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ABSTRACT

The following results concerning smoothness and the geometry of Banach spaces
arc established in this thesis.

A Banach space X admits C!-smooth partitions of unity if X admits a locally
uniformly rotund norm whose dual norm is also locally uniformly rotund.

There is a norm on a separable Hilbert space that cannot be approximated
uniformly on boundzd sets by functions whose second derivatives are uniformly
continuous. On the other hand, on any separable space admitting a norm with
modulus of smoothness of power type 2, every norm is a limit of uniformly ro-
tund norms which are twice Gateaux differentiable and whose first derivatives are
Lipschitz.

If a Banach space admits a continuous bump function with pointwise directional
Holder derivative, then it is an Asplund space. A consequence of this is that X is
isomorphic to a Hilbert space whenever X and X* admit continuous twice Gatezux
differentiable bump functions.

Let X be a separable Banach space and L be a subspace of X with a countable
algebraic basis. Then there is a locally uniformly rotund norm on X that is Fréchet
differentiable at each point of L.

A characterization of Banach spaces which admit Markushevich bases is given.

Some new results concerning the extension of Markushevich bases are obtained.
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NOTATION

B, = {o: o] <0}

Bi(z0) = {z:llz—zoll <}

Bx = {o: el <1}

|S| = the cardinality of the set S

C¥5X) = real functions on X with uniformly continuous k-th derivatives
conv(S) = the convex hull of S

conv(S) = +*hz norm closed convex hull of S

conv? (8§ = (i ew*-closed convex bl of S

dens(X) = the smallest cardinaliz;y ot @ wuase subset of X

fog(z) = inf{f(y)+9(z—y):y € X}

K®) = the v-th derived set of K

15 () = the countably supported elements of I, (T")

LUR = locally uniformly rotund

SC = strictly convex

span(S) = the linear span of S

span(S) = the norm closed linear span of S

span” (S) = the w*-closed linear span of S

Sx = {o: el =1)

0f(zo) = {Ae€eX*:A(z) - Mzo) £ f(z) — f(zg) forall z € X}
O f(zg) = {A€X*:A(x)— A(zo) < f(z) — f(zo)+ € forall z € X}
UR = uniformly rotund

WCD = weakly countably determined

WCG = weakly compactly generated

WLD = weakly Lindeldf determined



INTRODUCTION

This chapter will give a brief overview of the contents of this thesis. However,
we have chosen not to include the definitions here but instead we have placed them
in the chapters where they are used. It should be noted that all linear spaces
considered in this thesis are over the real scalar field.

The question of smooth approximation in Banach spaces has been studied
for some time, yet the fundamental question as to whether a Banach space with
a C*-smooth bump function admits C*-smooth partitions of unity has not been
answered. There have been several partial results, the most general to date seems
to be: suppose X or X* is weakly compactly generated and X admits a C*-smooth
bump function, then X admits C*-smooth partitions of unity ([GTWZ,], [Mc]).
In Chapter One, we will improve this theorem in the case & = 1 but we do not
study any higher order cases. In particular, in Theorem 1.2.1 it is shown that a
Banach space X admits C'-smooth partitions of unity whenever X admits a locally
uniformly rotund norm whose dual norm is also locally uniformly rotund. Specific
classes of spaces where this theorem applies are given in Section 1.3. The interesting
feature of our methods is that C'-smooth approximations are obtained without the
use of Toruniczy.’s fundamental characterization result in [To].

In Chapter Two we look at the question concerning the approximation of convex
functions by smooth convex functions. Much less is known in this area than in the
area of smooth partitions of unity. Indeed, it appears to be unknown whether every
norm on a Hilbert space is a limit of C*-smooth norms for & > 2. More generally,
it is not known whether every norm on a Banach space is a limit of C*-smooth
norms provided the space itself admits a C*-smooth norm. The analogous question
for norms with uniformly continuous k-th derivatives fails in a very strong sense:

namely, Section 2.2 uses the methods of Chapter 1 in conjunction with a result of
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Nemirovskii and Semenov ([NS]) to show the existence of a norm on a separable
Hilbert space that cannot be approximated uniforinly on bounded sets by functions
whose second derivatives are uniformly continuous. In contrast to this, we show in
Section 2.3 that every norm can be approximated by twice Gateaux differentiable
norms with moduli of smoothness of power type 2 in a separable space that admits
a norm with modulus of smoothness of power type 2. Similar results are also shown
for convex functions. The last section of the second chapter contains a constuction
of locally uniformly rotund norms that are limits of C*-smooth norms in separable
Banach spaces admitting C*-smooth norms. A version of this is also shown for
norms with uniformly continuous k-th derivatives. As already mentioned, in this
case not every norm can be approximated by norms with uniformly continuous
k-th derivatives so it seems to be unknown whether we can replace local uniform
rotundity with uniform rotundity in the above result.

Structural properties possessed by Banach spaces that admit continuous bump
functions with higher order directional smoothness are examined in the third chap-
ter. Our starting point is [BN, Proposition 2.2] which shows that a point of twice
Gateaux differentiability of a continuous convex function is a point of Lipschitz
smoothness. While there are (nonconvex) continuous functions on IR? that are
twice Gateaux differentiable yet not Fréchet differentiable, the proposition from
[BN] still gives a good indication of the strength of higher order directional differ-
entiability. In fact, with the help of techniques from [BN] and [DGZ,], it is shown
in Section 3.2 that any space with a continuous twice Gateaux differentiable bump
function is an Asplund space. Some applications of this theorem are given in Section
3.3. In particular, spaces isomorphic to Hilbert spaces are characterized as those
spaces X for which X and X* admit continuous twice Gateaux differentiable bump
functions.

The question of the existence of norms that are Fréchet differentiable on a

normed linear space with a countable algebraic basis is studied in the fourth chapter.
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Given an arbitrary countable set not containing the origin, we show that there are
several norms that are Fréchet differentiable at each of those points. It turns out
that since the sct is countable, the Baire category theorem is nicely suited for
proving this fact. However, given that the lincar span of such a set is uncountable,
a new method for constructing a norm that would be Fréchet differentiable on the
span is needed. In Section 4.3, using results concerning spaces with Schauder basis
([JRZ]) and Kadets-Klee renorming techniques, it is shown that tbere is a norm
that is Fréchet differentiable on a normed linear space with a countable algebraic
basis. This is in contrast to the fact that the closure of this space might not admit
a Fréchet differentiable norm (e.g. 1;(IN) admits no Fréchet differentiable norm).
Some connections between this result and monotone Schauder bases are discussed.

In the final chapter we abandon our study of smoothness and focus on the re-
lationship between some topological properties in Banach spaces and Markushevich
bases. The existence of a Markushevich basis on a Banach space provides a useful
tool for studying the structure of the space. For instance, a Markushevich basis can
be used to construct an explicit linear injection into ¢o(I'). The main goal of Chap-
ter Five is to provide a characterization of spaces that admit Markushevich bases
in terms of certain types of injections of the dual space into I (T"). The techniques
we use are based on a paper of Plichko ([Pl;]) and they enable us to prove that

Markushevich bases can be extended in some very general situations.



Chapter One
ROTUNDITY AND SMOOTH PARTITIONS OF UNITY

1.1 Introduction

The main objective of this chapter is to prove that a Banach space X admits
C'-smooth partitions of unity when X admits a locally uniformly rotund (LUR)
norm whose dual is also LUR. The study of smooth partitions of unity in Ranach
spaces is of interest as it provides a tool for approximating continuous functions by
smooth functions (see [To], [BF]). In addition to this, smooth partitions of unity
provide coordinatewise smooth homeomorphisms of a given Banach space into some
co(T") by the theorem in [To}.

In 1966, Bonic and Frampton ([BF]) proved that a separable Banach space X
admits C*-smooth partitions of unity if and only if there is a C*-smooth bump
function on X, that is a function with bounded and nonempty support However,
at that time it was unknown if a nonseparable Hilbert space admits C!-smooth par-
titions of unity. This was answered affirmatively by Wells ([W}], [W2]) a few years
later. Shortly thereafter in [To], Toruniczyk proved that a Banach space X admits
C*-smooth partitions of unity if and only if there is a coordinatewise C'*-smooth
homeomorphism of X into ¢{I'). As an easy consequence of this fundamental
theorem, Torunczyk showed that a nonseparable Hilbert space admits C°°-smooth
partitions of unity.

Many of the subsequent results concerning smooth partitions of unity in Eanach
spaces have relied on the characterization of [To]. Usually a coordinatewise sm:)oth
embedding of the space into ¢o(T") is constructed with the aid of a linear injection of
the given space into ¢o(I'). Typical examples of this are the papers [GTWZ,] and
[Mc] which together show that X admits C¥-smooth partitions of unity whenever

X has a Ck-smooth bump function and X or X* is WCG. However, in Section 1.2,
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C'!-smooth partitions of unity on X are obtained by the purely geometric condition
that X admits an equivalent LUR norm whose dual is also LUR. Such a space need
not linearly inject into any ¢o(T'); notwithstanding, from [To] and our result stated
above, there is a coordinatewise smooth embedding of such a space into some co(T").

The third section of this chapter will give examples of spaces which satisfy
the hypothesis of the theorem mentioned above. In particular, a new result on the
existence of smooth partitions of unity on certain C(K') spaces will be obtained. In
recent years a lot of attention has been given to C(K') spaces where K is a scattered
compact sct, that is, there exists an ordinal n such that K (the n-th derived set
of K) is empty. In [CP], Ciesielski and Pol constructed a C(K) space such that
K® = @ while C(K) does not linearly inject into any c¢.(I'). Only recently it
was chown in [DG7;) that C(R) admits C°-smooth partitions of unity whenever
Kf(we) = @§. In fact, until [DGZ,], it had been unknown whether the C(K) space
of [CP] admits C'-smooth partitions of unity. Using renormings of Deville ([De})
and Haydon and Rogers ([HR]), it follows from the result in Section 1.2 that C(K)
admits C'-smooth partitions of unity whenever K1) = @, In contrast te this we
should mention that in [H;], Haydon constructed a C(K) space such that K@) s
a singleton which nevertheless admits no equivalent Géateaux smooth nor strictly
convex normm. It is presently unknown whether this fundamentally important space
adrnits C!-smooth partitions of unity, although Haydon has recently shown ([Hz))
that there is a C!-smooth bump func:ion on it.

The notation and terminology used here should be quite standard.

1.1.1 DEFINITION. A norm is locally uniformly rotund (LUR) if ||z, — z|| — O
whenever |jr,|| — |lz]] = 1 and ||z, + z|| — 2. A norm is strictly convez (S5C) if
r = y whenever ||z + y|| = {|z]| + liyll. A uniformly rotund (UR) norm is a norm

such that {|r,, — ya|l — 0 whenever |jz,|| < 1, |lyn]l <1 and ||z, + yall — 2.
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As usual, C*-smoothness is always meant in the continuous Fréchet sense. We
call a function C*-smooth if it is C¥-smooth on the whole space. Since norms are
never differentiable at the¢ origin, we will say a norm on X is C*-smooth if it is

Ck-smooth on X \{0}; similarly for Gateaux smoothness.

1.1.2 DEFINITION. A space is said to admit C¥-smooth partitions of unity (respec-
tively Gdieauz smooth partitions of unity) if given any open cover there is a locally
finite partition of unity consisting of C*-smooth functions (respectively continuous

Gateaux differentiable functions) subordinate to this cover.

The notation 3f(xe) = {A € X~ : A(z) — A(z0) £ f(z) — f(zo) for all z € X},
andfore > 0, O f(zg) = {A € X* : A(z)~A(z0) < f(z)—f(zo)+eforallz € X} will
be used. We also use the symbols Sx = {z : {|z|| = 1}, B (z0) = {z : ||z —zo]| < 7},
B, = B.(0) and Bx = B;.

For basic information concerning rotundity and smoothness one can consult

the lecture notes [Di], [DGZ;] and [Ph].

1.2. Rotundity and Smooth partitions of Unity
The goal of this section is to prove the following theorem.

1.2.1 THEOREM. (a) If X has an LUR norm whose dual is also LUR, then X

admits C'-smooth partitions of unity.

(b) If X has an LUR norm whose dual is SC, then X admits Gateaux smooth
partitions of unity.

Recall that from Asplund’s averaging technique (see e.g. [FZZ, p. 351}), it
follows that if X has an LUR norm and X* has a dual LUR (respectively SC)
norm, then X has an LUR norm whose dual norm is LUR (respectively SC). The
proof of Theorem 2.1 will be separated into in several steps. The following lemma

is a natural generalization of a result of Smulyan ([Sm]). We include its proof for

the reader’s convenience.



1.2.2 LEMMA. Let f be a continuous convex function on X. Then the following
are equivalent:
() f is Fréchet differentiable at xq;

(bj ||Anx — Aj|* — O whenever A € 3f(xo) and A, € O, f{zo) where en | 0.

Proof. (a) = (b): Suppose that (b) does not hold. Then there exists €, | 0,
A, € 0., f(z0), A € 3f(z0) and 5 > 0 such that

A, — Ajl* =27  forall n.
Let t,, = 5—:—’"- and choose h,, € Sx so that

(An - A)(hn) 2

N3

Thus,
F(xo + tahin) — f(xo) — A(tnha) 2 An(zo + talin) — An(z0) — €n — Altnlin)
= A (tnhn) — A(nhy) — €,
T_ . .1
2 tn‘—?' — €n = tn4.
Therefore f is not Fréchet differentiable at zo.

(b) = (a): Suppose f is not Fréchet differentiable at xo. Then there exists
tn 1 0, 7, € Sx and € > 0 such that

f(zo +tnzy) — f(x0) — A(#nzn) = €t, where A € If(zo).

Let A, € 8f(xo + taTy). Since f is locally Lipschitzian (see e.g. [Ph, Proposition
1.6]), there exists § > 0 and M > 0 such that |f(z) — f(y)| < M||z — y|| whenever
x,y € Bs(zo). We may assume that ¢, < § for all n. Thus |[|A.||* £ M for all n;

moreover,
An(y) — An(z0) = An(y) — An(To + tnZn) + An(tazn)
< f(y) — f(zo +tazn) + Mt,
< f(y) — f(zo) + 2M1,.

7



Whence, for all n, A, € 8, f(z0), where €, - 2Aft,, | 0. However,
An(tnxn) > f(x() + tn-Tn) - f('-TO) > A(tn;rn) + €t,,.

