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Abstract 

Wind energy is emerging as a primary source of renewable energy in Canada, attracting 

over $23 billion in investment. Steadily increasing, a total capacity of 31,640 MW of wind 

energy must be installed by 2040 to meet the requirements of the Paris Agreement on Climate, 

requiring the construction of new Canadian wind farms and supporting infrastructure. As with 

other types of construction, the execution phase of wind farm projects is associated with 

unanticipated risks (e.g., weather-related challenges and unknown stakeholder interactions), 

which create uncertainty during project execution. Uninformed decisions made in response to 

such risks can lead projects to deviate from original objectives, resulting in time and cost 

overruns, safety issues, and quality deficiencies.  

Risk management has become a popular approach in the construction industry to reduce 

project uncertainties and risks for improved decision-making. However, previous research 

studies do not address the distinctive characteristics, unique risks, and data limitations associated 

with wind farm construction, restricting the ability of practitioners to adequately assess the risks 

affecting the construction phase of onshore wind projects—particularly in the Canadian wind 

energy sector. In particular, the identification of project-specific (i.e., contextual) risk factors still 

relies heavily on traditional risk identification techniques that are demanding in terms of time 

and effort. This, together with a lack of historical data and methods to deal with data 

insufficiency, hinder the use of advanced quantitative techniques, such as simulation, to assess 

risks. Finally, distinctive characteristics, including location-bias to high wind speeds, impose 

unique challenges during the execution of these projects that are not addressed by existing 

methods.  

This thesis describes the development of a novel decision-support system designed to 
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address current limitations by facilitating and enhancing the identification, analysis, and 

assessment of risk factors affecting the construction phase of onshore wind farm projects. The 

decision-support system was developed by adopting existing analytical methods and simulation. 

First, critical generic risk factors affecting onshore wind projects in Canada were identified. 

Then, a context-driven approach for identifying project-specific risk factors was developed. 

Once risk factors were identified, a method to enhance the input modelling of these risk factors 

for quantitative risk assessment was proposed. Next, a domain-specific risk assessment method 

was proposed for onshore wind projects. Finally, since adverse weather was identified as the 

most critical risk factor affecting the construction phase of onshore wind projects in Canada, a 

simulation-based approach was proposed to more effectively model weather risk.  

This research contributes to the state-of-the-art by (1) providing a systematic and 

thorough analysis—focused exclusively on the construction phase—of the risk factors affecting 

onshore wind projects, (2) identifying the most critical risk factors in onshore wind projects in 

Canada using a hybrid multi-criteria approach; (3) developing a context-driven approach that 

considers the specific characteristics of a project to facilitate the identification of project risks; 

(4) developing an integrated simulation approach for assessing risks in onshore wind projects 

that considers both the cost and time impact of risks; (5) proposing a method for deriving 

probability distributions of a risk factor’s impact using fuzzy logic and multivariate analysis to 

enhance input modelling for improved Monte Carlo simulation; and (6) developing a simulation-

based approach that allows decision-makers to dynamically and rapidly assess the impact of 

upcoming weather conditions on project performance during lookahead scheduling. 
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This thesis is an original work by Emad Mohamed. The thesis follows a paper-based 
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edits to the manuscript. Dr. S. AbouRizk was the supervisory authority and was involved with 

conceptualization, funding acquisition, and manuscript review and editing. This chapter is 

prepared for submission as a journal paper. 

Chapter 4 of this thesis has been published as E. Mohamed, P. Jafari, & S. AbouRizk. 

(2020). Fuzzy-based multivariate analysis for input modeling of risk assessment in wind farm 
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with the permission of MDPI. E. Mohamed was responsible for conceptualization, methodology, 

validation, formal analysis, investigation, writing original draft, and editing. P. Jafari assisted 

with investigation and manuscript writing, review, and editing. Dr. S. AbouRizk was the 

supervisory authority and was involved with the conceptualization, methodology, funding 

acquisition, and manuscript review and editing.  

Chapter 5 of this thesis has been published as E. Mohamed, N. Gerami Seresht, S. Hague, 

A. Chehouri, and S. AbouRizk, (2021). Domain-specific risk assessment using integrated 

simulation: A case study of an onshore wind project. Canadian Journal of Civil Engineering, 

https://doi.org/10.1139/cjce-2021-0099, and has been reprinted with permission of Canadian 
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manuscript review, and editing. Dr. S. AbouRizk was the supervisory authority and was involved 

with conceptualization, funding acquisition, and manuscript review and editing.  

Chapter 6 of this thesis has been published as E. Mohamed, P. Jafari, A. Chehouri, & S. 

AbouRizk. (2021). Simulation-based approach for lookahead scheduling of onshore wind 

projects subject to weather risk. Sustainability 2021, 13(18), 

10060; https://doi.org/10.3390/su131810060 and has been reprinted with the permission of 
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Chapter 1 : Introduction 

1.1 Background 

Canada is a global leader in renewable energy and is currently moving to increase its 

energy generation from renewable sources such as hydro, wind, solar, biomass, geothermal, and 

marine sources. According to the Alberta Climate Leadership Plan (Climate Leadership Plan - 

Implementation Plan 2018-19 2018), it is expected that 30% of Alberta’s electricity will be 

generated from renewable resources such as wind, hydro, and solar by 2030. Alberta will add 

5,000 MWs (megawatts) of renewable energy capacity through its Renewable Electricity 

Program (REP) with new investments (estimated at $10.5 billion) flowing into the provincial 

economy by 2030 (Climate Leadership Plan - Implementation Plan 2018-19 2018).  

Wind energy projects require building a large number of wind turbines to harvest wind 

energy and convert it to electricity. The turbines themselves are manufactured, shipped to the 

site, and assembled. Other project components, such as foundations, the substations that collect 

electricity from the turbines to feed into the electrical network, and access roads to the 

construction site, must also be constructed. The construction industry is generally recognized as 

a risk-prone industry that operates within a very complex and dynamic environment (Siraj and 

Fayek 2019). Risks and uncertainties are inherent in all construction projects from initiation to 

completion regardless of the size, nature, complexity, or place of execution (Siraj and Fayek 

2019). Managing risks in construction projects is crucial to successfully achieving project 

objectives in terms of time, cost, quality, safety, and environmental sustainability (Zou and 

Zhang 2009). Risk management continues to be a concern in the planning and construction 
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phases of renewable energy infrastructure due to the negative effects of risks on project 

objectives in terms of cost overruns and time extensions (Gatzert and Kosub 2016a). The unique 

project characteristics, increased number of stakeholders, and increased complexity of wind farm 

projects adds uncertainty during the construction phase. For the growing volume of planned 

renewable energy projects, risk management is a critical element in securing project financing 

and achieving the project objectives (Gatzert and Kosub 2016a). To reduce uncertainty and 

increase control over deviations, risk-based planning approaches must be properly applied to 

these types of projects. Thus, the purpose of this research is to develop a decision support system 

for the risk management of onshore wind farm projects.   

1.2 Problem Statement 

 Risk management in construction has developed significantly in the last four decades 

where many approaches and models for risk identification and assessment have been introduced 

(Taroun 2014). Those approaches are different in their underlying principles and philosophy. 

Also, those models are rarely used because they are poorly understood by practitioners (Laryea 

2008). The increasing variety of risk management techniques and methods lead to challenges for 

risk managers/analysts in onshore wind farm projects to pull together the suitable tools. Taroun 

(2014) concluded that although researchers in risk analysis have investigated different theories 

and techniques for improving risk assessment in construction, a gap separates theory and practice 

of risk modelling and assessment. A major barrier to effective risk management is the lack of a 

formal risk management system (Choudhry and Iqbal 2013). Developing a unified decision 

support system for risk management that integrates selected tools is required to develop a 



                                                                                                                                                  3 

______________________________________________________________________________ 

 

 

comprehensive framework for identifying and analyzing project risks (Zhang 2011). Currently, 

risk management in wind farm projects lacks a profound decision support system. Therefore, this 

research proposes a holistic approach for risk management in wind farm projects. The proposed 

approach fuses available techniques and current knowledge in construction risk management. 

This approach is expected to work better and achieve good results for risk management in 

onshore wind projects because it is a special purpose application developed specifically for 

onshore wind projects. 

Risk management process has been developed to deal with risks in different types of 

projects. This process is defined as a comprehensive and systematic way of identifying, 

analyzing, and responding to risks to achieve the project objectives (Mills 2001) (Al-Bahar and 

Crandall 1990) as presented in Figure 1.1. This thesis will focus mainly on the risk identification 

and risk quantification stages of the risk management process. Risk identification and risk 

analysis are the most widely-studied stages of risk management in the literature. However, there 

are still some gaps in risk identification and risk analysis research when applied to onshore wind 

projects. The current gaps that will be addressed in this research are summarized in this section. 
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Figure 1.1. Risk management process. 

  

Risk factors affecting construction projects may differ from one project type to another 

according to the characteristics of each project. Projects of similar type are affected by common 

risk factors that are routinely encountered across similar projects. For example, researchers 

identified risk factors affecting different types of projects such as: road construction (Creedy et 

al. 2010; El-Sayegh and Mansour 2015; Mahamid 2011); bridge construction (Choudhry et al. 

2014b; Mortazavi et al. 2020; Naderpour et al. 2019a); subways and tunnels projects (Choi et al. 

2004; Hwang et al. 2016; Zhang et al. 2016; Zou and Li 2010); oil and gas project (A. Kassem et 

al. 2019; A Kassem et al. 2020; Kraidi et al. 2019); modular construction projects (Abdul Nabi 

and El-adaway 2021; Wuni et al. 2019; Xian et al. 2013). Although previous research studies 

have examined risk factors across most phases of the lifecycle of onshore wind projects, the 

construction phase of onshore wind projects was overlooked in previous research studies. 

Moreover, risk factors differ from one country to another, and none of the previous research 

addressed the risk factors in the Canadian wind energy sector. Thus, the first gap that will be 

addressed in this thesis is the lack of understanding of the critical risk factors affecting the 
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construction phase of onshore wind projects in Canadian wind energy sector.  

Risk identification is the first step of the risk management process, and it is a knowledge 

intensive process where knowledge is acquired either by collecting expert knowledge or by 

reviewing various aspects of the project, including financial, environmental, social, regulatory, 

political, or a combination thereof (De Zoysa and Russell 2003). Risk identification in 

construction projects has received considerable attention from researchers; thus, many tools and 

techniques have been developed in the literature. These techniques can be classified as traditional 

risk identification techniques and advanced risk identification techniques. Traditional methods 

implement the risk identification process manually without any support of information and 

communications technology (ICT) techniques (Zhang and Zhong 2014), while advanced 

techniques tend to automate the risk identification process using some form of (ICT) techniques 

(Ding et al. 2012).  

Traditionally, experts identify risk factors in onshore wind projects through traditional 

risk identification tools (e.g. risk registers, documentation review, brainstorming, etc.) that store 

knowledge acquired from previous projects (Somi et al. 2020). This knowledge is obtained from 

different and detached sources (e.g., specialist experience, previous project information, 

construction plans, and other projects’ documentation). Thus, current risk identification 

techniques used in onshore wind projects rely heavily on expert knowledge (Somi et al. 2020), 

which increases the burden on experts and the amount time needed to perform risk identification 

for onshore wind projects (Somi et al. 2020). Furthermore, current risk identification methods 

lack the capacity to map project contexts to the identified risk factors, increasing the burden on 
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risk analysts to contextualize previous projects and determine their similarity to the current 

project. Thus, the second gap that will be addressed in this thesis is the lack of automated 

context-based approaches for risk identification of onshore wind projects. 

Following the identification of risk factors, risk assessment can begin. Input modelling is 

the first step in conducting a risk assessment using a simulation approach, where the impact and 

probability of risk factors must be determined. Monte Carlo simulation (MCS) is an extremely 

powerful tool used for understanding and quantifying the potential effects of uncertainty on a 

project (Kwak and Ingall 2007) that has been widely applied to simulate cost and time in 

construction (Kwak and Ingall 2009). As with many quantitative methods, however, the 

application of MCS is constrained by the need for variables to be input as probability density 

functions, limiting its use in the planning and early construction phases of a project. As a 

relatively novel type of infrastructure, wind farm construction is characterized by a lack of 

relevant literature and a scarcity of historical data. The development of risk management for 

these types of projects, therefore, are highly dependent on the collection of expert knowledge 

(Somi et al. 2020). While the boom in the wind energy industry has encouraged new contractors 

to engage in the construction of these projects, a lack of data represents a challenge for new 

contractors when conducting risk management. In addition to that, previous studies considered 

the cost and schedule impacts of a risk factor as independent variables, which can cause under or 

over estimation of project contingencies. Inadequate risk assessments can have a detrimental 

impact on these large-scale projects, resulting in negative effects on cost, time, quality, and 

safety, while simultaneously discouraging contractors from engaging in wind farm construction. 
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Thus, the third gap that will be addressed in this thesis is the lack of appropriate tools for input 

modelling capable of considering the detailed subjective knowledge of domain experts. 

The area of project risk management (PRM) has witnessed expansion and growing 

concern in the development of risk methodologies due to the increase in project complexity, size, 

and importance. While the number of project risk analysis models has increased dramatically in 

recent years (Taroun 2014), these models are rarely used because they are poorly understood by 

practitioners (Laryea 2008). The construction industry has a reputation for underperforming in 

risk analysis when compared with other industries, such as finance or insurance (Kululanga and 

Kuotcha 2010) (Laryea 2008). After a comprehensive literature review of risk modelling and 

assessment approaches used in construction since 1980, (Taroun 2014) concluded that a gap 

separates theory and practice of risk modelling and assessment. Also, (Choudhry and Iqbal 2013) 

investigated barriers limiting the application of risk management systems to the construction 

industry and concluded that the major barrier to effective risk management is the lack of a formal 

risk management system. The increasing variety of risk assessment techniques causes challenges 

for risk managers/analysts in wind farm projects because of the inability to select the most 

suitable risk assessment method specific to wind farm projects. Thus, the fourth gap that will be 

addressed in this thesis is the lack of a domain-specific model for assessing risk factors and 

determining contingencies for project cost and time. 

Wind farm projects have unique characteristics that make them different from other types 

of construction projects. For example, the wind farm turbines are constructed in high wind-speed 

areas to maximize electricity generation; however, this high wind speed represents a significant 
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challenge during construction because the turbines require large cranes to reach an average 

height of 100 meters to lift and assemble turbine sections. Safety regulations require that lifting 

activities by cranes must be stopped once a threshold of 14 meter/second for wind speed is 

reached. In addition, other construction activities of onshore wind projects are executed outdoors 

and are directly affected by weather risk.  Indeed, adverse weather was identified as the third 

most critical risk factor affecting onshore wind construction in Canada (Chapter 2). Current 

models that have been developed to understand weather uncertainty on the project schedule can 

only analyze the weather impact during the bidding stage of the project. A model that can 

support the understanding and quantification of weather uncertainty during the construction 

phases of onshore wind projects has yet to be developed in literature. Thus, the fifth gap that will 

be addressed in this thesis is the lack of models that consider short-term weather impact on the 

construction activities on an onshore wind project.  

Currently, risk management in wind farm projects lacks a profound and established 

decision support system. Therefore, this research is proposing a decision support system for risk 

management in wind farm projects. The proposed decision support system (DSS) fuses available 

techniques, approaches, and current knowledge in construction risk management. As such, the 

developed decision support system is expected to provide a generic risk-management framework 

for wind farm projects. The proposed decision support system is expected to aid practitioners in 

wind farm construction as they make use of the advancements in risk research to improve their 

practice.  
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1.3 Objectives 

The overall goal of this research is to create an approach for risk management in onshore 

wind projects that can easily be emulated and implemented by industry practitioners in any 

onshore wind project. Thus, a novel decision support system to enhance risk management 

practices with focus on risk identification and risk quantification is proposed. Once the decision 

support system is accomplished, a better understanding and analysis of the risk factors will be 

achieved. This research intends to achieve the following objectives: 

Objective 1: improve the risk identification process for onshore wind projects. The following 

sub-objectives were conducted to achieve objective 1: 

• Understand and analyze the generic critical risk factors affecting the construction 

phase of onshore wind projects 

• Develop a method that supports the identification of context specific risk factors 

of an onshore wind project 

Objective 2: improve the risk assessment process for onshore wind projects. The following sub-

objectives were conducted to achieve objective 2: 

• Develop a method for enhancing the input modelling of Monte Carlo simulation 

risk assessment in situations characterized by limited historical data 

• Propose a domain-specific risk assessment method that is more suitable for risk 

analysis of onshore wind projects. 

• Develop a simulation model that considers short-term weather forecast data to 

enhance the lookahead planning of onshore wind projects subject to weather risk. 
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1.4 Research Methodology 

The research was conducted in five modules to achieve the stated objectives, as shown in 

Figure 1.2. In the first module, a literature review was conducted to identify risk factors affecting 

onshore wind projects during the construction phase. Based on the final set of factors, a 

questionnaire was designed and developed to evaluate the impact and likelihood of each factor. 

The purpose of the questionnaire was to identify critical risk factors based on subject matter 

experts from the Canadian wind energy industry. Experts were asked to provide their opinions on 

the identified list to prioritize them and determine the most critical factors. A hybrid multi-

criteria approach (i.e., fuzzy analytical hierarchy process (FAHP) and fuzzy technique for order 

of preference by similarity to ideal solution (FTOPSIS)) was used to analyze the collected survey 

responses. Lack of management experience, shortage of resources, adverse weather were 

determined to be the most critical risk factors according to the sampled population of Canadian 

contractors. 

In the second module, a method was developed to enhance and support the identification 

of context-driven risk factors using ontology-based approach. Ontology is usually used to 

represents domain knowledge as a set of concepts along with the connections (i.e., relationships) 

between them (El-Diraby et al. 2005; El-Diraby 2013). Data for 7 onshore wind projects and the 

risks associated with them were collected, and a risk ontology model was developed to model the 

associations between project and risk information. Protégé which is a free, open-source ontology 

editor and framework for building intelligent systems developed by Stanford university (Rubin et 

al. 2007) was used in building the risk ontology. The risk ontology was designed to support 
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experts in identifying risk factors based on the context of the project. Ontology was selected for 

its ability to map the relationships between related knowledge and for its ability to automatically 

reason and discover knowledge. 

In the third module of this research, input modelling, which allows defining a statistical 

distribution, for the risk impact of the identified risk factors was explored. A fuzzy-based 

multivariate modelling approach was proposed to overcome data limitations and to consider 

correlations between cost and schedule impacts of a risk factor. This approach allows experts to 

develop statistical distributions based on their detailed subjective knowledge. In addition to that, 

the multi-variate analysis allows to consider the correlation between cost impact and schedule 

impact of risk factors that have both impacts. 

In the fourth module, a domain specific risk assessment was proposed to quantitatively 

assess risk factors of onshore wind projects to assist project managers with cost and time 

contingency estimating. Monte Carlo Simulation-Critical Path Method (MCS-CPM) was selected 

as a suitable approach due its ability to consider cost and schedule impacts simultaneously while 

considering the uncertainty inherent in construction. In this research, Simphony Projects 

(Mohamed et al. 2020a) was used as a simulation tool to assess the schedule and cost impacts of 

risk factors. Recommendations and guidelines for industry practitioners were drawn when using 

the MCS-CPM approach. 
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Objective 2: improve risk assessment process in onshore wind projects

Objective 1: improve risk identification process in onshore wind projects

Start 

Literature review

• Select the appropriate bibliographical resources

• Identify the research problem 

• Set the research goals and objectives

Critical generic risk factors identification

• Review related papers and reports 

• Identify the initial list of risk factors

• Design of questionnaire and data collection

• Analysis of replies and determine the critical risk factors 

Enhanced input modeling

• Review input modeling for simulation risk assessment

• Propose fuzzy-based multivariate approach 

• Collect data and develop the model

• Apply and validate the proposed method

Context-specific risk factors identification 

• Review of risk identification tools in construction

• Define the risk and project context knowledge

• Collect data and develop risk identification ontology

• Apply and validate the developed risk ontology 

Domain-specific risk assessment 

• Review risk assessment models in construction

• Recommend a suitable method for onshore wind projects 

• Application and recommendations 

Conclusion, limitations, and recommendations

• Research conclusion

• Limitations 

• Recommendations

• Future work 

Weather risk modeling using simulation

• Review risk models for adverse weather

• Propose a combined simulation approach

• Apply and validate the proposed method 

 

Figure 1.2. Research Methodology. 

In the fifth module, a combined discrete event and continuous simulation model, capable 
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of considering short-term weather forecasts, was developed to assist managers with the decision-

making processes associated with the planning and scheduling of construction activities. 

Simulation was selected as a suitable approach due its ability to capture dynamic and complex 

interactions of construction processes while considering the uncertainty inherent in construction 

and external factors (AbouRizk 2010). In this research, Simphony.NET (AbouRizk et al. 2016) 

was used as a simulation tool since it is programmable, can be customized for further 

developments, and has been successfully used in previous studies. 

1.5  Expected Contributions 

The main expected contribution of this thesis is providing a decision support system for 

risk management of wind farm projects during construction phase that pull together various 

methods for risk identification and assessment. The DSS will show how these methods works for 

wind farm projects and provide guidelines for decision makers who are involved in risk 

management of wind projects. In addition to that, the following detailed contributions are 

expected by each module of the decision support system: 

1- The first module is expected to provide a systematic and thorough analysis of risk factors 

affecting construction of onshore wind projects in Canada. In addition to that, ranking of 

the risk factors and determining the most critical risk factors is expected too. 

2- The second module is expected to provide a context-driven approach which considers the 

specific characteristics of a project for accurate identification of a specific risks that 

belong to that project due to its context. 

3- The third module is expected to provide a method that enhance the input modeling for 
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Monte Carlo simulation which allows experts to establish the probability distributions of 

risk factors’ impact using their detailed subjective knowledge. 

4- The fourth module is expected to provide a domain-specific risk assessment model in 

onshore wind projects that considers the cost and time impacts of risks simultaneously. 

5- The fifth module is expected to provide a simulation-based approach which allows 

decision makers to assess the weather impact dynamically and accurately on the project 

schedule by considering the real-time weather effect. 

1.6 Thesis Organization 

This thesis is organized following a paper-based format that is consistent with the 

research framework shown in Figure 1.2. Detailed contents of each chapter are listed as follows. 

Chapter 2 focuses on identifying, from the perspective of project experts who are 

involved in the wind energy industry in Canada, critical risk factors affecting the construction 

phase of onshore wind projects. A questionnaire-based methodology was used to collect 

responses, and hybrid multi-criteria was applied to analyze the results. A set of the top 10 risk 

factors was established.  

Chapter 3 focuses on developing a context-driven risk identification tool using 

ontologies. Traditional and advanced risk identification techniques are described. Difficulties in 

current risk identification tools in practice, such as the lack of data integration between risk 

factors and project context data, are discussed. A case study manifests the application of the risk 

ontology for context-driven risk identification. Also, the advantages of risk ontology compared 

to other techniques was discussed.  
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Chapter 4 discusses the limitations of current input modelling approaches for developing 

statistical distributions and proposes a fuzzy-based approach, capable of overcoming existing 

limitations, to develop statistical distributions based on detailed subjective expert knowledge. 

Notably, this approach allows experts to express their knowledge about risk impacts in detail, 

thereby reducing bias when eliciting distribution parameters. A case study is presented to 

demonstrate the effectiveness and advantages of using the proposed approach in practice.  

Chapter 5 focuses on proposing and developing a domain-specific simulation-based 

approach for quantitatively assessing of risk factors in onshore wind projects. A case study is 

presented to demonstrate how this simulation approach can be used to evaluate risk factors’ 

impact on project time and cost. Guidelines and recommendations were provided for industry 

practitioners. 

Chapter 6 focuses on developing a combined simulation approach capable of integrating 

short-term weather forecast data. A case study is presented to demonstrate how this combined 

simulation approach can be used to understand and evaluate the effect of short-term adverse 

weather on project scheduling. 

 Chapter 7 summarizes the conclusions of this thesis and the academic and industrial 

contributions resulting from this work. Recommendations for future studies are also described. 
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Chapter 2 : Critical Construction Risk Factors 

Affecting Onshore Wind Projects in Canada: A Hybrid Fuzzy 

Multi-Criteria Approach 

2.1 Introduction 

Developed countries are increasing their capacity for energy production from renewable 

sources, such as wind and solar power, to decrease the harmful effects of fossil fuel combustion 

on the environment and to reserve the limited stock of fossil fuels for future generations (Saidur 

et al. 2010). Wind energy is a clean and renewable energy source with a potential production 

capacity large enough to become an alternative to fossil fuels around the world (Saidur et al. 

2010). The Canadian federal government and provincial governments continuously fund the 

growth of Canada’s wind power assets through different programs and incentives. The 

government of Canada is planning to reduce greenhouse gas emissions by 30% relative to the 

2005 emission level by the end of 2030 through its Federal Sustainable Development Strategy 

(FSDS) (“Federal Sustainable Development Strategy” n.d.). One component of the FSDS is the 

development of clean energy systems, including onshore wind farm projects. Canada possesses 

two critical resources for onshore wind farm projects, which are wind and land. These resources 

have allowed Canada to become the ninth-largest producer of wind energy in the world. With an 

installed capacity of more than 13 gigawatts (GW), current Canadian wind farm infrastructure 

produces enough power to meet about 6 % of the country’s total electricity demand (“Installed 

Capacity” 2020). However, the high levels of risks related to changing policies and politics 
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together with the high complexity of clean energy projects systems such as solar and wind have 

hindered decision-makers from confidently assessing energy systems’ growth trajectory (Prpich 

et al. 2014a). A better understanding of the risks underlying the construction of clean energy 

systems, therefore, has the potential to improve decision-making, planning, and overall project 

success (Prpich et al. 2014a). 

The construction phase of a wind farm project’s life cycle is associated with a significant 

amount of uncertainty and complexity due to inherent risks (Alkhalidi et al. 2020). The high 

levels of intrinsic risks within onshore wind farm projects impose a real obstacle in investment 

decisions and, consequently, in these projects’ construction phase (Montes and Martin 2007). 

Therefore, exploring and understanding the risk factors will help developers and contractors to 

understand the system, elucidate the ambiguity, and allow for robust decision-making regarding 

the risks that affect the project during the construction phase (Prpich et al. 2014a) (Montes and 

Martin 2007). Risk factors can negatively impact project objectives in terms of cost, time, safety, 

and quality. Risk management is a critical element in securing project financing and achieving 

project objectives (Gatzert and Kosub 2016b). Although negative impacts of risk factors are 

common to construction projects globally, different projects, such as onshore wind projects, are 

affected differently in various locations: certain risk factors are more critical in some countries 

but less critical in others.  

Negative impacts of risk factors affect construction and operation phases of onshore wind 

projects. Although numerous studies, including (Nielsen and Sørensen 2014) (Chou and Tu 

2011) (Ambühl and Dalsgaard Sørensen 2017) (Tazi et al. 2017) have been conducted to address 
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the risks in onshore wind farm projects, the focus of these studies mainly was related to the 

operation and maintenance phases of wind farm projects. In contrast, only few studies 

(Enevoldsen 2016) (Montes and Martin 2007) (Rolik 2017a) (Gatzert and Kosub 2016b) have 

focused on the risk associated with the construction phase of the onshore wind farm projects. A 

comprehensive analysis of all the critical risk factors affecting the onshore wind farm projects 

during the construction phase is, therefore, lacking. Furthermore, none of the previous studies 

have investigated the construction risks of onshore wind farm projects from the Canadian 

perspective. Without these investigations, context-dependent risks affecting Canadian projects, 

including environmental and political factors, have likely been overlooked (Zhi 1995). 

 In an attempt to address these research gaps, the authors aim to explore the following 

two questions in an onshore wind farm project:  

Q1. What are the main risk factors encountered during the construction phase of wind 

farm projects?  

Q2. Which of these risk factors are of most concerning and critical to Canada's 

construction wind industry sector? 

A multi-criteria decision-making (MCDM) approach of fuzzy AHP and fuzzy TOPSIS 

was proposed in this study to answer the research questions. Understanding the risk factors 

associated with the construction phase of onshore wind farm projects is essential to support and 

increase investments and developments in the Canadian wind farm sector. This research effort is 

expected to benefit contractors, developers, project managers, and investors of onshore wind 

farm projects in the Canadian energy sector by comprehensively exploring and identifying the 
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risk factors of these projects and determining the most critical risk factors. The specific 

contributions of this research are twofold: (1) identify, explore, and develop a comprehensive list 

of risk factors collected from universal literature; and (2) rank and define the construction risk 

factors considered most critical to contractors in the Canadian wind energy industry. 

In the remaining sections of this paper, previous research efforts on risk factors are 

reviewed, and remaining research gaps are discussed. Then, an MCDM model based on fuzzy 

analytical hierarchy process (fuzzy AHP) and fuzzy technique for order of preference by 

similarity to ideal solution (fuzzy TOPSIS) is developed to prioritize the risk factors based on the 

severity of their impact on project cost, time, quality, and safety. Next, a questionnaire survey is 

used to collect evaluations from experts who are employed in the Canadian wind energy sector. 

To assess the severity of each risk factor, experts must subjectively evaluate the impact of each 

risk on the project’s cost, time, safety, and quality objectives, as well as the probability of the 

risk factor. After that, the collected responses are analyzed using the proposed fuzzy AHP and 

fuzzy TOPSIS approach. Finally, results are presented, discussion and conclusion are drawn.  

2.2 Literature Review 

2.2.1 Risk Identification of Onshore Wind Farm Projects 

The first step of the risk management process is identifying and understanding the risk 

factors that have the potential to affect project objectives during the construction phase. Risk 

identification is considered as the crucial step in the risk management process (Chapman 1998): 

because unidentified risks cannot be controlled or mitigated (Siraj and Fayek 2019), unidentified 

risks represent unassessed threats to the project objectives (Chapman 2001). Identifying risk 
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factors is the foundation for developing a successful risk management plan for wind farm 

projects such as qualitative, quantitative analysis, and response planning (Rolik 2017a).  

Many studies have focused on improving construction risk identification of wind farm 

projects. Prpich (Prpich et al. 2014a) reviewed the risk factors that affect the investment 

decisions and development of wind projects in the United Kingdom. Prpich et al. then used 

expert opinions from the industry to evaluate risk severity. Michelez et al. (Michelez et al. 2011) 

investigated the risk factors affecting renewable energy projects, as well as the risk management 

approaches and response strategies for dealing with the identified risks. Gatzert and Kosub 

(Gatzert and Kosub 2016b) reviewed the risk factors affecting onshore and offshore wind 

projects during design, planning, construction, and operation phases, focusing on European 

countries. They concluded that the construction phase is characterized by a greater number of 

risks and uncertainty than any of the other phases of the wind farm project’s lifecycle (Gatzert 

and Kosub 2016b). Kucukali (2016) proposed a risk assessment tool for qualitatively evaluating 

risks at different phases of onshore wind farm projects; however, only a few risks were analyzed 

in this study. Enevoldsen (2016) reviewed the risks that affect onshore wind farm projects during 

the construction and operation phases in the Northern European forest area. Rolik (2017a) 

proposed the Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis technique to 

help identify the risks associated with wind farm projects. Turner et al. (2013) reviewed the risk 

of developing wind and solar projects in Australia, China, France, Germany, the UK, and the 

USA during the construction and operation phases of these projects. Angelopoulos et al. (2016) 

investigated the investment risk factors for onshore wind farm projects in European countries. 
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Waissbein et al. (2013) reviewed the risks and proposed strategies to minimize the risk impact on 

the development of onshore wind farm projects in four countries, including South Africa, 

Panama, Mongolia, and Panama. Fera et al. (2017) analyzed the risk factors affecting wind farm 

projects using an analytical hierarchy process in Italy.  

It is concluded from the literature review that previous studies were commonly focused 

on identifying risks in specific geographic areas around the world. However, a study 

investigating the risk factors of onshore wind farm projects in the Canadian wind energy sector 

has not yet been conducted. Although projects share similar characteristics, risk characteristics 

may differ across geographical regions (Zhi 1995). Accordingly, the risk factors that affect the 

construction of onshore wind farm projects remain concealed for investors and constructors in 

the Canadian energy sector. This research has been conducted to address this gap and inform the 

Canadian wind energy sector parties about the risks during a project's construction phase. 

Previous studies were reviewed to develop a comprehensive list of the risks that affect wind farm 

projects. Then, a survey was distributed to experts who work in the Canadian wind energy sector 

to evaluate the severities of identified risks and prioritize them. 

2.3 Research Methodology 

In construction projects, the overall assessment of risk factors is a multi-criteria decision-

making (MCDM) problem (Taylan et al. 2014). Deciding on the most severe risk factors in 

onshore wind farm projects is best treated as a MCDM problem composed of several criteria 

including cost severity, time severity, safety severity, and quality severity, as shown in Figure 

2.1.From this perspective, the TOPSIS method, a well-known MCDM technique, appears to be 
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an appropriate technique to prioritize critical risk factors affecting onshore wind farm projects. 

Which risk factors are most severe?

Safety severity Quality severity

Objective 

Time severity Cost severity

Risk ...Risk ...Risk 1 Risk 2 Risk 29 Risk 30

Criteria

Alternative

 

Figure 2.1. Hierarchical structure of the risk problem 

Multi-Criteria Decision Making (MCDM) techniques allow sorting a group of decision 

alternatives based on multiple decision criteria to support decision-making (Şengül et al. 2015). 

Many MCDM techniques have been developed to solve decision-making problems, such as AHP 

and TOPSIS. As most MCDM techniques alone cannot fully address a decision-making problem, 

hybrid approaches have become prevalent in literature (Jato-Espino et al. 2014). These hybrid 

methods emerged as a solution to some of the shortcomings presented by the unique MCDM 

techniques (Jato-Espino et al. 2014). For example, two of the most popular methods used in the  

MCDM in construction problems are AHP and TOPSIS (Jato-Espino et al. 2014). AHP is well-

suited for conducting pairwise comparisons between a few decision alternatives, which makes it 

an appropriate technique to be combined with other MCDM techniques (e.g., TOPSIS) for 

assigning weights to the decision criteria. Then, an outranking method like TOPSIS can be used 

to rank a large number of alternatives (Jato-Espino et al. 2014). 

 The basis of TOPSIS is to rank the alternatives by simultaneously measuring the distances of 

each alternative to both positive and negative ideal solutions (Salih et al. 2019). Evaluation 



                                                                                                                                                  23 

______________________________________________________________________________ 

 

 

criteria usually have different dimensions in the MCDM problems (Yoon and Hwang 1995); 

therefore, TOPSIS normalizes the evaluations for each criterion. Moreover, TOPSIS is a 

compensatory MCDM method that allows trade-offs between the criteria (Heravi and Seresht 

2018). The trade-off means a low evaluation in one criterion can be compensated by a high 

evaluation in another criterion (Heravi and Seresht 2018). Furthermore, TOPSIS compares all the 

alternatives in only one step without the need for a lengthy process of pairwise comparisons 

characteristic of methods such as AHP (Heravi and Seresht 2018). This advantage makes 

TOPSIS a more efficient method than the pairwise comparison methods (e.g., AHP) for solving 

MCDM problems with many alternatives and criteria (Heravi and Seresht 2018). Moreover, 

compared to other MCDM techniques, TOPSIS has the following advantages (Fouladgar et al. 

2012): (1) the logic of TOPSIS is transparent and understandable; (2) the computation process is 

easy; (3) it determines the best and the worst assessments of the alternatives for each criterion; 

and (4) the weights of the criteria are incorporated into the comparison procedure.  

Conversely, AHP and FAHP have been widely and extensively applied to assess risk factors 

in construction projects (Taroun 2014), such as (Mustafa and Al-Bahar 1991), (Zhang and Zou 

2007), (Nieto-Morote and Ruz-Vila 2011), (Zhi 1995), (Hastak and Shaked 2000), (Dikmen and 

Birgonul 2006), (Zeng et al. 2007), (Zayed et al. 2008). However, AHP and FAHP have some 

limitations in their application for construction risk assessment, including (Taroun et al. 2011): 

(1) these techniques require the experts to make a large number of comparisons between 

different risk factors, which becomes more challenging in construction projects with numerous 

risks, (2) the consistency of comparisons for these techniques must be within an acceptable 
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range, which may not always be achievable, and (3) there is a lack of options for ignoring 

inapplicable evaluations. 

In this paper, fuzzy AHP is used to assign weights to the evaluation criteria used by the fuzzy 

TOPSIS component. Another limitation of conventional MCDM, such as AHP and TOPSIS, is 

that crisp values are used to compare different decision alternatives. However, human experts 

commonly express their evaluations as a subjective values such as low, medium, and high rather 

than crisp numbers. To address this limitation and capture the subjective uncertainty in the 

natural language used by experts, fuzzy sets were integrated with MCDM techniques (Jato-

Espino et al. 2014). In construction risk management, experts often face challenges to provide a 

precise numerical evaluation of each risk factor; therefore, fuzzy linguistic variables were 

usually employed for risk assessment applications (Taylan et al. 2014). 

Several researchers widely apply fuzzy AHP and fuzzy TOPSIS for risk assessment in the 

construction industry. For example, Taylan et al. (Taylan et al. 2014) used fuzzy AHP and fuzzy 

TOPSIS to assess the severity of risk in construction projects and rank projects based on their 

severities on time, cost, quality, safety, and environmental sustainability. Fouladgar et al. 

(Fouladgar et al. 2012) used fuzzy TOPSIS to assess the construction risks of tunnelling projects 

and rank them based on four criteria: consequence, detectability, vulnerability, and reaction. 

Haghshenas et al. (Haghshenas et al. 2016) assessed the construction risks of dam projects and 

ranked them using the fuzzy TOPSIS method based on three criteria: repeat chance, occurrence 

possibility, and efficacy. Wang and Elhag (Wang and Elhag 2006) proposed a fuzzy TOPSIS 

model to assess the risks related to the maintenance of bridges and to rank bridges according to 
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risk severity. 

It was concluded that the integration of fuzzy set theory, AHP, and TOPSIS through a hybrid 

approach of fuzzy AHP and fuzzy TOPSIS would provide a powerful technique for assessing the 

risk factors of onshore wind projects and rank them based on their severities on time, cost, 

safety, and quality aspects of the onshore wind farm project. Accordingly, the following sections 

provide detailed steps for implementing hybrid fuzzy AHP and fuzzy TOPSIS for construction 

risk assessment. 

In brief, the research methodology consists of two main components. The first component is 

data collection, where a careful literature review and analysis was carried out to explore and 

extract the construction risk factors affecting onshore wind farm projects. Then, the collected 

risk factors are evaluated by experts through a questionnaire survey. The second component 

analyzes the collected replies where weights of decision criteria are determined firstly using the 

Fuzzy AHP technique. Then Fuzzy TOPSIS is utilized to rank the risk factors. These two 

components are shown in Figure 2.2 and are further discussed in the following sub-sections. 

2.3.1 Data Collection 

2.3.1.1 Literature Survey 

Relevant studies on risk management of wind farm projects were reviewed to develop a 

comprehensive list of risk factors that influence the construction phase of onshore wind farm 

projects. The literature review of risk factors included peer-reviewed journal articles, published 

reports by wind organizations, and conference papers. Scopus database and Google Scholar were 

used as search engines. All documents published between 2005 until the time of conducting this 
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research in July 2020 were considered in the review. Journals related to civil engineering, 

construction and project management, and renewable energies were considered in the review. 

Data Collection FAHP & FTOPSIS Analysis

Develop pairwise comparison matrix for each expert

Calculate the cost, time, quality, and safety severity for 

all risk factors

Construct the fuzzy evaluation matrix

Calculate the normalized fuzzy evaluation matrix

Related literature on wind farm risk

Collect initial list of construction risks

Questionnaire design  

Check questionnaire design is ok?

No

Determine pool of potential participants

Yes
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Calculate the weighted normalized fuzzy evaluation 
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Figure 2.2. FAHP-FTOPSIS research methodology 

The search was initiated using the following search terms: “risks in renewable energy 

infrastructure,” “risk factors in renewable energy project,” “construction risk factors in 

renewable energy projects,” “risk management in the construction of renewable energy projects.” 

Although the focus is on wind farm projects, the search started by examining all renewable 

energy projects, as many reports and articles addressing renewable energy projects include wind 

farms. 

Then, more specific search terms were applied, including “risk factors in wind energy 
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projects,” “risk management in wind energy construction,” “construction risk factors in wind 

farm projects.” Similar to the first iteration, the search included all types of wind farm projects, 

as many reports address both onshore and offshore wind farm projects. The last search iteration 

included search terms such as “risk factors in onshore wind farm projects,” “risk management in 

onshore wind farm construction,” and “construction risk factors affecting onshore wind farm 

projects.” A summery of the collected papers and reports is shown in Table 2.1 which showed 

that a total of 14 journal paper, 5 technical reports, and 2 conference papers were used. Risks 

identified from the collected papers and reports were classified to assist with documentation in 

this study. Risk factors were classified under two main categories: internal and external factors. 

Internal risk factors are related to the contractor and project characteristics, while the external 

risk factors are related to political, economic, and legal conditions. A summary of the risk factors 

is presented in Table 2.2. An initial list of 30 risk factors was identified and classified into the 

categories. A risk breakdown structure (RBS) of onshore wind farm project risks was established 

Figure 2.3. 

Table 2.1: summary of references used 

Reference type  Count   

Journal paper  14 

Technical report 5 

Conference paper 2 
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Table 2.2: Identified risk factors from literature 

No. Factor Reference Referred 

frequency 

R1 
Failure to keep up with recent 

innovative technology 

(Gatzert and Kosub 2016b); (Waissbein et al. 

