INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.9., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

UNIVERSITY OF ALBERTA

A UNIFIED MODELING METHODOLOGY FOR
SIMULATION-BASED PLANNING OF CONSTRUCTION
PROJECTS

BY

DANY HAJJAR @

A thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the
requirements for the degree of DOCTOR OF PHILOSOPHY
in

Construction Engineering and Management

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

EDMONTON, ALBERTA

Fall 1999

i~l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Waellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your fle Votre reference

Our fle Notre refrence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protege cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-46845-3

Canada

UNIVERSITY OF ALBERTA

Library Release Form

Name of Author: Dany Hajjar

Title of Thesis: A Unified Modeling Methodology For Simulation-Based
Planning of Construction Projects

Degree: Doctor of Philosophy

Year this Degree Granted: 1999

Permission is hereby granted to the University of Alberta to reproduce single copies of
this thesis and to lend or sell such copies for private, scholarly, or scientific research
purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material form
whatever without the author’s prior written permission.

B“”B S _

13332-89 St
Edmonton, Alberta
Canada TSE-3K2

Date Submitted: June 29, 1999

UNIVERSITY OF ALBERTA

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled “A Unified Modeling
Methodology For Simulation-Based Planning of Construction Projects” by Dany
Hajjar in partial fulfillment of the requirements for the degree of Doctor of Philosophy

in Construction Engineering and Management.

T A

Dr. S. AbouRizk
.M
(22
K //';,'} o~ ’“
’Y .
D@gwmmn
. Hoover
é Z,_ o
Dr. T. Hrudey \
A

/,"

//\ - g/
Dr. A. Oloufa’ (

DATE: &/254%7

This thesis is dedicated with love, admiration, and respect to my parents
Nabil and Simone Hajjar

I am bur a product of your dreams and sacrifices

ABSTRACT

Computer simulation is a proven technology and countless studies have been performed
to demonstrate its applicability to the analysis of a wide range of construction operations
including aggregate production, earth-moving, mining, and tunneling. The presented
research describes a methodology that leads to improvements in the appeal of simulation-
based tools within the construction industry and the simplification of their development
process.

A study was first undertaken to investigate and develop various techniques, concepts and
methods of potential benefit as related to the research objective. This study resulted in
the successful development and implementation of three custom simulation tools for
earth-moving, aggregate production and site dewatering operations. An analysis of the
success factors of these tools as well as their limitations led to the identification of a
critical set of features. This set was used as the basis for the formalization of five
concepts: special purpose simulation modeling, graphical modeling, integrated modeling.
modular and hierarchical modeling, and the hybrid tool development and utilization
approach. This set of concepts was then combined, with the help of object-oriented
modeling concepts, into a unified modeling methodology.

A computer system called Simphony was then developed based on the unified modeling
methodology. The design and implementation of Simphony was guided by the principles
of object-oriented application frameworks. Case study results showed that novice
developers are able to produce new Simphony-based tools at a pace that exceeds that of a
programmer using a commercial development system by a factor of six. Further results

from other studies showed that the simplification factor can be as high as sixteen.

ACKNOWLEDGEMENTS

[would like to start by thanking all the industry members who have collaborated on the
various research projects related to my thesis. This includes Lafarge Canada, North
American Construction, and PCL. The financial and technical support of these
companies is greatly appreciated.

Many great thanks to all the graduate CEM students that I have ever known for all their
support. Special thanks to Dr. Nader Chehayeb, Jianfei Xu and the entire 1999 Civil
Engineering 606 class for their help with the testing of Simphony.

My thanks to all the professors that have contributed to my education over the years; in
particular I am grateful to Professor Peter Dozzi, Professor William Weir, Dr. Amina
Fayek, and Dr. Sam Ariaratnam.

The suggestions and thoughtful reviews of my dissertation by my committee members.
Sam Ariaratnam, Terry Hrudey, James Hoover, and Amr Oloufa are greatly appreciated.

My most sincere thanks and gratitude to my supervisor, friend, and mentor, Dr Simaan
AbouRizk, who took me under his wing, treated me as his son, and showed endless
patience and encouragement towards me throughout the whole dissertation process. His
advice and confidence were essential for the completion of this thesis. Centainly, this
dissertation could not have been started, let alone finished, without his input, guidance,
trust, and endless scientific and moral wisdom. There is no part of this work that has not
been the focus of his penetrating mind, and there has been no question posed to him to
which he has failed to apply his full intellect and produce a suitable answer. At first, I
didn’t agree with all the answers. But it did not take long to realize that he was always
right. Dr. Simaan AbouRizk, I thank you from the bottom of my heart.

Funding for my research was partly provided by the University of Alberta, Government
of Alberta, Natural Science and Engineering Research Council of Canada, and the
National Research Council.

Table of Contents

CHAPTER 1 - INTRODUCTION 1
1.1 INTRODUCTION.....coioirermteressassessossssses ssssssssssssssssessssssssnsssesesssssssstessassessesamnnnnsnsnnseses 1
1.2 COMPUTER SIMULATION AS A PROJECT PLANNING TECHNIQUE.....ceuueveeeernrnrnrnennnnen. 2
1.3 RESEARCH OBJIECTIVES ...ccoveerereeeerseresessresssssssssssssessensssssesssssssssenssssssnsssesesesnsssssessss 2
[.4 RESEARCH SUMMARY ..ooooeiiveteeereereeereeneessessessesossssssasssssssssssasassesseneessassessssnssssensssses 3
1.5 THESIS ORGANIZATION ...cocoveeieierrreeereseseeeesssssessssesssasssmmssmesssssssssssssssssssssssssssmsessssnne 4

CHAPTER 2 - BACKGROUND 5
2.1 PROJECT PLANNING TECHNIQUES.....cvvevueeeemerereoseesamsocessessossssssssssssessssssssssssssssasssossons 5
2.2 GENERAL COMPUTER SIMULATION ..cuuuiieeeeeeereeemeoneeeseesmesssessossssssssmsssesssssenssnnsssssssans 7
2.3 CONSTRUCTION SIMULATION ...covevervrverrerereeenmsemsesncssssesesssnsssosssssnssesssesssssssrsnssssnoses 12

CHAPTER 3 - EARTH-MOVING PROJECT SIMULATION 15
3.1 INTRODUGCTION...coutmttieieiiereeteessstesiesssssessssasssnssssssssssmsssssssesssssssssssossssssssssnnssssssananes 5
3.2 BACKGROUNDuuuuiternenesesssmeeesesesssessssesnssesssnsssnsensssnsssssssssmmnnnsssesssssnsssssssassessssrssses 15
3.3 THE OVERALL SYSTEM STRUCTURE. ...cevtteurertetrtrcereeereeeseesassnssssessssssssssssssssssessssess 18
3.4 DESIGN AND DEVELOPMENT OF AP2-EARTHouceiecereeerecreenesessssessssssesesesesanssnnes 19
3.5 CASE STUDY coettteeeeeeseesesssssssssssssss st s assssnsanasanessnsssnnnnssssssssssnnsssssssnnnsansenansen 34
3.0 CONCLUSION ...oooeeenrereeeensnecssssesesssesssssssssssssssmessmnsessssnsssssssnssmsnsmsessssssnsssssnsssnanssssmanns 42

CHAPTER 4 - AGGREGATE PRODUCTION PLANT SIMULATION ...cccoccceneeee 43

4.1 INTRODUGCTION .cceeieiieieeeeeeeeeeeeecessssssssssasnscsssseessessssssssssassamssesessssessosmsssesnmnensnnssnnnns 43
4.2 AGGREGATE PRODUCTION ...ooiiiiiiiieiereneieeeeereseesasssansessssmessssssssssssesssssssossnssssosssssnsses 43
4.3 SIMULATION OF AGGREGATE PROCESSING....tiiieiieeiieeeeemeeeereieieascasessaeaeseemssnsnnsnnonn 49
4.4 MODEL VALIDATION ... ceieeeeeieeensessensssmeennsesessesssesssssssssastssssss sesesssessssstsssesnansannnennns 65
4.5 CONCLUSIONcooteteteeeeeeremteeeseseesssssssssnsssssesssasssestssssnssesnasessasessssamesssssssessssssssnnsnenos 69

CHAPTER 5 - CONSTRUCTION SITE DEWATERING SIMULATION......cccccuee 71
5.1 INTRODUGCTION ...euutmteteeeeaatrcosesssmsssssssssesessssomesaeestmsstmmmaeasesesssesssossesessasssssessensssssmmnn 71
5.2 BACKGROUNDocotteeeteeeeeereseessssssssssasessessssnsnensesssssessssessmssassnnssssssnnssnsssosossessman 71
5.3 SYSTEM DESCRIPTION......... eeeressecsesemsneenennenaentanasasssennntseentantannnrrrasrnannennneenaas 73
5.4 CASE STUDY ..oueeueueneen. eeetennttean——mommmmmeemmoeeessenmtesessssessssasensssnssamanaeaaan 86
5.5 CONCLUSIONS ..o ceeeemeesee st sm e e eeemmaaeeamamaaneese s ameonessssss b ebosmmaaanane 92

CHAPTER 6 - PHASE ONE RESEARCH FINDINGS 94
6.1 INTRODUGCTION. ..coetmieeeeeeeeteceeeecemsssesasssseessseseanmseesssamsmeaaeeeemanssssssessesessss saamsemeennmae 94

6.2 USER INTERFACE ... oeeeieeeeeeeeeeeeessessesssssssseeeeea e smeemmanaeeeeoasss s sasasaesassss smssmnmnnmans o4
6.3 MODELING PHILOSOPHY rernenreeraens .95
6.4 SIMULATION EXECUTION APPROACHucoueeteeeeeeeeeesosesssasmomsessasesasssssmssssssssssssnsnssnnen 96
6.5 SIMULATION RESULT REPRESENTATION....cuuuuceeeeeaaanen .98
6.6 INTEGRATION REQUIREMENTS 99

6.7 CONCLUSIONSoorrenreeeeereeeeeeseersensssesenasasenssesssesaens 99

CHAPTER 7 - UNIFIED MODELING METHODOLOGY 101

7.1 INTRODUCTION. ..cceoiiieeeiesseerreereesesssessssssessssasssssssssssssssssssssssessensrssnnsssnssnsnssesnrsssesses 101
7.2 SPECIAL PURPOSE SIMULATION MODELINGoovveeeereiemeiiiererrsenesseserersrenseresssnens 102
7.3 GRAPHICAL MODELING....uvveeeteeeeeeeeoeveeemmensnesesesssssssssssssssssessssssssesessssssssessnssssssssene 107
7.4 INTEGRATED MODELING ...vveveteeeeeeeeeremteremesesssesesessssssasssesssssssssssssasssssesssensasasssnass 110
7.5 MODULAR AND HIERARCHICAL MODELINGcoceeeerrereeerererrenresrecsoneeesssensesenssenes 115
7.6 ISSUES OF TOOL DEVELOPMENT AND UTILIZATION......cccooveerinrirnnsecereeeressnrarassennns 122
7.7 OBJECT-ORIENTED MODELINGoeerirereererreireeeseeesseseremessesossosssesesnsssessnssssasansernse 125
7.8 UNIFIED MODELING METHODOLOGY ..cveevvereerreeerereeeerererseesesssssssessssssseerssssnnnarsronss 126
7.9 CONCLUSIONS ..cceoeeereerserenssssessssesssessssssesssssssessessssssssssossossssnivarsesssssesnsesssssasssssssness 130
CHAPTER 8 - SIMPHONY ENVIRONMENT 131
8.1 INTRODUCTION . ..cciceeeeieiereeseeeeeassssessssssssssssrssssssossssssessasesesssssssnrssassssnsssssesessnsannnnens 131
8.2 SPS TEMPLATE DEVELOPMENT AND THE SIMPHONY DESIGNERccoevevrerrenneenens 132
8.3 CONSTRUCTION SIMULATION USING THE SIMPHONY EDITOR ...cccvucvrereerererrarnsassens 182
B4 SUMMARY ..covnieeeeireieeieeieesessssssessssssesssssssssssesssssessmsnsssssssnsasessessassasssssssnassssssseanersons 185
CHAPTER 9 - SIMPHONY APPLICATION FRAMEWORK 187
0.1 BACKGROUNDcvuueeureenrecrorsasssessssesssssssssssssssssssssssrsnsssssrsssssssesssssanannsennersssessseeanns 187
0.2 INTRODUGCTION ...couvenrreennsssnssssnsessmssssssssssasreessensssssesssssrssssssasssasssesssesnsantansenssaseeaane 187
9.3 OVERVIEW OF APPLICATION FRAMEWORK THEORY ...oeiiriiriireeincennnereensernsssesessons 189
9.4 APPLICATION FRAMEWORKS FOR CONSTRUCTION SIMULATION «.c.uiiiiiieerieneannneee 191
0.5 CONCLUSIONS . ceeeeetnrereeeeeessesesnsasesansssssnssssesessasssnsssssnsiasssessnsessessassssssssessnssessssnnse 201
CHAPTER 10 - CASE STUDIES 202
10.1 INTRODUCTION ..coiiiieeeeeereeeeesessnnemmnneeememmenaaeeaosmmeeomasessassesssssrossssnsnsmnsssenssssnsennee SOD
10.2 AP2-EARTH REDEVELOPMENT ...ccuuueiieeeeieecersssereseneseressesasnsessessssesnssssesssnonsssnns 203
10.3 CRUISER REDEVELOPMENT ...covveuetrurerereiessssseemsssssnssssessesasssssesasssmmmnnensaesassanns 209
10.4 CLASS EXPERIMENTS ...o.ooeveereeseeesesnseceesscssesesssssssessmsossmsmssmssssessssossssssossessssssssase 216
BO.5 SUMMARY ..eooeeeeeeeeeeeeeeeeeecsesssessessssssessssssssssessssssssssssesssseesesstasssssssssasnsssssansssssane 219
CHAPTER 11 - FINAL DISCUSSION 220
11.2 SUMMARY OF RESEARCH CONTRIBUTIONS....c...coeeeeeeeerrerersrsaeseessessnsaseasasassesnse 223
11.3 RECOMMENDATION FOR FUTURE DEVELOPMENT........ccoeeeeecreeencecseseecacccsncenease 224
BIBLIOGRAPHY 225

APPENDIX 1 - DEVELOPMENT CODE FOR THE COMMON TEMPLATE .233
APPENDIX 2 - SIMPHONY BUILD HISTORY 253

APPENDIX 3 - CEM_EMS TEMPLATE CODE 255

List of Tables

TABLE 2-1 SAMPLE DISCRETE-EVENT SIMULATION PROCESSING SESSION....cc.cccourimerrunrrcesencsereresesnenessassnes 9
TABLE 3-1 DESCRIPTION OF AP2-EARTH CLASSES ..cvoverenerarcecerasreneecassessssesnsesssesssssssssesssessensossansssssessassns 21
TABLE 3-2 EVENT FLOW DIAGRAMMING LEGENDccoceiteineirnremeressncssnrsssssnssessesersesssssessassssernsssessesssssss 28
TABLE 3-3 OBSERVED IDEAL PRODUCTION OF EXCAVATORSc.ucooviretinenreernenrnnserenssssscessssesasessesessensensns 36
TABLE 3-4 TRUCK CHARACTERISTICS.cecevereemuenrrerrsesersesissesosessssessssensessnsessnsesnse 36
TABLE 3-5 COMPARISON OF ACTUAL AND PREDICTED TRAVEL DURATIONS FOR SCENARIO | ...ccoveurnrnnen. 39
TABLE 3-6 COMPARISON OF ACTUAL AND PREDICTED WAITING DURATION FOR SCENARIO | ...ccvvvevcvenenene 40
TABLE 3-7 COMPARISON OF ACTUAL AND PREDICTED SYSTEM PRODUCTIONS FOR SCENARIO | .c.uccennnene, 40
TABLE 3-8 COMPARISON OF ACTUAL AND PREDICTED TRAVEL DURATIONS FOR SCENARIO 2.....vcceevennennen. 41
TABLE 3-9 COMPARISON OF ACTUAL AND PREDICTED WAITING DURATION FOR SCENARIO 2coccueneee. 41
TABLE 3-10 COMPARISON OF ACTUAL AND PREDICTED SYSTEM PRODUCTIONS FOR SCENARIO 2 41
TABLE 4-1 CRUISER ABSTRACT CLASSES ...cvveucuiteuaiateeirsessensstssessssssessssesessssesesssesssesstssatnsesssmssssssansesesssnssn 50
TABLE 4-2 CONTENTS OF EVENT QUEUE 63
TABLE 4-3 RAW FEED GRADATION 66

TABLE 8-1 MODELING ELEMENT BEHAVIORS AND ASSOCIATED PROPERTIES, METHODS AND EVENTS 134

TABLE 8-2 LIST OF SIMPHONY SERVICES, THEIR ACCESS POINTS, PROPERTIES AND METHODS..............c.... 150
TABLE 8-3 GUI CONTROLS USED FOR THE EXTERNAL REPRESENTATION OF ELEMENT ATTRIBUTES 159
TABLE 8-4 SMPHONY TEMPLATE DESIGN GUIDELINES .. 167
TABLE 8-5 GUIDELINES FOR THE INCREMENTAL DEVELOPMENT OF A MODELING ELEMENTccoivrneneee 168
TABLE 8-6 LIST OF DEVELOPED MODELING ELEMENTS USED TO SUPPORT GPS-BASED MODELING 179
TABLE 9-1 COMMON FEATURES ACROSS CONSTRUCTION SIMULATION TOOLS 194
TABLE 9-2 LIST OF FACTORED FEATURES ACROSS TOOLSecuiemeeete e eomemcncecrnesea 194
TABLE 9-3 LIST OF VARIABLE FEATURES ACROSS TOOLS 195
TABLE 9-4 SAMPLE ATTRIBUTE TABLE FOR TRUCK MODELING ELEMENT . 198
TABLE 10-1 FUNCTION OF EACH CEM_EMS TEMPLATE ELEMENT 205

TABLE 10-2 DEVELOPMENT HOURS FOR THE CEM_EMS TEMPLATE COMPONENTS 208

TABLE 10-3 DEVELOPMENT HOURS FOR THE CEM_CRUSH TEMPLATE COMPONENTS.....ccovveeerrrrrernrennns 216
TABLE 10-4 SUMMARY OF STUDENTS’ CYCLONE TEMPLATE DEVELOPMENTccovvvreerrnneenreenanveneecnan 217

TABLE 10-5 SUMMARY OF STUDENTS’ PROJECT TEMPLATE DEVELOPMENTScoovmminninriinercnenciennensnens 219

List of Figures

FIGURE 2-1 SAMPLE DISCRETE-EVENT MODEL REPRESENTATION

FIGURE 3-1 AP2-EARTH MODULES.......c.coorurervmnnrncrnnssernsieesssersnnns

FIGURE 3-2 AP2-EARTH CLASS HIERARCHY

FIGURE 3-3 CINTERSECTION GRAPHICAL BEHAVIOR

FIGURE 3-4 CTRUCK GRAPHICAL BEHAVIOR........

FIGURE 3-5 CPROJECT GRAPHICAL BEHAVIOR ...cccvceeniieiieiereeenenne

FIGURE 3-6 CTRUCK DATA ANALYSIS BEHAVIOR

FIGURE 3-7 CTRUCK REPORTING BEHAVIORcooriiinmniiiiniiriiecnneens

FIGURE 3-8 SAMPLE TRAVEL TIME CURVE.....cccevrveemenerveeriennne

FIGURE 3-9 EXAMPLE INTERSECTION CROSSING SCENARIOS

FIGURE 3-10 HAULING SIMULATION MODEL

FIGURE 3-11 EXAMPLE EARTH-MOVING PROJECT........

FIGURE 3-12 CPROSECT SIMULATION MODEL

FIGURE 3-13 INTEGRATION WITH ESTIMATE MODULE

FIiGURE 3-14 QVERBURDEN CLEARING PROJECT SITE LAYOUT.

FIGURE 3-15 OBSERVED DUMPING TIME

FIGURE 3-16 TRAFFIC FLOW AROUND LOADING AREA .

FIGURE 3-17 AP2-EARTH MODEL REPRESENTATION

FIGURE 4-1 TYPICAL AGGREGATE PLANT LAYOUT.

FIGURE 4-2 EXAMPLE OF CLOSED SYSTEM OPERATIONS

FIGURE 4-3 SAMPLE SIEVE ANALYSIS RESULTS

FIGURE 4-4 CRUISER CLASS HIERARCHY

FIGURE 4-5 SCREEN DIALOG Box

FIGURE 4-6 CONVEYER DIALOG BOX

FIGURE 4-7 MAIN MODELING COMPONENTS

FIGURE 4-8 SAMPLE CRUSHER PERFORMANCE CHART

25

27

27

29

30

31

34

35

37

38

39

46

47

48

50

51

53

56

FIGURE 4-9 ALLIS-CHALMER RELATIONSHIP FOR CALCULATING SCREENING EFFICIENCYccccovvieeunrenvnnnnne 58

FIGURE 4-10 DISTRIBUTION OF UNDERSIZE PARTICLES BASED ON LOADING RATIOcovuevcncnreerrereennnnenes 59
FIGURE 4-11 MULTI-DECK MULTI-SPLIT SCREEN ANALYSIS PROCEDUREouoevvreemireeeceieesrieneenense s 60
FIGURE 4-12 EXAMPLE PLANT FLOW SIMULATIONvrveteetreeeerirenaectnesnsesassesessessesasssstssssssssssesessnsasnssesene 62
FIGURE 4-13 PLANT DESIGN STEPS.......oevtremcecmensesaisesessissscssnsasssessasssasssssssessessnssssssesessinsasssssasisessssssssssanes 64
FIGURE 4-14 RAW INPUT STREAM MODELING ..ovcuerertrteniinimnereracsessesssiosessesssscscsssenssssesesesssssossssosssstsasnssasses 65
FIGURE 4-15 PLANT LAYOUT FOR CASE STUDY ..coutuienisininssssssissessonsnmatsssesessususosssssessssassssssasssssosessssssssusasas 66
FIGURE 4-16 COMPARISON OF CRUISER PREDICTED OUTPUT VS ACTUAL GRADATIONScocverrireermncene. 68
FIGURE 4-17 CRUISER CASE STUDY RESULTS......cormiiiiiiiteiniieeereecarsesssseesessnesesssesersennesusssessessssnessessenses 69
FIGURE 5-1 CSD SYSTEM MODULESceeurerecrrcnsnesnne 73
FIGURE 5-2 TYPICAL AQUIFER TYPES: A) CONFINED; AND B) UNCONFINEDcccvoeumerecmcmemcnsmememsuessocncmcnsenns 74
FIGURE 5-3 MAIN OBJECT DEFINITION AND MANIPULATION VIEW ..ouviiiiiiinieiecieiceenneree e eeceaneannes 78
FIGURE 5-4 CPUMPINGWELL CLASS DIALOG BOX ..ociiiiiee ettt sesaemee s nenn s as e man s nsesens 79
FIGURE 5-5 CBLOCK CLASS DIALOG BOXoeeiceerenit st et stscetecsaesaonss e e e saeassne e s 79
FIGURE 5-6 CSITE CLASS DIALOG BOX ottt ensstenesesecne s esess s esesesenbtsa s s cenessensnan 80
FIGURE 5-7 CSITE CROSS-SECTIONAL VIEWucuueemiueneeemnrereeresssessrsossartssetetsasasssnassseosesesereseseseessessasensnsanas 81
FIGURE 5-8 SOIL PROFILE IN EXCAVATION AREA FOR CASE STUDYcueueutmueuemrmnuremniucestsesstscscscscnensacsesnmnsseas 87
FIGURE 5-9 PUMPING WELL LAYOUT FOR CASE STUDY..... revtrree e st et s e nsee 88
FIGURE 5-10 REPRESENTATION OF CASE STUDY DATA IN CSD e ccceeenene .89
FIGURE 5-11 CONTOUR- VIEW OF WATER TABLE LEVEL THROUGHOUT SITE FOR CASE STUDYccccvemnucnn 91
FIGURE 6-1 TRANSLATION OF HIGH LEVEL MODEL TO DISCRETE EVENT REPRESENTATION....ccoveemeueurnnnns 97
FIGURE 7-1 UNIFIED MODELING METHODOLOGY AND CONTRIBUTING CONCEPTS 101
FIGURE 7-2 SAMPLE CYCLONE SIMULATION MODEL 102
FIGURE 7-3 AN EXAMPLE OF GENERATED SIMULATION OUTPUT IN A GRAPHICAL FORMATcccccceeee, 106
FIGURE 7-4 EXAMPLES OF GRAPHICAL REPRESENTATION OF RELATIONSHIPS IN TWO SPS ToOLs............ 109
FIGURE 7-5 RELATIONAL REPRESENTATION OF GENERATED SIMULATION PLANNING DATA ... 115
FIGURE 7-6 USE OF CONNECTION POINTS FOR EXPOSING ENCAPSULATED SIMULATION CODEvonucece.n. 116

FIGURE 7-7 UTILIZATION OF INVISIBLE RELATIONSHIPS FOR ROUTING ENTITIES 118

FIGURE 7-8 USE OF MODULARITY AND HIERARCHY CONCEPTS FOR LINKING MULTIPLE SPS ToOLS......... 120

FIGURE 7-9 EXTENDING A SPS TOOL WITH THE HELP OF GENERIC MODELING ELEMENTScceceueevenne. 121
FIGURE 7-10 ACCOMMODATION OF USERS AND DEVELOPERS WITH VARYING DEGREES OF SKILL 123
FIGURE 7-11 BEHAVIORS OF THE GENERIC BASE MODELING ELEMENTccoceeeuetvrenencenneessensrensnsssesenns 127
FIGURE 7-12 LIST OF IDENTIFIED SERVICES AND RELATIONSHIPS TO ELEMENT BEHAVIORScorvevvnnen.. 128

FIGURE 7-13 STRUCTURE OF SIMULATION MODELS BASED ON THE UNIFIED MODELING METHODOLOGY . 129

FIGURE 8-1 SIMPHONY ENVIRONMENTovetsisessiniresssssoessessessasssnssassssestssssessssisssssssssesssssssssssssassssssessesesees 131
FIGURE 8-2 TRIGGERED EVENTS IN RESPONSE TO USER MANIPULATION OF RELATIONSHIPS..................... 137
FIGURE 8-3 EVENTS TRIGGERED IN RESPONSE TO THE ADDITION AND DELETION OF ELEMENTS 138
FIGURE 8-4 UTILIZATION OF FILES TO REPRESENT A TRUCK QUEUING SITUATIONvcvvemeereerenrerenrneenenes 140
FIGURE 8-5 TRIGGERED EVENT SEQUENCE FOR SIMULATION BEHAVIORcooeveviiieceeeecieeee e e 142
FIGURE 8-6 USE OF GEOMETRICAL ATTRIBUTES AS MODELING ELEMENT REFERENCE POINTS 147
FIGURE 8-7 SIMULATION SERVICE COMPONENTS AND ITS ACCESS POINTS.....cccocvuevererererrencenceerinnsereseneses 151
FIGURE 8-8 SIMULATION EVENT SCHEDULING AND PROCESSINGc.cecveurumucunieteeenerenesesneneseesesensssssesessans 153
FIGURE 8-9 ATTRIBUTE MANIPLULATION THROUGH THE ELEMENT ATTRIBUTE DIALOG BOX............u.u...... 158
FIGURE 8-10 GUI PRESENTATION OF SUMMARY STATISTICAL ANALYSIS RESULTS weooveemeieeeceeceenecenns 160
FIGURE 8-11 SAMPLE GENERATED HISTOGRAM . 160
FIGURE 8-12 SAMPLE GENERATED TIME GRAPH 161
FIGURE 8-13 TRACE NAVIGATION FORM 162
FIGURE 8-14 PROJECT PLAN SUMMARY FORM 163
FIGURE 8-15 MAIN FORM OF SIMPHONY DESIGNER 165
FIGURE 8-16 BITMAP DATABASE MANIPULATION FORM 166
FIGURE 8-17 UTILIZATION OF THE COMMON TEMPLATE TO DEFINE SIMULATION BEHAVIOR 181
FIGURE 8-18 SIMPHONY EDITOR MAIN FORM 182
FIGURE 8-19 EXPRESSION EDITOR USED IN THE CREATION OF A DYNAMIC ROAD SEGMENT 184
FIGURE 8-20 USING THE SCRIPTING CAPABILITIES TO CREATE A LARGE NUMBER OF ELEMENTS 185
FIGURE 9-1 APPLICATION FRAMEWORK APPROACH TO TOOL DEVELOPMENT 188

FIGURE 9-2 UTILIZATION OF SIMPHONY APPLICATION FRAMEWORK FOR GENERATING SPS TEMPLATES.. 191

FIGURE 9-3 SIMPLIFIED REPRESENTATION OF SIMPHONY APPLICATION FRAMEWORK ...ccovvevvieernrereerernennne 197

FIGURE 10-1 SAMPLE MODEL LAYOUT BASED ON THE CEM_EMS TEMPLATEc.cocecmvemiirenencnrnernereness 203
FIGURE 10-2 MODELING ELEMENTS OF THE CEM_EMS TEMPLATEcccteovreneereeerienrnrcreeneeseveennssessnsnes 205
FIGURE 10-3 DEFINITION OF SIMULATION BEHAVIOR THROUGH GPS TEMPLATEcevrvverereneenenrennvanennne 207
FIGURE 10-4 SAMPLE MODEL LAYOUT BASED ON THE CEM_CRUSH TEMPLATEcoetevcrerececnnreeeene 209
FIGURE 10-5 CEM_CRUSH TEMPLATE STRUCTURE .. eerereteseen e e st b et s susae s s e sbee e s nee s 210
FIGURE 10-6 MODELING SIZE SEPARATION PROCESSES USING SCREEN SUB-MODELSecomeeereenrenrerennnee 212
FIGURE 10-7 SAMPLE MODEL LAYOUT BASED ON STUDENT B’S PAVING TEMPLATEccuceeeeeecccncnnne 218

FIGURE 10-8 SAMPLE MODEL LAYOUT BASED ON STUDENT E’S TUNNELING TEMPLATEc..cvvvvrrneencnnes 219

Chapter 1 - Introduction

1.1 Introduction

Construction engineering and management is a discipline that deals with the production
aspects of realizing a facility from conception to delivery. Elements of construction
management include:

1. Feasibility studies and economic analysis

2. Budget and cash-flow planning

3. Construction contract preparation

4. Cost and schedule estimation

5. Methods planning and analysis

6. Production analysis

7. Cost and schedule monitoring and control

8. Revenue and payment management

9. Equipment and material management
Construction projects are unique due to their complexity, scale and cost. Unlike
manufacturing, every construction “product” or project is unique with regards to such
things as:

1. Materials or material combinations used

o

Equipment and supplies required
3. Engineering design and requirements

4. Construction methods involved.

As a result, computer-based methods have been developed to assist construction
engineers. The most common systems are those used for estimating the cost and
schedule of a project. This research deals with simulation based techniques that improve

the overall process of project planning, estimating and analysis.

1.2 Computer Simulation as a Project Planning Technique

The most important factor in planning a construction project is a clear and accurate
understanding of the construction methods involved. During the estimating stage, this
understanding translates into the predicted duration and resource requirements for the
involved activities. Formal representation of this knowledge in the form of a computer
model makes it possible for the planner' to easily experiment with different possible
arrangements of the construction methods. Variations can be applied to crew
compositions, activity sequences and resource types. By experimenting with different
scenarios, the planner can optimize the construction operation and generate representative

project plans.

1.3 Research Objectives

Despite its obvious potential, the use of computer simulation for planning construction
projects has been limited mainly to academia and a few large contractors who can afford

to employ dedicated simulation professionals.

! The term “Plan” or “Project Plan” is used generically to refer to all related aspects of a
project plan including estimates and schedules. “Planner” is used to refer to the person

responsible for preparing a project plan.

(3]

The overall objective of this research is to develop an approach that improves the appeal
of computer simulation and transforms it into an accepted tool that fits naturally within
the industry’s information technology framework. To achieve this objective, the
following sub-objectives and steps were identified:

1. Develop, test and validate three simulation-based tools for the modeling and analysis

of three diverse construction methods and deploy them in an industry setting

o

Analyze the results of industry implementation and identify a set of key features such
simulation tools should posses

3. Formalize the set of simulation concepts that described the identified features

4. Combine the formalized concepts into a unified modeling methodology

5. Develop, test and validate a simulation system based on the unified methodology

1.4 Research Summary

To achieve the stated objectives, research was done in two phases. During the first phase.
three developments were undertaken to investigate and develop various techniques.
concepts and methods of potential benefit as related to the research objective. Three
construction methods were chosen: earth-moving, aggregate production and site
dewatering. In each case, the process fundamentals were first studied, followed by an
identification of the requirements for the custom simulation tool to be developed. Based
on these requirements, a computer based simulation tool was developed, validated and
implemented with a local construction company. The three case studies were then
analyzed together to obtain the set of features that were critical to the tools’ success. The
analysis also identified the limitations of the developed tools and the set of further

requirements.

(V3]

During the second phase of research, the collective experience gained from phase | and
the identified set of requirements were used in the development of a unified modeling
methodology. A computer application based on the developed methodology was then

developed and tested.

1.5 Thesis Organization

Chapter 2 will first provide a summary of the state-of-the-art in project management
techniques including computer simulation. Chapters 3 through 5 will discuss the three
initial case studies done as part of the first phase of research. Chapter 6 will present the
result of the case study analysis and the list of identified requirements. Chapter 7 will
introduce the unified modeling methodology and its contributing concepts. Chapter 8
will present the details of the computer system based on the developed methodology.
Chapter 9 will introduce an enabling technology from the software engineering discipline
that was critical to the successful implementation of the software system. Chapter 10 will
discuss the various tests and case studies performed to examine the flexibility.
effectiveness and usability of the developed methodology. In Chapter 11, the final

discussion is provided.

Chapter 2 — Background

2.1 Project Planning Techniques

There is a host of techniques for planning construction projects. Most are general project
management techniques which are not specific to the construction industry. Others have
been developed to deal with specific situations such as repetitive construction activities.
The basic process of planning a project involves three steps. First, activities required to
complete the work are identified and their duration determined. Second, the activities are
sequenced in a logical manner. Third, a project schedule is prepared.

Bar charts are the simplest form of communicating the schedule requirements of a given
project. With bar charts, the most basic project activities are represented in the form of
horizontal strips on a time-scaled graph. Resource requirements, relationships to other
activities, and progress are sometimes shown on these charts.

Computer systems such as Primavera and Microsoft Project simplify the task of
constructing and managing bar chart based plans. These systems also provide both
facilities for representing large projects hierarchically and methods for leveling resources
in order to calculate the total project duration.

The critical path method (CPM) is the underlying method used by these systems to
calculate project duration. One of the limitations of CPM is its assumption that activity
durations are constant. In reality, construction activities are affected by many factors and
their duration cannot be determined with certainty. Program Evaluation and Review
Technique (PERT) was developed to model this uncertainty. PERT networks are similar

to CPM networks with the difference being that activity duration is represented with Beta

distributions. Based on the central limit theorem, this activity information is combined to
predict a normally distributed total project duration.

Monte-Carlo simulation is a more general, probabilistic approach to scheduling. Activity
duration can be represented using any stochastic distribution. The total project duration
is obtained by performing a number of simulation runs. On each run, the activity
durations are sampled randomly and the total project duration is calculated. The result is
a computer-generated distribution of the predicted project duration. This method allows
for the formal representation of the element of risk in project plans.

It is worth mentioning that several specialized techniques were developed to deal with
special types of construction projects, mainly those that include repetitive or cyclic
activities such as the building of a high-rise or the construction of a highway. An
example of such a technique is the Linear Scheduling Method (Johnston 1981).

The majority of the described methods work best when the activity resource requirements
are available when needed. Some developed methods of resource allocation can be used
to “level” a given schedule in order to obtain a revised schedule (Russel and Dubey
1995). However, it has been shown that these methods fail to represent certain basic
realities of a construction project, particularly the way in which construction projects are
characterized by complexity, dynamic interaction between resources and processes
(Paulson et. al. 1987), and the varying construction methods utilized based on specific
project conditions.

This led to the development of simulation based planning techniques where the
construction process was represented using a formal model that allows for the analysis of

dynamic situations.

2.2 General Computer Simulation

2.2.1 Introduction

Computer simulation is defined as the process of designing a mathematical-logical model
of a real world system and experimenting with the model on a computer (Pristker 1986).
Early simulation users were required to build a model by writing programming code,
mainly in FORTRAN, and experimenting by directly manipulating the computer
program. This was followed by the invention of simulation specific programming
environments where users write simulation specific code or access a provided function
library. “Modeling” is the term used to describe the process of specifying a given
simulation model. In the next phase of development, a host of systems that allowed for
alternative model development were introduced. This meant that modelers no longer had
to write code directly. Graphical modeling made it possible to define the simulation
model by creating, manipulating and linking a number of available basic building biocks.
This meant that users no longer had to be proficient in programming. A detailed account
of the history of simulation concepts and systems is found in Kreutzer (1986).

There are many ways of modeling a given problem. These generally fall into two
categories; continuous and discrete-event. With continuous modeling, differential
equations are used to describe the progress of a given activity. However, when
mathematical modeling is not possible, the discrete event approach is utilized.

Discrete-event simulation views a model as a set of events and transitions.
Transformations are processed as part of event handlers and no relevant transformations
are assumed to occur during transitions. Entities represent the active elements of the

model. They travel throughout the event network and trigger transformations. An

7

important component of a discrete-event simulation is the simulation event monitor,
which is responsible for managing the event calendar. The described concept is now
illustrated below with a simple example. Assume that trucks arrive at a concrete batch
plant and await their turn for loading fresh concrete from a mixer. When they finish
loading, they proceed to their destination. The described model is illustrated using an

event diagram as shown in Figure 2-1.

Truck Arvival

Schedule Arrival
Transition Duration: Inter-arrival Time of Next Entity

¢

Check Mixer Status Mixer Waiting Queue

usy
iFree

Transition Duration: Loading time

Truck Departure

Check Waiting
Entities

Figure 2-1 Sample Discrete-Event Model Representation

The “Truck Arrival” event is first added to the event calendar during the initialization of
the simulation. When the event is processed as part of the event handler, the arrival of
the next truck entity is first scheduled to occur. Then the status of the mixer is checked.

If it is busy then the truck entity is added to a queue. Otherwise, the “Truck Departure”

event is scheduled. During the processing of the “Truck Departure” event, which occurs
when a loading operation has been completed, the status of the waiting queue is checked.
If there are any waiting truck entities, then the first one is removed from the queue so that
it can start loading. The transition duration between each “Truck Arrival” event is based
on the desired inter-arrival time of trucks. The transition duration between the “Truck
Arrival” and “Truck Departure” event depends on the desired truck loading time. Table
2-1 explains how the content of the event calendar changes as the above model is
processed. The described scenario is based on a truck inter-arrival time of 15 minutes
and a loading time of 20 minutes. The last column of the table shows the content of the
event calendar in terms of the entity number, event and simulation time. Note how the

event calendar always sorts its content according to the scheduled time of the events.

Table 2-1 Sample Discrete-Event Simulation Processing Session

Simulation | Current Current | Mixer Queue Event Calendar
Time Event Entity Status Content Content
Initialization None None Free Empty (1.Truck Arrive,0)
0 Truck Arrive 1 Busy Empty (2.Truck Arrive,15)
(1.Truck Depart,20)
15 Truck Arrive | 2 Busy 2 (1,Truck Depart,20)
(3,Truck Arrive.30)
20 Truck Depart | | Busy Empty (3.Truck Arrive.30)
{2.Truck Depart.40)
30 Truck Arrive | 3 Busy 3 (2,Truck Depart.40)
(4.Truck Arrive.45)
40 Truck Depart | 2 Busy Empty (4,Truck Arrive45)
(3.Truck Depart,60)
45 Truck Arrive 4 Busy 4 (5.Truck Arrive.60)
(3,Truck Depart,60)
60 Truck Arrive | § Busy 45 (3.Truck Depart,60)
(6.Truck Arrive,75)
60 Truck Depart | 3 Busy 5 (6,Truck Arrive,75)
(4,Truck Depart,80)

2.2.2 Object-oriented Simulation

The object-oriented paradigm was applied to simulation in order to produce models that
are more comprehensible, modular and extendable. The main difference is that simulation
model elements now correspond to their real life counterparts (Ulgen and and Thomasma
1986) and users are no longer required to deal with abstract modeling constructs. The
first object-oriented simulation system (OOSS) developed was Simula (Ahl and Nygaard
1966). Simula supported full data encapsulation, inheritance and polymorphism. The
original system was based on the ALGOL language. A SmallTalk implementation was
later developed (Ulgen and Thomasma 1986). OOSS made it possible to build specialized
graphical user interfaces where models can be built using elements that resemble the real
world entities (Bischak and Roberts 1991).

SmartSim (Ulgen et. al.1989) demonstrated how object-oriented concepts were used to
provide users in the manufacturing industry with a set of elemental simulation operations
which can be extended by building new classes based on the basic ones.

OOSS abolished the traditional notion of a single simulation user and introduced the
concept of a two user system (Ball and Love 1995). The first user is the simulation
developer. The simulation developer is responsible for creating specialized modeling
constructs as required. Simulation users build new simulation models by selecting from

the available constructs and defining their relationships and parameters.

2.2.3 Modularity and Hierarchical Concepts

Modular modeling is the process of designing “atomic” simulation modules and linking
them with other modules developed in the same manner to produce a new model.

Modules communicate through well-defined input and output “ports”. Further, two

10

modules can be combined to make a new module with its own input and output port.
This leads to the concept of hierarchical modeling. These concepts are extremely useful
for modeling large scale systems such as construction projects.

Ziegler (1984) was the first to present a formal theory, called DEVS, of how these
concepts can be implemented for a discrete event simulation system. A program called
PC-Scheme later demonstrated how object-oriented concepts were used to implement the
described theory (Zeigler 1987). Luna (1993) further outlined what it means for a
simulation system to support hierarchial modeling. Standridge (1995) described a system

that utilized modular concepts as part of a network simulation modeling language.

2.2.4 Strategies for Simulation Model Development

Users can typically change the behavior of a simulation model after it is constructed.
This is the concept of reusability where the model can be used for a multitude of
scenarios. The degree to which users can change the pre-defined simulation behavior is
dependent on the development strategy utilized. Simulation systems can generally be
classified according to this feature as follows (Ulgen et. al. 1991):

¢ Fully documented simulation models

e Parameterized simulation models

e Special purpose simulation program generators

e General purpose simulation program generators

With fully documented simulation models, users are required to modify the simulation
models by manipulating them at the same level used to originally develop them. This
assumes that end users are knowledgeable in the way the simulation system works.

Parameterized simulation models allow for model re-use by exposing a set of parameters

11

that users can modify each time the model is simulated. The values of the parameters can
be used to modify routing strategies, resource values and entity attributes. With special
purpose program generators (SPSPG), users are able to create models by selecting from a
list of available domain specific constructs and defining their parameter values as well as
their relation to other elements. Examples of such systems include WITNESS and
SIMFACTORY (Mathewson 1989), AP2-Earth (Hajjar and AbouRizk 1996), CRUISER

(Hajjar and AbouRizk 1998) and CSD (Hajjar, AbouRizk and Xu 1998).

2.2.5 General purpose simulation program generators

GPSPGs are integrated application development frameworks designed to allow expert
users to develop, test and deploy domain-specific simulation tools for use by end users.
Thomasma (Thomasma and Ulgen 1988) demonstrated how a modular hierarchial
framework could be built for the manufacturing industry with support for graphical
model development. Other systems developed with the same kind of capabilities include
Extend (Karhl 1995), HI-MASS (Fritz et. al. 1995), Create! (Rueger and Behlau 1995),
MMS (McKim and Matthews 1996), Arena (Takus and Profozich 1997) and MOOSE

(Cubert et. al. 1997).

2.3 Construction Simulation

2.3.1 Methodologies and techniques

Halpin (1977) popularized the use of simulation in construction research with his
development of a system called CYCLONE (Cyclic operation network). CYCLONE
allowed the user to build models using a set of abstract but simple constructs. The
system became the basis for a wide range of construction simulation research efforts with

12

the objective of enhancing the basic system functionality. This included INSIGHT
(Paulson 1978), UM-CYCLONE (Ioannou 1989), and RESQUE (Chang and Carr 1987).
STROBOSCOPE (Martinez and Ioannou 1994) was another development based on
CYCLONE which allowed for dynamic simulations based on the definitions of entity and
resource attributes using programming like syntax. DISCO (Huang et. al. 1994) was
developed to allow for the use of graphical-based modeling for CYCLONE models.
Although CYCLONE and its derivatives introduced a wider academic audience to
computer simulation, its use in the industry was very limited. This was because
CYCLONE proved practical only for small-scale applications. Further, the modeling
process required simulation training - something that the industry was not generally
ready to invest in. As a result, research turned to other concepts that could handle these
issues and simplify the modeling process even further.

Chang (1991) introduced the object-oriented concepts to construction simulation
modeling. Object orientation improves the readability of simulation systems and
produces models that resemble their real life counterparts. In effect, they bridge the gap
between physical systems and their computer representation (Oloufa 1993). Their
advantage was discussed in detail by Oloufa (1993), who compared a MODSIM based
object-oriented implementation of an earth-moving operation to a procedural one. He
further concluded that the use of the object-oriented approach leads to reduced coding
and improved simulation model readability.

Several researchers applied general simulation concepts to allow for model reusability.
Tommelein (1994) and Shi (1997) utilized a library-based modeling approach that allows

project simulation models to be assembled from a set of pre-defined components. Oloufa

13

(1994) developed an object-oriented library-based modeling approach for the
construction of parameterized simulation models. Oloufa suggested that the modeling
effort would be greatly simplified if pre-assembled ‘“‘operation libraries” were first
constructed and dynamically packaged according to user input obtained through simple
forms. This would allow for non-expert users to take advantage of simulation. COOPS
(Liu and Ioannou 1992) is an object-oriented implemertation of CYCLONE. The
authors have since used it as the basics for extending CYCLONE’s functionality to
provide resource based decision making (Liu and loannou 1993).

The concepts of modular modeling were also used to a certain extent. Modular concepts
based on those defined by Ziegler (1984) were utilized by Sawhney (1996) to develop

large scale simulation systems.

2.3.2 Integration Issues

The first effort to integrate simulation tools with other construction systems can be traced
back to the works of Wickard (1989) who presented a system that links simulation
activities to CAD model elements. However, the simulation side itself consists of a very
basic static model. Another system developed by Touran (1989) demonstrated how rule-
based expert systems can be used to assemble library simulation components to create a
final model. Other research demonstrated how artificial neural networks (Hajjar,
AbouRizk and Mather 1999) and equipment databases (Hajjar and AbouRizk 1996) could

be integrated with the modeling environment.

14

Chapter 3 - Earth-Moving Project Simulation'

3.1 Introduction

This chapter presents the main design and implementation steps of a specialized
simulation tool called AP2-Earth. The system was developed collaboratively with a local
earth-moving contractor. One objective of the system was to introduce the industry to a
simulation based analysis for planning earth-moving projects. The other objective was to
gather information on the general features that a simulation tool for the heavy civil
industry must possess in order to be accepted and successfully used by earth-moving
contractors.

This chapter is organized as follows: Section 3.2 provides background information on
earth-moving construction. Section 3.3 is a discussion of the main modules of the
developed system. Section 3.4 details the structure of the main AP2-Earth module.
Section 3.5 presents the results of field case studies performed to verify the system

results. The conclusions are then presented in Section 3.6 .

3.2 Background

Earth-moving is a specialized field where large quantities of earth are moved from one

location, generally referred to as the cut, to an another location, referred to as the fill.

! A version of this chapter was published as “Building a Special Purpose Simulation Tool
for Earth-moving Operations” in the proceedings of the 1996 Winter Simulation

Conference, ASCE, pp. 1313-1320.

15

Examples of such projects include overburden removal for mining operations and
construction of earth filled dams.

Earth-moving projects consist of many interacting processes including preparation,
loading, hauling, dumping and spreading. Preparation is done if the earth is not suitable
for immediate loading and requires ripping. Loading is the process of transporting earth
from the prepared earth pile into incoming trucks. This is done using loaders, shovels or
backhoes. Hauling involves trucks traveling through roads with varying slopes and
ground conditions as well as traffic intersections in order to transport earth and return.
Dumping is the transfer of earth from the trucks into a spreading pile. This pile is spread
by a number of dozers as part of the spreading process.

The most important element of preparing a cost estimate is the determination of the
number of production units to use. To obtain the number and type of production units,
construction estimators rely on the client’s specifications to arrive at certain required
data. This includes the following information:

¢ The overall site layout, including the location of the source and placement areas.

e Overall quantities to be prepared, hauled and placed.

¢ Properties of the haul paths, including distances, grades and rolling resistance.

The first step is to decide on the type of excavator to be used. This depends on
equipment availability, type and quantity of the soil to be moved, and the schedule
requirements of the project. After the excavator is chosen, the type of trucks to be used is
determined. This too depends on equipment availability, type of excavator and haul path
properties. Next, the cycle time of the trucks is determined. The elements of a complete

truck cycle are:

16

e Loadingtime

e Travel loaded time

e Dump time

e Travel empty time

Loading time is calculated using the excavator’s expected production rate plus any
allowance for waiting and positioning. The travel loaded and travel empty duration are
obtained by first dividing the haul paths into many segments, each with a relatively
uniform grade and rolling resistance. This information, along with equipment
manufacturer specifications, is used to determine the expected travel speed of the trucks
across each road segments. Travel speed along with the length of each segment is used
to arrive at the travel duration. Dump time is determined using historical information.
The truck cycle time along with the truck capacity is used to calculate the number of
trucks required to match the production capability of the excavator. Further, extra trucks
are generally made available on site in case of breakdown and as a replacement for trucks
undergoing maintenance. The described estimating procedure is adequate for simple
cases where single source and placement areas are present and a single type of truck is
used. This process becomes time consuming and tedious in the case of multiple source
and placement locations, complicated haul paths with many changes in total resistance,
and varying types of trucks. Further, estimators cannot accurately determine the waiting
duration associated with excavator usage or as a result of fleet interactions between

multiple paths.

17

3.3 The Overall System Structure

AP2-Earth was developed to address the stated issues and to simplify the tender
preparation process on large and complex earth-moving projects. It was determined that
to ensure its acceptance, AP2-Earth would have to be built with the capability to integrate
with other modules such as equipment inventory databases and estimating programs.
These supporting modules were also developed and provided with the main simulation
module. A graphical depiction of the overall AP2-Earth modules and how they relate to

each other is illustrated in Figure 3-1.

Master Database
Module
Master
Database 1
Main Interface Module
Master
Database 2
y y
Master Estimate Reports
Database 3 — Module Module
Figure 3-1 AP2-Earth Modules

The master database module consists of standard equipment and labour specifications
that are available for use by the contractor. The database stores various equipment
properties, some of which can be used directly in the simulation environment or at a later

stage for estimation purposes. The main interface module is where simulation modules

18

are built. Equipment data can be imported from the master database modules. Two other
modules are used to examine the simulation results. The first is the reports module, which
provides various types of information ranging from high level production reports to
detailed equipment performance and utilization reports. The other is the estimate
module, which allows users to develop estimates and link certain inputs directly to the
simulation results. The next section will detail the development features of the main

interface module.

3.4 Design And Development Of Ap2-Earth

34.1 Overview

The first step in the development process consists of the definition of the project level
classes shown in Figure 3-2. These classes encapsulate behaviors, properties and
methods for the representation and manipulation of those processes generally found on
earth-moving projects (eg. preparation, hauling). Similarly, in the second step, classes
are defined for the representation and manipulation of process level objects (eg. road

segments, intersections).

19

[CPreductioninteractionPoint l F:um,lnmmmm l

PN

lcsm.an.m. J L ClasdingPile |

Figure 3-2 AP2-Earth Class Hierarchy

The third step involves the definition of the interaction points, which are used to link the
processes. For example, the preparation process can be linked to a loading process
through the preparation pile; this adds a dependency between the two processes whereby
loading production cannot exceed that of preparation. Table 3-1 provides a brief

overview of a selected number of classes.

