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Abstract

Poor control of hot strip mill loopers degrades strip width and gauge, and may even
lead to mill breakdowns due to instability. In this study, dynamics of the looper-
strip system and the control challenges it poses are discussed, and covariance control
theory is applied to variance control design for loopers. Since looper disturbances
have a deterministic nature, and their accurate modelling is a challenge that is not
easily addressed, the problem represents a case in which a variance controller has to
be designed without an explicit disturbance model. Control performance is assessed
on a full-stand, nonlinear high fidelity finishing mill simulator, and comparisons to
a conventional control system are provided.
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1 Introduction

A finishing mill produces thin sheet from hot steel bars by successively reduc-
ing the gauge using 5 to 7 sets of rolls, each called a mill stand. The finishing
mill is part of a hot strip mill, of which a typical layout is given in Figure 1.
Those units of the hot mill located before the finishing mill are responsible for
reheating the cast slab, effecting the major gauge reduction (roughing), and
finally transferring the workpiece (now called a transfer bar) to the finishing
mill. After the finishing, the strip is cooled and coiled.

It is the finishing mill where a smaller but more precise gauge reduction is
carried out. The strip emerging from a finishing mill can be as thin as 1.5
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Fig. 1. Layout of a semi-continuous hot strip mill with 1 reversing rougher

mm or even less, and its length may well exceed a kilometer. While the strip
properties such as centerline gauge, width, profile and temperature must be
precisely controlled to meet product requirements, these properties are only
measured either at the entry or exit of the finishing mill in many plants, mainly
because of the maintenance problems caused by the extreme environment of
the finishing mill.
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Fig. 2. Layout of a 7-stand finishing mill

Dimensions of hot and thin strip, especially the width, are sensitive to tension
variations. The tension variations are inevitable in tandem mills, because the
roll rotation speeds cannot be regulated with sufficient precision. In order to
add a degree of freedom that prevents abrupt tension changes, and to serve as
a sensitive indicator of tension variations, loopers are used. These are depicted
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in Figure 2 in their installed positions. The looper is a roll on a pivot arm which
lifts the strip, and is generally driven by an electric motor, although hydraulic
or pneumatic drives also exist (Clark et al., 1997). Tension variations cause the
looper to deviate from the nominal operating angle, from which the direction
and magnitude of the variation can be inferred. In order to maintain a stable
operation, looper controllers should be designed so that the loopers remain
within a certain range around their operating point.

An earlier treatise of the loopers, the related hot mill equipment, and conven-
tional looper control was given by Price (Price, 1973). Due to an increasing
demand in tighter strip dimensional tolerances, the last two decades have
witnessed many modern control designs, both commissioned and uncommis-
sioned, in the area of looper control. Examples are Imanari et al.’s H-infinity
(Imanari et al., 1997) and ILQ (inverse linear quadratic) (Imanari et al., 1998)
controllers, Seki et al.’s optimal controller (Seki et al., 1991), Okada et al.’s
optimal controller (Okada et al., 1998), and Hearns and Grimble’s robust con-
trollers (Hearns and Grimble, 2000), the latter two designs combining looper
control and gauge control. A critical and more complete account of the recent
developments in looper control can be found in Choi et al.’s survey paper(Choi
et al., 2007). An excellent review on modern hot rolling process control in gen-
eral has been written by Takahashi (Takahashi, 2001). Some most recent work
can be found in (Furlan et al., 2007) and (Marcu et al., 2007).

In this paper, application of covariance control theory to the looper variance
control problem is studied. Covariance control is an optimal control method
that aims to keep the covariances of the output variables within specified
design constraints while minimizing certain objective functions such as the
input energy. An algebraic approach to control design and a comparison of
covariance control to other control methods can be found in (Grigoriadis,
1998). Once the design requirements for output covariances are specified, a
covariance controller can be easily designed for regulation problems provided
that an accurate disturbance model is available; however, it is difficult to
obtain an accurate disturbance model for the looper control problem due to
a lack of measurements. This paper presents a case in which the covariance
control theory is applied to a regulation problem with inadequate knowledge
of the disturbance.

2 The control problem

Schematic descriptions of the conventional regulator structure and the stand-
looper system can be found in Figures 3 and 4, respectively.