2013); (Fera et al. 2017); (Montes and Martin 

2007); (Rolik 2017a); (Xinyao et al. 2017) 

6 

R2 

Failure to establish a proper 

grid connection of a wind 

project to the electricity 

network 

(Kucukali 2016); (Angelopoulos et al. 2016); 

(Waissbein et al. 2013); (Finlay-Jones 2007); 

(Noothout et al. 2016) 

5 

R3 
Material damage during 

construction 

(Gatzert and Kosub 2016b); (Turner et al. 

2013); (Montes and Martin 2007); (Ioannou 

2017); (Zhou and Yang 2020) 

5 

R4 Lack of financing   

(Gatzert and Kosub 2016b); (Angelopoulos et 

al. 2016); (Prpich et al. 2014a); (Waissbein et 

al. 2013); (Fera et al. 2017); (Finlay-Jones 

2007); (Noothout et al. 2016); (Xinyao et al. 

2017) 

8 

R5 Project cost overrun 
(Enevoldsen 2016); (Fera et al. 2017), 

(Sovacool et al. 2017) 

2 

R6 
Unpredictable changes in the 

inflation rate 

(Kucukali 2016); (Rolik 2017a); 

(Angelopoulos et al. 2016); (Waissbein et al. 

2013); (Fera et al. 2017) 

5 

R7 
Fluctuation in prices of 

required materials 

(Fera et al. 2014); (Waissbein et al. 2013); 

(Rolik 2017a) 

3 

R8 
Fluctuation in currency 

exchange rates 

(Angelopoulos et al. 2016); (Waissbein et al. 

2013); (Fera et al. 2014); (Rolik 2017a); 

(Noothout et al. 2016) 

5 
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R9 
Poor economic development 

or economic instability 

(Angelopoulos et al. 2016); (Fera et al. 2017); 

(Waissbein et al. 2013); (Noothout et al. 

2016) 

4 

R10 
Level of corruption of the 

country 

(Angelopoulos et al. 2016); (Noothout et al. 

2016) 

2 

R11 
Lack of management 

expertise 

(Gatzert and Kosub 2016b); (Angelopoulos et 

al. 2016); (Waissbein et al. 2013); (Noothout 

et al. 2016) 

4 

R12 Delay in project completion  

(Gatzert and Kosub 2016b); (Fera et al. 

2014); (Enevoldsen 2016); (Fera et al. 2017); 

(Zhou and Yang 2020) 

5 

R13 

Shortage of resources 

required for project execution 

such as labour and equipment. 

(Prpich et al. 2014a); (Waissbein et al. 2013); 

(Montes and Martin 2007); (Ioannou 2017); 

(Zhou and Yang 2020) 

5 

R14 

Relationship unreliability and 

complexity between project 

stakeholders 

(Rolik 2017a); (Zhou and Yang 2020) 2 

R15 
Poor cooperation to share 

technical expertise 

(Gatzert and Kosub 2016b); (Fera et al. 2017) 2 

R16 

Poor site geology: uncertainty 

in geotechnical properties of 

the construction site   

(Kucukali 2016); (Enevoldsen 2016) 2 

R17 Poor access road to the site (Kucukali 2016); (Waissbein et al. 2013) 2 

R18 
Geopolitical instability 

between countries 

(Prpich et al. 2014a); (Waissbein et al. 2013) 2 

R19 
Changes in international 

energy agreements 

(Prpich et al. 2014a); (Finlay-Jones 2007) 2 

R20 Unpredictable natural hazards (Kucukali 2016); (Ioannou 2017) 2 

R21 Adverse environmental (Gatzert and Kosub 2016b); (Kucukali 2016); 5 
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impacts of the project (Fera et al. 2017); (Prpich et al. 2014a); 

(Xinyao et al. 2017) 

R22 Adverse weather 
(Prpich et al. 2014a); (Gatzert and Kosub 

2016b); (Atef et al. 2010); (Guo et al. 2017a) 

4 

R23 Unstable political situation 

(Kucukali 2016); (Angelopoulos et al. 2016); 

(Prpich et al. 2014a); (Waissbein et al. 2013); 

(Fera et al. 2017); (Noothout et al. 2016) 

6 

R24 
Market distortion such as high 

fossil fuel subsidies 

(Waissbein et al. 2013); (Finlay-Jones 2007); 

(Prpich et al. 2014a) 

3 

R25 
Public obstruction to the 

project 

(Gatzert and Kosub 2016b); (Kucukali 2016); 

(Enevoldsen 2016); (Angelopoulos et al. 

2016); (Prpich et al. 2014a); (Michelez et al. 

2011); (Waissbein et al. 2013); (Finlay-Jones 

2007); (Noothout et al. 2016) 

9 

R26 

Insecurity and crime (theft, 

vandalism, or fraudulent 

practices) 

(Gatzert and Kosub 2016b); (Turner et al. 

2013) 

2 

R27 
Disturbances to public 

activities 

(Waissbein et al. 2013); (Xinyao et al. 2017); 

(Zhou and Yang 2020) 

3 

R28 
Complexity and delays in 

permit approval 

(Gatzert and Kosub 2016b); (Fera et al. 

2014); (Kucukali 2016); (Angelopoulos et al. 

2016); (Fera et al. 2011); (Michelez et al. 

2011); (Waissbein et al. 2013); (Noothout et 

al. 2016); (Zhou and Yang 2020) 

9 

R29 Land use and acquisition (Kucukali 2016); (Enevoldsen 2016) 2 

R30 

Regulatory and policy risks: 

Change of laws and 

regulations 

(Gatzert and Kosub 2016b); (Kucukali 2016); 

(Angelopoulos et al. 2016); (Waissbein et al. 

2013); (Finlay-Jones 2007); (Noothout et al. 

2016); (Zhou and Yang 2020) 

7 
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Figure 2.3. Risk breakdown structure of onshore wind farm risk factors 

2.3.1.2 Questionnaire Design 

The questionnaire survey (Survey Link n.d.) consisted of three parts: demographic 

information, pairwise comparison, and risk evaluation. The purpose of the first part (6 questions) 

was to collect information about the respondents, including the position/role of the respondent, 

level of education, years of experience in wind construction, installed capacity of involved 

projects, and the role of the respondent’s company in wind projects construction. Respondents 

were given a pre-defined set of options for each question.  

The second part was designed to collect the pairwise comparison evaluations of the 

project objectives criteria. A total of six questions were used to develop the pairwise comparison 

matrix between the criteria. Each of these six questions had nine options ranging from equally 

important to absolutely important, as per the scale illustrated in Figure 2.5. The pairwise 

comparison scale was explained to the respondents in this part of the questionnaire.  

In the last part of the questionnaire, respondents were asked to evaluate each risk factor 

regarding its cost impact, time impact, quality impact, safety impact, and the probability of 
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occurrence. Thus, five questions were asked for each risk factor. Respondents were given seven 

options to choose from for each question, in addition to one option for not applicable (N/A). 

2.3.2 Fuzzy AHP And Fuzzy TOPSIS Analysis 

In this step, fuzzy linguistic terms were utilized to evaluate the risk probability and 

impact of the risk factors that affect the construction wind farm projects. Then, these values were 

analyzed to determine the cost severity, time severity, quality severity, and safety severity for 

each risk factor. Next, risk factors were ranked using the fuzzy TOPSIS technique based on their 

evaluations in four criteria: cost severity, time severity, quality severity, and safety severity. As 

part of applying fuzzy TOPSIS ranking, the weights of these criteria needed to be determined. 

Fuzzy AHP was used in this research to calculate the weights of evaluation criteria. The details 

of implementing fuzzy AHP and fuzzy TOPSIS in the proposed risk assessment framework are 

provided in the following paragraphs. 

Fuzzy logic was first introduced by Zadeh (Zadeh 1965) to model uncertain subjective 

knowledge. A Fuzzy set A is defined mathematically by a membership function 𝜇𝐴(𝑥), which 

assigns each element x in the universe of discourse X to a real number in the interval [0,1], 

referred to as a membership value (Fayek 2018). There are several types of membership 

functions for fuzzy sets, among which the triangular membership function is the most common 

type in engineering applications (Pedrycz and Gomide 2007). Triangular fuzzy numbers are 

commonly used (Wang and Elhag 2006) since they make calculations simple and interpretation 

straightforward (Ebrahimnejad et al. 2010). Other membership functions may increase the 

complexity of computations without considerable effect on the results (Ebrahimnejad et al. 
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2009). A triangular function is shown in Figure 2.4, and its mathematical description is presented 

in equation (2.1). 

 

Figure 2.4. Triangular Fuzzy number 

 

𝜇𝐴(𝑥) =

{
 
 

 
 

0,                   𝑥 < 𝑙
𝑥 − 𝑙

𝑚 − 𝑙
,         𝑙 < 𝑥 < 𝑚

𝑢 − 𝑥

𝑢 −𝑚
,         𝑚 < 𝑥 < 𝑢

0,                   𝑥 > 𝑢

 (2.1) 

This study used the extent analysis method proposed by (Chang, 1996) to implement 

fuzzy AHP because it is easy to understand and apply, less time-consuming, and requires less 

computational effort than conventional fuzzy AHP (Lee 2009). The concept of the extent 

analysis method is based on the comparison between fuzzy triangular numbers to estimate the 

weight vectors. Based on the fuzzy values for the extent analysis of each criterion, a fuzzy 

synthetic degree value can be calculated. Fuzzy synthetic extents are values that are usually 

calculated based on other metrics. The fuzzy synthetic extents represent fuzzy weights of 

evaluation criteria. Experts were asked to compare every two criteria according to the pairwise 

comparison scale in Figure 2.5. For this purpose, the triangular fuzzy numbers scale proposed by 

Chan and Kumar (Chan and Kumar 2007) was adopted in this study to represent the pairwise 



                                                                                                                                                  34 

______________________________________________________________________________ 

 

 

comparison of decision criteria, as shown in Figure 2.5. Pairwise evaluations were collected and 

were represented using reciprocal matrices. The individual reciprocal matrices were then 

aggregated using the geometric mean, which remains a triangular fuzzy number. The aggregated 

matrix was analyzed using Chang's extent analysis (Chang 1996) on FAHP to determine each 

criterion's weights as follows.   

 

Figure 2.5. The membership functions of pairwise comparison (Chan and Kumar 2007) 

Let C = {𝑐1, 𝑐2, 𝑐3 , …, 𝑐𝑛 } be the criteria set where n is the number of criteria. For each 

criterion 𝑐𝑖, the extent analysis was performed through the following steps: 

Step 1: Extent analysis of jth criterion 𝑀𝑖
𝑗
 were obtained by performing a fuzzy addition 

operation for each row of the aggregated matrix, where subtotals were calculated for each 

criterion for the ith boundary of the aggregated fuzzy number (i.e., lower, core, and upper values) 

for the jth criterion as follows: 

∑𝑀𝑖
𝑗

𝑛

𝑗=1

= (∑𝑙𝑗 

𝑛

𝑗=1

, ∑𝑚𝑗

𝑛

𝑗=1

, ∑𝑢𝑗

𝑛

𝑗=1

)             (2.2) 

 

Where all the 𝑀𝑖
𝑗
 (j=1, 2, ..., n) are fuzzy triangular numbers,  l is the lower limit value, 

m is the core value, and u is the upper limit value. 
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Step 2: Fuzzy addition operation is then performed on all extent analysis values 𝑀𝑖
𝑗
(𝑗 =

1, 2, 3, … , 𝑛) of all criteria (j=1, 2, ..., m) as follows: 

∑∑𝑀𝑖
𝑗

𝑛

𝑗=1

𝑚

𝑗=1

= (∑∑𝑙𝑗

𝑛

𝑗=1

𝑚

𝑗=1

, ∑∑𝑚𝑗

𝑛

𝑗=1

𝑚

𝑗=1

, ∑∑𝑢𝑗

𝑛

𝑗=1

𝑚

𝑗=1

)     (2.3) 

Step 3: The inverse of  ∑ ∑ 𝑀𝑖
𝑗𝑛

𝑗=1
𝑚
𝑗=1  is calculated as per equation (2.4) as follows: 

[∑∑𝑀𝑖
𝑗

𝑛

𝑗=1

𝑚

𝑗=1

]

−1

= (
1

∑ ∑ 𝑢𝑗
𝑛
𝑗=1

𝑚
𝑗=1

,
1

∑ ∑ 𝑚𝑗
𝑛
𝑗=1

𝑚
𝑗=1

,
1

∑ ∑ 𝑙𝑗
𝑛
𝑗=1

𝑚
𝑗=1

)   (2.4) 

 

Step 4: The last step is to calculate the value of fuzzy synthetic extent (𝑆𝑖) for the ith 

criterion, which was used as the weight for the criteria defined in Equation (2.5) as follows: 

𝑆𝑖 =∑𝑀𝑖
𝑗

𝑛

𝑗=1

⊗ [∑∑𝑀𝑖
𝑗

𝑛

𝑗=1

𝑚

𝑗=1

]

−1

   (2.5) 

where ⊗ is fuzzy multiplication and is calculated according to (Sun 2010) as follows for two 

triangular fuzzy numbers K = (𝑎1, 𝑏1, 𝑐1) and L = (𝑎2, 𝑏2, 𝑐2); K ⊗ L = (𝑎1𝑎2, 𝑏1𝑏2, 𝑐1𝑐2). 

Fuzzy TOPSIS is an appropriate method for elucidating the group decision-making problem 

under subjective evaluation (Taylan et al. 2014).  A risk factor is usually expressed as an event 

that could hinder the successful accomplishment of project objectives and is evaluated in terms 

of probability and impact (Taylan et al. 2014). Probability and impact for each risk factor were 

assessed based on expert judgment (Taylan et al. 2014). The scale used to evaluate the risk 

factors subjectively is seven linguistics triangular fuzzy numbers, as presented in Figure 2.6, 

adopted from similar studies (Wang and Elhag 2006) (KarimiAzari et al. 2011). The experts 

were explicitly asked to evaluate each risk factor’s probability of occurrence and the cost, time, 



                                                                                                                                                  36 

______________________________________________________________________________ 

 

 

quality, and safety impacts. These values were used to assess the severity of each risk factor by 

multiplying each impact value by the probability of occurrence (𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 =  𝑃 ×  𝐼). The 

resulting cost severity, time severity, quality severity, and safety severity were then used in the 

fuzzy TOPSIS calculations to rank the risk factors through the following steps: 

Step 1: The decision matrix was developed for each expert, representing the severity of each 

risk for each of the four criteria. The aggregated matrix was generated by averaging all the 

experts’ evaluations using the average operator (Zhao and Guo 2014). Risk factors (𝑅1, 𝑅2, . . ., 

𝑅𝑚) evaluated by a group of experts, based on n criteria (𝐶1, 𝐶2, . . ., 𝐶𝑛), were represented by 

matrix D, as given in Equation (2.6). The elements 𝑥𝑖𝑗 of the matrix indicated the aggregated risk 

severity of the ith risk factor, 𝑅𝑖, with respect to the jth criterion for all experts. Also, 𝑥𝑖𝑗 is a 

linguistic triangular Fuzzy number, so that it was represented as 𝑥𝑖𝑗 = (𝑎𝑖𝑗, 𝑏𝑖𝑗 , 𝑐𝑖𝑗). 

 

D = 

𝑅1
𝑅2
𝑅3
…
𝑅𝑚

 

[
 
 
 
 
𝑥11 𝑥12 … 𝑥1𝑛
𝑥21 𝑥22 … 𝑥2𝑛
𝑥31 𝑥32 … 𝑥3𝑛
… … … …
𝑥𝑚1 𝑥𝑚2 … 𝑥𝑚𝑛]

 
 
 
 

      
(2.6) 

 

𝐶1        𝐶2       …      𝐶𝑛 
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Figure 2.6. Linguistic scale used to evaluate the risk factors (Wang and Elhag 2006) 

(KarimiAzari et al. 2011) 

Step 2: After constructing the fuzzy decision matrix, the normalization of matrix �̃� was 

performed through a linear-scale transformation to convert the various criteria scales into a 

comparable scale for distance measurement using equations (2.7) and (2.8) for negative criteria 

(Chen 2000): 

�̃� = [�̃�𝑖𝑗]𝑚×𝑛       i = 1, 2, 3, …., m; and j = 1, 2, 3, . . ., n (2.7) 

 

Where the fuzzy number �̃�𝑖𝑗 was normalized as follows: 

�̃� = (
𝑎𝑗
−

𝑐𝑖𝑗
,
𝑎𝑗
−

𝑏𝑖𝑗
,
𝑎𝑗
−

𝑎𝑖𝑗
) , 𝑎𝑗

−= min
𝑖
{𝑎𝑖𝑗} (2.8) 

 

The normalization resulted in a matrix with fuzzy numbers which it’s support is the crisp 

interval [0, 1].  

Step 3: The weighted normalized fuzzy matrix �̃� was then calculated by multiplying the 

normalized matrix by the weight of criteria determined by the fuzzy synthetic extent in Equation 

(2.2), as shown in equations (2.9) and (2.10). The elements of the �̃� matrix are positive triangular 
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fuzzy numbers, which their support is included in the crisp interval [0, 1]. 

�̃� = [�̃�𝑖𝑗]𝑚×𝑛  (2.9) 

 

�̃�𝑖𝑗 = �̃�𝑖𝑗  ⊗ 𝑤 𝑗  (2.10) 

where ⊗ represents the fuzzy multiplication operator. 

Step 4: The positive ideal solution indicates the most favorable alternative, and the negative 

ideal solution indicates the least unfavorable alternative. The fuzzy positive ideal solution ( 𝐴+) 

and fuzzy negative ideal solution (𝐴−) were determined as follows: 

𝐴+ = (�̃�1
+, �̃�2

+, �̃�3
+ , … , �̃�𝑛

+)  where  �̃�𝑗
+ = max

𝑖
{�̃�𝑖𝑗} (2.11) 

 

𝐴− = (�̃�1
−, �̃�2

−, �̃�3
− , … , �̃�𝑛

−)  where  �̃�𝑗
− = min

𝑖
{�̃�𝑖𝑗} (2.12) 

 

The elements �̃�𝑖𝑗 were normalized positive triangular fuzzy numbers with a support 

belonging to the closed interval [0, 1]. Thus, we can define �̃�𝑗
+ = (1, 1, 1) and �̃�𝑗

− = (0, 0, 0) 

(Fouladgar et al. 2012) (Wang and Elhag 2006) (Ebrahimnejad et al. 2009) (Grassi et al. 2009).  

Step 5: Then, the distance between each alternative (i.e. risk factor) and (𝐴+  and 𝐴−) was 

computed as follows:  

𝑑𝑗=1
+ =∑ 𝑑(

𝑛

𝑗=1

�̃�𝑖𝑗, �̃�𝑗
+ )            𝑖 =  1;  2; . . . ;𝑚;      (2.13) 

 

𝑑𝑗=1
− =∑ 𝑑(

𝑛

𝑗=1

�̃�𝑖𝑗, �̃�𝑗
− )            𝑖 =  1;  2; . . . ; 𝑚 (2.14) 
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Where 𝑑𝑗=1
+  and 𝑑𝑗=1

−  are two distances between two triangular fuzzy numbers. In this 

study, the Euclidean distance (Szmidt and Kacprzyk 2000) (Wang and Elhag 2006) (Chen 2000) 

was used to measure the distance between two fuzzy numbers, as shown in equations (2.15) and 

(16).  

(�̃�𝑖𝑗, �̃�𝑗
+ ) =  √

1

3
[(�̃�𝑖𝑗𝑙𝑜𝑤𝑒𝑟 − 1)

2
+ (�̃�𝑖𝑗𝑐𝑜𝑟𝑒 − 1)

2
+ (�̃�𝑖𝑗𝑢𝑝𝑝𝑒𝑟 − 1)

2
] (2.15) 

 

𝑑(�̃�𝑖𝑗, �̃�𝑗
− ) =  √

1

3
[(�̃�𝑖𝑗𝑙𝑜𝑤𝑒𝑟 − 0)

2
+ (�̃�𝑖𝑗𝑐𝑜𝑟𝑒 − 0)

2
+ (�̃�𝑖𝑗𝑢𝑝𝑝𝑒𝑟 − 0)

2
] (2.16) 

 

Step 6: Finally, the closeness coefficient addressing the ranking order of the alternatives was 

computed as per equation (2.17): 

𝐶𝐶𝑖 = 
𝑑𝑖
−

𝑑𝑖
+ + 𝑑𝑖

−                    (2.17) 

 

The authors wanted to explore and identify the critical risk factors; therefore, risk factors 

with the lowest closeness coefficient were considered the most critical risk factors because they 

were too close to the negative ideal solution. Thus, Equation (2.18) was used to calculate the 

closeness coefficient instead of equation (2.17). 

𝐶𝐶𝑖 = 
𝑑𝑖
+

𝑑𝑖
+ + 𝑑𝑖

−      (2.18) 
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2.4 Model Application and Results 

2.4.1 Data Collection 

In this section, the collected risk factors presented in Table 2.2 were evaluated by a group of 

experts working on the construction and development of onshore wind farm projects in Canada. 

A structured questionnaire was prepared and distributed online using the SurveyMonkey® 

platform to collect experts’ evaluations of the risk factors affecting Canada’s construction of an 

onshore wind project. A total of 150 questionnaire invitations were distributed to experts who 

were specialized in wind project construction in Canada. In addition, invitations were circulated 

to the Canadian wind energy association (CanWEA) and the wind energy institute of Canada 

(WEICAN). The responses were collected over 15 months, spanning January 2020 through 

March 2021. A minimum statistical sample size for the study was determined using the formula 

introduced by (Cochran 1977) for scaled variables as shown in Equation (2.19): 

𝑛 =
𝑡2 ∗ 𝑠2

𝑑2
 (2.19) 

 

Where: 𝑛 = sample size; 𝑡 = corresponding value for selected significance; 𝑠 = estimate of 

variance deviation for the scale used for data collection, which was calculated by dividing the 

inclusive range of the scale by the number of standard deviations that include almost all possible 

values in the range (Barlett et al. 2001); and 𝑑 = number of points on the primary scale 

multiplied by the acceptable margin of error (Barlett et al. 2001). 

The significance adopted in this research is 95% (therefore, 𝑡 =1.96), and the margin of error 
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is 0.05%. Because a Likert scale was used in the questionnaire to evaluate the risk factors, the 

values of (𝑠) and (𝑑) were determined according to the explanation given by (Barlett et al. 

2001). The estimated variance (𝑠) can be calculated by dividing the questionnaire scale (i.e., 7) 

by the standard variation (7), yielding a value of 1. Accordingly, the minimum sample size was 

calculated to be 32 participants, as follows: 

𝑛 =
(1.96)2 ∗ (1)2

(7 ∗ 0.05)2
= 32        

The authors secured 40 responses out of 150 invitations, resulting in a response rate of 

26.6%. After reviewing the collected responses, eight were incomplete resulting in 32 complete 

responses—meeting the minimum required sample size. It is common in construction research 

studies to obtain a low response rate (20% – 30%), which is expected in this research area 

(Akintoye 2000). Many risk management research studies have reported similar or lower 

response rates, such as Hlaing et al. (Hlaing et al. 2008) reported 19.5%, Zhao et al. (Zhao et al. 

2016) reported 11.2%, Wang et al. (Wang et al. 2004) reported 7.5%, Adams (Adams 2006) 

reported 18%, and Lindhard et al. (Lindhard et al. 2020) reported 19%. Low response rates in 

construction research have been was attributed to: the comprehensive nature of the research 

instrument (Hlaing et al. 2008; Wang et al. 2004); the busy schedules of project managers and 

engineers (Adams 2006; Lindhard et al. 2020; Zhao et al. 2016); confidentiality of information 

that companies were reluctant to disclose (Hlaing et al. 2008; Mu et al. 2014; Zhao et al. 2016). 

In this paper, the survey included 30 risk factors with five questions about each risk factor, which 

gives a total of 150 questions in addition to the pairwise comparison, making the survey too long 

for industry experts. Also, the authors believed that the current circumstances of anxiety and 
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stress due to Covid-19 contributed to the low response rate. Also, studies that applied the same 

methodology (i.e. fuzzy AHP and fuzzy TOPSIS) have used lower numbers of experts such as: 

Ebrahimnejad et al. (Ebrahimnejad et al. 2009) used 15 experts; Fouladgar et al. (Fouladgar et al. 

2012) and Taylan et al. (Taylan et al. 2014) used seven experts; Liu and Wei (Liu and Wei 2018) 

used four experts; KarimiAzari (KarimiAzari et al. 2011) and Makui et al. (Makui et al. 2010) 

used three experts.  

Morton et al. (2012) asserted that characteristics of study respondents should be detailed 

explicitly to allow full consideration of study validity. Therefore, the demographics of the 

respondents were collected and analyzed to show the configuration of the respondents. The 

education levels were shown in Figure 2.7 (a), with approximately 87 % of the respondents 

having a university degree. Years of experience is illustrated in Figure 2.7 (b), where 

approximately 81 % of the respondents have more than five years of experience in onshore wind 

projects. Figure 2.7 (c) shows the respondents’ positions, where around 65 % of the respondents 

have senior managerial positions in onshore wind projects. The sizes of experts’ projects were 

shown in Figure 2.7 (d), where more than 66% of the respondents worked in large and very large 

onshore wind projects. The locations of experts’ involvement projects were shown in Figure 2.7 

(e), where most projects were located in Alberta and Ontario. Lastly, the role of the respondents’ 

organizations in constructing onshore wind projects were shown in Figure 2.7 (f), where the 

majority are either the primary contractor or specialty contractor, followed by consultants and 

owners. Visser et al. (Visser et al. 1996) concluded that a low response rate does not entail low 

accuracy of the findings. Therefore, following the above discussion, the authors believe that the 
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findings from this study based on the collected data are reliable—particularly when considering 

that onshore wind projects are a relatively novel type of infrastructure (i.e. onshore wind 

projects) that is characterized by a lack of relevant literature and a scarcity of historical data, 

especially in the Canadian energy sector (Somi et al. 2020) (Mohamed et al. 2020b). 
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(a) Education level of respondents 

 

(b) Years of experience of respondents 

 

(c) Roles of respondents 

 

(d) Sizes of projects in which respondents 

participated 

 

(e) Locations of projects in which experts 

participated 

 

(f) Role of expert’s organization 

Figure 2.7. Demographic information of respondents 

 



                                                                                                                                                  45 

______________________________________________________________________________ 

 

 

2.4.2 Data Analysis 

The collected responses were analyzed using the methodology discussed in Section 2.3.2. 

First, the weights of the criteria were calculated using the FAHP method. Here, a pairwise 

comparison matrix was constructed for the evaluation of each expert. Then, an aggregated matrix 

was obtained by calculating the geometric mean of all pairwise comparisons of experts’ 

evaluation, as shown in Table 2.3. 

Table 2.3: Fuzzy geometric mean matrix of pairwise comparisons 

Criteria  Cost severity  Quality severity Time severity Safety severity 

Cost severity (1, 1, 1) (1.35, 1.64, 2.32) (1.46, 1.76, 2.49) (0.16, 0.18, 0.22) 

Quality severity (0.43, 0.61, 0.74) (1, 1, 1) (1.32, 1.57, 2.11) (0.22, 0.24, 0.32) 

Time severity (0.40, 0.57, 0.68) (0.47, 0.64, 0.76) (1, 1, 1) (0.20, 0.22, 0.27) 

Safety severity (4.58, 5.71, 6.12) (3.14, 4.24, 4.51) (3.67, 4.58, 4.89) (1, 1, 1) 

 

The calculations for the extent value  ∑ 𝑀𝑖
𝑗𝑛

𝑗=1  of the cost severity are detailed as follows, 

with the extent value for each of remaining criteria calculated using the same approach: 

∑𝑀1
4

4

𝑗=1

=  1 +  0.75 +  1.13 +  0.15 = 3.03 

∑𝑀2
4

4

𝑗=1

= 1 +  0.87 +  1.37 +  0.16 = 3.40 

∑𝑀3
4

4

𝑗=1

= 1 +  1.26 +  1.99 +  0.2 = 4.45 
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Then, the value of ∑ ∑ 𝑀𝑖
𝑗𝑛

𝑗=1
𝑚
𝑗=1  was calculated as follows: 

∑∑𝑀𝑖
𝑗

𝑛

𝑗=1

𝑚

𝑗=1

= (22.70, 27.30, 30.64) 

And [∑ ∑ 𝑀𝑖
𝑗𝑛

𝑗=1
𝑚
𝑗=1 ]

−1
was calculated as follows:  

[∑∑𝑀𝑖
𝑗

𝑛

𝑗=1

𝑚

𝑗=1

]

−1

= (
1

30.64
,
1

27.30
,
1

22.70
) = (0.032, 0.036, 0.044) 

The final step was to calculate the value of fuzzy synthetic extent (𝑆𝑖) with respect to jth 

criterion (j =1, 2, 3, 4) as follows: 

𝑆𝑐𝑜𝑠𝑡 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = (3.03, 3.40, 4.45) ⊗ (0.032, 0.036, 0.044) = (0.097, 0.122, 0.196) 

𝑆𝑡𝑖𝑚𝑒 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = (2.03, 2.38, 2.66) ⊗ (0.032, 0.036, 0.044) = (0.065, 0.086, 0.117) 

𝑆𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = (3.76, 4.45, 5.37) ⊗ (0.032, 0.036, 0.044) = (0.12, 0.16, 0.236) 

𝑆𝑠𝑎𝑓𝑒𝑡𝑦 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = (13.87, 17.03, 18.16) ⊗ (0.032, 0.036, 0.044) = (0.44, 0.613, 0.8) 

These synthesis extents are fuzzy weights of the evaluation criteria used in the fuzzy TOPSIS 

method to rank the risks. After developing the weights for criteria, the experts were asked to 

evaluate the cost impact, time impact, quality impact, safety impact, and probability of each risk 

factor using the scale presented in Figure 2.6. A sample of experts’ replies was presented in 

Table 2.4.  
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Table 2.4: Linguistic evaluation of risk factors by experts according to evaluation criteria 

Risk factor Evaluation 

criteria  

Expert 1  Expert 2 Expert 3 ……….. Expert 32 

Failure to keep up 

with recent 

innovative 

technology 

Cost impact MH VL MH ……….. H 

Time impact ML VL MH ……….. ML 

Quality impact H N/A MH ……….. ML 

Safety impact M N/A H ……….. ML 

Probability of 

occurrence M VL H 

……….. 

ML 

Failure to 

establish a proper 

grid connection of 

a wind project to 

the electricity 

network 

Cost impact H VH H ……….. VH 

Time impact H VH M ……….. VH 

Quality impact H N/A M ……….. VL 

Safety impact N/A N/A ML ……….. VL 

Probability of 

occurrence ML VL MH 

……….. 

ML 

……….. …………… …….. …….. ……… ………. ………. 

Regulatory and 

policy risks: 

Change of laws 

and regulations 

Cost impact H ML VH ………. ML 

Time impact H ML VH ………. ML 

Quality impact H N/A M ………. N/A 

Safety impact ML N/A ML ………. N/A 

Probability of 

occurrence L VL MH 

………. 

VL 

Note: VL= very low, L= low, ML= medium-low, M= medium, MH= medium-high, H= High, 

and VH= very high 

 

Some experts did not evaluate some of the criteria of specific risk factors; therefore, they 

were not included when aggregating all of the experts’ evaluations for that particular risk. Once 
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the individual responses were collected, the severity of each risk was calculated as shown in 

Table 2.5 and then the aggregated decision matrix (D) was developed as follows: 

 

D = 

𝑅1
𝑅2
𝑅3
…
𝑅29
𝑅30

 

[
 
 
 
 
 
(12.8, 29.3, 51.8) (11.4, 26.4, 47.1) (12.5, 27.7, 48.6) (12.6, 26.6, 45.1)
(15.0, 30.3, 48.8) (10.78, 24.5, 43.5) (6.5, 16.4, 31.6) (5.7, 12.8, 25)
(18.2, 35.8, 55.45) (20.4, 38.3, 57.8) (16.8, 32.7, 51.5) (15.0, 29.9, 48.3)

… … … …
(14.8, 28.5, 45.7) (15.8, 29.3, 46.3) (8.12, 14.2, 24.2) (6.4, 10.5, 18.9)

(11.3, 22.5, 38.8) (11.1, 21.9, 38.1) (8.7, 16.1, 27.3) (7.7, 13.9, 24.3) ]
 
 
 
 
 

 

Table 2.5: calculated severity of each risk factor based on individual experts’ evaluations 

Risk factor Risk severity   Expert 1  Expert 2 Expert 3 ……….. Expert 32 

Risk 1 

Cost impact (15, 35, 63) (0, 0, 1) (35, 63, 90) ……….. (21, 45, 70) 

Time impact (3, 15, 35) (0, 0, 1) (35, 63, 90) ……….. (3, 15, 35) 

Quality impact (21, 45, 70) N/A (35, 63, 90) ……….. (3, 15, 35) 

Safety severity (9, 25, 49) N/A (49, 81, 100) ……….. (3, 15, 35) 

Risk 2 

Cost impact (7, 27, 50) (0, 0, 10) (35, 63, 90) ……….. (9, 30, 50) 

Time impact (7, 27, 50) (0, 0, 10) (15, 35, 63) ……….. (9, 30, 50) 

Quality impact (7, 27, 50) N/A (15, 35, 63) ……….. (0, 0, 5) 

Safety severity N/A N/A (5, 21, 45) ……….. (0, 0, 5) 

……….. …………… …….. …….. ……… ………. ………. 

Risk 30 

Cost impact (0, 9, 30) (0, 0, 5) (45, 70, 90) ………. (0, 0, 5) 

Time impact (0, 9, 30) (0, 0, 5) (45, 70, 90) ………. (0, 0, 5) 

Quality impact (0, 9, 30) N/A (15, 35, 63) ………. N/A 

Safety severity (0, 3, 15) N/A (5, 21, 45) ………. N/A 

 

    

 

 

 

Cost severity          Time severity          Quality severity       Safety severity 
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Then, a normalized matrix �̃� is obtained using equations (2.7) and (2.8).  

 

�̃� = 

𝑅1
𝑅2
𝑅3
…
𝑅29
𝑅30

 

[
 
 
 
 
 
(0.09, 0.17, 0.38) (0.1, 0.18, 0.43) (0.056, 0.099, 0.2) (0.06, 0.108, 0.22)
(0.10, 0.16, 0.33) (0.11, 0.2, 0.45) (0.08, 0.16, 0.42) (0.11, 0.22, 0.5)
(0.09, 0.14, 0.27) (0.08, 0.12, 0.24) (0.05, 0.08, 0.16) (0.06, 0.09, 0.19)

… … … …
(0.1, 0.17, 0.33) (0.1, 0.16, 0.31) (0.11, 0.19, 0.33) (0.15, 0.27, 0.44)

(0.13, 0.22, 0.44) (0.13, 0.09, 0.44) (0.1, 0.17, 0.31) (0.11, 0.2, 0.37) ]
 
 
 
 
 

 

Once the normalized matrix was developed, the weighted normalized matrix �̃� was obtained 

using the weights obtained from the fuzzy AHP method (i.e., 𝑆1, 𝑆2, 𝑆3, and 𝑆4) for the 

evaluation criteria by applying equations (2.9) and (2.10). 

 

�̃�= 

𝑅1
𝑅2
𝑅3
…

𝑅29
𝑅30

 

[
 
 
 
 
 
(0.009, 0.021, 0.07) (0.006, 0.016, 0.05) (0.006, 0.016, 0.052) (0.028, 0.067, 0.18)

(0.01, 0.02, 0.065) (0.007, 0.017, 0.053) (0.01, 0.027, 0.099) (0.052, 0.14, 0.4)

(0.008, 0.017, 0.053) (0.005, 0.011, 0.028) (0.006, 0.013, 0.038) (0.027, 0.06, 0.15)
… … … …

(0.01, 0.021, 0.066) (0.007, 0.014, 0.036) (0.014, 0.031, 0.08) (0.068, 0.17, 0.36)

(0.01, 0.027, 0.087) (0.0085, 0.008, 0.052) (0.012, 0.027, 0.074) (0.053, 0.13, 0.29) ]
 
 
 
 
 

 

Then, the distances 𝑑𝑗=1
+  and 𝑑𝑗=1

−  from the fuzzy positive ideal solution and fuzzy negative 

ideal solution were computed using equations (2.13) and (2.14), respectively. A sample of the 

calculated Euclidean between each risk factor evaluation and the �̃�𝑗
+ and �̃�𝑗

− was presented in 

Table 2.6 and Table 2.7 respectively. 

 

 

Cost severity          Time severity          Quality severity       Safety severity 

Cost severity          Time severity           Quality severity            Safety severity 
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Table 2.6: Distance between 𝑹𝒊 evaluation and �̃�𝒋
+ for each criterion 

Risk   severity  Cost severity  Time severity Quality severity Safety severity 𝑑𝑗=1
+  

𝑅1 0.964 0.975 0.975 0.909 3.824 

𝑅2 0.968 0.974 0.954 0.815 3.712 

𝑅3 0.973 0.984 0.980 0.921 3.86 

…………… …………… …………… …………… …………… …………… 

…………… …………… …………… …………… …………… …………… 

𝑅29 0.967 0.980 0.958 0.809 3.715 

𝑅30 0.958 0.977 0.962 0.845 3.743 

 

Table 2.7: Distance between 𝑹𝒊 evaluation and �̃�𝒋
− for each criterion 

Risk   severity   Cost severity  Time severity Quality severity Safety severity 𝑑𝑗=1
−  

𝑅1 0.046 0.0309 0.0317 0.1138 0.2225 

𝑅2 0.0399 0.0327 0.0597 0.2473 0.3798 

𝑅3 0.0330 0.0178 0.0239 0.0961 0.1710 

…………… …………… …………… …………… …………… …………… 

…………… …………… …………… …………… …………… …………… 

𝑅29 0.0407 0.0230 0.0504 0.2333 0.3475 

𝑅30 0.0531 0.0307 0.0463 0.0190 0.3203 

 

Then, the closeness coefficient was calculated according to Equation (2.18) for each risk factor, 

as presented in Table 2.8. A complete ranking of the risk factors was presented in Figure 2.8. 

Table 2.8: Calculation of CC and ranking of risk factors 

    𝑑− 𝑑+ 𝑑− + 𝑑+ CC Rank 

𝑅1 0.2225 3.9327 4.04723 0.94501 5 

𝑅2 0.3798 3.8727 4.09280 0.90719 20 

𝑅3 0.1710 3.9371 4.03151 0.95757 4 

…………… …………… …………… …………… …………… …………… 

…………… …………… …………… …………… …………… …………… 

𝑅29 0.3475 3.715 4.06312 0.91446 19 

𝑅30 0.3203 3.743 4.06403 0.92116 16 
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Figure 2.8: Ranking of risk factors affecting wind farm projects 

2.5 Results and Discussion 

This study employed a hybrid methodology of fuzzy AHP and fuzzy TOPSIS for onshore 

wind project risk assessment. Fuzzy AHP method was used to evaluate the weights for the 

evaluation criteria. The fuzzy synthetic extents for the criteria weights were then determined by 

Equations (2.2) to (2.5). Risk factors evaluation and ranking is a multi-criteria decision-making 

problem. Each risk has to be evaluated according to four criteria (i.e., cost severity, time severity, 

quality severity, safety severity). Therefore, the fuzzy TOPSIS method is employed to assess and 

rank the risk factors based on subjective evaluations of a group of experts in onshore wind 

construction. Expert evaluations were collected using an online questionnaire tool and were 

analyzed using a fuzzy AHP and fuzzy TOPSIS methodology. The final output of the method is 

a prioritized list of critical risk factors affecting onshore wind farm projects, as presented in 

Figure 2.8. It was concluded that the top 10 critical risk factors were (1) Lack of management 
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expertise, (2) Shortage of resources required for project delivery, (3) Adverse weather, (4) 

Material damage during construction, (5) Failure to keep up with recent innovative technology, 

(6) Project cost overrun, (7) Relationship unreliability and complexity between project 

participants, (8) Lack of financing, (9 Unpredictable natural hazards, and (10) Poor cooperation 

to share technical expertise. 

Table 2.9 details the top 10 risk factors. It was concluded that almost all risk factors were 

internal risk factors directly related to the project characteristics. Exceptions included adverse 

weather and natural hazard risks, which were external risk factors. Interestingly, the CC value 

and percentage of deviation from the most severe risk factor (i.e. lack of management expertise) 

for the top 10 critical risk factors were comparable to each other (Figure 2.8 and Table 2.9), 

indicating that the criticality of those risks was close, and they all should be addressed 

adequately. 

Managerial risks refer to the availability of knowledge and experience to successfully 

develop and construct a renewable energy project (Noothout et al. 2016). Lack of management 

experience is a common risk factor in most construction projects; however, the specialized nature 

and technology used in constructing wind farm projects make the management of such projects a 

challenge. Lack of technical and managerial experience with renewable energy projects results in 

high technical and managerial risks (Angelopoulos et al. 2016). Therefore, selecting an 

experienced team, reviewing lessons learned, and providing training for personnel in onshore 

wind farm projects will help mitigate such risk (Gatzert and Kosub 2016b). 
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Table 2.9: Top 10 risk factors affecting wind farm projects 

Risk 

ID 

Description Category CC Deviation 

(%) 

Rank 

𝑅11 Lack of management expertise  Internal - Management 0.9710 0 1 

𝑅13 Shortage of resources required for 

project delivery 

Internal - Management 0.9642 0.68 2 

𝑅22 Adverse weather External - Environmental 0.9635 0.75 3 

𝑅3 Material damage during 

construction 

Internal - Technical 0.9575 1.35 4 

𝑅1 Failure to keep up with recent 

innovative technology 

Internal - Technical 0.9450 2.6 5 

𝑅5 Project cost overrun Internal - Financial 0.9431 2.79 6 

R14 

Relationship unreliability and 

complexity between project 

participants 

Internal - Management 0.9424 2.86 7 

𝑅4 Lack of financing Internal - Financial 0.9419 2.91 8 

𝑅20 Unpredictable natural hazards External - Environmental 0.9406 3.04 9 

R15 
Poor cooperation to share 

technical expertise 

Internal - Management 0.9381 3.29 10 

 

Shortage in required resources for executing the project may lead to bottlenecks in 

construction, leading to delays in the implementation of wind farm projects (Prpich et al. 2014a). 

