
 

University of Alberta 
 
 
 

A Data Clustering Algorithm for Stratified Data Partitioning in Artificial 
Neural Network  

 
 

by 

 
Ajit Kumar Sahoo 

 
 
 
 
 

A thesis submitted to the Faculty of Graduate Studies and Research  
in partial fulfillment of the requirements for the degree of  

 
 
 

Master of Science 
in 

Engineering Management 
 
 
 
 

Department of Mechanical Engineering 
 
 
 
 
 

©Ajit Kumar Sahoo 
Spring 2011 

Edmonton, Alberta 
 
 
 
 

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this 
thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where 
the thesis is converted to, or otherwise made available in digital form, the University of Alberta will 

advise potential users of the thesis of these terms. 
 

The author reserves all other publication and other rights in association with the copyright in the thesis 
and, except as herein before provided, neither the thesis nor any substantial portion thereof may be 

printed or otherwise reproduced in any material form whatsoever without the author's prior written per-
mission. 



Examining Committee 

Ming J. Zuo, Mechanical Engineering 

Amit Kumar, Mechanical Engineering 

Yasser Mohamed, Construction Engineering and Management  

 

 

 

 

 

 



 
 

Dedicated to, 

My family for their support 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ABSTRACT 
 
The statistical properties of training, validation and test data play an important 

role in assuring optimal performance in artificial neural networks (ANN). Re-

searchers have proposed randomized data partitioning (RDP) and stratified 

data partitioning (SDP) methods for partition of input data into training, vali-

dation and test datasets. RDP methods based on genetic algorithm (GA) are 

computationally expensive as the random search space can be in the power of 

twenty or more for an average sized dataset. For SDP methods, clustering al-

gorithms such as self organizing map (SOM) and fuzzy clustering (FC) are 

used to form strata.  It is assumed that data points in any individual stratum are 

in close statistical agreement. Reported clustering algorithms are designed to 

form natural clusters. In the case of large multivariate datasets, some of these 

natural clusters can be big enough such that the furthest data vectors are statis-

tically far away from the mean. Further, these algorithms are computationally 

expensive as well. Here a custom design clustering algorithm (CDCA) has 

been proposed to overcome these shortcomings. Comparisons have been made 

using three benchmark case studies, one each from classification, function ap-

proximation and prediction domain respectively. The proposed CDCA data 

partitioning method was evaluated in comparison with SOM, FC and GA 

based data partitioning methods. It was found that the CDCA data partitioning 

method not only performed well but also reduced the average CPU time. 

 
 
 
 
 
 



ACKNOWLEDGEMENT 
 

I would like to thank my supervisor Prof. Ming J. Zuo for his guidance and 

mentorship throughout my study and research. I would also like to thank him 

for providing the financial support to pursue this work.  I would like to thank 

the members of my examining committee, Dr. Amit Kumar and Dr. Yasser 

Mohammad. I specially thank my wife Krishna not only for her overall sup-

port but for the excellent proofreading of the thesis which has improved the 

language in a significant way. Without the blessing of my parents nothing 

would be possible. In the end, I would like to thank them for their incessant 

encouragement and unconditional support.  

 

 

 
 
 
 
 
 
 
 
 
 



TABLE OF CONTENTS 
 
 
Chapter 1 INTRODUCTION………………………… 

 
1 

 1.1 Background……………………………... 
 

1 

 1.2 Research Objective………………………. 
 

4 

 1.3 Organization of Thesis……………………. 
 

6 

    
Chapter 2 FUNDAMENTALS OF ANN…………….. 

 
7 

 2.1 Introduction……………………………… 
 

7 

 2.2 Biological Neuron vs. Artificial Neuron……. 
 

8 

 2.3 A Multi-Neuron Multi-Layer Network…….. 
 

12 

 2.4 Training of the Network………..……….... 
 

14 

 2.5 Backpropagation Algorithm………..……... 
 

16 

 2.6 Data Partitioning in ANN and its Importance.. 
 

20 

 2.7 Summary………..………..…..…………. 22 
    
Chapter 3 LITERATURE REVIEW FOCUSING ON 

DATA PARTITIONING METHODS…… 
 

23 

 3.1 Introduction………..………....…………. 
 

23 

 3.2 Conventional Data Partitioning Methods…… 
 

26 

 3.3 Issues with Conventional Data Partitioning  
Methods…………..………...…………… 
 

29 

 3.4 Non-Conventional Data Partitioning Methods.. 
 

30 

 3.5 Issues with Non-Conventional Data  
Partitioning Methods………..………..…… 
 

32 

 3.6 Summary………..….……..…………...... 
 

34 



Chapter 4 THE PROPOSED AND REPORTED DA-
TA PARTITIONING METHODS FOR 
COMPARISON…………………………… 
 

35 

 4.1 Introduction…………………………….. 
 

35 

 4.2 Problem Statement………..…………….. 
 

37 

 4.3 The Proposed CDCA Data Clustering Algo-
rithm…………………………………… 
 

39 

  4.3.1 Motivation………....…………… 
 

40 

  4.3.2 Selecting a Suitable Distance Metric and 
Territory Size d……….…………. 
 

43 

  4.3.3 Basic Structure of the Proposed Algo-
rithm……………………………. 
 

45 

  4.3.4 Optimization of territory size d using 
Silhouette Coefficient SC……….… 
 

50 

 4.4 Data Sampling Scheme………..….…….... 
 

53 

 4.5 The General Steps of the Proposed Data Parti-
tioning Method……..………..………….. 
 

57 

 4.6 Reported Data Partitioning (DP) Algorithms for 
Comparison………..……....………..….. 
 

58 

  4.6.1 Self Organizing Map Based Data Parti-
tioning (SOMDP) ………..……… 
 

59 

  4.6.2 Fuzzy Clustering Data Based Data Parti-
tioning (FCDP) ………..………… 
 

61 

  4.6.3 Genetic Algorithm Based Data Parti-
tioning (GADP) ………..……..…. 
 

62 

 4.7 Summary………..………….…………... 65 
    
Chapter 5 EVALUATION OF THE PROPOSED DA-

TA PARTITIONING ALGORITHM…… 
 

67 

 5.1 Introduction………..…………………… 
 

67 



 5.2 Friedman Regression Function Dataset……. 
 

69 

 5.3 Housing Dataset………………………… 
 

72 

 5.4 Ultrasonic Dataset……………………….. 
 

74 

  5.4.1 Experimental Setup……………… 
 

74 

  5.4.2 Data Collection Process………….. 
 

75 

 5.5 Performance Measures…………………… 
 

79 

  5.5.1 Bias and Variance.……………….. 
 

79 

  5.5.2 CPU Time……………………….. 
 

80 

 5.6 Network Selection and Training………….. 
 

81 

 5.7 Results and Discussions………………….. 
 

83 

  5.7.1 Friedman Regression Function Dataset  
Results…………………………. 
 

83 

  5.7.2 Housing Dataset Results…………. 
 

87 

  5.7.3 Ultrasonic Data Results………….. 
 

88 

 5.8 Summary……………………………….. 91 
    
Chapter 6 CONCLUSIONS AND FUTURE 

WORK…………………………………….. 
 

93 

 6.1 Conclusions……………………………. 
 

93 

 6.2 Future Work……………………………. 
 

94 

    
BIBLIOGRAPHY  
  



LIST OF TABLES 
 
 
Table 2-1 Biological neuron vs. artificial neuron component anal-

ogy……………………………………………………. 
10

Table 2-2 List of commonly used activation functions………… 12

Table 4-1 Nomenclature of the proposed data clustering algorithm 39

Table 4-2 Subjective interpretation of the silhouette coefficient SC 52

Table 4-3   70%:20%:10% heuristic rules……………………… 56

Table 4-4   50%:40%:10% heuristic rules……………………… 57

Table 5-1 Friedman regression dataset feature trends……….. 71

Table 5-2 Housing dataset feature trends………………………. 73

Table 5-3   Definition and formula for statistical features……. 77

Table 5-4   Ultrasonic dataset feature trend…………………… 78

Table 5-5 Varying hidden neurons and their test error………. 83

Table 5-6 Friedman dataset results for sampling ratios 70:20:10 
and 50:40:10…………………………………………….. 

86

Table 5-7   Housing dataset results for sampling ratios 70:20:10 and 
50:40:10…………………………………………….. 

88

Table 5-8   Ultrasonic dataset results for sampling ratios 70:20:10 
and 50:40:10……………………………………………. 

90

 
 
 



LIST OF FIGURES 
 
 
Figure 2-1 Schematic diagram of a biological neuron……………. 9

Figure 2-2 Single artificial neuron with multiple input and single 
output………………………………………………….. 
 

10

Figure 2-3 A three layer multi-neuron multi-layer ANN………... 13

Figure 2-4 Two layer feedforward ANN…………………………. 16

Figure 2-5 A schematic of the data partitioning process………… 21

Figure 4-1 Schematic diagram of SDP data partitioning………… 38

Figure 4-2   Example dataset to illustrate natural clustering……... 40

Figure 4-3   Example dataset to illustrate customized clustering… 42

Figure 4-4 Flowchart of the proposed CDCA clustering algorithm 48

Figure 4-5 Random sampling of 10 data samples into training: 
60%, validation: 20% and test: 20%............................... 
 

63

Figure 5-1 Ultrasonic experimental setup………………………… 74

 

 

 

 



Chapter 1  

INTRODUCTION 

1.1  Background 

With the world population touching the seven billion mark and more and more 

developing countries getting economically stronger, the demand for exploiting 

resources is overwhelming. This has stimulated high demand far and wide for ex-

ample of the industrial products, mining resources, agro and food processing in-

dustries, oil and natural gas sectors and so on. At some point, it has been felt that 

the sustainable demand is exceeding the production of the goods. Such condition 

has prompted countries to take steps for further industrialization. Industries are 

now expected to run their machines nonstop to meet these demands. It is quite 

understandable that such challenges have increased the competition among peers 

to increase their production and at the same time decrease the per unit cost of the 

production.  

Keeping these goals in mind, engineers started looking for solutions to 

minimize the downtime of the machines. Conventional periodic maintenance of 

the mechanical systems has now become condition based maintenance. However, 

for any machine that has been assembled with hundreds of individual compo-

nents, the task to predict the actual machine health conditions is not easy. Over 

the years it has become a challenging field of research to estimate actual machine 

health conditions early enough to prevent low output or to avoid catastrophic fail-



2 | P a g e  
 

ure. It is worth mentioning here that critical component failure has far reaching 

consequences other than production loss and higher downtime for the machines. 

The recent leakage in Enbridge pipeline, Michigan, US on July 25, 2010 is a bla-

tant example of such a catastrophic failure. Approximately 1 million gallon of 

crude oil gushed into the Kalamazoo River. The oil spill caused huge environ-

mental damage up to 30 miles downstream through the towns of Marshall, Ce-

resco, Battle Creek and Augusta (Picard, 2010). 

Traditionally, the tools used for monitoring machine health conditions re-

lied on statistical techniques. But it seems that the existing statistical techniques 

had their limitations and at many instances it was not possible to implement these 

tools for obtaining real time solutions. Over the years, artificial intelligence (AI) 

based tools have been filling up this gap although not completely. For the last four 

decades, researchers have found profound interest in data driven tools like the ar-

tificial neural networks (ANNs). The ease with which ANN can map the input 

data with logical or numerical output has been the core of this overwhelming in-

terest among the researchers. Some of the background work on ANN started in 

the late 19th and early 20th century (Hagan et al., 1996). These early foundations 

were mainly focused on the theory of learning without any mathematical ap-

proach. The modern foundation of ANN was laid by Frank Rosenblatt and his 

team in the late 1950s (Rosenblatt, 1958). They proposed the perceptron network 

and the associated learning rule and demonstrated its ability to do classification. 

During this time Bernard Widrow and Ted Hoff introduced the adaptive linear 

neural networks (Widrow and Hoff, 1960). However, further research on ANN 



3 | P a g e  
 

almost stalled because of the unavailability of the powerful computers of today. 

With the development of more powerful computers in the 1980s, ANN was re-

born (Hagan et al., 1996).  

For the last three decades, there has been a tremendous progress in ANN 

research. Numerous new algorithms have been proposed to speed up the learning 

or training process. Several variant models have been introduced. Significant 

amount of progress has been made in finding the optimal architecture as well. All 

these events have facilitated the application of ANN in diversified fields of re-

search like aerospace, automotive, banking, manufacturing, medicine, oil and gas, 

finance, speech, transportation, fault diagnosis etc to name a few. Where Han et 

al. (2009), Dede and Sazli (2010), Scanzio et al. (2010) and Warlaumont et al. 

(2010) successfully implemented ANN in speech recognition problems, Zhang 

(2006), Wu et al. (2009), Weerasinghe et al. (1998) and Simani and Fantuzzi 

(2000) applied ANN in fault diagnosis. Around the same time, Kaastra and Boyd 

(1996), Bodyanskiy and Popov (2006), Poddig and Rehkugler (1996) and Kim 

and Chun (1998) are credited with successfully using ANN in financial forecast-

ing. The list of such references on other areas are humongous, thus, it is not pos-

sible to include them all here.  

Research in ANN can be broadly divided into two categories. The first 

category is mainly focused on the design and architecture of the ANN models and 

is dominated by researchers from Computing Science and Mathematics. The sec-

ond category includes researchers not only from all disciplines of engineering, but 



4 | P a g e  
 

also ranges from medicine to economics and the list are endless. The focus in the 

latter category has been mainly on the implementation of the existing models. Al-

though there are many exceptions, but in general such division holds true to a 

great extent. Among one of the many challenges faced by the second community 

is how to prepare the input data available to them. It is customary to mention that 

the quality of input data affects the performance of the network. Input data prepa-

ration in ANN mainly comprises of three steps (Yu et al., 2007):  

(1) data cleaning which entails removing incomplete data, 

outliers and random noise;  

(2) input and output feature selection; and  

(3) data partitioning into three sub-groups, namely, train-

ing, validation and test datasets.  

Although considerable amount of study has been carried out on the first 

two stages (Park et al., 2010; Chen et al., 2009; Yen and Lin, 2000 and He et al., 

2008), the third stage has not received adequate attention. In this thesis work, I am 

focusing on the third stage.  

1.2  Research Objective 

Traditionally, the task of data partitioning has been accomplished in an arbitrary 

fashion. Researchers have found that random data partitioning is not an efficient 

way and it can adversely affect the performance of the network (Maier and Dan-

dy, 1996; Tokar and Johnson, 1999).  In recent years new data partitioning algo-



5 | P a g e  
 

rithms were proposed to overcome this limitation. Existing methods like genetic 

algorithm (GA), fuzzy clustering (FC) and self organizing map (SOM) were im-

plemented for this task. It was observed that all these algorithms performed better 

in comparison to the random data partitioning. So far there is no clear conclusion 

available from which it can be judged that which one of these new methods per-

forms better in comparison to the other. Each of these algorithms has their own 

limitations. For example, almost every algorithm being computationally extensive 

in nature needs huge computational time. From my personal experience, it has 

been observed that for a decent size input data vectors (say, 100 data vectors), the 

computational time can be in hours. Yu et al. (2007) found that 50-70 percent of 

the time and effort is exhausted in data preparation especially in complex data 

analysis projects. Rest of the time goes into network training, validation and test-

ing. Considering the above factors, my main objectives in this thesis work is as 

follows: 

(1) Study the existing data partitioning algorithms.  

(2) Identify their limitations. 

(3) Propose a data partitioning algorithm to overcome the 

above discussed limitations.    

(4) Validate the efficacy of the proposed algorithm with 

the help of benchmark and experimental data.  

(5) Study the computational complexity of the reported 

algorithm.  



6 | P a g e  
 

We will use a feedforward back propagation (FFBP) network for our in-

vestigation. The FFBP network is a natural choice since it is the most commonly 

used and the most versatile network in terms of application. It has been imple-

mented in classification, function approximation and prediction problems on sev-

eral occasions. One benchmark data from each of these problem domains will be 

considered in this investigation.  Reported validation metrics like network bias 

and variance (May et al., 2010) are taken into consideration in this work. CPU 

time is considered for the computational complexity analysis.  

1.3  Organization of the Thesis  

The rest of the thesis is organized as follows: Chapter 2 presents the fundamentals 

of ANN and highlights the importance of data partitioning in ANN. Chapter 3 

covers the literature review in ANN with a focus on data partitioning. In Chapter 

4 the problem is defined in detail and the limitations of the reported algorithms 

are discussed. Eventually, the proposed data partitioning algorithm is introduced. 

We also discuss the reported data partitioning algorithms considered for perform-

ance comparison in this study. Chapter 5 includes the experimental design, results 

and discussions. Two Benchmark datasets from the literature and one experimen-

tal dataset from the Reliability Research Lab are considered in this investigation. 

Reported performance measures like bias and variance from May et al. (2010) is 

considered to present the results. CPU time is considered for computational com-

plexity analysis of the proposed algorithm. Finally in Chapter 6 the conclusions 

and future scope for the work is presented. 



7 | P a g e  
 

Chapter 2  

FUNDAMENTALS OF ANN 

2.1  Introduction 

Artificial neural network (ANN) has its inspiration based in the functioning of 

biological neural network (BNN). When scientists began to understand the func-

tioning of BNN, they discovered that the brain is composed of some 1011 biologi-

cal neurons interconnected to each other.  Such a complex network helps us in 

decision making and cognitive thinking helping us in memorization and learning 

new things. The next obvious question was whether it is possible to realize such a 

network assembled with artificial neurons. Some of the background work on 

ANN started in the late 19th and early 20th century (Hagan et al., 1996). But the 

mathematical foundation of ANN was laid by Frank Rosenblatt in the late 1950s 

(Rosenblatt, 1958). Research on ANN almost touched the dead end in the 60s and 

70s because of the unavailability of powerful computers. With the advent of more 

powerful computers in the 1980s, the rebirth of ANN became a possibility. Since 

then there has been tremendous progress in ANN research. Application of ANN 

has been reported since in almost every field of research thereafter.  

In this chapter, relevant insights on the fundamentals of ANN have been 

presented. Importance of data partitioning in ANN application has also been high-

lighted. Sections to follow are organized as indicated: Section 2.2 is started by 



8 | P a g e  
 

making a comparison between biological neuron vs. artificial neuron. Section 2.3 

gives a basic idea of a multi-neuron multi-layer ANN architecture. In Section 2.4 

the need of training in ANN is explained. Section 2.5 gives an explanation of the 

backpropagation algorithm. In Section 2.6 the problem of data partitioning and its 

importance in ANN research is discussed. Eventually the chapter is concluded by 

presenting a summary in Section 2.7.  

2.2  Biological Neuron vs. Artificial Neuron 

Although the inspiration for constructing ANN has its genesis in the working of 

BNN in the human brain, it is not easy to compare the two on the same plane. 

This is because the functioning of billions of biological neurons in a single net-

work is a very complex process. It has not been possible for the researchers to de-

code their working so far.  However, we can compare the basic constituents of 

BNN and ANN and examine the similarities between them.   

