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1.0 GENERAL INTRODUCTION

In recent years, air quality, particularly in urban areas where population and vehicle traffic are 

concentrated, has become a major public concern. Ground-level ozone is a secondary 

photochemical pollutant that has been identified as a target for regulatory control and an 

indicator of poor air quality. Exposure to ground-level ozone has been implicated in 

numerous epidemiology studies for causing or aggravating a host of respiratory illnesses 

(Bates et al. 1990; Burnett et al. 1998; Last et al. 1998; Lipfert and Hammerstrom 1992; 

McDonnell et al. 1998; Thurston et al. 1997) and damaging vegetation (Bates 1991).

In the urban environment, ozone is formed mainly from anthropogenic activities that emit 

its precursor compounds, oxides of nitrogen (NO,) and volatile organic compounds (VOGs). 

The populations of Edmonton and Calgary have rapidly bloomed recently. This potentially 

impacts ground-level ozone in two ways. First, concentrations of the precursor compounds 

for ozone will rise with the increase in vehicular traffic and commuting distances, potentially 

resulting in increased ozone formation (Keating 1997). Second, with the larger population, 

there is greater probability for widespread harm as a larger number of individuals are 

exposed to ground-level ozone. Regulatory standards for ozone have recognized this 

growing public concern. The Canada-Wide Standards for ground-level ozone are currently 

set for a 2010 target of 0.065 ppm, averaged over 8 hours (CCME 2000). The Alberta 

Ambient Air Quality Guidelines are set at an hourly average concentration of 0.082 ppm 

(EPEA 1992).

The chemistry of ozone is nonlinear and complex, limiting the success of more traditional 

mechanistic modelling approaches for describing atmospheric processes. This has initiated 

the search for an accurate modelling tool that regulatory agencies can use to model and 

forecast urban ground-level ozone concentrations. Artificial neural networks (ANNs) are a 

modelling approach that is especially suited to nonlinear, complex, and poorly understood 

processes. Neural networks consist of individual processing elements (“neurons”) 

configured and inter-connected in one or more layers (Flood and Kartam 1997). The 

combination of the functions used in the neurons, the magnitudes and signs of the 

connections between neurons, and the structure of the network describe and are dependant

1
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on the process being modelled. Although artificial neural networks have been available since 

the 1940’s, their “black box” nature has limited their popularity (Jain et al 1996). Recently, 

they have been applied successfully to numerous areas, including stock market analyses, 

speech pattern recognition, and cloud characterization. ANNs have also experienced a 

popularity resurgence in the atmospheric sciences, with applications in modelling and 

forecasting pollutant levels in both urban and rural settings.

In this project, the potential use of ANNs as a modelling approach for ground-level ozone 

concentrations in Edmonton and Calgary is assessed. The objective of this research is to 

generate valuable tools for the modelling and prediction of ground-level ozone in these 

cities. These tools would increase the availability of air quality information to the public, 

providing an alternate source of air quality information when existing ambient air monitors 

are down for maintenance and repair work. Successful ANN models would enable 

regulatory agencies to evaluate proposed pollution reduction strategies and determine the 

effectiveness of existing efforts. They would provide the public with advance warning of 

extreme ozone or poor air quality events, allowing measures to be taken to avoid exposure. 

Four models each for Calgary and Edmonton are constmcted using a systematic approach. 

For each city, a “virtual monitor” model is developed to model ground-level ozone 

behaviour. The virtual monitor processes real-time pollutant and meteorological data to 

generate a corresponding ozone concentration. A forecast model is constmcted to predict 

ozone concentrations, with the largest prediction window possible that does not 

compromise prediction performance. The forecast model uses the currently available 

pollutant and meteorological data to predict the ozone concentration at a future hour. The 

last two models are variants of the virtual monitor and forecast models that incorporate 

ozone time series effects.
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2.0 A REVIEW OF OZONE CHEMISTRY AND HEALTH EFFECTS

2.1 Introduction

Ground-level ozone is a secondary pollutant that has recently gained notoriety for its 

detrimental effects on public health. Although its presence in the stratosphere as the ozone 

layer is desirable, ozone in the lower troposphere has been linked to vegetation injury, 

materials damage, and respiratory illness. It is of special concern in urban environments, 

where sources of precursor compounds are concentrated. This paper summarizes the 

current understanding of ozone chemistry, the reported health effects, regulatory control 

efforts, and their consequences to the existing urban lifestyle in Canada.

2.2 Ozone Chemistry

The ozone that is associated with health effects is present in the lower troposphere at 

ground level. Its presence is attributable to a combination of reactions between the oxides 

of nitrogen (NO*) and volatile organic compounds (VOCs) of human and natural origin, 

transport from the stratosphere and other locations, and numerous other chemical reactions 

and atmospheric dispersion and transport mechanisms (CEPA/FPAC WGAQOG 1999; 

McElroy2002).

2.2.1 Processes contributing to the formation and presence of ground-level ozone

Ozone occurs naturally at background levels free of human emissions. These levels depend 

on the location, temperature, wind speed and direction, vertical motion, and season of the 

year. Background ozone can originate in the stratosphere and from reactions between 

naturally occurring methane and VOCs with NOx (Jacobson 1999; Potter and Coleman 

2003; U5EPA 1996). In atmospheres free of human influences, ozone exists in a dynamic 

equilibrium, with no net formation or destmction occurring (USEPA 1996). The process is 

described schematically in Figure 2-1. In the presence of ultraviolet energy, the nitrogen 

dioxide (NO^ molecule is broken down to form nitric oxide (NO) and an oxygen atom 

The oxygen atom combines with oxygen in air (O^ to form the ozone molecule (0 3). The
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ozone molecule is subsequently consumed through reaction with NO to re-form N 0 2, and 

the cycle continues.

NO
N 0 2

hv

Figure 2-1 Tropospheric ozone balance in the absence of polluting human 
activities.
Based on reactions in USEPA (1996).

When VOCs are present (either anthropogenic or natural), NO reacts with the VOCs to 

produce N 0 2, without consuming the ozone molecule. Since ozone participation in the 

formation of N 0 2 is not required, there is a net production of ozone. (USEPA 1996)

VOCs may also react with hydroxyl radicals (OH) in the atmosphere to produce ozone. The 

reaction process is described in Figure 2-2. VOCs and NOx concentrate in urban areas. In 

these areas, anthropogenic emissions are the dominant sources of ozone precursor 

compounds.

2.2.2 Sources o f ozone precursor compounds and ozone sinks

Sources of NOx and VOC ozone precursor compounds are both human and natural. NOx 

are formed in combustion processes from nitrogen present in the fuel source. The human 

activities mainly responsible for NOx emissions are transportation, stationary source fuel 

combustion, industrial processes, and solid waste disposal (Potter and Coleman 2003; 

USEPA 1996). Natural sources of NOx include lightning strikes, soils, wildfires,
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stratospheric intrusion, and evaporation over large bodies of water (USEPA 1996). VOCs 

are naturally emitted in large quantities from deciduous vegetation and conifers. Evaporative 

and combustion processes are anthropogenic sources of VOCs. The sources of these ozone 

precursors are listed in Table 2-1. Ozone formation is expected to increase with the ratio of 

VOCs to NOx.

hv
VOC+ — ► RO' RO

NO N02

Figure 2-2 Ozone production in the presence of VOCs.
(USEPA 1996)

Major natural sinks for ozone are chemical reactions in the gaseous or aqueous phase and 

deposition (CEPA/FPAC WGAQOG 1999; Heinsohn and Kabel 1999). The chemical 

reactions that destroy ozone in the atmosphere include the HOx (= OH + HOj) 

(CEPA/FPAC WGAQOG 1999; Jacobson 1999; Potter and Coleman 2003) and NOx 

(CEPA/FPAC WGAQOG 1999; Jacobson 1999) catalytic ozone destruction cycles. 

Reactions with unsaturated hydrocarbons also consume ozone (CEPA/FPAC WGAQOG 

1999).
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Table 2-1 Examples of human activities that arc major contributors to urban
levels of ozone precursor compounds.
Adapted from USEPA (1996).

Category NOx Sources VOC Sources
Transportation • Gasoline/diesel powered 

motor vehicles
• Aircraft 

Railcars
• Vessels
• Off- highway vehicles

Vehicles

Stationary sources • Electric utilities
• Industrial and 

commercial/ institutional 
boilers

• Industrial furnaces
• Space heaters

• Electric utilities
• Industrial boilers and 

furnaces

Industrial processes • Petroleum refining
• Paper production
• Glass production
• Steel production 

Cement production
• Chemical production

• Solvent use
. Petroleum product storage 

and transfer (fugitive 
emissions)

• Chemical manufacturing

Solid waste disposal • Incineration
• Open waste burning

• Waste disposal and 
recycling

Miscellaneous • Forest slash burning
• Agricultural burning
• Coal refuse burning
• Structure fires

2.2.3 Effects o f meteorology and atmospheric physical processes

Several meteorological parameters affect the ozone balance in the atmosphere. Ultraviolet

radiation, wind speed, and temperature influence the chemical reactions that occur in the

atmosphere (USEPA 1996). In addition, surface scavenging and atmospheric mixing and

transport processes can alter the ozone balance (USEPA 1996). Regional terrain also

influences the dispersion o f atm ospheric pollutants. Ultraviolet radiation is required as an

energy source to power the photochemical reactions in ozone formation. The amount of

ultraviolet radiation in any given location is a function of the season, cloud cover, and

atmospheric conditions. Temperature affects reaction kinetics and influences atmospheric

mixing through convection currents. Wind speeds also affect atmospheric mixing through

pressure gradients. The prime meteorological conditions for ozone formation and
8
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accumulation are high pressure, temperature, and solar radiation, and light surface winds 

(Jacobson 1999).

2.3 Ozone Health Effects

Ozone has been linked to vegetation and crop injury (Bates 1991), materials damage 

(USEPA 1996), and health effects in animals, in addition to adverse effects in human beings. 

This section focuses on the key discoveries in recent (1990 or later) Canadian epidemiology 

studies.

2.3.1 Criteria and cons ideratio ns in review o f health literature

Determining the credibility of the reported associations between ozone exposure and 

adverse health effects necessitates understanding the traits requisite to good epidemiological 

studies. Epidemiological studies have some advantages over animal toxicology and 

controlled laboratory studies. They yield results for humans direcdy, eliminating the need to 

extrapolate results from animals to humans. This can reduce the uncertainty in the effect 

estimate, since physiological and anatomical traits of the human respiratory system (the 

system most often associated with ozone and air pollution exposure) are distinct from animal 

surrogates. In addition, unlike human clinical studies, epidemiological studies deal with real 

exposure levels and conditions. In clinical studies with human volunteers, ethical 

considerations prohibit the administration of doses that may inflict serious harm on the 

subject. Laboratory experiments are also limited to healthy volunteers, precluding the 

assessment of impacts to the most sensitive individuals of the population. Conversely, 

numerous confounding variables such as lifestyle, diet, and genetics make establishing cause- 

effect relationships in epidemiological studies difficult. These confounding factors are more 

easily controlled in animal toxicology studies, allowing cause and effect relationships to be 

determined. However, when epidemiology studies are well designed and executed, and 

multiple researchers repeatedly arrive at the same results, these studies constitute a 

convincing argument warranting further investigation of and concern about the relationships 

between ozone exposure and adverse health.
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Craun et al. (1996) list the traits of a good epidemiological study. In addition to having an 

adequate sample size to provide statistical power, an epidemiological study should be free of 

or minimize random and systematic errors. The associations should be clear and lead to 

easily identifiable effects that occur after the exposure, and should be biologically 

conceivable. In addition, differences in sensitivities of sub-groups in the study population 

and seasonal fluctuations in ozone concentrations should be accounted for in studies (Bates 

et al. 1990).

2.3.2 Summary o f results from Canadian epidemiological studies

Bates et al. (1990) studied emergency room attendance records at nine acute care hospitals in 

the Vancouver region. The emergency department records were evaluated with their 

corresponding air pollution data. They subdivided the study data according to the age of the 

patient, and accounted for seasonal fluctuations in their data. They found no associations 

between summer respiratory illness and ozone concentrations. They did find an increase in 

asthma attendance in the fall for the 15-60 years age group. The authors propose that ozone 

exposure increases airway sensitivity to other factors, such as pollen, house dust, infectious 

agents, and sulphur dioxide (SO^.

Delfino et al. (1997) found positive associations between summer ambient ozone 

concentrations and hospital emergency room visits in Montreal, Quebec. Their study 

concluded that the elderly were most susceptible to adverse health effects from ozone 

exposure. The reasons the authors provided for the increased sensitivity of this age group 

was their greater likelihood of having pre-existing pulmonary diseases and lower respiratory 

tract infections. Delfino et al. also suggested the associations found were underestimated 

since they focussed only on respiratory illnesses.

Lipfert and Hammerstrom (1992) studied pollution and weather relationships with daily 

admissions to 79 acute care hospitals in Southern Ontario over a 6-year study period. They 

found a small but statistically significant association between ozone concentrations and 

respiratory admissions for the months of July and August.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Burnett et al. (1998) studied associations between ambient levels of gaseous air pollutants 

and daily deaths for non-accidental causes in 11 Canadian cities over 11 years. They 

determined that ozone exposure increased the risk of death by 1.8% (p <0.01). The data 

were pre-filtered to remove city-specific mortality trends due to population increases, 

seasonal, weekly, and daily fluctuations, and variations attributable to short-term epidemics. 

They found the risks from ozone were low for Calgary, Edmonton, and Winnipeg in the 

years studied. When a multi-pollutant model was used to evaluate a mixture of pollutants, 

the relative risk for ozone was higher than in the single pollutant model. The authors 

speculated that this increase implicates ozone as a promoter of the effects of other air 

pollutants and may not be toxic on its own.

Last et al. (1998) report that in Ontario, a 99 pg/m3 ambient ozone concentration increases 

average hospital respiratory admissions by 4.5% compared to no ozone exposure. They also 

associate this concentration with a 1.35% increase in premature mortality. The effects 

associated with low level ozone exposure in healthy people include chest pain, pulmonary 

congestion, nausea, and cough. They identify asthmatics (5%-8% of all Canadians), children, 

the elderly, and those suffering from heart and lung diseases as those most vulnerable to the 

effects of ozone exposure.

2.4 Regulatory Control Strategies

A number of regulatory control strategies are used internationally to manage ozone levels in 

urban areas. Some of the management strategies include ambient air quality standards and 

guidelines, source emission limits, and controlled operation of major sources of precursor 

compounds.

2.4.1 Current standards and guidelines

In Canada, the federal government sets National Ambient Air Quality Objectives (NAAQO) 

to protect human health, vegetation, animals and materials. The current NAAQO is set at 

82 ppb for a one hour average concentration. The NAAQO for ozone was set in 1976 as
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part of the 1973 Clean Air Act, and was upheld under the Canadian Environmental 

Protection Act in 1989. (NARSTO 2000.)

More recently, Canada Wide Standards (CWSs) were developed, setting a 2010 target ozone 

level of 65 ppb averaged over 8 hours (CCME 2000). The Health Objectives Working 

Group, a committee composed of federal and provincial representatives, has recommended 

the daily one hour maximum reference level be set at 15 ppb, based on the lowest ambient 

concentration resulting in statistically significant health responses (Sandhu 1999).

In Alberta, the current one hour average Ambient Air Quality Guideline (AAQG) for ozone 

is also set at 82 ppb (160 pg/m3) (EPEA 1992). Alberta Environment is the regulatory body 

responsible for monitoring ozone via a network of continuous air quality stations. For the 

final quarter of 2001, the average hourly concentration measured for ground level ozone was

10.3 ppb (20.1 pg/m3) for Edmonton, and 10.7 ppb (20.9 pg/m3) for Calgary (Alberta 

Environment 2001). These values were the averages of three monitors in each city.

The USEPA sets primary standards to protect public health and secondary standards to 

protect public welfare. The existing ozone maximum one hour average, set at 120 ppb (234 

pg/m3), is in the process of being replaced with a new 8 hour average limit of 80 ppb (156 

pg/m3) (USEPA 1997). Compliance with the new standard is based on the three year 

average of the annual 4th highest daily maximum 8 hour concentration. The objective of this 

type of standard is to prevent long exposure periods.

Directive 2002/3/EC governs ozone levels in the European Union, targeting a maximum 

daily 8 hour mean ozone concentration of 120 pg/m3 (61 ppb) for 2010 (European 

Parliament and the Council of the European Union 2002). In addition, the maximum 

allowed number of days exceeding the directive per year is 25 days, averaged over 3 years.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.4.2 Ozone control measures

A variety of ozone control and management strategies are in place internationally. Control 

strategies seek to limit emissions of ozone precursor compounds while management 

strategies tend to focus on minimizing exposure. Examples of management strategies 

include the Canadian air quality advisory programs (Cannon and Lord 2000), the “Ozone 

Alert Days” in Houston that were implemented in response to their USEPA non-attainment 

area designation (Prybutok et al. 2000), and the ozone alarm system in Seoul, South Korea 

(Sohn et al. 2000).

Several mechanisms of ozone control are used world-wide, with varying degrees of 

economic and social impact. In Athens, Greece, Leicester, U.K., and Houston, U.S., traffic 

management systems have been implemented to control vehicular emissions (Greig et al. 

2000; Prybutok et al. 2000). Similarly, Santiago, Chile restricts vehicle circulation and shuts 

down principal emission sources during high PM10 episodes Qorquera et al. 1998). In 

addition to these measures, areas that fail to meet regulated ozone levels face strict penalties. 

In the U.S., the USEPA can penalize non-attainment areas with sanctions and restrictions 

that impede industrial and commercial development, greater vehicle inspection requirements, 

and loss of federal funding (Prybutok et al. 2000).

2.5 Discussion: The Consequences of Ground-level Ozone to Current Lifestyles 

in Canada

Besides the Canadian studies, ozone exposure has been associated with increased mortality 

and morbidity in numerous other epidemiological studies (Dockery et al. 1993; McDonnell 

et al. 1999; and Thurston et al. 1997). A major problem with many epidemiological studies is 

the lack of control for confounding factors and a lack of measurement of actual exposures. 

These include differences within the population under study, as well as the location and 

characteristics of the study site. Potential confounding factors within the individuals 

participating in the study include differences in personal exposure levels, time spent and level 

of activity in different microenvironments, smoking, diet, gender, and genetic predisposition 

to disease. Study sites also differ in local industrial activity that could influence the chemical
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composition and physical characteristics of ambient pollutants, meteorological and 

topographical characteristics that affect pollutant dispersion and accumulation, and pollution 

monitoring site distribution. Failure to adequately control these confounding factors could 

significantly contribute to the error in effects estimates.

In addition, many studies rely on death certificates or hospital admission records that are 

subject to illness classification errors or misdiagnoses (Bates et al. 1990; Dockery et al. 1993). 

Studies that rely on personal diaries for physical health information are prone to the 

sensitivities of the individual study participant. Each individual has a different level of 

tolerance for pain and discomfort, possibly resulting in different ratings for the same 

conditions. The ideal study would use a combination of different evaluation tools, including 

animal toxicology, epidemiological, and controlled laboratory studies, to develop a cause- 

effect relationship, but funding limitations result in deviations from the ideal.

Lagged and additive, synergistic, cumulative or antagonistic effects that depend on the 

particular cocktail of pollutants at a given location could also invalidate study results. It is 

possible for certain pollutants to weaken an individual’s respiratory system, making the 

individual more susceptible to other substances later on that could produce effects not 

linked to the initial exposure. This would make it difficult to trace effects back to the 

original pollutant from short term epidemiological studies, or to identify non-acute effects 

attributable to the original pollutant. The epidemiological studies also attempt to relate 

health effects to ozone concentrations measured within various timeframes. Although 

popular measures include mean and daily maximum concentrations, there is no universal 

standard. Difficulty arises in establishing whether long-term low levels or peaks have a 

greater effect on human health. The use of average ozone concentrations over an extended 

period of time could also mask the effects of infrequent concentration excursions.

All the epidemiological studies use air monitoring data to establish personal exposure. This 

is potentially the greatest weakness of these studies, because monitoring station data are not 

equivalent to actual personal exposures. Monitors are generally placed in areas where high 

pollutant levels are likely to occur, so that violations can be detected. When data from 

multiple air monitors are employed, the methodology individual researchers use to determine
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the concentration at a specific location will affect the accuracy of the personal exposure 

estimates used in their analysis. The amount of time individuals spend outdoors will also 

affect their personal exposure. However, the actual atmospheric pollutant exposures of 

study participants are likely to be lower than the levels detected at air monitoring stations, as 

people spend limited time outdoors. The mainly positive associations found in the 

epidemiological studies would be further strengthened if actual personal exposures were 

used in place of monitoring station data. Lipfert and Hammerstrom (1992) also report that 

indoor air pollutants best approximate outdoor levels in the summertime, when windows are 

open. This means that summer ambient monitoring data may then be a better indication of 

personal exposure to ambient pollutants than winter monitoring data. After the typically 

long, cold Canadian winters, Canadians are also likely to spend a greater portion of their 

summer days outdoors appreciating the warmer weather and longer daylight hours.

Despite the challenges facing epidemiologists, the consistency of the associations found 

between adverse health effects and ozone exposure at a variety of locations, in both 

laboratory and actual conditions, is cause for concern. It is unlikely that all locations would 

be subject to the same confounding factors, and in response to a better understanding of the 

science, more recent epidemiological studies show an awareness of confounding factors and 

attempt to control them Some researchers include results of sensitivity analyses to show the 

robustness of the observed associations. Although environmental epidemiology studies 

notoriously result in relative risk estimates in the low range close to 1, at least one study 

found a strong association greater than 2 (McDonnell et al. 1998). Some studies were also 

conducted on healthy or “typical” participants, while the elderly, asthmatics, children, and 

individuals with already compromised immune systems are most sensitive to adverse health 

effects from ozone exposure. The issue of whether these effects are due to long term low 

level exposure or occasional exceedances of ambient guidelines is relevant from a public 

health perspective only for determining the format of ozone standards and control measures. 

The repeated observations of ozone pollution induced adverse health effects in 

epidemiological studies, supported by toxicological and clinical evidence, potentially 

represent an unacceptable public health risk and suggest benefits from reduced ambient 

ozone levels. The concern with urban air quality issues is reflected in the extensive control 

and management strategies world-wide.
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Canadians face unique challenges in managing urban air quality issues. Canada’s population, 

especially in urban centres, is increasing. As cities expand, commuting distances and times 

and the number of vehicles on roadways are also increasing, resulting in increased total 

emissions of ozone precursors. Public transportation access is also limited in newer suburbs, 

increasing the need for personal vehicle use. Developments in engine combustion efficiency 

and the gains associated with cleaner burner fuels and exhaust scrubbing units are offset by 

increases in urban traffic and industrial expansions accommodating the growing consumer 

market. Canada’s large land mass results in greater distances between urban centres, 

increasing fuel use for inter-city travel and delivery of goods. The economy here is heavily 

dependant on the exploitation of raw resources that must be transported to markets.

Canada’s climate of cold winters with little daylight also results in greater fuel and power 

consumption to meet heating and lighting requirements.

All these factors require consideration when developing and implementing ozone and air 

pollution management strategies. Strict, regimental control of ozone levels may inhibit 

economic growth, but may also open doors for innovative solutions in industrial process 

improvements and alternate clean fuel technologies, as well as lower health care costs. In 

addition, Canadians must be willing to change current behaviours and lifestyles in exchange 

for improved air quality and health, and actively support ozone control and management 

policies. Regulatory agencies are faced with the difficult task of assessing the 

epidemiological and scientific evidence about ground-level ozone in urban areas, in order to 

balance the nation’s economic prosperity with the quality of life.

2.6 Conclusions

Ozone chemistry is nonlinear, complex, and difficult to model. The amount and types of 

species present in the atmosphere, regional terrain, and meteorology and atmospheric 

physical processes all influence the ozone balance, and are challenging to represent with the 

current scientific knowledge. The epidemiology studies of ozone health effects are subject 

to problems in controlling confounding factors. Regardless, recent epidemiological studies 

indicate ozone as a cause or promoter of adverse health effects, prompting responses from
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regulatory agencies to control or manage ozone levels. Regulatory strategies vary 

internationally, and include early warning systems for high ozone events, traffic management, 

and financial penalties. Ozone is of particular concern in urban areas, where sources of 

precursors and the numbers of human receptors are concentrated. Canadians face unique 

challenges to ozone control and management, borne out of Canadian climate considerations, 

the country's large land mass, current lifestyles, expanding urban populations, industrial 

development, and transportation trends. Solutions to the ozone problem must consider 

these issues to achieve balance between economic prosperity and quality of life.
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3.0 REVIEW OF THE APPLICATION OF ANNs TO OZONE MODELLING

3.1 Introduction

In the atmospheric environment, the formation and destruction of pollutants is a complex 

and dynamic process, receiving input from both anthropogenic and natural sources. Added 

to this complexity are the physical processes responsible for the accumulation, distribution, 

dispersion, and deposition of reactants and products alike. In urban settings, human habits 

and industrial activity tend to concentrate these compounds, creating a threat to public 

health. Not surprisingly, regulatory agencies, atmospheric scientists, and environmental 

engineers are quick to embrace innovative tools that allow them to forecast the occurrence 

of high pollution scenarios that may compromise human health. One such innovation is the 

artificial neural network (ANN), a modelling tool that harnesses the exponentially increasing 

computing power of the modem era. This chapter describes the components of an ANN, 

identifies the issues that challenge users of this modelling approach, and reviews the 

literature pertaining to their use for modelling ground level ozone concentrations.

3.2 Air Pollution Modelling Techniques

There are many ways to classify air pollution models. In one approach, Ojha et al. (2002) 

divide forecast models into four basic types. Depending on the desired complexity, models 

may many elements of the following categories:

• Trend models. Trend models are developed with observations of the phenomenon 

modelled. These models usually require expert advice from specialists in the 

field to achieve forecasting success.

• Historical/statistical models. These models combine statistical knowledge of the 

local meteorology with measured pollutant data to generate predictions. 

Historical models rely on the principle that history has a tendency to repeat itself.

• Causal modds. Causal models require identification of variables related to the 

formation of the pollutant being forecasted. These variables are combined with
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dispersion and transport processes, atmospheric chemistry, and deposition 

characteristics of the area (terrain data) to formulate a mathematical relationship. 

• Physical models. Physical models attempt to simulate the physical processes that a 

pollutant may undergo in the atmosphere. Potential processes include transport 

and dispersion. These smaller scale models are generally constructed to 

represent the meteorological and ambient conditions in the actual domain under 

consideration (Collett and Oduyemi 1997).

In the air pollution field, scientists and researchers use models to: assess air emission 

scenarios, forecast and quantify environmental impacts of existing or new developments, 

assess the potential effects of accidental releases, optimize facility operations, and determine 

compliance with regulatory standards and objectives (Collett and Oduyemi 1997). However, 

no single technique exists that is universally applicable (Angle and Sakiyama 1991).

Air pollution turbulent diffusion has traditionally been numerically simulated using two 

techniques: the Eulerian approach and the Lagrangian approach. The difference between 

these approaches is the frame of reference. In Eulerian type models, the reference system is 

fixed in one location, similar to what a fixed monitoring station would experience as it 

samples air flowing past the monitor. In the Lagrangian approach, the motion of a particle 

of air in the atmosphere is followed (Seinfeld 1986; Zannetti 1990).

The conservation of mass principle in a volume element of air is the basis for Eulerian 

models. The system is considered turbulent, with each parameter made up of an average 

component and a variable component. Terms in the mass balance represent physical and 

chemical processes, including advection, turbulent and molecular diffusion, and source/sink 

effects (Zannetti 1990). This equation is solved on a temporally and spatially discretized 

mesh. The model’s resolution is then dependent on how the mesh is partitioned. Although 

a detailed mesh requires extensive computational resources, it produces a wealth of transport 

data at all points on the mesh (Zannetti 1990).