Table 3-1 Description of AP2-Earth Classes

Class Level Functionality Comment
CGraphical- Project Basic graphical state and | This class aids in satisfying the objective of
Base position representation/ graphical manipulation by allowing objects to
manipulation posses visual editing capabilities.
functionality.
Clnteractive- Projecv/ *click and drag” This added behavior simplifies data entry for
Positioning Process interactive positioning position and linking information of all classes.
functionality
CSimBase Project Simulation behavior This class provides various “user hooks™ that
support allow the specialized classes to perform
custom manipulation of numerous behaviors.
CProcess Project Basic Process Definition | A CProcess class defines basic functionality
of a high level process such as ability to
connect to interaction points and the base
structures needed to define a simulation
model. Child classes (i.e. CPreparation,
CHauling, Cspreading....) implement the
specific simulation models.
CProject Project Project level information | Project level information includes the list of
and resources all processes, interaction point definitions, as
well as any global resources that are available
to all the processes.
CStructural- Project/ Connection management | Classes like CRoadSegment and
Base Process Clntersections. which constitute the structural
elements of the model, derive from this class.
CRoad- Process One way uniform road Information such as grade. rolling resistance
Segment segment modeling and velocities is maintained by this class
Clntersection | Process Traffic Intersection Supports the modeling of interactions at a
modeling traffic intersection. Also provides capabilities
for modeling external traffic processes such as
highway traffic
Clnteraction- Project Inter-Process Interaction | Allows two process to be linked in order to
Point Management transfer entities or add dependencies

In general, an AP2-Earth object (i.e. an instance of a non-abstract class, typically at the
lowest level of the hierarchy) encapsulates a variety of information and methods
depending on the inheritance branch. The main supported behaviors are: graphical,

simulation, data collection, statistical analysis, and reporting.

3.4.2 Graphical Behavior

Graphical representation and manipulation functionality is gained by deriving from the
CGraphicalBase class. Child classes are required to implement certain virtual functions
in order to conform to the overall visual manipulation objective. Each class typically has
an associated graphical dialog box where the user can enter and change information in a
very intuitive manner. Figure 3-3 shows the Clntersection dialog box, which allows
users to specify attributes such as number of lanes and direction of travel along each gate.
Figure 3-4 shows the CTruck dialog box where truck properties such as capacity,
dumping duration and quantity are defined. The graphical behavior of the CProject class
is, in fact, the main program screen where AP2-Earth objects can be added, deleted or

linked. This screen is shown in Figure 3-5.

Intersection E3
Name: [Tralficl

{-Nmberof lanes :
' 3 w 3]
i Top/Bowom 1 - Leﬂlﬂd'* 2 - f
r Reandom Tralfic " Preview -Gate drections—
| L0 2

>3 1

l; 2>4 oq 40

| a > O

§ a

oK l Cmcdl

Figure 3-3 Clntersection Graphical Behavior

Tsuck Propesties | X] ,

Neme: 7772 e [777 ~

| Copacty T Queiy [

- Costs ($/h] » .
BassRate Lubes Labos - Other Madup |
[Fo z F— F P o

r Travel Paths , '

LoadedPah [—ﬁ Ewm r—_l [

rDuations: .} :

Dumping Time: Pig :mum] J

' Crossing Time: Prg] Comtanifi 00) '

|
Corcal |

Figure 3-4 CTruck Graphical Behavior

test ope - ApZearth) [18] l

e E& Deine Smuiston Todk Vew Heb
S| _|m| slew

[mi] el w[s Elal s

3

Fos Holp, press F1

Figure 3-5 CProject Graphical Behavior

3.4.3 Simulation Behavior

Each class derived from CSimBase defines a unique simulation model and becomes an
independent entity. A simulation model consists of a set of instructions used to represent
the sequence of activities that typically take place in the real life scenario. This set of
instructions includes calls to an event scheduling subsystem, requests for resources such
as loaders and preparation piles as well as statistics collection routines. Detailed

information on the simulation models is presented later in this chapter.

3.4.4 Data Collection Behavior

Each AP2-Earth class is responsible for tracking any data required for the analysis of the
element it represents. For example, a CTruck class is typically responsible for collecting
data on: cycle duration, waiting duration at the loader and dump, interaction durations.
and maintenance duration. CProcess derived classes are mainly concerned with tracking
overall production data. Each class has a related table in a relational database where

tracked data can be stored for later analysis.

3.4.5 Statistical Analysis Behavior

Classes are given the opportunity to perform post-run (in the case of a multi-run
simulation) or post simulation statistical analysis. This is done by overriding the two
functions, PostSimulationRun() and PostSimulation() of the CSimBase class. In the
current implementation of AP2-Earth, the classes simply pass a query to the relational
database, which handles the analysis. An example query used by the CProcessSpreading
is shown in Figure 3-6. The database subsystem executes the query and returns the

results to the calling class.

SELECT iteration, PlacementCode, Avg(SpreadingDuration) , Avg(SpreadingAmount)
Avg([SpreadingAmount)/[SpreadingDuration]) AS Production

FROM SimProcessSpreading

GROUP BY iteration, PlacementCode;

Figure 3-6 CTruck Data Analysis Behavior

3.4.6 Reporting Behavior

AP2-Earth Classes requiring the production of simulation reports override the CSimBase
function CSimulationReport(). The classes then select which statistical indicators to
display and send a report definition command to an independent reports module. This
brings up a report for the user to see and print if desired. An example report generated by

the CTruck class is shown in Figure 3-7.

Truck Name 777 1 Of 5
Average Std Dev

Number of Cycles 33.60 055
Quantity Hauled 2,688.00 43.82
Cycle Time 28.44 0.24
Dump Time 1.00 0.00
Load Time 303 0.06
Maintenance Time 0.00 0.00
Production 284 0.02
Queuing Statistics

Loading Pile 0.00 0.00

Loader 19.77 0.18

Dump Location 0.00 0.00

Figure 3-7 CTruck Reporting Behavior

3.4.7 Simulation Behavior

3.4.7.1 Overview

As explained earlier, the simulation models are implemented as a behavior of the classes
deriving from the CSimBase class. The development of the simulation models begins by
a preliminary conceptual design of each process followed by the development of a formal
simulation model. The next step is the development of the interaction points which link
processes together. The following section details how the CHauling class implements the

simulation behavior.

3.4.7.2 Preliminary Conceptual Definition

The hauling process involves a number of trucks hauling earth from the preparation area
or “source” to the destination or *“‘placement”. Roads are normally modeled as road
segments with properties such as grade, length and maximum travel speed. The haul
route could contain various intersections and junctions where trucks must stop and give
way to other traffic that might have higher priority. The trucks follow a static path from
the source to the placement known as the “travel loaded” path and return on the “travel
empty” path. The source and placement in both paths are the same, therefore trucks
always follow a closed loop. Different trucks could follow different paths since earth-
moving operations may involve several sources and placements.

The travel times of trucks can be obtained from empirical travel time curves such as the
one shown in Figure 3-8. These curves give approximate travel duration given the length
and total resistance of the road segment for both loaded and empty trucks. Total

resistance is composed of grade resistance and rolling resistance. Grade resistance is a

26

measure of the force that must be overcome to move trucks over uphill slopes. Rolling
resistance is a measure of the force that must be overcome to roll or pull a wheel off the

ground.

Figure 3-8 Sample Travel time Curve

Within earth-moving projects, intersections serve to regulate the traffic between amving
entities. Trucks must stop at intersections and check before proceeding. Intersections are
not simple resources since the maximum number of trucks or other types of traffic
allowed at any one time is variable and dependent on the “crossing path” of entities. As
illustrated in Figure 3-9, Case 1 presents no conflict between the crossing behavior of
incoming traffic. The intersection serves as a relay station and no waiting is involved. In

Case 2 however, traffic could queue at A or B since the desired paths cross.

Case ! Case 2
t $.4
<A e
S K
b t:

Figure 3-9 Example Intersection Crossing Scenarios

3.4.7.3 Simulation Level Design

The simulation level design is performed by constructing event flow diagrams using the
symbols illustrated in Table 3-2. These diagrams define the event sequence of each
element and can be directly translated into discrete-event simulation models. The hauling
event flow diagram is shown in Figure 3-10(a). The corresponding set of discrete event

simulation calls in pseudo code format is shown in Figure 3-10 (b).

Table 3-2 Event Flow Diagramming Legend

Symbol Description

> N v
Event Represents a simulation event or

transition in simulation.

Represents an activity with a defined

Cond A
—_— duration and a criteria in the case of
Pur A conditional branching.

Allocated or releases a certain

Resource resource.

Accumulate a production level for
any desired purpose. Used to track
the cumulative production level.
Represents production interaction
points.

°lf

Int. 1

~

'N Represents an entity interaction

Int. 1 point. The arrow indicates whether
entities are arriving at the process or
exiting from it.
Indicates the starting event of a

*—>

process.

Get next event from event queue
it event = START_SEGMENT then
Set TravelTime to predicted travei duration
it travel lcaded path is complete then
Transter truck into dumping process
eise if travel empty (return) path is complete then
Transter truck into loading process
else it next object is an intersection then
Schedule REQUEST_INTERSECTION ,
eise it event = REQUEST_INTERSECTION
Wait unti intersection resource is available
schedule FREE_INTERSECTION ,CrossingTime
eise if event = FREE_INTERSECTION
Release intersection resource
schedule START_SEGMENT

tmes M

DUMPING

Figure 3-10 Hauling Simulation Model

As explained before, the traffic behavior at intersections depends on several factors
including priority, “‘crossing path” and crossing duration of incoming traffic. This
behavior is modeled using a state grid. The grid determines whether a certain traffic
block is currently busy or free. Traffic entities arriving at an intersection cross only when
all the blocks constituting the crossing path are free; otherwise, they will queue. When
an entity crosses the intersection and releases the blocks, waiting entities are allowed to
proceed based on priority. If priorities are equal, they are served on first-come-first-serve

basis. The result is a sort of four-way intersection.

3.4.7.4 Interaction Design

Once the definition of the other processes is complete, they are linked to form a
representative model of the whole project. Linking is achieved by deriving from the

ClnteractionPoint class. In earth-moving, two types of interactions are present:

29

production-based and entity-based. An example of a production-based interaction is
between CLoading and CPreparation. On one side, dozers in the preparation area
continually increase the level in the pile. On the other side, trucks are being loaded using
that same pile. Queuing is possible only from the loading side as trucks will wait if not
enough earth is present. This behavior is implemented by the CLoadingPile class. Entity
based interaction points are present between loading and hauling, and between hauling
and dumping. The entities that are being transferred between the two processes represent
trucks. The CEntitylnteractionPoint class implements this behavior. An example project
is shown in Figure 3-11. It consists of several possible preparation processes, loading,

hauling, dumping, and spreading processes.

(Aa Production based interaction point

Entity based interaction point

Figure 3-11 Example Earth-Moving Project

3.4.7.5 Synchronization of Process Models

The simulation behavior of the various processes and the interaction points have been

designed to run as independent models. However, a mechanism is still required to

30

synchronize the various simulation events. This task is the responsibility of the
CProject’s simulation model. Figure 3-12 illustrates how this task is done. Mainly,
events generated by the individual processes are scheduled in a single event list. The
next event routine used by the simulation processor removes the next event and routes it

back to the appropriate process based on an embedded attribute.

—(Obtain Scheduled Event)

(Route Event to Related Process]

e lre
- *a
- . -
- *e.
el
- ceu
.

6:1mpingJ (S}reading)

Schedule Next Events

Figure 3-12 CProject Simulation Model

3.4.8 Implementation Platform and Model Building Steps

AP2-Earth was implemented using the Visual C++ language, which allowed the system
to utilize the C++ object-oriented language and run under the graphical Microsoft
Windows environment. The reports module was constructed using Microsoft Access.
This allowed the simulation results to be manipulated using database queries and
presented as customizable database reports. The model building and analysis steps are as
follows:

1) Construct project layout using interface

31

e Place sources and placements.

¢ Build road layout using road, connector, intersection and junction objects.

e Add random traffic processes at desired intersections.

2) Create paths

e Create one or more “Travel Loaded” paths and assign hauling quantities.

e Create one or more “Travel Empty” paths.
3) Create Truck(s)
e Create at least one truck and define the properties
4) Define Source(s) properties.
e Create at least one loader and define loading durations with truck(s).
e Define amount prepared and amount to prepare.
e If preparation is required, create dozers.
5) Define Placement(s) properties
¢ Define amount to spread
e If spreading is required, create dozers
¢ Define amount to compact
e [f compacting required, define compactors.
6) Define breakdowns if desired
7) Specify Simulation Options
¢ Number of iterations
e Termination condition
e Traffic Priority

8) Simulate project and examine results in the reports module

3.49 Design Notes

The approach used in AP2-Earth provides numerous benefits. First, the graphical editing
environment gives the tool a user-friendly interface for the definition and manipulation of
complex earth-moving projects. Objects can be created and manipulated using simple
“click and drag” mouse operations. Users do not need to posses any simulation
knowledge in order to use the tool. Second, the simulation modeling constructs are
extremely flexible and capable of representing a large number of earth-moving scenarios.
Third, due to independence of AP2-Earth objects and the defined interaction points, the
tool is highly scaleable and is capable of representing any number and combination of
processes such as preparation and spreading. Fourth, the encapsulation concept allows
the tool to be easily extended since the addition of new modules does ot require any
changes to be done to the existing classes. For example, a compaction module has
recently been added by defining the CProcessCompaction class and a linking class to
interface it with CProcessSpreading.

Another added benefit is the capability to export data in a variety of formats. For each
required destination module, an export behavior can be added to the AP2-Earth classes.
Examples of destination modules include historical databases, estimate packages and
accounting system. Figure 3-13 presents an estimate module where the information
contained was automatically imported from AP2-Earth simulation results. The top
section contains a spreadsheet where crews and costs are listed. The bottom section lists
current linking information between certain spreadsheet cells and properties of AP2-Earth

objects.

33

A | B | € | o | E J F T 6 1T ® T 1 T=

HAULING

Path

EQUIPMENT NO INTERNAL RLUBES OTHER LABOUR COST MARKUP RATE
7772 5 $115.00 $6.00 $100 $45.00 $835.00 35%$1,127.25
Surveyor 1 $40.00 $40.00 3B% $5400
Mechanic 1 $60.00 $60.00 B% $8100
FiM 1 $45.00 $45.00 3B% $6075
'Water Truck 3 $40.00 $0.00 $0.00 $20.00 $180.00 3% $243.00

1 $1.566.00

Production Production Unit Cost Quantity Ouration Cost
(m3/min} (m3/hour) ($/m3) (m3J) (hours) $)
‘4 4228132 721.1256623 $2.17 50000 69.336043 $108,560.24

Iaﬂatﬁzﬁﬁﬁa‘@awmmawn,a

Pah 25 < | _-l;‘

addiok | Removetrk | Update ks | mpot Data |

-
-

Cell | Reference Source
B 15 Hauling. Paths. Path. HaulingPracess. AveragePraduction
E 15 Hauling. Paths Path HaulingProcess. DesiredHaulingAmount

-l |-

Figure 3-13 Integration with Estimate Module

3.5 Case Study

On March 14 and 15, 1997, truck and excavator performance data was collected from the
Syncrude mine site for comparison with AP2-Earth predictions. The objective of this
study was to verify the model’s predicted parameters and examine whether the tool can
be used in a real life setting.

The project required the clearing of large volumes of overburden material. Two
excavators at a time were used and the work was performed in two layers or “benches”.
One excavator worked on a top layer of approximately 5 meter and another followed
behind on the lower bench which was approximately 10 meters in height. Although the
site topography varied over the span of the project, the elevations and distances were

relatively uniform during the two-day data collection period. The site layout is shown in

34

Figure 3-14. The two pits shown represent the two benches. The material was hauled to
two dump locations approximately the same distance from the pits. Site information
including elevations and lengths were determined using a GPS survey of the haul roads.

The results are shown in a table on the left of the diagram.

@ Source Area
} B Placement Asrea

B pump2

Segment Grude
om tfrom P1t 1o Dump)
" %)
10A 200 T Q
108 pit] . -0
11 330 2
1.2 180 75
12A 330 [1]
13 1840 | Q
11 250 -5
3 T80 N Q
360 | -5
1o_! 75
4.1 180 ¢ 1.5
42 590 i 13
4.3 340 k)
S.1A 100 a |
S1B 100 0 1

Figure 3-14 Overburden Clearing Project Site Layout

3.5.1 Excavators

Three types of excavators were used on this project: ONK front shovel, Caterpillar EX-
1800 backhoe and Caterpillar EX-3500 front shovel. The ONK and the EX-1800 were
operating on the first day. On the following day, the ONK and the EX-3500 were used.

An important input to the simulation model is the loading duration of the excavator with
each type of truck. Due to the small sample size collected, the truck types were ignored
and the entire sample was analyzed as a single set. The excavator’s production, measured

in loose cubic meter per hour, was calculated from the study data. This production is

35

considered ideal since it does not include any waiting times or delays. For the simulation
model, the ideal production is used in combination with the truck capacities to obtain the

required loading duration. A summary of the observed ideal productions is provided in

Table 3-3.
Table 3-3 Observed Ideal Production of Excavators
Day 1 Day 2
Excavator Location Production Location Production
(LCM/Hr) . (LCM/Hr)

EX-1800 Top Bench 925

ONK Bottom Bench | 832 Top Bench 1119

EX-3500 Bottom Bench 1304
3.5.2 Trucks

Four different types of trucks were used on this project. Each type has distinct
characteristics that determines its maximum capacity, travel time and dumping time.
Table 3-4 shows the features of each truck type used. Capacity, given in loose cubic
metres, was estimated by the field superintendent and verified using manufacturer data.
The initial intent was to record travel time across each road section for each truck type.
However, this was not practical due to time and safety concerns. Instead, the overall
round trip time of each truck type was recorded and this value was compared to the

equivalent value predicted by AP2-Earth.

Table 3-4 Truck Characteristics

Type Abbreviation | Capacity (Tonnes) | Capacity (LCM)
Caterpillar 785 C785 150 60
Caterpillar 789B { C789 200 75

36

Titan 220 T220 200 85

Titan 240 T240 220 97

The truck dumping activity was observed and data was collected over a period of 30
minutes. The results are shown as a histogram in Figure 3-15. A visual inspection of the
histogram indicates that a normal distribution is a good representation of the data. As a
result, the dumping time is assumed to be normal with a mean of 1.42 minutes and a

standard deviation of 0.21.

Dump Time Distribution

35 -

Number of Occurences

Figure 3-15 Observed Dumping Time

3.5.3 Fleet Interactions

Inter-fleet interactions occur at various locations throughout the site. Understanding and
modeling such interactions is vital for the accurate prediction of the travel time. Figure
3-16 illustrates the traffic flows around the loading areas. The highlighted interaction

zones indicate points where truck paths cross and delay occasionally incurred. The

37

amount of time lost on each cycle was not recorded because it was observed to be

negligible during the study period.

@ Loading Arca

1.2 Interaction Zone

1.08

5.1B 5.1A

Figure 3-16 Traffic Flow around Loading Area

3.5.4 Model Layout

An AP2-Earth simulation model was constructed as shown in Figure 3-17. The two
source objects on the left side represent the pit locations. On the right, two placement
areas are used to represent the dump locations. The shown intersections were used to
model the possible interactions. The left side of the figure is a representation of the
layout shown in Figure 3-16. The three intersections model the interaction zones
discussed. Note the similarity between the conceptual model representation and the final

simulation model layout.

38

l::ll:l
.m

‘z"‘l J‘

Figure 3-17 AP2-Earth Model Representation

3.5.5 Scenariol

The first modeled scenario represents the situation that existed during the first day of the

study. The EX-1800, located in Pit 2, and the ONK, located in Pitl, along with two truck

fleets were operating. The first truck fleet consisted of one C785, one C789 and one

T240. and traveled between Pit | and Dump 1. The second truck fleet, consisting of one

C789 and three T220’s, traveled between Pit 2 and Dump 2. Priority at intersections and

source areas is set to “First Come First Serve”.

The mode! was simulated for 2000

minutes, which allowed the system production to reach steady state. The results of the

simulation are summarized and compared to actual data in Table 3-5, Table 3-6, and

Table 3-7.

Table 3-5 Comparison of Actual and Predicted Travel Durations for Scenario 1

Field Observations AP2-Earth Simulation Results
Fle | Truck | #of | Average | Std.Dev. | Travel | Delay at | Interactions
et Type | obs. | (min) {min) Time Intersections

39

(min) (sec/cycle)
1 C789 3 12.63 0.46 12.83 3 0.00
1 C785 1 11.75 0.00 13.07 6 0.00
1 T240 2 12.65 0.65 12.65 4.2 0.00
2 C789 1 15.32 0.00 14.13 6 0.00
L2 CT220 !5 14.96 0.88 14.43 4.8 0.00

Table 3-6 Comparison of Actual and Predicted Waiting Duration for Scenario 1

Field Observations

| AP2-Earth Simulation Results

Fleet | Truck | # of | Average | Std.Dev. | (in minutes)
Type [obs. | (min) (min)

1 C789 4 2.61 0.94 2.56

1 C785 3 5.51 0.84 3.33

1 T240 2 2.02 1.34 1.25

2 C789 2 1.99 2.33 1.39

2 CT220 6 0.63 0.57 0.26

Table 3-7 Comparison of Actual and Predicted System Productions for Scenario 1

Field AP2-Earth Comparison
Observation Simulation
Results
Exc. Ideal Production Producgion Deviation | Percent
Production (LCM/Hr) (LCM/Hr) Error
(LCM/Hr)
ONK 832 789 832 43 5.4%
EX-1800 925 880 918 38 4.3%

3.5.6 Scenario 2

The second modeled scenario represents the situation present during the second day of

the study. On this day, the EX-3500 was operating in Pit 1, and the ONK in Pit 2.

Similar to the first day, two truck fleets were used for hauling overburden. The first truck

fleet consisted of one C789, one T220, and two T240’s; they traveled between Pit 1 and

Dump 1. The second truck fleet, consisting of one C785 and three T220’s, traveled

between Pit 2 and Dump 2. Priority at intersections and source areas is also set to “First

40

Come First Serve”.

The model was simulated with the new information for 2000

minutes. The results and comparisons are shown in Table 3-8, Table 3-9, and Table 3-10.

Table 3-8 Comparison of Actual and Predicted Travel Durations for Scenario 2

Field Observations AP2-Earth Simulation Results
Fleet | Truck |#of | Avg. | Std.Dev. | Travel | Delay at | Interactions
Type obs. | (min) | (min) Time Intersections
(min) | (sec/cycle)
1 C789 3 13.80 0.35 12.83 4.2 0.00
1 T220 4 13.43 0.56 13.07 3.6 0.00
1 T240 8 12.82 0.50 12.65 4.2 0.00
2 C785 1 16.50 0.00 14.13 1.8 0.00
2 CT220 |17 14.74 1 0.67 14.43 2.1 0.00

Table 3-9 Comparison of Actual and Predicted Waiting Duration for Scenario 2

Field Observations AP2-Earth Simulation Resuits
Fleet | Truck | #of | Avg. | Std.Dev. | (in minutes)
Type obs. | (min) | (min)
1 C789 6 1.29 1.47 1.11
1 T220 5 1.69 1.70 1.57
1 T240 10 1.12 1.10 0.22
2 C785 3 1.67 1.84 1.57
2 CT220 10 2.32 2.55 0.11

Table 3-10 Comparison of Actual and Predicted System Productions for Scenario 2

Field Observation | AP2-Earth Comparison
Simulation
Results
Excavator | Ideal Production Production Diff. Percent
Production | (LCM/Hr) (LCM/Hr) Error
(LCM/Hr)
EX-3500 1214 1190 1117 -73 -6.1%
ONK 1119 840 923 83 9.9%

3.5.7 Summary of Study

The case study presented shows that AP2-Earth is able to predict, with reasonable

accuracy. numerous important parameters of large earth-moving projects. The predicted

41

truck travel times, which are based on manufacturer specifications and simulated
interaction delays, differed by less than 8% on average. The waiting duration in the
loading area was predicted with reasonable accuracy. The predicted system production,
which is the most important parameter because it includes all simulation errors and

assumptions, was accurate to an average of 6.5%.

3.6 Conclusion

A specialty construction simulation tool has been presented for the analysis of earth-
moving projects. The success of the developed system was due to its accuracy,
scalability and integrated design. As well, the graphical user interface and the high level
modeling constructs allowed users who were not familiar with simulation theory to build
sophisticated models and experiment with various road layouts and resource allocations

in order to optimize the overall production.

Chapter 4 — Aggregate Production Plant Simulation’

4.1 Introduction

This chapter presents the main design and implementation steps of a specialized
simulation tool called CRUISER. The system was developed in cooperation with a local
aggregate production contractor. Similarly to the AP2-Earth development, one objective
of the system was to introduce the aggregate industry to a simulation based analysis for
optimizing aggregate plant operations. The other objective was to gather information on
the general features that a simulation tool for the aggregate production industry must
possess in order to be accepted and successful.

General background related to aggregate production is first provided in section 4.2
followed by a detailed description of the computer simulation tool that can be used to
model and simulate a full crushing plant in section 4.3 . Section 4.4 presents the results
of a case study performed to validate the developed model, followed by the conclusions

in section 4.5 .

4.2 Aggregate Production

Crushed-stone aggregate production involves material size reduction and separation of

raw or crudely broken material into a form that is suitable for use in construction. The

! A version of this chapter was published as “Modeling and Analysis of Aggregate
Production Operations” in the Journal of Construction Engineering and Management,

ASCE, Volume 124, Number 5, September 1998.

43

objective is to obtain aggregates that satisfy the quality requirements of the end user at
the minimum possible cost. Decisions regarding plant location, configuration and
equipment settings are typically based on the experience of field personnel.

The production process of construction aggregates involves size reduction and separation
as well as many supporting operations such as drilling, blasting, loading, transporting,
and product handling. The methods discussed in this study apply only to the processing
phase. For a general overview of the theory and practice associated with these activities,
the reader can refer to (Peurifoy, Ledbetter, and Schexnayder 1996), and (Nunnaly,

1980).

4.2.1 Aggregate Processing

Aggregate processing consists of two main activities: material size reduction and size
separation. Size reduction is achieved through the use of specialized crushing equipment
which operate on the principles of nipping (jaw, gyratory and cone crushers) or high
impact (single and double impeller impactors) (Smith and Collis 1993). Most aggregate
sizing methods are carried out by means of a screening operation, where particles are
graded according to their minimum cross-sectional length. Typical industrial screens
support multiple decks with varying opening sizes. In simple static screens, transport is
arranged by inclining the surface sufficiently for material to be moved by gravity. Other
types of screens utilize a combination of gravity and rotating motion that is supplied by

applying vibration (Peurifoy, Ledbetter, and Schexnayder 1996).

4.2.2 Multi-Stage and Cyclic Processing

Aggregate production plants utilize several stages for processing where material is passed
through several crushers and screens as demonstrated in Figure 4-1. This procedure is
used as a means of controlling the quality of the finished product. The amount of size
reduction accomplished is directly related to the amount of energy used. Higher energy
outputs lead to higher reduction ratios but can also lead to higher percentage of fines.
Fines are mostly non-revenue by-products that are too small to be used as aggregates.
Therefore, using several crushers can help to minimize waste by distributing the required
energy. Typical plants utilize two to three crushers along with several screens.
Conveyers are the primary means of material transport between the equipment. Material
entering the plant follows a given path along conveyors. This path will be referred to as a

“stream” in this chapter.

45

Raw material
loaded into
hopper

N

Primary
Crusher

lCrushed
Output
_)

Fines /; i

ﬂL D

(@)

3\
AN

C/A Fines

Product

Figure 4-1 Typical Aggregate Plant Layout

Aggregate processing operations are commonly divided into two classifications: “open

circuit” and “closed circuit”.

In an open circuit operation, aggregate streams flow

through each component once as they make their way to the stockpile. In a closed system

operation, at least one stream is cycled back to a previous stage of crushing as in Figure

4-2. Closed circuit operations require relatively uniform feed gradation and tonnage as

well as compatible settings between the crusher and the controlling screen. If any of

these conditions fail, then material will gradually build up until the equipment is

46

overloaded. In a carefully managed operation, the circulating load will gradually build at

plant startup until a steady state level is reached.

Crusher

1193 5.‘ v'_:ﬁOJ
afsh
Raw Feed

Closed
System

.......
......

| _C Conveyer B

Conveyer A
A"‘A -
LEk =
2
Product 1 Product 2

Figure 4-2 Example of Closed System Operations

4.2.3 Quality

Aggregates are classified accerding to several aspects of their physical and chemical
properties. Such properties include strength, moisture content, percent fractures, clay
content, organic material content and product gradation. Quality is defined as
conformance of these properties to end user specifications. Quality control during
aggregate processing mostly involves the control of product gradation obtained using
sieve analysis. Results are normally presented graphically as percent passing or

cumulative percent retained on standard sieve sizes (ASTM 1996). Specifications are

47

provided as upper and lower bounds on the gradation in the form of an envelope. A

sample test result that conforms to specifications is shown in Figure 4-3.

Percent Passing

4.2.4 Revenue

Percent Passing on Each Sieve Size

100 o e T U
90 ——
70 — Upper Bound
- = = = Product Gradation
60 t - Lower Bound
50 ¢ . e
40 p—-— — -
30 -
20 - - —
10 t—— = e
0
8 8 3 3 3 53 58 5 5 § 8§ & 3 3
oW @owodoWowodowod ol b od
8 = 8@ &8 98 ®& 8 &8 8 € & 38 &
- -— D M~ [ie] < (2] -~ - Ty} o - ~
Sieve Size (mm)

Figure 4-3 Sample Sieve Analysis Results

Revenue from aggregate production is affected by decisions at two levels. At the regional

or corporate level, managers are concerned with the allocation of available equipment

across a number of potential pits. Preliminary geological surveys determine the type and

volume of gravel sediments. This information, along with historical production estimates

is used to determine the plant locations. At the plant level, the objective is normally to

maximize production. This can generally be achieved by optimizing the crusher settings

48

and screen sizes. Experienced field managers can make these decisions through a visual

inspection of the plant along with an examination of the product gradation.

4.3 Simulation of Aggregate Processing

4.3.1 Overview

Computer simulation of the aggregate production process can greatly improve operations
at any level. Corporate decision-makers can use the tool to obtain accurate estimates of
expected productions before any resources are committed. At the site level, simulation
allows field managers to prototype their decisions before implementing them. They
would have the ability to experiment with various scenarios (for example, a different
screen size or crusher setting) and then observe the simulated effect on quality and
production. Such analysis does not disrupt plant production, which reduces lost revenue
associated with plant shutdowns.

A simulation tool for aggregate production called CRUISER was developed. The
objective was to create a highly visual and user friendly environment for the definition
and manipulation of the model. The main step in the development process consists of the
definition of classes for the representation and manipulation of the various processes (eg.
raw feeds, conveyors, screens, and crushers). The developed class hierarchy is shown in

Figure 4-4. Table 4-1 provides a brief overview of the abstract classes.

49

CPracess CProject

FG raphicalB ase I

l CCruiserBase I

CSimBase I Clnuracuve?osmonng

ClnteractionPoint I

CRawPule J/Icmu:nul\l CProduct I

l CScreeLl lCConveyorl

Figure 4-4 CRUISER Class Hierarchy

Table 4-1 CRUISER Abstract Classes

Class

Functionality

Comment

CGraphicalBase

Basic graphical state and
position representation/
manipulation functionality.

This class aids in satistying the objective of graphical
manipulation by allowing objects to posses visual
editing capabilities.

Clnteractive-
Positioning

*click and drag” interactive
positioning functionality

This added behavior simplifies data entry for position
and linking information of all classes.

CSimBase

Simulation behavior support

This class provides various “user hooks™ that allow
the specialized classes to perform custom
manipulation of numerous behaviors.

CProcess

Basic Process Definition

A CProcess class defines basic functionality of a high
level process such as ability to connect to interaction
points and the base structures needed to define a
simulation model. Child classes (i.e. CCrusher,
CScreen....) implement the specific simulation
models.

Cpraject

Project level information
and resources

Project level information includes the list of all
processes, interaction point definitions, as well as any
global resources that are available to all the processes
(i.e. standard gradation envelops....) .

In general, a CRUISER object (i.e. an instance of a non-abstract class, typically at the

lowest level of the hierarchy) encapsulates a variety of information and methods

depending on the inheritance branch. The supported functionality provided by the

abstract classes includes: graphical behavior, simulation behavior, and reporting

behavior.

50

4.3.2 Graphical Behavior

Graphical representation and manipulation functionality is gained by deriving from the
CGraphicalBase class. Classes deriving from this base class are required to implement
certain virtual functions in order to conform to the overall visual manipulation objective.
Each class typically has an associated graphical dialog box where the user can enter and
change information in a very intuitive manner. Figure 4-5 shows the CScreen dialog box,
which allows users to specify screen specific attributes. Figure 4-6 shows the CConveyor
dialog box where stream properties such as gradation and production rate are displayed.
The graphical behavior of the CProject class is, in fact, the main program screen where

CRUISER objects can be added, deleted, or linked. This screen is shown in Figure 4-7.

Edit Screen Object [X]

Description: {Screen 1 ¥ Display Results

Decks: ﬁ__zl Width x Length{ft}: |sx1s 'I

1

i Conditior: [Dry quarried material, 4% or less maisture; crushed rock |
et [
Deck: IT_H Splits: |1 ’I

—Spht Info
e] Operinglinchesy [0500]
Slot Length/Awidth: l1:1 (Squate) ;I
OpenAreaFactor: 50% - Standard Wire =l

0K SRR Concel]

Figure 4-5 Screen Dialog Box

51

Edit Conveyor Object | X] E

Properties Tonnes Pec Hous
. Description: [P [Amm [i72188™ Std dev. [o

i I DisplayResus I~ Steady Stale

! Graphpe: [Cumulative %X retained +|

Cumulative % Retained On Each Sieve Size
1001

80+

60+

—tn

- 3 -

0 + + + et 4 + t 4 e p——t S
1.59 127 095 064 034 0.100 0030 0.007
143 1.11 0.79 0.438 0.168 0.0ss 0.015 Fines

Conce

Figure 4-6 Conveyer Dialog Box

52

ESingleCycleASI - Cruiser Windows Application
Fie Edt Tools Model QOutput View Options Help

D|=| & »|2=|3| 8|28
v mlalalal @lmlx 4|0 &

v 4

' \
Raw
Product Pile Crusher Add Joint
. Screen

Waste Pile Conveyer Split Joint

Screen 2 Crusher 2

pE‘a

Raw Feed \

Fines Product

Figure 4-7 Main Modeling Components

4.3.3 Simulation Behavior

Simulation tools typically implement the simulation code in a single module. This meant
that minor modifications could potentially require changes to a large number of functions
spread across many files. With an object-oriented modeling approach however, the
simulation model representations are separated and implemented by the individual

classes. In this context, each class derived from CSimBase defines a unique simulation

53

model and becomes an independent entity in every respect. In CRUISER, the individual
simulation models perform a variety of functions including stream initialization, stream
transformation and other required analysis. The following sections will detail the

simulation models used for each class.

4.3.4 CRawPile

The CRawPile Class models the properties of the input stream that represents information
collected by sampling the gravel pit material. The testing process is usually subject to
many variations and, as a result, stochastic simulation is used in its modeling. For such
simulation, randomness is usually driven by random input processes. For gradation, a
normal distribution is used to mode! the amount retained on each sieve size, while the
production rate is modeled as a triangular distribution. The implication of this type of
modeling approach is that the analysis is carried as a statistical experiment where the
simulation is repeated a number of times, output measures are collected from each
simulation run, and point estimates of various statistics along with their confidence
intervals are derived for use in decision making. When the CRawPile’s simulation
function is called, a new random stream based on the user’s parameters is generated and

used as input to components that follows.

4.3.5 CProduct

The simulation function of the CProduct class is used to perform statistical analysis after
the completion of all simulation runs. For gradation, the mean values of desired
parameters are calculated and a 95% confidence interval is constructed for each. The

three sets of results (low, mean, high) are displayed graphically as percent passing or

54

cumulative percent retained. For all other stream properties including hourly production,

the average and standard deviation are provided.

4.3.6 CConveyor

The CConveyor class holds information regarding the carried stream as well as generic
conveyer properties such as elevation and length. Stream information stores the
intermediate stream properties from all runs to be analyzed once simulation is completed.
The other properties help determine the conveyer horsepower, width, type and speed that
are required to transport the predicted load based on published equipment manufacturer
charts (e.g. Pioneer 1988 or Cederapids 1994a). The CConvevor class does not have a
simulation component as it is assumed that the transported stream properties are

continuous and will not change.

4.3.7 CCrusher

The CCrusher simulation function models the size reduction process. The size reduction
or crushing process is highly complex and little theory is available to allow for its
accurate modeling. As a result, studies have been based on modeling the crushing
process using empirical data in the form of performance tables like the one shown in

Figure 4-8.

55

Setting |[Size
(mm)
(mm) 254 229 203 17.8 0.05 0.04 0.03 0.01 0
1.905 100 100 100 100 3.8 29 23 1.3 0
2.54 100 100 100 100 2.9 2.1 1.6 1 0
3.175 100 100 100 100 25 1.9 1.4 0.8 0
3.81 100 100 100 100 22 1.7 1.3 0.7 0
12.7 100 100 93 83 0.9 0.7 0.6 0.3 0
15.24 94 88 80 72 0.8 0.6 0.5 0.3 0
17.78 82 76 69 62 0.6 0.5 04 0.2 0
20.32 73 68 61 54 0.6 0.5 0.4 0.2 0
22.86 66 61 55 48.5 0.4 0.3 02 0.1 0
25.4 60 55 50 44 0.3 024 02 0.1 0

Figure 4-8 Sample Crusher Performance Chart

The table gives the expected product gradation based on a certain crusher setting. The
data provided in these tables represents an average output across a range of feed rates and
material types. To be used accurately, the basic predicted gradation must be adjusted for
the properties of the input gradation. The following is a summary of the algorithm which
is based on a method suggested by Hancher and Havers (1972):
1. If there is no oversize (material larger than crusher setting) in the input stream
then the output stream is the same as the input stream. This is a simplifying
assumption because in general, a small percentage of material might in fact

undergo some breakage as it jams in the crusher.

(18]

If input stream load exceeds crusher capacity then halt analysis and give warning.
3. Calculate effective tonnage to crush. Effective tonnage is the sum of materials
larger than half the crusher setting and smaller than one and a half the crusher
setting. The assumption is that all material above 1.5 crusher setting will be

crushed and all material less than 0.5 crusher setting will not be affected.

56

4. Set initial output gradation to expected gradation as given by empirical tables.

5. If amount of oversize in output exceeds that of the input then adjust oversize in
output.

6. Add material that is unaffected by the crushing process (less than 0.5 crusher

setting) to the output gradation.

4.3.8 CScreen

The CScreen simulation function models the size separation process. There are several
issues to consider when modeling the operations of a screen. Size separation is never a
perfect operation and a certain quantity of undersize material will generally end up in the
oversize stream. Further, multi-deck screens require that each deck be analyzed
separately where output streams from top decks are used as inputs into the lower levels.
In certain cases, managers use different size screen meshes or splits on the same deck.
For example, the first half of the deck has a ten millimeter opening size while the next
half utilizes a five millimeter size. This technique is used to distribute the load across
two decks and to overcome the limited capacity of certain screens.

Screening efficiency is a measure of the effectiveness of a screen in se;;arating an
incoming stream into oversize and undersize streams. For example, an 80% value for
efficiency indicates that 20% of undersize material fails to pass through the openings and
ends up in the oversize stream. Typical values range between 60 and 95 percent.
Efficiency of a given screen can be predicted using the Allis-Chalmer relationship shown
in Figure 4-9 (Hancher and Havers, 1972). Efficiency is assumed to be directly

dependent on the ratio of actual load to rated capacity. Rated capacity consists of the

basic capacity, which is only dependent on opening size and surface area, adjusted for

57

several factors including screen incline angle, moisture content, and other properties of
the incoming stream. For a complete overview of all the factors and their effect on

screen capacities see Cederapids 1994b.

2.00

1.80

-
o
o

-
»
o

—

)

o
|

-
o]
]

080 - — -/

060 -

040 r -

020 ¢

Loading Ratio (actual load over rated capacity)

0.00
100% 90% 80% 70% 60% 50%

Efficiency
Figure 4-9 Allis-Chalmer Relationship For Calculating Screening Efficiency

Once efficiency is calculated, the size distribution of undersize particies that did not pass
through is determined. From experience, if the screen is operating above the optimum
loading ratio, the undersize material contained in the oversize stream 1s equally
distributed. As the loading ratio decreases below the optimum point, the percentage of
larger sizes increases exponentially. The authors have modeled this relationship as is
illustrated in Figure 4-10. The overall size separation algorithm is summarized as
follows:

1. Calculate rated capacity.

58

N

Calculate loading ratio using rated capacity and incoming stream load.

3. Calculate efficiency using Allis-Chalmer relationship.

4. Calculate undersize and oversize streams based on 100% efficiency.

5. Adjust for efficiency by removing appropriate amount from undersize stream and
adding to oversize stream. If loading ratio is greater than 75%, then size
distribution of undersize material is equally distributed, otherwise distribution is

determined using the relationship shown in Figure 4-10.

70%
Loading Ratio
60% -
—0.75
o 50% —o—0.7
e
s
g 40% -
g
Q 30%
3]
a
20%
10%
0% . T + ¥ i‘
2 EN EN R N R 2 N 2
[=] (=] [=} o [=] [=] [=] [=] (=]
9 (=2} © ~ 0 wn < (3] N

Particle Size (As a percentage of opening size)

Figure 4-10 Distribution of Undersize Particles Based on Loading Ratio

For multiple deck and multiple split screens, a general procedure that analyzes each split
as a separate screen was developed as shown Figure 4-11. Essentially, the incoming
stream is distributed between the first two splits with the majority directed towards “split
1”. The oversize stream from “split 1” is combined with incoming stream as input to

59

“split 2" and so on for the subsequent splits. The undersize streams from the top deck are
combined and distributed across the second deck splits based on the relative surface area
of each. This is a simplifying assumption since geometry and the relative position of the
splits could affect the distribution. The analysis is similar for the other decks. Finally,
undersize from the bottom deck is combined to form the undersize stream of the entire

screen.

Incoming

stream \ Split 1 Split 2 Splitn
l r% r ﬁ r oversize
4

Deck 1 } { | { - forsesesasssnsassenase

Deck 2 i fesesesennsnanansnne 4
Same analysis as
previous deck
Deck 3
I_’ oversize
Deck n } {1 4 . Jrocereeccnacensnnae q{

Screen Undersize

Figure 4-11 Multi-Deck Multi-Split Screen Analysis Procedure

60

4.3.9 CProject

The simulation function of the CProject class is the driving mechanism of the entire
simulation process. The modeling of an aggregate production plant involves the analysis
of the material flow as it makes its way through the processing equipment in the
appropriate order. The starting point is normaily a “raw pile” where a loader generally
feeds a hopper, which provides feed at a relatively uniform rate to the plant. The analysis
proceeds by following this stream as it makes its way through the plant. The initial
stream will eventually split at various plant locations, creating other streams. A split
generally occurs when a screen is encountered. When this occurs, the analysis continues
along both branches in parallel. Analysis along any branch is completed only when a
product or waste stockpile is reached. The entire analysis stops when all streams have
been analyzed.

The CProject’s simulation function utilizes an event-based simulation engine developed
for aggregate processing. The basic event scheduling mechanism is used to perform a
structured and orderly analysis of any plant layout. At the heart of an event driven
algorithm is the event queue. It determines the next event or task, which must be
performed. Each scheduled event holds information pertaining to the type and identity of
the equipment being modeled. The algorithm for the simulation engine works by
executing the following tasks continually until the event queue is empty:

1. obtain the next queued event

9

cross-reference the object information using the event properties

w

call the object’s simulation function

4. schedule future events.

61

The number of scheduled events resulting from the fourth step will vary depending on the
current component being analyzed. Conveyers, crushers and raw feed objects will cause a
single event corresponding to the next connected equipment to be scheduled. Screens
will cause one event to be scheduled for each deck oversize as well as for the undersize
stream.

To see how this algorithm operates, consider the scenario shown in Figure 4-12. The
contents of the event queue at each simulation step are shown in Table 4-2. The queue is
initialized with Event 1, corresponding to the raw feed object, at the start of simulation.
The simulation proceeds by following the streams that flow through the various objects.

The simulation is terminated when the event queue is empty.

Figure 4-12 Example Plant Flow Simulation

Closed cycle systems require special analysis consideration as they must be analyzed
continually until a steady state production is reached at the exit conveyer. The exit
conveyer is that which completes the cycling loop (conveyers A and B in Figure 4-2).

This task is automated by recording the calculated production rate for each cycle analysis.

Successive observations are recorded across an interval and steady state is assumed when

the difference between the maximum and minimum values reaches a specified threshold.

Table 4-2 Contents of Event Queue

Simulation Event queue | Notes

Time Content

0 l Starting simulation with event 1

1 2 Conveyer 2 analysis is scheduled

2 3 Screen 3 analysis is scheduled

3 4.6 Conveyer 4 and 6 analysis scheduled

4 5.7 Waste pile 5 and crusher 7 analysis scheduled
5 8 Conveyer 8 analysis schedule

6 9 Screen 9 analysis scheduled

7 10,12,14 Conveyer 10.12,14 analysis scheduled

8 11,13,15 Product piles 11,13,15 analysis scheduled

9 Empty Event queue empty so simulation is terminated

4.3.10 Reporting Behavior

Each CRUISER class is able to take advantage of reporting functions designed to collect
the results of the simulation and present the information to the user. An example of such
a function is the OnReportValidity(), which is used to report integrity errors such as
missing connections between components. This information helps the user to locate the

sources of modeling errors so that they can be quickly rectified.

4.3.11 CRUISER Environment

The steps used to analyze a proposed plant are illustrated in Figure 4-13. The user defines
the model by selecting from a list of provided modeling objects, which represent various
types of crushers, screens, stockpiles and conveyers as previously shown in Figure 4-7.
The properties of each object can be manipulated through the component dialog box,
which can be accessed by double clicking on its graphical icon. The dialog box for the

“RawPile” object is illustrated in Figure 4-14. The model can be interactively updated at

63

any time. All objects can be moved around the screen by clicking and dragging. This

allows the user to create models that greatly resemble the real life situation.

Enter sieve sizes and raw feed properties.

v

Design plant layout using provided components.

'

Enter/Change the specifications
of each component.

!

Simulate plant

v

Examine
intermediate and final
stream properties

Results
Unacceptable

Figure 4-13 Plant Design Steps

Edit Raw Pile Propeities ' Edit Raw Pile Propertties '

General | Samples | General Samples |
Number of Samples [7
Desciog |
m Print l cm inch
MatsialWeight [io0 bleuk Enter SappleGiradations in ive Percent
~ Sampling . |
| L . Sieve Label| Sieve Size | Sample 1 |
c s
! Deterministic " Stochastic ’6.99 578 =0
6.35 25 70.0I
‘ Feed Rate Low: [350 TR 572 225 75.0
' Feed Rate Most Likely: [400 TPH f-gg 172 %g
- Feranr TR
 No of simwlation iterations: R ggi 1.1109999‘11 83,782
2.22 0.875 88.13
191 0.75 88.75
1.75 06875 8938
1.59 0.625 90.0
1.43 05625 8067
1.27 05 91133
1.11 04375 920
88 1 378 92 R7
I 114 l Cancel | Heip I | oK I Cancel

Figure 4-14 Raw Input Stream Modeling

4.4 Model Validation

The developed system was implemented at a number of gravel pits for field-testing. One
of the case studies performed involved a crusher plant located in Edmonton, Canada. The
pit run gravel in the area was small to medium size, requiring two cone crushers, one jaw
crusher, and three double-deck screens. The model for this plant is shown in Figure 4-15.
The actual conditions observed indicated that the raw feed material was supplied at an

average rate of 520 tons/hour and the actual output production was equal to an average of

65

250 tons/hour. The rest of the material is considered very fine. The average input raw

feed gradation is shown in Table 4-3.

M Cruizer Windows Applicotion GREEN20M SL

B EM ook Model Quot Yiew Ogiors Heb
DERANENNEEA

@-1% | :

Break Co @
;@ ~ Jw ot SE«E:..“M '?/f—f;’ i

RawFeed Zii=io@n . W\ (| = @ui=im 1!?!-

cre ' Finlsh Conc
g Screen 2

£
ik
Praduct

o O

ForHelp. press F1

Waste Rej

Figure 4-15 Plant Layout for Case Study

Table 4-3 Raw Feed Gradation

Sieve mm Cumulative % Retained
63 21.47%
50 2147%
40 27.90%
28 27.90%
25 48.02%
20 54.73%
16 54.73%
14 54.73%
12.5 64.11%
10 68.40%
5 74.49%
2.5 74.49%
2 77.36%
1.25 77.36%

66

log 79.46%
lo.63 79.46%
0.4 85.99%
f0.315 85.99%
f0.16 96.49%
{0.08 99.35%
pan 100.00%

The *Jaw Screen” is a 1.64 m x 5.9 m double deck inclined vibrating screen with a top
deck opening size of 5.5 cm, and a second deck opening size of 2.2 cm, and a slope of 15
degrees. “Screen 1”is a 1.64 m x 5.25 m double deck vibrating screen with a top deck
opening size of 4.78 cm and a second deck opening size of 2.05 cm. “Screen 2” is a 1.64
m x 5.25 m double deck vibrating screen with a top deck opening size of 3.08 cm and a
second deck opening size of 2.39 cm.

The jaw crusher has a clear opening distance (setting) of 6.8 cm and an estimated
capacity of 95 tons/hr. The breaker cone has a clear opening distance of 2.7 cm and an
estimated capacity of 181 tons/hr. The finish cone has a clear opening distance of 2.05
cm and an estimated capacity of 154 tons/hr.

The results predicted by CRUISER are compared to the actual sieve analysis of the
product pile as shown in Figure 4-16. The predicted production is 236.94 tons/hr as
compared to the 250 tons/hr observed on site. A summary of two other case studies
performed is shown in Figure 4-17. The results showed average errors of 12.68% and
5.37%, respectively (Chehayeb 1997). These results are consistent with original findings
by Hancher and Haver (1972). Some of the deviations could be attributed to sampling
errors, others reflect the generality of the underlying crushing tables when applied to

specific crushers.

67

100

Output Gradation for Coarse Aggregate (20mm)

90
80
70
60
50
40
30
20
10

Cumulative Percent Retained

...m--- Actual Cum % Ret
—a——— CRUISER Cum % Ret

» L LI
ECIIR \.f.’ 9 e v \f_f’ o? 065 N g‘.b\ o Q_@’ &
Sieve Size (mm)

Figure 4-16 Comparison of CRUISER Predicted Output Vs Actual Gradations

68

Output Gradation for 40 mm Product

100 | -

-ecde -~ Actuat Cum % Ret

Cumasiative Percent Retalned
'
o

i CRUISER Cum % Raet

« 25 20 16 125 10 5 25 125 063 0315 016 Q08 Pan
Sieve Size (mm)

Case 2: Kapasawin Crushing Plant

Output Gradation for Mineral Product

100 —
0L e

70
80
50 el
40 /
0
20
10

—@— CRUISER Cum % Ret

Cumulative Percem Retained

10 5 25 128 125 [+ X} 0.63 a3 Q08 Pan
Sleve Size (mm)

Case 3: Villneuve Crushing Plant

Figure 4-17 CRUISER Case Study Results

4.5 Conclusion

This chapter discussed the successful development and implementation of a tool for the
computer simulation of aggregate production plants. CRUISER was successfully

validated and implemented with several local aggregate producers. This success can be

69

attributed to many factors. First, the graphical modeling environment gives the tool a
user-friendly interface for the definition and manipulation of complex plants. Objects
can be created and manipulated using simple “click and drag” mouse operations. Users
do not need to posses any simulation knowledge in order to use the tool. Second, the
simulation modeling constructs are extremely flexible and are capable of representing a
large number of crushing plant scenarios. Third, due to the independence of CRUISER
objects and the defined connection mechanisms, the tool is highly scaleable and can be
easily extended since the addition of new modules does not require any changes to be
done to the existing classes. For example, users can modify the general empirical tables
that are used to predict output gradation in order to model specific equipment or rock
types. Researchers who are not content with using empirical tables for performing the

analysis can easily substitute alternative predictive models such as neural networks.

70

Chapter 5 — Construction Site Dewatering Simulation'

5.1 Introduction

This chapter presents a computer tool for the modeling and analysis of construction site
dewatering operations called CSD. The tool allows for site modeling in a manner that is
intuitive, user-friendly and natural for use by construction engineers. The fundamentals
of site dewatering analysis and the tool design and implementation steps are discussed.
CSD was developed in cooperation with a local general contractor. The described
research resulted in the development of a tool that was of immediate use for the
collaborating construction company and allowed for the identification of key features that
such tools must possess.