Biological neuron essentially consists of three components: (i) the den-

drites (for receiving signals), (ii) the soma (cell body) and (iii) the axons (for 

sending signals). Figure 2-1 shows the schematic diagram of a biological neuron. 

The cell body receive the signals though the dendrites. The soma where the nu-

cleus is located processes the incoming signals. The axon is the long fiber that 

carries the output signals to the other neurons (Hagan et al., 1996).  

 
 
 
 



 
 
 

Soma 

Dendrites Axon 

9 | P a g e  
 

 
 
 

Figure 2-1  Schematic diagram of a biological neuron (Hagan et al., 1996) 

The contact between axon of one neuron and the dendrites of another neu-

ron is called synapses. The strength of individual synapses is decided by a com-

plex chemical process. It keeps changing during the learning process throughout 

human life.  

Artificial neuron is considered as a much simpler version than its counter-

part biological neuron. However, there is a direct analogy between the individual 

components of an artificial neuron and a biological neuron. As illustrated in Table 

2-1, artificial neuron also consists of three principal constituents which greatly 

resemble their counterparts in a biological neuron. Figure 2-2 shows an artificial 

neuron with multiple inputs and a single output. The outputs of the other neurons 

in the network become the input to this particular neuron.  The output of this neu-

ron in turn becomes the input to the other neurons in the network. The inputs are 

connected to this neuron in question by connections each of which has a certain 

To other neurons 

Synapses



weight. Similar to the biological neurons, the artificial neuron goes through learn-

ing or training process in which it learns to perform a task. At the end of this 

training, each of these connection weights is adjusted to a level at which the out-

put of the network matches as closely as possible to the desired output (Dhaka and 

Singh, 2007).  

Table 2-1  Biological neuron vs. artificial neuron component analogy 

Biological neuron Artificial neuron

Soma (cell body) Processing unit 

Axon, Dendrites Connection 

Synaptic strength Weight 

 

 

Connections
Weights

10 | P a g e  
 

 

Figure 2-2  Single artificial neuron with multiple input and single output 

The functioning of artificial neurons relies on pure mathematics and the 

principle of optimization. The output of the neuron is a function of the weighted 

sum of the inputs. The function is called the activation function or transfer func-

tion which can be either linear or non-linear.  Table 2-2 lists some of the com-

  f   a n Output to  
other neurons 

Input from 
other neurons 

Processing unit 

. 

. 

. 

x1 
 
x2 

. 

. 

. 
xl 

w1

wl 

w2   ∑ 



11 | P a g e  
 

∈

monly used activation functions where a represents the neuron output and n repre-

sents the weighted sum of the input. Each of these functions is used under a dif-

ferent condition. For instance, the competitive activation function is used in self 

organizing feature maps (Kohonen, 2001) which are based on unsupervised train-

ing. Let us assume that the input element to be represented as 1[ ,..., ]tr l
lx x= ∈x . 

Next suppose the connections are weighted by weight vec-

tor 1[ ,..., ]tr l
lw w=w . Then the input to the processing unit n is a weighted 

sum of the input element as follows: 

1 1 2 2 ..... l ln w x w x w x= + + +  
 
And the output of the neuron y can be expressed as 
 

1 1 2 2( ) ( ..... )l ly f n f w x w x w x= = + + +  
 
where f ( ) is the activation function 

During the training process, the weight parameters are adjusted to the 

closest values at which the neuron will give the closest desired output. This is 

achievable by implementing optimization techniques which will be discussed later 

in this chapter. The actual output also depends on the type of activation function 

used. For example, for a non-linear mapping, a non-linear activation function is 

needed and vice versa. Depending on the complexity of the task, a single neuron 

may not be sufficient, thus, there is a need for multiple neurons to be working in 

multiple layers. An example of such a network is given in the next section.  

 



Table 2-2  List of commonly used activation functions 

 

Name of 
activation function Icon MATLAB func-

tion 
Input/output 

relation 

Linear 
 

purelin a n=  

Hard limit 
 

hardlim 
0 0
1 0

a n
a n
= <
= ≥  

Log-sigmoid 
 

logsig 
1

1 na
e−

=
+  

Hyperbolic tangent 
sigmoid 

 
tansig 

n n

n n
e ea
e e

−

−
−

=
+  

Competitive 
 

compet 
1 m
0

a neuron with n
a all other neurons

12 | P a g e  
 

ax=
=  C 

 
 
 
2.3  A Multi-Neuron Multi-Layer Network 

In practice, one neuron may not be sufficient for the purpose desired, thus, we 

need multiple neurons operating in parallel, called a layer of neurons. Further, 

there can be multiple layers depending on the complexity of the desired mapping. 

Figure 2-3 shows a typical multiple neuron three layer network. Here, the first and 

second layers are called the hidden layers, while the third layer is the output layer. 

It is also very common practice for some researchers to include the input layer to 

count the total number of layers (Chong and Żak, 2008). In that case the three 

layer network would actually become a four layer network. But since there is no 

real processing of data in the input layer, we will stick to the former convention 

(Hagan et al., 1996).  



13 | P a g e  
 

∈

1
v l

. 

Let us assume, the input vector to be represented as 1[ ,..., ]tr l
lx x= ∈x . In 

the example network we have S1 neurons in the first hidden layer, S2 neurons in 

the second hidden layer and S3 neurons in the output layer. As shown in Figure 2-

3, each of the elements in input vector has a weighted connec-

tion with each of the S

1[ ,..., ]tr l
lx x=x

1 neurons in the first hidden layer. The weighted connection 

between u-th element of the input vector and the v-th neuron of the first hidden 

layer is represented as , where u=1,…,l and v=1,…,S1
,v uw 1. The weighted sums to 

the S1 neurons of the first hidden layer are represented by , 

where v=1,…,S

1 1
1 ,1 ,( ,..., )v v ln x w x w= + +

1. Similarly the outputs from the first hidden layer represented by 

, where v=1,…,S1
va 1 become inputs to the second hidden layer and so on.  

 

 
 

Figure 2-3  A three layer multi-neuron multi-layer ANN (Hagan et al., 1996) 
 

The above network is also known as the feedforward network in literature 

since the connection is only in the forward direction. However, there is another 

network which is known as the recurrent network (Levin, 1990) wherein, there is 

a backward connection. (This recurrent network is out of scope of this thesis and 

.

x1 

 
x2 

 
x3 

. 

. 
xl 

 

f 2  ∑ 

f 2  ∑ 

f 2  ∑ 
n2

1 a2

a2n2
2 

a2
S

2n2
S

2

w2
1,1 

w2
S

2
 

1

.

.
. 
.

f 1   ∑ 

f 1   ∑ 

f 1   ∑ 
n1

1 a1

a1n1
2 

a1 
S

1n1 
S

1 

w1
1,1 

w1
S

1
, R

f 3 

f 3   ∑ 

f 3   ∑ 

  ∑ 
n3

1 a3

a3n3
2 

a3 
S

3n3 
S

3 

w3
1,1 

w3
S

3
 , S

2



shall not be discussed here leaving it out for future work. Only the feedforward 

network has been used in this research). The real challenge in a multi-neuron 

multi-layer network is adjusting the various weight parameters. The process in 

which the weights are adjusted to the desired level so that the network can give 

the desired output is called learning or training. At the training stage the desired 

output can be the output available from the historical data. The weights are ad-

justed until the network starts giving output that is very close to the desired out-

put.   

Since we now have a preliminary idea of the objective of the training 

process, let us next discuss the actual mathematics involved in the training proc-

ess.  

2.4  Training of the Network 

As mentioned in the previous section, first the problem of training is formulated 

as an optimization problem. We can then use the available optimization algo-

rithms (line search or random search) for selection of the weights.  

Let us consider the single neuron shown in Figure 2-1. Suppose we have T 

pairs of historical input and output instances such as ( ) ( ){ },1 1 ,x , , , x , .d d Ty y… T

T tr l

 

Any input instance  is represented as , where 

d=1,…,l. The corresponding output instance (We call this as actual output) is rep-

resented as .Suppose the output of the neuron for input 

1, ,i = … , 1, ,[ ,..., ]d i i l ix x= ∈x

iy ∈

14 | P a g e  
 



15 | P a g e  
 

tr l∈ tr l

T

, 1, ,[ ,..., ]d i i l ix x=x  at weight vector  is (We call 

this as network output). It is understandable that for each of these T inputs, there 

will be T network outputs of the neuron represented as 

1[ ,..., ]lw w= ∈w ia ∈

, 1,...,ia i∈ = . We 

wish to find out the weight vector at which the neuron can 

map the network outputs 

1[ ,..., ]lw w=w tr l∈

T, 1,...,ia i∈ = to the actual outputs 

, 1,...,iy i∈ = T as closely as possible. The training problem can now be formu-

lated as the sum of squared errors of the neurons as follows: 

( )( ) 2

1

1

Minimize

Subject to ,..., 0

T
tr

i i
i

l

y f

w w
=

−

>

∑ x w
 

 
where f ( ) is the activation function and ( )tr

if x w  is the network output for input 

instance i 

The above optimization problem can be solved by line search algorithms 

like the gradient search, the Newton’s method and the conjugate gradient method 

(Chong and Żak, 2008). They can also be solved by the random search algorithms 

like the genetic algorithm (Goldberg, 1989), the simulated annealing (Kirkpatrick 

et al., 1983) and the particle swarm optimization technique (Kennedy and 

Eberhart, 1995). In the next section, this optimization problem for a feedforward 

network having one hidden layer. The gradient search algorithm is used to find 

out the updating equations. It is also known as the backpropagation algorithm 

(Hagan et al, 1996; Chong and Żak, 2008) because of the fact that the output error 

is propagated backward in the network from the output layer to the hidden layer.  



2.5  The Backpropagation Algorithm  

For better understanding, the backpropagation algorithm is explained with a feed-

forward network as an example. It is worth mentioning that similar network has 

been used in this research with an aim that it would serve as a foundation of our 

understanding and for future use of such a network. A feedforward network is 

considered as shown in Figure 2-4.   

16 | P a g e  
 

S

 
  

                                Figure 2-4  Two layer feedforward ANN 

The two layers in the above network are referred to as the hidden (1st 

layer) and the output (2nd layer) layers. Suppose we have S hidden neurons in the 

hidden layer with activation function f 1( ) in each of the S neurons and a1
j is the 

outputs of hidden layer, where 1, , .j = …  Suppose we have one output neuron in 

the output layer with activation function as f 2( ) and a2
i is the network output for 

any input instance i. Suppose we have T pairs of historical input and output in-

stances, ( ) ({ )},1 1 ,x , , , x ,d d Ty … .Ty

.

 Suppose each of the input instance is repre-

.

  ∑ 

  ∑ 

  ∑ 
n1

1w1
1

f 1
,1 

w1
S, R

1st layer 

f 1

f 1
n1

S

n1
2

.

.

2nd layer 

a1
1

a1 
S

x1,i 

 
x2,i 

 
x3,i 
. 
. 
xR,i 

w2
1 

w2
S

a1
2    w2

2 f 2   ∑ 
n2 a2

i 



17 | P a g e  
 

Rsented as where , ,R
d i ∈x 1, ,d = … and each of the actual output instance is 

represented as where ,iy ∈ 1, , .i T= … We denote the weighted sum of inputs 

to the hidden neurons as n1
j, where 1, ,j S= … and the weighted sum of inputs to 

the output neuron as n2. We denote the weights connecting inputs to hidden neu-

rons by w1
j,d, where We denote the weights connecting 

the outputs of the hidden layer to the output layer as w

1, , , 1, , .d R j= … = … S

2
j, where  1, , .j S= …  

The neural network implements a map from   to .  Then, we have weighted 

sum inputs to the hidden layer n

R

1
j for any input instance i as 

1 1
, ,

1

R

j j d
d

n w x
=

=∑ d i  

Outputs of hidden neurons a1
j as 

( )1 1 1 1 1
, ,

1

R

j j j
d

a f n f w x
=

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∑ d d i

1

 

Similarly, the weighted sum of inputs to output layer n2 as  

2 2

1
,

S

j j
j

n w a
=

=∑  

Network output  a2
i for input instance i as 

( )2 2 2 2 2 1

1

S

i j
j

a f n f w a
=

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∑ j  

Therefore, the relationship between the input instance i, where d=1,…, 

R and corresponding network output a

, ,R
d i ∈x

2
i is given by 



18 | P a g e  
 

d i
2 2 2 1 1

,
1 1

S R

i j jd
j d

a f w f w x
= =

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑  

 

As discussed in the previous section, we need to estimate the final weights 

w1
j,d  and w2

j  by formulating an optimization problem as follows:  

The objective of the training process is to adjust the weights of the net-

work such that the network output a2
i is as close as possible to the actual out-

put for all historical input and output instances, iy ∈ ( ) ( ){ },1 1 ,x , , , x , .d d Ty y… T  

This can be formulated as the following optimization problem: 

Minimize 
2 2

1

1 ( )
2

T

i i
i

y a
=

−∑  

                                           where  2 2 2 1 1
,

1 1

S R

i j jd
j d

a f w f w x
= =

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ d i

S

The factor ½ is added for notational convenience which has no effect on 

the minimizer. In order to solve this optimization problem using gradient search 

algorithm, we have to find out the partial derivative of the objective function 

F(w1
j,d , w2

j) with respect to w1
j,d and w2

j, where 1, , , 1, ,d R j= … = … .  We get  

2

1 2 2 2 1 1
, ,

1 1 1

1( , )
2

T S R

j d j i j jd d i
i j d

F w w y f w f w x
= = =

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
∑ ∑ ∑  

The partial derivative of F(w1
j,d , w2

j) with respect to w2
j



'
1 2

, 2 2 1 1 2 2 1 1
, ,2

1 1 1 1 1

1 1
,

1

( , ) T S R S R
j d j

i p pd d i p pd
j i p d p d

R

jd d i
d

F w w
y f w f w x f w f w x

w

f w x

= = = = =

=

⎛ ⎞⎛ ⎞ ⎛⎛ ⎞ ⎛∂ ⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ⎜= − −⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ⎜⎜ ⎟ ⎜∂ ⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝⎝ ⎠ ⎝⎝ ⎠
⎛ ⎞
⎜ ⎟× ⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑

∑

d i

⎞⎞
⎟⎟
⎟⎟⎟⎟⎠⎠

 

Similarly, the partial derivative of F(w1
j,d , w2

j) with respect to w1
j,d

'

'

1 2
, 2 2 1 1 2 2 1 1

, ,1
, 1 1 1 1 1

1 1
, ,

1

( , ) T S R S R
j d j

i p pq q i p pq
j d i p q p q

R

jq q i d i
q

F w w
y f w f w x f w f w x

w

f w x x

= = = = =

=

⎛ ⎞⎛ ⎞ ⎛⎛ ⎞ ⎛∂ ⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ⎜= − −⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ⎜
∂ ⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝⎝ ⎠ ⎝⎝ ⎠
⎛ ⎞
⎜ ⎟× ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑

∑

q i

⎞⎞
⎟⎟
⎟⎟
⎟⎟
⎠⎠

 

The updating equation for the gradient algorithm can now be formulated as fol-

lows: 

At iteration n+1, the weight parameters are updated as 

 

( )1( ) 2( )
,2( 1) 2( )

2( )

,n n
j d jn n

j j n
j

F w w
w w

w
α+
∂

= −
∂  

 
 

( )1( ) 2( )
,1( 1) 1( )

, , 1( )
,

,n n
j d jn n

j d j d n
j d

F w w
w w

w
α+
∂

= −
∂  

 

where  α is a fixed step size.  

The process of updating is continued until the algorithm converges to min-

ima. Once the minima is reached, the weight parameters achieved at this iteration 

19 | P a g e  
 



20 | P a g e  
 

are stored and used on test dataset. In the above example, we consider only one 

hidden layer but in reality there can be more than one hidden layer.  For higher 

number of hidden layers the updating equations can be obtained likewise. The ef-

ficiency or speed with which the optimum weight parameters can be found de-

pends on the searching capability of the algorithm. However, the generalization 

ability of the trained network directly depends on the historical data used in the 

training process.  

During the network training process, the historical data is divided into 

three datasets such as training, validation and test dataset. The purpose of each of 

these data sets is discussed in the next section. 

2.6  Data Partitioning in ANN and its Importance 

The main objective of this section is to define the problem of data partitioning and 

why it is important to do data partitioning for a satisfactory performance of the 

ANN model. Figure 2-5 shows a schematic of the data partitioning process. As 

shown in Figure 2-5, we start with the entire dataset which will include the input 

and output data. By the end of data partitioning process we come up with three 

sub-groups of datasets, namely, training, validation and test datasets. Each of 

these sub-groups have important role to play during the network training and test-

ing process.  

 
 
 
 



 

Two dimensional data space 

Validation 
data 

Test 
data 

Data subsets drawn using  
data allocation rules 

Training 
data 

 

                        Figure 2-5  A schematic of the data partitioning process 

The training data is used to compute and update the network weights pa-

rameters at the lowest network sum square error as discussed in the previous sec-

tion. The validation data is used to cross-validate this error during the training 

process. Typically the network sum square error for both training and validation 

data decreases during the initial iterations. But after a certain number of iterations, 

the training error and the validation error begins move apart. This is the point 

when the network has started over-fitting the training data or the validation data 

depending on numerical value of the sum square error. For example if the training 

error is lower than the validation error, then the network has over-fitted the train-

ing data and vice versa, thus, the training process must be stopped. The network 

weights at this stage are finalized for future use on test data. It is always a better 

21 | P a g e  
 



22 | P a g e  
 

practice to cross-validate the network with the validation data in order to avoid 

over-fitting. 

The test data is used separately after the training is over to estimate the 

performance of trained network. The test data is needed to test the true generaliza-

tion ability of the network. In some literatures, validation and test data have been 

used interchangeably although the objective of use remains the same.  Some re-

searchers have only used the training and test datasets.  

2.7  Summary 

In this chapter, the fundamentals of ANN were presented. The chapter was started 

with a bit of history. A comparison between the biological neuron and artificial 

neuron was made next. The mathematics involved in artificial neurons was illus-

trated. The general structure of a multi-neuron multi-layer artificial network was 

talked about. The purpose of training in ANN was discussed. Next, the back-

propagation algorithm was discussed by deriving the updating equations for a sin-

gle hidden layer network. It was discussed that the same approach can be imple-

mented to higher number of hidden layers. Eventually the problem of data parti-

tioning in ANN and its importance for a satisfactory performance of the network 

was defined. The role of training, validation and test data and their importance 

was mentioned.  

The next chapter will cover the literature review of ANN with a special 

focus on data partitioning.   