The looper control task can be summarized as minimizing the fluctuations

3



Fig. 3. The conventional regulator structure

in looper angle (θ) and strip tension (σ) through manipulation of roll speed
reference (ωr) and looper motor torque reference(Mr). To achieve this task,
the conventional control system outlined in Figure 3 employs two loops: the
PI-based angle control loop, which manipulates the roll speed based on angle
feedback; and the tension control loop, which sets the looper torque required to
produce the reference tension. The tension controller is essentially a nonlinear,
static model that calculates the required amount of torque at any given looper
angle. In some installations, loop length is the controlled variable instead of the
looper angle, and it is inferred from looper angle via a nonlinear model. Note
the speed feedforward loop that adds the scaled downstream speed correction
to that of upstream in order to decouple the looper from the downstream
looper’s controller.

2.1 Plant model

A linear dynamic model for the plant with actuators can be obtained by simpli-
fying and linearizing the related equations of the detailed finishing mill model
given in (Yildiz, 2005) or directly from the literature (Hearns and Grimble,
2000). An outline of the model in (Yildiz, 2005) is as follows. When applied
to the looper-strip system, Newton’s law of motion yields:

Jθ̈ = M −ML − cvθ̇ (1)
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where J is the total inertia of the looper and strip, M the motor torque on
the looper, ML the load on the looper, and cv a viscous friction coefficient.
The inertia (J) changes slightly with the looper angle. The load (ML) is a
combination of the loads caused by strip tension, strip weight, the looper’s
own weight and the force required to bend the strip. The major contribution
is most often due to strip tension load, which can be expressed as:

Mσ = σwh̄[(− cos αL + cos αR)(l sin θ + rl) + (sin αL + sin αR)(l cos θ)](2)

Fig. 4. A schematic drawing of the stand-looper system

In Equation (2), w is the strip width, h̄ is the nominal strip gauge, and the rest
are as shown in Figure 4. Note that the right and left strip angles (αR, αL) de-
pend on the looper angle only. The rate of tension change can be derived from
Hooke’s law and a consideration of the rate of inter-stand strip consumption:

σ̇ =
E

L

(
dL

dθ
θ̇ − v + Vi+1

)
(3)

where E is the strip modulus of elasticity; L is the strip length; v is the
de-threading speed of Stand i; and Vi+1 is the threading speed of Stand i + 1.

The strip speed imbalance term in Equation (3) can be expanded as:

Vi+1 − v = w −∆ωR(1 + f̄)− ω̄R
∂f

∂σ
∆σ (4)
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where ∆’s represent small deviations from the nominal values (indicated by
bars); and f is the forward slip factor, which is a function of entry and exit
gauge, back and front tension, and friction and lubrication conditions. Equa-
tion (4) makes explicit the effects of the roll speed (ω) and strip tension (σ)
on the speed imbalance, while gathering the factors that are not accounted
for by the control model under a general speed disturbance term w. For the
purpose of a control model, both the relation between the roll speed reference
(ωr) and the actual roll speed (ω), and the relation between the looper motor
torque reference (Mr) and the delivered looper torque (M) are simplified as
first order lags with time constants τmd and τcr, respectively.

If the inertia is considered constant, and the full equations of the model out-
lined above are linearized, the following state-space form is obtained:

ẋ = Ax + Buu + Bww (5)

where

A =




1

0 −EωR
L

∂f
∂σ

E
L

dL
dθ
−ER(1+f)

L

− 1
J

∂ML

∂θ
− 1

J
∂ML

∂σ
− cv

J
1
J

− 1
Tmd

− 1
Tcr




, Bu =




1
Tmd

1
Tcr




,

Bw = [ 0 0 E/L 0 0 ]T , x = [ θ σ ωL ω M ]T , u = [ ωr Mr ]T and w is the

disturbance. The system in Equation (5) is fully observable from looper angle
measurement, which is available in hot mills.

2.2 Disturbance characteristics

As Equation (4) indicates, the speed disturbance (w) is a part of the speed im-
balance, which is the speed difference between two ends of the strip within the
inter-stand region. Strip speed can be measured using laser-doppler velocime-
ters (Isei et al., 2004), but in many hot mills such sensors are not available,
and a theoretical approach is necessary to gain insight into the nature of the
disturbance.

The de-threading speed is related to the roll speed via:

vi = ωiRi(1 + fi) (6)
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while the threading speed has the relation:

Vi+1 =
vi+1hi+1

Hi+1

= ωi+1Ri+1(1 + fi+1)
hi+1

Hi+1

(7)

The slip factor (f) in Equations (6) and (7) accounts for the speed difference
between the roll surface and the strip. As this slip is mainly a function of entry
and exit gauges (H, h), it can be concluded from Equations (6) and (7) that
gauge variations are a major cause of the speed imbalance. The reasons for
the gauge variation, therefore, become of interest.