This chapter is organized as follows: Section 5.2 provides some background on the
construction site dewatering process. Section 5.3 details the structure and operation of
CSD. Section 5.4 presents a case study used to validate the accuracy and relevance of

the underlying model. The conclusions are then presented in Section 5.5 .

5.2 Background

Among the more common problems in construction work is the need to handle

subsurface water encountered during and after construction. During construction,

! A version of this chapter was published as “Optimizing Construction Site Dewatering
Operations using CSD” in the Canadian Journal of Civil Engineering, CSCE, Volume

25, Number 3, June 1998.

71

removal of water from working areas is desirable to provide both workers and equipment
with better working conditions. Construction dewatering is not an easy task to achieve,
especially when excavations extend more than a few feet below groundwater. In this
case, open ditches are not practical and well-point systems or deep wells are normally
used. One of the main problems associated with the use of deep wells and well-point
systems for construction dewatering is that of defining the best possible well
configurations (i.e. well positions and pumping rates) that result in the least pumping
effort and hence, the lowest dewatering costs. Such decisions are often made by site
engineers based on experience and hydrological analysis. Numerous hydrological
models exist for this type of analysis, including steady state models based on equations
developed by Muskat (1953) and Thiem (1906) or finite-difference based methods such
as those used by MODFLOW (McDonald and Harbaugh 1988). The type of hydrological
model used generally depends on the amount and nature of the available information.
Steady state models make simplifying assumptions about the uniformity and
homogeneity of the underground soil layers. For situations requiring an analysis based
on relatively non-standard elements such as complex recharge areas, ponds, and non-
homogenous layers, more complex models such as MODFLOW are used.

Construction site dewatering projects can obviously benefit from the use of such models.
Unfortunately, the writers’ experience with local construction firms indicates that
contractors do not complete the required dewatering analysis for most of their jobs.
Construction engineers generally lack the knowledge required to complete a dewatering
study. Furthermore, they do not possess the proficiency required to use tools such as

MODFLOW. Contractors, however, can lose money on a project if the dewatering

analysis is not correctly done. As a minimum, it is desirable to complete an appropriate
analysis to validate dewatering subcontractor estimates. The above provided the

motivation for the work described in this chapter.

5.3 System Description

Figure 5-1 illustrates the developed components and the application’s function within an
integrated construction information system. The external modules shown are provided as
an example of the potential capability of CSD to integrate with other systems. The

following subsections will provide details about the structure of each module.

Main
Optimization Mgdehng
Engines Environment

I

Translation
Module

y

Simulation Engine Module

Figure 5-1 CSD System Modules

5.3.1 Simulation Engine Module

The simulation engine is the primary component of a special purpose simulation tool. It
determines the capabilities and constraints of the overall application. In a dewatering

context, this module is responsible for the calculation of the water table level given the

73

properties of the construction site and the pumping rates of the dewatering wells. A
steady state model was chosen as the basis for the development of the simulation engine.
This was deemed sufficient for demonstrating the capabilities of the application.
Substituting more powerful engines such as MODFLOW is possible with minor changes
to the existing structure and the development of further constructs to represent the
additional supported capabilities. For the benefit of readers not familiar with
hydrological terminology and steady state modeling, an overview of dewatering

fundamentals is provided next.

5.3.1.1 Governing Hydrological Equations

An aquifer is a zone of soil or rock (geological unit) through which ground water readily
moves. An aquiclude is an impermeable geological unit that is defined to transmit no
water at all. An aquifer is normally classified as being unconfined or confined. The
unconfined aquifer, shown in Figure 5-2(a), also known as a water table aquifer, is
bounded beneath by an aquiclude, but is not restricted by any confining layer above. The

confined aquifer, shown in Figure 5-2(b) is bounded above and below by an aquiclude.

a) b)

Nt |

Aguder h '

Figure 5-2 Typical Aquifer Types: a) confined; and b) unconfined
74

The basic equilibrium relationships that relate drawdown to pumping rates were

presented by Muskat (1953) and Thiem (1906) as shown in equations [1] and [2]

D=H—JH1—[Q xln(-&-)]
z-K r
[1] Unconfined aquifer.

Confined aquifer.

Where

D: Water drawdown=H - h

H: Original water level (also know as phreatic surface)

h: Water level at radius r from the center of a pumping well

K: Effective permeability

Q: Pumping rate

RO: Radius of influence

B: Layer thickness

r Distance between a point and the pumping well
The following assumptions apply: the well is pumped at a constant rate; the aquifer is
homogeneous and isotropic with an infinite horizontal extent; the well fully penetrates the
aquifer; and water is released from storage in the aquifer or other underground material in
immediate response to a drop in water table level.
In the case of a multi-layered aquifer, the effective permeability can be calculated under

the previous assumptions using equation [3].

75

(3] B
Where:

K: Effective permeability

Ki: Permeability of layer i
Bi: Thickness of layeri
B: Overall thickness of aquifer

5.3.1.2 Muiti-Well Analysis

Another important concept is the cumulative drawdown principle. Essentially, if the
drawdown in the aquifer is a small percentage (about 10-20%) of the aquifer thickness,
the effect of each well can be superimposed on the other to determine the cumulative
effect. This also applies to unconfined aquifers. Therefore, for multi-well systems,

drawdown is given by equations [4] and [5].

D=MxH—Z\/H1-[2 xln(ﬁD
r-K r
[4] J L. j=ltoM

Unconfined aquifer.

[51 o -2}:{1‘1 { MQJKB xm[iflm j=lto M

Confined aquifer.

Where:
M: Number of pump wells
H: Original water table level
K: Effective permeability
76

B: Layer thickness
Qj: Pumping rate of well j
Rj: Influence radius of well j

: Distance between pumping well j and the observation point

5.3.1.3 Simulation Engine Implementation

The described mathematical formulation is implemented as a computer function which
accepts as inputs all relevant data such as site characteristics (original water table level,
aquifer type, depth, and effective permeability), pumping wells characteristics (influence
radius, pumping rate and position within the site), and the position of the observation

point. The function’s output is the predicted water table level at the observation point.

5.3.2 Modeling Module

The modeling module encapsulates all data provided by the user and provides a graphical
user interface for the definition, manipulation and viewing of this data in a variety of
formats. This module was designed using an object-oriented approach under an event
driven graphical user interface. Construction of a dewatering model is performed by
incrementally adding objects and defining their properties. For example, pumping wells
are added by selecting the appropriate icon from a toolbar and then selecting the desired
position within the site. Any object on the screen can then be manipulated using standard
“click-and-drag” techniques to modify its position or by “double-clicking” to access its
graphical dialog box. A sample model definition is shown in Figure 5-3. The main
toolbar at the top of the figure is used to access support functions such as saving, loading

and printing. The secondary toolbar below is used to select the type of object to create.

77

The following subsections will provide a brief overview of the main modeling module
classes and their functions.

fle Edt View Seting fBun Help

Diole| @[mlcke):ls uelels] 2 i

%= 14969 ;

K e

e @ L =

s

b e @
2000.00
Shuc;(l.ue :

...

...

Figure 5-3 Main Object Definition and Manipulation View

5.3.2.1 CPumpingWell

This class encapsulates the properties of a pumping well and provides graphical
manipulation capability through the dialog box shown in Figure 5-4. The pumping well
properties are the influence radius (Rj), the well pumping rate (Qj), and the capacity (Cj).
The capacity (or maximum pumping rate) of a well is used for the optimization module,

which will be discussed later in this paper.

78

- —

w. Pumping Well Information E3
— Proberti

Influence radius (m} l__
Pumping Rate (L/min] l—

Max. Pumping Rates [L/min) —————

=

Figure 5-4 CPumpingWell Class Dialog Box

5.3.2.2 CBlock

The “CBlock™ object represents a three dimensional construction excavation area within
the dewatering site. The length and width of the block object are defined by first selecting
the “CBlock” icon from the secondary toolbar previously shown in Figure 5-3, then
defining the affected area by clicking and dragging the mouse. The “CBlock” dialog box
shown in Figure 5-5 can then be used to manipulate the other properties consisting of the
depth of excavation and the safety margin. The safety margin is used for optimization

and will be discussed later.

w. Block Information !EI!I!

Depth (m] o

Safety Margia (m) . [1.00
ey

Figure 5-5 CBlock Class Dialog Box

79

5.3.2.3 CSite

This class encapsulates site level information and acts as the coordinator between all
other classes. Site level information, including layer data is defined through the graphical
dialog box shown in Figure 5-6. General site data consists of the overall site dimensions
as well the original water table height (H). Layers are added and deleted using the
bottom portion of the dialog box. Layer data consists of the thickness (Bi) and the
permeability (Ki). “CSite” acts as a “container” class for the “CPumpingWell” and the
“CBlock” objects and provides functions for the creation, manipulation and deletion of

these objects.

Original Water T able Levelm)

™ Site Layout (m] ;
width (X deection} [0 ;
HeghtY drection} [3 |
~ Layers ;
: NumberofLayers [|
Thickness{m) e

Pemesbilyiw/sec) [~ |
Delete] _#dd | Pre. | New| !

. _Hep | Concel| OK |

Figure 5-6 CSite Class Dialog Box

“CSite” also provides graphical display functions to represent data in a variety of formats.
The first is the standard editing view previously shown in Figure 5-3. The second view
allows users to examine a horizontal or vertical cross-section of the site at any point.
Figure 5-7 illustrates a vertical cross-section across pump 3 from the model shown in

Figure 5-3. The third view is a contour representation of the water table level while the

30

fourth view is a three dimensional representation which can be used for presentation

purposes.

20.00

~15.00

Height (m)

71000

~5.00

.00

Figure 5-7 CSite Cross-Sectional View

5.3.3 Translation Module

The translation module handles the communication between the the modeling module
and the simulation engine. It performs this function by first extracting the data from the
object-oriented representation, invoking the appropriate simulation routines with
parameters representative of the extracted data, then passing the results back to the
modeling module. Although this module is shown as a separate logical entity in Figure
5-1, itis, in fact, implemented as another set of member functions of the classes presented

in the previous section. Translation is performed when the user requests that the module

81

be simulated by selecting “run” form the main menu. A pseudo code format of the

translation algorithm is as follows:

1) Initialize a two-dimensional array to represent the water table level throughout the
site at user-defined discrete intervals.

2) Calculate the effective permeability (K) using equation 3 for all layers contained in
the “CSite” object.

3) Collect the pumping well information from all “CPumpingWell” objects.

4) For each array element initialized in step 1 representing a geometric position within
the site, calculate the water table level by invoking the simulation engine function
with the parametres obtained from steps 2 and 3.

At the end of the fourth step, the two dimensional array contains a representation of the

water table level throughout the site. This information is passed back to the “CSite”

object where it is used to initialize the cross-sectional, contour and three-dimensional

views.

5.3.4 CSD’s Integration Support

Integration support was identified as a key feature of the system in order to reduce data
entry and redundancy and automate certain tedious processes. To illustrate the
application of integration principles to the developed application, an optimization module
was developed and linked to CSD. The purpose of this module was to provide the user
with an alternative to iterative what-if analysis. Without automated optimization, the user
is forced to manually set the desired pumping rates, perform the analysis, and then exam
the results to ensure that the predicted water table level lies below the required excavation

level.

The main objective of a dewatering analysis is to obtain the minimum pumping rates that
satisfy given drawdown requirements throughout the excavation area. Aziz et al. (1989)
presented a computerized method for determining the optimal pumping rates that meets
user-defined drawdown requirements. In their model, these requirements are specified
using the notion of a “watch well”. The watch well represents a constraint on the water
table level at a single position within the dewatering site. Equation [6] shows the system
of equations used to predict the drawdown at the specified observation or “watch well”

for an unconfined aquifer.

. R
D, =MxH-z H" - 9 xIn| —~
] r-K 5 . .

[6] i=ltoN and j=1to M
where

N: Number of observation points

Di: Drawdown at observation point i

rj: Distance between observation point i and well j

The system of equations is then solved and the resultant solution vector represents a set
of pumping rates that minimizes the distance between the predicted and desired water
table level. One of the drawbacks of this model is that it produces negative pumping
rates for certain arrangements of wells and requires that the number of observation points
be the same as the number of pump wells.

To overcome these limitations, an alternative mathematical optimization model was
developed. The objective function minimizes the pumping rate of the entire system while

satisfying the desired drawdown requirements. This method defines the model in such a

83

manner that the predicted drawdown at the observation points can meet or exceed the

desired level. Further, there are no limitations on the number of observation points. The

mathematical model is non-linear in the unconfined case and linear in the confined. The

complete mathematical formulation is as follows:

Minimize 2 Q’

subject to

If aquifer is unconfined

s et

If aquifer is confined

Q20

Number of pumping wells

Number of watch wells

M

N

H: Original water table level
K Effective permeability

B

Aquifer Thickness

Cj: Capacity of well j (maximum pumping rate)

Qj: pumping rate of well j

Fori=! to N and j=1 to M

Fori=l toNand j=1to M

Forj=1toM

Forj=1toM

84

Rj: Influence radius of well j
nj: Distance between “watch well” i and pumping well j
Di: Desired drawdown at “watch well” i

Implementation of the optimization module and its integration code required the

definition of additional properties for the “CPumpingWell” and the *“CBlock” classes.

For the *CPumpingWell” class, the maximum pumping rate property was added to allow

users to specify a maximum limit which acts as a constraint on the optimization model

(Cj). The safety margin property was added to the “CBlock” class to allow users to

extend the drawdown requirement beyond that implied by the excavation depth. The

combination of excavation depth and safety margin are used to obtain the overall

drawdown requirement (Di).

When optimization is requested by the user, a second translation module is initiated to

prepare data to be passed to the optimization engine. The algorithm for this module is

summarized as follows:

1) Create an array of watch wells based on the definition of the “CBlock” objects. Note
that each “CBlock™ object could result in the creation of numerous watch wells
depending the area covered and a user-defined increment. For example, if the length
of the “CBlock” object is 10 metres, the width 5 metres and the increment set at | m,
the number of watch wells created is 50. The drawdown requirement of each
generated watch well is generated from the sum of the depth of excavation and the
safety margin.

2) Calculate the effective permeability (K) using equation 3 for all layers contained in

the “CSite” object.

85

3) Collect the pumping well information from all “CPumpingWell” objects.

4) Pass the information obtained from steps 1, 2 and 3 to the optimization engine and
initiate optimization.

5) Upon successful completion of step 4, obtain the optimal pumping rates and pass
back to the “CpumpingClass” objects.

The optimization engine uses the Generalized Reduced Gradient Method (Lasdon et al.

1978) nonlinear optimization algorithm to solve the formulated mathematical model.

5.4 Case Study

CSD is used to complete a dewatering analysis for a project. The objective of the first
experiment is to verify the accuracy of the steady-state model. The second analysis is
performed to demonstrate the advantages of using a special purpose simulation

environment for decision making.

54.1 Project Information

Hydrogeologic data obtained from the site indicated the presence of a water table 11
meters below the surface. Further, a silty-sand aquifer and fine to medium sand aquifer
was identified from the soil borings. The sand aquifer was found at a depth of 13 meters
below the surface. The top 13 meters consisted of a clay layer. Two pumping tests were
conducted for the sand aquifer; they provided two important parameters: Transmissibility
(T) =6.8 X 10 -4 m2/s and Storativity (Cs)= 5 X 10-4. A summary of this information is

shown in Figure 5-8.

86

0

Surface Level

x Original Head

15 D

'y : | Depth=30

Sand and Siity Sand !
K=32.38 micron/sec

B=17

!
i
1
!
i
!
i

l§ —— ——————
<

? v
NIRRT

Figure 5-8 Soil profile in excavation area for case study

The construction project required that the water table be lowered in order not to interfere
with excavation activities. A wellpoint system consisting of 23 wells penetrating to a

depth of 30 metres was used as shown in the project layout in Figure 5-9.

87

35 metres I's

-
e

ONOCNONONONGONONCNONONONONONONG,

®6e ® 375 metres

Figure 5-9 Pumping well layout for case study

Piezometer data taken before and during the pumping operation indicated that the water
table on the northeast part of the project was lowered by an average of 3.7 meters within
24 hours. Total pumping rate of the system was approximately 1,400,000 litres per 24-

hour day.

§.4.2 Simulation Engine Validation

General project information is entered as stated in the project specifications and as
determined from the hydrogeologic data. The model uses the confined drawdown
equations since the clay layer is relatively impermeable. Twenty three pumping wells are
then added in the arrangement shown in Figure 5-10. The permeability of the sand

aquifer is calculated as follows:

T _ (1.000,000)(0.00068) _

B 17 micron per second

K=

where

88

T Transmissibility

B Sand Aquifer thickness

------ R200- (0 g2 --++=5-- =g e e g e fe g o e
G O Y YUUSUUE SUUUR SO SV SR IUUN SO S O S [T .
N

E® Structure Structure

LR
N RGO ®®®®®®'® OO O
O] 00 1200 /200 200 20 60 W R0 R0 20,20 20 20 Q0 200
-.';?:ti! '"""?""E'--°?°'--’:----7°"-‘.""".""'.""'.
@ @ @ ' i\ Pumping rates in L/min

syttt 42m’42m' 42m""""7""7'"'1""‘."'“"'".'"“.“"‘.""'.'""“"'.""".‘”
0 100 150 200 250 300 350 400 450

(Metres)

Figure 5-10 Representation of Case Study Data in CSD

Project documentation did not record the water flow from each pump. This is
understandable since all the pumps are usually linked into a single discharge line. To
account for this, it is assumed that during the dewatering operation, all pumps were
operating at the same maximum rate. Since the actual total pumping rate was 1,400,000
litres per day for 23 pumps, the pumping rates of each pump is assumed to be
approximately 42 litres per minute.

As indicated by Equations 1 and 2, the influence radius is an important parameter of the
equilibrium equations. Powers (1981) explains how an adapted form of Jacob’s formula

can be used to obtain an accurate estimate.

89

Re=r+ —Tt—+Rn
[7] V Cs

Where
RO Radius of influence
rs Equivalent radius obtained by assuming the entire system acts as a single
large well. In this case, rs is estimated to be 20 metres (see Figure 5-10).
T Transmissibility

t Time available to achieve steady state.
Cs Storativity constant
Rl Adjustment for possible recharge into aquifer.

By substituting the known values into the equation, the following is obtained:

(0.00068)(86400)
(0.0005)

=363
metres

Ro-Ri=20+ ‘j
The estimated recharge constant (R1) cannot be obtained from the information provided
in the survey data. Further testing and surveying of the outlining areas is required in
order to determine the possible effects of various recharge sources such as rainfall,
snowmelt, nearby rivers, and sewers. For the purpose of this paper, R1 is assumed to
have no effect (i.e. Radius of influence= 363 metres).

After the construction of the CSD model, the analysis was performed. Then, the water
table level at the point of interest was compared to the actual water table level. By
moving the computer mouse to the location marked by *“X” (see Figure 5-10), the

predicted drawdown can be obtained. CSD predicts a value of 3.95 of metres as

compared to an actual value of 3.70 metres. The 6% error could be due to inaccuracies in

90

the hydrogeologic data or lack of adjustment for recharge. In the absence of complete
data, a 6% error is considered acceptable.

By using CSD’s powerful graphing capabilities, the water table throughout the site can
now be viewed. Figure 5-11 overlays the contour plot over the site layout. The values

indicate the water table level as measured from the bottom of the aquifer.

170

110

90

60

Figure 5-11 Contour-View of Water Table Level Throughout Site for Case Study

54.3 Demonstration of CSD’s Advantages in Decision Making

The advantages of using an integrated optimization model are now demonstrated. The
same information used in the previous section is used to examine whether all pumps

should be operating at the given pumping rate. The objective is to minimize the total

91

pumping rate of the system to order to minimize discharge costs. The other objective is
to minimize the number of pumps in order to reduce drilling and operating costs.

The optimization model requires the capacities of the pumps (i.e. maximum pumping
rate). All these values are set to the observed operating level of 42 litres per minute.
After performing a mathematical optimization, CSD predicts that two wells in the west
side of the area should have a pumping rate of zero indicating that they are not required.
Furthermore, another set of wells is operating below the maximum capacity. According
to CSD, the total pumping rate of the system would have been reduced to 847 litres per

minute or 1,220,000 per day if the suggested optimized setup was used.

5.5 Conclusions

A computer application has been presented for the analysis of construction site
dewatering projects. The tool was validated as part of a detailed case study. Several
features allowed CSD to be successfully implemented. In particular, it was observed that
any simulation tool for dewatering type applications should adhere to the following
guidelines:

1. Users should not be required to posses strong expert knowledge in the field of
hydrology to use the system. This means that the modeling environment should allow for
the creation of models using simple and basic constructs such as wells, layers, and
excavation areas.

2. Users should be able to build models based on site data obtained from standard
hydrological surveys.

3. The modeling environment should be user-friendly, intuitive and highly graphical,

allowing for the construction of dewatering models in a relatively short period of time.

92

4. Analysis results should be of relevance to a construction practitioner. This is
especially crucial if the results are to be used for cost-estimating purposes in a tendering

environment.

93

Chapter 6 — Phase One Research Findings'

6.1 Introduction

The previous three chapters presented the successful application of computer simulation
technology to three distinct construction applications. This research demonstrated the
applicability, effectiveness and practicality of using simulation theory for planning
construction related projects. These case studies lead to the formalization of the basic
requirements that such tools must posses in order to be successfully implemented in an
industry setting. Their limitations also helped in identifying further issues, which would
have to be addressed to order to increase their effectiveness. This chapter will discuss
both these requirements and limitations in general.

The identified basic requirements can be grouped into five categories and will be
presented in separate sections (section 6.2 through 6.6). An analysis of the observed

limitations is provided in section 6.7 .

6.2 User Interface

The user interface plays a large role in determining the usability of the tool. A graphical

user interface helps in explaining the structure of the developed models and makes it

! A version of this chapter was published as “A Framework for Applying Simulation in
the Construction Industry” in the Canadian Journal of Civil Engineering, Volume 25,

Number 3, June 1998.

94

possible for people with minimal computer skills to use the tools. Specifically, it was

observed that the user interface should have the following properties:

1. Visual iconic elements for describing the model. The modeling elements should use
graphical representations of objects within the domain (e.g. Road in AP2-Earth,
crusher in CRUISER and a pumping well in CSD). A close mapping between the

actual system and these icons is essential.

1

A free format for modeling which resembles a "sketching board” approach on a
computer screen. In AP2-Earth the user is free to specify roads, source locations,
dump locations, equipment etc. in a flexible manner which does not force her to
follow a rigid framework or series of structured steps. Following these steps results
in simple model building process that is non-linear and extremely flexible in terms of
object manipulation. Users are able to freely navigate between the various stages of
model construction without any limitations.

3. A user-friendly and robust interface providing error detection and facilitating tracking

of logical problems within the model.

6.3 Modeling Philosophy

Modeling is the process of defining the various simulation components, their properties
and their interactions. The structure of the model determines the flow of the underlying
simulation code. It was observed that users must not be exposed to the underlying
simulation model constructs. The tools should abstract these constructs and provide a
high level environment where modeling can be done in a natural manner. For example, a
traffic interaction situation in AP2-Earth is supported through the “Intersection”
modeling element. This element encapsulates the low-level simulation resources, entities

95

and events, which are required to model an intersection. Validation of model properties
and structure should also be performed in the user-friendliest fashion. This means that
errors should be reported as soon as they are detected. For example, providing an invalid
crusher setting in CRUISER should be trapped and reported immediately through a

dialog box.

6.4 Simulation Execution Approach

The simulation engine is responsible for processing the simulation code generated by the
modeling environment. The three developed tools employ different type of engines.

AP2-Earth uses a discrete-event simulation algorithm where events are processed based
on the defined activities and the logical relationships between process components and
availability of resources. Systems modeled using this approach are dynamic in nature.
The translation of the visual earth-moving model into data that is usable by the engine is
the responsibility of the modeler. An example of how this is done for the hauling process

is demonstrated in Figure 6-1.

96

[PLatErgn? oAga
[OUring | PREACMED T OMPACTIBN
= '

Int 2 D(]———i Start
Segment

Request

Intersection

Free
Intersection

‘ Check
‘ “—!| Production

&

v
Int 4 D(] Int 3 D(]

Figure 6-1 Translation of High Level Model to Discrete Event Representation

CRUISER uses a static simulation algorithm, which is driven by prescribed processing
flow that is not dependent on time or interaction of resources. The objective of the
simulation engine is to sequence a variable number of analysis operations with dynamic
relationships. The approach is similar to AP2-Earth except that the algorithm is different.

The visual model is first translated into useful data for the engine to process. The data

97

primarily represents what equipment and settings are used and how the material flows
from the source to the end product pile. The processing is performed using an event
queue. The algorithm simply determines the next event or tasks, which must be
performed in accordance with the user defined plant layout. Each scheduled event holds
information pertaining to the type and identity of the equipment being modeled. Detailed
implementations were discussed in section 4.3.9.

In CSD, the user-defined model is first translated to the equivalent mathematical
representation by mapping the visual components into the equivalent mathematical
model. Next, the resultant system of equations is evaluated. Finally, the results are
provided using various reports that can be accessed from the modeler. A sample report

was previously illustrated in Figure 5-11.

6.5 Simulation Result Representation

Utilizing simulation tools is an iterative process where models are built, simulated and
continually refined to achieve the desired results. Simulation results provide the
information needed to evaluate a given simulation experiment. It has been observed that
the content, format and presentation of results must be tailored to the specific domain of
the tool. For example, AP2-Earth employs a list of standard and detailed reports that can
be used to quickly analyze the overall performance of the model in terms of activity
productions or detailed results such as individual queuing statistics at intersections.
Reports in CRUISER and CSD use formats that appeal to their respective industries. The
CRUISER reports provides information regarding the gradation of the “product” piles,

which is significant for operations of general pit mines. The CSD reports include chart

98

representation of the final water table level resulting from use of the pumps determined

by the simulation engine.

6.6 Integration Requirements

A great factor in the successful implementation of all tools at construction companies was
their capability to integrate with existing systems. This reduced the overall data entry
requirements and allowed the simulation results to be viewed directly as part of systems
that users were already accustomed to. For example, in order to make AP2-Earth
appealing to an earth-moving contractor, it was given the capability to generate

information for use by a cost estimating module.

6.7 Conclusions

This chapter outlined the key features of three specialty simulation tools that led to their
successful implementation with collaborating construction companies. The next phase of
the research involved an initial assessment of further needs in construction simulation.
These needs, combined with the identified features, eventually lead to the development of
the unified modeling methodology, which will be presented in the next chapter. The
results of the analysis of the three developed systems revealed the following issues:

e Modeling of large construction projects, which include a multitude of fundamental
construction operations, cannot be easily performed solely with standalone specialty
tools. There is a need for a concept that can combine models based on several tools.

e Simulation model development is a time-consuming activity, even when specialized
tools are used. There is a need for an approach that heavily supports and even

encourages the reusability of constructed simulation models.

99

Simulation tools require a large amount of input data. Some of the input data can
only come from the user’s knowledge; the remainder can typically be retrieved from
other company systems including historical databases, accounting systems, equipment
databases and CAD systems. An approach is required that can provide seamless
support for integration with other company systems.

Simulation tools also generate a large amount of useful results. There is a need to
standardize the content and the format of the generated output in order to maximize
its effectiveness and utilization in planning construction projects.

Large amounts of expertise, experience, and time are required for development of
new specialty tools. An approach is needed whereby the development of these tools
is greatly simplified. This will greatly minimize the amount of the initial investment

and increase the use of simulation in general.

100

Chapter 7 - Unified Modeling Methodology

7.1 Introduction

A unified modeling methodology has been developed to address both the requirements
identified in the first phase of the research and the further identified issues. This
methodology, illustrated in Figure 7-1, unifies several state-of-the-art concepts with other

concepts developed as part of this thesis.

Figure 7-1 Unified Modeling Methodology and Contributing Concepts

101

The concepts and methods followed in making the unified modeling methodology work,
will be discussed in the rest of this chapter. Section 7.2 through 7.7 will discuss each
contributing concept individually. Section 7.8 will then discuss the approach followed

for their unification.

7.2 Special Purpose Simulation Modeling

7.2.1 Introduction

With general-purpose simulation (GPS), simulation models are constructed using a set of
abstract building blocks such as queues, activities, branches, and statistical collection
nodes. An example model of a simple construction operation built with CYCLONE
elements is shown in Figure 7-2. Simulation results are limited to queuing statistics,
average waiting times and resource utilization. Any desired custom statistics must be
explicitly declared using the existing statistical collection nodes. Also, in numerous
cases, further modeling is required in the form of programming code inserts. This is due
to the fact that even with abstract building blocks, there is still an inherent level of

expressive limitation.

Prionty (10}

Prionty (Q) I

Figure 7-2 Sample CYCLONE Simulation Model

102

GPS provides a highly expressive modeling environment but forces the modeler to think
in abstract terms. Developed models consist of a logical description of the process
without explicit mapping to real life components. This feature of GPS coupled with the
frequent requirement to write programming code means that simulation is mainly limited
to the academic and expert arena.

It has been discovered through industry collaboration and research that the modeling
environment must be tailored to the specific requirements of the intended construction
domain. This led to the development of the alternative concept of special purpose
simulation modeling (SPS). Through specialization, a simulation tool’s usability outside
its intended scope becomes limited. However, the benefits far outweigh any loss in
flexibility. Computer tools conforming to the ideas of SPS enable a practitioner who is
knowledgeable in a specific construction domain, but not necessarily in simulation, to
model a project within that domain in a manner where graphical representations,
navigation schemes, specification of model parameters, and representation of simulation
results are completed in a format native to the domain itself.

The underlying assumption with SPS is that a knowledgeable developer can develop a set
of specialized modeling elements or building blocks for a given domain which are easy to
understand and flexible enough to allow someone else to construct simulation models in
that domain. The ability to model different scenarios is supported by the fact that the
developed modeling elements support the concept of parameterized modeling and
flexible layouts. This means that the generated simulation code is based on the defined
layout as well as the supplied parameter values. This assumption is easily satisfied in

construction simulation because a great deal of construction processes can be well scoped

103

and specified for the purpose of a SPS tool. Examples of processes already investigated
in the first phase of this research are earth-moving, aggregate production, and dewatering
operations. Other processes that have been identified as potential candidates for a SPS

application are road works, paving and tunneling operations.

7.2.2 SPS principles

Research from the first phase identified three fundamental requirements that a given
simulation tool must satisfy to adhere to the principles of special purpose simulation.
First, the set of available modeling elements must map to real physical or logical
components of the target process being analyzed. For example, an aggregate production
plant model is built using a set of modeling elements that include crushers, screen decks,
and sieve analysis nodes. With this approach, the modeler is no longer limited to the
abstract set of modeling elements. Instead, a relevant and specialized set of modeling
elements is available for building models in an intuitive and direct manner.

Second, the model parameters should be specialized and associated with the modeling
element they correspond to. Parameters are properties of the model that the user can
change to customize the behavior of the simulation. By associating parameters with the
modeling elements, users can directly and intuitively navigate to the desired parameters
in order to change their values. For example, in an aggregate production SPS tool, the
user should be able to change the setting of a given crusher by accessing the parameters
of the crusher modeling element rather than through some common global parameter
listing. The data entry process associated with setting the parameter values should be as

user-friendly and intuitive as possible. Different types of parameters such as numeric,

104

text, Boolean and array should also be allowed. Validation of parameter values should
also be performed as soon as possible to reflect model constraints.

The third requirement stipulates that all the potentially useful statistics and results must
be generated and made available to the user through the modeling elements. With GPS,
statistics and other results are presented together on one or more large reports. The
drawback is that the user must navigate a long list of generated outputs in order to find
the desired results. Further, some of the generated data will typically require further
analysis. This lengthens the “What-If” analysis cycle and reduces the effectiveness of the
tool. SPS stipulates that generated results must be in a format that is easy to navigate and
is of immediate use for evaluating model performance. This means that no separate
analysis should be required and the results themselves should be accessed through the
associated modeling elements, which had a primary role in their production. Further,
results must consist of the traditional GPS types of information such as averages,
standard deviations, histograms and confidence intervals, as well as specialized
information related to the domain. For example, a sieve analysis element in the aggregate
production SPS tool should generate the results of the analysis as a gradation graph. An

example of this graph is shown in Figure 7-3.

105

Cumulative Pe.rcent Retained

“100 100
AT]
80 et 80
//
"/
60 s 60
’/
//
40 40
//

[] // [
20 20
0 0
s 0w & n & £ & £ £ £ 5 S S S
£ELiEiiirezzezeiezs
2288 28RBERRr- < o= s N
© © N N ¥ ¢ w % CO S I
- E Ea=a=

- L M N N - ™ - -

Figure 7-3 An Example of Generated Simulation Output in a Graphical Format

7.2.3 Model-Reusability through SPS

One problem that has been identified with traditional simulation systems is a lack of
support for simulation model-reusability. The SPS approach directly supports the
concept of model-reusability through the specialized modeling elements themselves. A
SPS tool is merely a template of modeling elements, each of which encapsulates
parameterized simulation code. The generated simulation code for the entire model,
which is used to run the simulation, is a function of the model layout as defined by the
user and the supplied parameter values. Each time the user builds a SPS model and runs

it, the simulation model of the base modeling elements is, in fact, being reused.

7.2.4 SPS Limitations

Special purpose modeling does have limitations. First, the user is limited to the available
set of modeling elements. This initial set of modeling elements is designed to be flexible

and reusable within a target domain and subject to a defined scope. If a situation arises

106

within that domain that falls outside the defined scope, the user must resort to complex
workarounds or she may be unable to use the tool at all. This places a heavy burden on
the SPS tool developer in foreseeing all potential scenarios, which is a very daunting if
not impossible task. This is why SPS modeling is best used in combination with other
concepts such as modular and hierarchical modeling, as will be explained later in this

chapter.

7.3 Graphical Modeling

7.3.1 Introduction

A major component of simulation systems is their user interface. Text-based interfaces
require the user to create and manipulate textual representations of the model. This
requires knowledge of the embedded syntax and, while perfectly adequate for the
experienced modelers, is generally difficult for novice users. Graphical user interfaces
(GUI) simplify this process by allowing the user to view and manipulate a given model
without having to resort to editing textual representations. With GUISs, the basic tasks
are centered around both mouse and keyboard operations.

Graphical modeling combined with special purpose modeling results in highly intuitive
user interfaces. Constructed models resemble a flowchart of the modeled process. This
has the added benefit of allowing the graphical representation to be used as a means of
communicating the construction method specification.

Graphical modeling includes both graphical manipulation and graphical representation.
The next sections will provide guidelines on the use of a GUI for simulation modeling

systems.

107

7.3.2 Graphical Model Manipulation

One aspect of graphical modeling is graphical model manipulation. This is done using an

interface that resembles a drawing board where modeling elements are added,

manipulated and related on a modeling layout window. The following is a list of basic

manipulation activities:

e Addition and deletion of modeling elements through a toolbar or a menu.

e Manipulation of element positions by clicking and dragging the iconic representation
of elements on the layout window.

e Manipulation of parameter values through an attribute dialog box, which is activated
through a menu item or a mouse double-click.

e Manipulation of relationships graphically through mouse operations.

7.3.3 Graphical Representation

7.3.3.1 Modeling Element Representation

Modeling element are made to resemble the corresponding physical or logical real world
element. For example, a jaw crusher in an aggregate production simulation tool will be
graphically represented as a bitmap resembling a real jaw crusher. Similarly, a task in
CYCLONE is made to resemble a square.

Representation of the relationships between modeling elements is also done graphically.
Different SPS domains may require different types of relationship representation. For
example, in an aggregate production type of simulation, relationships are represented

graphically to appear as conveyors (Figure 7-4A), whereas in an earth-moving

108

simulation, relationships are represented graphically as either logical arrows or as simple

highlighted circles (Figure 7-4B).

(A) (B)

Aggregate Production SPS Earth-Moving SPS

Sieve Analysis Element

Relationship Representation

Figure 7-4 Examples of Graphical Representation of Relationships in Two SPS

Taols

7.3.3.2 Output representation

As part of the modeling element representation, certain state information can also be
displayed. State information is based on the values of the supplied parameters, outputs or
statistics. This helps the modeler in maintaining a good abstract view of the model
during and after its development. For example, notice how in Figure 7-4A, The “Sieve
Analysis” modeling element displays the feed rate underneath the bitmap representation
to provide quick visual feedback to the user.

The complete list of available output and statistical analysis data is accessed through the
element’s attribute dialog box. Modeling elements generally generate numeric or textual

data as well as tabular and graph-based outputs. For example, the “Sieve Analysis”

109

element can generate a graph representing the product gradation. Statistical analysis
results can also be displayed in a similar manner. With graphical modeling, collected

observation can be displayed graphically as a histogram.

7.3.4 Issues with Graphical Modeling

Graphical modeling is an extremely beneficial concept for streamlining the modeling
process. It is especially beneficial for novice users. It is mostly suited for relatively
small models with a reasonable number of elements. As models become large their
maintenance, through the GUI, becomes highly cumbersome and difficult to manage.
This issue can be partly solved with the modular and hierarchical modeling concepts. A
more powerful and flexible solution is to provide the model builder a facility to override
the graphical user interface and resort to a supporting script-based interface if desired.
To do this, a scripting environment must be supported wherein the user can both perform
all the functions that the GUI performs using textual commands and have access to
traditional programming structures, including conditional and looping statements. This

concept is discussed in more detail in Section 8.6.

74 Integrated Modeling

Integrated modeling is a concept that defines how a simulation tool can access
information in other systems to automate or support the model building process and
generate information for use by other systems. The two main issues involved are the
actual mechanics of the transfer mechanism, which can be handled through a database
approach, and the nature and format of the exchanged data, which can be handled through

data exchange standards.

110

7.4.1 Data Storage Format

Database management systems, as a alternative to flat files, have many advantages
including support for multi-users, advanced data-based security, integrity checking, and
centralized management of large amounts of information. Relational database
management systems (RDBMS) are based on relational theory and are widely used in
many areas of construction information systems, including cost estimating, scheduling
and project control. Tapping into the wealth of information stored in these systems can
greatly reduce the effort involved in building simulation models. This is can be
accomplished by providing relational database access capability to the modeling elements
themselves. Consider, for example, a truck element that requires the user to supply eight
parameters that determine its travel speed given the total resistance of the haul road.
Instead of requesting this information from the user each time, a standard table stored in a
RDBMS can be automatically accessed. The user only has to select the truck type and
the simulation system takes care of extracting the relevant information.

In addition, other systems should ideally be able to access the simulation results for
automating their respective tasks. For example, a scheduling system should be able to
extract activity duration from a simulation model. RDBMS can play a large role in
making this possible. By storing the simulation models and results in the shared database
itself, as opposed to a proprietary format, other applications can access this data directly.
The RDBMS takes care of all the concurrency and access restriction issues.

An alternative method for sharing simulation data is through the concept of a documented

object library. Object libraries expose a public interface to all data in a simulation model.

111

Other systems can access the methods and properties in this library to extract and even

manipulate a given model. This method is discussed in further detail later in this chapter.

7.4.2 Standard for the Exchange of Simulation Data

7.4.2.1 Introduction

Traditional means of extracting data from simulation results for the purpose of creating
project estimates or schedules involved hard-coded knowledge about the structure of this
data. This meant that a separate interface had to be developed between each class of SPS
tools and each external system. Further, typical simulation results often lacked
potentially valuable information that could be generated for use by other support systems
with minimal extra effort.

Efforts to integrate earth-moving and aggregate production models with estimating and
scheduling systems have shown that a standard for data generation and exchange is
required. This standard should specify not only the format of the transferred data but also
the classes of data that should be generated from every SPS tool. This change in
viewpoints shifts the emphasis from the external systems to the simulation tools
themselves. The onus is then on the tool itself to deliver the appropriate information in
the appropriate format. By following this strategy, a single extraction utility can be
developed for each type of external system.

The developed standard defines how information should be generated in order to be
beneficial for external project planning systems. The actual analysis of the raw data
constitutes a body of research on its own and therefore, no attempt is made to define that

part in this standard. The generated information consists of basic facts about the

occurrence of planning-related events during the simulation. The interpretation and

analysis of the data is the responsibility of external integrated systems.

7.4.2.2 Information Categories

Information generated by each SPS tool during simulation initialization or processing

falls under the following categories:

e Activity Listing. This is a list of basic activities that will take place during
simulation. This includes the activity name, unit of measure and any hierarchical
relationships to other activities. This is the minimal amount of information required
to construct an initial project breakdown for use in an estimating or scheduling
system.

e Activity Resources. This is a list of resources for each activity that will be to be
utilized. This information can be used to identify the type of resources that should be
allocated for a given activity.

e Activity Cost Centers. This is a list of cost categories or centers for which cost will
be incurred.

e Activity Schedule. This is a list of records that indicate the start and stop times of
each activity. An activity can be stopped and started a number of times to signify
fundamental interruptions. This information can be directly used by a scheduling
system to obtain the total duration. It can also be used by an estimating system, which
requires the duration for calculating indirect costs.

e Activity Production. This is a list of records indicating the quantity of work
recognized for a given activity at a given simulation time. This quantity is provided

in the unit of measure of the activity. The production information along with the

113

duration of the activity is used to obtain the productivity values, which drives the
entire estimating process. The detailed production information available continuously
over a period of time can also be used for material management systems. For
example, a tunneling simulation tool might track its production based on the total
quantity of earth removed over time. A material management system could access
this information to provide a disposal subcontractor with a detailed spoil removal
schedule.

Activity Revenue. This is a list of records indicating the dollar value collected for a
revenue generating activity at a given simulation time. This information basically
provides a schedule of expected payments for the activity. This information, along
with the costing information, aids cash-flow analysis systems used for planning the
project and company finances.

Activity Resource Utilization. This is a list of records indicating the change in
utilization of a particular resource by a given activity at a given simulation time.
Resource level information provides a report of the expected resource requirements of
a particular activity as a function of time. This information can be used to optimize
equipment and labor allocations and minimize their idle time.

Activity Cost. This is a list of records indicating the cost incurred by a particular cost
center on a given activity at a given simulation time. This information can be used
directly by estimating systems or in association with revenue information for cash

flow analysis.

114

7.4.2.3 Information Format

As mentioned earlier, the ideal format for information exchange is in the form of a
relational database. This is mainly due to its features and wide use. As a result, the
generated simulation planning information is represented relationally as shown in Figure

7-5.

CSPL_Activity

Figure 7-5 Relational Representation of Generated Simulation Planning Data

7.5 Modular and Hierarchical Modeling

Modulanty and hierarchy concepts allow for the modeling of large and complex projects.
If used in combination with special purpose modeling, they allow for the linking of

models based on modeling elements of different domains.

115

The concept of modularity defines a framework where simulation code can be packaged
as a single unit and accessed through well defined input and output connection points.
Input connection points receive entities from other packaged units, process a number of
simulation events, then transfer the entity out through one or more output connection
points. Multiple input connection points provide different entry points into the
simulation code. They are used to generate multiple output entities or to support
conditional and probabilistic branching. An example scenario with two input connection

points and three output connection points is provided in Figure 7-6.

@ ————] Event | handler

@ \ Event 2 handler @
Event 3 handler @

Event 4 handler @

Figure 7-6 Use of Connection Points for Exposing Encapsulated Simulation Code

Modularity provides a benefit that is similar to the benefit of object-oriented languages:
one modeling element can be built without explicit knowledge of the inner workings of
the other elements. Entities traversing a given model through the connection points of
the elements are analogous to the messages passed between objects in an object-oriented

environment. Some elements will not have any input connection points. This usually

116

indicates that they will generate entities themselves. Generated entities are routed using
user-defined relationships between the connection points of the modeling elements.

With hierarchy, modeling elements can be created as children of other modeling
elements. This allows large, complex models to be built using the divide and conquer
approach. At the highest level, elements are created to represent high level operations
such as substructure, superstructure and finishing. Inside each of these high level
elements, further child elements are added to define the respective sub-operations taking
place. At the lowest levels, detailed simulation models are defined to model the various
fundamental construction processes. Elements that support the creation of child elements
act in a manner similar to regular elements; they have their own input and output
connection points. One important issue is how incoming entities arriving at the parent
element should be routed to the appropriate child element. This is done by creating
relationships between the input connection points of the parent and a given input
connection point of a child element as well as relations between the output connection
points of a given element child and the output connection point of the parent. An
example of how this is done is shown in Figure 7-7. The parent element behaves just like
any other element and can participate in relations with other elements, which may or may

not contain chiid elements of their own.

117

Element A

Element B : Child Element A | Thild Elmert A2
o oo AR
O

Element C

Child Blement A4

Child Element AY

1

ag

Figure 7-7 Utilization of Invisible Relationships for Routing Entities

The concept of hierarchy in simulation modeling can also greatly enhance the model
definition process. Child elements can be used in an unconventional manner as a means
of obtaining complex parameter data from the user. This supports the graphical modeling
concept, which defines how simple textual, numeric and array type data are obtained.
The mere existence of child elements with their own parameter values can be used as
information that guides the simulation processing of the parent element.

Consider, for example, a crusher element that receives through its input connection point
an entity representing the input stream and then generates an entity through its single
output connection point a new entity representing the predicted stream after the crushing
process. Crusher elements will contain a parameter indicating the desired setting of the
crusher. For each possible setting, the crushing analysis algorithm requires a table that
indicates the expected average performance of the crusher. This information must be
supplied by the user. In computer terms, an array of numbers is supplied by the user for
each possible setting of the crusher. A convenient way of having the user provide this
information is to add a child element inside the crusher element called “setting”. This

setting element encapsulates the expected gradation table for a single setting. During

118

simulation, the *“‘crush” element will access the information from the appropriate child
element depending on the user’s desired crusher setting.

As with special purpose modeling, modular and hierarchical modeling leads to increased
simulation model-reuse. While SPS encouraged model-reuse through flexible modeling
elements that can be used in a variety of scenarios, modular and hierarchical modeling
contribute to the regular model-reuse of existing elements or groups of elements. To
illustrate this, consider an earth-fill dam construction project. It is evident that an earth-
moving construction process will take place at several stages of the project. As aresult, a
single simulation model of an earth-moving process can be constructed and reused every
time it is needed within the simulation model of the entire project. It becames quite
simple to store these commonly used models in a user model library. which can be
accessed for use in a completely different project.

Another added advantage of these concepts is that they allow for the linking of models
developed with different SPS tools. Developers of SPS tools need only worry about the
high level general purpose connection point, which will synchronize the two high level
modeling elements representing the two processes. An example scenario of an earth-
moving process feeding an aggregate production process is illustrated in Figure 7-8. At
the highest level, a relation is established between two high level elements. The purpose
of this relation is to inform the aggregate production model of the arrival of a new batch
of earth following a truck cycle. Drilling down inside each high level element displays
the detailed specifications of each respective model. Dotted block arrows have been

added to illustrate the invisible relationships between child elements and the parent’s

119

connection points. These invisible relations are used to route entities as previously

explained.

Baxth Hevang .———9———0 Aggrsqgate Plang

Samulatien Samulatien

Figure 7-8 Use of Modularity and Hierarchy Concepts for Linking Multiple SPS

Tools

When the concept of SPS modeling was discussed, it was pointed out that SPS templates
can produce inflexible environments where the user is limited to modeling scenarios that
fit the initial scope defined by the template developer. This limitation is easily alleviated
by first developing an abstract template based on general purpose modeling paradigms
such as CYCLONE, then using the modularity and hierarchy concepts described to allow
users to supplement their specialized models with elements from the abstract template.
An example of a model that utilizes abstract elements to mode!l a regular maintenance

operation within an earth-moving model is shown Figure 7-9. The added sub-model

120

utilizes a branch type element to decide stochastically whether or not a truck should be
maintained. If the truck does not need maintenance, it is sent directly to the output port
element, which transfers the entity back to the earth-moving model. Otherwise, a
maintenance crew resource is requested and the maintenance activity is executed with a

stochastic duration. After the completion of the activity, the crew is released and the

truck is transferred back out.

.
.,

.,
v,
v,

o
..
.
.
.
.,

L, . L@

[
<\

%o
: Raquest ‘Crew® (1)

Figure 7-9 Extending a SPS Tool with the Help of Generic Modeling Elements

Task Py
Normat (60.00,15.00)

Balsase: 'Crew’ (1)

121

7.6 Issues of Tool Development and Utilization

7.6.1 Introduction

In the beginning, there were general-purpose simulators, which were difficult to use. In
construction research’s endeavor to increase the user base of simulation, simpler
modeling constructs have been created. However, simplification of those modeling
constructs resulted in their inability to model complicated situations. As a result, the
simple constructs were extended to give them more functionality and new constructs
were added. Further, some systems allowed for the definition of construct behavior in a
loose form such as a program script with dynamic capabilities. Ironically this trend
represents a cycle of development that leads back to full-blown general-purpose
simulation. The argument is that a user who is knowledgeable in the new and enhanced
environments should also be able to easily learn the general-purpose simulation
environment. The problem is that the development of simulation systems is a time
consuming and difficult task involving expert programmers who possess knowledge of
object-oriented development, database programming, and graphical user interface
development while also possessing an understanding of the construction process itself.

A hybrid concept was developed that redefined the roles and responsibilities of both the
tool developer and the tool user. This concept accommodates both novice and expert
users. Further, it allows for a flexible environment that allows users to do their own kind
of tool extension or development. The separation between the two groups becomes fuzzy
as developers utilize a simplified development environment while users have some
development capability. A symbolic representation of the various users and their levels is

illustrated in Figure 7-10.

Advanced

Developers
Novice
Developers
Advanced
Users Novice
Users
<.I..l.'. e09ssossen e !....‘.....OO......l...'.‘....‘...‘.0......>
Tool Tool
Development Utilization

Figure 7-10 Accommodation of Users and Developers with Varying Degrees of Skill

The idea is to provide a development environment that simplifies the process of creating
new tools and a modeling environment that allows and even encourages the use of

development type features.

7.6.2 Simplified Development

The development environment for new SPS tools is simplified as follows:

e A code library that encapsulates all the routines commonly required by simulation
tools is used. This includes discrete event simulation, graphical drawing, statistical
collection, tracing, and database access routines. This library is designed as an
application framework making it flexible and extendable. Application frameworks
are discussed in more detail in Chapter 10. By building this library, development
efforts that are not directly related to modeling are reduced and developers can focus
on optimizing the core modeling and simulation related code. Further, the library

becomes a sort of standard that is shared by the developed tools.

123

e New elements are defined by customizing a supplied generic modeling element that
comes with a wide range of default functionality. More information on the structure
of such an element is provided in the next section. By utilizing a common base
element, compatibility between developed elements, including those from different
tools, is an implicit process.

e The development environment itself is controlled and customized, allowing
developers to focus on providing the required information rather than getting lost in
the host of displayed features. This is demonstrated in Chapter 9.

e By broadening the definition of a developer through the streamlining of the
development environment, small and large companies can now afford their own
simulation tool development. This should lead to increased use of simulation for
project planning. Users who feel that the existing tools are limited or who believe
that a new tool is worth developing for a given domain can contact their local

information system group to get this done in a reasonable amount of time.

7.6.3 Flexible Modeling Environment

With the described approach, users are also treated as special developers; they are given
the ability to extend existing elements or even create new ones. This is done as part of an
advanced modeling environment by allowing users to write code inserts in the form of
programming statements in a manner similar to general-purpose simulation languages.
The language of extension is the same as the language originally used to develop the

elements. This means that users are in fact acquiring the knowledge to be developers.

124

In order to create new modeling elements as part of the modeling environment itself,
modular and hierarchical modeling concepts are used in association with a set of generic

set of modeling elements and a user element library. This was illustrated in Section 7.5 .

7.7 Object-oriented Modeling

Object-oriented modeling is based on the idea of object-oriented programming. It is
mentioned in this chapter as opposed to the system and implementation chapters because
it constitutes a critical part of the methodology itself. It is an enabling technology that
makes the goal of unifying all other concepts presented in this chapter reachable.

An object-oriented approach can be used for the representation of all structures of a
simulation environment, including the code library and the project information. The
result is an object library, which provides the means of accessing and manipulating
simulation projects. A graphical user interface simply provides an interface between
users and the library. This opens up the possibility of bypassing the GUI to perform
batch operations or to extract simulation data for use by other systems. For example,
assume that a given model requires the creation of fifty connection road segment
elements. Using the GUI, the user would have to create each element individually and
ensure they are placed and connected appropriately, a process which could take several
hours. Alternatively, users can choose to temporarily bypass the GUI and construct a
script to perform this task. This script might appear as follows:

Dim [as integer

Forl= 11050
AddElement “RoadSegment”, 100, I * 80

Next
For[=210 50

AddRelation Elements(I), Elements(I-1)
Next

125

7.8 Unified Modeling Methodology

7.8.1 Overview of Unification approach

It is proposed that the presented concepts be combined into a unified modeling
methodology through a generic base modeling element. This generic element would not
be directly used for modeling purposes. Rather, it would be used as the starting point for
specific modeling element developments. Implementation of new tools becomes a
simplified process where developers create the set of required modeling elements based
on this generic element. Another requirement is that the development process be
controlled, meaning that developers need only define what actions to take in response to
certain state changes affecting the respective modeling element. To further simplify the
development process, a toolkit development approach is advocated whereby several
libraries, called services, would be made available to developers for supporting common

tasks such as discrete event simulation processing and statistical analysis.

