
Leveraging Crowd-sourced Information to Guide
Library Usage

by

Benyamin Noori

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Benyamin Noori, 2018

Abstract

Studies have shown that there is a mismatch between the information needs

of a developer and information provided by the documentation of software

libraries. Additionally, previous work suggests that developers’ information

needs are driven by the tasks they do. Based on these previous findings,

we argue library documentation should be task-oriented. We propose a tech-

nique to generate task-oriented library documentation based on information

extracted from the popular crowd-sourced Q & A website, Stack Overflow.

Our methodology makes use of natural language processing techniques as well

domain-specific heuristics to process and organize information available on

Stack Overflow. The resulting task-oriented documentation for a software li-

brary contains three main components: (1) a list of tasks that can be achieved

using the library, (2) a set of code snippets to demonstrate how to accomplish

a specific task, and (3) additional information about trade-offs and insights of

using specific Application Programming Interfaces.

To evaluate the quality of information we extract and the usefulness of our

approach, we conduct a survey of a diverse group of 69 Java developers. In

addition to showing that our proposed task-oriented library documentation is

useful to developers, the findings of our online survey also shed light on current

limitations and challenges of extracting information from crowd-sourced web-

sites. Finally, we present improvements to parts of our methodology, based on

our analysis of the results.

ii

Preface

Chapter 8 is the result of an international research collaboration with Dr.

Christoph Treude from the University of Adelaide.

The research project, of which this thesis is a part, received research ethics

approval from the University of Alberta Research Ethics Board, Project Name

“Task-based Code Recommender Systems”, No. REQ00001293, approved on

08/06/2017.

iii

Run, rabbit run.

Dig that hole, forget the sun.

When at last, the work is done,

Don’t sit down, it’s time to dig another one.

– Roger Waters, 1973.

iv

Acknowledgements

I would like to thank my supervisor, Dr. Sarah Nadi. Her continous guidance

and support along with constructive feedback and criticism made this work

possible.

This research was undertaken, in part, thanks to funding from the Canada

Research Chairs program.

v

Contents

1 Introduction 1

2 Literature Review 8
2.1 Assisting Software Developers in Using Software Libraries . . . 8
2.2 Augmenting library and application programming interface (API)

documentation . 10
2.3 Tools and methodologies using Stack Overflow data 11

3 Generating Task-oriented Library Documentation 12
3.1 Acquisition of Relevant Threads from Stack Overflow 12
3.2 Task Extraction . 14

3.2.1 Task Identification . 15
3.2.2 Task Extraction . 16
3.2.3 Evaluation . 17

3.3 Similarity Detection . 17
3.4 Code Extraction . 20
3.5 Insight Extraction . 21

3.5.1 Insights Classification 21
3.5.2 Grammatical features of the sentence 24

3.6 Results Aggregation . 25

4 Developer Survey 26
4.1 Library Selection . 26
4.2 Recruitment Strategies . 27
4.3 Survey Setup . 28

4.3.1 Overview of Survey Flow 28
4.3.2 Details of Survey Questions 33

5 Survey Results 35
5.1 Quality of Information . 39

5.1.1 Task Description . 40
5.1.2 Code Snippets . 40
5.1.3 Insight Sentences . 42

5.2 Usefulness of Information . 42
5.2.1 Relationship Between Backgrounds and Responses . . . 44

6 Implications 45
6.1 Task Description . 45
6.2 Code Snippets . 46
6.3 Insight Sentences . 48

vi

7 Threats to Validity 51
7.1 Internal Validity . 51
7.2 External Validity . 52
7.3 Construct Validity . 53

8 Improvements to Insight Sentence Extraction 54
8.1 Introduction . 54
8.2 Extracting Conditional Insight Sentences 56
8.3 Evaluation . 58

9 Conclusions & Future Work 60

References 62

Appendix A Sruvey Recruitment Emails 67
A.1 Recruitment Strategy 1 . 67
A.2 Recruitment Strategy 2 . 68

Appendix B Survey Results 70

vii

List of Tables

3.1 List of dependencies from Treude et al., 2015 [47] used for task
identification. 16

3.2 Examples of grammatical dependencies used for task identifica-
tion. 17

3.3 Frequency of grammatical dependencies in a set of 200 randomly
selected question titles. 18

3.4 Features used in the work of Treude and Robillard [47]. 23
3.5 Parameters used to build the SVM with SGD insight sentence

classifier. 24
3.6 Classifiers built with different sets of features and their F-1 score. 24
3.7 Insight sentences classifier results 25

4.1 Libraries used for our survey. 27

6.1 Mean and standard deviation of ratings of code snippets per
library. 47

6.2 Mean and standard deviation of ratings of insight sentences per
library. 48

B.1 Mappings between letters and participants’ occupations. . . . 71

viii

List of Figures

1.1 Stack Overflow thread number 2885173 3
1.2 A list of tasks for a given library. 4
1.3 A sample task documentation. 5

3.1 An overview of our methodology. 13
3.2 Overview of task extraction process. 15

4.1 Our survey’s privacy policy. 29
4.2 Background questions in our online survey. 29
4.3 Participants indicated the number of projects in which they

used their chosen library. 30
4.4 Participants reviewed task descriptions, code snippets and in-

sight sentences. 31
4.5 Final questions were intended to evaluate the users’ overall per-

ceived usefulness of the components of the documentation. . . 32

5.1 Occupation of participants. 36
5.2 Participants’ experience with Java development. 37
5.3 Number of projects with the selected library. 38
5.4 Number of responses received per library. 39
5.5 Task description reviews. 41
5.6 Code snippet reviews per library. 41
5.7 Insight sentences reviews per library. 43

8.1 An example of a system utilizing conditional insights extraction
to help developers navigate Stack Overflow. 56

ix

Chapter 1

Introduction

Library documentation contains the information needed by a developer to use

the given library and its corresponding Application Programming Interface

(API). However, the mismatch between information needs of a developer and

what is provided in documentation has led to observations of developers strug-

gling to find accurate and easily consumable information at the right time [21],

[35], [50].

While there has been several research efforts to improve software documen-

tation for developers [8], [14], [41], [46], [47], studies have shown that not only

is the quality of the documentation important, the aggregation of information

presented should match the way developers think about everyday software

development activities [34]. Specifically, previous work suggests that concrete

software development tasks often drive developers’ information needs [28], [36],

[47].

Given the findings of previous work, we argue that a library’s documen-

tation should be driven by tasks that developers want to accomplish. In our

work, we define a development task, task for short, to be a specific program-

ming action, such as “Create a file and write to it”, “Convert a string to a

JSONObject”, or “Connect to a database”.

For a given software library, we propose creating a task-oriented docu-

mentation that consists of three components: (1) a number of software de-

velopment tasks that can be accomplished using the library, (2) a set of code

snippets demonstrating various ways of accomplishing the task, and (3) in-

1

sight sentences that discuss nuances of different approaches. To create such

documentation, we leverage the rich information found on the crowd-sourced

question-answer website, Stack Overflow. Stack Overflow has become a popu-

lar online resource where developers find solutions to their programming ques-

tions. It currently hosts more than 100 million posts [39].

Software developers use Stack Overflow in order to find ways to accomplish

everyday development tasks. To show the type of information available on

Stack Overflow, we use a scenario where a developer intends to open a file and

write some information to it. Using the search capability on Stack Overflow,

they might come across the thread displayed in Figure 1.1.

As we can see, the first answer posted to this question suggests multiple

solutions that can accomplish the task in question. We can see that two

concrete code snippets are provided in the answer. The writer also adds more

detail to their answer by saying “Note that each of the code samples below

throw IOExcepions”.

Other solutions posted in this thread propose a variety of different solu-

tions, each of which are associated with certain advantages and disadvantages.

In fact, a simple search on Stack Overflow will return many threads about the

same task or similar ones.

Such information can help the developer make better decisions in terms

of design and implementation. However, the amount of information a devel-

oper needs to go through on Stack Overflow can be daunting. Task-oriented

documentation provides all the information necessary to complete a software

development tasks all in one place and it does so in a way that’s useful for

software developers. This type of documentation technique filters, aggregates

and reorganizes relevant information from Stack Overflow for a given library.

Specifically, our task-oriented library documentation shows a list of tasks

that can be accomplished with the library, as shown in Figure 1.2 for junit.

When the user clicks on one task, they would then see the task documentation

page in Figure 1.3, which consists of the three components mentioned earlier.

To create a task-oriented documentation page of a library, we build on and

extend existing techniques [46], [47]. We also make use of Natural Language

2

Figure 1.1: Stack Overflow thread number 2885173

3

Figure 1.2: A list of tasks for a given library.

4

Figure 1.3: A sample task documentation.

5

Processing (NLP) techniques as well as heuristics specific to the domain of our

study. To evaluate our proposed documentation, we survey 69 Java developers,

asking them to evaluate the quality and the usefulness of the information

extracted using our approach.

Our results show that software developers find the idea of task-oriented

documentation useful. The ratings of the usefulness and quality of the three

components of the survey varied, which allowed us to identify potential im-

provements for further pushing documentation extraction techniques. We pro-

vide an extensive discussion of the challenges we identified and suggestions for

addressing them.

Based on the results of our experiment, we also propose and implement

an improved insight sentence extraction methodology that specifically focuses

on conditional insight sentences. We define conditional insight sentences as

sentences in Stack Overflow text that recommend a strategy or solution based

on a certain condition.

To summarize, this thesis makes the following contributions:

1. We introduce a methodology to build task-oriented documentation of

software libraries from Stack Overflow data by adapting and combining

several existing techniques. Our toolchain is publicly available and can

be adapted to other documentation sources [49].

2. We demonstrate the usefulness of the proposed documentation technique

through a survey of 69 Java developers with diverse backgrounds.

3. Based on our results, we propose and implement an improved method-

ology to extract insight sentences. We also provide a discussion on how

to further improve task-oriented documentation.

The rest of the thesis is organized as follows. In Chapter 2, we review the

related literature. Chapter 3 describes our methodology to build task-oriented

library documentation. Chapters 4 and 5 describe the developer survey and the

results, respectively. Chapter 6 provides an in-depth discussion and analysis

of the results. Chapter 7 discusses the threats to the validity of the results

6

presented in the thesis, Chapter 8 describes our improved methodology to

extract insight sentences and Chapter 9 concludes this thesis.

7

Chapter 2

Literature Review

In this chapter, we review studies on library documentation and Stack Over-

flow data. We partition the existing literature into three parts: (1) Assisting

software developers in using software libraies, (2) Augmenting library and

Application Programming Interface (API) documentation, and (3) Tools and

methodologies using Stack Overflow data.