The Lagrangian approach uses statistics to describe the behaviour of fluid particles in the 

flow stream (Hanna et al. 1982; Seinfeld 1986; Weil 1988). The approach assumes a constant
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wind velocity and homogeneous and instantaneous mixing (Zannetti 1990). It applies when 

no chemical reactions occur and an adequate understanding of the system turbulence is 

available to evaluate the probability density function (Seinfeld 1986).

A Gaussian distribution of the pollutant in the crosswind and vertical directions is assumed 

in a common dispersion plume model. This model incorporates several other simplifying 

assumptions (Angle and Sakiyama 1991; Collett and Oduyemi 1997; Hanna et al. 1982; and 

Turner 1994):

Pollutant dispersion is dependent on the source emission rate.

• The system concentration does not change with time.

• Meteorological conditions do not vary spatially or with time.

• The source emission is a point source, and unchanging with space and time.

Release and sampling times are long compared to the time required for the 

pollutant to travel from source to receptor.

• The pollutant is conservative.

• The system terrain is flat and homogeneous.

• The plume is symmetrical with a straight line trajectory.

The standard deviation of the pollutant dispersion in the y and z directions (ay and g7) is 

dependent on local turbulence, the stability of the atmosphere, and the distance travelled. 

The most popular method for determining a y and ctz is based on the Pasquill stability classes, 

and is semi-empirical (Hanna et al. 1982). The main advantage of the Gaussian plume 

dispersion model is its ease of use (Collett and Oduyemi 1997).

Other common approaches to atmospheric modelling are based on statistical principles and 

probability theory. Semi-empirical relationships are derived from measured data, applying 

scientific knowledge of physical and chemical processes to establish cause and effect 

relationships at the source (Collet and Oduyemi 1997; Zannetti 1990). Statistical (or 

stochastic) models usually use online data to generate real-time, short-term forecasts to 

increase the efficiency of process operations. Some techniques in the literature are the Box- 

Jenkins method, regression analysis, and time series methods.
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An alternative modelling approach is receptor modelling, in which observed ambient 

concentrations are traced to potential sources (Zannetti 1990). These statistical models are 

location specific, and are independent of dispersion or physical behaviours of the pollutants 

in the atmosphere.

Regulatory agencies, particularly the United States Environmental Protection Agency 

(USEPA) have participated in developing several atmospheric dispersion models that are 

accepted by Alberta Environment for regulatory applications (Idriss 2003). However, these 

models are imperfect, due to incomplete knowledge about the dynamic chemical and 

physical processes in the atmosphere. This is particularly true for secondary compounds like 

ozone that are formed and removed through complex and nonlinear processes. These 

considerations, coupled with the ready availability of high speed parallel processing 

technology, have paved the way for application of ANNs to air pollution modelling.

3.3 Artificial Neural Networks— Background

3.3.1 History o f ANNs

McCulloch and Pitts first developed ANNs in the 1940s (fain et al. 1996). They fashioned 

the ANN on the human brain, mimicking the brain’s pattern recognition, processing, and 

problem solving abilities (fain et al. 1996). Since that time, their popularity has waxed and 

waned with new developments and criticisms. In the 1980s, interest in ANN research was 

renewed with Rumelhart et al.’s (1986) reinvention of the backpropagation learning 

algorithm for the multilayer perception ANN (Henseler 1995; Jain et al. 1996). Recently, 

they have experienced renewed popularity in the atmospheric sciences, due to their ability to 

handle complex, nonlinear processes.
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3.3.2 Neural Network Architectures

There are six basic types of ANNs, described in detail in numerous texts (see Hudson and 

Postma 1995). The most common of these is the multilayer perceptron (MLP). This 

network consists of an input layer, one or more hidden layers, and an output layer, all made 

up of neurons. These neurons form the basic processing unit of the ANN. A schematic of 

a simple MLP structure is shown in Figure 3-1.

Neurons in the input layer are the first interface between the external world and the network, 

receiving input data. They transmit the information to neurons in the hidden layer (hidden 

because they have no contact with the external world), where the signals are processed and 

passed to neurons in the output layer. The neurons in the output layer are responsible for 

communicating the network results to the external world.

Output Layer

w.
w,w- w,

m

w,w,

Input Layer

Figure 3-1 Schematic of a three-layer multilayer perceptron artificial neural 
network
Adapted from Plochl 2001.

The number of neurons in the input layer is equal to the number of input variables, with 

each neuron representing a single input variable. Input values are generally normalized, by 

dividing the value of each data point by the maximum value for that variable, so that no 

single variable dominates the network. In the simplest networks, only one output parameter 

is modelled, so that the output layer contains a single neuron. Multiple variables may be 

modelled with a single network. However, this increases the complexity of the network and
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makes the interactions between neurons more difficult to interpret. In the ANN literature 

for ground-level ozone, the number of neurons in the hidden layer is typically established 

through a trial and error process to determine the number that produces an acceptable 

network performance. Recently, El-Din and Smith (2002) proposed a systematic approach 

for determining the most efficient network structure. Although they applied the systematic 

approach to a wastewater system, it may be applied to develop a network for any process.

The neurons in each layer of the network may be connected only to neurons in subsequent 

layers (feedforward) or to all other neurons in the network (fully connected) (Flood and 

Kartam 1997). These connections are weighted to reflect the strength and effect of the 

preceding neuron in layer i on the neuron under consideration in layer j (Garrett et al. 1997). 

If the weight value is positive, the connection is considered excitatory. Excitatory 

connections indicate that the neuron in layer i encourages activation of the neuron in layer j. 

If the weight is negative, the connection is inhibitory (the neuron in layer i suppresses the 

activity of the neuron in layer j), while a neutral connection weight represents an inactive 

connection. The connections between neurons in the ANN are analogous to the system of 

dendrites and axons that form the communication highways between neurons in the human 

brain (Jain et al. 1996).

The net input to a neuron is determined as the sum of all outputs from neurons in the 

preceding layer multiplied by their connection weights. This is represented mathematically 

by the equation (Garrett et al. 1997):

^ = ^ 0 ^ -  ...............................................Equation 3-1
i

where

Nj = summed weighted input to the neuron in layer j 

O; = output of neuron in layer i

W;j = weight of the connection between neuron in layer i and neuron in layer j
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An activation function is applied to the summed weighted input to the neuron to determine 

the neuron’s level of activation:

a; = F (Nj) .......................................................Equation 3-2

where

a; = level of activation of neuron i 

F; = activation function of neuron i

The activation level of a function is subsequently used to determine the neuron’s output 

value using the equation:

°i ~ (a . ) ........................................................Equation 3-3

where

O; = output from neuron i 

f; = output function of neuron i 

a; = level of activation of neuron i

Examples of activation and output functions that may be used (F; and f) are depicted in 

Figure 3-2. The functions used most often are the sigmoid (logistic), linear, and hyperbolic 

tangent functions.

3.3.3 Neural Network Learning

Training an ANN involves allowing the network to leam the relationships between a set of 

input parameters and an output variable. This requires an ample and representative 

historical database of input and output parameters. A learning rule dictates how a network 

responds to training data. There are four fundamental types of learning rules: error 

correction, Hebbian, Boltzmann, and competitive learning (Jain et al. 1996).
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The most commonly used learning rule in MLP networks is the Generalized Delta Rule or 

backpropagation, a form of error correction. Initially, random weight values are assigned to 

the neuron connections. As data records are introduced to the network, the connection 

weights are adjusted to minimize the error between the network prediction and actual 

measured values of the output variable. The process is repeated until an acceptable error is 

achieved or a specified number of iterations are met. This type of learning, in which actual 

values of the output variable are presented to the network, is termed “supervised” learning. 

In unsupervised learning, the network is allowed to develop its own conclusions about 

correlations underlying structures and categories present in the training data, without any 

output variable information.

The fundamental principle underlying Hebbian learning is that when a neuron A repeatedly 

participates in stimulating a second neuron B, A’s efficiency in firing B is increased (Garrett 

et al. 1997). In Boltzmann learning, thermodynamic and statistical principles are applied to 

adjust the neuron connection weights, resulting in a network state that satisfies the desired 

probability distribution (Henseler 1995). Competitive learning is used when the data are to 

be categorized or clustered based on similarities in the input data (Henseler 1995). These 

learning algorithms are described in greater detail in the references.
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The data available for developing an ANN model are usually divided into two or three 

subsets. The first set is used for training the network, the second set for testing, and the last 

set for validation. Where only two subsets are created, the validation set is omitted. Each 

data subset should be representative of the entire data set, including all events the network 

may encounter and is expected to recognize during actual use. The data sets used for 

training the network must be pre-processed to remove noise, measurement errors, and non- 

random unexplained variances so the ANN can leam the tme relationships between input 

and output variables (Comrie 1997; Gardner and Dorling 2001). Pre-processing can also 

attempt to identify the input variables most critical to output variable prediction.

During training, the number of presentations of the data to the ANN is limited to avoid 

overtraining. Overtraining results in the network memorizing the data patterns, including 

noise, instead of the underlying relationships. A classic symptom of overtraining is an 

acceptable error during the training phase of the model development, but unacceptably large 

errors when the model is applied to an independent set of data. In the training phase of 

model development, the data may be presented to the ANN in rotation, in which each data 

pattern or record is presented to the ANN in the order in which it appears in the training set. 

Connection weights are adjusted after each data pattern. An alternative approach, termed 

“batch”, maybe used, in which all data patterns in the training set are presented to the 

ANN. Predictions are generated for each pattern before the connection weights are 

adjusted. Each cycle through the training set is called an “epoch”. The batch approach is 

more computationally efficient than the rotation approach.

3.3.4 A N N  Capabilities and Model Design Considerations

ANNs are commonly used for scientific and engineering tasks such as pattern classification, 

categorization/clustering, function approximation, forecasting, optimization, and control 

0ain et al. 1996). The design considerations for application of ANNs to accomplish these 

tasks include (Jain et al. 1996; Hudson and Postma 1995):

• The network’s ability (or lack of ability) to leam.

The network’s ability to generalize and adapt to data never before encountered.
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Input and output data types (i.e., Boolean or continuous, single or multiple). 

System stability.

• Dimensionality and number of neurons in each layer.

• Selection of a learning algorithm.

• Selection of activation and output functions.

• Scalability of the developed network to real life application.

• Execution and learning speed.

The applications of the various types of networks and their associated learning algorithms 

are illustrated in Figure 3-3. The remainder of this chapter deals with the application of 

ANNs to model ground level ozone and includes a review of the current literature.
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Figure 3-3 Learning algorithms, ANN functions, and network types.
Adapted from Jain et al. 1996.
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3.4 Application of ANNs to Model Ground Level Ozone

Ground level ozone, as a secondary pollutant formed through complex and non-linear 

reactions between primary pollutant compounds, is well suited for application of ANNs.

This realization has spurred widespread research into the success of ANN application to 

ozone modelling and the limitations of its use. Research efforts extend into the international 

arena, where several multi-national studies are underway to determine how ANNs can best 

be used for environmental data processing and atmospheric modelling. Burrascano 

(2001/2002) reports an Italian government project applying neural networks to 

environmental management problems, including air and electromagnetic pollution and water 

resources management. Greig et al. (2000) describe the efforts of a consortium from nine 

different institutions across Europe investigating the relative merits of the tools available for 

modelling air pollution episodes, and in particular the use of ANNs.

Gardner and Dorling (2001) had a unique application for ANNs, using the ANN to 

determine the effects of weather parameters on ozone concentrations. Their intent was to 

quantify these effects so they could be removed when measuring the success of emission 

control programs. They built ANN models for Qiffside Park, NJ, Washington, DC, 

Decatur, G A  Miami, FL, Chicago, IL, and Los Angeles, CA, using data from 1984 to 1995. 

Inputs to the model were surface temperature, specific humidity, ceiling height, opaque 

cloud cover, wind speed, modelled global solar radiation data, and the sine and cosine 

functions of the Julian day of the year. These inputs were selected to allow comparison of 

their ANN results with a previous study. Like many others, Gardner and Dorling’s results 

indicated that the ANN approach improved prediction performance at all sites except 

Chicago.

The flurry of recent interest in ANNs for modelling ground level ozone has brought to light 

several issues, associated with the approach, that still require resolution. In particular, the 

ANN model development remains largely subjective, requiring the user to exercise a certain 

level of expertise and skill with regards to the process modelled.
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3.4.1 Mo del Inputs

One area where this subjectivity has generated a motley of approaches is in the selection of 

inputs for the models. Ground level ozone concentrations are dependent on a combination 

of meteorological conditions and concentration of precursor compounds (McElroy 2002; 

Jacobson 1999; Potter and Coleman 2003; Sandhu 1999; and Seinfeld 1986). In several 

papers, researchers choose to focus on only one of these two aspects, limiting the success of 

the models. In addition, these approaches do not take full advantage of the ANN’S ability to 

handle complex data. Comrie (1997) forecast daily maximum one hour ozone 

concentrations in several American cities, using data from May through to September for the 

years 1991 to 1995. For parsimony, the author used only four meteorological inputs to the 

model: daily maximum temperature, average daily dewpoint temperature, average daily wind 

speed, and daily total sunshine. The previous day’s maximum ozone concentration was also 

used as an additional input parameter for some “lagged” forecast models for comparison. 

The historical data were randomly partitioned into training and validation data sets. The 

neural network architectures were not optimized for this work These considerations may 

have contributed to Comrie’s conclusion that the performance of the neural networks was 

only marginally better than multiple regression models.

Another example of an ANN model with a limited number of inputs comes from Jorquera 

et al. in 1998. Jorquera et al. modelled daily maximum hourly ozone concentrations in 

Santiago, Chile using the previous day’s ozone concentration and maximum temperature, 

and the forecast day’s maximum temperature. To simulate the error associated with 

forecasted temperatures, they added a Gaussian noise term to the actual maximum 

temperatures on the forecast day. The performance of the ANN model was compared to 

time series and fuzzy models. They concluded that the fuzzy model performed best, with 

the lowest number of false positives for all the validation data sets, but noted that the models 

could be improved with concentrations of ozone precursors as input.

Nunnari et al. (1998) focused only on concentrations of air pollutants for their ozone model. 

They predicted ambient ozone concentrations in Sicily one hour in advance using ANNs, 

fuzzy neural networks, and autoregressive models. The ANN model used previous hours’
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ozone, nitrogen dioxide (NO^, NOx, and non-methane hydrocarbon (NMHQ 

concentrations for input. They found that the ANN was the most accurate predictor out of 

the three modelling approaches.

Although models using a limited number of input variables can provide information about 

the effects of the specific inputs on ozone concentrations, influences from other parameters 

potentially important to ozone formation lack representation in the models. Comparing 

these types of models to other statistical or time series approaches is essentially a spurious 

comparison, because the approaches have different strengths and limitations. To reduce the 

number of inputs to the ANN model so that the number of inputs are equal to those used in 

these other approaches robs the ANN approach of its full information processing 

capabilities. For a tme valuation of each approach’s forecasting potential, each model should 

be optimized before the comparison is made. This would allow the strengths of each 

technique to be fully showcased.

It is also critical to examine the current scientific knowledge of the process, even if 

incomplete, for clues about the variables that may be relevant to the process. In situations 

where the data required to adequately train the ANN are unavailable or insufficient, it may 

be necessaiy to investigate alternate modelling methods, although Kao and Huang (2000) 

report that the ANN approach performed better than time series models for a limited data 

situation Taiwan. In this case, Kao and Huang collected ozone concentrations at three 

monitoring stations to develop an ozone forecast model. Their model used only 

concentration data from the 24 hours prior to the forecast hour as input. The selection of 

the preceding 24 hours was also arbitrary in this instance, highlighting the fact that when 

time series inputs are used in models, no method has been consistently applied in the 

literature to select a suitable time window to include.

A possible solution for selecting a suitable time window is to build and optimize a series of 

ANN models incorporating an increasing number of previous hours’ concentrations as 

inputs. This simple approach will help to determine whether increments in the input time 

window correspond to performance gains. Hadjiiski and Hopke (2000) applied a similar 

method, using volatile organic compound (VOC), nitric oxide (NO), and N 0 2
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concentrations, temperature, and radiant energy data to predict ambient ozone 

concentrations in Texas up to 5 hours in advance. The authors evaluated the effectiveness 

of increasing the number of concentrations from previous hours into their model, 

concluding that the most efficient model included only ozone concentrations from the 

previous two hours. However, they did not attempt to repeat the optimization of their 

model with the additional inputs. It would be expected that, with a change in the number of 

input variables (due to the addition of previous hours’ concentrations), the optimum 

network structure would also change. In addition, Hadjiiski used modelled concentrations 

rather than actual concentrations for the previous hours, which could increase the error in 

their forecasts.

When a sufficient data historyis readily available, the next question posed to the model 

developer is: what inputs are relevant to the process and should be included as input? Since 

ANNs are typically applied when mechanistic models are inadequate due to a lack of 

knowledge about the process modelled, this question is difficult to answer. One approach 

investigated in the literature is the method Garson proposed in 1991. In Garson’s paper, an 

equation is developed to partition connection weights of a trained network back to the input 

variables. This allows less important variables to be removed from the input variable set. 

Abdul-Wahab (2001), Abdul-Wahab and Al-Alawi (2002), and Elkamel et al. (2001) applied 

the Garson method to analyze the relative importance of the inputs to their models. 

Although all three studies were completed in Kuwait (the first two studies in the Khaldiya 

residential area and the third in the Shuaiba industrial area), the relative importance of the 

input parameters varied among the three studies. In all three studies, pollutant concentration 

and meteorological data were obtained from a mobile monitor. Inputs to the Abdul-Wahab 

and the Abdul-Wahab and Al-Alawi studies were identical except that NOx was included in 

addition to NO and N 0 2 concentrations in one of the studies. Both models were 

considered successful predictors of ozone concentration, with coefficients of multiple 

determination greater than 0.86. However, the Garson method produced very different 

results in the relative importance of the inputs. In the Abdul-Wahab (2001) paper, the order 

of importance of the input variables was solar energy, wind direction, carbon dioxide (CO^, 

relative humidity (RH), NOx, N 0 2, temperature, wind speed, NO, NMHQ and methane 

(CH,). The remaining variables were unimportant to the model. This list compares poorly
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to the Abdul-Wahab and Al-Alawi paper (2002), for the same residential area, in which the 

order of importance of inputs was: NO, sulphur dioxide (SOJ, RH, NMHC, N 0 2, CH,, 

temperature, C 0 2, dust, CO, radiation, wind speed, and wind direction. These results 

suggest that the Garson method lacks robustness. The Elkamel et al. (2001) study also 

found CO to be an important input variable. This is contrary to studies by other authors 

(e.g., Jacobson 1999 and Ruiz-Suarez et al. 1995), who report CO as a relatively inert 

compound in the urban atmosphere. Although CO may be an indicator of wind drift, this 

parameter was already explicitly represented in the Elkamel study. Other than the Garson 

approach, there is a conspicuous lack of a widely accepted methodology for determining the 

relative importance of inputs to ANN models.

The majority of authors use ambient monitoring data to develop ANN models. This is not 

surprising, as in most cases, the data are readily available and encompass a broad spectrum of 

both meteorological and pollutant parameters. A strategy for incorporating these data then 

becomes an issue, with authors required to choose data from numerous monitors within a 

geographical area and establish an appropriate averaging time for the measured parameters. 

Some authors incorporate data from a network of stations to model the overall maximum 

ozone in the region. Coboum et al. (2000) combined meteorological data from seven 

different monitoring stations, from a mixture of urban, rural, and suburban sites near 

Louisville, Kentucky. They modelled the peak ozone concentration for the entire region.

The ANN model inputs included dew point temperature, cloud cover, and wind speed, all 

averaged over late morning and early afternoon hours, hourly temperature, daily 

precipitation, and the number of overnight calms. This may become confusing for the 

ANN, since relationships between ozone concentrations and local wind direction, wind 

speed, and pollutant sources are potentially obfuscated. There is also potentially great spatial 

and temporal variability in meteorological parameters, like wind speed and wind direction. 

Averaging of these variables results in a loss in information that may be relevant in 

identifying particular sources or conditions that maybe strongly associated with ozone 

events. In addition, emission sources and dispersion characteristics maybe different in 

urban and rural sites. These differences are lost when the information from all stations is 

combined in one model.
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Guardani et al. (1999) attempt to consider wind behaviour when choosing the stations to 

include in their ANN. They employed ANNs to determine the relationship between 

variables measured at the core of the Sao Paulo Metropolitan Area in Brazil and afternoon 

ozone concentrations at a monitoring station downwind of the city centre. Data from June 

to December 1996 for GO, NMHC, NO, N 0 2, wind speed, and wind direction at the city 

core station (averaged for the hours from 8:00 to 11:00), and radiation and temperature from 

downwind stations (averaged from 12:00 to 17:00) were used to predict the average ozone 

concentration between 12:00 and 17:00 at the downwind stations. Guardani et al. found 

good agreement between neural network predictions and observed ozone concentrations. 

They suggest a more detailed and systematic study in the future on a larger data set. This 

method may work well in regions where winds are predominantly from one direction. In 

areas where winds are highly variable, an alternate approach maybe to develop individual 

models for each monitoring station and evaluating the results from all models to establish 

the peak ozone concentration in the region. This method would allow the ANNs to 

determine influences form local area effects.

The selection of an averaging time should be based on consideration of the formats of 

governing regulations and guidelines, and the available monitoring data. Smaller averaging 

times would limit the loss of information about the variables’ behaviours. However, the 

volume of data would increase, resulting in increased calculation requirements and 

processing time. Hourly averages are the most popular choice, and allow the determination 

of compliance with most standards.

3.4.2 Data Quality

Associated with the availability of historical data is consideration of how well the data 

represent the process. For the ANN to be able to leam and recognize ozone events, and to 

properly evaluate the network’s predictive abilities, each of the training, test, and production 

data sets must also be representative of the data set as a whole. The ANN relies on the 

training data to leam the features and relationships of the modelled process, so it is 

imperative that this data set contains all the possible scenarios that may occur, to build the 

ANNs experience with these situations. Since the model is judged based on its performance
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on the test or validation data, it is important that these are representative of the historical 

data, so the ANN’S performance is not biased up or down. Sohn et al. (2000) forecast ozone 

up to 24 hours in advance in Seoul, Korea. They chose a MLP ANN with a fixed hidden 

layer consisting of 50 neurons, trained with a scaled conjugate gradient algorithm. The ANN 

model inputs were previous hours’ concentrations of ozone, N 0 2, GO, and S 02, 

temperature, wind speed, sunlight, and humidity, totalling 30 variables. Sohn et al. had 

limited historical data with which to train the ANN, the training set containing only 31 

patterns. They found the ANN generally performed well, but speculated that an interval of 

poor prediction performance was attributable to a failure to account for precipitation falling 

during that interval.

Cannon and Lord (2000) circumvent this issue with the use of re-sampling techniques and 

multiple networks. They predicted daily maximum hourly average ozone concentrations 

from May through September for the Lower Fraser Valley in British Columbia. Cannon and 

Lord applied a bootstrap aggregation method, creating multiple training data sets through re­

sampling from the historical database, and training several ANNs with the training sets. 

According to the authors, approximately 37% of the training cases are excluded from the 

bagged sets of data using this method, but the final aggregate model is more stable and the 

model selection efficiency is improved. Cannon and Lord also applied a histogram 

equalization process to increase the frequency of extreme events in the training data set, 

seeing improved ANN performance with these models.

Since ozone is related to hot, sunny days, Cannon and Lord (2000), along with other 

researchers (e.g., Comrie 1997) chose to use forecast values of meteorological inputs such as 

daily maximum temperature in their models. These forecast values inherently contain some 

element of noise, and are dependant on the skill of the meteorologist. To decrease the 

reliance on human judgement, Balaguer Ballester et al. (2002) attempted “true” forecasting 

of ozone, using previous hours’ inputs (ozone at t-24 to t-1, other inputs of wind speed, 

wind direction, temperature, pressure, solar irradiance, relative humidity, NO, and N 0 2 at 

time t-24) to predict ozone at time t. The predicted ozone concentration at time t, along 

with the other inputs (ozone at t-1 to t-22, others at t-22), were then used to predict ozone 

concentration at t+1, and so on until a forecast for ozone concentration at t+24 was created.
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Hadjiiski and Hopke (2000) used the same approach to generate ozone concentration 

predictions up to 5 hours in advance, except that the inputs to their model were VOQ NO, 

N 0 2, temperature, and radiant energy at time t. As the authors observed, the use of ANN 

predicted concentrations to forecast the next ozone concentration term in the time series 

tends to allow errors to accumulate, so that the larger the prediction window, the greater the 

error. In evaluating model performance and use in forecasting then, a minimum acceptable 

performance needs to be established by the user to ensure an acceptable level of quality of 

the forecast values.

A related issue is the procedure used to divide the historical data into training, test, and 

production data sets. Some authors choose a random process of assigning data patterns to a 

data subset. With this method, and especially with a small historical database, the possibility 

of one of the subsets being unrepresentative is large. Other authors choose to divide the 

data sets according to year. The disadvantage with this procedure is the possibility that all 

scenarios may not occur in any given year, and an atypical year may bias the network 

performance as discussed earlier. If a year of relatively low ozone concentrations were used 

as the test set, the ANN performance would be artificially elevated. The opposite would be 

true if the test year contained unusually high ozone concentrations or the training set 

contained only low ozone years. Seasonal fluctuations in ozone concentration are also a 

consideration. An ANN to forecast the daily maximum hourly ozone concentrations in 

Houston was developed by Prybutok et al. (2000) using data collected from a number of 

USEPA monitoring stations in the area. N 0 2, NO, 0O 2, and NOx concentrations, wind 

speed, and wind direction (all averaged for the hours between 6:00 and 9:00 a.m.), an index 

for working or holiday day, the ozone concentration at 9:00 a.m., and the actual maximum 

daily temperature formed the inputs to the model. The data from June through September 

1994 were used for training the ANN, while data from the first two weeks of October were 

reserved for testing the network performance. While this method of data division may work 

well in places like Houston, it would be inappropriate for Alberta, where there are seasonal 

effects to consider and large ranges in daily hours of sunlight. In Alberta, October ozone 

concentrations would be considerably lower than in May or June, resulting in a prediction 

performance that is biased upwards if the October data were used to evaluate the network 

performance.
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Annual changes in meteorology also require consideration. This is one of the reasons an 

ANN model requires periodic re-training, to ensure medium term fluctuations in 

meteorology are accounted for. Melas et al. (2000) developed an ANN model using hourly 

average pollutant concentrations and meteorology for Athens, from 1987 to 1990. However, 

the test set of data was obtained from 1995, a span of five years from the training data. This 

maybe the reason for the authors’ finding that the ANN exhibited only marginal 

performance improvement when compared to regression models in the literature. Coboum 

et al. (2000), in their paper discussed above, also noted large differences from year to year 

ANN performance. They attributed the ANN’S poor performance in 1998 to unusual 

meteorology in that year.

Soja and Soja (1999) used a simple neural network (2-2-1 architecture) to predict ozone 

indices in rural Austria, using only daily maximum temperature and sunshine duration for 

input. The historical data were collected from May to September, and spanned the years 

1993-1996. Data for the first three years were used to train the network, while the 1996 data 

were reserved for testing the models. They found that the ANN models did not always 

outperform optimized regression models. However, this may also be attributable to the 

simplicity of the ANN structure and the small number of inputs used in their model.

3.4.3 Network Architecture

The selection of an ANN structure is still predominantly ad hoc or arbitrary in nature. Most 

authors choose to fix the network architecture. Despite the proposal of a systematic 

approach by El-Din and Smith (2002), some authors continue to adopt trial and error 

methods to determine the network type, number of layers, number of neurons within each 

layer, and traming epochs. Generally, the tested ranges of each feature are arbitrarily 

selected. However, there are indications of interest in applying a systematic approach for the 

atmospheric sciences, with several authors using a quasi-systematic methodology to develop 

their models. Yi and Prybtok (1996) used ANNs to predict daily maximum ozone 

concentrations in an industrial area of Dallas-Fort Worth. N 0 2, NO, C 0 2, and NOx 

concentrations, a variable representing a holiday or working day, ozone concentration at 9:00
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a.m. of the forecast day, average wind speed and direction between 6:00 and 9:00 of the 

forecast day, and the maximum daily temperature on the forecast day formed the inputs to 

the model. The network features, including various combinations of the number of hidden 

layers, number of hidden layer neurons, and transfer functions were evaluated in over 50 

experiments.

