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ABSTRACT

Generating representative models of geological domains is critical for decision making and pro-
cess optimization in natural resource exploitation. Partitioning geological datasets is an impor-
tant step undertaken early in geostatistical analysis to ensure that subsequent modeling stages
consider only related subsets of the domain. The partitioning is hierarchical; the large scale
focuses on the geological properties of the domain to ensure the resulting models are geolog-
ically representative, and the smaller scale considers the statistical properties of the modeling
variables to ensure the assumptions made in geostatistical algorithms are reasonable.

Implicit modeling tools are commonly used to generate geological boundaries, partitioning
the domain at the large scale. Commercial implicit modeling tools allow explicit control over all
aspects of generated models, abstracting away the actual construction of geological surfaces.
However, a manual interpretation of local structural features is required in many geological set-
tings to ensure the boundary models are reasonable. Furthermore, the interpretation must be
manually implemented by digitizing polylines or specifying local orientations throughout the do-
main. An implicit modeling framework is developed to address the inference and interpretation
of local features from the dataset. The framework utilizes a well-established strategy for interpo-
lating large datasets, modified for geological modeling by introducing unique local orientations of
continuity. An additional methodology is developed to automatically generate local orientations
from previous boundary models. The combination of automatic inference of local orientations
with the developed boundary modeling algorithm results in a data-guided workflow for capturing
curvilinear features in geological domains. The resulting models improve the geological feature
reproduction of geological models.

Following the large-scale geological partitioning, explicit decisions about statistically related
samples must be made. This decision of stationarity is an important assumption made by geo-
statistical algorithms used to estimate value at the unsampled locations. Deviations from sta-
tionarity imply errors and biases will result in the generated models. There is a consensus
in geostatistical literature that improved decisions of stationarity result in improved domains

for geostatistical modeling. Increasingly the stationary partitioning of geological datasets is
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achieved through clustering, spatial clustering and other machine learning algorithms. Yet, the
justification of a set of stationary domains is lacking. Several improvements to stationary do-
maining are proposed in this work, to aid in the generation and justification of groups of samples
used for statistical modeling. Metrics for comparing two different possible stationary config-
urations are developed that allow the practitioner to choose better domains for geostatistical
modeling. Furthermore, two new clustering algorithms are introduced that ease the burden of
parameterization, and permit assessment of the uncertainty associated with this component of
geostatistical analysis.

This thesis makes several contributions to two related areas of geostatistics that have large
consequences on the generated models. Geological boundary models are required to ensure
the generated models have the correct geological context. Similarly, decisions of stationarity are
required to ensure the dataset is amenable to statistical modeling. The combined contributions

of this thesis improve partitioning of geological datasets at all scales for geostatistical modeling.



PREFACE

This thesis is an original work prepared by Ryan Martin. Parts of this thesis have been previously
published.

Chapters 3 and 5 are composed by Martin, R., and Boisvert, J. B., lterative refinement of
implicit boundary models for improved geological feature reproduction, published by Computers
and Geosciences as an original research article.

Chapter 4 is composed by Martin, R., and Boisvert, J. B., Towards justifying unsupervised
stationary decisions for geostatistical modeling: Ensemble spatial and multivariate clustering
with geomodeling specific clustering metrics, published by Computers and Geosciences as an

original research article.



For Lisa and Owen.



ACKNOWLEDGMENTS

I would like to thank my thesis supervisor Jeff, without whom | would not have completed this
program to the fullest extent of my abilities. Jeff has been a constant source of motivation and a
positive reinforcement through all stages of this work. The financial, technical and professional
support of the Center for Computational Geostatistics (CCG) and member companies is greatly
appreciated. Several other professors, researchers and students at the CCG and the University

of Alberta have helped me in my journey. Thank you.

I wish to thank the members of my thesis examination committee for insightful comments that

have improved the consistency of this thesis.

| would like to thank my wife Lisa for allowing me to be a student for as long as | have been.
She provides endless support through all decisions, quests and quandaries in my life. My family

and friends in Alberta, Ontario and beyond have also been supportive throughout this journey.

My son Owen showed up late to this party, but provides endless grounding-joy, especially useful
after long hours being ‘plugged in". Owen doesn’t know it yet, but one day we’ll sit around talking

about science and programming.

Even if he isn't listening.

vi



TABLE OF CONTENTS

1

Introduction 1
1.1 Geostatistics . . . . . . . ... 1
1.2 Estimation at the Unsampled Location . . . . .. ... ... ... .. ....... 3
1.3 Stationarity . . . .. . ... 3
14 The Decision of Stationarity . . . . . .. ... ... ... ... ... . ....... =
1.5 The Importance of Stationarity . . . . ... ... ... . ... ... ........ 5
1.6 ThesisStatement. . . . . . . . . ... 7
1.7 ScopeofthisThesis . . . ... . ... ... .. ... ... ... ... ... 7
1.8 Thesis Organization . . . . ... ... ... ... ... ... ... ... ... ... 8
Literature Review 9
2.1 Geological Boundary Modeling . . . . . .. ... ... ... .. ... .... 9
2.2 Implicit Boundary Modeling . . . . . . . ... .. ... ... 10
221 VolumetricFunctions . . . . . . . ... ... 11
222 Interpolators . . . . ... ... 12
2.2.3 Radial Basis Function Interpolator . . . . . .. ... ... ... . .... 17
224 Radial Kernels and Parameterization . . . . . . .. ... ... ... ... 18
225 Paritioning . . . . . ... 20
2.2.6 Uncertainty in Implicit Geological Models . . . . .. ... ... .. .... 24
2.2.7 Uncertainty Bandwidth Parameter . . . . . .. ... . ... ... . .... 28

2.3 The Decision of Stationarity . . . . . . . ... ... ... ... ... .. ..., 28
2.3.1 Geologically Defined Stationary Domains . . . . .. ... ... .. .... 29
2.3.2 Merged-Lithology Stationary Domains . . . . . . ... ... ........ 30
2.3.3 Grade-Value Stationary Domains . . . . . . .. ... ... ......... 31
2.3.4 Clustering Stationary Domains . . . . . . ... ... ... ......... 32
2341 K-means . . . .. ... 34

vii



Table of Contents

2.3.4.2 Gaussian Mixture Model Clustering . . . . . ... ... ... .. 35

2.3.4.3 Hierarchical Clustering . . .. ... ... ... ... ....... 36

2.3.5 Spatial Clustering for Stationary Domains . . . . . . . ... ... ..... 38
2.3.5.1 Neighborhood Constraints . . . . ... ... ... ....... 38

2352 Local Autocorrelation . . . . ... ... 39

236 ValidationofClusters . . . . ... ... . ... ... ... .. 39

24 Ensemble Clustering . . . . . . . . . . .. ... 41
241 Random-Subspace . .. ... ... ... . ... ... ... ... ... 43
242 Consensus Functions . . . . ... ... ... 43

2.5 Uncertainty in Stationary Domains . . . . . . .. . ... ... ... ... ..... 4
2.6 Validation of Geostatistical Algorithms . . . . . . . . . .. ... ... ... .... 45
27 ReviewofMainPoints . . . . . . . ... 48
28 Conclusions . . . . . . . . L e 48
3 Geological Boundary Modeling with Uncertainty 49
3.1 Motivation . . . . . . . . 49
3.2 Geological Boundary Modeling . . . . . ... ... ... ... ... . ... 50
3.3 lterative Refinement of Geological Boundary Models . . . . . .. ... ... ... 52
3.3.1 Local Anisotropy with RBF Interpolators . . . . . .. ... .. ... .... 53
3.3.2 Inference of LVA Parameters . . . . .. ... ... ... ... ....... 54
3.3.3 Extracting a Representative Partition Anisotropy . . . . . . ... ... .. 57
3.3.4 Automatic lterative Refinements . . . . . .. ... ... 58
3.3.5 Parameterization and Sensitivity . . . .. ... ... ... L. 60

3.4 Assessing Geological Boundary Models . . . . . ... ... . ........... 62
3.5 Uncertainty Through the C-Parameter Framework . . . . . . .. ... ... ... 66
3.6 ReviewofMainPoints . . . . . . ... . ... 66
3.7 Conclusions . . . . . . . .. 66
4 Stationary Decision Making with Clustering 68
41 Introduction . . . . . . .. 68



Table of Contents

4.2 Metrics of Stationary Domains . . . . . . . .. .. ... 69
421 Multivariate Metrics . . . . . . ... 72
422 SpatialMetrics . . . ... ... 74
423 Combined Mefrics . . . . ... ... ... 76
424 WMetric Limitations . . . . ... ... 76

4.3 Dual-Space Ensemble Spatial Clustering . . . . .. ... ... ... ....... 79
431 Stage 1, Primary Spatial Merging . . . . . ... .. ... ... ....... 79
4.3.2 Stage 2, Secondary Multivariate Merging . . . . . ... .. ... ... .. 79
433 Stage 3, FinalClasslLabels . . . ... ... ... ... ... ........ 81
434 SyntheticExample . . . . ... ... ... 82
435 Addressing StringsofData . . . .. ... ... ... ... .. ... ... . 85

4.4 Ensemble Clustering for Uncertain Stationary Decisions . . . . . . ... ... .. 88
441 Improved Stationary Domains and Stationary Domain Realizations . . . . 89
442 Stationary Domain Scenarios . . . . . ... .. ... ... ... .. 90

45 Parameterization Guidelines . . . . . . .. ... ... 92

46 ReviewofMainPoints . . . . . . . . .. ... 93

47 Conclusions . . . . . . .. 94

5 Case Study: Implicit Modeling with Locally Varying Anisotropy 95

51 PorphyryDeposit . . . . . . . . . ... 95

5.2 Globally Isotropic Boundaries . . . . . . .. ... ... ... ... ... .. ... 98

5.3 Globally Anisotropic Boundaries . . . . . .. ... ... .. ... ... .. .... 98
5.3.1 Anisotropy from Manual Inference . . . .. ... ... ... ... . .... 98
5.3.2 Anisotropy from Variograms . . . . . . .. ... ... ... 100

5.4 lteratively Refined Local Anisotropy . . . . . . . . .. ... ... ... 101

5.5 Geological Model Performance . . . . . . . ... . ... ... ... ... .... 101

5.6 VolumetricUncertainty . . . . . . . .. . ... ... ... 106

57 ReviewofMainPoints . . . . . . . . ... 110

5.8 Conclusions . . . . . . . . . 110



Table of Contents

6 Case Study: The Effect of Improved Stationary Decisions on Geostatistical Pre-

dictions 112
6.1 Introduction . . . . . . . . .. 112
6.2 Experimental Methodology . . . ... . ... ... ... ... ... ..., 113
6.2.1 Types of Decisions of Stationarity . . . . . ... ... ........... 113
6.2.2 Validation Methodology . . . . . . . ... ... ... .. ..., .... 113
6.3 PorphyryDataset . . . . . . . ... .. ... ... 115
6.3.1 Defining Categories . . . . .. .. .. ... ... ... ... .. ... 116
6.3.1.1 Geological Categories . . . . . ... ... ... ... ....... 116

6.3.1.2 Multivariate Clusters . . . . . . . .. ... ... ... ... 118

6.3.1.3 Spatial Clusters . . . . . ... ... ... .. ... ....... 119

6.3.1.4 Improved Spatial Clusters . . . . . . .. ... ... ....... 120

6.3.1.5 Cluster Realizations . . . . . . ... ... ... ... ....... 122

6.3.1.6 ControlGroups. . . . . . . . . .. ... ... 123

6.3.2 K-FoldResults . . . .. . ... ... .. ... 123
6.3.3 Global Realization Checks . . . . . ... ... ... ... ......... 127
6.34 Discussion . . . . ... 127
6.4 OilsandsDataset . . . . . . . . . ... . ... 130
6.4.1 Defining Categories . . . . .. .. .. ... ... .. ... ... ... 130
6.4.1.1 Geological Categories . . . . . . .. ... ... ... ....... 132

6.4.1.2 Multivariate Clusters . . . . . . . .. ... ... ... .. 133

6.4.1.3 SpatialClusters . . . . . ... .. ... .. ... ....... 135

6.4.14 Improved Spatial Clusters. . . . . . ... ... ... ....... 135

6.4.1.5 Cluster Realizations . . . . . . . ... ... ... ... ...... 135

6416 ControlGroups. . . . .. . . . ... ... ... 136

642 K-FoldResults . . . .. .. ... ... ... ... ... 136
6.4.3 Global Realization Checks . . . . . ... ... ... ... ......... 139
6.44 Discussion . . . . ... 140
6.5 ReviewofMainPoints . . . . . . .. .. ... ... 143



Table of Contents

6.6 Conclusions . . . . . . . . . .
7 Conclusions
7.1 Contributions to Geological Boundary Modeling . . . . . .. .. ... ... ....
7.1.1 Implicit Geological Modeling with Local Anisotropy . . . . . ... ... ..
7.1.2 lterative Refinement of Geological Features . . . . . . .. ... ... ...
7.1.3 Shape Properties of Geological Boundary Models . . . . ... ... ...
7.2 Contributions to the Decision of Stationarity . . . . . . ... ... .. ... ....
7.2.1 Spatial and Multivariate Metrics . . . . . . ... ... ... ... .. ....
7.2.2 Spatial Clustering Algorithms . . . . . . . ... ... ... ... ......
7.2.3 Geostatistical Ensemble Clustering . . . . . .. ... ... .. ... ....
7.2.4 Investigation of the Effect of Stationary Domaining on Prediction Errors
7.3 Limitations and Future Work . . . . . . . . . . ...
7.3.1 Implicit Geological Modeling . . . . ... ... ... ... .........
7.3.2 Limitations of the Proposed Stationary Domaining Methodologies . . . . .
74 FinalWords . . . . . . . . . .
References
A Software
A.1 Boundary Modeling . . . . . . . . ... ...
A11 rbfdfmod . . . . . . .. ...
A1.2 rbfiterref . . . . . . . . . ... ...
A13 rbfuncert . . . . . .. . ... ...
A.2 Spatial Clustering Python Package . . . . . ... .. .. ... ... .......
A21 acclus . . . . ... ..
A22 acens . . .. . ...
A23 dssens . .. . ... ...

