppose an emphasis starts at some position in one word and runs until
some position of a subsequent word (i.e., does not cover entire words). Since there is
a logical emphasis element in the mark-up of this document. it would be necessary to
create an instance of the Emphasis type and store the emphasized text as the value
of one instance of this type. However, this precludes the possibility of querying for
either one of those two words involved in the emphasized string.

To avoid fragmenting the textual elements in this manner, the entire text content
is stored as a single string. To associate a particular instance of an element with
its text content the first and last character locations of that portion of text in the
entire text content are stored. Pairs of integers such as these are called annotations.
Using this model the text content of the sample news document can be modeled as
depicted in Figure 8. In this example, the first paragraph instance has the annotation
[33. 338]. The link sub-element of the paragraph has the annotation [264, 274].

Every document instance in the database has a “base” object (Article_root) as-
sociated with it which stores the text string forming the text content of the article,
together with the lists of annotations associated with each text element type. To
display the document. the browser can scan these lists efficiently and determine the
presentation of the text. This representation is mapped to a type system by defining
the type Text, whose instances store a single string that is the entire text content of
a document as represented in Figure 8.

There are two distinct advantages of using this storage model for text elements:

e Displaying the complete document text becomes faster, and more efficient be-

40

Department of Computing
Paragraph 1 SciencesThe Department of .
A[Cé‘n:‘gﬁng Science at the Link 1
U

iveTsity of Alberta is one of
Beaqin __ | 1 The oldest computer science
8 departments in C o
having Stablished in
1964-The Department is part End
e Faculty of Sci

ogether wi ven other

ep nts It’s main office is
located ilh 615 General Services
Building¥%GSB - Home of the
CS Dep en#lhis is a young
and active Repartment. It is
p of 32 Figure

Begin

End —

Emphasis 1 facuity, 27 sup
approximately 1

. || stydents. There are resgarch ——— Begin
Begin | prograiisn many areas
computing science. Researc =
End ties exist wi abssand End

\ Alberta Research Couficil.
~ M.T. ovember 1994

Figure 8: Annotations to Mark-Up Text Documents
cause multiple accesses to persistent store and joins are avoided.

e Indexes can be built on these annotation objects which can aid searches for

element instances. For example, it is possible to search for emphasized strings

in a document.

There is one disadvantage of this approach. Updates to the text content are
expensive, since a change to the content of a document may cause many annotations
to change. This can be avoided to a certain extent by specifying annotations relative
to some enclosing structure, say with respect to a paragraph. Then, after an edit, the
only annotations that change are the annotations of the sub-elements in the edited
paragraph and the annotations of all following paragraphs but not the annotations

for the sub-elements of these paragraphs.

41

4.2 Type System for Elements

4.2.1 Design of the Type System

General Approach and Conventions

Figures 9, 10 and 11 show the type hierarchies for logical document elements. The

general characteristics of the design are:

® Each logical element type in the DTD is represented by a type in the type
system'. For example, the paragraph element is represented by the type Para-
graph. It can be argued that the textual element types have no semantic signif-
icance attached to them by either the DTD or the SGML standard [BAH93].
That is, there is no difference between the operations applied to a title ele-
ment and those applied to a paragraph element. There could be just one type,
type Element. with an attribute whose value would indicate the type of the
element. However, the markup in SGML is generalized. Elements are chosen
by the DTD designer because each element has a different semantic significance
in the document. This would be especially true of elements conforming to the
HyTime standard since the standard assigns semantics to the element. In addi-
tion. the rigorous nature of the markup means that the DTD constraints need
to be maintained. This can be done by ensuring as much static type checking

as possible. This is explained in the next item.

e To model the hierarchical structure, any type whose instance occurs in a non-leaf
node in the hierarchy has attribute(s) which are reference(s) to child instances.

For example, the “rontmatter DTD element has the content model:

<!1ELEMENT frontmatter - - (edinfo, hdline, subhdline, abs-p)>

1 The only exception is the type Pcdata. Although not a logical element, it is considered to be a
pseudo-element in the HyTime standard. For this reason, a type is declared for it, and instantiated
whenever it occurs in an element with a mixed (logical elements mixed with plain character data)
content model.

42

Therefore, the type Frontmatter has attributes whose types are references to
instances of Edinfo, Hdline, Subhdline, and Abs_p types. This design ensures
as much static type checking as possible. For example, an attempt to make a
Section instance as a child element of a Frontmatter instance would be disallowed

at compile time. If there was just one type to represent all elements, then this

checking would have to be done at run-time.

e Any SGML attribute defined in the DTD for a particular element (including
those defined by the HyTime standard) is represented by an attribute in the
representative type. The attributes themselves are always string-valued. There-
fore. new types for the attributes are not defined. The types may have methods

which access the values of these attributes.

The general convention is that a method beginning with the prefix Get is an access
method. Methods which modify the state of the object are not considered since a

read-only application environment is assumed.

4.2.2 Top Level Hierarchy

The supertype of all element types is the Element type. This models the is-a rela-
tionship — every elemecut instance is an Element instance. As the document instance
has a tree structure, the operations common to all element instances are tree op-
erations. For example, HyTime specifies architectural forms for navigating the tree
(described in Section 3.3.5). Certain queries (Section 2.6) also involve navigation of
the document structure.

The frequenily used operations in the navigation are (a) get the parent element,
(b) get the n** child element and (c) get either sibling. It is possible to achieve the
last operation with a combination of the first two. There are operations and queries
common to tree structured data which are not considered here [SLVZ95]. A detailed
analysis on document quésirs would reveal the salient set of tree operations required

[BAHY3]. In the absence of such a detailed analysis, the two representative methods:

43

GetNthChild and GetParent? are considered.

As these methods are independent of the type of the element instance. the decla-
rations of these two methods could be in the Element type. However. leaf nodes in the
document tree never have child elements. All those element tvpes in the DTD which
have as content models EMPTY. or (#PCDATA). are always leaf nodes in the document
tree. In other words. there are two types of elements in any DTD: structured (non-leaf
nodes) and unstructured (leaf nodes) elements. Therefore. type Element only has the
method GetParent: type Structured. which is subtvped from Element has the method
GetNthChild.

Links can be made to arbitrary elements in diiferent documents. Searches per-
formed over several documents can also return arbitrary element instances. It is often
useful to know the article these element instances which thev belong to. An exam-
ple query is. “select articles which have any section element containing the word
“SGML™." This query could be broken down into two steps: first. the collection of
Section instances is searched. and then their articles are extracted. Hence. the method
GetArticle is added to the type Element®.

Type Element is subtyped into TextElement. Structured and HyElement. In the
DTD for news documents given in Appendix A, the document is divided into compo-
nents called async and sync. This is because of the fact that continuous media with
synchronization constraints (the sync part) need to be handled by HyTime conform-
ing element types: other (TextElement) ordinary SGML element types are adequate to
deal with text and image data. The supertype HyElement represents all the HyTime

elements used in the DTD.

*These two methods are essential for the HyTime architectural form treeloc which is used as a
locator. Navigating the structure is also possible by following pointers to child and parent elements:
we just don’t declare every possible method for every possible navigation.

3GetDocument would have been a better name, since there could be other document types in the
database.

44

Element
a
TextElement Structured HyElement
\ / I
StructuredText Article AudioVisual Sync

Figure 9: First-Level Element Type Hierarchy
4.2.3 Text Elements

Type TextElement models textual DTD elements. Every textual element instance
has an annotation instance associated with it. The method to access this is the
GetAnnotation method. To obtain the actual character string which the text element
instance represents. the method GetString is defined. The TextElement type hierarchy

(excluding Structured Text which is described later) is illustrated in Figure 10.

TextElement

‘\\‘

EdlnfoElement Figcaption Empha51s Quote

Loc Source “\\ et men

Keywords Author Subject Date

Figure 10: Type Hierarchy for Unstructured Text Elements

The types in Figure 10 correspond to text elements that do not have any sub-
elements. Most of the types here do not have any additional methods other than

those present in TextElement; they Liv: been created as subtypes for classification

purposes. This maintains the uniformity of the approach of modeling all element
types in the DTD as types in the type system. The exceptions are the Quote, and
the Author which have the methods GetSource, and GetDesignation respectively. This
is because the DTD elements quote and author have the SGML attributes source
(the source of the quote) and designation (the designation of the reporter/author

in the news organization) respectively.

4.2.4 Structured Text Elements

Textual elements that are structured have a common supertype StructuredText (Fig-
ures 9 and 11). Type StructuredText is a subtype of types Structured and TextElement.
The subtypes of this type include all types representing text elements with complex
content models (1ist, section. figure. frontmatter, etc.). Excepf for type Figure.
which has methods Getlmage and GetFormat. all other subtypes of StructuredText do

not have additional methods declared.

46

StruCturEdT\
ListItem SectionA'c List Edinfo Abs-p
Figure Paragraph FrontMatter
Ilink-aAF
Link

Figure 11: Type System for Structured Text Elements

4.2.5 HyTime Elements

The type HyElement in Figure 12 is the supertype for all HyTime elements in the
type system. All HyTime conforming element types in the DTD have ID and HyTime
attributes. The values of these attributes provide an identifier and the name of the
architectural form to which the element conforms. Type HyElement has two methods
to access these values: GetlD and GetAForm, respectively. The sub-hierarchy rooted
at HyElement is depicted in Figure 12. Its immediate subtypes are those modeling

the architectural forms used in the DTD. The HyTime standard defines semantics

and attributes for each architectural form.