Therefore [|A — A.||* = € for all n. Thus (b) fails. 0

Because of the importance of Smulyan’s characterization of differentiability of

a norm ([Sm]), we record it here as

1.2.3 COROLLARY ([Sm]). The norm || - || on X is Fréchet differentiable at x¢ # 0
if and only if ||A — AL||* — 0 whenever ||A,||* < |A|l* =1 and A, (xq) — Alxo) =
llzoll-

Proof. This follows immediately from Lemma 1.2.2, because A, € 9., || - ||(xo)
if and only if An(zo) > ||zo|] — €n and [|An]|* £ 1; and A € 3] - ||(z0) if and only if
Alzo) = llzo]l and JAY" = 1. 0

An easy but useful application of Lemma 1.2.2 is contained in

1.2.4 LEMMA. Let C be a closed convex subset of X, and p(z) = p(z,C) =
inf{l|lz ~yl|: y € C}.

(a) If || - ||* is LUR, then p{z) is Fréchet differentiable at each x ¢ C.

(b) If|| - ||* is SC, then p(z) is Gateaux differentiable at cach = ¢ C.

Proof. (a) Let z¢o € C and A, € O, p(zo) for each n, where ¢, | 0. Since
() — p(¥)] £ |lz — y||, i¢ follows that ||A,||* < 1. Thus limsup, ||A.||* < 1. On
the other hand, choosing z, € C such that {|z¢g — z.|| — p(zo) > 0, one has

Ap(zo — z40) p(xo) — p(Tn) — €n
lzo —zall — fzo — z.l|

Therefore, liminf, ||A,||* > 1. In particular, ||A||* = 1 whenever A € 8p(xo). Also,
Atha g 9§, p(z0), for A, A, and €, as chosen above. Now ||A.]]* — [|A|* = 1,

|2£2a}j* — 1 and thus ||A — A,}|* — 0, because || - ||* is LUR. By Lemma 1.2.2, p
is Fréchet differentiable at zq.



(b) Let zo € C and Ay, Az € p(zg). From the proof of (a) it follows that

HALll® = llAzfl* = ||2E282* = 1. Since || - ||* is SC, A1 = A,. Therefore p is
Gateaux differentiable at zg; sce e.g. [Ph, Proposition 1.8]. O

1.2.5 REMARK. (a) Observe that p(z, C) need not even be Gateaux differentiable if
the norm on X is Fréchet differentiable but the dual norm is not LUR. This follows,
for example, because X = C|[0,w;] admits a Fréchet differentiable norm while X*
has no dual SC norm ([Ta, Theorems 3 and 4]). Thus given any norm on X, X* has
a two dimensional subspace H on which its dual norm is not SC. Let L be a closed
subspace of X such that (X/L)* = H. On finite dimensional subspaces, a norm 1is
Gateaux differentiable if and only if its dual norm is SC. Therefore, given any norm
on X, there is a two dimensional quotient space X/L such that the quotient norm
of X/L is not Gateaux differentiable.

(b) For any nonempty set F, p?(z, F) is Fréchet differentiable at each point of
F. In particular, p?(z, C) is C*-smooth whenever C is a closed and convex set and
If - |I* is LUR (because Fréchet differentiable convex functions are C'-smooth; see
e.g. [DGZ, Chapter I} or [Ph, p. 20]).

(c) Choosing C = {0}, we have the well-known fact that the norm on X is
Fréchet differentiable if its dual norm is LUR.

The next lemma uses ideas from Theorem 3.2 of [BF] and Theorem 1.1 of [NS].

1.2.6 LEMMA. Suppose X has an LUR norm ||-|| whose dual is also LUR. Let f be
a bounded continuous function on Bx, then given € > 0 there exists a C'-smooth

function g such that |g(z) — f(z)| < € for all ¢ € Sx.

Proof. One may assume —1 < f(z) < 1 for ¢ € Bx. Choose N such that
2—71;,- < €. Let
t—1—N 21— N
N ' N

A.-=[ ] for i=1,...,2N.



Let Qo = Qony1 =0 and fori=1,... ,2N, define
= f~1(A;) and é,' = conv(Bx\(Qi-1 UQ; U Qit+1))-

For each i, it is assumed that Q; # @, since in case Q; = 0, g(r) = ! would work.
Now let ri(z) = p?(z, Q,) fori =1,... ,2N. By Remark 1.2.5(b), r; is a C'-smooth
function for each :. Let o € Sx be fixed. Certainly zy € Q;, for some 7,. For some
6 > 0, one has |f(zo) — f(y)] <  for all y € By such that |lzg — y|| < 6. It follows
that y € Bx\(Qio—1 U Qi, U Qi,41) whenever ||z — y|| < §. Since || - || is LUR,
there exists A € Sx- with A(zo) = 1 such that ||y — zo}] < § whenever y € By
and A(y) > 1 — « for some a > 0. Hence @onv(Bx\(Qi,—1 U Qi, U Qio+1)) C {v :
A(y) < 1—a}. Therefore r;,(zo) > a? > 0. Since z¢ was arbitrary, this shows that
E _,7i(z) > 0 for each z € Sx. Let r(z) = (1 — ||z||*)?. Notice that r(z) = 0
forallx € Sx, r{(zj > 0 for z € Sx and r is Cl-smooth; cf. Remark 1.2.5(b), ().
Therefore

r(z) + ri(z)
h,; r)= 2
() r(z) + 33 ri(z)

is C'-smooth. Let a; = midpoint of A; and

2N
g(z) = Zaihi(z)-

Certainly g is C'-smooth. Finally, for g € Sx, choose 7y such that zo € Q;, and

use the fact that ri(z¢) = 0 for i & {io — 1,%0,%0 + 1} to estimate

im ori(z0) o 5hicy rilzo)
SN ey ISR )

2N ri(zo)
<3 o — Flmo)l gzl
e

Laz—~1 t( 0)
latig—1 — f{zo)| + |aiy — f(zo)| + |@ig+1 — f(z0)]

l9(z0) — f(zo)| =

IA

—7—<f
2N

IA
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1.2.7 PROPOSITION. Suppose X has an LUR norm || - || whose dual is also LUR,
then every bounded continuous function can be approximated uniformly on bounded

scets by C'-smooth functions.

Proof. Consider Y = X @ R with norm ||(z,r)|ly = (liz]|* + |r}?)%. Certainly
I - lly and its dual norm are LUR. Let zo = (0,1) € Sy. Now, A € Sy~ defined
by A(z,r) = r is the supporting functional at zo and H = {(z,r) : A(z,r) =1} =
{(z,1) : £ € X} is the supporting hyperplane. Let f be a bounded continuous
function on H and C be a bounded subset of H. Thus for some m > 0, C C
{(z,1) : ||z]| < m} = F. Define p: Y\{0} — Sy by p(y) = jzilet pr = p |n. For
py W(y) € F, set fi(y) = f(p7'(v)). Extend f; to a bounded continuous function
on Y and denote it again by f;. By Lemma 1.2.6, choose a C'-smooth function g;
such that |g;(y) — fi(y)] < € for an arbitrary fixed e >0 and ally € Sy. Fory €Y
define g(y) = g1(p(y))- By Remark 1.2.5(c), || - || is Fréchet differentiable, and thus
g is C'-smooth on Y\{0}. In particular, g is C'-smooth on H. For h € F, one

computes

la(h) — £(B)I = lg1 (p(h)) — f (T (P(R)))] = lgr (p(R)) — fr(p(R))] < e.

Since H is a translate of X, the proposition is proved. O

The following proposition is more general than what is requircd to complete
the proof of Theorem 1.2.1, nevertheless we are including it here. because it seems

to have some merit on its own.

1.2.8 PROPOSITION. For a Banach space X the following are equivalent.

(a) Every continuous function can be approximated uniformly by C*-smooth func-

tions.

(b) Every Lipschitz function can be approximated uniformly on bounded sets by

C*-smooth functions.
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(c¢) X admits C*-smooth partitions of unity.

Proof. We will only prove (b) = (c), because (a) = (b) is obvious and (¢) =
(a) is well-known (see [BF], [To]).

Let S be the sct of real-valued C¥-smooth functions on X and g be the family
of sets {f71(0,00): f € Sand f: X — [0,1]}. By Lemma 1 of [To] it suffices to
show that Us coatains a o-locally finite b ¢ for the norm topology on X. To
accomplish this, we use a technique from [Su, Lemma 6]. Let O be a bounded open
subset of X and let ' = X'\O. Choose r > 0 such that O C B,. Let ¢,, : IR — [0, 1]

be a C*-smooth function such that

0 if t< L

8a(t) = { =

>0 otherwise.
By the hypothesis, one can choose a C*-smooth function h, such that |h,(z) —
p(x, F)| < 5 for z € Bry3. Now define

dn(ha(z)) if z€ By

gn(2) = { 0 otherwise.

Clearly g,, is C*-smooth on B, ., as it is a composition of C*-smooth functions there.
Also, g, is C*-smooth on X\B,4; since g,(z) = 0 for all z € X\B,. Therefore, g,,
is C*-smooth on X. Let G,, = {z : ga(z) > 0}. Observe that {z : p(z,F) > 1}
C G, C O and thus |J;—, Gn = O. Because X is a metric space, X has a o-locally
finite base V = Uf’:l V.. where each V,, is locally finite and consists of bounded sets.
By the above argument, for each V € V, choose a fixed sequence {Gyi}r C Us
such that V = i, Gv. Let Gox = {Gvi : V € V,}. Certainly cach G, & is
locally finite. Therefore G = |J,, ; Gn x C Us is a o-locally finite base for X. a

Proof of Theorem 1.2.1. (a) This follows immediately from Proposition 1.2.7
and Proposition 1.2.8.

(b) If, in Lemma 1.2.6, the dual norm is SC instead of LUR, then the function g

constructed there is Giteaux smooth by Lemma 1.2.4(b). Moreover, note that g is
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Fréchet differentiable on finite dimensional subspaces of X (since distance functions
and norns are convex). For p and g, in the proof of Proposition 1.2.7 (with g; con-
structed as ¢ is in Lemma 1.2.6), g; o p is Gateaux differentiable everywhere except
the origin, since for ¢ and z; fixed, p(zo + tz,) € L for all t € IR where L is the
linear subspace generated by zg and z,. Hence Proposition 1.2.7 holds with SC re-
placing LUR in the dual norm and Gateaux smoothness replacing C l.smoothness in
the conclusion. To complete the proof of (b) one need only observe that Proposition

1.2.8 is true when C¥-smoothness is replaced by Gateaux smoothness. (]

1.2.9 REMARK. Recall that a point xy of a convex set C is a strongly exposed point
of C if there exists A € X* such that A(z) < A(zo) forall z € C and ||z, — z¢ll — 0
whenever {z,}52, C C and A(z,) — A(zo)-

If || - || is LUR and z € Sx, then z is a strongly exposed point of Bx. On the
other hand, there are non-LUR norms for which every point on the unit sphere is
strongly exposed. To see this, recall that Yost ([Y, Theorem 2.3]) proved that there
is a Cl-smooth norm ||| - ||| on a separable reflexive space X such that ||f - |||* is not
LUR. Let f € Sx- and choose z € Bx+- = Bx such that f(z) = 1. By Smulyan’s
criterion (see Corollary 1.2.3), |llz, — z|| — 0 whenever z, € Bx and f(z,) — 1.
Thercfore f is strongly exposed.

Now observe that the full strength of the LUR norm on X was not used in the
proof of Lemma 1.2.6 or elsewhere in the proof of Theorem 1.2.1. That is, only the
strictly weaker condition that every point of Sx is strongly exposed was used. This

observation yields a result which is, at least formally, better than Theorem 1.2.1.

1.3 Smooth Partitions of Unity in Nonseparable Spaces

Using some deep renorming theorems we will list some concrete examples of

spaces for which Theorem 1.2.1 yields the existence of C!-smooth partitions of unity.
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1.3.1 THEOREM. If K1) = @, then C(RK) adinits C'-smooth partitions of unity.

Proof. Frori the renorming theorems [De, Theorem 2.1] and [HR] it follows

that C(K) admits an LUR norm whose dual is LUR whenever K1) = @, O

1.3.2 THEOREM. If there is a w*-compact K C X* such that (K,w*)*) = § and

the linear span of K is norm dense in X*, then X admits C'-smooth partitions of

unity.

Proof. Transfer techniques as used in [De], [GTWZ,] and {GTW?Z,} along with
the fact that C(K) admits an LUR norm whose dual is LUR show that X admits
an LUR norm whose dual is LUR. O

For further details on the renormings used in this section one can consult

[DGZ3, Crhapter VII]. Before presenting the next result we need a definition.

1.3.3 DEFINITION. A Banach space X is said to be weakly countably determined
{WCD) if there exists a countable collection K, of w*-compact subsets of X** such
that for every z € X and every u € X**, there exists an ng such that z € I,,, and
u ¢ Kp,. A Banach space X is said to be weakly compactly generated (WCG) if

there is a weakly compact subset K of X such that the linear span of K is norm

dense in X.
1.3.4 THEOREM. If X* is WCD, then X admits C!-smooth partitions of unity.

Proof. From [FT, Theorem 4] and [F4, Theorem 3] it follows that such an X
admits an LUR norm whose dual is LUR. 0

We also point out that Theorem 1.2.1 provides alternate methods for proving

some known results on smooth partitions of unity.

1.3.5 THEOREM ([JZ3], [Vas]). If X is WCD, then X admits Gateaux smooth
partitions of unity.
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Proof. It is shown in [Mer, Theorem 4.8] that such an X admits an LUR norm

whose dual 1s SC. O

We also obtain the results of Godefroy et al. ([GTWZ,]) and McLaughlin

(|[Mc]) in the C*-smeoth case.

1.3.6 THeEOREM ([GTWZ,], [Mc]). If either X or X* is WCG and X admits a

C!'-smooth bunp function, then X admits C'-smooth partitions of unity.

Proof. If X* is WCG, then X* is WCD so this follows from Theorem 1.3.4.
If X is WCG znd admits a C'-smooth bump function, then from [JZ;, Theorem
1] and [Tr, Theorci 1) it follows that X admits an LUR norm whose dual is also
LUR. O
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Chapter Two
SMOOTH CONVEX APPROXIMATION IN SEPARABLE
ANACH SPACES

2.1 Introduction

The purpose of this chapter is to investigate when continuous convex functions
can be approximated by functions of higher order smoothness in cither the Gateaux
or Fréchet sense.