7.8.2 Generic Base Modeling Element

Using object-oriented language, the generic base modeling element is a virtual base class
that encapsulates data structures representing a host of information, including connection
points, parameters, outputs, resuits, and simulation resources. Class methods provide the
means t0 manipulate these structures and to perform other operations. Class events
provide feedback as to changes in the state of an element. Class properties, methods and
events that are related are grouped together as part of a class behavior. It is through these
behaviors that the concepts that make up the methodology take shape. Figure 7-11

126

presents the structure of the proposed generic base modeling element in terms of its

behaviors. Detailed information on the supported behaviors and their related properties,

methods, and events will be discussed in the next chapter (Section 8.2.2).
LB
General %I
&= | Relationships %
-} /
esa Hierarchy /
= | Simulation ‘/(‘
E 1 /
g. Integrity %
<. | Statistics /
=
A Planning //
Graphical User Interface

Figure 7-11 Behaviors of the Generic Base Modeling Element

7.8.3 SPS Tool Development

The development process for new SPS tools would involve the creation of the required
modeling elements and their customization. Customization of new elements would be
done by providing the set of actions, in the form of computer code, to be taken in
response to certain events. The generic base modeling element would also include
intetligence in the form of default implementations for most events. This would allow
developers to concentrate on the uniqueness of each element.

This proposed approach to tool development constrains developers to the provided

architecture of the system. This means that they can’t simply add a new behavior.

However, this architecture, through the generic base modeling element, becomes a kind

of modeling standard to which all new tools must conform.

7.8.4 The Support Libraries

Developers should also be able to access a set of pre-defined services during the
customization of new modeling elements. Services are code libraries that encapsulate a
set of commonly used routines for such tasks as discrete event simulation processing,
statistical analysis, tracing, and database access. The unified modeling methodology
stipulates that a set of support libraries must exist that allow developers to focus on
coding the core requirements of their tools. The actual transformation of these
requirements into actions is the responsibility of the respective service. The identified set
of libraries, also called services, required for SPS tool development and their
relationships to the modeling element behaviors are illustrated in Figure 7-12. Detailed
information on the proposed services and the functionality they expose will be provided

in the next chapter (Section 8.2.3).

Modeling Element Behaviors Support Services

[— | General Simulation 1

| Relationships Random Number Sampling 1
Hierarchy Tracing .

[Simulation Statistical Collection and Analysis [

| Integrity Planning]

— | Statistics Database Access |
Planning Graphical User Interface -

L— Graphical Modeling

Figure 7-12 List of Identified Services and Relationships to Element Behaviors

128

7.8.5 Simulation Modeling

A simulation model becomes a collection of instances of modeling elements. Figure 7-13
illustrates this definition. Modeling element instances of the same type (i.e. based on the
same modeling element) would share the same code and be differentiated solely by the

value of their properties.

Generic Base
Modeling Element

....."...",’.......

SPS__-~ %~ Todls
= L| A 4 4 ‘_4 g
=3 Modeling Modeling Modeling Modeling =,
o Element A | | Element B Element X Elemveﬂt Y ot
E : : | 9
S H Modeling
’: A Nél?;f:tg Element
Modeling Tdeling |instance x1[€ Y Instance V1
Element H Y
Instance Al ' Instance Bl .‘
Modeling I Modeling
——91 Element > Element
Instance A2 Instance Y2,
Simulation Model 1 Simulation Model 2

Figure 7-13 Structure of Simulation Models Based on the Unified Modeling

Methodology

7.9 Conclusions

The proposed unified modeling methodology presented in this chapter is based on several
developed concepts. Special purpose simulation modeling allowed for the development
of intuitive domain-based modeling elements. Graphical modeling allowed for the
simplification of the modeling process for novice users. Integrated modeling both
defined how information can be obtained from other systems through a relational
database management system and introduced a standard for the generation of project
planning type of data. Modular and hierarchical modeling allowed for the modeling of
large simulation projects, linking of models based on different SPS templates, and
empowerment of users with development capabilities. The hybrid tool development and
utilization approach explained how it is more beneficial for a simulation system to
support a spectrum of developers and users with different skills and how their needs can
be satisfied. Finally, object-oriented modeling was introduced as an enabling concept
that can bridge the gap between all the presented concepts and also allow for direct
access to the simulation projects through an exposed object library.

It is proposed that the unification of these concepts can be accomplished through a
generic base modeling element, which can be customized by developers for the creation
of specialized modeling elements. The development process would follow the toolkit

approach where several services support developers during the customization process.

130

Chapter 8 — Simphony Environment

8.1 Introduction

The methodology presented in the previous chapter was used to develop a construction
simulation system called Simphony. This chapter will provide a detailed description of

the various components of this system. A high level depiction of the overall environment

is presented in Figure 8-1.

External Systems
Estimating Other
System Systemns
¥ <

Modeling El
cl;r:’gm;mem || < : > (Simphony Designer)p
Construction
Simulation Project User Model
> Database Library
L 4 L 4

Simphony Editor <
(Project Editor)

2 -

Slrmpihemy

Simphony
Object Model
1Services)

N

\\\
User
Equipment Other
Database Danbases
External Systems

Figure 8-1 Simphony Environment

Developers utilize the Simphony Editor program to create SPS tools called “SPS
Templates”. This component was referred to as the “Project Editor” in the previous
chapter. SPS templates are a collection of modeling elements targeted for a single
domain. The term “Developer” will be used in the rest of this chapter to dencte any

person engaged in this process. Developed templates are stored in the Modeling Element

131

Library. Users utilize the Simphony Editor to create simulation models based on the
existing SPS templates in the Modeling Element Library. The term “User” will be used
throughout this chapter to refer to users whose primary role is building simulation
models. Constructed simulation models and their simulated results are stored in and
retrieved from the Construction Simulation Project Database. This is a relational
database management system that other systems can access to extract the desired
information. The User Model Library is another such database that is utilized by users to

store and retrieve reusable simulation models.

8.2 SPS Template Development and the Simphony Designer

8.2.1 Introduction

Creating new SPS templates involves the design and implementation of the modeling
elements that will be used to create simulation models for a given domain. The design
component is not a trivial task. It involves a complete understanding of the targeted
construction domain itself and the fundamental principles of SPS modeling. Section
8.2.5 will present a formal procedure that can be followed during the design stage.

Once the design is complete, implementing the template involves the creation of the
required modeling elements through the Simphony Designer. Creating new modeling
elements involves the customization of the behaviors of a generic base modeling element.
This, in turn, involves writing code in the form of event handlers in response to the
various events. Simphony generates these events in response to user or system actions.
Defining a given behavior requires complete understanding of the associated data

structures, methods and events. Section 8.2.2 will detail the structure of the generic

132

modeling element and its behaviors. Section 8.2.6 will present a detailed guideline that
developers can follow during the implementation stage.

A library is available to support the developers during the implementation process. This
library provides a wide range of commonly used routines including discrete event
scheduling, statistical collection and analysis, simulation tracing, and graphical user
interface support. These routines are grouped by their function into services.
Information on the supported Simphony services is discussed in detail in Section 8.2.3.
Simphony Designer is the computer program used in the implementation of new
templates. It is similar to a typical integrated development interface in that it combines
the processes of code entry, validation and compilation into a single program. Access to
Simphony services is also made available through this program. Simphony Designer is
presented in detail in Section 8.2.4.

To demonstrate the versatility and flexibility of the described system, a template of
generic modeling elements was developed to allow for the use of general purpose
modeling concepts. The development of this template along with code samples will be

provided in Section 8.2.7.

8.2.2 Generic Modeling Element

8.2.2.1 Introduction

The generic modeling element is used by developers as a starting point for the creation of
new modeling elements. Customization of this generic element involves the definition of
its various behaviors by implementing event handlers and manipulating the specific

instances using properties and methods.

133

Table 8-1 provides a complete list of the supported modeling element behaviors and their

related properties, methods and events. The remaining subsections will give an overview

of each behavior and the means by which a developer can customize their

implementation. These sections will also begin to introduce the coding syntax developers

are expected to provide.

Newly developed modeling elements are added to the modeling element library. Once in

the library, the user can use them to create multiple instances as part of the modeling

process. Each instance uses a single set of code. Instances based on the same modeling

element differ according to the values of their properties.

Table 8-1 Modeling Element Behaviors and Associated Properties, Methods and

Events
Behavior Properties Methods Events
' General ID Delete OnCreate
| ElementType AddAttribute OnDelete
Attr
Relationships | ConnectionPoints | AddConnectionPoint OnAddRelationIn
DeleteConnectionPoint | OnAddRelationOut
AddRelation OnDelRelationln
DeleteRelation OnDelRelationOut
Hierarchy ChildElements AddElement OnAddElement
Parent DeleteChildren OnDeleteElement
Simulation CurrentEntity AddEntity OnSimulationInitialize
File AddEvent OnSimulationinitializeRun
FirstEvent AddFile OnSimulationPostRun
Res AddResource OnSimulationProcessEvent
CancelEvent OnSimulationTransferIn
CloneEntity
DeleteEntity
PreemptResource
RequestResource
ReleaseResource
! ScheduleEvent
StopSimulation
TransferOut

134

Integrity AddAttribute OnCheckIntegrity
OnRelationValid
OnValidateParameters
Statistics Stat
Planning Activity AddActivity
AddStatistic
Graphical CoordinatesX SetNumAttributes OnDraw
CoordinatesY GetNumCoordinates OnDragDraw
Modeling Selected AddAttribute OnDrawRelation
° DrawConnectionPoints | OnGetBoundingBox
OnHitTest
Support OnListBoxInitialize
OnListBoxSelectltem
OnMove
8.2.2.2 General

Several properties, methods and events are available for general use and are not specific
to any particular behavior.

When the user attempts to create an instance based on a given modeling element, the
OnCreate event is triggered. This is similar to the concept of a class constructor in an
object-oriented language. This event allows the developer to define the initial structure
of the element and declare any required user attributes, files, resources or statistics. The
OnDelete event is triggered when the user deletes an existing element instance.
Developers can handle this event to perform some functions prior to the deletion of the
instance.

The Delete method is used to explicitly delete a given element instance; the AddAttribute
method is used to declare user attributes. User attributes are used to provide parameters
that users can modify during the modeling process. Attributes can also be used to
provide read-only information and to hold temporary internal values. Developers can

declare as many attributes as needed for each modeling element. Attributes are the only

135

means for the representation of state information of a given modeling element instance.
This is important because it allows for automatic object persistence. This means that a
given simulation project can be automatically saved and restored by simply saving and
restoring the attribute values of all the defined modeling element instances.

The AddAttribute method takes a number of parameters that determine the internal and
external representation, allowable user access type, and valid numeric range for numeric
type attributes. The internal representation (i.e. data type) of an attribute can be numeric,
date, time, textual, array, distribution, or object. The external representation and the user
access type are related to the graphical user interface representation and are discussed in
Section 8.2.2.9.5. The allowable range parameters are related to the integrity behavior
and are discussed in section 8.2.2.6.3.

The ID property is a internally set numeric value that uniquely identifies a given
modeling element instance. The ElementType property returns a textual value that
indicates the name of the base modeling element of the instance. The Attr property is

used to access the value of a previously declared attribute.

8.2.2.3 Relationships

Relationships between modeling element instances are supported with the notion of a
connection point. A connection point is a data structure that is capable of holding a
collection of references to connection points in other elements. Connection points for a
given modeling element are declared with the AddConnectionPoint method, which is
done as part of the OnCreate event handler. This method expects a number of parameters
that determine the type, initial geometrical coordinates and tolerance of the connection

point. The type can either be input or output. The remaining method parameters are

136

related to the graphical modeling behavior and will be discussed in Section 8.2.2.9.4.
The AddRelation and the DelRelation methods can be used for the manual manipulation
of relationship information.

When the user manipulates relationships between two element instances through the
graphical user interface or through code, several events are triggered to inform the
developer of changes in the relationship information. The OnAddRelationIn and
OnAddRelationOut events are triggered when the user requests the addition of a relation
between two connection points. The former is triggered for the destination instance while
the latter is triggered for the source instance. Similarly, the OnDeleteRelationIn and the
OnDeleteRelationOut are triggered after a relationship is deleted. This process is

illustrated in Figure 8-2.

(A) (B)
The User Attempts to Add a Relation between The User Deletes a Relation between connection
connection point | of Instance A to connection point [of Instance A and connection point O of
point O of Intance B] Insance B
OnRelationValid A. 1, 0 | [T ke = fote OnDeiRelationOut A, L. O]

Return|Value = True

| OnDelRelationln B. 1. O |

| OnAddRelationOut A. I. O |

[OnAddRelationln B. 1. O]

Figure 8-2 Triggered Events in Response to User Manipulation of Relationships

The shown OnRelationValid is related to the integrity behavior and will be discussed in

more details in section 8.2.2.6.2.

137

8.2.2.4 Hierarchy

With hierarchical modeling, certain modeling element instances can be created as
children of other elements. The parent instance may contain higher-level simulation
model resources and attributes and is mainly responsible for routing incoming entities to
the appropriate child elements.

The ChildElements property of the modeling element allows developers to navigate the
list of child elements defined while the Parent property can be used to access the parent
element. The AddElement method is used to create a child element instance while the
DeleteChildren method deletes all the child element instances.

The two events specifically related to hierarchical behavior are OnAddElement and
OnDeleteElement. The OnAddElement event is triggered for the parent of the element
instance just added to a given model, while the OnDeleteElement is triggered for the
parent instance of an element about to be deleted. The complete event sequence diagram
for element addition and deletion is shown in Figure 8-3.

(A) (B)

l Element A 15 added as a child of Element B | I Element A who is a child of element B 1s Deleted

Return Value = False
Delete All Child Elements of Element A l

ReturniValue = True i
| OnDeletea |

OnCreate A

A 4
| OnAddElementB,A |

l OnDeleteElement B, A J

| Delete all Relations Fromand To A |

Figure 8-3 Events Triggered in Response to the Addition and Deletion of Elements

138

8.2.2.5 Simulation

8.2.2.5.1 Overview

Definition of the simulation behavior of a given element involves (1) the declaration of
the required resources, files, and events, (2) the initialization of the starting entities and
the scheduling of the initial simulation events, (3) the processing of entities and events,
and collection of statistics, and (4) the final analysis of the results.

The four basic elements of a discrete event simulation model are entities, events,
resources and files. Entities represent active elements of the model and can have any
number of attributes (eg: Truck Capacity, Truck speed, ...). A simulation event
represents a transition in the state of the simulation. Resources are used to model limited
resource capacity where entities require those resources for given tasks. Files represent

queues of entities waiting for services due to unavailability of resources.

8.2.2.5.2 Resources

Resources can be used to simplify the process of implementing a simple multi-server
situation tied to a single queue. They are usefull for situations where incoming entities
should first wait in a queue for a resource to be available and then proceed when possible.
Resources are first declared with the AddResource method in the implementation of the
OnCreate event handler. This means that they must be defined even before the simulation
starts. However, the number of resources for a given resource type can be changed
during the simulation initialization. Once declared, the created resource object can be

obtained with the Res member property. During simulation processing, resources are

139

requested with the RequestResource member method and released with the

ReleaseResource member method.

8.2.2.5.3 Files

Files can be used to represent a queueing situation that cannot be modeled with a
resource. This includes situtations where multiple queues are tied to a single resource or
custom resource allocation schemes are required. Figure 8-4 illustrates such a situation
where incoming trucks queue up according to their size. Files are also first declared in
the OnCreate event handler with the AddFile member method and then accessed with the

File modeling element member property.

Large Truck Queue

vk ol b =

Incoming §> Excavation
Trucks @ Process

Small Truck Queue

vl =l

Figure 8-4 Utilization of Files to Represent a Truck Queuing Situation

8.2.2.5.4 Simulation Events

Simulation events allow for discrete event simulation to take place. Simulation events
are first declared in the OnSimulationInitialize event handler. Simulation events should
not be confused with modeling element events. Modeling element events like OnCreate,
and OnSimulationInitialize provide means of customzing the modeling element behavior.
Simulation events can be scheduled to occur at a certain time through the ScheduleEvent

140

member function and then processed as part of the implementation of the

OnSimulationProcessEvent modeling element event.

8.2.2.5.5 Entities

Entities, which are also fundemental to the implementation of discrete event simulation,
are created with the AddEntity member method. Entities are usually assigned attributes
that can be used to make certain decisions during the simulation. Some modeling
elements will create entities, typically in the OnSimulationInitializeRun event handler,

and others will simply process entities as they are transferred from other elements.

8.2.2.5.6 Inter-Element Communication

Communication between element instances can be done either by one element directly
manipulating another element’s attributes, or, in most cases, through entity transfers. The
transfer process is automated according to the declared information. When an entity
needs to be transferred from a given element through one of its connection points, a call
is made to the TransferOut method. The first argument to this method is the entity to be
transferred out. For each destination element instance connected to any of the
connection points (i.e. which has a relation with the current element instance), the entity
will be cloned and the destination instance’s OnSimulationTransferIn event will be
triggered with the appropriate parameters. The default implementation of the
OnSimulationTransferIn event is to schedule the designated “FirstEvent” of the element.
The “FirstEvent” is assigned when the simulation events are created with the AddEvent

method. This approach accomplishes the modularity concept previously described in

141

Figure 7-6. Customization of this default mechanism can also be performed through the

custom implementation of the OnSimulationTransferIn event.

8.2.2.5.7 Event Sequence for Simulation Behavior

The diagram shown in Figure 8-5 illustrates the complete list of events that are triggered

when the user requests that simulation be initiated.

User Requests the Start of the Simulation

At least one Element Returns a Value of False

For all elements call OnCheckintegrity

All Elementsi Retum True

[For all elements call OnSimulationinitialize l

| CurrentRun=1]

—-buor all elements call OnSimulationInitRun I

L OnSimulationProcessEvent I(——-

No More Simulation Events or Simulation
Time Reached Makimum Specified Time Or
The User Stopped The Simulation

\ 4
LFor all elements call OnSimulationPostRun

—{ Current Run = Current Run + |

Current Run 3 Number of Specified Runs

Figure 8-S Triggered Event Sequence for Simulation Behavior

142

The OnCheckIntegrity is related to the integrity behavior and will be discussed in Section
8.2.2.6.4. The OnSimulationlnitialize event follows an OnCheckIntegrity event. Some of
the tasks typically performed in this event handler are to:

e Reset the number of resources for resources based on the values of certain element
attributes. This is the only event where changes in the number of resources for
resources are possible.

e Declare the simulation events using the AddEvent method.

¢ [nitialize project planning information.

The OnSimulationInitializeRun event is called at the beginning of each run. In this event,

the starting simulation entities are created and scheduled with their starting events. The

OnSimulationPostRun is called at the end of each run. The most significant event is

OnSimulationProcessEvent, which is called whenever a previously scheduled simulation

event should be processed. The OnSimulationPostRun allows for any post simulation run

analysis or cleanup.

8.2.2.6 Integrity

Defining the integrity behavior involves the enforcement of certain rules at different
stages during the modeling process. Integrity rules can be grouped into four categories,

which are described in the next four subsections.

8.2.2.6.1 Genealogy-Based Rules

Genealogy-based rules are designed to prevent invalid parent-child type relationships
where certain child elements cannot exist outside the scope of a given parent element.

This dependency could be due to the fact that the child requires certain attributes or

143

simulation resources of the parent. Support for this type of rule is provided through the
OnCreate event handler. Referring back to Figure 8-3A, when the creation of a new
element instance is requested, the OnCreate event is triggered. If this event returns a
value of “False”, then the instance will not be created. This gives developers a chance to
check the type of the parent element through the Parent and the ElementType properties

and perform the required validation.

8.2.2.6.2 Relationship-Based Rules

In certain situations, the simulation model logic places certain constraints on the
predecessor and successor relationships of element instances. This includes such rules as
“Element Type A cannot precede Element Type B” or “Element Type A cannot
participate in more than one relation”. Support for these types of rules is provided
through the OnRelationValid event, which is triggered when the user requests that a
relation be added between two modeling elements (see Figure 8-2A). If the return value
from the associated event handler is “False” then the relation will not be added.

Developers can use this event to perform the required validation.

8.2.2.6.3 Parameter-Based Rules

Parameter type attributes allow users to modify their values and affect the outcome of the
simulation. Validation rules on the supplied user data are supported by the
OnValidateParameters event.

When the attribute is initially declared with the AddAttribute method, developers have
the capability to provide a minimum and a maximum value as method parameters. These

supplied values are used in the default implementation of the OnValidateParameters

144

event which ensures that users are not allowed to supply values outside the valid range.
This obviously only applies to numeric types of attributes. For extended parameter
validation requirements based on complex numeric rules, text validation rules, or even
rules involving more than one attribute, developers can provide their own implementation

of the OnValidateParametes event.

8.2.2.6.4 Model Based Rules

All the three previous types of integrity rules trap potential errors before they occur. This
is the desired mean of controlling model integrity but it is not always possible. SPS
modeling, in association with graphical modeling, utilizes a modeling approach that is
non-linear in nature. As a result, the sirnulation model might contain intermediate states
which are invalid. For this reason, model-based rules are required. Examples of such
rules are “Element A must contain at least one child instance of Element B” or “Element
A must have a relation with another instance of type Element B”. Such rules are
supported with the OnChecklIntegrity event, which is triggered when the user requests
that simulation be iniated (see Figure 8-5). If a singile modeling element returns

“False” for this event, then the simulation will not be started.

8.2.2.7 Statistics

Statistical collection behavior for a given modeling element is enabled by declaring the
statistic in the OnCreate event handler with the AddStatistic member method. Declared
statistics can be accessed through the Stat member property. The actual collection and
analysis of the data is the responsibility of the statistical collection and analysis service;

this will be discussed later in Section 8.2.3.5.

145

Explicit declaration of statistics is only requried for custom statistics. The declaration of
Resources whithin a given element automatically implies the declaration of three default
statistics: Utilization, WaitingTime, and Queue length. Similary, the declaration of Files
automaticaly implies the declaration of two statistics: Waiting Time and Queue Length.

Statistical analysis results are displayed as part of the element attribute dialog form. This

is the responsibility of the graphical user interface services (see Section 8.2.3.8.4).

8.2.2.8 Planning

Modeling elements which need to generate project planning information must enable the
planning behavior. This involves an initial call to the AddActivity method, as part of the
OnCreate handler, to declare the project activities. Once an activity is created, it can be
accessed with the Activity property. The actual generation of planning data, including
resource, cost, production and revenue information, is done through the planning service;

this will be discussed in Section 8.2.3.6.

8.2.2.9 Graphical Modeling Support

8.2.2.9.1 Overview

Definition of the graphical modeling behavior for a given element involves initializing
certain settings and responding to certain events generated by the GUIL. The actual
rendering of graphical primitives, dialog boxes and forms is the responsibility of the GUI

service; this is discussed in detail in Section 8.2.3.8.

8.2.2.9.2 Geometry

146

Graphical modeling requires that modeling elements support advanced two-dimensional
graphical representation and manipulation. This implies that each element will require an
associated set of geometrical coordinates that determine its form on a model layout
window.

To support this requirement, two array type properties, CoordinatesX and CoordinatesY,
are available. The size of the arrays can be accessed with the SetNumCoordinates and
the GetNumCoordinates methods. Most modeling elements will only require one set of
coordinates representing the top left corner of the graphical representation with a constant
width and height. Other elements, which might require a dynamic shape that can change
as a result of certain user or internal actions, employ multiple coordinates. Figure 8-6A
demonstrates a simple element that utilizes a single set of coordinates while Figure 8-6B
demonstrates how two sets of coordinates are employed for an element that requires
flexible representation.

(A) (B)

Foordinat:X(O). CoordinateY(0) | Foordiual:X(O). Coordinate Y(Q) J

ICoordinatg(1), Coordinate Y(1)

Figure 8-6 Use of Geometrical Attributes as Modeling Element Reference Points

147

Once the geometry of the modeling element is defined and initialized, the default
implementation of geometry manipulation tasks is automated through the default
implementation of the relevant events. However, if they wish, developers can still
implement their own custom implementation by defining their own event handlers.

When the user attempts to modify the geometry of a given element instance through drag
and drop mouse operations, the OnMove event is triggered. The default implementation
offsets all the coordinates and the coordinates of the connection points by the amount of
movement that the user performs. If custom handling of dragging operations is required,
(for example, to implement rotation) then the developer defines his own OnMove event

handler.

8.2.2.9.3 Element Representation

Graphical element representation is supported through the OnDraw event, which is
triggered when the screen display is refreshed. Developers can utilize a wide range of
graphical display methods, which are available through the graphical user interface

service (see Section 8.2.3.8.2).

8.2.2.9.4 Relationship Representation

The OnDrawRelation event is triggered when a graphical representation of the
relationships between two connection points is required. The default implementation
draws an arrow between the two connection points.

Connection points also need to be represented graphically as part of the OnDraw event

handler. The default representation is available through the member method

148

DrawConnectionPoints and is a circle. Developers can choose not to use this method
and implement their own connection point representation instead.

The actual manipulation of relationship information between elements can also be done
through the GUI. Users can add or delete relations by selecting the source and
destination connection points. This is called explicit manipulation of relationships.
Another supported method of creating relationships, denoted implicit manipulation,
automatically adds a relation between two connection points if the distance between their
coordinates is smaller than the tolerance value supplied by the developer when the

connection point was originally declared.

8.2.2.9.5 Graphical Attribute Representation

Developers can define the type of GUI controls and access permissions that users have
for manipulating exposed element attributes. When the attributes are initially declared
with the AddAttribute method, one of the method parameters represents the type of
external representation for the attribute. Possible options include text box, calendar,
distribution selector, list box, table, and graph.

Another AddAttribute parameter is also available to control the type of access that users
have over the attribute value. Possible options are (1) “Read-Write”, indicating the
attribute is a parameter that can be changed by users, (2) “Read-Only”, indicating an
output type attribute that users can view but not change and (3) “Hidden”, indicating that

the attribute is for internal usage only.

149

8.2.3 Simphony Services

8.2.3.1 Introduction

Simphony services encapsulate commonly used routines, which can be used directly or

indirectly by the developer during the implementation of the event handlers. This section

will present the available services and the support they provide.

Access to these services during the development process is transparent to the developer.

Some services are available explicitly through special statements while others are

implicitly accessed through member methods and through member properties of the

modeling element class. Table 8-2 summarizes the means of accessing the supported

services and the routines they expose.

Table 8-2 List of Simphony Services, their Access points, Properties and Methods

| Service Access Point | Properties Methods !
! Simulation Modeling CurrentEntity AddEntity, AddEvent, !
; Element FirstEvent AddFile, AddResource.
I File CancelEvent, CloneEntity
| Resource DeleteEntity, PreemptResource.
' RequestResource,
ReleaseResource, ScheduleEvent
StopSimulation.
Random Sampler Seed, Beta, Expntl, Normal,
Number statement Triang, Uniform
Sampling
Or
Distribution type | DistType. Value
Attributes NumParameters.
ParamValues, Positive,
Stream
Tracing Tracer statement | LastMessage Trace
TraceEnabled
Statistical Maodeling Intrinsic, Average, Collect, SetFinish, SetStart
Collection Element MaxVal, MinVal
and Analysis { (Stat property) | GlobalAverage
GlobalStdDev

150

GlobalMin, GlobaiMax
Planning Modeling AddCostCenter
Element AddResource, Halt, Start,
(Activity OffsetResourceLevel
property) RecognizeCost
RecognizeProduction
RecognizeRevenue
Database dbengine See section 8.2.3.7
access statement
Graphical CDC statement Arrow, ArrowHead, Ellipse, Circ
User LineTo. MoveTo. Rectangle,
Interface RenderPicture, TextOut,
ChangeFillColor, ChangeFont,
ChangeLineStyle,
ChangeTextColor, TextHeight
TextWidth
8.2.3.2 Simulation

The simulation service encapsulates a discrete event simulation engine that is responsible

for managing all entities, resources, files and scheduled events. Access to this service is

provided through the previously discussed simulation behavior methods of the modeling

service and its access points with the modeling element methods.

Behavior

Modeling Element Simulation

Simulation Service

AddEntity
DeleteEntity
CloneEntity

Entity Pool

AddEvent

Event Pool

AddFile

File Pool

AddResource
RequestResource
ReleaseResource

PreemptResource

» Resource Pool

ScheduleEvent
CancelEvent

Event
Calendar

Figure 8-7 Simulation Service Components and its Access Points

151

The entity pool manages the set of defined entities in the model and allows modeling
elements to add, delete or clone entities. The event pool manages the list of events
defined with the AddEvent method. The file pool encapsulates the list of defined files
and provides the means to navigate and manipulate their content. The resource pool
manages the set of defined resources and handles all requests for resource allocations and
releases.

The event calendar is responsible for the management of the simulation events.
Simulation events are added with the ScheduleEvent method. Their position within the
internal data structure is dependent on the event time supplied through the ScheduleEvent
method parameters. Scheduled events can also be cancelled with the CancelEvent
method. Simulation processing is initiated when the user requests the start of the
simulation. A representation of the underlying algorithm responsible for this process is
shown in Figure 8-8. The simulation event loop first removes the next event to be
processed from the event calendar and advances the current simulation time to the time of
the event. The event is then routed to the modeling element instance that originally
scheduled it. During simulation processing, instances may schedule further events. which
are in turn inserted into the appropriate calendar position. This process continues until
all the events in the calendar have been processed or simulation time reaches a maximum

specified by the user.

152

>[Obtain Schedule Event]

(Route Event to Appropriate Modeling Element [nstancej

AT

e
. ..

. ‘.

@stanc;’l-.) Llnsta;ce 2) un:tancelﬂ (‘
- 2 = i
Schedule Next Events

L
.

IepUSR)) JUSAF

Figure 8-8 Simulation Event Scheduling and Processing

8.2.3.3 Random Number Sampling

The core component of this service provides support for random number generation and
transformation into several standard stochastic distributions. Actual transformed values
are obtained through the Beta, Expntl, Normal, Triang, and Uniform methods, which
generate beta, exponentially, normally, triangularly and uniformly distributed deviates,
respectively. Other types of transformations can be supported through a user service as
will be explained in Section 8.2.3.9.

Another layer above the core component is also available for supporting element
attributes with an internal type set to a distribution. An attribute’s internal representation
can be set to the distribution type to allow users to modify the distribution specifications
at run-time through the GUI (see 8.2.3.8.3) and then allow developers to sample random
numbers based on the user’s information. Several methods and properties, as listed in

Table 8-2, are provided to allow developers to manually control these types of attributes.

153

8.2.3.4 Tracing

The tracing service provides support for a general purpose feedback management system.
It is used by developers to insert tracing statements for tracking simulation progress or for
reporting certain errors. The tracing service is also used internally by the system to report
any errors encountered at run-time.

Developers can generate trace messages through a call to the Trace method of the Tracer
object. The first argument is a string consisting of the message. The second argument
specifies the message category, which the user can use as a filter to examine a specific
category of messages. Two further subcategory levels can also be defined through third
and fourth arguments. The convention is to use “Simulation” for simulation tracing
messages, “Plan” for project plan type information, and “Integrity” for reporting integrity
type errors. Internal run-time errors are generated with the category *“Execution”. An
example of a run-time error is a division by zero. The “Execution™ category is a special
category because any generated trace messages will cause the simulation service to stop
if it is currently executing a model.

For every trace call, the system will automatically track the current simulation run,
simulation time, originating element instance, and element event. The last generated
message can be accessed with the LastMessage property. The TraceEnabled property
allows developers to toggle the status of the service. If its value is False then any
generated tracing messages, with the exception of those based on the “Execution”
category, will be ignored.

The GUI service provides a dialog window for intuitive navigation by users of generated

trace messages (see Section 8.2.3.8.5).

8.2.3.5 Statistical collection and Analysis

This service provides the means for the automated collection and analysis of statistics
during simulation. Analysis of observations collected with the Collect member method
depends on whether the associated statistic was declared as intrinsic or non-intrinsic. For
each data point that is collected, the simulation time at which it was collected is also
tracked. A statistic declared as non-intrinsic will cause the analysis to ignore this time
component and perform simple analysis based only on the collected data values.
Otherwise, the calculations will be biased by the time value of the collected statistic.
Intrinsic type statistics are typically used for variables that indicate a certain state of the
model such as the current file length or the number of available resources while non-
intrinsic statistics are used for performance type variables such as cycle time, travel time,
and waiting time.

With intrinsic analysis, the observation time interval is extremely important. By default.
the interval is defined by the minimum and maximum time at which the data was
collected. This is valid most of time. But in some situations it might be necessary to
manually set this interval to adjust the analysis. Consider, for example, a statistic that is
tracking the utilization of a backhoe. The data points for this statistic are collected from
the time that a certain process first obtains the backhoe until the time it is finally released.
Based on this information, the default analysis will calculate the average utilization based
on the first time the backhoe was requested until the last time that it was released.
However, it might make more sense to analyze the backhoe utilization across the entire

duration of the project and not only based on the activities in which it was involved. To

155

do this, developers can choose to define the interval manually using the SetStart and
SetFinish methods.

Statistical data can also be tracked in full or in summary. The tracking method is
specified during the AddStatistic call and can later be examined with the FullTracking
property. “Full tracking” means that the collected data is dumped to the database on each
call and that the user can view a histogram or a time-graph representation of the data
through the GUI (see section 8.2.3.8.4). The alternative is summary tracking, which
means that detailed statistical data is not kept and only summary information is available.
This type of tracking utilizes far less memory space and CPU time.

At any time during or after the simulation, several properties, as listed in Table 8-2, are
available to allow developers to extract the current statistical analysis results. This
includes the mean, standard deviation, minimum and maximum for a given run as well as

global results across all runs.

8.2.3.6 Planning

The planning service allows for the generation of project planning information
conforming to the standard previously discussed in Section 7.4.2. Activities are first
declared for each modeling element as part of the planning behavior using the
AddActivity member method. Once activities are declared, The AddResource method
can be used to declare required resources, and the AddCostCenter method can be used to
declare cost centers, which are used for tracking costs.

During the simulation execution, calls can be made to RecognizeProduction to recognize
the production of a certain amount, to RecognizeRevenue to recognize that a certain

compensation amount has been received, to RecongizeCost to recognize that cost for a

156

certain cost center has been incurred, and OffsetResource to recognize the allocation or
de-allocation of a certain resource.

For each planning related call, Simphony records the current simulation run and time and
stores the data in the relational structure illustrated in Figure 7-5.

The GUI service provides several forms that display a summary of the generated

planning information. These are presented in Section 8.2.3.8.6.

8.2.3.7 Database Access

The database access service provides support for accessing external databases. This
service is based on Microsoft’s Data Access Objects (DAO) library, which supports
cursor or batch SQL-based commands to be executed on an ODBC compliant data
source. The actual set of supported properties and methods is very extensive and as such,
will not be discussed here. It is sufficient to say that developers can utilize this service
to retrieve and manipulate information in external databases. For more information on

ODBC and DAO, see Vaughn (1998).

8.2.3.8 Graphical User Interface (GUI)

8.2.3.8.1 General

The GUI service provides all the required functionality to support a graphical user
interface for controlling the modeling and simulation system. This includes a wide range

of dialog boxes, forms, user interface controls, and line and bitmap primitives.

8.2.3.8.2 Graphical Drawing Primitives

157

Access to the graphical drawing primitives of the GUI service is available through the
CDC statement. Examples of supported line drawing methods are MoveTo, LineTo,
Circ, Rectangle, Ellipse, Arrow and ArrowHead. The format of the line output methods
can be controlled with the ChangeLineStyle and the ChangeFillColor methods. The
RenderPicture method is used to transfer a bitmap from the bitmap database onto the
display surface. The bitmap database is managed by the developer and will be illustrated
in Section 8.2.4.2. Text drawing is also supported through the TextOut,

ChangeTextColor, and ChangeFont methods.

8.2.3.8.3 Attribute External Representation

The list of attributes for a given modeling element is viewed using the element attribute
dialog box shown in Figure 8-9. Parameter type attributes are shown separately from

output type attributes.

Parameters T Outputs T Statistics
Parameter Value Pl
Simple Text Box 234.23 o0

| JlistBox lListtemB O A
Date attnbute Dec 30 1899 Cuf)
Random Distribution Nomal (12.00.2.00) Cf A
Grid based Array Altribute v|)

f Parameters 1 {Outputs! 1 Statistics B

Qups Voo
Graph based Anray Attribute GRAPHICAL DATA v

Figure 8-9 Attribute Manipulation through the Element Attribute Dialog Box

158

The user interface control that is shown when the user attempts to view or modify the
value of the attribute varies with the developer’s choice of internal and external
representation set during the initial call to the AddAttribute method. Table 8-3 shows a

list of the possible options and a sample control.

Table 8-3 GUI Controls Used for the External Representation of Element Attributes

Internal External GUI Sample

Rep. Rep. Control

Numeric, text | Default Text Box 3423

Numeric, text | List box List Box Listltem B e
List tem B
List kem C
List item D
List ltem F
List ltem G

DateTime Default Calendar Dec0ied —~ ~fcq
21 Decembest839 _+|
oL B § 2
3 4 5 & 7 8 39
10 13 12 13 14 15 ¢
171818 82 2 2
HuUEXEDBBD
b T o0
> Today: 4/6/99

Distribution Default Distribution

Dialog Box
Array Table Grid

159

Array Graph Graph Graph based Array Attribute

/ S —

///
10 Z

3R

¢ 1 2 3 4 6 6 7 8 9 10

8.2.3.8.4 Statistical Analysis Representation

The statistical analysis results of collected data are also provided through the element
attribute dialog box as shown in Figure 8-10. Included in the information shown are the
number of runs for which data was collected, the global mean and standard deviation, and
the minimum and maximum values observed. For statistics declared with full tracking, a
histogram represenation (Figure 8-11) and a time graph (Figure 8-12) can also be viewed.

Time graphs display the value of the statistic as a function of time.

Patameters | Outputs 1 Statistics |

f

Statistic [N [Mean __|StdDev |Min__[Max _ [Hist |TG. l‘

Maxer_Ultiization 1.997 000 1000 10000 N N y
Mixer_Queuelength 100 0.00 0.00 1100 N B

Mixer_WaitingT ime 1_0n 000 600 232 N N
Cycle time for Large Trucks 1 .58.90 0.00 091 (20252 Y ¥ o
Cycle tme for Small Trucks 1 53.96 0.00 877 21388 Y Y

Figure 8-10 GUI Presentation of Summary Statistical Analysis Results

05 |
04
03 .

| i i

-

BTy
WLre

E1)

%0.92 _
PiP3. v

Figure 8-11 Sample Generated Histogram

160

250
200

180 ﬂ
wl /LA

NV VA VAYNN
TV

o 600 1000 1500 2000

Figure 8-12 Sample Generated Time Graph

8.2.3.8.5 Trace Message Representation

The GUI service includes a special form that is used to view generated tracing messages.
This form, shown in Figure 8-13, allows users to filter and sort the messages according to

their categories.

161

Messages .|
- - - i
Categoy) [Simuiaton v] Categoy2 [aLL ~] Caegon3 [=
1 1) CEN EMS Drozen5551 CinSmabshondoats shoe 5o Jozeet entire ctested sred tean tensd 0
1 00 CEM_EMS_Doze(55543) OnSimulationi ritiakzeRun dozer entity created and tansfened: 2
1 00 CEM_EMS_Truck(55550) OnSimulationintiaizeRun Truck entity created and tansferred: 4
1 00 CEM_EMS_Pie{55532) OnSimulationTransferin Incoming Entity Queued 2
1 00 Branch(55522) OnSimulationT ransferin Routing to the bottom part.
1 00 CEM_EMS_Pie(55502) OnSimulationT ransferin Incoming Entity Queued 4
1 00 Task(55527) OnSimulationProcessEvent Entity: 0 will incusr a delay of 0.3
1 30 T ask(55527) OnSimulationProcessEvent Delay of Entity: 0 Completed
1 30 CEM_EMS_Pile{55502) OnSimulationT ransferin Incoming Entity 0 Increased Amount by 5
1 30 Branch{55522} OnSimulationTransferin Rauting to the bottom port.
1 30 Task(55527) OnSimulationPiocessEvent Entity: 0 will incurr a delay of 0.3
1 60 Task(55527] OnSimulationProcessEvent Delay of Entity: 0 Completed
1 80 CEM_EMS_Pile{55502) OnSimulationTransferin Incoming Entity 0 Increased Amount by 5
1 80 Branch{55522) OnSimulationT ransfern Routing to the bottom port.
1 60 Task(55527) OnSimulationProcessEvent Entity: 0 willincurr a delay of 0.3
1 90 T ask(55527) OnSimulationPiocessEvent Delay of Entity: 0 Completed
1 9 CEM_EMS_Pile(S5502) OnSimulationT ransferin Incoming Entity G Increased Amount by 5
1 90 Branch{55522) OnSimulationT ransferin Routing to the bottom post.
1 9 Task(55527) OnSimuiationProcessEvert Entity: 0 will incurr a delay of 0.3
1 1.2 Task(55527} OnSimulationProcessEvent Delay of Entity: 0 Completed
1 120 CEM_EMS_Pie(55502) OnSimedationTransferin Incoming Entity 0 Increased Amount by 5
1 120 Branch({55522) OnSimulationT ransferin Routing to the bottom port.
1 1.2 Task(55527) OnSimulationProcessEvert Entity: 0 willincutr a delay of 0.3
1 1.5 Task(55527) OnSimulationProcessEvent Delay of Entity: 0 Completed
1150 CEM EMS Pile{55502) OnSimulationT ransferin Incoming Entity J Increased Amount by 5 |

Figure 8-13 Trace Navigation Form

8.2.3.8.6 Project Plan Representation

Earlier, it was mentioned that project-planning information is generated primarily for use
by external systems. However, it is believed that users can also benefit from the ability to
quickly view a summary of the generated information in a simple format prior to the final
analysis by external systems. As a result, the GUI service includes a number of project
planning display forms. The main form is shown in Figure 8-14. The left side displays a
tree that contains a hierarchical view of the project activities. At the highest level is the
project itself. Selecting a given activity from this tree will display its related information

on the sheet shown on the right.

162

w. General Intormation [X]

— ~ General Information e
= Excavabon i 1D [@ze Name | UnkofMeaswe [.
Load : - ;
Haul | Descrigion | i
- Producton
Ag%::::' Average Std. Dev.

Fine Schedule Information
Start Time (Hrs) 10.00 0.co
Finish Time (Hrs) 25000 0.00
Duration (Hrs) 24000

. |Production Information

Total Quantity 12120.00 0.00
Productmty (Units Per 60 min Hr.) 5050
Costing information
Total Cost $10,200.00 $0.00
Unit Cast (§/Unit) $0.84
Revenue Information
Total Revenue $15,250.00 $0.00
[Unit Pay Rate ($/Unit) $126
~Charts
i interval [2] CathFlow | Resowce Utization |

Figure 8-14 Project Plan Summary Form

The schedule information includes the start and finish time of the activities in terms of
elapsed hours. The activity duration is simply the difference between the finish and start
times. The production information section shows the total quantity recognized for the
selected activity and the resultant productivity based on the total quantity and the activity
duration. The costing information section shows the total cost incurred and the unit cost
based on the recognized total quantity. Similarly, the revenue information section shows
total revenue generated and the unit pay rate based on total revenue and total quantity
recognized.

Below the summary sheet, two buttons are available. The first, “Cash Flow”, presents a

secondary form with a chart that shows the total revenue, total cost and net income as a

163

function of the simulation time. The second, “Resource Utilization”, activates another

form that displays the various resources utilized as a function of the simulation time.

8.2.3.9 User Services

The presented services provide commonly used routines for supporting the developer in
creating a new special purpose simulation template. However, Simphony was designed
in such a manner that extra user services can be added to the existing service pool.
Advanced developers or third party specialists can implement new specialized services
for integration with the Simphony development environment. Examples of potentially
useful services include a comprehensive random sampling library, a CAD access library,

an artificial neural network training and recall library, and an optimization library.

8.2.4 The Simphony Designer Program

8.2.4.1 Introduction

The Simphony Designer is an integrated development environment that allows for the
definition of modeling elements. It allows developers to define the element behaviors
using a language based on Visual Basic for Applications (VBA). VBA was developed by
Microsoft Corporation for use as macro-based extension language for its series of office
productivity tools including Access, Excel and Word. The decision to use VBA was
driven by the fact that numerous major developers now use it as the standard macro
support language within their applications. This includes such products as AutoCAD and

Primavera. The main form for the program is shown in Figure 8-15.

164

Smelutes |t | _OCwgpies| Swotemer]
i@ % v i e 84 -0, B

Owms | __am |
M ! O, [C305.605_Owrp ol | 3]
- Camvan — e =
vow 1] | Petse Foncaon CEL_ES_Dump_GuCronte(on As CFCSw_MaduingElementrateacy, » As ¥ As Siqte) As Baoiewn
OuPr i CEM_EMS_| _OnCronte-Tre
— . i R en
e Object Combo Bax ""“‘“‘“‘"‘""{Evem Combo Boxl
Reunece
[T Fenchan
gyl [L 1]
Amnsnive
and 0. SetemCoordmes 2
Calges 8.
Tan P y
Aoremn! ap -b.)
Ormay ob CoordmasesY{1 joy+60
T
(e
- CXw Ims

i

!

]

!

i

'

!

i 00.ASIARIDVIS *Cuantty”. “Number 0f Avasabie Locasons®. CFC_Nemenc. CFC_Sisgle. CFC_Readwria. §.20
t o0("Osanny’)-t
1

i

EY-CXC R o ‘c!® o (D) 10.00 CoardmatasY(F)+ 73.Claput. S
CKm _Lieg, . o o

. Gth'Jl. Snerun 2", 0b. X[0)+98,.0b. Coorsmates Y (§)+ 25, COWpLS
[ST RN - »".)
e E0eS Nout End Feachaon

- Che_(w3_veanassun
Modeling /" asonlie Pubkc Seb CEM_E johagE lemenssctanca)
prarie me Modeling El t
Element Qv | cocresend g Liemen vieLon 00 Coorcines
COm (s _tacsan H
Tree o s veasewcnet] Event Handler
£ O
2 (0 ewoen wen 1 Coding Area
dw_(1_ipeasry .
L]

End 30

1] | Pubhc Funcion CEM EMS Dwmo GeRelanonVaiier?lP

Figure 8-15 Main Form of Simphony Designer

The modeling element tree displays a list of all currently defined modeling elements in
the modeling element library. A tree view is used because the structure of the library is
hierarchical. Clicking on a given modeling element from the tree displays its event
handlers in the “Event handler Coding Area” and allows developers to change their
definition or insert new event handlers.

Developers can save their work at any time during the implementation process. Before
saving, Simphony Designer will check the code and ensure that there are no syntax
errors. If any errors exist, they will be explained in the status bar and a red line will

indicate the position of the error.

8.2.4.2 The Bitmap Database

Simphony Designer includes a bitmap database that stores all the pictures that are

available for use by the modeling 2lements for customizing their graphical representation

165

through the RenderPicture method. The form used to manipulate this database is shown

in Figure 8-16.
Pah _Dmagkg | Neme EMSNed
adt [cows |
Ev3-Dum

EMS_Excavaior

Figure 8-16 Bitmap Database Manipulation Form

8.2.5 Template Design Guidelines

The primary objective of Simphony developers is the construction of a tool that can be
used by construction practitioners to automate, formalize and verify their decision
making process. The first step in the development of a special purpose simulation tool
consists of a careful and detailed analysis of the target construction process. It is very
important for developers to understand in detail the engineering and management
fundamentals, resources, interactions and transformations that occur within that process
and to keep in mind the overall objective of the tool. This can be accomplished through a
series of interviews with engineers and experts who are well experienced highly the
target process. After a thorough analysis and documentation of the process and the

engineer's requirements, the design of the tool can begin.

166

The best design is the one that can take the most advantage of Simphony’s ability to
allow for the construction of re-usable simulation models. Reusability is accomplished
through a combination of parameterized models and flexible modeling elements. With
parameterized models, element parameters can be modified by users at run-time to
simulate slightly different scenarios and generate different outcomes. Flexible modeling
elements take advantage of modularity concepts to allow certain elements to be reused in
several contexts. The end result, if designed correctly, is a tool that allows for the
modeling of a large proportion of all the possible scenarios within the target domain.

After the completion of the initial investigation, the detailed SPS template design can
begin. This involves the identification of the required modeling elements followed by the
definition of the behaviors of each modeling element. The number of modeling elements
required depend greatly on the nature of the modeled construction process and the
amount of reusability required. In most cases, a standard list of modeling elements will
first be defined and used. This list could gradually grow to allow for the modeling of
more situations depending on the user’s requirements. Table 8-4 provides a step-by-step

process that developers can use as a guideline for obtaining the initial set of modeling

elements.
Table 8-4 Simphony Template Design Guidelines
Step | Action Comment Objective
1 Provide a What are we trying to analyze? The end result of this analysis
general What are the resources involved? will be the Primary Modeling
description of (Labor, Equipment,..) Element that represents the
the target What is the overall measure of construction operation as a
construction performance whole
process What is a typical scenario?
What is the general nature of variations
from one scenario to the next?
2 Define the Based on the identified scenario The identified basic elements

167

elements of the variations, identify the basic elements will translate into the Child
construction involved in the target process. Elements of the Primary
process Modeling Element.

3 Define the Based on the identified elements, define | This preliminary process
function and the preliminary list of attributes and definition for each element
behavior of each | operations that each element will will be the basis for the
construction represent. implementation of the
process element behaviors of the modeling

element.

8.2.6 Template Implementation Guidelines

Table 8-5 presents a step-by-step guideline for the development of a modeling element

after the completion of its design. The illustrated process encourages the incremental

development and testing of the modeling element behaviors.

Table 8-5 Guidelines for the Incremental Development of a Modeling Element

Description Comments Events
I Define Initial Use the AddAttribute method to add the OnCreate
Attributes required read-write attributes of the
modeling element.
2 Define Relations Use the AddConnectionPoint method to add | OnCreate
the required connection points of the
modeling element.
3 Simulation Define Simulation Behavior
4 Declare any Use the AddAttribute method to add the OnCreate
required internal required hidden attributes of the modeling
attributes element.
5
6 Declare any Use the AddResource method to add any OnCreate
required resources | required simulation resources.
7 Declare any Use the AddFile method to add any OnCreate
required files required simulation files.
8 Declare any Use the AddEvent method to add any OnSimulationInitialize
required simulation | required simulation events.
events
9 Set the resource Use the NumResources property of the OnSimulationInitialize
quantities resource object to set the number of
resources based on the corresponding
attribute values if needed.
10 Declare any Use the AddEntity method to create the OnSimulationInitializeRun
starting entities and | initial model entities and schedule their
schedule their starting events with the ScheduleEvent
starting events method.

168

11 Process the Write the appropriate code to process the OnSimulationProcessEvent
simulation events simulation events. Use a “Select-Case™
staternent to filter the events.

12 Intercept incoming | Intercept incoming entities in order to OnSimulationTransferIn

entities implement manual routing or to do some
pre-processing if needed.

13 Define integrity

rules
13.1 Define parameter | If the default parameter integrity checking | OnValidateParameters
integrity is not sufficient, implement your own.
Parameter integrity checking is performed
after the user modifies any of the attribute
values in the element property form.

13.2 Define In your implementation of the OnCreate OnCreate

genealogy-based | event handler, return False if the element

integrity violates hierarchical integrity. For
example, you might choose to allow the
creation of truck elements only as children
of the Move_Earth element.

13.3 Define Implement any relationship-based integrity. | OnRelationValid

relationship For example, you might want to limit the

integrity number of relations from a given output
connection point or constraint the types of
the elements which could be connected.

13.4 Define model Implement any model level checks that OnChecklIntegrity

level integrity cannot be done with the previous three
types of integrity checks. Model level
integrity is performed when the engineer
requests that the simulation be initiated. An
example of a check you might want to do
here is ensuring that that an earth-moving
element contains at least one source child
element.

