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Abstract

This thesis proposes and evaluates methods to improve two algorithmic ap-

proaches for Hierarchical Agglomerative Clustering. These new methods in-

crease the scalability and speed of the traditional Hierarchical Agglomerative

Clustering algorithm without using any approximations. The first method

exploits the characteristics of modern Non-Uniform Memory Access architec-

tures, resulting in a parallel algorithm for the stored matrix version of Hier-

archical Agglomerative Clustering. The second method uses a data structure

called the Cover Tree to speed up the stored data version of the Hierarchical

Agglomerative Clustering. For the second method, the thesis proposes both se-

quential and parallel algorithms. All methods were experimentally evaluated

and compared against the state-of-the-art approaches for high performance

clustering. The results demonstrate the superiority of the parallel approaches

with respect to all baselines and previous work, and the comparison between

the stored matrix and the stored data approaches illustrate interesting perfor-

mance trade-offs.
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Chapter 1

Introduction

A massive amount of data is produced everyday and a general question that

arises is how to organize this data so that something meaningful can be derived

from it. One very good way to solve this problem is Clustering, which is the

task of finding natural groupings among data items (also called data points or

just points), according to some measure of similarity. In other words, cluster-

ing is the task of dividing N points with D dimensions into K groups according

to some measure of similarity. Clustering has many applications in fields like

data mining, gene categorization and data classification and so different clus-

tering algorithms have been developed for these various purposes. Many of

these clustering algorithms require the user to specify the number of groups

that are present in the data before the execution of the algorithm. But in

real life scenarios, the user often does not know the number of groups in the

data in advance and so those clustering algorithms are not very effective in

those cases. A popular method which does not require the user to specify the

number of groups present in the data is Hierarchical Clustering. Hierarchical

Clustering produces a hierarchy of clusters which can be visualized by a tree-

like hierarchical structure called Dendogram. In each level of the dendogram,

the two clusters which are closest to each other at that level are merged. Thus

slicing the dendogram at any level gives a set of clusters. Figure 1.1 gives an

example dendogram.

There are two variations of the Hierarchical Clustering methods:

• Hierarchical Agglomerative Clustering : Initially each point is considered
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Figure 1.1: An Example Dendogram. Taken from [34]

its own cluster and at each iteration, the two closest clusters are merged

to form a single cluster. In other words, this is a Bottom-Up Approach.

• Division based Hierarchical Clustering : All points are considered to be

one big cluster. This big cluster is repeatedly split to obtain smaller

clusters. In other words, this is a Top-Down Approach.

During each step of the division based Hierarchical Clustering we have to

divide a cluster into two smaller clusters. If the cluster consists of N objects,

it can be divided into two in 2N−1 − 1 ways and we have to choose the best

way to split the cluster among all these ways. The only way to find the best

possible way to split the cluster is by comparing all possibilities which leads to

exponential time complexity O(2N) and so we have to use some approximation

or heuristic to find the best split. In contrast, for Hierarchical Agglomerative

Clustering (referred to as HAC in the rest of the thesis), we have to merge two

clusters out of N clusters and this can be done in NC2 ways (N(N−1)
2

ways).

So finding the best pair of clusters to merge has a time complexity of O(N2)

which is much better than the time complexity of division based Hierarchical

Clustering. So of these two kinds of algorithms, the HAC algorithms are used

more often.
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1.1 Thesis Motivations and Contributions

In the previous Section, we explained that the time complexity to find the best

pair of clusters to merge in the HAC is O(N2). This merging operation has

to be repeated for N-1 iterations until there is only one cluster left and so the

total time complexity of the whole algorithm is O(N3). This algorithm can be

sped up by storing the distance between all the pairs of clusters in memory.

This has a space complexity of O(N2). So even though the HAC algorithm

has the advantages mentioned in the previous chapter, it is very expensive

to be applied to big datasets due to space and time requirements. There

have been a number of algorithms proposed to make use of approximations

which reduce the space and time complexity so that HAC can be applied to big

datasets. To scale the traditional algorithm without any approximations many

processors should be used in parallel to do the clustering or new innovative

data structures that can reduce the space and time complexity have to be

used. We focus on parallelizing the HAC algorithm in the first part of this

thesis, and then we focus on the use of innovative data structures to speed up

the traditional non-parallel HAC algorithm in the second part of this thesis.

The general trend in hardware and processor development is that the num-

ber of cores in a system is increasing. In such a case, it stands to reason that

parallelizing the HAC algorithm might make it viable to run it on large datasets

in the future. One of the popular hardware architectures for parallel machines

is called the Non-Uniform Memory Access architecture or NUMA architecture

(explained in detail in Section 4.2, page 27). This is a highly scalable architec-

ture that has been used recently in many of the commercial systems that are

produced by companies like AMD and Intel. So we have chosen to parallelize

the HAC algorithm and to optimize it for the NUMA architecture. In the

first part of this thesis we present the parallel form of the traditional HAC

algorithm, and then we explain the unique aspects of the NUMA architecture,

analyzing how it can be exploited to speed up the parallel version of the tra-

ditional HAC algorithm. We then present a modified parallel version of the

traditional HAC algorithm which is NUMA-aware and exploits the parallelism
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provided by the NUMA architecture.

In the second part of the thesis, we use a relatively new data structure

known as the Cover Tree [1] to speed up the traditional non-parallel HAC al-

gorithm. This version of the HAC algorithm is based on the concept of nearest

neighbors and is a sequential algorithm. We have optimized this algorithm to

run in a single NUMA region when ever there is enough space, thereby re-

ducing cross-region access. By using the Cover Tree datastructure, we show

considerable speed ups for the HAC algorithm on many datasets while having

a space complexity of only O(N). We also evaluate how the Cover Tree based

HAC behaves when different kinds of data of various dimensionality and struc-

ture is used as the input for clustering. Finally we have implemented a parallel

version of this algorithm, where we have multiple Cover Trees - one for each

thread and we analyze the performance and scalability of this algorithm.
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Chapter 2

Related Work

As mentioned in the previous chapter, the main focus of this thesis is on HAC.

There have been many algorithms proposed to do the traditional form of HAC

without any approximations. In the single link method, the distance between

two clusters is calculated as the smallest distance between any two points

in the two clusters and in the complete link method, the distance between

two clusters is calculated as the maximum distance between any two points

in the two clusters. The different linkage criteria and distance metrics are

explained in detail in Section 3.2 (page 20). Sneath has described Single link

clustering in his paper The Application of Computers to Taxonomy [28]. The

naive single link clustering method requires O(N3) time and O(N2) space for

computing the clusters. Sibson [27] proposed an optimal version of single link

clustering algorithm. This method reduces the time requirement to O(N2).

A hierarchical clustering algorithm based on the complete link method was

described by Sorensen [29]. These are the two most common HAC methods

that have been used. Both the single link and the complete link methods can be

generalized using the recurrence formula proposed by Lance and Williams [19]

d(Cl, (Ci, Cj)) = αid(Cl, Ci)+αjd(Cl, Cj)+βd(Ci, Cj)+γ|d(Cl, Ci)−d(Cl, Cj)|

where d(·, ·) is the distance function and αi, αj, β and γ are co-efficients

that take the value depending on the scheme used. tation The formula de-

scribes the distance between a cluster Cl and a new cluster formed by the
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merger of two clusters Ci and Cj. By adjusting the values of the coefficients

we can arrive at the formula for both single link and complete link clustering.

Co-efficient Value

αi
1
2

αj
1
2

β 0

γ −1
2

Table 2.1: Single-Link Co-efficient Values

Co-efficient Value

αi
1
2

αj
1
2

β 0

γ 1
2

Table 2.2: Complete-Link Co-efficient Values

The different HAC algorithms based on different linkage criteria like single

linkage, complete linkage and centroid linkage can be constructed by selecting

appropriate co-efficients in the formula. These linkage criteria are explained

in Section 3.2 (page 20). A detailed table of co-efficient values for different

algorithms was presented by Jain and Duin [13].

The computational cost of most HAC Algorithms is at least O(N2) [31].

This limits their use in practical application for mid-sized and large datasets.

In recent years, due to the explosion in the size of datasets and increased pro-

cessing power, new variations of the HAC Algorithms have been implemented.

These algorithms use approximations like summarization or random sampling

to make the HAC algorithm more scalable. The difference between these
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methods and our proposed methods is that, our algorithm does not use any

approximations while increasing the scalability of the traditional algorithm.

BIRCH [32] is an algorithm designed to deal with large datasets and also to

have good robustness to outliers. A new data structure named the Clustering

Feature (CF) tree is proposed in BIRCH to achieve this. The CF tree creates

the summaries of the original data which are called the Clustering Feature and

stores them. The clustering feature of cluster Ci is defined as the triplet:

CFi = (Ni, LS, SS)

Ni is the number of the points in the cluster i

LS is the linear sum of the vectors of the points and

SS is the squared sum of the vectors of the points.

The CF-tree is a height-balanced tree with two parameters,

• Branching factor ( B for non leaf node and L for leaf node).

• Threshold T.

Each non-leaf node contains at most B entries of the form

[CFi, childi], i = 1, ..., B

where childi is a pointer to its i-th child node and the CFi is the CF entry of

the sub cluster represented by this child.

A leaf node contains at most L CF entries. These leaf nodes are chained

to other leaf nodes by using two pointers for each leaf node : next and prev.

The CF tree captures the important clustering information of the original

data while reducing the required storage. The algorithm involves two phases,

• Construct the CF-tree using the two parameters B and T .

• Cluster the set of summaries in the CF-tree using a well know algorithm

like the HAC Algorithm.
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An additional step can be performed to refine these clusters. During the

construction of the CF-tree, outliers are eliminated from the summaries by

identifying the points sparsely distributed in the feature space. BIRCH can

achieve a computational complexity of O(N) without the final step (clustering

the set of summaries using a well know algorithm).

Guha, Rastogi and Shim developed a HAC algorithm named CURE [11]

which can detect more complex shapes. The main feature of CURE is that it

uses a set of scattered points as a representative of each cluster in addition to

the centroid. The representative scattered points are shrunk further towards

the centroid of the cluster. These points are then used for clustering. This

makes it possible to detect clusters of arbitrary shapes. It also helps to prevent

the chaining effect that is common in the Single-Link cluster method. They

also use sampling and partition to reduce the computational complexity of

CURE and make it more scalable.

Another HAC algorithm named ROCK [12] was proposed by Guha, Ras-

togi and Shim. They use a new measure named link to describe the relation

between a pair of objects and their common neighbors. A random sample

strategy is used here too to handle large datasets.

The traditional HAC algorithms are usually sensitive to outliers and so

lack robustness [31]. There have been some methods that were proposed to

improve the accuracy of the traditional HAC algorithm. These algorithms do

not usually concentrate on scalability, instead focussing on the quality of the

clustering result.

Relative hierarchical clustering (RHC) is an approach which uses the fol-

lowing ratio to decide the distances between clusters:

Distance =
Distance between a pair of clusters to merge

Sum of the distance from those two clusters to the rest

Mollineda and Vidal [21] describe one such approach and compared the Rel-

ative Hierarchical Clustering algorithm to the traditional HAC algorithm on

three datasets - an artificial dataset, the Iris dataset and the Vehicle Silhou-

ette dataset [22]. They conclude that the Relative Hierarchical Clustering

outperforms the traditional HAC algorithm on these three datasets.
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Karypsis et al. [16] propose a new HAC Algorithm called CHAMELEON.

According to the authors, this algorithm can better detect clusters when the

dataset contains clusters of diverse shapes, density and sizes. This algorithm

determines the pair of the most similar sub-clusters by taking into account the

Relative Inter-connectivity as well as the Relative Closeness of the clusters.

The Absolute Inter-connectivity between two clusters Ci and Cj is defined as

the sum of the weights of the edges that connect the two clusters. The In-

ternal Inter-connectivity of a cluster is defined as the sum of the weights of

the edges crossing a min-cut bisection that splits the clusters into roughly two

equal parts. Relative Inter-connectivity between two clusters is their Absolute

Inter-connectivity normalized to their Internal Inter-connectivity. The Abso-

lute Closeness between two clusters is the average weight of the edges that

connect cluster Ci to cluster Cj (Inter-connectivity has the sum of the weights

instead of the average). The Internal Closeness of a cluster is defined as the

average weight of the edges that cross a min-cut bisection that splits the clus-

ters into roughly two equal parts. Relate Closeness between two clusters is

their Absolute Closeness normalized to their Internal Closeness. The paper

claims that by focusing on both the Relative Inter-connectivity and the Rel-

ative Closeness between the two clusters, CHAMELEON can overcome the

limitations of existing algorithms that use static inter-connectivity models.

Li and Biswas [20] extended HAC to deal with both numeric and nom-

inal data. The proposed algorithm, called Similarity-Based Agglomerative

Clustering (SBAC), gives a greater weight to the uncommon feature matches

and makes no assumptions on the underlying distributions of the data when

calculating the similarity measure between clusters.

2.1 Parallelizing the HAC Algorithm

There has been some work on parallelizing HAC algorithms. Rasmussen and

Willet [26] have implemented parallel algorithms for the single linkage and

Ward’s HAC methods on the ICL Distributed Array Processor, which was one

of the earliest commercial massively parallel computers. These computers ex-
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hibit data-level parallelism, i.e. every processor executes the same instruction

on different datasets. Rasmussen and Willet optimized those HAC methods for

this parallel computer. Driscoll et al. [6] have described a new data structure

for the parallel computation of minimum spanning trees. This data structure

is a parallel implementation of the Djikstra’s minimum spanning tree algo-

rithm [5] in O(nlogn) time using e
vlogv

processors, where v is the number of

vertices in the graph and e is the number edges. The minimum spanning tree

can be used to perform the single link HAC algorithm. Olson [24] describes

parallel algorithms using Nearest Neighbors. This algorithm maintains an ar-

ray of the Nearest Neighbors to perform the HAC. The naive Nearest Neighbor

algorithm that we state in chapter 6.2 is similar to the algorithm explained

by Olson. We then proceed to improve on this algorithm using special data

structures.