In the paper [NS], Nemirovskii and Semenov proved that there is a uniformly
continuous function on a separable Hilbert space which cannot be approximated
by functions with uniformly continuous second derivatives. In the first section we
show, using the method from Section 2.2 and the above result of [NS], that there is
a norm on a separable Hilbert space which is not a limit of functions with uniformly
continuous second derivatives.

As mentioned in Section 1.1, the question of approximating continuous func-
tions on Hilbert spaces by C*-smooth functions has been settled for a long time.
However, as pointed out by Borwein and Noll in [BN], very little is known about ap-
proximating convex functions by smooth convex functions. In [BN] it is shown that
on a Hilbert space every convex function which is bounded on bounded sets can be
approximated uniformly on bounded sets by convex functions with Lipschitz deriva-
tives. In the third section we will show that if a separable Banach space admits a
norm with modulus of smoothness of pawer type 2 (see Definition 2.1.1), then every
convex function which is bounded on bounded sets can be approximated uniformly
on bounded sets by convex functions which are twice Gateaux differentiable with
Lipschitz first derivatives. This is done by extending the result from [BN] men-
tioned above to the setting of spaces which admit norms with moduli of smoothness

of power type 2 and using the techniques of Fabian et al. in [FWZ, Theorem 3.1].
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We also show that in such spaces there are many norms which are UR and twice
Gateaux differentiable. It is not known if this result is valid in nonseparable Hilbert
spaces.

In the fourth section, it is proved that if a separable Banach space admits a
C*-smooth norm, then there is an LUR norm which is a limit of C*-smooth norms
on bounded sets. Such approximations are useful, for instance, in constructing
smooth homeomorphic maps of spaces into ¢ or lp; see [DGZ;, Chapter V] for
further details.

Recall that LUR and UR norms were defined in Definition 1.1.1.

Much of this chapter will deal with spaces that admit norms with moduli of

smoothness of power type 2.

2.1.1 DEFINITION. The modulus of smoothness px(7) on (X, || - ||) is defined by
1
px(r) =sup{5(lz +yll +llz =yl = 2): ll=zll = L, llyll <7}

and px(7) is said to be of power type p for 1 < p < 2 if there exists C > 0 such that
px(t) £ CTP.

If X admits a norm which has modulus of smoothness of power type p, then
X is superreflexive and thus the UR norms are dense among all norms on X (see
e.g. [B]). In addition, the proof of [FWZ, Lemma 2.4] shows that || - || has modulus
of smoothness of power type 2 if and only if || - | has Lipschitz derivative on its
sphere. Using this, a direct computation shows that || - || has Lipschitz derivative
on all of X. See [DGZ;, Chapter V] for further details on this and for the proof of

the following proposition.

2.1.2 PROPOSITION. Let f be a continuous convex function. Then the following

are equivalent:

(a) there exists C > 0 such that f(z+y)+ f(z —y) —2f(z) < C|ly||® for ally € X;
(b) f' is Lipschitz.
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2.2 Approximation in Hilbert Spaces

The basic methods of Section 1.2 are used to show that if every norm on a
Hilbert space X can be approximated uniformly on Lounded sets by functions in
CZ(X) (the space of real-valued functions with uniformly continuous second deriva-
tives on X), then the same is true for every uniformly continuous function. In
particular, using a proposition of [NS] which shows that there is a function on a
separable Hilbert space X which has Lipschitz derivative but cannot be approxi-

mated uniformly on bounded sets by functions in C2(X) we obtain

2.2.1 PROPOSITION. There is a norm with modulus of smoothness of power tvpe

2 on a Hilbert space X which is not a uniform limit on Bx of functions in C%(X).

Two lemmas will be used to prove Proposition 2.2.1. The first is analogous to

Lemma 1.2.6. In the sequel a function f will be called even if f(z) = f(—z) for all
z e X.

2.2.2 LEMMA. Suppose every norm on a Hilbert space X can be approximated
uniformly on bounded sets by functions in C2(X). Then given € > 0 and a uniformly

continuous even function f on Bx, there is a g € C%(X) such that |g(z)— f{z)| < €

forallz € Sx.

Proof. Note that the usual Hilbert norm ||-|| is UR and |}-||? € C%(X). Without

loss of generality assume that f(z) € [-1,1] for all z € Bx. Let € > 0 be fixed and

choose N so that §7W < €. Let

t—1—N 11— N
N > N

A,-=[ ] for i=1,...,2N.

Let Qo = Q2n4+1 =P and fori=1,... ,2N, define

Qi = f‘l(Ai) and é,‘ = '(ﬁ\—/((Bx\(Q,'_l uQ@;u Qi+1)) U B%>
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Since f is evern, it follows that Q; is the urit ball of an equivalent norm || -{|; on X.
Let viir) = jiz|l;. By uniform rotundity and the uniform continuity of f, it follows
that there exists o > 0 such that v;(z) > 1 4+ «a for every = € @; N Sx and for all z.
Choose h; € C2(X) such that |hi(z) — vi(z)] < § for z € B3. Construct a function
¢ : {0,00} -» {0,1] with uniforinly continuous second derivative which moreover
satisfies () =11t > 1+ 3w and ¢(1) =0if t <1+ 3 la. Set ri(z) = ¢(h:(x)).
Observe that S22 ri(z) > 1 for 1 < |jz]] < 3. Since Z;‘:] ri(z) is uniformly
continuous, given F = {zr € Bx : Zx—x ri(z) < 1}, the distance from F to Sx is
greater than 0. The functions r and 6 which are used below can be expressed as
composites of appropriate functions on IR with the norm. Pick r € C%(X) such
that r(z) = 1 for all z € F and r(2) = @ for ||z]| =2 1. Let a; = midpoint of A; and

for r € B; define
r(z) + 0 air o(2)
T(:t) + Ei:l 7’,’(1‘)

Since h is not necessarily defined on all of X, we extend h to a continuous function

h(z) =

on X. Now construct g € C2(X) such that g(z) = h(z) for all z € Bx as follows.
Let g(z) = h(2)6(z) where 8 € C?(X) satisfies § : X — [0,1], 8(z) = 1 for z € B,
and 6(x) = 0 for ¢ € B>. As in the proof of Lemma 1.2.6, |g(z) — f(z)] < € for all
r € Sx. O

2.2.3 LEMMA. Let X be a Hilbert space. If every norm cn X can be approximated
uniformly on bounded sets by functions in C2(X), then every real-valued uniformly

coutinuous function can be approximated uniformly on bounded sets by functions

in C2(X).

Proof. The basic proof of Proposition 1.2.7 works. Let the notation be as in
the proof of Proposition 1.2.7 and let f be uniformly continuous on the bounded
subset F' of the hyperplane H. Necte that Y = X @ IR is a Hilbert space; and that

p7 ' (v) € F implies A(y) > a for some fixed a > 0. Since a > 0, one can extend f;
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el

in the proof of Proposition 1.2.7 observing that p is a C2-smooth mapping outside

any neighborhood of the origin in Y. a

Proof of Propositiorn 2.2.1. It is known that the norms with moduli of smooth-
ness of power type 2 are dense among all norms on a Hilbert space (see [B] or
Corollary 2.3.4 for a proof). Hence, if every norm with modulus of smoothness
of power type 2 can be approximated uniformly on bounded scts by functions in
C2(X), then so can every norm. Thus by Lemma 2.2.3 every uniformly continu-
ous function can be approximated uniformly on Bx by functions in C2(X). This
contradicts the results of Proposition 3, Section 7 in [NS} and the remark following
it which show that there is a uniformly continuous function on a separable Hilbert
space which cannot L< approximated uuniforinly cn Lounded scts by fuinctions with

uniformly continuous second derivatives. 0O

2.2.4 REMARK. The proof of Proposition 2.2.1 shows that given any class of norms
which are dense among all norms on a Hilbert space (e.g. the UR or LUR norms),

then at least one of them cannot be approximated uniformly on bounded sets by

functions with uniformly continucus second derivatives.

2.3 Second Order Gateaux Smooth Convex Approximation

Recall that a function ¢ : X — IR is twice Gateauz differentiable at z € X

provided that ¢'(y) (the Gateaux derivative of ¢) exists for ¥y in a neighborhood of

z, the limit
.1, .
#"(2)(hy k) = lim (6= + th) — ') (k)
exists for each h,k € X and ¢(-,-) is a continuous symmetric bilinear form.
Much of this section will be devoted to proving the following thecorem.
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2.3.1 THEOREM. Let X be a separabie Banach space that admits a norm with

modulus of sinoothness of power type 2.

(a) Every convex function which is bounded on bounded subsets of X can be ap-
proximated uniformly on bounded sets by twice Gateaux differentiable convex
functions whose first derivatives are aiso Lipschitz.

(i) Every norm on X is a limit of UR norms which are twice Gateaux differentiable

and have moduli of smoothness of power type 2.

Some preliminary results will be given before proceeding to the proof of Theo-
rem 2.3.1. In what foliows, fog(z) = inf{f(y) + g(z —y) : y € X} and is called the

infimal convolution of the convex functions f and g on a Banach space X.

2.3.2 LEMMA. Suppose X is a Banach space and let f be a convex function on
X which is bounded on bounded sets. If {gkx}}>, is a sequence of convex functions
such that gx(0) < % and gi(z) = k|lz|| — § for all z € X, then fogr — f uniformly

on bounded subsets of X.

Proof. Let r > 0 and let K be the Lipschitz constant of f on B,4,. For z¢ € B,
fixed and for each k& we can choose y so that fogi(zo) > f(yx) + gr(zo — y&) — %-

For any £k > K + 1 with k£ > 3 we have

F(z0) + 7 2 f(z0) + 9x(0) 2 fogu(z0)

2 f(yx) + gx(To — vi) — %
M 2 fu) + kllzo — uell - 7-

Let Ag € 8f(xo), then ||Ao||* < K, since f has Lipschitz constant K on Bry;.

Because f(yx) — f(zo) = Ao(yx) — Ao{(z0), we have

f(zo) = f(yx) < Aol lyx — zoll < Kllyx — Zoll-
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Thus it follows from (1) that

. 3
Kllyr — zoll + T > kllzxo — yill-

In other words,

3
— Yyl < ———
vl < T2 wm

e

In particular, yx € B,y1 and so |f(yx) — f(zo)| < K||lyx — xol]- From this we obtain

2 . 2
F(we) + kllzo = yell = 5 2 f(z0) = Kllzo — yll + kllzo = yall —

2
(2) > f(zo0) ~ 2.
Clearly the lemma follows from (1) and (2). O

In the following proposition, part (a) generalizes [BN, Theorem 5.2(1)] while

part (b) is well-known (see e.g. [B]) and is given here for the rcader’s convenience.

2.3.3 PROPOSITION. Let X be a Banach space which has a norm with modulus of

smoothness of power type 2.

(a) Any convex function f which is bounded on bounded subsets of X can be
approximated uniformly on bounded sets by convex functions with Lipschitz

derivatives.

(b) Every norm on X can be approximated by norms with moduli of smoothness

of power type 2.

Proof. Let || - || have modulus of smoothness of power type 2. Then | - ||?
has Lipschitz derivative on all of X (see [DGZj3;, Chapter 5]); hence so does gi
where gi(z) = k*||zj|?. Easily gx(z) > kfjz]| — % for all k and gx(0) = 0, therefore
fogx — f uniformly on bounded sets by Lemma 2.3.2.

To see that fiy = fog, has Lipschitz derivative for each k& we use Proposition

2.1.2 to choose a Cr > 0 such that

(1) gk(z + h) + gr(z — h) — 2gi(z) < Ci||A|®
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for all z,h € X. Fix arbitrary zo,ho € X and choose yi so that

fe(zo) = f(yx) + gr(zo — i) — llRoll®
Then, using (1), we have
fe(zo + ko) + fi(zo — ko) — 2fr(za) < f(yx) + gr(o + ho —yr)+
+ f(yx) + g9x(zo — ho — yx)—
— 2(f (k) + gx(zo — y&) ~ llholl?)
= gi(zo — Yk + ho) + gk(zo — yk — ho)—
— 2gk(z0 — yi) + 2|l holl?

< (Ck + 2)||holl*.
Since Ci does not depend on zo or hg, it follows from Proposition 2.1.2 that f; is

Lipschitz. This proves {a).

To see (b), for a given norm |- | let f = |- [*. Then by (a) the norms |- | =
(fogx)? have moduli of smoothness of power type 2 and converge to |- | uniformly
on bounded sets. O

To obtain approximating functions which are twice Gateaux differentiable, we
need a lemma whose proof is almost identical to the proof of [FWZ, Theorem 3.1].
9.3.4 LEMMA. Let X be a separable Banach space and let ¢ > 0 and r > 0 be
given.

(a) If f is a convex function whose first derivative is Lipschitz, then there is a

convex function g such that |g(z) — f(z)| < € for all x € B, and g is twice
Gateaux differentiable with Lipschitz first derivative.

(b) If || - || is a norm with modulus of smoothness of power type 2, then there is a
norm || - ||; such that (1 —e¢)ljz|l < |lzlls £ (1+¢€)||zl| for all z and || - ||, is twice

Gateaux differentiable with modulus of smoothness of power type 2.

Proof. To begin the proof, we fix e > 0 and r > 0. Let C € IR be such that f is

Lipschitz with constant C on Br41, and select a set {h;}$2, dense in Sx. Next, fix
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a C*®-smooth function ¢¢ : IR — IR such that ¢¢ is nonnegative and even, vanishes
outside {55, 5%5] and satisfies fIR ¢o = 1. Setting fo = f and ¢, = 2"¢o(2"t) for

t € IR, n > 1, we define a sequence of functions {f, : X — IR}

n=}

fa(z) = -/IR"'H fo(x — Ztihi)Hé,'(t,’)dto - dt

As in the proof of [FWZ, Theorem 3.1}, there is a function g : X — IR such

that f, — ¢ uniformly on bounded sets and ¢ is twice Gateaux differentiable with

Lipschitz first derivative.