23 | P a g e  
 

Chapter 3 

LITERATURE REVIEW FOCUSING 
ON DATA PARTITIONING METHODS 
 

3.1  Introduction 

Over the last four decades there has been a plethora of publications on ANN. It is 

indeed a difficult task to include all of them in this literature review. However, 

here a general approach is followed by which most of the areas can be addressed 

with special focus on data partitioning. In general, literature on ANN can be de-

scribed in two ways depending on the researcher’s area of interest. The first cate-

gory includes contributions of the researchers on the development of ANN mod-

els such as finding novel approach to optimize the number of hidden neurons in a 

network, finding the best weight parameters of the network and finding the best 

connection links in a network. While the second category includes contributions 

of the researchers on the application of ANN models for example to speech rec-

ognition, fault diagnosis, financial forecasting etc. 

Talking about the first category, Teoh et al. (2006) estimated the necessary 

number of neurons in the hidden layer in a single hidden layer feedforward net-

work using the pruning/growing technique based on the singular value decompo-

sition.  Trenn (2008) derived explicit formulas for the necessary number of hidden 

units and its distributions to the hidden layers of the multi-layer perceptron (MLP) 



24 | P a g e  
 

network.  Gil et al. (2009) estimated the number of hidden neurons in recurrent 

neural networks for nonlinear system identification using singular value decom-

position. Ludermir et al. (2006) proposed an optimization methodology to esti-

mate the weights and architectures simultaneously of an MLP network. They 

combined simulated annealing (SA) (Kirkpatrick et al., 1983) and tabu search 

(TS) (Glover, 1986) for this work. Wan and Banta (2006) proposed a novel sto-

chastic (or online) training algorithm for neural networks, named parameter in-

cremental learning (PIL) algorithm. They claimed that the convergence speed and 

accuracy of PIL algorithm for MLP is measurably superior to the standard online 

backpropagation (BP) algorithm and the stochastic diagonal Levenberg–

Marquardt (SDLM) algorithm. Peng and Li (2008) introduced a new Jacobian ma-

trix to speed up the convergence of second-order learning algorithms such as Le-

venberg–Marquardt (LM), as well as to improve the network performance. This is 

achieved here by reducing the dimension of the solution space.   

Schuster and Paliwal (1997) proposed a bidirectional recurrent neural 

network (BRNN) which is an extension of the regular recurrent neural network 

(RNN). The usual limitation of using input information just up to a preset future 

frame in RNN is overcome by training in positive and negative time direction si-

multaneously. Fallahnezhad et al. (2011) proposed a novel hybrid higher order 

neural classifier (HHONC) which contains different high-order units, in contrast 

with conventional fully-connected higher order neural networks (HONN). The 

proposed method uses fewer learning parameters and allocates the best fitted 

model in dealing with different datasets by modifying the orders of different high-



25 | P a g e  
 

order units and updating the learning parameters.  Abiyev et al. (2011) proposed a 

novel type-2 neuro-fuzzy system for identification of time-varying systems and 

equalization of time-varying channels using clustering and gradient algorithms. It 

combines the advantages of type-2 fuzzy systems and neural networks.  

Let us next talk about the second category of research dealing with the ap-

plication of ANN models. The second category includes contributions on the ap-

plication of ANN models. In Chapter 1, Section 1.1 some of these applications 

were mentioned which included applications to the field of medicine, speech rec-

ognition, fault diagnosis, financial forecasting and so on. For these applications, 

the main contribution of the researchers has been the way input data preparation is 

carried out in different problem domains. This task can be often challenging while 

dealing with field data. Some of the most common anomalies include unwanted 

random noise, outliers and missing data.  

Input data preparation in ANN mainly comprises three steps (Yu et al., 

2007): (1) data cleaning which entails removing incomplete data, outliers and 

random noise; (2) input and output feature selection; and (3) data partitioning into 

three sub-groups, namely, training, validation and test datasets. One of the most 

prominent challenges faced by researchers is to divide the input data in a way 

such that the best generalization of the network is achieved. This is done by divid-

ing the input data into three subsets: (a) training data, (b) validation data and (c) 

test data. Researchers have performed data partitioning in mainly two ways, 



26 | P a g e  
 

namely, conventional data partitioning method and non-conventional data parti-

tioning method.  

In Section 3.2 and 3.3 of this chapter the conventional data partitioning 

methods and their issues will be discussed. In Section 3.4 and 3.5, the non-

conventional data partitioning methods and their issues are discussed. In Section 

3.6, a brief summary is provided while the point key issues are addressed next.  

3.2  Conventional Data Partitioning Methods 

The conventional data partitioning method entails dividing the entire dataset ran-

domly into either (a) training and test dataset or (b) training, validation and test 

dataset. Researchers have already proven serious issues with the conventional me-

thods. We shall discuss them in the next section. In this section we will discuss 

some of the literatures which have applied conventional data partitioning.   

Namia and Deyhimi (2011) applied ANN models to predict activity coef-

ficients at infinite dilution for organic solutes in ionic liquids (ILs). They ran-

domly divided the collected data into two groups, namely, 70% for training and 

30% for test data out of 916 activity coefficients. The training set is used to evalu-

ate the performance of the network and no cross-validation is performed.  

Keeratipibul et al. (2011) used ANN model to predict the relationship 

among the initial bacterial load, type of vegetable/fruit, types and concentration of 

sanitizer and residual microorganism levels after the sanitizing. They also ran-

domly divided the collected data into two groups, namely, 70% for training and 



27 | P a g e  
 

30% for test data. It was observed that the performance of neural models was 

clearly superior for the training data set and was reasonably good for the test data 

set. Although they invested time to optimize the network by varying the number 

of hidden neurons, they did not cross-validate the network using a validation data-

set. This is why they observed a significant drop in network performance from 

training to test dataset.  

Ray and Klindworth (2000) implemented ANN models to assess the pesti-

cide and nitrate contamination of rural private wells. Although they recognized 

the importance of data partitioning and made their training dataset large enough to 

represent the full population, they did not cross-validate their ANN models. They 

used four separate ANN models and also checked the sensitivity of their models 

by varying the number of hidden neurons. The training efficiency of the network 

was estimated at the best prediction accuracy level of 95% and 100% for the four 

models. It is quite possible that their networks had been over-fitted to the training 

data and hence, lacked generalization. This is one possible reason why they 

achieved prediction accuracy ranging from as low as 50% to 90% for the test data.  

Sahoo et al. (2006) applied feedforward ANN to assess pesticide contami-

nation in shallow groundwater. Although they were aware of the importance of 

cross-validation in ANN, they did not divide their data into three subsets. Instead 

they randomly divided their datasets into two datasets: (i) 65% for training and 

(ii) the remaining 35% for testing. They mentioned that because of unavailability 

sahoo
Inserted Text



28 | P a g e  
 

of enough data samples, it was not possible to make three representative data sets 

of the same population.  

He et al. (2011) implemented ANN model to estimate the monthly total ni-

trogen concentration in streams. They used 80% of the water quality data from 40 

rivers as a training dataset and 20% of the records as the validation dataset (they 

named it test set). The data for the test dataset (they named it validation set) were 

collected from the other 19 rivers, which the network had never used. Although 

they mentioned the importance of dividing the dataset in such a way that both 

training and test datasets are statistically comparable (Palani et al., 2008), it is not 

clear how they divided it.  

Sinha et al. (2007) applied backpropagation artificial neural network 

(ANN) in differentiating electroencephalogram (EEG) power spectra of syncopic 

and normal subjects. A classification accuracy of 85.75% for syncopic and 92% 

for normal subject was reported on the test dataset. Although the available dataset 

size is quite big (960 dataset), they have not utilized validation dataset for cross-

validation. 160 for training and 800 for testing of power spectrum values were 

used to evaluate the performance of ANN. Final network parameters were decided 

on training data alone for which they registered 100% accuracy. It is quite possi-

ble that their ANN model had extrapolated the classification results over a long 

range and lacked generalization abilities. In the next section inferences about the 

reported results is made and the issues with conventional data partitioning is dis-

cussed. 



29 | P a g e  
 

3.3  Issues with Conventional Data Partitioning Methods 

Cross-validation of the ANN model using the validation dataset is considered to 

be the most effective method to prevent over-fitting (Smith, 1993). The concept of 

over-fitting can be explained as follows: When test data is given as input to the 

trained network, the network error seems to be higher than the error obtained dur-

ing training. This is because of the fact that the network has learned to memorize 

the training data instead of generalizing it to new data samples. Thus it is essential 

that the whole dataset is divided into three sub-groups, namely, training, valida-

tion and test data instead of two sub-groups, namely, training and test data. Thus 

validation dataset is mandatory for cross-validation purpose.  In the previous sec-

tion, Keeratipibul et al. (2011), Ray and Klindworth (2000), and Sinha et al. 

(2007) have not performed cross-validation while training their networks because 

of which their networks have over-fitted to the training dataset. This is the reason 

why they obtained lower accuracy for the test data as compared to the training 

data.  

Satisfactory performance of the network cannot be guaranteed just by di-

viding the whole dataset into three sub-groups.  It is understood that in order to 

achieve a satisfactory performance, all three datasets must be true representative 

of the entire dataset. Statistical properties of each of these sub-groups must be 

taken into account to ensure this representativeness. Conventional data partition-

ing often compels the network to extrapolate results which may not be reliable 

enough (Minns and Hall, 1996; Tokar and Johnson, 1999). In general it is ex-



30 | P a g e  
 

pected that the test data must belong in the range of training data to avoid extrapo-

lation. This can only be ensured when the test data is statistically equivalent to the 

training dataset. In recent years researchers have tried to overcome this problem 

by proposing non-conventional data partitioning methods using genetic algorithm 

(GA), self organizing map (SOM) and fuzzy clustering (FC) etc. In the next sec-

tion some of the non-conventional data partitioning methods from the literature 

are discussed.  

3.4  Non-Conventional Data Partitioning Methods 

Bowden et al. (2002) had to deal with a case study to forecast salinity in the River 

Murray at Murray Bridge (South Australia) 14 days in advance.  They challenged 

the conventional random data partitioning by introducing GA and a SOM for data 

partitioning.  They checked the performance of their ANN model on a test dataset 

from July 1992 to March 1998. A reduction in error by 24.2% is reported for GA 

based data partitioning over the conventional data partitioning method. For SOM 

based data partitioning a reduction in network error by 9.9% is reported over the 

conventional data partitioning.   

Shahin et al. (2002) applied ANN models to predict the settlement of shal-

low foundations on granular soils in geotechnical engineering. Previously they 

implemented ANN models to the same problem using random data partitioning 

(Shahin et al., 2001 and Shahin et al., 2002). In the third attempt, they imple-

mented data partitioning methods like (1) data partitioning to ensure statistical 

consistency of the subsets; (3) data partitioning using self organizing map (SOM); 



31 | P a g e  
 

and (2) data partitioning using fuzzy clustering. When compared to random data 

partitioning method, the drops in mean absolute error of the network on test data-

set for the three methods was found to be approximately 1%, 20% and 30% re-

spectively.  

Samanta et al. (2004) applied genetic algorithm based data partitioning for 

their problem in estimating ore reserve based on sparse drill hole data for a placer 

gold property in Nome, Alaska. Statistical properties like mean and standard de-

viation were used to measure the degree of statistical agreement among the three 

sub-groups. Independent comparisons were made among three sub-groups for 

each of the input features. The closer the statistical agreement among the three 

sub-groups for input features, the better the performance of data partitioning. 

When genetic algorithm based data partitioning was compared with the random 

data partitioning, a relatively closer agreement in the former was observed. In an-

other paper by Samanta et al. (2004), a comparison was made between random 

data partitioning and SOM. A closer statistical agreement among training, valida-

tion and test datasets was found for most of the input feature vectors.  

May et al. (2010) compared random data partitioning with non-

conventional methods like self organizing map (SOM), genetic algorithm (GA) 

and DUPLEX method (Snee, 1977). The problem under investigation was the 

Friedman regression function with different distributions of the random variable 

and noise. They considered six different datasets based on such varying distribu-

tions. Their results in terms of network bias and variance showed better results for 



32 | P a g e  
 

self-organizing map as compared to the genetic algorithm and DUPLEX method. 

Overall, all the participating algorithms outperformed random data partitioning. 

Reeves and Taylor (1998) applied genetic algorithm to find an optimal subset of 

the training data, which was then used for training the network. Bowden et al. 

(2006) attempted to forecast chlorine residuals in a water distribution system us-

ing general regression neural network. They implemented GA based data parti-

tioning method to divide the available data into training, testing and validation 

dataset. The three sub-groups were made statistically representative subsets of the 

same population.  

Other unconventional methods to ensure the statistical representativeness 

are as follows. Kennard-Stone sampling or CADEX is one of the earliest algo-

rithms designed for data partitioning (Kennard and Stone, 1969). In this approach 

data samples are drawn iteratively based on selecting points farthest away from 

those already included in the sample, and ensuring maximum coverage of the da-

ta. Another improvised version of CADEX is the DUPLEX method (Snee, 1977). 

It is widely used in several ANN applications (Sprevak et al., 2004; Despagne and 

Massart, 1998). The computational complexity of this algorithm sometimes pro-

hibits its use on larger datasets. Bowden et al. (2005) used the Kolmogorov-

Smirnov statistic to match the distribution of each variable across the sampled da-

tasets.  

3.5  Issues with Non-Conventional Data Partitioning Methods 



Optimization based data partitioning like genetic algorithm (GA) may not be suit-

able for large datasets since the total number of combination of data split can be a 

gigantic task to explore. For an input dataset only having only 60 data points to be 

divided into 40 training, 10 validation and 10 test datasets, there will be ways of 

arranging the data points. 

2 06 0 ! 7 . 7 1 0
4 0 ! 1 0 ! 1 0 !

= ×  

Although self organizing map (SOM) and fuzzy clustering (FC) based data 

partitioning have better performance, they are computationally expensive too. 

This is because SOM and FC are based on the principle of iterative learning and 

optimization. In their review of the literature, Yu et al. (2007) observed that 50-70 

percent of the time and effort was spent in data preparation in complex data 

analysis projects. In the reported non-conventional data partitioning methods, the 

computational complexity was never taken into consideration.  More descriptions 

on these algorithms are given in Chapter 5. Standard classification or clustering 

algorithms like SOM (Kohonen, 2001), fuzzy clustering (Kaufman and 

Rousseeuw, 1990; Bezdec, 1981), K-mean (MacQueen, 1967), and vector quanti-

zation (Linde et al., 1980) are designed to form natural clusters (See Chapter 4) at 

their best performance. Some of these natural clusters can be big in the case of 

large multivariate datasets, such that the extreme data points are statistically far 

away from the mean. This may affect the most fundamental assumptions of data 

partitioning that data points are in close statistical agreement inside each sub-

groups.  
33 | P a g e  

 



34 | P a g e  
 

3.6  Summary 

It is indeed a difficult job to include all the areas of research in ANN in one chap-

ter considering the humongous amount of publications existing in the literature. 

However, in this chapter, an overall approach or compromise has been tried to be 

achieved by considering some of the work from these areas. The approach 

adopted will help lay the foundation in the next chapter to the problem of data 

partitioning and its importance in ANN research. Both conventional and non-

conventional data partitioning approaches and their drawbacks have been dis-

cussed from the literature. Some of the areas related to weight and architecture 

optimization, novel learning algorithms to improve convergence and speed has 

also been touched upon in this chapter.  

 

 



35 | P a g e  
 

Chapter 4  

THE PROPOSED AND REPORTED 
DATA PARTITIONING METHODS 
FOR COMPARISON 
 

4.1  Introduction 

In Chapter 3 several existing issues with reported data partitioning methods were 

mentioned. Through this research, the objective is to address some of these issues. 

Considering the fact that it is not possible to address everything, two specific 

goals are focused particularly in this work: (1) to minimize the computational 

complexity in terms of CPU time; (2) to achieve better model performance in 

terms of prediction accuracy. Both of these objectives may be achieved by either 

making changes to the existing algorithms or developing a new algorithm. In this 

work the second approach is adopted. In this chapter the proposed custom design 

clustering algorithm (CDCA) is discussed in detail.  

There are mainly three approaches followed by researchers to counter the 

problems in random data partitioning: (1) stratified data partitioning (SDP) based 

on self organizing map (SOM) (May et al., 2010 and Samanta et al., 2004) and 

fuzzy clustering (FC) (Bowden et al., 2002); (2) optimized data partitioning 

(ODP) based on genetic algorithm (GA) (Shahin et al., 2004); (3) data partitioning 

to ensure statistical consistency of the subsets (Shahin et al., 2004 and Bowden et 



36 | P a g e  
 

al., 2005). From the literature review, it is observed that the SDP class algorithms 

have given better network performance when compared to the other two catego-

ries (Shahin et al., 2002 and May et al., 2010). On the other hand ODP method 

based on GA has performed better on one occasion over the SDP method based 

on SOM (Bowden et al., 2002). ODP methods are not suitable for large datasets 

since the search space can be humongous. As mentioned in Chapter 3, for a data-

set of 60 data samples, the search space in ODP class can be in 1020.  

Being data driven method, ANN models are often required to handle large 

datasets. In this work, a large dataset is defined as a dataset having more than 800 

data samples. In reality it is not very rare to encounter datasets having data points 

in the multiple of thousand. In other words, the first objective of minimizing 

computational complexity cannot be achieved using the ODP method. On the 

other hand, the SDP class uses a strategy in which the whole dataset is stratified 

into smaller clusters and then data points are extracted from each of these clusters. 

In the next section a detailed discussion is given on the SDP approach since the 

proposed method belongs to the SDP category. 

In Section 4.2 the challenges and issues with the stratified data partitioning 

are discussed. Section 4.3 presents the motivation and basic structure of the pro-

posed clustering algorithm. The data sampling scheme used for data partitioning 

is discussed in Section 4.4. Section 4.5 includes the general steps of the proposed 

data partitioning method. In Section 4.6, a performance comparison has been pre-



37 | P a g e  
 

sented with respect to the reported algorithms. Eventually, a summary of this 

chapter is given in Section 4.7. 

4.2  Problem Statement 

The SDP methods share similar principles with the “divide and conquer” algo-

rithm (Rugina and Rinard, 2001). A “divide and conquer” algorithm works by 

breaking down a problem into two or more sub-problems of the same (or related) 

type, until these become simple enough to be solved directly. The solutions to the 

sub-problems are then combined to give a solution to the original problem.  

Similarly instead of extracting data into training, validation and test data from the 

entire dataset (all inputs and outputs data points), it is first divided into smaller 

clusters in Step 1, as shown in Figure 4-1.  This strategy helps to maintain better 

statistical agreements among training, validation and test datasets. In Step 2 data 

points are sampled into three sub-groups from each of these clusters. 

Standard clustering algorithms like SOMs and fuzzy clustering are em-

ployed for this job. Allocation rules like equal allocation (Bowden et al., 2002), 

proportional allocation (May et al., 2010) and Neyman allocation (Cochran, 1977; 

May et al., 2010) are implemented in Step 2. These allocation rules differ from 

each other by the way the ratio of data samples (to be collected from each of these 

clusters) is calculated. But once this ratio is finalized, data samples are extracted 

in a random fashion as in random data partitioning.       