TextElement Structured HyElement

'\
T// HyDoc_AF

StructuredText

Article

k
Illn —AF Evsched_AF
Axis_AF

Llnk Ever%t__AF Fc s{AF Av-extli s%
/ Dlmspec T)em'por al av-fes Av-evsched
Time \

Saudio Spatio-temporal

Xdimspec Ydimspec Stext Svideo

Té&imspec

Figure 12: Type Hierarchy for HyTime Elements

There are nine HyTime architectural forms used in the DTD. From Chapter 3,
architectural forms are assigned (a) attributes, and (b) meta-content models by the
HyTime standard. Types representing architectural forms have attributes modeling
the HyTime attributes. The meta-content model determines whether the type is
subtypad from Structured, TextElement, or StructuredText in addition to HyElement. If
the meta-content model is ‘4HyBrid’, then the type is only subtyped from HyElement.

However, the actual conforming element cannot leave the content model as *%HyBrid".
If the content model is EMPTY, then the type is only subtyped from HyElement.

The most significant AF's from the database perspective are the fes and the ilink
AFs. Recall that the ilink elements model hyperlinks with more than one destination
or source. This AF has a ‘)HyBrid;’ content model; therefore, it could be a Structured
element depending upon the content model defined by the DTD designer. A type for
this AF is created, called llink_AF, as a subtype of the HyElement type. In the DTD
for news articles, the 1ink element has a complex content model containing only text
elements and conforms to the ilink AF. Therefore, the Link type is a subtype of both
Jirk A& and Structured. The llink type declares the method Traverse which takes the
object L (a reference to an Element instance) of a destination element and performs
a traversal according to the applications semantics. This method is defined in the
Link subtyvpe.

The fcs element is important because it provides the interface to the other system
components. This allows the types of media objects present in the continuous media,
as well as the presentation schedule of the media objects which are a part of the FCS,
to be determined. The fcs AF is represented by the type Fcs AF. The actual type
used in the document is the Av_fcs type. In the composition hierarchy of a multimedia
news article instance, all the continuous media objects are descendants of the Av_fcs
instance. Therefore, the Av_fcs type is entrusted with the interfaces to other system
components.

As explained in Section 2.5, the synchronization component requires a represen-
tation of the temporal constraints between the monomedia (atomic type) instances
in the document instance. The QoS negotiation component requ .res the list of mono-
media instances in the document to be able to negotiate their quality of access. The
method GetSchedule of type Av_fcs returns an instance of a data structure called
scenario_str. This is a data type defined by the synchronization component design
group. Its instances contain a representation of the temporal constraints. The play-

back schedule for the Atomic instances in the FCS is derived from this representation.

48

The methods GetVideoObjects, GetAudioObjects and GetSyncTextObjects return lists
of references to objects of type Video, Audio and SyncText respectively (which are
atomic types).

Instances of the Article type are at the root of the composition hierarchy. The
article element has to conform to the hydoc architectural form. Hence, type Arti-
cle is a subtype of HyDoc_AF. According tc the DTD, Article instances should have
references to instances of Frontmatter, Async and Sync types. This means that Article
is also a Structured type. In addition, the date, source, subject, and author are at-
tributes (type String) of Article, even though these values are already stored (by means
of annotations) as instances of Date, Source, Subject, and Author types respectively
(Figure 10). This replication is done for performance reasons explained in the next
chapter.

The other HyTime types (Figure 12) are architectural forms and the conforming
elements used in the DTD. The axis architectural form has a ‘4AHyBrid;’ meta-
content model. The actual conforming axes used in the DTD (x, y, and time) have
EMPTY cortent models. Hence, type Axis_AF does not have Structured as a super-
type. The three document axes declared in the DTD have their representative types
(X, Y. and Time) subtyped from Axis_AF. They do not declare additional methods
or attributes. However, they have different semantics in the DTD. The values of
the attributes for the dimensiens, measurement units, and measurement granularity
(axisdim, axismeas, and axismdu) are different for eact axis.

The event architectural form also has a ‘4HyBrid;’ meta-content model in the
HyTime standard, but the events in the DTD all have EMPTY content models and
hence, type Event_AF representing this architectural form is not a subtype of type
Structured. The Event_AF type has been subtyped to represent the three different
types of events possible in the finite coordinate space — text, video and audio (SText,
SVideo, and SAudio). The intermediate supertypes Spatial and Spatio-Temporal model
the temporal dimension of SAudio, while SVideo and SText have both spatial and

temporal dimensions. These types have attributes which reference the atomic type

49

instances which store the media associated with these objects. For instance, an SText
type instance will have a reference to an instance of SyncText. The exspec attributes
have references to the Extlist instances which hold the values of the extents of these
elements along the three axes.

The extlist architectural form is represented in the DTD by the element type
av-extlist. The content model of this element type is defined to consist of one
instance of xdimspec, one instance of type ydimspec, and one instance of tdimspec.
These elements represent extents on the three different axes (x, y and time respec-
tively). They conform to the dimspec architectural form. This AF is represented in
the type system by type Dimspec_AF. The three subtypes of Dimspec_AF are XDim-
spec. YDimspec, and TDimspec, which model the respective DTD elements. The
content models of the three DTD elements are identical — they consist of two inte-
gers, representing the start and length of the extent. Hence, av-extlist instances
are not leaf nodes in the document composition hierarchy. Therefore, the Av_extlist

type is a subtype of the Structured type.

4.2.6 Other Types

AudioVisual and Sync are the remaining subtypes of Structured which have not been
described. In the DTD, the element audio~visual models one set of logically related
HyTime components. For instance, if the document was one hour of a television
broadcast, there would be one audio-visual each for the news, the commercial
segments, etc. The whole broadcast would be modeled by the sync element. Sync

instances hence have collections of AudioVisual instances as child elements.

50

Chapter 5

Implementation Issues

The design presented in Chapter 4 is general enough to be implemented on most
object-oriented systems. The implementation, describe .’ here, is cohstrained by the
implementation environment. These constraints, in turn, affect the design of the type
system. In the following, the composition hierarchy which emerges when the sample
multimedia document shown in Figure 2 is inserted 1u the database, is described.

Then the constraints and the design decisions taken in their context are described.

5.1 Example Design

In this section, the sample document (Figure 2) is used to demonstrate how the type
system can be exercised. This discussion concentrates on the composition hierarchy
that emerges among objects according to the document structure. The composition
hierarchy is based on the attributes of each type. Instead of presenting the attributes
abstractly, it will be demonstrated how the structure of the sample document is
mapped to a composition hierarchy as objects are instantiated and their attribute
values set. This discussion refers to Figures 13 and 14, where object instances of type
X are denoted as MyX and the arrows are from objects to their component objects.

The root of the composition hierarchy (Figure 13) is one instance of the Arti-

cle type object, called MyArticle. MyArticle has three attributes, among others, that

51

52
point to a Frontmatter type object, called MyFrontmatter, an Async type object, called
MyAsync. and a Sync type object. called MySync. MyFrontmatter, holds the infor-
mation in the document that is delimited by the markup <front> and </front>.
As discussed in Section 4.2.1. the body of the document is separated into an asvn-
chronous part (MyAsync) and a synchronous part (MySync). The asynchronous part

describes the text and image part of the document.

MyArticle

— N

MyFrontmatter MyAsync MySync

MyEc?(MyHdline = MySection-1 Xyigum MySecjion-Z

MyAuthor MyDate MyParagraph-1 MyFigCaption MyParagraph-2
v / /
MyKeywords MyLink-2 yEmphasis-1
MyLink-1 MyLink-3 MyEmphasis-2

Figure 13: Partial Object Composition Hierarchy

According to the DTD of Appendix A, each document is separated into sections
first. In this example, it is assumed that the figure which consist of the building’s
picture and the text before it is one section (even though it is only one paragraph)
and the part after the figure is a second section. Thus, there are two Section type
objects (MySection-1 and MySection-2), as well as one Figure type object MyFigure,
which are components of MyAsync.

The rest of the hierarchy should be obvious. Note that there are composition

paths from some of these objects to instances of atomic types (Figure 7). For example,

53
MyFigure has a link to an object of type Image (or one of its subtypes depending on
the type of the Image) for the picture of the building.
The synchronous part of the document that corresponds to the audio and video

is shown in Figure 14. In the sample news document of Figure 2, it is assumed that

a closed captioned video of the Guided Tour is associated with the article.

MyS nc
.}udlo-Vmual
MyX MyY MyTime MyAv-fcs MyAv-extlist-1 MyAv-extlist-2
MyXdimspec MyYdimspec MyTdimspec

MyAv-evsched

MyAudio MyVideo MyStext- | MyStext-2 MyStext-3

Figure 14: Remaining Composition Hierarchy (Synchronous Portion)

The closed caption video consists of the video, synchronous with the commentary
(audio), along with captions which appear periodically, giving the French translation
of the commentary. The three media are modeled as events in the finite coordinate
space described in the DTD. The whole “audio visual” therefore consists of the two
spatial axes (the time axes), the finite coordinate space, and the list of event extents
along the axes.