In the United Kingdom, Spellman (1999) used ANNs to predict daily one hour maximum 

surface ozone concentrations at five monitoring stations, using surface meteorological 

variables (maximum temperature, hours of sunshine) and the previous day’s ozone 

concentration for inputs. To determine the optimum network architecture, Spellman used a 

trial and error approach, although details of the specific protocol employed were not 

provided.

In spite of the lack of an established methodology for optimizing the ANN structure, the 

flexibility in building the ANN, with a vast array of options for connection styles, activation 

functions, and training algorithms, etc., is also one of the desirable characteristics of the 

ANN modelling approach. The assortment of potential architectures makes ANNs 

amenable to modelling a variety of processes. This is illustrated in Wang et al. (2003), who 

approached the modelling of ozone for Hong Kong with an atypical radial basis function 

(RBF) network and an adaptive radial basis function (ARBF) network that combined the 

RBF with statistical characterization of ozone concentrations. They used data collected at 

three monitoring stations to train and test the ARBF network The variables input to the 

model, selected based on the statistical analysis, were concentrations of ozone, N 0 2, and 

NOx, wind speed, temperature, and solar radiation. Wang et al. found the ARBF 

successfully predicted daily maximum ozone concentrations at the three stations.

3.4.4 Performance Evaluation

The statistical parameters used to evaluate the ANN model performance are widely variable 

from paper to paper. Currendy, there appears to be no consensus on the best statistical 

parameter to use, resulting in a large array of options in the literature. This makes 

comparisons of different studies difficult. Some authors provide no statistical indicators at
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all, purely using graphics to represent their results. This is the technique employed by 

Konovalov (2001), who used a neural network based model to study the sensitivity of 

ambient ozone concentrations to concentrations of various precursor compounds. The 

ANN model was built with an extensive data bank, collected over 15 years. Konovalov 

concluded that ANN models are good tools for determining ozone sensitivity to precursor 

compounds. The use of graphical illustrations to qualitatively evaluate the network 

performance is undoubtedly an information rich technique. Plots of ANN predictions with 

actual ozone concentrations can highlight deviations from the observed ozone trends and 

systematic under- or over-prediction of extreme values. However, statistical indicators such 

as the coefficient of multiple determination, Wilmott’s indices of agreement, and bias also 

provide specific, quantitative information about the ANN performance and facilitate 

comparison of the ANN performance with other studies.

Schlink et al. (2003) attempted to compare time series and statistical modelling approaches to 

ANN models for a number of European cities. To allow comparisons between the different 

models, they chose several performance indicators that were calculated for all models. This 

approach of providing an array of performance indicators is more comprehensive, because 

each statistical parameter is an indication of a different aspect of the model performance.

For example, the commonly used coefficient of multiple determination provides a general 

indication of how much of the variability in the output is explained by the model inputs, 

while the bias detects any systematic deviations from the desired output that may not be 

apparent from parameters such as the mean absolute error. Based on this type of approach, 

Schlink et al. determined that the preferred modelling technique was dependant on the 

scenario modelled, the available data, and the modelling objectives. However, they suggest 

that ANNs provide a good compromise.

Finally, practicality considerations are necessary when assessing the value and usability of an 

air quality model. Narasimhan et al. (2000) developed several ANN models for ozone in 

Tulsa, Oklahoma. The first model used 8 inputs: NO, N 0 2, temperature, radiation, relative 

humidity, wind speeds at two heights, and barometric pressure. This model was used to 

determine the sensitivity of ozone concentrations to changes in the input variables. A 

second ANN model was built incorporating concentrations of ozone from the previous
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three days. A third ANN model included modelled upper air data (vertical temperature 

profile, vertical relative humidity profile, mixing depth, vertical wind speed, and a four layer 

lifting index). They recommend further development of their models to include soil 

temperature, soil moisture, wind direction, and rainfall data. However, these types of inputs 

may not be readily available in Alberta, with the same frequencies as the ambient monitoring 

data. Any ANN models developed for a region must draw their inputs from the available 

pool of information in the region. Although a limited number of inputs may be non-ideal, a 

model requiring inputs that are difficult or costly to obtain would have limited usefulness. 

Therefore, the need for completeness of the model must be tempered with practicality 

considerations.

Like traditional models, the ANN requires quality historical data, and due to its “black box” 

nature, provides limited information about the modelled process. Currently, no method is 

available for analyzing the ANN structure to generate descriptive functions of the modelled 

process. This has slowed widespread acceptance of ANNs for atmospheric modelling. 

Despite these challenges, ANNs are an attractive alternative to traditional mechanistic 

models, as the large number of papers in the literature attests. The advantages they offer 

include the ability to leam nonlinear patterns in the data, flexibility in model structuring, and 

the ability to efficiently use available computing power, resulting in time and cost savings.

3.5 Conclusions

A variety of approaches are available for atmospheric modelling. ANNs are particularly well 

suited to modelling ground-level ozone due to their ability to handle complex, poorly 

understood, nonlinear processes and the flexibility in their design. However, this flexibility 

also generates challenges associated with developing a consistent methodology for choosing 

appropriate inputs, evaluating the quality of historical data, and selecting an efficient network 

structure. In addition, these challenges must be balanced with usability considerations, 

scientific knowledge, and available funds.
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4.0 HISTORICAL OZONE DATA PATTERNS AND TRENDS IN  

EDM ONTON AND CALGARY1

4.1 Introduction

Ozone is an invisible, gaseous compound present in the stratospheric and lower 

tropospheric layers of the atmosphere. In recent years, ozone has come to the forefront of 

public awareness as a pollutant that may cause or aggravate existing respiratory illnesses. 

Although its presence in the atmosphere has been acknowledged since the 1800s, only 

recently have numerous epidemiological studies intimated the role it plays in respiratory 

illnesses (Bates et al. 1990, Burnett et al. 1998, Lipfert and Hammerstrom 1992, McDonnell 

et al. 1999, Thurston et al. 1997). Ozone is also implicated in vegetation injury and materials 

damage (Bates 1991, USEPA 1996).

In Canada, ozone air quality objectives were first established in 1971. Today, regulators 

continue to set guidelines for ground-level ozone to protect human health and welfare. The 

current Canada-Wide Standard reflects increasing public concern, with a target of 0.065 ppm 

(127 pg/m3), averaged over 8 hours, for 2010. In Alberta, the one hour average Ambient Air 

Quality Guideline (AAQG) for ozone is 0.082 ppm (160 pg/m3). To ensure compliance with 

guideline levels, Alberta Environment has established an air monitoring network throughout 

the province.

The potential adverse public health effects associated with ground-level ozone give rise to 

the need for an effective method of predicting ground-level ozone concentrations. Such a 

model would enable regulatory bodies to forewarn the public of impending elevated ozone 

events. However, ozone is a secondary photochemical pollutant with complex and non­

linear chemistry. This complexity has challenged the widespread application of the traditional

1 A version of this chapter has been presented and will be submitted to the Journal of Environmental

Engineering and Science. Su, D., Gamal El-Din, A , Idriss, A , Gamal El-Din, M., and Wiens, B. 2004. 

Investigation of historical data patterns for ozone and related compounds in Edmonton and Calgary and their 

application to modelling ground-level ozone. In Proceedings of the Cold Regions Engineering & Construction 

Conference May 16-19, 2004, Edmonton, AB.
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mechanistic Gaussian-based dispersion models to ozone. In this report, we discuss the 

potential of employing “black-box” models, such as Artificial Neural Networks (ANNs) and 

time series models, for predicting ground-level ozone concentrations. The historical trends 

of ozone and its precursors obtained from Alberta’s Edmonton East and Calgary East 

stations will be evaluated. Also discussed is how to structure ANN and time series models to 

include these historical trends.

4.2 Background

Edmonton, the capital of Alberta, Canada, is a city of just under a million people, with 9,532 

square kilometres of land area around the North Saskatchewan River valley. Major industrial 

areas are located in the northwest, northeast, and southeast quadrants of the city. Typical 

industries in the region include petroleum refineries, power plants, and chemical 

manufacturing facilities. Alberta Environment monitoring stations are located in the east, 

northwest, and central districts of the city. Pollutants relevant to ozone formation monitored 

at the Edmonton East station include nitric oxide (NO), nitrogen dioxide (NOj), sulphur 

dioxide (SO^, total hydrocarbons (THQ, and ozone (0 3). The Edmonton East station data 

were selected for analysis of historical trends because in the period of this study, winds at 

this station blow predominantly from the southwest. Using data from this downwind station 

ensures representative urban data. In addition, ozone levels are typically highest downwind 

of urban areas, and it is the high concentrations that are of most from a public health and 

regulatory compliance standpoint.

The city of Calgary is located on 5,083 square kilometres along the Bow River approximately 

300 km directly south of Edmonton. Its population is just under a million. Major industries 

in the region include agriculture, oil and gas, and manufacturing facilities. Alberta 

Environment has three monitoring stations in the east, northwest and central areas of the 

city. With the same considerations listed above for the Edmonton East station, data for the 

Calgary East station are analyzed in this paper. Pollutants monitored at the Calgary East 

station include NO, N 0 2, S02, THQ and 0 3.
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4.3 Ozone Chemistry

Ground-level ozone is a secondary pollutant formed through reactions involving volatile 

organic compounds (VOGs) and oxides of nitrogen (NO,,). VOGs involved in ozone 

formation are emitted from evaporative and combustion processes, and consist of two to 

twelve carbons atoms. The major categories of VOC sources are transportation and 

industrial processes. The major categories of human activity responsible for NOx emissions 

are transportation, stationary source fuel combustion, industrial processes, solid waste 

disposal, and other miscellaneous sources (USEPA1996). Ozone and its precursors also 

interact with other pollutants like S 02 in the atmosphere. As well, meteorological factors like 

sunlight, windspeed, atmospheric stability, and temperature play a major role in ozone 

formation (CEPA/FPAC WGAQOG 1999). The meteorological and climate conditions in 

Alberta, with warm, short summer seasons, and extended cold winters, make this region 

distinct from its neighbours in the south and east, resulting in unique behaviours in air 

pollutant trends (Sandhu 1999). This analysis is confined to the historical trends of pollutants 

affecting ozone concentrations, since these are the likely targets for regulatory control.

4.4 Methods

4.4.1 Monitoring Data

Pollutant data from the Edmonton and Calgary East stations are collected on a continuous 

basis and reported as an hourly average concentration in the publicly available Gean Air 

Strategic Alliance (CASA) Data Warehouse (http://www.casadata.org). NO and N 0 2 

concentrations are determined with chemiluminescence. 0 3 is measured with an ultraviolet 

light process, whrle S 02 concentration is determined using pulsed fluorescence. THC is 

measured with a hydrogen flame ionization detector. These methods are described in detail 

on the CASA website (http://www.casadata.org/airquality/cont_mon.asp). All hourly 

average concentrations are preprocessed to remove erroneous data and are reported in ppm 

This paper considers data collected from 1999 to 2002, for the months from May to 

September inclusive. Ozone seasonal trends are well established (Sandhu 1999), so only the 

photochemically significant summer season is relevant for the purposes of predicting high
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ozone episodes. The pollutants evaluated in this paper were selected based on a literature 

review carried out to determine important contributors to ozone formation, and taking into 

consideration the availability of historical monitoring data.

4.4.2 Statis tical Analys is

The mean, minimum, maximum, 95th percentile values, and standard deviation of the 

measurements for each pollutant were calculated from the monitoring station hourly 

averaged data and tabulated in Table 4-1. The data were manipulated with a VisualBasic 

macro to determine average and maximum hourly, weekly, and monthly trends for the data 

period. All values were calculated using data from the entire 1999-2002 history. For example, 

the average ozone concentration at 14:00 was calculated as the average of all 14:00 readings 

in the data period, regardless of day of the week or season. Blank entries were excluded from 

all computations. The number of hours in which average hourly concentrations exceeded the 

0.082 ppm AAQG for 0 3 was also counted.

Table 4-1 Statistical parameters for pollutants monitored at the Edmonton East 
and Calgary East stations, summer months of 1999-2002 (in ppm).

Pollutant Mean Standard
Deviation

Minimum Maximum 95th
Percentile

Edmonton East
NO 0.008 0.014 0 0.166 0.032
n o 2 0.013 0.009 0 0.068 0.031
s o 2 0.002 0.003 0 0.061 0.007
THC 2.4 0.9 1.5 25 3.4
o 3 0.026 0.016 0 0.101 0.053

Calgary East
NO 0.021 0.03 0 0.502 0.078
n o 2 0.019 0.017 0.001 0.086 0.037
s o 2 0.002 0.002 0 0.028 0.006
THC 2.1 0.2 1.7 5.6 2.5
o 3 0.021 0.015 0 0.069 0.046
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4.5 Results and Discussion

4.5.1 Edmonton East Data Trends

Ozone. A sample of typical Edmonton East data for ozone is depicted in Figure 4-1. In 

general, ground-level ozone concentrations in Edmonton are well below the AAQG value in 

the study period, with an average hourly concentration of 0.026 ppm and a 95th percentile 

value of 0.056 ppm. Ozone values have a definite relationship with the hour of the day, 

reflecting the importance of photochemical reactions for ozone formation. Figure 4-2a 

shows the historically observed, diurnal ozone trends. The ozone peak occurs between 15:00 

and 16:00. The daily ozone minimum tends to occur at 6:00.
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u
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Figure 4-1 Edmonton East typical hourly average ozone concentrations. Data 
from May 2001.

For all the years analyzed, slightly lower ozone values occur during the beginning of the 

week, on either Monday or Tuesday. As the week progresses, average hourly ozone values 

rise slightly, culminating in their highest values on Saturdays and Sundays. This behaviour is
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depicted in Figure 4-3a. Maximum hourly ozone values show a less discernible pattern, with 

only 2001 and 2002 data showing marginally higher values on the weekend.

The monthly trend of average hourly ozone concentration shows a definite maximum in 

May, with a steady decrease as the summer season progresses (Figure 4-4a). This pattern may 

suggest the effects of stratospheric ozone intrusion, since the tropopause is at its lowest 

during spring in western Canada (CEPA/FPAC WGAQOG 1999). In addition, solar 

radiation levels are highest in the spring, at the vernal equinox. Since ozone is a 

photochemical pollutant, it is expected that formation would be greatest when radiation 

levels are highest. No monthly patterns in maximum hourly ozone concentrations were 

identified. However, four exceedances of the AAQG occurred in July and one exceedance 

occurred in August.

Nitric oxide. NO concentrations averaged 0.008 ppm NO concentrations peak daily 

between 7:00 and 8:00, levelling off and remaining steady for the rest of the day (Figure 4- 

2b). Levels are high during the week and tend to dip on weekends (Figure 4-3b), following 

standard urban traffic patterns. This observation is consistent from month to month, 

although peaks vary in their day of occurrence. Maximum hourly concentrations are also 

higher on weekdays than on weekends. Monthly, NO average hourly values are highest at 

the end of the summer (Figure 4-4b. These correspond well to lower ozone concentrations 

at this time of the year.

Nitrogen dioxide. N 0 2 average hourly concentrations range from 0 to 0.068 ppm, with an 

average value of 0.013 ppm N 0 2 concentration peaks twice daily, at 7:00 and 22:00 (Figure 

4-2c). Minimum values occur at 14:00. Day of the week N 0 2 trends are similar to NO 

trends, exhibiting consistently lower averages and maxima on weekends (Figure 4-3c). The 

highest average hourly concentrations occur in May and September (Figure 4-4c).

Sulphur dioxide. Average hourly S02 daily trends show a single peak at 11:00 (Figure 4- 

2d), with steady values for the rest of the day. No real variations in the average hourly and 

maximum hourly concentrations occur during the week (Figure 4-3d). Monthly, no 

significant trends are apparent, with only slightly higher values in May and September
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(Figure 4-4d). However, there is also a greater variability in the concentration values for 

these months from year to year.

Total hydrocarbons. Hourly THC concentrations average 2.4 ppm. Concentrations are 

generally steady all day, showing a slight dip in the afternoon between 13:00 and 15:00 

(Figure 4-2e). There are no obvious THC trends with the day of the week or monthly plots 

(Figures 4-3e and 4-4e).
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Figure 4-2. Edmonton East 1999-2002 diurnal hourly average concentration trends 
for: (a) ozone; (b) nitric oxide; (c) nitrogen dioxide; (d) sulphur 
dioxide; and (e) total hydrocarbons.
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Edmonton East 1999-2002 diumal hourly average concentration 
trends for: (a) ozone; (b) nitric oxide; (c) nitrogen dioxide; (d) 
sulphur dioxide; and (e) total hydrocarbons.
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Figure 4-2 contM. Edmonton East 1999-2002 diurnal hourly average concentration 
trends for. (a) ozone; (b) nitric oxide; (c) nitrogen dioxide; (d) 
sulphur dioxide; and (e) total hydrocarbons.
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Figure 4-3 cont’d. Edmonton 1999- 2002 day of the week trends in hourly average 
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Figure 4-3 edit’d. Edmonton 1999- 2002 day of the week trends in hourly average 
concentrations for: (a) ozone; (b) nitric oxide; (c) nitrogen 
dioxide; (d) sulphur dioxide; and (e) total hydrocarbons.
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Figure 4-4. Edmonton 1999-2000 monthly patterns of average hourly
concentrations for: (a) ozone; (b) nitric oxide; (c) nitrogen dioxide; (d) 
sulphur dioxide; and (e) total hydrocarbons.
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Figure 4-4 cant’d. Edmonton 1999-2000 monthly patterns of average hourly 
concentrations for: (a) ozone; (b) nitric oxide; (c) nitrogen 
dioxide; (d) sulphur dioxide; and (e) total hydrocarbons.
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4.5.2 Calgary East Data

Ozone. Typical average hourly ozone measurements for the Calgary East station are 

depicted in Figure 4-5. The mean hourly average ozone concentration was slightly lower than 

in Edmonton at a value of 0.021 ppm The diumal ozone trend was the same, with a peak at 

15:00 and a minimum at 6:00 (Figure 4-6a). Day of the week (Figure 4-7a) and monthly 

(Figure 4-8a) trends were also similar, with higher average hourly concentrations on 

weekends. Peak hourly average ozone concentrations declined steadily from May to 

September.
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Figure 4-5 Calgary East typical hourly average ozone concentrations. Data for 
May 2001.

Nitric oxide. Mean NO in Calgary was higher than in Edmonton at 0.021 ppm 

Concentrations peaked at 7:00, with another minor peak at about 23:00 (Figure 4-6b). As 

was the case in Edmonton, NO concentrations were slightly lower on weekends (Figure 4- 

7b). Both average and maximum hourly average concentrations were highest in September 

(Figure 4-8 b).
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Nitrogen dioxide. N 0 2 hourly average concentrations were generally slightly higher than 

in Edmonton, with a mean of 0.019 ppm. As with Edmonton, two peaks are observable 

daily, at 7:00 and at 22:00, with a minimum average hourly concentration occurring between 

13:00 and 14:00 (Figure 4-6c). N 0 2 average hourly concentrations are lowest on weekends 

(Figure 4-7c), although the daily maximum appears to frequently occur on Thursday. 

Monthly, no trends were obvious in the average hourly concentrations (Figure 4-8c). The 

highest maximum hourly concentration occurred in September.

Sulphur dioxide. S 02 concentrations are similar in Calgary and Edmonton. The mean 

average hourly S 02 concentration in Calgary was 0.002 ppm. Average hourly concentrations 

peaked daily at 8:00 and again at 22:00 (Figure 4-6d). During the week, the average hourly 

concentrations experienced a dip on weekends (Figure 4-7d). No significant monthly trends 

were apparent (Figure 4-8d). For all the data, average hourly concentration values were 

slighdy higher in September, but there was a greater spread in September concentrations 

through the years than with other months.

Total hydrocarbons. Average hourly THC in Calgary had a mean of 2.1 ppm, slightly 

lower than the mean for Edmonton. Average hourly THC values were steady, with a slight 

dip occurring at 15:00 (Figure 4-6e). No relationships with the day of the week or month of 

the year were apparent (Figures 4-7e and 4-8e).
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Figure 4-6 Calgary East diurnal hourly average concentration trends for: (a)
ozone; (b) nitric oxide; (c) nitrogen dioxide; (d) sulphur dioxide; and 
(e) total hydrocarbons.
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Figure 4-6 coat’d. Calgary East diurnal hourly average concentration trends for: 
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dioxide; and (e) total hydrocarbons.
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Figure 4-6 confd. Calgary East diumal hourly average concentration trends for: 
(a) ozone; (b) nitric oxide; (c) nitrogen dioxide; (d) sulphur 
dioxide; and (e) total hydrocarbons.
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69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.0035

0.003

& 0.0025
13

I  0.002

% 0.0015
S3 o U
Ocn

0.001

0.0005

r

A '

• X .

X

------- All Data ------- 1999 - - - a - - -  2000
•-X---2001 ..-•■--2002

M W R 

Day
(d)

2.5

S 2A.a,
a
•2 1.5

c
<uocoU
U
H 0.5

Figure 4-7 cont’d.

All Data --- 
-X---2001

■---1999 - - - a - - - 2000
> - - -  2002

M T W R 

Day
(e)

Calgary East day of the week variation in hourly average 
concentrations for: (a) ozone; (b) nitric oxide; (c) nitrogen 
dioxide; (d) sulphur dioxide; and (e) total hydrocarbons.
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Figure 4-8 Calgary East monthly patterns of average hourly concentrations for: (a) 
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Figure 4-8 coat’d. Calgary East monthly patterns of average hourly concentrations 
for (a) ozone; (b) nitric oxide; (c) nitrogen dioxide; (d) sulphur 
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Figure 4-8 cont’d. Calgary East monthly patterns of average hourly concentrations
for: (a) ozone; (b) nitric oxide; (c) nitrogen dioxide; (d) sulphur 
dioxide; and (e) total hydrocarbons.

4.5.3 Artificial Neural Networks Brief Description

Artificial neural networks (ANNs) are a form of artificial intelligence that attempts to exploit 

the pattern recognition capabilities of the human brain (Jain et al. 1996). The building blocks 

of ANNs are individual nodes called neurons that process inputs to the network. The most 

common type of network is the multilayer perceptron (MLP). In the MLP, an input layer of 

neurons receives input signals from the environment, with each neuron in the input layer 

representing an input variable. These signals are transformed and processed by one or more 

hidden layers of neurons that attempt to “fit” the inputs to the target output variable 

(Hadjiiski and Hopke 2000). The network is trained by feeding historical data with the 

corresponding output values into the network. The strength of the connections between 

neurons is adjusted during training as required to improve the fit of network predictions 

with the target output values (El-Din and Smith 2002a). In this manner, the network is able 

to “learn” the underlying trends in the data. The ANN approach is often termed a “black 

box” approach, because no equations describing the modelled process are required to
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formulate the model, nor does the model produce any functions describing the relationships 

learned.

Since the ANN’S ability to model is developed from historical data, it is critical that a 

comprehensive and representative database be available for “teaching” the network (Kao 

and Huang 2000). The extensive database of pollutant concentration and meteorological data 

available in Alberta are conducive to the application of ANNs.

4.5.4 Time Series Models Brief Description

Time series models are another example of the “black-box” modelling approach. Although 

time series models have been around for years, it was not until the 1960’s when Box and 

Jenkins recognized the importance of the Auto-Regressive Moving Average (ARMA) models 

in the area of economic forecasting, that the well-known Box-Jenkins methodology for 

analysis of time series data was developed. The Box-Jenkins methodology for time series 

analysis is a stochastic modelling technique that is capable of describing complex 

environmental systems (Box and Jenkins 1976).

Two general approaches may be used when building a time series model: the “univariate” 

approach and the transfer function (also called the “multivariate”) model approach. The 

univariate model approach is based on the idea that a time series in which successive values 

are highly dependent can be usefully regarded as generated from a series of uncorrelated 

independent “shocks” at , which are random drawings from a fixed distribution, usually

assumed normal, and having a mean of zero and variance o 2a . Such a sequence of random 

variables a t,a t_,,at_2,... is called a “white noise process”. A “linear filter” is a model that 

transforms the white noise process at to the process that generated the time series, z t , and 

can be represented mathematically by the equation zt = v|/(B)at . This transformation is 

accomplished through the operator:

i|/(B) = 1 + \j/,B + >|/2B2 + ... = with vj/0 = l •••Equation 4-1
j=o
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where B is the backshift operator such that BJa, -  at_i . In order to have a simpler

representation of the stochastic process represented by Equation 4-1, it is usually 

advantageous to write

0(B)
i|/(B) =

...................................................Equation 4-2

where 0(B) is the moving average operator of the stochastic model, and is defined as 

0(B) = 1 -  0,B -  02B2 - ... -  0qBq; <|>(B) is the auto-regressive operator of the stochastic model, 

and is defined as <j>(B) = 1 -  <j>,B -  <|>2B 2 - . . .  -  <j)pBp; and p and q are the orders of the 

stochastic model. The linear filter can represent any univariate time series model.

In contrast to ARMA models, which describe the behaviour of single time series in terms of 

a white noise, transfer function, models can represent more complex systems in which the 

output is the stochastic response to one or more measured input series. The general form of 

a transfer-function noise model for the single input case is:

Y, = o(B)Xt_b + Nt ............................  Equation 4-3

where Y t is the output series at time t; o(B) is defined as u(B) = (u0 + u,B + u2B2 + • ■ •) and 

know n as the impulse response function (it is the transfer function part o f  the model); x, b is 

the input series at time t -  b , where b is a delay parameter, and N is a noise process at time t, 

defined by  the linear filter N t = y(B )at and know n as the stochastic m odel com ponent (it is 

the noise part o f  the overall model). For the multiple input case, the m odel is:

Y, = o I(B)Xlt_bi + o 2(B)X2t_b2 + --  + N,   ....Equation 4-4

Models represented by Equation 4-4 are usually called “combined transfer-function noise” 

models. The general approach for building models of this type consists of four main stages: 

identification, estimation (or fitting), forecasting, and diagnostic checking. The details of the
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different stages involved in building time series models can be found elsewhere (Box and 

Jenkins 1976).

4.5.5 Implications of Pollutant Data Trends for the AN N  and Time Series Models

The pollutant data show definite diurnal trends. However, the hour of the day is not 

expected to be a critical input if included as an independent variable in the ANN model.

This is because the concentration fluctuations observed throughout the day are symptomatic 

of the effects of other parameters such as sunshine and human activities. These are time- 

related effects that more directly affect ozone chemistry and concentrations. These effects 

are inherently embedded in the combination of pollutant concentrations that result in high 

ozone events. Nevertheless, the hour of the day effects maybe introduced into the ANN 

model by dedicating a few input neurons to represent an hour of the day index to the ANN 

model (El-Din and Smith 2002b).

The diurnal plots indicate a lag in ozone concentrations in response to high levels of 

precursors, so consideration of previous hours’ values of precursors may help to improve 

predictions. This lagged effect also suggests that ozone concentrations can be successfully 

forecasted with previous hours’ data, with peak precursor values providing clues to daily 

peak ozone concentrations. Since precursor peak concentrations appear to be strongly 

related to human activities like rush hour traffic, inclusion of a parameter representing 

human behaviour patterns as an input may be beneficial to the performance of the models. 

However, parameters such as traffic counts that are typically used in the literature (e.g. 