 



38 | P a g e  
 

Stratified data space 

Two dimensional data space 

Validation  
data 

Test 
data 

Data subsets drawn using  
data allocation rules 

Training  
data 

 

 

 

 

 

 

 

Figure 4-1  Schematic diagram of SDP data partitioning 

Although researchers believed that data points in any individual cluster are 

in close statistical agreement, it is not always true since some clusters can have 

very large spatial territory. Standard classification or clustering algorithms like 

SOM (Kohonen, 2001), fuzzy clustering (Kaufman and Rousseeuw, 1990; Bez-

dec, 1981), k-mean (MacQueen, 1967), and vector quantization (Linde et al., 

1980) are designed to form natural clusters. The stratified data space in Figure 4-1 

illustrates an example of natural clustering or clusters. Some of these natural clus-

ters can be very large, such that the extreme data points are far away from the 

geometric center or statistically far away from the mean from statistical point of 

view. This will invalidate the assumptions made in Step 1 that data points are in 

close statistical agreement inside the stratum. Now it is easily understood that the 

goal of the clustering algorithm in SDP approach is not finding natural clusters 

but smaller clusters irrespective of its natural orientation in the data space which 

will ensure the statistical agreement. It is not possible to obtain such customized 

clusters by using standard clustering algorithm. Thus a novel clustering algorithm 



is proposed in this work. The proposed algorithm is specifically designed to over-

come the limitations of reported algorithms like SOM and FC. In the subsequent 

section the proposed CDCA clustering method is discussed.   

4.3  The Proposed CDCA Data Clustering Algorithm 
 

The goal of this custom designed clustering algorithm (CDCA) are as follows: (1) 

to obtain customized clusters having close statistical agreement; (2) to work faster 

in terms of CPU time as compared to its competitors like SOM and FC; (3) to 

successfully integrate CDCA in the overall data partitioning process; and (4) to 

have better performance relative to the reported DP methods. Table 4-1 illustrates 

the nomenclature of symbols used in the proposed data clustering algorithm. 

Table 4-1  Nomenclature of the proposed data clustering algorithm 

Notation Definition 

d Territory size or the Euclidian distance between the representative 
object nk and its boundary where k is the k-th cluster. 

lℜ  l-dimensional Euclidian space 
nk Representative object of cluster k, where k=1,2,…,m and m is the 

number of clusters. 
xi Data point i, where i = 1,2,…,r, where r is total number of data 

points in the entire dataset 
wk

(q) q-th weight vector of representative object nk, where 0 ≤ q ≤ p and 
p is the total number of data points in cluster k 

t Updating coefficient 
s  Average silhouette width 

SC Silhouette coefficient or maximum average silhouette width 

( )is x  Silhouette value of data point xi

( )ia x  Average Euclidian distance of data point xi to all other data points 
of the same cluster 

( )ib x  Lowest average inter-cluster Euclidian distance of data point xi  

( )id x  average inter-cluster Euclidian distance of data point xi from any 
cluster k 

39 | P a g e  
 



*Notations in bold are vectors. 

4.3.1  Motivation 

The proposed CDCA algorithm is motivated to address the shortcomings of the 

reported SDP algorithms. The reported algorithms like self organizing map 

(SOM) and fuzzy clustering (FC) are designed to form natural clusters. In case of 

large multivariate datasets which is often the case in most data driven research, 

these natural clusters can be large enough such that two extreme data points may 

be statistically far from each other. This violates the most fundamental notion of 

stratified data partitioning which relies on the assumption that data points in each 

cluster are in close statistical agreement. The above discussion is further illus-

trated with the help of a two dimensional dataset in Figure 4-2. 

x 
x 

x 
x

x
x 

x 

x
x

x x
x 

x
x

x 
x 

x
x

x
x

x

x

x

x

x 

x

x

x
x

x

x 
x

x 

x 

x 

x 

xx 
xx

x

x 

x

x
x
x

x

x
x
x
x

x
x x

x

x

x
x x

x x
x 

xx 
x

x 

x-component→ 

y-
co

m
po

ne
nt
→

 

data point i 

data point j 

cluster 1 

cluster 2 

cluster 3 

data point k 

 

Figure 4-2  Example dataset to illustrate natural clustering 

The example dataset in Figure 4-2 has three natural clusters which can be 

40 | P a g e  
 



41 | P a g e  
 

obtained by using the reported clustering algorithms.  In cluster 1, data point i, 

data point j and data point k are far away from each other, thus, are not in a close 

statistical agreement. When data points are sampled, it is possible that data point i 

is sampled into training dataset, data point j is sampled into validation dataset and 

data point k is sampled into test dataset. But based on the desired statistical 

agreement, data point j and data point k are not the true representative of data 

point i. Such extreme data points will have an adverse effect on the statistical 

properties (mean µ and standard deviation σ) of each subset (training, validation 

and test). Cluster 2 and cluster 3 are smaller clusters, hence, are statistically in a 

better agreement than cluster 1. Thus, it is easily understood that smaller clusters 

have a better statistical agreement between subsets.  

Standard clustering algorithms like SOM and FC are designed to form 

clusters of different cluster or territory sizes. More about fuzzy clustering and self 

organizing map is discussed in Section 4.6. If the standard clustering algorithms 

are used and a large number of clusters are specified, though smaller clusters are 

achieved, we still end up with clusters of different territory sizes. This will have 

an adverse effect on the statistical properties, like, the standard deviation of clus-

ters. Thus, in this research the aim is to develop a strategy to obtain clusters of 

equal territory size. In Figure 4-3 the ideal desired clusters for the above men-

tioned dataset are redrawn.  These clusters being equal in territory size are ex-

pected more likely to maintain a close statistical agreement.  

 



 

x 
x 

x 
x

x
x 

x 

x
x

x x
x 

x
x

x 
x 

x
x

x
x

x

x

x

x

x 

x

x

x
x

x

x 
x

x 

x 

x 

x 

xx 
xx

x

x 

x

x
x
x

x

x
x
x
x

x
x x

x

 

x
x x

x x
x 

xx 
x

x 

cluster 1 

cluster 5 

cluster 6 

data point i cluster 2 

cluster 3 
cluster 4 

x-component→ 

representative object  n2 

y-
co

m
po

ne
nt
→

 

 

Figure 4-3  Example dataset to illustrate customized clustering 

In the literature, the vast majority of clustering algorithms are mainly of two 

types, namely, partitioning and hierarchical (Duran and Odell, 1974). Partitioning 

method classifies the data into k clusters only. On the other hand hierarchical al-

gorithms deal with all values of k in the same run. The proposed CDCA method is 

motivated from the partitioning class of clustering algorithm. Any clustering algo-

rithm essentially satisfies the following two requirements:  

 
• Each object must belong to exactly one cluster which means all clusters 

together add up to the entire dataset.  

• Each cluster must contain at least one data point or object which means 

there are at most as many clusters as there are data points.  

 
To satisfy the above requirement, data points in the overlapped zone in 

Figure 4-3 (for example, data point i in cluster 2) can be assigned to either cluster 

42 | P a g e  
 



1 or cluster 2. This decision is made based on the lowest Euclidian distance (See 

Section 4.3.2 for definition) between data point i and the representative objects n1 

and n2 of cluster 1 and 2 of that cluster. Representative object nk, where k =1,…,m 

and m represents the number of clusters,  is the geometric center of the cluster and 

can be represented by a hypothetical data point wk. In reported clustering algo-

rithms (FC, SOM) the number of clusters m, is given by the user. Thus, the user 

has no direct control over the territory size. However, in the proposed clustering 

algorithm, the goal is to obtain equal territory size for each cluster.  The geometri-

cal shape of the territory is a circle for a two dimensional data in contrast to a 

sphere for a three dimensional data. In this research, work has been carried out on 

datasets having more than three dimensions or inputs. Thus, two important factors 

in the proposed algorithm are:   

• A suitable distance metric to work in higher dimensional space 

• A territory size d for which data points are sampled while maintaining the 

closest statistical agreement among the three sub-groups.  

 
4.3.2  Selecting a Suitable Distance Metric and Territory Size d 

43 | P a g e  
 

1 2, ,..., ,
Ti i i i

nx x x⎡ ⎤= ⎣ ⎦x
T

A proper distance metric is required to measure the spatial dissimilarities among 

data points in higher dimensional space. From literature, we select the most com-

monly used distance metric, “the Euclidian distance,” since we are interested in 

the actual spatial distance. Euclidian distance between data point 

and 1 2, ,...,j j j j
nx x x⎡ ⎤= ⎣ ⎦x is defined as  



44 | P a g e  
 

)( ) ( ) (2 2

1 1 2 2( , ) ..............i j i j i j
n nd i j x x x x x x= − + − + + −

2

(

 

Territory size d is defined as the Euclidian distance between the representative 

object nk, where k =1,…,m and m represents the total number of clusters and its 

boundary. In the proposed algorithm territory size d is given by the user, thus, the 

boundary is indirectly set by the user as well. Representative object nk is repre-

sented in the n-dimensional Euclidian space by weight vector )q

(

kw , where k is 

cluster k; 0 ≤ q ≤ p and p which is the total number of data points in cluster k 

represents the updation number. During the implementation process of the algo-

rithm, )q
kw  gets updated every time a new data point is introduced to the cluster. 

In the next section, we will discuss the updating process.  

The territory size d of each cluster is equal which means the n-tuple Euclidian 

space is shared equally by all clusters. The number of objects or data points in 

each cluster may vary depending on their corresponding spatial locations.  This 

property helps in avoiding the formation of natural clusters and gives total control 

to the user to determine the size of the cluster. Since every cluster has identical 

territory size, the likelihood of agreement in standard deviation σ among clusters 

is more compared to the other reported clustering algorithms. This facilitates the 

use of sampling rules like equal allocation and proportional allocation which were 

not naturally suitable in the reported stratified data partitioning methods (May et 

al., 2010).  The choice of territory size d directly influences the number of clus-

ters. As the former grows bigger, the latter becomes smaller and vice versa. The 



minimum territory size dmin is obtained when the number of clusters k, is equal to 

the total number of input data points r. Similarly, the maximum territory size dmax 

is obtained when the number of clusters k, is equal to one.  

Previously, Shahin et al. (2004) and May et al. (2010) implemented sil-

houette coefficient SC (Rousseeuw, 1987) to find the optimal number of cluster k 

in FC and SOM. Silhouette coefficient SC measures the degree of membership of 

individual data points to the cluster they belong. In the proposed algorithm, sil-

houette coefficient SC is used to find the optimal territory size d. Silhouette coef-

ficient SC shall be discussed in Section 4.3.4. Before discussing the silhouette co-

efficient, the basic structure of the proposed algorithm for a particular territory 

size d is formed and discussed.  

4.3.3   Basic Structure of the Proposed Algorithm 

45 | P a g e  
 

l∈ℜ

For a specified or given territory size d, suppose we have an input data matrix of 

dimension l by r, where l represents the dimension of each data point and r repre-

sents the number of data points. Data points are represented as  

. Any data point i which includes both input and output vectors is represented 

. In the proposed algorithm, each cluster is to be repre-

sented by a representative object n

( )1 2, ,...,i r∈x x x x

1 2, ,...,
Ti i i i

lx x x⎡ ⎤= ⎣ ⎦x

k. The representative object nk which represents 

cluster k, has a magnitude or weight of ( )q
kw . It is obvious that the weight vector is 

l-dimensional and thus, is represented as ( )
,1 ,1 ,, ,...,

Tq q q q
k k k k lw w w⎡ ⎤ l= ∈ℜ⎣ ⎦w , where k 



represents the cluster number and q represents the updating number. The follow-

ing steps are adopted for the proposed clustering algorithm. 

In the proposed algorithm data points are randomly introduced into the 

Euclidian space. Let us assume that the 1st data point xi is randomly selected and 

introduced into the Euclidian space. The next step is to introduce the 1st represen-

tative object n1 with a weight vector ( )0
1w . Whenever a new representative object 

nk is introduced to the Euclidian space, its weight vector ( )0
kw  is assumed to 

be[ ]0,0,..., 0 T l∈ℜ . The weight vector ( )0
1w is updated using the equation 

( ) ( ) ( )0
1 1 1( itw = w + x - w1 0 ) , where t is the updating coefficient which can vary from 

0 ≤ t ≤ 1.  

A higher value of t close to 1 (we have used 0.9) is preferred when the repre-

sentative object nk is introduced for the first time. This will bring the representa-

tive object n1 in close proximity of data point xi. At this stage, representative ob-

ject n1 has one data point in its territory. The input data matrix contains all data 

points except data point xi and is represented as l by (r-1). Now, we randomly se-

lect the second data point xj from the data matrix l by (r-1). The following deci-

sion rule is implemented to cluster the second data point.  

• If the second data point xj falls inside the boundary of the representative 

object n1, i.e., Euclidian norm, ( )1
1 ,j d− ≤w x it is assigned to representa-

tive object n1.  At this stage, representative object n1 has data points xi and 

xj in its territory Since data point xj is already inside the territory of repre-
46 | P a g e  

 



sentative object n1, a low value of updating coefficient t is preferred. Thus, 

we update the weight vector ( )1
1w f representative object n o 1 using the eq-

uation ( ) ( ) ( )2 1 1
1 1 1

jtw ith a lower t close to zero (we have used 

0.25).   

= w + (x - w )  w

• If the second data point xj falls outside the boundary of representative ob-

ject n1, i.e., Euclidian norm, ( )1
1 ,j d− >w x representative object n2 is in-

troduced with weight vector ( )0
2w is assumed to be[ ]0,0,..., 0 T l∈ℜ . The 

weight vector ( )0
2w is updated using the equation ( ) ( ) (0 0

2 2 2
jtw = w + (x - w )1 ) , 

where t is the updating coefficient which can vary from 0 ≤ t ≤ 1. A higher 

value of t close to 1 (we have used 0.9) is preferred as in representative 

object n1.  

• The above two decision rules are applied to all other subsequent data 

points until the last data point is clustered.  

Overlap of boundaries of neighboring clusters is allowed in the proposed algo-

rithm. A data point in the overlap zone belongs to the cluster having the lowest 

distance between the data point and the representative object of that cluster. If a 

data point falls at equal distance from more than one representative object, prefer-

ence is given in a chronological order, i.e., representative object nk must be pre-

ferred before representative object nk+1  and so on. There is no specific argument 

for this preference. The flowchart of the proposed clustering algorithm is shown 

in Figure 4-4.  

47 | P a g e  
 



Start

If Euclidian norm, ( )1
1

j d− ≤w x  

Select the 1st input data point xi randomly from the input data matrix 
 l by r, where ( )1 2 3, , ,....i r∈x x x x x  

Introduce the 1st representative object n1
l∈ℜ  with 

weight vector ( )0
1w , having zero magnitude 

Update the weight vector of n1 using the following equa-
tion ( ) ( ) ( )1 0 0

1 1 10.9 iw = w + (x - w )  

Select the 2nd input data point xj randomly from the input data matrix l 
by (r-1) where ( )1 2 3 1, , ,....j r−∈x x x x x  

Select a territory size d 

yes no 

Update the weight vector of n1 using  
equation, ( ) ( ) ( )2 1 1

1 1 10.25 jw = w + (x - w )  

Update the weight vector of n2 using the following equ-
ation ( ) ( ) ( )1 0 0

2 2 20.9 jw = w + (x - w )  

Introduce the 2nd representative object 
n2

l∈ℜ with weight ( )0
2w , having zero magnitude.

End

Repeat the above steps until all the input data points are 
selected and placed in one of the cluster 

 

Figure 4-4  Flowchart of the proposed CDCA clustering algorithm 

48 | P a g e  
 



Special cases:  

• Suppose for a certain data point, more than one representative object satis-

fies the belongingness criteria, i.e. ( ) ,q i
k d− ≤w x

 
in this case preference is 

given to the closet representative object. 

 

• If a data point lies exactly at the same distance from more than one repre-

sentative object, preference is given in a chronological order, i.e. represen-

tative object n1 must be preferred before representative object n2  and so on 

depending on the number of representative objects. 

 
The above steps are repeated for any territory size d. As mentioned earlier, the 

territory size d was given by the user. Thus, it is important to know the optimal 

territory size doptimal. Theoretically, the minimum territory size dmin is obtained 

when the number of clusters k, is equal to the total number of input data points r. 

Similarly, the maximum territory size dmax is obtained when the number of clus-

ters k, is equal to one. But in this work our objective is to divide the entire data 

space into smaller clusters of equal size. These smaller clusters must carry a suffi-

cient number of data points to participate in the data allocation process in Step 2, 

as shown in Figure 4-1. From trial and error it is observed that  dmin can be limited 

to a value at which the number of clusters will be r/2. Similarly,  dmax can be lim-

ited to a value at which the number of clusters will be 2. In this work exhaustive 

search technique is used between dmin and dmax to find the optimal value of doptimal. 

Bowden et al. (2002) and May et al. (2010) utilized silhouette coefficient SC to 

49 | P a g e  
 



evaluate the number of cluster k in FC and SOM. The same strategy is utilized to 

optimize territory size d which is discussed in the next section.  

4.3.4  Optimization of Territory Size d using Silhouette Coefficient 

SC 

In the previous section the functioning of the proposed CDCA algorithm for a par-

ticular territory size d was explained. In this section silhouette coefficient SC is 

used to optimize the territory size d. Silhouette coefficient SC (Kaufman and 

Rousseeuw, 1990) is a very standard procedure to estimate the clustering quality 

irrespective of the clustering algorithm. Previously, May et al. (2010) and Shahin 

et al. (2004) implemented silhouette coefficient to estimate the clustering quality 

of SOM and fuzzy clustering algorithm. SC is calculated for every territory size d. 

The highest SC value gives us the optimal territory size doptimal, hence, the best 

clustering.  

SC can be defined as the maximal average silhouette width for the entire data 

set. There are several building blocks associated in calculating SC. First of all, 

silhouette value of every data point is calculated. For example, for any data 

point x

( )is x

i, in cluster n, is computed as follows: ( )is x

( ) ( )( )
max{ ( ), ( )}

i i
i

i i

b as
a b
−

=
x xx

x x
 

where and are given as  ( )ia x ( )ib x

50 | P a g e  
 



1( )
j

n
j i

i i

Cn

a
C ∈

≠

= −∑
x
x x

x x jx  

( ) min{ ( )}i ib c=x x  

and is expressed as                     ( )ic x 1( )
j

k

i i

Ck
k n

c
C ∈

≠

= −∑
x

x x jx  

where measures the average intra-cluster distance between data point x( )ia x i and 

rest of the data points in the same cluster, which is, cluster n, nC  is the total 

number of data points in cluster n,  measures the lowest  while  

measures the average inter-cluster distance between data point x

( )ib x ( )ic x ( )ic x

i and all data 

points that are not in cluster n, and kC  is the total number of data points in clus-

ter k. Lower  value indicates that data point x( )ia x i is closely packed with the rest 

of the data points in cluster n and vice versa.  