Since there is only one closed captioned video, there is only one instance of the
AudioVisual element in Figure 14, which has as its children the instances of the axes,
the instance of the Av_fcs, and multiple instances of extent lists (MyAv-extlist).

The Av_fcs instance itself contains just one event schedule (there could be several

if the commentary had been partitioned into logical segments). The event schedule is
Just the collection of the events occurring in the FCS. Since the audio and video data
are not segmented, there is just one audio event, one video event; there are however
several synchronized text (SText) event instances, one for each caption.

According to the DTD, each extent list consists of dimension specifications (dim-
spec). which in turn consist of marker lists (list of positions along the axes). The first
two instances of the Av_extlist type are shown in the figure; the contained dimspec
instances are shown for the second. The marker list is omitted since it is too involved
to display in one figure.

Not shown in the composition hierarchy are the occurrences of instances of atomic
types. In Figure 13, MyFigure has a reference to an instance of Image. In Figure 14,
My-Audio has a reference to an instance of Audio, MyVideo to an instance of Video,

and MySText-1. etc. have references to instances of SyncText.

5.2 Implementing the Type System

The implementation language is C++ [Stro91]. The specific implementation of the
language used is the xIC product from IBM. The OBMS used is ObjectStore. Meth-
ods of a type are called (member) functions in C++. The term interface refers to a set
of methods. Attributes are also called data members. Types have two special function
members — a constructor and a destructor. Constructors usually involve memory al-
location and initialization for a new instance of the type!. Destructors involve cleanup
and deallocation of memory for that object. If no constructor or destructor is pro-
vided, the compiler provides default implementations for them. Pointers to instances
are also called references in the following discussion. For a type T, the type of the
reference to an instance of type T is called pointer-to-T. In C++, the syntax is Tx.

ObjectStore provides an extensive set of parameterized collection types which can

! Actually, classes, and not types, have instances. However, all objects of a class have the same
type.

54

store references to instances. The parameter is the type of the references of instances

which can be inserted into the database.

5.2.1 Designing for Persistence

The ObjectStore data model provides persistence independent of type. Any C++
object can be made persistent and handled the same way as non-persistent objects.
Once persistent, an object can be accessed either by navigation from other persistent
objects, or by giving it a persistent name (a character string). These names are called
database roots, or entry points.

ObjectStore does not maintain type extents automatically. Extents should be
maintained by the user programs, if needed. Extents are essential for queries which
search over a particular type of element. For example, the query may be: “select
paragraphs which contain the word ‘Computer’”, or “select structured text elements
containing the word ‘Canada’”. In this implementation, type extents are automati-
cally maintained as persistent parameterized sets with the type as a parameter. These
sets are database roots. For example, the extent declaration for the type Paragraph
looks like:

os_Set<Paragraph*>* Paragraph_extent =
&os_Set<Paragraph#*>::create(db,
os_collection::pick_from_empty_returns_null

)

This defines the extent of the Paragraph type to be a set of pointer to Paragraph.
The default behavior of the set is modified so that a query over an empty set returns
null, and does not signal an exception.

When a type is instantiated, the type’s constructor ensures that a reference to the
object is inserted into that type’s extent. Similarly, the destructor of the type deletes
the reference from the type’s extent. When an object is constructed, its supertype’s
constructors are called before the object itself is created. This conveniently ensures
that extents for all supertypes of an object are automatically maintained. For in-

stance, when a Paragraph instance is created, references to this object are inserted (in

5

5

sequence) in the extents for types Element, Structured, TextElement, Structured Text
and Paragraph. This sequence implies that the constructor for type Element would be
called twice: once each by the Structured and TextElement types. The result would
be an inconsistent type extent containing duplicate pointers. By using the virtual in-
heritance mechanism of C+4+, this is avoided?®. Destroying an object has the opposite
effect to that of the constructor; it removes the references to the coject from all the

extents in the opposite sequence.

5.2.2 Abstract Types and Inheritance

An abstract type is a type which specifies interfaces without implementing at least
one of them. Abstract types cannot be instantiated. In C++, a type is made abstract
by declaring at least one of its methods (function members) to be pure virtual. A
virtual function is a mechanism in C++ to support dynamic binding. A derived
type can re-implement functions declared to be virtual in the supertype and hence
override the implementation in the supertype. A pure virtual function is usually left
un-implemented in the abs*ract typc.

The purpose of an abstract type is to represent a general concept. In the type
system for elements, types in the top level hierarchy are all »"::iract types. All types
representing HyTime architectural forms are also abstract types. In the type system
for atomic media. types Atomic, CMType, NCMType, and Temporal are abstract. A

non-abstract type is referred to as a concrete type.

Implementing Abstract Types

An issue in implementing abstract types is whether abstract types should merely
specify interfaces, at least one of which is not implemented. This design paradigm
has an appeal to it. A type implementor who is implementing a type for a document

element creates it as a subtype of one of the abstract types. The implementor then

2Extents are sets; duplicate elements are not allowed. Therefore, even if a particular constructor
was called multiple times duaring a single instantiation, the state of the extent would not change.

56

implements the interfaces specified in the abstract types for that subtype (and any
additional methods defined for the subtype). But there could be methods that are im-
plementable in the abstract supertypes. This implementation could then be inherited
by the concrete subtypes. An example is the method GetArticle in the Element type.
This can be implemented by having an attribute which is a reference to the Article
instance which the element belongs to. GetArticle simply returns this reference. This
method now needn’t be re-implemented for every concrete type in the type system
(there are 40 of them).

The disadvantage of the latter approach is that a constructor with a non-zero
number of parameters needs to be implemented for type Element. This is because
the attributes of Element need to be initialized. Since the constructor of a type
calls the constructor of its supertypes, the tyne implementor needs to know about
the constructors of all the supertypes and make explicit calls to them. In the first
approach, there would be no need to write a constructor for the abstract type. The
compiler would supply a default constructor.

In this implementation, the second approach is adopted — every method is im-
plemented at the highest possible level in the type hierarchy. This approach tends

to make certain portions of the implementation complex (the constructor for type

Paragraph needs to call four constructors with three parameters each, for instance),

but it cuts down on overall implementation time.

Return Types

In the last chapter, some of the methods of the types in the top level type hierarchy
for document elements were described. These methods are implemented as virtual
functions. The full C++4 specification is given in Appendix B. The return types of
these methods are the most general types. For example, method GetParent of type
Element has a return type Element. However, in most cases, the type of the parent
element of an element instance is constrained by the DTD. For example, instances

of type Frontmatter can only have instances of type Article as a parent. Therefore,

H

7

GetParent for Frontmatter would have its return type as reference to Article. Unlike
the case for GetArticle. type Element does not have an attribute which is a reference
to the parent instance. GetParent is a pure virtual function which is implemented in
type Frontmatter. This type would have an attribute parent which is of type pointer-
to-Article. GetParent would be implemented in Frontmatter. and not Element. The
same reasoning applies for the declarations and definitions of GetNthChild in tyvpe
Structured. The (simplified) declarations for types Element and Frontmatter are given

below:

class Element {
private:
Article* articleElement;
public :
virtual Element* GetParent() = 0;//pure virtual function
virtual Articlex GetArticle();//can be re-implemented by subtypes
1.
class Frontmatter : public StructuredText{
private:
Article* parent;
public:
Edinfo* edinfo;
Hdline* hdline;
Subhdline* subhdline;
AbsP* absP;
Article* GetParent(); //implemented in this type
TextElement* GetNthChild(int index); //inhrtd from Structured

'

C++ allows the return type of an overriding virtual function to differ from that of
the overridden function provided that (a) the overridden function returns a reference
to an instance of type T. and (b) the overriding virtual function returns a reference
to a type derived from T. In the example above. Article is (indirectly) derived from

Element.

5

9]

5.2.3 Modeling DTD Constraints

The DTD specifies constraints on the type, the number, and order of the sub-elements
of elements with complex content models (called structured elements). Modeling these
constraints is non-trivial since there is little or no support from the C++/ObjectStore

data model for these constraints. In the following. the specific problems and the

solutions employved are discussed.

Union Types

Structured tvpes model elements which have complex content models. These are non-
leaf elements in the composition hierarchy. Since the document tree is ordered, their
children are ordered. which gives the view of a tree as a nested list. Any structured
element with an undetermined number of children will have a childList attribute. This
attribute is a parameterized list whose parameter is the type of the child instances,

as an attribute. For example. the type Sync has the content model and simplified

C++ type declarations:
<!ELEMENT sync - - (audio-visual+)>

class Sync : public Structured {
private:
Article* parent;
public:
os_List<AudioVisual#*>* childList;
Article* GetParent();
AudioVisual* GetNth(int index);

The problem arises out of the use of the ‘or’ connector (‘|’) in conjunction with

the ‘" or ‘4 connectors in the content model. For example, the Async element has

the content model:

<!ELEMENT async -~ - (sectionlfigurellink)*>

There could have been three attributes for the Async type each of which is list of

references of the type of one of the three elements listed on the right hand side (i.e,

59

attributes sectionList. figurelList and linkList). However, with this representation, the
relative orderings between say, Section instances and Figure instances are lost. One
solution to this problem is to have just one list of references of the existing common
supertype of Section, Figure, and Link; this is Structured in this case. However, this
leads to type checking pr:™¢ s since references to any subtypes of Structured (say
Paragraph elements) cou: " . - be inserted into childList.