2.1 Assisting Software Developers in Using Soft-

ware Libraries

Uddin et al. [51] introduce OPINER, an online opinion summarization en-

gine that generates summaries of reviews based on sentiment analysis, natural

language processing as well domain-specific knowledge. de la Mora and Nadi

present a metric-based comparison of software libraries based on a variety of

information available about a library, such as the number of issues and fre-

quency of releases [26]. While these efforts focus on helping software developers

select libraries, our work intends to create documentation of a given library

and not provide information comparing two or more libraries.

Others have introduced methodologies and tools to present developers with

code snippets and examples from various sources in order to help developer

use APIs. Mica is a search engine, proposed by Stylos and Myers [40], that

identifies examples of API usages through filtering query results returned from

a standard search engine such as Google. After obtaining a set of search

results, it analyzes the contents of those results to find relevant programming

8

terms and classifies each result as either method or class. ROSF by Jiang et

al. is a similar work whose goal is to search the web for code snippets given

a query [19]. Unlike previous methodologies that only relied on information

retrieval techniques to find search results, ROSF combines both information

retrieval and supervised learning techniques.

Moreno et al. introduce MUSE (Method USage Examples), a technique for

mining and ranking code examples that demonstrate how to use a specific

method [27]. They accomplish this using static slicing with clone detection,

and heuristics to select and rank the best examples in terms of reusability,

understandability, and popularity.

Thung introduces a new approach to recommend APIs to developers at

different granularity levels based on the development task at hand [43]. The

development task at hand in this work is defined a textual description of a

new functionality or feature that needs to be implemented by a software devel-

oper. This recommendation takes place in multiple stages: (1) recommending

libraries to use [44], (2) recommending API methods to use [45], (3) recom-

mending the parameters to be used and (4) recommending a combination of

API methods to accomplish a given task description.

Additional work integrates the search or presentation of API usage exam-

ples into the developers’ Integrated Development Environment (IDE). eMoose

is an IDE plugin created by Dekel and Herbsleb [14] that highlights API us-

ages that have directives associated with them in the documentation. Camp-

bell and Treude [6] created an IDE plugin that can import code directly from

Stack Overflow given a natural language description of what the developer

wants to do. A similar work by Ponzanelli et al., Prompter, can retrieve the

related Stack Overflow discussions given the development task at hand [33].

Similarly, seahawk, introduced by Ponzanelli et al.[32], is a plugin that auto-

matically looks for related threads on Stack Overflow according to the context

of the IDE. Even though we also rely on Stack Overflow, our methodology and

goals are different since we do not use the developer’s current code context to

search for information. Instead, we focus on creating documentation that may

be useful to several developers.

9

The main difference between this thesis and the work described in this sec-

tion is that in addition to code snippets and code examples, our methodology

also provides insight sentences, important text snippets from Stack Overflow.

Also, we organize information around software development tasks to create

documentations of libraries.

2.2 Augmenting library and application pro-

gramming interface (API) documentation

There is also extended literature on the subject of improving the documen-

tation of software development technologies to make them more useful for

software developers. Treude et al. proposed an approach to extract software

development tasks from API documentation text [47]. We use their proposed

methodology for identifying tasks, but instead of focusing on existing official

library documentation, we extract tasks from crowd-sourced information in

Stack Overflow threads. Treude and Robillard introduced a supervised ap-

proach to identify insights from Stack Overflow and add them to an API’s

documentation[46]. We modify their methodology for identifying insights to

adapt it to the context of our task-oriented documentation page. Subrama-

nian et al. [42] introduced a methodology to link source code examples from

Stack Overflow to API documentation, and therefore enhance the documenta-

tion. Chen and Zhang [8] proposed integrating frequently asked questions on

crowd-sourcing websites into the documentation in order to give more conve-

nient access to the information sought by the developer. Stylos et al. devel-

oped Jadebite, a tool that utilizes API usage statistics to build a Javadoc-like

documentation by marking popular API elements [41]. While all the above

techniques can complement our work and we build on some of them, our goal

is to create a standalone documentation page that can easily be consumed

by software developers looking to perform a given task. In their paper “On

Demand Developer Documentation”, Robillard et al. describe a vision of an on-

demand documentation system that can automatically generate high-quality

documentation in response to a user query. Such a system would use knowl-

10

edge extraction techniques on structured and unstructured data available e.g.

source code, issue tracking system metadata, and posts from Q & A discus-

sions. The information gathered by our task-oriented documentation can be

used in such an on-demand developer documentation system.

The literature in this area mainly focuses on ways of improving information

provided in the documentation. Our work is different given that we intend

to build a task-oriented documentation organized around a list of software

development tasks which is different from regular documentation available for

software libraries while these examples have been designed to add information

to documentation to make it more useful for software developers.

2.3 Tools and methodologies using Stack Over-

flow data

Some of the work we have mentioned so far uses Stack Overflow as a main

source of data for various purposes [6], [8], [32], [33], [42], [46]. There has

also been work that uses Stack Overflow for slightly tangential purposes. For

example, Barua et al. applied machine learning techniques to discover a set of

topics discussed by developers on Stack Overflow [1]. Parnin et al. examined

crowd sourced documentation, i.e. discussions on Stack Overflow in terms of

coverage, dynamics, and quality [29].

However, our work is different from such related work, due to the fact that

we use this data to specifically create task-oriented library documentation to

the best of our knowledge there has been no effort to achieve this before.

11

Chapter 3

Generating Task-oriented
Library Documentation

In this section, we describe the details of our approach. We begin by selecting

a target library and gathering data relevant to the target library from Stack

Overflow and proceed to process that information and organize it in a format

that allows us to create our task-oriented documentation. A general view of

the desired documentation can be seen in Figure 1.3. A general overview of

our methodology can be seen in Figure 3.1.

What follows is a step-by-step description of the steps in our methodology.

To better demonstrate the processing done in each step, we use the example of

junit [20], a widely used testing framework for Java. We describe the results

of each step with junit as our target library.

3.1 Acquisition of Relevant Threads from Stack

Overflow

Questions on Stack Overflow are always associated with a number of tags. A

tag is a word or phrase that describes the topic of the question. Tags are a

means of connecting experts with questions they will be able to answer by

sorting questions into specific, well-defined categories [53]. Each library often

has a corresponding tag on Stack Overflow. For instance, Junit’s tag is junit.

We use tags to identify all the questions on Stack Overflow that are relevant

to a given library.

12

3.2 Task Extraction

There are a variety of questions on Stack Overflow. For example, users can

discuss why a certain runtime exception is thrown or what a certain concept

means and where it is used. They can also ask questions about how to ac-

complish everyday programming tasks. Given the focus of our work, we need

to distinguish the latter type of questions, referred to from now on as task

questions, from the rest of the threads collected from Stack Overflow.

We use natural language processing to differentiate task questions from

other types of questions. We follow a methodology presented by Treude et

al. [47] for identifying sentences that represent tasks. The original goal of

Treude et al.’s work is to identify sentences in technology documentation that

represent software development tasks. While we want to identify tasks in

Stack Overflow threads, their methodology applies to this problem as well.

This methodology heavily relies on the functionality provided by the Stanford

CoreNLP Toolkit [22]. Specifically, we use the part-of-speech tagger, a tool that

determines the grammatical roles of words in a sentence and the dependency

parser, a tool that determines the grammatical relationship between words in

a sentence.

By reading through a sample of Stack Overflow data, we observe that users

on Stack Overflow tend to describe the programming tasks in the titles of their

questions and add context and more details in the body of the question. This

added context might include providing in-depth descriptions of issues into

details specific to their case or adding code snippets they are working with.

Given our goal of identifying whether a given question is a task question or

not, we focus on the titles of Stack Overflow questions and identify those

that represent tasks through a two-phase processing: (1) Identification and

(2) Extraction. The first phase determines whether the question is related to

a task. The second phase then takes the title of each thread as input, and

creates a sentence describing the programming task. We now describe the

details of each phase. An overview of the task extraction process can be seen

in Figure 3.2.

14

Dependency Description
Direct object
(dobj)

The noun phrase which is the (accusative) object of the
verb.

Prepositional
modifier (prep)

Any prepositional phrase that serves to modify the
meaning of the verb, adjective, noun, or even another
preposition.

Agent (agent) The complement of a passive verb which is introduced
by the preposition “by” and does the action.

Passive nom-
inal subject
(nsubjpass)

A noun phrase which is the syntactic subject of a passive
clause.

Relative clause
modifier (rc-
mod)

A relative clause modifying the noun phrase.

Negation modi-
fier (neg)

The relation between a negation word and the word it
modifies.

Phrasal verb
particle (prt)

Identifies a phrasal verb, and holds between the verb
and its particle.

Noun compound
modifier (nn)

Any noun that serves to modify the head noun.

Adjectival modi-
fier (amod)

Any adjectival phrase that serves to modify the meaning
of the noun phrase.

Table 3.1: List of dependencies from Treude et al., 2015 [47] used for task
identification.

3.2.2 Task Extraction

Only task threads identified Phase 1 would proceed to Phase 2. The goal of

Phase 2 is to transform a question title in to a sentence describing a program-

ming task. To do so, we feed the sentence in to Core NLP’s part-of-speech

tagger. Next, we select all words that either depend on a verb or that a verb

depends on, as well as the verbs themselves in the same order in which they

appear in the sentence. We also remove stop words and stem the verb in the

sentence to help with identifying similar items in a later step. The resulting

sentence would be one describing a programming task. For example, the ques-

tion titles “How do you assert that a certain exception is thrown in JUnit 4

tests?”, “How to run test methods in specific order in JUnit4?”, and “Con-

ditionally ignoring tests in JUnit 4?” would be transformed to the following

task descriptions “Assert that certain exception is thrown in Junit 4 tests”,

16

Dependency Example
dobj This can be used to generate a receipt or some other

confirmation.
nsubjpass The thumbnail size is set in your templates.
rcmod It allows you to set one rate that is multiplied by the

number of items in your order.
prep There are a couple of different ways to integrate with

Google Checkout.

Table 3.2: Examples of grammatical dependencies used for task identification.

“Run test methods in specific order in JUnit 4”, and “Conditionally ignore

tests in JUnit 4”, respectively. We then associate this task description with

the original question for future processing.

3.2.3 Evaluation

In order to evaluate the accuracy of the task identification strategy over Stack

Overflow data, we prepared a set of 200 randomly selected question titles. We

labelled this set manually with two classes: positive or negative. In order to

label this set, we follow a definition by Treude et al.[47] which defines a software

development task as “a specific programming action”. After the labelling of

the set was complete, we applied the task identification process described here.

We obtained an accuracy of 74.5%, a precision of 85.9%, and a recall of 79.7%.

We also used this data set to investigate the number of times each depen-

dency listed in Table 3.1 is found in the task extraction process. We can see

from Table 3.3 that “dobj” is the most common types of dependency. Note

than one question title from Stack Overflow can be associated with multiple

dependency types.