There has also been some work on parallelizing HAC using the MapReduce

framework [4]. MapReduce is a framework for parallelizing algorithms over a

large number of computers. These computer groups are called clusters. A big

advantage of MapReduce is that, the computers that form the clusters can

be low end machines. MapReduce leverages the collective power of these low

end machines to acheive the parallelism at a low initial cost. To implement

HAC over MapReduce, we need to break the algorithm into one or more Map

tasks and a Reduce tasks. During every iteration of the algorithm, we have

to find the closest pair of clusters from all the cluster pairs. This task can

be parallelized and made into a number of Map tasks. Each Map task takes

as input a subset of the cluster pairs and emits out the closest cluster pair

among them along with the corresponding distance. The next step is to find

the global minimum of these Map outputs. This can be done by a Reduce

task. This method was used by Gao et al. [10]. One disadvantage of using

MapReduce for HAC is that MapReduce frameworks do not store the state

between successive iterations. That is, if a MapReduce node finds the distance

between a number of cluster-pairs, there is no way of storing the calculated

distances in the same MapReduce node. So, we need to re-send this data at

the beginning of each iteration. This communication is very expensive and so
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the traditional MapReduce is not ideal for the HAC.

There have been a few modifications to the MapReduce framework for

adapting it to iterative algorithms. Twister [7] is one such implementation

of MapReduce for iterative algorithms. Twister allows the user to specify

static data that remains constant during each iteration and dynamic data

that change during each iteration. This avoids the problem encountered by

traditional MapReduce when implementing HAC. There are other iterative

MapReduce framework implementations like Incoop [2] and iMapReduce [33].

There is no HAC algorithms that have been developed over Twister or any

other iterative MapReduce platforms yet.
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Chapter 3

Hierarchical Clustering
Algorithm - Theory

In this chapter, we discuss the HAC algorithm. We first outline the algorithm

and then explain the different ways in which the dissimilarity between the clus-

ters can be found. Then we conclude by explaining the two broad categories

of the HAC algorithm based on the amount of space used.

3.1 The Basic HAC Algorithm

The aim of the Hierarchical Clustering Algorithm is to build a hierarchy of

clusters. Let the dataset consist of N data points with dimensionality D.

Algorithm 1 gives an outline of the basic HAC Algorithm.

Algorithm 1: HAC

Input: Data(N, D)

1 for i = 1 to N − 1 do

2 Find closest pair of clusters

3 Merge the closest pair of clusters

4 Output the pair that has been merged.

5 end

19



3.2 Cluster Dissimilarity Measures

Clusters are comprised of a number of points. In a multi-dimensional space,

each point is usually represented by a vector of values. To decide which clusters

should be merged or split, a measure of dissimilarity between clusters is needed.

This measure of dissimilarity is usually obtained by using a combination of two

factors:

• A Distance Metric - A measure of distance between a pair of points which

are stored as vectors.

• A Linkage Criteria - This gives the dissimilarity of clusters as a func-

tion of the pair-wise distances between the points belonging to the two

clusters.

3.2.1 Distance Metric

Distance metrics are used to find the distances between two points which are

represented by vectors. These are a few of the distance metrics that can be

used:

• Euclidean distance: If there are two points that are represented by vec-

tors p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) then the Euclidean distance

between these two points are given by

d(p, q) =
√

(q1 − p1)2 + (q2 − p2)2 + ...+ (qn − pn)2

• Manhattan Distance: The Manhattan distance between two points rep-

resented by vectors p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) is given

by

d(p, q) =
∑
i

|pi − qi|
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• Cosine Distance: The Cosine distance between two points represented

by vectors p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) is given by

p · q
‖p‖‖q‖

3.2.2 Linkage Criteria

Section 3.2.1 (page 20) gives the metrics that can be used to find the distance

between two points. But every cluster is made up of of one or more points.

Consider two clusters, cluster Ca with n points and cluster Cb with m points.

If we need to find the distance between these two clusters, we need to decide

how to use the points in each of the clusters to calculate the distance. This is

done using the Linkage criteria. To find the distance between the clusters, a

particular Linkage criteria is selected and used in conjunction with a distance

metric. Here are some of the Linkage criteria that are commonly used:

• Single Linkage: Here the distance between two clusters is calculated

as the distance between the two closest points in the two clusters X, Y .

This can be described by

d(X, Y ) = min
x∈X,y∈Y

d(x, y)

This distance calculation is dependent on the number of points present

in the two clusters and so is not of constant time complexity.

• Complete Linkage : Also known as the farthest neighbor method.

Here the distance between two clusters is computed as the maximum

distance between any two points in the two clusters.

d(X, Y ) = max
x∈X,y∈Y

d(x, y)

Here too the distance calculation is dependent on the number of points

present in the two clusters and so is not of constant time complexity.
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• Unweighted Pair Group Method with Arithmetic Mean (UP-

GMA) : The distance between two clusters is the average of the dis-

tances between all the points in the two clusters.

d(X, Y ) =
1

|X| · |Y |
∑
x∈X

∑
y∈Y

d(x · y)

This distance calculation is dependent on the number of points present

in the two clusters and so is not of constant time complexity.

• Centroid Linkage : In centroid based clustering, each cluster is repre-

sented by a single vector - the centroid of all the points in the cluster.

The centroid of a cluster X containing points x1, x2, ..., xn is given by

Cx =
1

n

i≤n∑
i=0

xi

To find the distance between two clusters using the centroid linkage, we

find the distance between the centroids of the two clusters. The time

complexity of this operation depends only on the dimensionality D of

the dataset and not on the number of points in each cluster. So if the

dimensionality of the dataset D is a constant, finding the distance using

the centroid linkage is of constant time complexity.

3.3 Stored Matrix and Stored Data Algorithms

In Algorithm 1, during each iteration we need to find the closest pair of clusters.

One way of finding the closest pair of clusters is to find the distance between

all pairs of clusters and take the pair with the minimum distance. To avoid

re-computations of these distances in each iteration of the algorithm, we store

the computed distances in a matrix called the Dissimilarity Matrix. At each

iteration of the algorithm, when the clusters are merged, the dissimilarity ma-

trix is updated to reflect the merging of the clusters. The dissimilarity matrix

requires O(N2) space. The HAC algorithm can be also written without storing

the whole dissimilarity matrix. Anderberg [23] divides Hierarchical Clustering
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Algorithms into the following types, based on whether a dissimilarity matrix

is used or not.

• Stored Matrix Algorithms.

• Stored Data Algorithms.

3.3.1 Stored Matrix Algorithms

In the Stored Matrix algorithms, the entire dissimilarity matrix is maintained

in memory. A naive way to implement a dissimilarity matrix is a two dimen-

sional array. During each iteration, the dissimilarity matrix is searched to find

the closest pair of clusters. The closest pair is merged and then the dissim-

ilarity matrix is updated by deleting the entries for the merged clusters and

adding a new entry for the newly created cluster. Using a naive brute force

method, finding the closest pair of clusters has a time complexity of O(N2).

Because there are N iterations, the final time complexity for this is O(N3).

Alternatively, we can use a priority queue to implement the dissimilarity

matrix. The distances between the cluster-pairs can be used as the priority

for the priority queue - smaller distances have a higher priority. To find the

closest pair of clusters from this priority queue, we have to find the element

with the highest priority. The time complexity to find the element with the

highest priority in a priority queue is O(1). Insertions and deletions in a

priority queue have time complexity O(logN). So, if we use a priority queue,

the time complexity of the algorithm is O(N2logN). Even when we use the

priority queues, the space requirement is O(N2).

3.3.2 Stored Data Algorithms

In this method, we do not store the whole dissimilarity matrix. Instead, we

only store a part of the dissimilarity matrix and calculate the other distances as

needed. One way of implementing this is to maintain a Nearest Neighbor array

which stores the Nearest Neighbor of each cluster. We refer to this method as

the Nearest Neighbor based HAC. This method is efficient in terms of time and

space if finding the distance between clusters is of constant time complexity. As
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mentioned in Section 3.2.2 (page 21), calculating the distance between clusters

is of constant time complexity when the centroid linkage is used and it is not

of constant time complexity when other linkage criteria like single linkage,

complete linkage and average linkage are used. So when we use the centroid

linkage, the naive Nearest Neighbor search has O(N) space complexity and

O(N2) time complexity to compute the Nearest Neighbor array. Finding the

closest pair of clusters requires scanning the Nearest Neighbor array to find the

cluster with the closest Nearest Neighbor. These two clusters are merged to

create a new cluster. After the merge, we have to update the Nearest Neighbor

of any cluster that had one of the merged clusters as the Nearest Neighbor.

In each iteration, let α be the maximum number of clusters that had one

of the merged clusters as the Nearest Neighbors. Then the time complexity

to update their Nearest Neighbors is O(αN). Thus the total complexity of

this algorithm becomes O(αN2) when the centroid linkage is used. For other

linkage criteria, computing the distance between clusters is not constant time.

So in those cases, we also need to maintain a dissimilarity matrix in addition to

the Nearest Neighbor array to avoid costly re-computations (a stored matrix

method).
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Chapter 4

Multiprocessor Architectures

In this chapter we first outline the different kinds of mulitprocessor architec-

tures. Then we elaborate on the Multiple Instruction Stream, Multiple Data

Stream (MIMD) processors and outline the two broad categories of these pro-

cessors - Uniform Memory Access architectures and Non-Uniform Memory

Access architectures. In the rest of the chapter, we explain the unique at-

tributes of these two kinds of MIMD processors and discuss their advantages

and disadvantages.

A multiprocessor is a tightly coupled computer system which contains two

or more processing units that share the tasks. Flynn [8] has categorized com-

puter architectures into the following types:

• Single Instruction Stream, Single Data Stream (SISD) Processor - This

is a sequential computer with no parallelism.

• Single Instruction Stream, Multiple Data Stream (SIMD) Processors -

The same instruction is executed by multiple processors using different

data streams. These are used in the multimedia fields like image pro-

cessing and audio.

• Multiple Instruction Stream, Single Data Stream (MISD) Processors -

Each processor executes different instructions on the same data stream.

This is used when there is a need for fault tolerance.

• Multiple Instruction Stream, Multiple Data Stream (MIMD) Proces-

sors - Each processor executes different instructions on different data
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streams. The MIMD processors are the most popular of all the above

multiprocessor solutions because of their flexibility and cost-performance

advantages. Most of the distributed systems that exist today fall under

this category.

MIMD processors can be classified into two categories:

• Uniform Memory Access Architectures (UMA).

• Non-Uniform Memory Access Architectures (NUMA).

4.1 Uniform Memory Access Architectures (UMA)

In the Uniform Memory Access architecture (UMA) all the processors share

the entire physical memory uniformly. Figure 4.1 gives an example of the

uniform memory access architecture. The CPUs are connected to the memory

using a memory bus. Since the memory is shared, the access times to any part

of the memory is the same for all the processors and there is some built-in

mechanism to synchronize memory access from different processors.

Figure 4.1: A High Level diagram of the Uniform Memory Access architecture.

The Uniform Memory Access architectures were among the earliest type of

the multiprocessor architectures and are simple. But the CPU in most systems

is faster than the memory. So when multiple processors use a single shared

memory and execute rapid memory accesses, most of the processors are starved
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(they do not have any data and so are not able to do any data-processing tasks)

and they are idle during that time. Caches were added to each processor to

reduce the starvation of the processors. A cache is a high speed memory

which is individual to each processor. As long as the data is in the cache,

the processor is not data starved. If the data is not present in the cache, the

processor has to access the shared memory. So sophisticated algorithms are

needed to reduce cache-misses by using data-locality. But the massive increase

in the amount of data processed and the performance enhancements of recent

processors have made these workarounds less efficient. Also if the number of

processors in the multiprocessor architecture is increased, the memory access

starvation time of each processor increases.

4.2 Non-Uniform Memory Access Architectures

(NUMA)

Non-Uniform Memory Access architectures overcome the limitations in the

Uniform Memory Access architectures. In this architecture, each processor

has its own memory. This leads to improved performance as the processors

do not contend for memory as long as the data is present in the processor’s

own memory. But, it is not always the case that the data can be confined

to a single processor’s memory. In such a case, a processor might need to

access data from another processor’s memory. To facilitate this, NUMA archi-

tectures usually have additional mechanisms for allowing processors to access

the memory of another processor. This cross-region memory access creates

memory contention between the two processors and also carries the overhead

of transferring the data through a memory bus to the requesting processor.

So in a NUMA architecture, memory access time is not uniform - memory

access to cross-region memory takes more time when compared to accessing

local memory. Figure 4.2 gives a high level representation of the Non-Uniform

Memory Access architecture.
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Figure 4.2: A High Level diagram of the NUMA architecture.

4.2.1 Cache Coherent NUMA

NUMA architectures also have caches for each processor to further exploit

locality of reference. As there is a cache for every processor, the data present

in the caches should be consistent. This is called cache coherency. All the

NUMA computers in the market today are cache coherent. Each processor

has a cache-controller and these cache-controllers interact with each other

to maintain cache coherency. If multiple different processors access the same

memory in rapid succession, then the overload for maintaining cache-coherency

becomes increasingly expensive. Thus cross-region memory access and rapid

successive access of the same memory location by different processors are very

expensive in a NUMA architecture. If the hardware and Operating System

support NUMA, then it tries to reduce the frequency of these two expensive

operations by allocating memory in NUMA-friendly ways. This hides the

overhead of NUMA from most of the user written programs. But for data-

intensive applications, a considerable overhead is usually observed if they are

not written in a NUMA-friendly way. So an improvement in performance can

be achieved if the data intensive applications are written to be NUMA-aware
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and to reduce these expensive operations.

4.2.2 NUMA Regions or NUMA Nodes

Allocating a separate memory for each processor is expensive. A reasonably

small number of processors can share memory without encountering the limi-

tations of the Uniform Memory Access architectures. So, in the NUMA based

computers, the processors are divided into blocks called NUMA regions or

NUMA nodes. Each region can house many processors and has its own local

memory. Most of the NUMA-based architectures in the market today house

either four or eight processors in every NUMA region. In a single processor

CPU, the processor is connected to the memory controller by using an inter-

face called the Front-side bus. In the NUMA architectures, a similar interface

is used to connect each NUMA region to another. These interfaces are referred

to as Processor Interconnects. The two main processor interconnects in the

market are the HyperTransport from AMD and the QuickPath interconnect

from Intel. Figure 4.3 gives a high level diagram of a NUMA architecture with

four NUMA regions, each comprising of four processors. It can be seen that

each NUMA region has its own memory and the NUMA regions are connected.

The processor interconnects need not form a fully connected mesh that

connects each NUMA region to every other region. Instead they can use

any topology and so the NUMA regions can be two or more hops apart from

each other. In such cases, cross-region memory access to a neighboring NUMA

region is faster than cross-region access to a NUMA region which is two or more

hops apart. An advantage of this kind of architecture is scalability. A large

number of processors can be added to this architecture, without affecting the

throughput. In essence, the NUMA architecture has the following advantages:

• A small number of processors sharing a memory and a cache for maxi-

29



Figure 4.3: A NUMA architecture with four NUMA regions, each comprising
of four processors

mum utilization.