A second solution is to use union types: the parameter of the list of children is
the union type of the three types: Section, Figure. and Link. Unions are present in the
C++ data model and ObjectStore allows named union types to be made persistent.
However, a discriminant ﬁethod has to be provided to differentiate between the
types in the union, and the user has to ensure that the right type is being accessed
(i.e.. there is run-time type checking). The third solution (the one adopted in this
iinplementation) is to create an abstract supertype of Section, Figure, and Link. The
convention adopted is to concatenate the first three letters from each type name
to obtain the name of the new type. The parameter of the childList is then this
supertype and there are no type checking problems. The drawback is that it creates
an explosion of types in the system. Abstract supertypes created for this purpose are

called pseudo-union types in this model. The declaration for type async now is:

class Async : public StructuredText{
private:
Article* parent;
public:
os_List<Fig_Lin_Sec*>* childlist;
Article* GetParent();
Fig_ Lin_Sec* GetNthChild(int index);

Pseudo-union types are subtyped from types already present in the element hier-
archy. For example. the type Fig_Lin_Sec is a subtype of StructuredText. Pseudo-union
types are abstract. In some cases, it is possible that the pseudo-union type is indeed

a genuine supertype of the types involved. The modification to the type system after

60

the inclusion of union types is a difficult task. The pseudo-union types defined in the

tyvpe system are listed in Appendix B.4.

Ordering of Sul:-elemenrts

The second problem occurs in the use of the ‘foellows’ connector (*.”). For example

the element frontmatter has the content model:

<1ELEMENT frontmatter --(edinfo,hdline,subhdline,abs-p)>

This means that instances of Edinfo, Hdline, Subhdline, and Abs-p must follow
each other in any document instance. To capture this constraint in the type system.
a mechanism is needed 1o order the attributes of the type Frontmatter. This feature
is not present in the data model of ObjectStore®. An implicit ordering of attributes
is assumed in this case. The behavior of the Frontmatter type is such that it enforces
the ordering. Thus, when the method GetNthChild with the value of parameter ‘n’

equal to 3. is applied to an instance of Frontmatter, the result is a reference to an

instance of the type Subhdline.

Number of Sub-elements

The DTD declaration for the element frontmatter (given above) gives the constraint
that there is exactly one edinfo, one hdline, one hdline, one subhdline and one
abs-p sub-elements. None of the elements can be omitted. A wide variety of con-
straints on the number of sub-elements can be specified with the ‘*’, ‘+’, and ‘7’
occurrence operators.

There is no direct support from the data model for this constraint. There is
no way of specifying, for instance, that a particular attribute cannot have a null
value. The constraint can be enforced through the type’s constructor. For example,

the constructor for type Frontmatter would ensure that no Frontmatter instance is

3Product types, which are not present in the data model of ObjectStore, can model attribute
ordering.

61

created unless it is supplied references to existing Edinfo, Hdline, Subhdline and Abs_p
instances.

However, this is not such a clear-cut issue. Is it possible to build a database
loader which could use such constructors? Is it efficient? Is it necessary for the
constraints to be satisfied all the time? Could the database provide a consistent view
of the document only after the whole document has been instantiated? Some of the
responsibility for maintaining this DTD constraint also lies with the parser/database
loader which ensures that the document being inserted conforms to the DTD for
multimedia news articles.

In this implementation, since the database loader has not yet been designed, the
issue is left open. However. the rudimentary instantiation program built to test the

type system does try to enforce the number constraints.

5.2.4 Performance Issues

In the section describing the design of atomic types, a storage model for text which
avoided fragmentation of the text component of the document was presented. This
was done to optimize the p-rformance of the database. It was also mentioned that
there was a single type, type ArticleRoot which stored, as attributes, the lists of anno-
tations of the logical elements. A complete listing of this type is given in Appendix B.
This feature also enhances the performance of the browser in displaying text.

A related design goal is to minimize complex navigations of the hierarchy. By
maintaining references to objects frequently accessed as attributes of ArticleRoot,
access cost is reduced. For the multimedia news document, a frequent request from
other system components is for the list of the atomic media instances present in
the document. The references to these media instances are stored in lists which are
attributes of the ArticleRoot type. A similar strategy is seen in the declaration of
the GetArticle method in type Element. Any element can navigate through the parent
elements to determine the article it belongs to. By providing an attribute whose value

is the reference to the Article instance, this navigation is avoided.

62

To enhance the performance of the database, there are two key ways by which the
implementation can help the DBMS. The first is by clustering related objects, and
the second is by providing indices on collections to help optimize queries.

Because ObjectStore transfers data from the server to the client a page at a
time*, clustering related objects in the same object cluster optimizes performance.
Clustering can be done at various granularities. For the hierarchical structure of the
document instance, it is desirable to store the child instances of an element instance
in the same cluster or segment as that of the element instance. As noted in the
preceding section, an element instance may not have control over the instantiation of
its child instances. It is left to the instantiation routines to carry out this optimization.
However, all constructors which allocate memory for attributes of a type’s instance,
try to ensure that the allocation occurs within the same segment of the instance.

ObjectStore collections can be indexed on data members (attributes) only. Except
for attributes which are are integer, character, or string valued, the type implementor
has to provide the rank and hash functions which enable the index to be built. It is
the responsibility of the type implementor to indicate which attributes are indexable.
Once this is done, indexes can be automatically maintained (under updates to the
attribute) by the DBMS. However, for attributes which are references to user defined
types, or are character strings valued, user controlled index maintenance must be
used. This involves calling index maintenance functions within the methods of the
type which modify the attribute being indexed. With th= read-only assumption, this
usually involves modifying the constructor and destructor of the type. The user of
the type must explicitly request ObjectStore to add or drop an index to a collection
based on that attribute.

In Section 4.2.5, it was stated that the date, source, subject, and author are at-
tributes (type String) of Article, even though these values are already stored (by means
of annotations) as instances of Date, Source, Subject, and Author types respectively

The reason for this replication becomes clear now. It is desirable to index the col-

4This data transfer policy can be changed.

63

lection of Article instances on the values of these attributes, since queries predicated
on these are likely to be frequent (Section 2.6). However, ObjectStore collections
cannot be indexed on methods. The string value of instances of Date, Source, Sub-
Jject, and Author can only be obtained by the application of the method GetString.
Hence, although there could have been methods GetDate, GetSource, GetSubject, and
GetAuthor for the Article type, it would not have been possible to build indices on
these methods.

More details on indexes and queries can be found in [EM95].

64

Chapter 6

Related Work

The issue of database design for multimedia data has been tackled from the relational
as well as the object-oriented data modeling perspectives. The design usually involves
(a) defining a model for multimedia documents, and (b) defining models for multi-
media data. Documents. multimedia documents in particular, are richly structured.
Document models try to capture the structure of documents and in the case of hyper-
media, the functionality of hyperlinks. Since multimedia data (specifically time-based
media such as audio and video) differ from traditional data in their synchronization
and temporal requirements, they require a data model different from conventional
models. These are usually object-oriented models. Thus, for exainple, Atomic types
have been defined to model these data.

Of the various media types which make up a multimedia document, the text com-
ponent is by far the most richly structured. In the news-on-demand database design,
the SGML standard has been adopted to describe this structure. Structures for video,
image, and audio data involve spatial and temporal constraints. It is foreseeable that
in the future these media will be just as richly structured as text {OT93].

In this chapter, database models of structured documents (specifically
SGML/HyTime documents) are reviewed first. Later, other implementations of mul-
timedia databases reported in literature are examined. Both relational and object-

orie;:'ed models are considered, although the emphasis is on object-oriented models.

65

6.1 Database Models for Structured Documents

A comprehensive description of various database models for SGML documents pro-
posed in literature is given in [SAZ94]. These models either employ (a) a direct
representation of the DTD in the schema, or (b) the schema is defined external to
the DTD (i.e., DTD-independent schema). Our database model is an example of the

former.

Relational Models

An example of the iatter approach is found in [BCK*94], where the task of incorpo-
rating support for structured text in a relational DBMS is tackled. To enable queries
on structured text documents in SGML format, extensions to SQL are proposed.
Instances of document categories (defined by their DTDs) are fields with data type
TEXT, of relations. Each TEXT field consists of the contiguous text content of the
document along with the parse tree which represents the structure of the document.

A schema creation for an article would look like:

CREATE TABLE (aid INTEGER,
insert DATE,
document TEXT GRAMMAR article_dtd,
PRIMARY KEY (aid));

Here article_dtd is a reference to the article’s DTD, aid is the article id and
insert is the date the article was inserted. The EXPAND operator can be used to
convert parts of the parse tree into fields of a relation. In this way, specific elements
of the document can be extracted by selecting nodes in the parse tree. Updates to the
TEXT field are not handled. The aim of the model is to integrate a relational DBMS
with a text retrieval engine. It would be extremely difficult to incorporate support for
multimedia and HyTime elements in this model. The idea of storing the text content
contiguously and not fragmenting it, is found in the news-on-demand database design.
However, the locations of the start and end of text element instances (annotations)

are stored; the parse tree is implicit in the composition hierarchy (Section 5.1). A

66

similar approach to storing SGML documents is found in [Macl90]. The DTD is
external to the schema and the parse tree is stored as combinations of links to the

parent elements and offsets from the start of the text. A full text retrieval system is

integrated with this model.