B Chapter 6 Supporting Figures
B.1 Porphyry Case Study . . . ... ... .. . . ... .. ...

Xi

144
144
145
145
146
146
147
147
148

. 148

148
148
149
150

151

161
161
162
166
168
171
172
173
174

176



Table of Contents

B.2 Oilsands Case Study

Xii



LIST OF TABLES

2.1
2.2

6.1
6.2
6.3
6.4

Table of Kernel Parameters . . . . . . . . ... . .. ... 19
Local autocorrelation statistics and their properties (Anselin, 1995) . . . . . . .. .. 40
CuT K-fold error statistics by category, porphyry dataset. . . . . .. ... ... ... 124
Bitumen K-fold error statistics by category, oilsands dataset. . . ... ... ... .. 137
Fines K-fold error statistics by category, oilsands dataset. . . . . ... ... ... .. 137
Chlorides K-fold error statistics by category, oilsands dataset. . . . . . .. ... ... 138

Xii



LIST OF FIGURES

1.1 Geostatistical domain A . . . . . . . . ... 2
1.2 Place of this thesis within a conceptual geostatistical workflow . . . . . .. ... .. 6
2.1 Data types for implicit geological modeling . . . . . . . ... ... ... ... ..... 11
2.2 Example SDF calculation . . . . . . ... .. .. ... ... ... 11
2.3 Categorical codes and the calculated SDF . . . . . . . . ... ... ... ....... 13
2.4 K category implicit modeling framework . . . . .. ... ... ... 14
2.5 Trendmodelingandthe SDF . . . . ... ... . ... . ... ... . ........ 16
2.6 Isotropic and anisotropic radial kernels . . . . . . . .. ... ... ... 20
2.7 Schematic example of a binary partitioning algorithm . . . . . . . .. ... ... ... 21
2.8 Effects of partition overlap in binary partitioning . . . . . . . ... .. ... ... ... 22
2.9 Types of boundary uncertainty to consider in implicit modeling projects. . . . . . .. 25
2.10 Uncertainty contributions for implicit modeling in sparse domains . . . . . . .. . .. 27
2.11 Distance function with uncertainty bandwidth . . . . . . . . .. ... ... ... ... 27
2.12 A conceptual domaining workflow . . . . . . .. ... 30
2.13 Conceptual setting of intrusion-associated gold mineralization . . . . . . . ... ... 31
2.14 Analysis of a RF across boundaries . . . . . . .. ... .. ... ... ........ 32
215 Hard ordiscrete clustering . . . . . . . . . . . . .. ... ... ... ... ... 33
216 Fuzzyclustering . . . . . . . . . . 33
2.17 Hierarchical clustering of a pairwise similarity matrix . . . .. ... ... ... .... 37
2.18 Example of local Morans autocorrelationmetric . . . . . . . ... .. ... ... ... 40
2.19 The gap statistic for estimating the number ofclusters . . . . . ... ... ... ... 41
2.20 Ensemble classification and regressiontrees . . . . . . . ... ... ... ...... 42
2.21 Pairwise similarity matrix consensus function . . . . . . . ... ... ... ... 4
2.22 Stationary population mixing along the boundary betweendomains . . . . . . . . .. 47
223 Kfold validation . . . . . . . ... .. 47

Xiv



List of Figures

3.1 Refinement of isotropic model to have ‘better’ local anisotropic features . . . . . . . 51
3.2 lterative boundary refinement algorithm . . . . . . .. . ... ... 52
3.3 Synthetictestdomain . . . . ... .. ... ... ... 53

3.4 Experimental and model signed distance function (SDF) variograms for the synthetic

domain . . . . ... L 53
3.5 Local anisotropy for PU RBF interpolation . . . . . .. ... ... ... ........ 54
3.6 Orientations extracted from the gradient-SVD algorithm . . . . . . . ... ... ... 56
3.7 Extraction of representative partition orientations . . . . . . ... .. ... ... ... 57
3.8 Automatic iterative refinements of the synthetic testdomain . . . . . . .. ... ... 59
3.9 Types of overlap considered in the PU RBF interpolation algorithm . . . . . . . . .. 61
3.10 Sensitivity of partitioning parameters through K-fold validation . . . . . . . . ... .. 63

3.11 Surface area to volume and surface area to surface area metrics for blobby implicit

models . . . . 65
41 Example Cu-Au porphyry domain colored by rocktype . . . . . . .. ... ... ... 70
4.2 Example Cu-Au porphyry domain colored by clustercode . . . . .. ... ... ... 71

4.3 Sensitivity of the different population difference metrics to differences in the mean
and (co)variance between populations . . . . . ... ... 75

4.4 Proposed multivariate and spatial metrics to gauge the quality of spatial clusters for

the geostatistical workflow . . . . . . . . . ... ... 77
4.5 Conceptual relationship between the spatial and multivariate metrics . . . . . . . . . 78
4.6 Spatial entropy for a domain with differentx . . . . . . . . ... ... ... ... ... 78

4.7 Conceptual workflow for the proposed random-path iterative-agglomerative spatial

clustering algorithm . . . . . . . . ... 80
4.8 Synthetic dataset for demonstrating the random-path spatial clustering algorithm . . 83
4.9 Cluster and spatial cluster results for the syntheticdataset . . . . . . ... ... ... 84
4.10 Variable importance for the clusterings generated for the synthetic dataset. . . . . . 85
411 Cu and Au grade values for the porphyry dataset . . . . . . .. ... ... .. ... .. 86
4 .12 Cluster results for the porphyry dataset . . . . . ... ... ... ... ... . .... 88
4 13 Geostatistical consensus function . . . . . . . ... ... 91



List of Figures

4.14 Cluster permutation problem with ensemble clustering . . . . . . .. . ... ... .. 91

4.15 Tuning the spatial contiguity of the spatial clusters from random-path spatial cluster-

ing algorithm . . . . . . . . 92
5.1 Large porphyry study area locations . . . . . ... ... .. ... ... ........ 96
5.2 Histograms by geological domains and categories for the large porphyry dataset . . 97
5.3 Isotropic boundary model . . . .. . ... ... ... ... ... 99
5.4 Anisotropic boundary model - manual inference . . . . . . . ... ... ... .. ... 99
5.5 Anisotropic boundary model - variogrammodel . . . . . ... ... 99
5.6 Indicator variograms for the geologicaldomains . . . . . . . .. ... ... ... ... 100
5.7 lteratively refined locally anisotropic boundary models, lookingN . . . . . . ... .. 102
5.8 lteratively refined locally anisotropic boundary models, looking SE . . . . . .. . .. 103
5.9 Sample locations colored by fold number . . . . . .. ... ... ... 104
5.10 Implicit model cross validation scores and shape properties . . . . . ... ... ... 105
5.11 C-parameter misclassification . . . . . . . . . . .. ... ... ... ... ... 107
5.12 Iso-probability shells generated from implicit modeling with uncertainty . . . . . . . . 109
5.13 Volumetric uncertainty for boundary models generated with local anisotropy. . . . . 110
6.1 Conceptual geostatistical uncertainty characterization workflow . . . . . . . ... .. 114
6.2 Location map of the porphyry deposit colored by CuT . . . .. ... ... ... ... 115
6.3 ElbowplotforCuT . . . . .. . . . . .. .. 116

6.4 KDE-box plots of CuT grades from each defined category from the porphyry dataset 117
6.5 E-W slice of the sample locations from the porphyry dataset, colored by category . . 118

6.6 Standardized spatial-multivariate metrics calculated for all categories for the por-

phyrydataset . . . . . . . . . ... ... 119
6.7 Experimental and model categorical variograms for each set of categories . . . . . . 120
6.8 Variograms of NS_CuT for each setofcategories . . . . . . ... ... ........ 121

6.9 E-W slice of the porphyry domain, colored by probability to be part of each category 122
6.10 KDE of CuT in each category for each set of categories from the porphyry dataset . 123
6.11 Sample locations colored by fold for the large-porphyry dataset. . . . .. ... ... 124

Xvi



List of Figures

6.12 Cross validation scatter plots for the porphyry dataset . . . . . . .. ... ... ... 125
6.13 Accuracy plots for CuT from the porphyrydataset . . . . . . .. ... ... ... ... 126
6.14 Histogram reproduction plots for the porphyry dataset . . . . . . .. ... ... ... 128
6.15 Variogram reproduction plot for the porphyry dataset . . . . . . . .. ... ... ... 129
6.16 Oilsands location map and variablevalues . . . . . . ... ... ... ........ 131
6.17 Elbow plot for Bitumen, Finesand Chlorides . . . . . . . . . ... ... ... ..... 132

6.18 Individual sets of categories for the oilsands dataset on the E-W section looking north.132
6.19 Standardized spatial-multivariate metrics calculated for all categories for the oilsands
dataset. . . . . . . . .. 133
6.20 KDE for each variable in each category for each set of categories investigated from
the oilsandsdataset . . . . . . ... . ... ... 134

6.21 E-W section, looking north colored by the probability for each location to be part of

eachcategory. . . . . . . . . . .. 136
6.22 Sample locations colored by fold for the oilsands dataset . . . . .. ... ... ... 137
6.23 Cross validation scatter plots for bitumen from the oilsands dataset . . . . . . . . .. 138
6.24 Accuracy plots for bitumen from the oilsands dataset . . . . . . . .. ... ... ... 140
6.25 Histogram reproduction plots for the oilsands dataset . . . . . ... ... ... ... 141
6.26 Variogram reproduction plot for the oilsands dataset . . . . . . . ... .. ... ... 142
A.1 Variogram for demonstrationdomain . . . . . . . ... ... .. ... ... ... 164
A.2 Influence of support parameter on decreasing kernels . . . . . . .. ... ... ... 164
A.3 Influence of support parameter on increasingkemels . . . . . . ... ... .. .... 165
A4 File formats for Fortran programs . . . . . . . . . . . . ... ... ... ... ..., 165
B.1 Probability to be cluster 1 in the porphyry dataset. . . . . . . ... ... .. ..... 177
B.2 Probability to be cluster 2 in the porphyry dataset. . . . . . . ... ... . ...... 177
B.3 Probability to be cluster 1 in the oilsands dataset. . . . . . . . ... ... ....... 178
B.4 Probability to be cluster 2 in the oilsands dataset. . . . . . . . ... ... ....... 178
B.5 Probability to be cluster 3 in the oilsands dataset. . . . . . . . ... ... ....... 179
B.6 Cross validation scatter plots for fines from the oilsands dataset . . . . . . ... .. 180

XVii



List of Figures

B.7 Cross validation scatter plots for chlorides from the oilsands dataset . . . . . . . . . 181
B.8 Accuracy plots for fines from the oilsands dataset. . . . . . . ... ... ....... 182
B.9 Accuracy plots for chlorides from the oilsands dataset . . . . . .. ... .. ... .. 183
B.10 Histogram reproduction plots for the oilsands dataset . . . . . .. ... .. ... .. 184
B.11 Histogram reproduction plots for the oilsands dataset . . . . . .. ... .. ... .. 185
B.12 Variogram reproduction plot for fines from the oilsands dataset . . . . . . . ... .. 186
B.13 Variogram reproduction plot for chlorides from the oilsands dataset . . . . . . . . .. 187

Xviii



LIST OF SYMBOLS

Symbol Description

A B Populations A and B

ahmax  Variogram range in the major direction
ahmin  Variogram range in the semi-major direction
avert Variogram range in the vertical direction

a, B Data indexes

ang The first rotation angle from GSLIB

ang, The second rotation angle from GSLIB

angs The third rotation angle from GSLIB

n Ratio of the semi-major to major variogram range, ::2;’;