3.3 Similarity Detection

One of the main challenges of reading through threads on Stack Overflow is

that several threads discussing the same software development task may exist,

and it is often infeasible for a user to study all of that content. We can

address this by aggregating data from similar threads. In order to identify

17

Dependency Number of Observations
dobj 131
rcmod 119
agent 117
amod 44

nsubjpass 13
neg 8
prep 5
nn 5
prt 1

Table 3.3: Frequency of grammatical dependencies in a set of 200 randomly
selected question titles.

similar threads, we find threads that have similar task descriptions associated

with them.

We first model each task sentence as a vector of its terms. Each element

of the vector represents one word and the value of each element shows the

frequency of that word in the sentence represented by the vector. The similar-

ity of two tasks is then calculated as the cosine of the angle between the two

vectors representing the task descriptions.

Essentially, the similarity is equal to cos(θ) where θ is the angle between

the two vectors, as indicated in Equation 3.1:

similarity = cos(θ) =
A · B

||A||||B||
(3.1)

where A and B are the vectors representing the task descriptions of the

two given questions. If the similarity score of two tasks is higher than a pre-

determined threshold, the two tasks are deemed similar.

To determine the proper threshold for similarity, we prepared a set of

55 manually labelled samples to test the thresholds with. We then tested 5

different threshold values on our test set. The values we used were 0.3, 0.5,

0.6, 0.7, 0.9. Based on the accuracy obtained using each value, we chose a

threshold of 0.6.

One issue with cosine similarity is that sentences with many similar terms

can have very different meanings. For instance the following sentences have

18

exactly the same set of terms but different meanings: (1) Convert string to int

in java and (2) Convert int to string in java. With cosine similarity, these two

sentences will have a similarity score of 1. We address this problem by adding

shingling. Shingling is a widely used technique in information retrieval [4]

where instead of modeling a sentence as a set of its terms, it is modelled as a

set of phrases of size x, where x is some determined window size that slides

across the sentence. What is seen through that window at each step is one

item in the set of terms that represent a sentence.

For example, with x = 2, sentence 1 from the above examples would be

represented with the following set of terms: {“Convert string”, “string to”, “to

int”, “int in”, “in java”}. In our approach, we apply shingling with a window

of size 2 and then compare the similarity of the sets of 2-word terms for

task descriptions extracted from Stack Overflow threads. We chose a window

size of 2 because the task descriptions are often short and a larger window

size would create lengthy and very unique phrases which would negatively

impact the similarity extraction. On a high level, shingling allows for a level

of consideration for word order by considering more meaningful phrases to

determine sentence similarity.

Finally, based on pairs of similar tasks, we can create clusters of tasks that

are similar to one another. There can be clusters that include only one task

(i.e. ones that do not have any similar tasks), and ones with multiple tasks. We

group the tasks in each cluster and create a number of multi-thread tasks. A

multi-thread tasks includes a number of tasks extracted from multiple threads,

all of whom are similar. These tasks, just like any other task in our work, have

a task description and a set of answers. The following is a description of how

we find the task description and answers of a multi-thread task.

We first find the task associated with a question that has the highest score

among all in the multi-thread task. This task will represent the multi-thread

task. The set of answers for a multi-thread task is obtained by grouping all

the answers from all the tasks in the corresponding cluster and sorting them

based on their corresponding question score on Stack Overflow.

In short, for every set of similar tasks, we aggregate all their answers. We

19

use the task description from the question with the highest score, as the task

description of this new aggregated task. Obviously, there can be threads with

no similar threads in the dataset. These threads will remain the same after

this step.

Note that while each multi-thread task is represented by only one develop-

ment task, it contains information, such as code snippets and answers, from

multiple Stack Overflow threads, which we use to construct our documentation

for that task.

3.4 Code Extraction

The next step includes processing the answers in our set of multi-thread tasks

to find solutions that demonstrate how a developer can accomplish those tasks.

We focus on solutions that are in the form of code snippets. There are two

types of code snippets in Stack Overflow threads:

1. Inline code snippets : These snippets often mention function names or

short commands. Inline code snippets are descendants of HTML para-

graphs (<p> HTML tags) and are embedded in <code> HTML tags.

2. Non-inline code snippets : These often show a block of code that demon-

strates how to accomplish a certain task.

For our purposes, we want to extract the latter type of code snip-

pets. Non-inline snippets are descendants of pre-formatted HTML blocks

(<pre> HTML tags) and are embedded in <code> HTML tags.

We take the non-inline code snippets found in the answers of all similar

threads combined and sort them according to the score of their corresponding

answer on Stack Overflow. In case of a tie, we give priority to the answer

that has been marked “Accepted” by the asker of the question. Note that

this list of snippets has been compiled from multiple similar threads about the

same development task. Given that we sorted answers based on their scores

on the website, the code snippets will also be sorted based on the score of their

corresponding answer.

20

3.5 Insight Extraction

This process has two steps. 1) Classification: In this step we classify a given

sentence as either an insight or not an insight. 2) Outside dependency: We

check to see if the sentence has any outside dependency. The goal of the second

step is to determine whether the sentence makes sense outside of its context.

3.5.1 Insights Classification

Another important component of our proposed library documentation are in-

sights, a concept originally introduced by Treude and Robillard [46]. The

goal of their work was to augment API documentation by dynamically adding

insights gathered from Stack Overflow.

According to their work, developers on Stack Overflow discuss information

not contained in the documentation. These discussions can include alternative

solutions to a programming task. They may also discuss in-depth information

about a certain class, software library, or API. Given the goal of their work,

they define insight sentences as those sentences on Stack Overflow that are

related to a particular API type and that provide insights not contained in the

API documentation of the type. Thus, their extraction of insights depends on

comparing sentences from Stack Overflow to sentences in the documentation.

Due to the fact that we do not consider API documentation in the scope of

our work, we use a variation of this definition as follows: an insight sentence

is one that falls in at least one of these categories:

1. Discusses general points, advice, or extra information about a task.

2. Discusses APIs that can be used for a task.

3. Offers in-depth information about an API used to accomplish the task.

4. Offers information about alternative solutions/APIs, their advantages or

disadvantages.

In order to identify the insight sentences from the bulk of text from the

collected answers, we train a supervised classifier over a set of manually labelled

21

sentences gathered from Stack Overflow answers. We randomly selected a set

of 495 sentences from the text of the answers in our dataset. Two contributors

independently labelled the sample and then resolved any conflicts. Out of 495

sentences, there were 22 conflicts in the labeling. We calculated the Kappa

score for our labelling of this dataset and obtained a score of 0.897. With this

approach, we were able to build a ground truth set for 495 sentences with 143

positive labels and 352 negative labels.

We can observe that the majority of the data points (71.11%) of the ground

truth data sample have negative labels. This imbalance in the dataset impacts

our choice of performance measure. If we assume the ratio of positive to

negative data points will hold for unseen data samples, a classifier that always

labels its input as negative will have an accuracy of 71.11%. This example

demonstrates that accuracy is not a good reflection of classifier performance

here, which drove us to look for a different performance measure to evaluate the

classifier. Given the imbalance in our dataset, we use the F-1 score, which is

the harmonic mean of precision and recall, to properly reflect the performance

of each classifier.

In their work [46], Treude and Robillard use a variety of features to build

a supervised classifier to identify insights. Table 3.4 holds a summary of the

features they used.

Features that fall in the similarity category are not applicable to our work,

given that we do not want to compare against existing documentation of a

library. We built supervised classifiers using various combinations of the re-

maining features presented in Table 3.4. In the end, it became clear that the

classifier we built using only words as features (the first item in the table of

feature sets) has the best performance score, therefore we opted to not use

features other than the words in the sentence. In our dataset, each sentence

is modelled as a vector where each element represents one word in the vocab-

ulary of the dataset. The value of each element represents whether the term

has appeared in that sentence or not. We use these vector representations of

sentences for training and testing the classifier.

We built several classifiers using various machine learning models. We

22

Feature Set Description
Sentence Features obtained from the sentence such as the set of

words, part-of-speech tags of words, the number of words
in the sentence, percentage of tokens tagged with HTML
tags, etc. These features can be obtained through pars-
ing the text as well as using CoreNLP’s part-of-speech
tagger.

Question This group has features like the question score, whether
the question includes an API element name, the asker’s
reputation, etc. This information can be obtained from
Stack Overflow as well as by parsing the data.

Answer Features such as the score of the answer, the reputa-
tion of the asker, whether the answer was accepted, and
the number of stars the answer has received fall in this
category of features.

Similarity This set of features is specific to the work presented
in [46]. These features include items like average cosine
of similarity of the sentence with sentences of the doc-
umentation. In order to obtain these features we need
to parse sentences of the documentation in question and
compare each sentence in the data to each sentence in
the documentation to calculate similarity.

Table 3.4: Features used in the work of Treude and Robillard [47].

use five-fold cross validation to evaluate these classifiers. Table 3.7 shows a

summary of our results. We obtained the best performance using an SVM

model with stochastic gradient descent learning with a F-1 score of 0.714. In

order to train the model, we use NLTK’s Stochastic Gradient Descent Classifier

(sklearn.linearmodel.SGDClassifierSGDClassifier). Table 3.5 shows a list of

the parameters used for training the model. When creating the documentation

of a software library, we use this classifier to classify each sentence in the

answers’ text. Sentences labelled as positive are included in the documentation

that is displayed to the user.

Table 3.6 shows the performance score of other classifiers built using dif-

ferent sets of features. The data set used in these experiments was a set of 250

manually labelled sentences, including 200 positive and 50 negative sentences.

23

Parameter Value
penalty “l2”
alpha 0.0001
l1 ratio 0.15

fit intercept True
shuffle True
epsilon 0.1
power t 0.5

learning rate “optimal”

Table 3.5: Parameters used to build the SVM with SGD insight sentence
classifier.

Classifier Features F-1 Score
Naive Bayes Words, part-of-speech tags 0.31
Naive Bayes Words, part-of-speech tags, score of the

question, asker’s reputation, score of
the answer

0.33

Random Forest Words, part-of-speech tags 0.36
Random Forest Words, part-of-speech tags, score of the

question, asker’s reputation, score of
the answer

0.39

Table 3.6: Classifiers built with different sets of features and their F-1 score.

3.5.2 Grammatical features of the sentence

In addition to satisfying the above definition of an insight sentence, in order

for a sentence to be considered as an insight, it must be standalone, meaning

it should make sense out of the context of the text where it came from. This

characteristic is vital given that these sentences will be reviewed by developers

who will see only the sentence, and not the context where it came from.

We can automatically identify whether a sentence is standalone or not

using CoreNLP’s co-reference annotator [11]. The co-reference annotator finds

mentions of the same entity in a text, such as when “Theresa May” and “she”

refer to the same person. The annotator implements both pronominal and

nominal co-reference resolution.