In a finishing mill, the gauge fluctuation is primarily because of non-uniform
transfer bar temperature, which affects the steel hardness. Non-uniform trans-
fer bar gauge also has an affect, mostly at the earlier stands. Temperature and
gauge variations are usually of periodic nature and occur at low frequencies.
Spectral analysis of a typical entry temperature profile is provided in Figure 5
as an example. Misaligned or imperfectly round mill rolls also cause periodic
gauge variations, smaller in size but at much higher frequencies (0.5 Hz - 5
Hz and harmonics). Another low-frequency disturbance on the looper-strip
system is introduced by flatness defects such as edge waves or centre buckles,
but such effects cannot be properly described using one-dimensional control
models such as the one in Equation (5).

0 0.1 0.2 0.3 0.4 0.5
0

x 10
4

(Hz)

FTA of entry temperature to F1

Fig. 5. Fourier transform analysis of entry temperature to Stand 1

Finishing mills are equipped with an automatic gauge control (AGC) system
on each stand, of which a grossly-simplified scheme is provided in Figure 3.
Although usually quite complex, AGCs in essence use the roll force F ∗ and
roll position C∗ measurements to create a roll position change signal Cr that
compensates for the aforementioned disturbances and regulates the exit gauge.
While they have a regulatory effect on the de-threading speed, AGCs often up-
set the threading speed, thus producing an unfavourable overall impact on the
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loopers. Especially the hydraulic AGCs, which have replaced the slow-response
electromechanical screws in many mills, run a serious risk of destabilizing the
loopers.

2.3 Looper-Strip frequency response

An inspection of the looper-strip system’s disturbance sensitivity gives im-
portant hints as to the achievable control performance. Sensitivities of both
looper angle and strip tension to speed disturbance are shown in Figure 6 for
strip dimensions that are typical for Loopers 1 and 6 of a finishing mill.
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Fig. 6. Sensitivities of Loopers 1 and 6 to speed disturbance

Figure 6 reveals that the looper-strip system has a resonance point in the high
frequency region around which strip tension becomes very sensitive to the
disturbance. The resonance frequency mainly depends on strip cross sectional
area, which can be shown via the approximate equation (Yildiz, 2005):

ωn =

√
whE

J
ϕ0 (8)

where ϕ0 is only a function of stand-looper structure. Thus, due to the contin-
ual gauge reduction, the highly sensitive region must shift to lower frequency
ranges as the looper number increases, as illustrated in Figure 6, while the roll
speed ranges must move to higher frequencies. The two ranges often overlap
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in the case of later loopers, leading to substantial tension variations due to
roll eccentricity.

Responses of the main drives are typically not quick enough to exercise effec-
tive control around and above the resonance frequencies, where the closed-loop
sensitivity is often identical to the open-loop, or could even be higher if the
looper controller is not properly tuned.

2.4 Conventional looper control design

As noted in Section 2, the conventional system uses two independent loops
to control the angle and the tension. The tension controller can be easily
constructed from a static tension model of the form in Equation (2). Thus,
at any given looper angle and tension reference, the torque reference signal
will be calculated using the nonlinear model: Mr = M(θ, σr). In practice, a
low-pass filter is also included in the loop to prevent the noise in the angle
measurement from directly going into the torque reference.

For the PI-based angle controller design it should be sufficient to consider the
main drive dynamics only, since the looper dynamics are faster and would be
outside the effective band of the PI controller. Hence, instead of Equation (5),
a simpler equation neglecting the looper dynamics can be used for the design
work:

∆θ(s)

∆ωr(s)
=

k

s(Tmds + 1)
(9)

where the constant k is equal to dθ/dL R0(1+ f̄); the lag represents the main
drive dynamics, and the integrator converts speed into length.