T Ratio of the minor to major variogram range, ;h”:;;

Gia Getis local autocorrelation statistic

Lia Morans local autocorrelation statistic

c(h) Covariance function as a function of distance h

C Uncertainty bandwidth parameter

F cumulative distribution function (CDF) of the random variable (RV)

Cc A K; X K, co-occurrence matrix, calculated with BTB,, counting the number of times
a pair of points co-occur in each cluster

B An N x K column-wise binary matrix recording membership of each i location to each
k cluster

P Correlation

Cov Covariance

A Geostatistical domain

The jt" variable value of the i*" location

XiX



List of Symbols

Symbol

E{Z(u)}

Description

The jt" variable value of the k" cluster center
Implicit function

Variogram at a lag distance h

Entropy

N X N interpolation matrix

Location indices

The number of clusters, categories, domains for modeling.
A single cluster k from the set {1, .., K}

The number of clusters for the L' cluster realization
Number of realizations

A vector of weights

All locations in domain A

Sample locations in domain A

Unsampled locations in domain A

The number of variables sampled in a given dataset
Mean

Expected value of the RV Z

Number of samples

Standard normal Gaussian CDF

Radial kernel

Probability assigned for a given category k to be found at location u
Pairwise distance matrix

Pairwise weight matrix

Three dimensional space

Rotation matrix calculated considering ang,, ang,, ang;, r;, and r,



List of Symbols

Symbol
g

df

dft

df

SSE

s(u;)

Zg(up)
z(u;)

Z(u)

Description

Standard deviation

SDF

Distance function indexed by realization

Modified SDF considering the C-parameter

Sum of squared error

Value of the signed distance function at u;

The weighting function used in PU interpolation

Simple kriging (SK) estimate at the unsampled location
Observed value at u;

Probability distribution about the location u



LIST OF ABBREVIATIONS

Abbreviation Description

ARI
CART
CCG
CDF
cv
DS
GMM
IDW
KDE
KLD
LMC
LNOCV
LVA
MG
MGK
MOI
MPS
NE
OK
PCA
pdf
PGE
PU

adjusted Rand index
classification and regression trees
Center for Computational Geostatistics
cumulative distribution function
cross validation

dual space search

Gaussian mixture model

inverse distance weighted
kernel density estimate
Kullback-Leibler divergence
linear model of coregionalization
leave-N-out cross validation
locally varying anisotropy
multiGaussian

multiGaussian kriging

moment of inertia

multiple point statistics

nugget effect

ordinary kriging

principal component analysis
probability density function
platinum group element

Partition of Unity

XXii



List of Abbreviations

Abbreviation Description

Q-Q
RBF
RF
RMSE
RT
RV
SAV
SDF
SE
SGS
SIS
SK
SRF
SSE
SVD
TPG
WCSS

quantile-quantile

radial basis functions

random forest

root mean squared error

rock type

random variable

surface area to volume ratio
signed distance function
spatial entropy

sequential Gaussian simulation
sequential indicator simulation
simple Kriging

stationary random function
sum of squared error

singular value decomposition
truncated pluriGaussian simulation

within cluster sum of squares

Xxiii



CHAPTER 1

INTRODUCTION

Decisions for resource exploitation require unbiased numerical models that accurately charac-
terize the quantity and quality of the contained materials. The complexity of geological environ-
ments and the relatively limited data collected from these domains results in uncertainty that
must be incorporated for effective decision making. The final numerical models are the result of
a complex series of decisions made by several individuals with the collective goal to maximize
profits and minimize environmental impacts. Any model of the subsurface is uncertain; cap-
turing and transferring known uncertainty through numerical modeling is important to optimize

downstream planning and decision making based on the most complete information.

1.1 Geostatistics

Rock properties vary spatially and at all scales. Datasets collected to quantify the properties
of the subsurface are sparse relative to this variability and provide an incomplete view of the
subsurface. Geostatistical techniques are adopted to estimate value and uncertainty where no
samples are collected. Two important assumptions are commonly made to facilitate this esti-
mate: 1) the nearby data are related to one another and represent the process being modeled;
and 2) the unsampled location is also part of this process. These assumptions simplify the statis-
tical analysis and permit the unbiased characterization of value. Collectively these assumptions
comprise stationarity, which is not an intrinsic property of geological domains but instead reflects
a series of decisions made by the practitioner to group related samples with one another, model
boundaries and boundary relationships, and/or account for deviations from expected behavior.
These decisions preclude any geostatistical modeling and thus have large consequences for
all downstream decisions including planning, process optimizations, and financial investments
that consider the numerical models.

Geostatistics is the practice of statistical inference from samples that are correlated in space

1
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Figure 1.1: Geostatistical domain A with sample locations z(u;) and unsampled location ug. The domain
is discretized by a grid suitable for the project engineering parameters.

(Deutsch & Journel, 1998; Matheron, 1963). Usually a geostatistical study is restricted to some
domain of interest, A, with all locations in the domain denoted u (Fig. 1.1). Geostatistics adopts a
random variable (RV) formulation such that value at an unsampled location follows a probability
distribution Z(u). In this context, the capital Z denotes a distribution of possible values at the
u unsampled location, whereas lowercase z(u;) denotes observed values at u;Vi € 1,..,N
sample locations. The probability of a value being observed at a given unsampled location is
given by the cumulative distribution function (CDF), F(z) = Prob{Z < z}.

Geological processes result in spatially correlated RVs; this implies that two geographic lo-
cations closer to one another are more likely to be related than locations separated by a greater
distance. The set of all Z(u) describe a random function {Z(u),V u € A} with a spatial covari-
ance function C(h) that characterizes the spatial correlation between the random function at
different locations. The assumption that the samples z(u;) are representative of the underlying
random function Z(u) allows inference of the statistical properties of the random function, and

in turn, prediction of value and uncertainty at the unsampled locations.
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1.2 Estimation at the Unsampled Location

A popular strategy adopted for estimating value at unsampled locations is to consider weighting

nearby data:
N
Zum) —m = ) Aa(z(Ug) —m) (1.1)
a=1

This is referred to as simple kriging (SK) when the weights 1, minimize the error variance

E{[Z*(u) — z(u)]?}, calculated by solving the relation:
Caﬁﬂa = COa (1 2)

for some number of locations {a, f = 1, .., N} found in a local search surrounding the unsampled

location . The associated estimation variance o2, is recovered using the same weights:

N
0% = 0% = ) Aala (1.3)
a=1

Under a Gaussian assumption, SK estimates the mean and variance of a Gaussian distribu-
tion of uncertainty at the unsampled location, conditional to the observations found in the local
search surrounding that location; combined, the Gaussian transform and SK estimator is re-
ferred to as multiGaussian kriging (MGK). However, this estimate makes strong assumptions
on stationarity, that is, the mean, variance and covariance function of the random function are

representative of all locations.

1.3 Stationarity

Stationarity is a key consideration in geostatistical estimation and uncertainty characterization.
A stationary random function (SRF) is commonly described in terms of the first and second
order moments. A first-order-SRF is one where the mean is invariant with translation through
the spatial domain A. The mean of the SRF, denoted m, is inferred from the dataset z(u;) after
ensuring that each sample has a weight reflecting how samples are distributed through the
modeling domain. Under first order stationarity, the mean is constant and characteristic of all

locations E{Z(u)} = m Vu € A.
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A second-order-SRF is one where the variance is invariant with translation through the
spatial domain. The variance of the SRF Z(u), denoted 4?2, is inferred from the sample data
z(u;) with representative sample weights calculated, as above, to ensure a representative dis-
tribution. Under first and second order stationarity, the variance is constant for all locations
E{Z(u)?} — m? = ¢% Yu € A. For geostatistical applications, second-order stationarity more
commonly refers to the 2-point statistics of the z(u;) sample data, captured by the covariance
function C(h). In this context, the orientation and ranges of preferential continuity along each

direction are constant with translation, ensuring that the covariance function:
C(uu+h)=E{zwWz(u+h)}—-E{zu}E{z(u+h)} YuhecA (1.4)

is valid for all u and h in domain A.

The stationary assumption allows inference of the key statistical parameters (m, ¢ and
C(u,u + h)) from the samples collected to characterize the domain. This, in turn, allows in-
ference of the distributions of uncertainty at the unsampled location through MGK or sequential
Gaussian simulation (SGS), or other algorithm. However, geological domains are more com-
monly deemed non-stationary, resulting from: elemental zoning, gradational contacts, folded
structures, structural or hydrothermal overprinting and other features generated from complex
and long-lived geological processes. Moreover, the nature of geostatistical problems is increas-
ingly multivariate such that multiple variables must be considered in the generation of distinct
sets of samples that meet the above criteria. The omnipresence of non-stationary features and
multivariate complexities across all types of geological domains has motivated several practical

methodologies to facilitate unbiased prediction in the presence of these features.

1.4 The Decision of Stationarity

Stationarity is an assumption made in the underlying geostatistical algorithms, and not a prop-
erty of the dataset. In practice a series of decisions are made by the modeler to ensure the
assumption of stationarity is reasonable. A decision of stationarity has two main components,
where scale and data-support dictate the appropriate tools and techniques. The first component

involves defining groups of related samples, which involves partitioning sample dataset within
4
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the context of the total domain (or subdomain), resulting in K modeling groups. Second, the set
of related unsampled locations are determined by modeling the boundaries between defined
sets with a boundary modeling algorithm suitable for the scale of the problem, support of the
data and nature of the uncertainty. Boundary modeling maps this choice of K modeling groups
to the unsampled locations to ensure that an estimate made at an unsampled location draws
from the correct statistical population.

Decisions of stationarity are hierarchical in nature. At the large scale samples may be re-
lated through the geological environment, the tectonic setting, or through age relationships. The
information supporting delineation at this scale is suitably large-scale in nature; e.g. regional
geophysics or mapping datasets. Domains defined by these datasets are deterministic and
thus boundaries modeled with deterministic methods considering these geological attributes
are often suitable. At a smaller scale, the information collected to characterize the environment
consists of direct measurements of continuous variables (e.g., Gold, Bitumen); delineation of
domains at this scale requires consideration to the spatial statistical properties of these vari-
ables. Domains are generated at different scales to support related activities at each scale. At
the very largest regional scale, a subdivision supports further exploration by targeting areas
with prospective features dictated by the regional-scale relationships. By contrast, at a smaller
scale the delineation of distinct geological bodies, supported by sufficient sample density, may
be possible. At the very smallest scale of consideration, subdivision of the dataset facilitates the
numerical modeling of the properties contained within the larger-scale geological bodies, within
the largest-scale regional framework. Such decisions of stationarity are made at all scales, hier-
archically, and based on different supporting information with different final applications. Uncer-
tainty is a component of all decisions and should be quantified and incorporated to numerical

models so that decisions based on the models have the most complete information.

1.5 The Importance of Stationarity

Steps from a typical geostatistical study are shown graphically in Figure 1.2. The ultimate goal
is to characterize value and uncertainty in the subsurface given the sparse sampling collected

to characterize the domain. A generalized set of steps for achieving this goal include: data
5
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processing, geological modeling, stationary domaining and geostatistical modeling. Data pro-
cessing is a required pre-requisite for all statistical modeling to ensure that the samples are
representative and free of errors. This component of numerical modeling is essential, but de-
tails are beyond the scope of this thesis (see: Abzalov, 2016; Rossi & Deutsch, 2014). Once
the data is deemed fit for purpose, the next step is to generate a geological model to impart
setting-specific geologic and geometric controls to the numerical models. The geological con-
tinuities are commonly generated by experts familiar with the domain, local structure, and min-
eralizing features, although increasingly computerized tools are used to abstract the details of
constructing the model, mainly to increase efficiency. Once the geological domains are deemed
reasonable by an expert familiar with the deposit and the geological environment, a set of sta-
tionary domains are defined that explicitly pool samples for statistical modeling. The delineation
of stationary domains implies that the assumption of stationarity inherent in the geostatistical
algorithms that follow is reasonable. Within each stationary domain, traditional geostatistical al-
gorithms estimate value and characterize uncertainty at the unsampled locations. The portion
of geostatistical analysis that follows stationary domaining includes: inference of all required
parameters, data transformations, trend models, kriging plans, search characteristics, simu-
lation, and post processing. Modeling geological boundaries and the decision of stationarity
form an important foundation from which unbiased and representative statistical models of the

subsurface are generated.

1.6 Thesis Statement
Incorporating structural features to large-scale geological boundaries and improving the

definition of stationary domains results in improved geostatistical models.

1.7 Scope of this Thesis

This thesis focuses on the methodologies and tools used to ensure the assumptions inherent in
geostatistical analyses are reasonable. Two areas of domain subdivision are investigated: 1)
generating large-scale geologically reasonable boundaries; and 2) improving the definition of

stationary domains for numerical modeling. As seen in Figure 1.2, these two activities precede

7
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much of the geostatistical uncertainty characterization workflow and have large effects on all
downstream processes, including geostatistical modeling and any decisions that are based on

these models.