• The processors are compartmentalized into NUMA regions to minimize

the effects of memory contention and starvation.

Even though the NUMA architecture has the above advantages, cross-

region memory access is still expensive compared to local memory access. So,

the applications written for NUMA architectures can be made much more

efficient by reducing cross-region memory accesses and ensuring that most of

the cross-region memory accesses are done on NUMA regions which are only

one hop apart (we refer to them as neighboring NUMA regions).
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4.2.3 Architecture of machine that we used

The NUMA machine that we used for our experiments had four 8-core AMD

6100 series Opteron Processors making a total of 32 cores. Figure 4.4 gives

the Processor and I/O Chipset block diagram for our system. From the figure

it can be seen that there are four G34 Sockets numbered from one to four.

There sockets house the four AMD Opteron processors and the Hyperlink

inter-connects between these sockets can be seen from the figure. In this

machine, every NUMA-node was connected to every other NUMA-node by

one hop forming a fully connected mesh.

Figure 4.4: Processor and I/O chipset of our system. Taken from [38]

31



4.3 Memory Allocation Policy in a NUMA ar-

chitecture

In a system with a NUMA architecture, there are multiple regions each with

its own memory. If there is a request for memory allocation, there needs

to be some way of deciding the NUMA region from which this memory is

allocated. Most operating systems allocate only the virtual memory at the time

of the request. This virtual memory is not mapped to any physical memory at

that time. When a thread first accesses the allocated memory, the operating

system maps the virtual memory to physical memory from the same NUMA

region on which that thread runs on. After this thread uses up this memory,

it is then returned to the operating system. When another thread of the

same application running on a different NUMA region requests memory, the

operating system might reuse the memory that was earlier allocated to the first

thread. So, the later thread has a high probability of being allocated memory

that was released by a different thread on another NUMA region . This causes

considerable overhead due to cross-region accesses. So if the program is not

NUMA-aware, the above reason might result in reduced efficiency.
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Chapter 5

Parallel Hierarchical Clustering
Algorithm

In this chapter, we first describe the process of parallelizing the HAC algo-

rithm and outline one such parallel algorithm. Then we discuss how there

are possibilities to optimize this parallel algorithm when the system is based

on a NUMA architecture. We then present a parallel HAC algorithm which

is NUMA-aware and explain the various optimizations and implementation

details of this algorithm. Finally we conclude the chapter by comparing the

performance of the parallel HAC algorithm to the NUMA-aware parallel HAC

algorithm.

5.1 What can be parallelized?

The HAC Algorithm has the following main steps:

• Finding the distances between all pairs of clusters.

• Finding the cluster pair that is the closest for every iteration.
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• Merging the cluster pair that is the closest for every iteration.

Of these steps, the first lends itself well to parallelization. For N clusters, a

total of (N2/2) distances have to be found. If there are a total of P processors,

then each processor can be assigned (N2/2P ) pairs of clusters to process. Each

processor finds the closest cluster pair among the (N2/2P ) cluster pairs along

with their distance. Then the globally closest cluster pair can be found and

they can be merged. This can be done in a multi-threaded model using a

master thread and worker threads. A master thread starts various worker

threads. The worker threads process the cluster pairs and find the locally

closest cluster pair. The master thread uses this to find the globally closest

cluster pair and merges those clusters. Algorithm 2 explains how the master

thread works and Algorithm 3 explains how the worker threads work.

Algorithm 2: A Parallel HAC - The Master Thread

Input: A set of N points to be clustered. Initially each point is its own
cluster. Let the number of processors be P.

1 Allocate (N2/2P ) cluster pairs to each thread.

2 Allocate memory for DissimilarityMatrix.

3 Let TotalNumberOfClusters = N

4 while TotalNumberOfClusters > 1 do

5 Start worker threads and wait for their completion.

6 Get the closest cluster pair from each worker thread and find the
closest clusters (Cx, Cy) of the whole dataset.

7 Merge the closest clusters (Cx, Cy).

8 Broadcast the newly formed cluster information to all the threads.

9 TotalNumberOfClusters = TotalNumberOfClusters− 1.

10 end

This algorithm requires a master thread for these three tasks:

• Dividing the data and assigning it to the respective processors

34



Algorithm 3: A Parallel HAC - For Worker Thread Wi

1 Wait for signal from Master thread.

2 foreach cluster pair allocated to this thread do

3 If the cluster pair distance is not stored in the DisimilarityMatrix
find the distance and store it in the DisimilarityMatrix.

4 end

5 Send the two locally closest clusters (Cxi
, Cyi) and the distance between

them to master thread.

6 Wait for receiving the globally closest cluster pair.

7 Receive globally closest cluster pair (Cx, Cy).

8 if Currrent Worker Thread i has a cluster pair which has either Cx or
Cy or both then

9 Update the DissimilarityMatrix to reflect the merging of that
cluster.

10 end

11 Update the dissimilarity matrix to reflect the new cluster created by the
merging of the two clusters.

• Collecting the local minimum from the different processors to find the

global minimum.

• Merging the closest pair of clusters.

5.2 Overloading of the Point-to-Point Trans-

port

All the NUMA regions are connected using the Point-to-Point link (shown

in fig 4.3). In the parallel version of HAC presented in Algorithm 2 and

Algorithm 3, the memory for the dissimilarity matrix is allocated by the master

thread. When the other threads access this memory, the data is transferred

through the Point-to-Point Transport. As mentioned in 4.2.1, some NUMA

regions can be two or more hops apart from the NUMA region in which the

Master thread runs. So when a thread requests cross-region access to the

35



dissimilarity matrix, the data needs to be transferred through the Point-to-

Point Transports of other NUMA regions which act as intermediate carriers.

An example is shown in figure 5.1. It can be seen that the Point-to-Point

transport between NUMA region 0 and NUMA region 1 is overloaded as it

is being used for data transfers between other NUMA regions. This whole

process can be optimized for NUMA architectures by splitting the dissimilarity

matrix among the different NUMA regions and accessing them in a NUMA

aware manner.

Figure 5.1: This figure shows how the point to point link between NUMA
region 0 to NUMA region 1 is overloaded because of the data being transferred
to the other NUMA regions .

Also, when the size of the data is huge and the number of cores is large,

there is an obvious bottleneck in the NUMA region where the Master thread
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runs. All the data is spread out to the different processors from this region and

all the output is received back in this region. So in addition to splitting the

dissimilarity matrix, we need to streamline the flow of data from one NUMA

region to another.

5.3 Requirements for making the HAC Algo-

rithm NUMA-aware

We need to ensure that the following criteria are met when designing a HAC

algorithm that is NUMA-aware.

• Memory accesses should be as localized as possible.

• Data exchange among the processors should flow in a peer-to-peer fashion

and most cross-region accesses should be restricted to nearby NUMA-

regions.

5.4 Lesson learnt from Soccer Players

Teubner and Mueller [30] identify the way that soccer players organize them-

selves for the handshake before a soccer game and exploit this to do stream

joins without a central co-coordinator. We have applied the same inspiration

to parallelize the part of the HAC algorithm that finds the distance between

all the pairs of clusters. Soccer players are aware of how to execute a hand-

shake between all pairs of players from the two teams without any external

co-ordination. They do so by walking across each other in opposite directions

and shaking hands with players from the opposite teams. The same process

can be used to find the distance between all pairs of clusters without the need

for external co-ordination.
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Figure 5.2: An illustration of the data flow using the inspiration from soccer
players.

5.5 The Basic Idea of the Algorithm

The HAC algorithm first computes the distance between all cluster pairs in

the first iteration. These computed distances are used and updated in the

subsequent iterations. So the first iteration takes the most amount of time as

it computes all the pair-wise distances between the clusters. The algorithm

presented here uses the soccer handshake principle presented by Teubner et

al. [30] to make the first iteration NUMA-optimized. Essentially, the first iter-

ation constructs a dissimilarity matrix that is split among the various NUMA

regions. All the subsequent iterations use this split dissimilarity matrix in

a NUMA-aware manner to produce a NUMA-optimized version of the whole

algorithm. We first explain how the first iteration works and then give the

details of how the subsequent iterations are NUMA-aware.

5.6 Idea for the First Iteration

We will first explain what happens in each individual processor and then we

will explain what happens across the different processors. The input to the

algorithm is all the clusters for which the pair-wise distances have to be calcu-

lated. We make two copies of this input data which will act as two independent
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streams R and S. Now the two streams are moved in opposite directions, i.e.

stream R is moved from left to right and stream S is moved from right to left.

Figure 5.3 gives a diagrammatic representation of this concept. As the streams

move against each other, each processor finds the distance between the pairs of

clusters which are aligned opposite to each other. These distances are stored

in the local memory of the NUMA region that each processor belongs to. This

process is repeated until the steams completely pass each other. Once this is

completed, the distance between all the pairs of clusters would have been cal-

culated and stored. This process also splits the dissimilarity matrix between

the different NUMA regions and is the basic idea for the first iteration of our

algorithm.

Figure 5.3: The data is divided into two streams which are lined up against each
other and moved in the opposite direction. The distances between the pairs that
are aligned opposite to each other are found. Figure taken and redrawn from [30].

5.6.1 Correctness of the First Iteration

To ensure correctness of the algorithm, the following conditions should be met

in each iteration:

• The distance between all pairs should be found.

39



• The two clusters which have the overall minimum should be identified.

In addition to these two criteria, we also add the following for making sure

we don’t do any additional work and for ensuring efficiency:

• The distance between a pair of tuples is calculated not more than once.

• The communication between the processors is autonomous and does not

depend on a central co-coordinator.

In the following sections, we will see how this algorithm can be parallelized

while preserving the criteria mentioned above.

5.7 Parallelization of the First Iteration

5.7.1 Distributing the streams among the different con-
nected processors

To parallelize this algorithm, each processor is equipped with a window for

each of the streams R and S. The processors are connected like a chain using

message queues. This is shown in Figure 5.4. The two streams are passed

through the corresponding windows in each processor. When the streams pass

each other, the distances between the clusters in the two windows are found.

Whenever a cluster enters the window of a processor, it is stored in the local

NUMA region of the processor. Because of this, the distance calculations can

always be done locally. Figure 5.5 shows an example for a single processor,

with a window for each of the two streams R and S. Any data structure like

a hash-table or priority queue can be used to store the computed distance

values.
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Figure 5.4: Each processor has a window for the two streams. The processors
are connected like a chain. Figure taken and redrawn from [30].

Figure 5.5: Each processor has a window for each of the streams. The streams
are moved through the windows. As they move through the windows, the dis-
tance between the clusters are calculated. Figure taken and redrawn from [30].

There are two ways to move the streams against each other:

• BiDirectional Handshake Method - The two streams move against each

other simultaneously.

• UniDirectional Handshake Method - The two streams are moved one by

one.

We will now describe how both these methods are implemented.
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5.7.2 BiDirectional Handshake Method

In this version, the two streams are moved towards each other simultaneously.

Each processor has its own window for each of the streams of clusters and

each window can hold a part of the whole cluster stream. The two streams are

simultaneously pushed towards each other through these windows. Figure 5.6

shows an example with four processors each with its own window and the two

streams being simultaneously pushed towards each other through the windows.

Figure 5.6: Each processor has two windows and the two streams are simul-
taneously pushed towards each other through the windows. Figure taken and
redrawn from [30].

When a new cluster from one of the streams enters a window of a processor,

the processor finds the distances between the new cluster and the clusters

present in the other window of the same processor. An example of this can be

seen in Figure 5.7.

Missed Cluster-pairs

When moving the two streams simultaneously towards each other, two clusters

might miss each other because both were in transit. Figure 5.8 explains one

example of such a miss. Clusters r5 and s4 from the two opposite streams miss
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Figure 5.7: The hollow box indicates the new cluster. Its distance is found
immediately with the clusters of the other stream present in the current pro-
cessors window. Figure taken and redrawn from [30].

each other as they both are in the FIFO queues at the same time. So both

processor k and processor k+1 do not process the cluster pair ( r5,s4 ). This

affects the correctness of the algorithm. To avoid this problem, we must make

sure that these two clusters meet in one of the processors k or k+1. This can

be done by using acknowledgments and short-term backups of clusters that

have been sent to neighboring processors.

The aim is to make the two cluster pairs meet in exactly one of the two

processors. Let the processor on the right always process these missed cluster-

pairs. In this case it is processor k+1. Whenever this processor sends a cluster

to its left neighbor, it keeps a copy of this cluster si in its local window, but

marks it as forwarded. Figure 5.9 illustrates this.

Cluster s4 is backed up on processor k+1. Even though the clusters r5

and s4 are in the communication channel at the same time, there is a backed

up copy of s4 in processor k+1. So these two clusters meet in processor k+1.

In this step of the communication process, s4 was paired with r6, r7, r8... on
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Figure 5.8: An example showing the missed cluster-pair problem. Clusters
r5 and s4 from the two opposite streams miss each other as they both are in
transit at the same time. Figure taken and redrawn from [30].

Figure 5.9: Two phase protocol - step one. Cluster s4 is backed up on processor
k+1. Figure taken and redrawn from [30].

processor k and r5 paired with s4, s3, s2... on processor k+1. This is illustrated

in Figure 5.10

Now we have the second phase, which is the acknowledgement phase. Once

processor k receives the cluster s4 it sends an acknowledgement back to pro-

cessor k+1 for cluster s4. This acknowledgement notifies processor k+1 that

any other cluster sent after this acknowledgement will have already seen s4

in processor k. So, once processor k+1 receives this acknowledgement, it can

safely delete cluster s4 from its window before accepting the next cluster. Fig-
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Figure 5.10: s4 was paired with r6, r7, r8... on processor k and r5 paired with
s4, s3, s2... on processor k+1. Figure taken and redrawn from [30].

ure 5.11 shows an example of this. This two-phase process ensures that no

clusters are missed and also that the distance between every cluster pair is

computed only once.

Disadvantage of the Bidirectional Method:

The missing cluster-pair problem requires us to use a two-phase acknowledge-

ment protocol to maintain the correctness of the algorithm. This adds an

overhead to the algorithm. Also, in the bidirectional variant, each processor

has its own window. Thus if there are 4 NUMA-regions with a total of 32 pro-

cessors each, then there is considerable overhead as each processor has to go

through the two-phase messaging protocol. The experimental results section

in this chapter, 5.11, shows results to verify the above fact.