Hasham et al. 1998) are difficult to incorporate on an hourly basis and are not as readily 

available as real-time monitoring data. Incorporating traffic data into models requires 

delineation of the spatial boundaries of the traffic effects on the location modelled, to ensure 

identification of all potential sources. These sources and their effects would also be 

dependant on concurrent meteorological conditions, further complicating the process. In 

addition, the effects of traffic patterns are inherently represented in the historical data (i.e., 

the fluctuations observed in the historical ambient monitoring data are the result of traffic 

and other influences on the receptor).
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Major fluctuations in pollutant concentrations tend to occur during daylight hours, so 

daytime data maybe sufficient if the objective is to determine peak levels that could exceed 

guideline values. This would result in a more economical model with reduced training 

runtime requirements, but additional pre-processing time would be required to extract data 

for the hours of daylight in any given day. In Alberta, a northern zone, daylight hours can 

range anywhere from 7.5 hours in the winter to 17 hours in the summer (Sandhu 1999).

The day of the week effects are important to consider since many of the established 

precursors show different behaviours on weekends compared to weekdays. Ozone 

concentrations in urban environments are also prone to NO scavenging effects, and are 

related to NO concentrations in these areas. For the ANN modelling, the day of the week 

effect maybe included either by presenting a day of the week index as input to the network 

or by simply developing two distinct ANN models, one operating for weekdays and the 

other for the weekend regime. However, weekend values of precursor compounds that are 

related to traffic patterns, like NO and NOa, tend to be lower than weekdays, while ozone 

trends are reversed. This further suggests a relationship with traffic patterns, possible lagged 

effects, or persistence and accumulation of ozone levels, necessitating inclusion of either 

previous days’ values of ozone or precursors as input.

Although this paper focuses on data from the summer months only, monthly trends within 

this season are readily apparent for ozone and some of its precursors. Neurons representing 

the month of the year would be useful for delineating summertime ozone trends, making 

these patterns more explicit for the ANN during training. As with day of the week 

considerations, a different network could be developed for each month of the season, 

although gains in prediction performance are offset by the increased effort and time required 

to develop additional networks.

The hour of the day and the day of the week effects could be introduced into the time series 

models by including higher order auto-regressive parameters into the structure of the ARMA 

model. However, the hour-to hour effects will probably be much stronger, and hence, may 

mask the hour of the day and day of the week effects. Since time series data have to be
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continuous, a separate time series model would have to be developed for each summer 

season, and therefore, the monthly trends cannot be included in the time series model.

The similarity of pollutant concentration trends in Calgary and Edmonton, with differences 

in absolute magnitudes, suggests that human activities influencing pollutant concentrations 

in these cities are similar. Modelling can give clues as to which pollutants have the greatest 

influence on ozone levels in Edmonton and Calgary. However, different initial precursor 

concentrations and meteorological effects require the construction of specific models for 

each city. The advantage of the “black-box” approach proposed here is that no pre-existing 

knowledge of the relationships between ozone and its precursors are required. Black-box 

models can easily depict the complex relationships underlying the historical data that would 

otherwise require complex equations and terms in the traditional grid and trajectory models. 

No definitions of the regional terrain are required. In addition, the black-box modelling 

approach is economical because it makes use of the efforts already put into air quality 

monitoring. No further effort is required to obtain input data for the model.

Time series effects are important to consider, since there are lagged effects in the 

concentration of ozone relative to precursors. Development of the ANN requires 

investigation of the appropriate time window for incorporating this effect. Time series 

models will provide a benchmark to compare against when testing the performance of the 

ANN models that include time series components in their structures. Meteorological 

variables have also been shown to significantly contribute to ozone production and 

accumulation (CEPA/FPAC WGAQOG 1999), and can help to improve ANN predictions. 

For the practical application of the models, developers need to keep in mind that input data 

should be readily available. It should also be certain that regulatory bodies continue to 

monitor these inputs in the future.

4.6 Conclusion

Examination of historical air quality data shows that ozone and its precursors exhibit 

significant diurnal, weekly, and seasonal trends that must be considered and incorporated 

into air quality models. Diurnal patterns maybe related to human activities such as traffic, or
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maybe influenced by meteorological considerations. Parameters representing these 

behaviours maybe included in the model, but should be selected with care to ensure they are 

readily available for model application and economic to acquire. Similar pollutant trends in 

Calgary and Edmonton suggest that pollutant sources and activities affecting pollutant 

concentrations in these two cities are similar. Black-box models such as ANNs and time 

series models are promising tools for modelling ozone behaviour, as they are able to 

recognize temporal trends and non-linear patterns in the historical data. Lagged effects 

appear important, and their consideration in the ANN model may improve prediction 

performance.
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5.0 EDMONTON EAST OZONE ANN MODELS2

5.1 Introduction

With the growing population and urbanization of the world, air quality and the health effects 

associated with poor air quality are becoming increasingly important issues. Ground-level 

ozone is one of the pollutants currently under scrutiny for its role as an iniator and 

aggravator of respiratory illness. It is a secondary pollutant, formed in urban environments 

mainly from anthropogenic emissions of its precursor compounds, the oxides of nitrogen 

and volatile organic compounds. These ozone precursors are emitted from a variety of 

sources, both man-made and natural, including transportation, stationary source fuel 

combustion, industrial processes, vegetation, and solid waste disposal (CEPA/FPAC 

WGAQOG 1999; U5EPA 1996). Health Canada and Environment Canada, and the United 

States Environmental Protection Agency (USEPA) have recently studied the atmospheric 

chemistry of ozone (CEPA/FPAC WGAQOG 1999; USEPA 1996). The commonly 

reported ground-level ozone formation process, in the presence of anthropogenic pollutants 

is illustrated in Figure 5-1.

Atmospheric ozone formation processes are non-linear and complex, challenging the success 

of traditional mechanistic modelling approaches. This, combined with the risk of adverse 

health effects associated with ozone exposure, has introduced the need for a reliable method 

for modelling ozone concentrations and predicting high ozone events. An approach that has 

recently piqued the interest of atmospheric scientists internationally is artificial neural 

networks (ANNs). ANNs are a form of artificial intelligence. They are patterned after the 

problem solving, trend recognition, and experiential learning abilities of the human brain 

(Baxter 2002). ANNs employ historical data to map out the relationships between a set of 

input variables and the output variable modelled. The networks consist of numerous 

individual processing units called neurons, commonly interconnected in a three layer 

structure (called a “three-layer multilayer perceptron”). These neurons are analogous to the 

neurons in the human brain that are responsible for information processing (Jain et al. 1996).

2 A version of this chapter will be submitted to the Journal of the Air & Waste Management Association: Su, 

D., M. Gamal El-Din, AG. El-Din, and A  Idriss. Artificial Neural Network Modeling of Ground-Level Ozone 

in Edmonton.
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The neurons in the input layer receive input data, each neuron representing a single input 

parameter (Tupas 2000). The neurons in the hidden layer (hidden because they do not 

interact with any elements outside of the network) process the data and the neurons in the 

output layer report the results from the network (Tupas 2000).

hv
VOC + OH ---------- ► R 02‘ RO’

NO

Figure 5-1. VOC contribution to ground-level ozone formation.
Adapted from USEPA (1996).

In the feedforward network, each neuron in a layer is connected to every neuron in the 

subsequent layer (Flood and Kartam 1997). These connections are akin to the limb-like 

dendrites and axons that connect and allow communication between neurons in the human 

brain. In the human brain, signals are transferred between neurons through these 

connections and across the synaptic gap, resulting in the release of chemicals that stimulate 

or inhibit the ability of neighbouring neurons to generate impulses (Jain et al. 1996). In the 

ANN, the “connection weight” between neurons represents this communication process. 

The sign and magnitude of connection weights describe the nature and strength of influence 

between the connected neurons (Garrett et al. 1997). The number of neurons in a network 

and how they are divided among the different layers, the connection weights, and the 

functions used in the neurons collectively describe the process modelled, and are specific to
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this process. The features that best describe the process are determined during the 

development of the ANN.

Historical data that are representative of the process are introduced to the ANN during 

training. The data must be pre-processed to remove any noise, erroneous entries, and 

unexplained random variance, so the ANN is able to leam the true relationships underlying 

the data (Comrie 1997; Gardner and Dorling 2001). The historical data are typically 

segmented into three sets of data. The training data set is used to train the network. The 

validation set of data is used to determine the generalization ability of the network during the 

training phase of network development. Finally, the production data set is reserved as an 

independent set of data used to verify the network’s predictive performance. Each subset of 

data should be representative of the entire data history for an accurate assessment of the 

network’s performance. This can be done through statistical tests, or by swapping the data 

in the subsets, re-training the network with the swapped data, and comparing the results with 

the original network.

A learning rule dictates how the ANN responds to the training data (Jain et al. 1996). One 

of the most commonly used rules for training multilayer perceptron (MLP) networks is the 

backpropagation rule (Henseler 1995). In this approach, connection weights are initially set 

at small, random values. The training data are fed to the network to generate an output.

The network output is compared to the actual value of the output, and the connection 

weights are adjusted accordingly. This process is repeated until a satisfactory level of 

accuracy is achieved. During training, care must be taken to avoid overtraining the network. 

Overtraining results in the network memorizing the data, including noise, rather than 

recognizing the underlying trends (Henseler 1995). The outcome is an acceptable 

performance during the training phase, but poor performance when the network is applied 

to an independent set of data (i.e., poor generalization ability).

The purpose of this project was to determine whether ANNs could be used as a modelling 

and forecasting tool for ground-level ozone concentrations in Edmonton. Specific goals 

were: (1) to develop ANN models to process real-time data and provide a corresponding 

ozone concentration; (2) to forecast future ozone concentrations using the current hour’s
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data and the maximum forecast 'window, (3) to evaluate ozone time series effects on model 

performance; (4) to use the ANN models to determine the parameters that contribute most 

to ozone formation; and (5) to determine the effectiveness of the systematic approach for 

ANN model development.

5.2 Background

Edmonton is a mid-sized city in the province of Alberta, Canada. It is situated around the 

North Saskatchewan River valley, and is home to over 900,000 people. Industries in the area 

include cement kilns, power plants, petroleum refineries, and chemical manufacturing 

facilities. Alberta Environment operates a network of ambient air monitoring stations in 

Edmonton. These monitoring stations continuously monitor ambient concentrations of 

pollutants, including carbon monoxide, nitric oxide, nitrogen dioxide, sulphur dioxide, total 

hydrocarbons, and ozone. Additional parameters measured at the ambient air monitoring 

stations are relative humidity, temperature, wind speed, wind direction, and wind direction 

deviation. Environment Canada monitors upper air data out of the Stony Plain station near 

Edmonton (approximately 45 km from the Edmonton East station), including mixing height 

(via balloon soundings) and cloud opacity. The data collected at these monitoring stations 

were used to train the ANN models developed in this project.

5.3 Methodology

Ward Systems Group, Inc.’s NeuroShell2 software package, along with its Batch Processor 

utility, was used to construct the ANN models. The systematic approach proposed by El- 

Din and Smith (2002) for a water treatment application is adapted for this project. The 

approach involves the methodical determination of the best network structure (number of 

neurons in the hidden layer and number of training epochs), the optimum inputs, the best 

combination of activation functions in the hidden and output layers, and the best prediction 

window for forecast models. The approach respects the principle of parsimony, in that for 

the final model, minimal resources are used to provide the best performance. The approach 

seeks to ensure that the final model is accurate, simple, and efficient.
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The general steps of the systematic approach are:

1) Pre-process and characterize the historical data.

2) Format and sub-divide the data for entry into the model.

3) Find the best combination of hidden and output layer activation functions.

4) Determine the optimum inputs to the model.

5) Investigate time series effects on the modelled output.

6) Establish the optimum number of neurons in the hidden layer and number of 

training epochs.

7) Determine the maximum forecast window that meets the minimum acceptable 

performance requirements.

8) Complete a stability check, residuals analysis, and sensitivity analysis of the 

optimum model.

Each of the steps in the systematic approach used for this project is described in detail 

below.

Step 1: Data preprocessing and characterization

The input parameters considered in this project were based on the availability of historical 

data. Due to the dynamic nature of meteorology, the fast-paced growth of the Gty of 

Edmonton, and constant changes in lifestyle and habits of humans over time, this project 

uses only data from recent history, from June 1999 to August 2003. The parameters 

examined in this project were concentrations of carbon monoxide (CO), nitric oxide (NO), 

nitrogen dioxide (NO^, sulphur dioxide (SOJ, and total hydrocarbons (THC), mixing 

height, opacity, relative humidity, temperature, wind direction, wind direction deviation, 

wind direction sector, wind speed, month, day of the week, and hour of the day. Each of 

these parameters is described further below. In the literature, indicators of human activities, 

such as traffic counts, were used as inputs. This project does not consider traffic counts 

because it is not the intent of this paper to build a complex source/receptor type of model. 

In addition, fluctuations in pollutant concentrations that maybe caused by traffic patterns
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are inherently embedded in the pollutant trends. Ozone concentration was the single output 

modelled.

The pollutant, relative humidity, temperature, and wind data for this project were obtained 

from Alberta Environment’s Edmonton East ambient air monitoring station. This station 

was selected because the wind in Edmonton blows predominantly from the west in the 

summer months (Environment Canada 2003). Using the East station data ensures that 

urban effects can be captured in the model, without contamination of the data from the NO 

scavenging that occurs in the high volume idling traffic in the core of the city. All variables 

from the Alberta Environment station were measured as hourly averages. GO is measured 

using non-dispersive infrared photometry or by gas filter correlation. NO and N 0 2 are 

measured using chemiluminescence. Ozone is measured with the UV-light process. S02 is 

measured through pulsed fluorescence. These methods are described in detail elsewhere 

(http://www.casadata.org/airquality/index.asp or at 

http://  www3.gov.ab.ca/ env/ air/ maml/ mon_me.html).

Cloud opacity and mixing height data were obtained from the Environment Canada Stony 

Plain station. Environment Canada calculates mixing height data twice daily from balloon 

soundings. The twice a day mixing height data were converted to hourly values with linear 

interpolation to yield a mixing height value corresponding to every hour’s pollutant 

concentration data. In addition, the Benkley and Schulman (1979) method was also applied 

to calculate hourly mixing height values from three hour centred average wind speed data. 

The Benkley and Schulman method applies when:

• The wind profile is logarithmic. This is generally tme for only neutral 

atmospheric conditions (Kaimal and Finnigan 1994).

• The von Karman constant = 0.35.

• Coriolis parameter = 10'4

• The roughness length is 5 cm

• Mixing height is dominated by the mechanically driven value. The convective 

component is negligible. This usually does not apply during the daytime hours.
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• The method is one-dimensional and does not apply to two-dimensional 

mesoscale features.

The linearly interpolated mixing heights calculated from the balloon soundings were 

compared to the mixing height calculated using the Benkley and Schulman method for the 

same hour. The lower mixing height from the two methods (the condition that would yield 

the highest ground-level pollutant concentration) was used in the ANN model.

In Edmonton, ozone concentrations are expected to be of greatest concern during the 

summer months, when photochemical activity and temperatures are greatest. For this 

reason, only the summer data were modelled in this project. The months considered in the 

project were May, June, July, August, and September.

To explicidy account for temporal variations, the month, day of the week, and hour of the 

day were added as distinct inputs. In the steps before determining the optimum inputs to 

the model, these variables were represented as indexed values, according to the assignments 

outlined in Table 5-1. Each parameter was represented with a single input neuron in the 

ANN model. During the determination of the optimum inputs step, the ANN identified the 

parameters most important for modelling ozone. After this step, any temporal parameters 

were represented with multiple input neurons representing each value of the parameter. For 

example, for the month of the year, May, June, July, August, and September each had their 

own input neurons. For a data pattern from July, the July input neuron was set to a value of 

1 (or “on”). The input neurons for all other months were set to a value of 0 (or “off”) for 

this data pattern. Representing each month, day of the week, and hour with multiple input 

neurons eliminates any biases associated with the magnitudes of the indexed inputs. This 

approach also allows the network to assign different connection weights to each month, day, 

or hour, depending on its importance to ground-level ozone concentrations.

The monitoring data express wind direction in degrees from north. With this convention, 

winds from the north have a value of either 0° or 360°, winds from the east have a value of 

90°, etc. Wind speeds less than 1 km/h are referred to as calms. The current 

instrumentation is unable to accurately determine wind speeds and directions below this 1
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km/h detection limit (McCullum 2003). To allow calms to be distinguished, all readings for 

winds from the north were assigned a value of 360°. Calms were represented with a wind 

speed of 0 and a corresponding wind direction of 0°.

Table 5-1 Values assigned to temporal variables in Edmonton East ozone
models.

Index Value Month Day H our
0 Midnight
1 Sunday 01:00
2 Monday 02:00
3 Tuesday 03:00
4 Wednesday 04:00
5 May Thursday 05:00
6 June Friday 06:00
7 July Saturday 07:00
8 August 08:00
9 September 09:00
10 10:00
11 11:00
12 Noon
13 13:00
14 14:00
15 15:00
16 16:00
17 17:00
18 18:00
19 19:00
20 20:00
21 21:00
22 22:00
23 23:00

An additional wind direction sector parameter was included as an input. Hasham (1998) 

expressed concern that the network may have difficulty recognizing the physical closeness of 

wind directions in the northeast quadrant with those in the northwest quadrant, because 

their degree values are significantly different in magnitude. For instance, a wind direction of 

1° is physically near a wind direction of 359°, even though the difference in their magnitudes 

is great. To dispel any confusion to the network, Hasham recommended adding a parameter 

called wind direction sector that groups the wind direction data. For this project, the wind
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direction data were classed into eight, equal-sized sectors corresponding to the major 

compass points. These sectors are described in Table 5-2.

Alberta Environment and Environment Canada removed erroneous values from the 

monitoring station data prior to making the data publicly available. However, the 

monitoring data still contained missing values, denoted with non-numeric values or blank 

cells. All non-numeric values were replaced with blank cells. Any patterns containing blank 

cells were removed from the historical data set. Each parameter in the historical data was 

plotted, and the graphs inspected to visually identify data trends and unusual values. To 

characterize the data, the mean, median, standard deviation, variance, minimum, maximum, 

and 1st, 5th, 25th, 75th, 95th, and 99th percentile values were calculated for each parameter.

Table 5-2 Wind direction sectors.

Sector Bearing Wind Direction (degrees from north)
0 N /A Calms (wind speeds < 1 km/h)
1 north 337.5-360; 0-22.5
2 northeast 22.5-67.5
3 east 67.5-112.5
4 southeast 112.5-157.5
5 south 157.5-202.5
6 southwest 202.5-247.5
7 west 247.5-292.5
8 northwest 292.5-337.5

Step 2: Data formatting

The data were formatted using Microsoft Excel. Headings (parameter names) were placed in 

the first row. The first column of each file contained the date and time of each record, 

serving as an identifier for each data pattern. The historical data were sub-divided into 

training, test, and production (validation) sets using a 3:1:1 ratio. To accomplish this, the 

historical data were first sorted according to the ozone concentration, with patterns 

containing the highest ozone concentrations listed first. Each pattern was then assigned a T 

(training), P (test), and V (production) classification. To maintain the 3:1:1 ratio and ensure 

that each sub-set was representative of the entire data set, the assignments were made in the
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order: T, P, T, V, T. The subset assignments were listed in the second column of the Excel 

file. Once all patterns were assigned to a subset, the data were re-sorted temporally. The 

rem aining columns of the Excel file contained the values of all the input parameters, with 

the final column containing the ozone concentration data.

Step 3: Activation function combinations

The three layer, feedforward multilayer perception (MLP) network configuration was 

preferred for this project because of its simplicity and proven adequacy in the ANN 

literature (Goboum et al. 2000; Elkamel et al. 2001; Guardani et al. 1999; Kao and Huang 

2000). However, prior to developing the network architecture, several preliminary runs were 

conducted to evaluate other network types. The default Ward network, a three-layer 

feedforward network, and a four-layer feedforward network were evaluated. Since these 

networks are inherently different, they could not be directly compared. The objective of the 

preliminary runs was to determine if any network configurations other than the MLP could 

produce a remarkable improvement in the network performance. There were no significant 

differences in the network performance with each of these configurations. For parsimony, 

all networks were developed using a three-layer feedforward configuration.

The best combinations of activation functions in the hidden and output layers of the 

network were evaluated for a network using all 16 inputs. For the hidden layer, the 

activation functions tested were the logistic, hyperbolic tangent (tanh), Gaussian, sine, 

hyperbolic tangent 1.5 (tanhl5), Gaussian complement, and symmetric logistic functions.

The output layer functions evaluated were the same as those tested in the hidden layer, with 

the addition of a linear function. In total, 56 (7x8) combinations were evaluated. Since the 

final network configuration was yet to be determined, all activation function combinations 

were tested at a low, middle, and high setting of number of hidden layer neurons and 

number of training epochs. These settings are defined in Table 5-3, and were chosen with 

the intent that their range would encompass the potential final network architecture. Testing 

each combination at the three settings ensures that the activation function combination 

selected for the final network is stable.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 5-3 Settings for activation function combination testing.

Setting No. Hidden Layer Neurons No. Training Epochs
Low 10 25

Middle 50 50
High 100 100

The best activation combination was the combination with the highest average coefficient of 

multiple determination (R2) calculated for all three settings.

Step 4: Optimum input parameters

Once the best performing activation function combination was established, the relative 

contributions of each input parameter to the model were determined. A network was 

developed with all the available inputs to set a benchmark performance for comparison of 

the subsequent networks developed. With the number of training epochs arbitrarily set at 

1000 and 5000 epochs, the number of neurons in the hidden layer that produced the best R2 

was determined. This network was deemed the benchmark network to be used for 

performance comparisons in the optimization of the input set of parameters. After 

determining this benchmark, a single parameter was removed from the network input. The 

network was then re-trained, and the effect of the removal of this parameter was assessed. 

The removed variable was then returned to the network inputs, and a second variable 

removed (i.e., the number of variables input to the network was constant throughout the 

test). This process was repeated for each of the input variables to evaluate the effect of each 

variable on the network performance. During the evaluation of the input parameters, the 

network architecture was fixed at the architecture of the benchmark network. The pertinent 

input parameters were those that, when excluded from the network’s set of input variables, 

decreased the R2 by 0.03 or greater.

Due to the potential for a variable’s effects to be masked by another variable (because of 

some relationship between the two variables), the optimum variable test was repeated using a 

core set of inputs and evaluating the network’s performance when additional variables were 

added to the core input set. For this step, any variables whose addition to the core input set
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changed R2 by less than 0.03 were removed from further consideration. The inputs assessed 

and their units are described in Table 5-4.

Table 5-4 Parameters available for input to the Edmonton East virtual monitor 
model.

Name Description Units
MTH Numerical indicator of the month (May = 5, June = 6, July = 7, 

August = 8, September = 9)
unitless

DAY
Numerical indicator of day of the week (Sunday = 1, Monday = 

2, Tuesday = 3, Wednesday = 4, Thursday = 5, Friday = 6, 
Saturday = 7)

unitless

HOUR Numerical equivalent of the hour (midnight = 0,01:00 = 1, 
02:00 = 2, etc.)

unitless

CO Carbon monoxide concentration, ambient hourly average ppm
NO Nitric oxide concentration, ambient hourly average ppm
n o 2 Nitrogen dioxide concentration, ambient hourly average ppm
so2 Sulphur dioxide concentration, ambient hourly average ppm

THC Total hydrocarbons concentration, ambient hourly average ppm
MIX Mixing height, lower of values calculated from linear 

interpolation of balloon sounding data and Benkley and 
Schulman method, hourly

m

OPA Cloud opacity (amount of sky obscured by cloud), hourly tenths of sky
RH Relative humidity %

TEMP Temperature, ambient hourly average °C
WDR Wind direction, hourly average 0 from North
DEV Wind direction deviation, hourly average O
SECT Wind direction sector (North = 1, Northeast = 2, East = 3, etc.) unitless
WSP Wind speed at 10 m, hourly average km/h

Step 5: Time series effects

The effects of adding previous hours’ concentrations of ozone were investigated at the 

settings of the benchmark network. This process was similar to Step 4, except the 

benchmark network was modified to include only the optimum inputs determined in Step 4, 

and a baseline performance was established. Subsequent networks were built with 

consecutive inputs of previous hours’ concentrations of ozone (i.e., for modelling ozone at 

time t, the first network included ozone concentration at t-1 as input, the second network
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included ozone concentration at t-1 and at t-2, etc.). The changes in the network 

performance were then compared to the baseline performance.

Step 6: Number o f hidden layer neurons and training epochs

In this step, a range of combinations of number of neurons in the hidden layer and number 

of training epochs was evaluated to find the combination most suitable for modelling ozone. 

The numbers of neurons in the hidden layer tested were 7, 8,9,10,11,12,13, 14, 15,16, 17, 

18,19, 20, and 25. The numbers of epochs used for training the network evaluated were 

500,1000,1100,1200,1300,1400,1500,2000, 3000,4000, and 5000. The network 

performance was evaluated using the production set of data, to measure the network’s ability 

to generalize. Starting with low numbers of epochs ensured the network was not 

overtrained.

Step 7: Maximum forecast window

The maximum prediction window that would yield an acceptable prediction performance 

was determined for the forecast models. In this project, the minimum performance standard 

adopted was a R2 of 0.75. The maximum forecast window was determined by finding the 

best network architecture for increasingly large prediction windows, until the performance of 

the best network could no longer meet the minimum performance standard.

Step 8: Stability check, residuals analysis, and sensitivity analysis

The stability check confirms the network stability. The stability check was completed by 

swapping the patterns in the training set with those in the test and production data sets. To 

maintain the 3:1:1 ratio of patterns in each data set, only 2/3 of the training patterns were re­

assigned to either the test or production data sets. The network was then re-trained using 

the revised training data set and its performance compared to the original network With a 

stable network, the performance would not be compromised despite the data swap.
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The residuals analysis detects whether correlations exist between the model residuals. In this 

step, possible correlations of residuals with time and with the modelled ozone concentration 

values were evaluated. This was done through visual examination of residual scatter plots, 

with time and modelled ozone concentrations on the independent axis.

The sensitivity analysis assesses the impacts on the model output when changes are made to 

a single input parameter while all other inputs are held constant. In this step, each input 

parameter was ranged from its minimum to maximum observed values while all other inputs 

were held at their observed median values. The resulting model output was noted and a plot 

against the changed input variable was generated.

5.3.1 Evaluation o f network performance

Many methods of evaluating the ANN performance were possible, with each method 

offering different advantages and disadvantages. The statistic used most often in the 

literature, the coefficient of multiple determination (R2), was adopted for this project. 

However, other performance statistics were also calculated for the final models to allow 

comparison with the models presented in the ANN literature. Each of these statistics is 

described briefly below.

Coefficient o f multiple determination (R2)

The coefficient of multiple determination indicates the fraction of the total variation of the 

modelled output that can be explained by the model (Walpole and Myers 1993). In 

NeuroShell2, this is calculated using the equation:

R = 1 -   —— ........................................... Equation 5-1
2 > - x )

where

x = actual output value (in this project, the ozone concentration from the 

ambient monitor historical data) 

y = modelled output value (ozone concentration from the ANN)

x = mean of the actual output values
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Pearson’s product-moment correlation coefficient (r)

The Pearson’s linear correlation coefficient is an estimate of the linear association between 

two variables, and ranges from -1 to +1 (Walpole and Myers 1993). The equation for 

Pearson’s linear correlation coefficient used in NeuroShell2 is:

SSXV
r =  Equation 5-2

t/SS„SS„

where

SSXV = Y]xy-  ^   Equation 5-3
n

SSM = Y jc2 -  ^   ̂ ..................................Equation 5-4
n

A r 1 \2

S S w = T y 2 -  -— ................................... Equation 5-5
n

x = actual output value (in this project, the ozone concentration from the 

ambient monitor historical data) 

y = modelled output value (ozone concentration from the ANN)

n = number of data patterns

Mean squared error (MSE)

The mean squared error is the mean of the square of the residuals, or the mean of (x-y)2. 

Mean absolute error (MAE)

The mean absolute error is the mean of the absolute values of the residuals, or the mean of

l x-y|-
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Minimum absolute error

The minimum absolute error is the lowest value of the absolute value of the residuals. 

Maximum absolute error

The maximum absolute error is the highest value of the absolute value of the residuals. 