We feed the paragraph containing the sentence to the parser and check

whether the sentence has any dependencies to words outside its sentence. The

following text snippet from Stack Overflow thread No. 1844688 helps demon-

24

Classifier Best F-1 Score Obtained
Random Forest 0.678
Naive Bayes 0.684

SVM with SGD 0.714

Table 3.7: Insight sentences classifier results

strate this process.

“The example uses try-with-resources pattern recommended in API

guide. It ensures that no matter circumstances the stream will be

closed.”

Assume that we have identified the second sentence to be an insight sen-

tence, using the approach that is explained earlier in this section. Through

the results of the co-reference annotator, we can see that “it” at the beginning

of the second sentence is referencing “The example”. We remove the sentence

from our set of results since it refers to a word from another sentence.

3.6 Results Aggregation

At this point, we aggregate the three components of our documentation in

the form of a web page. Figure 1.3 shows the documentation for a given

development task from library junit. We include three code snippets with the

highest scores in this page, but more from the list of extracted code snippets

can be added.

25

Chapter 4

Developer Survey

We conduct a developer survey to answer the following research questions:

– RQ 1. What is the quality of the information extracted by our method-

ology?

– RQ 2. How useful are the three components of our proposed documen-

tation?

– RQ 3. What is the overall usefulness of a task-oriented library docu-

mentation?

To answer our research questions, which evaluate the quality of information

and usefulness of our approach, we conduct a survey of Java developers. In

this section, we describe the details of the survey setup.

4.1 Library Selection

In order to create task-oriented documentation, we had to select a number of

libraries to use. We selected 10 Java software libraries, pertaining to five major

domains of software development to use in the evaluation. We selected libraries

from different domains to have a diverse dataset of questions and answers from

Stack Overflow. For each domain, we selected well-known libraries that have a

higher number of related questions on Stack Overflow. A list of these libraries

and their respective domains is shown in Table 4.1.

26

Domain Library Names

Testing
Testng
Junit

Databases
Realm
H2

Logging
Logback
Log4j

Cryptography
Bouncy Castle
Apache Shiro

XML Processing
JAXB

Apache POI

Table 4.1: Libraries used for our survey.

4.2 Recruitment Strategies

To ensure a diverse set of participants for our survey, we used two recruitment

strategies.

1. The first was sending an invitation email to graduate and undergraduate

students of the Computer Science and Computer Engineering depart-

ments at our institution. This recruitment strategy ensures that we get

participants who are more novice in terms of programming experience,

and perhaps also familiarity with the target libraries.

2. The second recruitment strategy was targeted at more experienced de-

velopers who have used the libraries included in our survey. Such devel-

opers can better evaluate the quality of the information presented since

they have used the libraries before. Additionally, having such a balance

helps us understand if our task-oriented documentation is only useful

for novice programmers, or if more experienced programmers also find it

useful.

For the second recruitment strategy, we searched for developers of GitHub

who have either contributed to the repository of one of the software li-

braries in Table 4.1, or had used one of those libraries in one of their

repositories. To find the list of contributors to libraries in our list, we

used the list of contributors from the library’s repository on GitHub.

27

To find people who had used the library, we used GitHub’s search API

[37] to find import statements that included the namespace of one of the

libraries in Table 4.1, e.g. import org.h2.tools.Server;. We emailed

745 developers in total, asking them to participate in our survey.

4.3 Survey Setup

4.3.1 Overview of Survey Flow

We built a custom web application in order to have control over the flow

of the survey and collecting responses of participants. We made sure that

the participants understand and agree with our policy of using the data they

provide in our work. Figure 4.1 shows the page where users consented to

our privacy policy. We structure our survey as follows. In the first stage,

all participants, regardless of how they were recruited, answer background

questions about their occupation and Java experience. A snapshot of this

stage of the survey can be seen in Figure 4.2.

At this point in the survey, one of two scenarios will happen:

1. If a participant was recruited using our first recruitment strategy, we

select a library for them to review and ask them how familiar they are

with this library. For each participant, we select the library with the

fewest responses recorded so far. This selection process balances the

number of responses received for each library, in order to avoid a large

variance in the number of responses.

2. If a developer was recruited using our second recruitment strategy, we

pre-select the library that was used to recruit them. They will evaluate

tasks from this library, unless they choose to evaluate additional libraries

before they exit the survey.

After the library selection process is completed, users had to indicate how

much experience they have with the selected library, as can be seen in Figure

4.3.

28

Figure 4.5: Final questions were intended to evaluate the users’ overall per-
ceived usefulness of the components of the documentation.

32

another library or exit the survey.

4.3.2 Details of Survey Questions

The following is a summary of our survey questions:

1. Stage 1: background questions

(a) What is your current occupation? Undergraduate Student, Gradu-

ate Student, Academic Researcher, Industrial Researcher, Industrial

Developer, Freelance Developer.

(b) How many years of Java development experience do you have? Zero,

Less than 1, 1 to 2, 2 to 5, 6 to 10, 11+.

(c) Approximately how many projects have you used < library > in

before? Zero, 1 to 10, 11 to 20, 20+.

2. Stage 2: development task reviews

(a) Is the programming task related to this library? Yes, No, I don’t

know, This doesn’t seem like a programming task.

(b) How helpful is this code snippet in accomplishing the task?

(c) How helpful is this sentence when using this library?

3. Stage 3: final questions:

(a) How helpful did you find the task descriptions provided?

(b) How helpful did you find the code snippets for accomplishing the

given task?

(c) How helpful did you find the insight sentences provided?

(d) How helpful would you find this information if you wanted to learn

how to work with this library?

(e) How helpful would you find a list of tasks that can be accomplished

using this library?

33

(f) Please let us know if you have any comments or suggestions. free-

text

Answers to questions 2.b, 2.c, 3.a, 3.b, 3.c, 3.d, and 3.e were provided as a

score on a Likert scale from 1 to 5, with 1 being not helpful at all and 5 being

very helpful.

34

Chapter 5

Survey Results

We received a total of 69 responses, 31 responses from our first recruitment

strategy (unknown response rate because of sampling strategy) and 38 from the

second (˜5% response rate). Note that we received many more responses that

only completed the background questions so our response rate is technically

higher. However, since these participants did not evaluate any tasks, we do

not include them in any of our calculations.

The 69 responses we obtained include reviews for 125 tasks. Note that

this means that some participants chose to exit the survey without evaluating

all three tasks. Most participants (˜56%) only reviewed one development

task. Collectively, participants reviewed 306 code snippets and 262 insights

sentences.

Figures 5.1, 5.2 and 5.3 present the distribution of the background of our

survey participants. Graduate computer science students and industrial de-

velopers represent the two major groups of participants, as shown in figure

5.1.

Figures 5.4 shows the number of responses received per library. As ex-

plained previously, in our first recruitment strategy, we select libraries to be

reviewed using a process that aims to balance the number of responses per li-

brary. However, in our second recruitment strategy, the number of invitations

per library depends on external factors, such as the number of contributors in

a library’s repository. That is one possible reason for the uneven distribution

of number of responses per library. We now use the results of the survey to

35

5.1.1 Task Description

Figure 5.5 shows the summary of participant responses for evaluating whether

a given task is related to the library in question. Note that this figure includes

all responses received including multiple responses for the same task descrip-

tion. Therefore, if three participants responded “Yes”, “Yes”, and “No”, these

responses were counted as 2 in the “Yes” column and one in the “No” column.

The majority of reviewed tasks were found to be related to the respec-

tive library. Specifically, participants found that 73.6% of the 125 reviewed

tasks were related to the library in question. A few responses (1.6%) said the

description provided does not seem like a software development task. Thir-

teen (10.4%) responses said the task was not relevant to the library, and 18

responses (14.4%) indicated that they did not know whether the task was

relevant or not.

Our results suggest that the task extraction methodology we use works

desirably a majority of the time on the data we extracted from Stack Overflow.

However, since some of the tasks were marked as not related or that they do

not seem to be a task, there is still room for improvement. We further discuss

this in chapter 6.

5.1.2 Code Snippets

To answer RQ1 with respect to the second component of our task-oriented

documentation, we look at the 306 code snippets reviewed by our survey par-

ticipants.

When reviewing the presented tasks, participants indicated the helpfulness

of code snippets in accomplishing the task described, provided on a scale of 1

to 5. Figure 5.6 shows the distribution of ratings for all code snippets, divided

by the corresponding library. On average, our extracted code snippets had

a rating of 3.49 out of 5. The median of the ratings was 4, suggesting that

participants typically perceived the provided code snippets as useful. The

interquartile range of the responses received was 2.

We performed a Chi-Square test of independency to see if the distribution

40

of ratings was significantly different between libraries. We ran this test for the

ratings of every pair of libraries and the lowest p-value obtained for a pair of

libraries was 0.3207, which is not statistically significant, meaning it does not

show any such correlation exists.

5.1.3 Insight Sentences

Insight sentences received an average score of 3.25 out of 5 for usefulness,

making them the least useful component in the generated documentation.

The median of insight sentence reviews was 3 and the interquartile range of

the responses was 2.

Two participants left comments saying insight sentences only had value

when viewed in their original context on Stack Overflow. In our definitions

of insight sentences, we specify that an insight sentence must be standalone,

meaning it should make sense outside of its context. The results of the survey

show that while our current extraction methodology identifies useful sentences,

the sentences do not necessarily satisfy the standalone criteria. We can con-

clude that insight sentences as a component are potentially useful but they

need to be further improved to make sense to the developer outside of their

contexts.

We performed a Chi-Square test of independency to see if the distribution

of ratings was significantly different between libraries. We ran this test for the

ratings of every pair of libraries and the lowest p-value obtained for a pair of

libraries was 0.2111, which is not statistically significant, meaning it does not

show any such correlation exists.

5.2 Usefulness of Information

We now answer RQ2 and RQ3 by looking at three sources of information.

First, we use participants’ answers to the question in the exit questionnaire

about how helpful would they find the provided summaries for the purpose of

learning to work with a library. We find that the mean rating for this answer

is 3.17 out of 5. The responses to this questions had an interquartile range of

42

avoid spending time on the whole documentation, finding a list of tasks (from

basic to advanced) that can be accomplished using a library is the first thing

that I would be looking for when I need to work with the library.” Another

participant also says that they would find this task list useful, if it is more

generalized to contain information about which libraries accomplish this task.

The ranking of the task list and the comments of these participants confirm

our intuition that have a form of task-based documentation would be helpful

to developers.

5.2.1 Relationship Between Backgrounds and Responses

We also investigated any statistical correlation between the participants’ back-

grounds and how they answered the questions of our survey. We ran a chi-

squared correlation test on the results of the survey, and the test showed no

correlation between any items of the participants backgrounds and the answers

provided.

44

Chapter 6

Implications

In this chapter, we discuss possible implications of our results as well as our

findings. We use our findings to present improvements to parts of our method-

ology. Based on the results of the survey, we can conclude that developers

perceive task-oriented documentation of software libraries as useful. This is

also backed up by comments received from the survey indicating that a list of

tasks would be an important and useful component.