45



Figure 5.11: Once processor k receives the cluster s4 it sends an acknowledgement
back to processor k+1 for cluster s4. Once processor k+1 receives this acknowl-
edgement, it can safely delete cluster s4 from its window. Figure taken and redrawn
from [30].

5.7.3 UniDirectional Handshake Method

The two streams do not move simultaneously in the Unidirectional variant of

the algorithm. This avoids the missed cluster-pair problem and the need for

acknowledgments. Also the architecture of the unidirectional variant tries to

minimize the messaging overhead that occurs in the Bidirectional variant.
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Implementation Design

In the unidirectional variant, the stream R is first pushed through all the

processors and until all the processors contain the same amount of clusters

from stream R. Once this phase is done, the stream S is pushed through.

During this phase, the clusters present in streams S and stream R are paired

together and the distances between them found.

In the implementation, each NUMA-region has a master thread. The mas-

ter threads of each NUMA-region are connected to each other through highly-

efficient FIFO queues. Each master thread has a window for each of the

streams R and S. See Figure 5.12 for the architecture.

Figure 5.12: Architecture of the unidirectional variant.

47



First the clusters belonging to stream R are pushed through the NUMA-

regions. Figure 5.13 shows this first step with four NUMA regions. Once the

stream R has been pushed through all the NUMA regions, the stream S is

pushed through from the opposite direction. Instead of pushing the clusters

one-by-one they are grouped into chunks of a predefined size and these chunks

of clusters are pushed instead. Once a master thread receives a chunk of

clusters from stream S, these have to be paired with the clusters from stream

R that are stored in the current master thread’s window. Figure 5.14 shows

the steps when the stream S is pushed through the NUMA regions.

The master thread creates worker threads, one for each processor in the

NUMA-region where that master thread runs. The worker threads do the

actual work of finding the distances between the cluster pairs. The master

thread divides the workload equally among the worker threads and starts the

worker threads. It then sends a copy of the newly arrived cluster chunks to

the neighboring master thread. The worker threads calculate the distances

between the clusters and store them for further lookup. They also keep track

of the cluster-pairs with the smallest distance until now.

Once the worker threads complete, the master threads consolidate the

closest-pair information from each of its worker threads and finds the clos-

est cluster pair for that NUMA region until now. Then it waits until the next

chunk of clusters are received. Algorithm 4 gives the pseudo code for master
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Figure 5.13: The stream R is pushed through the windows of the master threads.

Figure 5.14: The stream S is pushed in chunks through the windows of the NUMA-
region after R has already been pushed through. When a NUMA-region gets a new
chunk of S it is paired with all the clusters in stream S that are stored in this master
thread’s window.
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thread.

Algorithm 4: Pseudo code for the Master thread

1 while true do

2 Wait for new cluster-chunks

3 if New Cluster Chunk Cri Received then

4 split the new chunk among W worker threads.

5 start the worker threads to process the new data.

6 send a copy of the new cluster chunk to the neighboring master
thread.

7 while Worker Threads have not completed do

8 wait;

9 end

10 foreach worker thread Wi do

11 if currentMinimumDistance > minimumDistance of Wi then

12 update minimum distance and mark cluster-pair which
has minimum distance.

13 end

14 end

15 end

16 end

Communication between Processors

All the processors are connected to two neighboring processors through two

FIFO point-to-point links. So every processor, once it receives a new clus-

ter and processes it, sends this new cluster to the neighboring processor and

deletes it from its own window. This keeps the communication between the

processors asynchronous without any central co-coordinator and results in in-

creased parallelism.
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Load Balancing

The asynchronous message passing system that has been implemented can

result in an uneven distribution of load among the processors. We ran the

algorithm with the phy train dataset and logged the number of cluster pairs

processed by each processor. This is shown in Table 5.1 as a percentage (we

have rounded it to the nearest whole number). From the table, we can see

that some of the processors get a lot of cluster pairs to process. This is

because there is no load balancing mechanism. To get the maximum amount

of parallelism, the load has to be distributed evenly among the processors. So

we use a load balancing scheme that is autonomous and does not need a central

co-coordinator. This is what it does - before forwarding the clusters to the

neighbor, the current master thread ensures that the neighbor has almost the

same number of clusters in its R and S windows as itself. This ensures that

the neighbor is not too overloaded compared to the current master thread.

In case the neighbor’s windows have more clusters, the current master thread

periodically checks the neighbor’s window size until the load on the neighbor

decreases before forwarding the clusters. From Table 5.1 we can see that once

load balancing is enabled, we get a fairly even distribution of load among the

processors.

Processor Without Load Balancing With Load Balancing

Processor1 13% 22%

Processor2 42% 26%

Processor3 39% 27%

Processor4 17% 25%

Table 5.1: Number of cluster-pairs processed in each processor with load bal-
ancing and without load balancing on the dataset phy train
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5.7.4 Optimizations

All the distance metrics that we mentioned in Section 3.2.1 (page 3.2.1) are

commutative. That is, if CA and CB are two clusters, then

d(CA, CB) = d(CB, CA)

So when we calculate the distance matrix, only values above the top di-

agonal need to be calculated. That is, for i < j, if we calculate d(Ci, Cj) we

do not calculate d(Cj, Ci). To achieve this in the implementation, we give

each cluster an unique numerical id. During distance calculation, any distance

d(CA, CB) between two clusters CA and CB is calculated if and only if

Id of CA < Id of CB

5.8 Subsequent iterations

In the subsequent iterations, we reuse the distances computed in the first iter-

ation. Let Ci be a newly created cluster in iteration i. We need to find the dis-

tances between this new cluster and all the other clusters. For all the remaining

pairs of clusters, we already have computed the distances during the first it-

eration. Since the dissimilarity matrix was split equally among the NUMA

regions, each processor can look up the distances in its local NUMA regions.

This avoids any cross-region access and makes this step NUMA optimized.

Each processor then sends its locally closest pair to the master thread of the

NUMA-region that the processor belongs to. The master threads compute the

closest cluster-pair for each NUMA-region. Finally, one of the master threads

uses this information to find the globally closest cluster-pair and merges those

clusters. We select one master thread randomly during the start of the algo-

rithm and designate it execute the second step. The information about the
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merged cluster-pair and the new cluster is then sent to all the processors and

then the next iteration is started. So during each iteration, each processor

has to send its local closest cluster pair and also receive the newly created

cluster pair. As the size of this information is very small we use broadcasting

to achieve this.

5.9 Implementation Details

To implement the above methods, we need NUMA-aware memory allocation,

NUMA-aware freeing of memory, NUMA-aware thread allocation and so on.

We use an API called libnuma [36] which provides methods to do the above. It

exposes methods for running a specific thread on a specific node and allocating

memory on a specific node. The method numa alloc onnode is used to allocate

memory on a specific NUMA-node and the method numa run on node is used

to run a particular thread on a specific NUMA-node. But, all the memory

allocation methods in this library are in the kernel mode and so are very slow.

For our algorithm, we needed to allocate small pieces of memory many times

and for this purpose the libnuma API’s are a big overkill. The solution is to

use a memory manager which is NUMA aware. This memory manager must

use the libnuma library to allocate a big chunk of the memory and use this

big chunk of memory to satisfy any further memory requests. Patryk Kamin-

ski [14] has written an implementation of one such memory manager. This

is essentially a modification of Google’s tcmalloc library to create a NUMA

aware malloc function. We found that this new library resulted in an improved

performance over using the default NUMA APIs. So all our experiments were

done by using this memory manager.
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5.10 Impact of the cache

As explained in 4.2.1, every CPU in modern computers is equipped with a

CPU cache which helps reduce the time to access the memory. Usually the

caches are layered as a hierarchy and most computers have the following three

layers:

• L1 cache.

• L2 cache.

• L3 cache.

When the processor has to do a memory access, it checks the three layers of

the cache first. If the data is not present in the cache, the processor executes a

memory access. In NUMA systems, the cache is used to hide the cross-region

access latency. Whenever the processor executes a cross-region access, it reads

a chunk of the memory and keeps it in its cache. If the next request is for data

that is present in the cache, then there is no need for the cross-region access

and so it increases performance. This works well if the amount of cross-region

access is small. But if there are a large number of cross-region accesses, or the

amount of data which is accessed across regions is larger than the cache size,

then the efficiency of the cache is reduced. In those cases, the cross-region

access latency is not hidden anymore and results in decreased performance if

the program is not NUMA-aware.

5.11 Experimental Results

As explained earlier, the bidirectional variant was slower than the unidirec-

tional variant. Table 5.2 gives a comparison of the bidirectional variant and
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the unidirectional variant. So all the results reported here are using the uni-

directional variant of the algorithm.

Dataset Bidirectional Variant Unidirectional Variant

Bio test 0.94 1.32

Phy train 0.96 1.34

Bio train 0.97 1.3

Table 5.2: Speedup obtained on some datasets using the Bidirectional variant
and the Unidirectional variant. It can be seen that the Bidirectional variant
is slower than the naive Multithreaded HAC algorithm.

As explained in Section 4.2.3 (page 31), the experiments were run on an

AMD Opteron machine with four NUMA-regions of eight processors each. We

could not run tests on datasets with more than 60,000 data points because of

memory limitations and so for bigger datasets we used a prefix of the dataset

that would fit into the available memory.

Graph 5.15 gives the speedup obtained on a number of datasets by the

unidirectional variant. The datasets have been taken from the UCI machine

learning repository [40] and the KDD repository [35]. We also used the Mnist

handwritten digit recognition dataset [39].

It can be seen that the speedup is in the range of 1.3 to 1.5 on our machine.

It can also be observed that the Mnist dataset has a slightly higher speedup

when compared to the other datasets. We suspect that this is because of the

large size of the Mnist dataset and so it might overflow the cache. We also

ran the two algorithms on datasets obtained as a prefix of the Mnist dataset.

Graph 5.16 gives the speedup obtained on prefixes of various sizes. It can be

seen that the speedup is lower for smaller sizes but hits a high of about 1.45

times. It then remains constant even after the dataset size is increased. This is

probably because of the cache impact outlined in Section 5.10 (page 54). Until
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Figure 5.15: Speedup obtained by the multi threaded unidirectional variant of
NUMA aware HAC over the naive multi threaded HAC with 32 processors.

a particular size, the caches remain effective and the speedup is not great. But

once the size is greater than the cache size, the naive version becomes slower

than the NUMA aware version. After a particular size, saturation is reached

and the speedup remains constant.

Graph 5.17 gives the scalability of the algorithm when compared to the

ideal scale up for the multi threaded unidirectional variant of NUMA aware

HAC algorithm.
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Figure 5.16: Speedup obtained by the multi threaded unidirectional variant
of NUMA aware HAC over the naive multi threaded HAC on different-sized
prefixes of the Mnist datasets.
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Figure 5.17: The speedup obtained when the number of processors are in-
creased compared to the ideal speedup for the multi threaded unidirectional
variant of NUMA aware HAC algorithm.
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Chapter 6

Nearest Neighbor Based
Hierarchical Clustering
Algorithm

In this chapter we first outline a HAC algorithm using Nearest Neighbor search.

Secondly we present the research done on speeding up the Nearest Neighbor

search and the different data structures that can be used to speed up the

Nearest Neighbor search. Thirdly we present the different requirements that

have to be met by any data structure used to speed up Nearest Neighbor

search in this clustering algorithm and show that a data structure named

Cover Tree satisfies all those requirements. Then we describe the Cover Tree

data structure and the way it will be used to speed up the HAC algorithm.

Finally, we present the results of the experiments that we conducted when

using the Cover Tree for HAC.

In most cases it is impractical to use an HAC algorithm that uses O(N2)

space. In these cases, we are interested in HAC algorithms that uses the stored

data methods mentioned in Chapter 3. One way to implement this is by using

Nearest Neighbors. In this chapter, we explain the naive brute force way to

implement the Nearest Neighbor based HAC algorithm. We then analyze the
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time and space complexities of this algorithm for different linkage criteria.

Then we use a new data structure called the Cover Tree [1] which speeds up

the Nearest Neighbor based HAC algorithm.

6.1 Nearest Neighbor Search

Nearest Neighbor Search is the problem of preprocessing a set of points S in

a metric space (M,d) so that given a query point p ∈ M , we can find the

point that is closest to p in set S. This is a well studied and classical problem

that has numerous practical applications. These include compressing data,

querying databases, machine learning, biological computations and reducing

dimensionality.

6.2 Nearest Neighbor based HAC

The Nearest Neighbor based HAC algorithm uses the Nearest Neighbors of

every cluster to obtain the same greedy clustering as the traditional HAC

algorithm. The algorithm creates and maintains a Nearest Neighbor array. A

Nearest Neighbor array is a N-tuple P = (P1, ..., PN) that identifies for each

cluster i, a nearest-neighboring cluster Pi: each Pi for 1 ≤ i ≤ N satisfies the

condition that d(i, Pi) = min(d(i, j) : 1 ≤ j ≤ N, i! = j) [23]. In the Nearest

Neighbor search domain, this is called the 2-Nearest Neighbor search (The first

Nearest Neighbor of a point p in dataset S if p ∈ S is always p). Algorithm 5
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gives the pseudo code for the naive Nearest Neighbor based HAC algorithm.

Algorithm 5: Nearest Neighbor Based HAC

Input: Data(N,D)

Output: A Hierarchy of Clusters.

1 Compute Nearest Neighbor Array NN Array

2 for i = 1 to N − 1 do

3 Find closest pair of clusters (Cp, Cq) from the NN Array

4 Merge the closest pair of clusters

5 Add a new entry in the NN Array for the new cluster and find the
Nearest Neighbor of the new cluster.

6 Update all the entries in the NN Array which had Cp or Cq as their
Nearest Neighbor

7 Output the pair of clusters that have been merged.

8 end

6.3 Time Complexity

The time complexity of Algorithm 5 is dependent on the time complexity to

find the inter-cluster distances. The different linkage criteria have different

time complexities for finding the distances between clusters. For example,

centroid linkage has constant time complexity for finding the inter-cluster dis-

tance and other linkage criteria like single link, complete link and average link

do not have constant time complexity for finding the inter-cluster distances.

So we first define the time complexity of the algorithm outside of the time com-

plexity for finding inter-cluster distances. Then in the following subsections,

we explain the time complexities with the different linkage criteria.