Object-Oriented Models

The advantages of object-oriented database systems for multimedia/hypermedia ap-
plications over relational systems is highlighted in [Thur92] and [Bala93]. A case
for using object-oriented databases for storage and retrieval of structured multime-
dia documents is made in [BA94]. Perhaps the earliest object-oriented approach
is in [WKL86] which discusses the logical modeling of structured multimedia docu-
ments. In addition to standard DBMS functions, the authors identify. other functional
requirements of multimedia applications. These include aggregation, generalization,
dynamic schema modification, modeling of presentation information, versioning, large
data volume, content based access, and the ability to specify constraints between log-
ical docurnent. elements. It is proposed to represent the constraints as methods of
the objects representing the document elements. Since the work does not adopt any
standard for document representation, there is very little a priori knowledge of the
structure, and an’' object in the composition hierarchy can have a relationship with
any other object, regardless of type or position. In the news-on-demand database
design, the heterogeneity of the objects involved in the relationships is constrained
by the document’s DTD. For example, a section element is not allowed to be the
sub-element of a paragraph element.

Querying of SGML docuinents is the focus of [CACTS94], where extensions of two
OBMS query languages are proposed. The DTD is mapped into an object-oriented
schema implemented on the O, OBMS. Two extensions to the data model of O, are
proposed. They are: (a) ordered tuples, or the ordering of attributes of a type, and
(b) marked union types. Union types are introduced to handle the ‘or’ connector. For

example a DTD entry using the ‘|’ connector and the corresponding O, declarations

67

are:
<!ELEMENT section -- ((title,body+)|(title,body*,subsectn+))>

class Section public type union(
al:tuple(title:Title, bodies:list(Body)),
a2:tuple(title:Title, bodies:1list(Body),
subsectns:list(Subsectn)))
constraint: (al.title !=nil, al.bodies !=1list())
(a2.title !=nil, a2.subsectns !=1list())

Here, al and a2 mark the union. The extensions to the query language are (a)
the contains predicate to handle querying on strings, (b) implicit selectors to select
the correct path while handling queries over union types, and (c) two new sorts to
query text without exact knowledge of its structure (Section 2.6). Types representing
unstructured document elements (with a #PCDATA content model, for example) are
inherited from basic (atomic) types such as Text and Bitmap. This means that textual
document elements are fragments of the text content of the document, which imposes
a performance overhead while fetching the entire document. There are no inheritances
relationships between classes.

Union types have been introduced here to handle alternative structures for the
same document element (such as the section shown in the example above). In
general. union types are needed to constrain the heterogeneity of the elements which
can occur at a particular position in the composition hierarchy. Our approach for
handling union types is described in Section 5.2.3. The ordering of attributes is visible
through the behavior of the types. Queries with inexact knowledge of the document
structure are not considered in our model. Querying on text content is handled by the
method Match of the Text type. Since marked union types are not used in the news-on-
demand type system, implicit selectors are not dealt with. The inheritance hierarchy
described in Chapter 4, and the composition hierarchies described in Section 5.1
illustrate our approach: every element is an Element, and may have an instance of
an Atomic type. If the element is a TextElement, then its content is obtained by the

method GetString.

68

The design of an OBMS application to handle the storage of SGML documents
is described in [BAH93]. This design also fragments documents according to the
document’s SGML type definition. The paper does not describe the querying facilities,
but describes in detail how dynamic DTD handling is implemented by means of meta-
classes.

The application, called D-STREAT, follows a layered approach by separating
the DTD specific features and DTD independent features into \wo separate lay-
ers of classes. Document type-specific classes are specializations of the document
type-independent classes. This means that features present in all SGML documents
(methods to navigate the document tree for example) can be located in the DTD-
independent layer which contains only one class called Document_Element. Further-
more, there are two meta-classes: TERMINAL and NONTERMINAL. The TERMINAL
class models leaf nodes in the document hierarchy (i.e., #PCDATA elements), while
the NONTERMINAL class models elements which are structured elements. Classes in
the DTD-specific layer are instances of either of these meta-classes. The meta-classes
have methods to create new document-specific classes at run time (createElemType).
The content model of the new class can be set using another method, setContentModel.
Instances of the DTD-specific class can be created at run time using the method cre-
ateElem inherited from either meta-class. In this manner, DTDs can be dynamically
created and inserted into the database. Finally, the content of the element can be set
using the setContent method.

The schema is essentially a flat class hierarchy, with depth one. Every nonterminal
element is a list of document elements. This implies that schema does not enforce
the DTD constraints (i.e., the content model of the individual elements) on the het-
erogeneity of the elements comprising the list. It is argued that, since the SGML
standard and the DTD do not define semantics for each document element type, they
do not have any semantic relationships between them. Therefore, the classes repre-
senting the DTD elements are only specializations of the Document_Element class.

The value of the attribute elementTypeName of the TERMINAL and NONTERMINAL

69

70
meta-classes is the name of the logical document element the instance represents.
Unions are not needed because there is no heterogeneity in the composition hierar-
chy. The authors envisage that the setContent method would check the insertion of a
new element instance against the content model. The creation of a new element-type

class is illustrated here:

<!ELEMENT authlist - - (author)*>

//representative classes are capitalized and

//first letter of instance names are capitalized

AUTHLIST := NONTERMINAL->createElemType("authlist");
AUTHLIST->setContentModel (" (author)*");

Authlistl := AUTHLIST->createElem();
Authlist->setContent(authorl, author2);

//authorl and author2 are pre-existing instances of AUTHOR

The disadvantage of this approach is that a significant amount of type checking
is done at document insertion time. In the news-on-demand database design. types
are checked at compile time. There are similar implications for the processing of
queries. The assertion that the element types never have semantics is debatable. For
example, both table and figure element types may have a float attribute which
specifies their position relative to the surrounding text. Conceivably, the two may
have a common supertype because of this attribute. In addition, HyTime elements
have semantics well defined by the HyTime standard.

Neve.rtheless, our approach has features similar to those of D-STREAT. The
supertypes TextElement, Structured, and StructuredText can be said to be document
type-independent types. However, our type hierarchy is not flat — the schema ensures
that the document being inserted conforms to the DTD. In [BAH93], it is pointed
out that the fact that the document structure is always a tree is factored into the
DTD-independent layer. Thus, optimization algorithms for queries on tree structures
could be integrated into the OBMSs query optimizer. Dynamic additions of DTDs

to the database have not been considered in the news-on-demand database design!®.

!This is possible. ObjectStore has metatypes in its data model and allows the dynamic addition
of types to the ObjectStore database schema.

The extension of D-STREAT to handle HyTime-encoded documents is described
in [BMN94]. Since a document elemnent conforming to an architectural forin has both
SGML and HyTime semantics. there is an additional HyTime layer in the model.
Every architectural form has a meta-class modeling its semantics. For every HyTime
conforming element instance in the document, there are two objects in the database.
For example, 1ink instances would have two classes (and hence two instances) repre-
senting them. The first class would be an instance of the NONTERMINAL meta-class,
and the second would be an instance of the ILINK meta-class. The second class is
also a specialization of the first. In our model, type Link is derived from both Struc-
turedText and llink_AF types (Figure 12).

A document model based on the Office Document Architecture (ODA) is de-
scribed in [BRG88] and [MRT91]. ODA is similar to SGML in that it ailows for
the specification of the logical structure of the document. In addition, it allows the
specification of a layout structure, or the presentation information associated with
the document. The papers mention object-oriented models as candidates to model
these structures. They define an additional layer, called the conceptual structure
which is used to capture the semantics of the components of the logical structure. In
[MRT91]. it is recognized that support for multimediality is required; this is achieved
by providing primitive classes for each media type. Querying this document model,

and the optimization of such queries are described in detail in [BRG88].

6.2 Other Multimedia Databases

Presentational applications sometimes use OBMSs to manage persistent multimedia
data and perhaps manage d;ata capture and playback devices. These applications have
common requirements such as compositiori, synchronization and playback control.
Models and implementations exist which provide support for these requirements either
by integrating an OBMS, or building the model around the OBMS [{GBT93, SW94].

The intent is to provide a generic object-oriented toolkit which can be used by ap-

71

plication developers to implement various multimedia applications. Other database
models focus on o particular monomedia (e.g.. video, or image), or on providing

support for distribution. or on merely storing meta-information.

6.2.1 Presentation-Oriented Multimedia Databascs

An object-oriented framework for modeling composite multimedia objects {such as
multimedia documents) is proposed by the Object Systems Group at the University
of Geneva in [GBT94] and [GBT93]. The focus is on providing a high level interface
for multimedia programming. In particular. [GBT94] deals with data models for
time-based media. and [GBT93] deals with so-called audio/video (AV) databases.
These databases are collections of digital audio/video data and processes whick can
compose and aggregate these data. An AV database, therefore. not only stores data.
but is also “involved with the capture. preszntati-n and scheduling of complex objects.
managing access and allocation of device - and channel bandwidths. and notifying the
appiication of presentation-related events™.