Software developers rated the code snippets extracted from Stack Overflow

as the most useful component of the task-oriented documentation. The next

most useful components were task descriptions. Even though our study shows

that task-oriented documentation is a useful concept for developers, our results

also suggest that there is still room for improvement. In this chapter, we

further analyze our results and discuss the implications that can be inferred.

6.1 Task Description

Even though a majority of the participants of our study found task descrip-

tions useful, a few of the responses indicate it did not always perform desirably.

We examine cases where participants provided a negative rating for the task

descriptions and look at the comments they wrote. Some participants strug-

gled with task descriptions and had to refer to the original thread on Stack

Overflow to realize the details of what was being discussed. Others said the

task description was either not relevant or not coherent (marked “doesn’t seem

like a task”). The following are a few possible causes of this phenomenon:

45

1. The question titles of Stack Overflow threads are not always grammat-

ically correct. Given that our task extraction methodology heavily de-

pends on CoreNLP’s outputs, this can impact the process negatively.

This was in fact the cause a number of low ratings we investigated. For

instance, a title from a Stack Overflow thread was “persistence.xml to

import database parameters values from .properties file”. While this sen-

tence is describing a development task, it is not grammatically coherent

and the resulting task description is not ideal, leading 4 participants to

indicate they do not think this is a development task.

One approach to improve in the future is to use NLP tools that can

detect and fix grammatical mistakes [9], [10], [13].

2. In some cases, the task description does not have enough information

for a user to understand the task at hand. Users on Stack Overflow

compensate for this lack of information by referring to the body of the

question, where the poster usually adds details and context to specify the

development task. We can address this by extending our methodology

to include key pieces of information from the question body into the task

description.

While this will help narrow down the development tasks and will make

this component more useful than its current state, it is not a trivial task.

There are general text summarization techniques that can used [2], [15],

[52], but adjusting them for our purposes can be challenging. For ex-

ample, it has been shown that Lex-rank [15], a stochastic graph-based

method for computing relative importance of textual units, does not per-

form desirably when applied to text collected from Stack Overflow [46].

6.2 Code Snippets

Code snippets were the most useful component of our proposed documenta-

tion. However, Figure 5.6 shows that not all libraries had the same standard

deviation of scores. While the figure shows that the mean rating of code snip-

46

Library Mean Standard Deviation
JUnit 3.45 1.45
Realm 3.11 1.51
Shiro 3.55 1.12

Apache-POI 3.75 1.03
Testng 3.5 1.51
JAXB 3.70 0.83
h2 3.65 1.39

Logback 3.54 1.05
Log4j 3.0 1.39

Bouncycastle 3.66 1.10

Table 6.1: Mean and standard deviation of ratings of code snippets per library.

pets for all libraries is between 3 and 4, we can see that some libraries have

lower means that others. The standard deviation of ratings of code snippets

for every library can be seen in Table 6.1.

As we can see from the table, log4j seems controversial, with ratings varying

from 1 to 5 on the scale. On the other hand, ratings for JAXB and bouncycastle

are more consistent with lower standard deviation. We further investigate the

tasks and responses for log4j to understand these differences. We find that one

of the threads with the highest score for log4j was tagged only with “log4j”,

because the user who asked the question used that library for logging, while

the main purpose of the thread was to convert milliseconds to time format.

Since we rely on the tags on Stack Overflow, such a thread would be included

in our documentation. However, since it is not related to log4j and the code

snippets do not contain anything related to this library, it received lower scores

from users who reviewed the documentation of this particular thread.

Code snippets receiving a low rating score may have also been extracted

from less popular answers on Stack Overflow. Even though we sort answers

based on their scores, a thread may only contain only a few code snippets,

which would allow snippets from answers with low scores to be included in

a task documentation. This was in fact the case in some of the reviews that

we examined. Comments by participants also suggested that sometimes the

snippets are of less than desirable quality or do not use the specified library.

These problems can be addressed by accounting for the specific classes or

47

Library Mean Standard Deviation
JUnit 3.15 1.41
Realm 3.0 1.43
Shiro 3.18 1.21

Apache-POI 3.32 0.98
Testng 3.24 1.40
JAXB 3.67 0.86
h2 1.85 1.23

Logback 2.62 1.16
Log4j 3.46 1.26

Bouncycastle 3.13 1.08

Table 6.2: Mean and standard deviation of ratings of insight sentences per
library.

packages used in code snippets. This idea has been explored in Baker [42],

and our methodology can be extended to incorporate it. We basically need to

find code snippets on Stack Overflow that use one of the APIs of our target

library. However, based on initial experimentation, we found that Baker does

not always provide perfect precision, and a code snippet might end up having

more than one related API. It is still not clear what is the best heuristic to

use to select the “main” API to tag this snippet with; otherwise, the majority

of code snippets would be tagged with APIs from the standard Java library.

Future work can also investigate additional code snippet quality metrics other

than the answer score.

6.3 Insight Sentences

Insights were deemed useful as a component by the participants of our survey.

They also had the lowest average score in task documentation reviews (stage

two of the survey) by participants. This indicates that while software develop-

ers find insights from Stack Overflow useful as a component, our methodology

has room for improvement.

While the mean score across all insight sentences indicates a good quality,

Figure 5.7 shows that the average rating per library varies between different

libraries.

48

In Figure 5.7, Library h2 has the lowest mean with very few sentences

receiving a score of 4 or 5, while jaxb has the highest mean with very few

sentences receiving a score of 1 or 2. One possible reason for this is that

insights used to build the documentation of jaxb came from answers with higher

scores compared to the answers used for h2. Since we present a summarization

approach of existing data, our intuition was to rank information based on score

rather than filter them out if their score falls below a certain threshold, and

the user would see the high ranked information first after all and that could

affect the way the users rate the insight sentences.

This is because some libraries are more popular than others and the scores

vary significantly between libraries, which makes it harder to choose a reason-

able threshold metric. One possible way to solve this is to calculate a normal-

ized score for each answer, depending on the highest score any answer for this

library received. We also further investigated the documentation summaries

and the ratings to determine other causes of this difference between the scores

for insight sentences. In some of the cases where the participant provided a

low score for an insight, the possible reason was one of the following:

1. The insight sentence had a reference to an element outside of itself, i.e.

it was not standalone. An example of such a sentence is “Using junit, I

was able to write this simple test.”. This sentence is referring to a code

snippet following it. This insight received a very low average score of

1.0.

2. The sentence had grammatical errors. This was observed in a number

of cases. For instance the following insight received an average score of

1.2 out of 5: “If you don’t stop it, Web Application Server never ending

until you kill it.”. Even though this sentence has useful information

embedded (until you explicitly terminate the web server process, it will

remain running), it is possible that the sentence was rated negatively due

to its grammatical incoherence. We presented sentences as they appear

on Stack Overflow, and did not try to detect grammar errors. This can

be an interesting quality characteristic for further narrowing down good

49

insight sentences.

3. The sentence was misclassified by the machine learning model. The F-

1 score of our best model was 0.714 and that means sentences can be

misclassified as an insight when they are not in fact insight sentences. As

mentioned before, we did explore using additional features to improve the

performance of our classifier, but these features did not have a positive

effect.

Based on the results of the survey, we suggest potential improvement

ideas beyond what we explored. One such possibility, for instance, is to

use a word to vector representation model that represents words in the

form of vectors [23]. Such vectors have been shown to bear information

regarding the context of words in the sentence and can be helpful for our

learning model [24], [25]. This idea has also been explored in the context

of software engineering [7]. However, applying this vector representation

in a way that benefits our methodology is a non-trivial task.

50

Chapter 7

Threats to Validity

In this chapter, we discuss the threats to the validity of the survey results we

presented in Chapter 5.

7.1 Internal Validity

Internal validity is the extent to which a conclusion based on a study is war-

ranted, which is determined by the degree to which a study minimizes bias [3].

A possible threat to the shown information is the presence of errors or bugs

in our scripts used to extract information from the raw data collected from

Stack Overflow. To mitigate this threat, we manually verified various samples

of the results. We also share all our scripts and data online for replication and

verification purposes.

To create a training set of insight sentences, we manually classified a sample

of sentences collected from Stack Overflow. This could have an impact on the

predictions of the classifier. To mitigate this threat, two authors separately

tagged the sentences while having our criteria list in mind, and then discussed

any disagreements.

In order to find all threads on Stack Overflow related to a library, we

assume that all threads associated with that library’s specific tag are related

to it. While that is not the case at all times, as discussed in Chapter 6, it is

often the case that the threads with the highest score often discuss the more

widely used and important development tasks accomplished with that library.

In fact, in the 10 libraries we used in our survey, there were only a few cases

51

of a thread not being related to its designated library.

As developers proceed through the survey, they review task descriptions,

code snippets and insight sentences and become more familiar with the system

and that could affect the way they respond to our questions. Also, given our

recruitment strategies, some participants are not familiar with the library that

was selected for them to review, which could be another factor that impacts

their responses.

7.2 External Validity

A threat to external validity is an explanation of how you might be wrong in

making a generalization [48].

We applied our task-oriented documentation methodology to ten popu-

lar libraries from five major software development domains. However, our

methodology heavily relies on collection of data from Stack Overflow. As dis-

cussed in chapter 6, the quality of information collected from Stack Overflow

can have an impact on the findings of our work. We know that for less popular

or less well-known libraries, there will be fewer threads posted on Stack Over-

flow. This leads to fewer development tasks and code snippets, which leads

to a less comprehensive documentation of the library. However, by adjusting

some of our extraction techniques, we can extend our methodology and apply

it to other sources of information such as library documentation and tutorials.

Our findings and conclusions presented in this work are based on the re-

sults of surveying 69 Java developers based on only 10 libraries. To reduce

possible opinion biases, we recruited participants with varying backgrounds

and through different sources. Our survey was based on data extracted for

only 10 Java libraries. While we cannot generalize our results beyond these li-

braries, our library selection was diverse, covering various domains of software

development.

52

7.3 Construct Validity

Construct validity is the degree to which a test measures what it claims, or

purports, to be measuring [12].

Given that in our developer survey, we do not ask participants to use the

generated task-oriented library documentation in everyday tasks and compare

the results with conventional documentation or other sources of information

about libraries, we measure only perceive usefulness of the proposed method-

ology and results.

The results produced in this work show that software developers of different

backgrounds find the concept of task-oriented documentation useful but do

not draw comparison between task-oriented documentation and other types of

documentation.

Note that some of the terms used in the online survey can be subjective and

different participants might have different ideas of what they mean, specially in

the context of software library documentation. The most important examples

of such terms are “usefulness” and “helpfulness”. This can impact the scores

developers give in our survey.