In Algorithm 5, step 1 performs a Nearest Neighbor search to initially

populate the NN Array. If we use a brute force method for Nearest Neighbor

search, then for each cluster, we have to find the distance with all other clusters
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to find the Nearest Neighbor. This has a time complexity of O(N2). An

efficient way to implement the NN Array is by using a priority queue. In

that case, step 3 takes a time complexity of O(1). Step 5 of the algorithm

has a time complexity of O(N) if we use the brute force Nearest Neighbor

algorithm. In Step 6, we update the NN Array for those clusters which are

affected by the merger of Cp or Cq. Let the number of clusters affected be α.

Then the time taken for this step, using a brute force Nearest Neighbor search

is αO(N). According to Anderberg [23], the number of clusters for which the

NN Array needs to be updated averages to a constant for each iteration. In

that case, the complexity of this step is O(N). So the time complexity of

the Nearest Neighbor based HAC algorithm outside of the time complexity

for finding inter-cluster distances is O(N2). In the subsequent subsections, we

will see the time complexity of the Nearest Neighbor based HAC specifically

for the different linkage criteria.

6.3.1 Centroid Linkage Criteria

In the centroid linkage criteria, every cluster is represented only by its centroid.

Calculating the distance between clusters using the centroid linkage criteria

has constant time complexity. But the centroid linkage criteria does not satisfy

the reducibility property.

Reducibility Property

Let us consider three clusters Ci, Cj and Ck and a distance function d. Let

Ci and Cj be mutual Nearest Neighbors and let Ci ∪ Cj be a cluster formed

by merging Ci and Cj. The distance function d is said to be reducible if it

satisfies the following inequality:

d(Ci ∪ Cj, Ck) ≥ min(d(Ci, Ck), d(Cj, Ck))
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Figure 6.1: An illustration of the reducibility property.

Other linkage criteria like single link, complete link and average link satisfy

the reducibility criteria. Since the centroid linkage criteria does not satisfy the

reducibility property, we have the following problem. Consider a cluster Ca

which has Cb as its Nearest Neighbor. Let Ci and Cj be two clusters that are

being merged. If the linkage criteria satisfies the reducibility criteria, then the

merged cluster Cmerged would not be a Nearest Neighbor of either Ca or Cb.

But if the reducibility property is not satisfied, this can happen. Figure 6.1

illustrates this. So if the reducibility criteria is not satisfied, in Algorithm 5,

we have to also check whether the newly merged cluster becomes the closest

neighbor of any other existing cluster. This has time complexity O(N). The

total time complexity of this algorithm is O(N2) [3].

6.3.2 Complete Linkage Criteria and Average Linkage
Criteria

HAC with complete linkage criteria uses the maximum distance between two

points from each cluster as the distance between the clusters. Similarly, HAC
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with average linkage criteria uses the average distance between points as the

distance between clusters. Unlike centroid linkage based clustering, these two

do not have a constant-time method for computing the distance between the

clusters. If we store and reuse the distances between the points using a dis-

similarity matrix, then this algorithm has O(N2) space and time complexity.

Hence in this case, it becomes a stored matrix algorithm.

6.3.3 Single Linkage Criteria

The single linkage criteria uses the minimum distance between the points as

the distance between the clusters. Like complete link and average link, there

is no constant-time method to find the distance between clusters using single

linkage criteria. If we store and reuse the distances between points, then the

space and time complexity is O(N2) and this also becomes a stored matrix

method. However, HAC using single linkage criteria can be effectively done by

another algorithm that computes the minimum spanning tree of the distances

using Prim’s Algorithm [25]. This method is called SLINK [27] and has a time

complexity of O(N2) and space complexity of O(N). That method would be

preferable to the Nearest Neighbor method when single linkage is used.

So the Nearest Neighbor based HAC is most useful when the centroid

linkage is used as it is a stored data algorithm. The remaining part of this

chapter is focused on using a data structure called Cover Tree for speeding up

this algorithm.
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6.4 Intrinsic Dimensionality and Expansion Con-

stant

The naive Nearest Neighbor search can be used when the structure of the

dataset is unknown. But datasets that arise in practice usually have a nicer

structure which can be exploited to get much better bounds on the Nearest

Neighbor search. In a high-dimensional dataset, some of the dimensions of the

dataset might be redundant: they can be calculated from the other dimensions.

During clustering, these redundant dimensions do not have a significant impact

when calculating the dissimilarities. The Intrinsic Dimensionality of a dataset

is the number of dimensions of the dataset that are non-redundant and have

a significant impact for calculating dissimilarities. One notion of Intrinsic

Dimensionality is called the Expansion Constant or the Doubling Constant [1].

Given a set S of N points, let p be a point belonging to S. We denote the

closed sphere of radius r around p in S by BS(p, r) = q ∈ S : d(p, q) ≤ r. When

the context is clear, we just write B(p, r). The Expansion Constant of S is

defined as the smallest value c ≥ 2 such that |BS(p, 2r)| ≤ c|BS(p, r)| for every

p and r > 0. In other words, if we have a sphere of radius r surrounding p,

then the Expansion Constant is the ratio of the number of points in a sphere

of radius 2r centered at p to the number of points in the sphere of radius

r centered at p. The Expansion Constant of a dataset is important as the

Nearest Neighbor search algorithms have theoretical bounds that depend on

the Expansion Constant. This will be described in the following sections. The
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algorithm to find the Expansion Constant is given in Algorithm 6.

Algorithm 6: Algorithm for finding the Expansion Constant c

Input: Data(N,D)

Output: Expansion Constant c

1 set c = 0

2 for Every point p ∈ Data do

3 Find the distance to every other point and sort the distances into
array sortedDistArray.

4 for Every Distance d ∈ sortedDistArray do

5 N1 = Number of points that are within a d distance away from p

6 N2 = Number of points that are within a 2 ∗ d distance away
from p

7 c = max(c, N2/N1);

8 end

9 end
10 return c

We can optimize the Nearest Neighbor based HAC by speeding up the

Nearest Neighbor search. The next section gives the different research that

has been done to speed up the Nearest Neighbor search.

6.5 Related Work in speeding up Nearest Neigh-

bor Search

There are different variations of Nearest Neighbor Search problems. The met-

ric space (M,d) may be application specific (weighted edit distance between

strings) or infinite (Euclidean space). Also there may be special consider-

ations, where the pre-processing stage needs to be condensed or the metric

space might be unknown. Most research is focused on the case where the

space is Euclidean.
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Several algorithms and metric structures have been proposed to exploit the

case where the data has high dimensionality with a low intrinsic dimensionality.

An approach when the dimension is small is to use KD-trees [9]. Karger and

Ruhl [15] proposed a randomized algorithm called the Metric skip list for

metric spaces in which the intrinsic dimensionality is small. To construct this

data structure, they introduce a random ordering of the points in the sample

space S. Then based on this random order, the data structure is constructed

in a deterministic way. Even though this algorithm uses randomization, they

prove that it will always return the correct results. The randomization enables

the algorithm to reach the nearest neighboring point in an optimized way when

the intrinsic dimensionality is small. Krauthgamer and Lee have proposed a

data structure called Navigating Nets [18]. The Navigating Nets is a directed

acyclic graph and is much simpler than the metric skip list while giving the

same speed up as the metric skip list. Beygelzimer et.al [1] have proposed a

simple tree based-data structure called the Cover Tree which is very similar to

the Navigating nets while having better space bounds than Navigating Nets.

We discuss the space of and time complexities of these algorithms in the section

below.

6.6 Comparison of the different Nearest Neigh-

bor Algorithms

In this section, we present a comparison of the different approaches used to

speed up Nearest Neighbor search that were outlined in the previous section.

Table 6.1 presents the case where there is no assumption about the Expansion

Constant of the dataset.

Now we focus on the case, where we know the Expansion Constant of the

dataset. Including the Expansion constant in the analysis of the algorithms

helps us compare the algorithms much more exactly when the datasets have
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Cover Tree Navigating Net Metric Skip List

Construction Space O(N) O(N2) O(N2)

Construction Time O(N2) O(N2) O(N2)

Table 6.1: Nearest Neighbor methods comparison without assumptions about
the Expansion Constant [1]

varying Expansion Constants. Let c be the expansion constant of a dataset.

Table 6.2 gives the comparison of the different data structures taking into

account the Expansion Constant c and the size of the dataset N .

Cover Tree Navigating Net Metric Skip List

Construction Space O(N) cO(1)N cO(1)NlogN

Construction Time O(c6nlogN) cO(1)NlogN cO(1)NlogN

Insertion/ Removal O(c6logN) cO(1)logN cO(1)logN

QueryTime O(c12logN) cO(1)logN cO(1)logN

Table 6.2: Nearest Neighbor methods comparison with the assumption that
the Expansion Constant is c [1]

6.7 Data Structure Needed for HAC

Any data structure that can be used to improve the Nearest Neighbor search

in the Nearest Neighbor based HAC algorithm should satisfy the following

requirements:

• Space Requirement - The space required by the data structure should

be less than O(N2). Ideally, the space requirement should be O(N).

• Simplicity - The data structure should be relatively simple to understand
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and implement.

• Practical Speed - In addition to having strong theoretical bounds, it

should be fast in practice.

From Table 6.2, it can be seen that the Navigating Nets and the Cover tree

have lower bounds than the Metric Skip List. The main advantage of the Cover

Tree over the Navigating Nets is that, the Cover Tree has a space bound that

is independent of the Expansion Constant. It takes O(N) space irrespective of

the Expansion Constant of the dataset. Thus, the Cover Tree should perform

better than the Navigating net for larger datasets. The Cover Tree is also a

simple tree-based structure that is easy to implement and manipulate. For our

purpose here, a tree is a connected di-graph with N vertices and N-1 edges,

and a distinguished vertex called the root, with no incoming edges and only

outgoing edges. The distance between any two nodes U and V is the number

of edges between them. All nodes at distance d from the root are said to be

at level d. Because of its simplicity and efficient space and time bounds, we

have chosen the Cover Tree as the data structure to speed up then Nearest

Neighbor based HAC.

6.8 Cover Tree

A Cover Tree T on a dataset S is a tree where every node in the tree contains

a data point from the dataset S and each level of the tree acts as a cover

for the descendents below it. Each level is indexed by an integer i which

decreases from the root as the tree is descended. The data points from dataset

S are distributed among the nodes of the tree in such a way that a number of

invariants are satisfied. These invariants are discussed below.

An example Cover Tree is shown in Figure 6.2
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Figure 6.2: An example Cover Tree with seven elements. Figure taken
from [17]

6.8.1 Cover Tree Invariants

Let Ci be the set of nodes at level i. Any Cover Tree T on dataset S satisfies

the following invariants:

• Nesting - Ci ⊂ Ci−1. A diagrammatic representation is shown in Fig-

ure 6.3.

• Covering Tree - For every p ∈ Ci, there exists a q ∈ Ci+1 satisfying
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Figure 6.3: A diagrammatic representation of nesting. The orange node occurs
first in level Cinf and is present in all levels below it. The red node occurs
first in level Ci+1 and is present in all levels below it. So every level Ci−1 is a
subset of the level Ci. Figure taken from [37]

d(p, q) ≤ 2i+1. A diagrammatic representation is shown in Figure 6.4.

Figure 6.4: A diagrammatic representation of covering. The blue nodes occur
first in the level Ci. It will be guaranteed that for every node p in level Ci

there will be a node q (the red node) in level Ci+1 which satisfies d(p, q) ≤ 2i+1.
Figure taken from [37]
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• Separation For all p, q ∈ Ci, d(p, q) > 2i. A diagrammatic representa-

tion is shown in Figure 6.5.

Figure 6.5: A diagrammatic representation of separation. Figure taken
from [37]

6.8.2 Cover Tree Representation

We use two kinds of representation for the Cover Tree:

• Implicit Representation.

• Explicit Representation.

The Implicit representation, consists of infinitely many levels Ci. The level

C∞ is the root of the tree. The Covering Tree invariant ensures that if a node is

present in level i, then it should be present in all levels below i. Also, each node

becomes its own child in the subsequent levels. If this representation is used

in the implementation, we cannot meet the space bound of O(N) as we will be

storing the same node over and over again at the different levels. So we use this

representation mainly for understanding the algorithms of the Cover Tree. For

example, consider the two dimensional points given in graph 6.6. Figure 6.7

gives a Cover Tree constructed with these points in implicit representation.

The Explicit representation coalesces all the nodes in which the only child

is the self child. Thus for any given node ni, which appears first in level i it
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Figure 6.6: Graph of points used in the Cover Tree. Figure taken from [37]

is assumed that it is its own child in every level below i. We only store the

non-self children of ni in each level. This saves a lot of space. Figure 6.8 gives

the explicit representation of the same Cover Tree given in Figure 6.7.
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Figure 6.7: An example of an Implicit representation of a Cover Tree con-
structed with the points given in the graph 6.6.

Figure 6.8: An example of an Explicit representation of a Cover Tree con-
structed with the points given in the graph 6.6.
This d

It should be noted that Figure 6.8 shows the same node repeatedly as its

child only for demonstration purposes. In the implementation, the Cover Tree

is stored using hash tables for good space utilization. For each level i of the

Cover Tree there is a hash table Hi. If a node Nodek has children at level

i, then an entry is made in the hash table Hi. The key is Nodek and all the

73



children of that node at that level are the values. No entry is made in any

hash table for self-chilren. The algorithms that deal with this representation

are aware that in a Cover Tree, if a node occurs in level i then it occurs in

every level i − 1. This saves space by removing redundancy. Figure 6.9 gives

an example storage of the Cover Tree given in Figure 6.8 using hash tables.

Figure 6.9: The explicit representation of the Cover Tree given in Figure 6.8
stored using hash tables in the implementation.

6.8.3 Space Requirement

If we use the Explicit representation of the Cover Tree, for a dataset containing

N points, the space requirement becomes O(N). This can be proved as follows:

In the Cover Tree, each node is connected to at most one parent. Also in

a Cover Tree, if a node first occurs in level i, then it is present in all levels

below i. The Explicit representation does not store this node repetitively for
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every level. Instead the node is stored on the level i that it occurs first. So

each node in the Cover Tree has a parent other than itself and also its children

cannot be itself. Thus, there are N-1 unique nodes in the representation with

N unique links and so the space bound is O(N).

6.8.4 Finding the Nearest Neighbor

To find the Nearest Neighbor of a point p, we descend the tree keeping track

of a subset Qi ⊂ Ci of nodes whose descendents might be Nearest Neighbors

of p. The algorithm iteratively constructs the next subset Qi−1 of points by

expanding the points in Qi to its children in Ci−1, and then throwing away

the points that cannot lead to the Nearest Neighbor of p. This set of points

that are obtained at each level is called the cover set.

First we outline the algorithm to find the Nearest Neighbor and then we

prove its correctness. For the sake of understanding, let us consider an implicit

tree with infinite levels. Let Children(p) denote the set of children of node p.