1.8 Thesis Organization

Chapter 2 provides a literature review detailing the methodologies utilized to generate geolog-
ical boundaries and stationary domains in this thesis. Chapter 3 develops an iterative locally-
anisotropic boundary modeling algorithm. Chapter 4 develops a framework for assessing sta-
tionary domains, as well as generating stationary domains with unsupervised learning algo-
rithms. Chapter 5 and 6 present case studies evaluating the methods for implicit modeling and
stationary domain definition presented in this thesis. Finally, Chapter 7 provides a summary
of the contributions and limitations of the proposed methods, as well as directions for future

research.



CHAPTER 2

LITERATURE REVIEW

This thesis focuses on two main topics: the generation of large-scale boundaries with locally
representative features and the methods used to generate stationary domains for geostatistical
modeling. The methods are related since each represents a partitioning of the domain based
on the properties of the samples. However, the first case partitions the domain based on the
geological characteristics and geometric continuities, whereas the second case partitions based
on the numerical properties of the samples that characterize the mineralization. This chapter is

intended to review the current state of the art with respect to these two related areas of research.

2.1 Geological Boundary Modeling

Boundaries map a decision of related samples to the unsampled locations. Most commonly,
the related samples consist of similar geological properties (geological modeling), but related
samples may also include decisions of stationarity where the properties of the RV are of pri-
mary interest. Boundaries are modeled with the goal of reproducing ‘geological features’, such
as folds, faulting and other complexities. Reproduction of such features ensures that numer-
ical models are geologically reasonable. Boundaries, and the methods to model boundaries,
are scale and data-support dependent. Historically, large scale boundaries are modeled using
manual interpretation and digitization with computer aided drawing tools. These methods are
termed ‘explicit’ because the manual digitization by an expert explicitly defines the location and
extents of geological bodies. Explicit methods allow precise control over the boundary location,
extent and the types of features reproduced in the boundary, but they are subjective, unique to
each expert, time-intensive, difficult to update or change, and provide no access to uncertainty.
Recently, implicit methods are popular for generating geological boundaries since models can
be constructed rapidly, are easy to update and provide a tractable workflow that is reproducible

by other experts. However, geological and structural interpretations must be manually enforced
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by the geomodeler to ensure the implicit model reproduces their interpretation. Without such
enforcement, implicit models are not guaranteed to generate ‘geological’ features; in fact, a

common occurrence are geological models that do not look ‘geological’ (Cowan, 2014).

2.2 Implicit Boundary Modeling

Implicit modeling is a data driven method to extract a surface describing the interface between
different geological bodies. Implicit boundary modeling is suitable to model geological features
that are relatively large scale and have significant continuity throughout the domain. In this
sense the scale of the variability is larger than the scale of the sampling. Data types that can
be used to construct implicit models are diverse and include: locations of observed geological
properties (rock types, alteration types, etc.); location of contacts; structural measurements;
structural interpretations; interpreted constraints (older, younger, etc.); and other information
(Fig. 2.1). A categorical dataset is the base for traditional implicit modeling methods, where 1
of K categories is targeted for large-scale boundary modeling. Each category is converted to a
volumetric function reflecting the position of each sample relative to a boundary between differ-
ent units (Fig. 2.3; Wilde & Deutsch, 2012). The implicit model is generated by fitting a function
that interpolates the volumetric function at the data locations. The location of the boundary is
then said to be known implicitly through the fitted function. A set of contacts and orientation
measurements can be used to enhance models by constraining the location and/or orientation
of the target boundaries at specific locations (Hillier, Schetselaar, de Kemp, & Perron, 2014;
Lajaunie, Courrioux, & Manuel, 1997). If the dataset consists of contacts and orientation mea-
surements, a lower density of point information may be sufficient since the orientation of the
surface is dictated by the orientation measurements rather than the arrangement of the point
data (Hillier et al., 2014). Although research into implicit geological modeling mainly follows
a traditional and strict implicit formulation (e.g., Cowan et al., 2003), today, ‘implicit geological
modeling’ is a more general term describing the process of the data-driven and automatic extrac-
tion of geological boundaries. In practice, the methods used to extract the boundaries need not
be strictly implicit (Silva, 2015; Wilde & Deutsch, 2012), although there are certain advantages

to the strict formulation.
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Figure 2.1: Different types of data that can be used in implicit geological boundary reconstruction.
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Figure 2.2: Example SDF calculation where the distance to the nearest sample of something different
defines the value of the ‘signed distance’ at each location.

2.2.1 Volumetric Functions

Geological domains are most commonly represented by a signed distance function (SDF) that
is calculated from the locations of the categorical data and represents the distance from each
sample to a sample of something different, and signed since it is negative if inside and positive
if outside (Fig. 2.2; Cowan et al., 2003; Knight, Lane, Ross, Abraham, & Cowan, 2007). The
benefit in this representation is that an interpolated value of SDF = 0 represents the interface
between inside and outside. Thus, to generate a bounding surface of a particular geological
category, the first step is to calculate the SDF for the category of interest at all sample locations.
Figure 2.3a shows the categorical codes and the corresponding SDF calculated from the point
category data. Here, locations where categories are more heterogeneous have SDF values
closer to zero, indicating that they are closer to the interface between inside and outside. Other

researchers have considered time or stratigraphic position as a function for interpolation (Mal-
11
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let, 2004). The advantage of that representation is that a coordinate system orthogonal to sed-
imentary deposition implicitly accounts for any locally varying anisotropy that may result from
post-depositional modifications like faulting or folding. However, this representation requires
specific depositional features that are only found in specific domains. The SDF methodology is
indeed more general and more widely used for this reason.

Geostatistical modeling projects rarely involve a single lithology. The SDF is well suited
for modeling the interface between two domains (e.g., inside or outside). A modified K cat-
egory implicit modeling framework is introduced by Silva and Deutsch (2012b) and presented
schematically in Figure 2.4. Essentially the domain is represented by K simultaneous SDF mod-
eling problems where each category is modeled independently and the set of K SDF models are
post-processed so that each block in the final model is assigned to one of K categories. If the
anisotropic parameters governing the continuity of each geological body are identical, weights
may be calculated once with Equation 2.5 and the interpolation time required for K categories
is significantly reduced. The post-processing of the SDF models chooses the prevailing cate-
gory at each location as the category with the smallest interpolated SDF value (Fig. 2.4f). This
SDF post-processing is suitable for a general problem with K categories and no superposition
information (e.g., crosscutting, faulting, etc.). However, if superposition relationships between
the different domains are known (e.g., category 1 intrudes category 2) these can be included in
the post-processing step by ensuring the cross-cutting category prevails if its interpolated SDF

value is negative, even if it is not the most negative SDF value at that location.

2.2.2 Interpolators

A practical consideration in implicit modeling is what interpolator is used for the volumetric
function to assign SDF values to the unsampled locations. Many interpolation algorithms are
available, each with differing properties and parameterization requirements: inverse distance
weighted (IDW) (Hosseini & Deutsch, 2007), kriging (Silva & Deutsch, 2012b; Wilde & Deutsch,
2012), locally varying anisotropy (LVA) kriging (Boisvert, 2013; Lillah & Boisvert, 2013) or radial
basis functions (RBF) interpolators (Cowan et al., 2003; Hillier et al., 2014; Knight et al., 2007).

The RBF framework is popular in the geological modeling literature (Cowan et al., 2003; Hillier

12
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Figure 2.3: Categorical codes along drill holes sampling a geological domain. (a) the categorical codes
where 1 is inside and 2 is outside the geological body of interest. (b) The SDF calculated for category 1.
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Figure 2.4: K category implicit modeling framework. (a) the set of scattered data for SDF interpolation.
(b)-(d) the SDF calculated for indicator 1-3, respectively. (e) the final categories found at each location
given the K category configuration found in (a) and the interpolated SDF for each category. (f) a view of
the interpolated SDF for each category in this problem along the A-A’ transect.

et al., 2014; Knight et al., 2007; Vollgger, Cruden, Ailleres, & Cowan, 2015). RBF interpola-
tion is identical to the dual kriging formulation given specific kernel parameterization (Fazio &
Roisenberg, 2013; Journel, 1988). The advantages often cited of RBF interpolators include: 1)
RBFs can interpolate the SDF without concerns of first-order stationarity; 2) variograms of the
SDF are problematic owing to first-order trends and are not required for RBF interpolators; and
3) with respect to geological modeling, RBF interpolation can honor arbitrary shapes instead of
depending on a modeled covariance function (Cowan et al., 2003; Hillier et al., 2014; Knight et
al., 2007).

Which interpolation algorithm to choose depends on the target properties of the geological

boundaries and what information is available for parameterization, e.g., if there is sufficient
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sample density for a variogram calculation, or if orientation measurements must be incorporated.
IDW interpolation is the simplest to implement, however, kriging is preferred since it minimizes
the error variance of the estimate. The main issue with kriging relates to the assumptions on first
and second order stationarity, which presents a practical difficulty for SDF interpolation since

the SDF is extremely non-stationary (Fig. 2.4b, c, and d), e.g.:
E{z(u)}#+mVYueA (2.1)

Figure 2.5a shows a 2D categorical modeling problem where the SDF calculated at the sample
locations is plotted as the z-value in the oblique rotated view. The surface plotted in the same
figure is a trend model calculated using a locally-weighted average of the SDF values. The non-
stationary nature of the SDF is evident; it varies from highly negative inside to highly positive
outside the domain of interest (category 2 in this case), increasing nearly linearly away from the
interface. From the trend model a residual can be calculated from the SDF values; Figure 2.5b
plots the residual values on the z-axis. Removing the trend and modeling residuals is a common
strategy for geostatistical modeling in the presence of first-order non-stationarity (e.g., Rossi &

Deutsch, 2014):
z'(w) —m(u) = ) Ai(z(up) —m(u;)) (2.2)
2

Where the mean m is no longer stationary and instead depends on location u. However, since
the trend model is introduced during SDF calculation, residuals either still possess a trend or are
planar with no spatial structure (Manchuk & Deutsch, 2015). More recently, the decorrelation
of sample data conditional to the trend model is proposed for geostatistical modeling with a
trend (Qu & Deutsch, 2017). A simple method to account for this first-order non-stationarity
could be to consider ordinary kriging (OK) with a local search. Alternatively, simple kriging
with systematic modification of the stationary mean has been proposed as a technique to dilate
and erode boundaries calibrated against some known volume (McLennan & Deutsch, 2006).
The issue of trends also affects the inference of variograms for the SDF; these issues with
kriging estimators have led several authors to prefer RBF interpolators since there are fewer
requirements for parameterization and weaker assumptions of first-order stationarity (Cowan et

al., 2003; Hillier et al., 2014).
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Figure 2.5: Various views of the trend modeled from the SDF, spatial coordinates in meters. (a) Implicit
modeling problem with 2 domains, where category 2 is the target of implicit modeling. The z-axis shows
the value of the SDF calculated from the locations of the indicator dataset. The surface plotted here
is the value of a trend model calculated from the SDF dataset. (b) The z-axis shows the value of the
residuals after removing the trend model, points either fall along a plane or still possess a trend after

removing the trend from the SDF data.
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All discussed interpolators for SDF modeling problems rely on second order stationar-
ity where the spatial relationships between locations are constant throughout the domain.
Anisotropy is often present in geological domains but a single set of anisotropic parameters ap-
plied globally may not describe all locations in structurally complex domains (Lillah & Boisvert,
2013).

Regardless of chosen interpolation method, the interpolated SDF should be artifact-free
to permit further surface generation or extraction of categories on an estimation mesh. Global
interpolators ensure an artifact-free map. Search-restricted interpolators like OK or IDW require
additional consideration to ensure that artifacts in areas of important thresholds (e.g., near 0)
are minimized. A global variant of kriging is generally preferred to search-restricted kriging
(Silva & Deutsch, 2012b). In this thesis, the RBF interpolation framework is explored further as

it provides interesting opportunities for geological modeling.

2.2.3 Radial Basis Function Interpolator

Consider a set of sample locations in R? represented by u; = (x,y, z) where the value of the
SDF, s(u;), is calculated for all i = 1, ..., N locations. The RBF interpolator learns a function f
that interpolates s(u;) at all u; sample locations. This interpolant f(u) is a grid-free continuous
function defined for all locations u. The value of the SDF at any location u is given by the

weighted linear combination of all data evaluated on a radial kernel:

N
£ = ) h(lu—ul) (2:3)
i=1

where ¢ is a radial kernel chosen for the current problem (Tab. 2.1) and 4; is a vector of weights

obtained by imposing the constraint that the interpolant must equal the data at the data locations:
f(u) =s() Vi=1,.,N (2.4)

Which leads to the linear system of equations:
DA=b (2.5)

where the square and symmetric interpolation matrix D has components D;; = ¢(|u; — u;|)

fori,j = 1,..,N, b is a column vector containing the value of the SDF, f(u;), at location u;
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fori = 1,..,N, and 4 is a column vector of weights determined by solving the linear system
of equations. Once the weights are determined, the value of the interpolant can be extracted
for any location (Eq. 2.3) and the interface between geological domains is said to be known
implicitly as a function of location, f(u) = s.