An increase in the investment and number of projects across the country can lead to a shortage of 

skilled staff and equipment needed to implement onshore wind farm projects (Prpich et al. 

2014a). Accordingly, the Canadian energy sector must ensure that sufficient resources exist to 

support the expected increase in the number of onshore wind energy projects. 

Adverse weather during construction has always been a concern for contractors of wind farm 

projects due to the location bias of these projects to high wind speed. Consistent and moderate to 

moderate-high wind speed is favourable for the operation phase of the project; however, it 

represents a challenge for the construction phase when segments of the turbines must be lifted 
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with specialized cranes. To reduce the harmful effects of the weather on construction activities, 

Gatzert and Kosub (Gatzert and Kosub 2016b) suggested the following mitigations: effective 

project management and careful contracting; development of contingency and recovery plans for 

relevant "what if" scenarios; lastly, weather monitoring before construction is vital to evaluate 

the best timing for construction. 

Onshore wind farm projects are a capital-intensive type of renewable projects; therefore, 

damage to assets can significantly impact project costs (Turner et al. 2013) (Gatzert and Kosub 

2016b). In addition to the cost, safety issues during the construction of wind farm projects that 

may occur during the lifting of tower segments were highlighted as a consequence of damage 

during construction (Aneziris et al. 2016). Therefore, proper planning for the transportation of 

materials, storage, and installation should be effectively-prepared. Adhering to best practices 

during the construction and installation of wind towers and turbines allows for the mitigation of 

potential consequences. Also, a contractor can seek insurance coverage for accidental damage 

(Gatzert and Kosub 2016b). 

Failure to keep up with recent innovative technologies in construction methods and wind 

turbines themselves is a critical factor. Obsolete technology implies lower efficiency than newer 

and more efficient ones (Gatzert and Kosub 2016b). Contractors and developers must review and 

consider the impact of emerging innovative technology, such as self-rising-towers, which does 

not require large cranes for lifting segments. New materials for towers and support structures 

should be reviewed (Watson et al. 2019). 

Cost overrun presents a challenging risk parameter for onshore wind farm projects 
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(Enevoldsen 2016). Sovacool et al. (Sovacool et al. 2017) investigated 35 wind farms to test the 

potential cost overrun pattern for wind farm projects. They concluded that a mean cost overrun 

of 0.8% exists for the studied projects. Sovacool et al. (Sovacool et al. 2017) discovered no 

relationship between the installed capacity of a wind project (MW) and the percentage of cost 

overruns. However, other factors that contribute to the cost overrun of wind farm projects that 

are not well-addressed must be investigated through research studies together with the 

subsequent development of improved control strategies.  

Different stakeholders have different levels and types of investments and interests in the 

projects they are involved in. Therefore, managing multiple stakeholders and maintaining an 

acceptable balance between their interests is crucial to successful project delivery (Yang and 

Shen 2015). The complexity of the relationship with a negative attitude between project 

stakeholders can severely obstruct its implementation (Jha and Iyer 2006) (Yang and Shen 2015). 

Thus, to avoid such complexities and deliver projects successfully, stakeholder management 

should be carried out in construction projects (Yang and Shen 2015). An effective stakeholder 

management process depends on understanding the critical success factors for stakeholder 

management in construction projects early at the project start. This will enable the project team 

to successfully carry out stakeholder management and achieve project success (Molwus et al. 

2017).  

Onshore wind farm projects are similar to other energy infrastructures requiring substantial 

development costs (Prpich et al. 2014a). The construction phase accounts for the most significant 

cost accumulation in developing a wind farm due to the high costs of the turbine, foundation, and 
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transmission assets. Private companies, banks, and investors represent the primary source of 

finance for these types of projects (Prpich et al. 2014a). Developing an innovative and creative 

finance structure will promote growth in onshore wind farm projects. Governments can help 

reduce the financing risk through their involvement in the financial market (e.g. through 

government or public/private investment funds and loan guarantees) (Noothout et al. 2016). 

Natural hazards, such as earthquakes, flooding, and landslides, can cause widespread damage 

during the execution of the project (Gatzert and Kosub 2016b) (Kucukali 2016). The probability 

and impact of the natural hazards vary based on the characteristics of the project location; 

therefore, a detailed analysis of the project study area can help determine the severity of such 

risks. While natural hazards can affect the construction phase, these can also extend to the 

operation phase of the project. 

Sharing knowledge and information is a crucial element to project success (Fong 2005) 

(McDermott et al. 2004). A collaborative environment is required to facilitate high levels of 

information sharing (Bond-Barnard et al. 2018). Social capital can be achieved in construction 

projects by promoting collaborative practices to encourage sharing common knowledge between 

team members performing nonroutine tasks (Dietrich et al. 2010). Trust between team members 

must exist so that information can flow between members, allowing knowledge exchange to 

occur (Bond-Barnard et al. 2018). Sharing knowledge between project teams enhances project 

work and organizational learning and enables tasks to be performed faster (Jafari Navimipour 

and Charband 2016). 
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2.6 Conclusions 

Risk and uncertainty hinder the investment and development of onshore wind farm projects. 

The construction phase was recognized as the riskiest phase of the project life cycle. Therefore, 

to identify the critical risk factors affecting the construction of onshore wind farm projects, this 

study applied fuzzy AHP and fuzzy TOPSIS to analyze experts’ evaluations. Experts from the 

Canadian energy sector who worked in various locations across Canada with different roles and 

years of experience were interviewed to evaluate the risk factors. The proposed assessment 

model utilizes a MCDM framework that enables risk assessment based on various criteria, 

including cost severity, time severity, quality severity, and safety severity, which allows the 

capturing of all aspects of risks inherent in onshore wind energy projects. Results of this study 

provided a ranking for 30 risk factors, which were identified through an extensive literature 

review. The top 10 critical risk factors were: lack of management experience, shortage of 

resources, adverse weather, material damage during construction, failure to keep up with recent 

innovative technology, project cost overrun, relationship unreliability and complexity between 

project participants, lack of financing, unpredictable natural hazards, and poor cooperation to 

share technical expertise. Eight of the top 10 risks were internal risk factors related to technical, 

financial, and management aspects. The other two risk factors were related to external 

environmental aspects. Future work will include developing models to quantitatively address the 

effects of the critical risks on project objectives. Also, critical risks of other phases of onshore 

wind farm projects will be investigated in future research. 



                                                                                                                                                  58 

______________________________________________________________________________ 

 

 

2.7 Acknowledgment 

This study is supported by Future Energy Systems research as part of the Canada First 

Research Excellent Fund (CFREF FES-T11-P01). 

 

 



                                                                                                                                                  59 

______________________________________________________________________________ 

 

 

Chapter 3 : Context-Driven Ontology-Based Risk 

Identification for On-shore Wind Farm Projects 

3.1 Introduction  

By 2050, approximately 35% of worldwide electricity demands are anticipated to be 

supplied by onshore and offshore wind farms (IRENA 2019). Expanding the capacity of wind 

energy to meet this demand will require the construction of turbines and grid systems. An 

important step in the pre-construction stage of wind farm projects is risk management. The 

construction phase of wind projects can be hindered by various types of risks (Somi et al. 2020), 

which must be appropriately managed to ensure project objectives are completed on time, within 

budget, and in adherence to environmental and safety regulations (Gatzert and Kosub 2016a; 

Somi et al. 2020). The first step of the risk management process is risk identification. Here, 

various aspects of a project, including financial, environmental, social, regulatory, and/or 

political considerations (De Zoysa and Russell 2003), are reviewed to identify factors that may 

result in schedule delays, cost overruns, or other safety or environmental concerns. Risk analysts 

often review similar historical projects and risk registers curated for a particular type of project 

to identify potential risks for a new project. Usually, knowledge of construction risk factors is 

obtained from different and detached sources (e.g., expert experience, historical project 

information, construction plans, and other project-related documentation).  

As a relatively new type of construction, available historical data and reference materials 

for wind farm projects are either scarce or of low quality (Somi et al. 2020). As such, existing 
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risk registers for onshore wind farm construction are board, encompassing risks that may not be 

applicable to all projects while omitting contextual or project-specific risks. Current risk 

identification methods, therefore, lack the capacity to map specific project characteristics to 

identified risk factors. This limitation prevents the contextualization of historical data, requiring 

risk analysts to manually evaluate the similarity between previous and current projects. This is a 

time-intensive process that involves the review of data across multiple, fragmented databases and 

the tedious mapping of risk factors to the specific characteristics of a new project (Somi et al. 

2020). 

Traditional risk identification in construction is often performed using time-consuming 

manual approaches that are prone-to-error because of its dependence on expert recall. In attempt 

to address this limitation, several advanced risk identification techniques have been proposed in 

literature. However, existing techniques (e.g., case-based reasoning) are limited by their inability 

to consider specific project details and contexts or, if capable of considering project specifics, are 

limited by the need to create lengthy lists of mapping rules for each new project (e.g., 

knowledge-based models).  

Although models (e.g., case-based reasoning and knowledge-based) for automating the 

mapping of risk factors with project characteristics have been developed, they focus on mapping 

risks at a high-level and cannot consider the specific, contextual characteristics of individual 

projects. This is particularly important in wind farm construction, as the specific regulatory, 

environmental, social, and geographical context of a project can substantially impact the types 

and severity of risks on project outcomes. For example, a risk factor of damage to existing 
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infrastructure that was identified in previous risk register of an onshore wind project may not 

apply to another onshore wind project until the context of that project is defined and information 

about existing infrastructure is determined. Recently, risk ontologies were shown to rapidly map 

safety risks to specific projects in construction. Although promising, these studies were limited 

to specific risk factors (e.g., safety risks) and, therefore, cannot be used to compile a 

comprehensive list of all risk factors (e.g., financial, environmental, etc.) present during the 

construction phase of wind farm projects.  

Building upon the current-state-of-the-art, this study has developed a unified, ontology-

based model to automate the context-driven identification of risk factors in onshore wind farm 

construction. A generic risk ontology model, which functions as a knowledge base for the 

storage, reuse, sharing, and recall of risk information, was built from historical project data and 

was validated by a group of subject matter experts. Once validated and verified, the model was 

used to develop a context-driven risk identification ontology. This study contributes to the body 

of knowledge by (1) extending the application of ontology to the identification of risk factors 

associated with the construction of onshore wind projects, (2) enhancing risk knowledge 

management by improving the storage, reuse, and recall of risk-related knowledge, and (3) 

reducing the time and effort required to map risks to specific project contexts by automating the 

risk identification process. 

3.2 Literature Review  

3.2.1 Risk Identification in Onshore Wind Farm Projects 

A risk factor is defined by the Project Management Institute (PMI) (PMBOK® Guide 
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2008) as “an uncertain event or condition that, if it occurs, has a positive or negative effect on a 

project’s objectives”. Risk identification is the process of systematically and continuously 

identifying, categorizing, and assessing the initial significance of risk factors associated with a 

construction project (Al-Bahar and Crandall 1990). Risk identification is considered the most 

important step in the risk management process (Chapman 1998; Rostami 2016), as unidentified 

risk factors cannot be controlled or mitigated (Chapman 2001; Siraj and Robinson Fayek 2019) 

and, therefore, impose unassessed threats to project objectives (Chapman 2001). 

Numerous research studies have focused on identifying the risk factors affecting the 

entire lifecycle of a wind farm project, including design, construction, operation, maintenance, 

and/or decommissioning. Many of these studies have relied on published literature and/or 

questionnaire surveys. For example, Gatzert and Kosub (Gatzert and Kosub 2016a) presented the 

risk factors affecting onshore and offshore wind farm projects in Europe, including risk factors at 

different phases of the project lifecycle and risk mitigation strategies for the proposed risks. In a 

similar study, Angelopoulos and colleagues (Angelopoulos et al. 2016) investigated the risk 

factors affecting the planning, construction, and operation of onshore wind energy projects in 

Europe. Another study identified and presented the risks and challenges that face the design, 

planning, construction, and control of small wind turbine projects in Italy with respect to time, 

cost, and quality (Fera et al. 2014). Other studies have reviewed the risk factors affecting the 

entire lifecycle of onshore wind farm projects in Northern Europe (Enevoldsen 2016), risk 

factors in implementing wind energy projects along with proposed mitigation strategies for those 

risks (Rolik 2017b), and risks facing solar and wind energy projects along with the available risk 
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mitigation strategies that can contribute to the sector’s growth and long-term sustainability 

(Turner et al. 2013).  

Much of the risk identification literature in onshore wind farm construction has focused 

on the identification of risks, as opposed to the development of advanced methods for identifying 

risks. As such, these studies have not addressed the challenges associated with the management 

and representation of knowledge for risk identification. The importance of project context and 

knowledge representation in risk identification is detailed in the following section. 

3.2.2 Project Context and Knowledge Representation 

Context is defined by Dey (Dey 2001) as “any information that can be used to 

characterise the situation of an entity. An entity is a person, place, or object that is considered 

relevant to the interaction between a user and an application, including the user and applications 

themselves”. With respect to risk identification problem, entities are risk factors, and the 

information used to identify the risk factors is the project context. From a construction 

perspective, Boukamp and Ergen (2008) defined context as specific project conditions on site 

(such as the project components that are built), activities performed, and resources used. Dey 

(2001) further outlined three important features of context-aware modelling techniques, 

specifically (1) the system has the ability to present information and services to the user; (2) the 

system can automatically execute services for a user; and (3) the system can link context and 

information together to enable reasoning and retrieval. 

Consideration of project context can be achieved through knowledge representation, 

which is the process of recording and coding real-word domain knowledge using communicative 
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media to allow reasoning (Levesque 1986; Stephan et al. 2007). The five main categories of 

representation techniques include object-, network-, frame-, logic-, and semantic web-oriented 

(Kapauan and Fernandez 2002) representation. Object-oriented representation allows 

information to be organized as objects that communicate with each other (Kapauan and 

Fernandez 2002). Each object is defined by private properties (i.e., attributes) and methods (i.e., 

procedures) (Kapauan and Fernandez 2002). Objects can only communicate with each other 

through messages (Kapauan and Fernandez 2002). Network-oriented representation allows 

knowledge to be represented visually through a network of interconnected nodes, each 

representing different entities that have various relationships (Kapauan and Fernandez 2002). 

Frame-oriented representation, which is often used in natural language processing, allows all 

information relevant to an entity to be arranged together in one structure associated with that 

entity (Kapauan and Fernandez 2002). Logic-oriented representation makes use of rules that deal 

with propositions, where a conclusion can be drawn based on different conditions. Lastly, 

semantic web was developed to represent generic knowledge, such as concepts, their 

relationships, and how they are semantically associated (Stephan et al. 2007). 

Risk management is often complicated in construction by the fragmented nature of 

construction data, where various data are stored in isolated data islands. As such, risk 

management in construction requires a systematic model for risk management that allows the 

consideration of complex risk sources and their causation mechanisms (Cao et al. 2020). A 

change in project context can significantly influence the risk factors of a project (Leung et al. 

1998). Incorporating project context with risk factors allows risk analysts to identify context-
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oriented risk factors, instead of relying on a generic list that may not apply to the current 

situation (De Zoysa et al. 2005; De Zoysa and Russell 2003). Considering context descriptors is 

beneficial for accurate recognition and for determining potential relationships between risk 

factors and their sources (Cao et al. 2020). Ignoring project context information increases the 

burden on analysts due to the effort required to select the risk factors that are more relevant to the 

current project (De Zoysa et al. 2005; De Zoysa and Russell 2003). Furthermore, the use of 

knowledge acquired from previously-executed projects is often limited without an explanation 

by the practitioners involved in these projects regarding the context and relationships between 

data (Scherer and Reul 2000).  

Recent work by Kifokeris and Xendis (2019) suggested that risk factors and sources 

should be contextually and methodologically integrated with other technical project information. 

Context modelling approaches were classified by Wang and colleagues (Wang et al. 2004) into 

formal and informal modelling. Formal context modelling adopts formal approaches for 

manipulating contexts to enable reasoning about contextual knowledge. Conversely, informal 

context modelling is often based on proprietary representation schemes that do not permit 

reasoning about contexts in a single system (Wang et al. 2011) or share understanding about 

context easily between different systems (Wang et al. 2004). Although a majority of context 

models employ classification systems to structure contextual information, only a few allow 

association relationships between contextual information without considering the semantic 

relationships (Wang et al. 2011). Existing methods for identifying risks in construction are 

detailed as follows. 



                                                                                                                                                  66 

______________________________________________________________________________ 

 

 

3.2.3 Risk Identification Techniques in Construction 

Risk identification techniques can be classified as either traditional methods or advanced 

methods. Generally, traditional methods implement the risk identification process manually 

without any support from information and communications technology (ICT) techniques (Zhang 

and Zhong 2014), while advanced techniques tend to automate the risk identification process 

using some form of ICT techniques (Ding et al. 2012). Brief descriptions of both traditional and 

advanced methods, as well as promising developments in each category, are provided. 

3.2.3.1 Traditional Techniques 

Manual documentation review, where risk factors are identified through a review of 

documents from the current or similar projects, is one of the most common traditional risk 

identification approaches (Rostami 2016; Siraj and Robinson Fayek 2019). Time consuming and 

laborious, documentation review relies heavily on the quality of the documentation and expert 

judgment for identifying risk factors and on the ability of experts to discover relationships 

between knowledge that exists in the same or different documents. 

Other common traditional techniques rely solely on expert judgment for risk 

identification (Siraj and Robinson Fayek 2019). In the Delphi technique, a group of experts are 

asked individually about the relevance of each potential risk factor to the project; then, their 

opinions are aggregated and recirculated among the participants until a consensus is reached 

(Barati and Mohammadi 2008; Garrido et al. 2011). The brainstorming technique can also be 

applied. This technique begins with the presentation of the overall objectives, followed by a free 

and open dialogue to encourage the identification of risk factors (Garrido et al. 2011; Goh et al. 
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2013; Tavakolan and Mohammadi 2018). Another common technique is one-to-one interviews. 

Here, interactive dialogue is used to elicit risk factors directly from interviewees (Chapman 

2001), where experts are interviewed directly about the risk factors in a project. Although the 

Delphi technique, brainstorming, and interviews do not rely on project documents for risk 

identification, these techniques depend on expert recollection of previous experiences and 

comparing them to the project under study. Depending on expert recall can result in certain risk 

factors being unintentionally omitted. Notably, Goh et al. (Goh et al. 2013) have recommended 

the implementation of a database interface between project team members to streamline 

communications during brainstorming sessions. 

Using checklists developed from previous projects (AbouRizk 2009) or lessons learned 

(Barati and Mohammadi 2008) as a memory aid is another traditional technique for risk 

identification. Often used as a starting point in the risk identification process (Rostami 2016), 

checklists alone cannot link risk factors to specific project contexts. Risk registers, which use 

recorded data from previous projects—including information about the risk factors, response 

strategies, required resources, risk impact, and risk allocation (De Zoysa and Russell 2003; 

Willams 1994)—to identify risk factors in new project (Siraj and Robinson Fayek 2019), may 

also be used for risk identification. Although risk registers provide more information compared 

to other traditional techniques, risk registers, much like checklists, lack the capacity to 

automatically map risk data to each other. Lastly, diagramming or graphical techniques, 

including cause-and-effect diagrams, system or process flow charts, and influence diagrams, 

have been used to identify risks in construction projects (Rostami 2016; Siraj and Robinson 
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Fayek 2019). These techniques are used relatively infrequently in construction (Garrido et al. 

2011; Siraj and Robinson Fayek 2019), and similarly to other traditional identification 

techniques, the accuracy of diagramming techniques relies on the recall accuracy of experts. 

Traditional risk identification techniques are limited by several barriers, including (1) 

requiring experts to review a significant volume of project documents, (2) inability to 

automatically discover and map relations between risk knowledge that exists in the same or in 

different documents, and (3) dependency of output quality on the recall accuracy of experts. 

3.2.3.2 Advanced Techniques 

A number of a studies have attempted to address the limitations of traditional risk 

identification techniques through the development of advanced risk identification methods. De 

Zoysa and Russel (2003) suggested the use of project context to identify the risk factors of a 

construction project using a knowledge-based system (De Zoysa 2006; De Zoysa et al. 2005; De 

Zoysa and Russell 2003). Their risk identification framework consists of three primary 

components: a standard library (standard templates), current project context, and rule sets. The 

standard library allows the user to define the project context for sources of risk factors, including 

financial, social, environmental, political, and regulatory aspects. The current project context 

allows the user to define the attributes and parameters of the current project. The rule sets allow 

communication between the current project context and the standard library.  

Although able to consider the specific context of a particular project, the rule sets that 

link the current project to the standard library must be defined manually for each new project. 

Requiring considerable time and effort, existing knowledge-based approaches do not represent a 
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considerable improvement in terms of laboriousness and time. 

Other researchers have suggested the use of case-based reasoning for risk identification. 

For example, Somi et al. (Somi et al. 2020, 2021) proposed a fuzzy case-based reasoning model 

to support risk identification in onshore wind projects. However, the first study (Somi et al. 

2020) focused only on s specific component of the project (i.e., tower assembly). Moreover, both 

studies (Somi et al. 2020, 2021) lack the ability to represent risk knowledge and project context 

information. Zou et al. (Zou et al. 2017) proposed case-based reasoning and natural language 

processing to retrieve similar cases from previous projects. Although able to more rapidly 

identify project risks, these methods are unable to consider the detailed context of project during 

the identification process. 

Recently, evidence demonstrating the potential of ontology-based approaches to address 

these gaps has been reported, with several studies demonstrating promising results in other 

application areas. For example, Xing et al. (Xing et al. 2019) developed an ontology model to 

identify risks in a metro construction project. Aziz et al. (Aziz et al. 2019) proposed an ontology 

model to represent the knowledge of safety hazards during petrochemical operations. Cao et al. 

(Cao et al. 2020) presented an ontology model to support the identification of accidents during 

railway operations. (Osorio-Gómez et al. 2019) proposed an ontology approach for risk 

identification of operational risk management in a supply chain with third party logistics 

providers. Although promising, these studies were limited to a specific set of risk factors in other 

application areas. The ability of these existing approaches to identify and assess a comprehensive 

set of all risk factors present during construction, therefore, remains considerably limited. 
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Although still in its infancy, the development of more generalized ontology-based risk 

assessment approaches has been described in a few studies. A description of ontological 

modelling in construction and for risk identification is detailed as follows. 

3.2.4 Ontological Modelling in Construction  

A fundamental key to proper and successful risk management is the ability to share 

information between different technical and management teams in a project (Aziz et al. 2019)—a 

process requiring a unified language, terminology, and information (Aziz et al. 2019). Ontology, 

as a means for information storage and transfer, is a widely-used approach for knowledge 

representation and modeling, especially when knowledge is highly interconnected and linked 

(Munir and Sheraz Anjum 2018). Key objectives that can be achieved by the development of 

ontologies have been described by Noy and McGuinness (2001). These include (1) to share a 

common understanding of the structure of information between people or software agents, (2) to 

enable the reuse of domain knowledge, and (3) to analyze domain knowledge.  

Ontology represents domain knowledge as a set of concepts along with the connections 

(i.e., relationships) between them (El-Diraby et al. 2005; El-Diraby 2013). Compared to 

traditional database schema (Xing et al. 2019), ontologies enable the presentation of knowledge 

with explicit and rich semantics. As such, ontology goes beyond the listing of all concepts within 

specific domain; rather, it represent an abstract philosophical conceptualization of the essence of 

knowledge in a domain (El-Diraby 2013). Ontology development typically begins as meta-

ontology, which describes the main components of knowledge to be considered (Aguilar et al. 

2018). Then, a taxonomy is used to organize sub-concepts contained within each of the main 
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components (Niu and Issa 2015). A taxonomy allows for the organization of concepts into 

concept schemes through a hierarchy of classes and subclasses (Niu and Issa 2015). A class is a 

collection of instances that can encompass sub-classes within its taxonomy. Relationships are 

used to describe the connections amongst the classes and sub-classes of the ontology. The 

various features and attributes of the classes and sub-classes are defined by properties. Instances 

are the basic component of an ontology, which fill the defined properties of the classes and 

subclasses (2001). Ontology-based approaches have two advantages over traditional knowledge 

representation techniques, specifically (1) they are able to model context variables and semantic 

relationships in one unified framework and (2) they can be used for reasoning purposes to infer 

the characteristics of a system with new conditions.  

Ontology has been widely applied in construction management to model the domain 

knowledge of construction concepts. Leading research in this area was originated by El-Diraby et 

al. (2005), who proposed a domain taxonomy of construction knowledge that provided a 

foundation for the development of domain ontologies of urban civil infrastructure (El-Diraby and 

Osman 2011), highway infrastructure (El-Diraby and Kashif 2005), and generic construction 

domain knowledge (El-Diraby 2013). Existing ontology-based approaches to model risk 

knowledge in construction are limited by one of two barriers. The first set of studies have limited 

their scope to a specific set of risks. A comprehensive set of project risks, therefore, can not be 

identified using these methods. Examples include the use of ontologies to identify safety hazards 

related to specific construction methods, such as metro construction (Xing et al. 2019; Zhong and 

Li 2015) or to model the safety requirements and standards for active fall safety hazards (Guo 
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and Goh 2017). Similarly, other researchers have attempted to link building information 

modeling (BIM) to ontology for identifying safety hazards in construction projects (Ding et al. 

2016; Zhang et al. 2015). However, these studies primarily focused on modelling knowledge of 

safety hazards related to a specific construction method at the activity level. Although an 

ontology-based approach was used in the aforementioned studies, risk knowledge at the project 

level was not modeled. Moreover, studies focused on safety risk factors, while overlooking cost, 

time, quality, and environmental risk factors.  

The second set of studies have focused on improving knowledge management and 

transfer between different phases of the risk management process at the project level. For 

example, Tserng and colleagues (Tserng et al. 2009) proposed an ontology-based risk 

management (ORM) model for representing risk factors’ knowledge to enhance information flow 

in both the identification and assessment phase of the risk management process. Importantly, 

however, their model did not consider the specific context of a project, limiting the ability of 

their model to support context-driven risk identification in practice. Meditskos and colleagues 

(Meditskos et al. 2012) and Angelides and colleagues (Angelides et al. 2012) proposed an 

ontology model to facilitate the integration of risk assessment practices from various domains 

and to provide unified terminologies for managing risks in industrial projects. Similarly to the 

study of Tserng and colleagues, the coverage and comprehensiveness of Meditskos and 

colleague’s model were limited: only a high-level ontology model, with few details regarding the 

taxonomies in each sub-ontology, was presented. Therefore, existing models are limited due to 

their inability to consider the semantics of the contextual information required for proper 
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identification of risk factors. Nevertheless, these previous models laid the foundation for the 

current study by suggesting that ontology-based modelling may represent a potential approach 

capable of addressing the challenges related to context and semantic modelling in risk 

identification (Wang et al. 2011).  

Although no single ontology can fully cover all domains, nor can a single ontology 

satisfy the needs and preferences of all users (El-Diraby and Kashif 2005; El-Gohary and El-

Diraby 2010), generic ontologies for application to a certain project type can be designed. An 

ontology for improving knowledge management during risk identification in onshore wind 

projects, however, has yet to be developed. 

3.2.5 Research Gaps  

Several limitations of advanced risk identification techniques that must be addressed to 

progress the state-of-the-art have been recognized in the literature:  

1. While existing knowledge-based models (De Zoysa 2006; De Zoysa et al. 2005; De 

Zoysa and Russell 2003) are capable of integrating risk factors with specific project 

contexts, the modelling approaches proposed require practitioners to expend a 

considerable amount of time and effort to develop the rules that map risk factors to 

their context. 

2. Although less laborious, existing case-based reasoning models (Somi et al. 2020, 

2021; Zou et al. 2017) lack the capacity to consider detailed project contexts and, 

when mapping to corresponding risk factors, prevent automated reasoning and 

identification of related risk factors.  

3. Existing ontology models developed to support risk identification in construction 

focus on only: 

a. a specific set of risk factors (Angelides et al. 2012; Aziz et al. 2019; Cao et al. 
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2020; Meditskos et al. 2012; Osorio-Gómez et al. 2019; Tserng et al. 2009; Xing 

et al. 2019) or 

b. risks at the activity-level (Ding et al. 2016; Zhang et al. 2015).  

4. Ontologies designed to support risk identification in onshore wind projects have not 

yet been developed. 

3.3 Proposed Framework  

To address the aforementioned gaps, this study has developed a generic risk ontology for 

onshore wind farm projects that is capable of identifying a context-driven list of project risks 

during the execution phase of construction projects. The risk ontology was then incorporated into 

a framework designed to enable the rapid, automatic identification of various risks in 

consideration of detailed project contexts. The proposed framework consists of three steps, (1) 

ontology population, (2) current project data collection and input, and (3) risk factor 

identification, as shown in Figure 3.1. The methodology used to develop the ontology as well as 

a description of the proposed framework are detailed in Sections 3.1 and 3.2, respectively. 

Ontology Population

Historical project data:

• Context information

• Risk information

Output 

• Queries based on contextual 

data

• Identify related risk factors

Risk Ontology

Current Project Data Collection

• Project description report

• Construction plan report

• Natural heritage assessment

• Built heritage assessment

• Archaeological assessment

•      

 

Figure 3.1. Proposed ontology-based framework for risk identification. 
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3.3.1 Ontology Development 

First, the generic risk ontology that is incorporated into the framework was developed 

using the method proposed by Noy and McGuinness (2001). The methodology consisted of a 

conceptual formulation stage and an implementation stage. The conceptual formulation stage 

included six steps. The first was a knowledge extraction step, where (1) the domain and scope of 

the ontology was determined. This was followed by ontological preparation steps, where (2) 

important terms were enumerated and (3) classes and class hierarchy, (4) relationships between 

classes, (5) properties of classes, and (6) instances within classes were defined. Conversely, the 

implementation stage consisted of two steps, specifically ontology (7) implementation and (8) 

evaluation. An overview of the methodology used to develop the ontology is presented in Figure 

3.2. 

Knowledge Extraction

• Determine the domain and scope 

of ontology:

Ontological Preparation

• Enumerate important terms in the ontology

• Define the classes  taxonomy

• Define the relations between classes

• Define the properties of classes

• Define the instances of classes

• Risk drivers

• Risk classification

• Project objectives

• Rsponse strategy

Risk Ontology Implementation

• Compile the prepared knowledge 

using any platform 

Ontology Testing and Evaluation

• Testing by application to real projects

• Ontology evaluation through:   
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• Automatic evaluation

• Criteria-based evaluation 

• Application-based evaluation

 

Figure 3.2. Ontology development methodology. 
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3.3.1.1 Knowledge Extraction 

In the knowledge extraction step, competency questions that focus on determining the 

purpose, scope, level of formality, intended uses, and end-users of the risk ontology were 

established based on those recommended in literature (El-Diraby and Kashif 2005; El-Diraby 

and Osman 2011). Questions in this study included “What is (are) the purpose(s) of the 

ontology?”, “What parts of the risk management process should be covered by the ontology?”, 

“What information should be captured in the ontology?”, and “Who are the end-users of the 

ontology?”.  

It was determined by the authors that the ontology should focus on the identification 

stage of the risk management process to support project planners, project managers, and decision 

makers who are involved in the risk identification of onshore wind projects. As such, information 

related the drivers or sources of the risk factor, the response strategy developed to mitigate the 

impacts of risk factors if they occurred, and their effect on the project and objectives of the 

project were included as classes of this particular ontology. 

Once the scope was defined, a meta-model of the ontology was developed to support 

knowledge extraction and modelling. The meta-model was developed based on a review of 

previous research related to knowledge-based risk identification (De Zoysa and Russell 2003; 

Leung et al. 1998; Meditskos et al. 2012; Osorio-Gómez et al. 2019). Common classes found 

across multiple studies, or classes used in previous studies that were well-suited to onshore wind 

farm construction were identified, as summarized in Table 3.1. Based on these findings, seven 

key classes, (1) risk factors, (2) project, (3) risk drivers, (4) risk classification, (5) project 
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objectives, (6) project work packages, and (7) response strategy, were used to establish the meta-

model illustrated in Figure 3.3. 

Table 3.1: Summary of classes in previous studies. 

Reference Primary Classes Used 

(De Zoysa and Russell 2003) Risk factors, risk factor classification, response 

strategies, and physical components 

(Leung et al. 1998) Risk factors, risk factor classification, work breakdown 

structure of affected project components 

(Meditskos et al. 2012) Case study, risk case, risk, risk variable, category, and 

impact category 

(Osorio-Gómez et al. 2019) Risks, sources of risk, frequency, impact, managerial 

strategies, and logistic companies 

 

It is also common practice for domain experts (groups of 3–10 experts) to be involved in 

the iterative development and evaluation of ontologies (in contrast to using a mass survey 

approach) (El-Diraby and Kashif 2005). Here, a focus group consisting of six experts in risk 

management, as detailed in Table 3.2, evaluated the meta-ontology and confirmed that the 

content analysis was complete, and that ontology development could begin. 

 

 

 

 

 

 

 



                                                                                                                                                  78 

______________________________________________________________________________ 

 

 

Table 3.2: Demographic information of focus group experts. 

No. Position Industry Experience Education 

1 Vice President  20 M.Sc. 

2 Project Manager 18 B.Sc. 

3 Project Manager 15 B.Sc. 

4 Risk Analyst 12 B.Sc. 

5 Wind Turbine Engineer 10 Ph.D. 

6 Project Coordinator 7 B.Sc. 

 

SubclassOfClass/Subclass hasEffectOn hasResponsehasType OccuredInhasConsecuenceOnCause Necessary 

condition (has at 

least one driver)

CausedBy

 

Figure 3.3. Meta-model of onshore wind farm risk knowledge in Protégé®. 

3.3.1.2 Ontological Preparation 

After establishing the meta-model and the main classes that should be modeled in the risk 

ontology, detailed descriptions of the classes, relationships, and properties were developed. 
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Content analysis was applied to discover the existence of classes within texts, to understand their 

meanings, and to analyze the relationships between the classes (Niu and Issa 2015). Following a 

content analysis of related project records, historical data, and project documents, the defined 

classes were detailed using a knowledge taxonomy format. Consultations with domain experts 

were used to periodically evaluate the representativeness of the developing taxonomies. In the 

following sub-sections, each taxonomy is defined; then, semantic relationships between the 

classes of the meta-model are detailed. Finally, data properties of the classes and sub-classes are 

described. 

3.3.1.2.1 Development of Class Taxonomy 

The taxonomy development process typically includes varying degrees of judgments 

regarding classification and the balance between depth and coverage (El-Diraby et al. 2005). A 

review of existing literature provided the foundation for taxonomy development. Moreover, 

ontology development best practices proposed by El-Diraby et al. (El-Diraby et al. 2005), 

specifically (1) iterative development and (2) involvement of domain experts, were used to 

support this process. After the first set of expert interviews (i.e., held after the development of 

the meta-model), a set of preliminary taxonomies, based on available literature, was developed. 

Then, a second set of interviews with the domain experts listed in Table 3.2 were held. Subject 

experts reviewed and evaluated the proposed taxonomy. Their feedback was incorporated, 

ultimately resulting in the final taxonomies illustrated in Figure 3.4. The development process of 

each class is detailed as follows. 

• Risk drivers’ taxonomy 
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Understanding the relationships between the risk factors and their drivers is crucial for 

effective risk identification. The taxonomy of the risk drivers class was developed based on 

previous research (De Zoysa et al. 2005; De Zoysa and Russell 2003; Leung et al. 1998; Xing et 

al. 2019), which proposed that risk identification can be classified into external and internal 

project contexts. This sub-classification was applied to the risk drivers’ class of the current 

ontology, as illustrated in Figure 3.4.  

Here, the external project context class represents the characteristics surrounding a 

project, including physical, economic, social, political, and regulatory contexts (De Zoysa 2006; 

De Zoysa and Russell 2003). The first external project context sub-class is the physical class, 

which represents both the natural and artificial objects surrounding a project. The physical sub-

class is further divided into the natural objects sub-class, which includes living organisms and 

inorganic objects, such as geological features and natural resources (De Zoysa 2006; De Zoysa 

and Russell 2003), as well as the artificial objects sub-class, which represents man-made objects, 

including existing structures such as buildings, utilities, and other infrastructure. The second 

external project context sub-class is the economic sub-class, which refers to financial conditions 

such as inflation, exchange rate, and labor market. The third sub-class is the political context 

sub-class, which represents federal, state (or provincial), and municipal government 

characteristics. The fourth sub-class, the regulatory class, refers to the various regulations 

imposed by the federal, state (or provincial), and municipal governments on project execution, 

such as environment protection laws, labour and safety regulations, and other municipal by-laws. 

The final sub-class, the social class, refers to the demographic profile of the project, in terms of 
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cultural characteristics of local and First Nations communities. 

The internal project context class contains two sub-classes, the process sub-class and the 

organizational structure sub-class, as detailed in Figure 3.4. The process sub-class refers to the 

various work packages executed during the construction phase of the project that are represented 

in a typical work breakdown structure. The organizational structure sub-class represents the 

different stakeholders involved in the project and, importantly, the relationships between them 

(De Zoysa Sanjaya et al. 2005; Zoysa and Russell 2003).  

• Risk classification taxonomy 

Risk factors in onshore wind farm projects can be classified into a number of risk 

categories. The risk factor classification taxonomy developed here, and illustrated in Figure 3.4, 

was adopted from the generic taxonomy for risk factors in construction projects proposed by 

Siraj and Fayek (Siraj and Robinson Fayek 2019). Risk factors themselves are instances of the 

risk factor class and are linked to the risk classification class through a “hasType” relationship, 

as detailed in Section 3.1.2.2 below. 

• Project objectives taxonomy 

The aim of all construction projects is to execute the project with a high level of quality, 

within planned budgets and schedules, with zero incidents, and with little, if any, harm to the 

environment (De Zoysa and Russell 2003). When a risk factor occurs, it has the potential to 

impact one or more of these five objectives. As such, five sub-classes, namely cost, time, quality, 

safety, and environmental objectives, were included in the taxonomy of the project objectives 

class, as illustrated in Figure 3.4. 
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• Project work packages taxonomy 

In certain conditions, risk factors are known to affect select portions of the project. Based 

on the work breakdown structures of onshore wind farm projects developed by Hao et al. (2019) 

and Mohamed et al. (Mohamed et al. 2021), the construction activities of onshore wind farm 

projects were represented in the current ontology by eight primary work package sub-classes, as 

shown in Figure 3.4. 

• Risk response strategy taxonomy 

Risk response strategies in construction projects are commonly-grouped under five 

categories (Baker et al. 1999). Accordingly, risk acceptance, risk elimination, risk transfer, risk 

retention, and risk reduction sub-classes for the risk response strategy class were developed in 

the ontology, as shown in Figure 3.4. 
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Figure 3.4. Class taxonomy of risk ontology. 
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3.3.1.2.2 Relationship Establishment 

Semantic relationships emulate how two or more concepts are associated (Guo and Goh 

2017). Relationships are often defined by a verb-containing phrase that describes the semantics 

of the relationship (Guo and Goh 2017) to enable their reasoning (Wang et al. 2011). Two of the 

five methods proposed by El-Diraby et al. (El-Diraby et al. 2005) were applied to identify 

relationships in the current ontology, specifically (1) a review of related ontologies and their 

approaches to build relationships and (2) expert review during the development phase of the 

research. All of the relationships defined between classes, in addition to the domain and range 

for each, are illustrated in Figure 3.4. Details of this process are described as follows. 

In this research, relationships between classes and associated sub-classes were 

established using Hyponym–Hyperonym relationships. Hyponym–Hyperonym relationships, 

which have been referred to by a number of alternate terms including IS-A (is-a), a-kind-of, 

genus-species, and class-subclass relationships, are commonly-used to establish relationships 

(Khoo and Na 2006). Here, classes (i.e., hyperonym) are related to sub-classes (i.e., hyponym) 

using verb-containing phrases. For example, the risk drivers are divided into internal and 

external risk drivers, thus “internal risk drivers are a-kind-of risk drivers”. Cause-and-effect 

relationships between concepts were described by a number of causative verbs, such as Cause, 

hasConsequenceOn, hasEffectOn, hasType, and hasMitigation (Figure 3.4). For example, “risk 

drivers cause risk factors”. Finally, concept-object relationships were used to specify 

relationships between classes and their instances. As an example, “accidental damage of 

archaeological finds is-instance-of risk factor”. 
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3.3.1.2.3 Properties Identification 

Although the taxonomy of different classes discussed above provides a description of the 

domain ontology, it does not provide detailed information about the classes, sub-classes, and 

their instances. As such, properties were used to represent the detailed characteristics of the 

predefined classes (El-Gohary and El-Diraby 2010), as defined in Table 3.3. The inclusion of 

properties is particularly important for the project context class, as the associated risk factors 

depend on the specific characteristics (i.e., properties) of the project context. 

3.3.1.2.4 Expert Review of Risk Ontology 

Once the class taxonomy, relationships, and properties were established, a second focus 

group meeting was organized to collect feedback from domain experts. Experts were asked to 

indicate whether or not they believed that the ontology was being developed in a manner that 

was representative of real operations and was capable of fulfilling the intended purpose. Each 

taxonomy was discussed in depth with the focus group, along with the associated relationships 

and properties. Questions that were asked in this meeting included, “Do you think the taxonomy 

depth comprehensively covers the knowledge in this class?”, “Do you think the relationships are 

logical and capture the association between classes?”, and “Is the hierarchy of the taxonomy 

reasonable?” 

 

 

 

 

 



                                                                                                                                                  86 

______________________________________________________________________________ 

 

 

Table 3.3: Data properties defined for the risk driver class. 