14 Define statistics

14.1 Declare any Use the AddStatistic method to declare any | OnCreate

required custom required statistics such as truck cycle times.
statistics Note that resources and files come with
several default statistics.

14.2 Collect statistics | Use the Collect method of the statistic OnSimulationProcessEvent
object to record observations. This should | OnSimulationTransferln
typically be done in the
OnSimulationProcessEvent event handler.

15 Declare any useful | Use the AddAttribute method to declare OnCreate

output attributes

any read-only attribute that could be
beneficial to the engineer.

169

16 Customize Add any bitmaps you might need to the OnCreate
graphical bitmap database. Use these bitmaps in OnDraw
Representation order to improve the graphical appeal of the | OnDrawRelation
modeling elements. Alternatively, youcan | OnDragDraw
use any of the available line and text output
methods of the graphics service. If you
need more than a single reference point,
call the SetNumCoordinates method.
17 Customize If the default graphical manipulation of the | OnGetBoundingBox
graphical element is not satisfactory, implement your | OnHitTest
Manipulation own. You might want to do this if you need | OnMove
to support rotation or highly non-
rectangular element representations.
18 Define planning
18.1 Declare activities, | Use the AddActivity method to declare any | OnCreate
activity resources, | activities that should be generated through
and activity cost | the current modeling element.
centers.
18.2 Recognize cost RecognizeCost OnSimulationProcessEvent
18.3 Recognize RecognizeRevenue OnSimulationProcessEvent
revenue
18.4 Track resource OffsetResourceLevel OnSimulationProcessEvent

levels

8.2.7 Sample Tool Development Session

8.2.7.

1 Overview

An example will now be provided to illustrate how Simphony is used to create a simple

modeling element. The new element will allow a plant owner to model a simple concrete

batch plant operation. Incoming trucks arrive at the plant site and wait for their tum.

When the mixer is available, the next truck in the queue loads a certain quantity of

concrete and then proceeds to its destination.

The Simphony Designer program is first used to create a new element called

“Batch_Plant”. Next, the simulation behavior of the new element is defined to model the

described scenario.

170

8.2.7.2 Step 1 : Building a Working Model

Simulation model entities representing the trucks will be needed. So will a resource to
represent the mixer location. The discrete simulation events will be: TruckArrive,
RequestMixer, and ReleaseMixer. The mixer resource is declared by implementing a

handler for the OnCreate event as following:

Public Function Barch_Plant_OnCreate(ob As CFCSim_ModelingElementinstance, x As Single. y As
Single) As Boolean

Batch_Plant_OnCreate = True

0b.0OnCreate x,y,True

ob.AddResource "Mixer”, |
End Function

The first line inside the handler sets the return value to True to instruct Simphony to
create the element. If for some reason the element should not be created, the return value
can be set to False. The second line calls the default implementation of the event handler.
The third line declares the mixer resource with an initial quantity of one. Next, the
needed events are declared as part of the developer's implementation of the

OnSimulationlnitialize event handler:

Public Sub Batch_Plant_OnSimulationinitialize(ob As CFCSim_ModelingElementinstance)
ob.AddEvent "TruckArrive”, True
ob.AddEvent "RequestMixer”
0b.AddEvent "ReleaseMixer”

End Sub

A starting truck will need to be initialized at the beginning of the simulation. At each
truck’s arrival, the arrival of the following truck is scheduled. In order to initialize the
first truck in the model, the OnSimulationInitializeRun event , which is triggered at the

beginning of each simulation run, is implemented as following:

Public Sub Batch_Plant_OnSimulationinitializeRun(ob As CFCSim_Modeling Elementinstance, RunNum
As Integer)
Dim truck As CFCSim_Entity

171

Set truck = ob.AddEntity

ob.ScheduleEvent truck, "TruckArrive",0
End Sub

The above code first declares a variable of type CFCSim_Entity. The second line calls
the AddEntity method to obtain a reference to a new entity, which is then assigned to the
declared variable. On the third line, the ScheduleEvent method is used to schedule the
first event for the starting entity. The ScheduleEvent method expects the entity as a first
parameter. The second parameter is the event name to be scheduled and the third
parameter is the duration from the current simulation time at which the event should
occur.

The main simulation processing code is defined in OnSimulationProcessEvent event

handler. For the batch_Plant, this is done as following:

Public Sub Batch_Plant_OnSimulationProcessEventtob As CFCSim_Modeling Elementinstance, MyEvent
As String, Entity As CFCSim_Entiry)
Dim NewTruck As CFCSim_Entitv

Select Case MyEvent

Case "TruckArrive"
*schedule the arrival of the next truck
Set NewTruck = ob.AddEntity
ob.ScheduleEvent NewTruck, "TruckArrive”,20.0

"schedule the next event for the current truck
ob.ScheduleEvent entity, "RequestMixer”,0.0

Case "RequestMixer”
If ob.RequestResource("Mixer”.entity) Then

ob.ScheduleEvent entity, "ReleaseMixer”,15.0
End If
Case "ReleaseMixer”
ob.ReleaseResource "Mixer” entity

ob.DeleteEntity entity

End Select
End Sub

172

The parameters of the event provide the event name that must be processed as well as a
reference to whichever entity originally scheduled the event. For the “TruckArrive”
event, the above code first creates another truck entity represent the next truck that will
arrive then schedules its arrival time at 20 minutes. This means that currently, the
assumption is made that the inter-arrival time of the trucks is 20 minutes. Next the code
schedules the “RequestMixer” event for the current truck. When the current event is the
“RequestMixer”, the above code first calls the RequestResource method to obtain the
mixer resource. [f the mixer is available, then the method call will return a True value.
Otherwise a False value will be returned and both the current event and the requesting
entity are saved and automatically added to the resource queue. When the mixer
becomes available, the saved event will be automatically rescheduled for the saved entity.
When the mixer is obtained, the “ReleaseMixer” event is scheduled to occur in 15
minutes. The assumption here is that loading time will be 15 minutes. When the
“ReleaseMixer” event is to be processed, the above code first calls the ReleaseResource
method to release the mixer and then destroys the current truck entity as it is no longer
needed.

At this point a working tool that models the described situation has been defined. It can
be tested using the Simphony Editor program and statistics can be examined for the mixer

resource.

8.2.7.3 Step 2 - Adding Randomness

The second step will demonstrate how randomness can be incorporated into the
simulation code through the random number sampling service. The assumption is now

that, instead of trucks arriving every 20 minutes, the inter-arrival time will be

173

exponentially distributed with a mean of 20 minutes. Similarly, the loading time will be
normally distributed with a mean of 15 minutes and a standard deviation of 2 minutes.
To do this, the implementation of the OnSimulationProcessEvent is modified as follows:

Before:

0b.ScheduleEvent NewTruck, "TruckArrive",20.0

ob.ScheduleEvent entity, "ReleaseMixer”, 15.0

After:

ob.ScheduleEvent NewTruck, "TruckArrive”,Sampler.expntl(20.0)

ob.ScheduleEvent entity, "ReleaseMixer”,Sampler.normal(15.0.2)

Instead of supplying direct deterministic values, the above code calls the sampling

service to obtain a random number.

8.2.7.4 Step 3 - Incorporation of Different Truck Sizes

The next step is to demonstrate how trucks of different sizes can be incorporated into the
model. An assumption is made that, on average, half the incoming trucks will be large
and half will be small. For large trucks, the loading time is Normal(25,2); for smail
trucks it is Normal(15,3). To do this, an entity attribute will be used to determine the size
of the truck. For the initial entity created at the beginning of the simulation run, it is

assumed to be large:

Public Sub Batch_Plant_OnSimulationinitializeRun(ob As CFCSim_ModelingElementinstance, RunNum
As Integer)

Dim truck As CFCSim_Entity

Set truck = ob.AddEntity

mck(llsizell)=ll el'

174

ob.ScheduleEvent truck, "TruckArrive”.0
End Sub

The main change highlighted above initializes a new entity attribute called “Size” and
assigns it the value *“Large”. Next, a similar change is made to the

OnSimulationProcessEvent event handler as follows:

Dim x as single

Select Case MyEvent

Case “TruckArrive”
‘schedule the arrival of the next truck
Set NewTruck = ob.AddEntity
x = Sampler.uniform(0,1)

If x<0.5 Then
NewTruck(''Size")=""Small"
Else
NewTruck('Size'")="Large"
End If

ob.ScheduleEvent NewTruck, "TruckArrive”,Sampler.expntl(20.0)

The above code first declares a single precision floating point variable (Single). When
the “TruckArrive” event is handled, the above code samples a random uniform number
between O and l. If this number is less than 0.5, it sets the truck size to “Small”
otherwise, it sets it to “Large”. This has the effect of generating an equal number of
small and large trucks.

The other change required will be to the processing code for the *“RequestMixer”

simulation event. Changes are as follows:

Case "RequestMixer”
If ob.RequestResource("Mixer” entity) Then

If entity(*'Size")=""Large" Then

ob.ScheduleEvent entity,"ReleaseMixer'’,Sampler.normal(25,2)
Else

ob.ScheduleEvent entity,"ReleaseMixer’',Sampler.normal(15,3)
End If

End If

175

The above code first checks the value of the entity’s “Size” attribute and, depending on

its value, the appropriate parameters of the distribution are used.

8.2.7.5 Step 4 — Using Parameter Attributes

Thus far, the element definition includes numerous assumptions about the batch plant
operation. This means that if the owner of the batch-plant company would like to
experiment with different truck inter-arrival times or loading duration, they must either
posses enough information to modify the code, which is highly unlikely, or contact the
developer to make the necessary changes. This is obviously unpractical; what is needed
instead is a parameterized modeling element. This means that attributes for the modeling
element must be defined, which the plant owner can change in the Simphony Editor. In
order to provide the plant owner with control over the truck loading duration, two

attributes are added to the modeling element as follows:

Public Function Batch_Plani_OnCreate(ob As CFCSim_Modeling Elementinstance, x As Single, v As
Single) As Boalean

Baich_Plant_OnCreate=True

ob.OnCreate x,y,True

ob.AddAaribute ""LoadLarge"," Loading Duration for Large Trucks',CFC_Distribution,
CFC_Single, CFC_ReadWrite

ob.AddAnribute '"LoadSmall", " Loading Duration for Small Trucks',CFC_Distribution,
CFC_Single, CFC_ReadWrite

ob.AddResource "Mixer”, 1
End Function

The changes highlighted above use the AddAttribute method to declare two attributes of
type “CFC_Distribution”. This means that users will be presented with a special dialog
box where they can choose the distribution type and set its parameter values. Once the

attributes are declared, their values will need to be used as part of the simulation

176

processing. To do this, the OnSimulationProcessEvent event handler is changed as

follows:

If entitv("Size")="Large" Then

ob.ScheduleEvent entity,"ReleaseMixer”,0b("LoadLarge”)
Else

ob.ScheduleEvent entity,"ReleaseMixer”,0b("LoadSmall”)
End If

Instead of specifying a value directly, the above code simply references the declared
attribute, which returns a random value based on the user’s specifications. The attribute

values can be manipulated through modeling element attribute form shown in Figure 8-9.

8.2.7.6 Step 6 — Adding Custom Statistics

The statistics available by default are those that are associated with the resources. If any
extra custom statistics are needed, they must first be declared and the observation values
collected during the simulation. Assuming that the owner is interested in the total service
time of the truck, a new statistic is declared by adding the following line to the end of the
OnCreate event handler:

ob.AddStatistic "CycleTime",” Truck Cycle Time".False, True

The shown statement declares a new, non-intrinsic statistic called “CycleTime” with full
tracking. Now that the statistic is declared, the observations for it can be collected. To do
this, the truck entity must first be tagged before it requests a mixer with a timestamp.
This will allow for the determination of its cycle time upon completion of the loading
operation. This can be done by making the following highlighted changes to the
OnSimulationProcessEvent event handler:

Public Sub Batch_Plant_OnSimulationProcessEvent(ob As CFCSim_Modeling Elementinstance, MyEvent
As String, Entity As CFCSim_Entity)

Dim NewTruck As CFCSim_Entiry

Dim x As Single

177

Select Case MyEvent
Case "TruckArrive”
"schedule the arrival of the next truck
Set NewTruck = 0b.AddEntity
x = Sampler.uniform(0,1)
Ifx < 0.5 Then
NewTruck("Size")="Small"
Else
NewTruck("Size")="Large"
End If

ob.ScheduleEvent NewTruck, "TruckArrive",Sampler.expntl(20.0)
entity(''StartTime'')=SimTime

"schedule the next event for the current truck
ob.ScheduleEvent entitv, "RequestMixer”,0

Case "RequestMixer”
If ob.RequestResource("Mixer” entity) Then

If entity("Size”)="Large"” Then
ob.ScheduleEvent entity, "ReleaseMixer”,0b("LoadLarge")
Else
ob.ScheduleEvent entity, "ReleaseMixer”,0b(" LoadSmall”)
End If
End If
Case "ReleaseMixer”
ob.ReleaseResource "Mixer", entity
ob.stat("'CycleTime'").Collect SimTime - entity(''StartTime"')
ob.DeleteEntity entity

End Select
End Sub

8.2.8 Development of the Common Template

8.2.8.1 Overview

In order to test the expressiveness and flexibility of Simphony, a set of modeling
elements were developed to allow for the construction of simulation models based on the
traditional general purpose simulation modeling approach. Table 8-6 lists the developed

elements and their function. The actual development code is provided in Appendix 1.

178

Table 8-6 List of Developed Modeling Elements Used to Support GPS-Based

Modeling
Modeling Element | Purpose Parameters Statistics
CreateEnt Used to create entities. Number of Entities
Time of First Create
Time Between Creates
Destroy Destroys incoming entities
SetAttribute Initializes new entity attributes Attribute | Name
or updates the values of an Attribute 1 Value
existing attribute. e
Attribute 5 Name
Attribute 5 Value
Branch Implements conditional and Branching Probability
probabilistic branching.
Consolidate Consolidates incoming entities Number to Consolidate
into one entity. Number to Generate
Task Delays entities by a Delay Duration
deterministic value.
RandomTask Delays entities by a random Delay Duration
value.
Resource Declares a resource for use with | Resource Description Utilization
Capture and Release elements. Number of Resources
Capture Delays incoming entities untila | Resource Name File Length
given resource is available. Number of Resources
Capture Priority Waiting
Time
Release Releases a previously captured Resource Name
resource. Number of Resources
Statistic Declares a user statistic to be Statistic’s name User -
tracked using the CollectStat Intrinsic Status Statistic

element.

Full Tracking

CollectStat

Collects observed values. Used
in conjunction with the Statistic
element.

Statistic
Value to Collect

output connection point of a

Connector A dummy element used to
organize relationship
representation.
Trace Used to generate trace messages. | Expression
Category
Execute Used to execute user code (user | Expression
inserts).
InPort Used to route entities arriving at
an input connection point of the
! parent element.
QOutPort Used to route entities to an

179

parent.

CompositeElement | A simple element designed to
act as a container for other
elements.

The listed elements make up the bulk of the functionality that is often provided with a
general-purpose simulation system. Users can utilize these elements to extend the
existing set of SPS templates and build accurate and representative models. Three special
elements, the InPort, OutPort and CompositeElement, have been added to allow for the
creation of sub-models. This is based on Simphony’s support for hierarchy and

modularity concepts.

8.2.8.2 The Common Template as a Development Support Tool

Through the common template, users can in fact create elements of their own and place
them in the User Model Library for later use. This will be illustrated in Section 8.3.2.
Developers can also use this library to automate the definition of the simulation behavior
of their elements. The previous approach was to implement the behavior explicitly by
handling simulation-related events and implementing the required discrete event
simulation code. A quicker alternative is to delegate the simulation behavior to a set of
child elements, which are based on the common template. Incoming entities at the parent
element would simply be routed for processing by the child elements. Communication

between parent and child elements is supported with the InPort and the OutPort nodes.

180

(B)

w
i

IaPoxt ‘“—‘9—6 Task (Poxmula) ‘—‘—B‘—O Buecute

Ay

o ./v/" L o

Figure 8-17 Utilization of the Common Template to Define Simulation Behavior

Figure 8-17A contains a model of a spreading operation. A dozer travels to a spreading
pile. removes a certain quantity and then performs the spreading operation. The dozer
and the spreading pile elements are atomic in the sense that their internal structure is
defined using code and not through other lower level elements. The spreading modeling
element, in contrast, defines its simulation behavior through its children. Entities arrive
at its input connection point and are routed to the sub-model shown in Figure 8-17B. The
sub-model is built using a set of common elements. The final element, OutPort, transfers
the entity back to the higher level model.

The actual structure of the sub-model can be prototyped using the modeling environment
to accomplish the required behavior and then later translated into the equivalent script.
The end result is a modeling element that creates a set of child elements as soon as it is

created.

181

8.3 Construction Simulation using the Simphony Editor

8.3.1 Introduction

Simphony Editor is a computer system that allows users to create and execute simulation
models based on the elements available in the modeling element library. It acts as the
controller of Simphony’s GUI service. The main form, shown in Figure 8-18, is based on
a multiple document interface (MDI) standard. This allows multiple windows to be open

at the same time in order to represent different views of the model.

& Comsbunton Sastddaon H1opmt £ dut e

seiacios Dek Otwect] AddRel | Del Rl

3N Loerhy Movew; RONY

Project
Navigation
Tree

Com §
[] R| Toe | Sasce Obwer Cordut
WA T 0 CEM EMS DaiaSSS4) UrSemsgtorinmaicefiun doim enidy esied ext bansiewed 2
S5 1 O3 CEMEMS TwcnSSS50) G A Tach wreny .
B 1 W@ CDM_EMS PSR [1 Eraty Guasa 2
ZEEEr v o b [A
TS 1 00 CEM_EWS_ PSS s Gumad &
Sy 7 W TenSZ527] QrSerniaorProcassfvent Ermy Joleas acsiay 03
BEG 1 W TemS2527) OrSansgorProcesskvers Delay of Eresy O Comoieted
777 O3 0 o m oS ey ! e s
R &% 1 X 1 Acang ot
B 1 B Teamssn vere Eraty Qwdlecas o duley # Q3
Usdusirtarnad o[[T ' & reemm vars Ouley of Ermey O Comptact
e — e ! g nyivy pvs ; h Kol A 5
. isd 4 PlalSEE02 -
Ce—1 = 1 & teceo Tracing Window

Figure 8-18 Simphony Editor Main Form

The modeling element library displays all available elements that can be used to construct
new models. The model layout window displays the current set of defined elements at a

certain level in the project hierarchy. Displayed elements can be selected, deleted, edited

182

and linked. Viewing the contents of one of the displayed elements will open another
layout window. The project navigation tree displays the structure of the simulation
project. Double-clicking on an item on the tree will bring up a model layout window for
the element represented by the tree entry. The trace window is used to display and filter
generated messages. The tool bar displayed at the top of the main form is used to delete
selected elements, add and delete relationships, and change the zoom setting for the
active model layout window. Double-clicking on a given element instance displays the

modeling element attribute dialog box previously mentioned in Section 8.2.3.8.

8.3.2 User Model Library

The user model library is a component of the Simphony Editor; it allows users to store
commonly used simulation models. It is analogous to a style sheet or a template in a
word processing application. When a user adds an element to the user library, the
element information, including its attribute values and 1ts child elements, are stored. The
stored element can later be retrieved to any simulation project. This will retrieve the
child elements and also restore all the attribute values.

Users can in fact use this library as an element development tool. This is done by users
first creating sub-models based on the common template to represent a given process and
then store the defined model in the library. At any later time, this “user element” can be

added to any simulation project.

8.3.3 Support for User Inserts

Figure 8-9 previously illustrated how users can manipulate parameter attribute values

through the attribute dialog box. Users can instead choose to link a given parameter

183

attribute to an expression. This expression is evaluated every time the attribute is
accessed. The programming language used to build these expressions is based on VBA,
which is the same language developers must use to define element behaviors.

Users have access to the entire Simphony object model. This means that they can access
or even manipulate any component of the model including the current entity, attribute
values of the current element or other elements within the simulation project.

Expressions are defined using the Expression Editor shown in Figure 8-19. The
Expression Editor includes an area where the expression can be defined as well as a
hierarchical view of the current project structure for supporting the construction of
statements. The shown code is used to implement a road segment element with a

dynamic length.

w. Edit Formula = HE=E '

Public Function F56876(ob As CFLSm_ModeingE lementinstance) nE
It Elements(’*56854' " AmountDumped™] = 100 Then
£ 256875 = 2000
Is
£ F56876 = 2000 - Elements{*56854")"AmountDumped”’) 7 100
nd It
| End Function

AR of
. i€

& CompositeElement 56822
= Chidren
= CEM_EMS 56823
< Children
® CEM_EMS_Souce.56824
CEM_EMS_Placement. 55854
& CEM_EMS_Truck 56873 !
& CEM_EMS_Road 56874 '
& CEM_EMS_Road 56875

cannrtCanapesd

I»

Resources
Statistics —-
Resources = '

pae |) Tex |

Figure 8-19 Expression Editor Used in the Creation of a Dynamic Road Segment

184

8.3.4 Support for Scripting

Users have the capability to bypass the GUI and create simulation models by writing
VBA scripts. This is helpful in situations where large and repetitive modeling sequences
are encountered. This function is performed through the script window shown in Figure
8-20. Again, the full Simphony object model is available to the user. The shown
example illustrates how fifty copies of the “Batch” modeling element can be created with
seven lines of code. This feature possible is made possible by the open architecture

implementation of the Simphony system.

ba | M[=]E3
Execute |
Function Script() N
Dimi As Integer
Dim j As Integer
Fori=1To 10
Forj=1To5
Elements("56879") AddElement "Batch®, i*100.j*100
Next
Next
End Function
I .
<« | _"—l
fide. (10

Figure 8-20 Using the Scripting Capabilities to Create a Large Number of Elements

84 Summary

This chapter presented an overview of the Simphony environment and its components.
Section 8.2 presented the development environment, including the base generic
modeling element and its behaviors, the various services, and the Simphony Designer.

Section 8.3 presented the Simphony Editor and its features.

185

The environment was developed as a unified modeling and simulation tool that supports
the concepts presented in chapter 7. Special purpose modeling is directly supported
through the developer’s ability to create SPS templates. Graphical modeling is supported
through the graphical modeling behavior of the elements and the extensive GUI service.
Integrated modeling is supported through the database access and planning services.
Modular and hierarchical concepts have been fully and thoroughly utilized through the
relationship and hierarchical element behaviors. The hybrid tool development and
utilization concept was supported through a controlled and simplified tool development
approach and by providing users with the capability to create user elements.

Several manuals were written for Simphony users and developers. The Simphony Editor
User’s Guide and the Simphony Designer User’s Guide provide information on how the
two respective computer programs and their features work. The Simphony Developer’s
Guide is a comprehensive guide for the development of new SPS templates including
several tutorials. The Simphony Reference Guide is a detailed listing and explanation of
the Simphony object model, including all the supported language expressions. These
manuals are available from the Construction Engineering and Management group at the

University of Alberta (Hajjar 1999a).

186

Chapter 9 — Simphony Application Framework

9.1 Background

Discussions in previous chapters have concentrated on the fundamental construction
modeling and simulation related concepts of this thesis. While this constitutes the
majority of the contributions, there is one major concept from the software engineering
and development arena that made it possible to transform the ideas into a practical
computer system that can be deployed and tested. This concept is called object-oriented
application frameworks and is presented here in order to provide a complete picture of
the presented methodology including software design and implementation details.
Further information on the internal implementation details of Simphony was documented

as part of an internal department report (Hajjar 1999b).

9.2 Introduction

The majority of software development projects in the construction industry have followed
the traditional approach. Applications are typically developed from scratch according to
the requirements of the company. On some occasions, developers will reuse code from a
previous project or take advantage of specialized third party components. This is referred
to as “code-reuse” because only the programming code is being reused. While this
practice reduces the development time, it requires the complete redesign of the
application in every instance. Object-oriented application frameworks alleviate this

limitation by capturing and reusing both the recurring application code and the design.

187

Object-oriented application frameworks, which will be referred to as application
frameworks in the rest of this chapter, encapsulate a given design philosophy and a set of
libraries that can be used to develop specific applications for a given domain. This means

that overall development becomes a two step approach as illustrated in Figure 9-1.

Tool A

Object Oriented
Framework Application Tool B
Development
Framework
Tool C

Figure 9-1 Application Framework Approach to Tool Development

First, a number of expert developers who are familiar with a specific application domain
develop the application framework. Examples of specific application domains are cost
estimating systems, scheduling systems, and construction simulation systems. The
developed application framework captures the broad and recurring business processes,
transactions, and transformations within the target domain. Once the application
framework is developed, specific tool implementations within the domain can be
developed. For example, a specific implementation based on an estimating framework
could include an earth-works estimating systems, a bridge estimating system, or a multi-

story commercial building estimating system.

188

Understanding of application frameworks has greatly advanced in recent years. Section
9.3 will provide an overview of the basic concepts involved in framework design,
implementation, documentation, and deployment. The information provided is based on
application framework design and development guidelines as outlined in Froehlich,
Hoover, Liu and Sorenson (1998). This work was also used as the basis for the design
and development of the construction simulation application framework as will be

explained in section 9.4 .

9.3 Overview of Application Framework Theory

9.3.1 Design

The first step in design of an application framework is the determination of its intended
domain. This helps in defining the scope of the framework and the basic services that it
should provide. Variability analysis is a technique that can be used to assist in this
process. This involves a detailed analysis of features across a number of possible
scenarios. Scenarios may include general descriptions, formal process models or. Ideally,
actual tools developed for the intended domain. Variability analysis results in the
identification of common and distinct features. The common features translate into the
“frozen spots” of the framework. Frozen spots are framework components whose
behavior tool developers have little or no control over. The identified distinct or variable
features translate into the *hot spots” of the framework. Hot spots are places in the

framework that tool developers can customize for specific requirements.

189

9.3.2 Implementation

Once the design of the framework is complete, the implementation can begin. Often, the
process is iterative rather than linear; implementation may require the redesign of certain
components, as the domain becomes more understood. During this process, the means by

which developers will be customizing the framework are also determined.

9.3.3 Testing

Once the framework implementation is complete, it is tested through the impiementation
of several basic tools. Ideally, some of the tools originally used for the variance analysis
are re-implemented. This proves the initial practicality and expressiveness of the

developed application framework.

9.3.4 Deployment

Several issues are related to the deployment of application framework after their
implementation and testing is completed. First, the framework must be introduced in a
careful manner so that developers can gradually leamn its basic requirements, features and
components. This process can include roll out sessions, example applications, extensive
documentation and tutorials. Second, the distribution means of the framework must be
addressed. Possible options include source code or binary code distributions. Third, a
process must be established to capture important feedback from the tool developers. This

includes general support information, bug reports, and enhancement requests.

190

9.4 Application Frameworks for Construction Simulation

9.4.1 Overview

Chapter 7 explained how the unification of the various concepts was achieved through
the formalization of a generic base modeling element and a set of development support
services. This generic element can be used in the development of a special purpose
simulation template that allows for modeling a specific construction domain. This
approach to achieving unification naturally led to the use of an application framework as
the basis for Simphony’s development. As illustrated in Figure 9-2, the framework
corresponds to the Simphony object model (SOM), which is used to build specific special
purpose simulation (SPS) tools. These tools were previously referred to as SPS

templates: they reside in the modeling element library.

Modeling Element Library

Simphony Object _ .
Model General Purpose Simulation (GPS)
Based Template
Application
Framework [Toal Deve!opmem> Earth-moving template

\ Aggregate production template

Figure 9-2 Utilization of Simphony Application Framework for Generating SPS

Templates

191

The Simphony object model encapsulates both the generic modeling element and all the
required services. The benefit of this approach is that all the design and development
knowledge common to all special purpose simulation tools is captured in a single place.
This dramatically reduces the development complexity and duration for specific SPS
tools and allows developers to concentrate on the core features of their intended domain.
Further, by isolating the core component of the tool from the support elements, accurate
comparisons across the various tools becomes possible. This result has allowed for a fair
evaluation to be made across tools developed by students in a class assignment, as will be

demonstrated in the next chapter.

9.4.2 Framework Design

9.4.2.1 Overview

The first stage in the design of an application framework is the determination of the target
domain. SOM’s domain is construction simulation tools. The domain is further limited
to civil construction engineering. Further enhancements to the SOM may make it possible
to support other types of construction areas but this has not been investigated as part of
this thesis.

Domain analysis has been presented in the form of the unified modeling methodology
previously found in Chapter 7. It was stated that the resultant tools must be based on
such concepts as special purpose simulation modeling, graphical modeling, integrated
modeling, and the hybrid approach to tool development and utilization. This realization

came from an assessment of previous experiments with three domain applications: an

192

earth-moving simulator (AP2-Earth), an aggregate plant production simulator

(CRUISER) and a construction site dewatering simulator (CSD).

9.4.2.2 Variability Analysis

A variability analysis of the three applications revealed that a large proportion of features
were identical in all tools; code had in fact being reused for these features. Further, of all
the remaining features, the majority did not vary significantly and it was possible to
generalize their functionality in order to standardize implementation. These common
features became the “frozen spots” of the framework. The remaining features were
genuinely unique to the specific tools. They were used in the identification of the *“hot
spots” of the framework.

Table 9-1 lists the features that were found to be the same across tools. Certain features
existed in some tools but not in others. Table 9-2 lists the features that were, for the most
part similar across tools. Some of the mentioned features did not exist in any of the tools
but are required as stipulated by the unified modeling methodology. The fundamental
basic variation across tools was the structure, or behavior, of the modeling elements.
Although a standard list of broad behavior categories for modeling elements was
identified, the individual definition of the behaviors across tools and even within specific
tools varies considerably. Table 9-3 lists the identified behaviors and how they generally
differ across modeling elements. Note that the features listed in all the tables correspond

to a high level functional requirement and not necessarily a specific low level feature.

193

Table 9-1 Common Features across Construction Simulation Tools

Feature AP2-Earth | CRUISE | CSD | Comments
R

Random X X Both Ap2-Earth and CRUISER require a random

Number number generation library able to transform results

Sampling into a standard set of stochastic deviates. CSD is
based on a deterministic model and does not
required random sampling.

Project Plan | X AP2-Earth generates information based on the

Information simulation run which can be used to construct a

Generation project plan in the form of an estimate or a
schedule.

External X X AP2-Earth and CRUISER can access an external

database database containing standard industry or company

access information.

Graphical X X X All applications utilize the same graphical user

user interface library (Microsoft Windows GUI)

interface

Modeling X X X All application employ a set of model building

elements blocks, called modeling elements.

Table 9-2 List of Factored Features across Tools
Feature AP2-Earth | CRUISE | CSD | Comments
R

Simulation X X X CSD’s simulation engine is a non-linear

Engine mathematical equation evaluator. CRUISER s is a
steady state depth first analysis engine and Ap2-
Earth’s is a discrete-event engine. Each tool
employs a different type of engine. However all
three cases can be generalized to employ a
discrete-event engine. Each tool would simply
utilize the engine to a different extent.

Simulation | X X AP2-Earth generates a trace file of all the

progress and simulation events in the model and reports errors

general through the GUI. CRUISER generates information

feedback on the analysis processes at each element and

reporting reports errors through a central feedback manager.
CSD does not require any simulation progress
reporting but does inform users of errors directly
through the GUL. Although the means of
providing feedback and the required level of detail
is different, all three tools can definitely benefit
from a centralized feedback reporting mechanism.

Statistical X X While CRUISER involves very simple statistical

Collection collection and analysis features, AP2-Earth’s is

and more involved. It includes such analysis as

194

Analysis

intrinsic and non-intrinsic types. However, one is
basically a subset of the other. This allows for a
unified approach to statistical collection and
analysis.

Simulation
Model
Persistence

Ali applications are able to store and retrieve the
simulation models defined by the user. Ap2-Earth
utilize a database approach in order facilitate data
exchange while CSD and CRUISER employ a
binary file approach. The unified modeling
methodology stresses the importance of integrated
modeling and as such, it is decided that all tools
will utilize a database as the only means for model
persistence.

Modeling
Element
Behaviors

While all tools require a set of modeling elements,
the structure or behavior of each modeling element
differs from one tool to another. A set of
behaviors is factored from all three tools plus the
further requirements of the unified modeling
methodology to obtain a common set of behaviors
with default functionality: attributes, relationships,
hierarchy, simulation, integrity, statistics, planning,
and graphical modeling. Most behaviors are
defined differently for different modeling
elements.

Table 9-3 List of Variable Features across Tools

Feature

AP2-Earth

CRUISE

R

CSD

Comments

Attributes

X

Each modeling element requires a unique set of
attributes to represent its state. Some attributes
allow users to provided parameter values at run-
time, some provide simulation results and others
are used for temporary and internal purposes.
Attributes’ internal representations also vary
considerably between elements. Possible types
include textual, numeric, and array based.

Relationships

While two of the tools require the notion of a
relation between modeling elements, different
modeling elements support different number and
types of relationships.

Simulation

Modeling elements, across tools and within
tools, define distinct simulation models in the
form of discrete-event code handlers.

Integrity

Each modeling element requires a different set of
rules that place constraints on its relationships.
possible attribute values and other parameters.

Statistics

AP2-Earth and CRUISER localize the statistical
collection and analysis at the modeling elements.
Each modeling element generates a different
number of statistics under different
circumstances.

195

Planning X Planning information, according to the unified
modeling methodology, will be derived from the
individual implementation of the planning
behavior of each modeling element.

Graphical X X X Each modeling element is represented

Modeling graphically in a different manner in order to
differentiate the different types of elements.
Relationship information can also be represented
differently depending on the tool or even the
individual modeling element participating in the
relationship.

Modeling element attributes, which are
manipulated by the user through the GUI, also
employ different types of user interface controls.
Some of controls utilized by the three tools
include a text box, list box, calendar, and grid.
Attributes designed for presenting resuits to the
user also employ several graphical
representations. For example, the site water table
level attribute in CSD is represented by a three
dimensional surface chart.

9.4.3 Framework Implementation

9.4.3.1 Overview

The presented domain variability analysis lead to the final design and implementation of
the Simphony object model. The identified common features translated into the main
framework services and a definition of the generic base modeling element. A simplified
representation of the framework structure is shown in Figure 9-3. The previously
identified common features were grouped into the services of the framework. The
generic base modeling element encapsulates a default representation and can be used by

developers to create custom simulation tools.

196

Simphony Application Framework

Simulation
Service

Random Number
Sampling Service

Planning Service

Simulation Service /

Database Access Service

Generic Base
Modeling Element

GUI Service

Figure 9-3 Simplified Representation of Simphony Application Framework

9.4.3.2 The Modeling Element as a Hot Spot

The generic base modeling element represents the main hot spot of the framework. This
structure was implemented as a parameterized class, which developers can customize
through the technique of composition. With composition, developers create objects
based on the generic class and provide information as to the specific implementation of
certain parameters. The modeling element class parameters are the properties that can be
manipulated through the overridable class methods. When based on this, construction

simulation tool development is reduced to the process of declaring the set of required

197

modeling elements and overriding the default implementation of the desired class

methods. The detailed structure of the generic base modeling element class was presented

One way in which developers customize a given modeling element is related to its
attribute table: an element that models a truck in an earth-moving simulation may

contain an attribute table such as the one shown in Table 9-4.

Table 9-4 Sample Attribute Table for Truck Modeling Element

Name Description Internal External | User Min | Max
Rep. Rep. Permissions

Type Truck type Text List Box Read Write

Quantity Number oftrucks Numeric Default Read Write 1 100

Capacity Truck capacity in cubic Numeric Default Read Write 5 200
metres per hour

Dumping | Truck dumping duration | Distribution | Default Read Write

time

Ipriority Truck priority at Numeric Default Read Write 1
intersections

LPriority Truck loading priority Numeric Default Read Write

Path Path number to follow on | Numeric Single Read Write
branches

9.4.3.3 Concerns

The primary objective for developing the SOM was the simplification of the development
process for new construction simulation tools. This objective, along with the unique
nature of the framework domain, meant that a simplified tool development approach was
needed. The result was the development of a custom integrated development
environment (IDE) programming interface. This system is called the Simphony Designer
and was previously presented in Section 8.2.4. The general idea is that developers use a
special scripting language based on Visual Basic for Applications (VBA) to implement
the modeling element class methods. The scripting environment exposes the framework

198

services through special language statements. For example, the attribute table shown in
Table 9-4 can be defined as part of the developer’s implementation of the truck’s

OnCreate method which may appear as follows:

Public Function CEM_EMS_Truck_OnCreate(ob As CFCSim_Modeling Elementinstance, _
X As Single, y As Single) As Boolean

CEM_EMS_Truck_OnCreate=True
ob.AddAttribute "Tvpe”, "Truck Type", CFC_Text, CFC_ListBox, CFC_ReadWrite
ob.AddArtribute "Quantity”, "Number of Trucks", CFC_Numeric, CFC_Single, CFC_ReadWrite, 1,100

ob.AddAntribute "Capacity”, "Truck Capacity in Cubic Metres”, CFC_Numeric, _
CFC_Single, CFC_ReadWrite, 5,200

ob.AddArtribute "DumpingTime", "Truck Dumping Duration", CFC_Distribution, _
CFC_Single, CFC_ReadWrite

ob.AddAttribute "IPriority”, "Truck Priority at Intersections”, CFC_Numeric, _
CFC_Single, CFC_ReadWrite, !

ob.AddAttribute "LPriority”, "Truck Loading Priority ", CFC_Numeric, _
CFC_Single, CFC_ReadWrite,]

ob.AddAntribute "Path”, "Path Number to Follow on Branches", CFC_Numeric. _
CFC_Single, CFC_ReadWrite, !
End Function

The resultant scripts are evaluated at run-time during the tool execution process. Code
syntax errors are highlighted during development while run-time errors are trapped and
reported through the tracing service. This strategy resulted in a slightly different
approach to traditional tool development. Developers, instead of creating new standalone
tools, merely create new templates, in the form of customized modeling elements, to
extend a single tool. This single tool has been previously presented as the Simphony

Editor.

9.4.4 Framework Testing

The SOM was first tested through the re-development of AP2-Earth and CRUISER to use

the framework. Results of these tests will be discussed in the next chapter. After the
199

successful completion of these tools, a generic general-purpose simulation based tool was
developed to evaluate the framework flexibility. This tool was presented in Section
8.2.7. This series of tests, performed by the framework developer, demonstrated the

practicality and effectiveness of the framework.

94.5 Framework Deployment

Extensive user and reference documentation for the entire framework and the two
supporting computer programs was written. The framework documentation included a
complete reference manual of all the objects as well as a detailed developer guide that
included several tutorial applications.

The framework was first introduced to graduate civil engineering students as part of a
class module. The students had the benefit of one undergraduate programming course,
one graduate computer applications course and basic computer simulation training using
a commercial system. A series of four one-hour lectures and four two-hour lab sessions
was given. The framework services and modeling element behaviors were presented
along with some code illustrations. After the initial introduction, a series of tests, or case
studies, was performed. These concentrated on evaluating the usability of the framework
by novice developers. The students’ first task was the development of a CYCLONE
simulator as part of a class assignment,. Their second task was the development of a
specialty simulation tool for a specific construction process of their choice for their
course project. The code used to implement both the general-purpose simulation based
tool and two re-developed tools were provided to students. The results of these case
studies will be presented in the next chapter (Section 10.4). Bugs and requests for

enhancements resulting from class testing followed a formal email reporting procedure.

200

This process resulted in several refinements to the framework in the form of new builds.

The details of the build history are provided in Appendix 2.

9.5 Conclusions

This chapter discussed the application of object-oriented application framework concepts
to the construction simulation domain. An application framework approach greatly
reduces the development effort and allows for the standardization of the generated tools.
Design of the framework resulted from a variability analysis of three previously
developed standalone tools as well as the requirements of the unified modeling
methodology.

Application frameworks represent the natural progression from archaic code reuse to
development of reusable code libraries then to the development of structured object
libraries. These were a critical factor in the implementation of ideas presented in this
thesis. It is also strongly believed that they can be equally effective in other construction

management domains.

201

Chapter 10 — Case Studies

10.1 Introduction

The presented unified modeling methodology, used as the basis for the development of
Simphony, leads to improvements in two areas. First, simulation tools become more
effective, powerful, and appealing to the average construction user. Second, the
development process of these tools is dramatically simplified, and shortened.

The first statement has already been proven through the successful development,
validation and deployment of the three tools presented in Chapters 3, 4, and 5. Although
these projects were completed prior to the full development of the unified modeling
methodology, their findings led directly to the formalization of the contributing concepts.
As a result, the second area of improvement, related to tool development, is the primary
focus of several case studies discussed in this chapter.

To test the hypothesis that development time is dramatically shortened, two of the
previously presented tools, AP2-Earth and CRUISER, were re-developed using
Simphony. The original development duration was then compared with the time required
for re-development. The results of this case study are presented in Sections 10.2 and
103 . To test the other hypothesis that the development process is dramatically
simplified, students from the Civil Engineering 606 simulation course undertook
development of construction simulation tools using Simphony. This exercise is discussed

in Section 10.4 .

202

10.2 AP2-Earth Redevelopment

10.2.1 Overview

A Simphony special purpose simulation template, called “*CEM_EMS”, was developed
with most of the functionality provided by AP2-Earth. Users are able to model
preparation, loading, hauling, dumping and spreading operations, and generate results in

a similar manner to the AP2-Earth. The template code is provided in Appendix 3.

10.2.2 Earth-Moving Simulation using the CEM_EMS Template

The CEM_EMS template consists of sixteen modeling elements that can be used to
define the various components of an earth-moving operation. Most of these elements
have attributes that users can manipulate to modify the outcome of the simulation. A

sample model based on this template is shown in Figure 10-1.

¥ Eath Moving Samulation 57132

o

Figure 10-1 Sample Model Layout Based on the CEM_EMS Template

203

Models are built hierarchically in a top down fashion. Higher level elements generally
represent overall operations with lower levels incorporating more details regarding the
specific process. The available modeling elements, are illustrated hierarchically in Figure
10-2. At the highest level is the “CEM_EMS” element which corresponds to the
template’s name. Such root elements normally encapsulate high level model attributes,
statistics, and shared resources. At the next level, seven elements can be used to define
the source and placement areas, trucks, and road layout information, which is made up of
road segments, intersections, branches and external traffic processes. Below the source
area, represented by the “CEM_EMS_Source” element, a model can be defined using the
six elements shown. These elements are related to the preparation and excavation
processes. Below the placement area, represented by the “CEM_EMS_Placement”
element, the spreading and dumping processes are defined using a set of seven modeling
elements. As illustrated in Figure 10-2, five elements can be used for defining models
inside both the source and the placement. The “CEM_EMS_TruckIn” and
“CEM_EMS_TruckQut” elements are used for routing trucks from the parent (either

source or placement) into the appropriate location in the sub-model.

CEM_EMS

Basih Kevang
Sl ataon
CEM_EMS_Sourcd CEM_EMS_deJ ICEM_EMS_Intersection | CEM_EMS_Road | [CEM_EMS_Ext_TrafMd| CEM_EMS _Spiit _EMS_Placemen(
Q o
) ® 6

CEM_EMS _Truckin | [JCEM_EMS_Excavatod | CEM_EMS_Pike| [ICEM_EMS_Dozed] ICEM_EMS_Perwparatio] [CEM_EMS_Spreading | CEM_EMS_Dump
CEM_EMS_TruckQut]

B | oadie ||, 22 || | = | o
°<] - o "o ! 3

Figure 10-2 Modeling Elements of the CEM_EMS Template

Each modeling element provides a specific functionality and allows users to manipulate
the internal behavior through its parameter attributes. Outputs and statistical analysis
results are provided as needed for certain modeling elements. Table 10-1 lists the

modeling elements, their functionality, parameters, outputs and any statistics they

provide.
Table 10-1 Function of each CEM_EMS Template Element
Element | Function Parameters QOutputs | Statistics
CEM_EMS | Serves as a simple container of a
given earth-moving model.
Source Serves as a container of the Amount To Haul Amount
preparation and the Loaded
excavatior/loading processes.
Truck Allows for the definition of one or Truck Type Cycle Time
more trucks and their properties. Number of Trucks
Capacity
Dumping Time
Priority
Path
Intersection | Allows for the representation of Expected Delay Utilization

205

traffic interaction amongst truck
fleets.

Queue Length
Waiting Time

Road Models a one way single lane road Length
segment. Grade
Rolling Resist.
Ext_Traffic | Used to introduce an external traffic Time of First Arr.
process into the model, typically at Time between Arr.
intersections. Priority
Split Used to route trucks to appropriate Top Path Number
paths Bottom Path
Number
Placement Serves as a container of the dumping Amount
and spreading processes Dumped
TruckIn Used to route trucks from source or
placement elements into sub-model.
TruckOut Used to route trucks from sub-model
back to parent source or placement.
Excavator Allows for the definition of one or Utilization
more excavators used for loading Number of exc. Queue Length
Productivity Waiting Time
Pile Models the interactions that occur at | Starting Amount Current File Length
the loading or dumping material pile. Amount Waiting Time
Trucks will queue if not enough
material has been prepared inside the
source and dozer will queue if not
enough material has been dumped
inside the placement.
Dozer Allows for the definition for one or Number of dozers
more dozer used for preparation and | Capacity
spreading operations. Productivity
Preparation | Used to model preparation activity Amount to Prepare | Amount
inside a source Prepared
Spreading Used to model the spreading Amount
operation inside a placement Spread
Dump Used to model a dumping location Maximum allowed | Amount Utilization
inside a placement trucks at any time Dumped Queue Length
Waiting Time

10.2.3 Strategies for CEM_EMS Template Development

During the development of the template, it was determined that Simphony’s hierarchical

modeling support should be employed in order to guide users in building models using a

“top-down” approach. At the second level of the hierarchy, below the root element, the

model would correspond to what a planner would initially “jot down” on paper to explain

206

the project to another person. At the next level, as part of the source and placement sub-
models, the preparation, excavation, dumping and spreading operations would be defined.
For defining the simulation behavior of the preparation and spreading elements, the GPS
(general purpose modeling) template was used as an alternative to hard-coding the
discrete-event code inside each modeling element. The benefits of this approach are that
development time is reduced as coding is not required and the user, although not required
to, is able to modify the underlying simulation behavior by defining an alternative sub-
model using the GPS template. This means that a fourth level in the hierarchy exists
below the preparation and the spreading operations. It is based on modeling elements

from the GPS template as illustrated in Figure 10-3.

o}
o spacadang ©
J i . = 3N Spenndng Ovetation 57306 [[Ol=
. f p— 3
¥ Aol f
\\d }It»"' ‘*p-o!:... Fomaias | O—£30 | tmone 0—50[...,...
' — | : .
E Taed Tewmmies Q—E—Oih——- !.‘Bor‘"" I;u _-]—'

Figure 10-3 Definition of Simulation Behavior through GPS Template

10.2.4 Enhancement Over the Original Tool

The use of hierarchy and modularity concepts for the implementation of the CEM_EMS
template resulted in a more flexible and extendable tool. Flexibility was gained by
exposing more of the internal implementation details of certain elements. For example,

with AP2-Earth, the user had limited control over the behavior of the preparation and

207

excavation processes. With the developed template, users can view the definition of
these processes and modify them in any desired manner. The tool can also be extended
by users who are familiar with the GPS template. As was explained earlier, the definition
of the spreading and preparation operations can be modified. The same approach can be
followed in combining the elements based on the CEM_EMS template with other
elements based on the GPS template for modeling certain scenarios. An illustration of
how this can be done was provided in Figure 7-9.

Another advantage of the Simphony template is that users are able to store a given

portion of their model in the user library for use in other projects.

10.2.5 Comparison of Development Efforts

Analysis of historical records showed that the original development of the AP2-Earth
project was equivalent to a one person labor year. This involved time spent learning the
fundamentals of earth-moving operations, site visits, company interviews, site
deployment, documentation and integration. The actual design and programming time,
which involved C++ coding, database development, and report design and construction,
was approximately 400 hours. This value can be compared with the Simphony template

development time, which is detailed in Table 10-2. The total duration was 28 hours.

Table 10-2 Development Hours for the CEM_EMS Template Components

Task Hours
Overall Design 5
Source 2.5
Placement 2.5
Road 3
Trucksln 1
TrucksQut 1

Dump 2
Excavator 2.5

Pile 335

208

Spreading 2.5
Preparation 2.5

10.3 CRUISER Redevelopment

10.3.1 Overview

In a similar manner, a Simphony template, called “CEM_CRUSH”, was developed with
the same functionality as CRUISER. A sample model layout based on this template is
shown in Figure 10-4. The Simphony code for this template is not provided due to its

length. However, it has been published as part of a department internal report (Hajjar

1999c).

100.00

L
.'
4 >

Figure 10-4 Sample Model Layout Based on the CEM_CRUSH Template

209

10.3.2 Aggregate Plant Simulation Using the CEM_CRUSH Template

The set of modeling elements making up the CEM_CRUSH template are similar to the
corresponding elements of CRUISER in both representation and functionality. The one
major difference is that some elements take advantage of hierarchy and modularity
concepts. The hierarchical relationships of the modeling elements are illustrated in

Figure 10-5.

CEM_CRUSH
Aggragate Plany
Samuletien

CEM_Crush_siveAmainiy | cEM Crsh RawFeed FEM_Crmd Scrven | EEM_Crud_splitsirea] | CEM_Crut _tuinstreand EM_Cran_croser | KEM_Crumd_stesdystate
. Q
— L2 __ 10 o a
B || ¥ | w| <
= o o || -fBYo oo

2. ¢ o

VAL SN

JCEM_Crah_Settiag | CEM_Crub_Picture

CEM_Crush_Sempie CEM_Crub_Mremin CEM_Cruabs_StreamOutl

Setting Picture

Figure 10-5 CEM_CRUSH Template Structure

The raw feed element (CEM_Crush_RawFeed) is used to define the properties of the
input raw stream into the plant. The feed rate is manipulated through the attribute form.
The actual gradation of the samples is provided by defining one or more sample elements
(CEM_Crush_Sample) as children of the raw pile element. Each defined sample
represents a single observation.

The sieve analysis element (CEM_Crush_SieveAnalysis) is used at strategic locations

throughout the plant model in order to collect observations. The element will analyze

incoming stream passing through it and produce a gradation graph similar to the one
shown in Figure 4-6. This functionality was previously a property of the conveyor
element; it was transferred to allow users to explicitly determine the places where
analysis should take place. This eliminates unnecessary calculations. The sieve analysis
modeling element also replaces the functionality of CRUISER’s product pile. The
product pile was used to examine the generated gradation along with a user defined
envelop representing the desired gradation. To generate this type of output (shown in
Figure 4-3), two sample elements (CEM_Crush_Sample) can be added as children of the
sieve analysis element. One represents the upper bound and the other represents the
lower bound. If this is done, the sieve analysis element will simply add the streams
represented by the sample elements to the gradation graph along with the results of the
analysis, resulting in the desired type of output. Any number of child samples can be
added to compare the analysis results with any reference gradation.

The screen element (CEM_Crush_Screen) is used for the modeling of the size separation
process. Several other support elements are also used in defining the various size
separation parameters. The deck (CEM_Crush_Deck), StreamIn
(CEM_Crush_StreamlIn) and StreamOut (CEM_Crush_SteamOut) elements are used to
define a sub-model inside the screen element that determines the e;(act stream flow across
the various decks and splits of the screen. For example, a simple single-deck screen can
be represented with the model shown in Figure 10-6A while a double-deck screen with a

split top deck can be represented with the model shown in Figure 10-6B.

(A) (B)

Figure 10-6 Modeling Size Separation Processes Using Screen Sub-Models

The crusher (CEM_Crush_Crusher), setting (CEM_Crush_Setting), and picture
(CEM_Crush_Picture) elements are used in the modeling of the size reduction process.
Size reduction modeling, as explained in Section 4.3.7, depends on empirical tables that
provide the expected gradation based on a given crusher setting. A crusher is defined by
first creating a crusher element and then defining the empirical table as a sub-model.
Each possible crusher setting, along with its expected gradation, is defined using a single
setting element. A typical crusher could contain up to ten child setting elements
representing the ten possible crusher settings. The picture element is used to customize
the graphical representation of the crusher element. The described modeling process,

involving the definition of multiple setting child elements and their corresponding

~
—
(88}

expected gradation, must be defined only once for each type of crusher. Once the new

crusher type is defined, it can be stored in the user element library for later use.

