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ABSTRACT

This dissertation deals with theoretical aspects of
the determination of the magnitude and the rate of decay
of hydrostatic excess pore pressures caused by applied ex-
vterna] stresses in a mass of soil. Numerical methods for
the solution of the problems are developed.

The existing theories of primary consolidation used
to obtain the compression characteristics of clay are criti-
cally reviewed. The techniques of solution are mentioned
briefly and the types of boundary value problems that may be
encountered are summarized.

A general théory of one-dimensional primary consolida-
tion accountin§ for the self weight of the soil grains is
presented. This general theory is based on nonlinear re-
lationships between the coefficient of permeability, the
coefficient of compressibility and the effective stress.
Terzaghi's linear theory of consolidation can be considered
a special case of this general theory. The general theory
evolved can be applied to the case of a sedimenting soil.
The data recgrded from the Mississippi Continental Shelf
is recoverable with appropriate input data.

This dissertation further develops a numerical method
in two dimensions for determining the construction pore
pressures in embankment sections as a function of their
construction history. The numerical a]gorithm developed

is versatile. Problems involving complex boundary conditions,



ii

stratified soils and gradual loading can be solved. The
‘coefficient of consolidation can also be varied as a function
of position and time. Case records of six embankments have
been analyzed and results compared with field observation.
Generally good agreements were obtained.

The numerical algorithm develcped is extended to treat
the cases of impeded drainage (retardéd conso]idation) at
the junctions of inner cores and outer shells of earth em-
bankments. The impedance to drainage is measured by a
parameter called the Impedance Factor. The impedance fac-
tor depends on the relative lengths of the drainage paths
and the relative permeabilities of the inner cores and the
outer shells of the embankment. Results are presented for
a hypothetical dam whose dimensions are varied and for
different values of the impedance factor.

Terzaghi's classical theory of one-dimensional con-
solidation is extended to develop a second-order weakly non-
linear partial differential equation governing the pore
pressure equalization arising out of the erosion of a fully
saturated sediment at.a prescribed rate. This p&rt of the
study aims at correlating some of the geological and physical

parameters involved in valley formation.
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CHAPTER I

INTRODUCTION

1.1 PURPOSE OF THE RESEARCH

" The study comprising this thesis is based on the
well-known classical Terzaghi theory. In deriving the
differential equation governing bne—dimensiona] consolida-
tion, Terzaghi assumed constant coefficients of permeabi-
lity and compressibility for the soil together with
infinitesimal strains to realize a linear theory. Such
assumptions characterized early studies in mathematical
physics for two very important reasons. First, a linear
theory yields governing equations which are ameable to
closed form solution. This requirement was almost essential
prior to the advent of high speed computers. Second, a
linear theory enables one to apply the principle of super-
position. However, the idea]izations assumed by Terzaghi
obviously are at variance with reality.

| Differences in observed and predicted results have
stimulated a series of modifications to the theory. Non-'
homogeneous soils whose properties vary with depth have
been treated by Schiffman and Gibson (1964) and Raymond
(1965). Small strain theories for compressible, itormally
consolidated clay incorporating stregs—dependent coefficients
of compressibility and permeability have been presented by

Davis and Raymond (1965) and Barden and Berry (1965). Large




strains have been considered by Mikasa (1965) and by Gibson
et al. (1967). Gibson et al. (op. cit.) have incorporated
the relative velocity between water and soil in applying
Darcy's law. Many of the above treatments lead to non-
linear partial differential equations which cannot be
'solved rigorously. Recourse is usually made to numerical -
methods.

Under three-dimensional conditions, three-dimensional
strains as well as three-dimensional flow of water take
place. The three-dimensional treatments have all assumed
linear elastic characteristics, as anything more realistic
leads to extreme mathematical éomp]exity. Pseudo three-
dimensional cases which in?o]ve three-dimensional flow of
water but only one-dimensional vertical strain are compara-
five]y simple to treat if the bulk stress remains constant.
The solutions for sand drain design (Barron, 1948) are of
this type, as also is the more complex analysis for sand
drains in layered clays (Horne, 1964).

A11 of the studies mentioned above neglect the true

self-weight of the soil.

1.2 SCOPE OF THE STUDY

The scope of this study includes.a summary of all of
the existing theories of one- and three-dimensional consoli-
dation. The assumptions involved in each theory are

examined and criticized. A general, nonlinear theory of



one-dimensional consolidation is developed incbrporating
the self weight of the soil, the re]ative velocity of soil
and water in Darcy's law, and a variation of the coeffi-
cients of permeability and compressibility with effective
stress which in turn 1s a function of depth and time.

A two-dimensional plane strain case for consolidation
is developed on the basis of Terzaghi's assumptions, which
involves two-dimensional dissipation of water and one- -
dimensional vertical compression. The development of the
equation is general and incorporates a moving boundary ‘
involving the thickness of the clay layer increasing with
time. This equation is used to predict the construction
pore pressures and the effect of dissipation during con-
struction shutdown. Six case histories have been studied
and the calculated and recorded pore pressures are compared.

Arising out of the solution of the two-dimensional
equation, rectangular clay cores having side drains are
examined. The impedance of the side drains to the normal
flow of water due to dissipation is studied. |

As part of an investigation into processes associated
with valley formation the erosion of a fully saturated soil
mass at a specified rate has been studied and the resulting
pore pressure isochrones have been computed. This is a
corollary to the one-dimensional sedimentation case (Gibson,
1958). The equation governing one-dimensional erosion is

developed and results are obtained for typical cases.



1.3 ORGANIZATION OF THE THESIS

This study can be divided into the following main
parts. |

Chapter II deals with a brief critical review of
the existing theories of ccnsolidation of clay layers.

Chapter III comprises a brief treatment of the
bodndgry conditions that may arise in consolidation problems.

”Chap%er IV includes a summary of the numerical tech- |
niques involved and a detailed discussion of the methods
employed.

Chapter V is a'discussion of the Terzaghi two-dimen-
sional consolidation case. Also an extension of the Davis-
Raymond theory to two dimensions is inc]uded.. A complete
section is devoted to the development and discussion of
impeded drainage in two-dimensional dissipation.

Chapter VI deals with the analysis and techniques
of solution of a two-dimensional consolidation equation
which yields the construction pore pressures in a growing
wedge. A summary of the theoretical methods for predicting
construction pore pressurés is provided. Six case histories
are presented and comparisons are made between the numeri-
cal and recorded pore pressure results.

Chapter VII is the development of analysis and
solution of a general, nonlinear, finite strain, one-dimen-
sional consolidation theory for clay layers increasing in

thickness with time. The development accounts for the



self weight of the sof]igrains. The material property'
behavior is based on observed data. A case history is
cited.

Chapter VIII refers to the analysis of the one-
dimensional equaticn governing the deficient pore pressure
dissipation arising out of the depositiona] and erosional

balance in valley formation. Results are provided for few

general cases.




CHAPTER II

REVIEW OF CONSOLIDATION THEORIES

2.1 GENERAL

When a load is applied to a saturated soil mass,
initially the entire load is taken up by the water in the
pores of the soil skeleton. The pofe water thus develops-
a pressure excess (in excess of the equilibrium pore water :
pressure) equal to the app]igd load at the instant of load-
ing. If the duration of load application to the saturated
soil mass is short, i.e., short compared to the dissipation
time of excess pore pressure,‘water begins to flow due to
the hydraulic gradient caused by the excess pore pressure,
and the soil changes in volume. The process involving a
decrease of the water content of a saturated soil without
replacement by air is called the 'Process of Consolidation'.
The mathematical theory describing the dissipation of excess
pore preésures and associated deformation of the soil is
called 'Consolidation Theory'. The amount of compression
that has occurred in the soil skeleton at any time is rela-
fed not only to the applied load but also td the amount of
stress transmitted at the soil particle contacts, i.e., to
the difference between the applied stress and the pore pres-

sure. This difference is called the ‘'Effective Stress'.




2.2 BIOT'S THEORY OF THREE-DIMENSIONAL CONSOLIDATION

Biot (1941) has presented a rigorous and complete
treatment of the theory of consolidation. The following
basic properties of the saturated soil were assumed:

(a) 1isotropy of the material

(b) reversibility of stress-strain relations under
final equilibrium conditions

(c) -1inearity of stress-strain relations

(d) small strains
(e) the water contained in the pores is incompressible
and (f) the water flows through the porous soil skeleton
according to Darcy's law.

The strains are assumed to be related toiihe effective

stress changes by equations such as

e, = F2ol - ko . | 2.1a
where €y x denotes strain in the xjﬁirection
Gix denotes effective stress in the x-direction
B (cxx - u)
O x denotes fota] stress in the x-direction
u denotes pore water pressure

u denotes Poisson's ratio of the soil skeleton



E denotes Young's Modulus of Elasticity for the
soil skeleton

' =
* GZZ) (UXX to to )

1 1 1
9 denotes (cxx + Suy vy -
- 3u 2.1b
i.e., ©6' =106 - 3u 2.1c

where 6' is called the first effective stress invariant, and
0 the first total stress invariant. Similar relations such

as 2.la can be written for strains in the y- and z-direc-

tions. They are

:l.LE'_}‘_I

eyy E oyy 5 ) 2.2
=1tu . B

€, E L 5 g' 2.3

Adding equations 2.1a, 2.2, and 2.3, we have

= 1 - 2u 3
Exx T Syy e, E 0
or A = l—%fgk 9" 2.4

where = + + :
A €yx eyy €,



Equation 2.4 yields

EA

RN § Ty}

Substituting 2.1c in the above equation leads to

2.5
1 _ EA
or §9 -u =3 T~ 7n

Further, Darcy's law is assumed ‘valid for the flow

of pore water through the porous soil skeleton. Therefore,

= ':__k_a_u
Ve T - k Ty Y. ax . 2.6
W
where Vg denotes the velocity of fluid flow in the
x-direction
i denotes the hydraulic gradient in the x-direction

k denotes the coefficient of permeability of the
soil.

On differentiation, equation 2.6 becomes

QL
=

)

3 - .k 3
3x (vx) - Y, 9X (

QL

X
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: 2
3 K 3"u
or : = (6x/dt) = - — —5
X T 3x?

: 2

. 3 k 37u
l.e., = (8x/dx) = - 3~ —
at Yiy 8x2

‘where “éx/dx = £y

Therefore equation 2.6 transforms to

2 .
3 - - k3u
5t (Exx) Yo 5x2 2.7a

Similar equations for strains in y- and z-directions are

f% geyy) = - %& %;% 2.7b
and g% (szz) = - %& %;% : _ 2;7c
Adding equations 2.7, we have

%é = - %ﬁ Vzu _ 2.8a
where v2 = 322 + 322 + 3?2 2.8b
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Substituting 2.5 in 2.8 yields

8_35{3_(1_%2_11)(%.9-&)}=-Y—kw-v2u | 2.9
The above equation may be written as
o 2spll a1
i.e., cVZu = %% - %-%% ' 2.10
where ¢ =30 -kgu)Yw

Equation 2.10 is the general equation‘for consolidation

in three-dimensions. An unique solution to equation 2.10
depends on the specified boundary and initial conditions.
Boundary and initial conditions are discussed in a subsequent
section.

Of the basic assumptions made, (b) and (c) are most
subject}to criticism. Biot (1941) contends that it can be
imagined that the grains comprising the soil are held to-
~gether by surface tension forces and tend to assume a con-
figuration of minimum potential energy; this Biot believes
is essentially true for the colloidal particles constitu-

ting clay. Biot (op. cit.) assumed that for small strafns,
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when the soil grain patfern is not too much disturbed, the
assumption of reversibility will be applicable. The assump-
tion (a) of isotropy is not essential and anisotropy can
easily be introduced as a refinement. |

In Biot's presentation it is emphasized that all
equilibrium, compatibility and stress-strain relationships
have been satisfied. It is evident that the formal solution °
of the equation 2.10a is rather complex; only few special
cases have been solved. For example, De Jong (1957) pre-
sented the solution for a circu]ar uniformly loaded area
supported on a compressible soil of infinite extent and
Gibson and McNamee (1957) solved the case of a rectangular
uniformly loaded area on the surface of a semi infinite,
isotropic, homogeneous, and fu]Ty saturated porous elastic "
medium with a fully permeable upper surface: he analysis

was restricted to a medium with a Poisson's Ratio equai to

zero.

2.3 RENDULIC'S THEORY OF THREE-DIMENSIONAL CONSOLIDATION

Rendulic (1936) presented a theory for three-dimen-
sional consolidation. Assuming that the soil is isotropic

and homogenéous, the three-dimensional consolidation equa-

tion may be written as

Q

2

89]
cV'u + v

t

=24 2.11

W]~
(s3]
@



13

where _ 6] = c] + 02 + 03 = g +c + 0

- kE

This equation was obtained by assuming a linear elastic
stress-strain law, and no attempt was made to refer to
strain compatibility. This theory is called the pseudo-
three-dimensional theory of consolidation.

quation 2.11 is identical with 2.10 for an
elastic skeleton; but it is important to realise that e]
in 2.11 is the sum of the externally applied total stresses,
whereas 6 in 2.10a is.the sum of the total stresses at the
point under consideration. The value of %% is determined
not only by the time rate of change of external stresses

a6
(as is gfl), but also by the change in volume as the con-

solidation process progresses (Schiffman, 1967).

2.4 COMPARISON OF THEORIES OF BIOT AND RENDULIC

Generally the term %% is non-zero, since stress re-

distribution does take place within the soil mass during

consolidation, even when the applied load is maintained
ab

constant. The term 5fl will be zero when the externally

applied load is constant. When, as a first approximation

%% is taken equal to zero (as in Terzaghi theory, to be

followed), then the governing equation for consolidation is
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cvly = &4 2.12

(o34

As pointed out earlier, under three-dimensional

strain conditions, 2.12 assumes the form

2 2 2

U 9 U 3 u ou
o { + + ) = =& 2.13
3 3x2 3y2 322 at

- kE
where €3 = (T = 200V,

Under two-dfmensiona] strain conditions, the strain
in one of the directions (say y-direction) is considered to
be zero (plane strain case) and it can be shown that equa-

tion 2.12 assumes the form

3°u , 3°u du
c (&Y + &Yy = 2 2.14
2V52 " 552 3t .
= kE
Where C2 Tz (T * wlvy,

and is the coefficient of consolidation under two-dimen-
sional strain.
For one-dimensional strain condition, the equation

becomes

2 .
9 U ou
c. () = =% 2.15
1 axz ot
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kE(1 - u)
Where “0 T T a0,

and 1s the coefficient of consolidation under one-dimen-

sional strain.

Thus it may be seen that the form of the equation
2.12 depends on the flow (or drainage) conditions, while
the value of the coefficient of consolidation depends on

the strain conditions. It will be noted that

¢y = 2(1 - u)c = 3(] +u) 3

]

For a value of p 0.5 Cy = Cp = Cg

For a value of p 0.0 ¢

1]
nN
(2]

N

1]
w
O

w

The difference between these values of ¢ can be important.
The value of ¢ in the definition of time factor for a tri-
axial test is C3» whereas that for the oedometer test is -
The three-dimensional theory of primary consolida-
tion (poroelasticity) due to Biot makes no assumptions as
to the time-dependent variables. The state of total stress
is a function of the excess pore pressure and the compati-
bility relationships for the soil skeleton. This theory
is completely se]féconsistent and does not call for a sepa-
ration of the magnitude and progress of consolidation. The
pseudo-three-dimensional theory maintains a lack of coup]ing’

between magnitude and progress of consolidation.
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Comparing these two theories, Schiffman (1967) considered
the problem of a strip load (plane strain) on the surface
of a semi infinite body. It was found that the total stress
is not constant with time. Furthermore, excessive pore pres-
sures, instead of decreasing with time, increase at first,4
and then decrease. This effect, called te Mande]-Cryer
effect, appears only in the three-dimensional theory, and
i§ absent from the pseudo-three-dimensional theory.

The solution of three-dimensional problems and sub-
sequent application to practical case$ is seriously limited
because of the lack of techniques of solution and also be-

cause accurate values of E and u are difficult to obtain.

2.5 TERZAGHI'S CLASSICAL ONE-DIMENSIONAL THEORY

The one-dimensional consolidation theory (Terzaghi,
1923) has been applied widely to many field problems. The
results obtained are usually acceptable and, within practi-
cal limits, quite reliable. The assumptions involved in
the Terzéghi theory are: |

(i) homogeneous soil

(ii) incompressible soil grains and the voids fully
saturated by an incompressible fluid
(ii1) small strains
(iv) void ratio is linearly related to the effective

stress
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(v) the fluid flow through the soil skeleton is
govérned by Darcy's law. |
and (vi) permeability and compressibility are constant
throughout the process of consolidation.
This theory considers only the diffusion of water
through a porous medium. For an isotropic soil in which
water flowsonly in one direction @nd compression occurs oniy

in the same direction, the governing equation may be written as’

2
2 u oy
c(—%) = =+ 2.16
axz t ' '

The one-dimensionality of consolidation may be due
either to a surface loading of uniform magnitude infinitely
extended in all directions or due to a lateral physical
restraint as in the oedometer test .

The application of one-dimensional theory, which
depends on unreal assumptions as to the direction of com-
pression and material properties, paradoxically, yields
acceptable results and permits a large variety of solutions
*o be obtained. Recent developments in numerical analysis
and in computer technology provide improved capability in
handling one-dimenéiona] consolidation equation for an

arbitrary loading history and for variations in soil pro-

perties.
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2.6 MODIFICATIONS TO TERZAGHI'S THEORY

From time to time, many ©F the assumptions made
in Terzaghi's theory have been mod jfied.

It'is known that the TerZaghi theory does not hold
good for the case of scft clay whoge permeability k and
compressibility m,, change their Values during the consolida-
tion process. Small strain tpheories for compressible |
normally cohso]idated clay incorPorating a decreasing m,,
and k have been presented by pavis and Raymond (1965).
Non-homogeneous soils whose proPergies vary spatially and
with time have been treated by Schiffman and Gibson (1964)
and Raymond (1965). Layered soils can also be considered.

The assumption of the validjty of Darcy's law is
"generally acceptable but a modification may be introduced.
The seepage velocity of flow is repjaced by the relative
velocity of flow of fluid with respect to that of the solid
grains (Scheidegger, 1960). This extends Darcy's law to a
more presentable and accurate form,

The limitation of small Strains has been overcome by
making use of Lagrangian coordinates (Gibson et al., 1967).
Also Mikasa (1965) considers-large strains.

Many of the above modifications in combination or
singly lead invariably to nonlinear partial differential
equations governing the process of consolidation, for which
analytical (closed form) solytions are difficult to obtain.

In actual practice, the total l1oad on a clay layer
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is usually applied over a period of time, tc. If tc is
such that only a small proportion of the total consolidation
occurs during this period then the load may be considered to
be applied instantaneously. On the other hand, if a suffi-
ciently large proportion of the excess pore pressure has
been dissipated during the period tc’ then the problem may
be treated in either of the following ways: |
(i) The time-dependency of loading may be considered
to be the variation in loading with time, i.e., the rate of
load application is arbitrary, e.g., construction rate of
loading.

(ii) The total load on the element of soil under
consideration may also change because of the addition of
subsequent layers of soil on top of the element. Such a case
is also one of time-dependent loading except that this case
involves the physical movement of the top boundary. This

is a moving boundary problem.



CHAPTER III

BOUNDARY CONDITIONS - A BRIEF TREATMENT

3.1 GENERAL

The basic governing equation for the dissipation
of excess pore pressure in an ideal soil according to

Terzaghi's theory is

c V2u = %E 3.1

The solution of this differential equation for various
geometrical configurations and boundary conditions* has
been attempted by many since the advent of Fourier mathe-
matics. Equation 3.1 will haQe numerous solutions unless a
set of boundary conditions and an initial condition are pre-
scribed. The conditions prescribed at the boundary surfaces
of the region may be linear or non-linear.

The general problem may be formulated as follows:

It is required to determine the distribution of excess

pore pressure in a homogeneous and isotropic (soil) bbdy

* The term 'boundary condition', sometimes, may include the
so called 'initial conditions'. This means, according to
some schools of thought, that 'bounds' are considered to
be Timitations in time as well as in space. .
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at any given instant when the following is given.

(a) The pore pressure excess distribution at any
other instance, mostly at an earlier iﬁstance (e.g., at
time t = 0, i.e., initial pore pressure distribution).

(b) The influence of the surroundings of the body
on its surface. For -example, it may be assumed that by
some means a definite excess pore pressure distribution can
be imposed on the surface of the body by external forces;
this distribution may be constant or time-dependent.

The conditions under (a) and (b) above are called
the boundary conditions, the first being with respect to

time and the second with space.

3.2 BOUNDARY VALUE PROBLEM

In the equation
u = f(x,y,z,t) 3.2

u may be interpreted as given by a function f within a domain
of a four dimensional space - time region and to solve for

u uniquely mathematics demand certain values (called condi-
tions) at the boundary of this domain. In mathematical
terminology, these conditions which must be satisfied in
addition to the governing differential equation, are known

" as boundary conditions. And the problem(s) thus posed are

called BOUNDARY VALUE PROBLEM(S).
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A. BOUNDARY CONDITION FOR TIME

The boundary condition for time may be given by a

function

u = F(x,y,z) 3.3

which represents the distribution of excess pore pressure
at any given instant. This distribution can be chosen,
arbitrarily, to be continuous or discontinuous. In most
problems, excess pore pressure at a later instant is of
interest. This is obtained using the governing equation in

conjunction with the boundary conditions for space.

B. BOUNDARY CONDITIONS IN SPACE

In the study of bbundary value problems of heat con-
duction in mathematical physics, the conditions at the |
boundary surfaces of the region may be linear or nonlinear.
The same holds good for excess pore pressure dissipation in
a (soil) body as the similarity between pore pressure dissi-
pation and temperature transmission has been well established
(Terzaghi, 1923). In the following pages, only linear boun-
dary conditions are considered.

For convenience the linear boundary conditions may

be presented as follows:
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(i) BOUNDARY CONDITION OF THE FIRST KIND

Excess pore pressure is prescribed at every point
on the boundary surface and for the general case it is

a function of both time and position, i.e.,
u = f](x,y,z,t) 3.4a

The function itself may be arbitrary, continuous or discon-

tinuous with respect to time and position.

Special cases include excess pore pressure at the
boundary surface as a function of position only, or a func-
tion of time only, or a constant. If the excess pore pres-

sure u at the boundary surface vanishes, then

u =20 3.4b

This special case is called the homogeneous boundary condi-

tion of the first kind. A boundary surface which is kept
at a constant pore pressure U, also satisfies the homogeneous
boundary condition of the first kind if the excess pore

pressure is measured in excess of U.

(ii) BOUNDARY CONDITION OF THE SECOND KIND

The second kind of boundary condition consists in
expressing the amount of water exchanged (in case of thermo-

dynamics, it is the quantity of heat exchange at the surface,
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again as a function of time and position. This function
may be quite arbitrary. |

The normal derivétive of excess pore pressure is
prescribed at the boundary surface, e.g., in an orthogonal

coordinate system it is expressed in the form

Q

5% = fo(x,y,2,t) | 3.5
where 3/3n denotes the differentiation aiong the outward
.drawn normal at the boundary surface. This boundary condi-
tion is equivalent to that of prescribfng the magnitude of
the quantity of water exchanged along the'boundary surface.
Special cases of the above equation include the

normal derivative of excess pore pressure at the boundary
surface to be a function of position only, or a function of
time only, or a constant. If the normal derivative of excess

pore pressure at the boundary surface vanishes, then

Q

o
W
o

3.5b

Q2
=]

This special case is called the homogeneous boundary condi-

tion of the second kind. An impervious boundary (an insu-

lated boundary, in thermodynamics) satisfies this condition.
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(iii) BOUNDARY CONDITION OF THE THIRD KIND

The thfrd kind of boundary condition gives a linear
combination of the excess pore pressure and its normal
derivative at the boundary surface. In other words, this
type consists in defining the excess pore pressure at the
surface together with a law for the water exchange between
the surface of the (soil) body and its surroundings.

In mathematical terms this may be expressed as,

Q

u

A] Ty + A2u = f3(x,y,z,t) 3.6a

Thus this type is a ‘combination of the first two types of
boundary conditions and each of the first two boundary condi-
tions can be obtained by appropriately choosing A] or A2

to vanish.

A special case of the above equation is,

du -
Ay s Ayu = 0 3.6b

which is called the homogeneous boﬁndary condition of the

third kind. Such a situation can be realized in reality

through the dissipation of water into a surrounding which
impedes drainage for example, the core of a dam dissipating

excess pore pressure into a side drain whose efficiency is

not unity .



26

-

A graphical representation may be useful to illust-,
rate the nature of the three types of boundary conditions
discussed above. In Figure 3.1 ds represents an element
on the surface of a (soil) body and n the outward drawn
(positive direction) normal.

In the first type of boundary value problem the
excess pore pressure U0 at the surface is known. The hydrau-
lic gradient and the amount of water exchangéd at the boun-
dary surface are the unknowns to be determined (Figure 3.1a).

In the second type of boundary condition problem,
the conditions are opposité to those of the first type.

In this type, the value of the excess pore pressure at the
surface is the unknown, while the hydraulic gradient and/or
the amount of water exchanged at the boundary surface is
known (Figure 3.1b).

In the third type of boundary Value'prob]em a point
on the outward drawn normal is given through which all the
possible tangents to the excess pore preésure curve at the
surface must pass. This point known as 'POLE' lies at a
distance k/a = h from the surface. (k is the coefficient
of pefmeabi]ity and o« is the 'water exchange coefficient').
The unknowns in this type are the excess pore pressure at
surface and the quantity of water exchanged. (The proof
is given by Grober et al., 1963).

The three types of boundary conditions described
above cover most cases of practical interest. Boundary

conditions associated with powers of excess pore pressure
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other than unity are nonlinear. Also boundary conditions
associated with changes 1in material content of the (soil)
body (e.g., erosion or deposition) are nonlinear boundary

conditions in that the boundary conditions are moving with,

respect to time.

3.3 MOVING BOUNDARY CONDITIONS

As mentioned in the previous paragraph, an important
class of problems in pore pressure dissipation (as in heat
conduction) deals with the determination of pore pressure
(temperature) in a body whose boundaries are not fixed in
space. Two types of problems may possibly be distinguished:

‘ (a) those in which the motion of the boundary is
due to rigid body motion of the entire body, and

(b) those in which the motion of the boundary is
due to local conditions near the boundary.

Case (a) is usually referred to as moving body pro-
blem(s). Solutions for several probTems of this type for
bodies moviﬁg with a constant velocity are given by Carslaw
and Jaeger (1959).

Case (b) may be divided into two cases, namely those
in which the motion of the boundary is prescribed, and those
in which it must be determined as part of the solution of
the problem. The first of these cases is simpler than the
second, since it is a linear problem although with variable

coefficients. An example of this is the problem solved by
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Gibson (1958). The latter case is sometimes referred to as
'floating - boundary' problem. |

However, very few exact (closed form) solutions are
available for such problems, and these problems indeeed
tend to become rather difficuit except in few cases. As
‘a consequencevapproximate and/or numerical methods of solu-
tion aré very important.

The importance of floating-boundary problems in pore
preséure dissipation arises primarily from the problems of
deposition and erosiocn, in which the position of the inter-
face betweén the deposit and the freshly deposited material
is not known beforehand and must be determined in the solu-
tion. In a typical problem, the conditions to be satisfied
on the moving front are that the pore pressure should be
the same at the interface in both media and the continuity
of flow must be maintained.

To simplify the analysis of problems such as erosion,
it is assumed that the eroded material is completely removed
from the surface as soon as it is eroded. There will there-
fore be no eroded phase on the surface of erosion. In
reality a certain thickness of eroded materié] will always

be in contact with the surface of erosion. Such cases are

‘very difficult to treat.
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CHAPTER IV

TECHNIQUES OF SOLUTION - A BRIEF SUMMARY

4.1 GENERAL

In this chapter an examination of the finite differ-
ence approximation of the boundary value problems of excess
pore pressure dissipation (similar to problems of heat con-
duction) is presented. Digital and analog computers are of
great value for sb]ving problems that cannot ordinarily be
handled analytically because of complicated geometry and/or
boundary conditions, or because the numerical evaluation of
the analytical solution becomes too laborious. Digital com-
puters are frequently put to use because of the fact that |
high-speed precise and versatile computers are available.

By analogy with heat conduction theory it is possible
to distinguish three analytical methods for the solution of

the equation (Abbott, 1960),

C —— — 4']

These are:
(a) Classical methods based on Fourier mathematics,
(b) Green's function,
(c) Integral transformation, such as Laplace's.

The classical methods are useful for calculations of
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pore pressure distribution in homogeneous soils and implicit
in these is the underlying assumption of linearity, whereby
the principle of superposition may be employed. However,
moét soils exhibit a nonlinear behavior, hence the principle
of superposition is no longer appiicab]e. There are thus
considerable objections to further employment of é]assica]
methods of Fourijer mathematics. The same objections 1imit‘
the application of Green's function.

Integral transformations offer excellent means for
the solution of the above equation except that computation
of a set of results presents consfderab]e a]gebraié and
arithmetical problems. Generally, integfa] transformations
are limited to solutions of linear differentid] equations.

Thus closed-form so}utions oi the above equation for
consolidation problems of non-homogeneous and nonlinear soils
are difficult to obtain and alternate methods must often be
employed.

An alternative to analytical methods is numerical
analysis, wherein the operation of solving the equation is

reduced to solving a series of algebraic equations.

4.2 FUNDAMENTAL CONCEPTS IN FINITE DIFFERENCE
APPROXIMATIONS

A fundamental concept in the finite difference appro-

ximation of a differential equation is the expansion of the
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function by Taylor's series. Once the finite difference
approkimation is obtained, the problem reduces to the solu-
tion of a set of algebraic equations.' These equations may
be translated into a set of commands understood and per-

- formed by a digital computer.

In the process of solution of differential equations,
errofs are introduced at each step of the calculation due
to approximations involved in finite difference and numeri-
cal calculations. Cumulative effects of such errors on the
final result and stability of the solution are very import-
ant. An exhaustive treatment of the above aspects can be

found in Fox (1962), Richtmeyer (1957), and others.

4.3 FORMS OF FINITE DIFFERENCE APPROXIMATION

Various schemes are available to express the differen-
tial equation in a finite difference form. Richtmeyer (1957)
lists thirteen different schemes, ranging from the explicit
form to a fully implicit form for finite differencing of the
one-dimensional time-dependent heat conduction equation.

- An explicit sqheme provides a nonitgrative 'marching’
process for obtaining the solution at each present nodal
point in terms of known preceding and boundary points.
Questions of stability are most critical fgr explicit schemes.
Implicit procedures are usually iterative simultaneous cal-
culations of many known present values together with pre-

ceding values and boundary conditions.
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Each of these difference schemes has its merits and
limitations as explained in 4.5. When the boundary condi-
tions involve derivatives, a forward, backward, or central
differencing scheme may be used in expressing the boundary

condition in finite difference form.

4.4 GENERAL FORM OF FINITE DIFFERENCE SCHEME

The differential equation

2
3%u du _ 3u
axz + B(x) 5x + ¢(x,T) 5T 4.2

in the region 0 < x <1 for 0 < T < » can be put in finite
difference form by expanding the derivatives. The space
derivatives may be expanded in terms of first order central

differences, and the time derivative as a first order forward

difference (Figure 4.1).

U (4,k + AAT) = 5= {u(i+1,k#2) - u(i-1,k+A)} 4.3a
22 1

3 (ik +2aT) = 5 u(i-1,k+1) - 2u(i,k+2)

ax (ax) |

+ u(i+1,k+2)} 4.3b
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%% (i,k + AAT) = Z]T'{u(i,kﬂ) - u(i,kj}¥ 4.3c

The factor X may take an arbitrary value between zero and

unity.
The value of u(i,k+A) can be found in terms of u(i,k)

and u(i,k+1), by a linear interpolation over T, as
u(i,k+a) = Au(i,k+1) + (1-1) u(i,k) 4.3d

The boundary and initial conditions can also be ex-

pressed in finite difference notation.

From equations 4.3, equation 4.2 may be obtained in

a general form as

A{Au(i-1,k+1) - Bu(i,k+1)} 4.4

= (A-1){AJu(i-1,k) + Byu(i,k) + C;} - AC,

where A, B, A], B], C], and C2 are quantities involving Az

and AT and as such are constants.

Choosing a value for A will yield a particular method

of computation.
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4.5 EXPLICIT AND IMPLICIT SCHEMES

A. EXPLICIT SCHEME

Let A be chosen equal to zero.

Equation 4.4 becomes
u(i,k+1) = C]u(i-l,k) + Czu(i,k) + C3u(i+],k) + D(i,k) 4.5

where C;, C,, C3, and D are constants involving Ax and AT.
Thus this scheme calculates u at point 1 in.space

and (k+1) in time, in terms of the vé]ues of u at points

(i-1), i, (i+1) at the preceding time step k. Hence this

method 'marches forward' in time.

B. IMPLICIT SCHEME

Let X be equal to unity.
Equation 4.4 yields

Ciu(i—],k+]) + Céu(i,k+]) + Céu(i+],k+1)

+ D'(i,k+1) = u(i,k) 4.6

This scheme involves the unknown values of u at time
(k+1) for points (i-1), i, (i+1) to calculate the value of

u at time k for space point i. In other words, the value of
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u at any time is implicitly expressed in terms of unknown
values of u at a following time step hence the name
implicit.

The iterative solution for this scheme may be obtained
by solving a set of (n+1) linear simultaneous equations for

(n+1) unknowns u(i,k+1) for i=0,1,2,...,n.

C. CRANK - NICHOLSON SCHEME

Let A be set equal to one-half.

Another implicit scheme results and is given by

+

B]u(i—l,k+]) Bzu(i,k+]) + B3u(i+],k+]) + B4(i,k+1)

A]u(i-l,k) +_A2u(i,k) + A3u(i+1,k) + A4 (i,k)
4.7
where B], 32’ B3, B4, A], A2, A3, A4.inv01ve Ax and AT and
hence constants. '
The right-hand side of equation 4.7 contains only quan-
titiés at time k and hence it is similar to equation 4.6.

Solution of equation 4.7 is similar to that of equation 4.6.

D. COMPARISON OF METHODS

An explicit method of finite difference representation
of the differential equation 4.2 results in'a set of simple

algebraic relations which could easily be solved with a digi-
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tal computer. However,Astability considerations restrict
the size of the time step AT for a given value of Ax. If
the space step Ax is to be chosen small for improved accur-
acy, then AT correspondingly also has to be chosen small.
This results in a 1arge'number of tihe steps and computation
becomes unwieldy. In such cases an implicit method is
usually emp]oyed..

The implicit method does not restrict tﬁe value
of AT and has no restriction on iteration rate. The time
taken for each iteration may be high, but total time taken
for all iterations is small; smaller than the time taken‘for
the explicit method. However, it is more difficult to set
up the ca]cﬁ]ation procedure for an implicit method than for

the explicit method.

4.6 ALTERNATING - DIRECTION IMPLICIT METHOD

As noted in a previous paragraph, the implicit method -

has the advantage that it is unconditionally stable for all

- values of time step AT. On the other hand, the computational

problems become enormous when two- or three-dimensional
pore pressure dissipation (heat conduction) equations are
to be solved over a region requiring a large number of sub-
divisions. For example, for a three-dimensional problem
with N interior points in each direction there is a total
of N3 interior points, hence an N3 X N3 matrix must be solved

for each time increment. The procedure becomes obviously
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impractical if N exceeds, say, about 10.

Peaceman and Rachford (1955) introduced an alternat-
ing-direction implicit (ADI) method for use in problems
involving a large number of internal nodal points. In this
method the size of the matrix to be so]véd at each time step
is reduced at the expense of solving the reduced matrix
many times for each time step. For example, referring to
the above problem of a three-dimensional region the ADI
method transforms the problem to solving an N x N matrix N
times for each time step, which is easier than solving an

3 3 matrix at a time.

N x N
| An alternating-direction implicit procedure requires

a line-by-line solution of small sets of simultaneous equa-
tions that can be solved by a direct, non-iterative method.
Analysis of the procedure shows it to be stable for any size
time step and to require much less work than other methods
that have been studied. As a practical test, the new pro-.
cedure was used (Peaceman and Rachford, 1955) to solve the
heat flow equation with boundary conditions for which a for-
mal solution is known: The two solutions were in good agree-
ment. Also a rapid convergence for the solution of Laplace's
equation in a square was obtained using a suitable set of
iteration parameters which were easily calculated. An analy-
sis was presented {Peaceman and Rachford, op. cit.) that
showedthe method to require about (2 Tog N)/N as many cal-
culations as the best previously known iterative procedure

for solving Laplace's equation, where N2 is the number of
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points for which the solution is computed.

In obtaining the usual implicit differenc equation

for

32u + azu = ou 4.8
ax% g9z% T

both the second derivatives are replaced by second differ-

ences evaluated in terms of the unknown values of u.

Lu(i-1,3,k+1) - 2u(i,d,k+1) + u(i+1,3,k+1)}/(ax)?
F {u(i,i-1.k+1) - 2u(i,i,k+1) + u(i,j+1,k+1)}/(az)?

(u(i.3.k+1) - u(i.i.K)}/AT 4.9a

which can be written as

u(i-1,3,k+1) + u(i+1,3,k+1) + u(i,j-1,k+1)

+ U(i,j+],k+]) - (4 + R) U(i,j,k'*‘])

- Ru(i,j,.k) 4.9b

where

2 2
_ (ax)° _ (az)
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if a mesh is chosen such that Ax = Az.
Thus the unknown excess pore pressure ét the time step
k may be solved for implicitly by the abdve equation, pro-

vided the excess pore pressure at the time step (k+1) is

known.

Large sets of simultaneous equations are formed,

which can be solved practically, only by iteration. If,

52y

however, only one of the second derivatives, say — is
9z

replaced by a second difference evaluated in terms of the

32u

unknown values of u, while the other derivative —5 is
replaced by a second difference evaluated in ter%g of the
known values of u, sets of siuultaneous equations are formed
that can be solved easily without iteration. These equations
are implicit in the z-direction. If the procedure is then
repeated for a second time step of equal size, with differ-
ence equations implicit in the x-direction, the overall pro-
cedure for the two time steps is'proved to be stable for any

size time step. Thus two difference equations are used, one

for the first time step, the other for the second time step.

Lu(i-T,3,k+1) - 2u(i,i,k+1) + u(i+1,3,k+1)}/(az)?

Lu(i,i-1,k) - 2u(i.i.k) + u(i,i+1,k)}/(ax)?

o+

tu(iLi.k+1) - u(i,g,K)YAT 4.10a

and
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Lu(i-1,3.k+1) - 2u(i,3,k+1) + u(i+1,3,k+1)}3/(az)?