Moreover, for z € B,, we have

@) = 9@ = tim| [ [foe) - fole — S tih) ]Hw Yo -

1=0
< / Cll ) _tihill | | ¢:(ti)dto - - - dt
o 2
< C-Z,— = €.
In case (b) where the function f is a norm, we set fo(z) = ||z]|?. It follows

that the function g as obtained above is convex and even. By (a), choose g so that
g(z) € [l|z||? — ¢, l|z]|> + €] whenever ||z|| < 5. If we set B = {z € X : g(z) < 16},
then as in {[FWZ]j the Minkowski functional of B is an equivalent norm |- | which is
twice Gateaux differentiable and has modulus of smoothness of power type 2. Let
Il -l = 4|-|- Now ||z} = 4 if and only if g(z) = 16 which occurs if and only if
16 — € < ||z||? < 16 + €. Therefore, (1 —é€)|iz|| < |zl £ (1+¢)ljz|| forallz € X. O

Proof of Theorem 2.8.1. From Proposition 2.3.3(a) and Lemma 2.3.4(a) one

immediately sees that (a) is true. We now prove (b).

Step 1. We first show that every UR norm is a limit of UR norms with moduli

of smoothness of power type 2.

Let | -| be UR and let € > 0. By Proposition 2.3.3(b), choose norms |- |,, with

moduli of smoothness of power type 2 so that (1 —¢)|z| < |z < |z]and |-|n — |-
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Choose Cy > 2 so that |z + k|2 + |z — k|2 — 2|z|2 < C,|k}2 for all z,h € X and

define ||| - Il by
‘ 2 27" o\ 3
izl = (1212 + € >° =—l=2) "
n=1 Cn

Easily ||z + 2llI? + lllz — RIIZ —2(l]I* < (Ci + DR for all z,h € X and (1 —¢€)lz| <
llzlll € (1 + €)|z|. To see that ||| - || is UR, suppose that

2llzxll® + 2lyall® — llzx + yill* — 0.

From this it follows, for each n, that

2|z k|2 + 2lyx|% — |zk +yx|2 — 0.

Thus,

2|z )? + 2|ykl? — |zk + ux|> — O.

Therefore |zi — yix| — 0; this implies that |||zx — y&[| — 0. That is, ||| - [| is UR.

Step 2. If the initial norm in Lemma 2.3.4(b) is UR, then so is the norm in the
conclusion.

Let |- | be UR with modulus of smoothness of power type 2. By uniform
rotundity, for a fixed r > 0, given § > 0 there exists € > 0 so that 2|z|® + 2|y|* >
|z +y|? +4¢€ whenever |z| < 741, |y| < r+1and |[zr—y| > 6. Hence using fo(-) = |-|?
to construct the functions f,, as in the proof of Lemma 2.3.4, for |z —y| 2 § and

Jz| <, lyl < r, we have

f"(x;y) = /mnﬂlzzy - gtshilzg#t;)dto...dtn

T —Yietihi |y =2 igtihi)? -
5 + : | T[T #(t:)dto - .. dtn

=0
B ACIS Y SETHS ST PR
’ 1=0 =0 =0

= 3Fa(2) + 3 fal¥) — .

~ JRrH




Now f, — f uniformly on bounded sets for some f, therefore

F(EEY) < 55 + 37 w) — e

Let B = {z : f(z) < M} be the unit ball of some norm || - ||. We will show
that || - || is UR. Now B C {z : |z| < r} for some r > 0. Given é > 0, there exists

an € > 0 so that

f(x;y) < lf(ar)+%f(y)~.ng—f

whenever ||z — y]| > é and x, y € B. Since f is convex and bounded on bounded
sets, it is certainly uniformly continuous on B. Thus there is an 7 > 0 such that

Hu —v|} £ n and u, v € B imply |f(u) — f(v)] < €. Hence

f((1+n)($;y)) Sf(zzy)+e5M.

This implies

I T +‘z/l 1
2 T 1l47
whenever z, y € B and ||z — y|| = é. Thus || - || is UR. This finishes Step 2.

Finally, since the UR norms are dense among all norms in X, Step 1, Step 2

and Lemma 2.3.4(b) show that (b) is true. O

2.3.5 REMARK. (a) If f is globally Lipschitz with Lipschitz constant K and g; is as
in Lemma 2.3.2, then arguing as in inequalities (1) and (2) in the proof of Lemma

2.3.2, for any z9 € X we have

F(z0) + 3 = Fog(ae) 2 f(zo) + (k ~ K)llzo — all -

a0

Thus the approximation is uniform on all of X. Moreover in Lemma 2.3.4(a) the
approximation is uniform on all of X provided the given function f is globally
Lipschitz. Therefore the approximation in Theorem 2.3.1(2) will be uniform on all

of X provided the initial function is globally Lipschitz.
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(b) Variants of Proposition 2.3.3 are also valid, for ¢. .unple, in spaces which
admit uniformly smooth norms or norms with moduli of smoothness of power type

14 a for 0 < @ < 1 and for C'-smoothness in reflexive spaces.

2.4 Approximating LUR Norms by C*-Smooth Norms

It seems to be unknown whether the existence of a C*-smooth norm on X
implies that every norm on X can be approximated C*-smooth norms. The next
proposition shows one can construct an LUR norm on a separable Banach space
X that is a limit of C*¥-smooth norms provided X admits a C*-smooth norm; see

[PWZ, Proposition 2] for a similar construction on co(T').

2.4.1 PROPOSITION. Let X be a separable Banach space which admits a Ck-
smooth norm for some k € INU {oo}. Then there is an LUR norm on X which is

C'-smooth and is limit of C¥-smooth norms.

Proof. Let the norm || - || be C*-smooth and {kh,}3%, be dense in Sx. Choose
fn € Sx- such that f,(h,) = 1 and define the projections P, by P,z = Fn(2)hn.
Form =1,2,... let ¢,, be even, convex and C*-smooth functions on IR such that

bm(t) = 0if [t] < L and ¢,(t) > 0if || > L; suppose also that ¢.»(2) < 3 for all

m. Now set

On,m(z) = ¢m(llzll) + Sm(llz — Puzll)-

Observe that 8y, v is C k_smooth, even, convex and uniformly continuous on bounded
subsets of X. If Vom = {2 : 0nm(z) < 1}, then V, ,, is the unit ball of an
equivalent norm || - ||n,m. Because 8, m(x) < 1 whenever ||z|| < 1, one has ||-[ln,m <
Il - I. Moreover, 8, »(0) = 0 and 6, m?:} == i whenever ||z|ln,m = 1; this implies
6;, n(x)(x) > 1. According io the impli=i¢ fwaction theorem, I - ln,m is C*¥-smooth

on X'\{0}.

N
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Consider the norm ||| - ||| defined by

1 " 01 . 1
izl = (l=l? + 3 samm iz lam + D 5o fa() .

n,m n=1

Notice that ||| - ||| is C'-smooth, the norms

1 1 i
lizlls = (l=1® + D sigmllzllinm + D 5a i)’
n=1

n,m<j
are C*-smooth and || - [Il; — |l - lll-
We now show that ||| - ||| is LUR. Suppose that |||z]]| = 1 and
(1) 20kl + 2fll=:lli> = lllz + =:fl* — 0.

We now show, for every n, that ||z;— Pnz;|| — ||z — Pnz||- To do this we first assume
that limsup; ||zi — Pazil] > ||z — Pnz|| for some n. Thus there is a subsequence

{zi;} such that ||z;; — Przy,|| > ||z — Pnzf| + 6 for some § > 0 and for all j. Choose

m so that L < %, and since ||z]|n,m < ||z]| < lliz]lll = 1, we choose & > 1 so that
$m(aliz]]) + dm(allz — Przl]) = 1.
Because of (1) and the definition of ||| - |||, ||z:|| — ||z|| and thercfore

liminf ¢m(allz; {l) + ¢m(alizi; — Pazyll) 2 dmlalizll) + ¢m(allz — Poz]| + 6).

Since ¢m is convex and increasing on (1, 00) and § > £ it follows that

Sm(@llzll) + dm(ellz — Pasl + 6) 2 dm(ellzll) + dm(allz — Pazll)+
+ $m(@lle — Pazll + =) dm(allz ~ Paz])
> gm(allel) + dm(allz — Pazl)) + A
=1+2A
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where A = ¢m(Z) — ¢m(L) > 0. Now ¢m(alzi;|) + dm(al|zi; — Pmzi;|l) =1+ 2
for j > jo. Since ¢,, is uniformly continuous on bounded sets, there is an € > 0 so

that
¢m (1 — e)ellzi ) + ¢m((1 — e)allzi; — Prmzill) 21

for j > jo. Hence liminf;(1 — €)l|zi;|ln,m = ||Z]ln,m- However, this leads to a
contradiction, since (1) and the definition of ||| - ||| imply that ||zi|ln,m — [|Zlln,m-
Therefore, limsup; ||z; — Pnzil|| < ||z — Pnz|| for each n.

Similarly we see that liminf; ||z; — Paz;|| 2 ||z — Pnz|| for each n. Therefore,
(2) lzi — Poz;|| = ||z — Paz| for each n.

We now argue as in [JZ;] to show that ||| - || is LUR. Let € > 0 and recall that
P,v = fa(v)h, where ||foll* = ||kall = fa(ha) = 1. Since {h,}2; is dense in Sx,

we cheose and fix n such that

(3) llz — Paz|l < e
According to (2) and (3) there is an ig such that

(4) lzi — Puzill <€ forall 2> 1.

Because of (1) and the definition of ||| - l||, it follows that lim; f,(zi) = fa(z). Thus

replacing g by a larger number if necessary we also have:
(5) [ fu(zi) — fa(z)l <€ forall i2>i,.
Finally, for : > 19 (3), (4) and (5) imply

lz — zill < l|lzi — Pazill + | Pazi — Paz|| + || Paz — ||

= ||zi — Pazill + [(fa(zi) — fa(z))hnl| + [| Paz — ||
< 3e.

Since [l] - ]| is equivalent to || - ||, {llz — zilll — 0. Therefore ||| - ||| is LUR. 0

In a similar manner one can also prove:
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2.4.2 PROPOSITION. If X is a separable Banach space with a norm whose k-th
Fréchet derivative is uniformly continuous on its sphere for some k € IN, then X

admits an LUR norm which has uniformly continuous k-th Fréchet derivative on its

sphere.

Proof. Essentially the same proof as in Proposition 2.4.1 works. As before, for

|zl{n,m = 1, we have 6, . .(z)(z) = 1, thus the implicit function theorem asserts
that || - ||n,m has uniformly continuous k-th derivative, since 6,,,, has uniformly
continuous k-th derivative. Now define the norm [|| - ||| by

— 2 2 3
=l = (ll=l1* + ), o 2n+,,, Nzll3,m + }: ;;f (z))

where C, m > 1 is chosen so that the k-th derivative of z=1—|| - ||Z ,, has norm <1

on X \{0}. The rules for differentiating an infinite sum show that ||- ||| has uniformly

continuous k-th derivative on its sphere. o

In the following proposition, part (a) is similar to [DGZ,, Corollary I11.8] but
we give a simpler proof here using the methods of [FWZ, Theorem 3.3] and the
Baire category theorem; part (b) is an easy consequence of the methods of [FWZ,
Theorem 3.3} but was not included in that paper. Before we state the proposition,
recall that a norm is Lipschitz smooth at z # 0 if and only if there exists a C > 0
so that ||z + k|| + ||z — k|| — 2||z]] < C||h||? for all k € X; see [FWZ, Lemma 2.4].

2.4.3 PROPOSITION. (a) Suppose X admits an LUR norm which is Lipschitz
smooth at each point of a dense G subset of X. Then X admits a norm with
modulus of smoothness of power type 2.

(b) Suppose X does not contain a subspace isomorphic to co(IN). If X admits
a norm whose k-th derivative is locally uniformly continuous on X\{0}, then X

admits a norm with uniformly continuous k-th derivative on its sphere.

Proof. (a) Let || - || be an LUR norm on X which is Lipschitz smooth at each
point of €2 a dense G subset of X. Define

Fp = {z: ||z + &|| + ||z — k|| — 2||z]| < n||k||*® forall he X}
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Then F, is closed and 2 © UF,. By the Baire category theorem, for some ng, Fy,
has nonempty interior, say, B(z¢,2¢) C F,, for some € > 0 and z¢ € X. Therefore,
|| - I’ is Lipschitz on B(zo,€).

We now proceed as in the proof of [FWZ, Theorem 3.3]. Let H = {h € X :
llzoll'(R) = 0}. Since || - |} is LUR, there is a § > 0 such that for » € H and |\}|| > ¢,

zo + hl| > ||zofl + 6. For h € H, let ¢(h) = |lzo + k|| + ||zo — || — 2||zo||-

we have |

Set Q = {h € H : ¢(h) < g} Let ¢ be the Minkowski functional of @. The
implicit function theorem asserts that as an equivalent norm on H, q has Lipschitz
derivative on its sphere. Thus there is such a norm on X.

(b) By [FWZ, Theorem 3.3(i)], X is superreflexive. Therefore there exists a
strongly exposed point on Bx. Choose ¢ > 0 so that the k-th derivative of || - || is

uniformly continuous on B(zy, €) and proceed as in part (a). O

The following corollary is an immediate consequence of Theorem 2.3.1(b),
Proposition 2.4.3(a) and the result that a point of twice Gateaux differentiability

of a convex function is a point of Lipschitz smoothness ([BN, Proposition 2.2]).

2.4.4 COROLLARY. For a separable Banach space X, the following are equivalent.

(a) X admits an LUR norm which is twice Gateaux differentiable on a dense G5
set,

(b) X admits an LUR norm which is Lipschitz smooth on a dense G5 set.

(c) X admits a twice Gateaux differentiable UR norm with inodulus of smoothness

of power type 2.

In particular, from Corollary 2.4.4 we see that the LUR norm in Proposition
2.4.1 cannot generally be twice Gateaux differentiable on a dense G5 subset of X.

We conclude this section with a dichotomy on averaging processes.
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2.4.5 COROLLARY. Suppose that X is separable and »dmits a C*+! sinooth norm

for some k > 1.

(a) If X does not contain a subspace isomorphic to cy(IN), then X admits an
LUR norm which has uniformly continuous k-th derivative on Sx. Morcover
X admits a twice Giteaux differentiable UR norm.

(b) If X contains a subspace isomorphic to co(IN), then there is no LUR norm on

X which is twice Gateaux differentiable on a dense Gs subset of X .