Class (Domain) Data Property Data Type Units 

Project Project name String – 

Project location  String – 

Project size  Float MW 

Project duration  Float months 

Roads and railways Road category String – 

Average daily traffic Float vehicle/day 

Existing buildings Heritage significance Boolean – 

Closest construction activity String – 

Distance to closest activity Float m 

Utilities (pipelines 

/cables) 

Closest construction activity String – 

Distance to closest activity Float m 

Botany Name  String – 

Closest construction activity String – 

Distance to closest activity Float m 

Temperature Minimum winter temperature (5 year average)  Float °C 

Maximum winter temperature (5 year average) Float °C 

Average winter temperature (5 year average) Float °C 

Precipitation Average snowfall (5 year average) Float cm 

Maximum snowfall (5 year average) Float cm 

Average rainfall (5 year average) Float mm 

Maximum rainfall (5 year average) Float mm 

Wind Maximum wind speed (5 year average) Float m/s 

Average wind speed (5 year average) Float m/s 

Archaeological 

heritage 

Closest construction activity String – 

Distance to closest activity Float m 

Heritage significance Boolean – 

Land use Purpose  String  

Affected area size Float m2 

Soil Type  String – 

Groundwater level Float m 

Hydrography Closest construction activity String – 

Distance to closest activity Float m 

Earthquake Return period Integer years 

Magnitude  Float Richter 

Zoology Closest construction activity String – 

Distance to closest activity Float m 

Breed in the area Boolean – 
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Animal name String – 

Political Overall stability Boolean – 

Support for the project Boolean – 

Regulatory Responsible agency String – 

Approval status Boolean – 

Social Attitude toward project String – 

Participation in public consultation Boolean – 

Organizational Cooperation level  String – 

Risk attitude String – 

Clear responsibility Boolean – 

Response strategy Description String – 

Risk factor Probability  String – 

Impact  String – 

3.3.1.3 Ontology Implementation 

Following the review by domain experts, the ontology was modeled using a knowledge-

domain modelling platform to transform the ontology from a conceptual model to an 

implementable format for testing and application. Designed to facilitate the development, 

navigation, and visualization of knowledge-domain models, the free, widely-used, and open-

source ontology platform, Protégé, was applied to implement the risk identification ontology in 

the present study (Rubin et al. 2007). Notably, other ontology platforms may also be used. 

3.3.1.4 Ontology Verification 

Two evaluation methods were used in this study to verify the implementable version of 

the risk ontology. First, an automated consistency check was applied to ensure that the ontology 

was free from contradicting facts (Gómez-Pérez 1996), which can result inconsistencies and, 

ultimately, in incorrect conclusions. Second, criteria-based evaluation was used to verify the 

content of the ontology using a predefined set of criteria proposed for ontology evaluation in 

previous research (Guo and Goh 2017; Xing et al. 2019). The verification processes are detailed 
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as follows. 

3.3.1.4.1 Automated Consistency Check 

The Pellet reasoner (Sirin et al. 2007) in Protégé was used to perform an automated 

consistency check. This reasoner has been applied to many applications in construction research, 

where is has been shown to be stable. Here, the Pellet reasoner reviewed the ontology for 

inconsistent, disjointed class assertions, domains, and ranges of relationships. An automated 

consistency check was performed routinely at each step in the development process of the 

ontology. A final check was conducted after ontology was completed. Results of the final 

consistency check are shown in Figure 3.5. The “owl: Nothing” of Figure 3.5 indicates that 

inconsistencies in the ontology were not found. 

 

Figure 3.5. Consistency check in Protégé. 

3.3.1.4.2 A Criteria-Based Evaluation 

Criteria-based evaluation was conducted through interview with domain experts using a 

focus group approach. Experts were selected based on the following criteria: (1) years of 
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experience in the risk management of construction projects and (2) familiarity with risk 

identification in wind farm projects. To reduce bias, experts that were not interviewed during the 

ontology development process performed the evaluation. Three experts were selected: a project 

manager, estimator, and risk analyst with an average of 15 years of experience in industry. 

The goal of the criteria-based evaluation was to test the adequacy of the semantics and 

the ease of use of the ontology (El-Diraby and Osman 2011). Once selected, experts were asked 

to rate their satisfaction with the proposed risk ontology across several criteria using a 5-point 

Likert scale. An open-ended question asking the experts to indicate other areas of the ontology 

that may require further investigation was also included. Results of the criteria-based evaluation 

are summarized in Table 3.4 and are described below. 

Table 3.4: Overall evaluation by experts. 

Criteria Sub-Criteria Average Std. Dev. 

Coverage Core concepts are incorporated 4.33 0.57 

All relationships are incorporated 4.00 1.00 

Completeness Definitions of classes, taxonomy, and relationships are 

complete 

4.33 0.57 

The ontology explicitly includes all that should be included 4.67 0.57 

Clarity All concepts in the ontology are clear 5.00 0 

Concepts are in agreement with literature 4.33 0.57 

Conciseness The ontology does not contain unnecessary concepts 4.67 0.57 

The ontology does not contain explicit redundancy between 

concepts 

5.00 0 
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• Coverage 

Coverage assesses whether the ontology incorporates the main concepts and relationships 

within the domain or lacks certain classes and relationships (El-Gohary and El-Diraby 2010). 

This criterion was also examined throughout the conceptual formulation stage as the taxonomies 

and relationships of the meta-ontology were established. Based on the results of the evaluation, 

subject experts “agreed” that core concepts and all relationships are incorporated in the 

developed wind farm risk ontology. The overall average evaluation of this criterion was 4.16, 

with a standard deviation of less than one, indicating that the evaluation was consistent amongst 

the experts. The experts proposed that other concepts could be added to benefit the risk 

quantification stage. 

• Completeness 

Completeness determines if the classes, taxonomies, and relationships defined in the 

ontology are complete and appropriate for use in the application stage (Gómez-Pérez 1996). The 

ontology is considered complete if two conditions are satisfied: (1) each definition is complete 

and (2) the ontology explicitly includes all that should be included (Gómez-Pérez 1996). To 

achieve this, a top-down approach is used to assess if each top class is complete with respect to 

its subclasses (taxonomy) and if the domain and range for each relationship is defined. The 

overall average evaluation of this criterion was 4.50, indicating that the experts “agreed to 

strongly-agreed” that the classes, taxonomies, domain, and range of the relationships were 

complete. There were no open-ended comments regarding completeness.  

• Clarity 
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Clarity of ontology indicates if an ontology can clearly exhibit the intended meanings of 

the developed classes and their taxonomies without ambiguity. This criterion was also examined 

throughout the conceptualization stage as concepts and standards for defining and setting the 

meaning of each concept/class were extracted from literature. The clarity criterion was evaluated 

based on the two items: (1) concepts are clear and (2) intended concept definition was consistent 

with definitions from literature and practice. The overall average evaluation of this criterion was 

4.67, indicating that the experts “agreed to strongly-agreed” that all concepts and their intended 

meanings were consistent with definitions from literature and practice. There were no open-

ended comments regarding clarity. 

• Conciseness 

Conciseness assesses if the information collected in the ontology is useful and precise 

(Gómez-Pérez 1996). Gómez-Pérez (1996) indicated that an ontology is concise if the following 

two conditions are met: (1) it does not contain unnecessary and useless concepts and (2) explicit 

redundancy does not exist between concepts. The overall average evaluation of this criterion was 

4.84, indicating that the experts “agreed to strongly-agreed” that the ontology did not contain 

redundancies or unnecessary concepts. There were no open-ended comments regarding 

conciseness. 

3.3.2 Proposed Framework 

After development, the generic risk ontology was integrated into the proposed 

framework. Application of the framework involves three primary steps: (1) ontology population, 

(2) current project data collection and input, and (3) risk factor identification, as shown in Figure 
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3.1. 

3.3.2.1 Ontology Population 

Historical data of previous projects are input into the generic risk ontology to establish 

instances of each class in a process known as a ontology population or instance extraction 

(Danger and Berlanga 2009; Petasis et al. 2011). The contextual information of previous 

historical projects, together with the risk information of these projects, are then used to extract 

the instances of the developed risk ontology. Instance extraction can be performed either 

manually or automatically using various machine learning approaches (Danger and Berlanga 

2009; Petasis et al. 2011). Notably, companies should continuously enrich the ontology 

contextual information from related projects to improve the identification of risks for new 

projects. 

3.3.2.2 Current Project Data Collection 

After inserting the instances into related classes, the ontology—now enriched with 

knowledge—can be used to fetch information for risk identification purposes. Current project 

data is then input into the populated ontology. Required inputs for this process include the 

contextual information about the project for which risk factors must be identified. This 

information can be collected once the context of the project is established (i.e., scope of the 

project and surrounding environment) from various project documents, such as construction plan 

reports, financial reports, built heritage assessments, and environmental assessments. Examples 

of input data collection are described in section 4.2 of the case study. 
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3.3.2.3 Risk Factor Identification 

Once the current project data is collected, the contextual information is fed, using queries, 

into the ontology. The queries that input the contextual project information are responsible for 

fetching and retrieving specific project risk factors for the project under study. The ontology can 

be accessed through Description Logic (DL) queries or through SPARQL queries to fetch and 

identify context-based risk factors, as shown in Figure 3.6. The DL query language, supported by 

a user-friendly syntax plug-in for OWL DL, is designed to collect all information about a 

particular class, property, or individual (“DLQueryTab - Protege Wiki” n.d.). SPARQL queries, 

in contrast, have greater flexibility and applicability than DL queries. Readers are referred to the 

online SPARQL reference site (“SPARQL 1.1 Query Language” n.d.) for a detailed explanation 

of SPARQL queries. Various risk-related information can be retrieved based on the structures of 

the queries and descriptors of the project context. Examples of these queries are presented in 

Section 4.3. 

Once risk factors for the new project have been identified, risks can be further analyzed 

by determining their impacts, probabilities, and proposing appropriate response strategies. Risk 

management literature includes a large body of work; readers are referred to the work of Somi et 

al. (Somi et al. 2020), Mohamed et al. (Mohamed et al. 2021), and Mohamed et al. (Mohamed et 

al. 2020b) for a review of current risk management approaches in onshore wind farm 

construction. 
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Risk ontology

Query 

• User:

• Input:new context

• Output:risk factors

 

Figure 3.6. Fetching the ontology. 

3.4 Case Study  

Publicly-available data from seven real wind farm projects were used to demonstrate the 

functionality and applicability of the proposed framework. The onshore wind project, Settlers 

Landing (“Settlers Landing Wind Park” 2017), was chosen as the study project to which the 

proposed risk identification framework was applied. Historical projects used to develop the class 

instance representations and populate the ontology are listed in Table 3.5. Protégé, a free, widely 

used, and open-source ontology platform, was used to implement the risk identification ontology. 

The reader is referred to the user guide (Horridge et al. 2004) of Protégé for a detailed overview 

of the development steps. 

3.4.1 Ontology Population 

A dataset of six onshore wind farm projects located in Ontario, Canada, was collected 

and used to fill and build the instances of the proposed ontology. A description of these projects 

is provided in Table 3.5; all are onshore wind farms. Project documents that were available 

included project descriptions, construction plans, cultural heritage assessments, natural heritage 

assessments, and noise assessments.  

Instances for each class were extracted from these documents, including the risk factors, context 
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of the project (i.e., risk drivers), risk response strategies, and attributes of the instances. Public 

disclosure of project documents is often limited to risks pertinent to the public. As such, the 

majority of extracted information was related to environmental or social risk factors. These 

included environmental risk factors with the potential to cause damage or harm to the 

surrounding environment of the projects or social risk factors, such as traffic congestion and 

noise disturbances due to construction activities. A manual approach instance representation 

approach was adopted in the current case study. First, related documents from different sources 

were reviewed; then, instances were extracted and input into the related class in the ontology. 

Historical risk knowledge was implemented and coded in Protégé platform (Musen 2015), as 

shown in Figure 3.7. The extracted risk concepts and taxonomies were modeled as “classes” 

(Figure 3.7; red box); relationships between concepts were modeled as “object properties” 

(Figure 3.7; blue box); and attributes of the classes were modeled as “data properties” (Figure 

3.7; green box). 
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Table 3.5: Details of the projects used for ontology population. 

No. Project Project Size 

(MW) 

No. of Risk 

Factors 

1 
Belle River Wind Project (“Belle River Wind :: 

Documents” 2016) 
73.5 8 

2 
Bornish Wind Energy Centre (“NextEra Energy Canada - 

Bornish” 2013) 
72.9 8 

3 
Grey Highlands Clean Energy (“Grey Highlands Clean 

Energy: Project Documents” 2015) 
18.5 7 

4 
Grey Highlands Zero Emission (“Grey Highlands Zero 

Emission: Project Documents” 2015) 
10.0 6 

5 K2 Wind Project (“K2 Wind: Project Documents” 2014) 270 6 

6 Port Ryerse Wind Power (“Port Ryerse” 2016) 10.0 4 

 

Classes
Individuals Data Properties Object Properties

 

Figure 3.7. Screenshot of the risk ontology in Protégé®. 



                                                                                                                                                  97 

______________________________________________________________________________ 

 

 

Examples of the populated instances for one risk factor, as well as an example of 

populated instances of the risk factors for an entire project are provided as Figure 3.8 and Figure 

3.9, respectively. The semantic structure of the risk factor “Accidental Damage of 

Archaeological Finds” from the Belle River Wind Project is shown in Figure 3.8. This risk factor 

has six drivers (CausedBy, Cause), which are the foundation excavation activity and the presence 

of five archaeological artefacts near the construction activities. This risk factor is classified 

(hasType) as an environmental risk factor (P1_Environmental_Risk) and is an instance of the 

class “Risk_Factor”. This risk factor can impact (hasConsequenceOn) the project time objective 

(P1_time) because regulations require that work must stop immediately. This risk factor occurred 

in (OccuredIn) the Belle River Wind Project, or Project 1. The attributes of the archaeological 

finds in the project study area are provided in Table 3.6. The example provided in Figure 3.8 

illustrates the advantages of using ontologies to model risk information, specifically (1) the 

ability to model information at the risk-level precisely and (2) the elegance and simplicity of the 

resulting visualization.  

hasConsequenceOn hasType hasResponseInstanceofOccuredInCause CausedBy  

Figure 3.8. Semantic structure of archaeological damage risk in Protégé®. 
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Table 3.6: Data properties of archaeological finds. 

Artifact Name 
Closest  

Activity 

Distance to  

Activity (m) 

Heritage  

Significance 

Aboriginal Artifact Turbine 1 200 Yes 

Aboriginal Artifact 1 Turbine 2 285 Yes 

Aboriginal Artifact 2 Turbine 3 30 Yes 

Euro-Canadian Artifact Turbine 1 131 Yes 

Euro-Canadian Artifact 1 Turbine 3 140 Yes 

 

All remaining risk factors in the Belle River Wind Project were modeled and 

implemented using an approach similar to the detailed risk example. Figure 3.9 illustrates the 

semantic structure, risk drivers (context), and the response strategies of the eight risk factors 

identified in Project 1. The other five projects were modeled and added to Protégé using a similar 

approach.  
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Figure 3.9. Semantic structure of Project 1 risk factors along with their context in Protégé®. 

3.4.2 Current Project Data Collection 

Then, contextual project information from the project under study (i.e., risk identification 

project) was collected and prepared for input into the ontology. Information was retrieved from 

project data available in the Settlers Landing project repository (“Settlers Landing Wind Park” 

2017) and summarized as shown Table 3.7. 
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Table 3.7: Project context information. 

Item  Class Data Property (Attributes) Data Value Unit 

New wind project Project Project name Project A – 

Project location Ontario, Canada – 

Project size 8 MW 

Project duration 5 months 

Stone farmhouse Existing buildings Heritage significance Yes – 

Closest construction activity Access Road – 

Distance to closest activity 750 m 

Plant 1 Botany Name Sugar Maple – 

Closest construction activity Turbine 3 – 

Distance to closest activity 33 m 

Plant 2 Botany Name White Oak – 

Closest construction activity Turbine 3 – 

Distance to closest activity 33 m 

Plant 3 Botany Name White Birch – 

Closest construction activity Turbine 3 – 

Distance to closest activity 33 m 

Amphibian 1 Amphibian Animal name Amphibian Breed. 

Habitat 

– 

Closest construction activity Underground Cable – 

Distance to closest activity 230 m 

Breed in the area Yes – 

Reptile 1 Reptiles Animal name Snake Hibernacula  

Closest construction activity Underground Cable – 

Distance to closest activity 46 m 

Breed in the area Yes – 

Mammal 1 Mammals Animal name Bat Maternity Colony – 

Closest construction activity Access Road – 

Distance to closest activity 18 m 

Breed in the area Yes – 

 

3.4.3 Risk Factor Identification 

Seven separate SPARQL queries were designed for each of the defined project contexts 

provided in Table 3.7.Queries were directly expressed and written in the separate SPARQL tab 
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in Protégé. The query itself was written in the top part of the tab while the query results were 

shown at the bottom part of the tab as shown in Figure 3.10, Figure 3.11, and Figure 3.12. Query 

1 extracted the risk factors and their response strategies that could be implemented to mitigate 

risks resulting from the presence of existing buildings surrounding the project. The results of the 

query are shown in Figure 3.10. Here, one risk factor, “Damage to Existing Infrastructure” was 

identified and recalled based on the similarity of the current project (i.e., Settlers Landing) to 

historical Project 1. Project 1 (i.e., Belle River) had three existing buildings (Farmhouses 1-3) 

located within the project area within varying distances of construction activity. Using the 

context of the current project, which also is characterized by the presence of a farmhouse, the 

framework was able to automatically recall and identify the risk factor “Damage to Existing 

Infrastructure” as well as the associated response strategies. 

Query 2 was designed to search the ontology for risk factors associated with the existence 

of sugar maple trees in the project area based on the contextual information specified in Table 

3.7. Figure 3.11 shows the results of the query. Here, two risk factors “Accidental Vegetation 

Damage/Removal” were recalled from Projects 2 and 5 based on their contextual similarity to the 

current project (i.e., Settlers Landing). 
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Figure 3.10. SPARQL query of existing buildings related risk factors. 

 

 

Figure 3.11. SPARQL query of sugar maple tree related risks. 

Similarly, Queries 3 and 4 were designed to identify risks associated with white oak and 

white birch trees in the project area by entering the associated contextual information (e.g., 

botany name, closest construction activity, and the distance to the closest activity). Queries 5 

through 7 were also developed to identify risk factors resulting from the existence of amphibians, 
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snakes, and bats. Implementation of Query 5 is illustrated in Figure 3.12. Queries 6 and 7 were 

implemented using a similar approach, with the animal name, closest construction activity, and 

distance to activity changed as applicable. The six risk factors recalled and identified using the 

proposed framework for the construction of the Settlers Landing onshore wind project are 

detailed in Table 3.8. 

 

Figure 3.12. SPARQL query of amphibian related risks. 
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Table 3.8. Identified risks of the Settlers Landing wind project. 

No. Risk factors 
Retrieved 

from 
Response description 

1 

 

Damage to 

existing buildings 

 

Project1 

 

Install a 20 m protective buffer zone to avoid these sites 

No ground alteration activities will take place inside of the 20 m 

protective zone 

Adhere to best practices regarding the operation of construction 

equipment and delivery of construction materials. 

2 

 

Accidental 

damage to Sugar 

Maple trees 

 

Project 2 

and 5 

 

Directional drilling will occur at a depth of 4-5 ft below surface to 

avoid impacts on critical root zones. 

Any vegetation removal required along roadside collector lines or 

transmission lines should be minimized and occur completely 

within the road right of way. 

Clearly delineate work area within 30 m of significant natural 

features or wildlife habitats using erosion fencing, or similar 

barrier, to avoid accidental damage to species to be retained. 

Demarcate construction areas 

Restoration of vegetation if any is removed 

Excavation of soils will occur at the minimum distance of 5 m 

away from the drip line of any significant woodland 

3 

 

Accidental 

damage to White 

Birch trees 

 

Project 5 

 

Excavation of soils will occur at the minimum distance of 5 m 

away from the drip line of any significant woodland 

Restoration of vegetation if any is removed 

Demarcate construction areas 

4 

 

Accidental 

damage/mortality 

of Amphibian 

Project 1 

 

If construction activities must occur during the breeding bird 

period (May 1–July 31), a biologist will conduct nest searches, in 

areas where natural vegetation will be removed, to ensure there 
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 will be no impact to breeding birds. 

Implement and enforce on-site speed limits. 

If construction activities within 30 m of significant woodlands 

must occur outside of daylight hours, spotlights will be directed 

downward and/or away from the woodland to limit potential light 

disturbance to breeding birds. 

5 

Mortality of snake 

and damage of 

Hibernaculum 

 

 

Project 3 

Construction personnel will be educated about the location and 

significance of these features 

Flag and demarcate the 30 m area around each hibernaculum 

6 

Disturbance 

and/or mortality 

of bat 

Project 2 

Propose a lighting scheme to that will minimize potential risk to 

bat collisions while fulfilling Transport Canada requirements 

Clearly delineate work area using erosion fencing, or similar 

barrier, to avoid accidental damage to potentially significant bat 

roosting trees 

 

The results show the benefits of using context and mapping to risk factors; it was 

effortless to retrieve the risk factors based on their context. Ontology allowed the modelling of 

risk information easily and accurately, which made the knowledge sharing, reuse, and retrieval 

undemanding for risk analysts. Risk ontology represents a unified knowledgebase of risk 

information where risk analysts can and share use the same concepts and terminologies related to 

the risk factors, project context, and response strategies. No risk factors were identified related to 

the existence of white oak trees in the project area because of no similar context was detected. 

Therefore, the more available context information, the more accurate risk identification results. 
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3.4.4 Framework Evaluation and Anticipated Benefits 

The risk factors identified by the proposed framework (Table 3.8)were compared with 

risks extracted from the publicly-available project documentation on which the case study was 

based (“Settlers Landing Wind Park” 2017). All of the risk factors discussed in the 

documentation were identified by the proposed framework, demonstrating the ability of the 

proposed framework to generate comprehensive, representative results.  

The proposed framework was compared to the traditional risk identification techniques. 

To perform a traditional risk identification, a risk analyst would have needed to review project 

documents for four historical projects with similar contexts and review the documents for the 

project under study. This laborious process was easily and rapidly performed using the proposed 

framework. The framework was also compared to the fuzzy case-based reasoning method for 

risk identification in onshore wind projects proposed by Somi et al. (Somi et al. 2020, 2021). The 

case-based reasoning approach makes use of two project characteristics—project type and 

project work packages—to retrieve similar projects. Risk factors are then extracted based on the 

calculated similarity between two projects. Notably, the fuzzy case-based reasoning approach 

could not consider and model the specific project context—a major advantage of the proposed 

methodology. 

Risk ontology represents a unified knowledgebase of risk information where risk analysts 

can share and use concepts and terminologies related to risk factors, project context, and 

response strategies. The benefits of considering project context and contextual information 

during risk identification was demonstrated in the case study presented here. The proposed 



                                                                                                                                                  107 

______________________________________________________________________________ 

 

 

framework considerably reduced the effort and time required to identify risk factors for a new 

project. Furthermore, the ability of the ontology to identify risk factors based on historical 

information rather than expert recall is anticipated to increase the accuracy of risk identification 

results, thereby improving risk management efforts for both the current and future projects. 

3.5 Discussion  

Risk identification in onshore wind farm projects is a burdensome task for risk analysts in 

construction companies because (1) risk factors have multi-source drivers that must be defined 

accurately, (2) information related to risk factors, risk drivers, and response strategies are 

fragmented across various documents, increasing the time and effort required to review these 

documents, and (3) for the information to be useful in future projects, data related to the risk 

factors must be saved in a manner than can be easily shared and reused. Indeed, as the risk 

knowledge maintained by risk analysts increases, so too does the accuracy of risk identification 

processes.  

Current risk identification practice still relies on spreadsheets and text documents, 

limiting the communication of risk knowledge in practice. A knowledge model that can 

overcome these challenges can represent a real benefit to risk experts and analysts. Ontology and 

semantic web technology has been applied successfully to solve a wide range of knowledge 

modelling problems. Building on these findings, an ontology-based approach to address existing 

risk identification knowledge limitations was developed. The ontology was evaluated by domain 

experts who agreed with the validity and practicality of the model.  

The following limitations should be considered in parallel with the findings of the study. 
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First, the ontology model was developed based on project data from the Canadian wind energy 

sector. While it is expected that the model can be successfully applied to any onshore wind 

project using the proposed methodology, the adaptability of the approach was not directly tested 

in this study. Second, the quality of output results is highly dependent on the quality of the input 

data. In the case study, risk factors related to the presence of white oak tress in the project area 

were not detected, as similar contexts were not identified within the five historical projects used 

to populated the ontology. Third, with the current development, the ontology included only risk 

knowledge related to environmental risk factors, which was the only information available in 

publicly-available project documents. In practice, however, there is not limit to the amount of 

information that construction companies can input into the ontology (i.e., as instances) to enrich 

the ontology. In the future, the onshore risk knowledge stored the model should be expanded. 

Application of the framework to additional onshore wind farm projects will assist in further 

validating the model. Future work can also focus on the development of methods capable of 

automating ontology population and insertion of instances.  

3.6 Conclusion  

Risk identification is an important yet challenging task. While unidentified risks must be 

identified, analyzed, and managed, the abundance of fragmented information that must be 

considered for risk identification renders this process time-consuming, prone-to-error, and 

challenging. Accordingly, this research has developed an ontology-based approach to overcome 

the limitations in the risk identification process. Identification-related information—which 

includes risk factors, risk drivers, risk response strategies, consequence on project objectives, and 
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effect on project work-packages—are modeled semantically using ontologies. The proposed 

approach was validated using an automated consistency check, criteria-based evaluation, and 

application-based evaluation of a real project. The evaluation demonstrated that the proposed 

methodology was beneficial and valuable for risk identification in onshore wind farm projects by 

decreasing the burden on risk analysts. Risk analysts can use the proposed ontology-based 

approach to easily and accurately save, communicate, and reuse the knowledge required for risk 

identification. Reuse of the ontology also allows identification of context-based risk factors when 

a new project is defined. 
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Chapter 4 : Fuzzy-Based Multivariate Analysis for 

Input Modelling of Risk Assessment in Wind Farm Projects 

4.1 Introduction 

Wind and solar energy are expected to lead the future transformation of the global 

electricity sector, with onshore and offshore wind predicted to produce about 35% of total 

electricity demands by 2050 (IRENA 2019). To reach the targeted installation capacity, 

considerable investments in the construction of renewable energy infrastructure are being made 

(IRENA 2019). In Alberta, Canada, $3.6 billion will be invested through the Renewable 

Electricity Program (REP) to add 5000 megawatts of renewable energy by 2030 (“Renewable 

Electricity Program” n.d.),(“Wind energy in Alberta” n.d.).  

As a relatively novel type of infrastructure, wind farm construction is characterized by a 

lack of relevant literature and a scarcity of historical data. The development of risk management 

plans for these types of projects, therefore, are highly dependent on the collection of expert 

knowledge (Somi et al. 2020). While the boom in the wind energy industry has encouraged new 

contractors to engage in the construction of these projects, a lack of data represents a challenge 

for new contractors when conducting risk management. Inadequate risk identification and 

assessment can have a detrimental impact on these large-scale projects, resulting in negative 

effects on cost, time, quality, and safety, while simultaneously discouraging contractors from 

engaging in wind farm construction. 

Risk assessment is necessary during all phases of a wind farm project, including design, 

construction, operation, maintenance, and life cycle planning (Leimeister and Kolios 2018). 
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Although there are several types of qualitative and quantitative methods for reliability-based risk 

assessment, determining which approach to apply in each phase of the project’s life cycle will 

depend on the amount and/or type of data available at a particular phase (Leimeister and Kolios 

2018). Qualitative approaches (e.g., failure mode and effect analysis (FMEA), fault tree analysis 

(FTA), event tree analysis (EVA), and risk matrices), are better suited to the planning and early 

construction phases of a project when data are limited (Leimeister and Kolios 2018). However, 

as projects progress and as more data are gathered, quantitative methods (e.g., analytical 

methods, stochastic methods, and Bayesian approaches) are favored due to their comprehensive 

capabilities (Leimeister and Kolios 2018). 

Monte Carlo simulation (MCS) is a widely applied stochastic quantitative approach for 

risk assessment. It is an extremely powerful tool used for understanding and quantifying the 

potential effects of uncertainty on a project (Kwak and Ingall 2007), and has been widely applied 

to simulate cost and time in construction (Kwak and Ingall 2009). As with many quantitative 

methods, however, the application of MCS is constrained by the need for variables to be input as 

probability density functions, limiting its use in the planning and early construction phases of a 

project. Currently, there are two primary approaches for developing the probability density 

functions that are input into MCS-based risk assessment models (Figure 4.1). 
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Figure 4.1. Levels of data available and accompanying methods used for input modelling. 

As classified by Biller and Gunes (Biller and Gunes 2010), the two approaches are 

categorized based on data availability. The first approach can be adopted when there is sufficient 

historical data available for a particular variable (Biller and Gunes 2010). In this case, a 

probability distribution is fit to the data and is then input into the risk assessment model. The 

second approach is adopted when there is an absence of data. This approach uses elicitation 

methods to construct the input distribution (Biller and Gunes 2010), where the risk analyst can 

decide to use either (1) a probabilistic approach by choosing either triangular, uniform, or PERT 

distributions (Abou Rizk 2013),(Smith et al. 2006), or (2) a possibility approach, where fuzzy 

numbers are used to represent the impact of a risk factor (Sadeghi et al. 2010). 
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Wind farm construction does not have sufficient historical data available to complete a 

risk assessment using the first approach. Nevertheless, there is a substantial amount of detailed 

subjective knowledge available (Somi et al. 2020). The second approach, however, cannot make 

use of this knowledge, thereby missing an opportunity to enhance the reliability of risk 

assessment results. Indeed, the current state-of-the-art lacks methods that can derive an 

appropriate probability distribution function from detailed subjective expert knowledge.  

An additional difficulty experienced when conducting risk assessment modelling in wind 

farm construction is the consideration of risk factors affecting schedule and cost as independent. 

Delays in project schedule will often result in increased project costs, where impacts on cost are 

generally accompanied by project delays (Hulett et al. 2019). Treating these cost and schedule 

impacts as dependent during risk assessment modelling will help generate more realistic results. 

Methods for modelling the dependence of a risk factor’s impact on cost and schedule, however, 

remain relatively unexplored.   

To address these limitations, this paper is proposing a methodology that is designed to 

enhance risk assessment outcomes by (1) assisting risk analysts in fitting appropriate 

distributions for detailed subjective knowledge of the cost and schedule impacts of risk factors 

(see dark grey area, Figure 4.1) and (2) adapting existing methods to model the dependence 

between the cost and schedule impact of a risk factor in a Monte Carlo simulation (MCS)-based 

risk assessment model. Fuzzy logic is used to process and quantify subjective knowledge, which 

is then fit to a probabilistic distribution function that represents the marginal distribution for the 

impact on either cost or schedule. Then, copula-based modelling of multivariate distributions 
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(Yan 2007) is used to model the dependence between the cost and schedule impact of a risk 

factor. The remaining sections of this paper are organized as follows: MCS in risk assessment, 

input modelling for MCS, and correlation and dependence between input distributions are first 

discussed in a literature review section. Then, the research methodology is explained. Next, an 

illustrative case study is presented to demonstrate the functionality of the proposed method, and 

a sensitivity analysis is performed to establish its validity. The final section summarizes 

conclusions and future research directions. 

4.2 Literature Review 

4.2.1 MCS for Risk Assessment and Input Modelling 

Risk assessment is conducted by evaluating the probability of occurrence and the impact 

of risk factors to determine their severity on project outcomes. Mathematically, this is 

accomplished by multiplying probability of occurrence (P) by impact (I) (Zavadska et al. 

2010)(Banaitiene and Banaitis 2012) and summing the results to obtain an overall effect of risk 

factor, n, on project cost and time, as per Equation 4.1: 

S =∑𝑃𝑖 ∗ 𝐼𝑖

𝑛

𝑖=1

 (4.1) 

Monte Carlo simulation is a probabilistic technique for the quantitative analysis of risks 

in the construction industry (Molenaar et al. 2013). MCS makes use of probability distributions 

rather than deterministic values to model the uncertainty associated with a particular input (Abou 

Rizk 2013). In a MCS risk analysis experiment, the term 𝐼𝑖 in Equation 4.1 is replaced with a 

probability distribution function representing the impact on cost or schedule.  
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A Monte Carlo simulation experiment for assessing project risks is performed as follows. 

First, the baseline cost and schedule of the individual activities is prepared (Abou Rizk 2013). 

Then, risk factors affecting the project are identified, and the cost impact, schedule impact, 

probability of occurrence, and affected work-packages are determined for each individual risk 

factor (Abou Rizk 2013). If a risk occurs while running the simulation experiment, the cost and 

schedule impacts are added to the affected activities. An example project, consisting of three 

activities (A, B, C) and one risk factor affecting Activity A, is presented in Figure 4.2. 

 

Figure 4.2. MC simulation experiment for risk assessment. 

A key limitation for the practical application of MCS in risk assessment is the 

development of risk impact probability distributions that are not readily available due to 

insufficient historical data. These distributions, therefore, must be derived from other existing 

information and knowledge (Duracz 2006),(Yoe 2016). The development of such distributions, 

known as input modelling, is widely discussed in literature due to its impact on simulation 

outputs and, consequently, on the quality of decisions made based on the simulation results (Law 

2013). Input modelling in the case of absent data is known as an elicitation process. Here, expert 
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judgment, recognized as a type of scientific data (O’Hagan 2019), is elicited and used to 

construct probability distributions (Morris et al. 2014). Elicitation of expert judgment can take 

three forms, where experts are asked to specify (1) the cumulative distribution function, (2) the 

density distribution function, or (3) to provide partial information about the distribution such as 

mean, standard deviation, or several quintiles of the distribution (Cooke and Goossens 2004). 

The elicitation process typically involves the elicitation of the most likely, maximum, and 

minimum values, or estimating the mean and variance from experts (Galway 2004). Several 

studies have provided a review and guidelines of the statistical methods used to elicit probability 

distributions (Cooke and Goossens 2004),(Nasir et al. 2003),(van Dorp and Duffey 1999). For 

example, Galway (Galway 2007) concluded that multiple experts should be asked to provide 

upper, lower, and most likely values for an uncertain quantity, which can then be fitted to a 

triangular distribution. In contrast, Morris et al. (Morris et al. 2014) developed a web-based tool 

that has five optional methods for the elicitation process, including a roulette method, quartile 

method, tertile method, probability method, and hybrid method. 

Another challenge of elicitation for risk assessment is the introduction of biases arising 

from the inherent subjectivity of risk evaluation. Although experts are considered to be 

knowledgeable and experienced, their judgment may, as a result of biases, be inaccurate—

especially when judging probability (Meyer et al. 2011). There are two major types of biases: 

cognitive and motivational. Cognitive biases are defined as “systematic deviations [of expert 

evaluation] from logic, probability, or rational choice theory” (Dikmen et al. 2018) and are often 

associated with heuristic judgment processes (Tversky and Kahneman 1974). Examples of 
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cognitive biases include overconfidence (i.e., excessive confidence in one’s own answers to 

questions), anchoring (i.e., the tendency to rely too heavily on one piece of information when 

making decisions), and availability bias (i.e., the tendency to overestimate the likelihood of 

events with greater availability in memory). Various debiasing methods, such as decomposition, 

multiple experts, and exploration of the extremes of a target variable, can be applied to reduce 

cognitive biases (Dikmen et al. 2018). 

Motivational biases are defined as “those in which judgments are influenced by the 

desirability or undesirability of events, consequences, outcomes, or choices” (Montibeller and 

Winterfeldt 2015). One example of motivational bias is the underestimation of project costs to 

provide more competitive bids. A strategy for overcoming motivational biases, proposed by 

Montibeller and Winterfeldt (Montibeller and Winterfeldt 2015), is the decomposition of a target 

variable into component variables and events (i.e., root causes). It is expected that the evaluation 

of a specific root cause by an expert will be more precise than the evaluation of a risk factor as a 

whole. As such, analysts are encouraged to adopt a decomposition strategy when eliciting 

subjective risk evaluations from experts. 

While recommendations for successfully inputting uniform, triangular, or PERT 

distributions into Monte Carlo risk assessment models have been proposed in literature, other 

forms of input modelling remain limited by a need for a large number of experts or by an 

inability to integrate their detailed knowledge (Abou Rizk 2013),(Smith et al. 2006). The fitting 

of expert opinion regarding the impact and probability of occurrence of risks into a probability 

distribution has been proposed by Li et al. (Li et al. 2016). However, their approach requires a 
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large number of experts to be involved in the assessment, which is not feasible for novel projects, 

such as onshore wind farms, where the number of experts at a construction company is limited. 

Furthermore, their approach does not allow experts to express their detailed knowledge about a 

risk factor, potentially limiting the accuracy and representativeness of the risk assessment results. 

In 2003, Nasir et al. (Nasir et al. 2003) proposed a methodology to enhance the input modelling 

of Monte Carlo risk assessment using belief networks to estimate the boundaries (i.e., minimum 

and maximum) of Beta-Pert distributions for activity durations. In their method, they assumed 

that, while experts can estimate the most-likely activity duration, the boundaries are more 

difficult to estimate using traditional methods (Nasir et al. 2003). The Bayesian belief network 

was, therefore, applied to integrate the risk factors affecting activity duration when calculating 

the optimistic and pessimistic boundaries of Beta-Pert. However, their model did not distinguish 

between the variability in activity duration and the risk impact. Furthermore, their model was 

built using multiple questionnaires, making it difficult for construction companies to implement 

this approach because of the number of experts and time required to complete the questionnaires. 

4.2.2 Correlation and Dependence in Risk Assessment 

A common source of error in MCS is the assumption of independence between the input 

variables of a model (Touran and Wiser 1992). If two random variables are modeled as 

independent probability distributions in a simulation model, the sampled random variates of the 

two distributions will exhibit one of the following: (1) one variable is high, while the other is 

low, (2) both are high, or (3) both are low (van Dorp and Duffey 1999). Disregarding the 

dependence or correlation in large risk models can result in estimation errors through under- or 
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overestimation (van Dorp and Duffey 1999). To improve risk analysis and subsequent decision-

making, relationships between random variables must be considered (Clemen and Reilly 1999).  

Multiple research studies investigating the effect of correlation in Monte Carlo risk 

assessment models have been conducted. Touran and Wiser (Touran and Wiser 1992) presented 

a methodology that can account for the correlation between cost components in probabilistic cost 

estimation models. It is important to note, however, that their model only considered variability 

in the cost of and correlation between project work packages without considering external risk 

factors in their model. Touran (Touran 1993) later extended the methodology by proposing a 

method that can account for subjective correlation between cost components by experts when 

historical data are absent.  

van Dorp and Duffey (1999) proposed a method that can account for dependencies 

between activity durations when developing a project schedule network. The authors suggested 

that activities affected by the same external risk factor should be dependent and, therefore, that 

correlations between project activities can be determined from common risk factors that are 

shared. However, the correlation between cost and time impact of a risk factor was not 

considered in their model. Ökmen and Öztaş (2008) developed a heuristic method for correlating 

schedule-risk analysis in construction schedule planning. Their model considered correlations 

between activities that are affected by the same risk factors, as well as correlations between the 

risk factors themselves. However, only the impact of risks on the schedule were modeled. Moret 

and Einstein (2012) presented a model that considers correlations between the costs of activities 

in rail line construction when calculating the cost of a rail project. They then extended this by 
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developing a comprehensive MCS model that considers (1) variability in activity duration and 

cost, (2) correlations between the cost of the activities, and (3) external risk factors affecting the 

project (Moret and Einstein 2016). However, their model did not consider the correlation 

between the cost and schedule impact of a risk factor. Other research studies have attempted to 

use multivariate distributions for presenting the output of a simulation model for integrated cost 

and schedule-risk analysis (Mawlana and Hammad 2015),(Covert and COVARUS 2013). While 

certain commercial software, such as @risk developed by the Palisade Group (Palisade n.d.), 

have correlations implemented, dependencies between the cost and schedule impact of a risk 

factor have not been addressed by these previously-developed models.  

Copulas have been used in many applications to model dependencies between random 

variables. A copula-based joint distribution can be constructed using assessed rank-order 

correlations and marginal distributions, thereby reducing the effort required for assessments and 

to search for conditional independence (Clemen and Reilly 1999). Copulas are a flexible method, 

as they do not have any restrictions on the type of marginal distributions that can be used 

(Embrechts et al. 2003). Using copulas to “couple” the marginal distribution requires two steps, 

namely (1) modelling the marginal distributions and (2) modelling dependencies between 

random variables (Clemen and Reilly 1999). Copulas have been used in risk management 

literature to successfully model the dependencies between variables that can affect the decision 

to purchase a used aircraft (Clemen and Reilly 1999), in turn determining if the purchase of a 

used aircraft would generate more profit than using funds for other investments. Copulas have 

also been used to model dependencies between the activities of a project during the construction 
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and scheduling of a project network (van Dorp and Duffey 1999). 