53

Chapter 8

Improvements to Insight
Sentence Extraction

As stated before, our survey of software developers revealed that insight sen-

tences as a component were perceived as useful, but the insight sentences

extracted using our methodology did not receive desirable scores for perceived

usefulness. In this chapter, we describe an additional part of our work whose

focus is solely on extracting valuable information from text in Stack Overflow

answers. This methodology is designed to help extract more focused insight

sentences of higher quality.

8.1 Introduction

In order to approach the problem, we narrowed down our definition of insight

sentences. We studied a large sample of randomly sampled text from Stack

Overflow answers and identified different types of insight sentences:

1. Example: These sentences provide an example of how something would

work or what the output would be, sometimes referring to a methodology

or idea explained prior to the example.

An example sentence usually contains phrases like: “for example”, “for

instance”, and often contains references to an outside element, sentence,

code snippet. The following is an instance of example insight sentences:

For example, parsing “1600 Amphitheatre Parkway, Mountain

54

View, CA” yields: [followed by code snippet] [31]

2. Suggestion: These sentences suggest a library, method or class to ac-

complish the task at hand. They describe either the advantages or dis-

advantages of a given solution. The following sentence is an example of

this type of insight:

If you want to download the data at background, you can use

the BackgroundDownloader class [54].

3. External : Such sentences link to external resources (i.e. outside of the

current Stack Overflow thread) that need to be studied. This sentence

is an example of this type:

Look at the example from http://en.wikipedia.org/wiki/

Algebraic_data_types [16].

4. Conditional : Sentences in this group recommend a certain strategy based

on some condition. Such sentences usually contain “if” statements. The

following example from Stack Overflow shows is one such sentence:

If you want to see which styles are affecting a particular ele-

ment, the Web Developer Toolbar for firefox has a handy Style

Information command for seeing which styles (from which files/style

blocks/inline styles) are being applied to it [18].

5. Details : Discuss nuanced details of a technology, like the following sen-

tence:

In C#, #define macros, like some of Bernard’s examples, are

not allowed [5].

Of the classes mentioned above, the conditional class is the easiest to detect

automatically, given its grammatical features. In our work in this chapter, we

focus on conditional insight sentences. Our methodology aims to extract these

55

conditional insight sentences. We use this because tags on Stack Overflow are

often associated with various types of technologies, programming languages,

libraries, concepts, etc.

We also use a list of keywords describing non-functional requirements. This

list of keywords was created by Hindle et al. [17] to automatically categorize

software maintenance activities into different categories. This list can help us

categorize conditional sentences based on any non-functional aspects they may

discuss.

Given a Stack Overflow thread, our goal is to identify all conditional in-

sight sentences among the sentences in the answers of that thread. In order to

identify conditional insight sentences, we make use of CoreNLP’s constituency

parser [30]. This functionality provides full syntactic analysis, minimally a

constituency (phrase-structure tree) parse of sentences. Using outputs pro-

vided by this parser, we can identify whether a sentence contains a conditional

structure. If so, we can also identify the conditional clause as well as the main

clause.

The following are the steps in our conditional insight sentence extraction

process:

1. We begin the processing of each Stack Overflow thread by extracting

all the text from all of its answers. We then feed all the text to Core

NLP’s constituency parser. When we encounter a conditional sentence,

we further process that sentence to extract the desired information.

2. The conditional part of the sentence contains a description of the con-

dition. In this stage, we obtain the part-of-speech tags for words in the

conditional part, and store all the nouns separately.

3. If any of the aforementioned nouns are words that are also Stack Overflow

tags, we associate the conditional sentence at hand with that tag. We

can do this simply by searching for the nouns in the tags described earlier

in this section.

4. We also match the words in the set of nouns to words in the list of non-

57

functional requirements. If any matches are found, the non-functional

requirements are associated with the conditional sentence at hand.

5.

As stated before, the purpose of associating these sentences with tags and

non-functional requirements is that it allows future methodologies to categorize

these sentences based on these associations. For example, the associated non

functional requirements can be used to narrow down search results based on

specific criteria provided by the user.

8.3 Evaluation

In order to evaluate the precision of our improvements to the insights extrac-

tion, we prepared a simple evaluation to assess the precision of the extracted

sentences. We processed text collected from answers of 100 randomly sam-

pled threads. We then processed those sentences using our improved insight

sentence extractor. This gave us 451 extracted insight sentences.

Then, two human annotators labelled each of these sentences as either a

conditional insight sentence (positive class) or not (negative class). When

labelling these sentences we used the following definition:

A conditional insight sentence, is a conditional sentence that if not

read by the user, will lead to a less than ideal solution.

There were 60 conflicts in total in labelling these sentences. In those cases,

the annotators discussed the situation and came up with a final resolution as

the label of that sentence. After the labelling was complete, we found 323 true

positive and 128 false positive sentences. The Kappa agreement score in this

labelling was 0.67.

Precision is the percentage of true positive sentences, i.e. those correctly

labelled positive by the extraction process. Based on our manual validation,

the precision of our improved insight sentence extraction was 71.61%. While

58

the precision obtained in this evaluation is promising, a manual review of the

results can point to what needs to be done in order to improve the methodology.

For example, a part of the false positive examples were sentences that had

were questions (in the text of Stack Overflow answers) that had the word “if”

in their structure. Often these questions provided little to no insight and were

therefore labelled negative by annotators. “If you look at the adblock site

there is some indication of how it does blocking: How does element hiding

work?” is one such sentence.

59

Chapter 9

Conclusions & Future Work

There exists an information gap between the information needed by software

developers and what is provided by the documentation. We introduced a

methodology to automatically leverage information on Stack Overflow to cre-

ate task-oriented documentation of software libraries that can fill this gap. The

proposed task-oriented library documentation has three main components: (1)

a set of software development tasks the library can accomplish, (2) a set of

code snippets per development task demonstrating different methods of accom-

plishing the task, and (3) insights that discuss details of different approaches.

We applied our methodology to 10 well known Java libraries from 5 soft-

ware development domains and evaluated the results using a survey of 69 Java

developers. Our results indicated that developers perceive our proposed task-

oriented documentation as useful. However, our results also shed light on cur-

rent limitations and challenges of processing crowd-sourced information. We

provided concrete discussions of these challenges and suggestions for overcom-

ing them to improve the extraction and generation of software documentation.

Given the findings of our survey, we further explored insight sentences and de-

scribed an improved methodology for identifying conditional insight sentences.

Our improved methodology made use of grammatical features of sentences on

Stack Overflow to identify a specific class of insight sentences, conditional

insights.

The future work in this area can have multiple directions. One possibility is

investigating whether task-oriented documentation is better than conventional

60

documentation for performing software development tasks. This investigation

can include an experiment in which a group of software developers accomplish

software development tasks using task-oriented documentation while another

group perform the same tasks using conventional documentation.

Another direction is to build a system of navigation using the outputs of

our proposed conditional insights extraction and investigate whether such a

system helps users find the information they’re looking for with more ease and

speed. The suggestions for improvement provided in this thesis can also be

implemented and evaluated in such a study.

61

References

[1] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talk-
ing about? an analysis of topics and trends in stack overflow,” Empirical
Software Engineering, vol. 19, no. 3, pp. 619–654, 2014. 11

[2] F. Boudin, M. El-Bèze, and J.-M. Torres-Moreno, “A scalable mmr ap-
proach to sentence scoring for multi-document update summarization,”
Coling 2008: Companion volume: Posters, pp. 23–26, 2008. 46

[3] M. B. Brewer and W. D. Crano, “Research design and issues of validity,”
Handbook of research methods in social and personality psychology, pp. 3–
16, 2000. 51

[4] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, “Syntactic
clustering of the web,” Computer Networks and ISDN Systems, vol. 29,
no. 8-13, pp. 1157–1166, 1997. 19

[5] C - how do you use define? - stack overflow, https://stackoverflow.
com/questions/15744/how-do-you-use-define, Accessed: 2018-08-1. 55

[6] B. A. Campbell and C. Treude, “Nlp2code: Code snippet content assist
via natural language tasks,” in Software Maintenance and Evolution (IC-
SME), 2017 IEEE International Conference on, IEEE, 2017, pp. 628–
632. 9, 11

[7] C. Chen, S. Gao, and Z. Xing, “Mining analogical libraries in q&a
discussions–incorporating relational and categorical knowledge into word
embedding,” in Software Analysis, Evolution, and Reengineering (SANER),
2016 IEEE 23rd International Conference on, IEEE, vol. 1, 2016, pp. 338–
348. 50

[8] C. Chen and K. Zhang, “Who asked what: Integrating crowdsourced
faqs into API documentation,” in Companion Proceedings of the 36th
International Conference on Software Engineering, ACM, 2014, pp. 456–
459. 1, 10, 11

[9] M. Chodorow and C. Leacock, “An unsupervised method for detecting
grammatical errors,” in Proceedings of the 1st North American chapter
of the Association for Computational Linguistics conference, Association
for Computational Linguistics, 2000, pp. 140–147. 46

62

[10] M. Chodorow, J. R. Tetreault, and N.-R. Han, “Detection of grammat-
ical errors involving prepositions,” in Proceedings of the fourth ACL-
SIGSEM workshop on prepositions, Association for Computational Lin-
guistics, 2007, pp. 25–30. 46

[11] Corefannotator — stanford corenlp, https://stanfordnlp.github.
io/CoreNLP/coref.html, Accessed: 2018-06-18. 24

[12] L. J. Cronbach and P. E. Meehl, “Construct validity in psychological
tests.,” Psychological bulletin, vol. 52, no. 4, p. 281, 1955. 53

[13] R. De Felice and S. G. Pulman, “A classifier-based approach to preposi-
tion and determiner error correction in l2 english,” in Proceedings of the
22nd International Conference on Computational Linguistics-Volume 1,
Association for Computational Linguistics, 2008, pp. 169–176. 46

[14] U. Dekel and J. D. Herbsleb, “Improving API documentation usability
with knowledge pushing,” in Software Engineering, 2009. ICSE 2009.
IEEE 31st International Conference on, IEEE, 2009, pp. 320–330. 1, 9

[15] G. Erkan and D. R. Radev, “Lexrank: Graph-based lexical centrality as
salience in text summarization,” Journal of Artificial Intelligence Re-
search, vol. 22, pp. 457–479, 2004. 46

[16] Haskell’s algebraic data types - stack overflow, https://stackoverflow.
com/questions/16770/haskells-algebraic-data-types/35758, Ac-
cessed: 2018-08-1. 55

[17] A. Hindle, N. Ernst, M. W. Godfrey, R. C. Holt, and J. Mylopoulos,
“What’s in a name? on the automated topic naming of software main-
tenance activities,” submission: http://softwareprocess. es/whats-in-a-
name, vol. 125, pp. 150–155, 2010. 57

[18] Ie7 html/css margin-bottom bug - stack overflow, https://stackoverflow.
com/questions/15326/ie7-html-css-margin-bottom-bug/19264,
Accessed: 2018-08-1. 55