+ {u(i,j-1,k+2) - 2u(i,j,k+#2) + u(i,3+1,k+2)}/ (ax)2

fu(i,j.k+2) - u(i,j,k+D¥/AT | 4.10b

These equations may be arranged ih the following form

suitable for calculation.

u(i-1,3,.k+1) (R + 2) u(i,j,k+1) + u(i+1,j,k+1) 4.11a

- U(i,j-],k) + (2 - R) U(i,j,k).- U(i,j+],k)
and

u(i,j-1,k+2) (2 + R) u(i,j,k+2) + u(i,j+1,k+2) 4.11b

= U(i-],j,k+]) + (2 - R) U(i,j,k+]) = U(i+],j,k+])

Use of each of the above equations at each time step
leads to N sets of N simultaneous equatioﬁs. The gengra]
procedure for solving these equations, the criteria for stabi-
lity and convergence and related phenomena are fully discussed

by Peaceman and Rachford (op. cit.) and Douglas (1955).
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4.7 BARAKAT AND CLARK METHOD

Barakat and Clark (1966) described an explicit differ-
ence scheme which is unconditionally stable for the solution
of the mu]ti-dimensiona], time-dependent heat-conduction
equation. The method possesses the advantages of the implicit
scheme (i.e., there is no severe limitation on the size of
time increment), and the simplicity of the'exp]icit scheme.

Barakat and Clark (op. cit.) examined the finite
difference representation of the following boundary value

problem of heat conduction,

324 . 3%

oM 4+ 2 =

u u
> > 4.12
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subjected to prescribed temperature at the boundaries and

to a prescribed initial condition.

To solve the above problem with finite difference, they
considered two auxiliary functions V(i,j,k) and W(i,j,k)

satisfying the following difference equations,
TLV(i+1,3,.k) - V(i,3.k) - v(i,3,k+1) V(i-l,j,k+1)}/(Ax)2
+ {V(]:J'*']sk) = V(i:\]:k) = V(iajsk+]) + V(i:j"]:k'l'])}

/(82)% = (y(i.3.k+1) - y (1,54 )1/4T 4.13
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and a similar expression for W(i,j,k) with subscripts k and
(k+1) interchanged on the left hand side of equation 4.13.
Assuming V(i,j,k) and W(i,j,k) functions also satisfy
the boﬁndary and initial conditions for the heat conduction
problem, the temperaturé U(i,j,k) at any time level k may be

taken as the arithmetic average of V(i,j,k) and W(i,j,k), i.e.,
U(i,3,k) = 172 [V(i,3.k) + W(i,j,k)] 4.14

If finite difference equations for V(i,j,k) and
W(i,j,k) functions are stable the solution of the equation
4.]2 will be stable. It has been found that the finite
difference solution for 4.12 is unconditionally stable for
all values of At, Ax, Ai.

Equation 4.12 was solved for the following boun-
dary and initial conditions employing both the present method
and the ADI method to study the effect of the form of the
aifference equation on the relative accuracy. The initial

and boundary conditions are:

U(x,z,0) = 100. units

%% (x,z,t) = 0.
u(l,z,t) = 0.
U(x,0,t) = 0.
and u(x,1,t) = 0. (Fig. 4.2).
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The results are given in Table 4.1. Both the numeri-
qa] methods give results of comparable accuracy. Both the
methods are unconditfona]]y stable for any time step inter-
val. ADI method requires the solution of a tridfagonal
matrix whose solution can be obtained by an algorithm
derived from the Guassian elimination technique. The pre-
sent method possesses the simplicity of an explicit method
and employs the same "marching' type technique of solution.
Thus the present method is simpler to formulate and easier
to program. Table 4.2 gives a summary of the comparison
between the two methods.

It is interesting to compare the machine time required
by the present and the ADI methods for two dimensional pro-
blems. The ADI method needs to solve N sets of N simultaneous
equations for N x N nodal points at each time step. And the
present method requires the solution of N explicit equations
N times for the same number of nodal points at each time
step. As illustrated in Table 4.2, the present method fakes
less time than that taken by ADI.

The one serious drawback of the present method is
that it requires at least twice the storage requirement of
the ADI (Table 4.2). This is inherent in the method of
solution since a single function U(i,j,k) is split into
two components V(i,j,k) and W(i,j,k) and both components
are to be stored in memory in order to evaluate U(i,j,k)
by equation 4.14. For many of the problems considered in

determining the excess pore pressure distribution the storage
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requirement by the present method will be excessive for a

lTarge number of time steps.

It may be mentioned here that the present method can
be extended to handle problems having three dimensions which

is not convenient for the ADI method (Barakat and Clark,

op. cit.).



Table 4.1a Comparison between ADI and Bara-
kat and Clark Methods: Percentage
pore pressure values at the im-
pervious boundary on the centre

line.
At = 0.1 Ax = 2 Az = 2
Time Factor ADI Barakat &
Clark
0. 100.0 100.0
0.01 98.1 99.8
0.02 93.7 92.9
0.03 88.6 87.8
0.04 83.7 83.0
0.05 79.2 78.6
0.06 75.2 74.7
0.07 71.7 71.2
0.08 68.5 68.0
0.09 65.7 65.3
0.10 63.1 62.7

Table 4.1b Comparison between ADI and Bara-
kat and Clark Methods: Values of
average degree of consolidation
in percentage.

Time Factor ADI Barakat &
‘ Clark
0.0 0.0 0.0
0.001 11.645 11.791
0.002 12.194 12.340
0.005 13.777 13.926
0.010 -16.229 . 16.377
0.020 20.541 20.683
0.030 24.238 24.375
0.040 27 .477 27.610
0.050 30.366 30.498
0.060 32.366 33.117
0.080 37.604 37.746
0.100 41.627 41.778
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Table 4.2 Comparison between ADI and
Barakat and Clark Methods

ADI o | Barakat &
Clark
Time 0.44 min. 0.40 min.
2. Core Storage 90 K 150 K
3. Accuracy Both methods are accurate to the same degree
4. Programming Quite difficult Easier and

Complicated Straight forward
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CHAPTER V

TWO-DIMENSIONAL CONSOLIDATION

A. GENERAL

When a soil consolidates under an applied load drain-
age and compression frequently take place in three dimensions
(as opposed- to the assumption of one-dimensional drainage
“and compression in the classical theory of one-dimensional
consolidation due to Terzaghi). The present state of know-
ledge of the compression characteristics of soil in three
dimensions, however, is meagre; ana the displacement of
principa] importance in structural applications is the
vertical compression. With due recognition of this fact,
the effect of compression in directions other than the ver-
tical may often be neglected. However, the process of drain-
age of water in three dimensions does have a considerable
effect on the rate of settlement of a soil loaded at the
surface.

The actual rates at which foundations on clay settle
(published evidence) are generally faster than those predicted
by the one-dimensional Terzaghi consolidation theory. In
some instances the differences are very large. In many
practical cases, it is obvious that the geometric conditions
are far from being one—dimgnsiona] and that horizontal'dissi—
pation of pore pressure (not accounted for 1in the classical

theory) must make the actual rate of settlement (i.e., rate
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}of dissipation of poré pressure) more rapid. Rowe (1968)
has demonstrated that the real drainage behavior (and hence
the pore pressure dissipation) of a deposit as a whole
depends on the geological details of its formation. Veins
of silt along fissures, or organic inclusions can affect-
the permeability of the mass to a large extent and hence

the drainage characteristics.

5.A.1 TERZAGHI - RENDULIC . TWO-DIMENSIONAL THEORY

The simple consolidation theory}genera]iy attributed
to Terzaghi (1925) and Rendulic (1937) considers the three-
dimensional diffusion of water through a porous medium.

For an isotropic soil in which water flows in all three
coordinate directions, such a consideration leads to a single

equation 2.12 which is reproduced as

2, - 5.1

Equation 5.1 is a half-way solution between the classi-
cal one-dimensional theory and a trué three-dimensional
theory. This equation retéin5~a11 the characteristics of
one-dimensional theory and is based exactly on the same
assumptions, except that it is more complex than the classi-
cal one-dimensional theory. Equation 5.1 provides a means

for dissipation of excess pore pressure in all directions
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though the compression is restricted only to the vertical

direction.

Under plane strain conditions, equation 5.1 reduces

to equation 2.14 which is

2 2

c(a—% +
9X

Lo
(o3

Uy = ﬁ 5.2

[+3]
N

Z

This equation has all the characteristics of the classical
one-dimensional theory and yet provides a means for account-
ing the dissipation of excess pore pressure in the horizon-

tal direction.

Though equation 5.2 is more complex thaﬁ the one-
dimensional consolidation equation 2.15 and less complex
than equation 5.1 , it has not lost its versatility and may
be put to use for all types of problems solved using classi-
cal one-dimensional theory; Equation 5.2 is called the
Terzaghi equation for consolidation in two dimensioné. The
so]utioh of this equation for given boundary and initial

conditions is presented in a subsequent section.

5.A.2 EXTENSION OF DAVIS - RAYMOND THEORY TO
TWO DIMENSIONS

Davis and Raymond (1965) proposed a modification to
the classical Terzaghi theory for overcoming the inaccuracies

of the following assumptions:
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(a) the coefficient of permeability k is a constant
during consolidation under a given stress incre-

ment; and
(b) the coefficient of compressibility m,, is also a
constant during consolidation under a given stress
increment. |
For a normally consolidated clay, Davis and Raymond
have pointed out that, during a stress increment the coeffi-

cient of consolidation ¢, is usually observed to change much

v
less than the coefficient of compressibility. They assumed

Cy to be a constant, i.e.,

c, = = constant. | 5.3a

This fs seen to be equivalent to assuming that, as
the soil particles move closer together, the decrease in
coefficient of permeability k is proportional to the decrease
in volume compressibility m,, -
Further, instead of assuming that a, is a constant,
they adopted an empirical relationship between the void

ratio e and the effective stress o' as

e = ey - C, log]o(eiled) | 5.3b

where 0y (cxo + 990 + céo)/3
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so that m,, is given by

m_= A/ei 5.3c

where A is a'constant which dependson the initial void ratio
e0 and the compressibility index Ce-

With these modifications, Davis and Raymond (op. cit.)
have developed a nonlinear theory of one-dimensional con-
solidation. 1In the following section a three-dimensional
theory is developed on the basis of the Terzaghi-Rendulic
assumption with the modifications suggested by Davis and
Raymond (QE. cit.). The development is exactly 6n the lines
adopted by Davis and Raymond (op. cit.).

The coefficient of compressibility m,, is given by

- _ _1 2e
O-I ] O.I
where 6] = XX gy 22z 5.4b

since all round compression is considered.

Substituting equation 5.3b in equation 5.4a yields

0.434 Ce

m = =—6r 5.5a
v Z]+e$ei 6] *
0.434 ¢
c 5.5b

where A= —z—-l—_*_g)'——
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In the equation 5.5b the term (1+e) is assumed con-
stant. Thus the change in void ratio e is considered too small

to affect the total volume (1+e).

Darcy's law is assumed to be applicable and hence in

general

Qo

. X ou
X X X Yu X 5.6

where v_ denotes the velocity of flow in the x-direction

k. denotes the coefficient of permeability in the

x-direction
i_ denotes the hydraulic gradient in thé x~-direction
u denotes the excess pore pressure
and Yy denotes the unit weight of water.

Substituting equation 5.3a in equation 5.6 and differentiat-

ing the resulting equation with respect to x yields

X - _ 9 au
T T X (Cvmv X 5.7a

Similar expressions such as 5.7a can be written in the y-

and z-directions. They are
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3V
Y . _ 9 du
3y 3y (c,m, ay) 5.7b
3V
_Z . _ 9 au
and 57 Y (cvmV 32) 5.7¢

The soil is assumed to be completely saturated and
the pore water and soil particles are incompressible relative
to the soil skeleton. Therefore the effective stress at any

point may be written as

' 1 1 = -
O x + dyy + 0,y Oyx + cyy + 0., 3u
The vertical strain developed in the soil skeleton

is € which may be expressed as

_ (eg-e)

€ = (T;ET—- 5.8a

where e, denotes the void ratio corresponding to zero strain

and effective stress 9g-

Using equation 5.3b, the above equation may be written

as

c
C

_ S
g€ = (T:EET ]0910(66) 5.8b



and making use of equation 5.5a yields

Q
m

Q
(74

——t -
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Differentiating equation 5.8b with respect to time

5.8¢c

The equation of continuity of flow demands that the

rate of water lost through an element dxdydz should equal

the rate of volume decrease within that element.

o€ '
3t dxdydz

(axx ¥ Byy ¥ Bzz)dXdydz

Therefore,

Making use of equations 5.7 and 5.8c, the above equation

may be reduced to

e 1
- cv{—— v

where

Equation 5.9 is the general three-dimensional con-

solidation equation for the assumptions made in Davis and
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Raymond theory. As in their original theory, no assumptions

have been made as to the type or rate ofvloading.

Special Cases

CASE 1

To derive the form of the original Davis-Raymond one-

2 2 .
dimensional theory, we may put é—% =0 = Q_%., for the flow
ax Ay
in the x- and y-directions is assumed to be absent (and hence
ou _ _ ou .
3% - = ay!- Then the equation 5.9b reduces to
] 3
- 1' azu - 1.)2 90,2 duy . _1 90,2
vio_, 322 0,y 9z Z S, at

which is same as given by Davis and Raymond (1965).

CASE 2 CONSTANT LOAD

Let the applied load be constant with depthAand as
well with time (as in case of oedometer or thin clay deposits
when load is maintained the same). Hence (Uxx + ny + Gzz)

is constant in the following term

! +o.! =0 + 0 + 0o - 3u

Ixx +°yy &4 XX yy 44

which on differentiation yields
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3o, ! 3! Yo g
xx o . g du - Fyy o 53 2z _ _ 53U
T3X 3 X * 2dy 3 oy and 3z 3 3z 5.10

201
- CQ{g%-Vzu + (;L)Z[(QE)Z + (EE)? + (QE)ZJ} = 5%'§fl 5f]]

which is the governing equation for a normally consolidated.

soil under a constant-load.

For the plane strain case (the strain in the y-

direction may be assumed zero), equation 5.11 becomes

2 2
1 497U
-c lzvr (= +

Q

4y + (@-1]—.)2[(3% 2+ (321

@
N

Y4

961
= 1

Q

A solution to the equation 5.11 or 5.12 will be unique

depending on the specified boundary and initial conditions.

Using the substitution:

5.13a

where 0¢ = (oxf + Oyt + czf)/3 5.13b

and f denotes final stress
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Aiso | cxi = cx% - u 5.13¢

ch = oy% -u 5.13d
_and czé = cz% - u 5.13e
Adding 5.13E, 5.13d and 5.13e yields

Oyx * Oyy t 92z T Oxf ¥ Syf * 9gf 3
or ei = e% -u ' 5.13f
Using equation 5.13f, equation 5.]3a may Ee expressed as
w = logy, ?f—e;

Substituting this expression 1in equation 5.11, yie]ds{

Cy V2W = %ﬂ- 5.14

which when expressed in two dimensions is
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The above equation is identical in form to that of the Terzaghi
two-dimensional equation (5.2) and can be solved using the

ADI method described in Chapter IV.

5.A.3 SOLUTION OF THE TWO-DIMENSIONAL EQUATION-

Equation 5.2 may be solved by any of the following
means: |

(a) closed form (analytical) method

(b) electric analogue method, and

(c) numerical analysis method.

The solution obtained depends primarily on the boundary
conditions specified.

Rigorous analytical solutions obtained for one-dimen-
sional c]assica]liheory (equation 2.15) may be extended to
.this equation. Equation 5.2 is identical with the differen-
tial eqﬁation of heat flow (Carslaw and Jaeger, 1959). If
u is interpreted as temperature aﬁd c.as the diffusivity
constant, the solutions of the equation of heat conduction
can be utilfzed in the theory of consolidation. Several
solutions of heat conduction problems have in fact provided
immediate answers to prob]ems in consclidation.

Carillo (1942) has demonstrated how the familiar one-

dimensional'solutions of the differential equation of consoli-
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dation (of the analogous heat f]ow) can easily be combined
to furnish simple solutions for several important two- and
three-dimensional problems. In finding the solution for

equation 5.2, Carillo (op. cit.) made use of the following

theorem:
'If uy = f](x,t) ijs a solution of the Tinear flow
equation
c 2% 2u
ax2 ot
and u, = fz(y,t) is a solution of linear flow equation

32y
¢ 2
oy

Q
=

Q

t

then u = Uqu, is necessarily a solution of the two-dimensional
flow equation

2 2 :
c(i—% + 3—%) = U

ax° oy 3t

A variety of other analytical techniques such as inte-
Qra] transforms, Green's functions may be used to obtain
desired results. Integral transformation offers, in prin-
ciple, a means for the solution of the equation 5.2. However,
the mere computation of a set of results presents considerable

algebraic and arithmetical problems (Abbott, 1960).
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Another technique that may be employed to obtain
numerical results for the equation 5.2 is the analogue tech-
nique. Bernell and Nilsson (1957) have described an electric
analogue method to solve the equation 5.2. However, it will
be shown that the results furnished (Bernell, 1958) are
incorrect in section 5.A.5.

An alternative to analytical and analogue methods
just described is numerical analysis (Gibson and Lumb, 1953).
By this the process of integrating the differential equationé
is reduced to solving a series of simultaneous algebraic equa-
tions. The Alternating Direction Implicit method (ADI, as

described in Chapter IV) can be made use of for the advant-

ages cited herein.

5.A.4 COMPARISON OF NUMERICAL SOLUTION
WITH CLOSED FORM SOLUTION

For a chosen rectangular soil mass and prescribed
boundary and initial conditions, equation 5.2 was solved
both analytically and by the ADI method.

For the analytical technique the solution (Art. 2-8,
p. 84, azisik, 1968) for a finite reétang]e (Figure 5.1)
is made use of. For the boundary conditions of the third
kind specified therein, the solution for équation 5.2 in the

region 0 < x <a, 0 <z<b, t>01s
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© o’ 2 2
u(x,z,t) = § .} e~c(By * vplt K(Bm,x) K(vn,z)
m=1 n=1

' t
{F(B_,v,. ) +
menT =g
where

K(B,>x)

A(Bm,vn,t')

C{_—ET—_- lx=0 z

2 2y
ec(Bm + vn)t

A(Bm’vn’tthl} 5.15

b
'£0 K(vn,z') f](z',t')dz'

K(8, ,x)
m’ b ! 1 e 1
+ ——kz_. X=a Z'.!.'O K(vnSZ ) fz(z -,t )dz
K(vn,z) 2
* Tk l,=0 x'io K(B-x') fy(x',t')dx!
K(v_,2z)
+—n | 2 K(B_,x*) F,(x',t")dx"
k4 z=b x'£0 m 4

and

F(8_>v ) =
m-n x'=0 z'=0

where summation is taken over all eigenvalues Bm and Voo

*

fa fb k(Bm,X') K(vn,z') F(x',z')dx" .dz""

The

kernels K(Bm,x) and K(vn,z) and the corresponding eigenvalues
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Bm and v, are obtained from Table 2.1, pp. 5C-51, cf.-(azisik,
1968) for various combinations of boundary cond%tions.

Figure 5.2 represents a rectangular section with the
boundary conditions specified thereon. Fbr these conditions

equation 5.15 reduces to

2 2 2 2
c(m T_ . D g )t 4U0
b

9:t='
u(x,z,t) mg g 5

mnmw

sin(Bmx) sin(vnz) cos{mw-1) cos(nm-1) 5.16

Equation 5.16 yields the excess pore pfessure u at a point
(x,z) at a given time t, provided the value U,, the excess
pore pressure_at initial time (t=0) is specified. Equation
5.16 has been made use of to calculate the values of excess
pore pressure at points (a/2, b/2) and (a/2, 3b/4) for
rectangular sections of height to width ratio of 1.5 and
2.4. The values are plotted in Figure 5.3.

Equation 5.2 has also been solved by numerical analy-
sis using ADI method for the boundary conditions specified
in Figure 5.2. The initial condition is the same as that
used for the analytical solution. Results have been obtained
for the same points K and P (Figure 5.3). The results
obtained by both techniques are in very close agreement with
each other as is evident from Tables 5.1 and 5.2. Thus either

of the methods, analytical or numerical, may be employed in
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the solution of equation 5.2.

The analytical method yields a rigorous and complete
solution, while the numerical method only approximates, to
a large degree, the actual values. But then the analytical
method ié limited in its versatility, because of the con-
siderable algebraic and arithmetical complexities which arise.
On the other hand, the numerical method is applicable to all
sorts of problems and can theoretically hand}e any nuhber
of variations in the parameters of the continuum, Timited
only by the capacity of the computer which is used. Also
with the advances in computer science the numerical solutions
are obtained at a faster and cheaper rate. Thus the numeri-
cal technique has a decided advantage over the analytical
(closed form) method. This clearly demonstrates the relia-
bility of the numerical technique that can be employed in

the solution of such equations as 5.2.

5.A.5 COMPARISON WITH BERNELL'S VALUES

Equation 5.2 was aliso solved using an electric ana-
logue method described by Bernell and Nilsson (1957). Bernell
(1958) made use of an idealized daﬁ cross-section (Figure
5.4) and developed a series of pore pressure time curves.

By these results, Bernell (op. gii.) demonstrated the dissi-
patibn of initial construction pore pressures as a function
of tHe slope of the core of the dam. The idealized dam had

an impervious core with varying side slopes. The core was
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surrounded by a pervious fill with side'élopes of 1 on 2.
The dam was founded on an impermeab]e base and.had a hefght
of 20 meters with a crest width of 4 meters. The coefficieht
of consolidation of the core material was assumed equal to
0.1 cm2/sec. The core wWas assigned side slopes of 10 on 1,
5 on %, 2o0n1, and' 1 on 2. Two cases were considered:

(a) the dam half completed, i.e., a fill height of

10 meters, and

(b) the dam raised to the full height of 20 meters.

The initial pore pressure was assumed equal to 100
per cent, which is often the condition experienced with the
wet fill technique of dam construction (especially in Sweden).
The effect of core thickness is easily discernible (Figure
5.5).

The same hypothetical dam with the prescribed boundary
and initial conditions was considered for solution by the
.ADi numerical technique. Both the cases (a) and (b) mentioned
in the previous paragraph were solved and the pore pressure-
time curves were drawn for the same assumptions of material
properties. As is evident from Figure 5.5, the
respective pore pressure time curves do ndt ha&e any agree-
ment at all. Bernell's curves are flat and are almost straight
on a semi-logarithmic plot. This is never the case in prac-
tice. In almost all cases, the dissipation of pore pressure
is rapid at the initial stages because of the development
of enormously high hydraulic gradients. As dissipation

continues, the value of the hydraulic gradient decreases,
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and hence the rate of pore pressure dissipation decreases

and ultimately when the excess pore pressures are very smail
the rate of dissipation also will be small, or in other words,
the time taken will be large. Thus the shape fdr pore pres-
sure-time plots anticipated are of inverted S-type, the
'familiar consolidation curves. Such S-type plots have been
obtained by the numerical technique employed.

The Bernell's curves'are almost straight Tines and
depict that the hydraulic gradient is almost constant through-
out the dissipation of.éxcess hydrostatic pressure over the
days. This indicates that at earlier stages Bernell's curves
yield a lower excess pore pressure than those which actually
exist in the dam while at later stages the poré pressure
excess values are higher. This is particularly true when
the full height of 20 meters is built up (Figure 5.5b).

Thus the greater the height of the dam, larger will be the
error involved in the Bernell's values. This is amplified
all the more in the case of thick cores (side slopes 5 on 1,
or more) for shorter times and for longer times in case of
thinner cores. Thus, the pore pressure time curves obtained
by Bernell through electric analogue method are misleading
and yield erroneous results.

The ADI method used has been tested for its reliabi-
1ity in the previous section. And as such the results
obtained are trustworthy. At this stage it may be pointed
that this technique is versatile and can handle any set of

geometric configurations and boundary conditions. Also it
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is capable of handling ény type of initial excess pore pres-
sure distribution in the.soil mass. It may be mentioned,
further, that the algorithm developed can handle any non-
homogenity within the soil mass and also any arbitrary soil
Behavior with fime.‘ That is to say any variation in the co-
efficient of conso]idation c (to mention only one soil pro-
perty) with space énd/or time can very easily be handled by
the program. This ADI technique is the basis for all the
numerical work discussed in the following sections and

chapters dealing with two-dimensional problems.



70

B. IMPEDED DRAINAGE

5.B.1 INTRODUCTION

Embankments of granular or noncohesive materials are
more stable than those made of éohesive soils because granu-
lar materials have a higher frictional resistance and because
their greater permeability permits rapid dissipation of pore
water pressures. Embankments of homogeneous materials of
relatively low permeability generally have flat sfopes.

Zoned embankments, which have free-draining outer zones
supporting inner zones of relatively impervious materials,
are made use of where |

(a) homogeneous materials are not avaiiab]e in large

measure;

(b) sufficient pervious material is available; and

(c) the section of the dam cannot be made too large

because of cost considerations.

The two principal requirements for a satisfactory
free-draining outer zone are that it must be more pervious
than the protected soil in order to act as a drain and that
it must be fine enough to prevent particles of the protected
soil from washing into its voids. Where the difference 1in
coarseness between the fine and coarse embankment zones is
too great to meet filter criteria, zones of intermediate graqa-
tion must be provided. These are constructed of sands and

gravels with special gradation characteristics and are called

filters.
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The purpose of a filter 1s to provide an easy path
for the excess water to flow as it is squeezed out of a soil
layer during consolidation and during steady seepage. Thus
an effective filter will accelerate the process of consoli-
dation. In practice,'however, such installations of filters
have met with varied success. Two case histories will be
cited in support of this statement.

Valajoskoski Dam (Arhippainen, 1964) is a composite
carthfill section with a central rolled earthfill of glacial
moraine surrounded by transition zones of graded filter
material and supported by pervious earthfill zones. It has
been observed that the pore water pressures measured in cen-
tral morainic fill and the outer pervious earthfill are com-
parable in magnitude.

Nanak Sagar Dam (Gupta and Sharma, 1964) is a symmet-
rical rolled fill zoned section constructed with silty clay
material in the core and sandy'materia] with traces of fines
in the outer casing. Here again the measured pore water
pressures long after the construction has been completed in
the core and the outer shell are of comparable magnitude.

These two field examples clearly indicate the inade-
quacy of the performance of some outer shells as efficient
filters.

To evaluate pore water pressures in the core of a
zoned embankment after it has been constructed, generally
it is believed that the filter zones act with full efficiency.

This implies that the pere fluid at the interface of the
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core and outer she]]é remains at atmospheric pressure,
although for this to be strictly true the filter should be
infinitely pervious. In other words, the degree of dissi-
pation of pore pressure at any given time depends on the
relative permeabilities and dimensions of the core anduthe
'filter zones in contact with it. This problem of retarded
consolidation is similar mathemética]]y to the heat conduc-
t{on problem of a slab initially at a temperature, and cooling
at its surfaces according to Newton's law of radiation
analogous to condition 5.19a (Carslaw and Jaeger, 1959).

The problem of retarded consolidation (or otherwise
called as Impeded Drainage) is also experienced in laboratory
testing. Impeded drainage in testing is concerned with the
effects of porous stones and filter drains on the degree of
dissipation. In an oedometer test, the effect of fine porods
stone can affect the test results and the coefficients derived
on the basis of test results. In a triaxial test, the effect
of fine porous end caps and of filter drains with finite per-
meability can affect the coefficient, the shear strength,
and the duration of testing in a drained test. Newland and
Allely (1960) have investigated the effect'of various types
of filter disk and different specimen thickness on the observed
time-settlement behaviour of undisturbed and remoulded speci-
mens of Whangamarino c]ay.' Their results not only empha-
size the importance of adequate permeability but also suggest
that overall disk permeability alone may be an insufficient

criterion, and that special precautions may be necessary to
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avoid
(a) the formation of a thin boundary layer of the
disk becoming clogged with clay, and
(b) the head drop at the specimen-disk interface due
to convergence of flow into the pores of the disk.
Schiffman (unpublished work) recommends the following to
have effective drainage in oedometer and tfiaxia] tests:
(i) for soft clays: coarse stones with filter paper,
(ii) for stiff clays: fine stones to avoid clogging
and make necessary corrections thereafter.
Bishop and Gibson (1963) considered the effects of
disk permeability on the progress of one-dimensional consoli-
dation of a clay layer, assuming that fhe clay is fully
saturated and behaves in accordance with the simplifying
assumptions adopted by Terzaghi.
In many cases, the field evidence sﬁows that
the drainage is far from being one-dimensional. For example,
Gibson (1958) while comparing the calculated and observed
pore pressures for Usk Dam remarked that towards the end of
construction the lateral flow of pore water became important
in spite of the fact that all the intérna] drainage provided
is by horizontal filters at various levels. In this chapter,
the dissipation is considered to be two-dimensional and an
asgessment of the influence of impedance of actual drains on

dissipation is made.
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5.B.2 ANALYSIS AND TECHNIQUE OF SOLUTION

Consider the general problem of two-dimensional
(horizontal and vertical) drainage. The pore pressure dissi-

pation is governed by equation 5.2 which is

2 2
c ( g—%r+ g—%ﬂ = 5.2
X V4

Q

Qo
QL

and the pore pressure is defined in the region 0 < x <.2H

and 0 < z < L. The general boundary conditions are,

ou _
A, 24 (x,L,t) + B, u{x,L,t) =0
2 az 2 ] 2 3 b
A, 4 (0,z,t) + B, u(0,z,t) =0
3 9x ‘0% 3. ut®.2
A Y (24,z,t) + B, u(2H,z,t) = 0
4 ax 3 > 4 5 b}

These boundary conditions can be

i
Q

free draining, if Ai
impervious, if B. =0

1

impeded, as they are.
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The equation 5.2 yields the progress of consolidation in

two dimensions of a clay layer, assuming that the clay is
fully saturated and behaves in accordance with the simplify-
ing assumptions due to Terzaghi. - Equation 5.2 may be solved
for a given set of boundary conditions either analytically
(Carillo, 1942) or by numerical methods (ADI).

As mentioned earlier, the filters are usua11y not
fully effective. To assess the effectiveness of a filter,
consider a recfangu]ar section with vertical side drains of
the same thickness on either side (Figure 5.6a). The height
to breadth ratio of the section may be véried.

. The rectangular (core) section of the clay is of height
L and width 2H; the drain on each side is of height L and
thickness d. The base of the section is assumed impervious.
The core has a permeability k] and its coefficient of two-
dimensional consolidation is Cy- The drain material is
assumed to be ideally non-consolidating, i.e., the drain
material is an incompressible layer. In addition, it is
assumed to be fully saturated. As the drain material is in-
compressible, its two-dimensional compressibility may be taken
as equal to zero; therefore, its coefficient of two-dimen-
sional consolidation is infinite.

The clay is assumed to have uniform excess pore pressure'
due to suddenly applied load at time t = 0, and thereafter
the excess pore pressure u(x,z,t) in the clay layer is gover-

ned by the equation 5.2. The initial condition (t = 0) is

u(x,z,0) = Ao, a constant within the entire clay region.
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Only half the section (Figure 5.6b) need be considered for
analysis, because of symmetry. The boundary conditions for

the clay layer then, at any instant t > 0, are

au _ —
-0 at z = 0 5.17a
u=0 at z =1L 5.17b
and au 0 at x =20 | 5.17
9z . - H/c

The boundary condition at the internal boundary (x = H)
between the two materials is to be determined.:

The equation goverhing the dissipation of excess pore

pressure in the drain material is

2 2
a u Ju
1, 0N

3x? oyl

-0 5.18

since cy = ©».* Equation 5.18 is the Laplacian equation for
steady state condition of flow of water through the drain

material.

"If the drain is efficient, it is evident that the con-

* ¢ = w since the drain material is assumed incompressible.
TVe assumption ofincompressibility leads to the condition
that the hydraulic gradient in the drain thickness is linear
with hydrostatic pressure equalling atmosphere at the outer
boundary of drain. )
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solidation of the compréssib]e core material wi]] take place
as a result of the flow of the pore water from the core into
the drains in the horizontal direction; depending on the

ratio of the height to the breadth of the core some pore water
will get dissipated from the top since the base is assumed
completely impervious .

From Figure 5.6b, it is seen that there exists an
interface between the two materials A and B. At this internal
boundary the conditions to be satisfied are:

(a) continuity of flow be maintained; and

(b) the pore pressure be the same between the core

and the drain.

Water squeezed out from the consolidating material
(core), in the horizontal direction, enters tﬁe drain through
the interface. Thus to maintain full continuity at the
interface the amount of water expelled from the core materié]
should equal the amount of water entering the drain. In
_other words, the velocities of flow in both thg materials

should be same on either side of the interface. Therefore,
ou .
du _ 1
5;—(H,g,t) = k2 T (H,z,t) 5.19a

where k] and k2 respectively are the permeabilities of con-

solidating core material A and drain material B.

Bu] U](H,Z,t)
L (Hz,t) = 5.19b
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In deriving equation 5.18, the materia] B 1is assumed to be
incompressible and also that the excess water pressure is
zero at the outer boundary (x = H+d) of the drain.

When consolidation takes place in the vertical direc-
tion, the water (of diséipation) travels in that direction.
As such the water expelled dﬁring this dissipation does not
enter the drain; hence during vertical dissipation the condi-
tion of continuity of flow (at the interface) heed net be
considered. ‘

The value of the pore pressure shall be the same at
the interface (x = H). This is accomp]ished by chosing a
single value at the interna] boundary, for horizohta] dissi-
pation, for both the materials, i.e., u(H,z,t) = u](H,z,t)

and then satisfying the equation 5.17. Thus

u - u(t,z,t)
Ky 3% (H,z,t) = k, 3 5.]9e

for horizontal dissipation.

During vertical dissipation, it is assumed that the
value of pore pressure at the iﬁterface remains at the same
value as that obtained during previous horizontal dissipation.
This is justified by the fact that the equation 5.16'goverh-
ing the flow of water in the drain is in a steady state con-
dition. Also, during vertical dissipation water squeézed
out of the consolidating material does not enter the drain

and hence does in no way disturb the equilibrium attained
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during and after horizontal dissipation. Thus this condition

helps in determining the value of pore pressure at the inter-

face as, .

u(H,zit)y = u(H,z,t + At)y 5.19d

for vertical dissipation, where
u(H,z,t)H is the poré pressure value at time t
during horizontal dissipation; and
u(H,z,t + At)v is the pore pressure value at time
t + At during vertical dissipation.
Thus equations 5.19 yield the boundary condition at
the interface (x = H) between the two materials. Equation
5.2 may now be solved for the boundary conditions.given by
equations 5.17a, 5.17b, 5.17¢c, and 5.19¢c (for 5.19d) togéther
with the prescribed initial condition.
The solution to equation 5.2 for the conditions men-
tioned above.may be obtained by numerica]imethods using ADI.

Equatién 5.2 may be expressed in a dimensionless form as

2 2
._g+__3l1—_-_“ 5.20

X 822 oT

® |
@

[
| %

c. t
=¥ = v
where X , Y H and T >

= 4

Equation 5.20 may be expressed in finite difference

form for any general nodal point of the finite difference
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mesh. During the‘operafion by ADI, the dissipation is allowed
to take p]acé in either direction at each time step alter-
natively. An impermeable boundary, signifying ﬁo flow across
~ the boundary, is denoted by %% (or %%) = 0. To maintain a
truncation error of O(Ax)2 or O(Az)z, fictitious points are

introduced in the grid system and the impermeable boundary

condition (at i = 1) is satisfied by setting
Cu(1,3,t) = u(-1,4,t)
Permeable boundaries (at i = I) are represented by setting
“u(I,j,t) =0

The boundary condition given by the equation 5.19c may be

expressed in finite difference form as
(u(I-1,z,t) - u(l,z,t))/ax = ((ky/kq) u(I,z,t))/d

or (u(I-1,z,t)

u(I,z,t)) = (ky/ky) (H/d) Ax u(I,z,t)

i.e., u(I,z,t) (1/7(1+xax)) u(I-1,z,t) 5.21

where A = (kz/k]) (H/d), is called the impedance factor.

Hence knowing the value of excess pore pressure u(I-1,z,t)

at the nodal point just previous to the interface, the value
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of excess pore pressure u(I,z.t) at the interface can be
determined. Thus the interface condition is satisfied.

The impedance factor A, involves the ratio of the
permeabilities of the two materials A and B, and also the
ratio of the relative lengths of flow of water in both the
materials. Thus A may be said to be a true indicator of the
‘effectiveness of the filter drain. The greater the value of
A: either the permeability of the drain material is large
compared to that of clay material or the thickness of the
drain is very small compared to the half width of the com-
pressible clay layer. In either case the drain is quite
efficient. And in the case A » «, the pore pressure excess
at the interface is zero, the drain is'terﬁed perfectly
efficient. The smaller the value of A: either the relative
permeability is low (i.e., the drain permeability is compara-
ble to that of the core material) or the length of the seep-
age patH in the drain material is quite large compared to
nalf width of the consolidating material; and for such small
values of A the drain is impeding and it is not fully effi-
cient. The major effect of the impedance to drainagé is on
the excess pore pressure dissipation. Impeded drainage
retards the dissipation of excess pore pressures, which may
be detrimental to the safety of the embankment and extend

the duration of settlement.
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5.B.3 RESULTS AND DISCUSSION

In this study, the common case.considered is a rect-
angular section of height L and width 2H provided with side
drains of thickness d each on either side. The entire section
is founded on an impermeable base. The drains are considered
to be fully effective (i.e., the impedance factor A >.») to
fully impeded (i.e., A = 0). The impedance factor A is
varied over a wide range of values differing mainly by an
order of magnitude, e.g., 0.0, 0.01, 0.1, 1.0, 10.0 and =
for given rectangular sections. The cases considered are
for various values of height/width ratio of the consolidating
layer; e.g., 5.0, 2.0, 1.0, 0.5, and 0.25. The results are
presented in Figures 5.8 to 5.14. The average>degree of
consolidation is calculated for the x-z plane at each time
step. This is accomplished by first integrating the values'
of pore pressure along one axis (say z-axis) and obtaining
ordinates at nodal points along the other axis (x-axis).
These values are then égain integrated. Thus this double
integration at &ny time step compared to the double inte-
gration over the entire plane at the initial time yields
the average degree of consolidation at that time step. Thé
integration in either direction is carried out making use
of the Simpson's rule for the largest even number of consecu-
tive complete subintervals in the range of integration; the
remaining subintervals, if any, are evaluated according to

the trapezoidal rule. This may be termed as the 'two-dimen-
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sional integration'.