A similar all-encompassing approach is seen in [SW94] where a layered data model
for multimedia applications is described. There are four layers: a data manipulation
laver (IDML). a data presentation layer (DPL) and a data control layer (DCL). The
DDL is similar io the definition of Atomic types. The DML provides services to
groun DDL objects into so-called MAf events and specifies an event calculus to allow
construction of complex events. The DPL prevides descriptions of how data is to be
presented to the user and adds information to events frorn the DML (e.g. information
on spaiial lJavout. output format. icons) to produce a set of instructio:.- for communi-
cating the data to the user. The DCL manages the preseniation - including playback
control. 1/0 device control. and navigation. These models perform almost all of the
functions of a HyTime engine [KRRK93. Rutl93].

The implementation of a persistent object-oriented system for ¥y Time documents
is described in [KRRK93] and [Rutl93]. The database (implemented on ObjectStore)

forms part of a HyTime engine (called HyOctane) which is used to process and display

)

V]

hyperinedia documents represented using the HyTime standard. This design also
fragments the document according to the element types in the DTD. The design is
layered: there is an SGML layer, a HyTime layer, and an application layer.

There are only three classes in the SGML layer: the document class. the element
class, and the attribute class. When a document is inserted into the database, an in-
stance of the document class is created, with its fields as the collection of all instances
of the elements of the document. The element instances in turn have references to
their attributes which are instances of the attribute class. In the HyTime layer. each
architectural form (AF) has a class associated with it. Instances of these AFs get in-
serted at document insertion time. The application layer has a class for each element
type in the DTD. These get instantiated by the application process, which obtains
information on them by querying the HyTime and SGML layers. The application
then works from this laver. Updates to these objects get propagated down to the

appropriate HvTime and/or SGML layers.

6.2.2 Miscellaneous Multimedia Databases

A novel object-oriented model for a video database is proposed in [OT93]. The model
is schemaless, and includes inheritance by inclusion as an inheritance mechanism.
This means that instances. not types. inherit attributes. Therefore, the hierarchical
structure of a video object would be described by a series of derivations, and not by
composition. However, it is not clear as to how one can navigate the structure — how
d<;es one get to the third scene of a movie, for instance? Other approaches to object-
oriented models for multimedia data include [CAF*91]. Incorporating structured
video data will be a future extension to our design (through an extension to the
DTD).

Others have focussed on the temporal aspects of multimedia data, and their syn-
chronization. [HR93] describes a model for temporally composing multimedia objects
and the plavback of the composite objects. In [LG91], Little and Ghafoor present

a procedure for the spatial and temporal composition of distributed multimedia ob-

3

jects. The environment is a distributed multimedia system (like the one described
in Section 2.5). Object Composition Petri-nets (an augmented model of Petri net
with logic of time intervals for Petri net execution) are used to specify the temporal
constraints of compound mrltimedia objects. The destination workstation retrieves
the temporal relationships from the server database, evaluates the Petri net, and
derives the playback schedule. In [LG93] the same authors present a conceptual tem-
poral model based on intervals to model the timing relationships present in compound
multimedia objects. This model forms a basis for a hierarchical data model and for
temporal access control algorithms to allow VCR-like capabilities. They show how it
can be mapped to a relational database and deriv: the playback algorithm.

HyTime also adopts an interval based zpproac’. to modeling timing relationships,
and establishes a comnposition hierarchy (Figure 14) using the document structuring
feature of SGML. There is a single time axis for the whole document and all time in-
tervals are defined on this axis. In our implementation, this representation is mapped
to an instance of a Time Flow Graph [LG94] {a playback schedule)’?. The Time
Flow Graph is used by the synchronization component of the distributed multimedia

svstem to synchronize data streams retrieved from the servers.

?Type Av_fes. which models a Finite Coordinate %pace has a method GetTimeSchedule, which
returns a data structure representing the binary temporal re'stionships between the events in the
FCS. From this data structure, the synchronization module derives the Time Flow Graph.

Chapter 7

Conclusions and Future Work

In this thesis an object-oriented multimedia DBMS design for a news-on-demand ap-
plication has been described. The focus of the work reported here is the development
of a type system that supports multimedia documents. There are three characterizing
features of the type system design: (1) the central use of DBMS technology, (2) the
reliance on object-oriented systems, and (3) strict adherence to international stan-
dards. The database is designed to accommodate actual multimedia objects as well
as meta-information about them. The database schema consists of an object type

system which follows the SGML/HyTime standard for document representation.

The other features of this work are:

1. The choice of a document representation standard. Three document represen-
tation standards were examined: Office Document Architecture (ODA), SGML,
and HyTime. Based on their relative modeling powers and suitability to the
application, the SGML and HyTime standards were chosen. The architecture
of the processing environment for the database system was designed to support

the choice of the SGML and HyTime standards.

2. The development of a Document Type Declaration (DTD) for multimedia news

articles.

3. The development of 3 complete type system that is in complete harmony with
75

the news-article DTD.

4. The annotation-based storage of text, which allows for efficient storage of doc-

uments as well as for fast search according to any of the document markups.

5. The successful implementation of the design on a commercial object oriented
database management system (ObjectStore) and subsequent integration with
other system components (including a visual query interface [EM95]) by other

project participants.

The type system design implements a DTD definition for multimedia news doc-
uments. Populating the database with instances of other document types is not
possible. Dynamic insertion of new DTDs needs to be investigated to allow insertion
of different document types. Inserting new types at run time coﬁld involve using
meta-tyvpes. An interesting question in the context for support for multiple DTDs is
whether there are inheritance relationships between the types representing document
ernwds in different DTDs. For example, there could be a slightly different article
DTD, which does not have, say, quotes, but has bibliographic references.

A related goal which is important to consider in future, is modeling the whole
DTD as an object in the database. This would support dynamic additions of new
document types in the database.

The type system also needs to be made richer to support other HyTime architec-
tural forms not used in the multim~dia news DTD. In particular, the location AFs
given in the location module uced to be implemented. This includes supporting the
functionalities of the HyQ query language.

This work has concentrated on the right-hand-side of Figure 1. Consequently, a
multimedia document is currently entered into the database by creating the object in-
stances according to the types defined in the database. The document being inserted
is assumed to conform to its DTD. A database loader needs to be written which
can validate multimedia documents and load the database with the type instances

automatically. This can be done by coupling the multimedia DBMS with an SGMI.

76

compiler which is retrofitted to instantiate object instances at the "code generation”
step of compilation. For document elements which provide support for continuous
media, HyTime capability needs to be added to this front-end. In this fashion, doc-
uments marked-up according to the SGML/HyTime standard can be automatically
inserted into the database.

An important extension to the atomic types would be the ability to index media
objects other than text, based on content. At this point, the only way to query
images, for example, is to define a number of attributes and search on the values of
these attributes. It is important to provide the facility to pose queries that refer to
the content of the images rather than the attributes defined on them and be able to
deal with such queries. The initial step in providing this facility would be to work on
indexing of image conteii.s.

In the long-run. an extensible OBMS that has inherent support for multimedia
information systems is being developed. The intention is to use this system, called
TIGUKAT [OPS*95], to eventually replace ObjertStore. Although it may not be
possibie to achieve the same performance, there will be opportunities to expand on
the functionality and investigate the feasibility of various issues. It is difficult, if
not impossible, to investigate all of the issues related to multimedia DBMS design by
building a layer on top of a closed system such as Ot jectStore. TIGUKAT ic currently
being prototyped at the Laboratory for Database Systems Research of the University
of Alberta. It has a purely behavioral object model where the users interact with
the system by applying behaviors to objects. In this way, full abstraction of modeicd

entities is accomplished since users do not have to differentiate between attributes

and m::thods.

-~1

Bibliography

[BA9:]

[BAH93]

[BMN+ 1}

[Bala93]

[BCK*94]

[BRGSS]

K. Bohm and K. Aberer. “Storing HyTime documents in an object-

oriented database,” In Proc. of CIKM 94, pages 26-33, 1994.

K. Bohm. K. Aberes and €. "“irer. “Extending the scope of document
handling: The drz.qu of 2u €¥3DBMS application framework for SGML
document storag:. .. :fssupiere der GMD No. 811, GMD-IPSI, Ger-
sxony, 1993,

. Bohm, A. Miiller and E. Neuhold. “Structured document handling —
a case for integrating databases and information retrieval,” In Proc. of

CIKM 94, pages 147-154, 1994.

V. Balasubramaniam. “State of the art review on hypermedia issues and
applications,” Internal document, Graduate School of Manageu..nt, Rut-

gers University, Newark, New Jersey, 1993.

G. E. Blake, M. P. Consens, P. Kilpeliinen, P.-A. Larson, T. Snider and
F. W. Tompa. “Text/relational database management systems: Harmo-
nizing SQL and SGML,” In Proc. First Intl. Conf. Appl. of Datcbases,
pages 267-280, June 1994.

E. Bertino, F. Rabitti, and S. Gibbs. “Query processing in a multimedia
document system,” ACM Trans. Office Information Systems, 6(1):1-41,
January 1988.

[CACS94]

[CAF+91]

[DD94]

[DG92]

[DOBS94]

[EM95]

[Fox91]

[GBT93]

[GBT94]

79

V. Christophides, S. Abiteboul, S. Cluet and M. Scholl. “From structured
documents to novel query facilities,” In Proc. ACM SIGMOD Intl. Conf.
Management of Data, pages 313-324, May 1924.