Proof. (a) By Propositions 2.4.2 and 2.4.3(b) X admits an LUR norm which has
uniformly continuous k-th derivative on its sphere. In particular, X is superreflexive.
Moreover, a norm which is C¥*1.smooth on X'\ {0} has a locally Lipschitz derivative
on X\ {0}, therefore [FWZ, Theorem 3.4] shows that X admits a norm with modulus
of smoothness of power type 2. Applying Theorem 2.3.1 shows that (a) is true in
this case.

(b) Because X contains a subspace isomorphic to co(IN), X is not superreflex-

ive; in particular, X admits no UR norm. The proof is completed by applying

Corollary 2.4.4. O
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Chapter Three
POINTWISE DIRECTIONAL HOLDER DIFFERENTIABLE
BUMP FUNCTIONS

3.1 Iniroduction

The main goal of this chapter is to show that if a Banach space X and its
dual space admit continuous bump functions with pointwise directional Lipschitz
derivatives, then X is isomorphic to a Hilbert space. In proving this, we will develop
results that are valid for bump functions with directional Hélder derivatives which,
it seems, should be presented in the more general Holder case.

This chapter is organized as follows. In thi: section, we introduce the basic
notions which will be used throughout the chapter.

The second section will focus on Asplund spaces. Recall that a Banach space X
is an Asplund space if every continuous convex function is Fréchet differentiable on
a dense G subset of X. It is well-known that a Banach space is an Asplund space
if and only if every separable subspace has a separable dual; see e.g. [Ph, Theorem
2.34]. We will show that a Banach space is an Asplund space if it admits a con-
tinuous bump function with pointwise directional Hélder derivative. In particular,
any Banach space which admits a continuous twice Gateaux differentiable bump
function is an Asplund space. Recall that any separable Banach space admits a
continuous Gateaux differentiable bump function (see e.g. [DGZ3]) while not every
separable Banach space is an Asplund space; for example [, (IN) has a nonseparable
dual.

In Section 3, the methods of Deville et al. ([DGZ;]) in conjunction with a tech-
nique of Borwein and Noll ({[BN]) are used to show that if a Banach space has the
Radon-Nikodym property (RNP) and has a continuous bump function with point-

wise directional a-Holder derivative, then it has a norm with modulus of smoothness
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of power type 1 + «a; see [Bou] for further details on the RNP. Applyving the: ronlt
to those in the second section wiii yield new isomorphic characterizations of Hilbert

and superreflexive spaces. We now introduce some terminology.

3.1.1 DEFINITION. A function ¢ on X is said to have a directional Holder derivative

at z¢ if @' (Gateaux derivative) exists in a neighborbood of zy and for cach h € Sy

there exist K > 2, 6, > 0 and ap > 0 such that

|(¢'(a:o + th) — qz‘)’(:ro))(h)l < Kpter
forall 0 <t < ép. In case ap > a > 0 for all h € Bx, ¢' is said to be directionally

a-Holder at 2. We will say that ¢ has pointwise directional Holder derivative on

X, if ¢ has directional Hoélder derviative at each r € X.

3.1.2 REMARK. If ¢ is continuous at zq and if ¢’ is directionally Holder at z4, then
by the mean value theorem and the fact ¢ is bounded on a neighborhood of x,

there is a 6 > 0 so that for each h € By, there are Cp > 2 and ay > 0 such that
|¢(zo + th) — ¢(z0) — ¢'(z0)(th)| < Chrlith|}+o»

for all 0 <t < 6. This is the property of ¢ which we will work with in this chapter.

3.2 Pointwise Directional Holder Differentiability and Asplund Spaces

Before stating the main result of this section (Theorem 3.2.3) we will prove
two lemmas. The first lemma is due to Fabian ([F3]) and we include it here for

completeness.

3.2.1 LEMMA ([F2, Lemma 0]). Let ¢ be a continuous and Gateaux differentiable
bump function on a Banach space X andlet S = {z € X : ¢(z) # 0}. Consider the
mapping ® : § — X* defined by

®(z) = (¢_2)'(x).

Then ®(S) is norm dense in X*.
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Proof. We begin by defining a function 1 on X by ¥(z) = ¢ %(z) if ¢(z) £ 0
and ¥(z) = oo if ¢(z) = 0. Let f € X* and € > 0 be given. Since ¢ is continuous,
the function ¥ — f is lower semicontinuous on X. Moreover ¢ > 0 on X and 3 = oo
outside a bounded set in X . Therefore ¥ -- f is bounded below on X. According
to Ekeland’s variational principle (see e.g. [Ph, Lemma 3.13}), there is an ¢ € X

such that ¥(zy) < oo, that is ¢(zo) # 0, and for every o € X and t > 0 we have

Y(zo + th) — f(zo + th) 2 P(z0) — flzo) — ef|lhl|-

Hence for he X and it > 0,

P(xo + th) — y(ze, _ flzo +th) — f(xo) _
. > r = f(h) — €|lh]l.

Since v is Gateaux differentiable at z¢, it follows for A € X that

Y'(zo)(k) = lim

tjo

th) —
P(zo +th) = (Z0) 5 () — el
Therefore ||'(z0) — f||* < e O

The next lemma is quite similar to [BN, Proposition 2.2].

3.2.2 LEMMA. Suppose ¢ has directional Hélder derivative at z¢ and that ¢ is
continuous on a neighborhood of zo. Then there exists § > 0, a > 0, K > 2 and an

open set U C Bx such that

|(zo + th) — H(z0) — ¢'(z0)(R)| < K|fth|'**
forallh e U,and 0 <t <.

Proof. We use the assumptions to choose § > 0 so that ¢ is continuous at
zo + th for h € Bx and 0 < t < §; moreover § is chosen so that ¢ is bounded on

Bs(zo). Hence for ach h € Bx there exists C > 2 and ap > 0 such that

|(zo + th) — ¢(z0) — ¢'(x0)(th)| < Crljth||}t** forall 0 <t <.
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Motivated by the elegant proof of [BN, Proposition 2.2}, we define
Fmn={h € Bx :1é¢(zo + th) — ¢(z9) — ¢'(xo)(th)| < n”th””'# for all 0 <t < 6}.

Now each F, , is closed and UFy,;, ., = Bx. According to the Baire category the-
orem, for some m¢ and ng, there is an open set U such that U C Frgon,- Setting

K =ng and a = -mi; completes the proof. (]

We are now ready for the main result of this section. The strategy used to

prove the following theorem is similar to that of the proof of [DGZ,, Lemma 111.6].

3.2.3 THEOREM. Suppose X admits a continuous bump function with pointwise
directional Hélder derivative on X, then dens(Y') = dens(Y*) for any subspace Y of
X, where dens(X) is the smallest cardinality of a dense subset in X. In particular,

X is an Asplund space.

Proof. Suppose that ¢ is a continuous bump function on X with pointwise
directional Hélder derivative. As in the proof of Lemma 3.2.1, let ¥(z) = ¢~2(x) if
#(z) # 0 and Y(z) = oo if ¢(z) = 0. Notice that ' is pointwise directionally Hélder
whenever ¢(z) # 0. Let D = {z;};ecs be a dense set in X with |J| = dens(X).

Let f € X* and 0 < € < 1 be given. Using Lemma 3.2.1, choose z4 so that
¢{zg) # 0 and [|y'(z0) — f|| < €. According to Lemma 3.2.2, there are § > 0, a >
0,K >22,r>0and U =y + B, C Bx such that

(1) |¥(zo +th) — ¥(x9) — ¥'(ze)(th)] < K||th||}!t* if heUand 0<t <4

Nowlet C={th: he U,0<t < 6} a.ndCl={th:h€yo+B§,0§t$6}. From
(1) and the definition of C we have

(2) [W(zo + 2) — Y(zo) — ¢¥'(z0)(2)| £ K||z||*** forall z € C.

We will also need following elementary fact whose cbvious proof is omitted.
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Claim (i). If |luf| > 0 and u € C1, then u + [lul|5v € C for all v € Bx.

r

Now choose z; € D so that £, — zo € C; and 0 < |lz1 — x0||? < min{1&%. I}

We also choose n € IN such that Lz —zo|'*% < L < [lz1 —=o||'*%. In particular,

L <lz; — zo|l - |z1 — zol|® < llz1 — 20]|§. According to Claim (i) we have
(3) :z:l—xo-i—;l;yEC for all y € Bx.
Now, for y € Byx, defining p(h) = ¥(z¢ + k) — Y(zo) — ¥'(z0)(h) wWe have
1 1
¥(z1 + ;y) —(z1) = ¢ (o + (21 — z0) + ;y) — (o) — (¥(z1) — ¥(z0))
1 1
= ¥(z0)(zs — 20) + =¥ (20)(¥) + ple1 — T + Z3)-
— ¥’ (zo)(z1 — z0) — p(z1 — Zo)-
Hence,
1 1, 1
B(z1 + —y) = B(z1) = ~'(Ze)(¥) = p(z1 — 2o + y) — p(z1 — Zo)-
Using this with (2) and (3) yields:
1 1 1
(21 + ;y) —¥(z1) — ;1—1/)'(xo)(y)| < lp(z1 =20 + ;y)l + |p(z1 — 7o)
1
< Kllz1 = zo + —ylI'™* + Kl|z1 - zol' T
S 21+0K”11 _ :1:0"1+°' + K||:z:1 _ x0"1+a.
This implies that

in(p(z: + %y) — 9(21)) — ¥'(z0)(¥)]| € 5K|lz1 ~ zol|Enflzy — zol|*+E
€ 2

< . -7 -
< 5K 10K n

- = €.
n

Since ||¥'(x0) — fll < ¢, it follows, for y € By, that
1
ln(d’(-”fl + ;l'y) — (1)) — f(!/)' < 2e.
Consider the Banach space lo(Bx) in its canonical supremum norm and let
1
S = {n(¥(z; + ;_L‘y) = 1/’(55.7')}(,',,1)
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where (j, n) are all indices in J x IN such that ¢(z; + ty) # 0 for all y € Bx. Since
|S| < dens(X') and X* is in the norm closure of S as subsets of lo.(Byx) it follows
that dens(X ) = dens(X*).

If Y is a closed subspace of X, then Y admits a continuous bump function with
pointwise directional Hélder derivative. Therefore the above argument shows that

dens(Y) = dens(Y*). In particular, X is an Asplun. space (see e.g. [Ph, Theoremn
2.34)). O

3.2.4 EXAMPLE. Since [;(IN) is separable, it follows that !;(IN) has a Gatcaux
differentiable norm and hence a continuous Gateaux differentiable bump function;
see e.g. [DGZ3]. On the other hand, by Theorem 3.2.3, it cannot admit any

continuous bump function with pointwise directional Holder derivative, since {o(IN)

is nonseparable.

Because a function which is twice Gateaux differentiable at a point certainly

has directional Hoélder derivative at that point, Theorem 3.2.3 immediately yieclds

3.2.5 COROLLARY. If a Banach space X admits a continuous twice Gateaux dif-

ferentiable bump function, then X is an Asplund space.

In [BN, Proposition 2.2] it is shown that every norm which is twice Gateaux
differentiable on X'\ {0} is also Lipschitz smooth at each point of X\{0}. However,
it is not difficult to construct an example of a continuous function on IR? which
is twice Gateaux differentiable everywhere but there are points at which it is not
Fréchet differentiable. Therefore the bump function in Theorem 3.2.3 need not be
Fréchet differentiable everywhere. Because of this, it is natural to ask whether the
existence of, say, a continuous twice Gateaux differentiable bump function on X
implies the existence of a Fréchet differentiable bump function on X. Although we

do not know the answer to this in general, for a wide class of spaces a stronger

result is true.
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3.2.6 COROLLARY. Suppose X is WCD and admits a continuous bump function

with pointwise directional Hélder derivative, then X admits an LUR norm whose

dual is also LUR.

Proof. By Theorem 3.2.3, X is an Asplund space. The corollary thus follows
from [Fa, Theorem 1] which shows that a WCD Asplund space admits an LUR

norm whose dual is also LUR. O
Combining Corollary 3.2.6 and Theorem 1.2.1(a) we obtain

3.2.7 COROLLARY. If X is WCD and admits a continuous bump function with
pointwise directional Hélder derivative, then X admits C'-smooth partitions of

unity.

3.3 Characterizations of Hilbert and Superreflexive Spaces

We begin by giving a sufficient condition for a Banach space to be superreflex-
ive. It should be noted that Proposition 3.3.1 is an improvement of [DGZ;, Theorem
I11.1] which was observed by R. Poliquin and V. Zizler. We include their proof for

the reader’s convenience.

3.3.1 PROPOSITION. Suppose X is a Banach space with the RNP. If there is a
continuous bump function ¢ on X with pointwise directional Hélder derivative,
then X is superreflexive. Moreover, if ¢' is pointwise directionally a-Hdlder for

some a > 0, then X admits a norm with modulus of smoothness of power type

14 «.

Proof. We essentially follow the proof of [DGZ,, Theorem IIL.1].
First define ¥ : X — IR U {00} by ¢¥(z) = ¢~ 2%(x) if ¢(x) # 0 and y(z) = oo if
¢(x) = 0. Let ¥* be the Fenchel conjugate function of ¥ i.e. for y € X*

¥*(y) = sup{{y, z) —¥(z) : z € X}.
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Because ¥ (z) = oo outside a bounded set, the function ¥* is finite, convex and
w*-lower semicontinuous on X*. Because X has RNP, the function * is Fréchet
differentiable at each point of a norm dense Gs subset 2 of X* (cf. [Col]) with
derivative in X (z* is in the subdifferential of ¥ at z if and only if z is in the
subdifferential of 1* at =*; see [ET]). Let 3 denote the Fenchel conjugatec of ¥* on X.
It is shown in the proof of [DGZ2, Theorem III.1] that if yo € Q and xo = (¥*)(y0)
then (:z:o,-t;’;(:z:o)) is a strongly exposed point of the epigraph of y—exposed by
(yo, —1). Because of strong exposedness, the point ( :co,zi;(:z:o)) actually belongs to
the epigraph of 1) and this means that ¥(zo) = zZ(xo) < oo. Therefore it follows that
1 has directional Hélder derivative and is continuous at z3. Because J; is convex,
majorized by ¥ and agrees with ¥ at z¢, it is straightforward to verify that there

exists 6 > 0 so that for each h € Bx there isa C, > 0 and an aj > 0 such that
l¥(zo + th) — P(z0) — ¥'(z0)(th)l < Crljth]|'+on.