In one-dimensional consolidation problems, the dissf—.
pation is allowed to take place only in one direction along
a chosen axis. At any time step the average degree of con-
solidation along that axis is calculated. This may be termed
as 'one-dimensional integration'. But usually in plane strain
cases, the pore pressure dissipation is in two directions.
One way to calculate the average degree of consolidation in
such cases is by two-dimensional integration. Another is
to obtain the values of pore pressure (after two-dimensional
dissipation) along a chosen axis and calculate the average
degree of consolidation by one-dimensional integration. By
the latter means the results could be compared with the pub-
lished results of one-dimensional consolidation.

For a height to width ratio of 0.25 (Figure 5.8) fhe
effect of A, the impedance factor, is almost negligible.
This is mainly because of one-dimensional drainage taking
place in the vertical direction and the impedance at the sides
does not have any influence on the rate (or amount) of dissi-
pation. Also because of the small height, there are rela-
tively high rates of drainage occurring in the early stages
of the process of consolidation. To fully ascertain the
effect of‘impedance, the drainage is allowed to take place in
two dimensions (horizontal and vertical) while the average
degree of consolidation is calculated

(a) only along a vertical section passing through

the center -line; and
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(b) for the entire region by two-dimensional inte-
gration.
Figure 5.9 shows that A does not have any effect on the
average degree of consolidation calculated at the center line
by one-dimensional integration.' It is obvious from Figure
5.8 that the effect of A on the average degree of consolida-
| tion through two-dimensional integration is small.
| Figure 5.10 gives the average degree of consolidation.

versus the time factor for a height to width ratio of 0.5.
For this ratio of 0.5, the drainage may be considered two-
dimensional - horizontal and vertical. The horizontal drain-
age is impeded because of the presence of an inefficient
drain. In these curves, given by Figure 5.10, the effect of
A is clearly discernible. The smaller the value of A, greater
the impedance and consequently the smaller is the degree of
dissipation. However, as the consolidation proceeds, the
average degree of consolidation almost equals the same value
irrespective of the value of X at very large time factor.
. This is because, at very large values of time the hydraulic
gradient is small; the dissipation is almost complete and
hence the same value of the degree of consolidation is obtained.

A height to width ratio of 1.0 yields a family of
curves (Figure 5.11) for the degree of consolidation against
time factor. The rectangular section is square, and the
drainage definitely is two-dimensional. As such it is ex-
pected that the impedance (due to thé drain) to horizontal

drainage does have a profound influence on the amount of con-
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solidation. This is amply evident from Figure 5.1&. For
small values of A, the rate of dissipation is very slow to
start with compared to that for highef values of A. Similar -
trends may be observed in the cases of height to width ratio
~of 2.0 and 5.0. |

For a height to width.ratio of 10.0, the dissipation
may be expected to be mainly one-dimensional in the horizon-
tal direction. To ascertain, if it is so, the drains are
maintained effectively non-impeding (A - «) and the values
of the average degree of consolidation (two-dimensional
integration) afe obtained for various values of time factor.
These values are compared against the classical one-dimen-
sional results for‘the same drainage conditions (Figure 5.14).
The results agree very c1ose1y.. Further to make sure that
the dissipation is mainly one-dimensional, one—dimensibna]
integration is carried out at the centre line in the hori-
sontal direction and the average degree of consolidation is
calculated. These values coincide with those of the c]assi;
cal one-dimensional theory (Figure 5.14). Since it is esta-
blished that the dissipation is mostly one-dimensional, the
| effect of an impeded drain in the horizontal direction is
very high (Figqre 5.13).

From the Figures 5.8 to 5.14 it may be seen that a
value of A = 0.0 or a value of A = 0.01 or for that matter
a value of A = 0.1 has the same effect on the average degree
of consolidation. For all these values, the average degree

of consolidation versus the time factor curves are almost
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the same for any value of height to width ratio. This shows
that for this range an order of variation in the relative
permeabilities of the drain and the consolidating material
does not have much inf]uehce on the degree.of dissipation,
i.e., they effectively impede the drainage to the same extent.
Then again, there is a wide variation in the values of the |
average degree of consolidation for a value of A = 0.1 to a
value of A = 1.0 to 10.0. The values of the average degree
of consolidation obtained for x = 10.0 and those obtained for
A > = are almost identical, which again indicates that an
order of variation in the relative permeabilities after a
certain value, say x = 10.0, in the increasing direction
does not really add to the effectiveness of the filter drain.
In other words, whether the drain is infinitely permeable
or permeable to an extent such that A = 10.0, the average
degree of consolidation is not affected to any appreciable
degree.

It is of interest to investigate the value of XA which

obtain in some of the existing dam sections.

McNary Dam in Oregon, U.S.A. (Sherad et al., 1963)
has a vertical core of total width 50 feet with vertical side
drains 8 feet wide on either side. The .central core is made
up of fine silt while the side drains are built of sand and
gravel. Terzaghi and Peck (1967, p. 55) quote'the following

values for the coefficient of permeability of the above

materials:
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"4 to 1070 cm/sec.

k for fine silt ‘ - 10

k for sand and gravel mix - 1  to 1073 cm/sec.

5 2

Taking average values of 10°7 cm/sec for fine silt and 10~
cm/sec for sandy gravel mixture, a value for A, the impedance

factor is obtained.

-2
A = 5042 x 10 == 3.12 x 103 = 3120
. e

From the order of magnitude of A calculated no impedance to
drainage should exist and the side drain may be termed as an
effective filter. _

Nanak Sagar Dam (Gupta and Sharma, 1964) has a central
core (trapezoidal section) of 20 meters at the base and is
provided with casing (on either side) having a width of 24

meters. The values for the coefficient of perheabi]ity are

given
k for core = 2 x 10'6 cm/sec
k for casing = 2 x 1075 cm/sec
Therefore A= 20/2 2 x ]0-5 = 4,17
’ : 24 X 6 y

2 x 10°

From this value of A, it may be inferred that the flow of

the pore water in the horizontal direction is impeded. The
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observations from the piezometers located in the casing in-
dicate that the pore water pressure values in the casing are
substantial and are of the order of 20% to 25% of the pore
water pressures 1in the core. Thus this shows that the para-
meter A correctly indicates fhe efficiency of the drain with-
in practical Timits.

_ Sherard et al. (1963) state that theoretically a filter
can be very-thin. However, from the practical standpoint, a
minimum thickness exists depending on the filter material
available and the method of construction adopted. Also the
thickness is governed by the fact that there should exist
no gaps or ihcorporation of segregated material. Horizontal
layers can be as thin as possible because they can be easily
placed. Minimum thickness for horizontal layers are about
6 inches for sand and 12 inches for gravel, although thicker
layers are generally specified. For vertical or inclined
filters, a minimum width of 8 feet to 10 feet is suggeéted
for ease of construction while 12 feet to 15 feet is prefer-

able.

Sherard et al. (op. cit.) have noted that the deter-.
mination of a minimum thickness for the central core of an
earth dam is not amenable to theoretical treatment. It is
~governed for practical purposes by the following factors:
(a) the tolerable seepage loss;

(b) the minimum width which will permit proper con-

struction;

(c) the type of material available for core and shells;



89

and (d) the design of proposed filter layers.
The following criteria represent current field practice:
(1) Cores with a width of 30% to 50% of the water
head have proved satisfactory on many dams under
diverse conditions. Probably a core of this
width is adequate for any soil type and dam height.
(2) Cores with a width of 15% to 20% of the water |
head are considered thin but, if adequately
designed and constructed filter layers are used,
they are satisfactory under most cifcumstances;
If now, to get an idea of what should be the ratios
of permeabilities of the filter and the core materials, let
us choose the following:
(a) a minimum width of 12 feet for a vertical fi]ter;‘
(b) a minimum width (for the core) of 40% of the water
héad, say H} hence the half width of the central
core is 0.2H.

The expression for A 1is

o _
- 0.2H “drain _ 4 g2p Egﬁilﬂ . 5.3

}\..
' 10 kcore core

Table 5.3gives the values for A for various values
of the head of water impounded (which for practical purposés
is the height of the dam). It can be seen that for a given
height of the dam built to conservative standards, the success-

ful behavior of the dam (and the drain) depends primarily on
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the ratiO'of.the permeabilities (i.e.,lfor.given core and
drain materials), The greater is this ratio the better is
the performance of thé dam. 'Further,‘for a given value of
the ratio of permeabilities, the value of A is higher for
high dams when companéd'to that for low dams. Thus for the
_same materials a higher dam functions more satisfactorily
than a Tow dam. In other words, a more permeable filter
drain is to be provided for a low dam when compared to a

high dam for the same performance. The performance is mea-
sured in terms of the ease with which water squeezed from the

core due to consolidation is drained through the filter.
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-k 3u + h u=f (z,t) k 3u+ hu
13z 1 1 293z 2

o] / a - X
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3ax, 3 3

FIG. 5.1 A RECTANGLE WITH NONHOMOGENEQUS BOUNDARY CONDITIONS
OF THE THIRD KIND.

u =0 Initially u=0
3z at ] —
\ 0
0 —_—
a X
u =20
oX

FIG. 5.2 A RECTANGLE WITH MIXED BOUNDARY CONDITIONS
OF FIRST AND THIRD KIND.
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., Pervious Fill

20M Pervious Fill

Impervious Base

Impervious Core Cv = 0.1 CM?/SEC

FIG. 5.4 IDEALIZED DAM CROSS-SECTION (Bernell, 1958)
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Clay Drain
k k
1 2
m m =0
vl ve

d H . H d
= ‘f— 1 : 1 —
Impervious Base

FIG. 5.6 a RECTANGULAR SECTION WITH SIDE DRAINS
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FIG. 5.6 b RECTANGULAR SECTION WITH SIDE DRAINS
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FIG. 5.7 b SPACE GRID FOR MATERIAL A ONLY
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CHAPTER VI

INFLUENCE OF DISSIPATION ON CONSTRUCTION
PORE PRESSURES

6.1 GENERAL

A théoretica] analysis is developed to determine the
influence of dissipation on construcfion pore pressures de-
veloped in earth embankments. Using a multiple 1ift con-
struction procedure and assuming conditions of plane strain,
embankments with linear, isotropic, and homogeneous material
properties are studied. The equation 6.4,governing the dissi-
pation of excess pore pressure developed in partially satu-
rated soils is solved using the ADI technique which was
developed and tested in Chapter V. Six field cases are
studied and the comparison between the calculated and mea-
sured pore pressures is good within practical limits of
accuracy. The resu]té indicate that the construction pore
pressures are very sensitive'to the assumed.construction
sequence and that in the anlysis the construction stoppages
and the resulting pore pressure dissipation must be considered

to make reasonable pore pressure predictions.

6.2 SUMMARY OF THEORETICAL METHODS FOR PREDICTING
CONSTRUCTION PORE PRESSURES | ‘

During construction of a rolled embankment temporari]y
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high pore water pressurés develop. This development of high
construction pore pressure presents a major design problem
from the viewpoints of safety and economy. Numerous methods
~are available to predict the development and consequent
dissipation of pore pressures during the construction of
earth dams. Few of them have general application. For this
reason, many practicing engineers and designers use a ru]e—‘
of-thuﬁb, generally based on past experience, for estimating
construction pore pressures. Theoretical methods for pre-
dicting construction pore pressures are based on a minimum
of assumptions and these methods provide an insight into the
variation of pore pressures with different soil types and
conditions. In the following the available theoretical
methods are summarized.

The first analytical method for dealing with construc-
tion pore pressures in an embankment was published by the
U.S. Bureau of Reclamation (1939). The basic development
rests on the assumption that the time rate of change of the
sum of fhe volume of moisture and free air in an earth mass
is caused by:

(i) flow into the unit volume due to percolation; and

(ii) change in the free-air volume due to changes in

pressure and temperature.
This time rate of change is equated to the time rate of con-
solidation, and the integration of this equation provides
the solution for the problem of transient pore pressures.

Hilf (1948) proposed a solution to the unsteady flow




113

of water with the assumption that no drainage occurs and
surface tension can be neg]ectéd. Pore pressures in a
partly saturated cohesive soil mass are caused by the com-
pression of the two phase pore fluid comprising a mixture
of air and water as a result of an incfease in superimposed
load. An expression has been derived by Hi1f (op. cit.)
for such pressures by combining Boyle's law for compression
of gases and Henry's law for solubility of gases and assum-

ing the soil to be completely non-draining. .

_ p'aLAl
v, + va - A] c

where u = total air pressure after consolidation, i.e.,

pore pressure

P, ° air pressure after initial compaction very close
to atmospheric pressure

Ay = consolidation or volume change in percentage of

_initial volume of soil mass

Va ~ volume of free air in voids after initial com-
paction in percentage of initial volume of soil
mass

H = Henry's constant of solubility of air in water
by volume = 0.0196

va = volume of dissolved air in percentage of initial

volume of soil mass
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Uc = capii]ary tension, usua]]y of small order.

Upon saturation of the soil mass by pressure, A] P and

the expression is reduced to
u = (p,v,)/(iv,)

if surface'tension is neglected and no draiﬁage occurs.

Although the assumptions used in the development of
Hilf's method 1imit its applicability, the method eliminated
.complex mathematical difficulties. Hilf criticized his own
assumption of no surface tension. The assumption of no
drainage is overconservative particularly where internal
drainage is provided. Despite the drawbacks inherent 1in
Hilf's method, it often enables a reasonable estimate of
the construction pore pressure to be made with the available
data from consolidation and compaction tests. |

An approximate method of allowing for the various fac-
tors leading to the dissipation of pore pressures in the field
has been developed by Bishop (1957). The method comprises
step computations of pore pressures by Hilf's equation at
certain arbitrary intervals during which some pressure re-
lease is permitted so as to simulate the combined action of
various factors leading to dissipation in the field. The
various steps in the analysis are shown in Figure 6.1. The
effective stress-volume change curve is first plotted from

the laboratory consolidation test. For an arbitrary assumed
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increment ci in effective stress, the volume change 4, is
obtained. The pore pressure U corresponding to A] assuming
no drainage is computed from Hilf's equation and point A]
obtained. Next, the assumed percentage of dissipation is
applied, bringing down the pore pressure and increasing the
effective stress. Let this be represented by B] on the curve.
The pore pressure corresponding to this stag% is represented
by C]. For the next stresé increment of cé, the correspond-
ing volume change is AZ‘ For this stage of loading the con-
ditions at points B] and C] are assumed as initial conditions.
The pore pressure dissipation is again allowed to take place
in the same ratio and the process repeated. The points C],
02, ... etc. thus obtained indicate the pore pressure after
allowing for the assumed dissipation rate. The ratio in
which the pressure relief is permitted, known as tﬁe dissi-
pation factor, depends on soil characteriétics, rate of
conétruction, and cross-section of the embankment. Even a
Tow vaiue of this dissipation factor (as Tow as 1/7) leads
to considerable Towering of pore pfessures:

(a) directly as a result of dissipation itself,

(b) due to increase in effective stress which leads
to the application of flatter portion of the con-
solidation curve for the same range of loading;
thus corresponding to a greatly reduced com-
pressibility.

The step computations are based on the assumptions that:
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(i) Hilf's equation continues to be valid throughout
the step computatiqn;

(ii) during dissipation, the mixture of air and water
drained away has the same proportion by weight
as that remaining in it, or in other words, the
degree of saturation remains unchanged before
and after drainage.

The method has been used for a number of dams having
different design problems and has provided reasonable esti-
mates of the construction pore pressures (Sherman and Clough,
1968). For example in the case of Usk dam (Bishop, 1957)
this method proved very useful.

Skempton (1954) proposed a solution for determining
the pore water pressure set up in a fully saturated soil,
~expressed in terms of the major and minor principal stresses,
assuming that the undrained soil behaved in accordance with
elastic theory. To compensate for the discrepancy between
the elastic behavior and actual behavior of the soil, Skempton
replaced the elastic constants in the expreséion by a factor

found in a laboratory triaxial test, the well known A factor.

Hence,

Au = Ao, * A(Ao] - Aq3)

3

where Au - the change in pore pressure

Ao, - the change in all round pressure

3

Aoy - the change in axial stress.
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Through development by Skempton and othérs, a practical
pore pressure theory for use in predicting embankment pore
pressure during construction was established.

Skempton extended his expression for pore water pres-

sure in saturated soils to unsaturated soils in whicﬁ
Au = B[A03 + A(Ao] - Ac3)]

and B is another experimentally determined factor. The va]ué
of B was found to range from zero for completely dry soils

to unity for completely saturated soils. For any given soil,
the coefficient A was found to vary with stresses and strains.

Bishop (1954) rearranged Skempton's expression as

o Ao 4
AU/AO'-I =B = B[1 - (1 - A) (1 - Ka,T

The above equation involves the assumption of no dissipation
of pore pressures, since excess pore pressure is a function
of applied stress only. Also the factor B was found to be
not constant. The factor B depends on the pore pressure co-
efficients A and B which vary with the amount of strain that
takes place. Further Skempton and Bishop (1954) have shown
that the value of B varies nonlinearly with the degree of

saturation.

Bishop (1957) noted that the above method gave over-
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conservative results if allowances were not made for drainage
in dams. 1In the case of the Usk Dam, a dam compacted wet
of optimum with numerous drainage blankets in the core,
Bishop (op. cit.) found the assumption to be overconservative
and contended that pore pressure dissipation during construc-
tion shutdown resulted in a two-fold effect on the value of
excess pore pressure at the end of construction. The first
and most obvious effect is that of relief of pore pressure
by dissipation. The second effect occurs because Af com-
paction wet of optimum. After a period of dissipation, the
increase in pore water pressure with increase in stress was
found to be Tess than the increase before dissipation.
Bernell and Nilsson (1957) developed an electric ana-
logue equipment for the study of transient, two-dimensional
flow problems in earth dams. The equipment permitted the
analysis of construction pore pressures at any time during
the construction of the dam. The pore pressure u at a time
t can be determined by the following equation for two-dimen-

sional consolidation:

2 2
C(..a__u_-l-a_lzi):_al

Viax?  ay

Q

where Cv is the coefficient of consolidation whose value may
be obtained from a triaxial consolidation test. From the
illustrations presented, it appeared that difficult boundary

conditions can be adequately reproduced in the equipment.
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Bernell (1958) reported that the model analogy approach to
the problem transient pore pressure dissipation is less dif-
ficult than the complex mathematical approach. However, it
has been demonstrated in section 5.A.5 that the results pre-
sented by Bernell (op. cit.) are misleading and not trust- '
'worthy. Also with the progress of numerical analysis and
advances in computer technology more accurate results can
be obtained. |

Li (1959) on analysis of pore pressure data from the
construction of the Quebradona Dam, Colombia, South America,
concluded that allowance should be made for dissipation of
pore pressure during construction in predicting pore pres-
sures. In a subsequent publication Li (1967) made a compara-
tive study of the inf]uence of variocus factors on the develop-
ment of construction pore preésures in three earth dams,
namely Quebrandona Dam, Troneras Dam and Miraflores Dam (all
in Colombia, South America). Li (op. cit.) concluded that
the pore pressure development is due to the combined effect
of many factors and it would be an oversimplification and
subject to serious inaccuracy to estimate construction pore
pressure'without an overall evaluation of all possible fac-
tors involved. Factors which affect the build-up of construc-
tion pore pressures are numerous (Sherman and Clough, 1968)

and are discussed in section 6.5.
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6.3 ANALYSIS AND TECHNIQUE OF SOLUTION

Equation 2.11 represents the consolidation of a soil
mass when three-dimensional drainage is taking place and

is reproduced below as

(3]

¢ viy = du 11 6.1

39]
ot

@
QO =t

where 64 is the sum of the externally applied stresses. And
e] = 04 + o, + o3- Herein oy and o3 are respectively major
and minor principal stresses and g, is the intermediate

principal stress. Equation 6.1 may be written as

9°u 37uy _ ou 9 (Ac) 6.2

for the case of plane strain and where the strain in the
y-direction is considered zero. The quantity Ac is the
change in the principal stresses at any point. Further, if
it be assumed that change in principal stress at every point
along the depth of the soil is equal to the change in the ex-
ternally applied load, then it will be inferred that the

rate of change in the external applied 1oad_is only time-

dependent. Thus the term a(gz) in equation 6.2 assumes the

d(Ac)
dt

Hence the equation 6.2 reduces to

form
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2 2
c(g_% 340y ou
X

_ du _ d(A0) 6.3
5 ] dt ’

Q

Q
N

z

The added weight at the top, which is time-dependent,
may be due to the variation in the externaf loading in form
of surficial loads. Also load at the top may vary because
of the addition of supplementary layers and thereby cause an
increase in.the maximum principal stress. In this case the
top boundary is moving with time (moving boundary problem)
while in the former case the top boundary does not move.

The presentation has been restricted to fully saturated
clays, . but the analysis may be extended to partially saturated
soils by introducing the pore water pressure parameter B
(Skempton, 1954). This is necessary to estimate the pore
pressures set up in an earth embankment during and after
construction. Equation 6.3 is made use of to estimate the
construction pore water preséures (and those during post-

construction conditions) and is expressed as

2 2
c'(a—% +
X

Q
Q

U)_ U

= dh .
——B——YBE 6.4

Q
~N

z

where the parameter B is the fraction of the water pressure
set up at any point under conditions of no drainage 1in the
partially saturated soil to the water pressure that would be
set up under the same conditions in a fully saturated soil;

and ¢' is the coefficient of consolidation in two-dimensional
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dissipation. The term y is the bulk density of the soil and
the term dh/dt is the time variation in the thickness of the
soil layer that is added at the top. Thus it is seen that
equation 6.4 has been derived with the usual assumptipns made
in the classical one-dimensional Terzaghi theory except for
the following modifications:

(a) the drainage of the pore water takes place in

two directions, i.e., along x- and z-dimensions;

(b) the soil is partly saturated as opposed to fully

saturation; and

(c) there is addition of soil layers at the top,i.e.,

the load application is time-dependent and the
fop boundary is moving. '

It will be seen on comparing equations 6.3 and 6.4
that any solution obtained for a partly saturated soil is
equally valid for a fully saturated soil if the term yB is
replaced by vy.

Equation 6.4 is useful in predicting pore pressures
at any instant during and after construction of an earth-fill
dam. This equation yields the excess pore water pressure
provided certain physical constants such as the properties
of the material going into the embankment; the rate of
construction, and the cross-section of the dam together with
the boundary conditions aré known.

The solution to equation 6.4 may be obtained with the
use of numerical techniqde ADI. For this to be feasible,

the cross-section must be discretized in the x-z plane at
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any instant of time. In o}der to achieve this symmetrical
cross-sections are most helpful but in practice symmet-
rical sections are very rarely found. Dams ahd embankments
with non-symmetrical central cores are more common. In the
event of a non-symmetrical core, the cross-section has to
be idealed as follows:

(a) Real boundary conditions expressed in finite
differences are éasy to satisfy if a rectangular mesh is
used. An idealization (mentioned below) is made use of where
a réctangu]ar mesh is developed at the expense of real boun-
dary conditions.

The idealization affected is for the upstream and down-
stream slopes. This stems from the fact that usually the.
values of upstream and downstream slopes bear a whole number
relationship. This relationship is used in making up the
mesh pattern. When the mesh is made up, usually the slopes
(upstream and/or downstream) are approximated as steps
(Figure 6.4(b)). This results in widening of the corss-
section of the dam at certain séctions. The space.step in
the vertical direction is so chosen that the height of the
‘embankment never exceeds the actual height. Thus the lengths
of the seepage paths in the horizontal direction is affected
to a certain extent but care was taken not to lengthen unduly
the lines of seepage. To assess the effect of this lengthen-
ing of the seepage path, two different idealized cross-sec-
tions for the Seitenoikea Dam (Arhippainen, 1964) were drawn

and the values of pore pressure were determined. It was
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found that the pore preésure values agree remarkably well
(within an order of 0.1%). The Tine of seepage along the
vertical direction is not affected and also the weight of

the soil above the points of comparison (piezometer locations)
were maintained the same as in the field.

(b) The actual rate of construction is usually adhered
to. However in many cases, the rate of construction over
few weeks or even few days is not uniform (e.g., Figure 6.3).
If these rates are taken into calculation, the program be-
comes unduly unwieldy and may run into computational diffi-
culties. In order to facilitate computation, the rate of
construction over.a regioh of time is chosen so that the
assumed rate of.construction is approximately an averége df
‘the actual rates in that interval of time. Thus instead of
having a large number of varying construction stages, the
entire construction season is divided into a small number of
easily manageable rates of construction. The duration of
construction stoppages is rigidly adhered to.

(c) One of the most important parameters that must be
known in calculating the dissipation of excess of pore pres-
sures is the coefficient of consolidation Cy of the material
that goes into the embankment. Alternatively, the coefficient
of permeability and the compressibility characteristics of
the core material should be made known. Only, occasionally
are such data available in the literature. 1If available,

such information leads directly to the determination of the

parameter Cy-
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_Frequently, however, only the recorded pore pressure
readings during and after construction are available, and a

representative value of ¢

v must be determined. The follow-

ing procedure has been adopted.

A particular poré pressure cell is selected with res-
pect to the boundary conditions. The recorded pore pressure
readings are considered starting immediately after construc-
tion is completed. The pore pressure value just at the end
of construction (i,e., beginning of poét-construction period)
is considered as the datum. Based on this datum, the degree
of consolidation at various time intervals is calculated; and
then the degree of consolidation values for the time intervals
are compared with the theoretical one-dimensional consolida-
tion curves for the appropriate boundary conditions . Thus
the values of time factor for consolidation are determined
at any time interval starting from the pogt-construction
period as the initial time. Making use of the respective
time factors, T, the time interval t and the length of the
drainage path H, the value of c, (= I%E is calculated. The
value of c; thus obtained is on the assumption of one-dimen-
sional dissipation. This value gives an idea of the order
of magnitude of the coefficient of consolidation for two-
dimensional dissipation. However, the magnitude of cy
obtained is not the correct value nor can it be used for the
duration of the construction period.

By the above procedure a rough approximation of the

order of magnitude of Cy is obtained and it is suitably modi-
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fied to arrive at an appropriate value. Some of the published
.1iteraturé, however, yié]ds the laboratory (or field) com-
pression characteristics together with the permeability tests.
This information directly leads to the determination of the
parameter c,-

(d) B, the ratio of pore pressure developed to the
principal stress, may be varied. The variation depends mainly
on the moisture content of the soil going into the dam as
referred to'the optimum moisture content determined in the
laboratory compaction tests. In a saturated soil the com-
pressibility of the soil skeleton is almost infinitely greater.
than that of the'pore water, and thus essentially all of a
stress increment applied to a saturated soil is carried by
the pore fluid and hence B = 1. In a dry soil the compressi-
bility of the pore air is almost infinitely greater than
the compressibility of the soil skeleton, and thus essenti-
ally all of the increment in total stress applied to the dry
soil element is carried by the soil skeleton, i.e., B = 0.

In partly saturated soils the very high compressibi]ify of
air relative to those of water and the soil skeleton results
in values for the parameter B somewhere between 0 and 1 until
the percent saturation approacheé 100%.

If the field moisture is above the optimum moisture
content determined in the laboratory, then the soil is very
nearly saturated and a value for B may vary between 0.8 and
1.0. On the contrary, if the material has gone into the fill

dry of optimum, the value of B may be taken as varying between
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0.6 and 0.7. The response to a variation in B is reflected
in the different results obtained and may be cpmpared with

actual performance in the field.

6.4 CASE HISTORIES

Six case histories have been studied and analyzed with
respect to pore pressure development. The pore pressure data
used in this study consisted of measurements in the embank-
ments during and/or after construction, as indicated by
piezometers installed prior to the completion of the embank-
ments. The dams analyzed together with observational data
are listed in Tab]é 6.1. Materials and construction procedures
varied widely for the dams, as is natural, reflecting the
various countries and their organizations. 1In the following
sections, a detai]ed.analysis and the comparison between cal-
culated and observed results are given for each of the cases

considered.

6.4.A OTTER BROOK DAM

The cross-section of the Otter Brook Dam (New Hampsﬁire,
U.S.A.) with the piezometer Tocations is shown in Figure 6.2.
Otter Brook dam is of rolled fill construction. The height
is about 133 feet. It is of.homogeneous impervious cross-
section, except for the pervious fill drainage blanket and

chimney, and rockfill and gravel slope protection. Both the

’
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upstream and downstream slopes are 1 on 2 1/2.

On the right abutment the foundation is rock consisting
of mica schist with some granite and gneiss. The left abut-
ment consists of a deep deposit of glacial till. Impervious
fi11 was placed directly on bedrock on the right abutment.

The glacial till embankment material was obtained from
a borrow area opened iﬁ the left abutment above the elevation
of'the top of the dah. It consisted of well-graded gravelly.
clayey sand having 10-20% gravel and boulder-size material.
The material was placed slightly dry of optimum moisture con-
tent and the average dry unit weight exceeded that at labora-
tory optimum. Explorations during design of the dam had
indicated that the borrow material would be 2 to 3% wet of
optimum. However, these explorations were made in winter and
spring when the borrow area would have been at its wettest.
Actually, the summer of 1957 proved to be one of the driest
on record, and substantial drying of the material occurred
both in the borrow pit and on the embankment. As a result,
the material as actually placed averaged slightly dry of
optimum moisture content and the average dry unit weight ex-
ceeded that at laboratory optimum.

Six closed-type piezometers were installed in the im-
pervious fill during construction. After the upstréam slope
movements (bulging by about 3 feet), an additional five open-
type piezometers were installed. At completion of the embank-
ment, pore pressures ranged from 30 to 65% and 38 to 55% of

the pressure of the overlying fill as indicated by the closed-
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type and open-type piezometers respectively. Since completion
of the dam, all piezometers have shown decreasing pore pressures.

The actual rate of construction is as shown in Figure
6.3. This figure has been redrawn from the original given
by Lfne]] and Shea (1960). The assumed rate of construction
is also shown in the same figure by dotted lines. The assumed
rates of construction are very close to the actual rates. Thé
minor variations in actual rate of construction are smooth
in this idealization. This is done so as to avoid programming
and computational difficulties.

The assumed cross-section of the dam considered for
analysis is as shown 1in Figure.6.4. That portion -of the dam
beyond the chimney drain was not considered. For this
assumed cross-section, the upstream and downstream slopes
bear an integer (=4) re]ationship; and the idealized cross-
section of the dam is'shown in Figure 6.4(b). Thus it may
be seen, the idealized cross-section does not differ to any
appreciable degree from the original cross-section. The
height of the dam remains the same; while the length of the
drainage path in the horizontal direction at the upper reaches
is affected; it has been found, however, the length increase
is very small. The section shown in Figure 6.4(b) is used
for the calculation of pore pressures in conjunction with
the assumed rate of construction.

The construction pore pressures in Otter Brook dam as
observed are shown in Figure 6.5. A value for c, was estimateq

using the method outlined in section 6.3 (Table 6.2). From
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these calculations the value of cy obtained was 1200 feet
square per year. This value is for thé after-construction
period and is overconservative. As such a value of 1500

feet square per year for the coefficient of.consd]idation
¢, was chosen for the duration of the construction and is

v
made use of in__the analysis of the estimation of construc-

tion pore pressures.

The value of B was varied from 0.5 to 0.7 since the core
material went in dry of optimum.

Using these values, the analysis was éarried out with
the assumed cross-section. The pore pressures computed are
expressed as a percentage of the existing overburden and
plotted against time (Figure 6.5). The computed values have
been plotted only for the piézometer location 3A. Also the
raéio of the computed pore pressure to the observed pore
pressure is plotted against time. If the computed and the
observed pore pressures are the same over the entire period
of observation, the resulting curve should be parallel to
the time axis and have a value of 1. The obtained results
for various values of B equal to 0.5, 0.6, and 0.7 are shown
in Figure 6.6 for the piezometer location 3A. As may be
inferred, the B value, which not only depends on the moisture
content of the material but also on the stress increment

ratio, operating during construction was between 0.5 and 0.6.
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6.4.B TOOMA DAM

Tooma Dam (Pinkerton and McConnell, 1964) is an earth
and rockfill structure 68 meters high, situated at an eleva-
tion of 1220 meters on'the Tooma river in the Snowy mountains
of south eastern Australia. The dam forms a reservoir which
essentially operates to provide flood retention and diversion
of the waters of Tooma river.

The dam site is located in a V-shapad section of the
valley with steep abutments rising about 80 metérs above thé
river bed. The foundations for the dam consist of biotite
granite, except for the upper part of the left abutment, the
spillway and the downstream toe where the bedrock is granitic
_gneiss. In the river bed and lower parts of the abutments
the dam is founded on sound rock.

The zoning of the embankment as constructed is shown

in Figure 6.7. A descfiption of the materials in each zone

is as follows:

(1) IMPERMEABLE ZONE

The material used in the impermeable zone was a resi-
dda] soil resu]tiﬁg from complete weathering of the biotite
‘granite. The density of the material in place was required
to be not less than 98% of the laboratory maximum dry density.
The moisture limits specified were 1% on either side of the
optimum moisture content, although for the upper reaches of

the embankment these limits extended to 2% below optimum and
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1.3% above optimum. During handling and compaction of this
material, considerable breakdown occurred and substantially
different properties were obtained for the material in the

fill as compared with those obtained from samples tested for

design purposes.

(2) FILTER AND DRAINAGE ZONES

The material placed in the filter and drainage zones
consisted of selected quarry fines blended as necessary with

crushed sand to give the required gradation for satisfactory

filter and drainage properties.

(3) ROCKFILL ZONES

The rockfill was dense, fine grained quartzite which
was hard and resistant to weathering. It consisted of a
free-draining, well-graded mixture of rock fragments with

maximum size about 15 centimeters.

The embankment was constructed imtwo distinct seasons
embracing the 1959-1960 and 1960-1961 summer and autumn
periods. Moisture conditions in the borrow area for imperme-
able material were markedly influenced by air température
and humidity and it was only during theseAperiods that the
moisture content was low enough for p]acement.

The complete instrumentation is given by.

Pinkerton and McConnell op..cit.) and installations for
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measuring pore pressures are shown in Figure 6.7. Typical
pore pressures recorded within the impermeable zone by
vibrating wire type gauges during construction are
given by Pinkerton and McConnell op. cit.). These show
a characteristic build-up during periods when construction
is in progress and dissipation during the off-season and
after completion of construction.

The cross-section of Tooma dam is as shown in Figure
6.7. The assumed cross-section of the core for purposes of
this analysis is given in Figure 6.8(a). The upstream and
downstream slopes for the assumed section respeétive]y are
1 vertical to 0.225 horizontal and 1 vertical to 0.9 horizon-
tal. The downstredm slope is a multiple '4' of the upstream
slope. The upstream slope is approximated by steps as shown
in Figure 6.8(b). The number of layers in the vertical direc- 
tion . can always be so chosen that the number is always a whole
number multiple of '4'. Under such conditions the upstream
slope can be approximated by stepsL The idealized section
(Figure 6.8(b)) is made use of in the analysis.

To obtain a representative value for c, post-construc-

v
tion pore pressure values are very useful (section 6.3). In
the case of Tooma dam such data is not available. However,

the authors have cited the in-place coefficient of perme-

6 centimeter per second . They have also

ability as 0.5 x 10
presented the compression characteristics from which a value
for the coefficient of volume compressfbi]ity is obtained as

varying between 0.002 and 0.0025 centimeters square per kilo-
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gram. From these values Cy has been calculated and it ranges
from 0.25 to 0.35 centimeters square per second. In other

words, the value of c  ranges from about 8000 to 12,000 feet

v
square per year. These values are conservative since they

wereobtained from one-dimensional dissipation.

To carry out the analysis a choice has to be made for
the value of_cv. The measured pore pressures indicate that
the pore pressures developed during the first stage of con-
struction are quite Tow, and they almost remain at those
values during the construction stoppage. This behavior in-
dicates that the core material was able to digsipate the
pore pressures quickly during the construction phase and dur-
ing stoppage and dfssipation was slower. Hence it is.con-
cluded that the Cy had a certain value during construction
and it was reduced during the subsequent period of construc-
tion stoppage. MWith this in view and the values for cy cal-
culated from field data (a value of 12000 feet square per
year during consfruction and 8000 feet square pef year during
shutdown) are chosen for.the ana]ysis;

The rate of construction made use of in the analysis is
as’shown in Figure 6.9. This is redrawn from thé rate of con-
strﬁction supplied in the original contribution.

The in-place moisture content of the fill was 17.9%.
The optimum moisture content determined in fhe laboratory from
soil samples for design was on the average 18.4%. Thus it 1is
inferred that the fill went in dry of optimum. Hence, the

value of B is varied through 0.6, 0.7, to 0.8.
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The analysis was performed for the idealized section
and for the materia]’properties and the rate of construction’
noted above. The computed results were compared with the
observed values of pore water pressure. There was a wide
. variatioﬁ in the computed values and in the recorded pore
pressures. The authors attributed the difference in theore-
tical curves (one-dimensional consolidation) and the recorded
va]ues‘due to erratic behavior of the piezometers. Flushing
of piezometers at and soon after installation may have con-
tributed to the.relative]y high initial pore pressures recor-
ded at some points. ' |

The computed results are expressed in terms of pore

pressure ratio, r . The computed and observed pore pressure

u
ratios are then compéred (Figures 6.10 and 6.11) for the two

piezometer locations P5 and P]O' Figures 6.10 and 67]1 illu-
strate the variation of the pore pressure ratio with time.
The computed values are in agreement with the observed values
within practical limits. Both the figures indicate that
during initial stages of construction a va]ue'of'ﬁ between
0.6 and 0.7 may be operating. During the next construction

season, an average value of 0.50 for B seems to be most

appropriate.

6.4.C SEITENOIKEA DAM

The Seitenoikea Dam was built in 1960 across the Ema

River, Finland (Arhippainen, 1964). The main section of the
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dam crossing the river is 900 méters long, has a maximum
height of 35 meters. It has a composite earth and rock-fill
section with a centra]lrolled earth-fill core surrounded
by transition zones of graded filter material and supported
by upstream and down§tream rockfill zones (Figure 6.12).
The foundation material at the site was ﬁost]y.unconso]idated
coarse silt and fine sand. Underlying this sediment was
g]acfa] moraine and bedrock. The silt was excavated under
the highest part of the dam and the core was founded either
on moraine or on bedrock.
The embankment core material which was glacial moraine
has the following characteristic properties. |
(i) Average dry density in place was 2.01 tonnes/
meter3. The fill dry density was expected to
reach at least 95% of the Standard Proctor dry
density.

(ii) Average moisture content in place was 10.2%,
while the average optimum moisture content ob-
tained in the laboratory was 8.8%. That means
that the fill went in wet of optimum.