Let d(p,Q) denote the distance of p to the nearest point in a set Q. That is,

d(p,Q) = minq∈Qd(p, q)

Algorithm 7 gives the algorithm for finding the Nearest Neighbors of a
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point.

Algorithm 7: Algorithm to find the Nearest Neighbors in the Cover
Tree

Input: Cover Tree T, Query Point p

Output: Nearest Neighbor of p

1 set Q∞ = C∞

2 for i =∞→ −∞ do

3 consider the set of children of Qi: Q = Children(q) : q ∈ Qi

4 form next cover set: Qi−1 = q ∈ Q : d(p, q) ≤ d(p,Q) + 2i

5 end
6 return argminq∈Q−∞d(p, q)

Proof of Correctness: For any point q in Ci−1, the distance between q and

any descendant of q, namely q′ can be given by

d(q, q′) ≤ Σ−∞j=i−12
j = 2i

We set the distance bound of the search to d(p,Q) + 2i. So we ensure that

step 4 of the Nearest Neighbor algorithm never throws out a grandparent of the

Nearest Neighbor of the point p. Eventually, we are assured that the Nearest

Neighbor of the point p will be in the final cover set. The brute force search

in line 6 gives us the Nearest Neighbor. Figure 6.10 gives a diagrammatic

representation of this concept. The hollow point is the query point. First, in

level Ci, all the red points indicate the points which are within the distance

bound to the query point. Then in level Ci−1 all the red points are present

(because of the nesting property) and in addition we also have new points,

the blue points, which are children to the points in level Ci. In a similar way,

in level Ci−2, we have more points (yellow points), in addition to the already

existing points.

As an example let us consider the Cover Tree in Figure 6.7 constructed

using the points given in 6.6. Figures 6.11, 6.12 and 6.13 give an example of
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Figure 6.10: A representation of the Nearest Neighbor Search. The hollow
point is the query point. Figure taken from [1]

the search process for points s1, s2 and s3 respectively in the graph 6.6.
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Figure 6.11: A Nearest Neighbor search for point s1 in the graph 6.6. The red
lines indicate the nodes that were added to the different cover sets.

Figure 6.12: A Nearest Neighbor search for point s2 in the graph 6.6. The red
lines indicate the nodes that were added to the different cover sets.

The search method returns the first Nearest Neighbor of a node. So if the

query point p is already in the dataset, it will always be returned as the Nearest

Neighbor. To find the next closest point, we need to do a 2-Nearest Neighbor

78



Figure 6.13: A Nearest Neighbor search for point s3 in the graph 6.6. The
red lines indicate the nodes that were added to the different cover sets. Here
there are two nodes that are present in the final cover set. In that case, step 6
of the algorithm finds the Nearest Neighbor by brute force.

search. The above algorithm can be easily modified to return the k-Nearest

Neighbors of a node. We keep track of a set of k points, called the minSet

which are the k-closest neighbors as seen so far. So with that definition of the

minSet, we can define maxDist as follows:

maxDist = maxx∈minSetd(p, x).

Now, the algorithm can be modified as follows:

79



Algorithm 8: Algorithm to find the k-Nearest Neighbors in the Cover
Tree

Input: Cover Tree T, Query Point p

Output: k-Nearest Neighbors of p

1 set Q∞ = C∞

2 add root to minSet

3 maxDist = d(p, root)

4 for i =∞→ −∞ do

5 consider the set of children of Qi: Q = Children(q) : q ∈ Qi

6 form next cover set: Qi−1 = q ∈ Q : d(p, q) ≤ maxDist+ 2i

7 if (q ∈ Q : d(p, q) < maxDist) then

8 Update minset to add q

9 Update maxDist

10 end

11 end

12 return minset

Complexity The time complexity of the Search algorithm is O(c12logN).

Refer to the paper by Beygelzimer et al. [1] for a mathematical proof of the

complexity.

6.9 Inserting and Removing nodes from the

Cover Tree

The algorithms for inserting and removing nodes Cover Tree are given in the

Appendix A and B.
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6.10 Cover Tree Based HAC

We replace the brute-force Nearest Neighbor search in the Nearest Neighbor

based HAC by a cover Tree based Nearest Neighbor search. First we create

the Cover Tree using all the points in the input dataset. Then the NN Array

is populated by executing a Nearest Neighbor search for all the points in the

dataset. The closest neighbors for each iteration are merged into a new cluster

and this new cluster is inserted into the Cover Tree. The two old clusters are

removed from the Cover Tree. This process is repeated until all the iterations

are completed. Algorithm 9 gives the pseudo code for this procedure.

Algorithm 9: Cover Tree Based HAC

Input: Data(N,D)

1 Construct the Cover Tree using the initial Data - Data(N,D).

2 Compute Nearest Neighbor Array NN Array using the Cover Tree.

3 for i = 1 to N − 1 do

4 Find closest pair of clusters (p, q) from the NN Array

5 Merge the closest pair of clusters

6 Add the newly created cluster into the Cover Tree.

7 Remove the two merged clusters from the Cover Tree.

8 Add a new entry in the NN Array for the new cluster and find the
Nearest Neighbor of the new cluster using the Cover Tree.

9 Update all the entries in the NN Array which are affected by the
removal of (p, q) by executing searches in the Cover Tree.

10 end

6.10.1 Implementation Details

We implemented the Cover Tree based HAC as a single threaded sequential

algorithm using C++. Whenever there is enough space available, the algo-

rithm is confined to one NUMA region. In case that NUMA region runs out
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of memory, the algorithm allocates memory in the nearest NUMA region that

has available memory. These NUMA aware memory allocations were done

using the memory manager written by Patryk Kaminski [14].

6.11 Experimental Results

The Cover Tree based HAC and the naive nearest Neighbor based HAC were

tested on multiple datasets that have been taken from the UCI database and

the KDD 2004 championship. As explained in Section 4.2.3 (page 31), the

experiments were run on an AMD Opteron machine with four NUMA-regions

of eight processors each. Table 6.3 gives the sizes and the dimensions of each of

these datasets. Since we dont store the dissimilarity matrix for the Cover Tree

based HAC and the naive nearest Neighbor based HAC (they are stored data

algorithms), we can cluster bigger datasets using these algorithms compared

to the NUMA-aware HAC algorithm defined in Chapter 5.11 (page 56) and

this can be seen from the sizes of the datasets given in Table 6.3.

We used centroid linkage as the linkage criteria in conjunction with Eu-

clidean distance. Centroid linkage was chosen because it can be implemented

as a stored data algorithm and so can be run on bigger datasets. Table 6.4

gives the comparison of the times taken by the two algorithms.

It can be observed that the Cover Tree based HAC does better than the

naive search in most of the datasets while taking the same amount of space.

In other datasets, it does no worse than the naive Nearest neighbor version.

Table 6.5 gives the total number of distance calculations that have been done

by the two algorithms for each of the datasets.

From Table 6.5 it can be seen that the Cover Tree based HAC does far

fewer distance calculations than the naive version.
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Dataset Number of Rows Dimensions

bio test.data 139657 74

bio train.data 145750 75

corel.data 37748 32

letter.data 19999 17

phy test.data 99999 78

phy train.data 49999 80

mnist.data 59999 785

covtype.data 581011 55

Table 6.3: Datasets used for the experiments on Cover Tree based HAC

The two algorithms were also executed using complete linkage as the linkage

criteria and Euclidean distance as the distance metric. Two versions of the

algorithm were implemented

• A Stored Matrix Algorithm using both a dissimilarity matrix and a Near-

est Neighbor array.

• A Stored Data Algorithm using only a Nearest Neighbor array.

In the stored data version, there was no dissimilarity matrix and the distances

between points were calculated when needed. The stored matrix version uses

a dissimilarity matrix to store the distances between points and so it is faster.

But it requires lot more space for storing the dissimilarity matrix. For bigger

datasets, the store matrix version required a very large amount of space and

the store data version required a very large amount of time. So smaller datasets

which required a reasonable amount of time and space were chosen for this
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Dataset NNHAC-Time(s) CoverHAC-Time(s) Speedup

bio test.data 15940 3697 4.31

bio train.data 21965 5014 4.38

corel.data 607 187 3.25

letter.data 114 38 3

phy test.data 6427 470 13.67

phy train.data 1429 136 10.51

mnist.data 22488 12706 1.77

covtype.data 225368 5054 44.59

Table 6.4: Comparison of Time taken when using Cover Trees and when not
using Cover Trees with the centroid linkage and Euclidean distance

experiment. Table 6.6 presents the results for the stored data version of the

algorithms and Table 6.7 presents the results for the stored matrix version of

the algorithms.

Once again it can be seen that the Cover Tree based HAC is faster when

compared to the naive version for both the stored data and stored matrix

versions. Similar times were seen for both average linkage and single linkage.

6.11.1 Impact of the Expansion Constant

We analyze why the Cover Tree based HAC performs better for some datasets

and not so well for other datasets. As explained in the definition of the

Cover Tree, the complexities of the Insert Algorithm A and the Search Al-

gorithm 6.8.4 depend on the expansion constant c. Thus the Expansion con-
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Dataset NNHAC-Num CoverHAC-Num

bio test.data 42,288,088,582 3,104,167,770

bio train.data 59,972,679,705 3,289,354,766

corel.data 2,759,940,387 190,824,750

letter.data 928,734,931 45,093,957

phy test.data 22,828,425,799 248,463,832

phy train.data 5,083,867,739 92,461,542

mnist.data 9,563,199,588 3,937,459,084

covtype.data 638,077,109,310 576,817,606

Table 6.5: Comparison of Distances Computed when using Cover Trees and
when not using Cover Trees with the centroid linkage and Euclidean distance

stant plays a major role in the time taken by the Cover Tree based HAC. To

illustrate this, we calculated the Expansion constant of few of the datasets

mentioned in Section 6.11 (page 82). The algorithm for the Expansion Con-

stant given in Section 5 (page 60) has a time complexity of O(N2log(N)). So

we can run it only on smaller datasets. We take the prefix of every dataset

consisting of 5000 points and run the Expansion Constant algorithm (Algo-

rithm 6) on it. The algorithm enables us to find the worst-case expansion

constant of every point in the dataset and the overall worst-case expansion

constant of the whole dataset. Graph 6.14 gives the cumulative distribution

of expansion constants across points for all the datasets. In datasets Mnist

and Enron, the expansion constant of all the points is high. Consequently, the

Cover Tree does not perform well in these datasets. But in the datasets Cov-

type, bio test, Phy test and Phy train, only a few points have a high expansion

constant and all the other points have small expansion constants. In such a

case, the Cover Tree performs well. Thus the speedups obtained are not based

on the worst-case expansion constant of a dataset. Instead they are based on
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Dataset NNHAC-Time(s) CoverHAC-Time(s) Speedup

bio test.data 80,761 18,584 4.35

corel.data 3,519 999 3.52

covtype.data 790,630 62,664 12.62

letter.data 699 206 3.39

mnist.data 77,143 39,623 1.95

optdigits.tra 33 29 1.14

phy test.data 49,518 3,961 12.50

phy train.data 12,028 1,073 11.21

Table 6.6: Comparison of Time Taken when using Cover Trees and when not
using Cover Trees with the Complete linkage and Euclidean distance - Stored
Data Version

Dataset NNHAC-Time(s) CoverHAC-Time(s) Speedup

bio test.data 15,603 3715 4.2

corel.data 552 160 3.45

letter.data 99.9 30 3.33

mnist.data 23,009 12,110 1.9

phy test.data 4,840 400 12.1

phy train.data 1,332 120 11.1

Table 6.7: Comparison of Time Taken when using Cover Trees and when not
using Cover Trees with the Complete linkage and Euclidean distance - Stored
Matrix version

the average expansion constant of the whole dataset.
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different datasets.
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Chapter 7

Parallel Nearest Neighbor
Based Hierarchical Clustering
Algorithm

In this chapter we present parallel versions of the Nearest Neighbor based

HAC algorithms that were discussed in the previous chapter (page 59). We

first outline the parallel version of the Naive Nearest Neighbor based HAC

algorithm and then present a parallel version of the Cover Tree based HAC

algorithm. We then compare the performances of these two algorithms and

also compare the performance of the Cover Tree based HAC Algorithm to the

NUMA aware HAC algorithm that we presented in Chapter 5.11 (page 56).

7.1 Parallel Nearest Neighbor based HAC

In the Nearest Neighbor based HAC algorithm which was outlined in Sec-

tion 6.2 (page 59), the biggest chunk of work is to find the Nearest Neighbor

of the clusters. This part of the work readily lends itself to parallelization

and so we have implemented a parallel version of this algorithm which con-

sists of a master thread and a number of workers threads. Each of the worker
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threads runs in a different processor and before the start of the algorithm,

the clusters present are divided equally among the worker threads. Let set

Wi be the subset of clusters allocated to worker thread Wi. Each worker

thread also maintains a Nearest Neighbor array for the subset of the clus-

ters that it owns. As explained in Section 6.2 (page 59), a Nearest Neighbor

array is a N-tuple P = (P1, ..., PN) that identifies for each cluster i, a nearest-

neighboring cluster Pi: each Pi for 1 ≤ i ≤ N satisfies the condition that

d(i, Pi) = min(d(i, j) : 1 ≤ j ≤ N, i! = j) [23]. This array is populated before

the start of the algorithm and is continuously updated during the execution of

the algorithm. The pseudocode for the master thread of the parallel Nearest

Neighbor based HAC algorithm is given by Algorithm 10 and the pseudocode

for the worker threads of the same algorithm is given by Algorithm 11.

In each iteration, the Master thread merges the two closest clusters Cp and

Cq to create a new cluster Cr. (Algorithm 10, line 6). The Master thread

then removes the two merged clusters from the Nearest Neighbor arrays and

point-subsets maintained by the worker threads. The next steps for the Master

thread is to find the Nearest Neighbor of the newly created cluster and the

Nearest Neighbor of any cluster that had the two merged clusters Cp and

Cr as its Nearest Neighbor. (Algorithm 10, lines 9, 12). To find the Nearest

Neighbor of any cluster Ci, the Master threads sends the information of cluster

Ci to all the worker threads. Each worker thread finds the Nearest Neighbor

of Ci among its local subset of clusters and sends this local Nearest Neighbor

to the Master. The Master finds the global Nearest Neighbor of cluster Ci

from the local results that the workers returned and sends them to the worker

threads. Then the worker thread that owns the cluster Ci updates its Nearest

Neighbor array with the updated value.
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Algorithm 10: A Parallel version of the Nearest Neighbor based HAC
- The Master Thread

Input: A set of N clusters to be clustered. Initially each cluster is its
own cluster. Let the number of threads be P.