             Silhouette value  varies between [-1, 1]. When  is at its largest 

(close to 1), this implies that the intra-cluster distance  is much smaller than 

the smallest inter-cluster distance  . Therefore it may be said that data point 

x

( )is x ( )is x

( )ia x

( )ib x

i is well classified. Thus, a higher value of   indicates that the data point x( )is x i 

is more compactly clustered in the current cluster than its nearest neighboring 

cluster. When  is at its smallest (close to -1), this implies that the intra-

cluster distance  is much higher than the smallest inter-cluster distance 

 . Therefore it may be said that data point x

( )is x

( )ia x

( )ib x i is much closer to the neighbor-

51 | P a g e  
 



ing cluster than the currently assigned cluster. So we can almost conclude that the 

data point xi is misclassified. When a cluster is a singleton or consists of a single 

data point, is defined as zero. Likewise, of every data point is com-

puted. Then, the average silhouette width  is defined as follows:  

( )is x ( )is x

s

1

1 ( )
N

i

i
s s

N =

= ∑ x  

where N is the total number of data points in the cluster.  

Likewise, other  values can be calculated for all other territory sizes ds min 

≤ d ≤ dmax. Eventually, silhouette coefficient SC is obtained by finding the maxi-

mum . In the next section, the data sampling scheme adopted in this work shall 

be discussed. Kaufman and Rousseeuw (1990) recommended Table 4-2 to inter-

pret cluster quality based silhouette coefficient SC.  

s

Table 4-2  Subjective interpretation of the silhouette coefficient SC 

SC Proposed interpretation 

0.71-1.00 A strong structure has been found 

0.51-0.70 A reasonable structure has been found 

0.26-0.50 The structure is weak and could be artificial; please  
try additional methods on this dataset 

≤ 0.25 No substantial structure has been found 

 

In this section, how to obtain the optimal territory size d and thereby to 

find optimal clusters was discussed. Once this task is over, the next step in strati-

fied data partitioning is to extract data points from each of these clusters as men-
52 | P a g e  

 



tioned in Section 4.2. Data points are often sampled in a predefined data sampling 

scheme which is discussed in detail in the next section.  

4.4  Data Sampling Scheme 

In stratified data partitioning each stratum is sampled as an independent sub-

population, out of which data points can be randomly selected. Different alloca-

tion or sampling approaches can be applied to different strata, potentially enabling 

to use the best suited approach for each identified stratum. May et al., (2010) 

mentioned about different kind of allocation schemes such as equal allocation, 

proportional allocation and Neyman allocation in their work.  In this work, a 

combination of proportional allocation and heuristic rules to sample data points is 

used. In the following paragraph, the reason for this preference is explained.  

53 | P a g e  
 

h

Let us assume an example of clustered dataset. Suppose the number of 

stratums = h, total number of data points in any stratum s =Ns, where s=1,…..,h, 

thus, the total number of data points in the whole dataset 
1

s
s

N
=

=∑  . Suppose the 

data sampling ratios of training, validation and test dataset are  

, andtraining validiation testρ ρ ρ  in percentage.  
 

In equal allocation, equal numbers of data points are extracted from every 

stratum s irrespective of the stratum size as per the following formula: 

  Number of data points to be extracted from any stratum s to the training 



dataset 1
training s

s
N

h

ρ
==
∑

h

; for validation dataset   1
validation s

s
N

h

ρ
==

h

∑
; for test dataset  

1
test s

s
N

h

ρ
==
∑

h

 

It is to be noted that to achieve a true representation of every stratum, in-

dividual stratum size must be considered in the above formulas. This is why equal 

allocation has not been considered in this thesis.  

In proportional allocation, proportional number of data points is extracted 

from every stratum s depending on the stratum size as per the following formula: 

 Number of data points to be extracted from any stratum s to the training data-

set training sNρ= ; for validation dataset   validation sNρ= and for test dataset  test sNρ=  

Higher the number of data points in the stratum, higher is its representa-

tion in the extraction process. This is a more reasonable strategy considering the 

requirement of statistical representativeness, as mentioned in Chapter 3 Section 

3.3. This strategy has been adopted in this thesis.  

Neyman allocation is the same as proportional allocation except the fact 

that standard deviation of any stratum sσ , where s=1,…..,h, is considered in addi-

tion to the above formulas as follows: 

Number of data points to be extracted from any stratum s to the training 

dataset training s sNρ σ= ; for validation dataset   validation s sNρ σ= ; for test dataset  

54 | P a g e  
 



55 | P a g e  
 

test s sNρ σ=  

Neyman allocation gives consideration to the statistical spread in individ-

ual stratum but there is no clear evidence that such strategy is more effective in 

comparison to the proportional allocation.  Further since the proposed CDCA al-

gorithm tries to form stratum of approximately equal size (d value), considering 

standard deviation might not be necessary.  This is the reason why proportional 

allocation scheme has been selected to be used in this thesis.  

Two scenarios, namely, (70%:20%:10%) and (50%:40%:10%) has been 

selected.  In the second scenario, we divert 20% of training data to the validation 

dataset where the test dataset remains same as 10%. The idea is to use more data 

points for cross validation by reducing the training data in comparison with sce-

nario 1. This will have different impact on the network generalization ability. 

Thus, the effect of the proposed method at two different scenarios of network 

generalization is measured.   

Proportional allocation rules fail when , ,training s validiation s test sN N Nρ ρ ρ  are 

not integers. It is not possible to obtain clusters having data points as a multiple of 

ten which makes the sampling straight forward. This is where heuristic rules help 

the sampling process as earlier done by Bowden et al. (2002). In this thesis, the 

following heuristics rules have been proposed.      

For scenario 1:  70% training, 20% validation and 10% test                                                                          

• If the number of data vectors in any cluster is less than 9, we use Table 4-3 



56 | P a g e  
 

to extract data points.   

• If the number of data vectors in any cluster is more than 9, this number is 

expressed as a sum of the nearest multiple of 10 and the remainder. For 

example, 25 is expressed as 20 plus 5. Now, randomly select 5 data vec-

tors out of 25 and extract them according to Table 4-3.  

 
Table 4-3  70%:20%:10% heuristic rules 

Desired Actual No. of 
data 

points in 
cluster, 

‘c’ 

70% 
Training

20% Va-
lidation 

10% 
Test TrainingValidation Test 

1 0.7 0.2 0.1 1 0 0 
2 1.4 0.4 0.2 1 1 0 
3 2.1 0.6 0.3 2 1 0 
4 2.8 0.8 0.4 2 1 1 
5 3.5 1 0.5 3 1 1 
6 4.2 1.2 0.6 4 1 1 
7 4.9 1.4 0.7 5 1 1 
8 5.6 1.6 0.8 5 2 1 
9 6.3 1.8 0.9 6 2 1 

 

For scenario 2:  50% training, 40% validation and 10% test  

If the number of data vectors in any cluster is less than 9, we use Table 4-4 to ex-

tract data points.   

If the number of data vectors in any cluster is more than 9, we proceed as in sce-

nario 1 and extract them.  

 



Table 4-4  50%:40%:10% heuristic rules 

Desired Actual No. of 
data 

points in 
cluster, 

‘c’ 

50% 
Training

40% Va-
lidation

10% 
Test TrainingValidation Test 

1 0.5 0.4 0.1 1 0 0 
2 1 0.8 0.2 1 1 0 
3 1.5 1.2 0.3 2 1 0 
4 2 1.6 0.4 2 2 0 
5 2.5 2 0.5 3 1 1 
6 3 2.4 0.6 3 2 1 
7 3.5 2.8 0.7 4 2 1 
8 4 3.2 0.8 4 3 1 
9 4.5 3.6 0.9 5 3 1 

 

These heuristic rules are used so that the actual sampling would be close 

enough to the desired sampling ratio. Those data points that are multiples of 10 

are sampled into three sub-groups according to proportional allocation rule.  

4.5  The General Steps of the Proposed Data Partitioning Method 

In this section we combine the proposed CDCA clustering algorithm, the silhou-

ette coefficient and the data sampling scheme to form the proposed data partition-

ing method. The following steps are to be followed. 

Step 1: Start the clustering process using the CDCA algorithm mentioned in 

Section 4.3.3 for the minimum territory size dmin which is when the number 

of clusters would be equal to half of the total number of data points.  

Step 2: Evaluate the average silhouette value as mentioned in Section 

4.3.4.  

s

57 | P a g e  
 



Step 3: Perform Step 1 and 2 for ten more iterations to ensure that the best 

average silhouette value is obtained. (The number of iterations was de-

termined as ten only after ensuring the fact that these random iterations 

have negligible effect on the average silhouette value of the entire dataset.)  

s

Step 4: Perform the clustering using the CDCA algorithm for all other d 

values and repeat Step 2 and 3.  For convenience only integer values of d 

are used.  

Step 5: This process is continued until dmax is reached where dmax is the ter-

ritory size where the number of clusters is two.  

Step 6: The optimal territory size doptimal is obtained for the maximum aver-

age silhouette value which is also known as silhouette coefficient SC. s

Step 7: Determine the data sampling ratio (for example, training 70%: vali-

dation 30%: test 10%). Here two such ratios as mentioned in Section 4.4 are 

used for better illustration.    

Step 8: Use the proposed sampling scheme to extract data points into train-

ing, validation and test datasets, respectively. 

Step 9: Eventually the ANN model is trained, cross-validated and tested.  

4.6  Reported Data Partitioning (DP) Algorithms for Comparison 

In this study, three most widely reported data partitioning methods are considered 

for comparison with the proposed DP method. From the SDP class, two DP algo-

58 | P a g e  
 



rithms, namely, SOM and fuzzy clustering are selected while from the ODP class, 

one algorithm, namely, genetic algorithm (GA) is selected. The proposed algo-

rithm, SOM, fuzzy clustering belongs to the SDP class, thus, it is a natural choice 

for comparison in this work.  Genetic algorithm (GA) being one of the most re-

ported data partitioning algorithm is another choice. In the subsequent sections we 

describe each of these algorithms in details.   

4.6.1  Self Organizing Map Based Data Partitioning (SOMDP) 

 
Self organizing map belongs to the category of unsupervised neural networks, 

mainly used for clustering application. Over the years researchers have exploited 

this ability in stratified data partitioning process. SOM utilizes the competitive 

transfer function mentioned in Table 2-2 of Chapter 2. The network consists of 

two layers, namely, an input layer and a competitive layer. The output of competi-

tive layer is the output of the network. During the learning process input vectors 

are introduced to the network and all neurons in the competitive layer compete 

with each other in this process. The neuron closest to the input vector gives an 

output of one and is considered as the winner in this competition. All other neu-

rons return zero and hence, are considered as losers in this competition. Suppose 

the ith neuron wins, the ith row of the input weight matrix are adjusted with the 

Kohonen learning rule (Kohonen, 2001) as shown below.  

( ) ( 1) ( ( ) ( 1))w q w q p q w qα= − + − −  

where α is the learning rate; p is the input; q is the time sequence; and w is the 

59 | P a g e  
 



weight parameter. As more and more inputs are presented, each neuron in the 

layer closest to a group of input vectors soon adjusts its weight vector toward 

those input vectors. The neurons in the layer of a SOM are arranged originally in 

physical positions according to a topology function. The MATLAB 

(http://www.mathworks.com) functions gridtop, hextop or randtop can arrange the 

neurons in a grid, hexagonal, or random topology respectively. Distances between 

neurons are calculated from their positions with a distance function. There are 

four distance functions in MATLAB, namely, dist, boxdist, linkdist and mandist. 

For the research presented in this thesis, hextop and linkdist have been used after 

a few trial and errors.  A detailed discussion about SOM is given in Hagan et al. 

(1996) and Kohonen (2001). The following steps are adopted for implementing 

SOM into the data partitioning work.  

Step 1: Clustering process is started with a 2 by 2 hexagonal topology. MAT-

LAB function newsom is used for creating SOM network.    

Step 2: For an efficient learning, the network is trained for 1000 iterations. 

This may vary depending on the size of datasets and experience.  

Step 3: Once the available data are clustered, the average silhouette value is 

calculated. 

s

Step 4: Then, the topology is changed to 4 by 4 and step 2 to 3 are repeated. 

Step 5: Likewise, the average silhouette value is evaluated for 8 by 8, 16 by 

16 and 20 by 20 hexagonal topologies.  

s

60 | P a g e  
 

http://www.mathworks.com/


Step 6: The optimal number of clusters is obtained at the maximum average 

silhouette value  which is also known as silhouette coefficient SC . s

Step 7: Data sampling is done according to the proposed sampling scheme in 

Section 4.4.  

 Step 8:  Eventually the ANN model is trained, cross-validated and tested. 

4.6.2  Fuzzy Clustering Based Data Partitioning (FCDP) 

Fuzzy clustering aims to minimize the following objective function by finding the 

membership values :  ivu

2 2
, 1

2
1

1

( , )

2

n
k iv jvi j

n
v jvj

u u d i j
C

u
=

=
=

=
∑∑

∑
 

where represents the distance between data points i and j, where i , j = 

1,…,n;   is the membership of data point i to cluster v, where v = 1,…,k and k 

is the given number of clusters. The sum in the numerator ranges over all pairs of 

data points. The membership values are subject to the following constraints. 

( , )d i j

ivu

0ivu ≥  for i =1,…,n; v=1,…,k 

1iv
v

u =∑  for i =1,…,n 

These constraints mean that a membership cannot be negative and each data 

point belongs to all clusters with a certain membership value.  The total member-

ship value of a data point for all clusters is always one. Membership values of 

61 | P a g e  
 



each data points are evaluated by solving the above objective function. Data point 

i is assigned to cluster v if cluster v has the highest membership value for data 

point i. More details on fuzzy clustering algorithm can be found in (Kaufman and 

Rousseeuw, 1990). The following steps are adopted from Shahin et al. (2004) for 

implementing fuzzy clustering into the data partitioning work.  

Step 1: An initial number of clusters, not less than two, are chosen for the ini-

tial number of clusters. 

Step 2:  The available data are clustered using the fuzzy clustering technique. 

MATLAB function fcm is used.  

Step 3:  The average silhouette width  of the entire data set is calculated. s

Step 4: The number of clusters is increased by one and step 2 is repeated until 

remains constant or the number of clusters reaches 50% of the available da-

ta.  

s

Step 5: The optimal number of clusters is obtained at the maximum average 

silhouette value  which is also known as silhouette coefficient SC . s

Step 6: Data sampling is done according to the proposed sampling scheme in 

Section 4.4.  

Step 7:  Eventually the ANN model is trained, cross-validated and tested. 

4.6.3  Genetic Algorithm Based Data Partitioning (GADP) 

Previously, Bowden et al. (2002) implemented GADP to obtain the optimal data 
62 | P a g e  

 



partitioning. They conducted a random search of 100,000 combinations of data 

splits for their water resource data which consists of 2005 data samples. As an ex-

ample, suppose there are 10 data samples, each having a distinct index from 1 to 

10. If these index are divided randomly and data is allocated as follows: 60% for 

training, 20% for validation and 10% for testing the arrangements that can be pos-

sible solutions are as shown in Figure 4-5.  

63 | P a g e  
 

  

Figure  4-5  Random sampling of 10 data samples into training: 60%,  

validation: 20% and test: 20% 

For the water resource data of 2005 data samples, the total number of pos-

sible combinations are much higher than 100,000. However, Bowden et al. (2002) 

considered this to be a reasonable size search space. In our research, the largest 

dataset consists of 1000 data samples so we believe 10,000 would be a reasonable 

search space. It is understandable that the higher the search space, the higher is 

the computational time. Thus, a trade off is always made between CPU time and 

the quality of data partitioning. The following objective function is used.  

[1, 7, 3, 4, 5, 9] [2, 8] 

[1, 2, 3, 4, 9, 6] [5, 7] 

[1, 2, 3, 4, 5, 6] [7, 8] 
Training: 60% Validation: 20% Test: 20% 

[9, 10] 

[6, 10] 

[8, 10] 



, , , , , , , , , , , ,
1

n

i T i S i S i V i V i T i T i S i S i V i V i T
i

f μ μ μ μ μ μ σ σ σ σ σ σ
=

= − + − + − + − + − + −∑  

where , ,i T i S,μ μ  and ,i Vμ  denote the mean while , ,i T i S,σ σ  and ,i Vσ are standard 

deviations of input feature i, where i = 1, …, n ( n is the number of input features) 

in the training, validation and test dataset. The following steps are adopted for 

implementing genetic algorithm into the data partitioning work.   

Step 1: Select the percentage of data points in training, validation and test da-

taset. In this research, two different ratios have been used, namely, (1) 70% for 

training, 20% for validation and 10% for testing (2) 50% for training, 40% for 

validation and 10% for testing. 

Step 2: An initial population size of 20 is chosen out of the search space 

(10,000 solutions). In this population each member represents one candidate 

solution and a random arrangement of data samples in three sub-groups such 

as training, validation and test data.  

Step 3: Each of these solutions is evaluated using the above mentioned objec-

tive function and the best solution is recorded. 

Step 4: Using the roulette wheel scheme (Chong and Żak, 2008), best solu-

tions are selected into the mating pool until the mating pool has 20 members.  

Step 5: Linear crossover (0.5Si + 0.5Sj) with a crossover probability of 0.7 is 

used to perform crossover operation. Si and Sj represents random solution in-

dex and i , j = 1,….., 10,000.  

64 | P a g e  
 



65 | P a g e  
 

Step 6: Non-uniform mutation equation from Bowden et al. (2002) is used 

with a mutation probability of 0.01 to perform mutation.  

Step 7: Repeat Step 3 to Step 6 for 200 iterations or until the algorithm con-

verges, which ever happen earlier.   

Step 8:  Eventually the ANN model is trained, cross-validated and tested.  

Up to this point we have discussed the proposed DP method against the 

reported DP method. A brief summary is presented in the next section to conclude 

this chapter.  

4.7  Summary 

The SDP class data partitioning algorithms have certain advantages over the ODP 

class in terms of computational complexities. This is the reason why for this the-

sis, we were more inspired by the SDP class. The basic principle of SDP class is 

to divide the entire dataset into smaller clusters, thereby sampling data points into 

training, validation and test sub-groups. In this chapter the abilities of standard 

cluster algorithm like SOM and FC have been challenged to achieve smaller clus-

ters in which individual data points are in close statistical agreement inside a stra-

tum. A novel CDCA clustering algorithm is proposed which can divide the entire 

data space into smaller clusters of equal territorial size. This strategy will further 

enhance the potential of achieving better intra-cluster statistical agreement. The 

optimal territory size was decided by using silhouette coefficient SC. Proportional 

allocation rule is used for sampling data points from individual clusters. In the 



66 | P a g e  
 

next chapter the performance of the proposed data partitioning algorithm is com-

pared with the other existing data partitioning algorithms.  