(iii) The degree of saturation of the placed material
was in the range of 64% to 82% with én average
value of 74%.
The location of the three pore pressure cells is given
in Figure 6.12. The pore pressures recorded during the con-

struction period and after the construction are given by

Arnippainen, op. cit.
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The rate of construction, as reported, has three'differ-

ent stages:

July 15 - Aug 10 1960  0.22 m/day
Aug 11 - Aug 28 1960 0.10 m/day
Aug 29 - Sept 20 1960  0.41 m/day.

This data is plotted in Figure 6.13.

The assumed cross-section of the Seitenoikea dam'fbr
analysis is shown in Figure 6.14(a). The approximation is
made so as to result in side slopes bearing a definite inte-
ger relation to each other. The downstream and upstream slopes
chosen are 0.8 on 1 and 1.2 on 1 respectively. The idealized
.cross-section of the dam (Figure 6.14(b)) is then worked out
on the basis of the assumed cross-section. As can be seen,
the height of the idealized dam section remains the same as
that of the assumed section while the lengths of seepage in
the hor1zonta1 direction are somewhat ]onger than the actual
lengths (of seepage). To investigate if these lengthened
‘seepage lines have any effect on the pore pressure dissipa-
tion, another idealized section for the assumed cross-section
was chosen (Figure 6.14(c)). Pore pressures were calculated
for both the sections (Table 6.3) and it has been found that
the differences in values at the points of comparison (pore
pressure cell locations) are véry small. Thus the former
idealization (Figure 6.14(a)) though it lengthens the seepage
path to a certain extent, in no way affects the ultimate

results.
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The recorded pore.pressures are quite difficult to
reproduce. Arhippainen (op. cit.) has quoted the pore pres-
sure ratios at the end of construction. The pore pressure
.ratio "y at a point (Bishop and Morgensteni 1960) is defined
as the ratio of the pore pressureto the overburden weight

above that point. The values are

cell no. 4 r = 0.37

u
cell no. 5 ru = 0.20
cell no. 6 ru = 0.29.

These values are made usé of .for the purposes of comparison.
Also the values for pore pressure ratio during the construction
stages are retrieved from the published results and are
presented in Table 6.4.

To obtain a representative value of the coefficient of
consolidation Cy for the core material, the procedure outlined-
in section 6.3 was used. The values of c, obtained (Tab{e
6.5) for various piezometer locations were examined. The
values thus obtained are for thevafter construction period and
are conservative since only one-dimensional consolidation
was supposed to have taken place. As such the value for cy
was varied from 5.0 to 6.0 meters squared per day.

The material for the core construction was placed wet
of optimum and as such the value of B will be in the range
of 0.80 to 0.90.

Making use of the above values together with the con-

struction sequence noted above, a detailed comparison with
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field observation may be made. The pore pressure ratios,

r, are computed at several time intervals and compared with

the observed values, Table 6.4 (see Figure 6.15). From

Figure 6.15 1t may be concluded that a value of 6 meter squared
per day for Cy and a value between 0.85 and 0.90 for B give values
of pore pressure very close to the observed values. The

values of pore pressure ratios calculated are within prac-

tical 1imits of accuracy.

6.4.0 MIRAFLORES DAM

The Miraflores Dam (Colombia), Figure 6.16 1is located
in an area of a deep seated intrusive formation of igneous.
rock known as ‘'Antioqueno Batholith'. The bedrock is quartz-
diorite and is generally found approximaté]y 60 feet or more
below the ground Tlevel.

The soil varies from a pinkish silt having an average
insitu density of 80 pounds per cubic foot to a gray silty
sana (locally termed 'decomposed rock') of average in-situ
density of about 105 pOhnds per cubic foot. The Miraflores
dam was built with predominantly sandy silt because there
was not enough 'decomposed rock' readily available.

For measuring pore pressures, the twin-tube piezometers
of USBR type were installed (31 numbers). Almost all the
piezometers recorded consistent and valid rgadings. It is
interesting to note that the piezometers were found to be so

sensitive that it was often possible to tell from their read-
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ings the fill placement activities such as starting or stopp-
ing the fill placing operations and the thickness of the layer
placed.

The construction pore pressures developed are given by
Li (1967) who reported that very high pore pressures
developed in Miraflores dam. In general, the ratio of pore
pressure to vertical stresses (assuming that vertical stress
equals the vertical ]oad-of the fill) is very high during the
initial stages of construction and decreases gradually as the
height of fill increases, as shown by the convex shape of the
observed pore pressure curves. |

The major part of the earth fill was placed in one dry
season (3 1/2 months - mid-December to beginning of April)
round the clock. The rate of construction of the dam is
shown in Figure 6.17. The assumed rate of construction is
as shown in Figure 6.17. The assumed rates are very close
to the actual rates of construction. The locai minor varia-
tions in the actual rate of construction are smoothened by.
the-assumed idealization.

Miraflores dam (Figure 6.16; is non-symmetrical in sec-
tion and is provided with a chimney filter. For purposes of
this study the portion upstream from the chimney filter is
considered and the assumed cross-section is shown in Figure
6.18(a). The upstream and downstream slopes bear an integer
relationship. The idealized cross-section of the dam (Figure
6.18(b)) is very close to the assumed cross-section. The

percentage increase in length of seepage lines is very small.
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The average in-p]éce moisture contentwas 21.5% and is
_greater than the Proctor optimum moisture content, Li
(1967) which ranges from 19-20%. It is inferred, hence,
that tﬁe fi1l went in wet of optimum. The value of B may
be varied from 0.8 to 0.9.

A value for the coefficient of consolidation c, is
obtained on the lines outlined in section 6.3. The post-
construction recorded pore pressures are used and the values
for Cy obtained are given in Table 6.6.

Also the core material characteristics and behavior
are reported by Li (1967). The coefficient of permeability
of the fill material in Miraflores dam is of the order of
1 x 10'5 centimeter per second as determined by laboratory
tests. The compression characteristics of the fill material
are given in Figure 4 (Li, 1967). From these curves an
average value of 0.G11 feet square per ton for the coeffi-
cient of compressibility is obtained. Using these values
the coefficient of consolidation Cy is calculated and Cy is
950 x 10™% centimeters square per second.

Li (op. cit.) calculated a value for ¢, using the 502
time factor to compare the calculated (one-dimensional dissi-
pation) and actual measured pore pressure values. The appro-
ximate value for cy is 1000 x 10—4 centimeters square per
second.

Comparing the values of Cy obtained by above methods,
it is seen that they agree very well in their numerical values.
For purposes of computation a representative value of 1000 x

10"4 centimeters square per second for Cy is chosen.
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Using the above values for the pertinent parameters
the construction pore pressures were determined. The com-
puted results at the end of construction are used to draw
pore pressure contours which are compared with the measured
values (Figure 6.19). As can be inferred from Figure 6.19
the computed values are lower than the measured values but
are within 10% to 15% of the measured values. Figure 6.20
depicts the-ratio of pore pressure to vertical load of the
fill. In general, these ratios are very high at the initial
stages of construction and decrease gradually as the height

of fill increases.

6.4.E JARI DAM

The Indus Basin Project (Pakistan) is the largest single
water development in the world and its two storage dams, '
Mangla and Tarbela are both exceedingly large. The substi-
tution of Jari Dam (Binnie, et al., 1967) in place of Mirpur
dyke increased the capacity of Mangla reservoir without any
increase in the reserQoir level.

The Jari dam (Figure6.21) is so positioned that the
axis of the dam is parallel to the strike of the bedrock.

The core, which is composed of rolled silt, covers a sand-
stone bed o, which is contiuous across the site. The higher
sandstone bed a, is either covered by the core or outcrops

in the upstream side of the core trench. Thus the continuous

clay bed between o and ay forms a cutoff connected to the
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core., It was at Jari that shear zones were first discovered,
and it was during the redesign that different design para-
meters for clay along and across the bedding were first used.
| The instrumentation on the Mangla dam project has been
designed to assist the detailed study of the construction
and performance of all the major structures. Selected cross-
sections of the dams have been instrumented in detail; Jari
dam was instrUmenfed in cross-sections at chainages 161 + 50
and 171 + 50. Pore pressure values are given for selected
few points in Figure 103 (Binnie et al., op. cit.).

The cross-section of Jari dam is as shown in Figure 6.21.
Only the portion of the dam between the upstream filters and
the downstream drained silt (type B) is considered. The
assumed cross-section for analysis is as shown in Fjgure
6.22(a). The upstream and downstream slopes are 1 vertical
.to 0.2 horizontal and 1 vertical to 0.5 horizontal respec-
tively. The upstream and downstream slopes bear a relation
of 5:2 and hence an idealized cross-section is made up as
shown in Figure 6.22(b). By this idealization a rectangular
mesh 1s obtained which is suitable for numerical analysis.
Also as can be seen the ideal cross-section is very nearly
the same as the actual section except for negligible lengthen-
ing (or occasional shortening) of the seepage lines. Care,
however,.has been taken not to unduly lengthen the seepage
lengths. The height of the dam remains the same as the actual

section.

The rate of construction of the dam at chainage 161 + 50
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is obtained from Binnie, et al., (op. cit)
and is reproduced in Figure 6.23. The assuﬁed rate of con-
struction is as depicted in Figure 6.23. As can be seen the
assumed rates adhere to the actual rates very closely.

To obtain a representative value for the coefficient
of consolidation of the silt type A, the detailed pore pres-
sure readings recorded were obtained from Little (1969).
The calculated values (obtained on the Tines mentioned in
section 6.3) of thé coefficient of consolidation Cy showed
a wide irregularity and no consistent results could be ob-
tained (Table 6.7). This is thought to be due to a number
of construction shutdowns in between the construction seasons.
The values of Cy obtained seem to be small for the silty type
of material that makes the core of the Jari dam. On observ-
ing the measuredpore water pressures at various locations,
it was found that the development of construction pore preé-
sures at the initial stages is small thereby indicating that
dissipation is rapid. At later stages of construction it
has been observed that the pore pressure values maintain
almost at the same level as the va]pes at the initial stages.
This concludes that as construction proceeded either the
value of B is decreasing or the value of Cy has decreased
considerably. In the absence of any other data, the value
of c, is decreased in this analysis starting from a value of
Cy that yields comparable pore pressure results to the measured

values. The average values of cy used in a set of calculations

are:
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during first 3 months of construction
during next 3 months of shutdown
during negt 7 months of construction
during next 1 1/2 months of

shutdown
during next 7 1/2 months of

“construction

during next 1 1/2 months of
shutdown

during next 3 months of construction

during remaining post-construction

season.

There is no record available for a value of B made in

the laboratory. B determinations for the Jari core fill

material were not made on site. The original calculations

for the estimated construction pore water pressures refer

only to a pore pressure ratio of 0.4, and not to any specific

B value (Little, 1969).

The idealized cross-section of the dam was analyzed for

the specified rates of construction and the material proper-

ties mentioned above.

Comparisons were made of the computed

results with the observed data. To fit the computed values

to the recorded data, a variation in set of values for cv is

envisaged.

Other sets of values used for Cy are 4000 - 3500 -

3000 - 2000 - 1000 and 3500 - 3000 - 2750 - 2500 - 2000 feet

squared per year for the same time sequence.
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The measured and calculated Ya]ues of pore pressure
are shown in Figure 6.24 for the piezometer ]ocdtfons 27 and
28. The figures indicate that the computed results are in
close agreement with observed values within practical limits
of accuracy. It may be inferred that a value of 0.6 for B
is operative for a set of values for c, 4000 - 3500 - 3000 -

2000 - 1000 feet squared per year.

6.4.F USK DAM

The earth dam situated at the upperreaches of the Usk
River (U.K.) is 1575 feet long at crest level, 109 feet high
with a cut off‘trench of maximum depth 77 feet. The volume
of water impounded is 2700 million gallons.

The dam is made of boulder-clay fill carefully com-
pacted in 12 inch Tlayers sloping slightly away from the center
line so as to avoid ponding. In the center, there is a diaph-
ragm of budd]e clay 6 feet wide at the top and increasing to
16 feet at the deepest part where it joins the 'spear head'
of the 6 feet concrete filling in the cut off trench.

Embankment construction began in April 1951 and proceeded
rather slowly at first (Sheppard and Aylen, 1957). Weather
was an important factor controlling the use of equipment
and placing of fill was possible for only part of the avail-
able time. With the comparatively high rainfall of about 60

inches per annum - half of which can fall during the construc-
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tion season - it was realized that the fill was being com-
pacted in a very wet state and a watch was kept on the pore
water pressures.

Pressure cells were placed in the embankment fii] as
the work proceeded. These cells showed that the pressures
resulting from the placing of the first 30 feet of embanking
during the summer dissipated very slowly during the following
winter season and that either the rate of construction would,
have to be reduced or some method found of speeding the rate
of dissipation of pore pressures. The investigation of this
problem, and its eventual solution by incorporating horizon-
tal drainage blankets in the body of the dam, was the most
interesting and unusual feature of the scheme (Sheppard and
Aylen, op. cit.). The subsequent pore-pressure readings have
supportéd the theoretical anticipations. A detailed compari-
son between calculated and observed pore pressures has shown
that towards the end of construction there was not good agree-
ment when the lateral flow of pore water became important
(Gibson, 1958).

The drainage blankets, which stopped 20 feet from the
puddle core, consisted of 12 inches of river gravel placed
on the prepared surface of the previous season's fill; then
6 to 9 inches of broken stone sized from 1/2 to 3 inches,
followed by 18 inches of river gravel. The new season's fill
was directly placed on this.

The actual rate of construction and the adopted (for

calculations) rate of construction are given in Figure
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6.26. The difference in the two rates is because of the thick-

- ness of the drainage layers (two in number at elevations 948

and 980). In the numerical calculations, the drainagellayers
are assumed to be thin~layers (of no thickness) and also are
assumed not to contribute substantially to the overburden
weight. |

The actual cross-section of the dam at chainage 800 + 00
is shoﬁn in Figure 6.25. The cross-section assumed for
analysis is given in Figure 6.27. Only the downstream half -
of the dam cross-section is considered. The boundary along
the center Tine of the puddle core is considered impervious.
The bottom of the assumed cross-section is on a drainage
mattress and hence it is considered a per vious boundary.

A value for the coefficient of consolidation cy for the
fill material is quoted as equal to 11 feet square per month
(Gibson,'1958). This was a value determined in.the labora-
tory. This value of cy is made use in the present analysis.
Gibson (op. cit.) quotes average values of B and Y respec-
tively as equal to 0.85 and 142 pounds per cubic foot obtained
from laboratory and field tests. Later field evidence showed
that B associated With further load increments (after first
construction season) decreased with increasing consolidation
(Skempton, 1957). This phenomenon has been discussed in
detail by Bishop (1957). The value of B used in this analy-
sis varies from 0.8, 0.85, to 0.90. This is so because the
field‘moisture content was 2 to 3% more than the optimum

moisture content determined in the ]aboratdry (the wet site
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conditions resulted in the material being placed on the wet
side of the Proctor optimum moisture content).

The pore water pressures at the end of the October 1953
construction season are computed and drawn (Figure 6.28(a))
for a value of B equal to 0.85. The pore pressure contours
are mainly parallel to each other in the body of the dam.
They are nearly horizontal with ﬁ close spacing near the
drainage blankets. Thus it can be easily inferred that the -
principal dissipation of pore pressures is in the vertical
direction. Similar pore pressure contours are drawn at the
end of the completion of the dam, September , 1954 (Figure
6.28(b)). These figures also show that the main dissipation
is in the vertical direction. This compares very wef] with
the actual pore water pressures measured. Hence the con-
tention of Gibson (op. cit.) that 'there was not good agree-
. ment between the calculated and the observed pore water pres-
sures towards the end of construction when the lateral flow
of pore water became more important' does not seem to hold
good. Gibson (op. cit.) predicted the pore pressure values
based on one-dimensional dissipation in the vertical direction.
Figure 6.28 show the calculated as well as the measured pore -
water pressures. The observed and computed values agree very
well. There were very few pore pressure cells installed near
the downstream side of the cross-section and as such pro-
bably the pore pressure contours were drawn the way they
were presented. It may be coné]uded that a two-dimensional

study of the effect of dissipation on construction pore pressures
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yields an assessment of the pore pressures within acceptable

accuracy.

6.5 DISCUSSION

The method of solution presented in this study to pre-
dict pore pressures during and after construction is found
to be very useful as the results of the six case histories
suggest. As remarked earlier, the method is applicable to
two-dimensional problems. The results obtained yield repre-
sentative values on which basis a rational design of dams

and embankments can be made. Also the method suggests an

~approach to control the rates of construction and the pro-

vision of drainage features in a dam or an embankment.

The ADi method is very versatile and can handle any
changes in input values of material properties as time pro-
gresses. It also can hand]e‘ény type of cross-section (with
any form of drainage features incorporated) provided the cross-
section is idealized.

The one important property of the embankment material
that should be made known is the coefficient of consolidation,
c,- The method (section 6.3) adopted in this study to
determine a representative value of Cy has proved to be véry

~good. For example, in the case of Miraflores Dam (section

4

6.4.D), a value of 950 x 10~ centimeters square per second

for c, was calculated from the available laboratory and field

data. The value for c, obtained using the method mentioned

v
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151

4 centimeters square per second

Thus the values for c, compare very well. However, it may
be noted here that the coefficient of consolidation Cy has
a different definition (section 2.4) depending on whether
the consolidation is one- or two-dimensiona]: As such the
value obtained for cy by this process is only approximate.

A1l the same this approach yields representative values to

~give an idea of the order of magnitude for c,-

There are a number of limitations to the analysis pre-
sented here. In the process of idealization (to discretize
an embankment cross-section), the resulting embankment used
for analysis will be slightly different from the actual

cross-section. Also the paths of seepage, especially in the

-horizontal direction, are lengthened (or shortened, as the

case may be) at certain sections. By this means, the pore
pressure dissipation is delayed and the time taken is Tlonger.
With judicious arrangement of the mesh size this discrepancy
can be minimized but cannot be overcome altogether.

As the embankment is being constructed, fresh layers of
soil are being added at the top. At any vertical section of
the embankment, it was a§sumed that the increase in the maxi-
mum principal stress (in the vertical direction) at any point
is the same and is equal to the weight of the added soil |
layer. Thus the increase in principal stress at all points
along the depth fs assumed uniform. This is at variance with

reality. Any increase in load at a particular height is not

felt uniformly throughout the soil depth; the load increase
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is maximum at the top and decreases along the depth. At a
certain depth and below it, any variation in the load at the
top does not have any effect. However, the actual distri-
bution of the load along a vertical section is hard to get,
especially in a moving boundary problem where the thickness
is changing with time. For purposes of simplicity, it is
assumed that all points (a]ong the depth) in a vertical sec-
tion are affected to the same extent (équa] to the weight of.
the soil layer added), i.e., there is a uniform distribution
of added stress throughout the depth.

Due to the addition of Toad {because of the growing
layers) at the top, the total principal stress at all points
in the central portion of the dam increases by the magnitude
of the added load. Because of dissipation of pore pressure
there will be changes in effective stress in both ., vertical
and horizontal directions. What proportion of the load con-
tributes to the horizontal stress is not known.

While developing the computer program for the solution
of non-symmetrical sections of dams, it was assumed that the
wéight added at the top is operative on all nodal points then
existing irrespective of their Tocation. Thus the algorithm
yields conservative results and are on the safe side.

Tnus the algorithm developed in this study solves dam
cross-sections in a grid form. ATl the grid points are sub-
jected to the same load irrespective of its position; at the
same time, the lines of seepage are almost the same as in the

original cross-section(s). In other words, the analysis is
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concerned with rectangular cross-section embankments as far
as the load is concerned, while the solution actually treats
real drainage paths. This approximation could be eliminated
in subsequent work.

The observations made from the examples presented in
.section 6;4 are intended to present a new approach for pre-
dicting pore pressures developed during and after the con-
struction of embankments. The following observations may be
made in this connection.

.There are a large number of factors which influence the
build up of construction pore water pressures. Because of
their interdependence, it is difficult to isolate the influ-
ence of any one factor on the'deve1opment of construction
pore pressures. The influencing factors may bé summarized
as: rate of constructionvincluding construction stoppages,
nature of the core material, the location of drainage fea-
tures, the length of the drainége path, the overburden weight,
and the placement-water content.

The rate of construction definitely influences the
pore pressures developed during construction. Increasing
the fate of construcfion results in an increasing rate of
pore pressures with overburden weight. Bishop (1957) has
shown that if dissipation‘of pore pressures occurs during
construction stoppages the rate of increase in pore pressure
with subsequent increases in overburden pressure is lessened.

This has been found to be true in the case of Jari and Mira-

flores.
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The higher the value of the coefficient of consolida-
tion cy of a core material the quicker the dissipation of
pore pressure. Thus the soil fype has a certain influence
on the build up of construction pore pressures.

Where internal drainage is provided adjacent to or

. within the core, dissipation of pore pressure occurs (e.g.,

Usk and Miraflores). This helps in lowering subsequent

increases 1in pore pressures with increasing fill height.
‘The fill height influences the length of the drainage

path and the overburden weight. Thus the dissipation of

excess pore pressures developed are influenced to a certain

" extent.

Sherard et al. (1963) stated that ‘water conteht at
which the embankment is constructed has the largest influence
on the magnitude of the pore pressures which develop'. This
study, 1in general, supports this conclusion. For placement

water contents on the wet side of optimum water content,

.'pore pressures rapidly increase with increasing water content.

At this stage some of the anomalies occurring in the
field may be mentioned. A1l va]ues'of water content, density,
etc. reported are usually the weighted mean values found by
various sampling techniques. Some random variation of these
qﬁantities is expected. However, in several cases because of
the erratic nature of the weather during placement, or the
borrow material significant deviations may be observed.

Also the type of piezometer used has an influence on

the measured value of the pore pressure. Piezometer designs
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have been modified and made more efficient. Bishop et al.
(1964) have pointed out the difficulties in measuring pore
pressure in partly saturated compacted'soil and conclude
that much of the standard equipmgnt currently used for bore
pressure measurements in rolled fills is not in fact suit-
ab]é for this purpose. The accurate measurement of pore
water pressure in partly séturated soils requires properly
designed piezometers if the difference between pore air and
pore water pressure is significant. The importance of the
error due to inadvertent measurement of air pressure will
depend on the soil type, the placement water content and the

height of fill above the piezometer.




156

JWO mpm\np mu$\n_
G20 40 3aM ehlL el ‘34 601 AN AsN
INO mpm\a— mpm\a_
Ge'0 30 Aup 20l 0°L6 ‘14 0€2 uelstyed Laep
mum\a_ mpm\nﬁ
0L°0 %0°2+ %9°12 €0L %9°'61 0'20L ugg eLquoo) Sd40 | jedLy
0€°0 NAARE: %2°0L L0°2 %8°8 oL*¢ u gg PueluLy eayLouslLag
ms\p ms\p
02°'0 %G°0~ %6 L1 €Ll %b°8lL 89°1L w g9 elledagsny ewoo]
mpm\np mpm\QF .
G9°0 %€+ X0 A 0gL %e°LL VAR YA ‘14 o¢t ‘Y'S'n jooudg us3lg
INO WO U oo 0r
uoL3onU3suo0) Jo
PuU® 31e oLgey . aoe|d=-uL *Ay 40100ud °*p3as
dUNSsSadd  U403904d °Pp3g wouy .
a40d Xel uoLjetLaaq praty eleq uoLioedwon weqg jo qybray uoLqeso1 weq

SWep €ssuoz aJ40d snorAdadul 4oy ejep leuorgeAussqp |

‘9 9lqel



157

26 070°0° 2°'0 ozl 22°0 0°0§ 0° 0L
201 2€0°0 2'0 o0zl 02°0 0°28 0°8
. 2'0 0zl - 0°'t9 G'¢ a2
09 §20°0 2°'0 0zl - oL°0 0°8¢ 0°0L
79 020°0 2°0 o021t [0'0 0'6¢ 0°8
2°0 0zl - 0°2t §'¢€ Ve
26 0v0°0 2°0 o0zl €2°0 : 0° 0t 0°0L
96 0600 2°'0 - o0zl 6L°0 0°2% 0°'8
2'0 o0zl - 0°26 G'¢ Ve
sucQZ\Npm 1 uapdng
A 403004 ‘14 uoLjepLLosuo) d9A0 JO ¢ SYIuoW ut uoL3e201
2 _ M awy H/e H 40 99ubagq dd 9d40d 7 awyy 4919Wo0zalLd

2HL

Weq 30049 49330 “UOLIRPLIOSUOD 4O JUBLOLJ4d
~00 JO 8njeA 8AL3RIUSSDUdEL B 404 uOLjR|ND|R) 3Z°9 aLqeyl




158

Table 6.3 Values of pore pressure at cell
- no. 5, Seitenoikea Dam

B =0.90 c, = 6.0 meterzlday

v
Time (days) Pore Pressure'Values (t/m)2
Cross-Section .1 ... Cross-Section .2

1 6.951 6.949

14 9.112 9.109

27 9.100 9.100

45 11.223 11.220
56.5 13.210 13.210
68.0 9.332 9.330

Table 6.4 Observed values of r_,
Seitenoikea Dam

Time Ty
(days)

1 0.55

27 0.40

56 0.30

68 . ... ... 0.20
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FIG. 6.4 a ASSUMED CROSS-SECTION OF OTTER BROOK DAM
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FIG., 6.14 ¢ ALTERNATE IDEALIZED CROSS-SECTION
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FIG. 6,22 a ASSUMED CROSS-SECTION OF JARI DAM
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CHAPTER VII

FINITE STRAiN ONE-DIMENSIONAL CONSOLIDATION
SEDIMENTATION

7.1 GENERAL

This study attempts a comprehensive solution for
the estimation of excess pore pressure in sedimented layers
during one-dimensional consolidation. The original theory
of consolidation due to Terzaghi (1923) assumes that several
soil parameters such as compressibility, permeability, and
coefficient of consolidation remain constant throughout the
process of consolidation. In most of the theoretical results
published so far, it has been assumed that the soil behaves
linearly, both with respect to permeability, and with res-
pect to its stress strain properties. That is to say, it
has been assumed that the coefficient of permeability is
constant throughout the layer and remains unchanged as con-
so]idatfon proceedé, and that the compressibility or modulus
of e]asticity of the soil is also constant. In fact the per-
meability of real soil decreases with decreasing void ratio
and hence with increasing,effective,cbmpressive stress.
Thus in a deep bed of clay the initial permeability will
be appreciably less at the bottom than at the top due to
overburden effects and the permeability will decrease during

consolidation as the stresses transfer to the soil skeleton
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and compress it. The compressibility of the soil skeleton

will always vary with depth and time in a similar manner.

It is certain that observed soil behavior, in requir-

ing a large number of Tinear elements to describe it, is in

fact nonlinear. The treatment in terms of linear elements

has been necessary because exact mathematical treatment is

then possible. However, the mathematics become more diffi

cult as the number of parameters increases. For solutions

to be of more practical use, they must involve a minimum of

parameters.

Ii is perhaps timely to investigate the possi-

bility of introducing nonlinear terms involving the minimum

number of parameters necessary to describe the essential

physics of the problem, and to produce sufficiently accurate

numerical solutions on a computer.

The major sources of nonlinear behavior for clayey

soils are (Barden, 1968):

(a)
(b)
(c)
(d)
and (e)

finite strain;

varying permeability;

varying compressibility;

compressible pore fluid in partly saturated soil;

secondary creep effects - nonlinear structural

viscosity.

It is possible to include all these various nonlineari-

ties into a single general treatment. However, it is usual

to consider various common types of soil and to include only

the dominant nonlinearities relevant to each case.

Theoretical analysis of the effects of nonlinear
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behavior of a real soil could be carried out for general
conditions But so far most results have been published for
one-dimensional conditions. Davis and Raymond (1965) gave
the results of a theory which assumes the coefficient of
consolidation ¢, to remain constant, while still permitting

v
- k and m. to vary. Their results only encompassed the varia-

v
tion with time, not with depth, so their results are applic-
able to oedometer tests and thih layers in the field. Barden
and Berry (1965) analyzed the case of a soil whose permea-
bility at any instant is expressed as a polynomial approxi-
mation of the excess pore pressure at that instant. Gibson
et al. (1967) have produced general equations assuming one-
dimensional finite strain and any arbitrary variation of
compressiBi]ity and permeabi]ity. An extension of the work
of Davis and Raymond (op. cit.) to include the depth effect
is presented by Davis and Lee (1969) and by Raymond (1969).
Zaretsky et al. (1969) derive a basic systém of differential
equations for three-dimensional consolidation of a soil.
Nonlinear relations between stresses and strains in the
soil ske]eton, the dependence of permeability on water sa-

uration and the effect of the rheological properties of the
soil skeleton are taken into account.

In the case of a compressible saturated clay, the
assumptions of nonlinearity may involve the following empiri-
cal relationships:

(a) void ratio - logarithm of permeability is a

straight line (Raymond, 1966; Raymond and
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Azzouz, 1969); and
(b) void ratio - logarithm of effective stress is a
-straight 1ine (Raymond, op. cit.; Raymond and
Azzouz, op. cit.).

Lai (1968) noted these empirical relationships and
generalized the assumptions so as to achieve any arbitrary
variation in permeability and compressibility with effecthe
stress. The coefficient of permeability k and the coeffi-
cient of compressibility m, are related to effective stress’
o'(z,t) by power laws. These relations in turn mean that
the coefficient of consolidation c, is a function of the
effective stress. In all these cases, the results show that
the rate of pore pressure dissipation in an oedometer test

is affected by the load increment ratio used, a property

not predicted by the classical theory.

7.2 MATHEMATICAL FORMULATION

It was mentioned earlier in section 7.1 that changes
in layer thickness with time occur due to the finite strains
involved in the process of consolidation. This implies that
the quantity (1+e), where e is the current void ratio, re-
presenting the thickness of the sample at a given depth and
time can no longer be considered a constant during consoli-
dation.

It is customary, when deriving the equation governing

a physical process which involves a region of space and time,
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to fix attention on thé physical phenonema which occur at

any single point of space (Gibson, ég.gl., 1967). More
correctly the neighbourhood of this point is considered and .
this leads to the discussion of the events taking place in

an element of volume. We can arbitrarily fix our attention
on an element of space through which the medium moves and

to consider the sequence of events in this element. This
Cis Euier's approach. A]ternative]y,.an element of mass which
always encloses the same material particles may be chosen and
we describe the events taking place in this moving and dis-
torting element as time progresses. This is the method
adopted by Lagrange.

" Since in a finite strain consolidation problem the
thickness of the soil sample is continuously changing, the
top boundary is always moving. Thus at the top, the boundary -
is tihe dependent. Since this condition is both the answer
we are seeking and the condition required to obtain the
answer, this type of problem is normally solved by trial and
error. This is an impossible task with a partial differen-
tial equation of second order with variable coefficients
which governs the consolidation process (Gibson, et al., op.
cit.). This difficulty may completely be overcome if the
problem is presented in terms of Lagrangean coordinates.

In this approach the boundary is always identified and the
boundary conditions on it introduced into the analysis,
although we are ignoranf of it§ exact location.

In the Lagrangean system of coordinates, an element
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.fs considered to enclose always the same soil grains, and '
hence the element does not always embrace the same pore
water. (By the same token, an e]emenf enclosing always the
same pore water may be chosen). In this system the element
moves and its dimensions'change as time progresses. On the
other hand, in Euler's approach attention is fixed on an
element which is assumed not to distort. It may be noted
that when the displacementsand strains are small the distinc-
tion between the two approéches becomes negligible. Thus
in small strain theories it is of no consequence which sys-
tem of coordinates is employed. However, in finite strain
theory, an element has to be defined rigorously.

An element hay be located at a distance 'a' from any
prescribed datum plane at a given time (Figure 7.1). - Let

" the element be at a distance 'x' from the same datum, at any

subsequent time 't'. Then,
x = x(a,t) 7.1

which indicates that x depends on time as well. Thus the
element is fixed no more in space as in the case of Euler's
approach and the dimension dx varies with time.

(a) The vertical equilibrium of the solids and fluid

currently occupying the element dx yields

ey, * Y
90 W s 9X _ .
32 T "1 Fe 3a 0 7.2
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where o denotes the total stress
e denotes the void ratio
Yy denotes the unit weight of water

and Y denotes the unit weight of solids

Since the chosen element always contains the same
weight of solids this leads to the equation of continuity

of solids as,
1 _ 1 X
Y (1+e0) - Ys (1+ela,t5) Ja 7.3

where Y is considered to remain constant.

(b) Darcy's law is generally given as
v = ki
where v is the discharge velocity of the water and i is the
hydraulic gradient. A more general form (Scheidegger, 1960)

may be used relating the law as function of the velocity of

the water relative to that of the soil skeleton. Thus,

7.4a

|
X<

'
n(vw-vs) = - Y,

where n denotes porosity of the soil skeleton (= e/1+e),

~and u denotes the excess pore water pressure,

v, denotes the velocity of pore water,

Vs denotes the velocity of solid particles.
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In the case of steady seepage, v, = 0 leading to the

s
familiar form. If the entire continuum moved bodily, vy = Vg
and the equation then correctly predicts that this movement

is not associated with the development of a hydraulic gradient.

Equation 7.4a may be expressed as

€y -y )=. kBu 2a
1+e (Vw Vs) Yy da 3X
e X ._ _k 3u
i.e., T+e (vw - Vs) 32~ Y, 33 7.4b

(c) Continuity of flow of water demands that the
rate of weight inflow of water must equal the rate of change

of weight of water in the element.

Rate of weight inflow of the water is

9 e
53 (T+e TuVy - vg)lda

Rate of change of weight of the water in the element is
3 ;e . ax
5t (Te Yw 32792

Therefore

9 e e 9Xy _
57 (e YwlVy - V) + 5% (15¢ Yy 320 = O 7.5
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It is convenient to introduce at this stage (Gibson
et al., op. cit.) a new independent variable z to replace a,

such that

z(a) = ga e ;.’0 da' 7.6

This implies that a point of the soil skeleton is identified
now by the volume of solids z in a prism of unit cross-
sectional area lying between the datum and the point (McNabb,
1960). Clearly, z is independent of time. A1l the relations
so far derived may now be expressed in terms of the new
variable z. Thus,

Equation 7.2 becomes

ey, * vy
20 W S 3X-
2oy L2 %A
z 1+e 9z 0 7.1

Equation 7.3 becomes

1 1 9x dz

T+e, = Te 3z da
dz/da from equation 7.6 is

dz/da = ]/1+e0

Therefore equation 7.3 is expressed as
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. 9X _' ©
i.e., 57 1+e . . 7.8

Equation 7.4b, expressed in the new variable z, is

e ax . _ k du
1+e (Vw Vs) 0z Yy 9z
i - . kau |
i.e., e(vw Vs) Y, 3z ‘ 7.9

Equation 7.5 becomes

9 e ' P e Xy _
3z (7+e Yw(vw - vg)) + 5% (3 vy 52) = 0
. ' P} e ae _
i.e., 53'(T?€ (vw - vs)) t 3T 0 7.10

assuming that the unit weight of water does not alter during

the process of consolidation.

The governing equation can now be developed using the
equations 7.7, 7.8, 7.9, and 7.10. Substituting equétion

7.9 in the equation 7.10, yields:
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9 k u de _

2z L~y {17y 324 * 3t = O
' P k u de o' _
or 3z [- _Yw T+e ﬁ] + L 3t 0 7.11a
where o' = ¢'(e); and o', the effective stress at any point
at a given time is expressed as

I = -
o o u + Yy X 7.11b

where x is considered positive when

measured against gravity.

7.11c

|
Ly b

7.11d

Therefore
dg' _ 3g _ 3u
5t ot ~ 3t © Yu
Also X - 14e
z
A
i.e., x = [ (1+e)dz
' 0
09X Z 3¢
Therefore % = [ =% dz
0
Again o(z,t) = ci(z) + Ac(t)

where Ac(t) is the Toad increment, which generates the excess
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pore water pressure. Differentiating with respect to - t,

gives:

- 4
t° d

30 .

Ao :
T 7.11e

Q

Substituting equations 7.11c, 7.11d, and 7.11e in.7.11a yields

2

au de d
5— Z]+e§ 3z tao [d (40) - —f Yy /

de _
s> dzl =0  7.12

Equation 7.12 is the governing general relationship
of the excess pore water pressure as a function of time t

and space z.

As a check, the familiar Terzaghi equation may easily
be recovered. On the.basis of small strains (i.e., void
ratio e is constant), Terzaghi made the rational assumption
that the permeability k, the compressibility de/do', the

quantity 1/1+e are constant during consolidation. Therefore,

equation 7.12 reduces to

2
k o u _ :
T ¥, (%€l 2 do [dt (40) - at] =0
or (=12 ¢ QEE = _d ) 7.13a
T+e v 322 ot dt *

which is the equation derived by Gibson (1958) except for the
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term 1/(1+e0)2. The term 1/(1+e0)2 arises because the z
reference plane is with respect to the volume of the solids

as explained following equation 7.6 which may be expressed as
dz/da = ]/1+e0

where 'a' refers to the soil as a whole from any arbitrarily
chosen datum. The equation derived by Gibson (op. cit.) is

with respect to 'a'. Equation 7.13a expressed in terms of

the variable 'a' yields

¢ du_du_d o 7.13b

. which is exactly the form given by Gibson (op. cit.).
If it is assumed, further, that there is no change

in superincumbent load with respect time, 7.13b yields

2 .
3 u u
C, —5 = 7.14
aaz t

(o3 ko34

v

which is the classical Terzaghi equation for one-dimensional

dissipation of excess pore water pressure.

BOUNDARY CONDITIONS

The solution of equation 7.12 will be unique depending
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on the boundary conditions. At the top, the layer of soil
is always free to drain and is open to the atmosphere. As
such excess pore pressures will dissipate almost instantan-
eously. Thus the top boundary of the soil will have zero
excess pore pressure. That is, a free draining boundary is
one for which the excess pore pressure is always zero. There
is a possibility that the bottom boundary may also be free.
draining; | |
If the soil layer is in contact with an impermeable
rock stratum it will be impossible for water to drain across
the boundary. Also no movement of sb]id particles occurs

across the boundary. Therefore

Substituting the above equations in the equation 7.9 yields

-9 7.15

Equation 7.15 implies that the flow velocity induced by the
excess pore pressure is zero. That is, an impervious boundary
is one for which the excess pore pressure gradient is zero.

The impervious boundary condition can also be expressed
in terms of the void ratio e at any given instant of time.
Equation 7.15 is made use of in conjunction with equations
7.7, 7.8, and 7.11b to arrive at the desired result.