Fractional bias (FB)

The fractional bias is a dimensionless number that indicates whether a model is prone to 

overprediction or underprediction, proposed by Cox (1988) to be a good basic measure of 

operational performance. It is a symmetrical value that is bounded, ranging from -2.0 to 

+2.0. A FB of -2.0 indicates extreme overprediction while a value of +2.0 indicates extreme 

underprediction. A FB of +0.67 indicates a factor of two over- or underprediction. Cox 

recommends applying the FB to the highest 25 observed values, using the equation:

FB = 2 x   Equation 5-6
( x 2 5 + y 2 5 )

average of the 25 highest observed values

average of the 25 predicted values corresponding to the 25 highest observed 

values

Wilmott index o f agreement (dt and d j

Two versions of the Wilmott index of agreement can be found in the ANN literature. The 

Wilmott index of agreement measures the degree of agreement between actual and predicted 

values. It is dimensionless and ranges from 0 to 1, with 0 indicating no agreement and 1 

indicating perfect agreement. The two forms of the index of agreement are calculated using 

(Comrie 1997):

d, = 1 -  [ y  |y -  x|TX (jy -  x| + |x -  x|)1~‘  Equation 5-7

d2 = l - [ ^ ] | y - x | 2J ^ ( | y - x |  + |x - x | ) 2]~ ....Equation 5-8
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The distinction between d, and d2 is that d2 is based on squared differences (Comne 1997).

In this paper, the performance of the ANNs is based on the R2 value when the network is 

applied to the production data set. The network R2 values when applied to the training and 

test data sets are also compared to the production set R2 to ensure that the network is not 

overtrained. The R2 values for all data sets should be comparable. A production set R2 that 

is much lower than the training set R2 is an indication the network’s ability to generalize has 

been compromised. Conversely, a production set R2 much higher than the training set R2 

may be a sign that the production data are not representative of the full spectrum of ozone 

concentrations that maybe encountered in reality.

5.4 Results and Discussion

The preliminary statistics calculated for the available inputs are listed in Table 5-5. For some 

of the parameters, the maximum values were more than twice the 99th percentile values. 

However, since Alberta Environment and Environment Canada have already subjected the 

data to quality control procedures, these extreme values were not expected to be erroneous 

entries and were kept in the historical data set. Excursion events may be due to the 

influences of unusual situations such as nearby forest fires (Cheng et al. 1998) or a 

combination of meteorological events conducive to the formation or accumulation of ozone.

Figure 5-2 shows July 2002 data patterns that are typical of the Edmonton East ozone data. 

Diurnal trends are apparent in the plot, with ozone concentrations reaching their daily 

maximums between 15:00 and 16:00. Ozone concentrations were undetected (0 ppm) on 

some days. Minima generally occurred early in the morning, at about 6:00. From a 

regulatory standpoint and for the purposes of regulatory monitoring, it is most important for 

the ANN to accurately predict peaks in ozone concentrations such as that occurring on July 

11, 2002 .
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Table 5-5 Edmonton East basic statistics for available inputs.

Statistic CO N O n o 2 s o 2 TH C MIX OPA RH TEMP WDR DEV WSP o 3
Mean 0.3 0.008 0.013 0.002 2.4 243.9 4 62 15.7 251 23 10.0 0.025

Median 0.3 0.004 0.011 0.001 2.2 222.2 4 62 15.2 201 17 9.2 0.024
Std. Dev. 0.2 0.014 0.009 0.003 0.9 200.6 4 23 6.7 101 20 5.8 0.016

Var. 0.0 0.000 0.000 0.000 0.8 40229 14 510 44.3 10257 404 33.9 0.000
Min. 0.0 0.000 0.000 0.000 1.5 0.0 0 10 -6.5 0 3 0.0 0.000

P(0.01) 0.1 0.000 0.002 0.000 1.7 0.0 0 19 0.6 0 6 0.0 0.000
P(0.05) 0.1 0.000 0.003 0.000 1.8 0.0 0 26 5.4 8 8 1.5 0.002
P(0.25) 0.2 0.001 0.006 0.001 2.0 85.7 0 43 11.0 135 13 6.0 0.013
P(0.75) 0.3 0.008 0.018 0.002 2.5 358.8 8 80 20.3 289 25 13.3 0.036
P(0.95) 0.6 0.033 0.031 0.007 3.5 604.1 10 97 27.1 343 64 20.9 0.052
P(0.99) 0.9 0.073 0.041 0.015 5.7 816.9 10 100 31.0 356 115 27.1 0.063
Max. 1.7 0.166 0.068 0.061 25.0 2261.5 10 100 38.0 360 170 42.7 0.101

0.12

0.1

0.08

0.06

0.04

0.02

Day

Figure 5-2 Typical Edmonton East ozone data (July 2002).

The activation function combination testing showed the combination of the Gaussian 

complement function in the hidden layer and the logistic function in the output layer 

provided the best overall R2 for the three settings evaluated. The R2 value for this 

combination was 0.80. The results of the activation function evaluation are listed in Table 5-
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6. Considering that this project was the first ANN project for ozone in the Gty of 

Edmonton, the more common logistic-logistic combination was selected for further network 

development. This combination yielded a similar overall R2 of 0.79, and should perform at a 

level similar to the less-proven Gaussian complement-logistic activation function 

combination.

Table 5-6 Activation function test results.

Setting Hidden Layer Activation Output Layer Activation R2
Function Function (prod)

Low Gaussian complement Logistic 0.78
Middle Tanhl5 Symmetric logistic 0.82
High Sine Symmetric logistic 0.83

Gaussian complement Symmetric logistic 0.83
Average Gaussian complement Logistic 0.80

Five core variables were identified as having the most impact on the network performance in 

the first step of the input variable analysis. These variables were MTH, NO, N 0 2, OP A, and 

RH. For the network developed with these inputs, the R2 was 0.73. The second step of the 

input variable analysis identified five additional key inputs: DAY, S 02, THC, WDR, and 

WSP. The results of this step are shown in Table 5-7. The relative contribution factors of 

these variables for a network consisting of 4 neurons in the hidden layer and trained in 1000 

epochs are shown in Figure 5-3. NO concentration was by far the largest contributor to the 

variability in ozone concentrations with a relative contribution of 0.49. THC and N 0 2 

concentrations were the next most relevant inputs. The order of importance of the 

remaining variables was RH/WSP, month, S02, opacity, day/WDR

NeuroShell2 analyzes the weights of the network connections to determine the relative 

importance of input variables. While no details are given regarding the algorithm used in 

NeuroShell2 to process these connection weights, the software manual warns that the 

network can still find patterns among variables that are themselves not highly correlated to 

the output variable.
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Table 5-7 Changes to R2 with addition of inputs to core input set (R2 for core 
input set = 0.73)

Added Input Production Set R2 Change in R2
CO 0.73 0

DAY 0.77 0.04
HOUR 0.56 -0.17
MIX 0.75 0.02
s o 2 0.77 0.04

TEMP 0.73 0
THC 0.76 0.03
WDR 0.77 0.04
DEV 0.71 -0.02
SECT 0.74 0.01
WSP 0.76 0.03

0.6 

o 0.5
•w
CJ

3 Si
•g 0.3
ti o U
Si 0.2
-M

13 
*  0.1

0
MTH DAY NO N 0 2  S02 THC OPA RH WDR WSP

Input

Figure 5-3 Relative contribution factors of the Edmonton East model using the 
best inputs, 4 hidden layer neurons, 1000 training epochs, logistic 
hidden and output layer activation functions.

The contribution factors calculated in NeuroShell2 are also related to the total number of 

input variables. The larger the number of input variables, the more similar the contribution 

factors of the variables will be. In this project, the contribution factors calculated by 

NeuroShell2 were also observed to change in relative importance when the network
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structure (number of hidden layer neurons and training epochs) was changed. For example, 

in one network, the three highest contributing variables, in decreasing relative contribution 

factors, were NO, THC, and MTH When the network structure was changed, the three 

highest contributing factors were TEMP, THC, and NO, despite the fact that the same 

inputs were used for both networks. The shift in relative importance is not surprising given 

that values of connection weights are expected to change when the network structure is 

altered. However, these relative contribution factor changes indicate a weakness in this 

method of determining the relative importance of a set of input variables for predicting a 

target output. It is possible that a variable excluded in the development of one network 

would become important in a network with a different architecture. This issue remains 

unresolved in the ANN literature. Garson (1991) proposed a calculation method for 

partitioning connection weights to determine the contribution “share” of each input variable, 

but this technique remains unproven. Abdul-Wahab and Al-Alawi (2002) applied the 

Garson method to determine the relative importance of input variables in their study, but 

did not evaluate the reliability of this method. Since no proven method is available for 

calculating relative contribution factors for the inputs, the NeuroShell2 default method was 

adopted for the entirety of this project. However, this means that the ozone model 

developed is simply the optimal network mapping for a particular set of input variables, and 

may not describe the general ozone formation process. This also highlights the importance 

of applying scientific knowledge of the process in developing the ANN model to ensure that 

the key variables identified in the science are included in the final model.

Although TEMP was not identified as a key input variable, it is recognized as a factor in the 

kinetics of atmospheric reactions. At the request of Alberta Environment and considering 

its importance in reaction kinetics, TEMP was included in the final set of inputs. Once 

TEMP was added as an input, the preliminary estimation of the optimum network structure 

indicated that a network with 7 neurons in the hidden layer performed best when trained in 

1000 epochs. The effects of the ozone time series on network performance were evaluated 

at this setting.

The importance of NO, N 0 2, and THC concentrations to the ozone model were not 

surprising, given that these compounds are involved in the natural and human-influenced
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ozone cycles. MTH maybe important because it indirectly represents solar radiation levels 

and hours of sunshine in the day. Spring months may be an indication of the likelihood for 

stratospheric ozone intrusion (CEPA/FPAC WGAQOG 1999), and summer months may 

reflect the conditions most conducive to forest fires. Average ambient temperatures are also 

related to the month of the year, and may explain why TEMP was not identified as a key 

input variable. The effects of TEMP may also have been reduced because only data from 

May to September were modelled. The temperature variation in this time period maybe 

insignificant when compared to fluctuations in precursor concentrations or other stronger 

influences on ozone concentration. The importance of the day of the week hints at the 

influence of traffic volumes or other activity patterns that are human-related. The low 

relative contribution of this parameter shows that modelling ozone concentrations at the 

Edmonton East station indeed diminishes the influence of urban traffic, although these 

effects are not completely eliminated. OPA is related to the radiation levels necessary for the 

ozone photochemical reactions to occur. RH, as a surrogate parameter for precipitation, 

affects the ambient concentrations of ozone precursors and scavengers through wet 

deposition. S 02 interacts with ozone in the atmosphere, and has been found to be 

important in previous ANN applications to ozone (Ruiz-Suarez et al. 1995; Abdul-Wahab 

and Al-Alawi 2002). The relative importance of wind direction suggests that either specific 

sources of precursors or scavengers or transport of ozone from other areas may contribute 

to ozone concentrations at the Edmonton East location, although their effects are weak 

when compared to other factors. Wind speed is an indicator of atmospheric stability that 

influences dispersion characteristics of ozone and its related compounds.

CO concentration, hour of the day, mixing height, wind direction deviation, and wind 

direction sector were relatively unimportant factors in the ground-level ozone concentrations 

at the Edmonton East station. GO is relatively inert in the atmosphere, and is sometimes 

used as an indicator of wind drift (Abdul-Wahab and Al-Alawi 2002). Its effects may be 

negligible in the presence of stronger indicators of atmospheric stability like wind speed. 

HOUR is an indicator of the strong diurnal patterns associated with urban ozone 

concentrations reported in the literature (CEPA/FPAC WGAQOG 1999; Chaikowsky 2001; 

Sandhu 1999). This parameter may not be important for this model because hour to hour 

fluctuations are inherently incorporated in the species concentrations input to the model.
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The lack of importance of mixing height maybe due to the limitations of the available 

methods used to determine hourly average values for mixing height. Linear interpolation of 

the balloon sounding data is invalid when mixing height does not vary linearly from hour to 

hour. The Benkeley and Schulman method is inappropriate when the basic assumptions of 

the method are not met. This method is very specific, limiting its applicability. In addition, 

sources of ozone precursors and the ambient monitoring station are near the ground, 

lim iting the importance of mixing height as a model input. Wind direction deviation data 

maybe unnecessary since there are other indicators of atmospheric stability in the model. 

Wind direction sector was also unimportant, suggesting that the ANN is not confused by the 

format used to present wind direction data.

When all the key variables were incorporated into the model, the resulting model 

performance was a R2 of 0.78. At this point, the decision to use the logistic-logistic 

activation function combination was re-evaluated. To accomplish this, the Gaussian 

complement activation function was substituted for the logistic function in the hidden layer. 

The network generated a R2 of 0.80, comparable to the model using a logistic-logistic 

activation function combination.

As part of the input variable optimization process, the effects of including ozone 

concentrations from successive previous hours was evaluated. The results of this evaluation 

(Figure 5-4) show that beyond inclusion of the ozone concentration from the previous hour, 

the gains in model performance are minimal. The baseline performance when no ozone 

concentrations from previous hours are included is slightly over a R2 of 0.83. The inclusion 

of the ozone concentration at t-1 increases R2 to 0.93. Beyond this point, R2 stabilizes at 

approximately 0.94, with a dramatic dip when previous hours’ ozone concentrations up to t- 

5 are included. Note that the network architecture was not yet optimized at this time for any 

of the networks. For a virtual monitor application, the preference is to avoid developing a 

model that is dependant on information from previous time periods. This is related to the 

scenarios where a virtual monitor model would be useful: when a “real” monitor is down 

for maintenance or repairs, or experiences problems that result in a prolonged shutdown. In 

these situations, previous hours’ data may not be readily available. In addition, if the ANN 

model is in operation for an extended period, the use of modelled concentrations as input
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would introduce additional error into the model prediction. It is advantageous to avoid 

using data from previous timeframes in these applications, in spite of the potential to 

improve the model’s predictive ability. Data pre-processing of the training data are also 

more time consuming for the virtual monitor model with time series, since each data pattern 

must be supplemented with the appropriate concentration data from previous hours.

0.95

0.93

0.91

ps| 0.89

0.87
 Production
 Test
 Training

0.85

0.83
none t-1 t-2 t-3 t-4 t-5 t-6 t-7 t-8 t-9 t-10 t-11 t-12

Input of Previous Hours' Ozone Concentration up to:

Figure 5-4 Edmonton East virtual monitor effects of ozone time series, fixed 
network architecture of 7 hidden layer neurons and 1000 training 
epochs.

Figure 5-5 shows the network architecture optimization results. The black areas on the 

surface plot indicate the best performing network architecture. Figure 5-5 shows the area 

with 19 to 25 hidden layer neurons and 3000 to 5000 training epochs (top right hand comer 

of plot) has the best performance. The region from 16 to 17 hidden layer neurons and 3000 

to 5000 training epochs also performs well. Based on these results, the best performing and 

most economical network contains 17 neurons in the hidden layer and is trained in 3000 

epochs, resulting in a R2 of 0.87 for the production set of data.
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An example of the model’s performance for July 2002 data is shown in Figure 5-6. The July 

2002 data contain the highest ozone concentrations in the production data set. In general, 

the ANN was able to predict the concentration trends well, and was able to accurately 

predict the highest peak in the production data. However, some over-prediction of peak 

concentrations can be seen, as well as some under-prediction of concentration minima. The 

fractional bias for the network was 0.084, indicating a slight underestimation of the highest 

25 ozone concentrations. The Wilmott index of agreement was 0.83 for dj and 0.96 for d2, 

indicating good agreement of modelled ozone values with measured values. The RMSE for 

this network was 0.006 ppm

J H P P ®

15 «

500 1100 1300 1500 1700 1900 3000 5000 

No. Training Epochs

■ 0.865-0.87
■ 0.86-0.865
□ 0.855-0.86
■ 0.85-0.855
□ 0.845-0.85
■ 0.84-0.845

Figure 5-5 Edmonton East virtual monitor surface plot of network architecture 
testing.

Figure 5-7 shows a plot of the observed and modelled ozone concentrations. The solid line 

in this plot is the desired situation, representing perfect agreement between observed ozone 

concentrations and the model output. The results generally fall along this 45° line, 

confirming good agreement between the modelled and observed ozone concentrations. No 

indication of the slight tendency to under-predict high ozone concentrations is apparent 

from this figure.
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Figure 5-6 Edmonton East virtual monitor model results for July 2002 production 
set data, R2 = 0.87.
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Figure 5-7 Edmonton East virtual monitor scatter plot of agreement between 
observed and modelled ozone concentrations.
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Figures 5-8 and 5-9 show the residuals analysis of the virtual monitor model. Figure 5-8 is a 

sampling of the residuals plot for 2002. No trends are apparent for either the plot versus 

time or the plot versus the modelled ozone concentration. This suggests that introducing 

the training data to model in chronological order does not introduce a systematic error into 

the model.

0.03

C4

-0.03 -------  —
5/1 6/20 8/9  9/28

Date

Figure 5-8 Edmonton East virtual monitor model residuals analysis: variance with 
time for 2002 production data.

The final Edmonton East virtual monitor ANN architecture indicates that the number of 

training epochs for the three settings used in the activation function testing were too low. 

However, the stability check of the model using swapped data verifies that the model is 

stable.

The network architecture for the Edmonton East virtual monitor model also provides 

guidance for the selection of settings for activation function testing in future studies.
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Figure 5-9 Edmonton East virtual monitor model residuals analysis: variance with 
modelled ozone concentration.

Once the virtual monitor model network structure was optimized, the effect of including the 

ozone time series into the model was re-evaluated, since the earlier evaluation compared 

unoptimized networks. As with the basic virtual monitor model, the best structure for the 

networks using ozone concentrations from up to two hours previous was determined and 

the performance compared. The results confirmed the results from the comparison of the 

unoptimized networks: no significant improvement to prediction performance was observed 

beyond the inclusion of ozone concentration from the previous hour (t-1). These results are 

depicted graphically in Figure 5-10. When the ozone concentration from the previous hour 

was included as an input to the model, the model R2 increased from 0.87 to 0.94. Addition 

of the ozone concentration from two hours previous (i.e., ozone concentration at t-2) 

resulted in no change in R2. Therefore, only the virtual monitor model with time series 

effects up to t-1 was further developed. The details of this model are discussed later in this 

chapter.

An analysis of the virtual monitor model’s sensitivity to values of the model inputs was 

completed. A single input parameter was varied through its range of possible values while all
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other inputs were fixed at their median values (refer to Table 5-5), and the model response 

recorded. For the day of the week and month inputs, the median values were assigned as 

Wednesday and July. The ozone sensitivity to month shows that with all other inputs held 

constant, ozone concentration tends to be highest in May, and decreases as the summer 

season progresses, levelling off in August and September (Figure 5-11a). This is consistent 

with previous observations for Edmonton (Chaikowsky2001; Sandhu 1999).

Input of Previous Hours' Ozone Concentration up to

Figure 5-10 Edmonton East virtual monitor effects of adding previous hours’
ozone concentrations as input with optimized network structure for 
each case.

When all other inputs are held constant, there is little fluctuation in ozone concentration 

with the day of the week (Figure 5-lib). Ozone concentration varies between 0.02 ppm and 

0.03 ppm throughout the course of the week, with a slight dip in concentrations on the 

weekends. This is in agreement with the trends observed in Chapter 3, where average ozone 

concentrations for each day of the week in the historical data period were higher on 

weekdays than weekends.
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The sensitivity of the ozone model to NO concentrations in Figure 5-12a shows the 

scavenging effects of NO, with a decay type of decrease in ozone concentrations when NO 

concentrations rise. Ozone concentration plateaus at NO concentrations greater than 

approximately 0.5 ppm. This suggests that at the conditions of the sensitivity analysis, NO 

scavenging of ozone becomes limited at this point.

Figure 5-12b shows the sensitivity of ozone concentration to N 0 2 concentrations. The 

relationship shows an almost linear decrease in ozone concentrations with an increase in 

N 0 2. This trend is contrary to the trend observed in USEPA (1996), where ozone 

concentrations increased with increases in the concentration ratio of N 0 2 to NO. However, 

Konovalov (2002) reports that conflicting observations of ozone response to decreases in 

NOx concentrations are common, with responses in ozone concentration dependent on the 

concentrations of VOCs and NOx and on ambient conditions. Ozone concentrations level 

off at N 0 2 concentrations greater than 0.04 ppm

Ozone concentrations vary slightly with S02 concentrations (Figure 5-12c), from 

approximately 0.021 ppm to 0.027 ppm  This suggests a limited relationship between S 02 

and ozone concentrations when all other pollutants are held at constant concentrations and 

meteorology is unchanging. Ruiz-Suarez et al. (1995) suggest S 02 is important only when 

wet aerosols or hydrogen peroxide are present. Otherwise, the role of S 02 in ozone 

reactions is limited.

Figure 5-12d shows no definite pattern in the relationship between ozone and total 

hydrocarbon concentrations. At lower THC concentrations, ozone concentrations decrease 

with an increase in THC concentration. Beyond approximately 2.5 ppm, ozone 

concentrations increase with increasing THC.

Figure 5-13 shows the effects of changing meteorological conditions on ambient levels of 

ozone. Figure 5-13a indicates a minimal variation in concentrations of ozone with opacity, 

consistent with Figure 5-3, in which opacity has the lowest relative contribution factor of all 

the inputs. This suggests that changes in radiation levels have a minimal impact on ground-

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



level ozone concentrations compared to other variables present in the Edmonton urban 

environment.
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Figure 5-11 Edmonton East virtual monitor modelled ozone concentration
variation with temporal parameters: (a) month; and (b) day of the 
week.
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Figure 5-12 cont’d. Edmonton East virtual monitor modelled ozone concentration 
variation with pollutant concentrations: (a) NO; (b) NOa; (c) 
S02; and (d) THC.

The sensitivity of ozone concentrations to relative humidity shows a definite trend, where an 

increase in relative humidity results in a decrease in ozone concentrations (Figure 5-13b). 

This may be related to the wet deposition of ozone and precursors from the atmosphere in
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conditions of high humidity. Also, increased reactions between ozone and moisture in the 

air decrease concentrations of gaseous ozone.

Figure 5-13c shows a linear increase in ozone concentrations with increases in temperature 

up to 34°C Beyond 34°C, ozone concentration rises more dramatically with an increase in 

temperature, indicated by a steeper slope. The large change in ozone concentration in the 

temperature range evaluated for the sensitivity analysis is consistent with the effects of 

temperature on reaction kinetics, but appears to disagree with the earlier input variable 

analysis, in which temperature was not a significant factor. This maybe because in the 

sensitivity analysis, all other input variables are held constant at their median values. It is 

possible that fluctuations in the inputs found to be dominant in the input variable analysis 

have a greater impact on ozone concentrations than temperature fluctuation by itself.

According to Figure 5- 13d, wind direction changes have a minimal effect on ozone 

concentrations. This is consistent with the analysis of input contribution factors in Figure 5- 

3, in which wind direction is relatively unimportant. There is approximately a 0.01 ppm 

change in ozone concentration over the 360° range of wind directions. Wind directions of 

0°, or calms, resulted in the highest ozone concentrations. This is consistent with the fact 

that calm conditions allow pollutants to accumulate and persist, resulting in higher ambient 

concentrations. However, in this model, the changes in ozone concentrations with wind 

direction are negligible. At first glance, this would seem to suggest that no specific source of 

ozone or its precursors dominates ozone concentrations at this location. However, since all 

pollutant concentrations are held constant in the sensitivity analysis and only the wind 

direction is varied, the effects of any specific sources are hidden. Realistically, if a specific 

source of precursor compounds was present, there would be an accompanying increase in 

the pollutant concentration when winds were blowing from the source direction that would 

then affect ozon e concentrations.

Figure 5-13e shows that when all variables are held constant, increases in wind speed result 

in increased ozone concentration. This is unexpected, considering that calms should 

produce the situations most conducive to ozone accumulation. The increase in ozone
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concentrations when wind speeds are increased maybe due to the selection of the East 

station for modelling. This station is located further away from high volume traffic sources. 

At higher wind speeds, the model maybe detecting the influence of ozone transport from 

other locations further away from the monitoring station.

Although the sensitivity analysis gives an indication of how ozone concentrations respond to 

changes in pollutant concentrations and time, the best use of the ANN would be to model 

realistic scenarios, where inputs can simultaneously deviate from their median values. Since 

ozone formation is nonlinear and atmospheric conditions are dynamic, this would allow the 

model to account for the interplay between different species and conditions.

Since most of the variation in ozone concentration occurs during the day, the effect of using 

only daylight data to train the ANN was evaluated. Figure 5-14 shows a comparison of 

networks trained with 24 hour data and a network that uses only data from daylight hours 

for training. The months of May, June, July, and September had a slightly greater 

importance when only daylight data were used for training. August was the only month 

whose relative contribution factor decreased. With days of the week, no trends in the 

changes to the contribution factor were observed. NO remained the largest contributor, but 

showed an increased importance in the daytime only data. This may be due to the increase 

in vehicular traffic, and therefore greater scavenging effects, during the daytime. Increased 

solar radiation in the daytime also results in greater photochemical activity. N 0 2, S 02, and 

THC concentrations were less important to ozone prediction during the daytime. Opacity 

was also less important in the daytime model. Relative humidity, wind direction, and wind 

speed were slightly more important during the day, while the importance of temperature 

remained constant. Note that no effort was made to optimize the network structure for the 

daytime model. The relative contributions of the inputs to the daytime model would change 

if the network structure were changed.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8o.cu'w '
ao*d
•*-»dvudo(J<udo
N
O
'd
;SoT3o

0.05

0.04 -

0.03

0.02

0.01

10
Opacity (tenths of sky)

(a)

Relative Humidity (%)

Figure 5-13 Edmonton East virtual monitor modelled ozone concentration
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24 hour data.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The virtual monitor model including the ozone concentration from the previous hour was 

further developed. As discussed earlier, the disadvantage of the virtual monitor model is its 

reliance on the availability of ozone concentration from the previous hour. However, where 

the availability of these data is not a concern, the virtual monitor model with time series 

effects is able to more accurately predict ozone concentrations. Therefore, this model was 

optimized using the same process as for the virtual monitor without ozone time series 

effects.

Figure 5-15 is a surface plot showing the results of the network structure optimization. The 

best structure for the virtual monitor model with time series had 11 neurons in the hidden 

layer and was trained with 1100 epochs, resulting in a production set R2 of 0.94. The model 

required a fewer number of hidden layer neurons and training epochs, despite the additional 

input parameter (ozone concentration at t-1).

The model performance for July 2002 production data, which contains the highest ozone 

concentration in the production data, is shown in Figure 5-16. The model is able to predict 

most peaks well. The fractional bias of the virtual monitor model is slightly higher, at 0.099, 

than the virtual monitor model, indicating a slight propensity to under-predict high values of 

ozone concentration. However, the Wilmott indices of agreement are better than the indices 

for the virtual monitor without time series effects, suggesting that this model has better 

predictive ability over the entire range of ozone concentrations than the model without 

ozone time series effects. Figure 5-17 shows the comparison between the modelled and 

actual ozone concentrations. Values of ozone concentration greater than 0.065 ppm reflect 

the tendency of the model to under-predict peaks, with the circles falling above the 45° line. 

Model predictions of concentration values below 0.065 ppm show good agreement and 

generally cluster around the 45° line. Figures 5-18 and 5-19 of the model residuals show no 

patterns with time or model predicted concentrations.
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Figure 5-15 Edmonton East virtual monitor model with time series effects 
included: surface plot of architecture determination.

0.1
Actual Network0.09

0.08

0.07co
0.06

g 0.05

§ 0.04 
U
g 0.03 
o

(5 0.02 

0.01

7/1 7/6 7/11 7/16 7/21 7/26 7/31

Date

Figure 5-16 Edmonton East virtual monitor model with ozone time series: 
performance for July 2002 production data, R2 = 0.94.
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Figure 5-19 Edmonton East virtual monitor model with time series: variance of
residuals with modelled ozone concentration.