Wang and Cluett’s PID design procedure for integrating systems (Wang and
Cluett, 1997) is a suitable method for the system in Equation (9). This tuning
method is based on selection of the parameters β and ζ for shaping the desired
controller response, which is expressed as:

Gru(s) =
s

K

(2ζτ + γ1)s + 1

τ 2s2 + 2ζτs + 1
(10)

The natural period τ of the desired controller signal is selected as τ = βγ1

where γ1 is the second coefficient of the Taylor series expansion of the inte-
grating process GI around s = 0:

GI(s) =
K

s
(1 + γ1s + · · ·) (11)
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Thus, β can be used to adjust the speed of the control signal. For lag dominant
processes, which are defined by γ1 < 0, it is recommended the damping factor ζ
be selected as either 1/

√
2 or 1. Then, the PID controller is found by dividing

the desired open-loop transfer function Gol(s) by process transfer function
GI(s) and fitting the result to a PID controller form in the frequency domain.
This procedure can be summarized as follows:

Gol(s) =
Gru(s)GI(s)

1−Gru(s)GI(s)
(12)

c2(jω)2 + c1(jω) + c0≈ Gol(jω)× jω

GI(jω)
(13)

The two frequencies ω1 and ω2 necessary to calculate the constants c0, c1, c2 in
Equation (13) are selected as 2π/Ts and 4π/Ts, Ts being the desired closed-
loop process output settling time. The controller gain and the integral time
constants are then simply Kc = c1 and τI = c1/c0.

In this particular design problem, values of the plant time constant and natural
period of the controller are equal for β = 1. Since it is desirable for stability
considerations that a PI controller should have a slower response than the
actuator, β = 1 and higher values are ideal starting points for the designer.
Experience has shown that theoretically stable controllers can be designed
with β values as low as 0.8; however, performance tests on the full-stand, non-
linear finishing mill simulator indicate that such controllers are too aggressive
for stable operation. β = 2 or β = 3 are required in many cases to maintain
a smooth operation. Simulated performances of conventional control systems
tuned as described above can be found in Section 4.

3 Covariance control

The covariance control design task may be described as designing a dynamic
output feedback controller:

ẋc = Acxc + Bcz (14)

u = Ccxc (15)

for the plant:

ẋ = Ax + Buu + Bww (16)

y = Cyx (17)

z = Czx + v (18)
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so that the covariance/variance constraints:

lim
t→∞E(yyT)≤Y (19)

lim
t→∞E(uTRu)≤min γ (20)

are satisfied. In the equations above, y is the vector of controlled outputs; z
is the vector of measurements; w and v are white noise vectors with intensity
matrices W and V , representing the disturbance and measurement noise, re-
spectively. Note that matrix Y in Equation (19) is simply an output covariance
constraint and the scalar bound γ is the minimal control energy satisfying the
output covariance constraint. The controlled variables must of course either
be measured or observable for the covariance controller to be feasible.

It is possible to solve the covariance control problem using linear matrix in-
equalities (LMIs). Feasibility of the controller in Equations (14) and (15) that
stabilizes the plant and satisfies all design requirements is equivalent to the
existence of some matrices satisfying a set of LMIs (Huang et al., 2004). This
design method proposed by (Huang et al., 2004) ensures the global optimality
of the controller.

3.1 Looper variance control

The looper variance control problem can easily be cast into the frame of the
covariance control problem explained in Section 3. The first step is to augment
the plant in Equation (5) with two integrating states so that:

ẋ =




A 0

I 0


 x +




Bu

0


 u +




Bw

0


 w (21)

where x = [ x x6 x7 ]T , u = u and w = w. This augmentation is necessary to be

able to ensure high control gains in the low frequency region where the major-
ity of the disturbance lies. The same effect could be obtained through proper
modelling of the disturbance, which could in fact give a better disturbance
rejection performance; however, in this particular case knowledge of the dis-
turbance is inadequate. Furthermore, the disturbance characteristics change
with the bar to be rolled, the rolling speed, and other mill conditions; so, many
of the additional benefits that could be expected from careful modelling of a
particular disturbance will not be realized when the disturbance changes.
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The second step is to expand the output vector to include the integrated
states, which then becomes:

y = Cyx = [ θ σ
∫

θdt
∫

σdt ]T (22)

Unlike the other states, x6 and x7 are not observable from the looper angle
measurement because they have no influence on the looper angle. This re-
quires the tension to be measured, in which case the measurement vector may
include all the controlled variables. After the steps described above, a variance
controller can be designed by specifying the diagonal elements of Y , W and
V , and the control weight R.