S. Christodoulakis, N. Ailamaki, M. Fragonikolakis, Y. Kapetanakis, and
L. Koveos. “An object-oriented architecture for multimedia information

systems,” Q. Bull. of IEEE Tech. Comm. on Data Eng., 14(3): 4-15,
September 1991.

S. J. DeRose and D. G. Durand. Makirng Hypermedia ivork — A User’s
Guéde to HyTime, Kluwer Publishers, 1994.

N. Dimitrova and G. Golshani. “EVA: A query language for multimedia

information systems,” In Proc. Intl. Workshop on Multimedia Informa-

tion Systewms. pages 1-20, February 1992.

A. Dogac, M. T. Ozsu, A. Biliris, and T. Selis. Advances in Object-
Oriented Database Systems, Springer-Verlag, 1994.

G. El-Medani. A Visual Query Facility for a News-on-Demand Multi-
media Database. Master’s T s:2sis, University of Alberta, Department of

Computing Science, 1995 (forthcoming).

E. A. Fox. “Advances in interactive digital multimedia systems,” Com-

puter, 24(10): 9-21, October 1991.

S. Gibbs, C. Breiteneder and D. Tsichritzis, “Audio/video databases; An

object-oriented approach,” In Proc. 9th Intl. Conf. on Data Engineering,
pages 381-390, 1993.

S. Gibbs, C. Breiteneder and D. Tsichritzis. “Data modeling of *ie-
based media,” In Proc. ACM SIGMOD Intl. Conf. on Management of
Data, pages 91-102, May 1994.

[GDC+92]

[Gold90]

[HBB+94]

[HRO3]

[1SOs6]

[1SOS9)

[1S092]

[KRRK93]

[LG93]

C. Goble, M. Docherty, P. Crowther, M. Ireton, J. Oakley, and C. Xy-
deas. “The Manches.er Multimedia Information System.” In Proc. Conf.

on Extending Database Technology, pages 39-55, 1992.
C. F. Goldiarb. The SGML Handbook, Oxford University Press, 1990.

A. Hafid, G. v. Beckmann, T. Burdin, R. Dssouli, J. Gecsei, B. Kerhervé
and Q. Vu. “On news-on-demand service implementation,” Publication
#928, Département d'Informatique et de Recherche Opérationnelle, Uni-

versite de Montreal, September 1994.

R. Hamakawa and J. Reikinoto. “Object composition and playback mod-
els for handling multimedia data,” In Proc. ACM Conf. Multimedia '93,
pages 273-281. October 1993.

International Standards Organizaticn. Information Processing —— Text
and Office Information Systems — Standard Generalized Markup Lan-

guage (ISO 8879), 1986.

International Standards Organization. Office Document Architecture

(ODA) and Interchange Format (ISO 8613), 1989.

International Standards Organization. Hypermedia/Time-based Struc-

turing Language: HyTime (ISO 10744), 1992.

J. F. Koegel, L. W. Rutledge, J. L. Rutledge and C. Ke_kin. “HyOctane:
A HyTime engine for an MMIS,” In Proc. ACM Multimedia ’93, pages
129-136, August 1993.

T. D. C. Little and A. Ghafoor. “Interval-based conceptual models for
time-dependent multimedia data,” IFFE Trans. Knowledge and Data
Engineering, 5(4):551-663, April 1993.

80

[LGO1]

[LG94]

[LLOW91]

[Macl90]

[MRT91]

[NY94]

[OPS*95]

[OSEV95]

[0T93]

T. D. C. Little and A. Ghafoor. “Spatio-temporal composition of dis-
tributed multimedia objects for value added networks,” Computer,

24(10):42-50, October 1991.

L. Lamont and N. D. Georganas, “Synchronization architecture and pre-
tocols for a multimedia news service application,” In Proc. IEEFE Inter-

national Multimedia Computing and Systems Conf., 1994.

C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. “The ObjectStore
database system,” Communications of the ACM, 34(10): 50-63, October
1991.

I. A. Macleod. “Storage and retrieval of structured documents,” Infor-

mation Processing and Management, 26(2):197-208, February 1990.

C. Meghini, F. Rabitti, and C. .Thanos: “Conceptual modeling of multi-
media documents,” Computer, 24(10): 23-30, October 1991. -

R. Ng and J. Yang. “Maximizing buffer and disk utilizations for news-
on-demand,” In Proc. 20th Intl. Conf. on Very Large Databases, pages
451-462, 1994.

M. T. Ozsu, R. Peters, D. Szafron., B. Irani, A. Lipka. and A. Munoz.
“TIGUKAT: A uniform behavioral objectbase management,” VLDB
Journal, 1995 (To appear).

M. T. Ozsu, D. Szafron, G. El-Medani and C. Vittal. “An object-oriented
multimedia database system for a news-on-demand application,” ACM

Multimedia Systems Journal, 1995 (To appear).

E. Oomoto and K. Tanaka. “OVID: Design and implementation of a
video-object database system,” IEFE Trans. Knowledge and Data Man-
agement, 5(4):629-643, August 1993.

[OV91]

[Pric93]

[Rutl93]

[SAZ94]

[SLVZ95]

[Stev9l]

[Stro91]

[SW94]

[Thur92)

82
M. T. Ozsu and P. Valdurdez. Principles of Distributed Database Systems,
Prentice-Hall, 1991.

R. Price. “An introduction to the future international standard for hy-
permedia object interchange,” In Proc. ACM Multimedia 93, pages 121-
128, 1993.

L. Rutledge. A HyTime Engine for Hypermedia Document Presentation.
Master’s Thesis, University of Massachusetts Lowell, 1993.

R. Sacks-Davis, T. Aruvld-Moore and J. Zobel. “Database systems for
structured documents”™. In Intl. Symp. Advanced Database Tech. and
their Integration (ADTI °94), 1994.

B. Subramaniam, T. W. Leung, S. L. Vandenberg and S. Zdonik.
“The AQUA approach to querying lists and trees in object-oriented
databases,” In Proc. of Intl. Conference on Data Engineering 95, 1995.

S. M. Stevens. “Next generation network and operating system require-
ments for continuous-time media,” In Proc. Second International Work-
shop on Network and Operating System Support for Audio and Video,
pages 197-207, 1991.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1991.

G. A. Schloss and M. J. Wynblatt. “Building temporal structures in a
layered multimedia data model,” In Proc. ACM Multimedia '94, pages
271-278, 1994.

B. Thuraisingham. “On developing multimedia database management
systems using the object oriented approach,” Multimedia Review

3(2):11-19, Summer 1992.

[WKLS6]

[VOSE94]

83
D. Woelk, W. Kim. and W. Luther. “An object-oriented approach to
multimedia databases,” In Proc. ACM SIGMOD Intl. Conf. on Manage-
ment of Data, pages 311-325, May 1986.

C. Vittal, M. T. Ozsu, D. Szafron and G. El-Medani. “The Logical De-
sign of a Multimedia Database for a News-On-Demand Application,”
Technical Report 94-16, Department of Computing Science, University
of Alberta, December 1994.

Appendix A

DTD for Multimedia News
Articles

DOCTYPE

article SYSTEM "article.dtd" [

<!-- HyTime Modules Used -->

<?HyTime
<?HyTime
<7HyTime
<?yTime

<! =- Non-HyTime Notations used
<!NOTATION virspace PUBLIC
"+//7S0/1EC 10744//NO7ATi-** Viztual Measurement Unit//EN">

support base>

support measure>

support sched manyaxes=3>
support hyperlinks>

-->
-- virtual space unit {(vsu)--

<! -- Document Structure -->

<!ELEMENT article - - {frocntmatter, async, sync)>

<!ELEMENT frontmztter - - (adinfo, hdline, subhdline, abs-p)>

<!ELEMENT edinfo - - (loc & date & source & author+ &
keywords & subject)

<!ELEMENT (locl|socurce|subiect) - - (#PCDATA)>

<!ELEMENT (hdline|subhdline) - - (#PCDATA)>

<!ELEMENT date - - (#PCDATA)>

<!ELEMENT (author|keywords) - - (#PCDATA)>

<{ELEMENT abs-p - - paragraph>

<!ELEMENT async - - (sectionlfigure|link)#*>

<!LLEMENT saction - - (title?, (paragraphilisi)=)>

<{ELEMENT title - = (#PCDATA) >

<!ELEMENT paragraph - - (emphllemph2|listi{fisnre{inkiquote|#PCDATA)*>

<!ELEMENT (emphil|emph2|quote) - - (#PCDATA? »

R4

84

<'ELEMENT
<!ELEMENT
<!'ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMERT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!'ELEMENT
<'ELEMENT
<!ELEMENT