Parameterization of an RBF interpolator is problem specific and depends on the data con-
figuration, target surface properties, and structural properties of the geological bodies under
investigation. The parameters include the kernel type, the support of the kernel (if required),
and the anisotropy present in the domain. The kernel defines the spatial relationship between
all i, j points evaluated with the Euclidean distance, and in this context is synonymous with the
covariance function typically used in kriging estimators. Global anisotropy can be introduced
using an anisotropic kernel. An interpolant is commonly evaluated on a mesh discretized for the
given problem with the final step to process and extract various levels of interest in the scalar

field with algorithms such as marching cubes (Lorensen & Cline, 1987).

2.2.4 Radial Kernels and Parameterization

A set of RBF kernels are shown in Table. 2.1; each kernel has varying properties but all generate
positive definite matrices for the linear system of equations (Eq. 2.3; Fasshauer, 2007). Each
kernel is suitable for different applications, like hole filling (for sparse data environments) or
compact support for dense data environments or large datasets (Carr et al., 2001; Fasshauer,
2007). Determining the best kernel function/parameterization for a given problem is possible
with leave-N-out cross validation (LNOCV) (Fasshauer, 2007; Hillier et al., 2014).

The radial kernel establishes the spatial relationship between all points in the domain
(Fig. 2.6). Parameterization of the kernel may draw from a variogram modeling workflow. An
RBF kernel is fully parameterized with a support parameter and an optional set of anisotropic
parameters consisting of rotation angles and anisotropic ratios which are easily extracted from a

ahmin

model variogram, e.g., sup = ahmax, ang,, ang,, angs, r; = ”

,and r, = 2’ (Deutsch

hmax ahmax

& Journel, 1998; Rossi & Deutsch, 2014). The affect of anisotropy on the radial kernels is shown
in Figure 2.6c and d. In this simple example, ahmin is reduced to half the size of ahmax, re-

sulting in an r; = 0.5. The effect here is that locations oriented along the ahmax direction are
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Table 2.1: RBF kernels and their properties (Fasshauer, 2007). € is the support factor used for each
kernel, defining the kernel ‘range’

Kernel Equation Properties
Gaussian b(r) = exp_fzrz gic;bally supported, positive defi-
Spherical b(r) = 15er — 0.5(er)? Sifempad support, positive defi-
Inve_rse _ b(r) = 1 Qlobally supported, positive defi-
Multiquadric Vit(er)? nite
Multiquadric b(r) = m Globally supported, conditionally

positive definite

Globally supported, conditionally
Cubic p(r) =13 positive definite, parameter free,
hole filling properties
Globally supported, conditionally

lh:ir:,g fate ¢(r) =r*log r positive definite, parameter free,
d hole filling properties

Wendlands N1 o4 Compact support, positive defi-

Cco ¢ =(A-niMer+1)

Linear o) =T Globally supported, conditionally

positive definite, parameter free

Note: € = 1/sup

more related to one another than locations in the ahmin direction at the same distance.

If considering a kriging interpolator, a low-nugget Gaussian variogram fit to an experimen-
tal variogram calculated from the SDF dataset should be used since the Gaussian structure is
continuous at the origin and reflects the properties of a boundary (Manchuk & Deutsch, 2015).
Indeed, the Gaussian model is popular for RBF interpolation (Hillier et al., 2014). In other dis-
ciplines a support parameter is estimated from the geometric configuration of the sample loca-
tions rather than statistical continuity (Fasshauer & Zhang, 2007). Fasshauer (2007) suggest
a support distance estimated from the radius of the largest circle or sphere that can be placed
between sample locations within the domain. This can be estimated by finding the maximum

distance from any one grid cell in the domain to its nearest data (Fasshauer, 2007):
sup = 5K [Fjeu(u — u)?] (2.6)
It is worth noting that for irregularly distributed data in a domain with a rectilinear grid (as is

often the case in geostatistical domains), the support parameter may be over-estimated with

this method if extrapolation beyond reasonable domain limits is not accounted for. Geostatistical
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(a) Isotropic Gaussian kernel (b) Isotropic spherical kernel

Figure 2.6: Isotropic (a) Gaussian and (b) Spherical radial kernels with a support parameter € = 50. (c)
and (d): anisotropic versions of (a) and (b), respectively, where angl = 0, ahmax = 50 and ahmin = 25.

domains are also commonly sampled in irregular patterns where sample density increases in
areas of interest. In practice this disparity in sample density may result in an estimated support
parameter that is not strictly representative of all locations. Regardless, a data spacing analysis
is useful in this sense to determine a reasonable support that does not extrapolate excessively

from data locations to the unsampled grid locations.

2.2.5 Partitioning

Geostatistical datasets contain 10’s to 100’s of thousands of data; enough samples that the
dense linear system of equations (Eq. 2.5) for a global interpolator is impractical. Methods to
overcome this limitation are well researched: a search-restriction following a Markov screening
assumption (for a kriging estimator; Deutsch & Journel, 1998); sparse-direct interpolation where
the influence of points beyond some distance from one another is negligible (Ohtake, Belyaev, &
Seidel, 2006); iterative solving techniques that assume a sparse system of equations and some
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Figure 2.7: Schematic example of a binary partitioning algorithm. (a) the domain with scattered drill
holes and mesh, (b) final set of partitions generated from binary decomposition, (c) local interpolants are
solved independently in each partition, on overlapping sites the local interpolants s;(u) are weighted to
the global interpolant s(u)

level of accuracy (Beatson, Cherrie, & Mouat, 1999; Carr et al., 2001); and domain decompo-
sition techniques which partition the domain into overlapping subsets and solve many small
sub-problems independently and often in parallel (Beatson, a Light, & Billings, 2001; Cuomo,
Galletti, Giunta, & Starace, 2013; Ohtake, Belyaev, & Seidel, 2003; Pouderoux, Gonzato, Tobor,
& Guitton, 2004; Xiaojun, Michael, & Wang, 2005). A partitioning framework has several other
beneficial properties when considering geological modeling and is introduced here.

The Partition of Unity (PU) domain partitioning algorithm recursively partitions a domain,
A, into P overlapping subdomains, A,, so that U§=1Ap = A (Fig. 2.7). The subset of data
contained within each subdomain form a local interpolation problem, each of which is relatively

small and can be solved efficiently. To reconstruct the global interpolant, a local interpolant is
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Figure 2.8: Different styles of partitioning overlap to enforce the smooth reconstruction of the global
interpolant.

calculated independently in each subdomain, and the global interpolant, s(u), is reconstructed

by weighting the interpolants from subdomains on overlapping sites:

P
S(U) = ) wi(W)s; (W)
j=1

(2.7)

A number of domain partitioning algorithms can be used, including: a regular coarse grid; K-

means; bisecting-K-means; binary tree; octree; and others (Klaas & Shephard, 2000; Pouder-

oux et al., 2004). The simplest partitioning is the regular coarse grid, which can work well for

domains of roughly uniform sampling. However, a method that partitions based on the data

arrangement is required for geostatistical domains since samples are commonly irregularly dis-

tributed. A binary partitioning is considered here since it can rapidly generate partitions with

roughly equal data assigned to each, with a suitable amount of overlap, and spanning the asso-

ciated set of axis-aligned grid locations. Partitions generated by this method also have several

valid weighting functions to reconstruct the global interpolant (Pouderoux et al., 2004).
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Binary domain partitioning is a recursive partitioning algorithm that considers the total do-
main as the root node. For each partition a split is considered if the partition contains greater
than a user-specific target number of data in each partition. For the current partition, the longest
dimension (e.g., either x, y, or z) is calculated from the contained sample data, and the parti-
tion is split into 2 overlapping sub-partitions (Fig. 2.7a and c). Overlap between partitions is
ensured in two ways: 1) during splitting, a fraction of the data can be taken to be part of both
child partitions so overlap is maintained along the boundary (Fig. 2.8b & c); and 2) after par-
titioning is finalized the partitions can be expanded to guarantee a suitable amount of overlap
(Fig. 2.8d, e, and f). In practice, both overlap methods may be required since the data overlap
alone can cause issues with recursion for some data configurations and the expansion overlap
has potential to expand partitions to encompass too many data (e.g. cyan in Fig. 2.8c versus
Fig. 2.8f).

Partitions generated from binary partitioning are axis-aligned rectangles spanning different
regions within the domain, and overlapping with potentially several other partitions within the
defined coordinate system (Fig. 2.7). Pouderoux et al. (2004) introduce several weighting func-

tions for partitions of this shape:
wf=1-d (2.8)
wf =2d®—-3d*+1 (2.9)

Where d is the distance from the center of the partition to each cell in the partition, computed

as (Pouderoux et al., 2004):

4 4x (xp — Lp) * (Up — Xp)
d=1 1_[ oLy (2.10)

PEXY,Z
with x,, the coordinate of the current grid cell, L, is the lower coordinate of the bounding box,
and U, is the upper coordinate of the bounding box, and the product is taken over each co-
ordinate p € x,y,z. Since the binary partitioning algorithm chooses whether or not to split a
partition based on the number of contained data, the final partitions generated from this method
are mainly based on the number of data contained within each partition. Thus, there is no guar-

antee that the data allocated to each partition best reflects all mesh locations allocated to that
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partition. For example, the data may exist only at 1 corner of the partition rather than being
distributed uniformly throughout the partition. In this case it is critical that extrapolation of the

local interpolant is controlled with some style of clipping.

2.2.6 Uncertainty in Implicit Geological Models

Two general types of uncertainties can be considered in geological modeling projects: 1) vol-
umetric uncertainty; and 2) geometric uncertainty (Fig. 2.9). Volumetric and geometric uncer-
tainties are related; volumetric uncertainty represents the between-sample uncertainty in the
volume contained by the bounding surface for a single geometric interpretation. By contrast, ge-
ometric uncertainty refers to the uncertainty in the orientation, extent and interconnectedness of
the geological bodies; the between drill hole interpretation parameterized by the modeler within
the structural setting of the deposit. Both styles of uncertainty are present in all geological mod-
eling projects and are important in the presence of sparse sampling (Lillah & Boisvert, 2013).
A critical assumption for most geological modeling projects is that the geological interpretation
reasonably accounts for geometric uncertainty, which leaves the more manageable volumetric
uncertainty to be quantified. This assumption is reasonable given implicit modeling tools are
mostly utilized for the large-scale geological boundaries.

Although geometric uncertainty is assumed to be captured through geological interpreta-
tions, this can be a large source of uncertainty when the dataset for implicit modeling consists of
point orientation measurements that constrain the orientation of the surface, owing to measure-
ment errors (Lindsay, Ailleres, Jessell, de Kemp, & Betts, 2012; Lindsay et al., 2013). Lindsay
et al. (2012) propose to simulate sets of orientation input data to generate different boundary
models. The suite of boundary models constructed with different simulated inputs allows for
the quantification of the probability for each rock type to be found at each location in the do-
main. In their work the dataset consists solely of point orientation measurements and models
are constructed using a potential field co-kriging based interpolation method (Lajaunie et al.,
1997; Lindsay et al., 2012). Since there is uncertainty and subjectivity embedded in the mea-
sured orientations, their hypothesis is that randomly perturbed sets of input data fed through

the modeling algorithm correctly account for these uncertainties. However, for a generalized
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(a) Geometric boundary uncertainty
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Figure 2.9: Types of boundary uncertainty to consider in implicit modeling projects.
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implicit modeling project the main source of information are the locations of indicator data from
which volumetric functions are derived. Information on the orientation of different geological
boundaries may be secondary. Also, the probabilistic model from which local orientations are
simulated is missing from their method (Lindsay et al., 2012). For example, a covariance func-
tion should dictate how related orientations are simulated on a particular structure to ensure
consistency.

Volumetric uncertainty is important since the volume of the mineralized resource directly af-
fects the tonnage which dictates the total amount of exploitable material found at a given deposit.
Lillah and Boisvert (2013) showed that the contribution of boundaries to the total uncertainty is
significant in sparsely sampled domains (Fig. 2.10). Thus, in the early stages of a project, or
in sparsely sampled areas, the contribution of uncertain boundaries to the total uncertainty will
be high relative to the other components affecting the geostatistical model. Several techniques
are developed to quantify volumetric uncertainty with implicit modeling (Lillah & Boisvert, 2013;
Wilde & Deutsch, 2012). McLennan and Deutsch (2006) proposed to quantify the prior uncer-
tainty in the mean of the SDF with the spatial bootstrap, then generate boundary realizations
with SK and a different stationary mean drawn from the uncertain distribution. Alternatively,
multiple training-image techniques can be used to combine stochastic and deterministic inputs
so that the geometry defined by the implicit model conditions the overall shape and features of
stochastic multiple point statistics (MPS) models (Silva & Deutsch, 2012c). This combination of
methods can produce both volumetric and geometric uncertainty for a deposit.