4.2.3 Construction Risk Assessment in Onshore Wind Project and its Challenges 

Installing a wind turbine onto its foundation and completing final assembly appears on 

the surface to be straightforward. However, constructing a wind farm involves a long list of civil 

engineering and electrical work that require high levels of project management and coordination 

(Rajgor 2011). Once permits, approvals, and project finance are secured, the rigorous 

management of a complex series of engineering, logistical, and electrical processes must occur to 

reduce uncertainties and risks (Rajgor 2011). While many studies have been conducted to 

enhance risk management in wind projects, most of these studies have focused on the exploration 

and identification of risk factors affecting onshore wind projects. For example, while several 

studies have investigated which risk factors affected the planning, construction, and operation 

phases of wind projects (Turner et al. 2013), (Finlay-Jones 2007), few studies have focused on 

methods for assessing risk factors. Kucukali (Kucukali 2016) developed a methodology for 

assessing the overall risk severity in wind projects based on a linguistic subjective scale. Rolik 

(Rolik 2017b) proposed a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis 

approach to assess the risk level in wind energy projects. Mohamed and colleagues (Mohamed et 

al. 2020a) proposed a simulation-based approach to assess the severity of risk factors on the cost 

and time of onshore wind projects. Due to a lack of historical data, triangular and uniform 

distributions were used to depict the cost and schedule impact of the identified risk factors 

(Mohamed et al. 2020a). Notably, none of the aforementioned studies were capable of (1) 

incorporating large amounts of expert knowledge into simulation-appropriate input distributions 
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and (2) considering the dependency between cost and schedule. 

4.2.4 Fuzzy Logic 

Fuzzy logic is often used to solve problems characterized by subjective uncertainty, 

ambiguity, and vagueness (Fayek 2020). It has been widely applied by researchers in 

construction to incorporate the influence of factors that are linguistically assessed into an 

uncertain variable quantity (Smith and Hancher 1989)(Budayan et al. 2018). The application of 

fuzzy logic provides a means of quantifying subjective evaluations and converting this 

information into a probability distribution function for input into MCS-based risk assessment 

models. The application of fuzzy logic for the linguistic assessment of root causes of risk factors 

in onshore wind projects, however, remains relatively unexplored. 

4.3 Proposed Method 

This research proposes a method that is capable of addressing the current input modelling 

limitations of MCS risk assessment (Figure 4.3). The methodology has three main components, 

namely input data, data processing, and multivariate representation, which are detailed as 

follows. 
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Input Data

• Expert subjective knowledge 

and evaluation:

Data Processing

• Fit Beta distribution to risk schedule impact 

using fuzzy logic (marginal distribution)

• Fit Beta distribution to risk cost impact 

using fuzzy logic (marginal distribution)

• Evaluate the correlation between the two 

distributions 

Multivariate Representation

• Use copula to fit Bivariate 

distribution for risk impact

• Root causes of a risk factor

• Evaluation of root causes

• Lower limit of risk impact

• Upper limit of risk impact

Copula

 

Figure 4.3. Fuzzy multi-variate research methodology. 

4.3.1 Input Data 

The input data component details the information required from the expert to successfully 

apply the methodology. Here, an expert provides detailed information about the impact of risks 

on schedule or cost, including (1) the minimum potential value of the risk impact (lower limit, 

A), (2) the maximum potential value of the risk impact (upper limit, B), and (3) root causes of 

the risk factor along with their evaluation.  

To obtain this information, a root cause analysis, defined as “a structured investigation 

that aims to identify the true cause of a problem and actions necessary to eliminate it” (Andersen 

and Fagerhaug 2006), is performed to identify the potential root causes of different risk events 

(Ayyub 2014), (Abdelgawad and Fayek 2010) . Root cause analysis consists of five steps 

(Andersen and Fagerhaug 2006): problem understanding, problem-cause brainstorming, data 

gathering, data analysis, and root-cause identification. Several tools and techniques can be 

applied for the identification of root causes, such as cause-and-effect charts, matrix diagrams, 

five whys, fault tree analysis, and failure mode and effect analysis. Here, the analyst may choose 

any root cause analysis method, provided that it is suited to their application.  
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After the comprehensive identification of the root causes, possible scenarios that may 

occur as a result of these root causes are then defined, ensuring that all possible combinations 

that can lead to the primary risk factor are captured. All defined root causes/scenarios are 

assessed in terms of frequency and adverse consequences on the overall schedule or cost. This is 

often described in subjective terms, such as “if the root cause 1 is very severe, it will significantly 

impact total schedule or cost, and this is very likely.” As discussed previously, because of the 

subjectivity of the problem domain, current methods are not able to consider root causes when 

deriving a probability distribution for the impact. 

4.3.2 Data Processing 

4.3.2.1 Marginal Distributions 

Fuzzy set theory is then used to scientifically quantify the combined influence of the root 

causes to derive the marginal probability distribution functions that will be input into the MCS 

models. The workflow for deriving the marginal distributions is illustrated in Figure 4.4, and a 

step-by-step procedure of the proposed method is detailed. 
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User Input

Define the root causes of the 

risk factor (Ni)

For each root cause, identify the 

potential scenarios (Mi)

All root causes and 

scenarios defined?

No

For each potential scenario, 

assess its frequency and adverse 

consequence linguistically

Quantification

i = i max? No

Form fuzzy relation 

between the frequency and 

consequence of the scenario 

using equation (3)

For i= 1 to Σ  Ni*Mi

Develop union matrix of all relations 

using equations (4) and (5)

Yes 

linguistic = n?

For linguistics of adverse 

consequence = 1 to n

Form fuzzy relation 

between the  adverse 

consequence and impact 

subset using equation (3)

No

Develop union matrix of all relations 

using equations (4) and (5)

Yes 

Develop fuzzy composition matrix 

using equation (6)

Calculate the mean and variance 

using equations (7), (8), and (9)

Define the end point of risk 

impact (min, max)

Fit to Beta distribution using 

equations (10) and (11)

Yes

Output 

• Marginal distribution of risk cost or 

schedule impact

Divide the impact range into three 

subsets

 

Figure 4.4. Quantification steps for marginal distribution. 

This study has chosen a Beta distribution to represent the marginal distribution of 

schedule or cost impact. A Beta distribution was selected because (1) its specialized form, the 

PERT distribution, is commonly applied in risk assessment studies (Johnson 2002), (2) it is a 

bounded distribution with finite limits, making it intuitively plausible to many decision-makers 

in risk analysis (Johnson 2002), (3) it is flexible, taking any shape according to its shape 

parameters (i.e., ß and α) (AbouRizk et al. 1994), (AbouRizk et al. 1991), and (4) it is frequently 

used to describe variability or uncertainty over a fixed (i.e., bounded) range (Yoe 2016). The 

steps for integrating subjective knowledge into the Beta distributions are detailed as follows. 

A membership function is usually used in fuzzy sets to represent the relationship between 

a range of possible values and a linguistic term (Fayek and Lourenzutti 2018). The membership 

function assigns a membership degree, in which the relation of these values to the linguistic term 
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is defined within the interval [0, 1], representing no and full membership, respectively. In 

general, the membership of a fuzzy set, A, in the case of a discrete universe of discourse, X, is 

usually expressed as follows: 

A = ∑
𝜇𝑖
𝑥𝑖⁄𝑛

1=1  = 
𝜇1

𝑥1⁄ + 
 𝜇2

𝑥2⁄ +……+
𝜇𝑛

𝑥𝑛⁄  = ∑𝜇𝐴(x)/ x, (4.2) 

where 𝜇𝑖 = 𝜇𝑖(𝑥𝑖) is the degree of belonging of element 𝑥𝑖 to set A, and n = the number of 

elements in set A. In construction applications, triangular and trapezoidal fuzzy numbers are 

usually used to represent the membership function. The development of the membership 

function, including the selection of linguistic terms and the range of values that a linguistic term 

represent, is determined by the analyst. 

Once root causes are identified and assessed linguistically, the quantification analysis can 

be conducted. The fuzzy logic quantification algorithm combines the adverse consequence (C) 

(i.e., the contribution of the root cause to the overall cost or schedule-risk impact as a 

percentage) and the frequency of occurrence (F) for each root cause scenario. This is 

accomplished by calculating a fuzzy relation matrix between (F) and (C), resulting in R (F, C), 

which is the Cartesian product F × C. The elements of R (F, C) are computed as follows: 

𝜇𝑅(𝑥𝑖, 𝑦𝑖) = 𝑚𝑖𝑛[𝜇𝐹(𝑥𝑖), 𝜇𝐶(𝑦𝑖)], (4.3) 

 

where 𝑥𝑖 = an element of universe X; 𝑦𝑖= an element of universe Y; 𝜇𝑅(𝑥𝑖, 𝑦𝑖) = the 

membership value of element (𝑥𝑖, 𝑦𝑖) in the fuzzy relation R; min = the minimum values of both 

elements 𝑥𝑖 and𝑦𝑖;           𝜇𝐹(𝑥𝑖) = the membership value of element 𝑥𝑖 in fuzzy set F; and 

𝜇𝐶(𝑦𝑖) = the membership value of element 𝑦𝑖 in fuzzy set C. 

Once all of the fuzzy relation matrices have been calculated, the fuzzy logic 
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quantification algorithm calculates the union matrix of all the fuzzy relation matrices, thereby 

representing the combined effect of all root cause scenarios. The union of two fuzzy relations, 

for example S and Z, is denoted by S ⋃ Z, and the membership function is calculated as follows: 

𝜇𝑆⋃𝑍(𝑥𝑖, 𝑦𝑖) = 𝑚𝑎𝑥[𝜇𝑠(𝑥𝑖 , 𝑦𝑖), 𝜇𝑧(𝑥𝑖, 𝑦𝑖)] (4.4) 

where max = the maximum value of both relations 𝑠 and 𝑧. 

Union U, between the fuzzy relation matrices R (F, C), is then computed as: 

U = 𝑚𝑎𝑥 [(𝐹1 × 𝐶1) ⋃ (𝐹2 × 𝐶2) ⋃ (𝐹3 × 𝐶3) ………… . .⋃ (𝐹𝑘 × 𝐶𝑘)], (4.5) 

where max = the maximum value of the two relations. 

The next step uses expert knowledge to subjectively assess the relationship between the 

adverse consequence of a root cause and the overall cost or schedule impact of a risk factor. For 

example, “if the adverse consequence of root 1 is large, then the overall risk impact is medium.” 

The range of a risk factor impact (i.e., between minimum and maximum) is then calibrated by 

mapping the range to a predefined scale using the concept of membership values. The mapping 

values represent the confidence level with which the expert believes that a particular value 

belongs to the set (AbouRizk and Sawhney 1993) and that the impact will be in a certain range. 

To facilitate the mapping, the risk impact range is divided into three equidistant subsets. Notably, 

Beta distributions can take multiple shapes, of which three cases, as shown in Figure 4.5, are of 

interest for calibration. These are shapes that are (1) skewed to the upper limit, (2) skewed to the 

lower limit, or (3) symmetric. Cases where the distribution is skewed toward the lower limit are 

mapped to the small impact range; cases where the distribution is symmetric are mapped to the 

medium impact range; while cases where the distribution is skewed toward the upper limit are 

mapped to the large impact range. 
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Once all of the adverse consequences of root causes are related to the overall risk impact, 

a fuzzy relation Q (C, I), which is the Cartesian product 𝐶 ×  𝐼 between fuzzy subset C, 

representing the adverse consequence, and fuzzy subset I, representing the overall risk impact as 

per Equation (4.3), is computed. After forming all fuzzy relations matrices, a union matrix, V, of 

all relations is calculated using Equation (4.5) 

Large impact rangeMedium impact rangeSmall impact range

 

Figure 4.5. Quantification steps for marginal distribution. 

Finally, a fuzzy composition of the union matrices U and V is calculated to assess the 

overall combined impact of all root causes. The composition is defined by Equation (4.6), which 

is the standard max-min composition as follows: 

𝑼  ⃘𝑽(𝑥𝑖, 𝑧𝑘) = 𝑚𝑎𝑥
𝑦𝑗
{𝑚𝑖𝑛[𝜇𝑈(𝑥𝑖, 𝑦𝑖), 𝜇𝑉(𝑦𝑗 , 𝑧𝑘)]}, (4.6) 

where 𝑈  ⃘𝑉(𝑥𝑖, 𝑧𝑘) = membership value of element (𝑥𝑖, 𝑧𝑘) in composition matrix 

between U and V; 𝜇𝑈(𝑥𝑖, 𝑦𝑖) = membership value of element (𝑥𝑖, 𝑦𝑖) in union matrix U; and 

𝜇𝑉(𝑦𝑗 , 𝑧𝑘)= membership value of element (𝑦𝑗 , 𝑧𝑘) in union matrix V. 

A fuzzy subset from the composition matrix is used to represent the overall uncertain 
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variable under study [46]. A fuzzy subset (e.g., subset = O), or one row from the matrix, will be 

selected such that the product of the row summation and the corresponding frequency of 

occurrence is the maximum. Then, the selected fuzzy subset (e.g., subset = O) will be used to 

calculate the mean, 𝜇𝐼, and the variance, 𝜎2𝐼, of the marginal risk impact according to the 

following equations derived from (Ayyub and Haldar 1984), (Oliveros and Fayek 2005), 

(Corona-Suárez et al. 2014), and (Budayan et al. 2018): 

𝑷(𝑹𝑰 = 𝒛𝒌) =
𝜇𝑜(𝑧𝑘)

∑ 𝜇𝑜(𝑧𝑘)
𝑚
1

, (4.7) 

 

𝝁𝑰 = ∑ (𝑚
𝑘=1 𝑧𝑘) ∗  𝑃(𝑅𝐼 = 𝑧𝑘), (4.8) 

 

 𝝈𝟐𝑰 = [∑ (𝑚
𝑘=1 𝑧𝑘)

2 ∗  𝑃(𝑅𝐼 = 𝑧𝑘)]-𝜇𝐼
2, (4.9) 

where 𝑅𝐼 = risk impact; 𝑧𝑘 = element of the risk impact; 𝑃(𝑅𝐼 = 𝑧𝑘) = probability of 

occurrence of the risk impact to be element 𝑧𝑘; 𝜇𝑜(𝑧𝑘) = membership value of element 𝑧𝑘 in 

subset O; and m = number of risk impact elements in subset O. 

Once the mean and variance are calculated, they are used, along with the minimum (A) 

and the maximum (B), to derive a generalized Beta distribution. Equations (4.8) and (4.9) 

together with terms A and B are used to estimate the shape parameters, α and ß, of the 

generalized Beta distribution as follows (AbouRizk et al. 1994). 

α = 
𝜇𝐼−𝐴

𝐵−𝐴
[
(𝜇𝐼−𝐴)(𝐵−𝜇𝐼)

 𝜎2𝐼
− 1] and, (4.10) 

 

ß = α [
𝐵−𝜇𝐼

𝜇𝐼−𝐴
], (4.11) 

The probability density function is then visualized using shape parameters α and ß 
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together with the end points of distributions A and B. 

4.3.2.2 Correlation of Dependent Variables 

Using copula-based multivariate modelling requires the correlation between dependent 

variables to be evaluated. When historical data are lacking, a subjective evaluation of the 

correlation from experts is acquired. Here, the Spearman correlation (ρ) is used to measure the 

association between random variables because of its ability to capture relationships through a 

pairwise measure of dependence (van Dorp and Duffey 1999), (Clemen and Reilly 1999). While 

the Spearman correlation coefficient varies between -1 and +1, most correlations between cost 

and schedule in construction are positive, limiting the values in this application to between 0 and 

1 (Touran 1993). Correlations are classified into three categories, as proposed by Touran (Touran 

1993), to reflect the linguistic representation of correlations often used by experts, namely weak 

(0 - 0.3), moderate (0.3 - 0.6), and strong (0.6 - 1). The midpoint of each interval is chosen to 

represent the interval (i.e., 0.15 for weak, 0.45 for moderate, and 0.8 for strong). Consequently, 

the correlation matrix (R) will take one of the following forms. 

𝑹𝒘𝒆𝒂𝒌 = [
1 0.15
0.15 1

], (4.12) 

 

𝑹𝒎𝒐𝒅𝒆𝒓𝒂𝒕𝒆 = [
1 0.45
0.45 1

], and, (4.13) 

 

𝑹𝒔𝒕𝒓𝒐𝒏𝒈 = [
1 0.8
0.8 1

]. (4.14) 

4.3.3 Multivariate Representation 

The last component of the methodology is the multivariate representation of the marginal 



                                                                                                                                                  131 

______________________________________________________________________________ 

 

 

distributions of the schedule- and cost-risk impacts that is achieved using copulas (Yan 2007). 

There are many classes of copulas, including elliptical, Archimedean, and Marshall-Olkin 

(Embrechts et al. 2003). Selection criteria for specific classes of copulas have yet to be 

established (Moret and Einstein 2012); therefore, the class of copula selected is up to the 

discretion of the analyst. 

4.4 Application and Results 

An illustrative case study is presented to demonstrate the functionality of the proposed 

approach. The example risk factor chosen for illustration is public obstruction during the 

construction phase of the project, which is a critical risk factor that is known to cause project 

delays and financial losses (Diógenes et al. 2019). 

4.4.1 Input Data 

Four root causes were identified, namely noise due to construction activities, harm to 

business and farming activities of the local community, traffic disturbance due to logistic and 

supply chain to the construction site, and poor communication with the local community. 

Scenarios/root causes that may occur are detailed in Table 4.1.  
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Table 4.1: Root causes of risk factors with accompanying scenarios and assessment 

No. Root Cause/Scenario  

Frequency of 

Occurrence  

(F) 

Adverse Consequence  

(C) 

1 Construction noise is low Likely Very small 

2 Construction noise is medium Likely Large 

3 Construction noise is high Unlikely Large 

4 Harm to activities is low Unlikely  Small  

5 Harm to activities is medium Somewhat likely Large 

6 Harm to activities is high Unlikely Very large 

7 Traffic disturbance is low  Very likely Very small 

8 Traffic disturbance is medium Somewhat likely Large  

9 Traffic disturbance is high Unlikely  Very large 

10 Poor communication  Unlikely  Medium 

4.4.2 Data Processing 

4.4.2.1 Marginal Distributions 

The assessment (Table 4.1) includes the frequency of occurrence (F) and adverse 

consequence (C) of the scenario/root cause in linguistic terms. The linguistic terms were then 

represented using a membership function chosen by the analyst. In this example, the following 

membership functions, adopted from (AbouRizk and Sawhney 1993), were used to represent (F) 

and (C), as shown in Table 4.2 and Table 4.3 respectively: 
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Table 4.2: Membership function for frequency of occurrence (F). 

Element of 

Linguistic Variable 

Frequency of Occurrence (F) 

Very Unlikely Unlikely Somewhat Likely Likely Very Likely 

0 1 0 0 0 0 

0.1 0.8 0.8 0 0 0 

0.2 0.2 1.0 0 0 0 

0.3 0 0.8 0.5 0 0 

0.4 0 0 0.8 0 0 

0.5 0 0 1 0.5 0 

0.6 0 0 0.8 0.8 0 

0.7 0 0 0.5 1.0 0.5 

0.8 0 0 0 0.8 0.8 

0.9 0 0 0 0.6 0.9 

1.0 0 0 0 0 1 

 

Table 4.3: Membership function for adverse consequence (C). 

Element of Linguistic 

Variable 

Adverse Consequence (C) 

Very Small Small Medium Large Very Large 

0 1 1 0 0 0 

0.1 0.81 0.9 0 0 0 

0.2 0.25 0.5 0 0 0 

0.3 0 0 0.2 0 0 

0.4 0 0 0.8 0 0 

0.5 0 0 1 0 0 

0.6 0 0 0.8 0 0 

0.7 0 0 0.2 0 0 

0.8 0 0 0 0.5 0.25 

0.9 0 0 0 0.9 0.81 

1.0 0 0 0 1 1 
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Once the linguistic assessment was conducted for all scenarios, fuzzy relations were 

constructed using Equation (4.3). Table 4.4 shows the fuzzy relation of the first scenario (i.e., 

construction noise is low). Remaining scenarios were represented similarly (data not shown): 

Table 4.4: Fuzzy relation R (F, C). 

Frequency of Occurrence 

(F) 

Adverse Consequence (C) 

0 0.1 0.2 

0.5 0.5 0.5 0.25 

0.6 0.8 0.8 0.25 

0.7 1.0 0.81 0.25 

0.8 0.8 0.8 0.25 

0.9 0.6 0.6 0.25 

 

After all relations were determined, a fuzzy union matrix U of all relations was 

established using Equations (4.4) and (4.5). Table 4.5 shows the fuzzy union matrix of all 

relations. 
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Table 4.5: Fuzzy union matrix (U) of all relations of the scenarios. 

Frequency 

of 

Occurrence 

(F) 

Adverse Consequence (C) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0 0 0 0 0 0 0 0 0 0 0 0 

0.1 0.8 0.8 0.5 0.2 0.8 0.8 0.8 0.2 0.5 0.8 0.8 

0.2 1.0 0.9 0.5 0.2 0.8 1.0 0.8 0.2 0.5 0.9 1 

0.3 0.8 0.8 0.5 0.2 0.8 0.8 0.8 0.2 0.5 0.8 0.8 

0.4 0 0 0 0 0 0 0 0 0.5 0.8 0.8 

0.5 0 0 0 0 0 0 0 0 0.5 0.9 1 

0.6 0 0 0 0 0 0 0 0 0.5 0.8 0.8 

0.7 1.0 0.81 0.25 0 0 0 0 0 0.5 0.9 1 

0.8 0.8 0.8 0.25 0 0 0 0 0 0.5 0.8 0.8 

0.9 0.9 0.81 0.25 0 0 0 0 0 0.5 0.5 0.5 

1.0 1 0.81 0.25 0 0 0 0 0 0 0 0 

Then, the end points of the cost-risk impact distribution were identified by the analyst as 

minimum = $ 10,000 and maximum = $ 40,000. The range was divided into three equidistant 

sections, each with value of $ 10,000. Then, at the analyst’s discretion, each range impact was 

divided into 5 elements. A membership degree for each element in each impact range was 

assigned by the analyst. The elements in each range along with the membership degrees are 

provided in Figure 4.6. 
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1.0    0.9     0.8     0.7     0.6 0.7    0.85     1.0    0.85     0.7  0.5      0.7      0.8      0.9      1.0 

Small impact Medium impact Large impact

10   12.5   15.0    17.5   20.0 20.0   22.5   25.0    27.5  30.0 30.0    32.5    35.0     37.5    40

Impact range

Impact value

Mapping degree

 

Figure 4.6. Ranges of risk impact along with values and their membership degree. 

The adverse consequence of root causes was related to the overall risk impact 

subjectively (i.e., if the consequence is very small, the impact will be small) by the expert, as 

shown in Table 4.6. 

Table 4.6: Relationships between adverse consequence (C) and impact (I). 

No. Adverse Consequence (C) Impact (I) 

1 Very small Small 

2 Small Small 

3 Medium Medium 

4 Large Large 

5 Very large Large 

 

Once assessed, each relationship was represented using a fuzzy relation matrix as per 

Equation (4.3). An example of fuzzy relation for row No. 3, Q (𝐶𝑚𝑒𝑑𝑖𝑢𝑚, 𝐼𝑚𝑒𝑑𝑖𝑢𝑚), is provided in 

Table 4.7. 

 

 

 



                                                                                                                                                  137 

______________________________________________________________________________ 

 

 

Table 4.7: Fuzzy relation Q (C, I) between medium adverse consequence (C) and medium impact 

(I). 

Adverse Consequence 

(C) 

Impact (I) 

20.0 22.5 25.0 27.5 30.0 

0.3 0.2 0.2 0.2 0.2 0.2 

0.4 0.7 0.8 0.8 0.8 0.7 

0.5 0.7 0.85 1 0.85 0.7 

0.6 0.7 0.8 0.8 0.8 0.7 

0.7 0.2 0.2 0.2 0.2 0.2 

 

After establishing all relations, a fuzzy union matrix, V, between all relations was 

established, as detailed in Table 4.8, using Equations (4.4) and (4.5). 
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Table 4.8: Fuzzy union matrix V of all relationships between adverse consequence (C) and 

impact (I). 

Adverse 

Conseq. 

Impact*𝟏𝟎𝟑 

10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40 

0 1.0 0.9 0.8 0.7 0.6 0 0 0 0 0 0 0 0 

0.1 0.9 0.9 0.8 0.7 0.6 0 0 0 0 0 0 0 0 

0.2 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 

0.3 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0 

0.4 0 0 0 0 0.7 0.8 0.8 0.8 0.7 0 0 0 0 

0.5 0 0 0 0 0.7 0.85 1.0 0.85 0.7 0 0 0 0 

0.6 0 0 0 0 0.7 0.8 0.8 0.8 0.7 0 0 0 0 

0.7 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0 

0.8 0 0 0 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 

0.9 0 0 0 0 0 0 0 0 0.5 0.7 0.8 0.9 0.9 

1.0 0 0 0 0 0 0 0 0 0.5 0.7 0.8 0.9 1.0 

 

Fuzzy composition matrix 𝑈  ⃘𝑉(𝑥𝑖 , 𝑧𝑘) of the union matrices U and V (Table 4.5 and 

Table 4.8 respectively) was calculated using Equation (4.6). The resulting matrix is provided as 

Table 4.9. The multiplication of the rows’ summation and frequency of occurrence is provided. 

Row No. 9 (Table 4.9, grey) was selected, as it provided the maximum value for the product. 
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Table 4.9: Fuzzy union matrix V of all relationships between adverse consequence (C) and 

impact (I). 

 

After selecting the subset, row No. 9, that represents the cost-risk impact, the probability 

of each element in the cost-risk impact subset was calculated, according to Equation (4.7), as 

follows: 

𝑃(𝑅𝐼 = 10)= 𝑃(𝑅𝐼 = 12.5)= 𝑃(𝑅𝐼 = 15) =  𝑃(𝑅𝐼 = 35)= 𝑃(𝑅𝐼 = 37.5) =𝑃(𝑅𝐼 =

40)
0.8

7.3
 = 0.1095,  
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3
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3
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.1 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.8 10.0 1.00 

0.2 1.0 0.9 0.8 0.7 0.7 
0.8

5 
1 

0.8

5 
0.7 0.7 0.8 0.9 1.0 10.9 2.18 

0.3 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.8 10.0 3.00 

0.4 0 0 0 0 0 0 0 0 0.5 0.7 0.8 0.8 0.8 3.6 1.44 

0.5 0 0 0 0 0 0 0 0 0.5 0.7 0.8 0.9 1.0 3.9 1.95 

0.6 0 0 0 0 0 0 0 0 0.5 0.7 0.8 0.8 0.8 3.6 2.16 

0.7 1.0 0.9 0.8 0.7 0.6 0 0 0 0.5 0.7 0.8 0.9 1.0 7.9 5.53 

0.8 0.8 0.8 0.8 0.7 0.6 0 0 0 0.5 0.7 0.8 0.8 0.8 7.3 5.84 

0.9 0.9 0.9 0.8 0.7 0.6 0 0 0 0.5 0.5 0.5 0.5 0.5 6.4 5.76 

1.0 1.0 0.9 0.8 0.7 0.6 0 0 0 0 0 0 0 0 4.0 4.00 
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 𝑃(𝑅𝐼 = 17.5) = 𝑃(𝑅𝐼 = 32.5) =  
0.7

7.3
 = 0.0958,  

  𝑃(𝑅𝐼 = 22.5) = 𝑃(𝑅𝐼 = 25) =  𝑃(𝑅𝐼 = 27.5) =
0

7.3
 = 0,         

    𝑃(𝑅𝐼 = 30) =  
0.5

7.3
 = 0.0685, 

𝑃(𝑅𝐼 = 20) = 
0.6

7.3
 = 0.082 

The mean and the variance were calculated, according to Equations (4.8) and (4.9), as 

follows: 

𝜇𝐼 = [(10 ∗  0.1095) + (12.5 ∗  0.1095) + (15 ∗  0.1095) + ( 17.5 ∗  0.0958) +

(20 ∗   0.082) + (22.5 ∗  0) + (25 ∗  0) + (27.5 ∗  0) + (30 ∗  0.0685) + (32.5 ∗  0.0958) +

(35 ∗  0.1095) + (37.5 ∗  0.1095) + (40 ∗  0.1095)] ∗ 103 = 24910 $ 

 𝜎2𝐼 = [(102 ∗ 0.1095) + (12.52 ∗ 0.1095 ) + (152 ∗  0.1095) + (17.52 ∗ 0.0958)  +

(202 ∗ 0.082) + (22.52 ∗  0) + (252 ∗  0) + (27.52 ∗  0)+ (302 ∗  0.0685) + (32.52 ∗

 0.0958) + (352 ∗  0.1095) + (37.52 ∗  0.1095) + (402 ∗  0.1095)] ∗ 106-(24910)2 = 

120488150 

Finally, the shape parameters of the risk impact Beta distribution were calculated, based 

on the minimum, maximum, mean, the variance, according to Equations (4.10) and (4.11), as 

follows: 

α = 
24910−10000

40000−10000
[
(24910−10000)(40000−24910)

120488150
− 1] = 0.43 

ß = 0.43 [
40000−24910

24910−10000
] =0.43 

The resulting probability density function of the Beta distribution is presented in Figure 

4.7. 
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Mapping values for small risk impact

Mapping values for medium risk impact

Mapping values for large risk impact

 

Figure 4.7. Marginal Beta distribution of cost-risk impact. 

The marginal distribution of the schedule-risk impact was constructed in a manner similar 

to the marginal distribution of the cost-risk impact. The same root causes were used together 

with their evaluation in terms of frequency of occurrence (F) and adverse consequence (C). The 

mapping values were also the same as the cost-risk impact. Only the lower and upper limits of 

the distribution were changed. The lower limit was set to 1 day and the upper limit to 10 days. 

The range was divided into three subranges, namely small (1, 2, 3, 4), medium (4, 5, 6, 7), and 

large (7, 8, 9, 10), as shown in Figure 4.8, along with their mapping values. The shape 

parameters α = 0.412 and ß = 0.523 and the fitted Beta distribution is presented in Figure 4.8. 
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Mapping values for small risk impact
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Figure 4.8. Marginal Beta distribution of schedule-risk impact. 

4.4.2.2 Validation of the Marginal Distribution 

Two approaches, namely sensitivity analysis and expert validation, were used investigate 

the proposed methodology. In the sensitivity analysis, the influence of input parameters on the 

fitted distribution was investigated, while the expert validation analysis was performed to 

evaluate the proposed approach from the perspective of an expert. 

• Sensitivity Analysis 

Sensitivity analysis is a powerful technique for testing the internal consistency and 

reliability of models (Lucko and Rojas 2010) by analyzing model behaviour in response to 

variations in input values or parameters. The purpose of conducting a sensitivity analysis is to 

assess how the input variables of a model affect the resulting probability distribution, allowing 

analysts to identify the input variables with the greatest influence on the output of a model or 

system (Saltelli et al. 2004). Two approaches are commonly used to conduct a sensitivity 
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analysis: local (also known as absolute (Ashraf et al. 2018)) and global. The local approach 

allows only one variable of a model to be assessed at a time, while fixing all other variables to 

their original values (Saltelli et al. 2004). Conversely, global sensitivity allows all input factors 

to vary simultaneously, where the sensitivity is evaluated over the entire range of each input 

factor (Saltelli et al. 2004). 

This study applied a local approach to investigate sensitivity of three input variables: (1) 

selection of linguistic variables; (2) membership values of the linguistic variables; and (3) 

membership values for calibrating and mapping the risk impact range. Sensitivity was calculated 

manually by changing the values of the targeted parameters and examining the effect on the 

resulting marginal Beta distribution. Parameters resulting in the greatest change were deemed to 

have the greatest impact on outputs. Thus, experts are encouraged to remain cognizant of such 

parameters during the application of the proposed method. Sensitivity of these parameters was 

tested on the parameters of the Beta distribution. The selection of linguistic terms is at the 

discretion of the analyst (Oliveros and Fayek 2005); however, the range that each linguistic term 

represents must be investigated. The illustrative case study was investigated again using different 

membership values for (F) and (C). First, the sensitivity of frequency of occurrence (F) was 

tested by introducing a new membership function, adopted from (Budayan et al. 2018), where 

the same linguistic terms are used but the membership values were changed. Results are detailed 

in Table 4.10. 
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Table 4.10: New membership function for frequency of occurrence (F). 

Element of 

Linguistic 

Variable 

Frequency of Occurrence (F) 

Very Unlikely Unlikely Somewhat Likely Likely Very Likely 

0 1 0 0 0 0 

0.1 1 0 0 0 0 

0.2 0.5 0.5 0 0 0 

0.3 0 1 0 0 0 

0.4 0 0.5 0.5 0 0 

0.5 0 0 1 0 0 

0.6 0 0 0.5 0.5 0 

0.7 0 0 0 1.0 0 

0.8 0 0 0 0.5 0.5 

0.9 0 0 0 0 1 

1.0 0 0 0 0 1 

 

The shape parameters α = 0.389 and ß = 0.392 and the fitted Beta distribution is shown in 

Figure 4.9. Differences between the original distribution and the one derived following the 

change in membership function of the frequency of occurrence (F) were minimal. The results 

demonstrate that small variations in membership values have little effect on the output 

distribution. 
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Figure 4.9. Marginal Beta distribution of cost-risk impact after changing the MF of (F). 

Next, the influence of changing the membership function of the adverse consequence (C) 

was investigated by introducing a new trapezoidal membership function, as shown in Table 4.11. 

The shape parameters α = 0.592 and ß = 0.713 and the fitted Beta distribution is presented in 

Figure 4.10. Again, the differences between the original distribution and the one derived 

following the change in the membership function of the adverse consequence (C) were minimal. 

The results demonstrate that the output distribution is not sensitive to changes in the membership 

function of the adverse consequence (C). 
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Table 4.11: New membership function for adverse consequence (C). 

Element of 

Linguistic 

Variable 

Adverse Consequence (C) 

Very 

Small 
Small Medium Large 

Very 

Large 

0 1 0 1 0 1 

0.05 1 0.05 1 0.05 1 

0.1 0.5 0.1 0.5 0.1 0.5 

0.15 0 0.15 0 0.15 0 

0.2 0 0.2 0 0.2 0 

0.25 0 0.25 0 0.25 0 

0.3 0 0.3 0 0.3 0 

0.35 0 0.35 0 0.35 0 

0.4 0 0.4 0 0.4 0 

0.45 0 0.45 0 0.45 0 

0.5 0 0.5 0 0.5 0 

0.55 0 0.55 0 0.55 0 

0.6 0 0.6 0 0.6 0 

0.65 0 0.65 0 0.65 0 

0.7 0 0.7 0 0.7 0 

0.75 0 0.75 0 0.75 0 

0.8 0 0.8 0 0.8 0 

0.85 0 0.85 0 0.85 0 

0.9 0 0.9 0 0.9 0 

0.95 0 0.95 0 0.95 0 

1.0 0 1.0 0 1.0 0 
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Figure 4.10. Marginal Beta distribution of cost-risk impact after changing the MF of (C). 

The final sensitivity experiment investigated the influence of changing the membership 

values for calibrating the risk impact range. This was conducted by experimenting with different 

mapping values, while keeping all other values (i.e., membership functions for frequency of 

occurrence and adverse consequences, boundaries of the risk impact, and root causes and their 

evaluation) unchanged and set to their original values. The impact mapping values for each 

impact subset (i.e., “small impact,” “medium impact,” or “large impact,” as in Figure 4.6) were 

changed for each trial. Specific changes are summarized in Table 4.12. The parameters of the 

resulting distributions are detailed in Table 4.13, and the resulting probability density functions 

are shown in Figure 4.11 (a) through (f). 
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Table 4.12: Summary of sensitivity analysis experimental parameters on mapping values. 

Trial 
Impact Mapping Values1 

PDF2 Distribution 
Small Medium Large 

(a) 1 0 0 Fig. 11(a) Skews right, as values for small 

impact subset are equal to 1. 

(b) 0 1 0 Fig. 11(b) Symmetric, with peak at middle 

where mapping values equal 1. 

(c) 0 0 1 Fig. 11(c) Skews left, as values for large 

impact subset are equal to 1. 

(d) ↓ peak = 1, 

other = ↓ 

↓ Fig. 11(d) Symmetric as in trial (b), but with 

greater variance. 

(e) ↑ until joint 

point 

↓ until joint 

point 

0 Fig. 11(e) Skews towards small and medium 

joint point, where values are 

greatest. 

(f) 0 ↑ until joint 

point 

↓ until joint 

point 

Fig. 11(f) Skews towards medium and large 

joint point, where values are 

greatest 

1As defined in Table 6 
2Probablity density function 

Where ↓ = decreased gradually, and ↑ = increased gradually 

 

Table 4.13: Results of sensitivity analysis of mapping values. 

Trial 
Statistical Parameters of Beta Distribution 

Minimum ($) Maximum ($) α ß 

(a) 10,000 40,000 1.5 7.5 

(b) 10,000 40,000 8.5 8.5 

(c) 10,000 40,000 7.5 1.5 

(d) 10,000 40,000 1.3 1.3 

(e) 10,000 40,000 12.035 32.785 

(f) 10,000 40,000 35.175 13.44 
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1.0   1.0      1.0     1.0      1.0 0        0         0        0       0  0        0         0        0       0  

Mapping values for small risk impact

Mapping values for medium risk impact

Mapping values for large risk impact

 

0       0         0         0          0 1.0       1.0     1. 0     1.0     1.0  0        0         0        0       0  

Mapping values for small risk impact

Mapping values for medium risk impact

Mapping values for large risk impact

 
(a) (b) 

0       0         0         0          0 0          0         0        0          0  1.0    1.0     1.0   1.0    1.0  

Mapping values for small risk impact

Mapping values for medium risk impact

Mapping values for large risk impact

 

0     0.1     0.2      0.3      0.4 0.8    0.9     1.0       0.9       0.8  0.4    0.3     0.2   0.1     0  

Mapping values for small risk impact

Mapping values for medium risk impact

Mapping values for large risk impact

 
(c) (d) 

0     0     0.4      0.6      0.8   0.9     1.0      0.4     0.2      0  0           0          0          0       0  

Mapping values for small risk impact

Mapping values for medium risk impact

Mapping values for large risk impact

 

0       0       0        0        0   0.1     0.2      0.3     1.0    1.0  1.0      1.0      0.1     0.1     0  

Mapping values for small risk impact

Mapping values for medium risk impact

Mapping values for large risk impact

 
(e) (f) 

Figure 4.11. Marginal Beta distribution after changing the mapping value of the risk impact 

range. 
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Results of the sensitivity analysis demonstrate that the proposed method is not 

particularly sensitive to changes in the membership function of the frequency of occurrence (F) 

nor the adverse consequence (C). In contrast, the model was shown to be sensitive to changes in 

the mapping values of the risk impact range. This finding indicates the importance of capturing 

an expert’s perceived impact values as precisely as possible. As discussed previously, 

decomposition of (1) a risk factor into its root causes and/or (2) a risk impact range into smaller 

subsets can be used to reduce biases, thereby enhancing the comprehensiveness and accuracy of 

model results. This explains the shape of the distribution observed in the illustrative case study 

(Figure 4.9 and Figure 4.10), where the expert was not confident about the mapping values for 

the risk impact, resulting in distribution with a uniform-like appearance. 

• Expert Validation 

Expert face validation is used to assess the practical applicability of a proposed method 

by having a subject matter expert evaluate the results of a proposed method (Lucko and Rojas 

2010). The illustrative case study results and sensitivity analysis were discussed with three 

experts (i.e., a director, a project manager, and project coordinator) from a large construction 

company in Alberta, Canada—each with an average of 15 years of practical experience in 

construction management and risk analysis. Definitions of the terms representative, 

comprehensive, and ease of use (described as follows) were provided to the experts. Then, 

experts were asked whether or not they believed that the proposed method was characterized by 

each definition. Results are detailed as follows. 

The experts agreed that the proposed method was representative, defined here as the 
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ability of a method to representatively express the knowledge of the expert as a probability 

distribution function. In particular, findings that distribution shape is sensitive to the mapping 

values of the range impact increased their confidence that the representation was appropriate. 

The experts also agreed that the proposed method was comprehensive, defined here as the 

ability of a method to include available information regarding the risk impact. They were 

satisfied with the level of information that the method allows them to incorporate while deriving 

the probability distribution. 

In contrast, the experts indicated that the proposed method was, in its current form, not 

easy to use—particularly by analysts that may not be familiar with fuzzy logic computations. 

They agreed that full computerization of the approach would considerably facilitate its 

application in industry. Accordingly, this method was computerized within an in-house 

developed simulation engine, SimphonyProject.NET (Mohamed et al. 2020a), developed for 

integrated assessment of risks. 

4.4.3 Multivariate Representation 

Following expert validation, a marginal distribution of the cost and schedule-risk impact 

based on expert knowledge was determined, as shown in Figure 4.12. The parameters of the final 

cost marginal distribution were lower limit = $10,000, upper limit = $40,000, shape parameter α 

= 2.7, and ß = 12.745; and the parameters of the final schedule marginal distribution were lower 

limit = 1 day, upper limit = 10 days, shape parameter α = 2.26, and ß = 1.13. Membership 

functions provided in Table 4.2 and Table 4.3 were used to derive the final marginal 

distributions. The steps of deriving the marginal distribution of the cost-risk impact in 
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SimphonyProjects.NET are detailed in Figure 4.13 (a to g). To represent the cost and schedule-

risk impact of the risk factor using multivariate distribution, an expert was asked to subjectively 

evaluate the correlation as either weak, moderate, or strong. A strong correlation between cost 

and schedule impact was evaluated, and the correlation matrix in Equation (4.14) was 

consequently used in the bivariate distribution. 

0.2   0.7     1.0      0.6      0.4   0.2     0.1       0        0       0  0           0          0          0       0  

Mapping values for small risk impact

Mapping values for medium risk impact

Mapping values for large risk impact

 

0            0         0.1          0.4 0.5       0.7          0.8       1.0      1.0      0.6       0.4        0.1  
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Mapping values for medium risk impact

Mapping values for large risk impact

 
(a) (b) 

Figure 4.12. Final Marginal distribution of the (a) cost impact and (b) schedule impact. 