Hence Lemma 3.2.2 shows that there exists §; > 0, ; > 0, K > 2 and an opcn set

U C Bx such that
[¥(zo + th) — ¥(zo) — ¥'(20)(th)| < K|Jth]!+en

for all 0 < ¢ < §. Since z',l:: is convex and bounded above on a neighborhood of z4 it

follows, as in the proof of [BN, Proposition 2.2] that there exists §2 > 0 and K; > 0
so that

|"Z(.’170 + h) — 12;(1:0) - J’(zo)(hﬂ < K, “h”1+a,

whenever ||k|} < 62. From here, the argument is exactly the same as the proof of

[DGZ;, Theorem II1.1] starting from equation (4). O

Applying Proposition 3.3.1 in the case a = 1, that is ¢’ is pointwise directionally

Lipschitz, to the results in Section 2.3 we obtain the following theorem.
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3.3.2 THEOREM. For a separable Banach space X, the following are equivalent.

(a) X has RNP and admits a continuous bump function with pointwise directional
Lipschitz derivative.

(b) X admits a norm with modulus of smoothness of powcr type 2.

(c) Every norm on X is a limit of twice Gateaux differentiable UR norms with
moduli of smoothness of power type 2.

(d) X admits an LUR norm which is twice Gateaux differentiable on a dense G5
set.

(¢) Every convex function which is bounded on bounded sets can be approximated
uniformly on bounded subsets of X by twice Giteaux differentiable convex

functions whose first derivatives are also Lipschitz.

Proof. Proposition 3.3.1 shows that (a) = (b). From Theorem 2.3.1(b), we
have (b) = (c); (¢) = (d) is obvious and (d) = (e) is a consequence of Corollary
2.4.4 and Theorem 2.3.1(a).

To prove (e) = (a), notice that (e) easily implies that X admits a continuous
twice Gateaux differentiable bump function with Lipschitz derivative and therefore
is superreflexive by [FWZ, Theorem 3.2] (it is also easy to directly construct a norm

with modulus of smoothness of power type 2 using (e) and the implicit function

theorem). U

As a consequence of what has been done in this chapter, one obtains

3.3.3 THEOREM. For a Banach space X the following are equivalent.
(a) X is isomorphic to a Hilbert space.
(b) Both X and X* admit continuous twice Giteaux differentiable bump functions.

(c) Both X and X* admit continuous bump functions whose derivatives are point-

wise directionally Lipschitz.
Proof. Both (a) = (b) and (b) = (c) are obvious. Thus only (c) = (a) needs
proving. By Theorem 3.2.3, X and X™* are Asplund spaces, therefore X and X*
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have the RNP (see e.g. [Bou, Theorem 5.2.12]). According to Propostion 3.3.1, X
and X* admit norms with moduli of smoothness of power type 2. Therefore X has
type 2 and cotype 2 (see e.g. [B, Propositions 2 and 3, pp. 309-311]) and hence is

isomorphic to a Hilbert space by Kwapien’s theorem in [Kw]. O
We close this chapter with a characterization of superreflexive spaces.

3.3.4 PROPOSITION. For a Banach space X the following are equivalent.

(a) X and X* admit continuous bump functions with pointwise directional Holder

derivatives.

(b) X is superreflexive.

Proof. According to Theorem 3.2.3, X* is an Asplund space, therefore X has
the RNP (see e.g. [Bou, Theorem 5.2.12]). Invoking Proposition 3.3.1 shows that
X is superreflexive. This proves (a) = (b). Of course, (b) = (a) follows from a

deep theorem of Pisier ([Pi, Theorem 3.2]). 0

It seems even to obtain (a) from superreflexivity one has to use Pisier’s theorem,
although the existence of a bump function with pointwise directional Holder deriva-
tive is much weaker than the existence of a norm with a modulus ¢f smoothness
of power type. For instance, co(IN) admits a bump function with locally Lipschitz

derivative while ¢o(IN) is not superreflexive.
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Chapter Four
FRECHET SMOOTH NORMS ON SPACES
OF COUNTABLE DIMENSION

4.1 Introduction

If a separable Banach space X has a Fréchet differentiable norm, then X*
is also separable (see e.g. [DGZ3, Chapter II] or the proof of Corollary 4.3.3).
Therefore certain separable Banach spaces (e.g. [;(IN), C[0,1] and L,{0, 1]) do not
admit Fréchet differentiable norms. In this chapter we will investigate the existence
of norms which are Fréchet differentiable on certain dense subsets of a separable
Banach space.

In Section 4.2 it is shown that there is an abundance of norms which are Fréchet
differentiable at each point of a prescribed countable set not containing the origin.
In addition, many of these norms can be chosen to also be LUR whenever the space
itself admits an LUR norm (which is the case for separable spaces). Moreover, if
every norm on a separable space X is Fréchet differentiable on dense set, then X
is an Asplund space and thus X* is separable (see e.g. [Ph, Tneorem 2.34 and
Corollary 2.35]). Therefore, even in separable Banach spaces we cannot hope to
have all norms Fréchet differentiable at each point of some fixed countable set of
nonzero elements.

The third section considers smoothness on (noncomplete) normed linear spaces
with countable algebraic bases. It is shown if a subspace L of a separable Banach
space X has dimension Rg, then there is an LUR norm which is Fréchet differen-
tiable at each nonzero element of L (Theorem 4.3.1). Notice Smulyan’s criterion
implies that if a norm is Fréchet differentiable and LUR at a point z, then the
dual norm is LUR at the support functional of = (see Remark 4.3.2). Therefore, in

order to construct a norm which is Fréchet differentiable and LUR at each nonzero
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element of a subspace L, one must construct a dual norm which is LUR at each
support functional to nonzero elements of L. We will construct such a norm us-
ing Kadets-Klee renorming techniques (see [DJ], [Di], [K;] and [K1]) in conjunction
with a result of Johnson et al. from [JRZ]. The result of {JRZ] is crucial in our
construction, because it enables us to ensure that support functionals to clements
of the given Ro-dimensional subspace are in a fixed separable subspace of the dual
under certain renormings. The techniques of [JZ4] will be used to combine smooth-
ness and rotundity. Some connections between Theorem 4.3.1, monotone Schauder
bases and support functionals will also be discussed.

We will use the following notions concerning Schauder bases.

4.1.1 DEFINITION. A Schauder basis {ex}32,; on a Banach space X with norm || - ||
is said to be monotone if for each n, || Pal| = 1 where Pn(3°72; aker) = 34, arer

is the natural projection on the basis {ex}52,.

4.2 Fréchet Smooth Norms on Arbitrary Countable Sets

In this chapter it will be necessary to recognize certain norms as being LUR.
These norms are described in the following known lemma (see [{DJ], [K,], [K2])-
For the reader’s convenience, we have included a proof of this lemma which is very

similar to the last part of the proof of Proposition 2.4.1.

4.2.1 LEMMA. Suppose (X, | -]|) is a Banach space and {P,}32, be a sequence of
finite rank projections with {||P,[|}32, brunded. Let {f,}32., € X*\{0} be chosen

n=1

so that we can write
Po(z)= Y fi(z)hnp) where I, CIN, {/s|< oo and hn(k)€ X.
kel,

If {an}iZ1, {Ba}aZy C (0,00) are chosen so that 3520 ; an and 3207, Ba(ll fall”)?

converge, then ||| - jll is LUR at each point of U2, P, X where ||| - || is defined by
oo o 1

=l = (l2l% + D anllPaz — 2l|* + 3 Bafi(2))*.

n=1 n=1
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Proof. The choice of {an}%; and {#n}32, guarantee that |||-||| is an equivalent

norm. Let € > 0 and let z € US2; P, X and z # 0. Suppose that

2/lizllI? + llzall® = llz + 2all* — 0.
Then by the convexity of the terms in the definition of ||| - || it follows that
(1) ]Er& |Prz; — zl]l = ||Prz — z|| for each n
and
(2) jlipolof,,(a:j) = fa(xz) for each n.

Because z € U [ P, X and {||P.]|}3, is bounded one can choose n so that
(3) | Pz — x| < e
Using (1) and (3), for some jg we have
(4) |Pazs — 25l <€ for j 2 jo-
Let m = |I,,|; using (2) and replacing j, by a larger number if necessary, we have
() langipll - 1filzs) = fi(@) < = for k€ L, § 2 jo.
Finally, for j > jo, from (3), (4) and (3) it follows that
llzj — 2|l < llzj — Pazjll + | Pezj — Pazl|l + || Prz — 2|
< llzj = Pazjill + D 1filz;) = fi@llhagyll + | Paz — 2|

k€la
< 3e.

Therefore j|z; — z||| — 0. a

Since we refer to the following well-known theorem in this thesis, we will include

it here as an easy consequence of the above lemma.
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4.2.2 COROLLARY. (a) If X is separable, then X admits an LUR norm.

(b) If X* is separable, then X* admits a dual LUR norm.

Proof. (a) Let {hn}$2, be dense in Sx and f,, € Sx. satisfy j,(h,) = 1. Sect
0n = Bn = 27" and Paz = fn(z)hn, then USSP, X = X. Thus ||| - || defined in
Lemina 4.2.1 is LUR on X.

(b) Let {fn}32, be dense in Sx- with || - ||* a dual norm on X*. Choose
zn € X with [|z.]] £ 2 so that fn(zn) = 1. Hence P.f = f(zn)f. is a dual

projection. Moreover U2 ; P, X™* is norm dense in X* and ||P,||] € 2 for cach n.

Define a norm ||| - ||| by

WA= (AN + Z o (lf = PaflI™)2 + Z ;f‘(rn))

n=1
Since all terms involved are w*-lower semicontinuous it follows that ||| - [li is 2 dual

norm; Lemma 4.2.1 ensures that ||| - ||| is LUR. a

This concludes our digression on LUR renormings in separable spaces. The
next proposition concerns differentiability of norms on arbitrary countable sets.

We will use the foliowing notation from [FZZ]. The set P will denote the set of
all equivalent norms on X and B,; will denote the unit ball of a fixed norm || - || on

X. It follows that (P, p) is a Baire space with p(v, n) = sup{|v(z) ~— p(z)| : = € B, };
see [FZZ].

4.2.3 PROPOSITION. Let S = {zx}32,; C X\{0}. Then the set of equivalent norms

which are Fréchet differentiable at each point of S is residual. In particular, if X is

separable, then the set of LUR norms which are Fréchet differentiable at each point
of S is residual in P.

Proof. Let B; denote the unit ball of a fixed norm || - || on X. Let O, x be the

the set of all norms v € P for which there exists a §, > 0 such that:

(1) sup {v(zr + 6,y) + v(zr — 6,y) — 2v(zp)} <

3 [é‘“
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The following routine argument shows that O, x 1s open. Let v € O, and

chaose 6 > 0 so that
. é
vizg + 8y) + vz — by) —2v(zi) L a < oy for all ye€ B;.

Let K = supyep, {{lz& + 6ull, lk — 8yl 2llzall}. I p(is, v) < 3% (& = a), then

e + 6y) + pulzx — 6y) — 2u(zi) < vz + 8y) + v(zk — by) — 2v(ze)+
1,6 .
7 (—r: — a)3K

3,6 )

< (= - =.

Sat 4(n a) < n

+

Hence p € O, k. This shows that O, is open.

If v is Fréchet differentiable at g, it follows from the definition of Fréchet
differentiability that v € O, x. To show that O, i is dense, we will show that the
collection of norms that are Fréchel differentiable at o 1s dense in P2, Fix cx, e > 0

and let |- | be an arbitrary norm in P. Define a norm u* by
. 1
p(f) = ((F1)? +ef(z)) 2

It follows that u* is an equivalent dnal norm on X*, since it is w*-lower semicontin-
uous. Choose g € X* such that g(xi) = p*(g)u(zx) = 1. Now define a dual norm
v* by

v () = ((IF1)? + ef*(zx) + e(If — Fz)gl)?) .
According to Lemma 4.2.1, v* is LUR on span({g}). Now observe that v*(g) =

1*(g). Moreover, u* < v* and thus v(zy) < p(zx). Whence

glzi) = p*(@)p(zi) = p*(g)v(ze) = v (g)v(zk).

This shows that J=i-yg supports z; with respect to v. Because v* is LUR at =y 9>

Smulyan’s criterion (see Corollary 1.2.3) implies that v is Fréchet differentiable at

47



ri. Since € > 0, was arbitrary this shows that the norms that are differentiable at
z; are dense in P. Thus O, i 1s dense for each n and k.

Now ccnsider the following residual set O C P:

O =)0nx
n.k

We now show that each i € O i1s Fréchet differentiable at each ;. It is a well-known
fact that norms satisfying (1) for all n are Fréchet differentiable at x;; nevertheless,

a proof using Smulyan’s criterion is included here. Let g € O and fix z;. Suppose

u*(g) =1, p*{fw) <1 and lim., f.(z:) = g(xr) = p(zk). Since u € O, for each
n, choose 6, > 0 sc that

) én
(2) Mk +bny) + u(7k ~ 6ny) = 2u(zr) < = forall y € B

Choose m,, so that

on
(3) fm(zk) 2 g(zx) — — for all m > m,.
According to (2) and (3) for y € B, and m > m,,, one has

. 67}
Fm(8ny) — 9(60y) < fmlzi + 6,y) + g(zs — bny) — 2¢(z4) + —

61!
< p(xr + 6ny) + p(zk - bny) — 2p2(zr ) + o
26,
—.

<

Thic shows that || fm — g||* < 2 for m > my,; hence p*(fn — g) — 0, since p is an
equivalent norm. By Smilyan’s criterion (Corollary 1.2.3), u is Fréchet differentiable
at zg.

In particular, if X is separable, then by Kadets’ theorem ([K,]; sce Corollary

4.2.2(a)) X adnuts an LUR norm and thus by [FZZ, Theorem 1] the set of LUR

norms is residual in P. 0
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4.3 Fréchet Smooth Norms on Spaces of Dimension Np

The main result of this chapter is the following theorem. As in the proof of
Proposition 4.2.3, we will use a dual argument to obtain points of Fréchet differ-
entiability. This time, since the span of a countable set is uncountable, the Baire
category argument as used before does not work. To overcome this, we take ad-
vantage of a result of Johnson et al. ([JRZ, Lemma 4.2]) that provides us with a
nice collection of norm one finite rank projections which still have norm one under
certain renormings. As will be seen in the proof, the key is that these projections

allow us to maintain control on the support functionals of the union of their ranges.