[19] H. Jiang, L. Nie, Z. Sun, Z. Ren, W. Kong, T. Zhang, and X. Luo,
“Rosf: Leveraging information retrieval and supervised learning for rec-
ommending code snippets,” IEEE Transactions on Services Computing,
2016. 9

[20] Junit 5, https://junit.org/, Accessed: 2018-06-18. 12

[21] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers
use documentation: The state of the practice,” IEEE software, vol. 20,
no. 6, pp. 35–39, 2003. 1

[22] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. Mc-
Closky, “The stanford corenlp natural language processing toolkit,” in
Proceedings of 52nd annual meeting of the association for computational
linguistics: system demonstrations, 2014, pp. 55–60. 14

63

[23] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013. 50

[24] ——, “Efficient estimation of word representations in vector space,”
arXiv preprint arXiv:1301.3781, 2013. 50

[25] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic regularities in continu-
ous space word representations,” in Proceedings of the 2013 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2013, pp. 746–751. 50

[26] F. L. de la Mora and S. Nadi, “Which library should i use?: A metric-
based comparison of software libraries,” in Proceedings of the 40th Inter-
national Conference on Software Engineering: New Ideas and Emerging
Results, ACM, 2018, pp. 37–40. 8

[27] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and A. Marcus, “How
can i use this method?” In Software Engineering (ICSE), 2015 IEEE/ACM
37th IEEE International Conference on, IEEE, vol. 1, 2015, pp. 880–890. 9

[28] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “Jumping through hoops:
Why do java developers struggle with cryptography APIs?” In Pro-
ceedings of the 38th International Conference on Software Engineering,
ACM, 2016, pp. 935–946. 1

[29] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “Crowd documen-
tation: Exploring the coverage and the dynamics of API discussions on
stack overflow,” Georgia Institute of Technology, Tech. Rep, 2012. 11

[30] Parserannotator — stanford corenlp, https://stanfordnlp.github.
io/CoreNLP/parse.html, Accessed: 2018-07-13. 57

[31] Parsing - parse usable street address, city, state, zip from a string - stack
overflow, https://stackoverflow.com/questions/16413/parse-
usable-street-address-city-state-zip-from-a-string/16446,
Accessed: 2018-08-1. 55

[32] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Seahawk: Stack overflow
in the ide,” in Software Engineering (ICSE), 2013 35th International
Conference on, IEEE, 2013, pp. 1295–1298. 9, 11

[33] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza, “Min-
ing stackoverflow to turn the ide into a self-confident programming prompter,”
in Proceedings of the 11th Working Conference on Mining Software Repos-
itories, ACM, 2014, pp. 102–111. 9, 11

[34] M. P. Robillard, “What makes APIs hard to learn? answers from devel-
opers,” IEEE software, vol. 26, no. 6, 2009. 1

[35] M. P. Robillard and R. Deline, “A field study of API learning obstacles,”
Empirical Software Engineering, vol. 16, no. 6, pp. 703–732, 2011. 1

64

[36] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N.
Ernst, M. A. Gerosa, M. Godfrey, M. Lanza, M. Linares-Vásquez, et
al., “On-demand developer documentation,” in Software Maintenance
and Evolution (ICSME), 2017 IEEE International Conference on, IEEE,
2017, pp. 479–483. 1

[37] Search — github developer guide, https://developer.github.com/
v3/search/, Accessed: 2018-02-28. 28

[38] Stack exchange data dump : Stack exchange, inc. : Free download, bor-
row, and streaming : Internet archive, https://archive.org/details/
stackexchange, Accessed: 2018-07-13. 56

[39] Stack exchange data explorer, https://data.stackexchange.com/,
Accessed: 2018-06-18. 2, 13

[40] J. Stylos and B. A. Myers, “Mica: A web-search tool for finding API
components and examples,” in Visual Languages and Human-Centric
Computing, 2006. VL/HCC 2006. IEEE Symposium on, IEEE, 2006,
pp. 195–202. 8

[41] J. Stylos, B. A. Myers, and Z. Yang, “Jadeite: Improving API docu-
mentation using usage information,” in CHI’09 Extended Abstracts on
Human Factors in Computing Systems, ACM, 2009, pp. 4429–4434. 1, 10

[42] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API documen-
tation,” in Proceedings of the 36th International Conference on Software
Engineering, ACM, 2014, pp. 643–652. 10, 11, 48

[43] F. Thung, “API recommendation system for software development,” in
Automated Software Engineering (ASE), 2016 31st IEEE/ACM Inter-
national Conference on, IEEE, 2016, pp. 896–899. 9

[44] F. Thung, D. Lo, and J. Lawall, “Automated library recommendation,”
in Reverse Engineering (WCRE), 2013 20th Working Conference on,
IEEE, 2013, pp. 182–191. 9

[45] F. Thung, S. Wang, D. Lo, and J. Lawall, “Automatic recommenda-
tion of API methods from feature requests,” in Proceedings of the 28th
IEEE/ACM International Conference on Automated Software Engineer-
ing, IEEE Press, 2013, pp. 290–300. 9

[46] C. Treude and M. P. Robillard, “Augmenting API documentation with
insights from stack overflow,” in Software Engineering (ICSE), 2016
IEEE/ACM 38th International Conference on, IEEE, 2016, pp. 392–
403. 1, 2, 10, 11, 21–23, 46

[47] C. Treude, M. P. Robillard, and B. Dagenais, “Extracting development
tasks to navigate software documentation,” IEEE Transactions on Soft-
ware Engineering, vol. 41, no. 6, pp. 565–581, 2015. 1, 2, 10, 14–17, 23

[48] W. M. Trochim and J. P. Donnelly, “Research methods knowledge base,”
2001. 52

65

[49] Ualberta-smr/benyamin-task-oriented-documentation: This repository holds
the code and documents required to reproduce the outputs of task-oriented
library documentation. https://github.com/ualberta-smr/TaskOrientedDocumentation,
Accessed: 2018-09-10. 6

[50] G. Uddin and M. P. Robillard, “How API documentation fails,” IEEE
Software, vol. 32, no. 4, pp. 68–75, Jul. 2015, issn: 0740-7459. doi: 10.
1109/MS.2014.80. 1

[51] G. Uddin and F. Khomh, “Automatic summarization of API reviews,”
in Automated Software Engineering (ASE), 2017 32nd IEEE/ACM In-
ternational Conference on, IEEE, 2017, pp. 159–170. 8

[52] D. Wang and T. Li, “Document update summarization using incremen-
tal hierarchical clustering,” in Proceedings of the 19th ACM interna-
tional conference on Information and knowledge management, ACM,
2010, pp. 279–288. 46

[53] What are tags, and how should i use them? - help center - stack overflow,
https://stackoverflow.com/help/tagging, Accessed: 2018-06-18. 12

[54] Windows - (uwp) webclient and downloading data from url in - stack
overflow, https://stackoverflow.com/questions/33123082/uwp-
webclient-and-downloading-data-from-url-in, Accessed: 2018-08-
6. 55

66

Appendix A

Sruvey Recruitment Emails

A.1 Recruitment Strategy 1

The following emails was sent out to undergraduate and graduate students of

our department.

Hello,

I’m a Master’s student working under supervision of Dr. Sarah

Nadi. We are evaluating our research on building task-oriented

summaries of Java software libraries through an online survey. If

you have worked with Java before, we would like to invite you to

participate.

The survey can be found at LINK-TO-SURVEY. It will remain open

until January 31st. This survey should take no more than 10 min-

utes of your time.

Thank you for your participation. If you have any comments or

questions, please do not hesitate to contact us:

Benyamin Noori (email: bnoori@ualberta.ca)

Sarah Nadi (email: nadi@ualberta.ca, website: http://www.sarahnadi.org)

The plan for this study has been reviewed for its adherence to

ethical guidelines by a Research Ethics Board at the University

of Alberta. For questions regarding participant rights and ethical

67

conduct of research, contact the Research Ethics Office at (+1)-

(780)-492-2615.

A.2 Recruitment Strategy 2

This recruitment strategy consisted of two parts. In the first part, we sent

out the following emails to developers who had contributed to the libraries we

selected for our experiement:

Dear USERNAME,

We are a group of researchers from the Department of Computing

Science at the University of Alberta, Canada, who work on devel-

oping tools and methodologies to help software developers use Java

libraries more easily and correctly. We have developed a new tech-

nique for building task-oriented summaries of software libraries.

We noticed that you have contributed to a repository which be-

longs to one of the libraries included in our work, LIBRARY-NAME.

Accordingly, we would like to invite you to participate in a short

survey about the task-oriented library summaries that we built.

The survey can be found in this link LINK-TO-SURVEY. We would

appreciate it if you can fill out the survey as soon as possible, but

note that it will remain open until February 28th. The survey

should take no more than 5-10 minutes of your time.

Note that the survey is completely anonymous. We only record

the fact that you have used one of the libraries in our data, but

do not record anything about your identity or activities. More

information about how the data we collect is used can be found on

the information page of the survey.

Thank you for your time.

Benyamin Noori (email: bnoori@ualberta.ca)

Sarah Nadi (email: nadi@ualberta.ca, website: http://www.sarahnadi.org)

68

In the second part, we asked developers who had used the libraries in our

experiement in one of their repositories to participate in the survey:

Dear USERNAME,

We are a group of researchers from the Department of Computing

Science at the University of Alberta, Canada, who work on devel-

oping tools and methodologies to help software developers use Java

libraries more easily and correctly. We have developed a new tech-

nique for building task-oriented summaries of software libraries.

We noticed that you have committed to a source file that uses the

jaxb library in the Github repository REPOSITORY NAME, which is

one of the libraries included in our work.

Accordingly, we would like to invite you to participate in a short

survey about the task-oriented library summaries that we built.

The survey can be found in this link LINK-TO-SURVEY. We would

appreciate it if you can fill out the survey as soon as possible, but

note that it will remain open until February 28th. The survey

should take no more than 5-10 minutes of your time. Note that

the survey is completely anonymous. We only record the fact that

you have used one of the libraries in our data, but do not record

anything about your identity or activities. More information about

how the data we collect is used can be found on the information

page of the survey.

Thank you for your time.

Benyamin Noori (email: bnoori@ualberta.ca)

Sarah Nadi (email: nadi@ualberta.ca, website: http://www.sarahnadi.org)

69

Appendix B

Survey Results

In this appendix, we provide the details of responses we received in our survey.

For presentation purposes, we replaced the professions of the participants with

letters. The mappings of letters to professions can be seen in table B.

70

Category Description
A UGrad Comp Sci
B Grad Comp Sci
C Industrial Dev
D Academic Researcher
E Freelance Dev

Table B.1: Mappings between letters and participants’ occupations.

The following table shows the details of every response we received to our

survey.