 

  
(a) (b) 
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(e) (f) 

 

(g) 

Figure 4.13. Steps of deriving marginal distribution in SimphonyProjects.NET. 
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Here, a multivariate normal copula (Yan 2007) was chosen because it (1) does not have 

constraints on the marginal distributions and (2) has been successfully applied in other risk 

assessment studies with Beta as marginal distributions (Clemen and Reilly 1999). A copula 

package in R (Yan 2007) was used to implement the multivariate modelling of the dependence of 

the cost- and schedule-risk impacts. The package allows the user to define the dependence 

structure and the marginal distributions separately. The dependence structure consists of the 

number of correlated random variables and the correlation coefficient. The marginal distributions 

were defined using extraDistr package (Wolodzko 2018), which allows for a generalized beta 

distribution that is not bound between 0 and 1. The dependence structure between the cost and 

schedule impact, specifically the two marginal distributions and the correlation between them, is 

presented in Figure 4.14. The output joint probability density function of the bivariate fitted 

distribution is presented in Figure 4.15 as a contour plot—a representation of the 3-dimentional 

surface of the joint probability distribution function show in  

Figure 4.16. The cumulative density function of the bivariate joint distribution is shown in Figure 

4.17. It is this fitted distribution that will be used to model the risk factor (i.e. public obstruction) 

with correlated cost and schedule impact in a MCS experiment. 
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Figure 4.14. Dependence structure between cost and schedule-risk impact. 

 

 
 

Figure 4.15. Probability density function of the joint distribution. 
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Figure 4.16. Contour plot of the joint probability density function. 
 

 
 

Figure 4.17. Cumulative density function of the joint distribution. 
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4.5 Application and Practical Benefits 

Output of the model is presented in Figure 4.15. The process is repeated until a 

probability density function of the joint distribution is derived for each risk factor. These 

distributions can then be input into any existing MCS-based decision-support systems. Notably, 

for risk factors that have only schedule or risk impacts, marginal distributions will only be 

calculated for the cost-risk impact or schedule-risk impact [Figure 4.12 (a), (b)]. MCS-based 

decision-support systems use the distributions to sample a cost-risk impact, schedule-risk impact, 

or joint cost-schedule risk impact value for each risk factor based on its probability of 

occurrence. The results of several simulation iterations are then combined to provide a number of 

project insights, such as (1) the expected project completion date as cumulative distribution, (2) 

the expected project cost as a cumulative distribution, and (3) time and cost contingencies. 

Readers are referred to (Hulett et al. 2019), (Mohamed et al. 2020a), and (Moret and Einstein 

2016) for more information on the application of MCS-based decision-support systems for risk 

assessment.  

A primary benefit of the proposed method is its ability to incorporate detailed 

information into risk analysis inputs. Existing methods for deriving probability distributions from 

expert knowledge (e.g., elicitation of parameters for triangular, Pert, or uniform distributions) 

can only incorporate minimum, maximum, and most likely risk impact values. Experts are 

neither able to provide detailed information regarding the consideration of root causes nor 

perform risk impact decomposition, limiting the specificity and, in turn, accuracy, of model 

results. In contrast, the proposed method allows experts to consider the root causes of a risk 
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factor while providing impact values within an impact range through value mapping. Indeed, 

results of the sensitivity analysis, which demonstrated that the model was particularly sensitive to 

changes in mapping values (Figure 4.11), indicate the importance of accurately capturing 

subjective information. Methods that allow for the decomposition of input information, such as 

mapping values to smaller ranges, can allow experts to more precisely express their subjective 

knowledge, thereby enhancing the comprehensiveness of model results.  

A second benefit of the fuzzy logic approach presented here is the transformation of 

qualitative statements into a quantitative-like format (i.e., probability distribution function), 

thereby supporting the input of subjective data into quantitative methods, such as MCS. In turn, 

the proposed approach allows the use of one reliability-based risk assessment method throughout 

the life-cycle of a project. This alleviates the need for separate qualitative and quantitative 

methods in different phases of the project, in turn enhancing the consistency of output results. 

4.6 Discussion 

Difficulty selecting an input distribution that comprehensively represents risk impact 

(Ospina et al. 2019) has limited the use of probabilistic simulation-based risk assessment in 

practice—particularly in the planning and construction phase of wind farm projects that are 

characterized by a lack of historical data. While various methods and recommendations to 

overcome this challenge have been suggested in literature (Ospina et al. 2019), existing methods 

are not capable of incorporating a large amount of subjective knowledge in a time-sensitive, 

practical manner. Indeed, a flexible method that allows the expert to represent their subjective 

knowledge in a probability distribution has not been described in literature. The proposed 
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approach addresses this limitation by allowing a risk analyst to (1) reliably assess the risk impact 

based on subjective knowledge and expertise, (2) consider the root causes of a risk factor when 

calculating its impact, (3) model the dependence between the cost and schedule impacts of a risk 

factor that has both cost and schedule impact, (4) reduce biases in expert evaluation through the 

decomposition of a risk factor, and (5) overcome the limitation for using MCS in practice (i.e., 

the need for historical data) (Salah and Moselhi 2015). 

This research study proposed a fuzzy-based multivariate analysis approach to address 

limitations regarding data availability for construction risk assessment of onshore wind projects. 

The proposed approach was used to successfully solve an illustrative case study of one risk 

factor common to wind projects. Benefits of proposed method, which included the ability to 

incorporate detailed subjective knowledge of an expert through the consideration of additional 

risk factor details, were demonstrated. Furthermore, mapping values provided by experts within 

the impact range were found to have a considerable impact on the density function of resulting 

distribution (Figure 4.11). This was in contrast to minimal impact observed following 

modifications to the fuzzy membership function of adverse consequence (C) and frequency of 

occurrence (F) for evaluating root causes (Figure 4.9 and Figure 4.10). Although the proposed 

approach shares similarities with previously-developed methods (i.e., determination of minimum 

and maximum impact values), here, the probability density function of the resulting distribution 

is enhanced by two notable contributions, namely (1) calculating the most probable value from 

the combination of the root causes and their assessment and (2) mapping values to a risk impact 

range. Notably, this method can be applied to any type of project characterized by access to 
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limited data and is, therefore, not limited to wind farm construction. However, before replication 

of the proposed method to other project, a thorough understanding of the input data in addition to 

the analysis steps should be investigated. Usually, different types of construction projects have 

different characteristics and assumption which should be investigated before the analysis.    

While the proposed method showed an improvement over previously-developed 

approaches, the findings of this study should be interpreted in consideration of the following 

limitations. First, the membership function used in this study is a linear triangular and trapezoidal 

membership function. Other non-linear shapes for membership functions were not investigated 

and may affect the results. Nevertheless, most membership functions can be accurately 

represented by either triangular or trapezoidal functions (Fayek and Oduba 2005). Second, the 

risk impact range was divided into three subsets; the examination of more subsets may help 

experts to better express their belief and confidence about a risk impact. Third, the multivariate 

approach proposed here will require additional data pooling efforts to ensure that data for all 

impact dimensions are collected. Models must be built on information that is available and may 

need to be adjusted in instances where data are lacking, incomplete, or in an inappropriate format 

for analysis. In this research, a normal copula was used based on the recommendations of 

previous studies. Future work will include testing multiple copulas, comparing their 

performance, and developing a complete MCS model for risk assessment considering the 

developed probability distributions by the proposed method. 

4.7 Conclusion 

Input modelling is the first step in MCS-based risk assessment of construction projects. 
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Typically derived using historical project data, the use of MCS-based risk assessment in newer 

projects has been limited. Because of this, the subjective knowledge of risk analysts at a detailed 

level has not been properly considered when developing probability distributions for Monte 

Carlo risk assessment in construction. Therefore, this research tried to address the limitation of 

input modelling for risk assessment when historical data is lacking with only detailed subjective 

knowledge available. In particular, this research tried to devise a method that can make used of 

the experts’ subjective knowledge with minimized biases when deriving a probability 

distribution for a risk factor impact. This research has developed a method capable of capturing 

and modelling expert subjective knowledge by deriving a flexible generalized Beta distribution 

through fuzzy logic. Distribution for risk factor impacts with either one type of impact (i.e., cost 

or time) or both (i.e., cost and time) can be developed with the proposed method. Risk factors 

that have both cost and schedule impact can be modeled using Bivariate distribution by 

considering the correlation between cost and schedule impact of a risk factor, with the fitted 

generalized Beta distribution representing the marginal distributions for schedule and cost-risk 

impact. The method was applied to assess one of the risk factors common to wind farm 

construction. Sensitivity analysis was performed, and the model was found to be sensitive to 

changes in the mapping values of a risk factor impact range. In contrast, changing the shape of 

the membership function did not affect the resulting distribution. We found that the 

decomposition of a risk factor into its root causes and decomposition of the risk impact into 

smaller ranges allows the experts to better depict their subjective knowledge using probability 

distribution accurately and comprehensively with lower biases. An implication of these findings 
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is that both expert subjective knowledge and risk impact decomposition should be taken into 

account when deriving input distributions for MCS risk assessment. This will enable the 

application of quantitative methods in early stages of the project, thereby improving decision 

making processes. The proposed approach enables the effective, representative, and 

comprehensive elicitation of the probability distribution for input modelling in MCS-based risk 

assessment when only a detailed level of subjective knowledge exists.   
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Chapter 5 : Domain-specific risk assessment using 

integrated simulation: A case study of an onshore wind project 

5.1 Introduction 

Wind power, as a renewable source of energy (Saidur et al. 2010), has gained popularity 

due to its relative cleanliness, sustainability, and cost-competitiveness. Anticipated to lead the 

transformation of the electricity sector, wind energy is expected to produce about 35% of global 

electricity demands by 2050. To meet this need, significant investments in the construction of 

wind energy farms are being made. In 2018 alone, an estimated 67 billion USD were invested in 

onshore wind power worldwide, with investments expected to double or triple by 2050 (IRENA 

2019).  

Similar to any large-scale project, wind farm construction has schedule and cost 

objectives, wherein the project must be completed within a specific timeframe and budgeted 

cost. As a relatively new type of endeavor, onshore wind farm construction is associated with a 

high level of uncertainty and risk (Gatzert and Kosub 2016; Rabe et al. 2019). Accurately 

assessing and managing this risk is essential for ensuring project success, and choosing a suitable 

risk assessment method is a key step in this process. 

Risk assessment methods can be divided into two categories, namely qualitative and 

quantitative (Kendrick 2015; Salah and Moselhi 2016). In recent years, there has been a large 

development of quantitative risk models due to their increased accuracy over qualitative 

approaches (Taroun 2014). In spite of these advancements, however, quantitative models are 

rarely applied in construction practice (Laryea 2008). In 2014, Abdulmaten Taroun conducted a 
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comprehensive literature review of risk modelling and assessment approaches used in 

construction since 1980 (Taroun 2014). This study concluded that, although numerous theories 

and techniques for improving risk assessment in construction have been proposed, theoretical 

advancements are not being translated into advances in construction practice (Taroun 2014). 

These findings align with those of a recent study by Jung and Han (2017), which reported that 

because of a lack of knowledge and real-world applicability, practitioners continue to rely on 

experienced-based, qualitative risk management approaches. Several studies have investigated 

barriers for the practical applications of quantitative models, with assessment and analysis 

identified as the most challenging issues (Baloi and Price 2003).  

Quantitative methods described in literature are often presented using simple illustrative 

examples or generic project information. Although useful for demonstrating method 

generalizability, construction practitioners often have difficulty adapting and applying these 

generic methods to a specific project. This is particularly apparent in the wind farm construction 

sector, where real case studies and domain-specific models and tools are in short supply. Indeed, 

application of the gold standard quantitative risk assessment approach—the integrated Monte 

Carlo simulation and critical path method (MCS-CPM)—to a real wind farm project has yet to 

be reported in literature.  

This case study details the first reported application of the state-of-the-art MCS-CPM 

approach to develop a domain-specific risk assessment model in wind farm construction. The 

domain-specific model is used to assess the impact of multiple risk factors on the cost and 

schedule of a real wind farm project. Notably, this case study also demonstrates the first 
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application of a newly proposed input modelling method to consider the influence of correlations 

between cost and schedule impacts of risk factors in MCS. Time and cost contingencies, project 

durations, and overall project costs are then estimated. Demonstration of domain-specific models 

and approaches, such as the one presented here, are expected to help guide and promote the 

application of more accurate risk assessment methods in industry—in turn contributing to 

improved project planning, outcomes, and success.  

Specific contributions of this study are two-fold. First, the case study demonstrates how 

to academically apply the MCS-CPM method to evaluate the impact of risks on a construction 

project. Domain-specific tools such as this are expected to facilitate the adoption and application 

of MCS-CPM by industry practitioners to more effectively assess construction risk in onshore 

wind projects. Second, this case study applies bivariate distributions to consider correlations 

between cost and schedule-related risk factors. The findings of this study not only support the 

use of a bivariate approach for risk assessment in construction, but also serve as an important 

demonstration of the types of decision-support that can be gleaned when correlations between 

cost and schedule-related risk factors are considered. 

5.2 Literature Review 

5.2.1 Risk Assessment in Wind Farm Construction 

As a new construction type, both related literature and historical data for risk assessment 

in onshore wind farm construction remain scarce (Somi et al. 2020). While several studies have 

explored risk management in onshore wind farm projects, the majority of these studies are 

limited to the identification of risk factors in different phases of onshore wind projects across 
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different countries (Gatzert and Kosub 2016; Xinyao et al. 2017; Gang 2015; Somi et al. 2020; 

Fera et al. 2014; Enevoldsen 2016; Montes and Martin 2007; Rolik 2017; Angelopoulos et al. 

2016; Zhou and Yang 2020). Focusing primarily on identification, these approaches are unable 

to evaluate the potential impact of risk factors through quantification, greatly limiting their 

effectiveness in construction practice. 

Certain studies have expanded upon identification by focusing on ranking safety hazards 

(Gul et al. 2018; Mustafa and Al-Mahadin 2018). Where quantification of risk factors in onshore 

wind farm construction has been attempted, methods have been developed for a specific subset 

of risk factors. Many available quantitative models for onshore wind projects have focused on 

analyzing specific risk factors affecting construction activities, such as adverse weather (Atef et 

al. 2010; Guo et al. 2017), while overlooking other types of risk. Few researchers have proposed 

methods by which risk factors can be quantified. Kucukali developed a methodology for 

assessing the overall risk severity in wind projects based on a linguistic subjective scale 

(Kucukali 2016), and Rolik proposed a Strengths, Weaknesses, Opportunities, and Threats 

(SWOT) analysis approach to assess the risk level in wind energy projects (Rolik 2017b). 

Despite this growing body of work, however, the use of a quantitative approach for assessing 

risk in onshore wind farm construction that is capable of analyzing the correlated impact of 

different subsets of risk factors on project cost and schedule has yet to be reported in literature. 

5.2.2 Application of Quantitative Risk Models in Industry 

Numerous studies have explored the barriers limiting the application of quantitative risk 

assessment techniques in practice. A lack of required expertise in or familiarity with techniques 
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was consistently identified as a primary factor limiting the application of quantitative risk 

assessment methods in practice in many studies (Forbes et al. 2008; Akintoye and MacLeod 

1997; Dey and Ogunlana 2004; Tang et al. 2007; Hlaing et al. 2008; Zhao et al. 2014; Lyons and 

Skitmore 2004; Chileshe and Kikwasi 2014). Specifically, Laryea and Hughes (2008) observed 

that many models in literature were not derived from the type of data or information that are 

commonly used in practice. Rather, many models were “desk-based” or analytically-derived 

(Laryea and Hughes 2008). Several researchers have promoted the development of risk 

assessment methodologies that reflect actual practice in construction (Laryea and Hughes 2008; 

Taroun 2014). This is a sentiment that is shared by Tang and colleagues, who have highlighted 

the potential for improving risk assessment in practice by systematically increasing risk 

management knowledge and skills—especially with regards to quantitative techniques (Tang et 

al. 2007).  

One such approach is the application of quantitative techniques to real construction 

projects together with the development of domain-specific models and tools. In addition to 

facilitating model development and experimentation, domain-specific models allow for a better 

understanding of the simulation model by practitioners. An effective, domain-specific model 

should satisfy certain requirements as follows (Valentin and Verbraeck 2005):  

(1) Support developers of domain-specific models by reducing the inherent difficulty 

associated with this process.  

(2) Provide insight into complexity of the system to practitioners and future model 

developers.  
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(3) Detail required data, information, and system knowledge.  

(4) Describe system deliverables. 

5.2.3 Risk Management and Assessment Methods 

Risk is an uncertain event that can negatively or positively affect the outcome of a project 

(Al-Bahar and Crandall 1990). Risk management processes begin by identifying potential risks 

that may occur during project execution (Abdelgawad 2011; Mills 2001; AbouRizk 2009; 

Chapman 2001). Then, a risk assessment, which converts the impact of risk into numerical terms 

(Mills 2001; Meyer 2015), is performed. Risk assessments are typically carried out using risk 

management support tools (Dikmen et al. 2004), which help to systematise the process, 

overcome analytical difficulties, and incorporate experience from previous projects into the 

decision-making process. Quantitative risk assessment methods can be classified into two 

categories (Bakhshi and Touran 2014): 

(1) Deterministic methods can apply either a simple or complex mathematical approach. 

Simple mathematical approaches (e.g., pre-determined percentages) are considered the least 

sophisticated methods for risk analysis and are often performed when time is limited, projects are 

small, or owner budgets are insufficient. Simple deterministic methods depend on the subjective 

experience of the estimator, occasionally resulting in over- or underestimations (Salah and 

Moselhi 2015). Complex mathematical approaches develop theoretical mathematical models, 

often in the form of linear and non-linear equations such as regression and fuzzy logic (Meyer 

2015). If historical data are unavailable, experts can provide qualitative or subjective assessment 

of risks, and fuzzy-set theory can then be applied to convert qualitative statements into numerical 
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values (Bakhshi and Touran 2014).  

(2) Probabilistic methods typically incorporate the random uncertainty associated with 

construction projects by using probability theory to assess risk. Due to their accuracy, 

probabilistic methods are often considered the ‘gold standard’ of risk assessment approaches, 

especially when critical decision-making is required (Bakhshi and Touran 2014). 

Previous risk assessment model research is summarized in Table 5.1. Models capable of 

assessing risk impact and estimating contingency are categorized into three types according to 

the focus of the analysis: cost-oriented, schedule-oriented, or integrated cost and time. Cost-

oriented models focus on cost contingency and how risk factors affect project cost. Schedule-

oriented models focus on time contingency and the impact of risk factors on project duration. 

Finally, integrated models address the impact of risk factors on project cost and time 

simultaneously. The advantages of integrating risks for schedule and cost, as described by Hulett 

and colleagues (2011), include (1) calculating schedule contingency, (2) calculating cost 

contingency, (3) presenting a joint probability distribution of project cost and schedule, and (4) 

prioritizing project risks, which, in turn, assist with the development of risk mitigation strategies 

for both time and cost. It is important to note, however, that these integrated models do not 

consider correlations between cost and schedule impact, which can lead to over- or 

underestimations of project contingencies.  
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Table 5.1: Summary of risk assessment models in construction 

References Model Category Modelling Approach 

Salah and Moselhi 2015  

Idrus et al. 2011 

Fateminia et al. 2020b  

Elbarkouky et al. 2016  

Fateminia et al. 2020a 

Cost Fuzzy Logic 

Barraza and Bueno 2007  

Hammad et al. 2016  

Molenaar 2005 

Cost Monte Carlo Simulation 

Sonmez et al. 2007  

Thal et al. 2010 
Cost Regression 

Siraj and Fayek 2020 Cost Fuzzy System Dynamics 

Barraza 2011 

Ökmen and Öztaş 2008 

Schatteman et al. 2008  

Khedr 2006  

Koulinas et al. 2020 

Time Monte Carlo Simulation 

Nasir et al. 2003 Time Belief Network 

Pawan and Lorterapong 2016 Time Fuzzy Logic 

Moret and Einstein 2016 

Eldosouky et al. 2014  

Hulett et al. 2019  

Choudhry et al. 2014 

Integrated Monte Carlo Simulation 

 

A commonly-applied probabilistic technique for risk assessment is Monte Carlo 

Simulation (MCS) (Molenaar et al. 2013; Bakhshi and Touran 2014; Liu et al. 2017). MCS has 

been widely applied for the quantitative assessment of risks in construction (Table 5.1) due to its 

ability to simulate the potential impact of risks on individual activities while also determining the 

amalgamated impact at a project-level (Hulett et al. 2011). Furthermore, MCS remains the only 

modelling approach capable of simultaneously addressing the integrated impact of risks on cost 
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and schedule. While fuzzy logic has been successfully applied to model and evaluate cost and 

time contingencies separately (Table 5.1), current fuzzy logic-based models are limited in their 

ability to consider the integrated impacts of risk factors. While type-2 fuzzy numbers are 

required to consider the impact of both time and cost, the implementation of mathematical 

operations on type-2 fuzzy numbers is computationally complex and may result in the 

overestimation of uncertainty through the consecutive implementation of fuzzy arithmetic 

operations (Gerami Seresht and Fayek 2019). 

The ability of MCS to integrate these impacts offers several advantages, including 

alleviating the need for analysts to calculate correlations between activities affected by the same 

risk factor (Eldosouky et al. 2014) and improving the prioritization of project risks during the 

development of risk mitigation strategies (Hulett et al. 2011).Well-known for its ability to 

generate accurate and realistic results (Zhao et al. 2014), MCS is considered the state-of-the-art 

technique for risk assessment (Raz and Michael 2001; Hulett et al. 2019).  

Monte Carlo simulation is often coupled to a CPM network to create an integrated MCS-

CPM risk assessment model. In comparison to other risk assessment techniques (e.g., PERT), 

combining the CPM with MCS improves the accuracy of stochastic project schedules by:  

(1) Considering all possible values for the duration of each stochastic activity when 

determining project duration (as compared to mean durations) (Karabulut 2017).  

(2) Considering the uncertainty associated with all project activities for determining 

project duration (as compared to only critical activities).  

(3) Allowing practitioners to calculate the criticality index of each activity by running the 
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simulation model for a number of iterations and determining the frequency of occurrence of each 

activity in the critical path.  

As a result of these advantages, MCS-CPM has become a recommended practice for risk 

assessment by the American Association of Cost Engineering (Hulett et al. 2019). Although 

considered a superior approach, previous MCS-CPM-based models consider cost and schedule 

impacts of a risk factor as independent variables (Table 5.2). While a method for considering the 

dependency between cost and schedule impacts through bivariate distributions has been recently 

proposed (Mohamed et al. 2020b), the method has not been applied to a real case study. As such, 

its functionality and practical utility for the evaluation of real case data remains unknown. 

Table 5.2: Types of distributions used to represent the impact of risk on cost and schedule 

Reference 
Cost Impact 

Distribution 

Schedule Impact 

Distribution 
Impact Value 

Eldosouky et al. 2014 

Hulett et al. 2011 
Triangular Triangular 

% of Baseline 

Activities 

Hulett 2011 
Triangular or  

Beta Pert1 

Triangular or  

Beta Pert1 

% of Baseline 

Activities 

Smith et al. 2009  

Moret and Einstein 

2016 

Triangular Triangular Absolute or % 

Choudhry et al. 2014 Triangular Triangular Absolute 

Mohamed et al. 2020 Generalized Beta Generalized Beta Absolute 

1Where triangular and Beta Pert distributions have been verified as a proxies for each other (Johnson 1997). 

5.3 Methodology 

Monte Carlo simulation-critical path method was applied to develop a domain-specific 

risk assessment model. This model was then used to assess construction risks of a real wind farm 
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project. The MCS-CPM methodology consists of four stages, namely input data preparation, 

modelling and quantification, decision-support, and sensitivity analysis. An overview of the 

methodology is provided in Figure 5.1. Model development, as well as a discussion of the results 

and practical implications of the method, are detailed as follows. The simulation logic of the 

MCS-CPM method is detailed in Figure 5.2 

 

 

Figure 5.1. MCS-CPM Methodology. 
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Start

End

Find which activity is affected by the 

risk factor

Add the simulated risk impact to 

activity duration and/or cost

Use the critical path method to compute the forward and 

backward path calculations of all the project activities

For risk factor (j)  = 1 to m

Risk (j) = m ?

Yes

Simulated probability > risk 

probability
YesNo

No

Simulate the occurrence of each risk factor 

using its probability of occurrence 

Risk impact will not 

be added in this run

Simulate the impact of the risk factor 

from its impact distribution

For simulation run (i)  = 1 to n

Run (i) = n ?

Yes

No

 

Figure 5.2. Simulation logic of MCS-CPM method. 

5.3.1 Input Data Preparation 

Construction Process Configuration 

In this step, construction data are used to develop the cost-loaded schedule of the project 

and, using the CPM, to estimate baseline duration and cost. These data include work-package 

and activity information and are commonly prepared as follows:  

(1) Work breakdown structure of the project is developed, and the project is partitioned 

into work-packages and activities at the required level. 
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(2) Logical relationships (e.g., finish to start) between work-packages and activities are 

established, and applicable constraints or required lag times are added. 

(3) Construction durations and baseline costs of different work-packages and/or activities 

are calculated.  

Risk Identification  

Risk data are used to develop the risk assessment portion of the model as follows: 

(1) Risks are identified using an established technique or a combination thereof; readers 

are referred to Siraj and Fayek (2019) for a review of commonly used techniques.  

(2) Work-package(s) affected by each risk are determined. 

(3) The probability of occurrence for each risk factor is determined using probability 

scales, such as those detailed in AbouRizk (2009), PMI (2008), and Abdelgawad and Fayek 

(2010). 

(4) Risk impact distributions for cost and schedule are determined. 

A challenge limiting the practicality of MCS is the requirement that impact parameters be 

input as probability distributions (Step 4). Distributions can be derived using a variety of 

methods depending on the types and amount of data available (Biller and Gunes 2010). As a 

relatively new type of construction, wind farm projects typically lack the volume of historical 

data required to derive probability distributions using statistical means. Types of distributions 

used in previous studies are summarized in Table 5.2. Due to a lack of historical data, a fuzzy-

based multivariate method for determining risk impact distributions recently proposed by 

Mohamed et al. (2020b) was adopted in this study. The method is capable of integrating the 
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detailed subjective knowledge of experts through fuzzy logic to derive the distributions for cost 

and schedule risk impact. The method is characterized by several advantages, including:  

(1) It can be applied when the distribution type is unknown. 

(2) It reduces bias through risk decomposition and inclusion of root causes.  

(3) Unlike other methods, it considers the dependence between the risk and cost impact 

of a variable through copula-based bivariate distributions.  

Readers are referred to Mohamed et al. (2020b) for more information. 

Regular Variability 

In addition to the uncertainty associated with risk impact and occurrence, uncertainty 

associated with regular variability in the duration and cost of construction activities must also be 

considered. Variability in cost and duration of project activities under regular conditions (Moret 

and Einstein 2016) can arise due to a number of factors including, but not limited to, estimation 

errors or biases (Eldosouky et al. 2014; Hulett et al. 2019). Although regular variability has an 

occurrence likelihood of 100%, the resulting impact on project cost and schedule is uncertain. 

This is in contrast to the variability associated with specific risks, where both likelihood and 

impact are uncertain. This study makes a clear distinction between uncertainty stemming from 

risk or from regular variability; here, regular variability is modeled stochastically by probability 

distributions (Moret and Einstein 2016; Hulett et al. 2019), and risks are modeled using 

likelihood and impact. 

Previous research studies have proposed different types of probability distributions to 

model regular variability, as shown in Table 5.3.Triangular or beta pert distributions are most 
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commonly used in the absence of historical data due to the ease in deriving the parameters of 

these distributions under such conditions. Lognormal distributions have also been used to 

represent the variability of activity costs (Moret and Einstein 2016); notably, cost variability was 

shown to be best fitted to this distribution when historical data were available (Touran and Wiser 

1992). 

Table 5.3: Types of distributions used to represent regular variability 

Reference 
Activity’s Cost 

Distribution 

Activity’s Duration 

Distribution 
Project Type 

Moret and Einstein 

2016 
Lognormal Triangular Railway 

Eldosouky et al. 2014 Triangular  Triangular Water plant 

Naderpour et al. 2019 Beta Pert Beta Pert Bridges 

Khadem et al. 2018 Triangular Triangular Oil and gas 

Hulett 2010  

Hulett 2009 

Triangular or  

Beta Pert 

Triangular or  

Beta Pert 
Generic 

 

5.3.2 Modelling and Quantification 

Once the input data are prepared, modelling and simulation can begin. Data are input into 

the MCS-CPM model and various parameters, including the early start/finish times, late 

start/finish times, activity float, and the critical path are calculated. Project activities or work-

packages that are characterized by uncertainty are modeled stochastically using probability 

distributions (as previously described). Baseline costs of activities are evaluated and input into 

the model, and project risks are defined and assigned to specific activities/work-packages. Then, 

multiple iterations of MCS are performed. In each iteration, whether or not a risk occurred is 
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determined by its probability of occurrence. If a risk is simulated to occur, a random value is 

sampled from the cost and schedule distributions, and the simulated impact is added to the cost 

and/or schedule of the affected activities/work-packages. The process is repeated until the 

specified number of iterations are reached. An illustrative example of the process is provided in 

Figure 5.3. 

 

Figure 5.3. Illustrative example of the MCS-CPM method for a project consisting of three 

activities (A, B, and C) and one risk factor (R1) that affects Activity A. 

5.3.3 Outputs and Decision Support 

If a sufficient number of simulation iterations are performed, estimated project duration 

and cost can be represented as a probability distribution. Because the output of each simulation 

iteration (i.e., project time and cost) represents a possible project outcome, a joint cost-time 

contingency, which provides greater insight as compared to individual cost or time contingency 

values, can also be obtained. The MCS-CPM-based approach also allows for the investigation of 

the criticality of project activities. Risk factors that affect the duration of project activities can 

result in changes to the critical path of the project, which, in turn, can change the criticality of 

other project activities. A tornado diagram, which allows analysts to visualize the risks with the 
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greatest impact on project cost and time (De Marco et al. 2012), can also be created. Finally, 

functionality of the simulation model is verified by testing the sensitivity of simulation outputs to 

changes in inputs (Kleijnen 2010). 

5.4 Case Study 

A real wind farm project was used to demonstrate the applicability of the MCS-CPM 

method. The onshore project consists of eight 5.0 MW wind turbine generators for a total project 

output of 40 MW. The project includes eight major work-packages as shown in Figure 5.4: pre-

construction work, foundation, turbine delivery, turbine assembly, collection system, mechanical 

completion, commissioning, and site rehabilitation. 

Onshore Wind Farm Construction Project

Foundation Turbine delivery
Pre-construction 

work

Access road 

construction 
Foundation tower 1

Turbine 1 delivery 

to site

Turbine 2 delivery 

to site

Crane pads and 

laydown areas

Turbine assembly

Turbine 1 assembly

Turbine 2 assembly

Collection system

Underground 

collector system 

Substation upgrade

Commissioning 

Turbine 1

Turbine 2

Site 

rehabilitation

Site finishing and 

adjustment

Foundation tower 2

           

Foundation tower 8           

Turbine 8 delivery 

to site

       

Turbine 8 assembly

Transmission line 

      

Turbine 8

Turbines delivery to 

port 

Maintain access 

roads

Mechanical 

completion

Turbine 1

Turbine 2

      

Turbine 8

 

Figure 5.4. Work breakdown structure of case study. 

5.4.1 Input Data Preparation 

Construction Process Configuration and Regular Variability 

Each of the work-packages was further partitioned into more detailed work-packages, as 

shown in Figure 5.4. Logical relationships between the work-packages and their durations were 

extracted from project plan documents, as shown in Table 5.4. The stochastic duration (i.e., 
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regular variability) of work-packages was represented using either triangular or uniform 

distributions based on recommendations from previous studies (Table 5.3) and project experts. 

Table 5.4: Work package details of the project 

ID Work Package Name Duration (Days) 
Predecessor/ 

Relationship (Lag) 

W1 Access road construction Triangular (40, 55, 47) – 

W2 Crane pad and laydown areas Triangular (40, 55, 47) 1/F.S 

W3 Foundation construction of 

tower1 
Triangular (5, 10, 7) 2/F.S 

W4 Delivery of turbines to port Uniform (90, 110) 1/S.S 

W5 To site delivery of turbine2 Triangular (7, 12, 10) 2/F.S; 4/F.S 

W6 Erection and install of 

turbine2 
Triangular (5, 10, 7) 5/F.S; 3/F.S Lag (15) 

W7 Underground collection 

circuit 
Triangular (100, 110, 105) 2/F.S 

W8 Substation upgrade Triangular (210, 215, 220) 1/S.S 

W9 Transmission line Triangular (105,115,110) 2/S.S 

W10 Mechanical completion of 

turbine2 
Triangular (3, 7, 5) 6/F.S 

W11 Commissioning of turbine2 Triangular (5, 9, 7) 7/F.S; 8/F.S; 10/F.S 

W12 Maintaining access road Triangular (90, 100, 95) 5/S.S 

W13 Project completion and final 

site verification 
Triangular (7, 12, 9) 11/F.S 

1
Towers 1 or (2, 3, 4, 5, 6, 7, 8), 2Turbines  1 or (2, 3, 4, 5, 6, 7, 8) 

 

Risk Identification 

Risk factors were identified and evaluated following a review of project documents and a 
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brainstorming session with a group of three experts who were directly involved in the project. 

The list, which was collected and supplied by the industrial collaborator, is shown in Table 5.5; 

detailed descriptions of each risk factor are available in Table 5.6. It is important to note that risk 

factors were identified based on the characteristics of the studied project, and these risk factors 

may not be applicable to all onshore wind projects. 

Table 5.5: Risk factor pre-evaluation 

ID Risk name 
Probability of 

Occurrence 

Cost  

Impact 

Schedule 

Impact 

Affected  

Work 

Package(s) 

R1 Landmines Unlikely ✔ ✔ Entire Project 

R2 
Unexpected poor site 

geology 
Very Unlikely ✔ ✔ 3 

R3 Project completion delay 
Somewhat 

Likely 
✔ ✔ Entire Project 

R4 COVID-19-related delays Likely – ✔ Entire Project 

R5 Limited experience Likely – ✔ 11 

R6 Blade erection failure Very Unlikely ✔ ✔ 6 

R7 Installation errors Very Unlikely ✔ ✔ 6 

R8 Concrete foundation issues Very Unlikely ✔ ✔ 3, 11 

 

 

 

 

 

 

 



                                                                                                                                                  182 

______________________________________________________________________________ 

 

 

Table 5.6: Risk factors description 

ID Risk Description 

R1 Landmines The project is located in a previous warzone. The contractor/sub-

contractors used a random technique to spot check for landmines in 

the project site area. 

R2 Unexpected poor 

site geology 

The contractor is relying on the owner’s geotechnical data, which 

may not accurately represent ground conditions at the site. 

Additional geotechnical investigations may be required. 

R3 Project 

completion delay 

The owner/operator may not be able to satisfy requirements to 

provide commissioning and acceptance procedures by the specified 

dates; therefore, a liquidated damage must be paid. 

R4 COVID-19-

related delays 

COVID-19 may result in delays in turbine component delivery 

and/or may limit the number of technicians onsite. 

R5 Limited 

experience 

With any new turbine model on the market, new technologies and 

upgrades bring forth a higher number of teething issues that require 

additional up-tower repairs, part replacements, and/or retrofits 

during construction, which can delay project completion. 

R6 Blade erection 

failure 

The blades installed on the project turbines are a relatively new 

technology on the market. As such, new installation procedures are 

required, which increases the risk of failure during blade 

erection/installation. 

R7 Installation errors There is a greater likelihood that installation errors will occur during 

erection/installation stages (e.g., tower section misalignment). 

R8 Concrete 

foundation issues 

Poor concrete placement/consolidation and congested reinforcement 

may cause foundation concrete voids, which will require additional 

engineering studies 

 

The probability of occurrence of each risk factor was evaluated linguistically using the 

scale in Table 5.7; average values of the numerical ranges, summarized in Table 5.7 under the 

heading ‘input value’, were used as inputs to the model. Then, the ability of each risk factor to 

impact cost and schedule and the work-packages affected by each risk factor were determined, as 

shown in Table 5.5. 
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Table 5.7: Probability of occurrence scale. Adapted from (Abdelgawad and Fayek 2010). 

Linguistic  

Term  

Value Range 

(%) 

Input Value 

(%) 
Description 

Very Unlikely ≤ 1 1 A risk factor is highly unlikely to occur 

Unlikely 2 – 10 6 A risk factor is unlikely to occur 

Somewhat Likely 11 – 33 22 A risk factor may occur 

Likely 34 – 67 50 A risk factor is expected to occur 

Very Likely > 67 90 A risk factor will certainly occur 

 

The probability distributions for cost and schedule risk impact were determined using the 

method introduced by Mohamed et al. (2020b) for input modelling of MCS in wind farm 

construction. First, the root causes/scenarios of the risk factors were determined and evaluated. A 

complete list of the root causes of the risk factors and their evaluations are detailed in Table 5.8. 
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Table 5.8: Root causes of risk factors and their evaluation. 

ID Root Causes/Scenarios 
Frequency of 

Occurrence 

Adverse 

Consequence 

R2 
Data provided by the owner is low accuracy Likely Very Large 

Data provided by the owner is medium accuracy Somewhat Likely Medium 

Site investigation by contractor is poor Likely Large 

Site investigation by contractor is medium Unlikely Small 

Low experience with characteristics of project area Somewhat Likely Very Large 

R3 
Shortage of laborers Unlikely Very Large 

Unqualified laborers Unlikely Large 

Poor project planning Somewhat Likely Large 

Poor site supervision Unlikely Very Large 

Late payments of contractors Somewhat Likely Medium 

R4 Laborers do not follow health guidelines Unlikely Very Large 

Higher infection rate in the surrounding area Somewhat Likely Large 

Poor site supervision and enforcement Unlikely Medium 

Restricted number of laborers onsite Somewhat Likely Large 

R5 Familiarity with technology is low Unlikely Very Large 

Familiarity with technology is medium Somewhat Likely Small 

Less qualified laborers Unlikely Very Large 

Unavailability of training Unlikely Large 

R6 Familiarity with installation of new blades is low Unlikely Very Large 

Familiarity with installation of new blades is 

medium 

Likely Small 

Site supervision is poor Unlikely Very Large 

R7 
Tight project schedule Unlikely Very Large 

Poor communication and coordination Somewhat Likely Small 

Poor site supervision Unlikely Large 

R8 
Poor concrete placement Unlikely Large 

Congested reinforcements Somewhat Likely Medium 

Compacting and curing is poor Unlikely Very Large 

Compacting and curing is medium Likely Small 

Concrete mix design quality is poor Unlikely Large 

Concrete mix design quality is medium Somewhat Likely Medium 
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Second, the frequency of occurrence and adverse consequence of root causes/scenarios 

were evaluated subjectively using a fuzzy membership function, as shown in Figure 5.5. 

 

Figure 5.5. Fuzzy membership function for (a) frequency of occurrence and (b) adverse 

consequence. Adapted from Mohamed et al. (2020). 

Then, the lower and upper boundaries of each risk factor were determined. Third, the 

impact range was divided into three subsets (small, medium, and large), and a mapping degree 

for each value was determined based on expert belief. Example mapping for R2 is illustrated in 

Figure 5.6; mapping for all other risk factors are shown in Figures 6 through 11. Finally, the 

correlation between the cost and schedule risk impact was evaluated subjectively as either weak 

(ρ=0.15), moderate (ρ=0.45), or strong (ρ=0.8), allowing the risk impact to be represented using 

a normal copula. Resulting marginal distributions for cost and schedule impacts of the risk 

factors are summarized in Table 5.9. 
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Figure 5.6. Probability distribution for (a) cost and (b) schedule impact of R2. 

0.05    0.05   0.05    0.05    0.2   0.8  1.0    1.0    0.7    0.5    0.2   0.1 0.05   0.05   0.01   0.01   0.0   0.0 

Mapping values for small risk impact

Mapping values for medium risk impact

Mapping values for large risk impact

 

Figure 5.7. Probability distribution for impact of R3 on schedule 
 

0.1    0.1   0.4    0.6    0.75   0.95 0.95    1.0    0.7    0.4    0.2   0.1 0.05   0.01   0.01   0.01   0.01   0.01

Mapping values for small risk impact

Mapping values for medium risk impact

Mapping values for large risk impact

 

Figure 5.8. Probability distribution for impact of R4 on schedule 
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Mapping values for medium risk impact

Mapping values for large risk impact

 

(a) 

0.3    0.6   0.9    1.0    0.8   0.4 0.2    0.15    0.1   0.1   0.1   0.1 0.05   0.05   0.05   0.01   0.01   0.01 

Mapping values for small risk impact

Mapping values for medium risk impact

Mapping values for large risk impact

 

(b) 

Figure 5.10. Probability distribution for impact of R6 on (a) cost and (b) schedule 
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Figure 5.9. Probability distribution for impact of R5 on schedule 
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Mapping values for small risk impact

Mapping values for medium risk impact

Mapping values for large risk impact
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(b) 

Figure 5.11. Probability distribution for impact of R7 on (a) cost and (b) schedule 
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Mapping values for small risk impact

Mapping values for medium risk impact

Mapping values for large risk impact
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(a) 

0.1    0.2   0.3    0.4    0.5   0.6 0.7    0.8    0.9   1.0   0.6   0.5 0.4    0.3    0.2   0.1    0.1   0.1 

Mapping values for small risk impact
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Mapping values for large risk impact

 

(b) 

Figure 5.12. Probability distribution for impact of R8 on (a) cost and (b) schedule 

 

It is important note that because the root causes of risk factor R1 were difficult to 

determine, the cost impact was defined as triangular (50 000, 250 000, 100 000) and the schedule 

impact was determined as pert (30, 365, 90) with a strong correlation of 0.8. For R3, a fixed 

value of 50 000 CAD per turbine/day was assigned to represent the liquidated damage specified 
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in the contractual documents. Because the cost impact of R3 depends on the length of the 

schedule delay, a probability distribution with the same α and β values as the schedule impact 

distribution was derived. Then, the lower and upper bound values were multiplied by the fixed 

liquidated damage, resulting in values of 0 CAD and 4 500 000 CAD, respectively (i.e., 50 000 

CAD/day * 90 days = 4 500 000 CAD). 