For tabular deposits Yamamoto et al. (2015) propose to simulate realizations of vertical drill
hole data within some uncertain bandwidth. A similar methodology is proposed by Deutsch
(20095) for tabular deposits; the volumetric uncertainty is quantified by rotating the local refer-
ence system to the orientation of the tabular deposit and obtaining realizations of the bounding
surfaces. These methods can be especially useful if the geometry of the deposit is amenable to
unfolding and the bounding surfaces can be extracted and modeled to quantify the distribution
of contained volumes.

A separate methodology to quantify boundary uncertainty uses SGS to generate conditional

realizations of the SDF directly (Lillah & Boisvert, 2013). Combined with the spatial bootstrap
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Figure 2.10: Contributions to uncertainty in the total mineralized resource (from: Lillah & Boisvert, 2013).
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Figure 2.11: The modified distance function considering the single C-parameter (from: Wilde & Deutsch,
2011a)

and other methods for parameter uncertainty this method can provide both a local and global
assessment of the volumetric uncertainty. Stochastic simulation of the SDF generally contrasts
with the other assumptions inherent in SDF modeling of geological domains (large-scale, vari-
ability beyond the data-spacing). The non-stationarity in the SDF also presents practical issues
for this method, although in Lillah and Boisvert (2013), an LVA estimation framework accounts
for second-order non-stationarity and captures the geological interpretation in the boundary
model. The use of SGS to simulate the SDF may generate undesirable features since there
is a possibility of short range discontinuities and, over the whole domain, isolated locations

inconsistent with the geological interpretation may be simulated.
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2.2.7 Uncertainty Bandwidth Parameter

Munroe and Deutsch (2008) proposed a methodology to calibrate a bandwidth of uncertainty
in vein-type deposits using a modified SDF. Parameters are added to the SDF calculation to
capture the bandwidth of uncertainty and any biases in the volumetric functions. The two pa-
rameters, g and C, are added to the SDF calculation as follows (Munroe & Deutsch, 2008):

—(d+C)=p ifu;isinside
SDFmod(ui) = (211)

(d+C)/p ifu;isoutside
where C controls the bandwidth of uncertainty, and g corrects for bias in the calibrated uncer-
tainty bandwidth. The full calibration of both parameters is computationally expensive, which
led Wilde and Deutsch (2011a) to simplify the two-parameter uncertainty to a single parameter
by omitting g from above (Fig. 2.11). In this case, locations estimated to be less than -C are
certain to be inside the model, and locations estimated to be greater than +C are certain to
be outside the model (Wilde & Deutsch, 2011a). Any values falling between -C and +C are
part of the uncertain bandwidth. Wilde and Deutsch (2011b) generate boundary realizations
by unconditionally simulating Gaussian realizations with the same spatial interpolation param-
eters as the implicit model. Boundary realizations honoring the uncertain bandwidth are then
generated by truncating the SDF field between -C and +C. The combination of C-calibration
and SDF truncation by unconditional realizations allows assessment of volumetric uncertainty
in the boundary model, following the geological interpretation embedded in the implicit model

(Manchuk & Deutsch, 2015).

2.3 The Decision of Stationarity

Nearly all geostatistical algorithms make some assumption of stationarity, or explicitly account
for non-stationarity, to facilitate the modeling of the spatially correlated SRFs. Common prac-
tice is to compile sets of related samples at or near the start of the modeling workflow, which
are then considered static for all subsequent geostatistical activities (Fig. 1.2). Stationarity in

a geostatistical context is defined in Chapter 1, and states that the samples collected from the

28



2. Literature Review

domain are representative of the SRF to be modeled, and the statistics inferred from the sam-
ple are representative of all locations in the domain. The geological processes responsible for
economic conditions are the result of complex thermal, physical and chemical interactions op-
erating over very long periods of time. Zoning, overprinting, folding and alteration are hallmarks
of economic conditions; however, these features imply that several overlapping processes are
responsible for the observed conditions. This variability is present at all scales, and thus, geo-
statistical domains are rarely stationary (Boisvert & Deutsch, 2011; Hadavand & Deutsch, 2017,
Qu & Deutsch, 2017).

The motivation for stationary domains follows from the complexity of the geological environ-
ment. The assumption is that samples z(u) collected from domain A comprise an unknown
number K stationary random functions (SRF) Z(u), each with unique first and second order
statistical properties. Partitioning the dataset into K mutually exclusive groups to capture the
distinct SRFs results in improved numerical models since the estimate at the unsampled loca-
tion draws from a more representative statistical pool. The stationary delineation operates at
the scale of numerical modeling to facilitate statistical inference at the unsampled location.

A number of different methodologies are available to define stationary domains for geostatis-

tical modeling. Common cases are shown in Figure 2.12 and discussed in the following section.

2.3.1 Geologically Defined Stationary Domains

Estimation domains may be naturally defined from the geological logging in cases where specific
lithological units have strong control on the spatial distribution of mineralization. For example,
in magmatic platinum group element (PGE) deposits it is common for all PGEs to be deposited
in specific horizons that are laterally extensive forming a ‘reef’ of PGE mineralization in the vol-
canic package (Eckstrand, Roger, & Larry, 2007). In this case there is strong lithological control
owing to the fractionation processes, which is readily identified in drill core. Samples identified
as being part of the reef would be compiled together to define a single stationary population for
numerical modeling. In other geological settings the controls and features identifying different
statistical populations may be less prevalent. For example, in a porphyry-style deposit, mineral-

ization is associated with large-scale hydrothermal systems that encompass several rock types,
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Figure 2.12: A possible workflow to define sets of stationary domains considering the properties of the
RV, the spatial configuration, and the other types of geological information available in the core logs.

generating multiple alteration and mineralization styles that overlap and overprint one another
(Fig. 2.13). The geological factors may have less consequence for defining stationary domains
due to the diffuse and pervasive style of mineralization. However, geostatistical problems are
increasingly multivariate with 10’s to 100’s of variables with complex inter-variable relationships
that must be captured by the numerical models (Barnett, 2015). Simultaneously considering the
spatial, multivariate and geological characteristics recorded in a set of drill cores is a complex

problem.

2.3.2 Merged-Lithology Stationary Domains

A common issue faced in resource estimation is when there are many lithological units, or com-
binations of factors explaining economic conditions, which are geologically justified, but there
are either too few samples to support statistical inference or too many units defined than can
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Figure 2.13: Conceptual setting(s) for gold mineralization associated with intrusions (Dubé & Gosselin,
2007)

be practically modeled. In this case the geostatistician must combine a ‘large’ set of lithological
units into ‘fewer’ (< 7-10) estimation domains that are geologically reasonable, have enough
data and capture important mineralizing processes. This workflow must consider the geologi-
cal, spatial, and statistical properties of each unit to determine reasonable merges and generate
a more concise set. Rossi and Deutsch (2014) describe this workflow in detail and note that
although the decisions for merging are subjective, they are statistically and geologically sup-
ported and ultimately provide the modeler with better knowledge of the database, issues, and
the relationships between the domains. This workflow is a significant undertaking since the first
and second order statistics, log-quantile-quantile (Q-Q) plots, spatial arrangements and geolog-
ical properties must be compared to define a metric of ‘significant’ (dis)similarity to validate each
merge. Contact relationships should be investigated following merging to determine the behav-
ior of the RV across boundaries (Fig. 2.14). Better knowledge of the database gained from this
workflow allows further justifications for dealing with problem samples, and the insights gained

from this analysis improves the parameter inference for the final sets of modeling domains.

2.3.3 Grade-Value Stationary Domains

Grade domaining is a common practice typically applied inside homogeneous lithological units
where samples are separated into distinct populations following project specific grade-cutoffs.

Cutoffs may correspond to different destinations, or may be based on some combination of
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Figure 2.14: Example of contrasting behavior of the RV across contacts. (from: McLennan, 2008)

factors influencing the processing of the materials. This type of domaining could be justified sta-
tistically when variables are lognormally distributed (Emery & Ortiz, 2005; Manchuk, Leuangth-
ong, & Deutsch, 2009). Grade domaining is typically undertaken to prevent ‘smearing’ of high
grades into low grade zones and vice versa (Emery & Ortiz, 2005; Leuangthong & Nowak, 2015;
Leuangthong & Srivastava, 2012). The delineation of separate populations must be paired with
a suitable boundary modeling method which prevents the extrapolation of high grade zones into
low grade areas preventing smearing (Dominy & Edgar, 2012; Jewbali, Perry, Allen, & Inglis,
2016; Leuangthong & Nowak, 2015; Stegman, 2001). Grade domains are commonly defined
either using the pre-determined cutoffs, or based on inflections in the log-Q-Q plots (Emery &
Ortiz, 2005).

Methodologies for multivariate ‘grade domains’ are only recently addressed with research
into spatial clustering. As Figure 2.12 shows, conventional workflows to define stationary do-
mains are poorly suited to complex environments with multiple target variables.

Since grade domains are arbitrary subsets of a spatially correlated RV, samples found in ad-
jacent domains are expected to be correlated (Emery & Ortiz, 2005; McLennan, 2008). Contact
analysis and adopting some form of population mixing strategy near the boundaries, or consid-
ering the stochastic fluctuations in the location of boundaries is required to properly honor the

behavior of the RV at the boundaries between grade domains (Emery & Ortiz, 2005).

2.3.4 Clustering Stationary Domains

Cluster analysis identifies structure in M-dimensional attribute space. An example where M=3

is shown in Figure 2.15. A cluster, by definition, requires a similarity metric, which ensures that
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Figure 2.16: Example of soft ('fuzzy’) clustering of the 3-dimensional multivariate space in Figure 2.15.
Each location assigned a probability p, (u) to be in each B cluster.

cluster members are more related to each other than they are to members of other clusters.
The result of clustering can be discrete or fuzzy. Discreet clusters assign a single category k
to each location: z(u;) € [1,.., K]V{i = 1,.., N} (Fig. 2.15). By contrast, fuzzy clustering results
in a set of probabilities px(u;) € [0.0,1.0],v{i = 1,..,N, k = 1,.., K} that describe the likelihood
that the i*" location is part of the k" cluster (Fig. 2.16).

Clustering algorithms are widely applied in reservoir modeling where un-cored wells are
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characterized with a set of down-hole geophysical measurements. In such domains, direct ob-
servations of the subsurface properties are rare relative to geophysical logs which are available
for many un-cored wells. The geophysical responses are interpreted by a trained expert who
then delineates the different facies encountered in the subsurface. The classification of geo-
logical properties from these logs (called ‘electrofacies’) is a challenging task; the complexity,
time and experience required to process geophysical logs has motivated alternative automated
methods to characterize the major units from the well response variables, both to reduce bi-
ases and increase efficiency (Mathisen, Heon Lee, & Datta-Gupta, 2001; Perez & Datta-Gupta,
2005; Torghabeh et al., 2014). However, conventional clustering and data-mining algorithms
can produce unsatisfactory results since the logs may not clearly delineate distinct and spatially
significant facies for geostatistical modeling (Chautru, Chautru, Garner, Srivastava, & Yarus,
2017).

Clustering algorithms follow two main paradigms. Clusters can be represented as a proto-
type object; for example, represented by a M-dimensional mean or Gaussian kernel (Hastie,
Tibshirani, & Friedman, 2009). Alternatively, clusters can be represented in a recursive parti-
tion hierarchy where the top partition contains all samples, and the bottom N partitions each
contain a single sample. This partition hierarchy is commonly called hierarchical clustering and
can either be agglomerative, starting from the bottom and agglomerating upwards, or divisive,

starting at the top and dividing partitions downwards (Hastie et al., 2009).

2.3.41 K-means

K-means is a popular prototypical clustering algorithm because of its simplicity and speed (Jain,
2010). In K-means, K clusters are represented as the mean of the members of each k cluster.
This algorithm operates solely in M dimensional attribute space by minimizing the within cluster
variance (Alg. 1; Hastie et al., 2009). K-means results in discrete clustering with a single cluster
code k assigned to each location i (Fig. 2.15). A required input to K-means is the number of
clusters K. Also, the type of initialization must be chosen. Some practitioners randomly initialize
cluster centers for L clustering realizations and choose the single configuration that results in

the minimum within-cluster variance over all L. Alternatively the kmeans++ algorithm initializes
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roughly uniformly distributed cluster centers (Arthur & Vassilvitskii, 2007).