 



67 | P a g e  
 

CHAPTER 5 

EVALUATION OF THE PROPOSED 
DATA PARTITIONING ALGORITHM 

5.1  Introduction 

In Chapter 4, we have explained the proposed data partitioning algorithm. In this 

Chapter, we need to evaluate and compare the performance of the proposed algo-

rithm with the reported data partitioning methods as mentioned in Chapter 4. 

Based on literature review, it is observed that SOM based data partitioning 

(SOMDP), fuzzy clustering based data partitioning (FCDP) and genetic algorithm 

based data partitioning (GADP) are the most widely used data partitioning algo-

rithms. This is the reason we have selected the abovementioned algorithms in this 

work. Other reasons of including SOMDP and FCDP were because of the fact that 

the proposed algorithm belongs to the same category (SDP). One of the reasons 

GADP is included in our comparison is because, it is one of the most studied DP 

algorithms. 

Previously researchers used statistical measures to check the validity of 

the DP algorithms (Bowden et al., 2002; Samanta et al., 2004 and Shahin et al., 

2004). After dividing the whole dataset into training, validation and test sub-

groups, mean and standard deviations of the three sub-groups were calculated and 

compared for every individual input feature vectors. Decisions on the best data 



68 | P a g e  
 

partitioning method were made on the number of input features vectors in close 

statistical agreement. The more the number of feature vectors that are in agree-

ments, the better the method is. Although such strategies holds good from a data 

partitioning or statistical point of view, but the final decision on the efficacy of 

the method must be based on the final performance of the ANN model. Some of 

the researchers have included ANN model performance in addition to the above 

decision strategy but greater importance was given to the decision strategy not the 

network performance. Very recently, May et al. (2010) used network bias and va-

riance of ANN model to assess the performance of data partitioning algorithm. In 

this work, network bias and variance are chosen to measure the validity of the 

proposed method. More discussions on the selection of performance measures are 

given in Section 5.5.As we mentioned before, we also compare the CPU time for 

computational complexity check.  

The computational complexity in terms of CPU time was never checked 

before for any of these reported data partitioning methods. In the literature com-

putational complexity for algorithms were checked by convergence speed or 

number of iterations and sometimes the big-O notation (Chong and Żak, 2008). In 

this research CPU time is a worth investing parameter for computational com-

plexity since data preparation is a time consuming process. Yu et al. (2007) 

showed that nearly (60-70) % time is spent on data processing in any data analysis 

job. As the input data size increases the processing time also increases signifi-

cantly. In this work datasets ranging from small, medium and large data size are 

tested.  



69 | P a g e  
 

Application of ANN has been mainly reported in three problem domains, 

namely, classification, function approximation and prediction. Therefore, three 

benchmark datasets one from each category is selected to validate the proposed 

methodology. For classification, ultrasonic experimental data of size (10 x 343) 

from Sahoo et al. (2007) is used; for function approximation, Friedman regression 

function data of (6 x 1000) from May et al. (2010) is used; for prediction, housing 

dataset of (14 x 506) from Blake and Merz (1998) is used.  For the size of data 

matrix, the first number represents the number of rows or the number of features 

including one output or the dimensions of a single data point. The second number 

represents the number of columns or the number of data points. Each of these da-

tasets are explained in the following sections. Finally, the impact of data sampling 

ratio is also taken into consideration by undertaking experiments at different pro-

portion of training, validation and test dataset using 70% : 20% : 10% and 

50%:40%:10% sampling ratios. In the following sections we explain the experi-

mental datasets.  

In the sections to follow, we present this chapter as follows: In Section 

5.2, 5.3 and 5.4 we describes the three datasets used in this work. We discuss the 

performance measures used in the work in Section 5.5. Section 5.6 presents the 

ANN model selection strategies implemented in this work.  In Section 5.7 we 

cover the results and discussions part. Finally, Section 5.8 we give a summary of 

this chapter.  

5.2  Friedman Regression Function Dataset 



May et al. (2010) used Friedman regression function to assess the performance of 

data partitioning algorithms in their work. In this work the same function is used 

as one of the dataset to analyze function approximation problem. The Friedman 

regression function as shown below for regression applications is difficult to ap-

proximate and has a five dimensional input space.   

2
1 2 3 4 55(2sin( ) 4( 0,5) 2 )y x x x x xπ ε= + − + + +  

where ε (Gaussian noise) follows the normal distribution with mean 0 and vari-

ance 0.8, denoted by N(0, 0.8). Input variables (we call features in this work) x1, 

x2, x3, x4 and  x5 were extracted from a mixture of two Gaussian distribution, gen-

erated by sampling 90% of data from the distribution xi ~ N(1, 0.6), and 10% of 

data from the distribution xi ~ N(-1, 0.6).  We generate 1000 data points for this 

dataset. Thus, the Friedman regression dataset becomes a matrix of the size of 

6x1000 which includes five input vectors and one output vector. 

They have set the benchmark by generating six different datasets gener-

ated by controlling the characteristics of the input domain, such as skewness, 

noise and correlation between input variables, and number of data. This is 

achieved by sampling independent input variables from independent normal dis-

tributions of different mean and variance. For our investigation we adapt similar 

distributions used for dataset I in May et al. (2010). Table 5-1 shows the mini-

mum and maximum values of the input, output variables, Gaussian noise and the 

corresponding feature trends. Each of these plot represents 1000 data samples on 

horizontal axis and their corresponding values on the vertical axis. 

70 | P a g e  
 



Table 5-1  Friedman regression dataset feature trends 

Fea-
tures 

Value 
range Individual feature trends of 1000 data sample   

Input 
 (x1) 

-2.1 
-  

2.66 
 

Input 
 (x2) 

-2.74 
-  

3.25 
 

Input 
 (x3) 

-2.57 
-  

2.94 
 

Input  
(x4) 

-2.54 
-  

2.93 
 

Input  
(x5) 

-3.04 
-  

2.77 
 

Noise  
(ε) 

-2.12 
-  

2.77 
 

Output 
(y) 

-21.29 
- 

200.54 
 

   

71 | P a g e  
 



72 | P a g e  
 

5.3  Housing Dataset  

We obtain housing dataset from Blake and Merz (1998). The housing dataset con-

sists of 506 data points which includes 13 input real estate parameters such as; per 

capita crime rate by town (input 1), proportion of residential land zoned for lots 

over 25,000 sq ft.(input 2), proportion of non-retail business acres per town (input 

3), Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) (input 

4), nitric oxide concentration (parts per 10 million) (input 5), average number of 

rooms per dwelling (input 6), proportion of owner-occupied units built prior to 

1940 (input 7), weighted distances to five Boston employment centers (input 8),  

index of accessibility to radial highways (input 9), full-value property-tax rate per 

$10,000 (input 10), pupil-teacher ratio by town (input 11), 1000(BBk - 0.63)  where 

Bk

2

B  is the proportion of blacks by town (input 12), % lower status of the population 

(input 13), and one output to predict as median value of owner-occupied homes in 

$1000's. Thus, the housing dataset becomes a matrix of the size of 14x506. The 

objective of this dataset is to predict the housing cost using ANN models. Table 

5-2 shows the minimum and maximum values of the input and output variables 

and the corresponding feature trends. 

 

 

 



Table 5-2  Housing dataset feature trends 

73 | P a g e  

Features Value 
range Individual feature trends of 506 data sample   

Input 
 1 

0.01 
-88.98  

Input 
 2 0-100  

Input  
3 

0.46-
27.74  

Input  
4 0-1  

Input 
 5 0.39-0.87  

Input 
 6 

3.56-8.78  

Input 
 7 2.9-100  

Input 
8 

1.13-
12.13  

Input  
9 1-24  

Input  
10 187-711  

Input  
11 

12.6-22  

Input  
12 

0.32-
396.9  

Input  
13 

1.73-
37.97  

Output 5-50  

 



74 | P a g e  
 

5.4  Ultrasonic Dataset  

An experiment was conducted in May 2007 by the Reliability Research Group. 

The experimental procedures and data collection details were documented in 

(Zhang et al., 2007). In the following the experimental setup and data collection 

procedure is briefly described. 

5.4.1  Experimental Setup 

Ultrasonic experimental setup available in Reliability Research Lab, University of 

Alberta was used to collect ultrasonic data. Figure 5-1 shows a snapshot of the 

experimental setup. The system consists of the OmniScan data acquisition system. 

Bi-slide system was used to achieve an automated one dimensional movement of 

the sensor. The Bi-slide system allows automated and accurate positioning of the 

ultrasonic transducer on the specimen's surface. A Windows-based GUI called 

COSMOS was used to program the bi-slide movement. It was programmed to li-

nearly move the transducer a distance of 30mm with a step size of 0.25mm. At 

every step, a pulse was sent to the OmniScan unit to mark the current position of 

the transducer. 

 

 

 

 



 
 
 

Figure 5-1  Ultrasonic experimental setup  

In the experiment seven 4140-steel specimens (185mm x 40 mm x 16 mm) 

were prepared using the electric discharge machine (EDM). Cracks of different 

depths were simulated by creating slots of different depths. The seven specimens 

have the slot depths as follows: 0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 in mm. The length 

of each EDM cut was 40 mm (each cut was a full length cut along one dimension 

of the specimen).  

5.4. 2  Data Collection Process 

An ultrasonic pulse was generated and transmitted to the specimen with a step 

size of 0.25mm of the Bi-slide movement. The step size was carefully chosen so 

that the ultrasound covers the whole path of its movement. The reflected ultra-

sonic echo was recorded 2048 times by the OmniScan. For a travel distance of 

30mm with a step size of 0.25mm, there were 121 positions for ultrasonic data 

75 | P a g e  
 



76 | P a g e  
 

collection. Thus, the data file has a size of 121x2048. For seven specimen, seven 

121x2048 *.oud data files were collected. Later the *.oud files were converted to 

*.mat files in the MATLAB environment. In this problem, the goal is to classify 

seven different levels of crack size (0mm, 0.5mm, 1mm, 1.5mm, 2mm, 2.5mm 

and 3mm) in a steel specimen using ANN models. Thus, we need to redesign the 

input data which will include input feature vectors for all seven classes. We de-

cide to extract statistical features such as root mean square (RMS) (input 1), peak 

(input 2), peak to peak (input 3), time (input 4), kurtosis (input 5), skewness (in-

put 6), shape factor (input 7), impulse factor (input 8), crest factor (input 9) and 

one output as crack size from the original data file. The definition and formula for 

each of these statistical features are given in Table 5-3.  

 

 

 

 

 

 

 

 

 



Table 5-3  Definition and formula for statistical features 

S/N Feature Definition Formula 
1 RMS It is defined as the square root of the mean 

of squares of samples, xi, where i = 1,…,n  2

1

n

i
i

x

n
==
∑

 

2 Peak It is defined as the peak value of absolute ( )max ix=  

3 Peak to 
peak 

It is the range between the lowest peak and 
the highest peak. 

( ) (max mini i )x x= −  

4 Time It is defined as the time of travel of the 
peak signal in time domain. This is calcu-
lated by dividing index of the peak signal 
by 100 in microsecond. Peak index varies 
from 1 to 2048.  

peak index sec100 μ=  

5 Kurtosis It is a measure of how outlier-prone a dis-
tribution is. The kurtosis of the normal 
distribution is 3. Distributions that are 
more outlier-prone than the normal distri-
bution have kurtosis greater than 3 and 
vice versa. 

( )

( )

4

1
22

1

1 mean

1 mean

n

i
i

n

i
i

xn

xn

=

=

−
=
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑
 

6 Skewness It is a measure of the asymmetry of the 
data around its sample mean. If 
skewness is negative, the data are spread 
out more to the left of the mean than to the 
right and vice versa. The skewness of the 
normal distribution is zero. 

( )

( )

3

1
3/22

1

1 mean

1 mean

n

i
i

n

i
i

xn

xn

=

=

−
=
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑
 

7 Shape 
factor 

It is defined as the ratio between the root 
mean square and the mean absolute 

1

RMS
1 n

i
i

xn =

=

∑
 

8 Impulse 
factor 

It is defined as the ratio between the peak 
and the mean absolute 

1

peak
1 n

i
i

xn =

=

∑
 

9 Crest 
factor 

It is defined as the ratio between the peak 
and the root mean square 

peak
RMS=  

 

After a careful observation it was found that signal from the crack was 

significant only between data collection position 33 to 81 for all seven specimen. 

After removing the irrelevant data the original data files were reduced to 

49x2048. From this dataset, 49 data samples from each of these 49 rows keeping 

77 | P a g e  
 



n as 2048 were extracted. Thus, for seven crack sizes there will be 343 (49x7) da-

ta points and hence, the input data matrix obtained become of the size of 9x343. 

The output vector is of the size of 1x343. Therefore, the ultrasonic dataset became 

a matrix of 10x343. Table 5-4 shows the input and output feature trends and their 

maximum and minimum values.  

Table 5-4  Ultrasonic dataset feature trend 

Features Value 
range Individual feature trends of 343 data sample   

RMS 0.5456-
10.5389  

Peak 2.0078-
99.3882  

Peak to 
peak 

4.0157-
187.7333  

Time 0.07-
17.28  

Kurtosis 3.6875-
52.3703  

Skewness -0.6842-
1.2078  

Shape 
factor 

1.8262-
4.4211  

Impulse 
factor 

6.1687-
42.3122  

Crest 
factor 

3.3778-
9.8089  

Crack 
size 0-3 mm  

78 | P a g e  
 



5.5  Performance Measures  

5.5.1  Bias and Variance  

In general, the validation process in any ANN research involves estimating the 

overall accuracy in percentage on test data (or in other words, the number of in-

stances the network has given a wrong estimation). Also, the mean square error 

(mse) of the network has been implemented in many reports which is calculated 

as follows: 

2

1

1 ( )
M

o t
m

mse x x
M =

= −∑  

where xo represents the network output; xt represents the target output and M is 

total number of output instances. As shown in Chapter 4, the step 2 of the SDP 

class involves random extraction of data points from individual clusters into train-

ing, validation and test dataset. It is possible that every time a new sampling is 

done, the mse may vary. Thus it is essential to capture this variation to give a ro-

bust conclusion.  May et al. (2010) used bias and variance to capture the bias and 

variance or sensitivity of ANN model. In this paper, we also use the same per-

formance measures.  

Network bias for test data is estimated as the hold out test error from N boot-

strap sampling (Twomey and Smith, 1998) of training, validation and test data 

independently for N models. We have selected N to be 100 for this study. Thus, 

the bias is determined as (Tong and Liu, 2005):  

79 | P a g e  
 



1

1Bias
N

n
n

mse
N =

= ∑  

which is the average mean square error of the model. Variance of the mean square 

error is given by    

2

1

1Variance [ ( )]
1

N

n
n

mse E mse
N =

= −
− ∑  

The lower the bias and the variance, the better is the performance of the 

ANN model and thus, the data partitioning algorithm.  

5.5.2  CPU Time 

Computational complexities of the three data partitioning algorithms have never 

been analyzed so far. Thus we consider the CPU time to analysis the computa-

tional complexity of the DP algorithms. In the case of stratified data partitioning 

(SDP) algorithms like SOMDP, FCDP and the proposed CDCADP algorithm, 

computational time is distributed among three activities, namely, time spent in 

clustering the data  , time spent in sampling into three sub-groups clusteringT samplingT , 

and time spent in bias/variance estimation for N bootstrap sampling . 

Thus, the total CPU time is determined as follows:  

/varbias ianceT

/ vartotal clustering sampling bias ianceT T T T= + +  

In the case of optimized data partitioning (ODP) class algorithm like GA, it is 

distributed among two steps, namely, finding the optimal partition , and _rand searchT

80 | P a g e  
 



time spent in bias/variance evaluation . Thus, the total CPU time is de-

termined as:  

/varbias ianceT

81 | P a g e  
 

ar_ /vtotal rand search bias ianceT T T= +  

5.6  Network Selection and Training 

The main objective of this study is to determine the efficacy of data partitioning 

algorithms not the ANN model. Therefore it is essential to consider a network 

which can handle all three kinds of datasets. For this study the feedforward back-

propagation (FFBP) network which has versatile application ranging from regres-

sion to classification problems was considered. Network design parameters like 

number of hidden layers, training algorithm were kept same for all three datasets. 

A single hidden layer with sufficient number of hidden neurons is considered to 

be efficient enough to deal with any kinds of datasets.  Therefore in this work a 

single hidden layer and the Levenberg–Marquardt back propagation (LMBP) 

training algorithm (MATLAB function, trainlm) was used.  

A two layer standard FFBP network was selected. MATLAB function 

newff was used for FFBP network. As discussed in Chapter 2 the input layer is 

not considered as one layer since there is no real processing in this layer. The hid-

den layer uses the log-sigmoid activation function in all processing neurons. Re-

searchers have used trial and error method to find the optimal number of hidden 

neurons in this layer.  The output layer uses the purelin activation function and 

has one neuron. The ANN toolbox of MATLAB (http://www.mathworks.com) for 

http://www.mathworks.com/


82 | P a g e  
 

design and analysis of the network has been used. Unless stated otherwise, the 

default parameters like learning rate, stopping criteria, etc suggested by the tool-

box were used.  

A rule of thumb for selecting the number of hidden nodes relies on the fact 

that the number of samples in the training set should at least be greater than the 

number of synaptic weights (Tarassenko, 1998). Fletcher and Goss (1993) also 

suggested that the appropriate number of nodes in a hidden layer ranges from 

(2n1/2 + m) to (2n + 1), where n is the number of input nodes and m is the number 

of output nodes.  

Our experience confirms the fact that the network performance drops sig-

nificantly if the number of hidden neurons used are less than the number of input 

nodes on complex data analysis. In this study, we have designed an experiment 

and set our range from n to 2n, where n is the number of input nodes. In this work 

three datasets of different sizes and domain are used, thus, the number of hidden 

neurons must be different for each of them. This number is evaluated by testing 

different number of hidden neurons in abovementioned range as follows: 

Each of the datasets is randomly divided into three datasets such as 70% 

training, 20% validation and 10% test data. Validation data is used to cross-

validate the training process. Table 5-5 shows network with varying number of 

hidden neurons and their test mean square error on each of the three datasets. For 

housing data and ultrasonic data, only alternate numbers of hidden neurons were 

tested.  



83 | P a g e  
 

Table 5-5  Varying hidden neurons and their test error 

Freidman regression data Housing data Ultrasonic data 
Network  
configuration 

Test er-
ror 

Network 
configuration

Test  
error 

Network  
configuration 

Test  
error 

5-5-1 44.74 13-13-1 43.41 9-9-1 0.08 
5-6-1 39.96 13-15-1 10.18 9-11-1 0.07 
5-7-1 45.51 13-17-1 17.63 9-13-1 0.1 
5-8-1 45.12 13-19-1 6.85 9-15-1 0.1 
5-9-1 44.24 13-21-1 37.11 9-17-1 0.08 
5-10-1 38.76 13-23-1 43.96 9-18-1 0.09 

 

Based on the lowest test mean square error results obtained in Table 5-5, it 

was decided to use network 5-10-1, 13-19-1 and 9-11-1 for Freidman regression 

data, housing data and ultrasonic data, correspondingly.  