71

Stage 1 Stage 2 Stage 3
1.a 1.b 1.c 2.task-1 2.task-2 2.task-3 3.a 3.b 3.c 3.d 3.e

T
as
k

S
n
ip
p
et
s

In
si
gh

ts

T
as
k

S
n
ip
p
et
s

In
si
gh

ts

T
as
k

S
n
ip
p
et
s

In
si
gh

ts

A 0 1-2 Yes 3,4,2 1 3 3 1 3 4
A 0 1-2 Yes 4,2 4 3 1 3 4
B 0 < 1 Yes 5,3,3 5,4,4,4 3 4 4 5 5
B 0 2-5 Yes 2,3 5 3 1 3 3
B 0 2-5 IDK 3,4 2,2,4 4 4 3 3 3
B 0 2-5 Yes 5,2,1 5,2,4,4 Yes 5 5,3 Yes 5,5,3 3,4,4,4,3,2 4 5 4 3 5
B 0 1-2 IDK 1,5 5 5 1 3 3
A 0 2-5 Yes 4,2,2 IDK 4,2 3,4 3 3 4 5 3
A 0 2-5 Yes 5,1,1 4,4,5 4 5 4 4 5
B 0 1-2 IDK 2,1,4 2 2 3 3 1 3
B 0 1-2 Yes 5 5,5 Yes 5,5,1 5 5 5 4 5 5
B 0 2-5 Yes 5 2,2 3 5 2 4 2
B 20+ 2-5 Yes 5,4,3 2 4 3 4 3
B 1-5 2-5 Yes 1,1,5 4,1,3,2,1,5 3 5 3 1 4
B 0 6-10 IDK 4,3,5 4 4 5 4 5
B 1-5 2-5 Yes 3,3,3 2,3,5 Yes 3,5,1 1,2 Yes 3,4 4,1 3 4 3 2 4
B 0 2-5 Yes 4,5,5 3 4 5 2 3 4
A 0 < 1 No 4,3,4 4,5,3 3 3 4 3 4
B 0 1-2 Yes 5 4,4 4 5 4 4 4

72

B 0 1-2 Yes 5,3,1 3,5,1,1,2,2 IDK 3,3 1,1 3 3 4 3 3
B 1-5 2-5 Yes 5,4 IDK 4,4,4 IDK 5,5 5,3,2,3,2,3,1 3 4 3 4 4
B 0 2-5 IDK 3,1 1,2,3 Yes 3 IDK 5 3,1 3 4 3 2 3
B 0 1-2 Yes 5,3,3 5,3,4,4 Yes 4 3,4 Yes 4,4,3 2,4,3,4,4,3 3 5 4 3 4
B 0 2-5 Yes 5 1,1 IDK 4,4,1 1 3 4 1 3 3
B 0 2-5 Yes 3,3,4 IDK 4,2 2,1 2 2 2 2 3
B 0 2-5 Yes 5,4,3 3 Yes 5,3 4,3,3,4 Yes 5,5 5 4 5 5 4 4
B 1-5 11+ Yes 5,2,4 2,5,4,4,3,5 Yes 4,5 3,1 Yes 4,4,5 4,4,5,2,4,3,3,1,4,2 3 5 4 4 3
B 1-5 11+ Yes 5,5,5 4,5,4 5 5 5 5 4
A 20+ 2-5 Yes 5,4,3 4 4 5 4 4 4
D 1-5 11+ IDK 5,2,3 3,2,2 3 4 5 3 4
C 1-5 6-10 Yes 2,5,5 3,5,3 4 4 4 4 4
C 20+ 11+ Yes 5,3,5 3 4 3 4 4
C 0 1-2 IDK 4,4,4 IDK 3,2 4,3 5 4 4 5 3
D 1-5 6-10 Yes 5,1,5 3,4,1,2,2,5 1 5 4 3 1
E 1-5 11+ No 3,3 5,3,3 Yes 5 3 4 4 3 4
C 1-5 2-5 Yes 3,3,4 5 5 3 4 2 4
E 1-5 11+ Yes 5,4,4 5 Yes 1,4 3,3,2,4 Yes 3,3 3 3 2 3 1 4
C 1-5 11+ Yes 5 4,4 No 5,3,3 3 No 4,3,2 2,5,3 3 4 3 4 3
A 1-5 1-2 Yes 3,4,4 4,4,4 4 4 4 4 4
A 1-5 1-2 Yes 3,4,4 4,4,4 4 4 4 4 4
C 1-5 11+ Yes 5,3,5 4,5,4,5,4,5 4 4 4 4 5
E 1-5 11+ NOT 1,1,1 1,4,2 Yes 2,5,1 1,2 Yes 2,4 1,2 1 2 2 1 5
C 1-5 2-5 Yes 5,5,5 3,4,5 Yes 5,5,5 5,5 Yes 5,4 4,4 4 4 4 4 4
C 1-5 2-5 Yes 1,1,5 4 3 3 3 3 4

73

C 10-20 2-5 Yes 2 2,2 Yes 5,3,3 5 3 3 2 4 3
E 10-20 2-5 Yes 3,3,1 4,3,2,2,4,5 2 3 4 2 2
C 1-5 6-10 Yes 5,4,1 3,5,1 4 4 3 1 2
C 1-5 2-5 Yes 4,4 4,4,4 4 4 5 4 4
C 20+ 6-10 Yes 5,5,5 5 5 5 5 5
C 1-5 6-10 Yes 3,3,5 1,4,4 Yes 3,5,4 2,4 4 4 4 4 4
C 1-5 2-5 IDK 3,2,5 4 2 4 5 2 3
A 1-5 1-2 Yes 5,2,4 5 4 3 3 4
E 1-5 11+ Yes 4,3,4 5 Yes 4,3 3,3,1,3 Yes 4,4 1 4 2 2 3 4
E 10-20 2-5 Yes 1,4,1 2 Yes 5 No 3 2 4 4 3 5 5
B 1-5 2-5 Yes 5,1,2 Yes 4,2 2,2 3 3 3 5 5
B 20+ 2-5 No 1,1,5 2,5,4 4 4 3 2 3
C 1-5 1-2 Yes 4,4,5 4,5,5 4 5 3 4 5
C 1-5 11+ No 4,4 3,4,2 Yes 5 No 4 3,3 2 4 3 1 5
C 1-5 11+ Yes 5,4,5 5 4 5 5 3 4
C 1-5 6-10 Yes 5 5,4 No 1,1,1 1 Yes 4,4,4 3,5,3 4 4 4 4 4
C 10-20 11+ Yes 4,4,1 5,5,3,2,1,2 Yes 3,5 3,1 5 5 4 4 4
A 1-5 < 1 Yes 4,4,4 4,4,3 Yes 4,5,2 1,3 4 5 3 3 4
C 1-5 11+ Yes 1,5 Yes 5,5,5 No 1,3 1,1,1,1,1,1,1 1 1 1 1 1
C 1-5 2-5 No 4,1 5,5,4 Yes 4 1 1 1 1 1
A 1-5 2-5 Yes 5,3,3 3,4,5,4,4,5 2 4 4 4 5
C 1-5 11+ Yes 5,2,3 1 3 3 1 2 3
C 1-5 2-5 Yes 4,3,3 1 4 2 1 2 1
A 1-5 1-2 No 5,5,1 5 4 4 4 1 2
C 1-5 1-2 Yes 1,5,1 2 No 1 4 5 3 4 4

74

Also, the open-ended comments written by the participants are detailed in

the following table.

1 The task description is sometimes an unclear sentence or
phrase. In some cases I should go to the stack overflow
page to understand the task completely. It would be
better to make a self contained description for the task.

2 The answers given on stackoverflow say how to do the
task, but not necessarily given the library, and they
don’t give any written justification about why they don’t
use the library. However, maybe people would have
given better answers if the question was more descrip-
tive. Another thing that would have made the an-
swers better would have been breaking the code up into
snippets and describing each subtask. In my experi-
ence, when people are browsing SO, if they see a ques-
tion/answer in which nothing stands out them they will
immediately navigate to the next link. The user wants
to understand the question/problem quickly and with-
out thinking too hard - so it needs to be as human-
readable as possible while also providing any relevant
code examples.

3 To avoid spending time on the whole documentation,
finding a list of tasks (from basic to advanced) that can
be accomplished using a library is the first thing that
I would be looking for when I need to work with the
library.

4 I don’t understand the insight sentences unless I read
the stack overflow page.

5 The list of examples for the use of Bouncy Castle is help-
ful. However, I often need information to work with the
native BC API. Documentation is more often oriented
with JCE API.

6 Testng is not anymore relevant, many of its advantages
are now fully handled by junit4/5 and extra-runners.
Most project don’t use testng anymore.

7 I need more completed demos that can run as an appli-
cation

8 A number of the code blocks provided didn’t seem to
be of the standard I would want to use as examples in
documentation.

9 The insight sentences don’t have much detail are are of
very limited value without context.

75

10 I’m not sure if this would provide more direct value in
working with a library than: Javadocs, Google or Com-
munities (eg: mailing list, stack overflow, irc).

11 I can see far more value in this work for being able to
match what libraries could accomplish a particular task
than the other way around. Especially combined with
ranking libraries suitable for a task of collection of tasks.

12 Interesting work. Please keep us posted on your
progress.

13 The code snippets provided did not use bouncycastle.
They did not use any classes in org.bouncycastle.

14 As I wrote to you in email if question is unrelated to
library then no other questions should be mandatory
and must be skipped. Answered ’1’ is such case.

15 Some questions are quite complicated and task descrip-
tion is not enough, though link to SO helps. Same for
snippets-answers.

16 The official documentation was more helpful to me than
Stack overflow. But, Stack Overflow helped me to work
through some of the bugs in my code during the execu-
tion of the library.

76

	Introduction
	Literature Review
	Assisting Software Developers in Using Software Libraries
	Augmenting library and application programming interface (API) documentation
	Tools and methodologies using Stack Overflow data

	Generating Task-oriented Library Documentation
	Acquisition of Relevant Threads from Stack Overflow
	Task Extraction
	Task Identification
	Task Extraction
	Evaluation

	Similarity Detection
	Code Extraction
	Insight Extraction
	Insights Classification
	Grammatical features of the sentence

	Results Aggregation

	Developer Survey
	Library Selection
	Recruitment Strategies
	Survey Setup
	Overview of Survey Flow
	Details of Survey Questions

	Survey Results
	Quality of Information
	Task Description
	Code Snippets
	Insight Sentences

	Usefulness of Information
	Relationship Between Backgrounds and Responses

	Implications
	Task Description
	Code Snippets
	Insight Sentences

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Improvements to Insight Sentence Extraction
	Introduction
	Extracting Conditional Insight Sentences
	Evaluation

	Conclusions & Future Work
	References
	Appendix Sruvey Recruitment Emails
	Recruitment Strategy 1
	Recruitment Strategy 2

	Appendix Survey Results