4.3.1 THEOREM. IfX is aseparable Banach space and L is a subspace of dimension
Ro, then X admits an equivalent LUR norm which is Fréchet differentiable on
L\{0}. In particular, any normed linear space of dimension R, admits a Fréchet

differentiable norm.

Proof. Let {x;}32, be an algebraic basis of L. By the Banach-Mazur theorem
X embeds isometrically into C[0,1]. Thus considering span({zx : ¥ € IN}) = L
as a subspace of C[0,1], we will show that there is an equivalent LUR norm on
C|0, 1} which is Fréchet differentiable at all points of L\{0}. First let {zx}32, C D
where D is a countable dense subset of C[0,1], and let {bi}}2;, be a countable
algebraic basis of span(D). Fix a Schauder basis {ex}32, of C[0,1] and let K =
sup{|| Pn|l : n € IN} where [|]| is the supremurn norm on C[0, 1] and P, is the natural
projection on the basis {ex}§2, for each n. For the rest of the proof, let E = C/0,1].
We now inductively choose finite dimensional subspaces £y C E, C E3 C ... and
projections Qi : E — Ej as follows. First assume that Ey = {0} and Qo : E — {0}.
Let Y = spani({e; : k € IN}) where {e}}72, are the biorthogonal functionals to
{ex}$2,. Suppose that Ex_; and Qx_; have been chosen and Q;_,E* C Y. By

Lemma 4.2 of [JRZ], there is a rrojection Qx such that span(Ex—_, U {br}) C Qi E,
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IQkll < 4K +4K?, Qi_E* C Q;E* C Y and Q4E is L-close to P,y E for some
n(k) (that is, there exists an invertible operator Ty mapping P,x)E onto QE such
that ||Tiz — z|| < ¢llz] for all z € P,y E). Now sct Ex = Qi E. This completes
the inductive procedure.

Choose an algebraic basis {vi}32, of Uz, Ex as follows. Fix a basis of E,
and denote it by {vy,... ,v,1)}. Supposing {vi,... , v} a basis of E; has been
chosen, extend it to a basis {v1,... , Vn(k), Un(k)+1s - - - » Yn(k+1) } Of Exg1. For n(k)+
1 <7 < n(k+1) choose v; € kerQy such that y; = v; +w; for some w; € Er. We may
assume that {v;} is normalized by replacing v; with ||v;||7!v; if necessary. From
the above process one has {b;}¥_, C E; and ||Qi|] < 4K + 4K? for all k € IN.
Also Q;Qr = QikQ; = Quming,k) for all 7,k € IN, since Q3 E* C Q541 E® and thus
kerQr4+1 C kerQx. Whence Qi (v;) = 0 if v; € Ei. Letting Tk : Py E -+ Ei satisfy

|ITxz — z|| < liz|| for all z € P, E, we have

I Prcryz — Qi( Pyl = | Prty — Qi (Paryz — Tk(Paryz)) = Ti( Prrryz)|

S N Paryz = Ti( Pyl + 1Qk (Pak = - 7+ i aiy))
Pn . S . "3
< "—%fl—l[l +aK +ar?) < B HART
Consequently limg . [|Qrz — z|| = 0 for all z € E, since i .-, | Pyiyz —z|| =0

for all z € E. Thus, defining ||z]l| = sup{||Q«z]|| : ¥ € IN} we sec that ||z|| < |llz]|| <

(4K + 4i?)||z|| for each z € E. Therefore ||| - ||| is an equivalent norm on E for
which [[|Qk|ll = 1 for each k¥ € IN. One can now define an equivalent norm |- |* on
E* by

it = LAY + 30275 — QEAIMZ + 3 2+ (o)) .
k=1 k=1

Since all the terms involved in the definition of | - |* are w*-lower semicontinuous,
it is easy to see that |- |* is an equivalent dual norm on E*.

Notice that ||loilll = 1, l|Qklll = 1 and since QX = span({v; : 1 < j < n(k)}),
it follows that we can write Q} f = z;‘;’? vj(f)f; where f; € X*andvj € X C X**.

Thus, by Lerama 4.2.1, | - |* is LUR at all points of H = Jj_; QL E*.
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Morcover, because Qi Q; = @;Qx and Qrvi = v; or Qxv; = 0, the following is

satisfied for each n.

Q1" = [NQLAIME + 3 275 (IQLF — QEQAANY? + 3 275 F2(Quun)] *
k=1 k=1

[V Cd

< [AQz N + S 27 QI f — Qi UM + D275 F2(Qnvw)]
k=1

k=1

< IfI".
Thus |Qn| < 1 for all n where |- | is the predual norm on E to |- |*.

Let £ € Ex\{0} for some k and choose f € E* which satisfies |f|* = 1 and
f(z) = lz]. Now |Q1f] < 1 while Q1f(z) = f(Qxz) = f(z) = |z|. By Smulyan’s
criterion (see Corollary 1.2.3), |-| is Fréchet differentiable at z, since |-|* is LUR at its
support functional Qi f € H. That is, |-| is Fréchet differentiable on L C | J32, Ex-

Now let |-| be any norm on E such that |Qx| =1 for all £ € IN. Let {fx}2, be
the biorthogonal functionals to {vx}%2,. That is, for each k, by the Hahn-Banach
theorem selzct a continuous func.. . :al fx satisfying fi(v;) = 0 for i # k, i < n(k)

and fx(vk) = 1, then set fx = Q% fx. Now define || - ||; on E by
=zl = {l=]* + 22_k|$ - Qizl® + Z Gfk—l,,)—sz(f)] z.
k=1 k=1

It follows from Lemma 4.2.1 that || - ||; is LUR. Moreover, since Q;@x = Q«Q; and
Qi f; = f; or Q+f; =0, as above one has ||Q|l; = 1 for all k.
Because ||Qkl|l: = 1 for all k € IN, it follows as above that |- |, defined on E by
A1a = [ + 2 302741 - @afln? + 2 302 )
n 1 n o k 1 n £ k
is Fréchet differentiable at each point of L\{0}. Furthermore, |- | — || - }l1. Using

this and the fact that || - ||; is LUR it follows as in [JZ4] that || - || x defined on X by

had 1
lzlix = (Q_27"=l2)?
n=1
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is LUR and is Fréchet differentiable at each point of L\{0}. U

Because there are spaces with C'?-smooth norms whose duals do not admit dual
LUR norms (e.g. C[0,w,]; [Ta]), the natural question is whether the dual arguments
used in the proofs of Proposition 4.2.3 and Theorem 4.3.1 are necessary. However,
since we obtain norms that are both LUR and Fréchet smooth at a fixed set of

points, the following remark somewhat justifies our construction.

4.3.2 REMARK. Let £ € X and liz|| = 1. If z is a strongly exposed point of By
(in particular if || - || is LUR at z) and if || - || is Fréchet differentiable at z, then
lI-l|* is LUR at A € Sx- where A(x) = ||z||. To sec this, suppose that A,, € By-
and [|A, + A||* — 2. Choosing z, € Bx so that (A, + A)(z,) — 2, we have
A(z,) — 1. Consequently ||z —z,]| — 0, since A is the strongly exposing functional
of z. Combining this with the fact that A,(x,) — 1, shows that A, (z) — 1. It now

follows from Smulyan’s criterion (see Corollary 1.2.3) that ||A, — A||* — 0. That is,

I -1 is LUR at A.

It is also worth noting that we don’t know if the set of norms satisyfing the con-
clusion of Theorem 4.3.1 are residual cr even dense among all norms on a separable
Banach space. It is clear that the construction we used cannot be donc densely.
Notice that it is also unknown if the C'-smooth norms on C[0,w,;} are dense.

The following corolizry shows a relationship between Theorem 4.3.1 and the
failure of the Bishop-Phelps theorem in noncomplete spaces. Recall that the Bishop-
Phelps theorem asserts that the support functionals to the unit ball Bx of a Banach

space are dense in X* (see e.g. [Ph, Theorem 3.20}).

4.3.3 COROLLARY. If L is a normed linear space of countable dimension with

nonseparable dual space L*, then L can be renormed so that the support functionals

of By, are not dense in L*.

Proof. A careful examination of the proof of Theorem 4.3.1 shows that with the
norm constructed there the support functionals of By are in a separable subspace

of L*. However, we can also derive this from the statement of Theorem 4.3.1.
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Let X = L be the completion of L. Using Theorem 4.3.1, let || - || be a norm
which is Fréchet differentiable at each point of Sp. Let D = {d,}{2; be dense in
S, and fix A, € Sp- such that A,(dn,) = 1. For A € Sp. such that A supports
By, choose £ € By such that A{z) = 1. Let {dn)} C D be such that d,) — =z.
Then Anx)(z) — 1 which means, by Smulyan’s criterion (see Corollary 1.2.3), that
|Ancxy — Al|* — 0. Therefore the support functionals to B are in the separable
subspace span({A, : d, € D}). O

From the proof Theorem 4.3.1 we also obtain

4.3.4 PROPOSITION. Let X be a Banach space with Schauder basis {ex}%>, and

biorthogonal functionals {e}}$2.,. Then there is an equivalent norm | - | on X such

that:

(a) {ex}$2, is monotone with respect to |- |;

(b) |-|is LUR;

(c) |-| is Fréchet differentiable on span({e; : k € IN})\{0};

(d) lim, |x — z,| = O whenever lim, |z,| = |z| and lim, e}(z,) = ei(z) for all

k € IN.

Proof. Mimicking the proof of Theorem 4.3.1, let v, = e, and Q, = Py,
where P, is the natural projection on the basis {ex}32,. The existence of {| - ||
satisfying |||Pn]l < 1 for all n (see e.g. [LT]) and the proof of Theorem 4.3.1
show that X admits an equivalent norm | - | satisfying (a), (b) and (c). To see
(d), check that |z + z,| > |Pn(z + z,)| for all n,v, lim, Po(x + z,) = 2Pz for
cach n and lim,—o Pox = z. Therefore, under the assumptions of (d), one has

lim, | + z,| = 2|z|. From (b) we conclude, lim, |z — z,| = 0. O

In [K;] Kadets constructed a norm on a space with Schauder basis satisfying

(a), (b) and (d) to prove that all infinite imensional separable Banach spaces are

homeomorphic.
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4.3.5 REMARK. Let {cx}32; be a Schauder basis of X' with biorthogonal fune-
tionals {e;}R2,. If {ex}32, is monotone with respect to || - || and || - || is Fréchet
differentiable on X\{0}, then {e;}%2, forms a basis for X*. To prove this, let
z € X\{0} and choose f € X* a support functional to z. Now ||P: f|I* < ||fll* and
lim, o P f(z) = f(x), hence by Smulyan’s criterion (sece Corollary 1.2.3) one has
limp—co ||P; f — fl|* = 0. By the Bishop-Phelps theorem lim, .. ||[PtA — A|]* =0
for all A € X*. Therefore {e}}72, is a basis for X'*, since it is always a wcak-star
basis. In particular for X* separable such that {e}}32, is not a basis of X* (for
example X = J* the dual of the original James space; see [LT, p. 25]) there is no
Fréchet differentiable norm ||| - [|| for which {ex}32., is monotone although the sct of
Fréchet differentiable norms on X is residual (because the dual LUR norms on X'*

are residual; use [FZZ, Theorem 2] with e.g. Corollary 4.2.2(b)).
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Chapter Five

BANACH SPACES WHICH ADMIT MARKUSHEVICH BASES

5.1 Introduction

Thus far, most of the results proved in this thesis have dealt with smoothness.
However, in this chapter we will focus on some topological properties in Banach
spaces. Whereas Chapter Four studied some connections between Schauder bases
and smoothness, this chapter looks at some relationships between Markushevich
bases and notions related to Corson compacta. Moreover, the techniques used in
this chapter are similar to those in Chapter Four in that many of the arguments are
accomplished by working on algebraic spans of a given set of elements in a Banach
space.

The main goal of this chapter is to give a characterization of Banach spaces
which admit M-bases and to give conditions under which M-bases can be extended.
This will be done in Section 5.2.

In this section we list the definitions of some types of compacta and indicate

their relationships to M-bases in Banach spaces.

5.1.1 DEFINITION. A subspace Y C X* is called A-norming if sup{f(z) : f €
Y N Bx-} > M|jz|; if the above holds for some A > 0, then we may refer to Y as

norming.

Suppose that Y is a norming subspace of X*. Defining |||z]]| = sup{f(z): f €

Y N Bx-} we see that ||| - ||| is an equivalent norm on X and that Y is 1-norming on

(X0 HD-

5.1.2 DEFINITION. A system {z;, fi}ier C X x X* is called a Markushevich ba-
sis (M- asis) if fi(z;) = &:; (the Kronecker delta), span({z; : ¢ € I}) = X and

span®” ({fi:i € I}) = X*. An M-basis {z;, f;}icr is said to be countably norming
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(countadbly A-norming) if there 1s a norming (A-norming) subspace Y C X* such

that |{7 : f(z:;) # 0}] < N, for each f € Y.

A topological concept that has been extensively st: died in recent years is that

of a Corson compact space.

5.1.3 DEFINITION. A compact topological space is said to be Corson compact if it
is homeomorphic to a subset I of a cube [0,1]" such that each element of K has
at most countably many nonzero coordinates.

If X is a WCD Banach space, then (Bx, w*) is Corson compact (scc c.g. [DGZ3,
Chapter VIJ). The following linearized version of (Bx,w*) being Corson compact

was introduced and studied by Argyros and Mercourakis in [AM].

5.1.4 DEFINITION. A Banach space X is said to be weakly Lindelof determined
(WLD) if there is a one-to-one bounded linear operator T' : X* — IS_(T") which is w*
to pointwise continuous where IS (T') denotes the subspace of countably supported
elements in [o(T).

The last more or less standard definition that we introduce is that of a pro-
jectional resolution of identity. Note that projectional resolutions of identity arc a
very useful tool for proving the existence of nice norms on certain classes of spaces
by transfinite induction {see e.g. [DGZ3, Chapter V1I}), thus a lot of work has gone

into showing various spaces admit projectional resolutions of identity.