Differentiating the equation 7.11b with respect to z,
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gives:

Using equation 7.15, the above reduces to

.t . , ‘
g-g--—-—g‘; +y, E =0  7.15a
where
3z - [ +e oz *
and
X _
57 = 1+e 7.8
Combining equations 7.7, 7.8, and 7.15a, we have
, 90" | -
- y,(e + G) - 55—+ v,(1+e) =0
do' de _
i.e., de— 537 yw(l - Gs)
or se _, -de 1 _g) 7.15b
9z w do' s’ )

Equation 7.15b.thus_gives an expression for an imper-
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vious boundary condition in terms of void ratio, i.e., it
yields the variation of'void ratio with depth at the boundary
across which no movement of pore water or solids tdkes place. -
The expréssion for 3e/3z indicates that, at the impervious
boundary, the variation %n void ratio with depth depends on
such soil characteristics as specific gravity and the current
compressibility. - |

As in thin layers, if the self weight of the soil is
not considered correctly and the buoyant weight is assumed

= 1, equation 7.15b reduces to

to be unity, i.e., Gs

se _
3z 0 ' 7.15¢

at the impervidus boundary.

The free draining and impervious boundary conditions
form the two extremes of a real situation in which there is

partial drainage across the boundary.

INITIAL CONIDITION

In the case of.sedimentation, the soil layers are

" gradually built up. Since layers are growing with time,

at the initial time (i.e., say when t = 0) the initial excess
pore pressure is zero. Also at that initial time, there will
be no clay layer to start sedimentation with, which means

that the void ratio at the beginning is zerq. A zero void
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ratio always relates to.an effective stress which is not
accountable. To surmount this predicament, the sedimenta-
tion sﬁa]] start (at t = 0) with a negligibly thin Tayer

at an initial void ratio eys and a corresponding effective
stress 06. At the next time step (t = 0 + At) a layer of
thickness Az shall be_added at a given void ratio eq- This
will generate excess pore water pressure, which dissipates’
depending on the boundary conditions.

The initial conditions thus are:

(1) ‘a soil layer of no measureable thickness with

a definite void ratio e and a corresponding -
effective stress cd is provided; and

(2) there is no excess pore pressure, i.e., the

exéesé pore pressure in the thin layer of void
ratio e is zero.

Equation 7.12can be solved for given initial condi-,
tion and a set of prescribed boundary conditions. Unfortuna-
té]y it is impossible to ine an analytical solution to the
equation under these conditions. However, an approximate
numerical solution can be arrived at (to determine u as a
function of z and t) using an implicit finite difference |
technique. Once the value of the excess pore pressure is
known, the quantities such as effective stress, void ratio,
the height of the sediment (which is not the sum total of the
layers added because of finite strains) and the density of

the sediment may easily be obtained.
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7.3 PERMEABILITY, COMPRESSIBILITY, VOID RATIO AND
EFFECTIVE STRESS RELATIONSHIPS

In this section, a discussion, in general, of the
possible relationships existing between compressibility,
permeability, and effective stress is given.’

Janbu (1963).conc1uded, after an extensive study of.
rocks and clays, that an effective stress-strain law may be

expressed as

Qo
Q

where the subscript '0' refers to an arbitrary reference state
and the exponential p is a non-dimensional constént. The
value of p ranges from -1 to 0. Equation 7.16 in its pre-
sent form is the one adopted by Lai (1968); but is identical
in all respects to that given by Janbu. When p = 0, de/dc'

is a constant and hence the effective stress-strain curve is

a straight line representing a linearly elastic material be-
havior. When p = -1, de/do' varies inversely as the effective
stress and a plot 6f e versus log o' yields a straight line;
thus representing a normally consolidated material. When

p = -0.5, a plot of e versus o' yields a parabolic curve;
which may not in particular represent any one material. But
this value of p = -0.5 represents a state which is somewhat

in between the states represented by p = 0 (a linearly elas-

tic material) and p = -1 (a normally consolidated soil). The
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value of p = 0 rough]y.represents the case of an overconsoli-
dated soil in a limited stress range. Thus p = -0.5 possibly
représents the middle of a spectrum of soils, one end of
which is represented by normally consolidated soils and the
other end being represented by overconsolidated soils.
However, for purposes of this study equation 7.16 is made
use of with a value of p = -1 because special attention is
devoted here to normally consolidated soils.

A vdlue of p = -1 yields a b]ot of e versus log o'

as a straight 1ine; the equation of which may be written as
e =C-D log o' 7.17

where C and D (both positive) depend on the-soil characteris-
tics such as liquid 1imit, plasticity index etc. Such an
explicit relation as given by equation 7.17 is necessary for
solving the nonlinear consolidation equation 7.12 as will be
shown later.

An attempt was made to find a relationship between
the permeability k and the effective stress ¢' based on
experimental evidence. Strangely enough there is little
published evidence available for such a relationship to be
evaluated. According to Taylor (1948), 'a plot of the void
ratio to a natural scale against the coefficient of perme-
ability to a logarthmic scale approximates a straight Tine
for any soil'. Schmid (1957), based on a study of several

published results, reached the same conclusion.
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Figure 7.2 gives the variation in permeability caused
by consolidation. The quantity log (k/1+e) bears a straight
line relationship with log o' for the soils studied. At low
consolidation pressures, the curves are not strictly straight
lines; though they are perfect straight lines at higher effec-
tive stresses. For purposes of this study the plot of k/1+e
versus o' is considered a straight 1ine on a log - log scale.
(The curves are plotted from the data of Normand, 1964.)

Thus it may be assumed that an experimental curve
relating the effective stress o' and the ratio k/1+e can be

represented by

kK _ k g' +q
e = (Tredo (557 7.18

where q is a non-dimensional constant to be determined by
curve fitting. As in the'equaiion 7.16 the subscript '0"
refers to the same arbitréry strained state.

From Figure 7.2 it may be concluded that a given
change in void ratio e causes a much larger change in k when
e is large than when e is small change in the ratio k/1+te
for a given chénge in e must approach zero as e becomes
smaller. Also theArate at which the ratio k/1+e changes
decreases continuously. Equation 7.18 possesses these pro-

perties. The first derivative with respect to o' yields



217

d_ (£ = 9.
do' ‘l+e 1+e '

which approaches zero as o' approaches infinity. Its second

derivative

a? k. ko.ale=l)
do ' 2 1+e T+e (0.)2

also approaches zero with o' at a much faster rate.

7.4 ONE-DIMENSIONAL CONSOLIDATION EQUATION

Equations 7.16 and 7.18 may be substituted in equation

7.12 to yield

k
;17592- [- ],,20 (—r)q 3y 4+ (48, (—T)P [& (40)

Z
ou ae _
- a_. + Yw é a_. dz] = 0

where (ggTQO is negativé. Therefore
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k (]+eo) 1 .

[(o ')q Sol =
Yw( ey (1+eg)®  (og")8 =
p d Z e
(~—T) [at - g% (80) - v, £ st dz]
% .
| 7.19
where ( .)0 is positive. Let T be defined as
k (]+e0)
T = ————————— t , the time factor.
Y (do"O
Therefore
on' 2
(=9—)P ‘2"’;+(°)Pq————q—[y(1e) 3y N -
(1+e0) 3z (1+e0) 25 z:
3u 4 (p5) -y [ 284z
31 ~ a1 ‘"% T Yw /a7

2 z
! - 1 o u au d oe
(&—)9°P == - = (ao) - v, | = dz
(]+e0)2 322 aT dT W 0 X}

+(° ——‘17—[(3‘,{) 3y, (6-1]

(1+e

7.20
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Equation 7.20 is the most general equation describing
the one-dimensional conso]idétion process. In this study the
quantities p, q, k0/1+e0, 00', and (%gTooﬂare considered to
be constants. The time factor T is defined in the same
manner as Terzaghi's except that this time factor T is not
divided by the square of thellength of the drainage path.

The time factqf T has a dimension of (1eﬁgth)2.

As mentioned earlier in connection with equation 7.17,
the governing equation 7.19 involves the effective stress o'
and as such an explicit relation between void ratio e and
effective stress o' such as 7.17 is essential.

It can be shown that from the equation 7.19, the form
of the governing equation as presented by Davis and Raymond
(1965) for a normally consolidated soil may be derived. As
assumed by Davis and Raymond in their formulation, the weight
of a thin soil layer (for an oedometer case)may be taken such
that Gs = 1. Also Ac(t) = 0, since no additional layers are
being added. Since it is a small strain theory %%-= 0.
Again, for a normally consolidated soil p = -1. They further
assumed that the decrease in permeability k is proportional
to the decrease in compressibility %ST ; hence g = -1. A1l

these parameters are substituted in the equation 7.20 to yield

—
(3
N
=
n
Q

_3_517(@_)2__1_2 7.21a
9z z (1+e0)

~—
~N
N
Q
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which is of the same form as given by Davis and Raymond

(op. cit.). The presence of the term (1/1+e)2 may be ex-
plained on the same .basis as was done for the equation 7.13a.
Equation 7.21a may be expressed to the independent variable

'a' to yield

9 u _ au 1 (a_U)Z 7.21b

which is Davis and Raymond's equation for a normally Con-
solidated soil with the value of the coefficient of consoli-
datioﬁ cy maintained constant.

Also the form of the equation governing one-dimensional
consolidation with finite strains as derived by Lai (1968)
can be extracted from the governing equation presented here.
It would be much simpler and convenient to proceed from the
equation 7.11a instead of the equation 7.12 or equation 7.20.
Combining the equation 7.171a with equation 7.16 and 7.18

(as carried out by Lai), yields

0 18 peo! yq3uy _ (gl yp 30"
* (de | 23z [(00') Bz] (00 ) ot

2
- 9%u . _q 3¢’ duy _ (o' y p-q 3¢’
cv0 [822 + g' dz z] (c ) 9
k
0 ]
where c = -
' Y., (1+eq) de
0 W 0 (dc')O
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which is Lai's equation for one-dimensional finite strain

consolidation,.

7.5 THICKNESS OF THE SEDIMENT

During sedimentation, fresh layers are deposited on
the existing layers. As the 1ayer§ (say) of certain thickness.
are being deposited, the pore water dissipates whereby the
thickness of the layer changes. The change in thickness
depends, among other things, on the over]yihg sediment and
the everchanging physical properties such as compressibility,
permeability etc. These changing properties can be re]éted
by a single variable, namely the ;bid ratio e. The value
of the void ratio depends on the position of the.point under
.consideration and also on time. A change in void ratio under
the changing .overburden reflects the changes in compressi-
bility, the permeability and associated properties. Thus
the change in thickness of a sediment, or the thickness of
.a soil Jayer may be designated in terms of the void ratio.

Because of the dissipation of the excess pore water
pressures, the effective stresses change. In the case of
finite strains, the thickness of a layer changes depending
on its location. Let the thickness of the soil deposited be
dz at a height z from the reference datum. Further, let the
void ratio of this layer at any instant of time be e(z,t).

From the continuity of solids (equation 7.8), we have
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QL

—’ZE =1 + e(z,t)

where dx is the current thickness of the soil layer. There-

fore,

X = gz [1 + e(z,t)]dz 7.22

The value of the void ratio e(z,t) can be evaluated using
the governing equation for a specified initial condition and
assumed boundary conditions. Equation 7.22 may be utilized
in computing the current height of a soil layer of given

initial thickness.

7.6 DENSITY OF THE SEDIMENT

Since the void ratio e varies from position to posi-
tion within tﬁe;sediment and also from time to time, the unit
weight at any given point in the sediment will change with
time. Once the value of the void ratio e(z,t) is known, the
density of the sediment at any depth z and time t may be

obtained as

e(z,t)y, + vg

T+ e(z.%) 7.23

However, if the average density over the entire thickness of



223

the sediment is required, the individual values of density
at various chosen intervals may be integrated by Simpson's
rule and averaged. This leads to calculating the total

weight of the sediment deposited.

7.7 FINITE DIFFERENCE REPRESENTATION

Exaci solutions of equation 7.20 for specified boun--
dary and initial conditions are difficult to obtain. The most
~general method for solving this equation is by finite differ-
ences. Equation 7.20 is reproduced below as:

d 2

o' \-p+q 1 3% _ du e
=) = == - () - v, [ 55 dz

(o3

N
[+54
[+ 3] [e 3]

' - 1 3u,2
+ (E)IP o (5
au
* 5z YulGs-1)]

To write the above equation in a simpler form the

following equivalences are made. Let

E(L,N)

ey = EO e

0'0 U(L’N)

Sigmo u
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Yw = UWW
o' = Signa (L)
DT
= R
(pz)?
y. 28 4z = DET(L)
W3
d(Ac) = DH
1 - " '
(T, P —L - Rp =y1(L)
% (]+e0)2

The governing equation in central differences may now

be expressed as

or

where

which is.

equation.

UT(L)*(U(L-T,N+1)-2U(L,N+1)+U(L+1,N+1))
U(L,N+1)-U(L,N)-DH-DET(L) (DT+(q*U1(L)/Sigma(L))*

(5% + 38 v, (6,-1))%(02)
SUT(L)*U(L-T,N+T)+(T.+2.%UT(L))*U(L,N+1)-UT (L) *U(L+1,N+1) .

D(L)
D(L) = U(L,N)+DH+DET(L)*DT-(q*U1(L)/Simga(L))*
((U(L-],N)-U(L+],N))**2/4.+DZ*UNW*(GS-1)*(U(L-],N)-

U(L+1,N))/2.)

the difference equation for the governing differential
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When L = 1
-U](])*U(O,N+J)+(]+2*U1(1))*U(1;N+1)-UJ(1)*U(2,N+1) = D(1)

Since at L = 1 an impervious boundary exists, there is no

hydraulic gradient; and as such

U(O,N+T) = U(2,N+1)
Therefore (1+2*U1(1))*U(1,N+1)-UT(1)*2*U(2,N+1) = D(1)

Thus the difference equations may be written for all values

of L except when L = N; that is, at the top of the current

sediment.

When L = N, i.e., at the top of the sédiment at the
instant t = N, the gradient 3% equals (U(N+1,N)-U(N-1,N))/2*DZ
where the (N+1,N) point (Figure 7.3) does not exist at the
timé t. To obviate this difficulty, it is safe to assume
that the hydraulic gradient excess is linear between the mesh
points (N-1,N) and (N,N), i.e., instead of taking central

differences, backward differences are taken. Therefore:

SUT(N)*U(N-T,N+1)+(T1+2%UT(N) ) *U(N,N+1)-UT(N)*U(N+1,N+1)
= D(N)
where U(N+1,N+1) = 0, always by assumption
and D(N) = U(N,N)+DH+DET(N)*DT-(q*U](N)/Sigma(N))f((U(N-],N)-
U(N,N))**2+DZ*UWW*(GS—1)*(U(N-],N)-U(N,N)))
where DET(N) = DET(N-1)

Thus the governing partial differential equation is
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converted into a set of simultaneous algebraic equations
using finite differences. These simultaneous equations may
~ then be solved in the usual manner.

Once the values of U(L,N) are khoWn, the values of
U(L,N+1) can be computed. Thfs procedure of ‘marching out'

the solution yields results at subsequent time intervals.

7.8 SUMMARY

A study haé been made.in order to ascertain the excess
pore pressures developed in an environment, when sedimenta-
tion takes place. The treatment has been on the basis of
general nonlinear behavior of the soil where the soil pro-
perties were assumed to vary with depth and time. To account
for large changes in the void ratio (i.e., finite strains
were allowed to develop) the continuity equation for one-
dimensional fluid flow was derived in a general manner. .
Since large changes in void ratio usually entail large changes
in soil properties of which the compressibility and the per-
meability are the main factofs, these were taken into account
by assuming that both the coefficients of compressibility
and permeability are related to effective stress by power
laws. These assumptfons mean in turn that the coefficient
of consolidation is also related to the effective stress by
a power law. By combining these with other assumptions made
iﬁ classical Terzaghi theory together with the vertical

equilibrium of soil water system including the self weight
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of the soil, the equation governing the process of consolida-
tion was derived.

The consolidation equation obtained in this study, in
general, is nonlinear. From this general nonlinear equation
other published equations governing linear as well as non-
Tinear consolidation behavior of soils can be derived (as
demonstrated on previous pages) provided the appropriate

assumptions that have been made are incorporated.

7.9 A CASE HISTORY

Subject to some assumptions, the observations of Fisk
and McClelland (1959) on the deltaic deposits of the Continen-
tal Shelf off Louisiana can be reproduced using the theory
described in the previous sections. A brief description of
the area is presented below.

The search for offshore oil was being conducted in
shallow waters of the continental shelf along the entire
Louisiéna Coast (Fisk, 1956). Data from a number of test
borings, from the gulf floor samples, indicate that the shelf
surface throughout the region is underlain by relatively
unconsolidated deposits of the Quaternary age. Laboratory
investigations of the shelf sediments penetrated by those
borings have been directed primarily toward the measurement
of strength characteristics rather than consolidation pro-
perties. Consolidation tests have been performed for only

a small percentage of the locations investigated (McClelland,
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1967), Morgenstern (1967) calculated the degree of consoli-
dation for a range of rates of sedimentation and coefficients
of consolidation when the layer gradually grows upon an
impermeable 5ase. 'The results révea]ed that underconsolida-
tion (average degree of consolidatfon was of the order of
0.10 to 0.50) is significant for silty clays and clays
deposited at deltaic rateé of sedimentation.

The general nonlinear one-dimensional consolidation
theory developed in an earlier section may be app]ied to _
calculate the void ratio and effective stresses of any depth
in the sediment. Some basic information pertaining to rates
of sedimentation, type of sediment etc is obtained from
McClelland (op. cit.)- .

The topstratum deposits of the continental shelf off
Louisiana vary in thickness to a maximum of approximately
600 feet in the central area south of New Orleans. Thése
recent deposits, together with the relatively firm soil
Tayer upon which.they rest locally, control foundation condi-
tions at drilling platfofm.sites. The nature and distribution
of the uppermost layers of the sediments on the continental
slope and in the deeper parts of the gulf have been dis-
cussed by Greenman and LeBlanc (1956) and appear to be largely
clay deposits. | ‘

The principal control on the character of the top-
stratum deposits has been the Mississippi River, and their
thickness depends mainly on the distance from sites of river-
mouth sedimentation in the dé]taic plain. The stream dis-

charges more than one million tons per day of sediment through
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the mouths of its birdfoot delta distributaries. The load
of sediments carried to the gulf is more than 75 per cent
silts and clays and less than 25 per cent very fine sands.
The sands are deposited close to the mouths of the distri-
butaries in river-mouth bars, whereas the silts and clays
are carried by gulf currents for considerable distances from
the delta.

The nature and distribution of Recent and latePleisto-
cene deposits and the physiographic features of the shelf
provide evidence of events which have occurred in the region
in the immediate geological past. The presence of buried
valley systems across the shelf, the submarine canyon at the
shelf margin, and the soil zone which mantles a buried ero-
sional surface indicate that the shelf was exposed and was
deeply eroded b& stream systems in late Pleistocene time.

The burial of the erosional surface by the sequence of recent
deltaic deposits is proof that the sea level subsequently
rose and flooded the shelf. The gradational sequence of

" recent deposits from a coarse substratum of sands and_gravé]s
through a fine-grained topstratum of silts and clays provides
evidence of the gradual lowering the gradients of streams
entering the gulf and the reduction of their carrying capa-
city while sea level was.rising. A cycle of sea level change
is fepresented by the erosion of the late Pleistocene valley
system on the shelf area and by the subsequent flooding of
the shelf by gqulf waters. This cycle can logically be

explained by appeal to the climatic cycle responsible for
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the growth and retreat of glaciers during the closing stage
of the Pleistocene. Radiocarbon dates (Fisk et al., 1954)
suggest that the modern birdfoot delta began to develop 450
years ago. The deposition of the leaf-like mass of the bird-
foot delta has proceeded uniformly and has resulted in the
seaward elongation of the distributaries and has given rise
to a pattern of diverging finger-like bar deposits of sands
and sandy silts separated by wedges of silty clay. These
sedimentary units, together with an underlying thin layer
of prodelta marine clay, form the framework of the delta
platform.

Fisk and McClelland (1959) have provided data for
three locations of similar composition, but of different
degrees of éonso]idation (Table 7.1).

| To apply the nonlinear theory to the above cases the
following information must be known:

(a) The material input values, such as the initial
void ratio, eg and the corresponding initial
effective stress co'.‘

(b) The mass rate at which deposition over the years
took place so as to yield the present thickness.

(c) The compressibility and permeability characteris-
tics; their initial values at e and the manner
in which they vary.

To determine the mass rate of deposition, the total

weight and the original thickness of the sediment are cal-

culated. From the data of McClelland (1967) the void ratio



231

and unit weight variation with depth are obtained. The
total weight of the sediment is calculated. The average void
ratio of the sediment is determined. It may be noted fhat
the thickness of the sediment is proportional to the quan-
tity (i+e). Therefore
. . . (T+ey)

Original thickness = Present thickness TFe .
The value thus obtained gives a rough approximation of the
actual rate at which sedimentation took place. The mass
rate of depositfon is then obtained by dividing the total
weight with the original thickness. |

The input initial void ratio ey may be termed as that
void ratio of the sediment a few centimeters below the mud-
line. Also the value of ey may be varied with the water con-
tent, w¥ (e0 =W GS, where Gs is the specific gravity of thé
solids).

To arrive at the input value for the effective stress,
oo', a relation between e and o' must be known. The sediment
at Eugene Island Block 188 is fully consolidated and behaves.
as é normally consolidated soil (Figure 7.4). Thus the soil

behaviour is expressed as
e = 1.84 - 0.75 1og]0 o'

This relation is made use of for the sediment at the other

two locations

To determine the variation of permeability, a relation
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between mv/]+e (mv ihe coefficient of volume compressibility)
and ¢' is drawn (Figure 7.5). If the assumption is made that
- the value of the coefficientAof consolidation, Cy is a con-
stant, the following relation is obtained.

An estimate of the value of k0 corresponding to'co'
can then be made. The value of k0 was varied together with
the value for q (in the equation 7.18) for the underconsoli-
dated sediment at Grand Isle Block 23 to fit the observed
data of void ratio with depth (Figure 7.8). This is carried
out since the rate of deposition for Eugene Island Block 188
sediment is'so slow that a variation of c, and/or q does not
have any influence on the degree of consolidation. Figure
7.6 yields the variation of cv0 (i.e., the variation of ko)

with q. A decrease in the value of q is compensated by an

increase in cv in the relation
0

c./c

_ (1+e 2 ,0' 1+4q
= ( )¢ (=)

1+e

so as to yield the same void ratio-depth relationship as the
observed (Figure 7.8). It has been observed from Figure 7.2

that the values of q for the various soils tested by Normand

(1964) are:
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Weald Clay q = - 0.67
Avonmouth Clay q=-0.60
Kaolinite q = - 0.63.

Also from Figure 7.5 for the fully consolidated sediment

at Eugene Island Block 188 the value of q obtained is -0.814
(when c, is assumed constant). Keeping these values in view,
for purposes of this study, the fo]]dwing set of values are

chosen:

- 0.70 c

Nal
"

40 FT2/YR.

- 1.05 50 FT%/YR.

O
1l
(2]
i}

Yo

A value of 1 x 1076 cm/sec to 1.5 x 1070 cm/sec for kg is
obtained, which is quite reasonable for the type of sediment.
dealt with. The properties of the sediments used in the

analysis are:
= 2.3
e =1.84 - 0.75 10910 o'

Figures 7.7, 7.8, and 7.9 illustrate the relationship
between the void ratio and depth for the three locations.
The observed data is represented by points while the.calculated
results are shown by full Tines. The calculated values agree
very well with the observed data. Figure 7.7 yields the re-
latibnship between void ratio and depth for two input void

ratios (i.e., eo) of 2.7 and 2.3. As can be seen the differ-
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ehce in the curves ]ies.only in upper few feet of thé sedi-
ment. A similar trend was observed at the other two locations
(this is not shown in Figures 7.8 and 7.9).

Figures 7.10, 7.11, and 7.12 show the manner in which
permeability decreases with depth ét the end of deposition.
‘The variation is typical and it decreases from a value of
1.0 for k/k0 to a value of the order of 0.04. However, it
is noted that the variation of permeability with depth for
the South Pass Block 20 sediment (Figure 7.12) is very small
in the upper few feet and then gradually the decrease grows
rapidly. This is because the sediment is very underconsoli-
dated and the upper few feet are almost at the input void
ratio €q (and effective stress 00'). As the sediment is
being built up the effective stress increases and hence a
decrease in the permeability occurs.

Figures 7.13, 7.14, and 7.15 illustrate the variation

of the coefficient of consolidation with depth for the input

values of

40 FT2/YR.

= - 0.70 c

O
1

50 FT2/YR.

= - 1.05 c

LO
|

Vo
The variation (increase or décrease) of cv/cV with depth is

0
mainly dependent on the value of q. The smaller the value
of q (smaller than -1.0) the value of Cy decreases with depth.
However, a value of q greater than -1.0 makes the value of

c, increase with depth although the increase is very small.
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This demonstrates the manner in which the magnitude of gq

affects both k and ¢, with depth.

7.10 DISCUSSION

> In this study the state of consolidation at several
locations on the continental shelf off Louisiana is studied.
The one-dimensional consolidation theory adopted for analysis
is the most,génera] accounting for a mass input at a pre-
scribed initial void ratio. The results calculated are in
good agreement with the observed field values. The rate of
deposition and the soil characteristics such as the compres-
sion index, initial void ratio, and coefficient of permeabi-
1ity cohtro] the pore pressure dissipation (and hence the
effective stress). |

A close study of the equation 7.20 reveals that a

.value for the exponential q has a significant influence on
the ultimate results. A value of zero for q reduces the

equation 7.20 to

Cn' 2

0 +\p 1 d°u _ ou d .
( T ) = L - — (AG) - Y
(e} (]+e0)2 822 9 dT W 0

Z
[ 284z .. 7.24

aT

The above equation does not embody any more the term con-
taining Gs. In other words, if by any chance the ratio k/1+e
remains constant (i.e., q = 0) which is most unlikely, during

consolidation the specific gravity G (or the self weight) of
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the consolidating material does not contribute anything to

the progress of consolidation.
Also from equation 7.20 the expression %% YW(GS-])
contains both the hydraulic gradient %% and Gg is the

specific gravity of solids. 'If either one of these terms

js zero then the expression %% YW(GS-]) vanishes. The hy-
draulic gradient (%%) is zero at an impervious boundary where
there is no exchange of water across it. At such a boundary,
it seems, the influence of G is not felt although at all
other sections GS has its inf]uence; By the same token the
influence of GS is the maximum where the hydraulic gradient
is the highest. The hydraulic gradient is the highest at

the top of the sediment and hence the influence of Gs is
maximum in the upper layers of the sediment.

To assess the influence of GS analytical solutions
were obtained for values of GS = 2.7 and GS = 1.0 (buoyant
weight). It has been cbserved that the computed results
of void ratio (with depth) and the degree of consolidation
do not differ substantially. It may be concluded that GS
(i.e., self weight of the sediment) is not too important in
quantitative results.

- In summary the following may be expressed.

The deltaic sediment samples (very under consolidated
to fully consolidated) reported by McClelland (1967) were
examined in the light of the theory presented in section 7.4.
The rate of deposition is believed to be the main factor

most closely associated with the consolidation characteristics
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observed. The rates of sedimentation and related properties
are available in sedimentology literature. 1In regions of
high rate of sedimentation, there'will be a lag between the
accumulation of the material and the consolidation associated
with it. This gives rise to-an excess pore pressure and the
under consolidated material is prone to slumping. The pre-
diction of excess pore pressure can be made to a nigh degree
of accuracy by the analysis presented in section 7.4. ‘The
state of consolidation of the clay mass is very.important

in connection with foundation-studies for offshore structures,
for the strength of these deposits is a function of pre-
consb]idation pressure.

Other parameters that affect the bui]d'up pore pressures
during sedimentation are the material properties such as

(a) the consolidation characteristics of the sediment;

(b) the variation of compressibi]ify and permeability;
and (c) the environment in which deposition takes place.

It has been demonstrated by Skempton (1970) that the
behavior of (fully consolidated) deltaic sediments is mostly
normally consolidated. And hence the value of p in equation
7.16 may be taken as equal to -1.0 for all practical con-
siderations. '

The sedimented void ratio eq (and hence the corres-
ponding effective stress) depends on the type of environment
in which the sedimentation takes place. Depending on the
sedimented material properties such as e, and the rate of

sedimentation the behaviour of the sediment at ahy stage of
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accumulation can be predicted provided the value of sedi-
mented permeability ko (i.e., the input coefficient of con-
solidation cvo) and its behaviour during sedimentatiop are
known. The magnitude of the values of k0 and q of the sedi-
ments off Louisiana are precisely not known. It has been
shown that q has a significant influence on the variation

of the coefficient of consolidation and the consolidation

characteristics of the sediment.
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CHAPTER VIII -

EROSION AND SWELLING IN VALLEY FORMATION

8.1 GENERAL

This chapter deals with the pore water pressure-time
relationship for a fully saturated clay layer subjected to’
a uniformly distributed eroding load. The governing equa-
tion is developed on the basis of the Terzaghi's classical
one-dimensional consolidation theory and it is weak]y non-
linear in character. With this nonlinearity and the boundary
conditions encountered, it is difficqu to obtain a closed
form solution. A numerical solution based on finite differ-
ence approach is presented. The study is of practical value
in the assessment of pore pressure equalization of an eroded
soil mass. Further, the study aims at correlating geological

and physical parameters involved with the theoretical solution.

8.2 FORMULATION

The problem considered is that of a semi-infinite mass
of soil eroded at a prescribed arbitrary rate at the top. The
properties of a real soi1 are time and space dependent. For
purposes of this study, however, the material properties are
assumed constant (on the lines of Terzaghi's classical theory),
i.e., the physical properties of the soil such as the coeffi-

cient of swelling (consolidation), the coefficient of perme-
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ability etc. are constant.
The problem may be considered to represent any of
the following categories:
(a) the eroded material removed instantaneously; and
(b) the usual case of finite rate of removal of
eroded material.
Thus the problem is one of a moving boundary condition.
Generally, two types of moving boundary problems are encoun-
tered: .
(i) motion of the boundary is due to the rigid body
motions of the entire body (Carslaw and Jaeger,
1959);
(ii) motion of the boundary is due to local conditions
near the boundary.
Further, in type (ii) two cases can be distinguished:
(a) problems in which the motion of fhe boundary is
prescribed; and |
(b) problem.in which the boundary must be determined
as a part of the solution of the erosion problem.
The problem of erosion is developed along the lines
given by Gibson (1958) for sedimentation. In the case of
sedimentation fresh layers of soil are added at the top
whereby the thickness of the sediment increases with time.
In the erosion study, the layers are removed gradually at
the top and hence thé thickness of sediment decreases with
time. Thus erosion may be looked upon as similar to sedimen-

tation except that instead of soil layers being added at the
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top, the soil layers are removed gradually at a constant
rate. Thus the quantity Ac in Gibson's (1958) equation for

sedimentation (equation 7.13b) may be changed to -Ac; then

equation 8.1 will describe a process of erosion.

2

2% _du, d
c —;? = st g (Ac) 8.1

Vs

. where Cy denotes the coefficient of swelling of the material
u denotes the deficient pore pressure

Ac denotes the weight of the soil removed by erosion.

Equation 8.1 governs the dissipation of deficient
pore water pressures in one dimension when erosion takes
place at a prescribéd rate of d(Ac)/dt. The expression Ac
is equal to y dh/dt where y is the bulk unit weight of the

soil and dh/dt is the rate of removal of the soil with time.

BOUNDARY CONDITIONS

A unique solution tb equation 8.1 depends primarily
on the boundary conditions. The top of the sediment is al-
ways open to the atmosphere and is free to drain; the pore
nressures will dissipate almost instantaneously. Thus at
the top the excess (deficient) pore pressure will always be
zero. But then the top boundary is 'moving' with time. The

top boundary is to be located at any instant of time.
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At the instant of time t = 0 (i.e., initially) the
top of the sediment is designated by z = 0. The rate of’
erosion dh/dt, is equal to m; the amount of sediment eroded
out is z = mt after a time t. Thus the top boundary at time
t = t exists at a distance z = mt from the original refer-
ence plane. It is at this boundary the deficient pore pres-
sure is zero. Therefore the top boundary condition may now

be defined -as
u(z,t) =0 atz=mt, t >0 8:2a

The bottom boundary condition condition must also

be specified. It is tacitly assumed that the problem in-
volves a semi-infinite homogeneous soil medium. It may be
said with no loss of genrality that at a great depth (i.e.,

z > «), there will be no change in the deficient pore pres-
sure (equal to the weight of soil removed) at any given time.
Or, in other words, at infinite depth the soil will in effect
act as an impermeable layer since across that layer no hy-

draulic gradient will be set up. Thus the bottom boundary

may be defined as

d—d-f ul(z,t) = 0 Z>w, t>0 8.2b

The soil mass as a whole may be assumed to be in

equilibrium with its surroundings before the process of
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erosion sets in. As such it may be said that no deficient
pore pressure exists throughout the soil mass at the instant
_when erosion is about to set in. The initial condition,

thus, is
u(z,t) =0 0<z<e, t=0 8.2¢

Making use of the boundary and initial conditions
~given by equations 8.2 a unique solution to equation 8.1 may
be obtained. A closed form solution of the equation 8.1 for
the nonlinear boundary conditions specified is difficult to
obtain. Hence a numerical method is sought.

The procedure for the numerical so]utioh of equation
8.1 involves replacing the equation by a finite difference
form. That is accomplished by central differences using
Crank-Nicolson's implicit method. The resulting set of
simultaneous Tlinear equations is solved by the Gaussian
elimination procedure.

However, the nature of the bottom boundary condition
specified may influence the accuracy of the results. Hence,
the artificial boundary specified by z + = (equation 8.2b)
was carefully studied, both with respect to its location and
with respect to its aséigned boundary condition, to determine
its effect on the computed results. The conclusions were:

(a) that a distance L of approximately 2000 feet is

adequate in order to neglect the influence of

the boundary; and
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(b) that consideration of this boundary as impermeable
(%% = 0), or that at this'boundary the pore pres-
sure u(z,t) is always equal to the weight of the
soil eroded at that instant had no significant
effect; hence the so]utfon was obtained for L =
2000 feet. The solution was found to be stable.
According to this method of solution, the behavior
of the soil mass is determined at a finite number of discrete
nodal points; if values of the parameter u are desired at
points intermediate to the nodal points, linear interpola-

tion may be employed.

8.3 DISCUSSION OF NUMERICAL RESULTS

Typical results are presented for the erosion of a
low-swelling clay sediment under constant rate of erosion.
The clay deposit may be considered as recently glaciated
(quaternary age) and as being eroded by fluvial action. The
sediment is assumed to be fully saturated and on the top of
the eroded tayer, it is assumed, water is always available.
By this means, the deficient pore pressures developed are
satisfied at the boundary. Furthef it 1s assumed that uni-
form pressure distribution takes place throughout the depth
when a soil layer is removed by erosion.

Figures 8.1 to 8.4 show the deficient pore pressure
isochrones at the end of erosion and also at the end of the

duration of standstill. The depth of erosion is arbitrari]y
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chosen at 250 feet. The p]ots'have been obtained for various
values of the coefficient of cqnso]idation (i.e., fhe co-
efficient of swelling). The values for the coefficieﬁt of
swelling CS used are 0.1, 1.0, 10.0, and 100.0 feet square
per year. Also varying periods of e}osion and subsequent
standstill are tried. The combinations are:

| (a) 5000 years of erosion and 15000 years of subse-

-quent swelling;

(b) 10000 years of erosion and 10000 years of sub-

sequent swelling; and

(¢) 15000 years of erosion and 9000 years of subsequent

swelling.
In each case the value of the coefficient of swelling is
varied through the specified ranges.

Since it was assumed that the sediment is fully satu-
rated and also that the groundwater level is flush with the
top of the (eroded) sediment, prior to erosion there exists
a hydrostatic pressure of water which would be recovered after
equilization. Combining the deficient pore Hrésﬁure with
the hydrostatic pressure at each level the resulting pore
water pressure isochrones, that are existing, are obtained.
Figures 8.1 to 8.4 illustrate that at the end of the period
of erosion, substantial deficient pore pressures remain at
the top within few feet although the sediment is fully satu-
rated; thus there exist very high negative hydraulic gradients
at the top. These high deficient pore pressures still exist

after a large number of years of standstill, when neither
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deposition nor erosion takes place.
These figures show that the dissipation of deficient
pore pressure depends, largely upon the coefficient of swell-

ing, CS. The higher the.value of CS the quicker the dissipa-
tion and the greater is the depth to which pore pressures

are equated. Thus the behaviour of a soil sediment depends
mainly on the permeability and compressibility characteristics'
(on which CS depends). The\]ower the permeability, the Tlonger
the time needed for the dissipation of deficient pore pres-
sures.

For a giveﬁ value of Cs, the duration of erosion and
subsequent period of standstill ha?e a profound influence on
the magnitude of the developed deficient pore pressure. The
smaller the duration of erosion (for a given erodable depth),
the greater the effect on the deficient pore pressures and
the hydraulic gradient at upper layers is very large. The
longer the duration of érosion (for the same eroded depth),
comparatjve]y the hydraulic gradients are smaller. To
illustrate the above statements, the total water pressure
at any point (as it exists at the end of the duration of
standstill) is expressed as a percentage of the hydrostatic
pressure at that point that would have existed had there been
no swelling. The ca]cu]ated per cent of hydrostatic pressure
‘is plotted against depth for a given value of Cs. Figures
8.5 to 8.8 illustrate the effect of rates of erosion and

subsequent standstill on the pore water pressure for a speci-

fied soil mass (whose coefficient of swelling is known). The
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values expfessed, e.g., as 5000 + 10000 years on Figures
8.5 to 8.8 denote 5000 years (first tgrm) of erosion to
form a 250 feét valley and 10000 years (second term) of
subsequent standstill with no erosion or deposition.

Figures 8.5 and 8.6 suggest that whatever be the rates
of erosion and subsequent swelling for soil masses with a
value of CS of the order of 0.1 or 1.0 foot square per year,
the per cent hydrostatic pressure does not alter with depth.
This means to say that in low swelling soils the dissipation
of pore pressure is very slow. Figure 8.8 suggests that for
soils with a high value of Cg (e.g., 100 feet square per
year), the rate of erosion and swelling have almost the same
effect.. In other words, the high swelling soils adjust
themselves to the surroundings very quickly. A value of
10.0 feet square per year for CS (Figure 8.7) shows a marked
influence qf the various rates of erosion and subsequent
swelling. A11 the curves (Figures 8.5 to 8.8) become paral-
1é1 to the depth‘axis at large values of depth.

Essentially the same remarks (as for the rate of
erosion) may be made for the duration of éubsequent stand-
still. The length of the duration of swelling has a signi-
ficant influence on the deficient pore pressures. The longer
js this duration the more is the degree of dissipation.