5.7  Results and Discussions  

In this section, the results obtained for each of the three datasets is discussed.. All 

computational works were carried out on a single system to avoid any variance in 

processor speed. We have used a Window PC having Intel(R) Pentium(R) dual 

CPU T2370 @ 1.73 GHz processor and 32 bit operating system. The MATLAB 

R2008a software was used for all computation. Each of the three datasets is dis-

cussed in three separate sections for clarity. In the next section the results ob-

tained for Friedman regression dataset are explained. 

5.7.1   Friedman Regression Function Dataset Results 

This section is divided into two sections, namely, 70% training, 20% validation, 

10% test and the 50% training: 40% validation: 10% test.  For SOMDP, FCDP 



84 | P a g e  
 

and the proposed method clustering was done only once and then subsequently 

data points were sampled twice for both the ratios. Thus, time spent in clustering 

Tclustering is same for both cases. Table 5-6 shows the results for Friedman Regres-

sion Function Dataset. Even though the total CPU time comprises of Tclustering or 

Trand_search, Tsampling and Tbias/variance , Tsampling is same for SOMDP, FCDP and the 

proposed method. It is zero for GADP since there is no separate sampling activity 

in GADP. Thus, we combine Tsampling with Tbias/variance. 

For SOMDP, the total CPU time spent for clustering Tclustering was obtained 

as 2,509 sec. Silhouette coefficient SC was obtained as 0.33 at topology size of 2 

x 2. The number of clusters obtained at this topology was 4. For FCDP, the total 

CPU time spent for clustering Tclustering was obtained as 8,339 sec. Silhouette coef-

ficient SC was obtained as 0.39 when the number of clusters is 4. 

As mentioned in Section 4.5 of the previous chapter, the lowest territory 

size dmin was estimated as 1 and the highest territory size dmax was obtained as 

130. The proposed algorithm was evaluated for ten random iterations for which 

time consumed in clustering Tclustering  was obtained as 689 sec. Silhouette coeffi-

cient SC was obtained as 0.51 at an optimal territory size doptimal  of 62. The num-

ber of clusters at this territory size was obtained as 7.  

5.7.1.1  70% for Training: 20% for Validation: 10% for Test  

When compared to the ultrasonic dataset, this dataset is more than double in size 

when. Thus, the required CPU time was expected to be much higher. For GADP 

Trand_search  was registered as 18,535 sec which was much higher than the other me-



thods. The CPU time for random search based data partitioning method increased 

linearly as the dataset size became bigger. The difference in time spent on Tsampling 

and Tbias/variance for all four methods was almost negligible because of the fact that 

all four methods have used the same network. The total computational time was 

computed by adding Tclustering or Trand_search  with (Tsampling + Tbias/variance). The average 

drop in total CPU time for the proposed method was calculated as follows:  

_

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

3

100

avg drop

total SOMDP total proposed total FCDP total proposed total GADP total proposed

total SOMDP total FCDP total GADP

T

T T T T T T
T T T

=

− − −⎛ ⎞
+ +⎜ ⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
×

  

The average drop in the total CPU time was recorded as 83.5%. In terms 

of bias, the proposed method has registered the lowest value as 34.11. Bias for 

SOMDP was the highest as 44.80 among all the participating methods. Variance 

for the proposed method was recorded as 130.1, which was again the lowest. The 

highest variance was recorded for GADP.   

 

85 | P a g e  
 



86 | P a g e  
 

Table 5-6  Friedman dataset results for sampling ratios 70:20:10 and 50:40:10 

70% Training: 20% Validation: 10% Test 
Bias and variance CPU time in sec 

 bias variance Tclustering or Trand_search Tsampling + Tbias/variance Ttotal

SOMDP 44.80 467.6 2,509 241 2,750 
FCDP 38.41 143.2 8,339 250 8,589 
GADP 44.57 537.6 18,535 245 18,780
The proposed 34.11 130.1 689 239 928 

50% Training: 40% Validation: 10% Test 
Bias and variance CPU time in sec 

 bias variance Tclustering or Trand_search Tsampling + Tbias/variance Ttotal

SOMDP 55.16 471.1 2,509 196 2,705 
FCDP 46.41 237.1 8,339 202 8,541 
GADP 55.44 556.4 20,682 198 20,880
The proposed 39.21 191.2 689 202 891 

 

5.7.1.2  50% for Training: 40% for Validation: 10% for Test 

For this scenario, GADP, Trand_search was recorded as 20,682 sec which was higher 

than the previous scenario. The average drop in the total CPU time was recorded 

as 84.12%.  

As expected a higher bias was obtained for the 50:40:10 scenario when 

compared with the 70:20:10 scenario. Bias, for the proposed method was recorded 

as 39.21 which was the lowest among all the participants. FCDP has also regis-

tered the second best bias as 46.41. Variance for the proposed method was ob-

tained as 191.2 which was the lowest. The next best variance to the proposed me-

thod was again FCDP. GADP has registered the highest bias and variance. The 

proposed method became the overall winner in all three validation metrics for this 

dataset.  



87 | P a g e  
 

5.7.2  Housing Dataset Results 

Table 5-7 shows the results for housing dataset. For SOMDP, the total CPU time 

spent for clustering Tclustering was obtained as 1,380 sec. Silhouette coefficient SC 

was obtained as 0.38 at topology size of 2 x 2. The number of clusters obtained at 

this topology was 4. For FCDP, the total CPU time spent for clustering Tclustering 

was obtained as 1,318 sec. Silhouette coefficient SC was obtained as 0.41 when 

the number of clusters was 10. 

As mentioned in Section 4.5 of the previous chapter, the lowest territory 

size dmin was estimated as 13 and the highest territory size dmax was obtained as 

335. The proposed algorithm was evaluated for ten random iterations for which 

time consumed in clustering Tclustering was obtained as 944 sec. Silhouette coeffi-

cient SC was obtained as 0.6 at an optimal territory size doptimal  of 78. The number 

of clusters at this territory size was obtained as 13.  

5.7.2.1  70% for Training: 20% for Validation: 10% for Test  

For GADP, time spent on random search, Trand_search  was recorded as 8,259 sec 

which was much higher than any of the clustering based data partitioning meth-

ods. The average drop in CPU time was obtained as 45.35%.  

The proposed method has given the lowest bias and variance as 30.34 and 

198.4.  Thus, the proposed method has not only performed well in terms of CPU 

time but also on bias and variance.   

 



88 | P a g e  
 

Table 5-7  Housing dataset results for sampling ratios 70:20:10 and 50:40:10 

70% Training: 20% Validation: 10% Test 
Bias and variance CPU time in sec 

 bias variance Tclustering or Trand_search Tsampling + Tbias/variance Ttotal

SOMDP 44.13 360.3 1,380 291 1,671
FCDP 35.34 302.4 1,318 254 1,572
GADP 40.12 384.1 8,259 287 8,546
The proposed 30.34 198.4 944 269 1,213

50% Training: 40% Validation: 10% Test 
Bias and variance CPU time in sec 

 bias variance Tclustering or Trand_search Tsampling + Tbias/variance Ttotal

SOMDP 44.24 282.5 1,380 246 1,626
FCDP 41.03 287.2 1,318 251 1,569
GADP 43.67 316.7 8,675 265 8,940
The proposed 33.25 203.1 944 271 1,215

 

5.7.2.2  50% for Training: 40% for Validation:10% for Test 

For GADP it was recorded as 8,675 sec. Time spent in estimating bias and vari-

ance, Tbias/variance was again comparable. The average drop in CPU time was com-

puted as 44.74%.  

Bias and variance for the proposed method were registered as 33.25 and 

203.1 respectively which were the lowest. As expected, bias for all the participant 

methods has increased for this scenario. Thus, the proposed method has given 

both the lowest bias and variance among all the participants.  

5.7.3  Ultrasonic Dataset Results 

Table 5-8 illustrates bias, variance and CPU time obtained for this scenario. For 

SOMDP, the total CPU time spent for clustering Tclustering was obtained as 918 sec. 



89 | P a g e  
 

Silhouette coefficient SC was obtained as 0.44 at topology size of 2 x 2. The 

number of clusters obtained at this topology is 4. 

For FCDP, the total CPU time spent for clustering Tclustering was obtained 

as 274 sec. Silhouette coefficient SC was obtained as 0.48 when the number of 

clusters was 5. 

The lowest territory size dmin  was estimated as 3 and the highest territory 

size dmax was obtained as 60. The proposed algorithm was evaluated for ten ran-

dom iterations for which time consumed in clustering Tclustering  was obtained as 88 

sec. Silhouette coefficient SC was obtained as 0.54 at an optimal territory size dop-

timal  of 50. The number of clusters at this territory size was obtained as 5.  

5.7.3.1  70% for Training: 20% for Validation: 10% for Test 

For GADP Trand_search  was registered as 5,160 sec which was again higher than the 

other methods. There was almost an average drop of 69.54% in total CPU time for 

the proposed method when compared with its competitors.  

Although GADP has given the lowest bias as 0.18 for this scenario, the 

variance was higher than the rest of the competitors. A higher value of bias indi-

cates a higher mean of ‘mse’ for the 100 instances of bootstrap sampling. A high-

er value of variance indicates that the classifier is more unstable and vice versa. 

Although the proposed method is the second best in terms of bias, next to GADP, 

in terms of variance it has performed better than rest of the competitors.  

 



90 | P a g e  
 

Table 5-8  Ultrasonic dataset results for sampling ratios 70:20:10 and 50:40:10 

70% Training: 20% Validation: 10% Test 
Bias and variance CPU time in sec 

 bias variance Tclustering or Trand_search Tsampling + Tbias/variance Ttotal

SOMDP 0.20 0.003 918 171 1,089 
FCDP 0.20 0.003 274 182 456 
GADP 0.18 0.004 5,160 180 5,340 
The proposed 0.19 0.002 88 189 277 

50% Training: 40% Validation: 10% Test 
Bias and variance CPU time in sec 

 bias variance Tclustering or Trand_search Tsampling + Tbias/variance Ttotal

SOMDP 0.21 0.004  918 182 1,100 
FCDP 0.25 0.003 274 168 442 
GADP 0.31 0.005 4,141 179 4,320 
The proposed  0.2 0.003 88 185 273 

 

5.7.3.2  50% for Training: 40% for Validation: 10% for Test  

For this scenario, the CPU time for GADP in random search, Trand_search was ob-

tained as 4,141 sec which was still higher than the other three participants. Time 

spent for Tsampling and Tbias/variance were again comparable among the competitors. 

There was an average drop of 69% in total CPU time when compared with its 

competitors.  

In general, it is expected that when number of training data points are reduced, the 

network performance drops. The bias for the proposed method was registered as 

0.2 but the next best bias was obtained for SOMDP which was 0.21. As shown in 

Table 5-8, variance has gone up by 0.01 for SOMDP, GADP and the proposed 

method. However, for FCDP variance has remained unchanged at 0.003.  



91 | P a g e  
 

Over all, it can be concluded that the proposed method requires much lower 

computational time to give similar or even better performance for both the scenar-

ios. The main observations in this study are listed as follows: 

• The average reduction in CPU time recorded for the Friedman regression 

is 83.5% for 70:20:10 and 84.12% for 50:40:10 scenarios. 

• The average reduction in CPU time recorded for the housing datasets is 

45.35% for 70:20:10 and 44.74% for 50:40:10 scenarios.  

• The average reduction in CPU time recorded for the ultrasonic datasets is 

69.54% for 70:20:10 and 69% for 50:40:10 scenarios. 

• In terms of network performance, the proposed method has always regis-

tered lowest variance for all three datasets which means it is the most sta-

ble.  

• On the other hand, GADP has always registered the highest variance.  

• In terms of bias, the proposed method has given the lowest bias for the 

Friedman regression and the housing datasets.  For the ultrasonic dataset, 

it is the second best for 70:20:10 scenario and the best for 50:40:10 sce-

nario among all the participants.  

• From the above discussions, it can be concluded that the proposed method 

has given an overall better performance than the existing data partitioning 

methods. 

5.8  Summary 



92 | P a g e  
 

This chapter included a detailed discussion of the three dataset used in this work.  

The input and the output features and their corresponding trend were also plotted. 

The ultrasonic experimental data was briefly discussed with a main focus on the 

presentation of the procedure of data preparation from raw ultrasonic signals to 

the final input and output data. Then performance measures used in this research 

to compare the participating DP methods were discussed. Bias, variance and CPU 

time were described. For bias and variance we have used the same formula and 

bootstrap sampling rate of 100 as in May et al. (2010). The most versatile ANN 

model that is the FFBP network was considered in this research. This network has 

been used for both classification and function approximation problems in the lit-

erature. The optimal number of hidden neurons in the hidden layer is found by a 

performance check method. Eventually, we present the results and discussion 

part. In all three datasets it is observed that the proposed method has significant 

advantages over the other methods in terms of CPU time. In terms of bias and va-

riance we also observe better results in most cases.  

 



93 | P a g e  
 

Chapter 6 

CONCLUSIONS AND FUTURE WORK 

6.1  Conclusions 

Ensuring statistical agreement for the training, the validation and the test datasets 

is important for optimal performance of ANN models. In literature, various data 

partitioning schemes based on SDP as well as ODP methods are proposed to ac-

commodate this requirement.  From this study, it is observed that both reported 

SDP and ODP methods are computationally expensive. Further, SDP methods 

based on standard clustering algorithms are based on natural clustering algorithms 

which could adversely affect the data partitioning process in case of large data-

sets. To overcome these shortcomings, a novel data clustering algorithm has been 

proposed in this thesis to facilitate data partitioning for the ANN models. A data 

sampling scheme combining proportional allocation and heuristic rule is intro-

duced too.  

The proposed CDCA algorithm and the data sampling scheme are then in-

tegrated together in the data partitioning process. Finally, a comparison is made 

with the reported data partitioning methods like SOMDP, FCDP and GADP. 

Three datasets from different problem domains such as classification, function 

approximation and prediction are used in this study. It is observed that the pro-

posed method is more stable in terms of network variance. In terms of bias, it has 

given either the same or better performance in comparison to the existing meth-



94 | P a g e  
 

ods. It is also evident that there is a significant drop in the total CPU time. The 

lowest average drop in CPU time was recorded as 45.35% (70%:20%:10% sce-

nario) and 44.74% (50%:40%:10% scenario) for housing data. Similarly the high-

est average drop in CPU time was registered as 83.5% (70%:20%:10% scenario) 

and 84.12% (50%:40%:10% scenario) for the Friedman regression function data-

set. It may be noted that as the data size increases, the rate of increment in CPU 

time of data partitioning algorithms like SOMDP, FCDP and GADP increases 

significantly when compared to the proposed data partitioning method.  

6.2  Future Work 

The proposed idea is based on the principle of stratified data partitioning process. 

The entire dataset is divided into smaller pockets of clusters. It is understandable 

that data points in a smaller cluster will be statistically closer to one another than 

those in a bigger cluster. Although this idea has been exploited in the proposed 

algorithm presented in this thesis, it would be interesting to check the perform-

ance of other existing clustering algorithms like k-mean clustering, agglomerative 

nesting (Kaufman and Rousseeuw, 1990), etc. It is worth mentioning here, that 

any clustering algorithm can be employed to perform the stratified data partition-

ing. The performance will vary depending on the clustering ability.  

Also, ODP methods have not been exploited to a great extent in the litera-

ture. Researchers have only implemented genetic algorithm to do this job. Other 

existing random search algorithms like particle swarm optimization (PSO) (Ken-

nedy and Eberhart, 1995; Shi and Eberhart, 1998), ant colony optimization (ACO) 



95 | P a g e  
 

(Colorni et al., 1991 and Dorigo, 1992) can be used to perform this task. It would 

be interesting to compare the results among the ODP class algorithms. Consider-

ing the fact that the search space can be huge (for 60 data samples, it could be in 

1020), it is important to overcome this problem in future.  

The current study is based on a fixed ratio of training, validation and test 

data subsets. In this thesis, analysis has been carried out for the proposed method 

considering two scenarios namely, (70%:20%:10%) and (50%:40%:10%). In fu-

ture, we would like to develop an optimal strategy to estimate this ratio.   

From our experience and literature review, it has been observed that data 

preparation in ANN is an important task. Yu et al. (2007) showed that 50-70 per-

cent of the time and the effort are spent in data preparation in complex data analy-

sis projects. Thus, further research on overall data preparation is necessary in fu-

ture. However, since data preparation also depends on the kind of data available, 

it is difficult to generalize this process. To get rid of redundant features, feature 

selection can be one area to focus on. There has been a significant amount of ac-

tivity taking place for the last couple of decades in this area. But as mentioned 

earlier, this process is also data specific. Feature extraction techniques like princi-

pal component analysis (PCA) can be another way to get rid of redundant dimen-

sions of input features. However, feature selection or extraction techniques have 

not been used in this study. The focus here was to simply investigate the effect 

and efficacy of data partitioning methods. In future it would be interesting to im-

plement these techniques to the data preparation process.  



96 | P a g e  
 

While processing ultrasonic signals, raw ultrasonic data was used to pre-

pare the input and the output data. The fact that the signals for the lower levels of 

cracks such as 0.1mm are sometimes overlapped by the wedge noise was ignored. 

This problem can be resolved by using advanced signal processing techniques like 

wavelet transform (WT). Further improvements can be made in the classification 

results by filtering the raw ultrasonic signals.  

 

 

 

 

 

 

 

 

 



97 | P a g e  
 

BIBLIOGRAPHY  

1. Abiyev, R. H., Kaynak, O., Alshanableh, T. and Mamedov, F.,  A Type-2 
Neuro-Fuzzy System Based on Clustering and Gradient Techniques Ap-
plied to System Identification and Channel Equalization, Applied Soft 
Computing Journal, vol. 11, issue 1, pp. 1396-1406, 2011. 
 

2. Bezdec, J.C., Pattern Recognition with Fuzzy Objective Function Algo-
rithms, Plenum Press, New York, 1981. 

3. Blake, C. L. and Merz, C. J., UCI Repository of Machine Learning Data-
bases. Irvine, CA: Dept. Inf. Comput. Sci., Univ. California, 1998. 
 

4. Bodyanskiy, Y. and Popov, S., Neural Network Approach to Forecasting 
of Quasiperiodic Financial Time Series, European Journal of Operational 
Research, vol. 175, issue 3, pp. 1357-1366, 16 Dec. 2006. 

5. Bowden, G. J., Maier, H. R. and Dandy, G. C., Optimal Division of Data 
for Neural Network Models in Water Resources Applications, Water Re-
sources Research, vol. 38, no. 2, pp.2-1-2-11, 2002. 
 