10.3.3 Strategies for CEM_EMS Tempiate Development

The re-development of CRUISER involved a further analysis of the basic required data
structures. This led to the factoring of several components in order to reduce the amount
of coding and resulted in better use of object-oriented modeling concepts. The sample
element is one example of this factoring. In CRUISER, sample related data structures
were duplicated in the raw feed, desired gradation and product pile elements. Although
these elements manipulated the samples using shared routines, certain aspects, including
the user interface, were individually implemented. The sample element, once defined. is
used whenever gradation data was required from the user. For example, it is used both to
obtain raw feed sample gradation for the raw feed element and to define desired
gradations inside the sieve analysis element.

The hierarchical concepts used in Simphony made it possible to obtain complex data
from the user. For example, the crusher element required the definition of an empirical
gradation table consisting of a custom two-dimensional structure. This was done by
representing each column of the table with the setting element, which, in turn, allows the
user to define the expected gradation for the corresponding setting. During simulation
validation, the crusher element first ensures the existence of a child setting element that
defines the expected gradation for the user specified crusher setting. If an element is
found, the crusher element stores a reference to the element for alter use. The code used

to do this 1s as follows:

Public Function CEM_Crush_Crusher_OnCheckintegritv(ob As CFCSim_Modeling Elementinstance) As
Boolean

213

Dim child As CFCSim_Modeling Elementinstance
Set ob("SettingObject”).Reference =Nothing

For Each child In ob.ChildElements
If child. ElementType="CEM_Crush_Setting” Then
If ob("Setting")=child("SettingLabel”) Then
CEM _Crush_Crusher_OnChecklintegrity=True
Set ob("SertingObject”).Reference = child
Exit Function
End If
End If
Next

Tracer.Trace "Current crusher setting is invalid. ","Integrity”
CEM_Crush_Crusher_OnChecklintegritv=False
End Function

During the simulation, when a stream entity reaches a given crusher, the crusher element
uses the stored setting element reference to obtain the expected gradation information and
use it as part of the processing algorithm.

The screen element was also designed to take advantage of hierarchy and modularity
support. The basic processes involved in modeling a screen were separated and
implemented as individual elements. This resulted in a the use of a screen sub-model to
define specific stream flow across decks and splits. The StreamIn element is used to
route the incoming stream entities to the appropriate deck. Multiple decks are then used
to represent the various decks and splits of a given screen. The StreamOut element is

finally used to direct stream entities back to the higher level model.

10.3.4 Enhancements Over the Original Tool

Many benefits were gained from the redevelopment of CRUISER as a Simphony
template; some of these were mentioned in the previous section. Other benefits include
the ability to extend the model with GPS-based elements and to combine models based

on the CEM_Crush template with elements based on other templates. Some of the more

214

specific advantages include inherent support for custom crushers, extended flexibility of
size separation process modeling, and storage of commonly used models in the user
element library.

CRUISER did allow for custom crushers to be defined, but that involved using a separate
program to define the empirical tables. By designing and implementing the crusher
element using the approach explained in the previous section, it becomes possible to
define custom crushers as part of the modeling environment.

Users are also given more control over the modeling of the size separation process.
Whereas before all aspects of this process were controlled through the screen element
parameters, the current approach exposes the user to the inner workings of the screen
element and allows them to customize it as desired.

The user element library can be used to greatly simplify the modeling process for
aggregate production operations. Commonly occurring sample gradations can be stored
by creating a sample element, defining the gradation, and storing the result in the library
for later use in other projects. The same applies to commonly used crushers. Aggregate
producers will typically posses a limited number of crushers. As a result, they can define
the properties for each crusher element and store the information in the library. Future
simulation projects can access the library and use the exact crusher which is to be used on
the planned quarry. The same idea applied to screens; commonly used screen setups,
such as single deck, double deck, and single deck with split top, can be modeled once,

stored in the library and later accessed for use in other projects.

10.3.5 Comparison of Development Efforts

Historical records revealed that total project investment was equivalent to one and a half
person years, of which 650 hours was actual design and programming time. The
remaining time was spent on process discovery, documentation, and implementation.
The development of the equivalent Simphony template, detailed in Table 10-3, took

approximately 40 hours.

Table 10-3 Development Hours for the CEM_CRUSH Template Components

Task

Qverall Design
Raw Pile
Sample
SieveAnalysis
AddStream
SplitStream
Crusher

Screen

Deck

ours

lo&@uumuutnm

10.4 Class Experiments

10.4.1 Overview

Simphony was introduced to five students in a graduate class. Each student had the
benefit of one computer applications course, a basic Visual Basic education, and
simulation training in the course. After attending four one-hour lectures and four two-
hour lab sessions, students were asked to develop a Simphony CYCLONE template as
part of an assignment. CYCLONE is an activity based simulation system that utilizes a
set of five basic modeling elements. A sample model was illustrated in Figure 7-2. The
students’ second task was to develop a template for either paving or tunneling

construction processes as part of their course project.

10.4.2 CYCLONE Template

CYCLONE was selected for the assignment because it consisted of a relatively small and
easily understood number of modeling elements. Further, a standalone CYCLONE
simulation tool was developed by a third-year computing science student for instructional
purposes. The programmer’s development time was approximately 230 hours. This did
not include time spent becoming familiar with the CYCLONE method. The template
development time of the students, which averaged approximately 40 hours, is detailed in

Table 10-4.

Table 10-4 Summary of Students’ CYCLONE Template Development

Student | Hours | Grade | # of Lines | Normalized
of Code Hours

A 35 60% 256 58.3

B 36 100% 418 36

C 15 90% 325 16.7

D 26 60% 255 43.3

E 32 65% 260 49.2

Provided hours were first normalized by dividing them by the assigned percentage grade.
This was done as a means of extrapolating the number of hours it would have taken to
provide a fully functional tool. Some students did not implement certain features such as
priority queue allocations and counter statistics. The number of lines of code is shown in
order to illustrate the relative complexity of the template. This number can be compared
to the “CEM_EMS” template, which consists of 1168 lines, or the “CEM_CRUSH”

template, which consists of 2059 lines.

10.4.3 Project

Students were instructed to design and develop a Simphony template to allow for the
modeling of either paving or tunneling operations. All students were able to successfully
complete the basic project requirements. The degree of flexibility and effectiveness of
the resulting tools varied between students. The results of the projects are summarized in
Table 10-5. Development time averaged 41 hours for the paving template and 67 hours
for the tunneling template. A sample model based on a paving template from student B is
shown in Figure 10-7 and a sample model based on the tunneling template from student E

is shown in Figure 10-8.

3D Suuctual Layer $7401

Figure 10-7 Sample Model Layout Based on Student B’s Paving Template

<% Tunneting Operation 70387 _{0] x|

-l

Figure 10-8 Sample Model Layout Based on Student E’s Tunneling Template

Table 10-S Summary of Students’ Project Template Developments

Template | Student Hours | Grade # of Lines Normalized
of Code Hours

Paving A 25 60% 484 41.7

Paving B 35 100% 1161 35

Paving C 38 80% 705 475

Tunneling D 47 70% 722 67

Tunneling E 40 60% 300 66.7

10.5 Summary

This chapter discussed several case studies that demonstrated that Simphony can lead to a
dramatic simplification and shortening of the development effort for new construction
simulation tools. Two case studies, which involved the re-development of AP2-Earth and
CRUISER, showed how development time was reduced by a factor of fifteen.
Experiments involving graduate students proved that novice developers are able to easily
develop new simulation tools. Further, the time required for students to develop a
Simphony-based CYCLONE tool was shorter than the time it took a programmer to

develop a standalone version by a factor of six.

Chapter 11 - Final Discussion

11.1 Research Summary

Research presented in this thesis began with the goal of transferring simulation

technology into the construction industry and making simulation based tools as common

as estimating and scheduling systems. In order to achieve this goal, it was determined
that a study would have to be done first to identify the basic requirements that simulation
tools must possess in order to be successful.

This study was the focus of the first phase of research. It resulted in three custom

simulation tools for earth-moving, aggregate production and site dewatering operations.

These tools were developed and refined based on the requirements of leading local

contractors with expertise in their respective industries. An analysis of the success

factors of the tools as well as their limitations led to the identification of a set of features
that all simulation tools must support. These features were grouped into several
categories and can be summarized as follows:

1. The user interface should support graphical representation and manipulation of the
model structure. Integrity violations should be trapped as soon as possible and
reported to the user through the modeling interface in a helpful fashion. Graphical
modeling support should be the primary means of model definition and manipulation.
However, advanced users should still be accommodated and allowed to bypass the
graphical system.

2. The modeling process should be done in a manner that is natural and relevant to the

specific target domain of the simulation tool. Users should not be exposed to the

220

abstract underlying constructs, which require expertise with fundamental simulation
concepts.

3. Construction methods vary in complexity and as a result the simulation tools must be
able to accommodate different types of simulation processors.

4. Results generated by the simulation tools should be of immediate relevance to the
target user. Specific post simulation analysis should be performed when required
with results presented in a familiar and natural manner.

5. Simulation tools must be able to integrate with existing systems in order to reduce the
data entry requirements as well as to generate information for use by existing
systems. The generated information from each tool should follow a standard
structure in order to simplify its analysis process by external systems.

6. Users should be able to combine models based on several tools in an effective manner
in order to allow for the modeling of complete projects involving multiple
construction methods.

7. Tools should support and even encourage the reusability of exiting simulation
models.

8. Tool developers should be able to create new tools in a relatively short time with
minimal effort. The tool development process should be standardized in order to
provide inherent support for all mentioned features.

Based on these identified features, a set of concepts was then formulated. Special

purpose simulation modeling allowed for the development of intuitive, domain-based

modeling elements. Graphical modeling allowed for the simplification of the modeling

process for novice users. Integrated modeling defined how information can be obtained

from other systems through a relational database management system and introduced a
standard for the generation of project planning type of data. Modular and hierarchical
modeling allowed for the modeling of large simulation projects, linking of models based
on different SPS tools, and empowerment of users with development capabilities. The
hybrid tool development and utilization approach explained how it is more beneficial for
a simulation system to support a spectrum of developers and users with different skills
and how their needs can be satisfied. This set of formulated concepts was then combined
into a unified modeling methodology. The unification process was supported with the
concept of object-oriented modeling.

A computer system called Simphony was then developed based on the unified modeling
methodology. Simphony allows for the creation of new SPS tools in the form of
modeling element templates. Development of new tools is greatly simplified and
shortened as developers create new tools by inheriting the pre-defined functionality of a
generic modeling element and then customizing it as required. The development process
is supported by a set of services that provide commonly used routines for such tasks as
discrete-event simulation processing and statistical collection and analysis.

The design and implementation of the Simphony system was guided by the principles of
object-oriented application frameworks. This is a concept from the software engineering
discipline that provides guidelines on designing and implementing libraries that capture a
recurring software solution within a given application domain.

Several case studies were performed in order to test the level of tool development
simplification. Through a re-development of the earth-moving and aggregate production

simulation tools, it was discovered that the simplification factor can be as high as sixteen

for developers who are familiar with Simphony. It was further demonstrated that novice
developers are able to produce new Simphony-based tools at a pace that exceeds that of a

programmer using a commercial development system by a factor of six.

11.2 Summary of Research Contributions

The described research has led to numerous contributions to construction simulation
research. During the first phase of research, actual simulation knowledge was transferred
to local construction companies through the developed tools. Collaborating companies
used the tools as part of their decision making process. Further, a set of features that
ensure the success of specialized construction simulation tools was identified. As part of
the second phase, several concepts were formalized and combined to form a unified
modeling methodology. This methodology was used to develop a fully functional
computer system, which dramatically simplified and shortened the development time of
new construction simulation tools.

These represent some of the concrete contributions that resulted from this research.
There are numerous other anticipated contributions. By standardizing the structure of
simulation tools through the transformation of their definition process into a declarative
format, a standard representation of the fundamental construction process emerges. This
isolation of core tool requirements from the support elements could potentially allow for
the automated analysis of individual construction processes as well as the representative
comparison of different processes.

Further, the centralized and standardized approach to the representation of the
construction process and project data leads to many contributions. The modeling

element library, which is where all the specific tool definitions are stored, is, in effect, a

223

formal representation of the construction method within a company or across the
industry. The project data captures planning decisions not only regarding the overall
project breakdown, high level relationships and resources, but also regarding the

underlying reasoning process of the planner.

11.3 Recommendation for Future Development

The presented research demonstrates how the unified modeling methodology can be
followed to build effective and practical simulation tools. This was done through the
redevelopment of earth-moving and aggregate production templates based on the original
tools which were successful in an industry setting. It is recommended that this horizontal
type of research expansion be continued through the development of new templates for
common construction methods; thus leading to a complete process library.

It is also recommended that a vertical expansion of the system be done in order to
improve the functionality of Simphony. This is inherently supported through the
presented user service concept. Specific recommendations for new services,
implemented as ActiveX libraries, include an optimization library and an artificial neural

network training and recall support library.

224

Bibliography

AbouRizk, S., Hajjar, D. (1998). “A Framework for Applying Simulation in the

Construction Industry.” Canadian Journal of Civil Engineering, 25(3), 604-617.

Ahl, O.J., Nygaard, K. (1966) “Simula - An Algol-Based Simulation Language.”

Communications of the ACM, 9, 671-678.

American Society For Testing Materials (1996). “Mechanical Size Analysis of Extracted

Aggregate.” ASTM test designation D5444-94.

Aziz, N.M., Burati, J.L., and Ozodigwe, D. (1989). “A Microcomputer Model for
Dewatering Construction Sites.” Proceedings of the Seventh National Conference on

Microcomputers in Civil Engineering, 201-205.

Ball, P, Love,D. (1995). “The Key to Object-Oriented Simulation: Separating the User
and the Developer”, Proceedings of the 1995 Winter Simulation Conference, Arlington,

VA, USA.

Bischak, D.P., Roberts, S.D. (1991). “Object-Oriented Simulation.” Proceedings of the

1991 Winter Simulation Conference.

Cederapids (1984b). Pocket Reference Book 4th Edition, Iowa Manufacturing Company,

Cedarapids Inc., Cedar Rapids, USA.

Chang, D.Y. and Carr, R.I. (1987). “RESQUE: A Resource Oriented Simulation System
for Multiple Resource Constrained Processes.” Proceedings of the 1987 PMI

Seminar/Symposium, Milwaukee, Wisconsin, 4-19.

225

Chang, D.Y (1991). “Object-Oriented Simulation System for Construction Process

Planning.” Construction Congress 91, ASCE, New York, NY, USA, 626-631.

Chehayeb, N. (1997). “CRUISER Implementation Results”, Internal Report, Department

of Civil Engineering, University of Alberta, Edmonton, Alberta.

Cubert, R.M., Goktekin, T.. Fishwick, P.A. (1997). “MOOSE: architecture of an object-
oriented multimodeling simulation system.” Proceedings of Enabling Technology for

Simulation Science, Part of SPIE AeroSense '97 Conference, Orlando, Florida, 22-24.

Fritz. D.,G., Sargent, R.G., Daum, T. “Overview of HI-MASS (Hierarchical Modeling
And Simulation System)”, Proceedings of the 1995 Winter Simulation Conference,

WSC 95. Arlington, VA, USA.

Froehlich, G., Hoover, J., Liu, L., Sorenson, P. Designing Object-Oriented Frameworks,

in CRC Handbook of Object Technology, CRC Press, 1998, in press.

Hajjar, D. 1999a, “Simphony Documentation”, Internal Report, Construction Engineering

and Management, Department of Civil Engineering, University of Alberta.

Hajjar, D. 1999b, *“‘Simphony Implementation”, Internal Report. Construction

Engineering and Management, Department of Civil Engineering, University of Alberta.

Hajjar, D. 1999c, “Simphony Code for the CEM_EMS and CEM_CRUSH Templates”,
Internal Report, Construction Engineering and Management, Department of Civil

Engineering, University of Alberta.

Hajjar, D., AbouRizk, S., (1996). “Building a Special Purpose Simulation Tool for Earth-
Moving Operations.” Proceedings of the 1996 Winter Simulation Conference, ASCE,

1313-1320.

Haijjar, D., AbouRizk, S. (1998). “Modeling and Analysis of Aggregate Production

Operations.” Journal of Construction Engineering and Management, ASCE, 124(5).

Hajjar, D., AbouRizk, S., Xu, J. (1998). “Optimizing Construction Site Dewatering

Operations using CSD.” Canadian Journal of Civil Engineering, CSCE, 25(3).

Hajjar, D. AbouRizk, S.M. , Mather, K. (1999). “Integrating Neural Networks with

Special Purpose Simulation.” Proceedings of the 1998 Winter Simulation Conference.

Halpin, D. W. (1977). “CYCLONE: Method for Modeling of Job Site Processes” Journal

of the Construction Division, ASCE, 103(3),489-499.

Hancher, D. E. and Havers, J. A. (1972). Mathematical Model of Aggregate Plant

Production, ASCE, New York, USA.

Huang, R., A.M Grigoriadis, and D. W. Halpin (1994). *Simulation of Cable-stayed

Bridges Using DISCO.” Proceedings of Winter Simulation Conference, 1130-1136.

Ioannou, P.G. (1989). “UM-CYCLONE User’s Guide.” Department of Civil Engineering,

The University of Michigan, Ann Arbor, Michigan.

Johnston,D. W. (1981). “*Linear Scheduling Method for Project Planning Analysis.”

Journal of Construction Engineering and Management. ASCE. 107(2), 247-261.

Karhl, D. (1995). “Building End User Applications With Extend.” Proceedings of the

1995 Winter Simulation Conference, Arlington, VA, USA

Kreutzer, W. (1986). System Simulation Programming Styles and Langauges. Addison-

Wesley Publishing, Don Mills, Ontario.

Lasdon, L.S., Waren., A.D., Jain, A., and Ratner, M. (1978). “Design and Testing of a
Generalized Reduced Gradient Code for Nonlinear Programming.” ACM Transactions

on Mathematical Software, 4(1),34-50.

Liu, L. Y. and P. G. loannou (1992). “Graphical Object-Oriented Discrete-Event
Simulation System.” Proceedings of Winter Simulation Conference, ASCE, 1285-

1291.

Liu, L. Y. and P. G. Ioannou (1993). “Graphical resource-based object-oriented
simulation for construction process planning.” Proceedings of the 5th International
Conference on Computing in Civil and Building Engineering - V-ICCCBE. Anaheim,

CA,USA

Luna, J. (1993). “Hierarchical Relations in Simulation Models.” Proceedings of the 1993

Winter Simulation Conference.

Martinez, J. and P. G. Ioannou (1994). “General Purpose Simulation with Stroboscope.”

Proceedings of Winter Simuiation Conference, ASCE, 1159-1166.

Mathewson, S.C. (1989). “Simulation Support Environments.” Computer Modeling for

Discrete Event Simulation, ed. M. Pidd, 57-100. London: J. Wiley and Sons.

McDonald, M.G., and Harbaugh, A.W., (1988). “A Modular Three-Dimensional Finite-

Difference Ground-Water Flow Model”, United States Geological Survey, 437 Nationai

Center Reston, VA 20192.

McKim, C.S., Matthews, M.T. (1996). “Modular Modeling System Model Builder”,
Proceedings of the 1996 31st Intersociety Energy Conversion Engineering Conference,

[ECEC 96. Part 3 (of 4). Washington, DC, USA.

228

Muskat, M. (1953). The Flow of Homogeneous Fluids Though Porous Media, McGraw-

Hill, New York.

Oloufa, A.A. (1993). “Modeling Operational Activities in Object-Oriented Simulation.”

Journal of Computing in Civil Engineering., ASCE, 7(1), 94-106.

Oloufa, A.A. (1994). *“User-oriented approach to construction simulation of buildings.”

Microcomputers-in-Civil-Engineering, 9(6), 1994, 425-433.

Paulson, B.C. Jr., (1978). "Interactive Graphics for Simulating Construction Operations."

Journal of the Construction Division, ASCE, 104(1),69-76.

Paulson, B.C., Jr., Chan, W.T., Koo, C.C. (1987). “Construction Operation Simulation by
Microcomputer.” Journal of Construction Engineering and Management, ASCE, 113(2),

302-314.

Peurifoy, R.L., Ledbetter, W.B., and Schexnayder,C.J. (1996). Construction Planning,

Equipment and Methods. McGraw-Hill, New York, USA.

Pidd, M. (1992). “Guidelines For the Design of Data Driven Generic Simulators for

Specific Domains.” Simulation. 59 (4),237-243.
Pioneer (1988). Fact and Figures. (80-81) Portec Pioneer Division, Yankton, USA.
Powers, J.P. (1981). Construction Dewatering. John Wiley & Sons, New York, N.Y.

Pristker, A.A.B. (1986). Introduction to Simulation and SLAM-II. John and Sons, Inc.,

New York, N.Y.

229

Rueger, M., Behlau, T. (1995). “Create!: an Object-Oriented IDE for Discrete Event

Simulation.” Proceedings of the 1995 Winter Simulation Conference, Arlington, VA,

USA.

Russel, A. Dubey, A. (1995). “Resource Leveling and Linear Scheduling.” Proceedings
of the Second Congress held in conjunction with A/E/C Systems '95 held in Atlanta,

Georgia, June 5-8, 1995.

Sawhney, A., AbouRizk, S.M. (1996). “Computerized Tool for Hierarchical Simulation

Modeling.” Journal of Computing in Civil Engineering, 10(2), 115-124.

Shi, J., AbouRizk, S.M. (1997). “Resource-Based Modeling for Construction

Simulation.” Journal of Construction Engineering and Management, 123(1), 26-33.

Smith, M. R, and Collis, L. (1993). Aggregate:, Sand, Gravel And Crushed Rock

Aggregates For Construction Purposes. The Geological Society, London, England.

Standridge, C. R. (1995). “Modular Modeling for Network Simulation Languages:
Concepts and Examples.” Proceedings of the 1995 Winter Simulation Conference,

Arlington, VA, USA.

Takus, D.A., Profozich, D.M. (1997). “Arena Software Tutorial.” Proceedings of the

1997 Winter Simulation Conference. Atlanta, GA, USA.
Thiem, G. (1906). Hydrologische Methoden, JM Gephardt, Leipzig.

Thomasma, T., Ulgen., O.. M. (1988). “Hierarchical, Modular Simulation Modeling in
Icon-Based Simulation Program Generators for Manufacturing.” Proceedings of the

1988 Winter Simulation Conference.

230

Tommelein, [.D., Carr, R.,I., Odeh, A.,M. (1994). “Knowledge-Based Assembly of
Simulation Networks using Construction Designs, Plans, and Methods.” Proceedings of

the 1994 Winter Simulation Conference. Buena Vista, FL, USA.

Touran, A. (1989). “Expert System/Simulation Integration for Modeling Construction
Operations.” Computing in Civil Engineering. ASCE, 330-337. Sixth Conference on

Computing in Civil Engineering, Atlanta, GA, USA.

Ulgen, O.M., Thomasma,T. (1986). “Simulation Modeling In An Object-Oriented
Environment Using Smalltalk-80.” Proceedings the 1986 Winter Simulation Conference

Proceedings.

Ulgen, O.M., Thomasma,T, Mao, Y. (1989) ““Object-Oriented Toolkits for Simulation

Program Generators.” Proceedings of the 1989 Winter Simulation Conference.

Ulgen, O.M., Thomasma, T., Otto, N. (1991). “Reusable Models: Making Your Models

More User-Friendly.” Proceedings of the 1991 Winter Simulation Conference.

Vaughn, W.R. (1998). Hitchhiker’'s Guide to Visual Basic and SQL Server, Sixth Edition,

Microsoft Press, ISBN# 1-57231-848-1.

Wickard,D.,A, Bill,R.,D., Gates,K.H, Yoshinaga,T., Ohcoshi.,S. (1989) *“Construction
CAE. Integration of CAD, Simulation, Planning and Cost Control.” Proceedings of the
American Power Conference. V 51. Published by Illinois Inst of Technolgoy, Research

Institute, Chicago, IL., USA. 983-987.

Zeigler, B.P. (1984). Multifaceted Modeling and Discrete Event Simulation. Academic

Press, London and Orlando, Fla.

231

Zeigler, B.P. (1987). “Hierarchical, Modular Discrete-Event Modeling in an Object-

Oriented Environment.” Simulation, 49(5), 219-230.

Appendix 1 - Development Code for the Common Template

CreateEnt

Public Function CreateEnt_OnCreate(ob As CFCSim_ModelingElementinstance, x As Single, v As Single)
As Boolean

0b.0OnCreate x.v,True
CreateEnt_OnCreate=True

ob.AddArtribute "Quantiry”, "Number of Entities 1o Create",CFC_Numeric, CFC_Single,
CFC_ReadWrite, 1, 1000

ob.AddAttribute “First”,"Time of First Create”,CFC_Numeric, CFC_Single,
CFC_ReadWrite,0, 1000000

ob.AddAttribute "Berween","Time Between Creates",CFC_Distribution, CFC_Single, CFC_ReadWrite

ob.AddAntribute “Fired”, "Entites CreateEntd so far", CFC_Numeric, CFC_Single, CFC_Hidden

ob("Quantity”)=1
ob("First")=0
aob("Berween")=0

ob.AddConnectionPoint "Out” x+57,y+25,COutput,5
End Function

Public Sub CreateEnt_OnDragDraw(ob As CFCSim_Modeling Elementinstance)
0ob.OnDraw
End Sub

Public Sub CreateEnt_OnDraw(ob As CFCSim_Modeling Elementinstance)
CDC.Circ ob.CoordinatesX(0)+25,0b.CoordinatesY(0)+25,25
CDC.TextOut ob.CoordinatesX(0)+5,0b.CoordinatesY(0)+ 20, ob("Quantity”)

ob.DrawConnectionPoints
End Sub

Public Sub CreateEnt_OnSimulationinitialize(ob As CFCSim_Modeling Elementinstance)
ob.AddEvent "FireEntity”
End Sub

Public Sub CreateEnt_OnSimulationinitializeRun(ob As CFCSim_Modeling Elementinstance, RunNum As
Integer)

ob.ScheduleEvent ob.AddEntity, "FireEntity”,0b("First”)

ob("Fired")=0
End Sub

Public Sub CreateEnt_OnSimulationProcessEvent(ob As CFCSim_Modeling Elementinstance, MyEvent As

String, Entity As CFCSim_Entity)
Dim newEntity As CFCSim_Entity

233

If ob("Fired")>= ob("Quantity") Then Exit Sub

ob("fired”)=ob("fired"}+]

Set newEntity = ob.AddEn:ity

ob.TransferOut NewEntity

ob.ScheduleEvent entity, "FireEntity", ob("Between")

Tracer.Trace "Entity: " & newEntity.ld & " Created"”,"Simulation”
End Sub

Destroy

Public Function Destroy_OnCreate(ob As CFCSim_ModelingElementinstance, x As Single, v As Single) As
Boolean
Dim cp As CFCSim_ConnectionPoint

Destroy_OnCreate=True
0b.OnCreate x.v,True
ob.AddConnectionPoint "IN" x-7,y+25,Cinput,5
End Function

Public Sub Destroy_OnDragDraw(ab As CFCSim_Modeling Elementinstance)
0b.OnDraw
End Sub

Public Sub Destroy_OnSimulationTransferin(ob As CFCSim_ModelingElementinstance, Entitv As

CFCSim_Entity, SrcCp As CFCSim_ConnectionPoint, DstCp As CFCSim_ConnectionPoint)
ob.DeleteEntity entitv

End Sub

SetAttribute

Option Explicit

Public Function SetAutribute_OnCreatefob As CFCSim_ModelingElementinstance, x As Single, v As
Single) As Boolean
0b.0OnCreate x,v,True
Dim i As Integer
SetAntribute_OnCreate=True
Fori=1To 5 'up to 5 attributes
ob.AddArtribute "Anr” & i & "Name","Attribute " & i & " Name",CFC_Text, CFC_Single,
CFC_ReadWrite
ob.AddAttribute "Anr” & i & "Val®,"Attribute * & i & " Value",CFC_Text, CFC_Single.
CFC_ReadWrite
ob("Antr” & i & "Name")=""
Next

ob.AddConnectionPoint “In" , x-10, y+25, Clnput, 5
0b.AddConnectionPoint "Out”.x+100,y+25,COutput,5
End Function

Public Sub SetArntribute_OnDragDraw(ob As CFCSim_Modeling Elementinstance)

0b.0OnDraw
End Sub

234

Public Sub SetAttribute_OnDraw(ob As CFCSim_ModelingElementinstance)
CDC.ChangeFont "Courier New",13,True, False,False, False

CDC.Rectangle

0b.CoordinatesX(0),0b. CoordinatesY(0),0b. CoordinatesX(0)+90,0b. CoordinatesY(0)+ 50
CDC.TextOut ob.CoordinatesX(0)+5,0b.CoordinatesY(0)+ 15, " Set "
CDC.TextOut ob.CoordinatesX(0)+5,0b.CoordinatesY(0)+25, "Antributes "
ob.DrawConnectionPoints

End Sub

Public Sub SetAntribute_OnSimulationTransferin(ob As CFCSim_ModelingElementinstance, Entity As
CFCSim_Entity, SrcCp As CFCSim_ConnectionPoint, DstCp As CFCSim_ConnectionPoint)
Dim i As Integer
Fori=lTo 5
Ifob("Anr” & i & "Name")<>"" Then
entitv(ob("Attr” & i & "Name”))=ob("Attr” & i & "Val")
Tracer.Trace "Entity: ™ & entity.ld & "' has been assigned a value of " & ob("Anr" & i &
"Val") & "' For anribute: ™ & ob("Attr” & i & "Name") & "™, "Simulation”
End If
Next

ob.TransferOut entity
End Sub

Branch

Public Function Branch_OnCreate(ob As CFCSim_ModelingElementinstance, x As Single, v As Single) As
Boolean
Dim cp As CFCSim_ConnectionPoint
Branch_OnCreate=True
With ob
.OnCreate x,y,True

AddArtribute "Prob”,"Top Branch probability”,CFC_Numeric, CFC_Single, CFC_ReadWrite,0,]
Artr{ "Prob”)=0.5

.AddConnectionPoint "IN" x-25,v,Clnput,5
.AddConnectionPoint "Top",.x+25,y-25,COutput.5
.AddConnectionPoint “Bottom” x+25,y+25,COutput,5
End With
End Function

Public Sub Branch_OnDragDraw(ob As CFCSim_Modeling Elementinstance)
0b.0OnDraw
End Sub

Public Sub Branch_OnDraw(ob As CFCSim_Modeling Elementinstance)

CDC.MoveTo ob.ConnectionPoints("In").x,0b.ConnectionPoints(“In").Y

CDC.LineTo ob.CoordinatesX(0),ab.CoordinatesY(0)

CDC.Arrow ob.CoordinatesX(0),0b.CoordinatesY(0)
ob.ConnectionPoints("Top").x,0b.ConnectionPoints("Top").Y, 17

CDC.Arrow 0b.CoordinatesX(0), ob.CoordinatesY(Q), ob.ConnectionPoinis("Bottom"}.x ,
ob.ConnectionPoints("Bortom™).Y, 17

235

ob.DrawConnectionPoints
End Sub

Public Sub Branch_OnMove(ob As CFCSim_Modeling Elementinstance, ByVal x1 As Single, BvVal yI As
Single, ByVal x2 As Single, ByVal y2 As Single)

Dim a As Double

Dim b As Double

Dim ¢ As Double

Dim X As Double

Dim Ang As Double

Dim xo As Double

Dim yo As Double

Dim cp As CFCSim_ConnectionPoint

If Sqri(ob.CoordinatesX(0) - X1) * 2 + (ob.CoordinatesY(0) - Y1) » 2) > 20 Then
a= Sqr((ob.CoordinatesX(0)-x2) * 2 + (ob.CoordinatesY(0)-v2)*2)
b= Sqr((ob.CoordinatesX(0)-xI)" 2 + (ob.CoordinatesY(0)-vi 2)
c= Sqr((xI-x2)"2 + (vI-y2P2)

"figure out expression
X=(c"2-a”2-872)/ (-2*a*b)

IfSqri-X * X + 1)=0 Then Exit Sub
*calculate inverse cosine
Ang=Atm(-X/Sqr(-X *X + 1))

ang=ang+ 2*Am(l)

If ang=0 Then Exit Sub

For Each cp In ob.ConnectionPoints
xo=cp.x - ob.CoordinatesX(0)
yo=-{ cp.Y - 0b.CoordinatesY(0})
cp.x = xo*Cos(ang)+yo*Sin(ang) +ob.CoordinatesX(0)
cp.Y = -(-xo*Sin(ang)+vo*Cos(ang)) + ob.CoordinatesY(0)
Next
Else
*call default on move
0b.OnMove x1,y1,x2,y2, True
EndIf

End Sub
Public Sub Branch_OnSimulationTransferin(ob As CFCSim_Modeling Elementinstance, Entity As
CFCSim_Entity, SrcCp As CFCSim_ConnectionPoint, DstCp As CFCSim_ConnectionPoint)

Dim sampled As Double
sampled=Sampler.Uniform(0,1)

If sampled< ob("Prob") Then
ob.TransferOut entity, ob.ConnectionPoints("Top")

236

Tracer.Trace "Routing 1o the top port” ,"Simulation”
Else
ob.TransferOut entity, ob. ConnectionPoints("Bottom")

Tracer.Trace "Routing to the bottom port.”, "Simulation”
End If
End Sub

Consolidate

Option Explicit

Public Function Consolidate_OnCreate(ob As CFCSim_ModelingElementinstance, x As Single, vy As
Single) As Boolean

0b.OnCreate x,y,True

Consolidate_OnCreate=True

ob.AddAntribute "Quantity”,"Number to Consolidate”,CFC_Numeric, CFC_Single,
CFC_ReadWrite, I, 1000000

ob.AddAnribute "Generate”,"Number of Entities to Generate”,CFC_Numeric, CFC_Single,
CFC_ReadWrite, I, 1000000

ob.AddAnribute "CurrentLevel”,"",CFC_Numeric, CFC_Single, CFC_Hidden

ob{ "Quantity”)=5
ob("Generate”)=1

ob.AddConnectionPoint "In" , x-10. v+25, Clnpur, 5

ob.AddConnectionPoint "Qutl”,x+120y+25,COutput,5

ob.AddConnectionPoint "Qut2",x+50,y+60,CQutput,5
End Function

Public Sub Consolidate_OnDragDraw(ob As CFCSim_Modeling Elementinstance)
0b.0OnDraw
End Sub

Public Sub Consolidate_OnDraw(ob As CFCSim_Modeling Elementinstance)
CDC.ChangeFont "Courier New",13,True,False False, False

CDC.Rectangle
ob.CoordinatesX(0),0b.CoordinatesY(0),0b.CoordinatesX(0)+ 110,0b.CoordinatesY(0)+ 50
CDC.TextOut ob.CoordinatesX(0)+5,0b.CoordinaresY(0)+ 10, "Consolidate”
If ob("Quantirv”).Calculation=CFC_Simple And ob("Generate”).Calculation=CFC_Simple Then
CDC.TextOut ob.CoordinatesX(0)+5,0b.CoordinatesY(0)+25, " (" & ob("Quantity”) & ") X " &
ob("Generate”)
Else
CDC.TextOut ob.CoordinatesX(0)+5,0b.CoordinatesY(0)+25, " (Formula)"
End If

ob.DrawConnectionPoints
End Sub

Public Sub Consolidate_OnSimulationinitializeRun(ob As CFCSim_Modeling Elementinstance, RunNum As
Integer)

ob("CurrentLevel”)=0

237

End Sub

Public Sub Consolidate_OnSimulationTransferin(ob As CFCSim_Modeling Elementinstance, Entity As
CFCSim_Entity, SrcCp As CFCSim_ConnectionPoint, DstCp As CFCSim_ConnectionPaint)

Dim newEntity As CFCSim_Enuity

Dim i As Integer

ob("CurrentLevel")=ob("CurrentLevel”)+1
If ob("CurrentLevel”}=0b("Quantity”) Then
ob("CurrentLevel”)=0

For i=1 To Int(ob("Generate"))
Set newEntity=0b.CloneEntiry(entity)

Tracer.Trace "New entity created: " & newEntity.ld,"Simulation”
ob.TransferOut newentity, ob.ConnectionPoints("Our2")
Next
End If

ob.TransferOut entitv, ob.ConnectionPoints{"Outl"}
End Sub

Task

Public Function Task_OnCreate(ob As CFCSim_Modeling Elementinstance, x As Single, v As Single) As
Boolean
0b.OnCreate x.v,True
Task_OnCreate=True
ob.AddAntribute "Duration”," Delay Duration",CFC_Numeric, CFC_Single, CFC_ReadWrite,0
ob("Duration”)=1

ob.AddConnectionPoint "In" , x-10. y+25, Clnput, 5
ob.AddConnectionPoint "Qut” x+115,y+25,COutput,5
End Function

Public Sub Task_OnDragDraw(ob As CFCSim_ModelingElementinstance)
0b.OnDraw
End Sub

Public Sub Task_OnDraw(ob As CFCSim_Modeling Elementinstance)
CDC.ChangeFont "Courier New",13,True,False, False,False

CDC.Rectangle
ob.CoordinatesX(0),0b.Coordinates /{0),0b.CoordinatesX(0)+ 100,0b.CoordinatesY(0)+50
If ob("Duration”).Calculation=CFC_Simple Then
CDC.TextOut ob.CoordinatesX(0)+35,0b.CoordinatesY(0)+20, "Task (" & ob("Duration”) &)"
Else
CDC.TextOur ob.CoordinatesX(0)+5,0b.CoordinatesY(0)+20, "Task (Formula)”
EndIf

0b.DrawConnectionPoints
End Sub

Public Sub Task_OnSimulationinitialize(ob As CFCSim_ModelingElementinstance)
ob.AddEvent "Start”, True

238

ob.AddEvent "Finish"
End Sub

Public Sub Task_OnSimulationProcessEvent(ob As CFCSim_Modeling Elementinstance, MyEvent As
String, Entitv As CFCSim_Entity)
Dim Duration As Double

Select Case MyEvent
Case "Start”
duration=o0b("Duration")

ob.ScheduleEvent entity, "Finish" duration
Tracer.Trace "Entitv: " & entity.ID & " will incurr a delay of ” & duration, "Simulation”

Case "Finish”
Tracer.Trace "Delay of Entity: " & entity.ID & " Completed” , "Simulation”
ob.TransferOut entity
End Select
End Sub

RandomTask

Option Explicit

Public Function RandomTask_OnCreate(ob As CFCSim_ModelingElementinstance, x As Single, v As
Single) As Baolean

0b.OnCreate x,v,True

RandomTask_OnCreate=True

ob.AddAttribute "Duration”,"Delav Duration”,CFC_Distribution, CFC_Single, CFC_ReadWrite

ob.AddConnectionPoint "In" , x-10, y+25, Clnput, 5
ob.AddConnectionPoint "Qut".x+175,y+25,COutput,5
End Function

Public Sub RandomTask_OnDragDraw(ob As CFCSim_Modeling Elementinstance)
0b.OnDraw
End Sub

Public Sub RandomTask_OnDraw(ob As CFCSim_Modeling Elementinstance}
CDC.ChangeFont "Arial”, 12, True, False,False, False

CDC.Rectangle
0b.CoordinatesX(0),0b. CoordinatesY(0),0b.CoordinatesX(0)+ 160,0b.CoordinatesY(0)+50

CDC.TextOut ob.CoordinatesX(0)+35,0b.Coordinates¥(0)+ 10, "Task”
CDC.TextOut ob.CoordinatesX(0)+35,0b.CoordinatesY(0)+30,
ob("Duration”). Distribution.Gz1String Representation

ob.DrawConnectionPoints
End Sub

Public Sub RandomTask_OnSimulationinitialize(ob As CFCSim_Modeling Elementinsiance)
ob.AddEvent "Start” True
ob.AddEvent "Finish”

239

End Sub

Public Sub RandomTask_OnSimularionProcessEvent(ob As CFCSim_Modeling Elementinstance, MyEvent
As String, Entity As CFCSim_Entity}
Dim Duration As Double

Select Case MyEvent
Case "Start”
duration=0b("Duration”)

ob.ScheduleEvent entity, "Finish”, duration
Tracer.Trace "Entity: " & entity.ID & " will incurr a delay of " & duration, "Simulation”

Case "Finish”
Tracer.Trace "Delav of Entirv: " & entity.ID & " Completed” , "Simulation”
ob.TransferOut entity
End Select
End Sub

Resource

Public Function Resource_OnCreate(ob As CFCSim_Modeling Elementinstance, x As Single, v As Single)
As Boolean

Resource_OnCreate=True

ob.OnCreate x,y,True

ob.AddAttribute "ResName","Resource Description”,CFC_Text, CFC_Single. CFC_ReadWrite

ob.AddAiutribute "Toral", "Total Number of Resources”,CFC_Numeric, CFC_Single,
CFC_ReadWrite, 1, 1000000

ob.AddArtribute "Current”, "Current Number of Available Resources",CFC_Numeric, CFC_Single,
CFC_ReadOnly

ob.AddAttribute "Requests”,"”,CFC_Collection, CFC_Single, CFC_Hidden

ob.AddAntribute "Winners","", CFC_Collection, CFC_Single, CFC_Hidden

ob("ResName”)= "Res"
ob("Total")=1
ob("Current”)=1

ob.AddStatistic "Utilization”, " Resource Utilization”, True, False
End Function

Public Sub Resource_OnDraw(ob As CFCSim_ModelingElementinstance)
CDC.ChangeFont "Courier New",12,True,False, False, False

CDC.Rectangle
ob.CoordinatesX(0),0b.CoordinatesY(0),0b.CoordinatesX(0)+50,0b.CoordinatesY(0)+50

CDC.TextOut ob.CoordinatesX(0)+3,0b.CoordinatesY(0)+ I 5, ob("ResName")
If ob("Total”).Calculation=CFC_Simple Then

CDC.TextOut ob.CoordinatesX(0)+ 10,0b.CoordinatesY(0)+25, " (" & ob("Total”) & ")"
Else

CDC.TextOut ob.CoordinatesX(0)+ 10,0b.CoordinatesY(0)+2S, "Formula”
End If

ob.DrawConnectionPoints

240

End Sub

Public Sub Resource_OnSimulationlinitialize(ob As CFCSim_Modeling Elementinstance)
ob.AddEvent "CollectStat"”
ob.AddEvent "Release”

'find out which request nodes use us
Dim request As CFCSim_ModelingElementinstance

ClearCollection ob("Requests”).Collection
For Each request [n ob.Parent.ChildElements
If request.ElementType="Request" Then
If request("ResOb").Reference Is ob Then
0b("Requests"”).Collection.Add request
End If
End If
Next
End Sub

Public Sub Resource_OnSimulationinitializeRun(ob As CFCSim_ModelingElementinstance, RunNum As
Integer)

ob("Current”)=0b("total”)
End Sub

Public Sub Resource_OnSimulationProcessEvent(ob As CFCSim_ModelingElementinstance, MyEvenr As
String, Entity As CFCSim_Entity)
Select Case MyEvent
Case "CollectStar”
ob.stat("Utilization").Collect 100 * (I-(ob("Current”)/ob("Total"))}
ob.DeleteEntity entity
Case "Release”

Dim request As CFCSim_Modeling Elementinstance

Dim WinnerRequest As CFCSim_Modeling Elementinstance
Dim WinnerPrioritv As Long

ClearCollection ob(*Winners").Collection

" First Find Out Highest Priority
WinnerPriority=-1
For Each request In ob("requests”).Reference
If request.File("ResFile”).Length>0 Then
request.File("ResFile").MoveFirst
If WinnerPriority < request.File("resFile").Priority Then
WinnerPriority = request.File("resFile”).Priority
End If
End If
Next

"Then find out all the requests that have that priority
For Each request In ob("requests”).Reference
If request. File("ResFile").Length>0 Then
request.File{ "ResFile").MoveFirst
If WinnerPriority = request. File(“resFile”). Priority Then
ob(“Winners").Collection.Add request
End If

241

End If
Next

If ob("Winners”).Collection. Count=0 Then
ob.DeleteEntity entity
Elself ob("Winners").Collection. Count=1 Then
ob("Winners").Collection(|).ScheduleEvent entity,"Check"”,0
Else
'resolve berween requests randomly
Dim x As Double
x=Sampler.uniform(| 0b("Winners").Collection.Count+1)
ob("Winners”).Collection(Int(X)).ScheduleEvent entitv,"Check”,0
End If

End Select

End Sub

Capture

Public Function Capture_OnCheckintegrity(ob As CFCSim_Modeling Elementinstance) As Boolean
Capture_OnCheckintegrity=True

"find resource
Set ob("ResOB”).Reference = Nothing
Dim childob As CFCSim_ModelingElementinstance
For Each childob In ob.Parent.ChildElements
If childob.ElementTvpe="Resource” Then
If childob(" ResName")=0b("ResName") Then
Set 0b("ResOb").Reference=childob
End If
End If
Next

If ok "ResOB").Reference Is Nothing Then
Tracer.Trace "Cannot find specified resource: * & ob("ResName"),"Integrity”
Capture_OnChecklntegriry=False
End If
End Function

Public Function Capture_OnCreate(ob As CFCSim_Modeling Elementinstance, x As Single, v As Single) As
Boolean

ob.OnCreate x,y,True

Capture_OnCreate=True

ob.AddAnribute "ResName", "Resource Name",CFC_Text, CFC_ListBox, CFC_ReadWrite

ob.AddAntribute "Quantity”,"Number of Resources To Capture”,CFC_Numeric, CFC_Single,
CFC_ReadWrite, 1

ob.AddAnribute "Priority”,"Capture Priority”,CFC_Numeric, CFC_Single, CFC_ReadWrite, |

ob.AddAnrribute "ResOb",”",CFC_Object, CFC_Single, CFC_Hidden

ob("Quantity”)=1
ob("Priority”)=1

ob.AddConnectionPoint "In" , x-10, y+25, Clnpur, 5
ob.AddConnectionPoint "Out” x+ 127, y+25,COutput,5

242

ob.AddFile "ResFile",QUEUE
End Function

Public Sub Capture_OnDragDraw(ob As CFCSim_ModelingElementinstance)
0b.OnDraw
End Sub

Public Sub Capture_OnDraw(ob As CFCSim_ModelingElementinstance)
CDC.ChangeFont "Courier New",12,True,False, False, False

CDC.Rectangle
ob.CoordinatesX(0),0b.CoordinatesY(0),0b.CoordinatesX(0)+ 1 20,0b.CoordinatesY(0)+ 50

If ob("Quantity”). Calculation=CFC_Simple Then
CDC.TextOut ob.CoordinatesX(0)+5,0b.CoordinatesY(0)+20, "Capture: "™ & ob("ResName") & "’
(" & ob("Quantity") & ")"
Else
CDC.TextOut ob.CoordinatesX(0)+5,0b.CoordinatesY(0)+20, "Capture: " & ob("ResName”) & "'
(Formula)"”
End If

ob.DrawConnectionPoints
End Sub

Public Sub Capture_OnListBoxInitialize(ob As CFCSim_Modeling Elementinsiance, attr As
CFCSim_Antribute, IstList As Object)
Dim childob As CFCSim_Modeling Elementinstance
For Each childob In ob.Parent.ChildElements
If childob.ElementTvpe="Resource” Then
Istlist. AddItem childob("ResName")
End If
Next
End Sub

Public Sub Capture_OnSimulationinitialize(ob As CFCSim_ModelingElementinstance)
ob.AddEvent "Check”
End Sub

Public Sub Capture_OnSimulationProcessEvent(ob As CFCSim_ModelingElementinstance, MyEvent As
String, Entiry As CFCSim_Entity)

Dim res As CFCSim_ModelingElementinstance

Set res=ob("ResOB”).Reference

Dim MainEntity As CFCSim_Entity

ob.DeleteEntity entity

If ob.File("ResFile”).Length=0 Then Exit Sub

ob.File("ResFile”).MoveFirst

If res("current”) < ob.File({ "ResFile"”).entity("NumRes") Then
Tracer.Trace "Not enough resoruces...","Simulation”
Exit Sub

End If

" release entiry

243

Set MainEntity= ob.File("resFile").Pop
res(“current”)=res("current”)- MainEntity("NumRes"}

“tell resource 1o collect statistics
res.ScheduleEvent ob.AddEntity,”CollectStat”,0

Tracer.Trace "Entity " & MainEntity.ld & " entity obtained resource”,"Simulation"”

ob.TransferOut MainEntity
End Sub

Public Sub Capture_OnSimulationTransferin(ob As CFCSim_Modeling Elementinstance, Entity As
CFCSim_Entity, SrcCp As CFCSim_ConnectionPoint, DstCp As CFCSim_ConnectionPoint)
entitv("NumRes ")=ob("Quantity”)
ob.File("Resfile").Add entity, ob("Priority”)
Ob.ScheduleEvent ob.AddEntity,"Check”,0
End Sub

Release

Public Function Release_OnCheckintegrity(ob As CFCSim_Modeling Elementinstance) As Boolean
Release_OnCheckintegritv=True

Set ob("ResOB").Reference= Nothing
Dim childob As CFCSim_Modeling Elementinstance
For Each childob In ob.Parent.ChildElements
If childob.ElementType="Resource” Then
If childob("ResName")=0b("ResName") Then
Set ob("ResOb"”).Reference=childob
End If
End If
Next

If ob("ResOB"). Reference Is Nothing Then
Tracer.Trace "Cannot find specified resource: * & ob(“ResName"), "Integrity”
Release_OnCheckintegriry=False
End If
End Function

Public Function Release_OnCreate(ob As CFCSim_ModelingElementinstance, x As Single, v As Single) As
Boolean

0b.OnCreate x.y,True

Release_OnCreate=True

ob.AddArtribute "ResName","Resource Name",CFC_Text, CFC_ListBox, CFC_ReadWrite

ob.AddAntribute "Quantiry”, "Number of Resources To Release”,CFC_Numeric, CFC_Single,
CFC_ReadWrite, 1, 1000000

ob.AddAntribute "ResOb","",CFC_Object, CFC_Single, CFC_Hidden

ob("Quantiry”)=1
ob.AddConnectionPoint "In" , x-10, y+25, Clnput, 5

ob.AddConnectionPoint "Out” x+127.y+25.COutpur.5
End Function

Public Sub Release_OnDragDraw(ob As CFCSim_ModelingElementinstance)
0b.OnDraw
End Sub

Public Sub Release_OnDraw(ob As CFCSim_ModelingElementinstance)
CDC.ChangeFont "Courier New", 12, True,False, False, False
CDC.Rectangle

ob.CoordinatesX(0),0b.CoordinatesY(0),0b.CoordinatesX(0)+ 120,0b.Coordinates Y(0)+ 50

If ob("Quantity"”).Calculation=CFC_Simple Then
CDC.TextQut ob.CoordinatesX(0)+5,0b.CoordinatesY(0)+20, "Release: ™ & ob("ResName") & "'("
& ob("Quantity") & ")"
Else
CDC.TextOut ob.CoordinatesX(0)+5,0b.CoordinatesY(0)+20, "Release: " & ob("ResName”") & "'
(Formula)"
End If

ob.DrawConnectionPoints
End Sub

Public Sub Release_OnListBoxInitialize(ob As CFCSim_ModelingElementinstance, attr As
CFCSim_Antribute, IstList As Object)
Dim childob As CFCSim_ModelingElementinstance
For Each childob In ob.Parent.ChildElements
If childob.ElementType="Resource” Then
Istlist. AddItem childob("ResName")
End If
Next
End Sub

Public Sub Release_OnSimulationlinitialize(ob As CFCSim_Modeling Elementinstance)
ob.AddEvent "Release”, True
End Sub

Public Sub Release_OnSimulationProcessEvent(ob As CFCSim_Modeling Elementinstance, MyEvent As
String, Entity As CFCSim_Entity)

Dim res As CFCSim_Modeling Elementinstance

Dim Quantity As Integer

Ser res=0b("ResOb").Reference

quantity=Int(ob("Quantity"})

If (quantity+res("Current”)) > rest "Total") Then
Tracer.Trace "Release will increase the number of available resources to * &
quantity+res("Current”), "Warning"
End If
res("Current”)=res("Current”) + quantity

"send a release message to resource
res.ScheduleEvent ob.AddEntity, "Release”,0

ob.TransferQut entiry
End Sub

245

Statistic

Public Function Statistic_OnCreate(ob As CFCSim_Modeling Elementinstance, x As Single, v As Single) As
Boolean