It is of interest to investigate if cases exist in
nature that confirm to the type of behavior described earlier
in this section. Large areas of Western Canada. and the

North Central States (USA) are underlain by Bearpaw Shale.
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This material geoiogica]]y is classed as bedrock.
In the undisturbed state Bearpaw Shale is dense,
homogeneous and impervious (Peterson, 1954). Some of the

pertinent material properties are:

Average Degree of Saturation 96.4%
Coefficient of Pérmeability cm/sec 107° to 1072
Average Water Content 25%

Tests conducted at this University yield an average value

of 0.10 feet square per year for the coefficient of swelling,

. Cg- Same order of magnitude for ¢ is quoted in the pub]fshed
Titerature.

The analysis presented in the previous section is rele-
vant to the valley formation in Bearpaw Shale. South Saska-
tchewan River drains most of the Prairie provinces and has
cut deep valleys in the Bearpaw Shale formation. In the
immediate vicinity of Gardiner Dam the valley is approximately
200 feet deep.' Thus the river flows through a deep bed of
homogeneous, low swelling, (almost) saturated sediment and
has cut a valley 200 feet deep. Figures 8.1 and 8.5 are
ideal for comparison for this case and the figures indicate
that a substantial deficit pore pressures may exist.

Although it has been assumed that large depths of
homogeneous material are involved, the analysis can be applied
to homogeneous materials of limited thickness underlain by
.re1ative1y impermeable material such as most rocks. However,
any inhomogenity in form of stratification in the material

will yield substantially different results.
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COMPUTER PROGRAM AND USAGE
FOR TWO-DIMENSIONAL IMPEDED DRAINAGE
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APPENDIX A

ORGANIZATION OF COMPUTER PROGRAM

The computer program described in this Appendix is
based on the theory presented in Chapter V of this study.
The program is in Fortran IV language and may be used directly
on computeﬁs of the type IBM 360/67.

The program furnishes the excess pore pressure, and
the average degree of consolidation of a rectangular wedge
at any time. The program is app]icab]é for a rectangular
section of height L and width 2H providad with side drains
of thickness d on either side. The program is based on the '
ADI method of analysis presented in Chapter V. The program
is presented for uniform distribution of initial excess pore
pressure which may exist at the start of the program and
which will dissipate with time. However, the algorithm can
easily be modified to incorporate a continuous variation
across the entire height or width. The variation may be
different from one direction to the perpendicular direction.
The variation may be defined by a polynomial interpolation
of input data.

The equation governing dissipation of excess pore
pressure in two dimensions is given by 5.2. The extent of
retardation to drainage is measured by a parameter called
the Impedance Factor, A. The treatment of the problem is

in a dimensionless form.

The program reads all the input data regarding the
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rectangular wedge and sets up the initial and boundary condi-
tions. Also it establishes the impedance factor governing

the retarded consolidation. Depending on the governing
material and operating parameters, the program calculates

the excess pore pressure at each nodal point at prescribed
time intervals. The average degree of consolidation both

by two-dimensional and one-dimensional (along a specified
section) are ba]cu]ated using the pore pressure values
obtained earlier. The Simpson's rule is made use of in
obtaining the degree of consolidation. The calculated resu]és

are printed out as per the output formats.

COMPUTER PROGRAM USAGE

INPUT DATA

The first step in the analysis of retarded consoli-
dation for a rectangular wedge with inefficient side drains
is to determine

(a) the height to half width ratio 'Beta' of the

wedge;

(b} the existing boundary and initial conditions;

(c) the extent of impedance to drainage as measured

by a numerical value of the impedance factor A; and

(d) the space and time intervals to suit the computer

memory requirements.

The input data cards reads the space steps in both the

directions, the time (factor) steps and the ratio Beta.
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The READ variables are:

I, J, K, BETA

The FORMAT is,

315, F10.2

OUTPUT INFORMATION

The following information is computed and printed

by the program at specified time intervals:

(a}
(b)

the pore pressure excess at each nodal point; and
the square root of time factor, the time factor,
the degree of consolidation (by two-dimensional
integration) for the entire wedge, and the degree
of consolidation (by one-dimensional integration)‘

along a chosen section.
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T e e Leole feoke Seoeok e RR R L LR S 2 LT T Rk drd ek

THIS PROGRAM CALCULATES THF PORC PRESSURES AMD

ALSD THE AVFRAGE DEGREE OF CONSNLIDATION  BY BOTH TRO-BIMENSIONAL
AND  ONE-DIMENS [INAL INTEGRAT 0N

HEERERE RO AT Xk Aede dede e e ek e e drde e B Qo e e o EXRL U ok de

f;#t#y«*t#*t*«*a**«n**n#z«*t*«t**#*«*##*#**

\

ANALYSIS [S FOR A SYMMETRICAL RECTAMGULAR SECTION
’ L FT. HIGH 2%H  WIDE ‘
H FT. HALF WIOTH
LET THE PATIO L/H BF DFNOTED BY BETA
TMPERVIOUS BROTTUM CnNSTANI LOAD
****:***«**#*#*#**#*ga**4##******#¢*¢«**#*¢
TREATMENT IS [N A DIMENSIONLESS FORM
THIS IS ACHIEVED WITH RESPECT 7O H
SO THAT VARTATIGN [N THE QUANTITY IN THE DIRECTION OF H
IS FrROM 0.0 TO 1.0

THE VAPIATION IN THE PERPENDICULAR DIRECTION
IS FROM 0.0 TO BETA

THE TIME FACTOR IS NOW TRULY DIMENSIONLESS
: AND EQUAL TO CVx TIME / H%%2 ’
THE VARIATION IN TIME FACTOR IS FROM 0.0 IN STEPS 0OF 0.001

Fdexod Ao Ak g fege He e de de X % X de e Frdekfeax

DRAINAGE IS [MPEDED AT SINES DUE TO INEFFICIENT SIDE DRAINS
IMPEDANCE TN DRAINAGE IS GDVERNED B8Y THE I[MPEDANCE FACTOR AMDA

AMDA  IF INFINITY THE DRAIN 1S gFFECT[VE

AMDA IF OF THE ORDER 2F 0.1 OR 0.01 THE DRAIN Ig IMPEDING
AMDA IF  FQUALS IERO THE DRAIN EFFECTIVELY' IMPEDES

L L P e ok Gk fded tee kg

Is Jy K ARE THE INPUT PARAMETERS

I - SPACE STEPS IN ONE DIRECTION

J - SPACE STFPS IN THE PERPENNICULAR DIRECTION
K - TIME FACTOR STEPS

DIMENSION X(51}, Y(6), T{301), U(52,7:302). A(S52), B(S2), AV(302),
€s(302), v(302}, 0(302), T1(302), T2(302), W(S2,7,1), AD(302)
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READ (5,10Y I,J,K,RETA
FORMAT (315,F10.2)
WRITE (6,15) L4JeK,BETA

FORMAT (30X, 'INPUT DATA', 3120, FLO0.2///)

e oo off ok o ot fe oo o e e e Kol o *#***#****##**####*###t#
BOUNDARY AND  INITIAL CONDITIONS

t#*ﬁ#**t*#**#*#* #**###**##***v**#**ﬂ##*#

FMPERVIOUS BOTTOM
THAT IS AT L=1 THE LAYFR IS IMPERMEABLE

DO 50 N=1,K

DO 40 L=1,!

IF (M.EQ.t) GO TO 20

IF (L.EQ.E) UlL,M,N) =0,
GO TO 30

UL, M,H) = 100.

CONTINUE

CONTINUE

CONTINUE

PHYSICAL CONSTANTS TEELEL

DX = SPACE STEP IN ONE-DIRECTION

DY = SPACE STEP [N THE PERPEMDICULAR DIRECTION
OT = TIME FACTOR STEP .

DX = 0.2

DY = 0.2

DT = 0.001

R = NT/Dxx#2
WRITE {6,60) (H, DX, DY, DT, R)

FORMAT (20X, 'H =°*, 2X, F6.2, 10X, 'DX =*', 2X, F6.2, 10X, 'DY =1,
C2x, F6.2, 10X, 'DT =*, 2X, F6.2, 10X, 'R =t, 2Xy F6.27777)

********#**************##**##****************#*
AMDA = [MPEDANCE FACTOR *
***********##*******#*##*****#***************##
AMDA = INFINITY '
WRITE (6,70)

FORMAT (30X, 'IMPEDEMCE FACTUR = INFINITY?)

ekl de ok e Ao A e o Aok Ao el de SRl e de e ook e e de e e
THIS PART OF THE PRNGRAM CALCULATES THE EXCESS PARE
PRESSURES BY THE ALTERNATING - DIRECTION IMPLICIT METHOD
B o A A Aok B R A A S e % LA RS L E 2 Py

D3 600 N=1,K



150

s EalsNeNeNasNeNale]

155

160
180

185
19¢

195

260

KR=N/2.

T RB=N/2.

IF (KR.EN.BB) GO Tl 260

IA = I-1

JA = J-1

DO 190 M=1,JA

IF (M.EQ.1) 6N T0O 155

A(l) {2.%R)Y/7(1.+2.%R)

AL1) ({1.=-2.%RIXU(L,M, N)+R2{U( 1, M-l NY+ULLaM+1,N) )/ (L.+2,.%R)
M 150 LE = 2,1A

MLEI=R/(1.+2.%R~ R*A(LE-I))

BILE) = (R¥{UILE e M~1 ¢yMI+ULEsM+L o N) )+ {10 ~2, %P ) =UI{LE, M, N} +
CREB(LE-1)1/( 142, 2R~R=A(LE-1)) :

COMTINUE ’

GO TO 130 -

AlLl) = (7.%R)/(1.¢2,.%R)

BE1) = {2,%R=UCL, Ml NIC{1, =2, %R}ISU(L, M, N} I/ (1.+2.%R)

DO 16C LF = 2,1A

A(LE)=R/(1.+2 .=R-R%A[LE-1)) .

BILE) = (2. %R*AU(LE, MLy NI+ (1a=2. =R)2ULLE M, N) +R*R(LE-1))/
C(l-*-?.*R-R*A(LF-l))

CONTINUE

UCLIA, MpN#LY = BITA)

LLG = IA-1

D0 185 LGL = 1,LLG

KG = IA-LGL

UGKGy My N+1) = B(KG)+A{KG) *XUJ(KG+]1 My N+1)

CONTINUE . :

CONTINUE

At e e A Aol e oo e Aot o e e o e e e e e e sdeo T vl e g ke g oo ok s ol o e A e
1F AMDA IS INFINITY ULE:JsN+1) = 0. :

IF A'DA IS A FINITE QUANTITY, SAY = AMDA
UILE, JsN+1) = U{LE,JA,N+1)/ (1. +AMDA%DX)

IF AMDA IS ZIFRO THE [IMPEDANCE IS EFFECTIVE AND
UILE,J,N+1) = U{LE,JA,N+1)

B3 e e deie o e e A e fe e e e A deoRole A e o e e e ook Kool Fod e Ao Xek ek e okl ok Kk g e Ak

DO 195 LE = 1,1A
U(LE, JyN+1) = 0,
CONTINUE
GO TO 600

A = [-1

DO 420 L = 1,1IA

JA = J-1

ULy N+1) = U(LyJ,N,
IF {L.EQ.1) GO TO 270

TALL)Y = (2.%RY/({1.42,.%R)

B(1) ((1e=2%RI=U(Ly LyNI#R¥{UIL=-1 3L yN)+U{L#1,1,N))}/ (1.2, %R)
B0 265 LA = 2,JA

ALLAY=R/({1.42.%R~ R*A(LA~1))

B{LA) = ((1e=2.%RI=U(L LA, N)#R*¥{U(L=1,LA,MN)+U(L+1,LA,N})+
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270

275
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32¢
420
600

650
700

750

800
8s0
900
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CREBILA-1) /(142  #R=REA{LA-1))

CONTINUE "7

GO Y0 310

All) = (2.%R)/(1.+2.%R)

BLL) = ((1.=2%%R)&U{L,] LoNI42.5R%ULL+1, 1,N} }/(1.42,%R)

DO 275 LA = 2,JA

A(LAY=R/ (1,42 . %R-ReA(LA-1))

BILA) = ({1.-2.%R)%U(L,LA,N}+2, *R*U(L+1 LA,N)+R*B(LA—1))/
Cll.¢2.%R-R*A{LA-1))

CONTINUE

Ly JA, N+1l} = R(JA)

LLD = JA-1

" D0 320 LLA = l:LLD

KB = JA~LIA ot
U(L,KR,N+1) BIKB)+A{KB)*U{L ,KB+1,N¢]1)
CONT INUE : ) :

CONTINUE
CONT INUE

**#********#*#t#**#***#****m***#####****###****t*#4*#*$*#*#******#**##
THIS PART OF THE PRCGRAM PRINTS OUT THE OUTPUT
OF PORE PRESSURE YALUES AT VARIOUS NODAL POINTS

DO 900 N=1,K,10

NK = N

TINK) = DT*{NK-1)

WRITE (6,650) {YTINK))

FORMAT (*1¢, 45x, 'T=', 3X, F8.2) 6Xy UNITS'/777)
DO 700 M = 1,4 : : '
Y{H) = Dyx{M=-1)

WRITE (6,750) (Y(M), M=1,J)°

FORMAT (18X, 'X/Y*', 6&X, 6F10.3/7/7)

No 8sc L =1,1 .

X{L) = DX*(L-19 )
WRITE (6,800) (XIL)y {UCL,M,N), M=1,4))
FORMAT (15X, F6.2, 10X, 6E10.3/).
CONTINUE :

CONTINUE

gl et e ik TAERRELTKD & .#***#**********#ﬁ***vt*«v*a
THIS PART OF THE PROGRAM CALCULATES THE AVERAGE DEGREE
OF CONSOLIDATION BRY TWO-DIMENSIONAL INTEGRATION

USING SIMPSON'S RULE
L Rk sk (2 2 2T 3T e e g2 te oo oo ek oo afe o g e e e e e g A R

THE MUMBER OF ORDINATES NN Y- AXIS IS EVEN
AS SUCH A MODIFICATION IN SIMPSON'S RULE IS INCORPORATED

DO 945 N 1,K

DO 930 ™M 1.J

S1 = U(I'N;N)+U(lyM,N)
$2 =05




20

925

930

935

940

aon

945

OCONONONOMnON

oM

352

OGO

953

B0 920 L = 2,1,2
$2 = S2 + U{L,M,N)

CONTINUE
IA = -1
$3 = 0.

DO 925 L = 3,1[A,2
$3 = S3 » UL ,M, N}

CONT INUE .
S{M) = (DX/3.)1%(S1+4,.%52+42,%53)
CONTINUE : )

JA = J-1 .

VI = S(1)+S{JA)

v2 = 0.

DO 935 M = 2,44A,2
V2 = V2 + S(M)

CONTINUE
JR = JA-1
V3 = 0.

00 940 X = 3,08,2

V3 = V3 + §(M4)

CONTINUE

VIN) = (DY/3.)%(V1I+4.2V242,%V3) + [DY/2.)%(S(J) +S(J-1))

TOTAL VOL. OF DIFF. NET INITIALLY = (6-1)%(51-1)#%100,*DX%DY
= 1000

DIN) = 1.~-({VIN)/1000.)
CONTINUE
gk ke dkae k& Ao g ke S e de Ao de Ao fe A Aok ek e de deofe Reoe de e Fex e fe fede ok kA ok

THIS PART OF THE PRCGRAM CALCULATES THE AVERAGE DEGREE

OF CONSOLIDATION ALONG THE CENTRE LINE

BY ONE-OIMENSIONAL - .IMTEGRATION USING SIMPSON'S RULE
TRLe e e Ao Hode g fe e e e e de dee oo ek fefsde e e b sk e A et A K g

THE CENTRE LINE IS ALONG L = 26

L =26
D0 952 N=1,K
AV(N} = (DY/3.)*(U(L1I.N)+U(Lp5,N)+4.*(U(L'2'N)+U(L.GyN))+

C2.5UlL43s4N)IHIDY/2. )5 LULL S, NI +U{L,6,N))
ADIN) = l.=(AVIN}/AV(L))

AV{1l) 100. = DX*100Q.%*(6~1)

ADIM) = 1. - (AV(N)/100.)

CONTINUE

A-8

~**#*******#****#***********&*k****t******#*****#*********#*********#***

THIS PART 0F THE PROGRAM PRINTS THE OQUTPUT £OR
THE AVERAGE DEGREE 0F CONSOLIDATION WITH CORRESPONDING
TIME FACTORS

WRITE (6,953)

FORMAT ('1', 20X, *SQRT TF', 20X, *'TIME FACTOR?', 20X,
C'DEG OF CONS', 20X, *1-D HOR CONS*///) ,

D0 980 N=1,K




975
980

NK = N

TLIN) = DT*{NK-1)

U T2(N) = SORT(TI(NI}

WRITF (6,975) (T2(N), TI(N)' DIN), AD(N))

FORMAT (15X,
CONTINYE
STaP

END

E12.5, 24X, £12.5, 19Xy E12.5, 19X, E12.5//)

A-9



APPENDIX B

COMPUTER PROGRAM AND USAGE FOR
PREDICTION OF CONSTRUCTION PORE PRESSURES
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APPENDIX B -

ORGANIZATION OF COMPUTER PROGRAM

The computer program presented in this Abpendix
describes the construction sequence of JARI Dam (section
6.4.5) and calculates the pore water pressufes at several
nodal points. The program is in Fortran IV language and
may be used directly on computers of ihe type IBM 360/67.

The algorithm developed typically predicts the influ-
ences of dissipation on construction pore pressures. O0f the
six case histories studied, the program developed and written
for Jari Dam is presented as an illustrative example.

The equation governing the dissipation of construction
pore pressures is given by 6.4. The method of analysis is
by the ADI technique described in Chapter V. The pore pres-
sure generation term is DH (= vy B*DX where DX is the thick-
ness of the added soil layer) and this is equated to zero
when there is a construction‘stoppage.

The program furnishes the excess pore pressure at the
nodal points of the idealized cross-section of the core of
the Jari Dam. The first step in the analysis is to deter-
mine the construction sequence and the rates of construction
and work stoppage. The material properties of the core such
as unit weight and the coefffcient of consolidation Cy
(alternatively the permeability and compressibility character-

istics) should be known. Incidentally, it may be mentioned
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APPENDIX B

ORGANIZATION OF COMPUTER PROGRAM

The computer program presented in this Abpendix
describes the construction sequence of JARI Dam (section
6.4.5) and calculates the bore water pressufes at several
nodal points. The program is in Fortran IV language and
may be useé directly on computers of fhe type IBM 360/67.

The algorithm developed typically predicts the influ-
ences of dissipation on construction pore pressures. Of the
six case histories studied, the program developed and written
for Jari Dam is presented as an illustrative example.

The equation governing the dissipation of construction
pore pressures is given by 6.4. The method of analysis is
by the ADI technique descpibed in Chapter V. The pore pres-
sure generation term is DH (= v B*DX where DX is the thick-
ness of the added soil layer) and this is equated to zerb
when there is a construction'stoppage. |

The program furnishes the excess pore pressure at the
nodal points of the idealized cross-section of the core of
the Jari Dam. The first step in the analysis is to deter-
mine the construction sequence and the rates of construction
and work stoppage. The material propertie; of the core such
as unit weight and the coefffcient'of consolidation Cy
(alternatively the permeability and compressibility character-

jstics) should be known. Incidentally, it may be mentioned
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that the a]goritﬁm can handle any variation in the values

©of ¢, or B at any stage of construction or work stoppage.

The program is furnished for a uniform dfstribution of the

load added at the top (due to increase in layer thickness)

on all the nodal points irrespective of their position and
depth. This is justified to an extent because proper dis-
tribution of load along the depth and along the lateral
direction for a moving boundary problem is difficult to assess.

The entire program consists of a main and fourteen
subroutines. The main program reads in the input data and
sets up the initial and boundary conditions. It establishes
the physical constants such as core dimensions and the
material properties. The main program also regulates the
branching to the subroutines by setting up apbropriate
conditional statements.

Subroutine KOP generates the boundary conditions for
the first construction stoppage of three months. Subroutines
KOPPUL and KOPPU set up the boundary conditions for the
second and third construction stoppages of oﬁe and half
months eaéh. Subroutine NM1 computes the boundary condi-
tions for the period after construction for the entire core
section.

The subsequent subroutines calculate the excess pore
pressures generated (or dissipated) at the current nodal
points by the ADI technique. The computed quantities in all
the subroutines are returned to the main program. The main

program prints the desired information according to the out-
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-
o TS

put formats.

COMPUTER PROGRAM USAGE

INPUT DATA

The first step in the analysis of the influence of
dissipation on construction pore pressures is to decide on
the cross-section of the core in the case of a dam to be
built or to note the dimensions of an existing dam under
examination. The core section is idealized on the basis
descfibed in Chapter VI to get a rectangular mesh amenable
to finite difference approach. The boundary conditions at
fhe bottom and sides are also noted.

The second step is to note the rate of construction
together with the durations of construction stoppage, if any.
When necessary the actual rate of construction is modified
to enable easy computation on the lines suggested in section
6.3.B.

The mbst important parameters in calculating exceés
pore pressures are the coefficient of consolidation Cy and
the pore pressure parameter B. These values could, however,
be varied throughodt the construction operation.

The next step is to discretize the core of the dam
into a rectangular grid and decide on the.time interval so

that the space and time steps suit the computer memory re-

quirements.
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The input data card reads the space steps in both

directions and the time steps.

The READ variables are:
I, J, K
The FORMAT is,

315.

OUTPUT INFORMATION

The program computes and prints out the following

information:
(a) reprint of input data;
(b)' pore pressures at nodal points for specified

time intervals.
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ANALYSIS OF JARI DAM - CORE (0F ROLLED SILY .
230 FT. HIGH 40FT, WIDE ATV TOP
200 FT. AT BOTTONM
U/S SLOPE LV — 0.2H 0/S SLGPE LV = 0.SH

RATE CF CCNSTRUCTION:

- 50 FY¥, IN 3 MGNTHS
REST FOR 3 MONTHS
70 FT. IN T NMONTHS

REST FOR 1 L/2MONTHS
70 FT. IN 7 172 MONTHS

REST FOR 1 1/2MCNTHS
40 FT. IN 3 MONTHS

NEXT 6 MONTHS

COMMCN X(24)s Y(21}, TU38), U125422,39)y A{35)y, B39}, RySA,DHyNsJ

READ {5,101 [,J,K
FORMAT (315)

BOUNCARY CONDITIONS ##shsmionrts .
IMPERVIOUS BOTTOM -

DO 40 N = 1,K

IF (N.GT.6) GO TO 23
DO 22 L = I,N

IF {L.LE.3) GO TO 20
M2 = L/4.+0.05

JB = J-2.%M2
G0 TO 21

J8 = J
DO 22 ® = 1,48 _

IF (N.EQ.l +OR. L.EQ.MN .OR. M.EQ.l +OR. M.EQ.JB) UCL:MsN) = 0.0
CONT INUE

GO TO 40
CALL XgP

IF (N.GT.8) GO TO 24
GO TO 40

IF (N.GT.15) GO TO 27
NA = 6+1

N-2
6 L = NA,NB :

(L~7)/10.+140.05

2.5M1+1

L/4<+0.05

J-2.%M2
DO 25 M = JA,J8

IF (M.EQ.JA .OR. M.EQ.JB .OR. L.EQ.NB) UIL,M,NJ = 0.0
CONT INUE

x
=)
[ I I T NI 1

CONT INUE

GO TC 40
CALL KAPPUL
IF (N.GT.17) GO TO 28




OO

OO0 00

28

29

31

32

23

34

36
40

S0

50
IF
NB
NA
Do
M1
JA
M2
Ja

Do._

IF

TO 40
(N.GT.24) GO TO 5i
= N-4 .
13+]1
0 L = NA,NB .
(L-7)/10.+1+0.05
2.%M1+1
L/4.+0.05
J=2.%M2
29 M = JA,Jd8 .
{M.EQ.JA JOR, M.EQ.JB .OR. L.EN.NB) U{L,M,N) = 0.0

N nwi

CONTINUE
CONTINUE

GO

TG 40

CALL KOPPU

IF

{N.GT.28) GO TO 32
TO 40

{N.GT.32) GO TO 36

= N-8

20+1

34 L = NA,NB

(L-71/10.+1+0.05

2.%M1+1

L/4.+0.05

J=2 . %M2

33 M = JA,JB -

{MeCQeJA .CRe M.EQ.JB JGR. L.EQ.NB) UlLsM,N) = 0.0

COMTINUE
CONTINUE

GO

TC 40

CALL NM1
CCNTINUE

PHYSICAL CONSTANTS  #dxdkdekfediexek ddeted

cv
SA

= 35060./12.
= 1.

B34AR = 0.6
GAMMA = 125. LB/CFT.

GAN

MA = 125.

WRITE (6,53)(CV, SA, B3AR, GAKMA)
FORMAT (//7//720X, 4F20.5//77)

co

600 M = 1,K

{N.CE.32) GO TO 83
{(N.GE.23) GO TO 80
{N.GE.24) GO TQ 75
{N.GE.17) GC TC 70
(N.GE.15) GO TO 65
{(N.GE. 3) GO TO 60
{(N.GE. 6) GO TO 55
= 3./5.

\

B-6"



60

£S5

70

15

80

83

a5
SO

DX = 10.
R = (CVEITYI/DX%%2
DH = GALMA&BIAR#=DX

GO TO0 85

ST = 3./72.

0X = 10.

Cv = 300)./712.

R = (CVAOTY/0X%x%2
BH = 9.0 '
GC To 35

aT = 7./7.

BX = 10.

R = {(CV®3T)/0DX*%2
DH = SAMMAZ3BAR*DX

Gi2 TO 35

DT = 3./4.

0X = 10.

Cv = 2750d./12.

R = (CVABT)/DX%%2
CH = 2.0

GC TO 35

CT = 7.5/7.

DX = 10«

R = {CV#0T)/DX*%2
CH = SAFMAXBBAR%DX

GC To 35 :
DT = 3./3.

X = 10.

Cv = 2503./712.

R = (CVERTI/DX*%%2
CH = 0.0

GO TO 35

DT = 3./4.

DX = 10.

R = (CVHEDTI/DX%%E2
DH = GAMMA%BBAR*DX

GG 710 85

0T = 1.

TX = 10.

Cvy = 20017./12.

R = {CV#*IT1/NX%x2
DA = 0.

WRITE (6,90) (DT,0X,R,DH)
FORMAT 1 ////30X, 4F2C.4/7)

IF (N.GE.6) GO TO 421
K8 = N/2, ‘

83 = N/2.

IF {K2.EQ.BB) GC TO 260
M2 = N/4.+0.05

JR = J-2.%M2-1

DO 190 M = 2,48

All) = (2.%R)/{1.+2.%R)
g8(1}) =

({le={(2.%R/SAE%2) )%V, M NI +IR/SA%22)&(U{1,M~1,N)+

B-7




150

169
17¢

180
190

215
220

260

350

390

CULL ML, KY)+DH) /(] o+ 2. w82)
IF (N.EQ.1) GO TO 169

N0 150 LE=2,H

A(LE) =R/ (1.+2.%R~R¢A (LS-1))
SILEY=((R/SAYR2) S(ULLE, 4= 1,N) ¢ ULLE 44 1,N) ) 4 (Lo~ 2. 6R) /SARE2) )%
CULLE, M, N) +0HeRUBILE=1) )/ (1 .42, «R-R&A(LE-1) )

CONTINUE .

62 TO 179

N=1

UIN, M, H+1) = BIN)

IF {N.EQ.1} G) TOQ 190
LLG = H-1 -

D0 180 LGL = 1,LLG

KG = N-LGL
UIKGy®sN¢1) = BUKGI+AIKG)*U(KG+1,M,N+]1)

CONTINUE :

CONTINUE

Jo = g-1

IF (J3.E2.JD) GO TQ 600

JC = JB+i

D2 220 1t = JC,JID

AlL) = (2.#R)/{1.+2.%R)

BOL) = ((Llo=(2.%R/SA%%2))4U(1,M,NI+{R/SA#2 )& (U(1,M~1,N]+
CULL,M41, ) )+DH) {1 .+2.%R)

CC 210 LE = 2,3 .

A(LE) =R/ [1.+2.%3—R*=A{LE~11) :
BILE)=({R/SA*E2) Z{UILE,M~1 NI +UILE yMe1,M) ) # (1a~{ (2.%R)/SARE2 ) )5
CULLE, 4, M) bDH+R*S(LE=1)) /(1. 42, 4R—R#AA{LE~1) )

CCONTINUE

Uf3,%,d+1) = 3(3)

LLG = 3-1
DC 215 L3L
KG = 3-L5L
UTKG, M 8+1) = BIKGI+A(KG)#UIKG+L,M,N+1)
CONTINUE

CCNT INUE

GO TC 600

1,LL6

£C 420 L = 1,N
IF (L.€0.1) CO TO 390

.. T8 LLLEG.N) GC TO 401
Al2) = (2,%#(R/ISA#%2) )/ (1 +12.5({R/SA*%2)) )

B(2)=(R*(U(L—i:Zyﬂ)+UlL%I,Z,N))+(1;-2.*R)*U(LyZ,N)*DH)/
Clle+(2.%(R/SA%%2)))

¥2 = L/4.+0.05

JB = J-2.%M2-1

IF {L.EQ.3) GG TO 411

DO 350 LA = 3,48
h(LA)=(R/SA*¢Z)/(1.+(2.*(R/SA**2))—(R/SA**Z)*h(LA—l))
B(LA1={E*{U!L—1:LA:N)*U(L+lyLAyN))+(l.—Z.*R)*U(L,LA-N)*DH*
C(R/SA**Z)*B(LA-I))/(1.*(2-*(R/SA¢*2))-(R/SA**Z)*A(LA—I))
CONT INUE

GO TC 405

Al2) (2.4 {R/SAXE2) Y/ {1+ (2. % {R/SAE%2) ))

8{2) (2.¥REUCL+ 1924 NI #01.=2.%RI*UIL,2,N)+DH) /

[}
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4CO
411

412

401

. 410
420
421

430

596

495

535

.

Cll +t2,5{R;3A%%2)))

Ja = J-1

D0 400 LA = 3,48
A(LA)‘!R/SA**?}/(1-*(2.*l?lSA**Z))“(RISAt*Z)*A(LA'll)
BILA) = (2 5R%ULL4 LAY #{1 =24 ERYIFUYEL LA N)+DH
CC{R/SAXE2)XBLLA-1YI UL o+ (2 2 {RESARR2) 1= (R4SA®E2 ) 2ALLA~1) )
COMNT INUE

G2 T0 495 -

JC = JB-1

DO 412 LA = 3,4C

ATLAY = (RISAX%2)/(1.+(2, HLRISAXE2) )= (RASAE$2)FA(LA~1))
SLLAY = [R¥UIL=14LAGN) +ULLe L LAMI 4§ 1a~2 %R 1=UL LA,N) +DH +
CRASA#=#2)#*BILA=LY )/ 81+ {2, #{RFSA*X2) }— (Q[Sﬁ**?l*A(LA’l))
CCNTEINUE

J8 = JC+1

ALIBY = [RFSA¥CYI/LY 412 %(RISARR2) )~ ~{R/SA%£2)%A{JB-1))
8{4B)= (U(L,JﬁaN)+0W*R*A{J5 =131+ (2, %{R/SAT%2) )- (R/SA**z'
CxA({JU8-11)

GC TQ 405

Af2) = (Zq*(A/SA**Z))l(l.*(?.*lRlSA**Z)l)
Bl2)=tULL 2 NI+DH) /(1. # L2, % (R2SA%%2]) )} )

M2 = L&46.+2.05

J8 = J-2.%M2~1

CC 402 LA = 3,4B

ALLAY=(R/SA=22) /11, *fZ-*(R/SA*~2)l‘(R/SA**Z)*A(LA‘l))
SLLAY=S (UL, LA NYDH+ (R SAx#2) % {L A=) ) /

Clla+ (2 = (R/SA=%2Y 1-ER/SA*¥2) #A (LA~1})

CONTINUL
UlL,38,%¢1) = B (I3}
MR = J3-.
CO 410 MMD = 1,MD
MB = J8 —- MMD
ULL,M3,142) = B{MBY+AIMBITUILMB+1,N+1)
CCNTINUE .
CCRTINUE
GG TC &C0
IF (N.GE.8)1 GO YO 430
CALL DGRA
GO TC 60)
[F {N.GEL15) GO TO 4SS
KC = N/2«
8C = N/2.
IF (KC.ET.3C) GO TJ 59&
CALL SIva
GO TO &0¢C
CALL Stv
GC 70 600
IF (N.GE.LT7) GO YQ S35
CALL J0GI .
G TQ 602
I {N.GE.24) GO TO SS8
K2 = N/2.
8N = N/2.
IF {(KDJEQ.BDY GO T SS?
CALL KOPY
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(s Xe

SS7
563

503

. 595

601
6CO

602

604

606

508

610

612

614

520
625

650

675

G TO 600

CALL XCP2

GOy TO 602

IF [(N.GE.28) GO TO 599
CALL SK

Cn T0 &20

[F (N.GE.32) GG TO 601
KE = N/2.

8fF = MN/2.

[F {KE.S%.RE)} G TO 595
CALL SK1

GN TC 6CH

CALL SK2

GO TQ 6C2

CALL MM2 )
CCNTINUE -

B2 900 N = 1,K

IF (N.GT.32) GO TD 614
IF {N.GT.28) GO TO 612
IF (N.GT.24) GO TO 610
I (N.GT.17) G3 TC 608
IF {N.GT.15) GO TC 606
[F (N.GT, 3) G TG 694
IF (N.GT. 6) GO TO 6C2

BT = 3./5.
TIN) = DT&(N-1)

GO TO 425

3T = 3./2.

TIN) = 3.+DT={N-6) -
GO TC 62¢C

LT = 7./7.

TIN) = 2.+3.0+DT*{N-8)

60 TO 620

CT = 3./4. N
TIN) = 3.+3.0+7.+DT*(N-15) .. N

GG TO 620

8T = 7.5/7.
TIN) = 3.+3.0+#7.+1.5+DT*(N-17)

GD TO 429

Y = 3./3.

TIN) = 3.43.0+7.+1.5+7,5+NT&(N-24)

GC TO 629

0T = 3./4.

TINY = 3.+3.0+7.41.5+7.5+1L.5¢NT*{N=-23)
GO TO 629

nT = 1.

TIN) = 3.+43.0+47.+1.5¢7.5+¢3.+1,5+NTH(N~32)
ARITE (6,625) (T(N))

FCRUAT (*1*, 25X, 'T=*, 2X, F6.2, 4X, 'MONTHS'////)
DC 650 1 = 1,3

Y(M) = DX#«SAX{M—-])

WRITE (6,575) {Y(M), M=1,J)

FCRMAT (3X, °'X/Y', 1X, 11F11.3/, 7X, lOF11.3//77)
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7¢0
aco
300

NA = N

IF (N.GT. 6)
IF (N.GT. 35)
IF {N.GT.15)
[F {N.GT.1T)
IF (NoGT»Z’f)
IF IN.GT.28)
IF IN.GT.32)

NA
NA
NA
NA
NA
NA
HA

DO 8CO0 L = 1,+NA
X{L) = DX={L-1)

¥l =

JA = 2.%V1+1
M2 = L/4.+0.95
J3 = J-2.%M2

6
N-2
13
N=-4.
20
N—-3
24

(L=7)/10,+1+0.06

WRITE (6,7C0) (X{L)s (ULL,M,N), M=JA,JB))

FORMAT (2X,
CONTINIE
CONTINUE
STC2.

END

F6.2,

4X, 11€11.3/, 11X, 10ELll.3}
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42

36

43

38

B-12

SUBRCUT INE KOP
COMMNN X(24), Y{21), TU33), U125,22:37), A(39), B(39), R,SA,DH,NyJ

nn
M1
JA
M2

ir

36 L = 146

{L-7}/19.+1+0.05

24%41+1

L/I'o"'OQOS

J_ZD*MZ

35 M = JA,JB :

(N.GT.3) GC TO 42

‘LaEQ.(‘) .GR. »1.EQOJ4 .URQ r"oFQ-JB’ lJ(L'lldrN) = 000
T0 35

{M.EY.JA OR. M.ER.JS) UlL,MyNY = 0.0

CCNTINUE
CONT INUE
RE TURN
END

SUBROUT INE KCPPUL

DO
M1
JA
M2

IF

COMMEN X(24), Y(21), T(33}), U{25422,39)s AL39), B{39), R,SA,DH,N.J

38 L = 7,13 .

(L=7)/15.+#1+40.05

2e%M1+l

L/4.+0.05

J~2.%M2

37 4 = JA,J8

{N.GT.17) GO TO 43 '

{L.EQ.13 .0R. M.EQ.JA .CR. M.EN.JB) U{L,M,N) = 0.0
Ta 37 :

{M.EGaJA +0OR. M.EQ.UBY-ULL,M,N) = 0.0

CONTINUE
CCNTINUE
RETURN
END



44
29
41

45
46

SUBRCUT INE  KOPPU

0 41 L o= 14,29

M o= (L=T)/1Q0.¢140.05
JA = 2.%¥1+]

M2 = L/4.+C.05

JB8 = J-2.%M2

BC 1 K = JA,JB
IF (N.GT.28) 60 TO 44

IF (L.£0.20 .0R. M.EQ.JA .CR.
6o TO 39

IF (M.EC.JA OR. M.EN.J3) UL, M,N) = 0.0
CONTINUC

CoMTINGT

RETURN

END

SURRTUT INE aM1

COMICN X (24, Y(Zl)y 7(39)' U(/Sy?213°), AL39), 3(39),

DC 46 L = 21,24

ML = {L-7)/1G.+1#0,05
JA = 2.4&141 :
K2 = L/4.+0.05

J2 = J-2.%¥2

BO 45 1 = JA,J3

IF (L.£G.24 J0BR. MJEQ.JIA .CR. M.ED.
CCATINUE

CONTINUE

RETURN

END

JB) UlL,¥,N) = 0.

MaE0.I3) UL, MeN) = 0.0

B-13"

l COMMCY X(24), Y(21), T(38),.U{25,22,39)y A{39), B(39), RySA,DH,NyJ

RySA,DH,N,J




422

427
429

433

435
437

438

B-14

SUBRCUTINE DORA

COMMON X(24), Y{21), TU38), U(25,27,39), A(39), B(39), R:SA+DHsNyJ
K3 = N/2. N .
RPh = Nf2.