Tension is not measured in many hot mills. In such cases it may be inferred
from looper angle and looper torque measurements so that the variance con-
troller can be implemented; however, with an inferential measurement, the
output variance bounds cannot be guaranteed. Further, an inferential sensor
will increase the complexity of the design. A simple alternative is to modify
the augmented plant in Equation (21) so that the torque reference (Mr) is
integrated instead of tension, i.e., ẋ7 = Mr, and the control vector becomes:

y = [ θ σ
∫

θdt
∫

Mrdt ]T (23)

The new augmented system is observable using looper angle and torque refer-
ence only. Note that the former is an available measurement and the latter is a
controller output, and a tension measurement is no longer necessary. Indirect
prevention of tension offset as explained above is justified by the fact that,
when the dynamic effects are omitted, tension is only a function of looper
angle and torque, i.e., σ = f(θ,M). Therefore, prevention of angle and torque
offsets should prevent a tension offset.

3.2 Control design

The control design procedure involves specification of the parameters W,Y, V
and R, calculation of the optimal controller by solving the appropriate LMIs,
and finally refinement of the parameters to provide the desired closed-loop
performance. A MATLAB code of (Zhang and Huang, 2003; Huang et al.,
2004) was used for calculation of the controllers.

The main difficulty associated with not using a disturbance model appears
when specification of W is attempted. In this particular problem there is
only one disturbance input, and hence, W becomes a scalar indicating the
variance of the white noise disturbance; however, it cannot be directly equated
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to the variance of the speed disturbance because, as discussed before, the
disturbance does not exhibit white noise characteristics and a disturbance
model is not included in the plant model. Moreover, in this particular case,
the variance of the speed disturbance is not accurately known. Consequently,
the disturbance variance has to be treated as a tuning parameter, rather than
the actual variance. Since there is a direct relationship between the disturbance
and output variances, this means that it is no longer possible to directly use
the design specifications for the allowable output variances as the variance
constraint (Y ). Some tuning will be necessary and it is important during
the tuning to check step and frequency responses of the controller in order
to establish a better connection to the actual performance. The advantage
of control tuning based on covariance control theory is its ability to adjust
performance of each output directly by tuning the variance upper bound on
the corresponding output.

The broadband measurement noise intensity (V ) can still be used to ensure
high frequency roll-off of the controller response, even if the real measurement
noise magnitude is unknown. As long as it is below a critical point, which
can be iteratively determined, it effectively curtails high frequency control
gains, while leaving the low frequency response essentially untouched. In this
particular problem, R has little effect on controller outputs, due to reasons
that will be discussed later.

Table 1
Variance control design parameters for Loopers 3 and 5

For Design Parameters

Looper W var(θ) var(σ) var(
∫

θdt) var(
∫

σdt) var(
∫

Mrdt)

No (m2s−2) (rad2) (Pa2) (rad2s2) (Pa2s2) (N2m2s2)

3 1× 10−9 1× 10−8 4× 109 3.3× 10−10 N/A 4× 10−6

3∗ 1× 10−9 1× 10−8 4× 109 3.3× 10−10 4× 106 N/A

5 1× 10−9 9× 10−9 3× 109 5× 10−10 N/A 4× 10−6

5∗ 1× 10−9 6× 10−9 1× 109 3.3× 10−10 5× 105 N/A

The design exercise has shown that, as expected, decreasing the output and
integrated output variance bounds is equivalent to decreasing the high and
low frequency closed-loop sensitivities, respectively. The parameters that were
used for different designs are provided in Table 1, where the controllers that
use tension feedback are distinguished from those with torque feedback with
an asterisk placed next to the looper number. The closed-loop responses of
these designs are plotted in Figures 7 and 8 together with the responses of a
conventionally controlled system. In these figures, step responses are plotted on
the left and the closed-loop frequency responses on the right. The conventional
system was tuned on the simulator to give the fastest possible response without
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Fig. 7. Disturbance rejection performance for Looper 3

causing instability. Its response characteristics are of interest as they constitute
a basis for performance comparison as well as a reference point for tuning of
the variance controller.

The torque and tension feedback controllers of Looper 3 were designed using
the identical design parameters in order to demonstrate the equivalence of
the two design approaches. It can be verified from Figure 7 that the resulting
performances are almost identical. The controllers were tuned such that the
closed-loop sensitivities in the low-frequency region were substantially lower
than that of the conventional controller. Remarkably, the sensitivities around
and beyond the resonance point are very much the same for both variance and
conventional control. This is in accordance with the previous observation that
due to the looper-strip resonance and the slow response of the main drives,
high frequency tension control through the loopers may not be feasible.