Statistic_OnCreate=True

ob.SetNumCoordinates 2
ob.CoordinaresX(0)=x
ob.CoordinatesY(0)=y
ob.CoordinatesX(1)=x+100
ob.CoordinatesY(1)=y+50

ob.AddAntribute "StatName”,"Statistic’s Name",CFC_Text, CF C_Single, CFC_ReadWrite
ob.AddAnribute "Intrinsic”, "Intrinsic Statistic”,CFC_Text, CFC_ListBox, CFC_ReadWrite
ob.AddArtribute "Full”,"Do Full Tracking",CFC_Text, CFC_ListBox, CFC_ReadWrite

ob("Intrinsic”)="No"
ob("Full")="Yes"

ob("StatName") = "
ob.AddStatistic "Stat”. "Stat", False, True
Statistic_OnCreate=True

End Function

Public Sub Statistic_OnDragDraw(ob As CFCSim_Modeling Elementinstance)
0b.0OnDraw
End Sub

Public Sub Statistic_OnDraw(ob As CFCSim_Modeling Elementinstance)
CDC.ChangeFont "Courier New", 12, True,False, False, False

CDC.Rectangle

ob.CoordinatesX(0),0b.CoordinatesY(0),0b. CoordinatesX(0)+ 100,0b.CoordinatesY(0)+50
CDC.TextOut ob.CoordinatesX(0)+2,0b.CoordinatesY(0)+ 10, “Statistic”
CDC.TextOut ob.CoordinatesX(0)+2,0b.CoordinatesY(0)+30, ob("StatName")

End Sub

Public Sub Statistic_OnListBoxInitialize(ob As CF CSim_ModelingElementinstance, attr As
CFCSim_Aunribute, IstList As Object)

Istlist. AddItem "Yes”

Istlist. AddItem "No"
End Sub

Public Sub Statistic_OnSimulationinitialize(ob As CF CSim_Modeling Elementinstance)
ob.stat("Stat”). Intrinsic= (ob("Intrinsic”)="Yes")
ob.stat("Stat”). TrackFull= (ob("Full")= "Yes")

End Sub

Public Function Statistic_OnValidateParameters(ob As CF CSim_Madeling Elementinstance, Parameters

As Object) As Boolean
Statistic_OnValidateParameters=False

246

If Parameters("Intrinsic”) = "Yes” And Paramerers("Intrinsic”) = "No" Then
MessagePrompt "Please specirfy either 'Yes'or ‘No' for the Intrinisc parameter”
Exit Function

End If

If Parameters("Full”) <> "Yes" And Parameters("Full") <> "No" Then
MessagePrompt "Please specirfy either Yes’or ‘No’for the Full Tracking parameter”
Exit Function

End If

Statistic_OnValidateParameters=True

End Function

CollectStat

Public Function CollectStat_OnCreate(ob As CFCSim_ModelingElementinstance, x As Single, v As Single)
As Boolean

0b.OnCreate x,y,True

CollectStat_OnCreate=True

ob.AddAutribute "StatName", "Statistic”,CFC_Text, CFC_ListBox, CFC_ReadWrite

ob.AddArtribute "Value","Value to CollectStar”,CFC_Numeric, CFC_Single, CFC_ReadWrite

ob("value")=0

ob.AddConnectionPoint "In" , x-10, y+25, Clnput, 5
ob.AddConnectionPoint "Out” x+60,y+25,COutput,5
End Function

Public Sub CollectStat_OnDragDraw(ob As CFCSim_Modeling Elementinstance)
0b.OnDraw
End Sub

Public Sub CollectStar_OnDraw(ob As CFCSim_Modeling Elementinstance)
CDC.ChangeFont "Courier New",12,True, False False, False

CDC.Rectangle
ob.CoordinatesX(0),0b.CoordinatesY(0),0b.CoordinatesX(0)+50,0b.CoordinatesY(0)+50
CDC.TextOut ob.CoordinatesX(0)+35,0b.CoordinatesY(0)+10, “Collect”
CDC.TextOut ob.CoordinatesX(0)+35,0b.CoordinatesY(0)+20, "Value"”
ob.DrawConnectionPoir ts
End Sub

Public Sub CollectStar_OnListBoxInitialize(ob As CFCSim_Modeling Elementinstance, attr As
CFCSim_Antribute, IstList As Object)
Dim childob As CFCSim_Modeling Elementinstance
For Each childob In ob.Parent.ChildElements
If childob. ElementTvpe="Statistic” Then
Istlist. AddItem childob(" StatName")
End If
Next
End Sub

Public Sub CollectStar_OnSimulationTransferln(ob As CFCSim_ModelingElementinstance, Entity As
CFCSim_Entity, SrcCp As CFCSim_ConnectionPoint, DstCp As CFCSim_ConnectionPoint)

247

Dim value As Double
Dim stat As CFCSim_Statistic

'find statistic mentioned
Ser star=Nothing

Dim childob As CFCSim_ModelingElementinstance
For Each childob In 0b.Parent.ChildElements
If childob.ElementType="Statistic" Then
If childob("StatName")=0b("StatName") Then
Set star=childob.srat("stat”)
Exit For
End If
End If
Next

If stat Is Nothing Then
Tracer.Trace "Cannot find specified statistic: " & ob("StatName") ,"Execution”
Exit Sub

End If

value=ob("Value")
stat.Collect value

Tracer.Trace "Statistical value Collected: " & value, "Simulation”

ob.TransferOut entity, ob.ConnectionPoints("Out")
End Sub

Connector

Public Function Connector_OnCreatefob As CFCSim_Modeling Elementinstance, x As Single, v As Single)
As Boolean

0b.OnCreate x.v,True

Connector_OnCreate=True

ob.AddConnectionPoint “In" , x-3, v+3, Clnput, 5
ob.AddConnectionPoint "Qut” x+3,y-3.COutput,5
End Function

Public Sub Connector_OnDragDraw(ob As CFCSim_ModelingElementinstance)
0b.OnDraw
End Sub

Public Sub Connector_OnDraw(ob As CFCSim_Modeling Elementinstance)
0b.DrawConnectionPoints
End Sub

Public Sub Connector_OnGetBoundingRect{ob As CFCSim_Modeling Elementinstance, mRect As
CFCGraphics_Rect)

mrect.left=0b.CoordinatesX(0)-10

mrect.top=ob.CoordinatesY(0)-10

mrect.right=0b.CoordinatesX(0}+10

mrect.bottom=a0b.CoordinatesY(0)+ 10
End Sub

248

Public Sub Connector_OnSimulationTransferln(ob As CFCSim_ModelingElementinstance, Entity As

CFCSim_Entity, SrcCp As CFCSim_ConnectionPoint, DsiCp As CFCSim_ConnectionPoint)
ob.TransferOur entity

End Sub

Trace

Public Function Trace_OnCreate(ob As CFCSim_ModelingElementinstance, x As Single, y As Single) As
Boolean

0b.OnCreate x,y,True

Trace_OnCreate=True

ob.AddAntribute "Expression”,"Expression to Trace”, CFC_Text, CFC_Single, CFC_ReadWrite
ob.AddAntribute "Category”,"Trace Category”, CFC_Text, CFC_Single, CFC_ReadWrite

ob.AddConnectionPoint "In” , x-10, y+25, Clnpur, 5
ob.AddConnectionPoint "Out”,x+60.y+25,COutput,5

End Function

Public Sub Trace_OnDragDraw(ob As CFCSim_Modeling Elementinstance)
0b.OnDraw
End Sub

Public Sub Trace_OnDraw(ob As CFCSim_ModelingElementinstance)
Dim mRect As New CFCGraphics_Rect
With ob
mRect.left = .CoordinatesX(0)

mRect.top = .CoordinatesY(0)

mRect.right = .CoordinatesX(0) + 50

mRect.bottom = .CoordinatesY(0) + 50
End With

CDC.Rectangle mRect.left, mRect.top, mRect.right, mRect.bottom

If ob.Selected Then
CDC Rectangle mRect.left + 1, mRect.top + 1, mRect.right - 1, mRect.bottom - |
End If

CDC.TextOut ob.CoordinatesX(0)+3,0b.CoordinatesY(0)+ 10,"Trace"
If ob("expression”).Calculation=CFC_Simple Then
CDC.TextOut ob.CoordinatesX(0)+3,0b.CoordinatesY(0)+25,0b("Expression”)
Else
CDC.TextOut ob.CoordinatesX(0)+3,0b.CoordinatesY(0)+25,"Formula”
End If

End Sub

Public Sub Trace_OnSimulationTransferin(ob As CF CSim_Modeling Elementinstance, Entity As
CFCSim_Entity, SrcCp As CFCSim_ConnectionPoint, DstCp As CFCSim_ConnectionPoint)
ob.TransferOut entiry
Tracer.Trace ob("Expression”),ob("Category")
End Sub

249

Execute

Public Function Execute_OnCreate(ob As CFCSim_ModelingElementinstance, x As Single, v As Single) As
Boolean
0b.0OnCreate x,y,True

Execute_OnCreate=True

o0b.AddAutribute "Expression”,"Expression To Execute”,CFC_Text, CFC_Single, CFC_ReadWrite

ob.AddConnectionPoint "In" , x-10, y+25, Clnput, 5
ob.AddConnectionPoint "Out” x+60,y+25,COutput,5
End Function

Public Sub Execute_OnDragDraw(ob As CFCSim_Modeling Elementinstance)
0b.OnDraw
End Sub

Public Sub Execute_OnDraw(ob As CFCSim_Modeling Elementinstance)
CDC.ChangeFont "Courier New",12,True,False,False, False

CDC.Recrangle
ob.CoordinatesX(0),0b.CoordinatesY(0),0b.CoordinatesX(0)+50,0b.CoordinatesY(0)+ 50
CDC.TextOurt ob.CoordinatesX(0)+35,0b.CoordinatesY(0)+20, "Execute”
0b.DrawConnectionPoints
End Sub

Public Sub Execute_OnSimulationTransferin(ob As CFCSim_Modeling Elementinstance, Entiry As
CFCSim_Entiry, SrcCp As CFCSim_ConnectionPoint, DstCp As CFCSim_ConnectionPoint)

Dim x

"reference the attribute so that any linked expression is evaluated

x=ob("Expression”)

ob.TransferOut entity
End Sub

InPort

Public Function InPort_OnCreate(ob As CFCSim_Modeling Elementinstance, x As Single v As Single) As
Boalean

Dim yl As Single

Dim x1 As Single

Dim mRect As New CFCGraphics_Rect

Dim i As Integer

Dim cp As CFCSim_ConnectionPoint
InPort_OnCreate=True
With ob

.OnCreate x.y,True
.AddConnectionPoint "IN" x-10,y+25,Clnput.0
.AddConnectionPoint "Out” x+60,y+25,COutput,5

i=1

250

ob.Parent.OnGetBoundingRect mRect
xl=mRect.lefi-10
vi=mRect.top-10

For Each cp In 0b.Parent.ConnectionPoints
If cp.crype=Cinput Then
i=i+!
Ifcp.y>yl Then
yl=cp.y
xl=cp.x
End If
End If
Next

yl=vl+15

ob.Parent.AddConnecrionPoint "In" & i, x1, y1. Clnput, 5
ob.Parent.AddRelation 0b. Parent.ConnectionPoints("IN” & i), ob.ConnectionPoints("IN")

End With

End Funcrion

Public Sub InPort_OnDelete(ob As CFCSim_Modeling Elementinstance)
ob.Parent.DeleteConnectionPoint ob. ConnectionPoints("IN").RelationsFrom(1)
End Sub

Public Sub InPort_OnDragDraw(ob As CFCSim_Modeling Elementinstance)

0b.OnDraw

End Sub

OutPort

Dim y1 As Single

Dim x1 As Single

Dim mRect As New CFCGraphics_Rect
Dim i As Integer
OutPort_OnCreate=True

Dim cp As CFCSim_ConnectionPoint

With ob
.OnCreate x.v,True
.AddConnectionPoint "IN",x-7,y+25,Clnput.5

.AddConnectionPoint "Out” x+57,y+25,COutput,0

ob.Parent.OnGetBoundingRect mRect
xI=mRect.Right+ 10
vi=mRect.Top-5

i=1

For Each cp In ob.Parent.ConnectionPoints
If cp.ctxpe=COutput Then
i=i+]

Ifcp.Y>yl Then

Public Function OutPort_OnCreate(ob As CFCSim_ModelingElementinstance. x As Single. v As Single) As
Boolean

251

yl=cpY
xl=cp.x
End If
End If
Next

vi=yl+15
ob.Parent. AddConnectionPoint "Out” & i, x1, y1, COutput, 5
ob.AddRelation ob.ConnectionPoints("Out”), ob.Parent.ConnectionPoints("Out" & i)
End With
End Function

Public Sub OutPort_OnDelete(ob As CFCSim_Modeling Elementinstance)
ob.Parent.DeleteConnectionPoint ob.ConnectionPoints("OUT"}.RelationsTo(|)
End Sub

Public Sub OutPort_OnDragDraw(ob As CFCSim_Modeling Elementinstance)

0b.OnDraw
End Sub

252

Appendix 2 - Simphony Build History

Build 2: (released March 5, 1999)

1) Fixed refresh problem

2) fixed problem with root element connection point crashing
(when InPort is added then delete at the root element)

Build 3: (released March 10, 1999)

1) Add LimitList, GraphType attributes

2) Improved the grid (Columns,...)

3) Replaced intrinsic collection with my own CFCSim_Collection class

4) Fixed some hdc refresh problems

5) Add CurrentRun statement

6) Add the ColumnLabel member property to the CFCSim_Attribute Class

Build 4: (released March 18, 1999)
1) changed list box allignment for CFC_ListBox type attributes. (Aligns to the right side
of the grid now)
2) Quick-Fixed a problem with RenderPicture method which only appears on Win85/98
machines by truncating
the bottom 5% of any picture.
3) Added an image export functionality to the Bitmap DB editor.
4) Added the "number of events processed" so far as a simulation progress indicator.
5) OnChecklntegrity is now called for all parents first, then the children. Also, it will
now fail
when it encounteres the first False return value.
6) Fixed minor bug with column labels as used by graph based attributes.
7) Mark fixed freezing problem associated with priority based resource Requests

Build 5: (released April 2, 1999)

1) Fixed collection class problem (NewEnum enumarator was returning object instead of
item)

2) Scheduling an event for a given entity will now delete any prior events foe that entity
and give a warning

3) Deleting an entity will first delete any scheduled events for it.

4) Enabled Full menus for Sax control so now Search and replace features are accessible
in the designer through the popup menu.

5) Added user-scripting capabilities to the Editor (Window->Script Window)

6) Maximized Designer Window on Startup.

7) Added Project Export and Import Capability to allow for the transfer of project data
between databases.

8) Made the element form a topmost window.

9) Upgrade to Sax Engine Build 15.

253

Build 6: (released April 12, 1999)

1) Made Intrinsic and TrackFull Property of CFCSim_Statistic class public.

2) Fixed problem with saving and loading of distribution type attributes (Id’s were not
being generated).

3) Fixed problem with statistical analysis of intrinsic data. (changed temporary variables
from long to double).

4) Set the Cancel button on the project info dialog box to default.

Build 7: (released April 15, 1999)
1) Modeling element library form is no longer a topmost window
2) fixed problem with OpenProject method of CFCSim_Conductor class

Build 8: (released May 10)

1) fixed problem with array tvpes attribtues where a reference to the assigned value
instead of its value was being stored.

2) fixed problem with entities not cloned if transferout is called with a specific connection
point

Build 9: (released June 10)
1) fixed bug with overflow during parsing of modeling element code (for elements with
code size > 32000 characters)
2) fixed trace reporting error.

previously, any tracing messages prior to simulation (during integrity checking)
were being cleared.
3) Removed "ImmediateUpdate” trace features. (useless property) (also removed its
reference from the manuals)
4) Optimized trace message generation code.
5) upgraded sax basic engine to version 5.2 (Build 3)

Build 10: (released June 15)
1) Trace messages which included the single quote character were producing an error -
fixed.

2) Accessing object-based attributes after a project load caused an error - fixed.

254

Appendix 3 - CEM_EMS Template Code

CEM_EMS

Public Function CEM_EMS_OnCreate(ob As CFCSim_ModelingElementinstance, x As Single, v As

Single) As Boolean
CEM_EMS_OnCreate = True

ob.SetNumCoordinates 2
ob.SetNumCoordinates 2
ob.CoordinatesX(0)=x
ob.CoordinatesY(0)=y
ob.CoordinatesX([)j=x+ 100
ob.CoordinatesY(])=y+350

Dim obl As CFCSim_Modeling Elementinstance

Dim ob2 As CFCSim_Modeling Elementinstance
Dim ob3 As CFCSim_Modeling Elementinstance
Dim ob4 As CFCSim_Modeling Elementinstance
Dim ob5 As CFCSim_Modeling Elementinstance

Set obl = ob.AddElement("CEM_EMS_Source”,71.0,169.0)
obl("AmountToHaul")= 100000

obl.CoordinatesX(0)=71

obl.CoordinatesY(0)=169

obl.CoordinatesX(1l)=181

obl.CoordinatesY([)=209
obl.ConnectionPoints("Inl").x=116
obl.ConnectionPoints(“Inl").Y=153

obl.ConnectionPoints("Outl").x=116
obl.ConnectionPoints("Qutl").Y=229

Set 0b2 = ob.AddElement("CEM_EMS_Placement”, 586.0,186.0)
0b2.CoordinatesX(0)=586

ob2.CoordinatesY(0)=186

0b2.CoordinatesX(| }=696

ob2.CoordinatesY(1)=226

ob2.ConnectionPoints("Inl").x=631
ob2.ConnectionPoints("Inl").Y=246

0b2.ConnectionPoints("Outl ").x=631
0b2.ConnectionPoints("Outl”).Y=170

Set 0b3 = ob.AddElement("CEM_EMS_Truck”,16.0,60.0)
ob3("Type")="Caterpillar Model 777C"
ob3("Quantity”)=1

ob3("Capaciry”)=45

ob3("DumpingTime"). Distribution. DistType=0
ob3("DumpingTime"). Distribution. Positive=True
ab3("DumpingTime"}.Distribution. ParameterValue(0)=1
ob3("IPriority”)=1

ob3("LPriority”)=1

255

ob3("Path")=1
ob3.CoordinatesX(0)=16
ob3.CoordinatesY(0)=60
ob3.CoordinatesX(!)=96
ob3.CoordinatesY(1)=110
ob3.ConnectionPoints("cl”).x=106
ob3.ConnectionPoints("cl”).Y=85

Set ob4 = ob.AddElement("CEM_EMS_Road",117.0,230.0)
ob4("Length”)=1000
ob4("Grade")=2

ob4("RR")=2
ob4.CoordinatesX(0)=117
ob4.CoordinatesY(0)=230
ob4.CoordinatesX(1)=631
ob4.CoordinatesY(l}=249
ob4.ConnectionPoinis("cl”).x=117
ob4.ConnectionPoints("cl”).Y=230
ob4.ConnecrionPoints("c2").x=631
ob4.ConnectionPoints("c2").Y=249

Set 0b5 = ob.AddElement("CEM_EMS_Road",631.0,171.0)
ob5("Length")=1000
0b5("Grade”)=2

ob5("RR")=2
ob5.CoordinatesX(0)=631
0b3.CoordinatesY(0)=171
ob5.CoordinatesX(1)=118
obS.CoordinatesY(1)=154
ob5.ConnecticnPoints("cl").x=631
ob5.ConnectionPoints("cl").Y=171
obS.ConnectionPoints("c2").x=118
ob5.ConnectionPoints("c2").Y=154

obl.AddRelationf{obl.ConnectionPoints("Outl”),0b4.ConnecrionPoints("cl "))
0b2.AddRelation(ob2.ConnectionPoints("Outl”),0b5.ConnectionPoints("cl"))
o0b3.AddRelation(0b3.ConnectionPoints("cl"},0b1.ConnectionPoints("Inl"})
ob4.AddRelation(ob4.ConnectionPoints("c2"),0b2.ConnectionPoints("Inl "))
ob5.AddRelation(ob5.ConnectionPoints("c2"),0b1.ConnectionPoints("Inl "))

End Function
Public Sub CEM_EMS_OnDraw(ob As CFCSim_Modeling Elementinstance)

CDC.TextOut ob.CoordinatesX(0)+ 10,0b.CoordinatesY(0), "Earth-moving"
CDC.TextOur ob.CoordinatesX(0)+15,0b.CoordinatesY(0)+20, "Simulation"

If ob.Selected Then
CDC.ChangeLineStyle CFC_SOLID, 1,RGB(255,0.0)
End If

CDC.Rectangle ob.CoordinatesX(0),0b.CoordinatesY(0),0b.CoordinatesX(1),0b.CoordinatesY(I}
ob.DrawConnectionPoints

End Sub

256

CEM_EMS_Source

Public Function CEM_EMS_Source_OnCreate(ob As CFCSim_Modeling Elementinstance, x As Single,

As Single) As Boolean
CEM_EMS_Source_OnCreate=True
ob.SetNumCoordinates 2
ob.CoordinatesX(0)=x
ob.CoordinatesY(0)=y
ob.CoordinatesX(1)=x+110
ob.CoordinatesY(])=y+40

ob.AddAttribute "AmountToHaul”, "Amount of Earth To Haul", CFC_Numeric, CFC_Single,
CFC_ReadWrite, 1000

ob.AddArtribute "AmountLoaded", "Amount of Earth Loaded So Far", CFC_Numeric, CFC_Single,
CFC_ReadOnly

ob("AmountToHaul")= 100000

Dim obl As CFCSim_ModelingElementinstance
Setobl = ob

Dim ob2 As CFCSim_Modeling Elementinstance
Dim ob3 As CFCSim_Modeling Elementinstance
Dim ob4 As CFCSim_Modeling Elementinstance
Dim ob5 As CFCSim_ModelingElementinstance
Dim ob6 As CFCSim_Modeling Elementinstance
Dim ob7 As CFCSim_Modeling Elementinstance
Dim ob8 As CFCSim_Modeling Elementinstance

Set ob2 = obl . AddElement("CEM_EMS_Pile”,281.0.101.0)
ob2("StartingAmount”)=0
ob2.CoordinatesX(0)=281
ob2.CoordinatesY(0)= 101
ob2.ConnectionPoints("AddIn").x=271
ob2.ConnectionPoints("AddIn").Y=106
ob2.ConnectionPoints("AddOut”).x=246
ob2.ConnectionPoints("AddOut”).Y=146
ob2.ConnectionPoints(“GetIn").x=316
ob2.ConnectionPoints("Getln”). Y= 146
ob2.ConnectionPoints("GetOut”).x=291
0b2.ConnectionPoints{ "GetOut"). Y=106

Set 0b3 = obl.AddElement("CEM_EMS_Trucksin”,244.5,258.6)
0b3.CoordinatesX(0)=244.5454
o0b3.CoordinatesY(0)=258.6364
ob3.ConnectionPoints("IN").x=234.5455
ob3.ConnectionPoints("IN"). Y=283.6364
ob3.ConnectionPoints("Out”).x=304.5455
ob3.ConnectionPoints("Out”). Y=283.6364

Set ob4 = obl.AddElement("CEM_EMS _TrucksOut”.607.8,73.7)
ob4.CoordinatesX(0)=607.8181

ob4.CoordinatesY(0)=73.72725
ob4.ConnectionPoints("IN”).x=600.8182
ob4.ConnectionPoints("IN").Y=98.72727
ob4.ConnectionPoints("Out").x=664.8182
ob4.ConnectionPainis("Out”).Y=98.72727

y

257

Set 0b5 = obl. AddElement("CEM_EMS_Excavator",396.0,77.7)
ob5("Quantity”)=1

0b5("Productivity”). Distribution. DistType=0
ob5("Productivity). Distribution. Positive=True
0b5("Productivity”). Distribution. ParameterValue(0)=1000
0b5.CoordinatesX(0)=395.9999
0b5.CoordinatesY(0)=77.72728
obS5.CoordinatesX(1)=475.9999
ob5.CoordinatesY(1)=127.7273
0b5.ConnectionPoints("cl").x=386
o0b5.ConnectionPoints("cl”).Y=102.7273
ob5.ConnectionPoints("c2").x=486
ob35.ConnectionPoints("c2").Y=102.7273

Set ob6 = obl.AddElement("CEM_EMS_Preparation”, 149.0,43.0)
ob6("AmountToPrepare")= 100000

ob6.CoordinatesX(0)= 149

ob6.CoordinatesY(0)=43

0b6.CoordinatesX(1 }=229

ob6.CoordinatesY(1)=83

0b6.ConnectionPoints("Inl").x=139
0b6.ConnectionPoints("Inl").Y=48
ob6.ConnectionPoints("Outl").x=239
ob6.ConnectionPoints("Outl").Y=53

Set ob7 = obl.AddElementt "CEM_EMS_Dozer",48.0,23.0)
ob7("Quantity")=1

ob7("Capacity”)=5

ob7("Productivity). Distribution. DistTvpe=0

ob7("Productivity "). Distribution. Positive=True
ob7("Productivity”). Distribution. ParameterValue(0)= 1000
0b7.CoordinatesX(0)=48

ob7.CoordinatesY(0)=23

ob7.CoordinatesX(1)=128

ob7.CoordinatesY(1)=73
ob7.ConnectionPoints(“cl”).x=138
ob7.ConnectionPoints("cl”).Y=48

Set 0b8 = obl.AddElement("Connector”,133.0,139.0}
0b8.CoordinatesX(0)=133

ob8.CoordinatesY(0)=139
ob8.ConnectionPoints("In").x=130
0b8.ConnectionPoints("In").Y=142
ob8.ConnectionPoints("Out").x=136
ob8.ConnectionPoints("Qut”).Y=136

0b2.DeleteChildren
0b3.DeleteChildren
ob4.DeleteChildren
ob5.DeleteChildren
o0b6.DeleteChildren
ob7.DeleteChildren
0b8.DeleteChildren

258

Dim 0b9 As CFCSim_Modeling Elementinstance

Dim ob10 As CFCSim_Modeling Elementinstance
Dimobl ! As CFCSim_Modeling Elementinstance
Dim obi2 As CFCSim_Modeling Elementinstance
Dim obl3 As CFCSim_Modeling Elementinstance
Dim obl4 As CFCSim_Modeling Elementinstance
Dim obl5 As CFCSim_Modeling Elementinstance

Set 0b9 = 0b6.AddElement("InPort”,76.0,134.0)
0b9.CoordinatesX(0)=76
0b9.CoordinatesY(0)=134
0b9.ConnectionPoints("IN"). x=66
0b9.ConnectionPoints("IN").Y=159
0b9.ConnectionPoints("Out”).x= 136
0b9.ConnectionPoints("Out”).Y=159

Ser 0b10 = ob6.AddElement("OutPort”,717.0,195.0)
obl10.CoordinatesX(0)=717
obl0.CoordinatesY(0)=195
obl10.ConnectionPoints("IN").x=710
ob10.ConnectionPoints("IN").Y=220
oblQ.ConnectionPoints("Out").x=774
obl0.ConnectionPoints("Out"). Y=220

Setobll = 0b6.AddElement(”"Branch”,163.0,161.0)
obl I("Prob"”).Calculation=CFC _Formula
obl1("Prob”).Formula.SetExpression™" & Chr8(13) & ChrS(10) & "" & Chr8(13) & Chr$(10) & " If

ob.Parent(""AmountPrepared"") < ob.Parent(""AmountToPrepare””) Then” & Chr$(13) & Chr$(10) & ~

FXXXX = 0" & Chr$(13) & Chr$(10) & " Else” & Chr$(13) & Chr$(10) & " FXXXX=1"&

Chr§(13) & Chr$(10) & " EndIf " & Chr$(13) & Chr3(10) & "" & Chr$(13) & Chr$(10) & "

obll.CoordinatesX(0)=163
obl1.CoordinatesY(0)=161

obl 1.ConnectionPoints("IN").x=138.0218

obl 1.ConnectionPoints("IN").Y=159.957

ob] 1.ConnectionPoints("Top").x=189.0213
obl1.ConnectionPoints("Top").Y=137.0647
obl1.ConnectionPoints("Bottom").x=186.9355
ob1 1.ConnectionPoints("Bottom").Y=187.0212

Set 0b12 = ob6.AddElement("Destroy",600.0,29.0)
obl12.CoordinatesX(0)=600
0b12.CoordinatesY(0)=29
0b12.ConnectionPoints("IN").x=593
obl2.ConnectionPoints("IN").Y=54

Set obi3 = ob6.AddElement("Execute”,263.0,201.0)

obl3("Expression”).Calculation=CFC_Formula

ob13("Expression”).Formula.SetExpression”” & Chr$(13) & Chr$(10) & """ & Chr$(13) & Chr$(10) &
ob.Parent(""AmountPrepared”")=o0b.Parent(""AmountPrepared"")+o0b.CurrentEntity(""Capacity"")"

& Chr3(13) & Chr$(10) & "" & Chr$(13) & Chr$(10) & "*

obl3.CoordinatesX(0)=263
obl3.CoordinatesY(0)=201
obi3.ConnectionPoints("In").x=253
obl3.ConnectionPoints("In").Y=226
ool3.ConnectionPoints("Out").x=323
obl3.ConnectionPoints{ "Out").Y=226

259

Set obl4 = 0b6.AddElement("Task",385.0,203.0)

obl4("Duration”).Calculation=CFC_Formula

obl4("Duration”). Formula.SetExpression”” & Chr3(13) & Chr$(10) & ""” & Chr3(13) & Chr3(10) & "
FXXXX = (0b.CurrentEntity(""Capacity”")/ ob.CurrentEntirv(" "Productivity"").Value) * 60" & Chr$(13)
& Chr$(10) & "" & Chr$(13) & Chr$(10) & "

obl4.CoordinatesX(0)=385

obl4.CoordinaresY(0)=203

obl4.ConnectionPoints("In").x=375

obl4.ConnectionPoints("In").Y=228

obl4.ConnectionPoints("Out").x=500

obl4.ConnectionPoints("Out"”).Y=228

Set obl5 = 0b6.AddElement("Execute”,562.0,202.0)

obl5("Expression”).Calculation=CFC_Formula

obl5("Expression”).Formula.SetExpression"" & Chr8(13) & Chr5(10) & "" & Chr$(13) & Chr$(10) &
" ob.CurrentEntitv(""Payload"")=0b.CurrentEntity(""Capacity”")” & Chr$(13) & Chr$(10) & " " &
Chr¥(13) & Chr$(10) & "" & Chr$(13) & Chr$(10) & "

obl5.CoordinatesX(0)=562

obl5.CoordinatesY(0)=202

obl5.ConnectionPoints(”In").x=552

obl5.ConnectionPoints("In").Y=227

obl5.ConnectionPoints("Qut").x=622

obl5.ConnectionPointst "Qut").Y=227

0b9.DeleteChildren

obl0.DeleteChildren
obl I.DeleteChildren
obl2.DeleteChildren
obl3.DeleteChildren
obl4.DeleteChildren
obli5.DeleteChildren

0b9.AddRelation(0b9.ConnectionPoints("Out”),0bl I.ConnectionPoints("IN"))

ob! 1. AddRelation(ob [I.ConnectionPoints("Top"),ob12.ConnectionPoints(“IN"))
obl 1.AddRelation(ob! |.ConnectionPoints("Bottom”),0b1 3.ConnectionPoints("In"))
obl3.AddRelation(ob[3.ConnectionPoints("Out”),0b 14.ConnectionPoints("In"))
obl4.AddRelation(ob[4.ConnectionPoints("Out”),0b15.ConnectionPoints("In"))
obl5.AddRelation(ob15.ConnectionPoints("Out”),0b10.ConnectionPoints(“IN"))

0b2.AddRelation(0b2.ConnectionPoints("AddOut”),0b8.ConnectionPoints("In"))
o0b2.AddRelation(0b2.ConnectionPoints("GetOut”),0b5.ConnectionPoints("cl"))
o0b3.AddRelation(0b3.ConnectionPoints("Out”),0b2.ConnectionPoints("GetIn"))
o0b5.AddRelation(ob5.ConnectionPoints("c2"),0b4.ConnectionPoints("IN"))
0b6.AddRelation(ob6.ConnectionPoints("Outl "),0b2.ConnectionPoints("Addin"))
ob7.ddRelation(ob7.ConnectionPoints("c1"),066.ConnectionPoints("Inl"))
ob8.AddRelation(ob8.ConnectionPoints("Out"),0b6.ConnectionPoints("Inl"))

End Function

Public Sub CEM_EMS_Source_OnDraw(ob As CFCSim_Modeling Elementinstance)
Dim cp As CFCSim_ConnectionPoint

CDC.RenderPicture "EMS_Source”,0b.CoordinatesX(0).0b.Coordinates Y(0),0b.CoordinatesX{(I)-
ob.CoordinatesX(0),0b.CoordinatesY{(1)-ob.CoordinatesY(0)

260

If ob.Selected Then
CDC.Rectangle ob.CoordinatesX(0),0b.CoordinatesY(0),0b.CoordinatesX(I),0b.CoordinatesY(1)

End If

For Each cp In 0b.ConnectionPoints
If cp.ctype = COutput And cp.RelationsTo.Count>0 Then
CDC.ChangeFillColor RGB(255,0.0)
Else
CDC.ChangeFillColor -1
End If

CDC.Circ cp.x,cp.Y.cp.tolerance
If cp.ctype=COutput Then
CDC.TextOut cp.x-3, cp.Y-19, cp.RelationsFrom(|).Modeling Elemeni("Num")
Else
CDC.TextOut cp.x-3, cp.Y+35,cp.RelationsTo(I).Modeling Element("Num")
End If
Next

End Sub

Public Function CEM_EMS_Source_OnRelationValid(srcCP As CFCSim_ConnectionPoint, dstCP As
CFCSim_ConnectionPoint) As Boolean
CEM_EMS_Source_OnRelationValid=True

If srcCP.RelationsTo.Count>0 Then
MessagePrompt "Only one relation is allowed from this connection point "
CEM_EMS_Source_OnRelationValid=False
Exit Function

End If

If dstcp.Modeling Element. ElementTvpe="CEM_EMS_Source” Then
MessagePrompt "Source element cannot be connected to other Source elements "
CEM_EMS_Source_OnRelationValid=False
End If
End Function

Public Sub CEM_EMS_Source_OnSimulationinitializeRun(ob As CFCSim_Modeling Elementinstance,
RunNum As Integer)

ob("AmountLoaded")=0
End Sub

CEM_EMS_Placement

Public Function CEM_EMS_Placement_OnCreate(ob As CFCSim_ModelingElementinsiance, x As Single,
v As Single) As Boolean

CEM_EMS_Placement_OnCreate=True

ob.SetNumCoordinates 2

ob.CoordinatesX(0)=x

ob.CoordinatesY(0)=y

ob.CoordinatesX(1)=x+110

ob.CoordinatesY(1)=y+40

261

ob.AddAntribute "AmountDumped”, "Amount of Earth Dumped So Far", CFC_Numeric, CFC_Single,

CFC_ReadOnly

Dim obl As CFCSim_ModelingElementinstance
Setobl = ob

Dim ob2 As CFCSim_Modeling Elementinstance
Dim ob3 As CFCSim_Maodeling Elementinstance
Dim ob4 As CFCSim_Modeling Elementinstance
Dim 0bS As CFCSim_Modeling Elementinstance
Dim ob6 As CFCSim_Modeling ElementInstance
Dim ob7 As CFCSim_Modeling Elementinstance

Set ob2 = obl.AddElement("CEM_EMS_Pile",376.0,94.0)
ob2("StartingAmount”)=0
ob2.CoordinatesX(0)=376
ob2.CoordinatesY(0)=94
ob2.ConnectionPoints("AddIn").x=366
ob2.ConnectionPoints("AddIn").Y=99
ob2.ConnectionPoints("AddOut”).x=341
ob2.ConnectionPoints("AddOut").Y=139
ob2.ConnectionPoints("Getin").x=411
ob2.ConnectionPoints("'Getin").Y=139
ob2.ConnectionPoints("GetOut"). x=386
ob2.ConnectionPaints("GetOut"). Y=99

Set 0b3 = obl.AddElement("CEM _EMS_Trucksin",51.0,24.0)
ob3.CoordinatesX(0)=51

ob3.CoordinatesY(0)=24

ob3.ConnectionPoints("IN").x=41
ob3.ConnectionPoints("IN").Y=49
ob3.ConnectionPaoints("Out").x=111
ob3.ConnectionPoints("Out").Y=49

Set ob4 = obl.AddElement("CEM_EMS_TrucksOut”,351.0,317.0)
ob4.CoordinatesX(0)=351

ob4.CoordinatesY(0)=317

ob4.ConnectionPoints("IN").x=344
ob4.ConnectionPoints("IN").Y=342
ob4.ConnectionPoints("Out").x=408
ob4.ConnectionPoints("Out").Y=342

Set ob5 = obl.AddElement("CEM_EMS_Dump",210.0,26.0)
ob5("Quantity”)=1

ob5.CoordinatesX(0)=210

ob3.CoordinatesY(0)=26

ob5.CoordinatesX(1)=290

ob5.CoordinatesY(1)=76
ob5.ConnectionPoints("cl”).x=200
ob5.ConnectionPoints("cl"”).Y=51
obS.ConnectionPoints("c2").x=300
ob3.ConnectionPoints("c2”).Y=51

Set obG = obl AddElement("CEM_EMS_Spreading”,415.0,23.0)
ob6.CoordinatesX(0)=415
o0b6.CoordinatesY(0)=23

(K8

ob6.CoordinatesX(1)=495
ob6.CoordinatesY(1)=63
ob6.ConnectionPoints("Inl ").x=405
ob6.ConnectionPoints("Inl").Y=28
ob6.ConnectionPoints("Outl ").x=505
ob6.ConnectionPoints("Outl”).Y=33

Set 0b7 = obl.AddElement("CEM_EMS_Dozer",377.0,193.0)
0b7("Quantity”)=1

ob7("Capacity")=5

ob7("Productivity”). Distribution. DistType=0
ob7("Productivity”). Distribution. Positive=True
ob7("Productivity”).Distribution. ParameterValue(Q)=500
ob7.CoordinatesX(0)=377

ob7.CoordinatesY(0)=193

ob7.CoordinatesX(1)=457

ob7.CoordinatesY(1)=243

ob7.ConnectionPoints("cl").x=467
ob7.ConnectionPoints("cl”).Y=218

0b2.DeleteChildren
ob3.DeleteChildren
ob4.DeleteChildren
ob5.DeleteChildren
o0b6.DeleteChildren
ob7.DeleteChildren

Dim 0b8 As CFCSim_Modeling Elementinstance
Dim 0b9 As CFCSim_Modeling Elementinstance
Dim obl0 As CFCSim_Modeling Elementinstance
Dimob! 1! As CFCSim_Maodeling Elementinstance

Set 0b8 = 0b6.AddElement("InPort”,62.0.82.0)
ob8.CoordinatesX(0)=62
ob8.CoordinatesY(0)=82
0b8.ConnectionPoints("IN").x=52
0b8.ConnectionPoints("IN").Y=107
ob8.ConnectionPoints("Out").x=122
ob8.ConnectionPoints("Out”).Y=107

Set 0b9 = 0b6.AddElement("OutPort”,501.0,82.0)
0b9.CoordinatesX(0)=501
ob9.CoordinatesY(0)=82
ab9.ConnectionPoints("IN").x=494
0b9.ConnectionPoints("IN").Y=107
0b9.ConnectionPoints("Out”).x=558
0b9.ConnectionPoints("Out”).Y=107

Set 0b10 = ob6.AddElement(“Task",197.0.85.0)

obl10("Duration”).Calculation=CFC_Formula

0b10("Duration"”). Formula.SetExpression™" & Chr$(13) & Chr$(10) & " & Chr$(13) & Chr$(10) & "
FXXXX = (ob.CurrentEntity(""Capacity"")/ ob.CurrentEntirv(""" Productivity"").Value) * 60" & Chr3(13)
& Chr$(10) & " & Chr¥(13) & Chr$(10) & "

0bl0.CoordinatesX(0)=197

0b10.CoordinatesY(0)=85

263

0b10.ConnectionPoinis("In").x=187
0bl0.ConnectionPoints("In").Y=110
0bl0.ConnectionPoints("Out”).x=312
obl0.ConnectionPoints("Out”).Y=110

Set obl ! = 0b6.AddElemeni("Execute”,387.0.83.0)

obl 1("Expression”).Calculation=CFC_Formula

obl l("Expression”).Formula.SetExpression"" & Chr$(13) & Chr$(10) & "" & Chr$(13) & Chr3(10) &
" ob.Parent(""AmountSpread"")=0b.Parent(""AmountSpread”")+ob.CurrentEntity(""Pavload"")" &
Chr8(13) & Chr$(10) & "" & Chr$(13) & Chr$(10) & "

obl |.CoordinatesX(0)=387

obl l.CoordinatesY(0)=83

obl l.ConnectionPoints("In").x=377

obl l.ConnecrionPoints("In").Y=108

obl 1.ConnectionPoints("Qut”).x=447

obl l.ConnectionPoints("Out").Y=108

0b8.DeleteChildren
0b9.DeleteChildren
obl10.DeleteChildren
obl l.DeleteChildren

ob8.AddRelation(ob8.ConnectionPoints("Out"),0b10.ConnectionPoints("In")}
obl0.AddRelationi ob 10.ConnectionPoints("Out”),0bl | .ConnectionPoints("In"))
obl 1. AddRelation(ob 1 1.ConnectionPoints("Out”),0b9.ConnectionPoints("IN"))

o0b2.AddRelation(ob2. ConnectionPoints("AddOut”),0b4.ConnectionPoints("IN"))
ob2.AddRelation(ob2.ConnectionPoints("GetOut"),0b6.ConnectionPoints("Inl ")}
ob3.AddRelation(ob3.ConnectionPoints("Qut”),0b5.ConnectionPoints("c!"))
o0b5.AddRelation(ob5.ConnectionPoints("c2"),0b2.ConnectionPoints("AddIn "))
ob6.AddRelation(ob6.ConnectionPoints("Outl”),0b2.ConnectionPoints("GetIn"})
ob7.AddRelation(ob7.ConnectionPoints("cl"}),0b2.ConnectionPoints("Getin"))

End Function

Public Sub CEM_EMS_Placement_OnDraw(ob As CFCSim_Modeling Elementinstance)
Dim cp As CFCSim_ConnectionPoint

CDC.RenderPicture "EMS_Placement”,0b.CoordinatesX(0),0b.CoordinatesY(0),0b.CoordinatesX{(I)-
ob.CoordinatesX(0),0b.CoordinatesY(1 }-0b.CoordinatesY(0)

If ob.Selected Then
CDC.Rectangle ob.CoordinatesX(0).0b.CoordinatesY(0),0b.CoordinatesX(| },ob.CoordinatesY(1)
End If

For Each cp In ob.ConnectionPoints
If cp.ctype = COutput And cp.RelationsTo.Count>0 Then
CDC.ChangeFillColor RGB(255,0,0)
Else
CDC.ChangeFillColor -1
End If

CDC.Circ cp.x.cp.Y.cp.tolerance
If cp.ctype=Clnput Then
CDC.TextOut cp.x-3, cp.Y-19, cp.RelationsTo(I .Modeling Element("Num”)

Else
CDC.TextOut cp.x-3, cp.Y+35,cp.RelationsFrom(|). Modeling Element("Num")
End If
Next

End Sub

Public Function CEM_EMS_Placement_OnRelationValid(srcCP As CFCSim_ConnectionPoint, dstiCP As
CFCSim_ConnectionPoint) As Boolean
CEM_EMS_Placement_OnRelationValid=True

If srcCP.RelationsTo.Count>Q Then
MessagePrompt "Only one relation is allowed from this connection point *
CEM_EMS_Placement_OnRelationValid=False
Exit Function

End If

If dstcp.Modeling Element. ElementTvpe="CEM_Placement_Source” Then
MessagePrompt “Placement element cannot be connected ro other Placement elements "
CEM_EMS_Placemenit_OnRelationValid=False
End If
End Function

Public Sub CEM_EMS_Placement_OnSimulationinitializeRun(ob As CFCSim_Modeling Elementinstance,
RunNum As Integer)

ob("AmountDumped” =0
End Sub

CEM_EMS_Truck

Public Function CEM_EMS_Truck_OnCreatefob As CFCSim_Modeling Elementinstance, x As Single, v As
Single) As Boolean
CEM_EMS_Truck_OnCreate=True

ob.SetNumCoordinates 2
ob.CoordinatesX(0)=x
ob.CoordinatesY(0)=y
ob.CoordinatesX(1 }j=x+80
ob.CoordinatesY(1)=y+50

ob.AddAntrribute "Type”, "Truck Type", CFC_Text, CFC_ListBox, CFC_ReadWrite

ob.AddAttribute "Quantity”, "Number of Trucks”, CFC_Numeric, CFC_Single, CFC_ReadWrite, 1,100

ob.AddAntribute "Capacity”, "Truck Capacity in Cubic Metres”, CFC_Numeric, CFC_Single,
CFC_ReadWrite, 5,200

ob.AddAttribute "DumpingTime”, "Truck Dumping Duration”, CFC_Distribution, CFC_Single,
CFC_ReadWrite

ob.AddAntribute "IPriority”, "Truck Priority at Intersections”, CFC_Numeric, CFC_Single,
CFC_ReadWrite, |

ob.AddAntribute "LPriority”, "Truck Loading Priority *, CFC_Numeric, CFC_Single,
CFC_ReadWrite, 1

ob.AddAntribute “"Path”, “Path Number to Follow on Branches”, CFC_Numeric, CFC_Single,
CFC_ReadWrite, !

ob("Type")="Caterpillar Model 777C"

265

ob("Type").LimitList=True

ob("Quantity")=1
ob("Capacity”)=45
ob("IPrioriry”)=1
ob("LPriority”)=1
ob("Path”)=1

With ob("DumpingTime"). Distribution
.DistType=CFC_Constant
.ParameterValue(0)=1

End With

ob.AddConnectionPoint "cl", ob.CoordinatesX(0)+90,0b. CoordinatesY(0)+25,COutput,5

ob.AddStatistic "CycleTime","Truck Cycle Time",False,True

End Function
Public Sub CEM _EMS _Truck_OnDraw(nb As CFCSim_ModelingElementinstance)

CDC.RenderPicture "EMS_Truck"”,0b.CoordinatesX(0),0b.CoordinatesY(0),0b.CoordinatesX(1)-
ob.CoordinatesX(0),0b.CoordinatesY(|)-ob.CoordinatesY(0)

If ob.Selected Then

CDC.Recrangle ob.CoordinatesX(0)-2,0b.CoordinatesY(0)-

2.0b.CoordinatesX(1)+2,0b.CoordinatesY(1)+2

End If

ob.DrawConnectionPoints
End Sub

Public Sub CEM_EMS_Truck_OnListBoxInitialize(ob As CFCSim_Modeling Elementinstance. attr As
CFCSim_Anribute, IstList As Object)
If attr Name="Type" Then
Dim myset As Recordset

Set myset = SimphonyConnection.OpenRecordset("select * From EMS_TruckTvpes”,
dbOpenSnapshot)
myset.MoveFirst
While Not mvset. EOF
Istlist. AddItem myset! Description
myset.MoveNext
Wend
End If
End Sub

Public Function CEM_EMS_Truck_OnRelationValid(srcCP As CFCSim_ConnectionPoint, dstCP As
CFCSim_ConnectionPoint) As Boolean
CEM_EMS_Truck_OnRelationValid=True

If srcCP.RelationsTo.Count>0 Then
MessagePrompt "Only one relation is allowed from this connection point *
CEM_EMS_Truck_OnRelationValid=False
End If
End Funcrion

Public Sub CEM_EMS_Truck_OnSimulationinitializeRun(ob As CFCSim_Modeling Elementinstance,
RunNum As Integer)

Dim truck As CFCSim_Entity

Dim i As Integer

Dim myset As Recordset

Set myset = SimphonyConnection.OpenRecordset("select * From EMS_TruckTvpes where description
=" & ob("Type") & "™, dbOpenSnapshot)

For i=1 To ob("Quantity")
Set truck=o0b.AddEntity
truck("capacitv”)=ob("capacity"”)

Set truck("DumpingTime")=o0b("Dumping Time").Distribution

Set Truck("CycleStat”)= ob.stat("CycleTime")

truck("Payload”)=0

Truck("StartTime") = -1

Truck("LPriority")=0b("LPriority")

Truck("IPriorirv")=0b("[Priority”)

truck("Path")=o0b("Path")

' set speed parameters

truckl "MeanL ")=myset! MeanL

truck("StDevL")=myset!StDevL

truck(“ScaleFactorL"” j=myset!ScaleFactorL
truck("YFactorL")=myset!YFactorL

truck("MeanE")j=myset!MeanE
truck("StDevE”)=myset!StDevE

truck("ScaleFactorE")=myset!ScaleFactorE
truck("YFactorE")=myvset! YFactorE

Tracer.Trace "Truck entity created and transferred: ” & truck.ID , "Simulation”

ob.TransferOut truck
Next
End Sub

CEM_EMS_Road

Public Function CEM_EMS_Road_OnCreate{ob As CFCSim_ModelingElementinstance, x As Single, v As
Single} As Boolean
CEM_EMS_Road_OnCreate=True

ob.SetNumCoordinates 2
ob.CoordinatesX(0)=x
ob.CoordinatesY(0)=y
ob.CoordinatesX(I)=x+50
ob.CoordinatesY(1l)=v+50

ob.AddAttribute “Length”, "Road Length in Metres”, CFC_Numeric. CFC_Single, CFC_ReadWrite,5
ob.AddAttribute "Grade”, "Percent Grade Resistance”, CFC_Numeric, CFC_Single, CFC_ReadWrite,-
30.30

267

ob.AddAnribute "RR", "Percent Rolling Resistance”, CFC_Numeric, CFC_Single,
CFC_ReadWrite,0,.30

ob.Attr("Length”)=1000
ob. Anr("Grade")=2
ob.Antr("RR")=2

ob.AddConnectionPoint "cl”, ob.CoordinatesX(0),0b.CoordinatesY(0),Cinput,5
ob.AddConnectionPoint "c2", ob.CoordinatesX(1).0b.CoordinatesY(1), COutput,5

End Function

Public Sub CEM_EMS_Road_OnDragDraw(ob As CFCSim_ModelingElementinstance)
0b.OnDraw
End Sub

Public Sub CEM_EMS_Road_OnDraw(ob As CFCSim_Modeling Elementinstance)
Dim ratio As Double
Dim Length As Integer
Dim xaoffset As Integer
Dim voffset As Integer
Dim x As Single
Dim v As Single

ob.DrawConnectionPoints

With CDC

Length = Sqr((ob.CoordinatesX(1) - ob.CoordinatesX(0)} * 2 + (ob.CoordinatesY(1) -

ob.CoordinatesY(0)) ~ 2)

If length<5 Then Exit Sub
ratio = Length/ 5

If ab.Selected Then

CDC.ChangeLineStvle CFC_SOLID, 1,RGB(255,0,0)
End If

xoffset = (ob.CoordinatesY(1) - 0b.CoordinatesY(0))/ ratio
yoffset = (ob.CoordinatesX(1) - ob.CoordinatesX(0) V ratio
.MoveTo ob.CoordinatesX(0) - xoffset, ob.CoordinatesY(0)+ yoffset

.LineTo ob.CoordinatesX(l) - xoffset, ob.CoordinatesY(1) + yoffset

.MoveTa ob.CoordinatesX(0) + xoffset, ob.CoordinatesY(0) - yoffset
.LineTo ob.CoordinatesX(1) + xoffset, ob.CoordinatesY(1) - yoffset

ArrowHead ob.CoordinatesX(0) ,ob.CoordinatesY(0), ob.CoordinatesX(1) ,0b.CoordinatesY(1),20
End With
End Sub
Public Function CEM_EMS_Road_OnHitTest(ob As CFCSim_Modeling Elementinstance, x As Single, v As
Single} As Boolean
"we need to figure out the distance 1o the central line

Dim slope As Double
Dim Templ As Double

268

Dim Temp2 As Double

Dim mRect As New CFCGraphics_Rect
Dim InRect As Boolean

CEM_EMS_Road_OnHitTest=False

*first check if point is inside the bounding rectangle

0b.0OnGetBoundingRect mRect

If Not (x>mrect.left And x<mrect.right And y>mrect.top And y<mrect.bottom) Then
Exit Function

End If

" Then check some special cases

If (Abs((ob.CoordinatesX(|)-0b. CoordinatesX(0)))<0.1} Or (Abs({ob.CoordinatesY(] }-
ob.CoordinatesY(0)))<0.1) Then
CEM_EMS_Road_OnHitTest=True
Exit Function
End If

slope=(ob.CoordinatesY(| }-0b.CoordinatesY(0))/(0b.CoordinatesX(!)-ob.CoordinatesX(0))

templ = (x/slope+y-ob.CoordinatesY(0)+slope*ob.CoordinatesX(0))/(slope+ l/slope)
temp2 = slope*(temp[-ob.CoordinatesX(0))+ob.CoordinatesY(0)