1 Allocate (N/P ) clusters to each worker thread.

2 Start worker threads.

3 Signal worker threads to compute Nearest Neighbor Array NN Array

4 Let TotalNumberOfClusters = N

5 while TotalNumberOfClusters > 1 do

6 Find closest pair of clusters (Cp, Cq) from the NN Array.

7 Merge the closest pair of clusters and create new merged cluster Cr.

8 Update the NN Array of the workers to remove the cluster Cp and
Cr.

9 Signal worker threads to find local Nearest Neighbor of Cr and wait
for their completion.

10 Use the local Nearest Neighbor results to find the global Nearest
Neighbor of Cr

11 Add Cr to one of the worker threads and signal workers to update
the NN Array to add Cr and its closest neighbor.

12 foreach Cluster Caffected that had either Cp or Cq as its Nearest
Neighbor do

13 Signal worker threads to find local Nearest Neighbor of Caffected

and wait for their completion.

14 Use the local Nearest Neighbor results to find the global Nearest
Neighbor of Caffected.

15 Signal the worker thread that owns Caffected to update the
NN Array to reflect the new Nearest Neighbor.

16 end
17 Output the pair of clusters that have been merged.

18 TotalNumberOfClusters = TotalNumberOfClusters− 1.

19 end
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Algorithm 11: A Parallel version of the Nearest Neighbor based HAC
- The Worker Thread Wi

1 Let Set Wi be the subset of clusters allocated to this worker thread.

2 Wait for signal from Master thread.

3 if Master thread signals to find local Nearest Neighbor of cluster Ci then

4 Do a brute force Nearest Neighbor search among the subset of
clusters Wi allocated to this worker thread.

5 Send this local Nearest Neighbor CLocalNearestNeighbor of cluster Ci to
Master.

6 end

7 else if Master thread signals to update the NN Array for Cluster Ci

then

8 Get the global Nearest Neighbor CGlobalNearestNeighbor of Ci from
Master thread.

9 if Current worker thread has entry for Ci in its NN Array then

10 Set the Nearest Neighbor of Ci to CNearestNeighbor

11 end

12 end
13 else if Master thread signals to remove Cluster Ci from NN Array

then

14 Remove Cluster Ci from the NN Array.

15 end

7.2 Parallel Cover Tree based HAC

In this section, we present a parallelized version of the Cover Tree based HAC

algorithm. It is to be noted that the Cover trees themselves have not been

parallelized and so the main idea of this algorithm is to have multiple Cover

trees - one for each processor. The algorithm is very similar to the paral-

lel Nearest Neighbor based HAC algorithm presented in the previous section

and is composed of one master thread and a number of worker threads. Sim-

ilar to the algorithm explained in the previous section, each of the worker

threads runs in a different processor and initially the clusters present are di-

vided equally among the worker threads. Let set Wi be the subset of clusters

91



allocated to worker thread Wi. Each worker thread also maintains a Cover tree

CoverTreei in addition to the cluster subset Wi and the Nearest Neighbor ar-

ray NN Array. The CoverTreei for that worker thread is constructed from

the subset of clusters Wi owned by that worker thread. The pseudocode for

the master thread of the parallel Cover Tree based HAC algorithm is given by

Algorithm 12 and the pseudocode for the worker threads of the same is given

by Algorithm 13. It can be seen that line 5 in worker thread Algorithm 13, that

we do a Cover Tree search to find the local Nearest Neighbor in the worker

thread. This is the main difference between the parallel Nearest Neighbor

based HAC algorithm outlined in the previous section and this algorithm. We

also have to maintain the Cover Trees by removing the clusters that have been

merged and by adding the clusters that have been created by the merging.

7.3 NUMA-aware optimizations

Both algorithms defined in Section 7.1 and Section 7.2 were implemented in

C++. Similar to the optimizations that were outlined for the Cover Tree based

HAC algorithm (explained in Section 6.10.1, page 81), we enabled NUMA-

aware memory allocation for these two parallel algorithms. We use the pthread

API to create the threads and the threads are forced to run on a specific NUMA

region using the libnuma library [36]. To make sure that the memory allocated

by the threads are in the same NUMA region that the thread is running, we

used the memory manager written by Patrick Kaminski [14]. Thus, the data

structures used by every thread (the cluster list, the Nearest Neighbor array

and the Cover Tree) are present in the same NUMA region as the thread

itself and so there are no cross-region memory accesses as long as that NUMA

region has enough memory. If the NUMA region runs out of memory, then

the memory manager will allocate memory from a neighboring NUMA region

and there will be some cross-region memory access. But since these are stored

data algorithms, this will happen only for huge datasets (none of the datasets
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Algorithm 12: A Parallel version of the Cover Tree based HAC - The
Master Thread

Input: A set of N clusters to be clustered. Initially each cluster is its
own cluster. Let the number of threads be P.

1 Allocate (N/P ) clusters to each worker thread.

2 Start worker threads.

3 Compute Nearest Neighbor Array NN Array

4 Let TotalNumberOfClusters = N

5 while TotalNumberOfClusters > 1 do

6 Find closest pair of clusters (Cp, Cq) from the NN Array.

7 Merge the closest pair of clusters and create new merged cluster Cr.

8 Signal worker threads to remove the clusters Cp and Cr from their
Cover Trees.

9 Signal worker threads to find local Nearest Neighbor of Cr and wait
for their completion.

10 Use the local Nearest Neighbor results to find the global Nearest
Neighbor of Cr

11 Add Cr to one of the worker threads and update the NN Array to
add Cr and its closest neighbor.

12 foreach Cluster Caffected that had either Cp or Cq as its Nearest
Neighbor do

13 Signal worker threads to find local Nearest Neighbor of Caffected

and wait for their completion.

14 Use the local Nearest Neighbor results to find the global Nearest
Neighbor of Caffected.

15 Signal worker thread that owns Caffected to update the
NN Array to reflect the new Nearest Neighbor.

16 end
17 Output the pair of clusters that have been merged.

18 TotalNumberOfClusters = TotalNumberOfClusters− 1.

19 end

that we used resulted in a NUMA region running out of memory).
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Algorithm 13: A Parallel version of the Cover Tree based HAC - The
Worker Thread Wi

1 Let Set Wi be the subset of clusters allocated to this worker thread.

2 Construct Cover tree CoverTreei from the set of clusters Wi.

3 Wait for signal from Master thread.

4 if Master thread signals to find local Nearest Neighbor of cluster Ci then

5 Do a search in CoverTreei to find the local Nearest Neighbor for
point Ci among the subset of clusters Wi allocated to this worker
thread.

6 Send this local Nearest Neighbor CLocalNearestNeighbor of cluster Ci to
Master.

7 end

8 else if Master thread signals to update the NN Array for Cluster Ci

then

9 Get the global Nearest Neighbor CGlobalNearestNeighbor of Ci from
Master thread.

10 if Current worker thread has entry for Ci in its NN Array then

11 Set the Nearest Neighbor of Ci to CNearestNeighbor

12 end

13 end
14 else if Master thread signals to delete cluster Ci from CoverTreei then

15 Remove Ci from CoverTreei.

16 end
17 else if Master thread signals to remove Cluster Ci from NN Array

then

18 Remove Cluster Ci from the NN Array.

19 end

7.4 Experimental Results

Both parallel algorithms mentioned in this chapter were tested on the same

datasets that the Nearest Neighbor based HAC algorithm and the Cover Tree

based HAC algorithm were tested. For more information on the datasets

used and their dimensions, please refer to Table 6.3 (page 83). As explained

in Section 4.2.3 (page 31), the experiments were run on an AMD Opteron
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machine with four NUMA-regions of eight processors each.

Graph 7.1 plots the time taken (in seconds) to the number of cores used

for the Cover tree based HAC algorithm and the Nearest Neighbor based

HAC algorithm for various datasets. It can seen from the graphs that for the

Cover tree based HAC algorithm, the time taken first drops as the cores are

increased, but beyond a point, the time taken increases. On the other hand,

for the Nearest Neighbor based HAC algorithm, increasing the number of cores

in very effective until about ten cores and after that, the time taken remains

nearly constant. It is also interesting to note that for the Mnist dataset, the

graphs of both these algorithms looks similar. As pointed out in Section 6.11.1

(page 84), the Mnist dataset has a high Expansion Constant for all the points

and it was shown that for such datasets the sequential Cover tree based HAC

algorithm performs similar to the sequential Nearest Neighbor based HAC

algorithm and it does not have a big speedup. So, it might be that for datasets

where these two algorithms perform similar in the sequential version, they also

tend to perform in similar fashion in the parallel versions.

Graph 7.2 shows the number of distance computations made by both these

algorithms. It can be seen that as the number of cores increases, the number of

distance computations made by the Cover tree based HAC algorithm increases

while for the Nearest Neighbor based HAC algorithm it remains constant. It

should be noted that the number of distance computations made by the Cover

tree based version is smaller than the Nearest Neighbor based version even

when the number of cores are increased. This should mean that the Cover tree

based version should take lesser time than the Nearest Neighbor based version

even when the number of cores are increased. But as shown in graph 7.1,

increasing the number of cores makes the Cover tree based version slower than

the Nearest Neighbor based version except in the Mnist case. One of the

reasons for this could be that the overhead involved in maintaining multiple

Cover trees is very high and this leads to a degradation in performance even

though the number of distance computations is still smaller than the Nearest
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Figure 7.1: Graph for the amount of time taken in seconds vs the number of
cores used for both the CovertreeHAC and the NNHAC on various datasets.

Neighbor based version.

We also compared the Cover tree based HAC algorithm to the Uni di-

rectional handshake method of the NUMA aware HAC algorithm which was

explained in Section 5.7.3 (page 46). The NUMA aware HAC algorithm is a

stored matrix algorithm and as explained in Section 5.11 (page 54) it could not

be run on datasets with more than 60,000 data points because of memory lim-

itations and so for bigger datasets we used a prefix of the dataset that would

fit into the available memory. Each algorithm’s performance is optimum for

a certain number of cores for a given dataset and so we have presented the

results of both the algorithms on the optimal number of cores for that algo-

rithm for that particular dataset (The optimal number of cores was found by
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Figure 7.2: Graph for the number of distance computations made vs the num-
ber of cores used for both the CovertreeHAC and the NNHAC on various
datasets.

running the algorithms with varying number of cores for each dataset and find-

ing the number of cores which gives the best performance). We observed that

the Cover tree based HAC algorithm was faster than the NUMA aware HAC

algorithm in all the datasets. Graph 7.3 shows the speedup obtained by the

Cover tree based HAC algorithm over the NUMA aware HAC algorithm. It

can be seen from the Graph 7.3 that the Cover tree based HAC has a greater

speed up on some datasets like Covtype, phy test and phy train, while on

other datasets the speedup obtained is smaller. But it is always faster than

the NUMA aware HAC in all the datasets tested.
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Figure 7.3: Speedup obtained by the Cover tree based HAC algorithm over
the NUMA aware HAC algorithm (For bigger datasets, a prefix of the dataset
that fits in the memory was used)
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Chapter 8

Conclusion and Future Work

In this thesis, we have provided methods to speed up two different variations

of HAC Algorithms. These new methods will increase the scalability of the

traditional HAC algorithm without using any approximations. For each of

the new solutions, we have contributed a survey, a new algorithm and an

evaluation.

First we outlined the basic HAC algorithm and then outlined the differ-

ent multi-processor architectures - Non-Uniform Memory Access Architectures

(NUMA) and Uniform Memory Access Architectures (UMA). Then we have

proposed a NUMA-aware HAC Algorithm which takes advantage of the spe-

cific structure of the Non-Uniform Memory Access architecture. The algorithm

streamlines the flow of data among the nodes and reduces the bottle-neck in

the Point-to-Point transport. We have conducted experiments that show that

this method is faster than the naive HAC Algorithm. This algorithm stores

the whole distance matrix in memory (O(N2) space requirement ) and so is

not suitable for big datasets.

So we outlined the Nearest Neighbor based HAC Algorithm which has a

space requirement of O(N) at the expense of the increased number of distance
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computations. We presented the Cover Tree data structure and how it can

be used to speed up the Nearest Neighbor Search. Then the cover-tree based

HAC Algorithm was presented and the different optimizations that were done

to make it faster were outlined. We have conducted experiments that show

that the Cover Tree is faster for many datasets which intrinsically have a low

dimensional structure. We have also outlined the Expansion Constant and

presented an algorithm to find the Expansion Constant. Then we show how

the average Expansion Constant affects the performance of the Cover Tree

algorithm for the Nearest Neighbor search.

We also implemented a parallel version of the Cover Tree based HAC al-

gorithm and compared it to a parallel version of the Nearest Neighbor based

HAC algorithm and the NUMA aware HAC algorithm. In the parallel version

of the Cover Tree based HAC, we have not parallelized the Cover Tree datas-

tructure itself - instead we have used multiple Cover Trees - one for each core.

We observed that the parallel version of the Cover Tree based HAC algorithm

is slower than the Nearest Neighbor based HAC algorithm when the number of

cores are increased which might be due to the overhead of maintaining multiple

Cover Trees.

There are some areas of improvement in the algorithms that have been

proposed in this thesis. First the NUMA-aware HAC Algorithm requires the

whole distance matrix to be stored in memory. It would be worthwhile to de-

vise an algorithm which does not need the whole distance matrix in memory

(a stored data algorithm) while at the same time being NUMA-aware. Such

an algorithm would make all data flow streamlined for the NUMA architec-

ture and would be very practical on many datasets due to a reduced memory

requirement.

There are also a number of improvements that can be made to the Cover

Tree based HAC Algorithm. One area where research needs to be done is

to parallelize the Cover Tree data structure itself. As explained above, in
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the parallel Cover Tree based HAC that we have implemented (Section 7.2,

page 91), we have not parallelized the Cover Tree datastructure itself and

instead, we have used multiple Cover Trees- one for each thread. We have

shown that this algorithm results in slower execution times than the sequential

Cover Tree based HAC algorithm. It would be interesting to see if the Cover

Tree data structure itself can be parallelized so that multiple threads can

simultaneously use a single Cover Tree. One other improvement would be to

implement the lazy construction presented by Beygelzimer et al. [1]. The lazy

construction amortizes the construction cost into the query cost and hence

might prove to be faster in practice.
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Appendix A

Insert Algorithm for Cover Tree

The insert algorithm (Algorithm 14) is similar to the Nearest Neighbor search

algorithm. This algorithm starts at the root node of the tree Q∞ = C∞. It

recurses down the tree until it finds a level to put p such that all the three

Covering Tree invariants hold (nesting, covering and separation).