Although the resulting controller may not be practically useful due to its
extreme control energy use, designing variance controllers with much lower
high-frequency sensitivities is possible. This idea will be demonstrated for
Looper 5. In Table 1 it can be observed that the tension-feedback controller of
Looper 5 was designed for lower output variance constraints. The remarkable
difference that resulted between the closed-loop sensitivities and control energy
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Fig. 8. Disturbance rejection performance for Looper 5

use can be seen in Figure 8. It is noteworthy that this sensitivity decrease could
only be achieved with the tension feedback controller. The torque-feedback
controller cannot satisfy the reduced bounds.

It has also been found during these tuning exercises that if the tuning is
not properly carried out, the closed-loop tension sensitivity under a variance
controller may be substantially higher around the resonance frequency than
that of a conventional controller.

4 Simulation results

The controllers thus designed were tested on a nonlinear, high-fidelity finish-
ing mill simulator which includes 7 mill stands and a coiler. The underlying
nonlinear model and validation performance of this simulator were discussed
in our previous work (Yildiz, 2005). The simulation accounts for the variable
inter-stand transport delays, and incorporates detailed models of the AGC
system and the main drives. A transfer bar temperature profile taken from
real plant operation was used for the simulations as well as realistic amounts
of roll eccentricity.
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Fig. 9. Simulated conventional and variance control performance for Looper 3

Simulated performances of the conventional controller and the variance con-
troller without tension feedback on Looper 3 are shown in Figure 9. Plots of
the manipulated and controlled variables are provided as well as the main
drive motor torque, since the motor torque is a more direct indicator of the
control energy. The results provided in Figure 9 show a substantially better
performance in the case of variance control: the angle variations are much
smaller, reducing the risk of instability to a great extent, and the tension
ranges within a narrower bound. The high frequency variations are due to roll
eccentricity and are not as noticeable in the case of conventional control since
it has a slightly lower closed-loop sensitivity in the high frequency region, as
can be seen in Figure 7.

Similar comments can be made for a comparison of the variance and conven-
tional control performances on Looper 5. In Figure 10, operation once again
promises better stability, and the tension varies within a narrower band, while
the variation due to eccentricity is slightly larger than that of the conventional
control. Also note that the eccentricity effects are much more pronounced in
general compared to the case of Looper 3, due to the smaller resonance fre-
quency of Looper 5. Thus, the case poses a good opportunity to test the
tension feedback controller that was designed in Section 3.2 for better high-
frequency control. The results are provided in Figure 11 and indicate that the
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Fig. 10. Simulated conventional and variance control performance for Looper 5

eccentricity-induced tension variations can be suppressed to a level below that
of the conventional at the expense of greater drive torque use.

A final point is the variance controller’s virtually negligible use of the looper
torque input. The fact that this behaviour cannot be visibly altered by modify-
ing the control weight R suggests that the two inputs are not interchangeable.
Indeed it can be verified through a qualitative analysis of the looper-strip sys-
tem that most often the roll speed can be manipulated in a direction that has
a corrective effect on both angle and tension, while the looper torque change
often causes one of the variables to further deviate. Also interesting in Figure
11 is that the variance controller applies the torque in the opposite direction
in comparison to the conventional controller; hence, using it to regulate the
angle rather than the tension.

5 Conclusion

It has been found that covariance control theory can be successfully applied
to regulator design problems for which an adequate model of the disturbance
is not available. Absence of a disturbance model has prevented direct use
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Fig. 11. Performance improvement for Looper 5 in case of narrower variance bounds
and tension feedback

of the design specifications as the control design constraints, but through
well-coordinated use of the error and integral error variance constraints and
measurement noise levels, it has been possible to conveniently shape the closed-
loop sensitivity and design high-performance looper control. The resulting
controller is low-order, optimal in its control use, and integral in the sense
that observer and feedback gains are synthesized in a single design.

A noteworthy observation is that when an integrating state for a variable needs
to be added and controlled, a measurement of this variable must be available
to overcome the observability problem. This stems from the fact that even if
the variable itself is observable from a certain measurement, its integral will
not be observable. This problem could be avoided in some cases by careful
selection of the integrated variable to be controlled, as has been done for the
looper control problem in this study.

The findings suggest that variance control can achieve substantially better
performance compared to conventional control in terms of minimizing the
output variations and, consequently, providing a more stable looper operation.
Nevertheless, it should be tuned carefully to avoid large tension sensitivity
around the resonance point, which will cause the roll eccentricity effects on
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tension to be amplified, especially in case of later loopers.

The authors believe that the experience gained from this application is valu-
able in turning the covariance control theory into a powerful practical control
design method.
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