5.1.5 DEFINITION. A projectional resolution of identity (PRI) is a “long sequence”
of projections Pg : X — X, ||Ps|] <1 for wg < B < p where g is the first ordinal
of cardinality dens(X) satisfying PgP., = PyPg = Ppiy(4.p), dens(PgX) < |3],
PgX = U{Pyj1 X :vy< B},and P, =1I.

The following known theorem is the starting point for the work we will do in the
next section. This is because it provides a relationship between M-bases and spaces
whose duals have nice injections into some [(T"). For the reader’s convenience we
have outlined a proof of this theorem which is based on PRI’s and is indicative of

the type of arguments we will use in the next section.
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5.1.6 THEOREM. For a Banach space X the following are equivalent.

() X is WLD.

(b) (Bx-,w") is Corson compact.

(c) X has an M-basis. Moreover every M-basis {z-, fy}-er satisfies that |{v :
flzy) #0}] < Vg for each f € X*.

Sketch of Proof. (2) = (b): This follows immediately from the definitions.

(b) = (c): By [V1, Theorem 1] it follows that X admits a PRI say {P.}. We
may assume P, = 0 and let X, = (Pay1 — Pa)X. Since Bx: is isomorphic to
(P4yy — P3)Bx- C Bxe, it follows that (Bxg,w") is Corson compact. Using a
transfinite induction argument on the density character of X, starting with the fact
that separable spaces have M-bases ([LT, Proposition 1.f.3]), one can show that X
has an M-basis provided (Bx-,w*) is Corson compact.

Now let {z., f4},er be an M-basis of X. We argue as in [Pl;] to show that
H{y : f(z4) # 0}] < R for each f € X*. Indeed, let F = {f € X* : {7y :
f(z+) # 0}] £ Ro}. Because Corson compact spaces are angelic (sequential closure
of subsets coincides with closure), it follows that F'N Bx. is w*-closed. Therefore
F is w*-closed and thus F' = X*.

(c) = (a): The map T : X* — IS (T") defined by Tf = {f(z)}yer is w* to

pointwise continuous. |

For further results related to Theorem 5.1.6 and alternative methods of proving
it, one can consult: [C], [OSV], [Po], and [V3]. In fact, using different arguments, the
equivalence of (a) and (b) is shown in [OSV, Proposition 4.1] while the equivalence

of (b) and () follows from in [V3, Theorem 2 and Corollary 3.1}

5.2 Spaces With and Extensions of Markushevich Bases

As was just mentioned in Theorem 5.1.6, WLD spaces can be characterized in

terms of M-bases on which continuous linear functionals are countably supported.

57



What we will do now, is weaken the definition of a WLD space and use this definition
to characterize spaces that admit M-bases. To obtain this characterization, we will
use an elegant method of Plichko ({Pl;, Theorem 1]) and in the process obtain some

new results on the extension of M-bases.

5.2.1 DEFINITION. Suppose there is a bounded linear onc-to-one operator T' :
X* — l(T') which is w™* to pointwise continuous such that TY C I (T) for a
certain subspace Y of X*. f ¥~ =X (respectively Y i1s norming) we say that X

has the total property (respectively norming property).

We will abbreviate the above properties as TP and NP respectively. The follow-
ing implications are clear: X is WLD = X has the NP = X has the TP. However,

the reverse implications do not hold as will be seen in the next example.

5.2.2 EXAMPLE. The space [;(T') has the NP, since ¢(T') C [o(I') is norming.
However, [;(I') is not WLD, since its dual unit ball 1s not Corson compact.

(b) There is a Banach space X which does not have a locally uniformly retund
norm such that X has an M-basis and a complemented subspace which has no M-
basis ([Plz, Theorem 3}). Therefore, from [V3] it {ollows that (Bx.,w*), for any
equivalent norm on X, is not homeomorphic to a subset K of a cube {0,1])" such
that the elements in K which have at most countably many nonzero coordinates are
dense in K. In particular, X does not have the NP. However, it is easy to see that
any space with an M-basis has the TP (see Theorem 5.2.3), thus X has the TP.
Note that the TP is not hereditary, since the complemented subspace of X without

an M-basis does not have the TP by Theorem 5.2.3.

In the paper [V3], Valdivia showed, among other things, that X has the NP if

and only if X has a countably norming M-basis. We now give a similar characteri-

zation of the TP.
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5.2.3 TuroreEM. For a Banach space X, the following are equivalent.

(a) X adrits an M-basis.

(b) X has the TP.

(¢) There is a subset {zo}aca of X and a subspace Y C X* such that v = X*,
spafi({zqa : @ € A}) = X and |{a: f{ :a) #0}| < Ro for each f €Y.

Before proving Theorem 5.2.3, we need to make some preliminary observations.

5.2.4 REMARK. Given {z,}yer C X, if there is norming subspace Y of X* and
{7 : f(z4) # 0} < Ro for each f € Y, then || < dens(X). Indeed let S be
dense in X and Y be A-norming. For each s € S, choose f, € Bx- NY such that
fs(5) = 2|Is|l- The result follows because the map s — {7 : fs(z4) # 0} is countably

valued and onto T.

From the above remark, and the proof of [Pl;, Theorem 1] one easily obtains

the following result.

5.2.5 T orReM (Pl}). Let {z;}ier C X and ¥ C X* be l-norming. If |{i :
f(z;) # 0}} < Vg for each f € Y & i “pan({zi: ¢ € I}) = X, then there is a PRI
{Pg}uo<p<u such that for each B8, 22X =span({z; : i € Jg C I}), |Jp| < |B| and
kerPg = span({z; : 1 € I\Jg}).

After a preliminary version of this chapter was written, we were informed that
Valdivia has already obtained Proposition 5.2.6 ([V4, Theorem 2]). However, our

proof based on Plichko’s techniques is different and useful for our extension results.

5.2.6 PROPOSITION. Let X be a Banach space and Y a norming subspace of X*.
If {Ta}aca is such that span({z, : « € A}) = X and |[{a : f(xa) # 0} < Ro for
each f € Y, then X admits an M-basis {e., f}~er such that span({e, : v €T}) =
span({za : o € A}) and [{7 : f(e) # 0}| < o for each f € Y.

Proof. We may assume without loss of generality that Y is 1-norming; see

comment following Definition 5.1.1. If X is finite dimensional then this is trivial.
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In the case X is separable, this result follows from the proof of Proposition 1.£.3 in
[LT], because Remark 5.2.4 guarantees that |4| < R,.

Suppose that dens(X') = |g| and that the result holds for all E with dens(E) <
|n| where 4 is an ordinal. By Theorem 5.2.5, there is a PRI {Ps}u,<p<, such
that PgX = span({za : @ € Jg C A}) and kerPg = span({zro : a € A\Jy})
where |Jg| < |B8]. We may assume that P,, = 0. We set Xg = (Pyy1 — P3)X for
wo < B < p. Thus Xy = span({z;: i€ Jg4+1\Js}). Let Y3 = {f|x, : f € Y}. Now
{z. : i € Jg41\Jp} and Yj satisfy the induction hypothesis on X, so there is an
M-basis {e; g, fi,s} of Xz such that

span({e; g}) = span({z; : i € Jg41\Js})

and [{z : f(eig) # 0} < Rq for each f € Yp. Define

{exs futver = | J{eis: (Poir — P5)fip 1 wo < B < p}.

This is an M-basis on X. If f € Y, then f(z4) = 0 except for countably many «;
hence f|x, = 0 for all but countably many 8. But for each such 3, f is countably

supported on {e; g}. Therefore |{v: f(ey) # 0}] < Ro for each f € Y. O

Proof of Theoremn 5.2.8. (a) =+ (b): Let T : X* — {(T') be defined by
Tf = {f(z4)}~ver where {z, fy}~er is an M-basis of X. We sce that this T with
Y =span({f, : v € T'}) satisfy the condiricns in the definition of the TP.

(b) = (c): Let T and Y be as in the defintion of the TP, and let ¢y = 7,0 T
where 7., is the projection of l(I') onto its y-th coordinate. Clearly e, € X,
span({e, : v ¢ I'}) = X (by the Hahn-Banach theorem, since T is one-to-one) and
{7 flen) # 03] < Rq for each f € Y.

(¢) = (a): Define a new norm |-} on X by

lz| = sup{f(=): f € Y N Bx-}.
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Let (X, - ]) be the completion of (X, |-]) and Y be all Hahn-Banach extensions of
Y on X. Obscrve that span!({z, : « € 4}) = X and Y is 1-norming on (X, ]-|).
Therefore (X, i -]) has the NP. By Proposition 5.2.6 there is a countably 1-norming
M-basis {z., fi}ies of (X,]-]) such that span({z, : i € I}) = span({za : & € A}).
Since |- | < || - || where || - || is the original norm on X it follows that fi=filX e
(X, - 11)7. Therefore {z;, fi} is an M-basis of (X, || - |}). O

From Proposition 5.2.6 and Theorem 5.2.3 we obtain:

5.2.7 COROLLARY. (a)IfZ hasa countably norming M-basis and X /Z is separable,
then X admits a countably norming M-basis.

(b) If Z has an M-basis and X/Z is separable, then X has an M-basis.

Proof  To prove (a), let {z..f.}aca be an M-basis of Z and ¥V C Z* be
A-norming on Z. Choose {#,}5%; dense in X/Z. For each n, let =, € z,. Set
Y = {f € X*: flz € Y}. We will show that ¥ is 2-norming on X. Let z € X,
if p(z,2Z) < 3 where p(z,Z) = inf{|lx — z|| : z € Z}, choose z € Z such that
|z ~ 2|l < 2 and f € ¥ N Bx- such that f(z) = 3. Certainly f(z) > 3. On
the other hand, if p(z,2) > %, then there is an f € Bx- such that f(z) = % and
f(z) = 0 for all z € Z and hence f € Y. This shows that Y is %-norming on X
and each of its elements is countably supported on {za}aca U {za}3. Therefore it

follows from Proposition 5.2.6 that X admits a countably norming M-basis. Notice

tie * {b) is proved similarly using Theorem 5.2.3. ]

Under the stronger assumption that (Bz.,w*) is Corson compact, it is quite

casy to prove the statement analogous to Corollary 5.2.7.

5.2.8 REMARK. If X/Z is separable and (Bz-,w*) is Corson compact, then it is
casy to see that (By-,w*) is Corson compact. Simply take d,, € dn, dn € Bx where
{d.}52, is dense in 1Byx/z and {z;, fi}icr an M-basis of Z with z; € Bx for each

i and define T : Bx- — [—1,1)F by Tf = {f(z)}er where {2} er = {zi}ier U
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{dn}32,. Since (Bz-,w") is Corson compact it follows that {{7 : f(z,) # 0}] < N,
for each f € X* ([PL;]; see the proof of Theorem 5.1.6), therefore |{y : f(r,) #
0} < Ro.

We outline how the methods used in the proof of Theorem $.2.3 can be used

to obtain

5.2.9 PROPOSITION. For a Banach space (X, || - ||), the following are equivalent.
(a) (X, | -||) continuously linearly injects into co(I") for some I'.
(b) There is a subspace Y C X* such that ¥ = X* and a convex symmetric

K C Y which is Corson compact in its w*-topology such that span(K) =Y.

Proof. (b) = (a): Comnsider (X, |- |) where |z| = sup{f(z) : f € K}, and let
(X ,]-]) be the completion of (X, |-|). Then & = {f € (X,]-])* : flx € K} is the unit
ball of ()A(', |-])* and is Corson compact in its w*-topology since K is. Hence (X,1-D
has an M-basis and thus there is a continuous linear injection T : (X, f- 1) — eo(T).

Certainly T is continuous on (X, - ||).

(2a) = (b): Let T be a bounded linear injection of X into ¢¢(T"). Set K =

T*B.:(ry and Y = span(K); K is Corson (even Eberlein—see e.g. [Day]) compact

in its w*-topology and ¥* = X*, since 7 is one-to-one. 0

We conclude this thesis with a result concerning the extension of M-bases. No-
tice that there is a Banach space X with an M-basis and a complemented subspace
Z of X such that Z has an M-basis yet no M-basis on Z can be extended to an
M-basis on X ([Pls, Proposition 1}). However, using the techniques of [Pl;], we are

able to obtain extensions in quite general situations.
5.2.10 THEOREM. Let Z C X, {zj,f;};es be an M-basis of Z, and {z;}ies be
such that span({z; : : € I}) = X. If|{i: f(z:) £ 0} U {j: f(zj) # 0} < Ry for
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cach f € Y C X* and Y is nonning on X, then {zj, f;}jes can be extended to an

M-hasis of X such that the functionals in Y are countably supported on it.

Proof. Assume without loss of generality that Y is 1-norming. Using Theorem

chere is a PRI {Pg}u,<p<u on X such that
PsX =span({{z:}U{z;}:ie€lgel, jedge J})

and

kerPg = m({{z,} @] {ZJ'} 11 € I\Iﬁ , ] € J\Jﬂ})

where |[Ig U Jg] < |8|. Thus Pgz; = zj or Pgzj; = 0 for all j and 8. In particular,
PsZ c Z. The proof now reduces to a standard transfinite induction argument.
For X separable, the result is always true by [GK]. Suppose that dens(X) =
{u} and that the result holds for any Banach space E with dens(E) < |gu|. For
convenience we assume that P, = 0 and let X5 = (Pg41 — Pg)X. Letting J; =

{j : (Ps41 — Pg)zj = zj} and I} = {i : (Pg41 — Pg)z, = z:} we see that
Xg =span({{z;} U{z:} .j € 5, i € Iz}).

Thus Xg and Yz = {f|x, : f € Y} satisfy the induction hypothesis. Therefore
{zj, f;}jes, can be extended to an M-basis, say, {zf:,fff}.,erp of Xz such that

{7 : f(z8) # 0}] < Ry for each f € Y. Now let
{eas faaea = | {8, (Pjyy — PRYY:
B

as in the proof of Proposition 5.2.6, this is an M-basis of X such that |{a : f(ea) #

0} < R for each f €Y. O

An interesting consequence of Theorem 5.2.10 is
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5.2.11 COROLLARY. If X admits a countably norming M-basis and Z C X is such
that (Bz.,w*) is Corson compact, then any M-basis on Z can be extended to a

zountably norming M-basis on X.

Proof. The corollary follows from the preceding theorem and the argument of
Plichko ([Pl;]) which shows all the elements of Z* are countably supported on any

M-basis of Z, since (Bz.,w*) is Corson compact; sce the proof of Theorem 5.1.6.
b LY b }
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