IF {KB.EJ.EB) GC TO 438

M2 = N/4.+0.08

J3 = J—-2.%*M2-1

D3 429 % = 2,J8

All) = (2.#R)}/(1.+2.%R)

Bll) = ((1.~{2.%R/SA%%2))#Ul 1, M;NI+{R/SA%%2)%(U(1,M~-1,N)+
CU(L, M1, M))+DH)/{1.+2.%R)

DO 422 Lt = 2,5

A(LF)=R/{1.+2.%R=-R*A{LE~1))

BILE)=L(R/SAZ%2 % (ULLE s M-1 ,N)+U{LF el N} )+ {le—{(2.%R}/SA%%2) )%
CUILEsMeMN)+DH+REBILE~1))/{1.+2.%R~-REA(LE-1))

CCNTINUE

U{S,¥M,N+1) = 81(5)

JG = 5-1

D0 427 LJ = 1,J6

KJ = 5-LJ

UlKI MM eEl) = BIKI)+ALKI)I*U{KI+1,MyN+1)

CCNTINUE .
CONTINUE

JC = J-1 .

IF (JB.EQ.JC) GN TO 447
JD = JB+1 .
DO 437 M = JD,JC

AL1) = (2.%0)/(1.+2. #R) ‘
B{1) = {{1e={2.%R/SA%£2))3UC1, M, NI+ {R/SA*E21x{U(1,M-1,N}+
CULL,¥+1,N) J4DHY /(L +2,%R) ’

DO 433 LE = 2,3

A{LE)=R/{l.+2.*R-R*¥A{LE~1)})

BILE)={{R/SA%x22 )% {U(LEyM=~1,NY+ULE M+ N)J+(1l~({2.%R)}/SA%%E2))*
CULLE My NI+CH¥R*B(LE~-1))/{1.4#2.*R-R*A{LE-1))

CONT INUE

U{3,M,N+1) = B(3)

JG = 3-1

CO 435 LI = 1,J6

KJ = 3-LJ - )

UIKI sM4,N+1) = BIKI)+AIKIILHUIKI+1 M N+1)

CONT INUE

CCNTINUE

GO TO 447

IA = 6-1

DO 445 L = 1,I1A

IF {L.EQ.1) GO TN 439

Af2) = (2.%{R/SA%®2} )/ {1 .+{2.¢{R/SA%%¥2})})
BU2)={R*(UIL-1,2,M)+U(L+1,7,N))+(1.=2.%R)*V(L,2,N)+DH}Y/
Cll.+{2.*(R/SA%%2))) .

M2 = L/4.+0.05

JB = J-2.%M2-1

IF (L.EQ.3)} JB = 19

0G 441 LA = 3,J8
ALLAY=(R/SAC%2) /(1 + (2. #(R/SA%%2))-[R/SA*=2 }*A{LA-1})

-



441

kih

430

B-15

BILAY=(R*(UIL-1,LANY UL, LA, NI I #01.-2.*R)XU(L,LA, M) ¢DHt

CIR/SA%#2JEBILA~1) I/ L1 e (2, #(R/SA%2)} )~ {R/SA*E2)%A(LA-1))

CENTINUL

IF (L.ERQ.3) GO TN 444

GO TO 442

A2C) = (R/SAXX2I/{1 4 (2. %(R/SA*%52))~LR/SA*22)%A(19))
B{20)=(U(L+20,8)+DHER#AL20-1) ) /(1a+{ 2. #{R/SA%%2) } = (R/SA%%2)

C*xAall19))

GO 10 ’o-"c 2
A2) = [2.%{R/SA#%22)} ) /{1 +#{2.%(R/SA%*%2}})
Bl2) = (2.%RE=U(L+1,2:N)#(1.~2.%R}*U{L,2,N)+0H)/

" Cl1l.+{2.%(RISARR2)))

449
442

443
445
447

M2 = L/4.+0.05
JB = J-2.&M2-1

NG 440 LA = 3,I8

ATLAY={R/SAXX2) /{1 e# (2. % (R/SAX€2) )-{R/SA*%2)#A(LA~1))
BILA) = (2., %R=U{L+1,LA NI+ (1.=2.%RI¥U(L,LASN)+DHE

CIR/SAZ&2)5BILA-L)}/(1e+{ 2.2 (R/SA*%22) )= (R/SAx%2}2A{LA-1))

CCONTINUC

JB = 20

UlL,J48,N+1) = B({JB)

IF (L.EQ.1) JA =2

JC = JB - JA

0O <43 FM = 1,JC

MR = J3-VM ‘ : :
UL, MB,N+1) = BIMB)I+AIMBI#U(L,%B+1,N#1} -
COCNTINUE '
CCNTINUE

RFTURN

END




442

444
454

L 462

466
469
470

B-16'

SUBRNLTINE  SIVA
COMMON X(24), Y(21)y T3}, U(25,22,39), A(39), B(39), RySA,DH,N,J

MA = M=2

M2 = NAZA.+D.0%
JB = J—?.*MZ-I.
N 454 1 = 2,08

All) = (2.28)/7(1.42.%2)

BUL) = ((1e—(2.%8/SA2))2ULL1, M, M) +(R/SAZE2)&(U( I,M-I,N)*
CULL P+ 1, NYI+OH) /(L L +2,.%2)

NC = N-2

IT (¥.LE.3) NC = 6

DG 442 LE = 2,NC

ALEY=R/(1l.¢2.22-PA{LE~1))

BILE)=({R/SAX2) F{U(LE,M=1,N)+U{LE, H*lyN))*(1-‘((2.*R)/SA**Z)’*
CULLE A, H)4DH+REBILE~1)) /{1 .42, *R-R*A(LE-1))

CCNT [HMUE

U{NCeNMeitel) = BINC)

LL = NC-1

CG 444 LG —\11LL

KG = NC-LG :

UIKGyMpliel) = BLKGI+AIKG)*¥U{KG+L1,M,N¢1)

CCNT INUE

CCNTINUE

JC = J-1 )

IF [JUB.ES.JC) GO TR 470

JD = JB+1

B0 469 M = JN,JC

All) = (2.%R3/1(1. *?.*R)

A1) = ({1e=(2.%R/SAZ%2))=U( 1M, N’*(P/QA**Z)*(U(ltﬂ—IpN)*
CU(L,t *1,1))*0”)/(1 +2.%2)

MM o= (v-13172.

NC = J-4.*NN-6

RC 462 LE = 2,NC

A(LE)=R/11.+2.%R-R*A(LE=-1)) '
BILE)=({R/SAXE2Y (U LE,M~1,N)+UILE ,M+L ,N) )+ {le~( (2. %R)/SA%k%2) )%
CULLE 4, M) +DHR+RF=R(LE~1))/ (1 .42, 2R—REA(LF-1))

CONTINUE

UINC,M,N+1) = BINC)

LL = NC-1 )

DO 466 LG = 1,LL

KG = NC-LG. . -

ULKG M, N+L) = BIKG)+A{KG) #U{KG+L,M,N+1)

CONTINUE )

COGNT INUE

RETURN

END



474

475

477

476

478

479

481

SUBRRIUTINE SIV

B-17

CoMinM X(24), Y{21), TU33), UI25,22,39), A{39), B{39),; R,ySA,DH,M,J

NA = N=-2
ne 450 L = 1.,\A .
(L=7)/710.+1+0.05

M1 =
JA = 2.%M142
JD = JA-1

IF (L.EQ.1) 60 TO 476
IF (L.EQNA) GO TO 43D

IF {L.53.6) GO TO 475

ALJID) = (205(R/SA62))/7{1.+{2.5(R/SA%%2)))
BUIDY=IRXLUIL=1,JD SN FULL+1,IN M)+ (L o=2.%R)%U{L,JD,N)+DH) /
ClL.4(2.*{R/SA%%2))) '

M2 = L/4.+C.05

JBR = J-7,4ii2-1

IF (L.U3.3 J3Re L.FG.7 .NR. L.EQ.11) GO TO 479

DO 474 LA = JA,JB .

AMLAI={RISA 2/ {1+ (2.5 (R/SAR%2) )= (R/SA%%2 ) #A(LA~1))
BILAI={2(UIL=1, LA, M) +ULL+ 1 LA, N) ) +01e—2. #R)FU(L,LA,N) +DH+
CIR/SA#2)EBILA~L1) )/ L L.+ {2. % R/SAL£2) )= (R/SA*X2)&A{LA-1))
COMTINUE

GC TC 434

ALJD) = (2.%(R/SAS#2))/{1.+(2.={R/SA%%2)))

BUJN) = (UL, JDN)+DH) /{1 +(2.%{R/SAX%2)))

JA = JD+1
ATJAY=(D/SA®E2) /(14 (2.5 [R/SA%%2) )= (R/SA%%2 ) EA(ID))

BlJA) = (UL, JAGN)$DR+{R/SA%X2)%U(L, JD4N) I/
ClL#(2.%IR/SA%%2) )= {R/SALE2)EA(ID))

MZ = L/’!.*‘O.‘)S

JB = J-2.%M2-1

JE = JA+1

DD 477 LA = JE,JB
ALLAIS{R/SAXE2YI/ (L o+ (2.2 (RISA*E2) )~ {R/SAE£2)*A{LA-1))
BOLAY=IRS{UIL=1 ) LASN)#J(L+1 LAN)I#(1.=2.%5RIZU(L,LA,N)+DH+
CIR/SA%RE2)%B(LA-1) )/ (1o +{2.%{R/SA%E2} )=(R/SA?%2)%A{LA-1))
CCATINUE

GC TO 424 :

AlLl) = (2.%{R/SA%¥2))/{ 1.2, %{R/SAX%2)})

BUL) = (2.%R=UIL+1, 1, NI +(1.=2.5%R)*U(L, L, N)+DH)/
ClLl.+(2.%(R/SAR%2)))

J8 = J-1

0O 4783 LA = 2,48
ALLAI={R/SARE2) /(1 + (2.2 (/SA%E2) ) ={ R/SAE22 ) =A{LA-1))
BILA) = (2.7R%=U(L+ L, LA, M)+ {1e—=2.%R)%U{L, LA, N)+DH+
C(R/SA+=2)4B(LA-1) /(1 + (2. 4(R/SA%x2))={R/SA®X2)=A{LA~1))
CONTINUE '

GO TO 484

JC = J8-1

SO 481 LA = JA,JC

ATLAY = [R/SAEN2)/ (142 6(R/SA%S2)}={R/SAX22)2A{LA-1))
BILAY = (R*(ULL=1, AN+ Le1, LA, MM +{1e=-2.2R)%UIL,LA,N)+DH¢
CIR/SAS%*21%BILA~L1) /{1 4 (2. (R/SA%52))-(R/SA%%2)} «A(LA~1)}
CCNTINUE .

JB = JC+1



480

482
434

486
490

“

ALJB) = (R/SA**?)/(1.0(2.*(R/SA#“2))-(R/SA**Z)*A(JB-I))
B(JE)=(U(L,J3.N)iDH*R¢A(JB-1))/(l.*(Z.*(R/SA**Zl)—(R/SA**Z)
CrAlIn-1))

GG TO 484

Aty = (Z.*(R/SA**Z))/(1.*(2.4(R/SA**2)))
B(JD)=(U(L;J0.N)*DH)/(l.*(?.*(R/SA**Z)))

JA = Jn+l
M2 = L/4.40.05
J3 = J-2.%M2-1

N0 482 LA = JA,JB
A(LA)=(R/SA*¢2)/(1.+(2.*(R/SA#¢Z))-(R/SA**Z)*A{LA—I))
BLLA)=CULL, LA N)#DH+ (R/SA#2) $R(LA=1) ) 7 >
Cll. (2.8 (R/SA=2) )= (R/SAFE2) £A(LA-1) }

CONTINUE

UIL,J3,N+1) = B(JR)

M¥ = J3-JA

DG 486 MMM = 1,MH

MB = J3-pup

ULL,#8,N¢1) = BIMB)+AIMB)®U{L, MB+L,M+1)

CONTINUE . ’

CCNTINUE

RETURN

END




e

500
5¢2

5C4
5C6

508

510

533

SUJRCUTINE  JOGIT

COMMCN X(24), Y(21), T(33), U(25,22,39), AL39), B(29), RySA,DH,
K8 = N/2. ’

RB = N/2. . :
IF (KB.FT.RR) GO TO 523 : : )
JR = J-1 ’ : .

DN 506 1 = 2,48
Al 1) 12.2R)/(1.42.%R)

21 ({La=l2, R/ SARH2) JEUCL, M, NY #{R/SAXE2){UL L, M~T1,N)+
CULL Ne2, MY )40 /01 o+2.%R) '

IF {#.37.14) GO TQ 4S8

NC =12 T

I[F (M.LE.3) € = &

B[O 496 LE = 2,MC :

MLEY=/ (1. 42 %R=R=A(LE-1)) - :

BILEI=({R/7SA®E2) 2L UL LEsM=1,N) €UILF 441 )N) )+ {La={ (2. %R)/SA%ED) ) &
CULLE M NI +0H62 %3 (LE=1))/{1 .42 . %R=-FSA{LE=1))

ONTINUER

GO TO 502

N (2-13)72.

NC J=4& V=5

DO 500 LT = 2,NC

ALEI=R/{) 42, %R-R*A(LS-1)) .
BILEI=((R/SAGR2) 5 {ULLE,M=1 yN) +U(LE ¢ M+ 1 yN) )+ (Lo~ [2.%R}/SA%E2) )%
CULLE M, M) +DH+REZ(LE-1)) /{1 .+2.*%R~R*A{LE-1))

CONTINUE

LINC, M, 8+1) = SINC)

LL = NC-1

DG 5C% LS = 1,LL

K6 = NC-LG

UIKC,NaN+1) = S{KGI+A(KS)I*U(KG+1,M,N+1)

CCNTINUE )

CONTINUE

GO IC Sls .

03 514 L = 1,12

Ml = (L=7)/13.+1+0.05
JA = 2.%%1+2

82 = L/4.+0.05

J3 = J=2.%82-1

JO = JA-1

IF {L.Z7.1) GO TO 569

IF {L.E2Q.6) 63 T3 503

ALID) = (2.7(R/SA%#2) )/ (Let (2. 2 {R/SA%%2)) )
BLJID)=(RXU(L=1,dD ,N)+U(L-1,JD,N))+{1.~2.%Q)x{L,ID,N)+DH})/
Cll.+{2.%{R/SA%%2)))

IF {L.E2.3 3R, L.ZQR.7 .OR. L.EQ.11} GO TO 507

DC 510 LA = JA,J3
ALLA)I={R/SA®H2) /(Lo + (2. (R/SARE2) )= (R/SA%X2 ) #A(LA-1))
B{LA)=(R*{U(L-1 LA, NI UL+ L LA MY Y+ o=2 . 2RIZUIL , LA, N) +DH+
CIR/SA=3Z2VFB(LA-1}I /0Lt (2. {R/SA®E2) )=(R/SA*%2) = A{LA-1))
CCRTINUF

GC TG 513

AlJD) (2.=(R/SA%E2IV/ 1+ (2, %(R/SA%%2)))

3(JD) (UL, D) DI/ (Lo +(2.%(R/SA%%2)))

B-19

MNsJ




511

507

515

513

512
514
516

U v B-20

JA = Juel] .
AMUIAI=(RZSAER2I /(] o4 (2. % (R /SASE2) I~ {R/SAREZ )AL ID) )

8{JA) = (U(LrJAyN)*DH*(H/SA‘*Z,*U(L:JD,N))/
Cllo+ (2. % (R/SAHX2)I-(R/SARE2IZA(INY)

JE = JA+1

€0 5CS5 LA = JG,dn

ALLAY={R/SA=x2)} /(L. (2. *(R/SA**?))—(7/54“*2)*A(LA'1))
BILAY=S{RAIUIL~1 LAY+ IL+1, LA, M) ) +{ 1.2, ERIEUIL LAZNY+DH+
CHR/SAZR2)FBILA=1II/ (L e (2.2 {R/SAeH2) )~ (r/SA**?l*A(LA-I)’
CCNTINUE

GO 70 513

AlL) = (2.5 (R/SAY32) )/ (Lo +(2.%(R/SA%%2])))

8(1) = {23021 L+1, L N)+(Le=2.5RI*UIL, 1, N)+0H)/
Cll.+{2.%{R/SA%%2))) :

CO S11 LA = JA,JB
AMULAV={R/SAZE2) /L 1o+ (2. %(R/SAX%2) )= R/SAE&2 ) sATLA-1) )
BILA) = (2.%R%UIL+ L LA, MY+ {1a=2. %R IXUL, LA, N) +DH+
CUR/SA®X2I%BILA=1) /{1 e (2% (R/SAL#2) )= (R/SA*42 )% A{LA-1))
CONTINUE

60 TQ 513

JC€ = J3-1

£0 515 LA = JA,JC

ALLAY = (R/SA=22I/{Y1 o+ (2.2 (R/SA%2) ) =({F/SA%32) A (LA—-1))
CILA) = (R*CIIL=T,LANI+UtL+L, LA, N) I+ {1.~2. *RIFUIL,LAN)«DH+
CIR/S5A%22)23(LA-1))/11. *(Z.*(P/SA**?)) (R/SAX%2)sA(LA~ l)) ’
CCNTINUE

Jid = JC+1

ALJR) = (R/SAXX2I/ (1.4 (2. %{R/SA™%X2) )=(R/SA*#2;=A{JB~1))
BUIBI=(ULL U3, N) #DH+REA(IB-1) ) /{1 o ¢ { 2. %(R/SA%%2} )= (R/SAE%R2)
C2*A{J3~-1))

UlL,J8,N+1) = 3{J8}

IF {L.T2.1) JA = 2

JC = J3 - JA

BGC S12 '¥ = 1,JC

MB = J3-¢M

U(L.Ju,d*l) = BIMB) L3I XYL, MR+1,N+1)

CCNT INUE

COMNTINUE

RFTURN

ENC




B-21

SURRALTINTG  ¥uPl
COVAIN X(24), Y(21), TL32), HU25:22437), AL39), 2133}y 2,SA,0HMyd

hA = N-b -
12 = NAJ4.40.05
g = J=2.0m0-1

D0 LeD o= 2,00
Al1) = (2.62)/().¢2,.5%)
A1) = ({1~ (2.7 /5A%22) )L 1 1,V yNY H{R/SA£22)2 (U] M~1,M)+

ULy L, ) Y0 /L +2,52)

336

338
54C

$42

S44
546

548

NCo= M-4

IF (MJLELS JAMD. H16TL19) NG = 16

7 {(Y.L=.2) € = 6

O S36 LE = 2,MNC .

AMLE)=2/{l.+2.82-2%A(LZ~1)) .

BILEFIS(0A7SA%XE2 00 LLE o =1, i) FULLSE o 1]l 28} ) 4+ ({Le={(2.%R)}/SAEX2) )%
CULLE I gN) eNHeR AR ILE-1)) /{1 o4 2. #R-E%A(LE~1)) i

CIANTINUF

U(l\.'-r.'.""y:l’l) = S(NC)

LL Me-1 .

210 338 LS = 1,LL .
KG MC-LG g

ULKG, M,ti+l) = BIKGIFAIKIY=UIKS+ 1,0 1)

CCATINUE

CONTINUGE

J€ = J-1

IF (JB.ES.JC)Y G TO 543

J = Ja+l )

£G %46 Y = JND,JC

A1) = (2.52)/(1.%2.7R)

BULY = ((1e=(2.50/5A%02) 121, ¥ o) #{R/SA¥X2I¥(U(L 4 M~1,N}*
CU{L,V+1,MY D) A (Ll #2.%2)

MN o= (¥=-13)72.

NC = J=4.%M1-0

CO %42 LE = 2,iC

ALE)=R/ ({1l +2.%3-R&A(LE-1))

BALE)=((R/SA®Z2 )2 {UILE =L ol ) ¢ L(LE yM+L3N) )+ {la=1{2.,%R)/SA%%X2) )%
CUTLF MM +RHR (L 7-1)) /(L 4 2. 2R-PEA{LE-1))
L CoNTINUL

ULNC,M,yti¢l) = B(RC)

LL = NC-1

DO 544 LS = 1,LL

XG = MNC-LG

ULKG M yi1#1) = BIKS) e AIKGYU(KG+]1,M,N+1)

COMTINUE - )

CONT INUE

RETURM

EMD

W
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SUSBROLTINE  KOP2 , :
COFMSR %1240, YU21), TU3%), UL25,22,39), AL39), B(39), R,SA,DH,H,d
NA = M-4 .

B0 565 L = 1,NA

Ml = (L-7)/10.+1+0.05
JA = 2.%V1e2

M2 = L/4.40.95

Jii = J-2.9p2-)

Jbo = Ja-1

IT (L.FQ.1) GO TO 554
IF (L.EN.NA) GO TN 558
IT {L.EQ.6 IR, L.EN.16) GC TO 555
ALID) = (2.5{R/SA®E2))1/(1.+{2.%(R/SA%E2)))
B{IMI=(RH{LIL-1,J0 ,NI#UL¢1,00,8) )14 (1.2, #R)EULL,ID,N)+DH) 7
Cl1.+(2.%{R/SAEX2))) .
IF (L.EQ.3 .OR. L.EQ.7 .0OR, L.EQ.11 .OR. L.EQ.15 .OR. L.EQ.19)
CGG 1O S61 :
DEC S52 LA = JA,JB
ALLAY={R/SASE2) /11 o4 (2. % {R/SA%E2) )~ [R/SA%E2 ) =A(LA=1))
BILAY={RE(UIL=T LA, NI +ULL+ L, LA SN 1+ {1e=2. %R )ZUIL, LA, N} +DH+
COR/SA®E2)2RLLA-1)) /0 1.+ {2, #{ K/ SA%%2) )~ (R/SA%E2) & A{LA~1))
552 CCNTINUC .
GO0 TC 562
554 A1) = (2.%(R/SA%%2))}/11.+{2.4(R/SA%%2)]))
(1) = (2.%RAU(L+1,1,N) (1 .=2.%R)=U(L, 1, M) +DH)/
Cll.#{2.%[R/SA%%2) )
Jd = J-1
CO 556 LA = 3,48 . _ .
ALLAY={R/SAF22) /711 .+ (2. #{R/SAZ %21 )1~ (R/SA*%2)=A{LA-1) )
BILA) = {2.4R*U(L+1, LAy NI #(14a=2.%R)¥U (L, LA, N) «DH#
CIR/SASH2)SB(LA=1) 1/ {1 o+ (2. 5 {R/SA%2) 1= (R/SA%¥2)%A(LA-1))
556 CCHTINUE ' :
GO TC 562
555 AQJUD) = (2.5(R/SAE%2}I/11.4(2.%1R/SA%%2)))
BLID) = (UILdD,NIDHY/ {1+ (2. %{R/SAE%2)))
JA = JD+1
ATIAY=AR/SA*%2) F (1o (2. 5{R/SA%2) )~ (R/SAZX2)EATID) ) .
BUJAY = (UL, JA,N) #DH{R/SASS2)*U(L,JD,N) ) /
Cl1.4(2.5(R/SA%%2) ) ={R/SAXX2)FA(ID)) '
JE = JA+1
CC 559 LA = JE,J3 :
ATLAY=(R/SA#%2) /11 e+ (2.8 (22SAL=2) )~ (R/ISA%%2 J2AILA-1) )
BILAY=(RA(UIL=1, LA, #U(L+ 1, LA, N) Y R 1. =2, %R )%U (L s LA, N) 4014+
CIR/SAZ*2}2B(LA=1) /11t 12,4 (R/SA%%2) )= (R/SA#%2) *ATLA-1) )
559 CONTINUE
GG TO 562
561 JC = J3-1
DO S&5 LA = JA,JC
ATLAY = (R/SAZ=23/{1.8(2.%(R/SA%%2) )= LR/SA%221EA{LA~1))
B(LAY = {RFCUIL=L, LA, NI +UCL+ L, LA ) #(10~2.#R)I=ULL,LA,N) +DH#
CIR/SAZ=2)4BILA-1) /(1o + (2.2 {R/SA¥42) )~ (R/SA®52) *A{LA—1) )
565 CCNTINUE
JB = JC+1
ALIBY = [R/SARF2)/LL.+[2.%(R/SA%C2})~(R/SA%E2)2A(JB~1))




658

5¢4
566

B-23

BLIBY =ML, 0, NI 4DHERFAC IR =101 /(Lo ¢ (2, 2 (KIS ATE2) )= (RS A%E2)
CxA{IB-1))

G TD 562

ALID) = (2.7(R/SAT#2)1/ 11+ (2. %IR/SARE2))) - -
REIDI=(UEL g IN, NI #DHY /(Lo ¢ (2, 5 {K/GAEE2) ) )

) S60 LA = JA,JB
AMLAY=IR/SA#22) /1] o+ (2. % LR/SAE#2) )= (R/SA®22 ) #ALLA-1))
BOLAY=(UTL LA, N)+DHE (RISAZE2) 4R (LA=1) )/
Cll.+(2.%(R/SA*2) ) =( /SAEE2 ) £A{LA-1))

CANTINUE,

ULL,JR,i1t1) = B(JB)

IF (LFQLL) Ji = 2

MM o= I3 - JA

DO Sh4 MEM o= 1,4M

M3 = JR-EMP

ULL M3, N+1) = BIHMBYICALAH)SUTL, MR+ 1,N#1)

CONTINUE

CONTINUE

RETURN

END
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570

572
574

576
578

580

B-24

SUARCUTIANE  SK .
COVACH YU24), YI21), TU33), UC29,22,39), AL39), R(39), 2,5A,0H,N,J

KR = M/2. .

23 = N/2.

I¥ (K3.03.R32) 58 TN 53)

Ji = J-1

DO 573 1 = 2,45

ALY = (2.,%2)/(1.+2,2R)

1) = ((1.‘(3-*R/SA**2))*U(11“7”)*(R/5A¢*2)*(U(1oM'er)*

CUlL el N))#D:e) /{1 . 42.%P)
If {¥.5T.12) 5C T 570
NC = 19
IF [(M.LE.S) NMC
IF (V.LF.3) NC
€O S56R LE = 2,NC
ALLF)=R/ (1. +2.5R-REA(LE~1))
B(LC)=((Q/SA*#Z)*(U(LE.M-I.N)+U(LE.H+1.W))+(1.—((2.*R)/SA**2))*

COLLE, M) +TReAER(LE-1)) /(1 o k2 #R=PA{LE~1) )

CCNTIANLE

G3 TG 574

MM = (F-13)72.

NC = J=4.%MR-6

BO 572 LE = 2,NC

ALLT)=R/(1.42.%R~R*=A(LF-1))
B(LE)=((R/SA**ZJ*(U(LF.N—L1N)+U(LC.M+1,M))+(1.-((2.*R)/SA**2))*

CULLE M NI +DF+RZBILE-1)) /{1 o +2 . #Q-R*A(LE=1) )
COANTINUE
ULNC s M,51+1) = B3(NC)

LtL = NC-1

ol 576 LG = 1,LL

KG = MC-LG

ULKGyligl141) = BIKGI+A(KS)I*ULKG+L,M,N¢l)
CONTIMNUE .
CONTINUE

GO TC 588

DO 5&56 L = 1,17

15
6

Ml = {1-7)/1C.+1+0.05
JA = 2.%41+2

2 = L/4.+0.CS

JB = J=-2.=M2-1

Jo = JA-1

IF {L.EQ.1) GO TO 583

IF {L.EQ.6 .OR. L.ED.16) GL YO 573

ALID) = [2.%(R/SA¥%2))/ (1.4 {2.%[R/SA%*2)))
BLJDI=(R={U(L-1,JD sNYHU(L=1,d25M) Y+ (1o=2.%¥R)2Y(L,IN, NI +DH) /7

T C{Llet(2.%(R/SA%%2)))

582

IF (L.ET.3 .0R. L.EQ.7 ,OR. L.EG.I11 LOR. L.EQ.15 .OR. L.EQ.19)
€GO TN 537, _
£O 582 LA = JA,J8
ATLAY=AR/SAZ%:2) 7 (1. ¢ (2,5 (R/SALH2))~(R/SAE2)XA(LA=1))
BILAY=(RH{UIL=1 LA NI FIIL+ 1, LA, M) ) #l1e=2.%R)*U (L, LA, N) +DH¢
CIR/SAF*2VXBILA=I) /(1.4 (2. 2(R/SA%%2} )= (R/SA®%2)EA{LA=1))
CONTINUE '
GS T 539



573

579

SET

581

583

585
589

584
586
588

B-25

(2.%(R/SA®$2))/ (1. +( 2. #(R/SA¥%2)) )

ACID) =
RUJD) = (ULL,JD,N)+DHI/ {1, 4#(2.%(R/SA%%2)]})
JA = JD+1

AIAI={R/SA% %2} /{1 4{2. #(R/SA«%2))-{R/SA%%2}%ALJD))

B{JA) = {ULL,JA N)+DH«(R/SA®%2)=U(L,JD,N))/
Cll.#(2.%(R/SA%%2))-{R/SA£%2)*A(JD])

JE = JAfl

DD 579 LA = JE,JB

AMLAYS{R/SA*%2) /(1o +{2. % (R/SAX#2) ) —{R/SA*%2 )*¥A{LA-1}}

BILAJ=(RS(UIL-L,LAFNY+U(L+L,LAN) ) #{1.-2,%R)*U(L,LA,N)+DH+
CIR/SARX2)IEBILA-L))/ {14 (2.%{R/SA%E2) )= (R/SA%¥2)%A[LA-1))
CONTINUE

GO T0 589 .

JC = JB8-1

00 581 LA = JA,JC )

A{LA) (R/SA%%2)/ (L. +{2.%{R/SA%*£2) )~ (R/SA%¥2)*A(LA~-1))

B{LA) (RE{UIL=1yLANY +UIL+ 1, LANI ) +{1e=2.%RIFUILLAJN) #DH ¢+
CULR/SA%%2)#RILA-1) )/ L.+ (2. #(R/SA**2) ) ={R/SA*%2}+A(LA-1))

CONTINUE

JB = JC+1

A(JIR) = (R/SAE%2)/(1e+ (2.5 (R/SA**2)}-{R/SA%%2)*ALJIB-1]})

BIJB)=(U(L s JB,N)+DH+R*¥A{IB-1}) /(L. +{2.*(R/SA%%2) }~(R/SA*¥*2)
C*A{JB-1)) :

G0 TQ 589

A1) = (2.8 (R/SAE$2) )}/ (1.+(2.%(R/SA%%2]}))

BIl) = {2.%R*=U{L+1,1,N)+(1.-2.%R}*UlL,1,N}+DH)/
Cll.+(2.%(R/SA%%2]))

D3 SES LA = JA,JB

MLAI=(R/SA#%2) /{1 e+ (2. % (R/SAE%2) }=(R/SA*%2)*A{LA-1})

BILA) = (2.%R%3UIL#EL,LAGMI+{Lo=2%RIFUIL; LA, N)+DH+:
C{R/SA*%2)1%B{LA-1))/ {1+ [2.%{R/SA¥%2) }—{R/SA%*%2)*A[LA~1))

CONTINUE . .

UlL,JdB,N+1) = B{JBI}

JC = JB - JA

DO 584 VM = 1,JC

MB = JB-MM

U{L,M8,M+1) = BIMB)+AIME)*UIL,MB+1,N+1)

CONTINUE

CONTINUE

RETURN

END
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551
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593

594
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651

B-26

SU3RCYTINE SK1
COMMCN X (24), YI21), T{38), U{25,22,39), A(39), BIU39), R,ySA,DH,N,J

NC = N-8
M2 = NC/4.+0.05
JB = J-2.%p2-1

DG 592 M = 2,48
ALY = {(2.2R)/[1.¢2.4R)
Bl1) = ((1.—(2.*R/SA**2))*U(1.M.N)+(R/SA*“2)*(U(1,M-1,N)+

CUlL M+, XY 1+0H5/(1.42.%R)

IF (#.LE.S} NC = 16

IF (F.LE.3) NC = 6

D0 590 LE = 2,NC

A(LE)=R/(1.+2,%R~R*A(LE-1))
B(LE)=((R/SA**Z)*(U(LE:M~11N)+U(LE:M+1:N))*(1.‘((Zo*R)/SA**Z,)*

CU(LE:M,N)+DH+R*B(LE~I))I(l.+2.*R—R*A(LE—1))

CONTINUE
UINC, 15,1+ ) = BINC)

LL = NC-1

pC 561 LG = 1,LL

KG = NC-LG

UIKG,M,N+1) = BIKG)I+A(KGY*U{KG+L,M,N+1)
CONTINUE .

CCNTINUE

JC = J-1

IF (JUB.EQ.JCY GO TO 651

Jo = JB+1

D0 595 M = JD,JC

All) = {2.%R)/(1.+2.%R)

B(1l) = ((1.-(2.*R/SA**2))*U(l,M.N)+(R/SA**2)*(U(1.M—1,N)+

CULL,M+1,N)I+DHY /{1 .+2,%R)

o= (K-13)/72.

NC = J-4,.%PN=~6

IF (M.LE.12) NC = 19

DO 563 LE = 2,NC
ALLE)I=R/({1.+2 ,%R~-R*A{LE-1))
B(LE)=((R/SA**Z)*(U(LE,M—er)+U(LE,H+1rN))+{1o—((2.*R)/SA**2))*

CULLE,®, NI+ OH+R*B(LE=1})/(1.+2.%R—-R*A(LE-1))

CCNTINUE
UINC,M,N+1) = BINC)

LL = NC-1 :

DO 554 LG = 1,LL

KG = NC-LG :
U(KG,M,N+#1) = BIKG)+A{KG) *UIKG+1,M,N+1)
CONTINUE ’
CONT INUE

RETURN

£ND



552

662

663

653

661

B-27

SUBROUTINE = SK2 i
CC¥HSN X243, Y(21), T(38), Ul25,22537)y AL39), B(39), R,SA,BH,M,J
NA = N-8 ’ '

DO 659 I = 1,NA

Ml = [L-7)/10.+1+¢0.05
JA = 2.6V]142

M2 = L/4.+0.05

JB = . J=2.%M2-1

Jn o= Ja-i

IF {L.EQ.1) GO TO 653

IF (L.EQ.O JOR. LlEQ.LIB)Y GO TD 662

IF {L.EQ.NAT GO TO 655

ACID) = (2.2(R/SARX2) )/ 1e#(2, % (R/SA%%2)))
BIIN)I=(R2(U(L-1,JD #NI)+U(L#1:,JD,NII+(1.-2.%R)*U{L4JID,N}+DH) /
Cll.+(2.%(R/SA%%2)})

I (L.EQ.3 .0R. L.EQ.7 .0OR. L.EQ.Ll .OR. L.EQ.15 .OR. L.EQ.19
C.0R. L.ER.23) GO TO 660

DO €52 LA = JA,J8

A(LA)={R/SAX2) /(1 + (2. % (P /SA%R%2) )~ (Q/SA**ZJ*A(LA-I)) )
BILAY={R&{U(L~-1,LA,N)+J{L+1,LA,N)) #(1oe=2.%R)IZU(L,LA,N)+DH*
CR/SA=*2)#B(1A-1))/(1.+(2. ¢(R/SA’*2))—(R/SA*»Z)*A(LA—I))
CONT INUE

GC TO 657

AIN) = (2.%5{R/SAX%2) )/ {1l +{2.%{R/SAX¥%2)}))

RUJD) = (UILsJD,NI+DH)/ (1 #{2.%(R/SA%%2}})

JA = JD+1
AMIAI={R/SAXE2) /{1 o+ {2, % {R/SA%%2) )= {R/SA¥%2 ) %A{ID))

BEJAY = (UL JAZNY#DHE(R/SAER2) UL INyNY)/
Cll.+{2.%[R/SA=%2))—~(R/SA%%2)}*A(JD))

JE = JA+1

DC 663 LA = JE,JB

A(LAY=(R/SAx%2} /(1. +(2.¢IR/>A**’))—(R/SA**Z)*A(LA—I))
BILA)=(RE(UIL=1yLASNI+UIL+ 1, LA M) Y+ 1a=2. %R IFU(L S LA,N)+DH¢
CIR/SAZF2V%B{LA-1))/ {1+ (2.3 {R/SA%%2}) - (R/SA*¥2)*A(LA-1))
CONT INUE .

GO TO 657

A1) = (2.%(R/SAX%2) I/ (L. +(2.%(R/SA%%2)))

Bl1l) = {2.%R¥U{L+L1 Ny (1. -2, %R)%J{L,1,N}+DH)/
Cll.+(2.%(R/SAX%2}))

Jg = J-1

PO €S54 LA = 2,48

ALLAYI=(R/SA%%2)/{La ¢ (2. 5(R/SAX%2) )~ (R/SA**Z)*A(LA—I))
BILA)Y = {(2.%R*¥ULIL+1; LANI+ (1. =2.%RI=U{L,LA,N)+Dii¢
CIR/SAx=%2)%B{LA-1)})/{ 1.+ (2. 2{R/SA%%2) )—={R/SAX*2)=A({LA-1))
CGNTINUE

GG TO 657

JC = J3-1

DO 661 LA = JA,JC

A{LA) = (R/SA%%2)/(1.+{2.%{2/SA*%2))-{R/SA¥*2)>AlLA-1))
BILAY = (R&E(UIL-1,LALN)+UTL#Y LA MN))+{1.-2.#R)XUIL,LA,N)¢DH+
C{R/SA%=x2)%B(LA-1)}/(1. +(2 BR/SA*X2) J—(R/SA**2)&A(LA-1})
CCNTINUE

J8 = JC+1

A(JB) = [R/SAZ%2}/{1.+(2.%(R/SAS*2})-(R/SA*¥2}%A(JB~1))




£55

656
697

B-28 .

BLUBY =L B, MY #NH+REA{IR~1)) /(1. ¢{2.5{R/SA&X2) }={R/SA%%2)
CEALIR-1)) )
60 I 657 .

AJDY = (2.5(R/SA«22) Y/l ¢ (2. %(R/SAE=22)))
BIIC)I=IUIL, D, DA /{1 ¢ (2. % (P/SAXE2])))

ne 656 LA = JA,JB
ALAY=(RISARE2) S { Lo+ (2.5 (R/SAE22) )~ (R/SA%%2)*A(LA-1))
QLAY = (UL LA, NY+DH+ (R/5AS%2) =R (LA-1))/
CUlo+ (2.8 (RASA®%2))=(R/SA*xu2)=A{LA-1))}

CONTINUF

UlL,JR,%¢1) = RBUJB)

IF {L.EQ.1Y JA = 2

uu = ga - JA

DU 653 ¥MM = 1,HM

MB = J3-MMp

ULL,M2,0 1) = BLABI+ALIBISUIL, B+1,N+1)

COGNTINLE -

CONTINLY

RETURM

END
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662
663

664
665

6€&6

667

.
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SUBRCUT INL NM2 .
CONMUN X124, YI21), TU 33}, U(29,22,39), A(39), B(39), RySA+DH,N+J

KB = N/2.
B3 = ¥/2.
IT (KB.EJ.PB) GO TN 466
d3 = J-1

CO 665 M = 2,JR .