Figure 5-20 shows a comparison of relative contribution factors between the model with 

ozone time series effects and the model excluding time series considerations. When ozone 

concentration from the previous hour is included in the virtual monitor model, the relative 

contribution factors of N 0 2 and S02 increase, while contributions of NO and THC 

decrease. The contribution factors of all other inputs were fairly similar in the two models. 

The relative contribution factor of the ozone concentration from the previous hour was 

0.129, indicating the importance of this variable for predicting ozone concentration.

Figure 5-21 shows the surface plot of the one hour in advance forecast structure 

determination. The best network consisted of 6 neurons in the hidden layer and required 

2000 epochs to train. Note that for the forecast model, all parameters available at time t 

were used to predict the ozone concentration at t+1, including the ozone concentration at 

time t. This is somewhat equivalent to including ozone concentration at t-1 in the virtual 

monitor model, where the ozone concentration at t-1 accounted for greater than 12% of the 

ozone variability at t, since it acknowledges the serial correlation of ozone concentrations.
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Figure 5-20 Edmonton East virtual monitor comparison of relative contribution 
factors for model with and without ozone time series effects.

5000 3000 1500 1300 1100 500

No. Training Epochs

■ 0.885-0.89
□ 0.88-0.885
■ 0.875-0.88
■ 0.87-0.875
■ 0.865-0.87
■ 0.86-0.865

Figure 5-21 Edmonton East one hour in advance forecast model surface plot of 
architecture determination.
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The one hour forecast model resulted in a R2 of 0.89 for the production set of data. The 

performance of this model is shown in Figure 5-22, for July 2002 data. Surprisingly, the 

fractional bias of the one hour forecast model was less than the fractional bias of both the 

virtual monitor models. This indicates the forecast model is able to better predict the 25 

highest concentrations without as much bias as the virtual monitor models (i.e., the forecast 

model under-predicted to a lesser degree). The Wilmott indices of agreement for the one 

hour forecast model are slightly better than the indices for the virtual monitor model, but 

slighdy less than the indices calculated for the virtual monitor model with ozone time series 

effects.
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Figure 5-22 Edmonton East one hour forecast model performance for July 2002 
production set data, R2 = 0.89.

Figure 5-23, illustrating the actual versus modelled concentrations of ozone, shows that there 

maybe a slight under-prediction of the highest 25 ozone concentrations, although a few of 

these peaks are over-predicted. In general, the plot falls along the 45° line, confirming good 

agreement between the modelled and actual ozone concentrations. As with the virtual 

monitor models, no trends are apparent in the residuals analysis (Figures 5-24 and 5-25).
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Figure 5-23 Edmonton East one hour forecast model comparison of actual and 
modelled ozone concentrations.
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Figure 5-24 Edmonton East one hour forecast model residuals analysis: variance 
with time for 2002 production set data.
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Figure 5-25 Edmonton East one hour forecast model scatter plot of residuals:
variation with modelled ozone concentration.

To test the effects of the ozone time series in the forecast model, a one hour forecast 

network was developed including the ozone concentration at t-1. This model loosely 

parallels the virtual monitor model including ozone concentrations at both t-1 and t-2, since 

it incorporates ozone concentrations from the two time periods immediately preceding the 

time period of interest. Figure 5-26 shows the network performance on July 2002 

production data. The best network for the one hour forecast including the ozone 

concentration at t-1 consists of 6 neurons in the hidden layer and 500 training epochs. The 

resulting production set R2 was negligibly higher than that of the one hour forecast model, 

with a R2 of 0.90. The fractional bias of the one hour forecast model with time series was 

slightly higher than the one hour forecast model, but the Wilmott indices were consistent. A 

one hour forecast model incorporating ozone time series concentrations to t-2 also showed 

no improvements with a production set R2 of 0.89. Therefore, there are no advantages to 

having previous hours’ concentrations of ozone in the forecast model. The results of the 

ANN models show that when modelling ozone, only concentrations from the hour
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immediately preceding the hour of interest are useful for estimating the ozone concentration. 

The addition of further terms in the ozone time series does not benefit model performance.
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Figure 5-26 Edmonton East one hour in advance forecast with ozone time series
effects: model performance for July 2002 production set data, R2 = 0.90.

As expected, the ANN prediction performance declines for the two hour in advance 

forecast, barely meeting the minimum performance requirement with a R2 of 0.75. The 

surface plot of the network structure evaluation is shown in Figure 5-27. The best network 

configuration has 15 neurons in the hidden layer and requires 1000 training epochs.

Figure 5-28 shows the performance of this model for July 2002 production data. Compared 

to the one hour forecast, there is an obvious decline in performance. The ANN stmggled 

with pinpointing peaks in magnitude and in time, with time shifts in some of the peak 

predictions. There is a tendency for the ANN to under-predict the highest 25 

concentrations, denoted with a fractional bias of 0.122. The Wilmott indices of agreement 

are 0.76 and 0.92 for d, and d2, respectively.
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Figure 5-28 Edmonton East two hours in advance forecast model performance for 
July 2002 production set data, R2 = 0.75.
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The plot of actual to modelled ozone concentrations in Figure 5-29 confirms the model’s 

tendency to under-predict at high end values of ozone concentration. The residuals analysis 

in Figures 5-30 and 5-31 show no trends in the model residuals.
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Figure 5-29 Edmonton East two hours in advance forecast model comparison of 
actual to modelled ozone concentration.

The two hour in advance forecast with ozone time series showed a slight improvement in 

predictive ability over the two hour forecast model without time series effects. The 

production set R2 for this model was 0.78 (see Figure 5-32). The fractional bias of the two 

hour forecast with time series was slightly better as well, with a value of 0.081. This trend is 

opposite to that observed with the other models, where networks with time series effects 

had higher bias values. The Wilmott indices show a similar performance overall between the 

tw o hour forecast with and without ozone time series effects, w ith values o f  0.77 and 0.93 

for dj and d2 for the model with ozone time series effects.
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Figure 5-30 Edmonton East two hours in advance forecast model residuals 
variance with time.
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Figure 5-31 Edmonton East two hours in advance forecast model residuals 
variance with modelled ozone concentration.
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Figure 5-32 Edmonton East two hours in advance forecast with ozone time series: 
model performance on July 2002 production set data, R2 = 0.78.

Comparison of the time series model with the no time series models, based on the Wilmott 

indices of agreement, indicates that models incorporating the ozone time series as input have 

an improved overall predictive ability.

Figure 5-33 shows the trend in model performance with increasing prediction window for 

models with and without ozone time series effects. Not surprisingly, increasing the 

prediction window results in a performance decline. This trend is observed for both models 

with and without ozone time series effects. The performance difference between models 

with and without time series effects also increases slightly as the prediction window 

increases. Based on the optimized models, the maximum forecast window that will meet a 

minimum R2 value of 0.75 is two hours. This suggests that ANN models built to forecast 

greater than two hours in advance will likely exhibit poor prediction performance, because 

the ozone concentration at any given time t is correlated mainly with the concentration in 

the preceding hour t-1. The correlation with concentrations further removed than t-1 

becomes progressively smaller, so that the larger the time window, the more difficulty the 

ANN has predicting the ozone concentration at t.
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A possibility for overcoming this problem is predicting the hourly ozone concentration using 

conditions from the previous day (ozone concentration at t predicted with data from t-24). 

Since the ozone data consistently show strong diurnal patterns, the data from the same hour 

of the previous day may be a better indicator of the ozone concentration of the current day. 

This is an avenue for further exploration in future research, as there are many benefits in 

maximizing the prediction window. A day in advance warning of high ozone concentrations 

will allow regulatory bodies to better prepare their ozone management tactics and allow the 

public to develop a plan for exposure avoidance. Control strategies could also be 

implemented to avert the high ozone situation.
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Figure 5-33 Edmonton East forecast model effects of increased prediction window 
and inclusion of time series inputs.

Table 5-8 is a summary of the features for the best Edmonton East ANN models. There 

were no relationships between the network structure and the type of model developed. 

Optimized forecast models did not necessarily have a more complex network architecture or 

require a greater number of epochs to train than the virtual monitor models. The time series
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versions of the virtual monitor and one hour forecast models required fewer training epochs. 

However, this relationship was reversed in the two hour forecast model.

Table 5-8 Summary of network features for best Edmonton East ANN models.

Feature Description VM VMTS FM, FMTS, f m 2 f m t s 2
Target output Q,(t) o,(t) 0 ,(t+ l) 0 3(t+l) 0 3(t+2) 0 3(t+2)
Input layer
No. inputs 21 22 22 23 22 23
Inputs at t MAY MAY MAY MAY MAY MAY

JUN JUN JUN JUN JUN JUN
JUL JUL JUL JUL JUL JUL
AUG AUG AUG AUG AUG AUG
SEP SEP SEP SEP SEP SEP
SUN SUN SUN SUN SUN SUN

MON MON MON MON MON MON
TUE TUE TUE TUE TUE TUE
WED WED WED WED WED WED
THU THU THU THU THU THU
FRI FRI FRI FRI FRI FRI
SAT SAT SAT SAT SAT SAT
NO NO NO NO NO NO
n o 2 n o 2 n o 2 n o 2 n o 2 n o 2
so2 so2 so2 so2 so2 so2
THC THC THC THC THC THC
OPA OPA OPA OPA OPA OPA
RH RH RH RH RH RH

TEMP TEMP TEMP TEMP TEMP TEMP
WDR WDR WDR WDR WDR WDR
WSP WSP WSP WSP WSP WSP

o 3(m ) o3 o3 o3 o3
o 3(m ) o 3(t-i)

Hidden layer
Activation function logistic logistic logistic logistic logistic logistic
No. neurons 17 11 6 6 15 9
Output layer activation function logistic logistic logistic logistic logistic logistic
No. training epochs 3,000 1,100 2,000 500 1,000 1,300
No. training patterns 7,754 7,682 7,681 7,612 7,647 7,547
No. test patterns 2,585 2,561 2,561 2,538 2,549 2,516
No. production set patterns 2,584 2.560 2,560 2,537 2,549 2,515
Key:
VM = Virtual monitor model
VMTS = Virtual monitor model with ozone time series effects 
FM = Forecast model (subscript denotes prediction window in hours)
FMTS = Forecast model with ozone time series effects (subscript denotes prediction window in hours)
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The corresponding performance statistics for the developed models are provided in Table 5- 

9. A range of performance statistics can be used for evaluating network performance. In 

general, the coefficient of multiple determination R2 is a more conservative estimator of 

model performance than Pearson’s product moment correlation coefficient r. The order of 

conservatism for the performance indicators, beginning with the most conservative, is: du 

R2, r, and d2. The MSE of the time series models were slightly lower than the MSE of their 

corresponding models without time series effects. Time series models generally perform as 

well or better than the model without time series effects. As discussed earlier, the inclusion 

of time series inputs detracts from the versatility of the ANN model since the model then 

becomes dependant on the availability of data from previous hours. The connection weights 

between neurons in each of these networks are provided in Appendix A

Table 5-9 Summary of performance statistics for best Edmonton East ANN
models.

Statistic VM VMTS FM, FMTS, f m 2 f m t s 2
Training set R2 0.89 0.94 0.89 0.89 0.78 0.79
Test set R2 0.87 0.94 0.89 0.89 0.77 0.77
Production set
R2 0.87 0.94 0.89 0.90 0.75 0.78
r 0.93 0.97 0.94 0.95 0.86 0.88
MSE (ppm2xl05) 3.27 1.59 2.80 2.53 6.17 5.48
RMSE (ppm) 0.006 0.004 0.005 0.005 0.008 0.007
MAE (ppm) 0.004 0.003 0.004 0.004 0.006 0.006
AEmin (ppm) 0 0 0 0 0 0
A E _  (ppm) 0.032 0.025 0.031 0.035 0.038 0.042
Bias(mean) 0.084 0.099 0.079 0.098 0.122 0.081
Wilmott d. 0.83 0.89 0.85 0.86 0.76 0.77
Wilmott d2 0.96 0.98 0.97 0.97 0.92 0.93

Although the systematic approach is somewhat labour intensive compared to an ad-hoc 

approach, it provides a standardized, methodical approach to developing ANN models that 

is currently lacking in the literature. There are areas of the approach that require further 

research for the atmospheric sciences field. During pre-processing, a better understanding 

of the causes of ozone excursions is required. Infrequent and relatively unpredictable 

incidences, such as forest fires and stratospheric intrusions, and their subsequent impacts on 

ground level ozone concentrations, are difficult to model. Methods for quantifying their
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influences have been studied (e.g., Cheng et al. 1998 for forest fire effects), but are still 

poorly developed.

For each of the models developed for Edmonton East, several combinations of hidden and 

output layer activation functions and network architectures produced equivalent 

performance results. This finding reflects the black box nature of the ANN modelling tool, 

and suggests that the task of dissecting the network anatomy to build a general description of 

the modelled process would be challenging. This work also indicates that several network 

features are interrelated. The optimum inputs to the model are related to and influenced by 

the activation function combination chosen, the network structure, and the training 

requirements, in addition to the modelled process.

5.5 Conclusions

Ground level ozone modelling in Edmonton is complicated by the nonlinearity of the 

process and the variety of sources of precursor compounds. However, accurately predicting 

ground level ozone concentrations offers benefits such as the ability to provide advance 

warning of impending high levels and implementing control or exposure avoidance 

strategies. Artificial neural networks are a viable option for modelling ozone. The ANN 

virtual monitor model for Edmonton East performed at a R2 level of 0.87, while the one 

hour forecast model produced a R2 of 0.89. Including the ozone concentration from the 

previous hour in these models improved R2 to 0.94 and 0.90, respectively. The variables 

most important to the model, in order of relative importance, were NO, DAY (combined 

contribution factor for all days), THC, MTH (combined for all months), S 02, N 0 2, TEMP, 

WSP, RH, WDR, and OPA. With a minimum acceptable performance level of R2 equal to 

0.75, the maximum forecast window was two hours.

The systematic approach provides a methodical strategy to develop an ANN model. 

However, the resulting model, although optimized for the network structure and inputs, is 

not unique to the process modelled, and several models may yield similar performance. For 

this reason, the task of interpreting the ANN to create a generalized description of the 

modelled process would be difficult. Therefore, developing an ANN model requires the
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marriage of scientific knowledge of the process with the principles of the systematic 

approach.
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6.0 CALGARY EAST OZONE MODELS3

6.1 Introduction

In recent years, air quality issues in urban centres have become the focus of numerous 

research efforts. Ground level ozone, a secondary pollutant formed from oxides of nitrogen 

(NO*) and volatile organic compounds (VOGs), is of particular concern due to its 

associations with respiratory illnesses (Bates 1991; Bates et al.1990; Burnett et al. 1998; 

Delfino et al. 1997; Dockery et al. 1993, Last et al. 1998; Lipfert and Hammerstrom 1992; 

McDonnell et al.1999; and Thurston et al 1997). Ozone’s role in causing poor public health 

has drawn the attention of regulators and researchers alike. With this renewed interest in 

ozone comes an awareness of the deficiencies of existing modelling approaches when 

applied to modelling ground level ozone. Ground level ozone is a secondary pollutant, 

formed through reactions between precursor compounds. Its chemistry in the atmosphere is 

photochemical, complex, and nonlinear, creating the need for a modelling approach capable 

of handling these traits. One approach that has recently garnered interest in the atmospheric 

sciences is artificial neural networks. In this paper, a systematic approach is followed to 

develop an artificial neural network model for Calgary, Alberta, Canada. The intent of this 

research is to evaluate the success of using an optimized, artificial neural network model for 

ground level ozone. The input variables and network features that provide the best 

prediction performance, and the largest forecast window with acceptable performance, are 

also investigated.

6.2 Background

Artificial neural networks are a form of artificial intelligence used to model n o nlinear, 

complex, and poorly understood systems. They have spawned recent interest in the 

environmental sciences and engineering field. Their pattern recognition, data analysis, and 

experiential learning abilities have found contemporary application in water and wastewater 

treatment plant processes and control (Baxter 2002; El-Din and Smith 2002a and 2002b),

3 Aversion of this chapter -will be submitted to the Journal of Applied Meteorology, Application of ANN 

Models as Ground-Level Ozone Virtual Monitors and Forecast Tools.
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modelling of atmospheric pollutants (Cappa et al. 2001; Sharma et al. 2003; Fernandez de 

Castro et al. 2003; Kolehmainen et al. 2000; Plochl 2001; and Viotti et al. 2002), and 

prediction of weather anomalies (Baawain et al. 2003).

The base unit of an artificial neural network is the neuron. Neurons are individual 

processing units configured in interconnected layers. The most common type of network is 

the three layer, multilayer perceptron shown in Figure 6-1 0ain et al. 1996). This type of 

network consists of an input layer, one or more hidden layers, and an output layer (Tupas 

2000). The input layer receives input from the outside environment and transfers the data to 

the neurons in the hidden layer. In the hidden layer, the data are processed to produce a 

value for the target output. The output layer is responsible for transmitting the network 

results to the outside environment. Each of the connections between neurons is weighted 

with a signed value (either positive, negative, or neutral) to reflect the influence between the 

interconnected neurons (Garrett et al. 1997). The modelled process is described by the 

specific functions used in the network, the number of neurons in each layer of the network, 

how they are connected, and the connection weights. These features are determined during 

the network development process.

In the training phase of network development, historical data are fed to the ANN. The 

historical data are pre-processed to remove erroneous data, noise, and any unexplained 

random variance (Comrie 1997; Gardner and Dorling 2001). During training, the ANN 

learns from the historical data, adjusting connection weights between neurons to map out 

the relationship between the set of inputs and the targeted output. How the ANN adjusts 

connection weights to fit the historical data is defined by a learning rule. Jain et al. (1996) 

describe several learning rules, the most common of which is backpropagation (Henseler 

1995).

Like most modelling approaches, ANN performance is highly dependant on the quality of 

historical data. The historical data are typically divided into three subsets. The first subset is 

the largest, and is used to train the ANN. The second subset is the test set. This set is used 

in training to establish when training should stop, usually when the error has reached a pre­

selected value. The final subset, the production set, is an independent data set used to
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evaluate the generalization ability of the trained network. For proper development and 

evaluation of the network, each subset should be representative of the entire data set. This 

can be done with visual examination of the data subsets or calculation and comparison of 

key statistical features. The network stability is determined by swapping the data in the 

subsets, re-training the network, and comparing the performance of the re-trained network 

with the original network. The data swap should not compromise the network’s 

performance.

Output Layer

Hidden Layeim

Input Layer

Figure 6-1 Schematic of a three layer perception network.
Adapted from Plochl (2001).

Several statistical parameters are commonly used in the ANN literature to evaluate the 

network’s performance. The most commonly used statistic is the coefficient of multiple 

determination (R2), defined as (Walpole and Myers 1993):

R2 = l - ^ y — .....................................Equation 6-1
ZAX“ X)

where

x = actual output value (in this project, the ozone concentration from the 

ambient monitor historical data) 

y = modelled output value (ozone concentration from the ANN)

x = mean of the actual output values
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Other performance indicators that maybe used include the mean squared error (MSE), 

mean absolute error (MAE), minimum absolute error, maximum absolute error, fractional 

bias (FB), and the Wilmott indices of agreement (dj and dj), and are described in most basic 

statistics texts (e.g., Judd and McClelland 1989; Montgomery 2001; and Walpole and Myers 

1993).

6.3 Methodology

Data for the Alberta Environment Calgary East ambient air monitoring station were 

collected for the period spanning June 2000 to September 2002. Since ozone concentrations 

are higher in the summer due to greater photochemical activity, only data from May through 

September of each year were used to develop the ANN. May 2000 relative humidity and 

temperature were unavailable, so this month was excluded from the data history. The hourly 

average data available from the Calgary East station were concentrations of carbon 

monoxide (CO), hydrogen sulphide (H2S), nitric oxide (NO), nitrogen dioxide (NO;), 

sulphur dioxide (SO^, total hydrocarbons (THQ, fine particulate matter (PM2 5), and ozone 

(0 3), wind direction, wind direction deviation, and wind speed. All pollutant concentrations 

are measured in parts per million (ppm) by volume. Wind direction and wind direction 

deviation are measured as degrees from north, while wind speeds are in kilometres per hour 

(km/h). Relative humidity (%) and temperature (°C) data were only available at the 

Northwest station. These variables were also included in the project because minimal spatial 

variation of these parameters is expected throughout the city. These data were 

supplemented with upper air data from Environment Canada’s Stony Plains station, located 

approximately 45 km west of the Edmonton East station. Parameters from this station 

included mixing height in metres (converted from balloon sounding data) and opacity (tenths 

of sky).

Alberta Environment processes the data to remove erroneous values prior to making the 

data publicly available, eliminating the need for quality control in this project. However, 

wind direction data for winds blowing from the north are recorded as both 0° and 360°. For 

consistency, all winds blowing from the north were assigned a value of 360°. Also, wind 

speeds less than 1 km/h are considered calms. Readings below this value are unreliable
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because they exceed the sensitivity limits of the measuring instruments (McCullum 2003). 

Therefore, all wind speed readings less than 1 km/h were set to 0 km/h to represent calms, 

and their corresponding wind directions were assigned values of 0°. Although PM2 5 

concentration data are currently measured at the Calgary East station, the PM25 history was 

considerably shorter than the history of the other pollutants and was therefore excluded 

from this project.

The balloon sounding data are measured twice daily at Stony Plain, Alberta. The sounding 

data were converted to hourly average mixing height values through linear interpolation 

between the two readings. Mixing heights were also calculated from three hour averaged 

wind speeds using the method proposed by Benkley and Schulman in 1979. The lower value 

of mixing height (i.e., the condition promoting higher ground level pollutant concentrations) 

was used for the model input.

In this paper, the systematic approach proposed by El-Din and Smith (2002a and 2002b) 

was adopted to develop two ANN models for ground level ozone in Calgary. The first 

ANN models hourly average ground level ozone concentrations. The second ANN is a 

forecast model that predicts future ground level ozone concentrations. In addition, 

variations of the models including ozone time series effects were developed. The systematic 

approach is a flexible methodology for determining the optimum ANN architecture. The 

steps in the systematic approach include determining the best combination of activation 

functions, input variables to describe the process modelled, number of neurons in the 

hidden layer, number of training epochs to avoid overtraining, and the largest forecast 

window for predictive models.

The hidden layer activation functions tested were the logistic, Gaussian, sine, tanh, tanh(15), 

Gaussian complement, and symmetric logistic functions. The output layer activation 

functions tested were the same as the function tested for the hidden layer, but also included 

the linear function. Various combinations of these functions were tested at three settings of 

hidden layer neurons and training epochs: low, middle, and high. The low setting consisted 

of 5 neurons in the hidden layer and 1000 training epochs. The middle setting contained 20 

hidden layer neurons and 3000 training epochs, while the high setting contained 50 hidden
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layer neurons and 6000 training epochs. Since this is the first step of the systematic 

approach and the optimum ANN architecture is still unknown, the low, middle, and high 

settings were assigned so that the expected (based on network architectures in previous 

studies— see Chapter 5) final network architecture was within these settings. This helped to 

ensure a stable final model.

The best set of input variables was determined using, as a starting point, the inputs found to 

be most important in previous ozone ANN models (see Chapter 5). The remaining variables 

were then added to the model in succession and the change in model performance was 

evaluated. A 0.03 increase in R2 was arbitrarily set as the minimum improvement required to 

justify inclusion of a particular variable in the input set of the final network. In this step, 

temporal inputs such as month were represented by their numerical values and one input 

neuron (e.g., the input neuron has a value of 5 for May data, a value of 6 for June data, etc.), 

so that the relative contribution of month as an entire class could be determined. After this 

step, temporal inputs were represented with multiple input neurons set to either 0 (inactive) 

or 1 (active). This method avoids any biases, because all the temporal data have equal 

representation. For example, when a single input neuron is used to represent month, the 

neuron’s value for September is 9, while the value for May is 5. When multiple input 

neurons are used, the input neuron representing May is set to 1 for data patterns from May, 

while the input neurons for June to September are inactivated. With this approach, an equal 

representation of the data is presented to the network and the network is given the freedom 

to establish the relevance of each individual month.

For determining the final architecture, the numbers of neurons in the hidden layer tested 

were 5, 6, 7, 8,9,10,11,12,13,14,15, 20, and 25. The numbers of training epochs 

concurrently evaluated (i.e., every combination of hidden layer neurons and training epochs 

in these ranges were tested) were 100, 250,500,1000,1500, 2000, 3000, 4000, and 5000.

The most economic combination with the highest R2 was selected for the final model. To 

ensure good generalization, the ANN must exhibit similar R2 values for the training, test, and 

production data sets. The model’s sensitivity to variability in each of the inputs was also 

evaluated. In this analysis, each of the variables was ranged from its minimum to maximum
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value while all other variables were held at their median values, and the model response 

recorded.

The best forecast window was determined with a one hour forecast as the basic prediction 

window. The prediction window was increased in one hour increments and the optimized 

network’s subsequent production set R2 compared to the minimum acceptable performance 

standard. For this paper, the minimum performance standard was set at a R2 of 0.75.

Ward Systems Group, Inc.’s NeuroShell2 software was used to develop all neural networks.

6.4 Results and Discussion

The basic statistics calculated for the parameters measured at the Calgary East air monitoring 

station, and for the relative humidity and temperature measurements from the Northwest 

station, are listed in Table 6-1. The mean ozone concentration measured was 0.021, similar 

to the median of 0.020 ppm  Ozone concentrations ranged from 0 to a maximum value of 

0.068 ppm in the data period.

Table 6-1 Calgary East basic statistics of available inputs.

Statistic CO H 2S NO n o 2 s o 2 TH C MIX OPA RH* TEMP* WDR DEV WSP o 3
Mean 0.5 0.001 0.020 0.018 0.002 2.1 188.2 4 59 14.4 316 19 7.5 0.021
Median 0.4 0.001 0.011 0.017 0.002 2 157.4 4 59 13.7 207 17 6.4 0.02
Std.Dev. 0.3 0.002 0.030 0.010 0.002 0.2 168.1 3 24 7.3 108 13 5.3 0.015
Var. 0.1 0.000 0.001 0.000 0.000 0.0 28248.7 12 577 53.9 11566 156 27.8 0.000
Min. 0.1 0 0 0.001 0 1.7 0 0 11 -7.2 0 1 0 0
P(0.01) 0.2 0 0 0.002 0 1.8 0 0 17 -2.1 0 3 0 0
P(0.05) 0.2 0 .0 0.004 0 1.8 0 0 23 3 8 5 1.4 0.001
P(0.25) 0.3 0 0.003 0.011 0.001 1.9 60.9 1 37 9.2 131 11 3.5 0.007
P(0.75) 0.6 0.001 0.024 0.024 0.003 2.2 280.1 8 79 19.5 298 24 10.2 0.032
P(0.95)^ 1.1 0.003 0.077 0.038 0.006 2.4 505.8 10 98 27.4 346 39 17.6 0.045
P(0.99) 1.6 0.007 0.145 0.046 0.009 2.7 715.6 10 100 31.7 358 52 23.8 0.053
Max. 4.1 0.038 0.502 0.086 0.028 5.6 1094.9 10 100 37.5 360 174 107 0.068

Figure 6-2 shows typical ozone concentration data for Calgary East. Ozone concentrations 

follow the distinct diumal pattern noted in several recent studies for Alberta (CEPA/FPAC
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WGAQOG 1999; Chaikowsky 2001; and Sandhu 1999), with concentrations typically 

peaking daily in the late afternoon, between 16:00 and 17:00.

0.08
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Date

Figure 6-2 Calgary East typical hourly average ozone concentration data for May 
2001.

Figure 6-3 shows the results of the activation function evaluation, averaged over the low, 

middle, and high settings of number of neurons in the hidden layer and training epochs.