The clusters found by K-means are roughly equally dimensioned in multivariate space. This
is a good first pass method to generalize and infer initial properties from the dataset, however,
this method can produce unsatisfactory results for domains with more complex multivariate
relationships, specifically, where features are linearly correlated. For example, consider the
relationship between Fe and SiO, in Figure 2.16. Linear correlation is clearly an important
component of this dataset; a clusterer that accounts for this correlation will benefit the modeling

of multivariate properties.

Algorithm 1 K-means Clustering

1: Choose K;

2: Choose the initial cluster centers, randomly or by kmeans++ (Arthur & Vassilvitskii, 2007);

3: while no meaningful change do

4 Calculate M dimensional Euclidean distance between each cluster center and each
sample;

5: Reassign samples to each clusters based on the minimum calculated distance;
6: Update the cluster center coordinates from the set of points assigned to each cluster;
7: i(u;) given by taking the code from the cluster center with the minimum distance to u;;

2.3.4.2 Gaussian Mixture Model Clustering

Gaussian mixture models (GMM) are another popular prototype clustering method where the
clusters are represented by M-dimensional Gaussian kernels. Contrary to the K-means algo-
rithm the GMM clusterer generates a fuzzy clustering by taking the likelihood for each sample to
belong to each Gaussian kernel. A final discrete clustering is also available by assigning each
sample to the Gaussian kernel that gives the maximum likelihood. The algorithm for GMM clus-
tering is shown in Algorithm 2. A notable difference between this method and K-means is that
the Gaussian kernels may be linearly correlated, and thus elongated clusters in M-dimensional
attribute space can be found.

The hard and soft clusterings shown in Figure 2.15 and 2.16, respectively, are generated with
a 4-component GMM fitted to the multivariate dataset. The choice of how many components
is also an input to this clustering method. For this analysis the number is chosen to be 4 since

there are 4 rock types defined in the geological logs.
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Algorithm 2 GMM Clustering

1: Choose K;

2: Choose the initial cluster centers, randomly or by kmeans++ (Arthur & Vassilvitskii, 2007);
3: while Iconverged do

4 Compute the log-probability for each location to belong to each parameterized Gaus-

sian kernel;
5: Update the kernel weight, mean and covariances given the set of samples that have

the maximum likelihood to belong to each kernel;
. pr(u;) given by computing the probability under each Gaussian kernel (e.g., Fig. 2.16);
i(u;) given by taking the code from the kernel with the maximum likelihood at u;;

~N o

2.3.4.3 Hierarchical Clustering

Hierarchical clustering contrasts the prototype methods with a recursive partitioning of M di-
mensional attribute space. The partitioning can either be agglomerative or divisive (Hastie et
al., 2009); here the focus is on the agglomerative case. The domain starts with N clusters, one
for each sample. Clusters are iteratively merged by finding pairs of clusters that are the most
similar based on a chosen similarity metric. Merging continues until there is a single partition left
at the topmost level (Alg. 3). Hierarchical clustering requires a metric describing the similarity
between two clusters; a thorough summary of such ‘population difference’ metrics is provided
in Chapter 4.

A byproduct of the iterative merging in this style of clustering is a record of the relative dis-
tances between merged clusters at each level in the clustering hierarchy. This relative distance
can be represented in visual form as a dendrogram (Fig. 2.17, bottom). The visual inspection
of the dendrogram permits interpretation of the clustered structure of the dataset, which in turn
allows a suitable choice of K. For this reason hierarchical clustering is often considered in initial

investigations as a tool for visual inspection of the number of clusters in a dataset.

Algorithm 3 Hierarchical Clustering

1: Compute a pairwise distance matrix d; ; using the chosen distance metric;

2: K=N;

3: whileK> 1 do

4 Calculate the population difference metric for all K*(K-1) cluster combinations;
5: Merge the two clusters that have the minimum population difference;

6: K=K -1,
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Figure 2.17: Example of hierarchical clustering of a pairwise-similarity matrix for illustration purposes.
The bottom axis shows the associated dendrogram which can be visually inspected to determine how
many clusters are found in the dataset.
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2.3.5 Spatial Clustering for Stationary Domains

Multivariate clustering of spatially correlated data may produce clusters that are overly mixed
in the spatial domain, thereby limiting the utility of those clusters for further planning or spatial
analysis. This limitation has led several researchers (including this thesis) to explore cluster
generation in the presence of spatial correlation.

Spatial clustering describes clustering applied to datasets where samples have some spatial
context, e.g., from studies of water chemistry, soil chemistry, epidemiology, ecological studies,
geology, and, more recently, natural resource estimation. The goal of clustering geostatistical
data is to produce spatially contiguous clusters that have multivariate significance. Thus, the
partitioning of M dimensional space is coupled to Cartesian space to ensure that the defined
multivariate classes are spatially connected. Two general methodologies have been applied: 1)
some form of neighborhood constraint to limit relatedness of distant and uncorrelated samples
(Ambroise & Govaert, 1998; Fouedjio, 2016a; Oliver & Webster, 1989; Romary, Ors, Rivoirard,
& Deraisme, 2015); and 2) generation of a secondary dataset calculated from the original data

with local autocorrelation statistics (Scrucca, 2005).

2.3.5.1 Neighborhood Constraints

Oliver and Webster (1989) modified the pairwise similarity matrix (e.g., Fig. 2.17) using a sec-
ondary matrix calculated from the spatial interconnectedness of the sample locations. They jus-
tified a variogram model as suitable for generating the secondary matrix, effectively decreasing
the relatedness in the pairwise similarity for points separated by large distances. The modi-
fied pairwise-similarity matrix is clustered with conventional algorithms to identify multivariate
clusters that are spatially contiguous. In their work the spatial compactness of clusters can be
tuned by modifying the range and shape of the variogram model. Fouedjio (2016a) propose a
similar kernel-based modifier that incorporates direct and cross variogram measures of spatial
similarity. Romary et al. (2015) use a spatial neighborhood constraint in hierarchical and spec-
tral clustering algorithms which ensures that only samples in related spatial neighborhoods are
paired with one another. Their spatial neighborhood is defined with Delaunay triangulation, mod-

ified for 3D to account for the contrasting sample spacing along relative to between drill holes.
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The methodology from Ambroise and Govaert (1998) is mainly focused on image segmentation;
the local related neighborhood is implied for each pixel by the adjacent pixels. Treatment of the
contrasting sample density along versus between drill holes is key for obtaining reasonable

spatial clusters with geostatistical datasets.

2.3.5.2 Local Autocorrelation

The second strategy for considering spatial information in clustering algorithms uses local auto-
correlation statistics and conventional multivariate clustering algorithms (Scrucca, 2005). The
main idea is to calculate a new dataset using local autocorrelation statistics such that the mag-
nitude and sign of the original data is integrated with a measure of the relatedness to nearby
locations (Fig. 2.18; Anselin, 1995). Several local autocorrelation statistics are available, two of
which are listed in Table 2.2.

To calculate the local autocorrelation, the formulas in Table 2.2 require a spatial weight matrix
that specifies spatial relationship between each i,; location. In a simple case this could be a

binary weight matrix:

1 ifi,jrelated
Wij = (212)

0 otherwise

where related requires some spatial neighborhood search, or Delaunay triangulation (as in:
Romary et al., 2015). Scrucca (2005) uses a local radius search where samples falling outside
some radius from the current location are considered unrelated. Alternatively this weight matrix
could contain the inverse distance weights for some number of nearest neighbors around each

location.

2.3.6 Validation of Clusters

The validation of a set of clusters is an interesting problem. As clustering is unsupervised, tech-
nically there are no ‘true’ labels for validation. To demonstrate new clustering algorithms some
researchers consider clustering a set of multivariate data that has labels. The developed cluster-
ing algorithms are used to predict the known labels and the performance of the algorithm against
other similar clustering algorithms can be assessed. Validation in this sense is external since
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Figure 2.18: Cross sections of the original variable values and the normal scored Moran'’s local autocor-
relation values calculated at the sample locations.

Table 2.2: Local autocorrelation statistics and their properties (Anselin, 1995)

Statistic Equation Properties

vi = 1,.,N,Va = 1,..,M. Large positive I;
Morans I _ Zia Z}Ll W;iZja indicate similar values surrounding the i*" lo-
i =7 ' 2 cation whereas negative I; indicate dissimilar

n =17 values surrounding the i*" location
vi = 1,..,N,Va = 1,..,M, Large positive G;
Y WX values indicate clusters of high values sur-
Getis G Gig = "_Ni” rounding the i*" location whereas large neg-
Yj1%; ative G; values indicate clusters of low values

surrounding the i** location.
w;; Is the weight matrix that defines relationship between location i and j
for n samples in a local search, for i = {1, .., N} locations, a = {1, .., M} variables
Ziag = (xi,a — Xq)
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Figure 2.19: Gap statistic calculated for the 3-variate space shown in Figure 2.15.

a set of labels external to the information used to form clusters is used to justify how clustered
the configuration is. Alternatively, validation may also take the form of internal metrics where
the compactness of the clusters measured with a clustering metric is used to express the rela-
tionship between cluster members and prototypes. This is fundamentally similar to determining
the K in a given dataset. Determining the K is a subject of much research in the clustering liter-
ature; measures such as silhouettes (Rousseeuw, 1987), the gap statistic (Fig. 2.19; Tibshirani,
Walther, & Hastie, 2001), or simply estimating the compactness with the inherent clustering
metric (Tibshirani & Walther, 2005) can be used to determine K. However, internal metrics are
only useful for validation of one clustering over another based on parameterization.

Validation of spatial clusters for stationary decisions is not typically discussed in the litera-
ture (Fouedijio, Hill, & Laukamp, 2017; Romary et al., 2015). Since the spatial clustering tools
are deployed as an aid to manual orebody domaining, the validation of the result comes from
subjective assessment given the geological knowledge of the domain. The generated domains
may be statistically supported such that the first and second order stationary characteristics of
the domains are improved over other sets of domains, but in general, quantitative validation

measures for stationary domains are not developed.

2.4 Ensemble Clustering

Ensemble clustering is a method to extract information from several different clusterings of the

same dataset, used to improve results over a single clusterer. Individual clusterings in the
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Figure 2.20: Ensemble classification and regression tree predictor (Modified from: KDnuggets, 2018).

ensemble are typically enforced to be diverse, which leads to improved results over a single
clusterer as the clusters extracted from the ensemble are less sensitive to parameterization,
can fit non-linear features and avoid over-fitting (Topchy, Jain, & Punch, 2005).

A classical example of an ensemble supervised learning technique is the random forest
(RF), which comprises L classification and regression tree’s (CART), each trained using random-
subspace methods to increase the diversity between tree’s (Fig. 2.20; Breiman, 2001). Each
tree in the ensemble independently makes a prediction of the class label for the it"* sample.
During training, splits in the tree are chosen to improve the prediction of the response variable.
Since each tree is trained against a true response variable, the consensus prediction of the
ensemble is the average of all predictions over all trees. The RF can be used in either clas-
sification or regression mode. In a classification problem the RF can produce a both fuzzy or
discrete classification.

The individual clusterings in an ensemble can be generated by diverse methods, even as
simple as random projections to low-dimensional subspaces followed by conventional cluster-
ing algorithms applied in that subspace (Rathore, Bezdek, Erfani, Rajasegarar, & Palaniswami,
2018). For the current discussion, consider individual clusterings to be generated using K-

means without modifications for spatial features. L training datasets are created using the ran-
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dom subspace method and the clustering is generated independently for each dataset. The
result of each clustering is stored in an N x L matrix where each column records the assignment

of each sample into K; clusters for each L realization.

241 Random-Subspace

The random subspace describes the randomization of the space (variables, set of data, param-
eters) individual learners in an ensemble are trained on. This technique is commonly used to
increase the diversity between learners (Breiman, 2001). For ensemble clustering, each clus-
tering considers a subset of the variables and samples as input. Additionally, the number of
clusters or parameters specific to the chosen clustering algorithm can be chosen at random,

which ultimately decreases the sensitivity of the outcome to the choice of parameters.

2.4.2 Consensus Functions

A consensus function is required to combine clusterings following the construction of the N x L
clusterings matrix. Strehl and Ghosh (2002) introduce 3 methods by which a consensus cluster-
ing can be extracted from a clustering ensemble. The simplest method is to consider an N x N
similarity matrix which is constructed by counting the number of times each sample i is paired
with each sample j over all clusterings in the ensemble (Fig. 2.21). In the RF this matrix is re-
ferred to as the proximity matrix (Afanador, Smolinska, Tran, & Blanchet, 2016; Breiman, 2001).
Finally, clustering this similarity matrix gives clusters that are the consensus of all clusterings in
the ensemble. For example, the final clustering could be generated with hierarchical or spectral
clustering of the N x N similarity matrix.