<!ATTLIST

<!ATTLIST

<'ATTLIST

<!'ATTLIST

<!'ATTLIST

<YATTLIST

<!ATTLIST

<!'ATTLIST

list - - (title?, listitem+)>
listitem - - (paragraph)*>
link - - (emphilemph2liquotelfigure |#PCDATA)+>
figure - - (figcaption?) >
figcaption - - (#PCDATL; >
sync ~ - (audio-visual+)>
audio-visual - - (x, y, time, av-fcs, av-extlist+)>
(xlyltime) =~ - EMPTY>
av-fcs - - (av-evsched+,>
av-evsched - - (audio*, video*, stz >
(audiolvideolstext) - - EMPTY >
av-extlist - - (xdimspec, ydimspe: ,%dimspec)>
(xdimspec|ydimspec|tdimspec) - - (axes -marklist)>
axes-marklist—- - (#PCDATA)>
article
id ID #REQUIRED
HyTime NAME #FIXED HyDoc>
quote
source CDATA #IMPLIED>
author
designation CDATA #IMPLIED>
figure
filename CDATA #REQURED
format CDATA #REQUIRED>
(xlyltime)
HyTime NAME #FIXED axis
id ID #IMPLIED
axismeas CDATA #FIXED "virspace"
axismdu CDATA #FIXED " "
axisdim CDATA #FIXED “virspace'>
link
HyTime NAME #FIXED ilink
id ID #REQUIRED
linkends IDREFS #IMPLIED>
av-fcs
HyTime NAME #FIXED fcs
id ID #REQUIRED
axisdefs CDATA #FIXED "x y time'>
av-evsched
HyTime NAME evsched
id ID #REQUIRED
axisord CDATA #FIXED "X y time"

basegran CDATA #FIXED “ysu vsu vsu">

<YATTLIST

<'ATTLIST

<!ATTLIST

<!ATTLIST

<!'ATTLIST

I>

(audiolvideo)

HyTime NAME #FIXED event
id ib #REQUIRED
filename CDATA #REQUIRED
format CDATA #REQUIRED>
stext

HyTime NAME #FIXED event

id ID

filename CDATA

av-extlist

HyTime NAME
id IDb
av-dimspec
HyTime NAME
id ip
axes-marklist
HyTime NAME
id ID

#REQUIRED
#REQUIRED >

#FIXED extlist
#REQUIRED>

#FIXED dimspec
#REQUIRED>

#FIXED marklist
#REQUIRED

86

Appendix B

Type Declarations

B.1 Atomic Types

/% class Atomic : Parent class in the hierarchy for basic media types

* private members :

* length : size of the media object

* hostQoSParam: pointer to object holding media independent

* QoS parameters

* protected members:

* Atomic: constructor (protected to make the class abstract)

name : keep track of multiple instances of the same object at
* different hosts.

* public members

* ~Atomic : virtual destructor

* GetLength : returns the size of the object in characters;

* GetName : returns the name of the object (temporary feature)
* subtypes: NCMType, CM Type

kK

/

class Atomic{
private:
unsigned long length;
HostQoSParameter *hostQoSParam;
protected:
charx name;
Atomic(unsigned long length,
char *name =0,
HostQoSParameter *qos =0); //constructor
public:

87

static os_typespec* get_os_typespcc():
virtual ~Atomic(): //destructor
unsigned long GetLength();

charx GetName():

HostQoSParameter* GetHostQoSParameter();

/* class NCMType : Parent class of non continuous media types
* private members :
* content :array of characters representing the object
* protected:
* NCMType : constructor (to make it an abstract class)
* public members :
* ~NCAMType: destructor
* GetContent: return the content of the object as char *
* subtypes : Text. Image
*/
class NCMType : public Atomic{
private:
char xcontent:
protected:
NCMType(const char* content, unsigned long length.
char* name =0, HostQoSParameter* qos =0);

public:
static os_typespec* get_os_tvpespec();

~NCMType(): // destructor virtual fas it is abstract).
char* GetContent(); :

»

class CMType : Parent class of continuous media types

private members :
filename : name of the file containing the object
location : location of the file (site, directory).
uoi : the Universal Object Identifier
protected:

CMType : constructor (to make it an abstract class)
public members :

~CMType: destructor (virtual since type is abstract)

GetFilename: return the file name

GetLocation: return the lccation

¥ ¥ K K K X X ¥ X ¥ X ¥

subtypes : Temporal, SyncText
*/

GetUOI : returns the Universal Object Identifier required by the CMFS

jo's]

o

class CMType : public Atomic{
private:

char xfilename;

Location *location:

UOT uot;

protected:

CMType(const char xfilename. Location *location,
UOI uoi. int length, char *name =0,
HostQoSParameter *qos =0):

public:

static os_typespec *get_os_typespec();

virtual ~CMType():

char *GetFilename():

Location *Get Location():

UOI GetUO():

}:

/* class Temporal: Parent class of continuous media types
* with temporal attributes
* private members:
* duration: length of playback (in seconds)
* protected:
* Temporal: constructor (to make it an abstract class)
* public members :
* ~ I'emporal: destructor (virtual since it is abstract)
* GetDuration: returns the value of the duration attribute
* subtypes: Video, Audio
*/
class Temporal : public CMType{
private:
unsigned long duration; //in seconds
protected:

Temporal(unsigned long duration, const char *fname,
Location * location, UOI uoi, unsigned long length,
char *name =0, HostQoSParameter *qos=0);

public:

static os_typespec *get_os_typespec();

virtual ~Temporal();

unsigned long GetDuration();

};

90
B.2 Top-Level Element Hierarchy

/* class Element : Parent class in the hierarchy for element types
* private members
* articleElement : the article to which the element instance belongs
* protected members
* Element: constructor (protected to make the class abstract)
* mazintains extents
* Default constructor to be used when element does not
* belong to any article
* public members
* ~FElement : virtual destructor
* GetArticle : returns the pointer to the Article instance
* GetParent : pure virtual function - returns the parent of the
* instance in the composition hierarchy
x subtypes: TextElement, Structured, HyElement
*/
class Element{
private:
Article *articleElement;
protected:
Element();
Element(Article *);
public :

virtual ~Element();
virtual Element *GetParent() = 0;
Article *Get Article():

}:

/*class TextElement: Elements which are text instances and can be re-
* presented by annotations.

*private members

xprotected members:

* TextElement : constructor made protected to enforce abstractness

* of the class.

*public members

* absoluteAnnotation : annotation of the text element with

* respect to the entire text representing
the text content of the article.

* GetString :returns the string value of the TextElement instance.

* GetAbsoluteAnnotation : returns the annotation object.

*/

class TextElement : public virtual Element{

protected:
TextElement(Annotation *, Article *);
TextElement():

public :
Annotation *absoluteAnnotation;
virtual ~TextElement();
Annotation *GetAbsoluteAnnotation();
char *GetString();

}:

/*class Structured : Elements which have subelements (children)

* Virtual inheritance from FElement so that
* multiply inheriting subtypes will have only
* copy of the Element subobject

*private members :
*protected members:

* Structured : constructor made protected to enforce abstractness
* of the class. Default constructor to be used when
* there is no article instance.
*public members
* ~Structured : destructor : removes instance from extent
* GetNth : returns nth sub-element (count sta.és from
* one. not zero). Pure virtual function
*/
class Structured : public virtual Element {
private :
protected:
Structured();
Structured(Article *);
public :

virtual ~Structured();
virtual Element *GetNth(int) = 0;

};

class StructuredText : text elements which are structured.
private members : (none)
protected members :
StructuredText : constructor, made protected to enforce
abstractness of type. Maintains extent
public members :
~StructuredText : destructor; removes instance from extent.

R K X % % ¥ B

GetNth: inherited from Structured. Returns nth child element

91

(return type changed to TextElement). Pure virtual
* Junclion

*/

class StructuredText: pubiic virtual TextElement, public virtual Structured{
private :
protected:
Structured Text(Article *, Annotation*);
StructuredText();
public :
virtual ~StructuredText();
virtual TextElement *GetNth(int)=0;

};

B.3 Type AtrticleRoot

class ArticleRoot {

public:
static os_typespec* get_os_typespec();
//list of atomic media
Text* textBlock;
os_List<Image*>x* imageList;
os-List< Audio*>=* audioList;
os_List<Video*>x* videoList;
os_List<SyncText*>x*stextList;
//the article instance where all this stuff belongs
Articlex article;
//Annotations for various singly occurring TertElements
Annotation* edinfo;
Annotation* loc;
Annotation* keywords;
Annotation* source:
Annotation* author;
Annotation* subject;
Annotation* date;
Annotationx frontmatter;
Annotation* hdline;
Annotation* subhdline:
Annotation* absP;
Annotationx* title;
// Annotation lists.
//the non-Structured TertElements
os.List<Annotation*>=* figcaptionList;
os_List<Annotation*>* emphlList;
os_List<Annotation*>* emph?2List;
os_List<Annotation*>* quoteList;
os_List<Annotation*>=* titleList;
//Structured Texi Zlements
os_List<Annotation*>x* listList;
os_List<Annotation*>#* paragraphList;
os.List<Annotation*>=* figureList;
os_List<Annotation*>* sectionList;
os_List<Annotation*>x* listItemList;
os.List<Annotation*>= linkList;

ArticleRoot(Text* textBlock);
~ ArticleRoot();

94
B.4 TUnion Types

//for class Async
class Fig_Lin_Sec: publi¢ virtual StructuredText {

&

//for class AudioVisual
class Ext_Fcs_Tim _X_Y : public virtual HyElement {
|5
//for class Av_evsched
class SAu_STe_SVi: public virtual Event_AF{
public:
virtual CMType *GetContent() =0;
vizdisd 213 #GetSummary() =0;
wvirtual Os-List<TDimspecx*> x(G~tTimeExtents() =0;

};

//for class Paragraph
class Emp_Fig Lin_Quo : public virtual TextElement{

}s

//for class Link

class Emp_Fig_Quo : public virtual Emp_Fig_Lin_Quo{
b