The best average function combination was the Gaussian function in the hidden layer and 

the linear function in the output layer. The logistic-Gaussian complement, tanh-Gaussian, 

and sine-Gaussian combinations produced negative R2 results at the high setting and were 

excluded from further consideration. Initially, the ANN was developed with the Gaussian- 

linear activation function, but the resulting network occasionally (less than 2% occurrence) 

generated negative values for low concentrations. These negative values are the result of the 

inability of the linear function to account for rapid variability in the data. Therefore, the 

Gaussian-logistic combination was selected for further development. The average 

production set R2 over the three settings was 0.87 for this function combination. Other 

function combinations that yielded similar outcomes were the Gaussian-sine and Gaussian-
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tanh combinations. Another method used in the literature to avoid forecasting negative 

concentrations is to logarithmically transform the pollutant data (Schlinket al. 2003).

c
sym. logistic

>
tanhl.5

sine

Gaussian

O utput Layer Activation 
Function

•e
< § * -J34) O

c<u•a•d

■ 0.865-0.87
□ 0.86-0.865
■ 0.855-0.86
■ 0.85-0.855
■ 0.845-0.85
■ 0.84-0.845
■ 0.835-0.84
■ 0.83-0.835

Figure 6-3 Calgary East function analysis results, average of three settings.

Based on the Edmonton East model results (see Chapter 5), the most important parameters 

for modelling ozone concentrations are nitric oxide (NO), month (MTH), nitrogen dioxide 

(NOj), total hydrocarbons (THC), and sulphur dioxide (SOj). The combined relative 

contribution factors of these inputs was 0.836 in the Edmonton East model. The 

benchmark network built with these five inputs generated a R2 of 0.62 at the middle setting. 

The variable testing indicated that RH* and TEMP* improved R2 much more than any of the 

other variables (changes in R2 of 0.18 and 0.19 compared to 0.05 on average for other 

variables), so these were added to the core inputs. The model was re-run with the seven 

inputs to establish a new baseline, and the variable testing repeated. No other inputs were 

found to be relevant. The final optimum inputs to the model were NO, N 0 2, S02, THC, 

RH*, and TEMP*.
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Next, the runs to determine the best architecture for the virtual monitor model were 

completed. The results of these runs are shown in Figure 6-4. The best architecture for 

the ANN resides in the upper right hand comer of the plot, with the most economical 

architecture having 20 hidden layer neurons and 500 training epochs when the Gaussian- 

logistic activation function combination was used.

5000

2000 W

10 11 12 13 14 15 20 25

No. Hidden Layer Neurons

■ 0.845-0.85
□ 0.84-0.845
■ 0.835-0.84
■ 0.83-0.835
■ 0.825-0.83
■ 0.82-0.825
■ 0.815-0.82
■ 0.81-0.815
Sj 0.805-0.81
■ 0.8-0.805

Figure 6-4 Calgary East virtual monitor model surface plot of architecture 
analysis.

Figure 6-5 shows the virtual monitor model’s predictions for May 2001 production data.

The R2 was 0.85 for the production data set. The ANN appears to struggle with the highest 

peaks, but over-predicts some intermediate and smaller peaks. The fractional bias of the 

network was 0.196 for the 25 highest concentrations. This bias is still much lower than the 2 

times factor recommended as the maximum allowable bias by Cox (1988).

The Wilmott indices of agreement show good agreement between the modelled and actual 

values at 0.82 and 0.96 for d, and d2, respectively.
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Figure 6-5 Calgary East virtual monitor model performance on May 2001 
production set data, R2 = 0.85.

The plot of the modelled versus actual ozone concentrations is shown in Figure 6-6. In this 

figure, the solid black line shows the ideal case, where the modelled concentrations are equal 

to the actual concentrations. The figure shows the model has a slight tendency to over­

predict higher ozone concentrations, evidenced by the number of markers lying above the 

ideal case line. The model residuals shown in Figures 6-7 and 6-8 show no trends over time 

or the modelled values. The model stability check shows the model is stable when trained 

on swapped data, generating a R2 of 0.84 when applied to the production set of data.
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Figure 6-6 Calgary East virtual monitor model comparison of actual and modelled
ozone concentrations.
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Figure 6-7 Calgary East virtual monitor model residuals analysis: variation with 
modelled ozone concentration.
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Figure 6-8 Calgary East virtual monitor model residuals variation with time.

Since ozone is a photochemical pollutant, the possibility of using only daylight data was 

evaluated by developing a model using only data from daylight hours to train the network 

Daylight was arbitrarily assumed to be between the hours of 8:00 and 20:00 inclusive. The 

actual hours of daylight are expected to vary daily, and are dependant on the time of year. 

The model performance declined slightly, with a production set R2 of 0.79. Figure 6-9 

shows a comparison of the input variable relative contribution factors for the 24 hour and 

daylight only networks. NO became a larger contributor when only daylight data was used, 

as did TEMP*. The increased importance of NO may be due to the scavenging effects of 

NO emitted from daytime traffic. The importance of this effect is magnified in the daytime, 

when the variability of traffic volumes is greater with the morning and afternoon rush hours. 

The increased importance of TEMP* during the day is a reflection of the importance of 

photochemical activity. Since the relative importance of N 0 2 decreases, this photochemical 

activity may pertain to reactions among other compounds. S02 and THC also decreased in 

importance.
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The results of the sensitivity analysis are shown in Figures 6-10 through 6-12. Ozone 

concentration initially decreases as the summer progresses, levelling off in July and remaining 

fairly flat through to September (Figure 6-10). It has been shown in previous studies that on 

average, ozone levels are highest in the spring in Alberta (CEPA/FPAC WGAQOG 1999; 

Chaikowsky2001). Figure 6-11 shows the sensitivity of ozone concentrations to 

concentrations of various pollutant species. In the sensitivityto NO (Figure 6-lla), ozone 

concentration decreases rapidly with an increase in NO concentration, for NO 

concentrations up to 0.1 ppm. Between 0.1 ppm and 0.3 ppm NO concentration, ozone 

concentration is unchanging at 0, but rises slightly at NO concentrations greater than 0.3 

ppm. Three regions are distinguishable in the sensitivityto N 0 2 concentrations (Figure 6- 

11b). Initially, at N 0 2 concentrations less than 0.01 ppm, there is a small linear decrease in 

ozone concentration as N 0 2 increases. In the region with N 0 2 concentrations between 0.01 

ppm and 0.025 ppm, ozone concentration decreases more rapidly than in the first region. At 

N 0 2 concentrations greater than 0.025 ppm, ozone decays with an increase in N 0 2 

concentration, appearing to approach an asymptotic value of approximately 0.0014 ppm.

' The overall change in ozone concentration in response to S02 concentrations is small 

(Figure 6-11c). For S 02 concentrations less than approximately 0.014 ppm, ozone decreases 

slighdy as S 02 concentration increases. This trend is reversed for S 02 concentrations greater 

than 0.014 ppm, where ozone concentrations increase with increasing S 02 concentrations. 

The changes in ozone concentration in response to THC concentrations are similar to those 

for S02, with the trend reversing at a critical concentration (Figure 6-lid). At THC 

concentrations less than 3 ppm, ozone concentration decreases with increasing THC 

concentrations. When THC concentration is greater than 3 ppm, ozone concentrations 

begin to rise as THC concentrations increase.
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Figure 6-9 Calgary East comparison of input parameter relative importance for 
ozone modelling using 24-hour and daylight only data.

The sensitivity of ozone levels to meteorological parameters is shown in Figure 6-12. Not 

surprisingly, the R H  trend shows ozone concentrations decreasing with increasing RfT 

(Figure 6-12a). This is likely due to the wet deposition of pollutants when air moisture 

content is high. This effect stabilizes at RH* of 60%. The influence of temperature on 

ozone concentrations is shown in Figure 6-12b. The temperature influence shows two 

regions. In the first region where temperatures are less than 3°Q ozone concentrations 

decrease with increasing temperatures. At temperatures greater than 12°Q ozone 

concentrations increase with increasing temperature, with the region between 3°C and 12°C 

being a transition zone between the two regimes. The effects of temperature appear to 

begin levelling off at high temperatures.
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Figure 6-10 Calgary East variation of virtual monitor modelled ozone 
concentration with month.
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Figure 6-11 Calgary East sensitivity of virtual monitor modelled ozone
concentration to pollutant concentrations: (a) NO; (b) N 0 2; (c) S 02; 
and (d) T H C
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Figure 6-12 Calgary East sensitivity of virtual monitor modelled ozone 
concentration to meteorological parameters.
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Figure 6-12 conf d. Calgary East sensitivity of virtual monitor modelled ozone 
concentration to meteorological parameters.

Figure 6-13 shows the surface plot for the network architecture development for the virtual 

monitor model when ozone time series effects are incorporated in the model via inclusion of 

the ozone concentration from the previous hour in the input set of variables. The figure 

shows a large area where no variation in R2 occurs, regardless of increased training epochs or 

an increased number of hidden layer neurons (dark areas on plot). Based on this exercise, 

the ANN structure that best balances performance with economy has 20 neurons in the 

hidden layer and 500 training epochs. Although performance is similar with lower numbers 

of hidden layer neurons, more training epochs are required for these structures. Increasing 

the number of training epochs results in greater increases in the network training time than 

incrementing the number of neurons in the hidden layer. The performance of this model is 

shown in Figure 6-14 for May 2001 production data. The ANN prediction performance 

increases to  a R2 of 0.92 fo r the production data set when the previous hour’s concentration 

of ozone is included as an input parameter.
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Figure 6-13 Calgary East virtual monitor model surface plot of network
architecture evaluation when ozone concentration at t-1 included as 
input

0.07
Actual Network

0.06

0.05

0.04

0.03

0.02

0.01

5/1 5/6 5/11 5/16 5/21 5/26 5/31

Date

Figure 6-14 Calgary East virtual monitor model with ozone time series 
performance for May 2001 production set data, R2 = 0.92.
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The virtual monitor model with time series effects is slightly better at predicting the 25 

highest ozone peaks than the virtual monitor model without time series effects, with a lower 

fractional bias of 0.096. This tendency to slightly under-predict high ozone peaks is also 

noticeable in Figure 6-15, where top values are above the ideal case line. The Wilmott 

indices of agreement are higher than the virtual monitor model without time series effects, at 

0.87 and 0.98, indicating better overall predictive ability. No trends were identifiable in the 

residuals analyses shown in Figures 6-16 and 6-17.

M odelled Ozone Concentration (ppm)

Figure 6-15 Calgary East virtual monitor model with ozone time series:
comparison of actual to modelled ozone concentration for production 
set data.
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analysis: variance with time for 2001 production set data.
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Figure 6-18 shows the virtual model performance changes for structurally optimized 

networks when previous hours’ concentrations of ozone were included in the virtual 

monitor model. The figure shows a dramatic increase in model performance when the 

previous hour’s concentration of ozone is introduced to the model, but improvements are 

minimal after the first hour and appear to plateau. Therefore, there is no apparent advantage 

to including the ozone concentration from more than one hour previous. Figure 6-18 also 

suggests a limit to how many hours in advance ozone concentrations can be predicted. For 

good prediction success, the forecast window may be limited to a one hour prediction. 

Increasing the prediction window beyond this point may result in a performance decline. In 

such a case, the selected minimum acceptable performance requirement will fix the 

maximum forecast window.

Figure 6-19 shows the neural network structure development for the one hour in advance 

forecast of ozone concentration. Figure 6-19 indicates that numerous potential architectures 

yield similar performance (black areas). Of the best structures, the most economic is the 

network with 5 neurons in the hidden layer and 500 training epochs. The R2 of this network 

is 0.86 for the production data, and runtime requirements are minimized. Figure 6-20 shows 

an example of the forecast model’s performance on May 2001 data. The model has trouble 

predicting peak values, with a tendency to under-predict the highest peaks. Figure 6-21 of 

the actual versus modelled concentrations also shows this tendency to under-predict, with 

markers predominantly lying above the ideal case line for high ozone concentrations. This 

observation is verified by the fractional bias value of 0.166. The fractional bias of the 

forecast model is high compared to the virtual monitor models, but still below the factor of 

two performance standard recommended in the Cox (1988) paper. As with the other two 

models, no patterns are observable in the residuals analysis shown in Figures 6-22 and 6-23.
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Figure 6-20 Calgary East one hour forecast model performance for May 2001 
production set data, R2 = 0.86.
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Figure 6-21 Calgary East one hour forecast model comparison of actual to 
modelled ozone concentration for production set data.
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Figure 6-22 Calgary East one hour forecast model residuals analysis: variance with 
modelled ozone concentration for production set data.
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Figure 6-23 Calgary East one hour forecast model residuals analysis: variance with 
time for 2001 production set data.
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The one hour forecast model is essentially another form of the models with ozone time 

series effects. In the one hour forecast, the model uses the ozone concentrations from the 

immediately preceding hour (ozone at time t) to determine the forecast ozone concentration 

(at t+1). Since performance gains were negligible when the time series effects were extended 

beyond the ozone concentration in the previous hour, it is unlikely that the addition of any 

more terms in the ozone time series would improve the network performance. However, 

for comparison purposes and to determine if improvements in peak predictions could be 

achieved, further ozone time series effects were incorporated into the one hour forecast 

model.

Figure 6-24 shows the network structure evaluation for the one hour forecast model with 

ozone time series effects (i.e., using ozone concentrations at t and t-1 to predict 

concentration at t+1). The most economical model has 12 neurons in the hidden layer and 

250 training epochs, resulting in a production set R2 of 0.87. As expected, this increase to R2 

is negligible compared to the one hour forecast without ozone time series effects.
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Figure 6-24 Calgary East one hour forecast with ozone time series surface plot of 
network architecture evaluation.
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Figure 6-25 shows the model’s prediction performance for May 2001 production set data. 

The time series forecast appears to have a slightly improved performance over the forecast 

model without ozone time series effects when predicting peaks. This is best illustrated in 

Figure 6-26, in which the markers are slightly above the ideal fit line. The fractional bias of 

the model at high ozone concentrations is slightly lower, at 0.155, than the model without 

time series effects. The Wilmott indices of agreement are the same for both the one hour 

forecast and the one hour forecast with ozone time series effects. This means that overall, 

the performance of the two models is equivalent. Like the one hour forecast, the ozone 

forecast with time series shows no discernible trends with either modelled ozone 

concentrations or time (Figures 6-27 and 6-28).
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Figure 6-25 Calgaty East one hour forecast with ozone time series performance for 
May 2001 production set data, R2 = 0.87.
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Figure 6-26 Calgary East one hour forecast with ozone time series comparison of 
actual to modelled ozone concentration for production set data.
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Figure 6-27 Calgary East one hour forecast model with ozone time series residuals 
variance with modelled ozone concentration for production set data.
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Figure 6-28 Calgary East one hour forecast model with ozone time series residuals 
analysis: variance with time for 2001 production set data.

As expected, the Calgary two hour forecast results were unable to meet the minimum 

performance standard of 0.75 for the R2 value. Figure 6-29 shows the effects of an increased 

forecast window on the production set R2 for the best network structures in each case. The 

time series cases are those networks that use two terms in the ozone time series as input (i.e. 

for the one hour forecast (ozone at t+1), inputs include ozone at t and at t-1, for the two 

hour forecast (ozone at t+2), inputs include ozone concentration at t and t-1, etc.). Figure 6- 

29 shows that increasing the forecast window results in a severe decrease in prediction 

performance. The difference in prediction performance between the time series and non­

time series models also increases as the prediction window increases. Based on this plot, the 

maximum forecast window that can achieve the minimum performance requirement is one 

hour.
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Figure 6-29 Calgary East forecast model effects of increasing prediction window 
and adding previous hours’ ozone concentrations.

Table 6-2 summarizes the features of the best networks for each of the models, with 

corresponding statistics listed in Table 6-3. Connection weights for each of the Calgary East 

models are also tabulated in Appendix B. The performance statistics show that regardless of 

the performance measure used, the ANN models perform very well for modelling and one 

hour forecasting of ground level ozone concentrations. R2 values for the models are all 0.85 

or greater, with RMSE in the range from 4 ppb to 6 ppb. As with other ozone models in the 

ANN literature, the ANN models for Calgary all have a slight tendency to under-predict 

high ozone values, based on the highest 25 observed ozone concentrations. However, these 

fractional bias values are still significantly lower than the highest acceptable fractional bias 

recommended by Cox (1988).
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Table 6-2 Summary of network features for best Calgary East ANN models.

Feature Description VM VMTS FM, FMTS,
Input layer

No. inputs 11 12 12 13
Inputs MAY

JUN
JUL
AUG
SEP
NO
n o 2
so2
THC
RH*

TEMP*

MAY
JUN
JUL
AUG
SEP
NO
n o 2
so2
THC
RH*

TEMP*
o,(M)

MAY
JUN
JUL
AUG
SEP
NO
n o 2
so2

THC
RH*

TEMP*
o3

MAY
JUN
JUL
AUG
SEP
NO
n o 2
so2
THC
RH*

TEMP*
O,

o,(t-i)
Hidden layer

Activation function Gaussian Gaussian Gaussian Gaussian
No. neurons 20 15 5 12

Output layer activation function logistic logistic logistic logistic
No. training; epochs 500 500 500 250
No. training patterns 5,921 5,879 5,879 5,836
No. test patterns 1,974 1,960 1,960 1,946
No. production set patterns 1,974 1,959 1,959 1,945

Table 6-3 Summary of performance statistics for best Calgary East ANN models.

Statistic VM VMTS FM, FMTS,
Training set R2 0.84 0.92 0.85 0.87
Test set R2 0.84 0.92 0.85 0.87
Production set
R2 0.85 0.92 0.86 0.87
r 0.92 0.96 0.93 0.93
MSE (ppm2xl05) 3.29 1.80 3.06 2.85
RMSE (ppm) 0.006 0.004 0.006 0.005
MAE (ppm) 0.004 0.003 0.004 0.004
AEmin (ppm) 0 0 0 0
A E mx (ppm) 0.023 0.032 0.047 0.024
Bias (mean) 0.196 0.096 0.166 0.155
Wilmott dj 0.82 0.87 0.84 0.84
Wilmott d2 0.96 0.98 0.96 0.96
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6.5 Conclusions

A systematic approach was applied to develop ANN models for modelling and predicting 

ground level ozone in Calgary, Canada, using ambient monitoring station data for input.

The optimum architecture, most relevant inputs, time series effects, and largest forecast 

window meeting a minimum acceptable performance standard of R2 equal to 0.75 were 

investigated.

The ANN modelling technique proved to be an effective modelling method for ground level 

ozone. The inputs most significant for quantifying ground level ozone were month of the 

year, concentrations of NO, N 0 2, S 02, and THC, relative humidity, and temperature. The 

ozone concentration from the previous hour also helped to improve the model’s 

performance. The maximum forecast window able to meet a R2 of 0.75 was one hour.

Based on various performance statistics, the ANN modelling technique is a reliable and 

economic alternative to traditional mechanistic models for estimating ground level ozone 

concentrations.
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7.0 GENERAL DISCUSSION AND CONCLUSIONS

In this thesis, a systematic approach is used to develop four ground level ozone ANN 

models for each of Edmonton and Calgary, Canada. The first model developed is a virtual 

monitor model that uses a combination of meteorological and pollutant concentration inputs 

to model the corresponding ozone concentration. The second model is a forecast model 

that predicts ground level ozone concentrations up to two hours in advance. The final two 

models are variants of the first two, considering ozone time series effects. The data used to 

develop the models were obtained from the East monitoring stations in both cities. The 

Calgary model development was based on the knowledge obtained from the Edmonton East 

model development.

The systematic approach is a methodical strategy for developing ANN models. The 

systematic approach attempts to address the ad hoc nature of model development that is 

apparent in the ANN literature. With the systematic approach, the principle of parsimony is 

preferred, which limits the number of structures requiring evaluation, decreasing the time 

required to determine the optimum network architecture. The use of this approach for the 

Calgary and Edmonton East ANNs resulted in successful models compared to models 

presented in the literature. The systematic approach still requires judgements to be made in 

terms of trade offs in performance gains versus model simplicity and computation time. In 

addition, the model developer is required to set a minimum performance standard for the 

models, and a relative contribution cut-off when selecting the inputs to the model. These 

requirements highlight the importance of clearly delineating the modelling objectives and 

incorporating the current scientific knowledge of the process when making model 

development decisions.

The Edmonton East and Calgary East models performed comparably based on the 

coefficient of multiple determination (R2) values. The Calgary East models eliminated the 

four least important inputs of day of the week, opacity, wind direction, and wind speed in 

the Edmonton East models. For the virtual monitor models, this resulted in fewer epochs 

required to train the model, but increased the number of neurons in the hidden layer. No 

srmilar trends were observed in the forecast models, but the maximum prediction window
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yielding an acceptable prediction performance was lower for the Calgary models. The 

fractional bias of the Calgary East predictions was also slightly higher than for the 

Edmonton East models.

The order of importance of the input variables to the Edmonton and Calgary virtual monitor 

models were similar, based on the built-in NeuroShell2 method for establishing the relative 

contributions of input variables. For Edmonton, the most important inputs, in order of 

decreasing relative contribution, were NO, THC, S02, N 0 2, temperature, and the month of 

May. This compares well to Calgary, whose most important inputs were NO, THC, S 02, 

N 0 2, temperature, relative humidity, and the month of June. These results suggest that the 

sources of precursor compounds and atmospheric influences in the two cities are similar. 

However, caution is required in interpreting relative contribution results, as no universally 

accepted method exists for establishing the relative importance of input variables. The work 

completed in this thesis also suggests that equivalent model performance maybe derived 

from different ANN architectures, providing the ANN structure is optimized for the specific 

inputs. Therefore, incomplete knowledge about the relevant contributors to a process will 

not necessarily compromise the success of the ANN approach. Rather, it appears that some 

compensation in the model performance can be made through the network structuring.

The logistic activation function continues to be proven reliable in this work, and was the 

function selected for three out of four activation functions. In both the Edmonton and 

Calgary models, model performance improved with inclusion in the set of inputs of the 

ozone concentration from the previous hour. In both cases, performance gains from 

including the previous hour’s ozone concentrations were higher when the forecast window 

was increased.

Compared with other virtual monitor type models in the literature, the Calgary and 

Edmonton East models developed in this thesis are top models (see Table 7-1). Based on R2 

values, only the models developed by Abdul-Wahab and Al-Alawi (2002) were better. 

However, Abdul-Wahab and Al-Alawi used 5 minute averaged monitoring data. This 

allowed a better incorporation of temporal trends and correlation informadon that is lost in 

the hourly averaged data used in this research. The Abdul-Wahab and Al-Alawi models were
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also developed and tested using data collected over only one year. The ability of their 

models to handle year-to-year variations in meteorology and pollutant concentrations is 

therefore unknown. In addition, the time required to train the ANN on 5 minute averaged 

data for 5 years would be significantly longer than for hourly averaged data. For one year’s 

data, Abdul-Wahab and Al-Alawi required more than 9 hours to train their neural network.

The third model of Narasimhan et. al. (2000), incorporating modelled upper air data, also 

produced a slightly better R2 than for the Calgary and Edmonton East models. Similar 

upper air data were unavailable or unreliable for the Calgary and Edmonton East models, 

and were excluded from the model inputs. With R2 values of 0.86 (and 0.92 with ozone time 

series effects included), it is clear that the ANN models generated in this project do not 

incorporate all the inputs that influence ozone concentrations in Edmonton and Calgary.

The unaccounted remaining 8% of variability may be attributed to a number of parameters 

excluded from the models, including upper air information, vertical wind, temperature, and 

pressure profiles, precipitation data, and concentrations for specific volatile organic 

compounds (VOCs). However, in the interest of producing a model that can easily be used 

as a forecasting tool, only inputs that are publicly and freely available, and have a reasonable 

likelihood of being monitored in the future, were used in the Edmonton and Calgary models. 

Most of the important variables also appear to be captured by the current input data set, 

judging from the performance of the models.

Based on reported root mean squared error (RMSE), mean absolute error (MAE), and bias, 

the Edmonton and Calgary East virtual monitor model values were top performers.

For the forecast models, the R2 values of the Edmonton East and Calgary East models were 

comparable to or better than literature values (Table 7-2). However, the forecast windows 

were smaller than some of the models presented in the literature. Again, the Abdul-Wahab 

and Al-Alawi (2002) model had a higher R2 value, but the prediction window of their 

forecast was not provided. Consideration must also be given to the fact that some authors 

use actual values of meteorological inputs corresponding to the forecast time, so that these 

models are not true forecast models. RMSE and MAE values for the Calgary and 

Edmonton models were comparable or lower than values reported in the literature. Both
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Wilmott indices of agreement and bias values for the Calgary East and Edmonton East 

models were also better than reported literature values. One method used in the literature 

for increasing the forecast window is using data from the same hour of the previous day for 

input to the model. This method would incorporate the diurnal patterns observed in the 

ozone concentrations of Edmonton and Calgary, and should be examined in future research. 

The features of literature models are summarized in Table 7-3.

ANNs have proven to be a viable modelling tool for Edmonton and Calgary. However, 

general acceptance and enthusiasm for this modelling approach is currently hindered by its 

black box image. A method is required for evaluating the contributions of individual input 

variables, and for amalgamating the information from connection weights, activation 

functions, and the network structure, to overcome this black box image. This would also 

increase the usefulness of the ANN model, because it could then be used to understand the 

mechanisms of the modelled process.

Operationally, the ANN models are potentially cost effective replacements for “real” 

ambient monitors. Models have been developed in the literature for S02 (Boznar et al. 1993; 

Mok and Tam 1998)), N 0 2 (Cappa et al. 2001; Chelani and Hasan 2001), NOx (Gardner and 

Dorling 1999), particulates (McKendry 2002; Perez et al. 2000), ammonia (Plochl 2001), and 

CO (Drozdowicz et al. 1997). With the monitoring practices in Alberta tending more and 

more towards airshed management approaches, ANNs can provide a means of obtaining 

greater quantities of pollutant information without prohibitive expense. With further 

research, ANNs may one day challenge the traditional mechanistic approaches in 

atmospheric modelling.
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Table 7-1 Comparison of virtual monitor models to models reported in the literature.

Model Year Time Scale R2 r MSE RMSE MAE A E ^ A E _ Bias di d2
hours ppm2xl05 ppm ppm ppm ppm

Edmonton East 2004 1 0.87 0.93 3.27 0.006 0.004 0 0.032 0.084 0.83 0.96
Calgary East 2004 1 0.85 0.92 3.29 0.006 0.004 0 0.023 0.196 0.82 0.96
Abdul-Wahab 2001 5 min. 0.86
Abdul-Wahab and Al-Alawi 2002 5 min. 0.94
Coboum et al. 2000 1 0.016 0.013 -1.9
Gardner and Dorling (Qiffside) 2001 1 0.74
Gardner and Dorling (Chicago) 2001 1 0.69
Gardner and Dorling (Decatur) 2001 1 0.64
Gardner and Dorling (Los Angeles) 2001 1 0.47
Gardner and Dorling (Miami) 2001 1 0.32
Gardner and Dorling (Washington) 2001 1 0.72
Guardani et al. (station 2) 1999 1 0.86
Guardani et al. (station 4) 1999 1 0.86
Narasimhan et al. (model 1) 2000 1 0.77
Narasimhan et al. (model 2) 2000 1 0.82
Narasimhan et al. (model 3) 2000 1 0.88
Soja and Soja 1999 1 0.052 0.039
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Table 7-2 Comparison of forecast models to models reported in the literature.
Model Year Forecast

Window
R2 r MSE RMSE MAE A E ^ A E ^ Bias di d2

hours ppm2xl05 ppm ppm ppm ppm
Edmonton East 2004 1 0.89 0.94 2.80 0.005 0.004 0 0.031 0.079 0.85 0.97
Edmonton East 2004 2 0.75 0.86 6.17 0.008 0.006 0 0.038 0.122 0.76 0.92
Calgary East 2004 1 0.87 0.93 2.85 0.005 0.004 0 0.024 0.155 0.84 0.96
Abdul-Wahab and Al-Alawi 2002 n/a 0.93
Balaguer Ballester et al. (Patema) 2002 24 0.88 0.008 0.007 0.73 0.91
Balaguer Ballester et al. (Alcoi) 2002 24 0.87 0.009 0.007 0.69 0.88
Balaguer Ballester et al. (Carcaixent) 2002 24 0.90 0.010 0.008 0.78 0.93
Cannon and Lord (Tl)a 2000 n / a 0.27 0.008 0.006
Cannon and Lord (T7)a 2000 n/a 0.48 0.010 0.008
Cannon and Lord (T9)a 2000 n/a 0.52 0.009 0.007
Cannon and Lord (T12)a 2000 n / a 0.64 0.009 0.007
Cannon and Lord (T15)a 2000 n / a 0.47 0.009 0.007
Cannon and Lord (T17)a 2000 n/  a 0.38 0.008 0.006
Cannon and Lord (T21)a 2000 n / a 0.49 0.010 0.008
Cannon and Lord (T27)a 2000 n/a 0.44 0.009 0.007
Cannon and Lord (T28)a 2000 n / a 0.63 0.009 0.007
Cannon and Lord (T29)a 2000 n/a 0.57 0.011 0.008
Coboum et al. 2000 n / a 0.014 0.012 -3.7
Comrie (Seattle)b 1997 24 0.70 0.009 0.007 0.72 0.91
Comrie (Pittsburgh)b 1997 24 0.65 0.014 0.011 0.68 0.88
Comrie (Chicago)b 1997 24 0.61 0.012 0.009 0.65 0.86
Comrie (Atlanta)b 1997 24 0.59 0.016 0.012 0.64 0.85
Comrie (Charlotte)b 1997 24 0.56 0.014 0.011 0.63 0.84
Comrie (Boston)b 1997 24 0.47 0.015 0.012 0.57 0.78
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Table 7-2 cont’d. Comparison of forecast models to models reported in the literature.