Table 5.9: Parameters of distributions for cost and schedule risk impact. 

ID Cost Impact Schedule Impact ρ1 

R1 Triangular (50 000, 250 000, 100 000) Pert (30, 365, 90) 0.8 

 Lower Upper α β Lower 
Uppe

r 
Α β  

R2 30 000 75 000 13.195 12.826 14 60 10.535 13.016 0.8 

R3 0 4 500 000 10.428 13.334 0 90 10.428 13.334 0.8 

R4 - - - - 30 180 9.676 12.453 - 

R5 - - - - 7 30 2.222 10.930 - 

R6 0 300 000 3.066 16.439 3 30 2.747 12.802 0.8 

R7 0 300 000 2.959 15.644 3 30 3.146 15.412 0.8 

R8 100 000 300 000 3.889 14.461 30 90 2.359 3.650 - 

1
Where ρ = assigned correlation value 

 

Risk factors with correlated schedule and cost impacts were represented by a bivariate 

distribution using a normal copula (Mohamed et al., 2020b). A copula package in R (Yan 2007) 

was used to implement the multivariate modelling of the cost- and schedule-risk impact 

dependence. Bivariate distributions for R2, R6, and R7 are shown in Figure 5.13, Figure 5.14 

and Figure 5.15. 
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Figure 5.13. Bivariate impact probability distribution of R2. 

 

Figure 5.14. Bivariate impact probability distribution of R6 
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Figure 5.15. Bivariate impact probability distribution of R7 

5.4.2 Modelling and Quantification 

SimphonyProject.NET is an in-house developed simulation platform designed to facilitate 

the application of an integrated simulation-based assessment of project risks. Notably, the use of 

SimphonyProject.NET addresses common practical limitations associated with MCS-CPM, 

including difficulty interpreting results (Senesi et al. 2015) and modelling of simulation inputs. 

By making use of popular scheduling techniques, such as the CPM and MCS (Karabulut 2017; 

Mohamed et al. 2020a), SimphonyProject.NET is able to simulate project cost and duration in 

consideration of project risks. 
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The user interfaces for entering schedule and cost data as well as risk data in 

SimphonyProject.NET are shown in Figure 5.16 and Figure 5.17, respectively. Once input data 

were entered, the simulation was initiated and was run for 1 000 iterations, as recommended by 

Dawood (1998), to achieve the desired level of confidence; notably, this is well in excess of the 

120 iterations recommended for a simulation to reach appropriate maturity (Lee and Arditi 

2006). 

 

Figure 5.16. User interface for input of schedule and cost project data in SimphonyProject.NET 
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Figure 5.17. User interface for input of risk data in SimphonyProject.NET 

5.4.3 Outputs and Decision Support 

Various results and reports were extracted from SimphonyProject.NET. A baseline 

project schedule (i.e., without risk but with regular variability) is shown in Figure 5.18 a. 

Average duration of the baseline project (𝑃50) was determined to be 281 days (σ = 3 days), with 

a 90% likelihood (𝑃90) that the duration of the baseline project would not exceed 285 days 

(Figure 5.18). This resulted in a project completion date of April 22, 2021, and April 28, 2021, 

for 𝑃50 and 𝑃90,  respectively (Figure 5.19).  
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Figure 5.18. Baseline project (i.e., no risk) duration as a (a) probability density function and  

(b) cumulative distribution function. 

 

Figure 5.19. Baseline project (i.e., no risk) completion date as a cumulative distribution 
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Initially planned using a deterministic approach, the project was expected to be 

completed in 270 days. As is observed in Figure 5.18, there is a very low probability (~1%) that 

the project will be completed within this time. These results highlight the limitations of 

deterministic approaches, which often result in underestimation due to their inability to consider 

the randomness and variability inherent to construction. 

Risk factors were then added to evaluate the resulting impact on project time and cost. 

When risk was considered, the average project duration was extended to 348 days (σ = 64 days) 

(Figure 5.20). There was a 50% likelihood (𝑃50) that the project would be completed in 355 

days, and a 90% likelihood (𝑃90) that the project would be completed in 415 days (Figure 5.20).  

 

Figure 5.20. Project duration considering risk impact as a cumulative distribution function. 

Notably, the average duration and the 50% likelihood values differ, as the distribution is 

not symmetric. Project completion dates for 𝑃50 and 𝑃90 were August 10, 2021, and November 1, 

2021, respectively (Figure 5.21). Compared to the baseline project, risks were estimated to delay 
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the project by 68 days (or 13 weeks), resulting in a substantial effect on project completion time.  

 

Figure 5.21. Project completion date considering risk as a cumulative distribution 

Time contingency, or the average impact of all risks on schedule at the project level, in 

consideration of project risk, was extracted separately. The time contingency was determined to 

be 73 days (σ = 64 days) (Figure 5.22). An 18% likelihood that the impact on project duration 

would be zero, and a 90% likelihood (𝑃90) that the project time contingency would not exceed 

140 days was observed (Figure 5.22). The time contingency varied between 0 and 375 days due 

to the long-tailed beta distributions for schedule impacts of risk factors. 
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Figure 5.22. Time contingency as a cumulative distribution function. 

 

Because baseline cost information was not available for analysis, total project costs could 

not be quantified. However, cost information for each risk was available, allowing the cost 

contingency to be evaluated (Figure 5.23). The average cost contingency for the project was 

444 691 CAD (σ = 840 337) CAD (Figure 5.23), with a 90% likelihood (𝑃90) that the cost 

contingency would not exceed 2 000 000 CAD (Figure 5.23). Due to a low probability of risk 

factors’ occurrence, a 70% likelihood (𝑃70) that the cost contingency would be zero was 

observed. 
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Figure 5.23. Cost contingency as a cumulative distribution function. 

A tornado diagram, which visualizes risk factor rankings based on their mean simulated 

risk impact of all runs, was extracted from SimphonyProject.NET (Figure 5.24). Results suggest 

that project completion delays have the largest potential cost impact, while COVID-19-related 

delays have the largest potential schedule impact. 

 

Figure 5.24. Tornado risk diagram. 

A joint time-cost contingency scattergram was generated from the data of each simulation 

iteration (Figure 5.25). Each iteration was plotted as estimated project completion (x-axis) versus 
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cost contingency (y-axis). The green lines (Figure 5.25) represent baseline (i.e., no risk) values 

of project duration and cost. The gathering of points at the horizontal green line (Figure 5.25) can 

be explained by the finding that there is a 70% likelihood that the cost contingency will be zero 

(Figure 5.23). The scattergram also reveals that the completion date of the project is moderately 

correlated with cost contingency (Figure 5.25). 
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Figure 5.25. Joint cost-time contingency. 

 

The impact of risk on the critical path of the project and criticality of the activities was 

examined. Table 5.10 summarizes the impact of risk on critical activities and work-packages, 
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criticality indexes, and total float. While the critical path of the project was unchanged following 

the addition of risk, criticality of the activities was reduced, as certain risk factors (i.e., 1, 3, and 

4) delayed the entire project, resulting in the addition of float to all activities. 

Table 5.10: Critical path and activity criticality. 

Critical Activity 

Before Risk Impact After Risk Impact 

Criticality 

Index 

Total Float 

(Days) 

Criticality 

Index 

Mean Total 

Float (Days) 

Access road construction 1 0 0.227 68 

Substation upgrade 1 0 0.227 68 

Commissioning of turbine 1 0 0.227 68 

Project completion and final 

site verification 
1 0 0.227 68 

5.5 Sensitivity Analysis 

Because the present case study is the first reported application of the MCS-CPM to a 

wind farm construction project in literature, the size impact of select parameters on model 

outcomes was assessed using a sensitivity analysis. Two parameters were examined: probability 

of occurrence and correlations between cost and schedule impact. 

5.5.1 Sensitivity to Probability of Occurrence 

Sensitivity of the model to probability of occurrence values was examined (Figure 5.26 a 

and b) based on ten scenarios (Table 5.11).  
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Table 5.11: Scenarios for sensitivity of probability of occurrence. 

Linguistic 

Probability 

Probability of Occurrence by Scenario 

1 2 3 4 5 6 7 8 9 10 

Unlikely 2 4 6 8 10 10 10 10 10 10 

Somewhat Likely 11 14 17 23 26 29 33 33 33 33 

Likely 34 37 40 43 46 49 52 56 63 67 

 

In the original model, the average value of the range associated with the linguistic term 

(Table 5.7) was used as the input into the model. Increasing the probability of occurrence value 

increased cost and time contingencies. Conversely, decreasing this value reduced contingencies 

for both cost and time. Although logical and expected, these findings highlight the importance of 

carefully evaluating and assigning probability of occurrence values when using simulation as a 

risk assessment method. Accordingly, it is recommended that the scale used in Table 5.7 be 

expanded to seven linguistic terms to allow for a more precise selection of average input values. 

If possible, researchers and practitioners may also consider the use of more sophisticated 

techniques to calculate probability of occurrence values. 

 

Figure 5.26. Sensitivity of (a) cost contingency and (b) project duration, as a cumulative 

distribution function, with respect to probability of occurrence. 



                                                                                                                                                  203 

______________________________________________________________________________ 

 

 

5.5.2 Sensitivity to Cost and Schedule Impact Correlation 

As discussed previously, the impact of risk factors on both cost and schedule were 

represented by bivariate distributions (i.e., dependent). The simulation was then re-run using 

separate input distributions for cost and schedule risks, thereby considering the impacts as 

independent. Cumulative distribution functions of cost contingency and expected project 

duration for both cases are illustrated in Figure 5.27 a and b, respectively. While overall 

differences were small, higher contingency values for time and cost were observed when the 

impact of correlation was evaluated for individual risk factors (Figure 5.28). Here, cost and 

schedule values were consistently elevated when impacts were correlated (Figure 5.28). 

Therefore, considering the impacts of cost and schedule as dependent is recommended to ensure 

that contingencies are not underestimated—especially in large risk models. 

 

Figure 5.27. Sensitivity of (a) cost contingency and (b) project duration, as a cumulative 

distribution function, with respect to cost-schedule impact correlation. 
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Figure 5.28. Simulated risk impact of (a) R2 and (b) R6. 

5.6 Discussion And Managerial Implications 

Construction practitioners continue to rely on simple and subjective tools for risk 

management and assessment. Several barriers limiting the application of quantitative risk 

assessment tools in construction practice have been reported in literature, including a lack of 

experience with quantitative techniques, lack of time for analysis, and difficulty appreciating the 

benefits and advantages of such tools. 

As a new type of construction, onshore wind farms are associated with a relatively large 
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amount of risk and uncertainty (Gatzert and Kosub 2016; Somi et al. 2020; Mohamed et al., 

2020b). Accurately estimating the impact of risk to ensure adequate cost and time contingencies 

is particularly important in wind farm construction due to electricity production requirements 

mandated in power purchase agreements, with contracts imposing liquidated damages of up to 

50 000 CAD per turbine/day for any delays in the operation date. However, application of state-

of-the-art risk assessment methods, such as MCS-CPM-based approaches, to real wind farm 

projects have yet to be demonstrated in literature.  

This study aimed to facilitate the application of domain-specific techniques for risk 

assessment in onshore wind projects by providing the first reported application of the MCS-CPM 

to wind farm construction. The present case study demonstrated the practicality and benefits of 

the MCS-CPM-based approach, particularly when applied using the risk management support 

tool SimphonyProject.NET. Specifically, the MCS-CPM was capable of generating a variety of 

reports that can be used to support decision-making in practice by: 

(1)  Obtaining the probabilistic completion time and cost of the project under regular 

variability without risk consideration. 

(2) Obtaining the probabilistic completion time and cost of the project in consideration of 

regular variability and project risk. 

(3) Providing confidence levels for completing the project within a specific time. 

(4) Providing confidence levels for completing the project within a specific risk 

contingency. 

(5) Identifying the most critical risks affecting project time and cost.  
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This study focused on providing an analytical generalization rather than statistical 

generalization to demonstrate how an onshore wind project can be analyzed using the MCS-

CPM approach. The analytical generalization allows one to establish logic that may be applicable 

to similar situations (Goh et al. 2013). The following are recommended considerations for 

practitioners of onshore wind construction projects when applying MCS-CPM for risk 

assessment. 

(1) To achieve successful completion of the project, uncertainty and risks of the project 

must to be quantified as thoroughly and accurately as possible. Risks should be integrated with 

project schedule, and cost and should not be managed separately.  

(2) Deterministic approaches fail to provide a complete overview of the different 

scenarios of project cost and duration under the effect of risk and uncertainty. In contrast, 

simulation-based approaches are capable of simultaneously considering all identified project 

risks, dependency between cost and schedule impacts, and the inherent uncertainty of 

construction projects. Simulation-based approaches, therefore, provide a more realistic projection 

of expected project costs and durations and allow practitioners to better understand the 

probability of achieving schedule and cost targets.  

(3) MCS-CPM allows practitioners to prioritize and rank risks according to their severity, 

in turn allowing practitioners to develop risk mitigation strategies that focus on the most critical 

risks. 

(4) To avoid underestimation of contingencies, correlation and dependencies between 

schedule and cost impact of risk factors should be modeled. 
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5.7 Conclusion 

In this paper, a domain-specific, MCS-CPM-based method was applied to simultaneously 

quantify and assess the impact of risk factors on project cost and time. The method was adopted 

because of its advantages as an integrated tool for risk assessment and its ability to consider two 

types of uncertainty due to regular uncertainty and occurrence of risk factors. The MCS-CPM 

method was applied to a real 40 MW onshore wind project and was found capable of generating 

more comprehensive and representative results than the deterministic approach initially used by 

industrial practitioners.  

A newly developed method for input modelling (i.e., distribution elicitation for risk 

impact) was adopted to overcome limitations with the lack of historical data that is common to 

many wind farm projects. A risk assessment management support tool, SimphonyProject.NET, 

was found to substantially reduce the complexity associated with MCS-CPM, simplifying its use 

in practice. By facilitating the incorporation of risk and regular variability in project planning, 

the applied methodology is expected to reduce under- or overestimation of project contingencies, 

thereby developing more realistic project plans and enhancing the likelihood of project success.  

This case study contributes to wind farm construction practice by providing a domain-

specific model and application example for wind farm construction. Also, the case study 

contributes to other sectors of construction practice by demonstrating the ability of the 

SimphonyPoject.NET tool to overcome the practical limitations associated with integrated 

simulation-based approaches. Future work includes developing models to evaluate the 

probability of risk occurrence more accurately and developing strategies that allow MCS-CPM 
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risk simulation models to be updated in real-time. 
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Chapter 6 : Simulation-based Approach for 

Lookahead Scheduling of On-shore Wind Projects Subject to 

Weather Risk   

6.1 Introduction 

Many countries are transitioning their energy production towards renewable sources to 

reduce greenhouse gas emissions and meet sustainability targets. Since 2009, global onshore 

wind capacity has increased fourfold, producing more than 594 GW in 2019 alone (Jaganmohan 

2019). To meet the growing demand, installation of additional wind farms and supporting 

infrastructure is necessary. However, onshore wind projects are constructed in outdoor 

environments characterized by high wind speeds (Guo et al. 2017b) and other adverse weather 

events that can result in significant construction delays (Atef et al. 2010; Guo et al. 2017b; 

Prpich et al. 2014b). Indeed, the schedule delay of an average wind farm project has been 

estimated to be approximately 10% of the planned project duration (Kostka and Anzinger 2016). 

Delays in wind farm construction are particularly problematic, as most contracts between the 

owner and the engineering, procurement, and construction (EPC) contractor(s) include a 

provision for liquidated damages if a project exceeds the contractually-specified end date (Hinze 

and Couey 1989). Completing wind farm construction tasks on time is essential for ensuring 

profitability. 

Variability is an inherent characteristic of construction projects, with as-built progress 

regularly deviating from planned schedules. To mitigate delays, practitioners often schedule 

projects from two perspectives, generating (1) a master schedule that provides a holistic view of 
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the entire project and (2) a lookahead schedule that provides a short-term, detailed work plan for 

upcoming tasks (Song and Eldin 2012). Together, master scheduling and short-term or lookahead 

scheduling are key elements of successful project delivery (Azimi et al. 2011). Master 

scheduling provides a global view of a project that can be used for long-term coordination, rough 

budgeting, and bid preparation (Azimi et al. 2011; Ballard 1997; Song et al. 2009), while 

lookahead scheduling is used for ongoing performance analysis, increasing reliability of detailed 

work plans, and for identifying and implementing effective corrective actions during execution 

(Azimi et al. 2011; Chen et al. 2020; Song et al. 2009).  

Evaluation of the impact of weather on construction project scheduling has been 

addressed and successfully applied by numerous research studies (Apipattanavis et al. 2010; El-

Rayes and Moselhi 2001; Guo 2000; Guo et al. 2017b; Pan 2005; Shahin et al. 2011). These 

approaches use historical weather data (either extreme conditions or averages) to predict 

weather-related delays when generating master project schedules. Although useful for high-level 

pre-construction scheduling and bid preparation, the suitability of these approaches for short-

term lookahead scheduling is primarily limited by two factors. First, as a consequence of being 

designed for long-term master scheduling, existing approaches are not able to incorporate as-

built data, limiting the reliability of lookahead schedules. Second, previous methods use average 

or extreme weather data that do not capture fluctuations in weather conditions that occur during 

project execution (Nguyen et al. 2010). These limitations have resulted in the development of 

unrealistic lookahead schedules, preventing practitioners from identifying and implementing 

corrective actions in the time-frame required to mitigate weather-related delays. Indeed, a model 
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capable of integrating as-built information while simultaneously considering short-term weather 

forecasts to improve lookahead scheduling has yet to be described in the literature.  

To address the aforementioned gaps, this research is proposing a simulation-based 

approach that integrates as-built information with short-term weather forecast data to improve 

lookahead scheduling in onshore wind farm construction. The proposed framework includes a 

newly-developed and generic hybrid simulation model (i.e., discrete-event and continuous) of 

both weather-sensitive and non-sensitive activities in onshore wind farm construction. Short-

term weather precipitation, wind speed, and temperature data are used to derive a productivity 

factor for weather-sensitive activities. These data—together with as-built information—are input 

into the model, which generates a 14-day lookahead schedule. Functionality and validity were 

demonstrated following the application of the proposed framework to a case study of a real 

onshore wind farm construction project. As the first reported framework to integrate as-built 

construction information and short-term weather forecast data for lookahead scheduling, 

practical application of this approach is expected to improve the evaluation, understanding, and 

monitoring of weather uncertainties on project execution for improved project management and 

control of wind farm construction. 

. 

6.2 Literature Review  

6.2.1 Adverse Weather in Construction Projects 

Adverse weather was ranked as the second leading cause of construction-related claims in 

Canada (Semple et al. 1994) and as the third most critical risk factor for construction schedule 
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overruns in Jordan (Sweis 2013). Negative consequences of adverse weather on construction 

projects includes reduced productivity, work stoppage, and ruined materials, often resulting in 

schedule delays, cost overruns (Ibbs and Kang 2018; Shahin et al. 2014), and disputes between 

project stakeholders (Ballesteros-Pérez et al. 2017; Nguyen et al. 2010). Weather-related 

parameters that have been extensively studied in construction include precipitation, air 

temperature, and wind speed. 

Precipitation alone has a significant effect on materials and construction productivity 

(Apipattanavis et al. 2010; Larsson and Rudberg 2019), both during and after periods of rain. 

The length of the resulting delays are typically proportional to the amount of precipitation and 

the duration of the event (Larsson and Rudberg 2019), with work stoppages resulting if 

precipitation rates become too high. Estimates of reduction in productivity resulting from 

precipitation events range between 40% for light precipitation (Moselhi and Khan 2010) to 

upwards of 60% (Thomas and Ellis 2009). Productivity is also affected by both low and high air 

temperatures (Larsson and Rudberg 2019). High temperatures may lead to heat stress or 

dehydration of workers (Larsson and Rudberg 2019), and work stoppages are recommended 

when temperatures decrease below ‒25 °C to ensure worker safety (Moselhi and Khan 2010)—

particularly when low temperatures are combined with high wind speeds (measured as wind 

chill) (Apipattanavis et al. 2010). Wind alone can result in work stoppages, decreased 

productivity, and negative impacts on materials. High wind conditions may cause the surface of 

fresh concrete to dehydrate and crack and can increase the risk of accidents when performing 

high-altitude work (Larsson and Rudberg 2019). Lifting activities are also affected by wind, with 
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the impact depending on a combination of factors, such as wind speed, height of the lifting 

operation, and the type of object to be lifted (Larsson and Rudberg 2019).  

Wind farm projects require locations with relatively high and consistent wind speeds to 

maximize electricity generation during the operation phase of the project. From a contractor’s 

perspective, however, high wind speeds represent a significant risk in terms of safety, time, and 

cost (Atef et al. 2010; Guo et al. 2017b). Installation of the turbine and tower sections of a 

structure is completed using heavy cranes. In addition to effects on worker and equipment 

productivity, safety regulations mandated by many regulatory bodies require lifting activities to 

be halted at certain wind speed thresholds to avoid crane overturning (Atef et al. 2010). 

Reductions in productivity of turbine installation due to wind speed have been detailed by Guo, 

Chen, and Chiu (Guo et al. 2017b) . 

The impact of weather on construction projects is highly variable, depending on 

numerous factors, including the type of construction, location, and season (Al-alawi et al. 2017), 

and affecting the individual tasks of a construction project differently. Low temperature, rain, 

and other weather conditions may hamper productivity of certain workers and machinery, while 

others may be unaffected. Regulations mandating threshold values for weather conditions at 

which work must stop varies between countries and even from city to city (Jung et al. 2016). 

Given the uncertainty in weather and the variability associated with its impact, appropriately 

considering weather as a risk factor requires the use of sophisticated risk analysis and decision-

support tools before and during construction execution (Pan 2005). To achieve the planned 

schedule, advanced planning is required to prepare mitigation strategies that can effectively 
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reduce the negative impact of weather on project cost and time (Alvanchi and JavadiAghdam 

2019; Jung et al. 2016; Larsson and Rudberg 2019). 

6.2.2 Weather-Related Project Delays in Construction 

 “Clear and specific” weather-related clauses are a common component of wind farm 

construction contracts (Ballesteros-Pérez et al. 2017). Designed to allocate responsibilities and 

reduce claims, these clauses clarify compensation for weather delays caused by productivity loss 

or work stoppages (Jung et al. 2016). Construction contracts generally differentiate between 

weather delays that can be anticipated and those that cannot (Ibbs and Kang 2018). Delays 

resulting from severe weather that is anticipated is usually considered non-excusable, where only 

delays caused by abnormal and unforeseeable weather events are granted a time extension (Jung 

et al. 2016; Nguyen et al. 2010). Many wind farm construction projects are awarded by the 

owner on a calendar-day basis (Guo et al. 2017b). To determine the expected project duration for 

bidding, contractors typically use approximation or quantitative methods to calculate the number 

of days expected to be impacted by severe weather for bidding (and other pre-construction) 

purposes. Often, the expected number of non-working days due to weather are specifically 

defined in the contract (Apipattanavis et al. 2010), with severe penalties imposed on the 

contractor for projects that are not completed by the contract-specified end date.  

Typically, approximation methods are used to determine the number of severe weather 

associated days for bidding and pre-construction planning. Approximation methods involve the 

review of historical weather data to calculate the average number of days associated with severe 

weather conditions each month and using the remaining working days to develop the project 
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schedule (Jung et al. 2016). In addition to approximation methods, numerous quantitative 

methods have been developed. Quantitative methods use historical weather data to evaluate the 

impact of weather on project schedules, either directly or through a weather generator, as shown 

in Table 6.1. Weather generators are numerical models that reproduce synthetic weather data as a 

daily time-series of weather variables with the same statistical properties as historical weather 

data (Jung et al. 2016). Both parametric and non-parametric approaches have been applied. 

While most models use simulation, others have adopted a mathematical approach or a 

combination of fuzzy logic with the critical path method (CPM). Three weather parameters have 

received the most attention: temperature, precipitation, and wind speed. Previous studies have 

either modeled the effect of one weather parameter or a combination thereof. 
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Table 6.1: Summary of quantitative weather models 

Reference 
Modelling 

Theory1 

Project  

Type 

Weather  

Modelling 

Weather 

Parameters2 

Temp. Wind Prec. 

(Guo 2000) Fuzzy + CPM Highway  Historical - - ✔ 

(Pan 2005) Fuzzy + CPM Highway  Historical - - ✔ 

(Guo et al. 2017b) Fuzzy + CPM Onshore Wind Historical - ✔ - 

(Zhou et al. 2021) Mathematical Onshore Wind Historical - ✔ ✔ 

(El-Rayes and Moselhi 2001) Mathematical Highway  Historical - - ✔ 

(Apipattanavis et al. 2010) Mathematical Highway  Generator - - ✔ 

(Ballesteros-Pérez et al. 2017) Mathematical Buildings Historical ✔ ✔ ✔ 

(Ballesteros-Pérez et al. 2018) Mathematical Buildings Historical ✔ ✔ ✔ 

(Ballesteros-Pérez et al. 2015) Mathematical Bridge Historical ✔ ✔ ✔ 

(Atef et al. 2010) DES Onshore Wind Generator - ✔ - 

(Shahin et al. 2014) DES Tunneling Generator ✔ ✔ ✔ 

(Zhang et al. 2018) DES Dams Generator - - ✔ 

(Jung et al. 2016) DES Tall Buildings Generator ✔ ✔ ✔ 

(Larsson and Rudberg 2019) DES In Situ Wall Historical ✔ ✔ ✔ 

(Shahin et al. 2011) DES + 

Continuous 

Pipeline Generator ✔ ✔ ✔ 

(Marzoughi et al. 2018) M.-Crit. + Reg. Residential Historical  ✔ ✔ ✔ 

1Fuzzy + CPM: Fuzzy Logic and Critical Path Method, DES: Discrete-Event Simulation, M. Crit. + Reg.: 
Multi-Criteria and Regression; 2Temp.: Temperature, Prec.: Precipitation 

 

6.2.3 Assessing the Impact of Weather on Wind Farm Construction 

Of the quantitative weather models previously-developed, only two have been designed 

for onshore wind farm construction: Guo et al. (Guo et al. 2017b) proposed a fuzzy-based 

approach for assessing the impact of wind speed uncertainty on wind turbine installation, and 
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Atef et al. (Atef et al. 2010) introduced a discrete-event simulation approach of wind turbine 

assembly activities coupled with a weather generator. Notably, only the effect of wind speed on 

turbine assembly was considered by these two studies, and both studies were designed to 

generate a holistic, master scheduling of the project. Although useful for early scheduling during 

the pre-construction phase, these approaches are not suitable for developing short-term 

lookahead schedules used during the execution phase.  

Currently, lookahead scheduling in wind farm construction relies on conventional 

scheduling techniques, such as bar charts and the CPM. However, these techniques are not able 

to precisely capture the impact of weather uncertainties or to model productivity-influencing 

factors when developing short-term project schedules (Guo et al. 2017b). In practice, the impact 

of wind uncertainty is usually estimated by a rule of thumb approach and subjective judgements 

based on practitioners’ past experiences (Guo et al. 2017b). This approach can result in 

inappropriate adjustments, which may lead to deviations from the planned schedule (Guo et al. 

2017b). Tools capable of reliably quantifying—in a detailed manner—the schedule delays 

associated with adverse weather are expected to result in improved management of weather risks, 

more realistic scheduling, enhanced utilization of construction resources, and safer work 

environments (Atef et al. 2010). Reliable quantitative tools for short-term lookahead scheduling 

in wind farm construction, however, have yet to be reported in construction engineering and 

management literature. 

6.2.4 Research Gaps 

Barriers limiting the application of existing quantitative methods to assess the impact of 
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weather in onshore wind farm construction for short-term lookahead scheduling include: 

1. Methods for assessing the impact of weather in onshore wind farm construction (Atef 

et al. 2010; Guo et al. 2017b) have only addressed the impact of wind speed on turbine 

installation and do not consider the influence of other weather parameters, such as precipitation 

and air temperature, on project schedules.  

2. Existing methods (Atef et al. 2010; Guo et al. 2017b) have been limited to turbine 

installation, and cannot consider the impact of weather on other construction activities. To 

examine the impact of weather on the project schedule, all project activities and their criticality 

should be modeled and considered. This is particularly important when considering that certain 

non-critical activities may become critical as a result of weather delays. Conversely, certain 

weather-sensitive activities may not fall on the critical path, with weather-related delays in these 

instances not affecting project duration.  

3. Short-term weather forecasts are typically more accurate and reliable than historical 

weather data (Mailier 2010). Existing methods presented in Table 6.1 use historical weather data 

as input—either directly or through a weather generator—which often results in daily weather 

predictions that are not matched to actual weather conditions during the short-term lookahead 

period.  

4. Existing methods presented in Table 6.1 are unable to incorporate as-built data into the 

quantitative scheduling system as the project progresses, thereby limiting the accuracy and 

representativeness of the output schedules during the construction phase. 
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6.2.5 Simulation as a Proposed Approach 

Construction simulation allows the development of and experimentation with computer-

based representations of construction projects at a detailed level to understand their underlying 

behaviour and investigate the effects of external factors (AbouRizk 2010). The ability of 

discrete-event simulation (DES) to incorporate the variability associated with external factors, 

such as weather, to determine the impact of uncertainty on system outcomes has been well-

established. As presented in Table 6.1, several studies have successfully applied DES to 

investigate the effects of adverse weather on construction activities (Atef et al. 2010; Jung et al. 

2016; Larsson and Rudberg 2019; Shahin et al. 2011, 2014; Zhang et al. 2018), and DES has 

been shown to be a reasonable tool for scheduling construction activities of onshore wind 

projects (Zankoul and Khoury 2016). However, a simulation model capable of considering the 

impact of weather on the activities on onshore wind farm construction has not been developed. 

6.3 Proposed Framework  

This research is proposing a hybrid DES-continuous simulation-based framework to 

integrate as-built information with short-term precipitation, air temperature, and wind speed 

forecast data to improve lookahead scheduling at the project-level in onshore wind farm 

construction. The proposed framework centers around a newly-developed and generic hybrid 

simulation model (i.e., discrete-event and continuous) of both weather-sensitive and non-

sensitive activities in onshore wind farm construction. Advances to the existing state-of-the-art 

include the ability of the model to simultaneously (1) consider the influence of additional 

weather parameters, such as precipitation and air temperature, on project schedules, (2) model all 
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critical and non-critical activities construction activities, (3) incorporate short-term weather 

forecast information, and (4) integrate as-built data to enhance short-term lookahead scheduling 

in onshore wind farm construction.  

The proposed framework consists of three components, (1) data collection and 

preparation, (2) simulation, and (3) framework outputs, as shown in Figure 6.1. First, the method 

examines short-term weather forecast data and determines upcoming weather conditions over the 

lookahead period (e.g., 14 days). The productivity of any uncompleted activities during the 

lookahead periods are multiplied by a pre-established productivity factor to determine a new 

activity duration given the expected weather. 

Using the new durations for the activities within the specified lookahead period together 

with (1) the actual durations of completed activities and (2) the planned durations of activities in 

the post-lookahead period, the method generates an updated project schedule each time new as-

built information is entered (Figure 6.2). 
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Output

Simulation 

Construction process configuration

• Work break-down structure

• Detailed activities 

• Logical relationship and sequence 

• Required resources for each activity

• Weather impact on project schedule

• Weather impact on individual activities

Output and decision support

Data Collection and Preparation

Weather impact on construction process

• Impact on labor and equipment

• Thresholds and stopping criteria

• If-then rules for the weather impact

Short-term weather forecast

• Identify project location

• Collect weather parameters:

• Average daily temperature

• Average daily precipitation 

• Average daily wind speed

Planned activities duration

• Planned duration of activities that will be 

scheduled

As built activities duration

• Actual duration in previous update 

periods

Simulation environment (Simphony)

• Build simulation model

• Validate the model

• Integrate weather with model

 

Figure 6.1. Proposed framework. 

Not started
Lookahead update 

(i)
Constructed (complete)

As-built duration (constant)
Planned duration under 

weather impact

Planned duration (constant 

or distribution)

Not started
Lookahead update 

(i+1)
Constructed (complete)

As-built duration (constant)
Planned duration under 

weather impact

Planned duration (constant 

or distribution)

 

Figure 6.2. As-built versus planned durations for two lookahead update periods. 

6.3.1 Data Collection and Preparation 

Inputs required to apply the proposed approach include (1) weather impact on 

productivity of construction activities, (2) short-term weather forecast for the lookahead period, 

(3) planned duration of activities not yet completed, and (4) as-built (i.e., actual) duration of 

completed activities. 
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6.3.1.1 Weather Impact on Productivity 

This input associates weather parameter values to construction productivity using if-then 

rules encompassing three considerations (Shahin et al. 2011): (1) weather parameters that 

influence the activity, (2) weather conditions that would cause each activity to stop (i.e., stopping 

conditions), and (3) the relationship between activity productivity and weather conditions. 

First, activities are listed, and whether or not each activity is sensitive to weather is 

determined. Then, the specific weather parameters that are capable of affecting productivity are 

identified for each weather-sensitive activity. For example, turbine assembly is sensitive to wind 

speed because of the crane lifts associated with this activity, whereas labor-dependent activities 

are generally influenced by both temperature and wind speed.  

Then, thresholds for each weather parameter for each activity are determined. Thresholds 

are divided into work stoppage thresholds, which define the weather values beyond which the 

construction activities cannot proceed, and productivity loss thresholds, which define the weather 

values at which construction work can continue but at a lower productivity. Threshold values can 

be obtained from a variety of sources, including work safety regulations, organization-specific 

practices, historical data, subject matter experts, and/or construction literature.  

Finally, for activities with productivity loss thresholds, a mathematical relationship 

between weather parameter values and productivity is established for each set of weather 

parameter values. Two methods for deriving a mathematical relationship have been reported in 

literature. The first method calculates the impact on activity duration directly (i.e., percentage of 

duration is added to the original duration (Atef et al. 2010)), while the second method calculates 
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the impact of weather on activity productivity through a productivity factor (Shahin et al. 2011). 

Productivity factor values can be calculated by inputting historical project data and/or subjective 

information into the productivity factor equation proposed by (Shahin et al. 2011). Notably, in 

the absence of applicable historical information, productivity factor values can also be obtained 

from construction literature. In adverse conditions, productivity factors are less than a value of 1; 

while in favorable conditions, productivity factors are higher than a value of 1. 

6.3.1.2 Short-Term Weather Forecasts 

Short-term weather forecasts are available from a variety of publicly-available and 

commercial providers, which typically provide daily weather forecasts for the upcoming 7, 10, 

and/or 14 days. 

6.3.1.3 Activity Durations: Planned and As-Built 

Planned durations for activities that have not yet been completed are determined using 

historical project data or subject matter expert opinion. At the initial stage of construction, all 

activities will be input with planned durations. Methods for determining activity durations have 

been extensively discussed in construction literature. Readers are referred to (Ahuja et al. 1994) 

for a detailed review of activity duration planning. Planned durations can be input as constant 

values or as probability distributions. As activities are completed, planned durations will be 

replaced with as-built (i.e., actual) durations within the simulation model. This applies to both 

weather-sensitive and non-sensitive activities. As-built durations can only be input as constant 

values, given that as-built durations are known. 
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6.3.2 Simulation 

Once required data are collected, they are input into the proposed simulation model for 

onshore wind farm construction. Here, DES is used to model non-sensitive weather activities, 

and—due to dynamic changes in weather conditions—continuous simulation is used to model 

weather-sensitive activities. The model is capable of considering both regular variability 

(through the input of planned durations as probability distributions) and the impact of weather on 

productivity (through the application of the productivity if-then rules) to predict durations of 

both the individual activities and of the overall project. Model development and application are 

detailed as follows. 

6.3.2.1 Model Development 

Once required data are collected, they are input into the proposed simulation model for 

onshore wind farm construction. Here, DES is used to model non-sensitive weather activities, 

and—due to dynamic changes in weather conditions—continuous simulation is used to model 

weather-sensitive activities. The model is capable of considering both regular variability 

(through the input of planned durations as probability distributions) and the impact of weather on 

productivity (through the application of the productivity if-then rules) to predict durations of 

both the individual activities and of the overall project. Model development and application are 

detailed as follows. 

A simulation model can be developed once the underlying system behaviour is defined 

and understood. The construction process of onshore wind projects and simulation logic are 

detailed as follows.   
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• Construction Process Configuration; 

To develop the model, common components of onshore wind farm construction were 

identified and abstracted. Previous studies were reviewed (Hao et al. 2019; Mohamed et al. 

2020a; Zankoul and Khoury 2016), and a typical onshore wind farm project was found to be 

comprised of six major work packages: site preparation, foundation, turbine assembly, collection 

system, mechanical completion, and commissioning. Each of these work packages was further 

partitioned into more detailed work-packages, as shown in Figure 6.3. Because the proposed 

method requires weather impacts on activity duration to be determined, the work packages were 

further partitioned at the activity level following a detailed review of (1) previous onshore wind 

farm construction projects available in literature (Atef et al. 2010; Guo et al. 2017b; Mohamed et 

al. 2020a; Zankoul and Khoury 2016) and (2) 10 real onshore wind farm projects as detailed in 

Table 6.2.  

Table 6.2: Characteristics of historical onshore wind farm projects. 

No. Project Size (MW) Number of Turbines Project Location 

1 74 30 Ontario, Canada 

2 74 30 Ontario, Canada 

3 19 6 Ontario, Canada 

4 10 5 Ontario, Canada 

5 270 140 Ontario, Canada 

6 10 5 Ontario, Canada 

7 40 16 Alberta, Canada 

8 20 8 Alberta, Canada 

9 110 46 Alberta, Canada 

10 66 22 Alberta, Canada 
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The detailed activities within each work package and the logical relationships between 

them are illustrated in Figure 6.4. The generic activity-level WBS (Figure 6.3 and Figure 6.4) 

was reviewed by subject matters experts, who confirmed that the WBS was accurate and 

representative of a typical onshore wind farm construction project. 

Onshore Wind Farm Construction

FoundationSite preparation

Access road 

construction 
Foundation tower 1

Crane pads and 

laydown areas

Turbine assembly

Turbine 1 assembly

Turbine 2 assembly

Collection system

Underground 

collector system 
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Commissioning 

Turbine 1

Turbine 2
Foundation tower 2

  

Foundation tower n

  

Turbine n assembly

Transmission line 

  

Turbine n

Mechanical 

completion

Turbine 1

Turbine 2
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Figure 6.3.Work breakdown structure of an onshore wind project. 
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Figure 6.4. Detailed activities and sequence of work for an onshore wind project. 

• Simulation Logic; 

Once the generic construction process was established, a combined discrete-event and 

continuous simulation modelling approach was used to develop a generic simulation model. The 

simulation logic underlying the hybrid simulation model is detailed in Figure 6.5. In DES, 



                                                                                                                                                  227 

______________________________________________________________________________ 

 

 

entities are objects that have attributes, experience events, consume resources, and enter queues 

over time. An entity can be dynamic by moving through the system or remain static to serve 

other entities (Banks 2000). As an entity moves through the model, events are scheduled, thereby 

representing progress of the system.  

In the current study, one entity is created at the beginning of the simulation. Depending 

on the activity sequence, further entities are created as needed. Following the creation of an 

entity, the simulation model retrieves the forecasted weather parameter values for each day of the 

update period (i.e., 14 days). When an entity arrives at a weather-sensitive activity, one of three 

statuses is selected based on the “Time Now” value: 

(1) If the “Time Now” value is greater than the lower boundary of the update period, 

but less than the upper boundary of update period, the weather-sensitive activity is included in 

the lookahead period. Continuous simulation, as is recommended in literature (Shahin et al. 

2011), is then applied to model productivity in consideration of weather impact. 

(2) If the “Time Now” value is greater than the upper boundary of update period, the 

weather-sensitive activity does not fall within the lookahead period, so the planned activity 

duration is used. 

(3) If the “Time Now” value is less than the lower boundary of update period, the 

weather-sensitive activity has been completed in the previous lookahead period, so the actual 

duration is used.  

A non-sensitive weather activity has only two statuses: completed or to be executed. For 

completed activities, actual durations are used. Planned durations are used for incomplete or to 
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be executed activities. 

Start

Set Time Now = 0

Weather forecast

End

Read weather forecast for update period

Use planned duration

Apply productivity rules to calculate 

activity duration as a continuous task

Use actual duration

Calculate project duration 

For activity (j)  = 1 to m

Activity = m ?

Yes

Is an activity within update period?

Is an activity weather 

sensitive?

Yes

Is an activity already 

executed?

No

No No

Yes Yes

No

 

Figure 6.5. Simulation logic for activities and project duration calculation for an update period. 

 

The simulation model provides successive progress updates at one-day intervals. Partial 

completion of a weather sensitive activity is permitted at the end of an update cycle. Activities 

with a duration greater than the lookahead period (i.e., 14 days) are divided into segments with 

durations equal to or less than the lookahead period. The progress for discrete activities is 

assessed based on the number of discrete units completed and the time required for their 

execution. This process continues until the project has been fully simulated. Based on the 

simulation results, a total project duration is calculated. The simulation model is run for a pre-

determined number of iterations, and the results of each iteration are combined to provide final 

results. 
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6.3.3 Framework Outputs 

The first output of the model is the expected duration of the individual weather-sensitive 

activities in consideration of the short-term weather forecast. This is presented as a plot that 

visualizes the progress of activities and total accumulated duration. The second output of the 

model is the expected duration of the entire project. This is visualized as a histogram illustrating 

the range and distribution of project durations obtained from each run of the simulation model. 