6. Bowden, G. J., Nixon, J. B., Dandy, G. C., Maier, H. R. and Holmes, M., 
Forecasting Chlorine Residuals in a Water Distribution System Using a 
General Regression Neural Network, Mathematical and Computer Model-
ling, vol. 44, issue 5-6, pp. 469-484, 2006. 

7. Bowden, G. J., Dandy, G. C. and Maier, H. R., Input Determination for 
Neural Network Models in Water Resources Applications. Part 1- Back-
ground and Methodology, Journal of Hydrology, vol. 301, issue 1-4, 
pp.75-92, 2005. 

8. Chen, L., Sugi, T., Shirakawa, S., Zou, J. and Nakamura, M., Feature Ex-
traction for Mental Fatigue and Relaxation States Based on Systematic 
Evaluation Considering Individual Difference,  IEEJ Transactions on 
Electronics, Information and Systems, vol. 129, issue 2, pp. 302-307+16, 
2009.  

9. Chong, E. K. P. and Żak, S. H., An Introduction to Optimization, 3rd Ed, 
Wiley Inter-science Series in Discrete Mathematics and Optimization, 
John Wiley & Sons, Inc., Hoboken, New Jersey, 2008. 
 

10. Cochran, W. G., Sampling Techniques, New York: Wiley, 1977. 

 



98 | P a g e  
 

11. Colorni, A., Dorigo, M. and Maniezzo, V., Distributed Optimization by 
Ant Colonies, actes de la première conférence européenne sur la vie artifi-
cielle, Paris, France, Elsevier Publishing, 134-142, 1991. 
 

12. Dede, G. and Sazli, M. H., Speech Recognition with Artificial Neural Net-
works, Digital Signal Processing: A Review Journal, vol. 20 issue 3, 
pp.763-768, 2010. 
 

13. Despagne, F. and Massart, D. L., Neural Networks in Multivariate Cali-
bration, Analyst, vol. 123, pp. 157-178, 1998. 

14. Dhaka, V.S. and Singh, M.P., Simulating Biological Neural Network 
Structure in Computers with help of MATLAB for Handwriting Recogni-
tion Tasks, Asian J. Exp. Sci., vol. 21, no. 2, pp. 365-375, 2007. 

15. Dorigo, M., Optimization, Learning and Natural Algorithms, PhD thesis, 
Politecnico di Milano, Italie, 1992. 
 

16. Duran, B. S., and Odell, P. L., Cluster Analysis, Springer, Berlin, 1974. 
 

17. Fallahnezhad, M., Moradi, M. H. and Zaferanlouei, S., A Hybrid Higher 
Order Neural Classifier for Handling Classification Problems, Expert 
Systems with Applications vol. 38, issue 1, pp. 386-393, 2011. 
 

18. Fletcher, D. and Goss, E., Forecasting with Neural Networks: An Applica-
tion Using Bankruptcy Data, Information & Management, vol. 24, issue 3, 
pp. 159-167, 1993. 

19. Gil, P., Cardoso, A. and Palmal, L., Estimating the Number of Hidden 
Neurons in Recurrent Neural Networks for Nonlinear System Identifica-
tion, IEEE International Symposium on Industrial Electronics, Seoul, Ko-
rea, July 5-8, 2009. 
 

20. Glover, F., Future Paths for Integer Programming and Links to Artificial 
Intelligence, Comput. Oper. Res., vol. 13, pp. 533–549, 1986. 

21. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine 
Learning, Addison-Wesley, 1989. 
 

22. Hagan, M. T., Demuth, H. B. and Beale, M., Neural Network Design, 
PWS Publishing Company, Boston, MA, 1996. 

23. Han, Z., Wang, X. and Wang, J., Speech Recognition System Based on 
Visual Features and Neural Network for Persons with Speech-
Impairments, International Journal of Modelling, Identification and Con-
trol, vol. 8, issue 3, pp. 240-247, 2009. 



99 | P a g e  
 

24. He, L. Huang, G. H., Zeng, G. M. and Lu, H. W., Wavelet-Based Multi 
Resolution Analysis for Data Cleaning and Its Application to Water Qual-
ity Management Systems, Expert Systems with Applications, vol. 35, issue 
3, pp. 1301-1310, 2008.  
 

25. He, B., Oki, T., Sun, F., Komori, D., Kanae, S. and Wang, Y., Estimating 
Monthly Total Nitrogen Concentration in Streams by Using Artificial Neu-
ral Network, Journal of Environmental Management, vol. 92, issue 1,  
pp.172-177, 2011. 
 

26. Kaastra and Boyd, M., Designing a Neural Network for Forecasting Fi-
nancial and Economic Time Series, Neurocomputing, vol. 10, issue 3, pp. 
215-236, 1996. 
 

27. Kaufman, L. and Rousseeuw, P. J., Finding Groups in Data. An Introduc-
tion to Cluster Analysis. John Wiley & Sons, 1990. 

28. Keeratipibul, S., Phewpan, A. and Lursinsap, C., Prediction of Coliforms 
and Escherichia Coli on Tomato Fruits and Lettuce Leaves after Sanitiz-
ing by Using Artificial Neural Networks, LWT - Food Science and Tech-
nology, vol. 44, pp.130-138, 2011. 
 

29. Kennedy, J. and Eberhart, R., Particle Swarm Optimization, Proceedings 
of IEEE International Conference on Neural Networks. IV. pp. 1942–
1948, 1995. 

30. Kennard, R. W. and Stone, L., Computer Aided Design of Experiments, 
Technometrics, vol. 11, pp. 137-148, 1969. 

31. Kim, S. H. and Chun, S. H., Graded Forecasting Using an Array of Bipo-
lar Predictions: Application of Probabilistic Neural Networks to A Stock 
Market Index, International Journal of Forecasting, vol. 14, issue 3, pp. 
323-337, 1 Sept. 1998. 

32. Kirkpatrick, S., Gellat, C. D. and Vecchi, M. P., Optimization by Simu-
lated Annealing, Science, vol. 220, pp. 671–680, 1983. 

 
33. Kohonen, T., Self Organizing Maps, Springer Series in Information Sci-

ences, vol. 30, Springer, Berlin, Heidelberg, New York,  2001.  
 

34. Levin, E., A Recurrent Neural Network - Limitations and Training, Neural 
Networks   vol. 3, issue 6, pp. 641-650, 1990. 
 

35. Linde, Y., Buzo, A. and Gray, R.M., An Algorithm for Vector Quantizer 
Design, IEEE Transactions on Communications, vol.28, no.1, pp. 84-95, 
1980. 



100 | P a g e  
 

36. Ludermir, T. B., A. Yamazaki and C. Zanchettin, An Optimization Meth-
odology for Neural Network Weights and Architectures, IEEE Transac-
tions on Neural Networks, vol. 17, no. 6, pp. 1452-1459, 2006. 

 
37. MacQueen, J. B., Some Methods for Classification and Analysis of Multi-

variate Observations, Proceedings of 5th Berkeley Symposium on Ma-
thematical Statistics and Probability, University of California Press. pp. 
281–297, 1967. 

38. Maier, H. R. and Dandy, G. C., The Use of Artificial Neural Networks for 
the Prediction of Water Quality Parameters, Water Resour. Res., vol. 32, 
issue 4, pp. 1013–1022, 1996. 
 

39. May, R. J., Maier, H. R. and Dandy, G. C., Data Splitting for Artificial 
Neural Networks using SOM-Based Stratified Sampling, Neural Networks, 
vol. 23,   issue 2,   pp. 283-294, 2010.  

  
40. Namia, F. and Deyhimi, F., Prediction of Activity Coefficients at Infinite 

Dilution for Organic  Solutes in Ionic Liquids by Artificial Neural Net-
work, Journal of Chemical Thermodynamics, vol. 43, issue 1, pp. 22-27, 
2011. 
 

41. Palani, S., Liong, S.Y. and Tkalich, P., An ANN Application for Water 
Quality Forecasting, Marine Pollution Bulletin , vol. 56, pp.1586-1597, 
2008. 
 

42. Park, S. S., Shin, Y. G. and Jang, D. S.,  A Novel Efficient Technique for 
Extracting Valid Feature Information, Expert Systems with Applications, 
vol. 37, issue 3, pp. 2654-2660, 2010.  
 

43. Peng, J. X. and Li, K., A New Jacobian Matrix for Optimal Learning of 
Single-Layer Neural Networks, IEEE Transactions on Neural Networks, 
vol. 19, no. 1, pp.119-129, 2008. 

44. Picard, J., Enbridge disaster and pipeline safety probed, International 
Business Times, Sept. 17, 2010.  
 

45. Poddig, T. and Rehkugler, H., A `World' Model of Integrated Financial 
Markets using Artificial Neural Networks, Neurocomputing, vol. 10, issue 
3, Financial Applications, Part II, pp. 251-273, April 1996. 
 

46. Ray, C. and Klindworth, K. K., Neural Networks for Agrichemical Vul-
nerability Assessment of Rural Private Wells, J Hydrol Eng., vol. 5, issue 
2, pp. 162–171, 2000. 
 



101 | P a g e  
 

47. Reeves, R. R. and Taylor, S. J., Selection of Training Data for Neural 
Networks by a Genetic Algorithm, In Fifth International Conference on 
Parallel Problem Solving from Nature, Amsterdam, 1998. 
 

48. Rosenblatt, F., The perceptron: A Probabilistic Model for Information 
Storage and Organization in the Brain, Psychological Review, vol. 65, pp. 
386-408, 1958. 

49. Rousseeuw, P. J., Silhouettes: A Graphical Aid to the Interpretation and 
Validation of Cluster Analysis, Computational and Applied Mathematics 
vol. 20, pp. 53–65, 1987. 
 

50. Rugina, R. and Rinard, M., Recursion unrolling for divide and conquer 
programs, in Languages and Compilers for Parallel Computing, chapter 
3, pp. 34–48. Lecture Notes in Computer Science vol. 2017, Berlin: Sprin-
ger, 2001. 

51. Sahoo, A. K., Zhang, Y. and Zuo, M. J., Estimating Crack Size and Loca-
tion in a Steel Plate using Ultrasonic Signals and CFBP Neural Networks, 
CCECE, Niagara Falls, Canada, 2008. 
 

52. Sahoo, G. B., Ray, C., Mehnert, E. and Keefer, D. A., Application of Arti-
ficial Neural Networks to Assess Pesticide Contamination in Shallow 
Groundwater, Science of the Total Environment,  vol. 367, pp. 234–251, 
2006. 
 

53. Samanta, B., Bandopadhyay, Ganguli, S., R. and Dutta, S., Sparse Data 
Division Using Data Segmentation and Kohonen Network for Neural Net-
work and Geostatistical Ore Grade Modeling in Nome Offshore Placer 
Deposit, Natural Resources Research, vol. 13, no. 3, pp.189-200, 2004. 

54. Samanta, B., Bandopadhyay, S. and Ganguli, R., Data Segmentation and 
Genetic Algorithms for Sparse Data Division in Nome Placer Gold Grade 
Estimation Using Neural Network and Geostatistics, Exploration and Min-
ing Geology, vol. 11, no. 1-4, pp. 69-76, 2004. 
 

55. Scanzio, S., Cumani, S., Gemello, R., Mana, F. and Laface, P., Parallel 
Implementation of Artificial Neural Network Training for Speech Recogni-
tion, Pattern Recognition Letters, vol. 31, issue 11, pp. 1302-1309, 2010. 

56. Schuster, M.  and Paliwal, K. K., Bidirectional Recurrent Neural Net-
works, IEEE Transactions on Signal Processing, vol. 45, issue 11, pp. 
2673–2681, 1997. 
 

57. Shahin, M. A., Maier, H. R. and Jaksa, M. B., Data Division for Develop-
ing Neural Networks Applied to Geotechnical Engineering, Journal of 
Computing in Civil Engineering, vol. 18, no. 2, pp.105-114, 2004. 



102 | P a g e  
 

58. Shahin, M. A., Jaksa, M. B. and Maier, H. R., Artificial Neural Network 
Applications in Geotechnical Engineering, Australian Geomech., vol. 36, 
issue 1, pp.49–62, 2001. 

59. Shahin, M. A., H. R. Maier and M. B. Jaksa, Predicting Settlement of 
Shallow Foundations Using Neural Networks, J. Geotech. Geoenviron. 
Eng., vol. 128, issue 9,  pp.785–793, 2002. 

60. Shi, Y. and Eberhart, R. C., A Modified Particle Swarm Optimizer, Pro-
ceedings of IEEE International Conference on Evolutionary Computation. 
pp. 69–73, 1998. 
 

61. Simani, S. and Fantuzzi, C., Fault Diagnosis in Power Plant using Neural 
Networks, Information Sciences, vol. 127, issues 3-4,  pp. 125-136, Aug. 
2000. 

62. Sinha, R. K., Aggarwal, Y. and Das, B. N., Backpropagation Artificial 
Neural Network Detects Changes in Electro-Encephalogram Power Spec-
tra of Syncopic Patients, Journal of Medical Systems, vol. 31, issue 1, pp. 
63-68, 2007. 

63. Smith, M., Neural Networks for Statistical Modeling, Van Nostrand Rein-
hold, New York, 1993. 
 

64. Snee, R. D., Validation of regression models: Methods and examples, 
Technometrics, vol. 19, issue 4, pp. 415-428, 1977. 
 

65. Sprevak, D., Azuaje, F. and Wang, H., A Non-Random Data Sampling 
Method for Classification Model Assessment, In 17th international confer-
ence on pattern recognition, vol. 3, pp. 406-409, 2004. 

66. Tarassenko, L., A Guide to Neural Computing Applications, Neural Com-
puting Applications Forum, 1998. 

67. Teoh, E. J., Tan, K. C. and Xiang, C., Estimating the Number of Hidden 
Neurons in a Feedforward Network Using the Singular Value Decomposi-
tion, IEEE Transactions on Neural Networks, vol. 17, no. 6, pp.1623-
1629, 2006. 
 

68. Tokar, S. and Johnson, P. A., Rainfall-Runoff Modeling Using Artificial 
Neural Networks, J. Hydrol. Eng., vol. 4, issue 3, pp. 232– 239, 1999. 
 

69. Tong, F. and Liu, X., Samples Selection for Artificial Neural Network 
Training in Preliminary Structural Design, Tsinghua Science and Tech-
nology, vol.10, no. 2, pp. 233-239, 2005. 



103 | P a g e  
 

70. Tokar, A. S. and Johnson, P. A., Rainfall-Runoff Modeling Using Artificial 
Neural Networks, J. Hydrologic Eng., vol. 4, issue 3, pp. 232–239, 1999. 

71. Trenn, S., Multilayer Perceptrons: Approximation Order and Necessary 
Number of Hidden Units, IEEE Transactions on Neural Networks, vol. 19, 
no. 5, pp. 836-844, 2008. 
 

72. Twomey, J. M. and Smith, A. E., Bias and Variance of Validation Meth-
ods for Function Approximation Neural Networks under Conditions of 
Sparse Data, Systems, Man and Cybernetics, Part C: Applications and 
Reviews, IEEE Transactions on, vol. 28,  no. 3, pp. 417-430, 1998. 

73. Wan, S. and Banta, L. E., Parameter Incremental Learning Algorithm for 
Neural Networks, IEEE Transactions on Neural Networks, vol. 17, no. 6, 
pp.1424-1438, 2006. 

74. Warlaumont, S., Oller, D. K., Buder, E. H., Dale, R. and Kozma, R., Data-
Driven Automated Acoustic Analysis of Human Infant Vocalizations using 
Neural Network Tools, Journal of the Acoustical Society of America, vol. 
127, issue 4, pp. 2563-2577, 2010. 
 

75. Weerasinghe, M., Gomm, J. B. and Williams, D., Neural Networks for 
Fault Diagnosis of a Nuclear Fuel Processing Plant at Different Operat-
ing Points, Control Engineering Practice, vol. 6, issue 2, pp. 281-289, 1 
Feb. 1998. 

76. Widrow, B. and Hoff, M. E., Adaptive Switching Circuits, 1960 IRE 
WESCON Convention Record, New York: IRE Part 4, pp. 96-104, 1960. 
 

77. Wu, J. D., Wang, Y. H., Chiang, P. H. and Bai, M. R., A Study of Fault 
Diagnosis in a Scooter using Adaptive Order Tracking Technique and 
Neural Network, Expert Systems with Applications, vol. 36, issue 1, pp. 
49-56, Jan. 2009. 
 

78. Yen, G. G. and Lin, K. C., Wavelet Packet Feature Extraction for Vibra-
tion Monitoring, IEEE Transactions on Industrial Electronics, vol.47, no.3, 
pp.650-667, 2000. 
 

79. Yu, L., Wang, S. Y. and Lai, K. K., Foreign-Exchange-Rate Forecasting 
with Artificial Neural Networks, New York: Springer, 2007. 

80. Zhang, J., Improved On-Line Process Fault Diagnosis through Informa-
tion Fusion in Multiple Neural Networks, Computers & Chemical Engi-
neering, vol. 30, issue 3, pp. 558-571, 15 Jan. 2006. 

81. Zhang, Y., Ng, C. C. and Sahoo, A., Hanxin Chen, and Ming J. Zuo, In-
spection of EMD Slots on Steel Blocks Using OmniScan, Technical Re-



104 | P a g e  
 

port, Department of Mechanical Engineering, University of Alberta, Ed-
monton, Alberta, T6G 2G8, June 15, 2007. 
 

 

 
 


	Title Page
	Abstract
	Table of Contents
	Chapter 1: Introduction
	1.1 Background
	1.2 Research Objective
	1.3 Organization of the Thesis
	Chapter 2: Fundamentals of ANN
	2.1 Introduction
	2.2 Biological Neuron vs. Artificial Neuron
	2.3 A Multi-Neuron Multi-Layer Network
	2.4 Training of the Network
	2.5 The Backpropagation Algorithm
	2.6 Data Partitioning in ANN and its Importance
	2.7 Summary
	Chapter 3: Literature Review Focusing on Data Partitioning Methods
	3.1 Introduction
	3.2 Conventional Data Partitioning Methods
	3.3 Issues with Conventional Data Partitioning Methods
	3.4 Non-Conventional Data Partitioning Methods
	3.5 Issues with Non-Conventional Data Partitioning Methods
	3.6 Summary
	Chapter 4: The Proposed and Reported Data Partitioning Methods for Comparison
	4.1 Introduction
	4.2 Problem Statement
	4.3 The Proposed CDCA Data Clustering Algorithm
	4.4 Data Sampling Scheme
	4.5 The General Steps of the Proposed Data Partitioning Method
	4.6 Reported Data Partitioning (DP) Algorithms for Comparison
	4.7 Summary
	Chapter 5: Evaluation of the Proposed Data Partitioning Algorithm
	5.1 Introduction
	5.2 Friedman Regression Function Dataset
	5.3 Housing Dataset
	5.4 Ultrasonic Dataset
	5.5 Performance Measures
	5.6 Network Selection and Training
	5.7 Results and Discussions
	5.8 Summary
	Chapter 6: Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work
	Bibliography