Model Year Forecast
Window

R2 r MSE RMSE MAE A E ^ AEmax Bias d2

Comrie (Tucson)b 1997 24 0.27 0.010 0.008 0.45 0.66
Comrie (Phoenix)b 1997 24 0.24 0.015 0.012 0.42 0.62
Hadjiiski and Hopke 2000 1 0.98 0.004
Hadjiiski and Hopke 2000 3 0.008
Hadjiiski and Hopke 2000 5 0.011
Jorquera et al. (station Q  C6) 1998 24 0.017 0.79
Jorquera et al. (station Q  C7) 1998 24 0.021 0.82
Jorquera et al. (station E, E6) 1998 24 0.022 0.89
Jorquera et al. (station E, E7) 1998 24 0.034 0.70
Melas et al. 2000 24 0.80 0.014 0.050 0.060
Sohn et al. 2000 1 0.009
Sohn et al. 2000 2 0.011
Sohn et al. 2000 3 0.012
Sohn et al. 2000 4 0.013
Sohn et al. 2000 5 0.013
Sohn et al. 2000 6 0.013
Sohn et al. 2000 16 0.014
Sohn et al. 2000 17 0.013
Sohn et al. 2000 18 0.013
Sohn et al. 2000 19 0.012
Sohn et al. 2000 20 0.012
Sohn et al. 2000 21 0.012
Spellman (Central London) 1999 24 0.77 0.010 0.007
Spellman (Harwell) 1999 24 0.72 0.012 0.009
Spellman (Birmingham) 1999 24 0.54 0.010 0.007
Spellman (Leeds) 1999 24 0.53 0.009 0.007
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Table 7-2 confd. Comparison of forecast models to models reported in the literature.

Model Year Forecast
Window

R2 r MSE RMSE MAE A E ^ A E - Bias d, d2

Spellman (Strath Vaich) 1999 24 0.68 0.007 0.005
Wang et al. (Tsuen Wan) 2003 n/a 0.012 0 0.058
Wang et al. (Kwai Chung) 2003 n/a 0.014 0 0.046
Wang et al. (Kwun Tong) 2003 n/a 0.013 0 0.038
a Performance for individual, converged models, since these models are most similar to the models developed in this research.
b Performance for models excluding maximum hourly ozone concentration from previous day. Note models use actual values from the forecast day as inputs, and are 

therefore not true forecast models.
Italics indicate values calculated based on information in the paper.

Table 7-3 Summaiy of literature models.

Source Year Environment Model No.
Layers

No. Hidden 
Layer 

Neurons

No.
Training
Epochs

No.
Training
Patterns

No. Test 
Patterns

No.
Production

Patterns
Abdul-Wahab 
and Al-Alawi

2002 urban residential 24-hours 3 13427 4078 719

daylight hours 3 19384 1386 244
daily max 0 3 3 1054327 16 3

Balaguer 
Ballester et al.

2002 urban (Patema) 24-hr forecast 3 5 to 40 2 to 20 2880

urban (Alcoy) 24-hr forecast 3 5 to 40 2 to 20 2736
rural (Carcagente) 24-hr forecast 3 20 2 to 20 2448

Cannon and 
Lord

2000 Lower Fraser 
Valley, BC

daily max 0 3 3 50

Comrie 1997 Atlanta, GA daily max 0 3 3 6 440 250
Atlanta, GA daily max 0 3 3 7 440 250
Boston, MA daily max 0 3 3 6 440 250
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Table 7-3 confd. Summary of literature models.

Source Year Environment Model No.
Layers

No. Hidden 
Layer 

Neurons

No.
Training
Epochs

No.
Training
Patterns

No. Test 
Patterns

No.
Production

Patterns
Comrie 1997 Boston, MA daily max 0 3 3 7 440 250

Charlotte, NC daily max 0 3 3 6 440 250
Charlotte, NC daily max 0 3 3 7 440 250
Chicago, IL daily max 0 3 3 6 440 250
Chicago, IL daily max 0 3 3 7 440 250

Phoenix, A2 daily max 0 3 3 6 440 250
Phoenix, AZ daily max 0 3 3 7 440 250

Pittsburgh, PA daily max 0 3 3 6 440 250
Pittsburgh, PA daily max 0 3 3 7 440 250

Seattle, WA daily max 0 3 3 6 440 250
Seattle, WA daily max 0 3 3 7 440 250
Tucson, AZ daily max 0 3 3 6 440 250
Tucson, AZ daily max O, 3 7 440 250

Coboum et al. 2000 Louisville, KY forecast daily 
max O,

3 10 (1993-1997) (1998) (1999)

Louisville, KY hindcast daily 
max 0 3

3 10 (1993-1997) (1998) (1999)

Elkamel et al. 2001 Kuwait industrial 0 3 every 5 
minutes

3 25 2372 226

Gardner and 
Dorling

2001 Qiffside Park, NJ daily max 0 3 4 10/10

Washington, DC daily max 0 3 4 10/10
Decatur, GA daily max 0 3 4 10/10
Miami, FL daily max 0 3 4 10/10
Chicago, IL daily max 0 3 4 10/10

Los Angeles, CA daily max 0 3 4 10/10
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Table 7-3 contM. Summary of literature models.

Source Year Environment Model No.
Layers

No. Hidden 
Layer 

Neurons

No.
Training
Epochs

No.
Training
Patterns

No. Test 
Patterns

No.
Production

Patterns
Guardani et al. 1999 Sao Paulo 

Metropolitan 
Area

hourly avg 0 3 3 8 (Oct-Nov,
1996)

(Oct-Nov,
1997)

Hadjiiski and 
Hopke

2000 Houston, TX sensitivity, 
hourly avg 0 3

3 3 200

Houston, TX hourly avg 0 3 at 
t+1

3 5 60000

Jorquera et al. 1998 Santiago, Chile Station C daily 
max 0 3

3 63

Santiago, Chile Station C daily 
max 0 3

3 60

Santiago, Chile Station E daily 
max 0 3

3 235
_

Santiago, Chile Station E daily 
max 0 3

3 93

Kao and Huang 2000 Taiwan hourly avg 0 3 at 
t+1

3 2 to 38

Melas et al. 2000 Athens, Greece daily max 0 3 3 8 1172 327
Narasimhan et 
al.

2000 Tulsa, OK Basic hourly avg
o3

3

Tulsa, OK Basic 
w / previous 0 3 

inputs

3

Prybutok et al. 2000 Houston, TX daily max 0 3 3 4
Sohn et al. 2000 Seoul, Korea 1-hour ahead 

hourly avg 0 3
3 50 31
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Table 7-3 confd. Summaiy of literature models.

Source Year Environment Model No.
Layers

No. Hidden 
Layer 

Neurons

No.
Training
Epochs

No.
Training
Patterns

No. Test 
Patterns

No.
Production

Patterns
Sohn et al. 2000 Seoul, Korea 2-hours ahead 

hourly avg 0 3
3 50 31

Seoul, Korea 3-hours ahead 
hourly avg 0 3

3 50 31

Seoul, Korea 4-hours ahead 
hourly avg 0 3

3 50 31

Seoul, Korea 5-hours ahead 
hourly avg 0 3

3 50 31

Seoul, Korea 6-hours ahead 
hourly avg 0 3

3 50 31

Seoul, Korea 16-hours ahead 
hourly avg 0 3

3 50 31

Seoul, Korea 17-hours ahead 
hourly avg 0 3

3 50 31

Seoul, Korea 18-hours ahead 
hourly avg 0 3

3 50 31

Seoul, Korea 19-hours ahead 
hourly avg 0 3

3 50 31

Seoul, Korea 20-hours ahead 
hourly avg 0 3

3 50 31

Seoul, Korea 21-hours ahead 
hourly avg 0 3

3 ■ 50 31

Soja and Soja 1999 rural Austria daily integrated 
ozone dose

3 3

Spellman 1999 London (urban) daily max 0 3 4 3/3 306 306
Harwell (rural) daily max 0 3 4 3/3 306 306
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Table 7- 3 c ont’d. Summary of literature models.

Source Year Environment Model No.
Layers

No. Hidden 
Layer 

Neurons

No.
Training
Epochs

No.
Training
Patterns

No. Test 
Patterns

No.
Production

Patterns
Spellman 1999 Birmingham

(urban)
daily max 0 3 4 10/8 306 306

Leeds (urban) daily max 0 3 4 3/3 306 306
Strath Vaich 

(remote)
daily max 0 3 4 6/9 306 306

Yi & Prybutok 1996 Dallas-Ft. Worth daily max 0 3 3 4

00
VO
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Table A-1 confd. First layer of virtual m onitor model.

To Hidden 
Layer Neuron

From Input Neuron
NO n o 2 so2 THC OPA RH TEMP WDR WSP

1 36.29 -8.81 22.86 150.69 0.51 -0.40 -3.88 1.58 1.40
2 1.00 1.11 0.71 32.17 2.21 0.91 -2.29 0.28 0.10
3 -166.60 25.54 22.79 -76.33 -3.64 -10.16 3.35 7.06 0.24
4 27.55 3.31 -10.00 -4.54 0.24 0.98 -1.40 -0.05 0.58
5 0.72 -3.88 13.30 2.41 -2.08 12.24 9.66 -0.91 -15.36
6 -0.22 1.80 -7.19 -9.78 -0.98 -2.13 3.11 -2.03 0.97
7 11.30 17.41 -64.17 -4.00 -1.72 -0.23 1.85 -0.64 -7.23
8 -12.01 8.67 -2.84 0.28 -0.24 1.56 -4.74 -3.10 -2.43
9 -7.44 2.75 -10.00 4.82 -4.85 1.77 -4.72 0.24 -0.31
10 30.78 -26.63 -4.41 15.79 -3.87 -6.31 -20.81 0.45 -8.27
11 50.80 1.74 -1.07 3.70 -2.86 1.23 -0.84 2.59 -4.88
12 -12.57 -0.40 -8.65 -22.06 -0.84 -1.33 2.16 0.14 0.08
13 -2.59 -9.18 5.74 -8.24 5.44 0.38 -30.21 -0.32 8.80
14 5.71 11.71 -4.50 -78.16 2.31 5.09 -7.45 4.33 16.09
15 -13.39 -5.64 -1.83 11.30 1.38 0.10 0.77 -0.01 0.62
16 -8.27 -0.98 5.02 4.76 -0.41 -0.95 2.34 -0.78 -0.51
17 -81.26 -2.93 -2.93 5.85 -0.69 0.54 4.28 0.50 -5.02

Table A- 2 Sec ond layer of virtual monitor model.

To Output From Hidden Layer Neuron
Neuron BIAS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 -0.10 -0.19 -0.24 0.91 -0.28 -0.21 0.55 -0.25 -0.52 -0.20 -0.24 -0.26 0.25 -0.33 -0.23 0.32 0.43 0.39
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Table A-3 cant’d. First layer of virtual monitor model with time series.

To Hidden 
Layer Neuron

From Input Layer Neuron
NO n o 2 s o 2 THC OPA RH TEMP WDR WSP o,(M)

1 0.05 1.76 -1.68 -0.85 -0.23 1.33 0.18 0.29 -1.09

oT“̂1

2 2.04 2.01 -0.77 0.85 0.04 1.04 -0.39 -0.43 -0.04 -2.89
3 5.67 -0.09 3.99 -4.12 -0.59 -1.16 4.19 -0.57 -1.96 0.03
4 -1.04 2.41 -1.30 1.35 -0.14 0.21 0.60 0.07 0.98 -4.31
5 -0.60 1.87 0.11 0.47 -0.01 0.63 0.23 0.84 0.14 -2.81
6 -1.02 -9.40 11.30 2.33 0.51 -1.49 3.19 0.95 3.17 -0.82
7 -13.62 -0.77 2.01 0.97 -0.33 -0.40 0.58 -0.10 0.15 2.28
8 8.45 1.58 -0.41 6.23 -0.10 -1.84 -0.07 0.02 0.00 -7.23
9 0.10 1.96 -0.15 0.73 -0.23 0.45 0.01 0.10 -0.32 -3.37
10 3.60 -5.76 10.37 0.29 0.22 0.59 -1.31 0.20 -0.06 -4.59
11 -3.77 1.85 -8.78 1.25 -0.47 0.70 -0.10 -0.02 0.08 -2.46

OO

Table A- 4 Second layer of virtual monitor model with time series.

To Output From Hidden Layer Neuron
Neuron BIAS 1 2 3 4 5 6 7 8 9 10 11

1 -0.27 -0.27 -0.37 0.61 -0.45 -0.19 0.61 0.39 -0.57 -0.20 -0.72 -0.24
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Table A- 5 First layer of one hour forecast model.

To Hidden 
Layer Neuron

From In m t Layer Neuron
BIAS MAY JUN JUL AUG SEP SUN MON TUE WED THU FRI SAT

1 0.62 0.82 0.53 0.27 -0.32 0.93 0.36 0.77 0.54 0.25 0.93 0.66 0.50
2 1.94 2.14 1.61 2.05 2.13 32.18 1.69 2.05 1.51 1.69 2.64 2.06 1.48
3 -0.45 -0.08 -1.98 2.26 0.65 1.59 1.14 2.78 1.44 0.33 1.23 1.42 1.07
4 -0.75 -0.79 -0.71 -0.36 -0.42 0.30 -0.08 -0.05 -0.26 -0.39 -0.07 -0.16 0.02
5 1.55 1.30 1.23 0.88 0.51 0.51 0.92 0.60 0.96 1.12 0.64 0.81 0.97
6 -0.42 -0.19 1.06 0.34 2.11 0.82 0.55 0.50 0.78 0.86 0.85 0.70 0.53

Table A-5 conf d. First layer of one hour forecast model.

To Hidden 
Layer Neuron

From Input Layer Neuron
SAT NO n o 2 s o 2 THC OPA RH TEMP WDR WSP o 3

1 0.50 -11.18 2.83 -16.20 4.42 -1.50 0.35 -0.36 -0.07 -4.03 -4.29
2 1.48 -33.24 0.26 -2.17 -6.15 0.73 -0.72 -1.12 -0.58 1.77 -7.94
3 1.07 -0.71 -0.61 -1.40 -0.26 0.07 0.20 -0.05 0.37 -0.98 -5.67
4 0.02 -5.49 1.76 -1.91 3.98 -0.01 0.61 0.58 0.31 -0.91 16.25
5 0.97 -5.22 1.85 -1.69 2.80 -0.16 -0.25 -0.26 0.06 -0.35 -6.53
6 0.53 0.44 -2.81 6.24 0.15 0.97 0.47 -0.50 0.39 1.17 -5.93

Table A- 6 Second layer of one hour forecast model.

To Output From Hidden Layer Neuron
Neuron BIAS 1 2 3 4 5 6

1 -0.48 -0.60 -0.36 -0.26 1.43 -1.01 -0.62
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Table A- 7 First layer of one hour forecast model with time series.

To Hidden 
Layer Neuron

From In >ut Layer Neuron
BIAS MAY JUN JUL AUG SEP SUN MON TUE WED THU FRI SAT

1 -0.36 -0.15 0.26 0.39 0.47 -0.04 0.25 0.63 0.36 1.07 0.22 0.44 0.99
2 -0.39 -0.19 -0.56 -0.66 -0.59 -0.60 -0.56 -0.20 -0.28 -0.45 -0.75 -0.51 -0.50
3 0.61 0.98 0.32 0.47 0.32 0.54 0.10 0.54 0.76 0.14 0.27 0.65 0.18
4 0.25 0.22 0.13 0.14 0.10 0.07 -0.17 -0.05 0.10 0.11 0.13 0.15 -0.18
5 0.81 0.56 0.24 -0.07 0.15 0.34 0.74 0.61 0.82 0.07 0.52 0.23 -0.02
6 0.02 0.24 0.39 0.11 0.50 0.57 0.50 0.80 0.44 0.76 0.38 0.31 0.34

K>O
o

Table A- 8 Second layer of one hour forecast model with time series.

To Output From Hidden Layer N euron
Neuron BIAS 1 2 3 4 5 6

1 -0.38 -0.49 1.29 -0.78 -1.18 -0.50 -0.54

Table A-7 confd. First layer of one hour forecast model with time series.

To Hidden 
Layer Neuron

From Input Layer Neuron
NO n o 2 s o 2 THC OPA RH TEMP WDR WSP 0 3(t-l) o 3

1 -10.30 0.24 -0.12 -0.07 -0.17 0.70 -0.25 0.24 -0.20 3.27 -6.50
2 1.21 -0.36 2.36 -1.13 0.08 -0.42 0.35 0.01 0.10 -2.32 6.21
3 -1.54 -0.83 1.11 0.23 0.22 -0.13 0.12 -0.04 -0.29 0.69 -5.57
4 5.00 -1.79 2.80 -1.92 -0.14 0.19 -0.43 -0.50 0.56 -2.60 -19.72
5 -1.24 -0.76 1.75 -0.88 -0.03 -2.19 -0.53 0.00 t O On 1.77 -5.65
6 -1.72 0.00 -0.04 0.29 -0.13 0.38 -0.07 0.26 -0.35 0.70 -4.87
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T able A-9 confd. First layer of two hour forecast model.

To Hidden 
Layer Neuron

From Input Layer Neuron
NO n o 2 s o 2 THC OPA RH TEMP WDR WSP o 3

1 0.63 -0.06 1.23 -0.65 0.19 0.36 -0.27 0.25 -0.07 -3.46
2 10.20 -5.99 5.96 -6.27 -2.49 4.25 -0.04 -0.34 3.40 4.20
3 4.52 -1.48 0.76 -0.93 -0.45 0.21 -0.86 -0.20 1.31 -15.92
4 10.22 -0.02 0.63 -0.48 -0.01 -0.49 1.50 0.04 -0.08 3.25
5 1.72 -0.49 0.65 -0.87 -0.06 -0.30 0.05 -0.10 -0.09 2.09
6 -21.07 12.71 -5.86 5.20 -1.28 1.26 0.53 0.97 3.48 5.08
7 146.51 -24.78 18.50 -2.50 1.57 -1.45 2.93 -1.11 -1.67 9.78
8 11.37 0.45 -5.90 -9.73 0.50 -0.43 1.25 -0.10 0.98 6.55
9 -1.31 0.25 -0.47 0.77 0.01 0.45 0.13 0.02 -0.05 -3.04
10 -5.20 -0.70 -1.53 -0.09 1.20 0.71 -0.21 0.00 -0.28 -3.58
11 76.24 -10.89 21.25 28.61 7.36 1.15 3.75 -1.60 5.58 3.65
12 20.12 30.92 4.14 12.11 -3.57 4.50 4.79 3.07 -1.07 41.12
13 -0.51 0.33 -0.24 0.87 0.21 -2.70 -0.53 0.31 0.10 -1.79
14 -2.89 -0.33 -0.43 0.86 0.08 0.09 -0.03 -0.09 0.46 -2.32
15 -8.01 0.47 -0.68 0.75 -0.11 0.41 0.01 0.19 0.01 -2.78

Table A- 10 Second layer of two hour forecast model.

To Output From H idden Layer Neuron
Neuron BIAS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 -0.25 -0.41 0.18 -1.96 0.16 0.18 1.10 0.26 0.32 -0.45 -0.43 0.26 0.25 -0.75 -0.27 -0.46
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Table A- 11 First layer of two hour forecast model with time series.

To Hidden 
Layer Neuron

From In >ut Layer Neuron
BIAS MAY JUN JUL AUG SEP SUN MON TUE WED THU FRI SAT

1 -1.33 -0.88 -1.86 -1.29 -1.70 -1.82 -0.89 -1.21 -1.10 -0.65 -0.84 -0.69 -0.66
2 0.30 0.07 0.92 0.73 0.42 0.92 -0.04 0.69 0.56 0.45 0.56 0.17 -0.07
3 3.69 4.09 1.08 0.36 2.55 11.62 0.87 -0.47 0.35 2.33 2.13 0.77 -0.25
4 -2.53 -2.59 -1.71 -0.80 -1.17 0.38 -0.96 0.56 -0.60 -0.75 -1.54 -1.59 -2.39
5 0.06 0.02 1.08 0.50 0.72 0.47 2.40 0.79 2.17 0.49 -0.3 7 0.74 0.83
6 -2.85 -2.96 -1.78 -2.35 -2.27 -1.47 -2.10 -1.87 -1.79 -1.25 -2.03 -1.84 -56.03
7 0.30 0.10 0.30 0.05 0.20 -0.16 0.07 0.03 0.22 0.13 0.16 0.21 0.14
8 0.39 -0.09 -1.13 0.62 1.80 2.83 -0.23 2.39 0.04 0.67 1.61 1.98 0.55
9 0.46 0.18 -1.20 -21.91 -0.32 -2.79 0.57 -2.44 -1.89 -64.27 -2.95 -1.16 11.54

ro
8  Table A- 11 e d it’d. First layer of two hour forecast model with time series.

To Hidden 
Layer Neuron

From Input Layer Neuron
NO n o 2 s o 2 THC OPA RH TEMP WDR WSP o 3(t-i) o 3

1 54.92 -3.68 2.73 -4.31 1.42 2.14 1.18 -1.19 3.84 -6.46 11.04
2 -16.98 3.62 -2.60 0.34 0.26 0.82 -0.70 -0.19 1.56 5.78 -8.37
3 -12.43 -6.63 1.98 -14.06 0.66 1.02 -0.79 0.16 1.64 -1.69 -8.26
4 -11.70 -3.03 -4.93 -11.67 -0.50 0.34 -0.02 -0.57 2.09 1.22 11.25
5 -8.46 3.84 1.55 0.13 0.38 0.60 -1.64 0.83 0.02 3.34 -4.78
6 -43.26 14.63 -0.57 -2.76 0.02 1.03 0.56 0.87 2.42 1.70 2.02
7 5.09 -1.98 2.08 -0.08 -0.12 -0.29 -0.83 -0.03 -0.30 0.30 -12.30
8 -8.09 -1.63 -1.21 3.85 -0.30 1.89 -0.30 -0.52 -0.78 0.13 -3.91
9 15.78 -12.41 12.35 -5.73 -0.30 4.81 -0.10 -0.22 0.25 2.33 3.77
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Table B- 2 Second layer of virtual monitor model.

To Output From Hidden Layer Neuron
Neuron BIAS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 -0.05 0.28 0.37 0.30 -0.24 -0.45 0.23 0.35 0.15 -0.17 -0.61 -0.79 0.28 0.26 0.19 0.13 0.19 -0.63 0.24 0.23 0.27
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Table B- 4 Second layer of virtual monitor model with time series.

To Output From Hidden Layer Neuron
Neuron BIAS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0.35 0.17 0.21 -0.30 0.15 0.31 i O H-k OO 0.23 -0.47 -0.29 -0.32 0.22 0.21 0.18 -0.28 -0.37 -0.33 -0.52 0.13 0.19 0.27

Table B- 5 First layer of one hour forecast model.

To Hidden 
Layer Neuron

From In jut Layer Neuron
BIAS MAY JUN JUL AUG SEP NO n o 2 so2 THC RH TEMP o3

1 -0.44 -0.15 -0.04 -0.08 -0.13 0.01 6.23 -0.36 1.50 0.05 0.74 -0.22 2.75
2 0.18 0.05 0.63 0.18 -0.28 -0.45 -2.02 0.68 -0.11 -0.03 0.07 -0.31 -2.12
3 -0.58 -0.16 -0.04 -0.07 -0.17 -0.21 2.19 -0.41 0.53 -0.11 -0.20 -0.35 -4.98
4 -0.56 -0.55 0.23 -0.93 -0.81 -0.27 2.54 -2.00 -0.30 -2.89 0.32 0.57 3.07
5 -0.27 -0.17 -0.16 -0.15 -0.28 -0.46 0.41 -0.32 -0.03 0.04 -0.53 -0.21 0.76

Table B- 6 Second layer of one hour forecast model.

To Output From Hidden Layer Neuron
Neuron BIAS 1 2 3 4 5

1 -0.55 -0.94 -0.44 -1.98 -0.18 1.39
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Table B- 7 First layer of one hour forecast model with time series.

To Hidden 
Layer Neuron

From Input Layer Neuron
BIAS MAY JUN JUL AUG SEP NO n o 2 so2 THC RH TEMP 0 3(t-l) o3

1 -0.57 -0.15 0.00 0.01 0.15 -0.15 1.24 -0.65 0.45 0.55 0.29 -0.58 -0.59 -2.35
2 0.24 0.21 0.09 0.10 -0.07 -0.09 0.49 0.28 0.02 0.30 0.09 0.07 -0.62 1.88
3 0.09 0.16 0.09 -0.05 -0.10 -0.55 -2.96 0.26 0.20 -0.17 0.30 -0.05 -1.07 0.57
4 0.43 -0.05 0.04 0.04 0.15 -0.13 0.24 0.03 0.21 0.29 0.19 -0.04 -0.35 1.68
5 0.30 0.01 0.06 0.17 0.13 -0.25 0.57 0.08 -0.16 0.21 0.11 0.20 -0.51 1.76
6 -0.06 -0.12 -0.10 -0.02 0.05 0.01 -0.84 0.01 -1.19 -0.19 -0.02 0.05 0.25 -1.85
7 -0.03 -0.15 -0.50 0.10 0.06 -0.15 0.65 -0.69 0.06 -0.87 -0.37 -0.30 -0.60 1.12
8 0.54 0.11 0.09 0.23 0.12 0.00 0.16 -0.59 0.18 -0.17 0.01 -0.11 0.36 -0.98
9 0.00 0.10 0.45 0.46 0.40 0.60 -1.53 0.61 -1.45 -0.05 -0.10 0.33 -1.33 17.47
10 0.09 -0.09 -0.18 0.07 0.08 -0.09 -11.39 0.51 -0.90 0.03 -0.91 -0.24 0.30 -1.42
11 0.50 0.47 0.42 0.33 0.34 0.17 -1.13 1.52 0.15 0.74 1.12 0.50 0.21 -1.49
12 0.43 -0.08 0.06 -0.07 -0.05 0.05 0.05 0.24 -0.25 0.19 -0.07 -0.02 -0.94 2.24

Table B- 8 Second layer of one hour forecast model with time series.

To Output From Hidden Layer Neuron
Neuron BIAS 1 2 3 4 5 6 7 8 9 10 11 12

1 -0.77 -0.39 -0.36 0.32 -0.47 -0.15 -0.55 0.46 0.60 -0.61 -0.58 0.75 -0.32