Various statistics can also be obtained from the simulation results, including minimum, average, 

and maximum durations as well as the standard deviation. Lastly, the model allows tracking and 

extraction of finish times for individual activities, which can be visualized as a histogram. 

These outputs can provide effective, proactive decision-support to practitioners, helping 

activities (particularly those on the critical path) remain on schedule and reducing the likelihood 

of project delays. For example, if a simulated activity duration is delayed by 4 days due to 

unfavorable weather, the project team may choose to proactively extend working days to include 

weekends during the lookahead period. Or, if the weather is forecasted to cause work stoppages 

during the second week of the lookahead period, practitioners may choose to proactively double 

the number of shifts during the first week when weather conditions are expected to be favorable. 

Targeted actions such as these not only keep the project on schedule but may also prevent 

irreversible delays that can lead to disputes. 

6.4 Case Study 

A real wind farm project was used to demonstrate the functionality and applicability of 
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the proposed framework. The onshore project consisted of eight 5.0-MW wind turbine generators 

for a total project output of 40 MW. The focus of the case study was on construction activities 

that were of interest to our industrial partner. Other activities, such as electrical tasks, were not 

included in this study. Data from two points (i.e., update periods) during construction execution 

were collected and used to evaluate the ability of the framework to incorporate as-built data. 

6.4.1 Data Collection and Preparation 

6.4.1.1 Weather Impact on Productivity 

First, rules that describe the impact of weather parameters on productivity were 

developed. Influencing weather parameters and threshold conditions for each activity were 

collected from construction literature or were provided by the contractor. Input data were 

reviewed by experts in the field, who confirmed that the thresholds were appropriate for the 

jobsite. The input data, together with their sources, are summarized in Table 6.3 and Table 6.4 

Qualifications of the subject matter experts are listed in Table 6.5. Importantly, the experts 

indicated that work must also be suspended for approximately 5 working days following a heavy 

snowfall to ensure that all materials, including blades and other components, are cleared of snow. 
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Table 6.3: Weather-sensitive activities and influencing weather parameters. 

Activity Weather Parameters 

Temperature Wind Precipitation 

Excavation  ✔  ✔ 

Compaction  ✔  ✔ 

Formwork and Rebar ✔ ✔ ✔ 

Concrete pouring  ✔ ✔ ✔ 

Install tower segments ✔ ✔  

Install nacelle  ✔ ✔  

Install rotor ✔ ✔  

Mechanical completion ✔ ✔  

Commissioning  ✔ ✔  

 

Table 6.4: Stopping thresholds for weather-sensitive activities. 

Activity 
Weather Parameters 

Reference Temperature 

(°C) 

Wind 

(m/s1) 

Precipitation 

(mm/h) 

Excavation < ‒25 - > 5  (Apipattanavis et al. 2010) 

Compaction < ‒25 - > 5  (Apipattanavis et al. 2010) 

Formwork and rebar < ‒25 > 15 > 5  
(Apipattanavis et al. 2010), (Larsson 

and Rudberg 2019) 

Concrete pouring < 0  > 11.5 2.5* 
(Apipattanavis et al. 2010), (Larsson 

and Rudberg 2019) 

Install tower segments < ‒25 > 14 - (Guo et al. 2017b), (Atef et al. 2010) 

Install nacelle < ‒25 > 14 - (Guo et al. 2017b), (Atef et al. 2010) 

Install rotor < ‒25 > 14 - (Guo et al. 2017b), (Atef et al. 2010) 

Mechanical completion < ‒25 > 11 - Expert  

Commissioning < ‒25 > 11 - Expert 

11 m/s = 3.6 km/h 

*During precipitation event     
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Table 6.5: Expert qualifications. 

No. Years of Experience in Industry Education Level 

1 8 Doctorate 

2 15 Master 

3 7 Bachelor 

 

As historical project data were not available, relationships between productivity and 

weather parameters were obtained from those proposed in construction literature. Reported 

impacts of air temperature (Figure 6.6) (Moselhi and Khan 2010), precipitation (Figure 6.7) 

(Larsson and Rudberg 2019), and wind speed (Figure 6.8) (Guo et al. 2017b) on productivity 

from literature were examined, previous projects were reviewed, and a list of rules was prepared 

based on these findings. A total of 150 rules were defined for this case study. As mentioned 

previously, the list of rules can differ between organizations and from project-to-project. As 

such, the list of rules should be reviewed and modified, if required, for each new project. A 

sample of the developed rules is summarized in Table 6.6. The complete list of rules was 

validated by the subject matter experts. 
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Figure 6.6. Effect of temperature on construction productivity based on results from (Moselhi 

and Khan 2010). 

 

Figure 6.7. Effect of precipitation on construction productivity based on results from (Larsson 

and Rudberg 2019). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
ro

d
u

ct
iv

it
y

 f
ac

to
r

Precipitation (mm/h)



                                                                                                                                                  234 

______________________________________________________________________________ 

 

 

 

Figure 6.8. Effect of wind speed on construction productivity of crane based on results from 

(Guo et al. 2017b). 

 

Table 6.6: Sample of developed rules. 

Weather Parameters Productivity  

Factor Temperature (°C) Wind (m/s) Precipitation (mm/h) 

T < ‒25 P = 0 W = 0 0 

‒24.9 < T < ‒15 P = 0 W = 0 0.25 

‒24.9 < T < ‒15  0 < P < 0.5 W < 7 0.4 

‒24.9 < T < ‒15 0.5 < P < 1 W > 7  0 

‒24.9 < T < ‒15 1 < P <4 W >7 0 

‒14.9 < T < ‒5 P = 0  W = 0 0.75 

‒14.9 < T < ‒5  0 < P < 0.5 0 < W < 7 0.65 

‒14.9 < T < ‒5  0.5 < P < 1  7 < W < 10 0.6 

‒14.9 < T < ‒5  1 < P < 4  7 < W < 10 0.5 
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6.4.1.2 Short-Term Weather Forecasts 

In this study, a 14-day weather forecast was selected, as it matched the lookahead update 

period used by the contractor, which was two weeks. Due to its easy-to-use interface, Dark Sky 

API (Dark sky API - weather forecast n.d.) was used to collect weather data, including 

temperature, wind, and precipitation levels. Because weather forecast data were provided hourly, 

hourly values during the period of construction operations (8:00 AM to 5:00 PM) were averaged 

to obtain daily forecast values. Data for two updates periods (i.e., 28 days) was collected, as 

detailed in Table 6.7.The project was located in Alberta, Canada, therefore weather information 

of the project specific location was extracted. 

6.4.1.3 Activity Durations 

The third input is the planned durations and logical relationships of the activities under 

each work package, as shown in Table 6.8. Activity durations specific to this case study were 

provided by the contractor. Widely-used and commonly-recommended (Hulett 2009; Khadem et 

al. 2018; Mohamed et al. 2020a; Moret and Einstein 2016), triangular distributions were used to 

stochastically represent regular (i.e., non-weather) variability in construction activity durations. 

Notably, activities related to site preparation, foundation, turbine assembly, mechanical 

completion, and commissioning are repeated for each of eight turbines. 
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Table 6.7: Weather parameters values for update periods 1 and 2. 
Update 

Period 

Days Since 

Start 

Average Temperature 

(°C) 

Average Precipitation 

(mm/h) 

Average Wind Speed 

(m/s) 

Period 1 

1 22.2 5.8 4.08 

2 23.4 0.4 3.44 

3 21.2 0 5.25 

4 18.1 0 2.83 

5 20.3 0.1 2.94 

6 20.9 0 4.33 

7 17.2 0 8.75 

8 17.2 0 7.30 

9 14.3 0 3.05 

10 19 0 5.08 

11 17.7 0.2 3.27 

12 15.2 0 4.83 

13 15.5 0 5.00 

14 17.1 0 3.72 

Period 2 

15 20.2 0 3.52 

16 20.9 0 3.22 

17 24.6 0 4.66 

18 23.4 0 5.38 

19 21.9 0 3.75 

20 20.2 0 5.13 

21 20.5 0 3.47 

22 20 0 6.16 

23 17.2 0 3.30 

24 18.1 0 3.16 

25 18 0 2.88 

26 17.3 0 2.91 

27 14.9 0 5.05 

28 18.1 0 3.83 
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Table 6.8: Project activity details. 

Work 

Package1 
Activity ID Duration (Days)2 

Pred. ID/ 

Rel. (Lag)3 

Required 

Resources4 

Site  

Preparation 

Scrape topsoil A1 Tri (5, 7, 6) - Bulldozer 

Compact subsoil A2 Tri (5, 7, 6) A1/F.S Compactor 

Add geotextile layer A3 Tri (2, 4, 3) A2/F.S Geotextile Crew 

Add and grade gravel layer A4 Tri (5, 7, 6) A3/F.S Grader 

Compaction A5 Tri (5, 7, 6) A4/F.S Compactor 

Collection 

System: 

Substation 

Excavate substation area A6 Tri (7, 12, 10) A0/F.S Excavator 

Add and grade gravel layer A7 Tri (3, 5, 4) A6/F.S Grader 

Compaction A8 Tri (2, 4, 3) A7/F.S Compactor 

Formwork and rebar A9 Tri (7, 12, 10) A8/F.S Crew 

Concrete pouring A10 Tri (1, 3, 2) A9/F.S Pouring Crew 

Install drainage A11 Tri (5, 12, 7) A10/F.S Crew, Excavator 

Foundation  

Construct. 

Soil excavation A12 Tri (2, 3, 2.5) A5/F.S Excavator 

Adjust base level, pour slab A13 Tri (1, 2, 1.5) A12/F.S Pouring Crew 

Rebar, anchor, formwork A14 Tri (2, 4, 3) A13/F.S Crew 

Concrete pouring A15 Tri (1, 2, 1.5) A14/F.S Pouring Crew 

Concrete curing A16 21 A15/F.S - 

Circuit Install cables A17 Tri (100, 110, 

105) 

A5/F.S Cable Plough, Crew 

Turbine Install tower segments A18 Tri (2, 3, 2.5) A16/F.S Crane, Assy. Crew 

 Install nacelle A19 Tri (0.5, 1, 1) A18/F.S Crane, Assy. Crew 

 Install rotor and blades A20 Tri (2, 3, 2.5) A19/F.S Crane, Assy. Crew 

Mechanical  Inspection of one tower A21 Tri (3, 7, 5) A22/F.S Crane, Insp. Crew 

Commis. Commissioning 1 turbine A22 Tri (5, 9, 7) A11/F.S; 

A17/F.S; 

A21/F.S 

Crew 

1Commis.: Commissioning; 2Tri: Triangular Distribution; 3Pred.: Predecessor Activity, Rel.: Relationship; 4Assy.: 

Assembly, Insp.: Inspection 
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6.4.2 Simulation 

In this study, an in-house developed simulation engine, Simphony.NET 4.6 (Hajjar and 

AbouRizk 1999, 2002), was used as the simulation environment to model the onshore wind 

project activities and associated weather impact. The model was built using the approach detailed 

in Section 6.3.2.1. The unit of time was set to days, which included an 8-hour workday and no 

night shifts. The developed rules were coded as if-then rules and stored using global variables in 

Simphony.NET, such that they are readable by all activities in the simulation model. Whether or 

not a weather-sensitive activity occurred during the update period was determined using a 

conditional branch in Simphony.NET, as shown in Figure 6.9. A snapshot of the entire model is 

provided in Figure 6.10. 

 

 

Figure 6.9. Modelling of weather-sensitive activity. 
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Figure 6.10. Snapshot of simulation model in Simphony.NET. 

If a weather-sensitive activity did not occur during the update period (i.e., already 

completed or scheduled to begin in subsequent periods), the actual or planned duration was used, 

as described in Section 6.3.2.1. Weather data were input to a database that was read by the model 

every simulated day. For weather-sensitive activities occurring during the update period, the 

appropriate rule was identified, and the simulated activity duration was multiplied by the 

corresponding productivity factor.  

The simulation was then run for 1 000 iterations, as recommended in (Dawood 1998), to 

achieve the desired level of confidence. Notably, this is well in excess of the 120 iterations 

recommended for a simulation to reach maturity (Lee and Arditi 2006). 
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6.4.2.1 Simulation Model Validation 

The generic hybrid simulation model was validated using trace validation, event validity, 

and face validation approaches (Sargent 2013). First, trace validation, which records the 

behaviour of various entities in a trace window, was used to evaluate the logic of the simulation 

model. The sequence of the activities through which the entities flowed was the same as the 

planned activity sequence, indicating that the logic of the simulation model was consistent with 

the logic observed in practice.  

Second, using event validity, the simulated project duration was compared with the 

planned duration calculated by the contractor using commercial scheduling software (“Microsoft 

Project | Project Management Software | MS Project” n.d.). The simulated project duration 

(without considering weather impact) was an average of 246 days (σ = 4), which was similar to 

the original deterministic project duration of 240 days, demonstrating that the model is capable 

of generating results that are representative of real events.  

Third, face validation of the model’s logic was conducted. Three subject matter experts, 

whose qualifications are listed in Table 6.5; reviewed the simulation logic of the model. All three 

experts confirmed that the logic was sound. Based on the findings of the trace validation, event 

validity, and face validation tests, the model was applied to the case study. 

6.4.3 Framework Outputs and Results 

The framework was applied to each of the two lookahead update periods. During the first 

lookahead update period, activities of two work-packages—site preparation and collection 

system—were initiated in this lookahead period. Of the two work packages, only two weather-



                                                                                                                                                  241 

______________________________________________________________________________ 

 

 

sensitive activities (i.e., compaction of subsoil in site preparation and excavation of substation in 

collection system) were initiated during the first lookahead period. The planned duration of 

compaction was Triangular (5, 7, 6) (Table 6.8) and excavation was Triangular (7, 12, 10) (Table 

6.8). Planned durations were used for the remainder of the activities scheduled to be executed 

during the first update period.  

Weather conditions during the first update period were favorable (Table 6.7), with air 

temperatures ranging between 14.3°C to 23.4°C, wind speeds remaining below 8.75 m/s, and 

precipitation rates below 0.5 mm/h for 13 out of the 14 days.  

As expected, the impact of weather on the productivity of the weather-sensitive activities 

were minimal, ranging between 0.9 and 1.0 for both compaction (Figure 6.11 a) and excavation 

(Figure 6.12 a). The average simulated duration for compaction was 5.5 days, while the average 

simulated duration of excavation was 10.5 days. The accumulated duration for one simulation 

run of both activities are illustrated in Figure 6.11 b and Figure 6.12 b. The impact of weather 

resulted in a simulated finish time (considering the impact of weather on productivity) for 

compaction of 11.5 days (σ = 1; Figure 6.13b) and excavation of 11 days (σ = 1; Figure 6.14b), 

which is similar to the finish time obtained when weather impact was not considered (Figure 

6.13a and Figure 6.14a). The average simulated total project duration was determined to be 246 

days (σ = 4; Figure 6.15) compared to the planned project duration of 240 days. Since weather 

had a negligible impact on project duration, practitioners determined that no corrective actions 

were needed for this lookahead period. 
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(a) (b) 

Figure 6.11. Weather impact on compaction activity: (a) progress as productivity factor 

and (b) accumulated activity duration. 

  

(a) (b) 

Figure 6.12. Weather impact on substation excavation activity: (a) progress as 

productivity factor and (b) accumulated simulated activity duration. 
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(a) (b) 

Figure 6.13. Finish time of compaction activity: (a) without weather impact and (b) 

considering weather impact. 

  

(a) (b) 

Figure 6.14. Finish time of excavation activity: (a) without weather impact and (b) 

considering weather impact. 
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Figure 6.15. Project duration after considering weather impact for first lookahead update. 

 

Similar to the first update period, weather conditions during the second update period 

were favorable (Table 6.7)ranging between 14.9°C and 24.6°C, wind speeds remaining below 

6.16 m/s, and no precipitation. Nine activities had been initiated during the first update period, of 

which two were still ongoing. Progress information is detailed in Table 6.9.  

Table 6.9: Progress of project activities at day 14. 

Activity 
Weather- 

Sensitive? 

Progress  

(%) 

Actual 

Duration (Days) 
Remaining 

Scrape topsoil section 1 No 100 6 0 

Scrape topsoil section 2 No 100 5 0 

Compact subsoil of section 1 Yes 100 6 0 

Scrape topsoil section 3 No In Progress 2 Tri (3, 5, 4) 

Compact subsoil of section 2 Yes In Progress 3 Tri (2, 4, 3) 

Add geotextile layer of section 

1 
No 100 3 0 

Excavation of substation area Yes 100 11 0 

Gravel layer of substation No 100 4 0 
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Actual durations were used for completed activities. For in progress activities, a discrete 

task was used for the completed portion of the activity, and the remaining portion was modeled 

as continuous task to allow consideration of weather effects. In addition to the in progress 

activities, seven weather-sensitive activities were initiated during the second update period. As 

expected, the favorable weather conditions had a minimal impact on productivity, resulting in a 

simulated project duration of 245 days (σ = 4; Figure 6.16). A high-level summary of the results 

for update periods 1 and 2 is provided in Table 6.10. 

Table 6.10: High-level summary of results for update periods 1 and 2 of case study. 

Period 

Impact on 
Project  

Duration 
Corrective Action 

Productivity 1 
Total Project 

Duration 

Baseline - - 246 days (σ = 4) - 

1 <10%  Minimal 246 days (σ = 4) None required 

2 <10%  Minimal 245 days (σ = 4) None required 

1 Weather-sensitive activities. 

 

Figure 6.16. Project duration after considering weather impact for second lookahead update. 
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6.4.3.1 Framework Evaluation 

In addition to validating the model’s logic (detailed in Section 6.4.2.1), the framework 

was validated through two additional tests: a sensitivity analysis and a face validation of the 

output results (Sargent 2013). First, the sensitivity of the model to changes in weather conditions 

was examined. In contrast to favorable weather conditions observed in the case study, the 

sensitivity analysis input unfavorable weather data into the simulation model (Table 6.11). Here, 

air temperatures were below 0°C, with average wind speeds ranging between 2 and 20 m/s and 

precipitation present on 7 of the 14 days. 

Table 6.11: New weather parameters for first 14 days. 

Days Since Start 
Average Temperature  

(°C) 

Average Precipitation  

(mm/h) 

Average Wind Speed  

(m/s) 

1 ‒10.0 1.00 2 

2 ‒3.5 2.00 4 

3 ‒7.7 3.50 2 

4 ‒8.0 1.50 3 

5 ‒9.4 4.00 5 

6 ‒9.4 2.00 6 

7 -8.9 0.00 7 

8 ‒12.1 0.00 8 

9 ‒16.8 5.00 9 

10 ‒1.1 0.00 14 

11 ‒1.9 0.00 15 

12 0.0 0.00 20 

13 ‒1.9 0.00 8 

14 ‒1.8 0.00 6 



                                                                                                                                                  247 

______________________________________________________________________________ 

 

 

The daily productivity factor of compaction ranged from 0.5 to 0.9, in turn extending the 

duration of compaction from an average simulated planned duration of 6 days (Figure 6.17b) to a 

simulated weather-impacted duration of 11 days, which is reflected in the finish time of the 

activity in Figure 6.18. Altogether, the unfavorable weather conditions during the first 14 days 

alone caused an overall project delay of 5 days, resulting in a simulated project duration of 251 

days (σ = 4) (Figure 6.19). Also, Figure 6.17a demonstrates that the sensitivity analysis results 

were consistent with expected outcomes, with unfavorable weather conditions resulting in longer 

activity durations and delayed project completion dates. 

  

(a) (b) 

Figure 6.17. Weather impact on compaction activity: (a) progress as productivity factor 

and (b) accumulated activity duration. 
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Figure 6.18. Finish time of compaction activity under new weather parameters.  

 

Figure 6.19. Project duration under impact of new weather parameters. 

  

Table 6.12 presents a comparative summary of the first lookahead update period and the 

baseline schedule. Notably, poor weather conditions, causing a 50% reduction in the productivity 

of weather-sensitive activities, resulted in a 5-day delay in project completion time. Corrective 
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actions would be required to mitigate the impact of the delay on overall project duration. 

Table 6.12: High-level summary of results for update period 1 of sensitivity analysis. 

Period 

Impact on 
Project  

Duration 
Corrective Action 

Productivity 1 
Total Project 

Duration 

Baseline - - 246 days (σ = 4) - 

1 <10%  Minimal 246 days (σ = 4) None required 

1 Weather-sensitive activities. 

Face validation was also used to assess the advantages and applicability of the proposed 

method. Results of the case study and sensitivity analysis were presented and discussed with the 

subject matter experts described in Table 6.5 The experts confirmed that the results generated by 

the framework were reasonable and consistent with what is expected in practice. They agreed 

that the framework solves existing challenges with lookahead scheduling that are not currently 

addressed by existing commercial scheduling software and that results generated by the proposed 

framework can be used to enhance and further support existing decision-making. For example, in 

the unfavorable weather conditions of the sensitivity analysis, the delay expected by the short-

term weather forecast could prompt practitioners to double the resources available by increasing 

the number of shifts or working weekends during the short-term lookahead period to compensate 

for the (almost 50%) loss in productivity.  

To further enhance the benefits of the method, the experts noted that, in its current form, 

the framework was not easy-to-use—particularly by practitioners who may not be familiar with 

simulation. The development of a graphical user interface for the system was recommended by 



                                                                                                                                                  250 

______________________________________________________________________________ 

 

 

the experts to facilitate application of the framework in industry. 

6.5 Discussion  

To address these limitations, a combined discrete-event and continuous simulation 

method that allows practitioners to more effectively assess and understand the impact of short-

term weather uncertainty on construction activities during lookahead scheduling was developed 

and applied to a case study of a real onshore wind farm project. As expected, favorable weather 

conditions experienced during the tested lookahead periods resulted in a negligible impact on the 

productivity of weather-sensitive activities (10% reduction in planned productivity; Table 6.10), 

which translated into an overall project delay of less than 1 day. The results of the case study, 

together with the validation experiments, demonstrated the ability of the proposed framework to 

address the four barriers limiting the performance of existing methods. Specifically, the proposed 

framework was shown to be capable of: (1) considering additional weather parameters, (2) 

considering all construction activities and their criticality, (3) integrating short-term weather 

forecast data, and (4) integrating as-built and progress information into the lookahead scheduling 

process. The results of the sensitivity analysis, which demonstrated a 50% reduction in 

productivity (Table 6.12) as a result of poor weather conditions, confirmed the responsiveness of 

the proposed framework. 

This study has advanced the state-of-the-art by addressing four key research gaps, which 

have limitedthe application of existing methods to lookahead scheduling in wind farm 

construction. First, the proposed method is capable of considering the impact of three weather 

parameters (i.e., wind, precipitation, and temperature) on onshore wind farm projects. This is in 
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contrast to the work of (Atef et al. 2010; Guo et al. 2017b), which were limited to wind speed. 

Second, the proposed simulation model is capable of modeling all construction activities of an 

onshore wind project. Conversely, the models designed by Atef et al. and Guo et al. remained 

limited to wind turbine construction (Atef et al. 2010) and (Guo et al. 2017b). Third, the 

simulation model uses an innovative combined discrete-event simulation and continuous 

simulation approach to facilitate modeling of both non-sensitive and weather-sensitive activities 

of onshore wind projects. While a combined discrete-event/continuous simulation approach was 

used to model a variety of construction operations, such as pipeline construction (Shahin et al. 

2011) and (Shi and Abourizk 1998), tunneling construction (Shahin et al. 2014), and building 

construction (AbouRizk and Wales 1997), this study represents the first application of this 

approach to model weather-sensitive construction activities in onshore wind projects. Fourth, the 

proposed framework allows the integration of both short-term weather forecasts and as-built 

activity durations to enable decision-support at a granular level. This is in contrast to previous 

studies by Guo et al. and Zhou et al., which focused on the development of wind farm 

construction scheduling at a master scheduling level (Atef et al. 2010; Guo et al. 2017b). 

Importantly, while the proposed simulation model was developed for wind farm construction 

operations, the methodological approach used to develop the simulation model (described in 

Section 6.3.2.1) can be applied to other project types.  

Proactive scheduling approaches for offshore wind farms were also explored. Kerkhove 

and Vanhoucke (2017) proposed a mathematical optimization model for proactive scheduling of 

offshore wind projects subject to weather conditions. Similar to previous studies summarized in 



                                                                                                                                                  252 

______________________________________________________________________________ 

 

 

Table 6.1, the model proposed by (Kerkhove and Vanhoucke 2017) made use of a Markovian 

weather generator model that relied on historical data of weather parameters, focused only on the 

planning phase of offshore wind farm projects, and considered only two weather parameters (i.e., 

wave height and average wind speed).  

A comparison of the proposed framework with previous models developed to assess the 

impact of weather conditions on productivity of different types of construction projects is 

summarized in Table 6.13. 

Table 6.13: Comparison of proposed framework with previous studies. 

Item 

Research Study 

A B C D E F G H I J K L M N O P 
Current 

Study 

Reliance on historical 

weather data  
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ x 

Flexibility of the 

method to analyze 

additional weather 

parameters during 

execution 

x x x x x x x x x x x x x x x x ✔ 

Consideration of as-

built and progress 

information 

x x x x x x x x x x x x x x x x ✔ 

Consideration of 

short-term weather 

forecasts 

x x x x x x x x x x x x x x x x ✔ 

Note: A= (Guo 2000); B= (Pan 2005); C= (Guo et al. 2017b); D= (Zhou et al. 2021); E= (El-Rayes and 

Moselhi 2001); F= (Apipattanavis et al. 2010); G= (Ballesteros-Pérez et al. 2017); H= (Ballesteros-Pérez et al. 

2018); I= (Ballesteros-Pérez et al. 2015); J= (Atef et al. 2010); K= (Shahin et al. 2014); L= (Zhang et al. 2018); M= 

(Jung et al. 2016); N= (Larsson and Rudberg 2019); O= (Shahin et al. 2011); P= (Marzoughi et al. 2018) 

 

6.5.1 Practical and Managerial Implications 

While methods designed to consider the impact of historical weather data during the 
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planning stages of construction were developed (as detailed in Table 6.1), the impact of short-

term fluctuations in weather conditions on productivity were not addressed in previous studies. 

Indeed, current commercial scheduling software, such as Primavera and Microsoft Project 

(“Microsoft Project | Project Management Software | MS Project” n.d.), lack the capability to 

consider the impact of short-term weather on productivity. Consequently, construction 

companies often use an intuitive, subjective approach to consider the impact of weather during 

lookahead scheduling, which often results in the development of unrealistic lookahead schedules 

and the inability to identify and implement timely corrective actions to mitigate potential 

weather-related delays.  

This study aimed to improve lookahead scheduling practices through a simulation-based 

approach that is capable of considering short-term weather information along with as-built 

information. This study demonstrated the practicality and benefits of the proposed approach. 

Specifically, the simulation-based approach was capable of generating a variety of results that 

can be used to support decision-making in practice by: 

1) Obtaining the expected productivity (Figure 6.11a and Figure 6.12a) and duration 

(Figure 6.11b and Figure 6.12b) of weather-sensitive activities based on short-term 

weather forecasts, thereby increasing the representativeness of lookahead schedules 

over existing methods. With a more representative prediction of activity durations, 

practitioners are able to allocate resources (e.g., labor, material, and equipment) to 

activities that may be experiencing unexpected delays in productivity. For example, 

if a simulated activity duration is delayed by 4 days due to unfavorable weather, the 
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project team may choose to proactively extend working days to include weekends 

during the lookahead period. Or, if the weather is forecasted to cause work stoppages 

during the second week of the lookahead period, practitioners may choose to 

proactively double the number of shifts during the first week when weather 

conditions are expected to be favorable. Targeted actions such as these not only keep 

the project on schedule but may also prevent irreversible delays that can lead to 

disputes. 

2) Obtaining probabilistic completion times (Figure 6.13a and Figure 6.14a) of 

individual activities based on short-term weather forecasts. By obtaining a 

probabilistic completion time, the project team is able to make more informed 

decisions about what types of corrective actions they can—and are interested in—

pursuing. For example, if a weather-sensitive activity has a high likelihood of being 

delayed due to unfavorable weather, the project team may decide to postpone 

delivery of material for subsequent activities to avoid crowding the worksite. 

3) Obtaining a probabilistic completion duration of the entire project (Figure 6.15) in 

consideration of as-built and short-term weather forecasts. The impact of lookahead 

weather delays on the overall project schedule will depend on the total float of the 

affected activities and whether or not the activities are on the critical path. Delay of 

certain activities may result in a considerable delay of the overall project, while 

others may not affect project duration at all. The ability to easily and quickly 

quantify the impact of weather-related activity delays in a specific lookahead period 
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on the overall project duration will help the project team determine the amount of 

mitigation effort needed to resolve the delay. For example, a delay in the pouring of 

the concrete foundations for multiple turbines may result in the same activity-level 

delay as a weather-related delay in installation of the substation drainage. However, a 

delay in pouring concrete foundations may have a tremendous impact on subsequent 

activities (and material deliveries) that depend on the completion of the foundation to 

begin. In contrast, delays in drainage installation for the substation will not impact 

other activities, thereby minimally impacting overall project duration. The effort 

expended by the project team to mitigate each delay, therefore, will vary 

tremendously (Table 6.10 and Table 6.12). 

4) Obtaining confidence levels for completing the project within a specific duration 

(Figure 6.15). Due to the consideration of stochastic activity duration, together with 

short-term weather forecast impact, outputs of the framework are stochastic and 

represented by a probability distribution. The probabilistic nature of the outputs 

provides practitioners with more insightful information, allowing the project team to 

base their decision on their specific level of confidence. 

Using the outputs of the proposed approach, practitioners can proactively schedule their 

construction tasks in response to a weather-related impact on activity and project durations, 

thereby enhancing construction progress, reducing weather delays and related claims, and 

improving the likelihood of project success. While the motivation for adopting enhanced control 

and monitoring strategies is often the avoidance of unexpected delays and costs, the 
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implementation of effective project control strategies can enable practitioners to capitalize on 

potential opportunities that may otherwise go unnoticed. Using the proposed framework, the 

impact of favorable weather conditions (e.g., a warmer than average lookahead period) that result 

in increased productivity can be easily quantified and identified. It is anticipated that the timely 

access of such information—made possible by the proposed framework—may allow project 

managers to better plan construction activities and the delivery of needed materials to capitalize 

on accelerated schedules, allowing for a shortening of overall project durations. 

The findings of this study have highlighted several key recommendations for 

practitioners performing lookahead scheduling in onshore wind farm construction:  

1) Uncertainty arising from weather risk must be quantified as thoroughly and accurately 

as possible to maximize the likelihood of completing the project within the duration 

defined in the project contract. 

2) It is recommended to begin construction activities during a period characterized by 

favorable weather conditions to minimize the impact of weather on the productivity of 

activities early in the project, thereby reducing the number of subsequent activities 

impacted by early weather-related delays. 

3) The impact of adverse weather should be integrated with project lookahead scheduling 

to more accurately predict the productivity of individual activities and the entire 

project.  

4) Simulation-based approaches provide a better understanding and evaluation of weather 

impacts on individual activities and the entire project. Moreover, simulation-based 
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approaches have the capability to consider stochastic duration of activities (as opposed 

to deterministic durations), allowing these systems to model other variables (in 

addition to weather) and allowing practitioners to choose their desired level of 

confidence when making decisions. 

5) The proposed simulation-based approach allows practitioners to more quantitatively, 

rapidly, and easily assess the mitigation effort required to adjust the project schedule. 

6.5.2 Limitations 

A few limitations of this study should be considered prior to applying the proposed 

framework. First, triangular distributions and Dark Sky API were used because of their 

simplicity and for illustrative purposes. While more sophisticated methods capable of enhancing 

input modelling of activity durations and weather forecasting should be explored and applied, 

methods for improving input modelling is beyond the scope of this study. Second, because of the 

novelty of wind farm construction, few historical projects were available for review. While the 

model is intended to be universal, innovations in wind farm construction practices or 

organization-specific differences may exist. It is recommended that practitioners thoroughly 

review the WBS and if-then rules to ensure consistency with their operations and modify the 

WBS and if-then rules to suit their specific needs as required. Finally, while the functionality of 

the model was demonstrated using a real 40-MW onshore wind project, favorable weather 

parameters at the start of construction resulted in a negligible impact on activity and project 

durations, limiting the ability of the authors to compare model-derived outputs with real results 

under more unfavorable (i.e., extreme) conditions. Nevertheless, the sensitivity of the model to 
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unfavorable weather conditions was demonstrated through a sensitivity analysis, where 

unfavorable weather conditions resulted in notable and expected activity and project-level 

delays. 

6.5.3 Future Works 

Given the limited availability of historical data in wind farm construction, research such 

as the study presented here, would greatly benefit from the implementation of data collection 

strategies designed to quantitatively derive relationships between weather conditions and 

productivity. These strategies would not only improve the accuracy of the productivity-weather 

relationships but would also provide the opportunity for future research in this area to be 

compared to historical outcomes of real projects, thereby improving validation of future models 

and increasing practitioner confidence. Future research should also focus on modelling the effect 

of extreme weather events, such as lightning, and how these rare, yet intense, occurrences affect 

project schedules. Finally, as proposed by the subject matter experts, future work should also 

focus on the development of a graphical user interface that would facilitate implementation of 

the method by users with limited simulation knowledge. Development of a graphical user 

interface would also reduce the effort required to code the model for large and complex projects. 

6.6 Conclusion 

Adverse weather is one of the most critical and challenging schedule-related risk factors 

in wind farm construction due to the wind-prone locations of these projects. Weather delays in 

wind farm construction must be monitored as accurately as possible, as predictable weather 
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conditions are not entitled to time extensions in construction contracts. Current methods, 

however, only account for weather during the early scheduling stages, using historical weather 

data to estimate the impact of weather on project duration. However, a method capable of 

considering variability in short-term weather forecasts for lookahead scheduling during the 

execution phase of wind farm construction projects had yet to be developed. In this study, a 

combined discrete-event and continuous simulation model was proposed with the aim of 

fulfilling this need by developing a practical estimation method for predicting the impact of 

short-term weather forecasts on activity durations and project schedules during project execution. 

By addressing existing research gaps, the proposed approach was able to integrate short-term 

weather forecasts and as-built data to generate outputs that are logical and capable of providing 

much needed decision-support to practitioners. The method proposed facilitates the ability of 

practitioners to monitor adverse weather impacts on project durations in the time-frame required 

to exert effective correct actions capable of proactively mitigating weather-induced delays and 

subsequent related claims. 
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Chapter 7 : Conclusion 

7.1 Research Conclusions 

This research outlined the development of decision support system (DSS) to improve risk 

management practices in onshore wind projects. It focused on addressing the research gaps 

identified in literature and current industry practice pertaining to the risk identification and 

assessment processes. The developed DSS can by emulated and implemented to any onshore 

wind project. Also, it can be applied to other types of projects such as mining following the 

proposed methodology after careful investigation of required inputs and data preparation for each 

component of the DSS. 

Chapter 2 provided an in-depth understanding of the critical risk factors affecting the 

construction phase of onshore wind projects in Canada. Experts working in the Canadian wind 

energy industry were surveyed, and their evaluations of the risk factors in terms of their 

probability and impact on project objectives (i.e., cost, time, quality, and safety) were collected. 

The responses were analyzed using fuzzy AHP and fuzzy TOPSIS multi-criteria approach. 

Results indicated that managerial risk factors were the most critical risk factors followed by 

adverse weather. 

Chapter 3 developed an ontological approach that enables the identification of context-

specific risk factors based on the contextual characteristics of a project in an automated manner. 

The ontology-based approach allowed the integration of risk factor information and project 

context information semantically. This approach was designed to reduce the burden on project 
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managers when identifying risk factors for a new project, reducing effort and time and increasing 

accuracy. A risk ontology was developed for onshore wind projects to facilitate the identification 

process based on contextual information. 

Chapter 4 proposed a method to improve input modelling for simulation-based risk 

assessment through the implementation of a fuzzy-based multivariate analysis approach. This 

approach allows experts to express their detailed subjective knowledge in a granular manner, 

thereby overcoming the existing limitations of historical data unavailability, correlations between 

risk factor impacts, and expert biases. The ability of the fuzzy-based multivariate approach to 

develop a statistical distribution for a risk factor impact was demonstrated in the illustrative 

example provided, and the functionality of the proposed approach was confirmed following its 

application to an onshore wind project. The method was implemented in a simulation platform, 

SimphonyProjects.NET, for risk assessment. 

  Chapter 5 proposed a domain-specific risk assessment approach for onshore wind 

projects. Evidence from literature demonstrated that industry practice uses simple techniques for 

quantitative risk assessment. Therefore, the domain-specific approach allows experts to easily 

apply and adapt available simulation techniques. A domain-specific MCS-CPM integrated 

approach was proposed for assessing risk factors of onshore wind projects. The previously 

developed fuzzy-based multivariate method was used for input modelling preparation of MCS-

CPM. The method was implemented in a simulation platform, SimphonyProjects.NET, for risk 

assessment. The functionality of MCS-CPM method for risk assessment of onshore wind 

projects was demonstrated through application to a case study of onshore wind project. 
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Chapter 6 proposed a combined simulation approach for analyzing and understanding the 

short-term weather impact on project schedules. The proposed approach allows project managers 

to incorporate the short-term adverse weather forecast in lookahead planning of construction 

activities for an onshore wind project. This approach allows project managers to take corrective 

actions and make informed decisions in a timely manner. The functionality of the proposed 

approach was demonstrated through application to a case study of an onshore wind project. 

Results confirmed the ability of the method to properly analyze and understand the effects of 

adverse weather on both individual activities and overall project duration.  

7.2 Academic Contributions 

This research study has resulted in the development of several academic contributions: 

1) Providing a systematic and thorough analysis of risk factors affecting construction 

of onshore wind projects in Canada, in addition to identifying critical risk factors 

using a hybrid multi-criteria approach that uses linguistic scales represented by 

fuzzy numbers to assess the probability and differential impacts (i.e. cost impact, 

time impact, safety impact, and quality impact) of risks. 

2) Development of a context-driven approach that considers the specific 

characteristics of a project for accurate identification of project risks. 

3) Providing an integrated simulation approach for assessment of risks in onshore 

wind projects that considers both the cost and time aspects of risks. 

4) Advancing the Monte Carlo – critical path method by considering the correlation 
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between the cost and schedule impacts of risk factors. 

5) Advancement of input modelling for Monte Carlo simulation, which allows 

experts to subjectively establish the probability distribution of risk factors’ impact 

using fuzzy logic and multivariate analysis. 

6) Providing a simulation-based approach that allows decision makers to assess the 

weather impact dynamically and accurately on project performance by 

considering short-term weather. 

7.3 Industrial Contributions 

The main industrial contributions of this research are summarised as follows: 

1) Providing wind energy industry practitioners with a comprehensive list of the 

most common risks affecting onshore wind projects, in addition to prioritizing 

these factors in terms of their severity on project objectives.  

2) Alleviating the need for time-intensive document review for risk identification by 

risk analysts and project managers following application of the proposed risk 

ontology. 

3) Providing a proactive, weather simulation-based tool for project managers in 

onshore wind projects that allow decision-makers to take mitigation and 

corrective actions in a timely manner.  

4) Providing meaningful simulation results and guideline to assist practitioners in 

performing risk analyses during both the planning and execution phases of 



                                                                                                                                                  264 

______________________________________________________________________________ 

 

 

construction.  

7.4 Limitations 

Although the results presented in previous chapters support the use of the developed 

approaches, the findings should be interpreted in consideration of certain limitations: 

• Although the risk ontology developed in Chapter 3 was designed to identify all 

types of risk factors (e.g., economic, environmental, and political), publicly-

available data were limited to environmental risk factors. Collection of data 

related to other types of risk factors will enrich the ontology. 

• Data collected for building the risk ontology in Chapter 3 were extracted 

manually from project documents; however, the risk ontology can be supported 

with a natural language process-based model capable of extracting the required 

information from documents. 

• The fuzzy membership functions used in fuzzy computations in Chapter 4 were 

triangular and trapezoidal in shape. Other non-linear memberships were not 

investigated in this research, which may affect the results. Therefore, further 

investigation should be conducted. 

• The combined simulation model proposed in Chapter 6 was built such that the 

underlying relationships between weather parameters and labor productivity was 

determined based on previous research studies, which may differ from one 

country to another or from one company to another. Also, the effect of other 
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weather parameters, such as lightning, was not considered in this study. 

7.5 Envisioned Future Directions 

This section reveals possible future research directions stemming from this research 

work. 

• A tremendous amount of risk-associated data embedded within project 

documentation, such as change orders, claims, and project contracts, is generated 

and documented throughout the lifecycle of a project. A potential source for 

identifying risk factors is to review documents, such as contracts or lessons 

learned, related to the current or similar projects.  

• This study proposed a domain-specific simulation for risk assessment to promote 

the use of advanced quantitative methods by industry practitioners. However, 

special purpose simulation models that can be developed for specific types of 

projects should be investigated to promote and encourage the use of advanced risk 

models by industry practitioners. 

• Current practices for risk identification from project documents is conducted 

manually. Text analytics can be investigated to automate the document review 

process for risk identification, which can reduce the burden on project managers. 

Also, this text analytics module can be integrated with the risk ontology to fully 

automate the identification process. 

• Decision making in risk assessment is often affected by the attitude or appetite of 
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the risk analyst. Future research should focus on addressing the impact of risk 

appetite on risk mitigation strategies, and how risk appetite can be incorporated in 

the decision-making process. 

• The domain specific risk assessment model was developed based on the critical 

path method. Future research should focus on investigating the expansion of the 

model by replacing the simple representation of activity duration with a more 

sophisticated simulation model. Thus, the overall risk model can contain sub-

models for activities that require detailed investigation. 

• The decision support system in this thesis was developed for onshore wind 

projects, therefore future research should focus on investigating how this DSS can 

be replicated in other types of projects.  
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