Proof of Correctness: First we show that the algorithm completes. To

prove this, we need to show that for each point, we enter the if statement in

line 2. With each recursion, we are decreasing the level i. So the cover set of

each point at that level becomes 2i. If the dataset S is discrete, then for some

i, the new point p will fall outside the cover set of all the other points. Since

the if statement is invoked, there will be a level at which every point will be

inserted.

We now show that, all the covering tree properties hold when the algorithm

completes.

• Covering: Step 9 of the insert algorithm ensures that d(p,Qi) < 2i. So

there exists at least one parent for p and we pick exactly one. This

ensures the covering tree invariant.
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Algorithm 14: Insert Algorithm for the Cover Tree

Input: Cover Set Qi, Point p, Level i

1 set Q = Children(q) : q ∈ Qi

2 if d(p,Q) > 2i then

3 return ’Parent Found’ - true.

4 end
5 else

6 Qi−1 = q ∈ Q : d(p, q) ≤ 2i

7 found = Insert(p, Qi−1, i-1)

8 if found and d(p,Qi) ≤ 2i then

9 pick a single q ∈ Q, such that d(p, q) ≤ 2i

10 insert p into Children(q);

11 return ’Finished’ - false

12 end
13 else

14 return found

15 end

16 end

• Nesting: When we insert p implicitly, we insert p into all the levels. Thus

Ci ⊂ Ci−1.

• Separation: The if statement in step 2 of the insert algorithm ensures

that all the points we added are separated.

Complexity The time complexity of the Insert algorithm is O(c6logN).

Refer to the paper by Beygelzimer et al. [1] for a mathematical proof of the

complexity.
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Appendix B

Remove Algorithm for Cover
Tree

The remove algorithm (Algorithm 15) is similar to the insert algorithm, but

in addition, it has to cope with the children of removed nodes.

Proof of Correctness: As in the insert, sets Qi maintain points in level i

closest to p as we descend through the tree. The recursion stops as soon as

we reach a level below with p is always implicit.

For each level i explicitly containing p, we remove p from Ci and from the

list of children of its parent in Ci+1. This does not affect the nesting and the

separation invariants. For each child q of p other than itself, we go up the tree

looking for a new parent. If we find a node q′ ∈ Ci such that d(q, q′) ≤ 2i

we make q′ a parent of q; Else, we insert q in level i and repeat, propagating

this node up the tree until a parent is found. Insertion does not violate the

nesting and separation constraints, since d(q, Ci) > 2i. This process always

terminates because the covering tree invariant is enforced for all children of p.

Complexity The time complexity of the Remove algorithm is O(c6logN).

Refer to the paper by Beygelzimer et al. [1] for a mathematical proof of the
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Algorithm 15: Remove(p, cover sets Qi−1, Qi, ...Q∞, leveli)

1 set Q = Children(q) : q ∈ Qi

2 set Qi−1 = q ∈ Q : d(p, q) ≤ 2i

3 Remove(T, p,Qi−1, Qi, ...Q∞, i− 1)

4 if d(p,Q) = 0 then

5 remove p from Ci−1

6 Remove p from Children(Parent(p))

7 foreach q ∈ Children(p) do

8 set i’ = i-1

9 while d(p,Q) => 2i′ do

10 insert q into Ci′ and Qi′

11 set i’ = i’+ 1

12 end

13 pick q′ ∈ Qi′ satisfying d(q, q′) <= 2i′

14 make q′ point to q

15 end

16 end

complexity.

106



Bibliography

[1] Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for

nearest neighbor. In Proceedings of the 23rd international conference on

Machine learning, International Conference on Machine Learning, pages

97–104, New York, NY, USA, 2006. Association of Computing Machinery.

[2] Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A. Acar,

and Rafael Pasquin. Incoop: Mapreduce for incremental computations. In

Proceedings of the 2nd Association of Computing Machinery Symposium

on Cloud Computing, SOCC ’11, pages 7:1–7:14, New York, NY, USA,

2011. Association of Computing Machinery.

[3] William H.E. Day and Herbert Edelsbrunner. Efficient algorithms for

agglomerative hierarchical clustering methods. Journal of Classification,

1(1):7–24, 1984. Springer-Verlag.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-

cessing on large clusters. Communications, Association of Computing

Machinery, 51(1):107–113, January 2008. Association of Computing Ma-

chinery.

[5] Edsger W Dijkstra. A note on two problems in connexion with graphs.

Numerische mathematik, 1(1):269–271, 1959. Springer.

[6] James R Driscoll, Harold N Gabow, Ruth Shrairman, and Robert E Tar-

jan. Relaxed heaps: An alternative to fibonacci heaps with applications to

parallel computation. Communications of the Association of Computing

107



Machinery, 31(11):1343–1354, 1988. Association of Computing Machin-

ery.

[7] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-

Hee Bae, Judy Qiu, and Geoffrey Fox. Twister: a runtime for iterative

mapreduce. In Proceedings of the 19th Association of Computing Machin-

ery International Symposium on High Performance Distributed Comput-

ing, High Performance Distributed Computing ’10, pages 810–818, New

York, NY, USA, 2010. Association of Computing Machinery.

[8] Michael J Flynn. Some computer organizations and their effectiveness.

Computers, Institute of Electrical and Electronics Engineers Transac-

tions, C-21(9):948–960, 1972. Institute of Electrical and Electronics En-

gineers.

[9] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An

algorithm for finding best matches in logarithmic expected time. Associ-

ation of Computing Machinery Transactions on Mathematical Software,

3(3):209–226, september 1977. New York, NY, USA.

[10] H. Gao, J. Jiang, L. She, and Y. Fu. A new agglomerative hierarchical

clustering algorithm implementation based on the map reduce framework.

International Journal of Digital Content Technology and its Applications,

4(3):95–100, 2010. Elsevier Netherlands.

[11] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Cure: An efficient

clustering algorithm for large databases. Association of Computing Ma-

chinery Special Interest Group on Management of Data, 27(2):73–84,

1998. Association of Computing Machinery.

[12] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Rock: A robust

clustering algorithm for categorical attributes. Information Systems,

25(5):345 – 366, 2000.

[13] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data.

Prentice-Hall Inc., Upper Saddle River, NJ, USA, 1988.

108



[14] Patryk Kaminski. Numa aware heap memory manager - white pa-

per. http://developer.amd.com/Assets/NUMA_aware_heap_memory_

manager_article_final.pdf, February 2009.

[15] David R. Karger and Matthias Ruhl. Finding nearest neighbors in growth-

restricted metrics. In Proceedings of the thiry-fourth annual Association

of Computing Machinery symposium on Theory of computing, pages 741–

750, New York, NY, USA, 2002. Association of Computing Machinery.

[16] G. Karypis, Eui-Hong Han, and V. Kumar. Chameleon: hierarchical clus-

tering using dynamic modeling. Computer, 32(8):68–75, 1999. Institute

of Electrical and Electronics Engineers.

[17] Thomas Kollar. Fast nearest neighbors - white paper, 2006.

[18] Robert Krauthgamer and James R. Lee. Navigating nets: simple algo-

rithms for proximity search. In Proceedings of the fifteenth annual Associ-

ation of Computing Machinery-SIAM symposium on Discrete algorithms,

SODA ’04, pages 798–807, Philadelphia, PA, USA, 2004. Society for In-

dustrial and Applied Mathematics.

[19] G. N. Lance and W. T. Williams. A general theory of classificatory sorting

strategies: 1. hierarchical systems. The Computer Journal, 9(4):373–380,

1967. British Computer Society.

[20] Cen Li and G. Biswas. Unsupervised learning with mixed numeric and

nominal data. Institute of Electrical and Electronics Engineers Transac-

tions on Knowledge and Data Engineering, 14(4):673–690, 2002. Institute

of Electrical and Electronics Engineers.

[21] Ramn A. Mollineda and Enrique Vidal. A relative approach to hierarchical

clustering. In Pattern Recognition and Applications, Frontiers in Artificial

Intelligence and Applications, pages 314–329. IOS Press, 2000.

109

http://developer.amd.com/Assets/NUMA_aware_heap_memory_manager_article_final.pdf
http://developer.amd.com/Assets/NUMA_aware_heap_memory_manager_article_final.pdf


[22] P. Mowforth and B. Shepherd. Vehicle silhouette dataset. Turing Insti-

tute, Glasgow, Scotland, Publicly disposable at UCI Repository Machine

Learning: http://www.ics.uci.edu/AI/ML/MLDBRepository.html.

[23] Anderberg M.R. Cluster analysis for applications. Technical report, De-

fense Technical Information Center, 1973.

[24] C.F. Olson. Parallel algorithms for hierarchical clustering. Parallel com-

puting, 21(8):1313–1325, 1995. Elsevier.

[25] R.C. Prim. Shortest connection networks and some generalizations. Bell

system technical journal, 36(6):1389–1401, 1957. Bell Labs.

[26] Edie M Rasmussen and Peter Willet. Efficiency of hierarchic agglom-

erative clustering using the icl distributed array processor. Journal of

Documentation, 45(1):1–24, 1989. MCB UP Ltd.

[27] Robin Sibson. Slink: An optimally efficient algorithm for the single-link

cluster method. The Computer Journal, 16(1):30–34, 1973. The British

Computer Society.

[28] Peter HA Sneath. The application of computers to taxonomy. Journal of

General Microbiology, 17(1):201–226, 1957. Society for General Microbi-

ology.

[29] Thorvald Sørensen. A method of establishing groups of equal amplitude

in plant sociology based on similarity of species and its application to

analyses of the vegetation on danish commons. Biologiske Skrifter. K.

Danske videnskabernes Selskab, 5:1–34, 1948.

[30] Jens Teubner and Rene Mueller. How soccer players would do stream

joins. In Proceedings of the 2011 Association of Computing Machinery

Special Interest Group on Management of Data, pages 625–636, New York,

NY, USA, 2011. Association of Computing Machinery.

110

http://www.ics.uci.edu/AI/ML/MLDBRepository.html


[31] Rui Xu and II Wunsch, D. Survey of clustering algorithms. Institute

of Electrical and Electronics Engineers Transactions on Neural Networks,

16(3):645–678, 2005. Institute of Electrical and Electronics Engineers.

[32] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an effi-

cient data clustering method for very large databases. Association of

Computing Machinery Special Interest Group on Management of Data,

25(2):103–114, June 1996. Association of Computing Machinery.

[33] Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. imapreduce:

A distributed computing framework for iterative computation. Journal

of Grid Computing, 10(1):47–68, 2012. Springer Netherlands.

[34] http://dali.feld.cvut.cz/ucebna/matlab/toolbox/stats/

dendrogram.html.

[35] KDD Data Repository, http://kdd.ics.uci.edu/.

[36] Libnuma api. http://linux.die.net/man/3/numa.

[37] Power point on Cover Trees, http://www.lems.brown.edu/vision/

independentStudy/Voctoria_covertree.ppt.

[38] SGI Systems Manual, http://techpubs.sgi.com/library/manuals/

5000/007-5683-003/pdf/007-5683-003.pdf.

[39] The Mnist Dataset, http://yann.lecun.com/exdb/mnist/.

[40] UCI Data Repository, http://www.ics.uci.edu/~mlearn/.

111

http://dali.feld.cvut.cz/ucebna/matlab/toolbox/stats/dendrogram.html
http://dali.feld.cvut.cz/ucebna/matlab/toolbox/stats/dendrogram.html
http://kdd.ics.uci.edu/
http://linux.die.net/man/3/numa
http://www.lems.brown.edu/vision/independentStudy/Voctoria_covertree.ppt
http://www.lems.brown.edu/vision/independentStudy/Voctoria_covertree.ppt
http://techpubs.sgi.com/library/manuals/5000/007-5683-003/pdf/007-5683-003.pdf
http://techpubs.sgi.com/library/manuals/5000/007-5683-003/pdf/007-5683-003.pdf
http://yann.lecun.com/exdb/mnist/
http://www.ics.uci.edu/~mlearn/

	Introduction
	Thesis Motivations and Contributions

	Related Work
	Parallelizing the HAC Algorithm

	Hierarchical Clustering Algorithm - Theory
	The Basic HAC Algorithm
	Cluster Dissimilarity Measures
	Distance Metric
	Linkage Criteria

	Stored Matrix and Stored Data Algorithms
	Stored Matrix Algorithms
	Stored Data Algorithms


	Multiprocessor Architectures
	Uniform Memory Access Architectures (UMA)
	Non-Uniform Memory Access Architectures (NUMA)
	Cache Coherent NUMA
	NUMA Regions or NUMA Nodes
	Architecture of machine that we used

	Memory Allocation Policy in a NUMA architecture

	Parallel Hierarchical Clustering Algorithm
	What can be parallelized?
	Overloading of the Point-to-Point Transport
	Requirements for making the HAC Algorithm NUMA-aware
	Lesson learnt from Soccer Players
	The Basic Idea of the Algorithm
	Idea for the First Iteration
	Correctness of the First Iteration

	Parallelization of the First Iteration
	Distributing the streams among the different connected processors
	BiDirectional Handshake Method
	UniDirectional Handshake Method
	Optimizations

	Subsequent iterations
	Implementation Details
	Impact of the cache
	Experimental Results

	Nearest Neighbor Based Hierarchical Clustering Algorithm
	Nearest Neighbor Search
	Nearest Neighbor based HAC
	Time Complexity
	Centroid Linkage Criteria
	Complete Linkage Criteria and Average Linkage Criteria
	Single Linkage Criteria

	Intrinsic Dimensionality and Expansion Constant
	Related Work in speeding up Nearest Neighbor Search
	Comparison of the different Nearest Neighbor Algorithms
	Data Structure Needed for HAC
	Cover Tree
	Cover Tree Invariants
	Cover Tree Representation
	Space Requirement
	Finding the Nearest Neighbor

	Inserting and Removing nodes from the Cover Tree
	Cover Tree Based HAC
	Implementation Details

	Experimental Results
	Impact of the Expansion Constant


	Parallel Nearest Neighbor Based Hierarchical Clustering Algorithm
	Parallel Nearest Neighbor based HAC
	Parallel Cover Tree based HAC
	NUMA-aware optimizations
	Experimental Results

	Conclusion and Future Work
	Appendices
	Insert Algorithm for Cover Tree
	Remove Algorithm for Cover Tree