All) = (2.7%R)}/(1.+2.%R) . : .
Bll) = {{la—(2.%R/SATH2) YUl L M, ) +(R/SAF%2)Z{U(]L ,M~1,N)+
CUlL Y+l ,N)I#DHI/ (1 .+2.%P)

fF (v.5T.1C) GO TN o6l

MC = 23

IF [FJLF.S) MO
IF {(¥.LE.2) NC
L0 660 LE = 2,NC

A{LEY=R/(1 .42, *R-R*A(LE~-1})

BILE)=((O/SAZZ2 )% (U(LE M—L 4N+ UILE M+, N) }+ (Le—({2.%R)/SA%%2) )=
CULLE,MpN)#NDH+REB(LE-1)1/(L.¢2,.*R-R#¥A(LE~-1})

CONTINUE

GG TO é53 §

IF (M.LT.15) MM (M-14)/2.

IF {M.GE.15) MN (M-13¥/72.

NC = J=4.*MN-6 )
DO ¢62 LE = 2,NC
A{LE)=R/{1.42.%2-R*A{LE-1)]) .

BILE)=((R/SA=E2 )= (UILE,M=1 NI +UILF M+, M) )+ (1loa—([2.%¥R)/SA%XE2]) )%
CU(LE M MN)+DH+RABILE-1)) /(L o+2. %¥R-RZA(LE~1)}) '

CONTINUE

U(NCeX,id+l1) = BINC)

LL = NC-1

DO 664 LG = 1,LL

KG = NC-LG

UIKGyMaMH+1) = BIKGI+A(KG)EU(KG+L, M, N+]1)

CONTINUE

CCAhTINUE

GO T1C 677

DO 676 L = 1,23

M1 (L-7}/10.+¢1#0.05

JA 2 %EM1+2

M2 L/4.+C.05

JB J=2.%PF2-1

JO JA-1

IF {L.ER.1) GO TO 672

IF {L.CQ.6 0OR. L.EQ.IO) GU T H6R

A(JD) = (2.5{R/SA%%2))}/(1e+{2.%(R/SA%%22)))

BLIDI=(RH=(UIL=1,JD HyNY+UILEL, DM )+ {1e=2.%R)FU(LsID4N}+DH}/
Cl{l.+(2.%{R/SA%%2))) . .

IF {L.EQ.3 OR. L.EQ.7 .0OR, L.EN.11 .OR. L.EQ.15 .OR. L.EQ.19 .0OR.

16
6

CL.EQ.23) GC TO 670

DO 667 LA = JA,J8

ATLA)=(R/SARE2Y /(Lo + (2.5 (R /SAXF2))-(R/SA®22 ) «A(LA-1)) .
BILAY=(R*{UL-1,LA,N})«U(L+1,LA,HNI) H{1.=2.%R}I%UIL,LA,N) +DH+
CIR/SA%%2)I%(LA-1) /(L o# (2. % (R/SA%*2))-(R/SA%%2)+A(LA~1))
CONT [NUE ’
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670

671

612

673
674

675
676
677
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GG 1O 674 . ,

AJID) = (2.5(R/SAY22))/ (1. +(2.¢(R/SA®E2) 1))

BOIN) = (UL, JD NI NI/ {La4 (2. ¢{R/SA%%2)))

JA = JD+1
ACJIAY=(R/SAEX2) /{1 + (2.5 (R/SATE2))=(R/SA%E2)¢ALID) )
BLJIAY = (ULLyJA M) N2/ SAEX2) UL, IDN) Y/
ClL (2.2 (R/SA%E2))~(R/SA*&2)=A(IN))

JE = JA+l

PO 669 LA = JE.JB

ALA)=(R/SA2 21 /7( 1+ (2. ¥(R/SAT#2) )= (R/SA&%x2)*A(LA-1))
BILAY=(R¥IUIL=1 sLA, N +UIL+1, LA, K} #CLo=2.%¥R)I“U(L, LA; NI +DH+
CIR/SAT%2123(LA-1)1/{1.+(2. #(R/SA*%2) )~ (R/SAt*2)*AlLA-1))
CCNTINUE ‘

GO 10 6T4

JC = JB-1

N0 671 LA = JA,JC

ALAY = (R/SA%%2)/(L.+(2.%{R/SA=%2))—[R/SA*#2)=A{LA-1))
BILAY = (RelUIL-1,LA,N) #UIL+1,LA,MY ) #{1o-2.%R)%UIL,LA,NI+DH
CIR/SAEH2)2R{LA=1)1/(1.+{2. ${R/SA*%2) )= [R/SA¥$2)%A(LA=1])
CONTINUE o

JB = JC+1 S

ALJB) = (R/SA%22)1/(1.+(2.#ER/SA%E2))—{R/SA**2)*AJB-11)
BLJIBY=(U{L s IRy NY+DHERXATIB=11) /7 EL ot (2.6 (R/SA®%2) )= (R/SA%%2)
CEALIB-1 D :

GO TC 61%

ACLY = (2.%FRISA®E2) /(1.2 2. % (R/SA%2)) )

B{1) [2.%R2*U(L+1s Ly N)+01a=2.2RIFULL, 1y N) +DH}/
C(l.+{2.%(R/SA%%2)))

NG 673 LA = JA,JB
ALLAY=(R/SA5%2) /(1. + (2. ¢ (R/SA%£2)1-[R/SA#*2)*AILA-1))
BILA) = {2.3REUILEL LARNI4 (Lo=2.¢RIXUTL, LA N) #DH4
C(R/SA##2)%#B(LA=1))/{ 1.+ (2. #(R/SA#2) )= (R/SA%%2)*AlLA-1))
CONTINUE

UlL,JB,N+1} = BLIB)

1F {L.EQ.L) JA = 2

JC = 38 - JA

DO 675 M = 1,JC

MB = JB-¥M .

ULL¥R,H#1) = BMB)+A(MB)*UIL,MB+1,N+1)

CONTINUE

CONT INUE

RETURN

END . o
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COMPUTER PROGRAM AND USAGE FOR
ONE-DIMENSIONAL FINITE STRAIN CONSOLIDATION™
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APPENDIX C

ORGANIZATION OF COMPUTER PROGRAM

The computer program described in this Appendix is
based on the theory presented in Chapter VII of this study.
The program is in Fortran IV language and may be used on
computers of the type IBM 360/67.

The program deals with the one-dimensional, non-
Tinear consolidation behaviour of a sedimenting soil under-
going finite strains. The program furnishes the excess pore
pressure and the void ratio throughout the current depth at
chosen intervals for any time step. The program also supplies
the current height, the total added height, and the average
current density at each time step. Finally the program cal-
culates the average degree of consolidation of the sedimented
thickness at the end of fhe duration of deposition.

The program is for a moving boundary problem where
the top boundary is in perpetual motion. The program is
applicable for the case of a normally consolidating soil
whose cempressibility and consolidation characteristics are
known. The program is presented for a uniform distribution
of the added weight on the top (due to sedimenting soil)
throughout the current depth of deposit. However, the
algorithm can easily be modified to incorporate a continuous
variation of the added weight across the depth.

The equation governing one-dimensional, finite strain
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consolidation behaviour of a sedimenting soil is given by
7.20. The average degree of consolidation is defined as

the ratio of the difference between the total added weight
and the total excess pore pressure to the total added weight.

The main program reads all the input data concerning
the sedimenting soil and sets up the initial aﬁd boundary
conditions. Also it establishes the space and time intervals
and the initial effective stress of the very thin layer over
which sedimentation takes place.

Subroutine FS1 calculates the relevant quantities
depending on the material property values supplied by the
main program when there is a steady growth of soil layers.

It also calculates the current void ratio for each of the
‘nodal points at a specified time. The calculated quantities
are then returned to the main program.

Subroutine FS2 calculates the required q&antities when
the deposit is at a standstill and there is no input in form
of growth of layers. The dissipation is allowed to take
| place at a constant load. The computed quantities (same as
in subroutine FS1) are returned to the main program for
further calculation.

The main program makes use of the quantities obtained
from the subroutine(s) to calculate the excess pofe pressure
for each of the existing nodal points at prescribed time
intervals. Further the program calculates the current height
of the sediment (by trapezoidal rule), the average current

density (of the sediment thickness), and the average degree
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of consolidation at the end of the deposition period by

Simpson's rule. The computed results are printed as per

the output format.

COMPUTER PROGRAM USAGE

INPUT DATA

The first step in the analysis of one-diménsiona],
finite.strain consolidation of a sedimenting soil is to
determine the rate of mass deposition and its duration.

Next, the compressibility and permeability characteristics

of the soil are to be determined. A choice is to be made

as to the input void ratio and corresponding effective stress
at which the soil is being deposited.

The required input data cards are as follows in the

order presented.

(a) First card: The fir;t input data card reads the
specific gravity, the input void ratio and the
input coefficient of consolidation.

The READ variables are:
GS, EO, CV
The FORMAT is,
3F10.3

(b) Second card: The next data card reads the numeri-

cal values of C and D in the equation
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of consolidation at the end of the deposition period by
Simpson's rule. The computed results are printed as per

the output format.

COMPUTER PROGRAM USAGE

INPUT DATA

The first step in the analysis of one-diménsiona],
finite.strain consolidation of a sedimenting soil is to
determine the rate of ﬁass deposition and its duration.
Next, the compressibility and permeability characteristics
of the soil are to be determined. A choice is to be made
as to the input void ratio and corresponding effective stress
at which the soil is being deposited.

The required input data cards are as follows in the
order presented.

(a) First card: The fir;t input data card reads the

specific gravity, the input void ratio and the

input coefficient of consolidation.

The READ variables are:
GS, EO, CV
The FORMAT is,
3F10.3

(b) Second card: The next data card reads the numeri-

cal values of C and D in the equation
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e=C-D loglo o'
and the value of Q in the equation
k m(o')Q .
The READ variables are:
¢c, D, Q
The FORMAT is,
3F10.3

(c) Third card: The third input data card reads the
time steps required for the entire deposition
and standstill operation and that for only the

duration of deposition.
The READ variables are:
K, Ki
The FORMAT is,
215

The space step (DDZ), the time step (DDT), and the
unit weight of water (UWW) are built in the main program.

The appropriate values are to be substituted for these

quantities.
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OUTPUT INFORMATION

The following information is printed by fhe program

at prescribed time intervals:

(a) the initial (input) properties of the sediment-
ing soil together with the time and space steps,
the weight of the added layer thickness and the
unit weight of water;

(b) the current height and total added thickness;

(c) the average current density;

(d) the excess pore pressure and void ratio at
specified space intervals; and '

(e) the average degree of consolidation of the soil

deposit at the end of the deposition period.
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*t#*tt#**####****t**##$*#*$****##***##v*#*t&##&#*#

C

c B A XA XA A KT A o et oK ek A e ek KA e A

c PROGRAM FQR THLC ANALYSIS UF ONMF DIMERS [ONAL WOMLINECAR CONSOLIDA
c -TION SENDIMENTATION EDR A PERIND & THEPEAFTER DISSIP,
< THE SOIL CONSIDFRFD 1S NORMALLY CONSOLIDATED

C

¢

COMMaON Z(101), T(101), utlez, 102), E(102,162), SléMA(lGll,XA(ICZ):
1SIGKI121), ULC101), R1C101)}, S(101), An(101), DET(ICILK X1{101),
2K, K1, L, Me GS» Q, UWW, NZ, DT, R, OH, S1GHM0, EC, C, D

c#*t*t#**##ﬁ*#**#*£*¢¢*#*****#

C
c PEAD AMD PRIMT HMATERIAL PROPERTIES
C
C Rtk oo e feeadedeofe ol e e e ke ook ok .
o
5 FORMAT (3F10.3)
- REAP (S,5) G6S, €N, CV
READ {5,5) €, Dy, Q
c
READ (5,10) K, K1
19 FORMAT (2151, '
C
WRITE (6,15) GS, EQ, CV, C, N, 0 4
15  FORMAT (25X, 'PROPERTIES 0OF SEDIMEMNTING SOIL*///y 25X, $GS=?,
1F3.3/, 25X, 'ER=', FB8.3/, 25X, 'CV="', FB8.3/y 25X, 'C=*, F8.3/,
ZZSX, 3 =lz E8-3/1 ZSX’ 'Q='s F%.B/Ill
C .
C
Caddedkdot e e dok o Xt ke ke
c
c SEDIMENTATION TAKES PLACE FOR A TIME N=K1
c THFREAFTEP IT IS DISSIPATION AT CONSTANT LOAD
c THE GPOWTH OF THE LAYER IS 122 FT. INIGCOOO YEARS
C THEREFORE THE TIME INTERVAL DDT IS 1C0GG/61. YEARS FOR 2FT BUILDUP
c ) .
c LET COEFFICIENT OF CONSOLIDATION TO 2EGIN WITH BE CV FT.%*%2 PER YEAR
c THEREFORE T = Cv*DnTY :
c
C & xesrdeadedeole deodr deseode gedode e s e e e e dedeslede ek o
c .
c .
c *E&Ex  BOUNDARY  AND  INITIAL CONDITIONS B
C

DO 40 N=1,K

MA = N

IF (N.GT.K1) NA=K1

DC 30 L=1,NA

IF (M.FO.1 JOR. L.EQ.NA) GO TO Z0

GO T0 30
20 UlL.M) = Q.
E{L,N) = EO

30 CONTINUE
40 CONTINUE




ko PHYSICAL PRIPFRTIES o

D2 THICKNESS OF SOLINS = LAYFR THICKMFSS/(1.+FN)
NH WOIGHT 1)F SOIL ADDED AT TOP DURIMG THE TIME INTERVAL DOT
UWH = UNIT WEIGHY 0OF YWATER = 64e LB/FT#¥3

THE VCID RATIO - LCGISIGMA) PELATIONSHIP IS OF THE FORM °

VOID RATIN = C-D*LOGIO (SIGMA)
THIS RﬁLATIﬂNSHIP IS GEMNERALLY ACKROWLEDGED FOR A
MORMALLY CONSOULIDATED SNIL
THEPEFOPE SIGMA = EXPL(C-YOIDN RATIUI/{0.434%D)})

Ae e o 35z ok Jede e ke

AN AAONAN

nny 10000./61.
nnz 2.

DZ = DNZ/{1.+EQ)
DT = Cv=NDT

UWH = 64./2090,

R_=__DT/DZ %2 S

DH = 4,685%DDZ/122.
SIGMO = EXP((C-EO}/(C.434%D))

WRITE (6,45) DDT, DZ, DT, UWW, DH, SIGMO
45 FORMAT (25X, 'DDT =', F8.3/, 25X, 'DZ ="', FR.3/, 25X, 'DT =1,
1F8.3/, 25X, "UKW ="', FR.3/, 25X, 'DH =1, FB8.3/, 25X, *SIGHMO =,

2F8.3//)

e gk ook ook e ko ek & e deob Aeodele e e de e e rdle A ke g fe e e e e e

THIS PART NF THE PROGRAM CALCULATES THE EXCESS PORFE PRESSURE
AT NONAL POINTS AT EVERY TIME INTERVAL DDT

s¥sXzXzXakzin)

Yoo e de e Ao e ook ok e e sk Ao ek ook defede e fe oo ek Ao e fedefe Aok Lo bk e dek ok
DO 200 N=1,K
IF (N.GE.K1} GO TO 94
CALL FS1
GO TQ 96
94 CALL FS2
96 P1(1) = 2.4UL(11/(1.+2.%U1(1))
S{1} = AD(1)/(1.+2.*U1l(1})
fIF (M.EQ.1)} GO T0O 125
‘MA = N
K2 = K1-~1
IF (M.GE.,K1) MA=K2
D3 1C0 L=2,NA :
RI(L) = UI(L)/(1e+2.5UL(L)-ULIL:=R1(L-1))
SIL) =-(AD(L)+UL(L)*SIL~1)) /{1l +2.*UT{L}-ULIL)%PL{L~1)}
100 CONTINUE

UINA,N+1) = S{NA)
NS = NA-1
DO 120 NC = 1,NMB

K8 = MA-NC

Cc-7




120

125.
206¢

97

ONn O

210
2290
230

2%0

250

16X,

260
270

[aNeNal

277

271

U(KR,N+1) =
CONT INUE

60 TQ 200
Ul1,2) = s(1)
CONT INUE

SfKn)*Rl(KH)*U(KB+1.N+l)

MRITE (61971 (SEGMILYySIGMAILY ITL,K), ELL,K),DETCC),UT(L ) yaDIL Y,
1L=1'K’ .

FORMAT(3X, 7F16.9)

THIS PART OF THE PROGRAM CALCULATES THE CURRENT HE [GAT

OF THE SEDIMENT

240 M=1,K °

0o
IF (N.EQ.1) GO TO 220

NA = N

IF (N.GT.KIY NA = KI

NB = NA-1

XZ = E.#EC14NY+T ,+F (N, N}
IF {N.E0.2} GO TO 230

X3 = 0. :

DO 21C L = 2,N8

X3 = X3+2.5(1.+E(L,N))
CONTINUE

XLEN) = (X2+X3)%D1/2.

G0 10 240

XL(NY = 0.,

GO TO 240

XIGN) = %2¢02/2-
CONTTMUE

HRITE (6,250) .

FORMAT ('1%, 45X, 'TIME STEPS*Y, 2%,
'TOTAL ADDFD THICKNESS'//)

DO 270 N=1,K

NA = N

IF (M.GT.KL) NA = K1

Z1l = DZ#*(NA=1)%(1.+EQ)
HRITE (6,260) N, X1{N), 21
FORMAT (47Xy 15, F17.7, 6X,
CONTINUE

F17.77)

THIS PARY QF THE PROUGRAM CALCULATES

HRITE (6,277}
FORMAT (1, 1CX,
DO 279 N = 1:K45
T(N) = DDT#(N-1)
HA =

IF (H.GT.K1) NA = K1

DO 271 L = 1,NA _

X1{L} = LE(LSNY+GS) *UWH/ (14 #E(L ,N) )
IF (N.F0.1) GG To 273 ‘

N3 = NA-1

X4 = X1(1)+X1{NA)

IF {(M.EQ.2) GO TU 274

X5 = C.

'TIME®, 25X, 'AvV,

BY TRAPEZOIDAY RULE

*CURRENT HEIGHT?,

THE AVERAGE CURRENT DENSITY

DENSITY'/)

C-8
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DOOOANAO

272

273
274
276
278
279

275

280

285

290
300

400

450

500

600

c-9

00 272 L = 2, NB

X5 = XS&X1(L)
XAIN) = (X4+XS)/N

GO T 276 )

XA{M) = X1(1)

GO TN 276

XALM) = X4/M

WRITE (6,273) TIN), XA(N)
FORMAT l4X, F10.2, 25X, FAR.3/)
CONT INUE }

THIS PART QOF THF PRAGRAM CALCHLATES THE AVERAGF DEGREE OF
CONSOL IDATION BY SIMPSON'S RULE AT THE END ﬂF OEPOSITION PEPIOD

T AX = K1/2. -
NX = Ki/2.
K2 = Ki
IF (AX.EQ.NX) K2 = K1l-1
AA = G,

NN 275 L = 2,K2,2

AA = U(L4K1) + AA

KA = K2-1

_AB .= 0, T
DO 2eC L = 3,KA,2

AB = AB + U(L,K1l)

AC - INTEGRATION OF ©°0RE PRESSURE  VALUES

ACC - INTFGRATICN 0F TOTAL  ADDED  WFIGHT = 0.5%GAMMAXHE IGHT#%2
ADA - AV:DAoc DEGREE OF CONSOL IDATION

AC = (U(1,K1}+U(KL,K1)+4.%AN+2, *AB)*DDZ/3.
IF (K1.EQ.K2) GO TN 285

AC = AC+{U{K1,K1)+U(K2,K1))#5,5%DDNZ

ACC ((KI-1)#OH)2=((K1~1)*DZ)%).5¢(1,+EQ)
ADA {ACC-AC)/ACC

DO 600 M=1,K,10

T(N) = DDT#(N-1)

NA = N
IF (N.GT.Ki} NA=K1
DET(1) = O.

DO 300 L=1,NA

IF(L.EN.1) GO TO 299

DET(L) = DET(L-1)+F(L,N)—ED

ZAL) = DZ#{1.+EO)*{L~1)+DET(L)=NZ

CONTINUE

HWRITE (6,400) T(N)

FORMAT (///20X, *TIME ELAPSED=', 2X, F10.2/)
WRITE (6,450)

FORMAT (/63X, 'Z%, 12%, *'U', 15X, 1E%/)
WRITE (£,500) (Z(L)y U(L,N), ECL,N), L=1,NA)
FORMAT (50X, F15.1, F15.7, F15.3)

CONTINUE :



6C5
610

52¢C

63¢

6590

2 X2 Xz X3)

660
670
680

690

640"

DET(1} = 0. .

DU 610 L=1,Kl

IF(LEQ.L) GO TN 605

DET(L)Y = DET(L-1)+E{L,K1)~FO

ZIL) = DZ=(1.+FN)%{L-1)+DET(L)*D2Z

CONTINUF

T(K1) = DDT%(K1-1)

WRITE (6,620) T(K1)

FORMAT (///20X, *TIME ELAPSED=', 2X, F1G.2/)
WRITF (6,630)

FOR%AT (/63X, '2', 12%X, 'U', 15X, 'E*'/)
WRITE (6,640) (2(L)y UlLyKL)y E{L,KL),y L=1,KL1}
FORMAT (56X, F15.1, F15.7, F15.3)

TOCLY = DY« (K1-1) . ..

WRITE {6,650) ADA, [T(K1}

FORMAT ('1', 5X, *AVERAGE DEGREE OF CONSULIDATION =', F8.3,
15X, YAT THE END OF ', 'F12.4, 1X, 'YEARS') .

THIS PART OF THE PROGRAM CALCULATES THF .AVERAGE DEGREE OF
CONSOLIDATION  BY SIMPSON'S RULE AT THE END OF PERIND N=K

TAY = K/2.

NY = K/2.

K3 = K

IF (AY.EQ.NY) K3 = K-1
AA = O,

DO 660 L=2,K3,2

AA = AA+U(L,K)

KA = K3-1

AB = C.

DO 670 L=3,KA,2

AB = AB+ U(L,K)

AC = {UTL,KI+UIKyK)+4.XAA+2.%ABR)*DOZ/ 3,
If (K.EQ.K3) GO TO 680

AC ACH({UIK,K}+U(K3,K))*0,5%DDZ

ACC= ((K1-1)*DH)*{{K1-1)*D7)*C.5%(1.+F0))

ADA = (ACC-AC)/ACC

T(K} = DDT*(K-1)

WRITE (6,690) ADA, T(K)

FORMAT {///10Xy *AV, DEG. NF CONS.*', F8.3,15X,'AT*, F12.4,'VRS?')
sToP

END




el

AOdHNAOMNONANN

50

60

70
80

99
95

LR

%X e de

SURROUT L

coMny 7
1SinrIny
2K, K1, L

00 90 t=

IF (N.EQ

IF (L.FGC

SIGMIL)

SiGHA(L)

E{L, M) =

DET(L) =

IF {L.EQ

DET(L) =

GO T0 60

E(L,N) =

ui(Ly) =

SIGHMA(L)

NET(N) =

AD(L) =
1-Q=Ul(L)
2+DET(L) %

GO TO 95

ui(L) =

IF (L.EQ

AD(L) =
10*D2=UL(
2+DET(L)*

GO 70 90

ult(l) =

IF (N.EQ

AD(1) =

CONTIMNUE

RETURN

END

i

THIS SURPOUTINE CALCULATES THE RELEVANT DUANTITIES
WHEN THERE IS A STEADY GROWTH OiF THE LAYERS

ek ek

NE F£S1]

(101), T(101), U(102,102), E(lﬁZ.lOZ?.'SlGMA(T0111XA(102)y
}y ULIICEY), RL(101), S(1CLY, AD(ICL), DET(1Cl), X1(1Cl),
v My GS, Q, UWW, 07, DT, R, DH, SIGMN, EO, c, O

1,N

<1V 6D T 70

M) GO TN SQ
= (M=L)*DH :

= SIGHMIL)~ULL,N)+SIGHD

C-2 434 +D=ALOGISIGHAIL) )

(FOL,NI-E(L,N-1))%DZ2URW/ DT
.1) GO TO &0

DET{L)+DET(L-1)

EO . . . e e e ke
P/l +EQ) x%2
= SIGMO
DET(N-1)
U(L'H)+DH-0*U1(L)*((U(L.N)-U(L-I,N))**ZISIGMA(L))
FDLAFUNWH(GS=10 3+ [ {UL 4 MY =U(L=1,N) 1 /STGMA(L))
)

/
RECSTGHMALL) /SIGMOI*#(0+1.) /(1. +EQ) %2
1) GO T 80
U(LyN)+DH—O*U1(L)*(U(L*l,N)—U(L-l.N))**2/(4.*SIGHA(L))-
LI#UNWE(GS-1. )5 (UIL+1,N) =ULL-1,M))/(2.%SIGMA(L))
0T

R/{1.+ED) *=2
-1) DET(1) = Q.
ULLMY+DH+DET(1)#DT

c-11
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155

- 160

165
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B e ook g e fe A ol ke Ak ok e

THAT

THIS SURRDUTINE CALCULATES THE REQUIPED QUANTITIES

WHEN THERE IS NA INPUT IN FORM NF GRUOWTH OF LAYECRS

ISy, THE PCRF PPFSSURE GFNFRATION TERM 1S ABSENT

THIS IS ACHEIVED RY PUTTING DH = 0.

THC DISSIPATION IS ALLOWED TN TAKE PLACE AT A CONSTANT LOAD
AFTER THF PRESCRIRED TIMF LIMIT 0OF LAYER GROWTH

ek g g ok fede Aotk ke e Mok ke

SuURRQUT I

coumMny 2
1SIGI#(101
2K, Kly L

K2 = Kl-

00 165 L

SIGM(L)

SIGMA(L)

ElL ? N) =

DET(L) =

IF {(L.EQ
DET(L) =

uliL) =

IF (L.EQ

AD([L) =
1Q*+D7%Ul (
2+DET (L) *

G0 TO 16

AD(1) =
CONTINUE

RETURN

END

NE FS2

(11}, T(1G1l), U(LN2,102), E(1G:2,1C2), SIGMA(LO1),XA(1CG2),
}, UL{1O01), R1(101), S(10Ll), AD(1OY), CET(1O1l}, X1(101},
» My GSy Q, UWW, CZ, nPT, Ry, NDH, SIGMO, €0, C, D

1

=1,K2 .

= (K1~-L)=*DH

= SIGMIL)-U(LsN)+SIGMO

C-0.434%D=ALDG{SIGMA(L))

(E(LGN)-E(L,N=-1))%DZ2*UWW/DT

«1) GO 7O 155

DFT(LIHNET(L-1) . . ..
RE{SIGMA(L)/SIGMO) %% { Q+14 )/ (1. +EQ) *%2

.1) GO T3 166 _
UL N)=0FULIL) 2 {ULL+1  MI-UIL-1,N))})**2/(4.*SIGMA(L) )~
L)#URWE(GS-1 o IX{UIL+L M) -U(L~-14,N))/(2.%SIGMA(L))
DT .

S -
U(1,M)+DET(1)=DT
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COMPUTER PROGRAM AND USAGE FOR
EROSION AND SWELLING IN VALLEY FORMATION
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APPENDIX D

ORGANIZATION OF THE COMPUTER PROGRAM

The computer program presented in the Appendix is based
on the theory offered in Chapter VIII of this thesis. The
program fs in Fortran IV 1anguagevaﬁa may be used directly
on computers of the type IBM 360/67.

The program determines the deficient pore pressures
for a Tow swelling deposit eroded at a constant rate over
a period of time and for an assumed standstill thereafter.
Eséential]y'the program is bésed on GibSon's‘(]958)7%Héé§yuﬂmm”"
for consolidation of sedimenting layers. The deposit is
assumed to extend to infinity in its depth. The top of the
deposit is eroded to a depth of 256 feet. For all practi-
cal purposes the infinite depth is achieved at about 2000
feet from the uneroded surface. The algorithm developed is
for a constant rate of erosion and for an uniform distribu-
tion of load (removed) throughout the depth. However both
these assumptions can be altered and the program modified
for any sort of erosion schedule (which can be later appro-
ximated into a suitable number of linear rates of erosion)
and to include a cbntinuous variation of the load removed
across the depth.

The governing equation for the dissipation of deficient
pore pressures for an eroding sediment is given by 8.1. The
analysis can be carried out for aﬁy value of the coefficient

of consolidation and for several rates of erosion (for 250
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feet depth of erosion) and subsequent swelling (same dura-
tion for all rates of erosion).

The program has all the input data built in and sets
up the boundary and initial conditions. It establishes the
rate of erosion and the space interval for the finite differ-
ence grid. It then determines the time interval for the
above space interval and the same time interval is used for
the duration of subsequent swelling. Thus the total space
steps, time steps for erosion and subsequent standstill are
established. Depending on the governing material parameters,
the program calculates the deficient pore pressure at each
néda] point at prescribed time intervals. The calculated
results are printed out as per the output formats.

The program also plots the deficient pore-pressures
against the depth. - This is carried out by the Calcomp
.plotter which operates on the principle that digital commands
from a tape activate step motors to produce a plot. Further
for various nodal points, the program calculates ihe hydro-
static pressure of the eroded sediment and the existing pore
water pressure at the end of erosion and at subsequent times.
The existing pore water pressure is the sum of the deficient
pore pressure and hydrostatic pressure. The program plots

both these quantities against depth at prescribed time

intervals.
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QUTPUT INFORMATION

The following information is computed and printed

by the program:

(1)
(2)

(3)

reprint of input data;

pore pressures (deficient at nodal points at
specified time intervals;

plots the deficient pore pressure isochrones
and exisfing vater pressures at the end of
erosion and subsequent time intervals and the

hydrostatic pressure of the eroded sediment.
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&#***##**Q##**t#t##t*#t*#*t#t fededeted dedetex g Xede e e
THIS PRIGRAIY DETERMINGS THE DEFICIENT PORE PLESSURE ISNCHRONES
FUP A LI SWELLING FULLY SATURATED DEPGSIT WHICH WAS ERNDEN
AND IT PLOTS THF DFFICIENT PORE  PRESSUPE  [SACHRONES
AT  SOFCIFIEN INTCRVALS (F  TIMS

GIVEN LENGTH OF TIMF  AND THEN [T IS ASSUMED TO STANDSTILL

FOY THE SURSFQUENT .PEP N NF TIME '

THE PARAMETERS THAT 60 INTHD THF CALCULATIOMS ARE:
Ioe THE COEFFICIENT OF SWELLIMG FNR THE MATERIAL
2. THE DEPTH OF FLUVIAL FROSION (DEPTH NF THC VALLEY)
3. THE DURATION NF FROSINN
4. THE DUHRATINN OF STAMDSTILL

THE R0TTOM ROUNDARY IS NOT FIXFD AS IT EXTENDS THENRFTICALLY

TN IMNFINITE DEPTH, : AS SUCH ARBITRARY DEPTH OF SAY
10C0. FT, R S004, FT. MAY BRE CHNSEN » AT WHICH DEPTH THERE IS
NO PFRCEPTIALE VARIATION IN PORE PRFSSURE DEFICIT

CONSIDER 2000. FT. OF DEPOSIT T

THE PROPERTIES NF THE VALLEY  tetsfsirnks

DEPTH NF VALLFY 250 FT,.
DURATION 0OF FROSION , 10660 YEARS
SURSENUENT DURATIGN OF STANDSTILL 10000 YEARS
THE COEFFICIENT OF SWELLING 16,0 FT. SN, 7 YEAR
SPACE STEP RE 5 FT, NX = S. FT.
THEREFCRE TIME STEP FRR FROSION = 16000%5/250 = 200 YPS.

SAMF TIME STFP MAY BE USED FUR NURATION 0OF STANDSTILL
THEPEFORE SPACE STLPS = (2550/5)+1 = 401

AND TIME STEPS INCLUDING STANDSTILL = (10000+100G0) 7200+1
= 1901
AND TIME STEPS FOR DURATION OF EROSION ONLY = 10000/200+1
. . = 51 .
e N Y R R T T *********** Fefederk e

DIMENSION X(201), T(151), U{2C2,152), A(202), B(202),
10UF{2C48), XX{205), YY{205), 4X{205)

CALL PLCGTS{BUF,8192)

CALL YLIMIT (100.0)

1 = 201

K = 101
K1 = 51
CV = l{’.
"DX. = S8,
DT = 290,

R = CVEDT/DX%:%)

DH = THE AMOUNT OF SQIL 4“EIMG ERODED QUT
10. UNITS

o
x
n

NH = 10.
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NOAN

oo

a0

10

20

3C

40

5G

60

70
80

D5

BOUNDARY CONDITIONS LA qe ks ge st g

Do 20 M=1,K1

PO 10 L=1,1

IF (M.FQ.1 .0R. L.EQ.M) U(L,4) = 9,
COMT INUS

CONTINUE

THIS PART (I THF PRUGRAM CALCULATES THF PORE PRFSSURF DEFICIENCY
DURTNG ERUSICN

1

IA = [-1
093 S0 M=1,K1
HMA = M+#]

A{M) = P/[1.+42.%R)
B(M) (U{M,4)-PH)I/ (1442 .%R)
D0 3G L=MA,TA

ML) = R/{14+2.%R=-REA(L~1))
BIL) = (UL, #M)-DH+REB(L-1))/(1.+2 . 2R=R%A(L-1)})
CONTINUE

BIIY = (UL, M)-DH+2 J6R*BII=1))/(1.4+2.4P~2.%R*ACI~1))

UlI,m+l) = B(I)

LLA = I-M-2
DA 40 LLL = 1,LLA
KA = I-LLL

U(KA,i1+1) = BIKA)Y+ALKA)Y*U{KA+;,M+1)
CONTINUE
CONTINUE

THIS PART OF THE PROGRAM DEALS WITH THE STANDSTILL SITUATION

00 8C M=Kl,K
BOUNDARY CONDITIUN AT TQP

U(KYI,M) = 0,

Af{K1) = R/{1.+2.2R)

B(K1) = U{X1,M)/(1.+2.%R)

K2 = Kl+1

00 60 L=K2,I1A

AfL) = R/{1.42.%P-R*A(L~-1})

BIL) = (UL M)+2*B(L-1))/(1,+Z.%R-R&A(L-1))
CONT INUE

B(I) = (U(I.M)+2.¢R*B(IA))/(1.*2.*R-2.*R*A(IA))

UlT,M+1} = 2(1)

LLc = 1-K1-1

D0 76 LCL=1,LLC

KD = I-LCL

UKDy M+1) = BIKD)+A(KD)*UJ(KD+1,M+1)
CONTINUE .

COMNTINUE
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100
125

15C

175
20C
225
259

275
300

325

350
375
400
C
C

OO0

CMRITE (652753~ -
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THIS PART NF  THE PROGRAY  PRINTS -UUT THE  QUTPUT .
FOR  DESICIOCNT  PORFT PRLSSURF  VALUFS AT VARIOUS DEPTHS

WRITE (6,100) .

FORMAT ('L, //77725%, 'PORF PRESSUPF VALUES DURIMG EPASICMt////7)
0D 1258 M = 1,Kl, S

T(=) = DTe(i~-1) ’

WRITE (6,150) (T(M), M=1,K1,5)

FORMAT (33X, *X /7 T, 11F11.4//)

nh 250 L = 1,1

X{L) = nDxX«(L-1}

J = Kl
IF {L-K1) 175, 20QG, 2U0
J=1

LWRITE (6,225) (X(L}, (U{L,33)y JJ=1,J,5))
FORMAT (1X, F6.1, 4X, 11lF11.3)
CONTINUE

J = K1

DO 4CC M1 = 1,2
K2 = J

J = J+25

FORKAT (%1%, ////25%X, *PORE PRESSURE VALUES NURING STANDSTILL*®///)
N0 206 M=K2,J,5 : ‘
T(M) = DT=(4-1)

WRITE (6,325) (T(M#), 4=K2,J,5)

FORMAT (8X, 'X / T', 6F16.4///)

DD 375 L=Ki,1

X(L) = DX=(L~-1}

WRITE (6,350} (X{L)y (U(LyJJ); JU=K2,3,5))

FORMAT (6X, Fb.ly 44X, 6E16.47)

CONTINUE

COMTINUE .

CALL PLOT(0,0,0.0,3)

CALL PLOT (0.0,20.0,-3)

XX(152) = ~500.

XX{153) = 550./2. :

CALL AXIS (G.0,2.0,*DEFICIENT PIRE PR?,17,32.0,0.0,XX(152},XX(153)
1,1G.0) .

CALL PLOT (2.0,0.04-3)

YY{153) = 209C./10. : .
CALL AXIS(G.0,G.0,*DEPTH IN FEET',12,10.0,270.G,YY(152),YY{153),

c10.0) ,
CALL PLOT(C.0,C.0,-3)

DH = 10. UNITS = RULK UNIT WEIGHT * DX = 130. % 5,

THEREFORE UNIT WEIGHT OF WATER = 13%62.4/{130%5) = 0.961538 UNITS

D0 2 N=K1.K,25
IA =1




——

a2

9

a4

(3]

6

81

2

N1 Larl,IA

Y{1) + Axx(1-1)

XXLL=53) = 1L ,5)=%00.

YTl =5.) = =X({1) ,
AZ(L~-9%) = naRlssaehzy(1.-%1)
oesMrrenge

[FE.OT kL) G0 16y 22

CALL FLINE(XE,YY,15),1,0,5)
DO 22 | = ¥l,.0h

EY{1=5N) = YX[t =58)+AY{I.-5)
CALL FLINEAYY,,YY,190,1,0,0)
LS & I 4 T

¥t, -~ vlezs

ITF (MOTWEDRY O 10 ne

CALL FLIMFUZX,YY,151,1,6,0)
N 84 1 = K1,IA

YX(L =56)Y = Z4{L-5CHeAY(1.-50)
CALL FLIMBE(CX ,YY,4151,14C,G)
nu 10 2 .

CALY FLIMFIXY,YY,15141,9,7)
PO 6 1 = Kl,1A .
XXLL=57) = XX{1 =S +AY L -50)
CALL FLINFAYYX,YY,151,1,C,0)
Nt o231 1t = KL, IA

S XX =80 2 0 N6 SR2ARYE (L =5 L }=S00, - e

YY{L=-50) = ~X{L.)

CONTIINE

CALL FULIMF(XX,YY,151,1,0,0)
CONT e

CALL SY¥PUL{4.0,~1.5,0.10,'CV=
CALL PLOT (22.0,32.0,-3%)

CALL PLDT(0,9,0.0,999) .
STNP

D

FI**2/YFARY,0.0,19)