If (Sqr((templ-x}'2)+ (temp2-y)*2) < 20 Then
CEM_EMS_Road_OnHitTest=True
End If

End Function

Public Sub CEM_EMS_Road_OnMove(ob As CFCSim_Modeling Elementinstance, BvVal x! As Single,
BvVal y1 As Single, ByVal x2 As Single, ByVal v2 As Single)
With ob
If Sqrt(.CoordinatesX(0} - X!)" 2 + (.CoordinatesY(0) - Y1)~ 2) <= 10 Then
.CoordinatesX(0) = .CoordinatesX(0) + (X2 - X1}
.CoordinatesY(0) = .CoordinatesY(0} + (Y2 - Y1)

.ConnectionPoints("cl”).x = .ConnectionPoints("cl”).x + (X2 - X1)
.ConnectionPoints("c:").Y = .ConnectionPoints("cl”).Y + (Y2 - YI)

Elself Sqri(.CoordinatesX(1) - XI) " 2 + (.CoordinatesY(1} - YI)* 2) <= 10 Then
.CoordinatesX(!) = .CoordinatesX(!) + (X2 - X1)
.CoordinatesY(1} = .CoordinatesY(1) + (Y2 - Y1)

.ConnectionPoints("c2").x = .ConnectionPoints("c2").x + (X2 - X1)
.ConnectionPoints("c2").Y = .ConnectionPoints("c2").Y + (Y2 - Y1)

Else
.CoordinatesX(0) = .CoordinatesX(0} + (X2 - X1)
.CoordinatesY(0) = .CoordinatesY(0) + (Y2 - Y1)
.CoordinatesX(1) = .CoordinatesX(!l) + (X2 - X1)
.CoordinatesY(1) = .CoordinatesY(1) + (Y2 - YI)

.ConnectionPoints(“c1”).x = .ConnectionPoints("cl ").x + (X2 - X1)

269

.ConnectionPoints("cl").Y = .ConnectionPoints("cl”).Y + (Y2 - Y1)
.ConnectionPoints("c2").x = .ConnectionPoints("c2").x + (X2 - X!}
.ConnectionPoints("c2").Y = .ConnectionPoints{"c2").Y + (Y2 - Y1)
End If

End With

End Sub

Public Function CEM_EMS_Road_OnRelationValid(srcCP As CFCSim_ConnectionPoint, dstCP As
CFCSim_ConnectionPoint) As Boolean
CEM_EMS_Road_OnRelationValid=True

If srcCP.RelationsTo.Count>0 Then
MessagePrompt "Only one relation is allowed from this connection point "
CEM_EMS_Road_OnRelationValid=False

End If

End Function

Public Sub CEM_EMS_Road_0OnSimulationinitialize(ob As CFCSim_Modeling Elementinstance)
ob.AddEvent "StartTravel” True
ob.AddEvent "FinishTravel"

End Sub

Public Sub CEM_EMS_Road_QOnSimulationProcessEvent(ob As CFCSim_ModelingElementinstance,
MyEvent As String, Entity As CFCSim_Entiry)

Dim duration As Double

Dim TotalResistance As Double

Dim Speed As Double

Select Case MyEvent
Case "StartTravel”
*calculate duration
TotalResistance=Abs(ob("Grade”)+ob("RR"))

If entiv("Payload”) >0 Then
Speed = entity(“scalefactorL”) * Exp(-((TotalResistance - entity("meanlL")) » 2) /
entiny("stdevL")) + entity("yfactorL"}
Else
Speed = entiry("scalefactorE"”) * Exp(-({TotalResistance - entity("meanE”)) " 2) /

entity("stdevE”)) + entiy("vfactorE”)
End If

duration = (obi "length")/ speed) * 60/1000
ob.ScheduleEvent entity,” FinishTravel",duration
Tracer.Trace "Truck: " & entity.ID & " will travel with a speed of " & speed & " for a duration of "
& duration,"Simulation”
Case "FinishTravel"

Tracer.Trace "Truck entity completed travel: * & entity.ID , "Simulation”

ob.TransferQOut entity
End Select
End Sub

270

Public Function CEM_EMS_Road_OnValidateParameters(ob As CFCSim_Modeling Elemertinstance,
Parameters As Object) As Boolean
CEM_EMS_Road_OnValidateParameters=o0b.OnValidateParameters(Parameters, True)

If CEM_EMS_Road_OnValidateParameters=False Then Exit Function

If Abs(Parameters("Grade”)+ Parameters("RR"})>55 Then
MessagePrompt "Total Resistance RR + Grade resistance’ cannot exceed fifty five”
CEM_EMS_Road_OnValidateParameters=False
End If
End Function

CEM_EMS_Intersection

Public Function CEM_EMS_Intersection_OnCreate(ob As CFCSim_ModelingElementinstance, x As
Single, v As Single) As Boolean
Dim cp As CFCSim_ConnectionPoint
CEM_EMS_intersection_OnCreate=True
With ob
.OnCreate x,v,True

AddAuribute "Delay”,"Expected Delay”,CFC_Distribution, CFC_Single, CFC_ReadWrite
With ob("Delay”). Distribution

.DistTvpe=CFC_Normal

ParameterValue(0)=1
End With

.AddConnectionPoint "IN1" x,y-25,Clnput,5
.AddConnectionPownt “Outl” . x,y+25,COutput.5
.AddConnectionPoint "IN2" x-25,v,CInput.5
.AddConnectionPoint "Out2" x+25,y, COutput.5

.AddResource "Intersection”, |

End With
End Function

Public Sub CEM_EMS_Intersection_OnDragDraw(ob As CFCSim_MaodelingElementinstance)
0b.OnDraw
End Sub

Public Sub CEM_EMS_Intersection_OnDraw(ob As CFCSim_Modeling Elementinstance)
ob.DrawConnectionPoints
If ob.Selected Then
CDC.ChangeLineStvle CFC_SOLID, I, RGB(255,0,0)
End If

CDC.MoveTo ob.ConnectionPoints("Inl").x, ob.ConnectionPoints("Inl").Y
CDC.LineTo ob.ConnectionPoints("Outl").x , ob.ConnectionPoints("Outl").Y

CDC.MoveTo ob.ConnectionPoints("In2").x, ab.ConnectionPoints("In2").Y
CDC.LineTo ob.ConnectionPoints("Out2").x , ob.ConnectionPoints("Out2").Y

271

CDC.ArrowHead ob.CoordinatesX(0),0b.CoordinatesY(0), ob.ConnectionPoints("Outl”).x ,
ob.ConnectionPoints("Outl").Y, 20

CDC.ArrowHead ob.CoordinatesX(0),0b.CoordinatesY(0), ob.ConnectionPoints("Out2").x,
ob.ConnectionPoints("Out2").Y,20

CDC.ChangeFillColor 0
CDC.Circ ob.CoordinatesX(0),0b.CoordinatesY(0),5

End Sub

Public Sub CEM_EMS_Intersection_OnMove(ob As CFCSim_ModelingElementinstance, ByVal x! As
Single, BvVal v1 As Single, ByVal x2 As Single, ByVal y2 As Single)

Dim a As Double

Dim b As Double

Dim ¢ As Double

Dim X As Double

Dim Ang As Double

Dim xo As Double

Dim yo As Double

Dim cp As CFCSim_ConnectionPoint

If Sqri(ob.CoardinatesX(0) - X1)» 2 + (ob.CoordinatesY(0) - Y1}~ 2) > 20 Then
a= Sqr((ob.CoordinatesX(0)-x2) " 2 + (ob.CoordinatesY(0)-y2/ 2)
b= Sqr((ob.CoordinatesX(0)-x!)* 2 + (ab.CoordinatesY(0)-vI 2)
c= Sqr((xI-x2)"2 + (yI-v2P2)

‘figure out expression
X=(c"2-a"2-6"2) /(-2*a*b)

If Sqn-X = X + 1)=0 Then Exit Sub
"calculate inverse cosine
Ang=Am(-X/Sqr(-X *X + 1))

ang=ang+ 2 * An(l)
If ang=0 Then Exit Sub
ang=ang

For Each cp In ob.ConnectionPoints
xo=cp.x - ob.CoordinatesX(0)
vo=-{(cp.Y - ob.CoordinatesY(0))
cp.x = xo*Cos(ang)+vo*Sin(ang) +ob.CoordinatesX(0)
cp.Y = -(-xo*Sin(ang)+vo*Cos(ang)) + ob.CoordinaresY(0)
Next
Else
"call default on move
0b.OnMove x1.y1.x2,v2, True
End If

End Sub

272

Public Sub CEM_EMS_Intersection_OnSimulationlnitialize(ob As CFCSim_Modeling Elementinstance)
ob.AddEvent "Delayi",True
ob.AddEvent "Request”
ob.AddEvent "Release”
0b.AddEvent "Delay2"”
End Sub

Public Sub CEM_EMS__Intersection_OnSimulationProcessEvent(ob As
CFCSim_Modeling Elementinstance, MyEvent As String, Entity As CFCSim_Entity)
Dim duration As Double

Select Case MyEvent
Case "Delavl!"”
ob.ScheduleEvent entity, "Request”,ob("Delay”)/2
Case "Request”
If ob.RequestResource("Intersection”, entity, 1, entity("[Priority”})) Then

ob.ScheduleEvent entity,"Release”, 1/6.0

Tracer.Trace “entity obtained intersection: * & entiry.ID , "Simulation”
Else
Tracer.Trace "entity waiting for a intersection " & entitv.ID , "Simulation”
End If
Case "Release”
ob.ReleaseResource "Intersection”, entity

Tracer.Trace “entity Crossed Intersection: " & entity.ID , "Simulation”
ob.ScheduleEvent entity, "Delay2”,0b("Delayv")/2

Case "Delay2”
If entirv("InCP").Name="IN1" Then
ob.TransferOut entity,0b.ConnectionPoints("Outl")
Else
ob.TransferOut entity,ob.ConnectionPoints("Out2")
End If
End Select
End Sub

Public Sub CEM_EMS_Intersection_OnSimulationTransferin(ob As CFCSim_Modeling Elementinstance,
Entity As CFCSim_Entity, SrcCp As CFCSim_ConnectionPoint, DstCp As CFCSim_ConnectionPoint)
Set entity("InCp")=dstcp
ob.OnSimulationTransferIn entity, srccp, dstcp, True
End Sub

CEM_EMS_Split

Public Function CEM_EMS_Split_OnCreate(ob As CFCSim_Modeling Elementinstance, x As Single, v As
Single) As Boolean
Dim cp As CFCSim_ConnectionPoint
CEM_EMS_Split_OnCreate=True
With ob
.OnCreate x.y, True

273

.AddAntribute "Forkl","Path number for Fork 1", CFC_Numeric,CFC_Single, CFC_ReadWrite, |
AddAntribute "Fork2","Path number for Fork 2",CFC_Numeric, CFC_Single, CFC_ReadWrite, |

ob("Forkl")=1
ob("Fork2")=2

.AddConnectionPoint "IN" x-25,y,CInput,5
.AddConnectionPoint "Forkl " x+25,y-25,COutput,5
.AddConnectionPoint "Fork2",x+25,y+25,COutput,5
End With
End Function

Public Sub CEM_EMS_Split_OnDragDraw(ob As CFCSim_Modeling Elementinstance)
0b.OnDraw
End Sub

Public Sub CEM_EMS_Split_OnDraw(ob As CFCSim_ModelingElementinstance)
Dim x As Single
Dim v As Single

ob.DrawConnectionPoints

If ob.Selected Then
CDC.ChangeLineStyle CFC_SOLID, I, RGB(255,0,0)
End If

CDC.MoveTo ob.ConnectionPoints("In").x,0b.ConnectionPoints("[n").Y

CDC.LineTo ob.CoordinatesX(0),0b.CoordinatesY(0)

CDC.Arrow ob.CoordinaresX(0),0b.CoordinatesY(0)
ob.ConnectionPoints("Forkl ").x,0b.ConnectionPoints("Forkl").Y, 17

CDC.Arrow 0b.CoordinatesX(0), ob.CoordinatesY(0), ob.ConnectionPointst "Fork2").x ,
ob.ConnectionPoints("Fork2").Y, 17

CDC.ChangeTextColor RGB(255,0,0)

If ob("Forkl").Calculation = CFC_Simple Then
x= ob.CoordinartesX(0) + (ob.ConnectionPoints("Forkl").x - ob.CoordinatesX(0)) 12
v= ob.CoordinatesY(0) + (ob.ConnectionPoints("Forkl”).Y - ob.CoordinatesY(0)) /2
CDC.TextOut x,v,0b{"Forkl")

End If

If ob("Fork2").Calculation = CFC_Simple Then
x= 0b.CoordinaresX(0)+ (ob.ConnectionPoints("Fork2").x - ob.CoordinatesX(0)) 12
y= ob.CoordinatesY(0)+ (ob.ConnectionPoints("Fork2").Y - ob.CoordinatesY(0)) 2
CDC.TextOut x,y,0b("Fork2")

End If

End Sub

Public Sub CEM_EMS_Split_OnMove(ob As CFCSim_Modeling Elementinstance, BvVal xl As Single,
BvVal yi As Single, ByVal x2 As Single, BvVal y2 As Single)

Dim a As Double
Dim b As Double
Dim ¢ As Double
Dim X As Double
Dim Ang As Double

274

Dim xo0 As Double
Dim yo As Double
Dim cp As CFCSim_ConnectionPoint

If Sqri(ob.CoordinatesX(0) - X1) » 2 + (ob.CoordinatesY(0) - Y1)7 2) > 20 Then
a= Sqr((ob.CoordinatesX(0)-x2)* 2 + (ob.CoordinatesY(0)-y2)*2)

Sqr((ob.CoordinatesX(0)-x1)* 2 + (ob.CoordinatesY(0)-yI 2)

Sqr((xI-x2)"2 + (yl-y2°2)

no

(4

‘figure out expression
X=(c"2-a*2-b2) /(-2*a*b)

If Sqr(-X * X + 1}=0 Then Exit Sub
‘calculate inverse cosine
Ang=Atn(-X/Sqr(-X *X + 1))

ang=ang+ 2 *Am(1)

If ang=0 Then Exit Sub

For Each cp In ob.ConnectionPoints
xo=cp.x - ob.CoordinatesX(0)
yo=-(cp.Y - ob.CoordinatesY(0;)
cp.x = xo*Cos(ang)+yo*Sin(ang) +ob.CoordinatesX(0)
cp.Y = -(-xo*Sin(ang)+vo*Cos(ang)) + ob.CoordinatesY(0)
Next
Else
‘call default on move
ob.OnMove x1,v1.x2,v2, True
End If

End Sub

Public Sub CEM_EMS_Split_OnSimulationTransferin(ob As CFCSim_Modeling Elementinstance, Entitv
As CFCSim_Entity, SrcCp As CFCSim_ConnectionPoint, DstCp As CFCSim_ConnectionPoint)

If entitv("Path”)= ob("Forkl"} Then
ob.TransferQut entity, ob.ConnectionPoints("Forkl")

Tracer.Trace "Routing entity " &entity.ID & " to the fork 1", "Simulation”
Else

ob.TransferOut entity, ob.ConnectionPoints("Fork2")

Tracer.Trace "Routing entity” &entity.ID & " to fork 2.","Simulation"”

End If
End Sub

CEM_EMS_Ext_Traffic

Public Function CEM_EMS_Ext_Traffic_OnCreate(ob As CFCSim_Modeling Elementinstance, x As
Single, y As Single) As Boolean

275

ob.SetNumCoordinates 2
ob.CoordinatesX(0)=x
ob.CoordinatesY(0)=y
ob.CoordinatesX(1)=x+200
ob.CoordinatesY(])=y+40

CEM_EMS_Ext_Traffic_OnCreate=True

ob.AddAntribute "First”,"Time of First Arrival”,CFC_Numeric, CFC_Single,

CFC_ReadWrite,0, 1000000
ob.AddAntribute "Between","Time Between Arrivals",CFC_Distribution, CFC_Single, CFC_ReadWrite
ob.AddAttribute “IPriority”, " Priority”, CFC_Numeric, CFC_Single, CFC_ReadWrite, |

ob("First”)=0

ob("lPriority”)=1

With ob("Berween"”).Distribution
.DistTvpe=CFC_Exponential
.ParameterValue(0)=5

End With

ob.AddConnectionPoint "Out” x+100,y+45,COutput,5
End Function

Public Sub CEM_EMS_Ext_Traffic_OnDraw(ob As CFCSim_Modeling Elementinstance)

If ob.Selected Then
CDC.ChangeLineStyle CFC_SOLID, 1,.RGB(255,0,0)
End If

CDC.Ellipse ob.CoordinatesX(0),0b.CoordinatesY(0),0b.CoordinatesX(1),0b.CoordinatesY(])

CDC.ChangeFont "Courier New",11, True, False, False, False
CDC.TextOut ob.CoordinatesX(0)+20,0b.CoordinatesY(0)+20,
ob("Between"). Distribution. GetString Representation

ob.DrawConnectionPoints
End Sub

Public Function CEM_EMS_Ext_Traffic_OnRelationValid(srcCP As CFCSim_ConnectionPoint, dstCP As
CFCSim_ConnectionPoint) As Boolean
CEM_EMS_Ext_Traffic_OnRelationValid=True
If dstcp.Modeling Element. ElementType<>"CEM_EMS_Intersection” Then
MessagePrompt "This element can only be connected to an intersection”
CEM_EMS_Ext_Traffic_OnRelationValid=False
End If
End Function

Public Sub CEM_EMS_Ext_Traffic_OnSimulationinitialize(ob As CFCSim_Modeling Elementinstance)
ob.AddEvent "FireEntity”
End Sub

Public Sub CEM_EMS_Ext_Traffic_OnSimulationlnitializeRun(ob As CFCSim_Modeling Elementinstance,
RunNum As Integer)

ob.ScheduleEvent ob.AddEntity, "FireEntity",06("First")
End Sub

276

Public Sub CEM_EMS_Ext_Traffic_OnSimulationProcessEvent(ob As
CFCSim_Modeling Elementinstance, MyEvent As String, Entity As CFCSim_Entity)
Dim newEntity As CFCSim_Entity

Set newEntity = ob.AddEntiry
newEntity("IPriority”)=0b("[Priority”)
ob.TransferOut NewEntity

ob.ScheduleEvent entity, "FireEntiry", ob("Between")

Tracer.Trace "Entity: " & newEntity.ID & " Created","Simulation”
End Sub

CEM_EMS_Pile

Public Function CEM_EMS_Pile_OnCreate(ob As CFCSim_MaodelingElementinstance, x As Single, v As
Single) As Boolean

0b.OnCreate x.y, True

CEM_EMS_Pile_OnCreate=True

If ob.Parent. ElementTvpe <> "CEM_EMS_Source” And ob.Parent.ElementType <>
"CEM_EMS_Placement” Then
MessagePrompt "Pile element can only be defined as a child of a source or a placement element”

CEM_EMS_Pile_OnCreate=False
Exit Function
End If

ob.AddAntribute "StartingAmount”, "Starting Amount in Cubic
Metres”,CFC_Numeric, CFC_Single, CFC_ReadWrite,0

ob.AddAttribute "CurrentAmount”,"Current Amount in Cubic
Metres”,CFC_Numeric, CFC_Single, CFC_ReadOnly,0

ob("StartingAmount”)=0

ob.AddConnectionPoint "AddIn” x-10,y+5,Clnput,5

ob.AddConnectionPoint "AddOut" x-35,y+45,COutput,5

ob.AddConnectionPoint "Getin" x+35,y+45,Clnput,5
ob.AddConnectionPoint "GetOut” x+10,y+5,COutput,5

ob.AddFile "Queue”,QUEUE
End Function

Public Sub CEM_EMS_Pile_OnDraw(ob As CFCSim_Modeling Elementinstance)
Dim mRect As New CFCGraphics_Rect

0b.OnGetBoundingRect mRect
CDC . RenderPicture "EMS_Pile”,0b.CoordinatesX(0)-25,0b.CoordinatesY(0),50,50
CDC.ChangeFont "Courier New",12, True, False, False, False

If ob.Selected Then
CDC.ChangeLineStyle CFC_SOLID, { RGB(255.0,0)

277

CDC.Rectangle mRect.left,mrect.top.mrect. right.mrect.bortom
End If

If ob("StartingAmount”).Calculation=CFC_Simple Then
CDC.TextOut ob.CoordinatesX(0)-
16,0b.CoordinatesY(0)+42, Format(ob("StartingAmount"), "0.#%")
Else
CDC.TextOut ob.CoordinatesX(0)-16,0b.CoordinatesY(0)+42,"Formula”
End If
ob.DrawConnectionPoints
End Sub

Public Sub CEM_EMS_Pile_OnSimulationinitializeRun(ob As CFCSim_Modeling Elementinstance,
RunNum As Integer)

ob("CurrentAmount”)=o0b("StartingAmount")

End Sub

Public Sub CEM_EMS_Pile_OnSimulationTransferin(ob As CFCSim_Modeling Elementinstance, Entity As
CFCSim_Entity, SrcCp As CFCSim_ConnectionPoint, DstCp As CFCSim_ConnectionPoint)
Dim WaitingEntiry As CFCSim_Entity

If dstcp.Name="AddIn" Then
ob("CurrentAmount”)=ob("CurrentAmount”)+ entity("Capacity”)
Tracer.Trace "Incoming Entity " & entity.ID & " Increased Amount by " & entitv("Capacitv"”)

"check waiting entities
With ob.Filel "Queue")
If .Length>0 Then
Do
.MoveFirst
If ob("CurrentAmount”) > .entity("Capacity”) Then
Set WaitingEntitv = .Pop
ob("CurrentAmount”) = ob("CurrentAmount”) - WaitingEntirv("Capaciry”)
ob.TransferOut WaitingEntity, ob.ConnectionPoints("GetQOut")
Tracer.Trace "Queued Entitv Freed " & WaitingEntitv.ID
Else
Exit Do
End If
Loop While .Length > 0
End If
End With
ob.TransferOut entity, ob.ConnectionPoints("AddOut")
Else
If ob("CurrentAmount”)< entity("Capacitv”) Then
ob.File("Queue").Add entity
Tracer.Trace "Incoming Entity Queued " & entity.ID
Else
ob("CurrentAmount”) = ob("CurrentAmount”} - entity("Capacity”)
ob.TransferQOut entity, ob.ConnectionPoints(“GetOut")
Tracer.Trace "Incoming Entity Served " & entity.ID
End If
End If
End Sub

1~
<}
00

CEM_EMS_TruckIn

Public Function CEM_EMS_Trucksin_OnCreate(ob As CFCSim_Modeling Elementlnstance, x As Single, v

As Single) As Boolean
Dim yl As Single
Dim x! As Single
Dim mRect As New CFCGraphics_Rect
Dim i As Integer
Dim cp As CFCSim_ConnectionPoint

CEM_EMS _Trucksin_OnCreate=True

If ob.Parent.ElementType <> "CEM_EMS_Source” And ob.Parent. ElementType <>
"CEM_EMS_Placement” Then
MessagePrompt "Trucksin element can only be defined as a child of a source or a placement
element”

CEM_EMS_Trucksin_OnCreate=False
Exit Function
End If

With ob
.OnCereate x,v,True
AddAttribute "Num”,”",CFC_Numeric, CFC_Single, CFC_Hidden

.AddConnectionPoint "IN".x-10.y+25,Clnput,0
.AddConnectionPoint "Out”,x+60,v+25,COutput,5

i=l
ob.Parent.OnGetBoundingRect mRect
x!=mRect.left+30
If ob.Parent. ElementType="CEM_EMS_Source" Then
vl=mRect.top-16
Else
vl=mRect.bottom+ [0
End If

For Each cp In ob.Parent.ConnectionPoints
If cp.crype=Clnput Then
i=i+]
If cpx>x] Then
xl=cp.x
vi=cp.Y
End If
End If
Next
xl=xl+15
ob.Parent.AddConnectionPoint "In” & i, x1, y1, Clnput, 5
ob.Parent. AddRelation ob. Parent.ConnectionPoints("IN” & i), ob.ConnectionPoints("IN")
ob("Num")=i
End With
End Function

Public Sub CEM_EMS_TrucksIn_OnDelete(ob As CFCSim_Modeling Elementinstance)
ob.Parent.DeleteConnectionPoint ob.ConnectionPoints("IN").RelationsFrom(1)

279

End Sub

Public Sub CEM_EMS_Trucksin_OnDragDraw(ob As CFCSim_ModelingElementinstance)
0b.OnDraw
End Sub

Public Sub CEM_EMS_Trucksin_OnDraw(ob As CFCSim_Modeling Elementinstance)
ob.DrawConnectionPoints

If ob.Selected Then
CDC.ChangelLineStyle CFC_SOLID, 1, RGB(255,0,0)
End If

CDC.MoveTo ob.CoordinatesX(0), ob.CoordinatesY(0)
CDC.LineTo ob.CoordinatesX(0), ob.CoordinatesY(0)+50
CDC.LineTo ob.CoordinatesX(0)+50, ob.CoordinatesY(0)+25
CDC.LineTo ab.CoordinatesX(0), ob.CoordinatesY(0)

CDC.TextOut ob.CoordinatesX(0)+20,0b.CoordinatesY(0}+20,CStr(ob("Num"))
End Sub

CEM_EMS_TruckQOut

Public Function CEM_EMS_TrucksOut_OnCreate(ob As CFCSim_Modeling Elementinstance, x As Single,
v As Single) As Boolean

Dim vl As Single

Dim x!I As Single

Dim mRect As New CFCGraphics_Rect

Dim i As Integer

Dim cp As CFCSim_ConnectionPoint

CEM_EMS _TrucksOut_OnCreate=True

If ob.Parent. ElementTvpe <> "CEM_EMS_Source” And ob.Parent.ElementTvpe <>
"CEM_EMS_Placement” Then
MessagePrompt "TrucksOut element can only be defined as a child of a source or a placement
element”

CEM_EMS_TrucksOut_OnCreate=False
Exit Function
End If

With ob
.OnCreate x.y,True
.AddConnectionPoint "IN",x-7,y+25,Clnput,5
.AddConnectionPoint "Out” x+57,y+25,COutput,0

AddAnribute "Num”,"",CFC_Numeric, CFC_Single, CFC_Hidden
i=l
ob.Parent.OnGetBoundingRect mRect
xl=mRect.left+30

If ob.Parent.ElementType="CEM_EMS_Placement” Then

vl=mRect.top-16
Else

yl=mRect.botom+ 10
End If

For Each cp In ob.Parent.ConnectionPoints
If ep.ctype=COutput Then
i=i+]
Ifcp.x>x] Then
xl=cp.x
vl=cp.¥Y
End If
End If
Next
xl=xI+15

ob.Parent. AddConnectionPoint "Out” & i, xI, yI, COutput, 5
ob.AddRelation 0b.ConnectionPoints("Out”), ob.Parent.ConnectionPointst"Out” & i)
ob("Num")=i

End With

End Function

Public Sub CEM_EMS_TrucksOut_OnDelete(ob As CFCSim_Modeling Elementinstance)
ob.Parent.DeleteConnectionPoint ob.ConnectionPoints("OUT").RelationsTo(1)
End Sub

Public Sub CEM_EMS_TrucksOut_OnDraw(ob As CFCSim_Modeling Elementinstance)
0b.DrawConnectionPoints

If ob.Selected Then
CDC.ChangeLineStyle CFC_SOLID.I, RGB(255,0.0}
End If

CDC.MoveTo ob.CaordinatesX(0)+30 ,0b.CoordinatesY(0)

CDC.LineTo ob.CoordinatesX(0)+50, ob.CoordinatesY(0)+50

CDC.LineTo ob.CoordinatesX(0), 0b.CoordinatesY(0)+25

CDC.LineTo ob.CoordinatesX(0)+50, ob.CaordinatesY(0)

CDC.TextOut ob.CaoordinatesX(0)+20,0b.CoordinatesY(0)+20,CStr(ab("Num"))

End Sub

CEM_EMS_Dozer

Public Function CEM_EMS_Dozer_OnCreate(ob As CFCSim_ModelingElementinstance, x As Single, v As
Single) As Boolean
CEM_EMS_Dozer_OnCreate=True

If ob.Parent.ElementType <> "CEM_EMS_Source” And ob.Parent. ElementTvpe <>
"CEM_EMS_Placement” Then

MessagePrompt "Dozers can only be defined as a child of a source or a placement element”

CEM_EMS_Dozer_OnCreate=False
Exit Function
End If

ob.SetNumCoordinates 2
ob.CoordinatesX(0)=x
ob.CoordinatesY(0)=y
ob.CoordinatesX(Il }=x+80
ob.CoordinatesY(l)=y+50

ob.AddArtribute "Quantiry”, "Number of Dozers", CFC_Numeric, CFC_Single, CFC_ReadWrite, 1,100

ob.AddAntribute "Capacity”, "Capacity in Cubic Metres”, CFC_Numeric, CFC_Single,
CFC_ReadWrite,0.1,200

ob.AddAutribute "Productiviry”, "Productivity in Cubic Metres per Hr", CFC_Distribution.
CFC_Single, CFC_ReadWrite

ob("Quantirv”)=1
ob("Capacity”)=5

With ob("Productivity”). Distribution
.DistType=CFC_Constant
.ParameterValue(0)=500

End With

ob.AddConnectionPoint "cl", ob.CoordinatesX(0)+90,0b. CoordinatesY(0)+25,COutput,5
End Function

Public Sub CEM_EMS_Dozer_OnDraw(ob As CFCSim_ModelingElementinstance)

CDC.RenderPicture "EMS_Dozer” 0b.CoordinatesX(0),0b.CoordinatesY(0),0b.CoordinatesX(I)-
ob.CoordinatesX(0),0b.CoordinatesY(|)-0b.Coordinates Y(0)

If ob.Selected Then

CDC.Rectangle ob.CoordinatesX(0)-2.0b.CoordinatesY(0)-

2,0b.CoordinatesX(1 }+2,0b.CoordinatesY(1)+2

End If

ob.DrawConnectionPoints
End Sub

Public Function CEM_EMS_Dozer_OnRelatioi:Valid(srcCP As CFCSim_ConnectionPoint, dstCP As
CFCSim_ConnectionPoint) As Boolean
CEM_EMS_Dozer _OnRelationValid=True

If srcCP.RelationsTo.Count>0 Then
MessagePrompt “Only one relation is allowed from this connection point "
CEM_EMS_Dozer_OnRelationValid=False
Exit Funcrion

End If

If dstCP.Modeling Element ElementTvpe<>"CEM_EMS_Preparation” And
dstCP.Modeling Element. ElementType<>"CEM_EMS_Pile” Then
MessagePrompt “Dozers can only be connected to preparation or Pile elements”
CEM_EMS_Dozer_OnRelationValid=False
Exit Function
End If

[
00
~

If dstCP.Modeling Element. ElementTvpe = "CEM_EMS_Pile” And dstcp.Name <> "Getin" Then
MessagePrompt "Dozers must be added to the input connection on the side of the pile”
CEM_EMS_Dozer_OnRelationValid=False
Exit Function

End If

End Function

Public Sub CEM_EMS_Dozer_OnSimulationlnitializeRun(ob As CFCSim_ModelingElementinstance,
RunNum As Integer)

Dim dozer As CFCSim_Entity

Dim i As Integer

For i=1 To ob("Quantity")
Set dozer= ob.AddEntity
dozer("capacity”)=0b("capacity")
Set dozer("Productivity")=0b("Productivity”). Distribution
dozer{"PaylLoad")=0

Tracer.Trace "dozer entity created and transferred: " & dozer.ID, "Simulation”
ob.TransferOut dozer
Next
End Sub

CEM_EMS_Preparation

Public Function CEM_EMS_Preparation_OnCreate(ob As CFCSim_Modeling Elementinstance, x As
Single. v As Single) As Boolean
CEM_EMS_Preparation_OnCreate=True

If ob.Parent.ElementTvpe <> "CEM_EMS_Source” Then
MessagePrompt "Preparation element can only be defined as a child of a source element”

CEM_EMS_Preparation_OnCreate=False
Exit Function
End If

ob.SetNumCoordinates 2
ob.CoordinatesX(0)=x
ob.CoordinatesY(0)=y
ob.CoordinatesX(l)j=x+80
ob.CoordinatesY(l)=y+40

ob.AddAntribute "AmountToPrepare”, "Amount of Earth To Prepare”, CFC_Numeric, CFC_Single,
CFC_ReadWrite, 1000

ob.AddAttribute "AmountPrepared”, “"Amount of Earth Prepared so Far", CFC_Numeric, CFC_Single,
CFC_ReadOnly

ob("AmountToPrepare”)= 100000

Dim obl As CFCSim_ModelingElementinstance
Set obl = 0b
Dim ob2 As CFCSim_Modeling Elementinstance
Dim ob3 As CFCSim_Modeling Elementinstance

Dim ob4 As CFCSim_ModelingElementinstance
Dim 0b5 As CFCSim_Modeling Elementinstance
Dim ob6 As CFCSim_ModelingElementinstance
Dim ob7 As CFCSim_ModelingElementinstance
Dim 0b8 As CFCSim_ModelingElementinstance

Set ob2 = obl.AddElement("InPort”,76.0,134.0)
o0b2.CoordinatesX(0)=76
0b2.CoordinatesY(0)=134
ob2.ConnectionPoints("IN").x=66
ob2.ConnectionPoints("IN").Y=159
ob2.ConnectionPoints("Out”).x=136
ob2.ConnectionPoints("Out").Y=159

Set 0b3 = obl.AddElement("QutPort",717.0,195.0)
ob3.CoordinatesX(0)=717
ob3.CoordinatesY(0)=195
ob3.ConnectionPoints("IN").x=710
ob3.ConnectionPoints("IN").Y=220
ob3.ConnectionPoints("Out").x=774
ob3.ConnectionPoints("Out"). Y=220

Set ob4 = obl.AddElement("Branch",163.0,161.0)

obd("Prob").Calculation=CFC_Formula

ob4("Prob”).Formula.SetExpression”” & ChrS(13) & Chr$(10) & " & Chr$(13) & Chr3(!0) & "" &
Chr8(13) & Chr$(10) & " If ob.Parent(""AmountPrepared””) < ob.Parent(""AmountToPrepare”")
Then" & Chrd(13) & Chr$(10) & " FXXXX = 0" & Chr3(13) & Chr$(10) & * Else” & Chr$(13)
& Chr3(10) & " FXXXX=1"& Chr$(13) & Chr3(10) & " EndIf " & Chr$(13) & Chr$(10)
& " & Chr8(13) & Chr$(10) & "" & Chr$(13) & Chr$(10) & "

ob4.CoordinatesX(0)=163

ob4.CoordinatesY(0)=161

ob4.ConnectionPoints("IN").x=138.0218

ob4.ConnectionPoints("IN").Y=159.957

ob4.ConnectionPoints("Top").x=189.0213

ob4.ConnectionPoints("Top").Y=137.0647

ob4.ConnectionPoints("Bottom").x=186.9355

ob4.ConnectionPoints("Bottom”).Y=187.0212

Set 0b5 = obl.AddElemeni("Destroy",600.0.29.0)
o0b5.CoordinatesX(0)=600
ob3.CoordinatesY(0)=29
ob5.ConnectionPoints("IN").x=593
ob5.ConnectionPoints("IN").Y=54

Set 0b6 = obl.AddElement("Execute”,263.0,201.0)

ob6("Expression”).Calculation=CFC_Formula

ob6("Expression”).Formula.SetExpression”” & Chr$(13) & Chr$(10) & *" o Chr$(13) & Chr$(10) & ""
& Chr3(13) & Chr$(10) & "
ob.Parent(""AmountPrepared”")=0b.Pareni(""AmountPrepared”")+ob.CurrentEntity(""Capacity””)" &
Chr3(13) & Chr$(10) & "" & Chr$(13) & Chr$(10) & "" & Chr$(13) & Chr3(10) & "

0b6.CoordinatesX(0)=263

0b6.CoordinatesY(0)=201

ob6.ConnectionPoints("In").x=253

0b6.ConnectionPoints("In").Y=226

obb6.ConnectionPoints("Out”).x=323

ob6.ConnectionPoints("Out”). Y=226

Set 0b7 = obl.AddElement("Task",385.0,203.0)

ob7("Duration”).Calculation=CFC_Formula

ob7("Duration”). Formula.SetExpression™” & Chr3(13) & Chr$(10) & "" & Chr3(13) & Chr3(10) & "
& Chr3(13) & Chr3(10) & " FXXXX = (ob.CurrentEntity(""Capacity"")/
ob.CurrentEntity(" Productivity”").Value) * 60" & Chr$(13) & Chr$(10) & "" & Chr3(13) & Chr3(10) &
" & Chr$(13) & Chr3(10) & ""

ob7.CoordinatesX(0)=385

ob7.CoordinatesY(0)=203

ob7.ConnectionPoints("In").x=375

ob7.ConnectionPoints("In").Y=228

ob7.ConnectionPoints("Out").x=500

ob7.ConnectionPoints("Out”).Y=228

Set 0b8 = obl.AddElement("Execute",562.0,202.0)

0b8("Expression”).Calculation=CFC_Formula

ob8("Expression”).Formula.SetExpression”" & Chr3(13) & Chr8(10) & "" & Chr3(13) & Chr3(10) & "
& Chr$(13) & Chr$(10) & " o0b.CurrentEntity(""Pavload"")=0b.CurrentEntitv(""Capacitv"")" &
Chr3(13) & Chr$(10) & " " & Chr8(13) & Chr$(10) & "" & Chr8(13) & Chr3(10) & "" & Chr8(13) &
Chrd(10) & ""

ob8.CoordinatesX(0)=562

0b8.CoordinatesY(0)=202

0b8.ConnectionPoints("In").x=552

0b8.ConnectionPoints("In").Y=227

0b8.ConnectionPoints("Out”).x=622

o0b8.ConnectionPoints("Out”). Y=227

0b2.DeleteChildren
o0b3.DeleteChildren
ob4.DeleteChildren
0bS.DeleteChildren
0b6.DeleteChildren
ob7.DeleteChildren
o0b8.DeleteChildren

o0b2.AddRelation(0b2.ConnectionPoints("Out”),0b4.ConnectionPoints("IN"))
ob4.AddRelation(ob4.ConnectionPoints("Top"),0b5.ConnectionPoints("IN"})
ob4.AddRelation(ob4.ConnectionPoints("Bottom"),0b6.ConnectionPoints("In"})
ob6.AddRelation(ob6.ConnectionPoints("Out”),0b7.ConnectionPoints("In"))
ob7.AddRelation(ob7.ConnectionPoints("Out"”),068.ConnectionPoints("In"))
ob8.AddRelation(ob8.ConnectionPoints(“Out”),0b3.ConnectionPoints("IN "))

End Function
Public Sub CEM_EMS_Preparation_OnDraw(ob As CFCSim_ModelingElementlnstance)
CDC.ChangeFont “Courier New",13, True, False, False. False
If ob.Selected Then
CDC.ChangeLineStvle CFC_SOLID,I.RGB(255,0,0)
End If

CDC.Rectangle ob.CoordinatesX(0),0b.CoordinatesY(0),0b.CoordinatesX(1),0b.CoordinatesY(1)

CDC.TextOut ob.CoordinatesX(0)+5,0b.CoordinatesY(0)+ 15, "Preparation”
ob.DrawConnectionPoints
End Sub

Public Function CEM_EMS_Preparation_OnRelationValid(srcCP As CFCSim_ConnectionPoins, dstCP As
CFCSim_ConnectionPoint) As Boolean
CEM_EMS_Preparation_OnRelationValid=True

If srcCP.RelationsTo.Count>0 Then
MessagePrompt "Only one relation is allowed from this connection point "
CEM_EMS_Preparation_OnRelationValid=False
Exit Function

EndIf

End Function

Public Sub CEM_EMS_Preparation_OnSimulationlnitializeRun(ob As

CFCSim_Modeling Elemen:instance, RunNum As Integer)
ob("AmountPrepared”)=0

End Sub

CEM_EMS_Spreading

Public Function CEM_EMS_Spreading_OnCreate(ob As CFCSim_Madeling Elementinstance, x As Single,
=+ As Single} As Boolean
CEM_EMS_Spreading_OnCreate=True

If ob.Parent.ElementType <> "CEM_EMS_Placement” Then
MessagePrompt "Spreading element can only be defined as a child of a placement element”

CEM_EMS_Spreading_OnCreate=False
Exit Function
End If
ob.AddArtribute "AmouniSpread”, "Amount of Earth Spread so Far”, CFC_Numeric, CFC_Single,
CFC_ReadOnly

Dim obl As CFCSim_Modeling Elementinstarice
Set obi = ob
Dim ob2 As CFCSim_Modeling Elementinstance
Dim ob3 As CFCSim_ModelingElementinstance
Dim ob4 As CFCSim_Maodeling Elementinstance
Dim ob5 As CFCSim_Modeling Elementinstance

Set 0b2 = obl.AddElement("InPort",62.0.82.0)
ob2.CoordinatesX(0)=62
ob2.CoordinatesY(0)=82
ob2.ConnectionPoints("IN").x=52
ob2.ConnectionPoints("IN").Y=107
0b2.ConnectionPoints("Qut”).x=122
ob2.ConnectionPoints("Qut"”).Y=107

Set 0b3 = obl.AddElement("OutPort”,501.0,82.0)

286

0b3.CoordinatesX(0)=501
ob3.CoordinaresY(0)=82
ob3.ConnectionPoints("IN").x=494
ob3.ConnectionPoints("IN").Y=107
ob3.ConnectionPoints("Out"”).x=558
ob3.ConnecrionPoints("Out”).Y=107

Set ob4 = obl. AddElement("Task",197.0,85.0)

ob4("Duration”).Calculation=CFC_Formula

ob4("Duration"”).Formula.SetExpression”" & Chr$(13) & Chr3(10) & "* & Chr$(13) & Chr$(10) & ""
& Chr3(13) & Chr3(10) & " FXXXX = (0b.CurrentEntity(""Capacity™")/
0b.CurrentEntity(""Productivity”").Value) * 60" & Chr$(13) & Chr3(10) & "" & ChrS(13) & Chr$(10) &
" & Chr8(13) & Chr3(10) & "

ob4.CoordinaresX(0)=197

ob4.CoordinatesY(0)=85

ob4.ConnectionPoints("In").x=187

ob4.ConnectionPoints("In").Y=110

ob4.ConnectionPoints("Out”).x=312

ob4.ConnectionPoints("Out”).Y=110

Setr ob5 = obl.AddElemeni(”"Execute” 387.0,83.0)

0b5("Expression”).Calculation=CFC_Formula

ob5("Expression”). Formula.SetExpression™" & Chr$(13) & Chr8(10) & "" & Chr$(13) & Chr$(10) & "
& Chr8i13) & Chr$(10) &
ob.Parent(""AmountSpread”")=ob. Parent(""AmountSpread"" }+ob.CurrentEntity(""Pavload"")" &
Chr$(13) & Chr$(10) & "" & Chr8(13) & ChrS(10) & "" & Chr3(13) & Chr$(10) & "

ob5.CoordinatesX(0)=387

ob5.CoordinatesY(0)=83

ob5.ConnectionPoints("In").x=377

ob5.ConnectionPoints("In").Y=108

ob3.ConnectionPoints("Out").x=447

ob5.ConnectionPoints("Out”). Y=108

o0b2.DeleteChildren
ob3.DeleteChildren
ob4.DeleteChildren
ob5.DeleteChildren

0b2.AddRelation(ob2.ConnectionPoints("Out”),0b4.ConnectionPoints("In"})

ob4.AddRelation(ob4.ConnectionPoints("Out"),0b5.ConnectionPoints("In"))

obl.AddRelation(ob5.ConnectionPoints("Out”),0b3.ConnectionPoints("IN"))
End Function

Public Sub CEM_EMS_Spreading_OnDraw(ob As CFCSim_Modeling Elementinstance)

CDC.ChangeFont "Courier New",13, True, False, False, False

If ob.Selected Then
CDC.ChangeLineStyle CFC_SOLID,1,RGB(255,0,0)
End If

CDC.Rectangle ob.CoordinatesX(0),0b.CoordinatesY(0),0b.CoordinatesX(I),0b.CoordinatesY(1)

CDC.TextOur ob.CoordinatesX(0)+5,0b.CoordinatesY(0)+ 15, "spreading”
ob.DrawConnectionPoints
End Sub

Public Function CEM_EMS_Spreading_OnRelationValid(srcCP As CFCSim_ConnectionPoint, dstCP As
CFCSim_ConnectionPoint) As Boolean
CEM_EMS_Spreading_OnRelationValid=True

If srcCP.RelationsTo.Count>0Q Then
MessagePrompt "Only one relation is allowed from this connection point *
CEM_EMS _Spreading_OnRelationValid=False
Exit Function

End If

End Function

Public Sub CEM_EMS_Spreading_OnSimulationinitializeRun(ob As CFCSim_ModelingElementInstance,
RunNum As Integer)

ob("AmountSpread”)=0
End Sub

CEM_EMS_Excavator

Public Function CEM_EMS_Excavator_OnCreate(ob As CFCSim_Modeling Elementinstance, x As Single,
v As Single) As Boolean
CEM_EMS_Excavator_OnCreate=True

If ob.Parent.ElementTvpe <> "CEM_EMS_Source” Then
MessagePrompt "Excavator element can only be defined as a child of a source element”

CEM_EMS_Excavaror_OnCreate=False
Exit Function
End If

ob.SetNumCoordinates 2
0b.CoordinatesX(0)=x
ob.CoordinatesY(0)=y
ob.CoordinatesX(l)=x+80
ob.CoordinatesY([)=y+50

ob.AddAntribute "Quantity”, "Number of Excavators”, CFC_Numeric, CFC_Single,
CFC_ReadWrite, 1,20

ob.AddArtribute "Productivity”, "Ideal Productivity in Cubic Metres per Hour", CFC_Distribution,
CFC_Single, CFC_ReadWrite

ob("Quantity”)=1

With ob("Productivity”). Distribution
.DistType=CFC_Constant
.ParameterValue(0j=1000

End With

ob.AddConnectionPoint "ci”, 0b.CoordinatesX(0)-10.0b.CoordinatesY(0)+25,Clnput.5

ob.AddConnectionPoint "c2", ob.CoordinatesX(0)+90,0b.CoordinatesY(0)+25,COutput, 5
ob.AddResource "Excavator”,]
End Function

Public Sub CEM_EMS_Excavator_OnDraw(ob As CFCSim_ModelingElementinstance)
CDC.RenderPicture "EMS_Excavator” ob.CoordinatesX(0),0b.CoordinatesY(0),0b.CoordinatesX(I)-
ob.CoordinatesX(0),0b. CoordinatesY(|)-ob.CoordinatesY(0)

If ob.Selected Then
CDC.Rectangle ob.CoordinatesX(0)-2,0b.CoordinatesY(0)-
2,0b.CoordinatesX(1)+2,0b.CoordinatesY(1)+2
End If

ob.DrawConnectionPoints
End Sub

Public Funcrion CEM_EMS_Excavator_OnRelationValid(srcCP As CFCSim_ConnectionPoint, dstCP As
CFCSim_ConnectionPoint) As Boolean
CEM_EMS_Excavator_OnRelationValid=True

If srcCP.RelationsTo.Count>0 Then
MessagePrompt "Only one relation is allowed from this connection point "
CEM_EMS_Excavator_OnRelationValid=False
End If
End Function

Public Sub CEM_EMS_Excavator_OnSimulationinitialize(ob As CFCSim_ModelingElementinstance)
ob.res("Excavator”).NumResources=ob("Quantity”)
ob.AddEvent "Request”, True
ob.AddEvent "Release”

End Sub

Public Sub CEM_EMS_Excavator_OnSimulationProcessEvent(ob As CFCSim_ModelingElementinstance,
MyEvent As String, Entity As CFCSim_Entity)
Dim duration As Double

Select Case MyEvent
Case "Request”
If ob.Parent("AmountLoaded")<ob.Parent("AmountToHaul”) Then
If ob.RequestResource("Excavator”,entity, 1, entity("LPriority”)) Then
"calculate loading duration
duration= (entity("Capacity”) / ob("Productivity”) } “60

ob.ScheduleEvent entity, "Release”,duration

Tracer.Trace "Truck entity obtained a loader: * & entity.ID , "Simulation”
Else
Tracer.Trace "Truck entity waiting for a loader: " & entity.ID , "Simula‘ion”
End If
End If
Case "Release”
ob.ReleaseResource "Excavator”, entity
entity("PavLoad")=entity("Capacity”)

289

ob.Parent("AmountLoaded")=ob. Parent("AmountLoaded")+entity("Capacity")
Tracer.Trace "Truck entiry completed loading: " & entity.ID , "Simulation”

ob.TransferQut entity
End Select
End Sub

Public Sub CEM_EMS_Excavator_OnSimulationTransferin(ob As CFCSim_Modeling Elementinstance,
Entity As CFCSim_Entity, SrcCp As CFCSim_ConnectionPoint, DstCp As CFCSim_ConnectionPoint)

If entity("StartTime")>-1 Then
entity("CycleStat”).Collect SimTime-entity(“StartTime")
End If

entity("StartTime")=SimTime

ob.OnSimulationTransferin entitv,SrcCp,Dstcp, True
End Sub

CEM_EMS_Dump

Public Function CEM_EMS_Dump_OnCreatefob As CFCSim_Modeling Elementinstance, x As Single, v As
Single) As Boolean
CEM_EMS_Dump_OnCreate=True

If ob.Parent.ElementType <> "CEM_EMS_Placement” Then
MessagePrompt "Dump element can only be defined as a child of a placement element”

CEM_EMS_Dump_OnCreate=False
Exit Function
End If

ob.SetNumCoordinates 2
o0b.CoordinatesX(0)=x
ob.CoordinatesY(0)=y
ob.CoordinatesX([)=x+80
ob.CoordinatesY(1l)=v+350

ob.AddArtribute "Quantity”. "Number of Available Locations”, CFC_Numeric, CFC_Single,
CFC_ReadWrite, 1,20
ob("Quantity”)=1

ob.AddConnectionPoint "c1*, ob.CoordinatesX(0)-10,0b.CoordinatesY(0)+25,Clnput,5
ob.AddConnectionPoint "c2", 0ob.CoordinatesX(0)+90.a0b.CoordinatesY(0)+25,COutput,5

ob.AddResource "Dump”, |
End Function
Public Sub CEM_EMS_Dump_OnDraw(ob As CFCSim_Modeling Elementinstance)

CDC.RenderPicture "EMS_Dump"”,0b.CoordinatesX(0),0b.CoordinatesY(0).0b.CoordinatesX(I)-
ob.CoordinatesX(0),0b.CoordinatesY(1)-ob.CoordinatesY(0)

If ob.Selected Then
CDC.Rectangle ob.CoordinatesX(0)-2,0b.CoordinatesY(0)-
2,0b.CoordinaresX(1)+2,0b.CoordinatesY([)+2
End If

ob.DrawConnectionPoints

End Sub

Public Function CEM_EMS_Dump_OnRelationValid(srcCP As CFCSim_ConnectionPoint, dstCP As
CFCSim_ConnectionPoint) As Boolean
CEM_EMS_Dump_OnRelationValid=True

If srcCP.RelationsTo.Count>0 Then
MessagePrompt "Only one relation is allowed from this connection point "
CEM_EMS_Dump_OnRelationValid=False
End If
End Function

Public Sub CEM_EMS_Dump_OnSinudationlnitialize(ob As CFCSim_Modeling Elementinstance)
ob.res("Dump"”). NumResources=o0b("Quantity”)
ob.AddEvent "Request”, True
ob.AddEvent "Release”

End Sub

Public Sub CEM_EMS_Dump_OnSimulationProcessEvent(ob As CFCSim_Modeling Elementlinstance,
MyEvent As String, Entity As CFCSim_Entity)
Dim duration As Double

Select Case MvEvent
Case "Request”
If ob.RequestResource("Dump",entitv) Then

ob.ScheduleEvent entity, "Release”,entity("Dumping Time"). Value
Tracer.Trace "Truck entity obtained a dumping location: " & entity.ID , "Simulation'

Else
Tracer.Trace "Truck entity waiting for a dumping location: " & entity.ID . "Simulation”
End If
Case "Release”
ob.RcleaseResource "Dump”, entity
ob.Parent("AmountDumped”)=o0b. Pareni("AmountDumped" }+entitv("Payload")
entity("PayLoad”)=0

Tracer.Trace "Truck entity completed dumping: * & entity.ID , "Simulation”
ob.TransferQut entity

End Select
End Sub

291