However, this pairwise-similarity-based consensus function scales poorly with the size of the
input dataset since the storage and computational requirements are quadratic with N (Rathore
et al., 2018; Strehl & Ghosh, 2002). Strehl and Ghosh (2002) develop two other consensus
functions that are more complex but scale linearly with N. Romary et al. (2015) alternatively
propose a 2-step process where the clustering is obtained on a subset of a large database,
followed by supervised classification to predict the cluster labels at the omitted sample locations.

Research into alternative ensemble consensus functions is ongoing (Rathore et al., 2018).
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Figure 2.21: Pairwise similarity matrix consensus function. Left: Individual clusterings of a hypothetical

dataset. Right: The pairwise similarity matrix, ordered by hierarchical clustering, with a dendrogram on
the left axis.

2.5 Uncertainty in Stationary Domains

Two types of uncertainty may be considered when undertaking stationary domaining workflows.
First, the allocation of a sample to different stationary groups is inherently uncertain. Two ex-
perts undertaking this task for the same dataset are unlikely to code all samples into the same
sets of stationary domains. This uncertainty is rarely quantified since there are no strict rules for
generating stationary domains, except that they are required, and better stationary domains will
improve the quality of the geostatistical models (Rossi & Deutsch, 2014). The second type of
stationary domain uncertainty involves the location of boundaries. This was addressed in Sec-
tion 2.2.6 relating to the large-scale decision of geological stationarity, where uncertainty in im-
plicit geological modeling can be accessed by a calibrated bandwidth of uncertainty (Sec. 2.2.6).

The most widely used method applied to uncertainty in stationary domaining is to consider
the allocation of unsampled locations to each stationary domain uncertain (Fig. 2.22). In practice
this is accomplished using mixing models, co-kriging, or categorical simulation, with mixing
relationships or transitional statistics determined globally between stationary domains (Emery
& Ortiz, 2005; McLennan, 2008).

The nature of boundaries between different domains is widely studied (McLennan, 2008).
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Boundaries can be characterized as either hard or soft. A hard boundary is characterized by
abrupt changes in the value of the RV across the boundary. Conversely, a soft boundary is
characterized by a gradual change in the RV across the boundary. The nature of the boundaries
partly depends on how the boundaries are defined. For example, grade domains defined on
arbitrary cutoffs of a spatially correlated RV are expected to have soft boundaries. Without
careful attention to the boundary relationships, biases and errors may be introduced to the final
numerical models (Emery & Ortiz, 2005).

The nature of the RV near boundaries can be characterized by plotting the expected grade
values as a function of distance from the boundary. Using this analysis the contact can either
be deemed hard or soft. A strategy for geostatistical modeling near boundaries is required in
the presence of soft boundaries. Emery and Ortiz (2005) propose a co-kriging based approach
where an estimate made in the transition zone considers samples and statistics from both do-
mains (Fig. 2.14). This requires a linear model of coregionalization (LMC) modeled between
domains to capture the inter-domain and between-domain spatial relationships in the transition
zone. McLennan (2008) proposes a linear-mixing model that mixes estimates generated in the
transition zone independently in each stationary domain. Although this does not consider any
non-stationarity in the transition zone, the mixing of estimated values seems reasonable for

capturing boundary relationships.

2.6 Validation of Geostatistical Algorithms

Validating numerical models of geological domains is an interesting and important problem and
there are several aspects that must be considered. Numerical models can never be fully val-
idated since the exhaustive unknown truth is not accessible (Oreskes, Shrader-Frechette, &
Belitz, 1994). The best validation of a numerical model that one can achieve is to compare how
predicted values match the measured value found at sample locations. Cross validation (CV)
and analysis of prediction errors provides an objective measure of the predictive performance
of a statistical model on the collected samples (Fasshauer & Zhang, 2007; Hastie et al., 2009;
Rossi & Deutsch, 2014). However, this style of validation does not validate absolutely; there

is no measure of goodness against the full truth since this truth is inaccessible. Instead, this
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style of validation can be thought of as verification; useful for comparing modeling algorithms or
different parameterizations of the same algorithm (Rossi & Deutsch, 2014). The application of
CV usually considers a K-fold, where the dataset is partitioned into K disjoint random subsets
and the values in the K" partition are considered to be the truth and predicted using the remain-
der of the dataset (Fig. 2.23; Hastie et al., 2009). This is synonymously referred to as leave N
out cross validation or sometimes jackknife. Alternatively if K = N, this is simply referred to
as cross validation, where each sample location is re-estimated considering the entire dataset.
For drill hole datasets in geostatistics, the K-fold must partition based on full drill holes in order
to generate representative validation metrics.

Generally the most important validation in geostatistics is obtained by reconciling predicted
grades and tonnages with production data. However, as this requires production, it can hardly
be used to validate near the beginning of a project. More commonly a set of geostatistical
algorithms can initially be validated through K-fold methodologies. Once higher-resolution in-
formation is available, either through additional drilling campaigns, delineation drilling, grade
control or production, the grades predicted from the initial model must be reconciled with the

new information, and model parameters updated to account for any differences.
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Figure 2.22: Example of mixing stationary populations along the boundary between modeling domains.
Estimates at unsampled locations near the boundary consider samples from different stationary popula-
tions.
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Figure 2.23: K-fold analysis with 3-folds. Validation requires 3 prediction runs where the samples from
each fold comprise the test dataset, with the remainder of the data forming the training dataset.
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2.7 Review of Main Points

This chapter reviews the current practice in geostatistics for generating boundary models and
defining groups of samples for statistical modeling. Specifically:
1. The generation of geological boundaries from large datasets considering RBF interpola-

tors;

2. Methodologies to generate stationary domains considering the information contained in

the geological logs;
3. Clustering techniques to define groups of similar samples;
4. Ensemble clustering to reduce sensitivity of results to parameterization;

5. Validation of geostatistical predictions.

2.8 Conclusions

Existing research into geological boundary modeling does not address the need for a gener-
alized interpolation with LVA for dense data environments. There is also a need for tools and
methodologies to aid the interpretation of local structural features from the composite datasets.
Current practice lacks practical tools and guidelines for the stationary domaining workflow.
These two components form an important precursor to geostatistical modeling that should be

given care.
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CHAPTER 3

GEOLOGICAL BOUNDARY MODELING
WITH UNCERTAINTY

This chapter develops a methodology to improve geological feature reproduction of implicit mod-
els. The technique mainly targets a case of medium to high density sampling relative to the ge-
ological variability, where local anisotropic properties can be inferred directly from the samples.
This is common in mining, where abundant data are available to construct boundary models and
advanced visualization techniques (such as the ‘X-Ray Plunge’; Cowan, 2014) are required to
correctly interpret and model complex local orientations of continuity in 3D. In these types of do-
mains, implicit models that account for local continuities better capture geological relationships.
The proposed methodology results in subjectively and objectively better geological models, and

simplified parameter inference for complex domains.

3.1 Motivation

Geologically realistic boundaries are an important precursor to geostatistical models. Bound-
aries define the location, extents, volume and ultimately tonnage of a mineralized resource.
Thus, modeling realistic geological boundaries while simultaneously capturing associated un-
certainties is an important component of geostatistical modeling. Geological domains often
contain non-linear features that are not adequately described by a single direction of continuity.
Second-order non-stationary estimation frameworks can incorporate realistic curvilinear inter-
pretations of subsurface geometries. A RBF based implicit modeling framework is developed
in this chapter; using domain decomposition, the framework allows incorporation of locally vary-
ing orientations and magnitudes of anisotropy to the generated boundaries. The interpolation
framework is paired with a method to automatically infer local structural orientations, which re-

sults in a rapid and iterative non-stationary boundary modeling technique that can refine locally
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anisotropic geological shapes automatically from the sample data. The method is compatible

with existing methodologies for quantifying the volumetric uncertainty.

3.2 Geological Boundary Modeling

Identifying, interpreting and parameterizing geological features to implicit boundary models is
not trivial. This component of implicit modeling is traditionally implemented using tools that al-
low for the explicit control of geological features through interactive 3D-digitization (Fig. 3.1).
Interpreting local features from the point dataset forms an important component of this work-
flow; significant uncertainty is present in this step since interpretations from different individuals
are unlikely to be identical and this interpretation has a large and subjective impact on the final
model (Lindsay et al., 2012, 2013). Once interpreted, incorporating local features to the bound-
ary models is relatively well explored with second-order non-stationary interpolation techniques,
including: partitioning; unfolding; coordinate transformations; or space deformation. Often a
preliminary isotropic model is generated for inspection, and to guide interactive refinement of
local features and geologically reasonable shapes (Fig. 3.1; Cowan et al., 2003; Leuangthong
& Srivastava, 2012). Three-dimensional visualization methodologies can be used to aid iden-
tification of local structural orientations by observing grade continuities in different directions
with a rotating view, selective opacity and filters (Cowan, 2014). The goal of all methodologies
is to identify and digitize local structures such that the SDF interpolation algorithm is able to
reproduce the interpreted features.

The idealized geological model has familiar forms and patterns, geological meaning, embed-
ded geological knowledge, consistent geological topology and the correct geological relation-
ships (Hillier et al., 2015). The interpretations between and away from the input data are subject
to the discretion of the modeler, the purpose of the model and the algorithms used to charac-
terize the nature of the boundaries. The criteria that characterizes the quality of a geological
model is subjective since it depends on the interpretation of the geological modeler, the inter-
pretation of the model evaluator and the purpose of the model. Although several models can
be generated, the quality, and thus preference between different models, cannot be assessed

quantitatively since there is an unknown true model and any metric of geological quality from
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the idealized version of (a) with representative local anisotropy (reproduced from: Cowan et al., 2003)
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the current expert is implicitly biased. A K-fold cross validation exercise (see: Sec. 2.6) can
be used to justify one algorithm or parameterization over another for implicit geological model-
ing, however, an increase in prediction accuracy does not necessarily ensure the target local
features are reproduced.

For the remainder of this chapter, a boundary model that is geologically representative is
one that matches the geological interpretation by capturing local features (e.g., Fig. 3.1b). In
practice this is achieved by considering LVA, where the LVVA is parameterized to represent locally
variable geological conditions. Applications of LVA in implicit modeling are not widely explored
in the literature, though it is noted that implicit models must be generated with care to respect ge-
ological interpretations. Recall the PU RBF interpolation framework presented in Section 2.2.5
where a recursive decomposition of the dataset results in several overlapping partitions with
roughly equal numbers of data assigned to each (Fig. 3.3). The remainder of this chapter devel-
ops a methodology using the PU interpolation framework to iteratively refine geological features

to geological boundary models.
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Figure 3.2: lterative boundary refinement algorithm. Anisotropy is inferred at each stage using appro-
priate methodologies for the nature of the current information.

3.3 lterative Refinement of Geological Boundary Models

The proposed algorithm is to iteratively refine geological boundary models by updating local
anisotropy parameters generated from previous boundary models. The algorithm has two main
components: a method to implicitly model with LVA, and a method to automatically infer local
orientations from previous boundary models. The steps of the proposed algorithm are shown
in Figure 3.2 where each implicit model considers the anisotropy inferred from the previously
generated model.

The proposed iterative refinement algorithm is developed using a test dataset where the
target geological structure cannot be adequately modeled using a global set of anisotropic pa-
rameters. Figure 3.3a shows the locations of the composite samples that are coded as either
inside or outside the domain of interest. The SDF is calculated from the location of the categori-
cal samples (Fig. 3.3b). A set of global anisotropic parameters are extracted by calculating and
modeling the experimental variogram of the SDF (Fig. 3.4). An initial boundary model is gener-
ated using the PU RBF interpolation algorithm from Section 2.2.5 (Fig. 3.5a). The boundaries
between inside and outside are extracted by finding the 0-level contour in the interpolated SDF.
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Figure 3.3: Example domain showing the locations of the (a) categorical dataset and (b) the calculated
SDF at the data locations.
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Figure 3.4: Experimental and fitted model variograms calculated for the SDF for indicator 2 in the domain

shown in Figure 3.3. Experimental variograms are fitted with a Gaussian model. (a) The major direction,
which in this case is vertical. (b) the minor direction, which is horizontal on this cross section.

Although these boundaries generated under an assumption of global anisotropy are reasonable
for the left-limb of the folded structure (Fig. 3.5a), the right limb can be improved to better match

an interpretation of down-dip continuity.

3.3.1 Local Anisotropy with RBF Interpolators

The PU generates several small overlapping subproblems that can be interpolated indepen-
dently and combined to the global in a post-processing step. A locally anisotropic kernel in

each partition is proposed to incorporate LVA to implicit boundary models. This is formulated
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Figure 3.5: (a) Global anisotropy. (b) Interpreted local anisotropy
as a modification to Equation 2.3:
P N
i) = )Y wiidid(u—uil) (3.1)
j=li=1

where for each partition j the kernel ¢; is unique and has properties of anisotropy and support
that are representative of the local data. As in Figure 2.6¢ and d, the anisotropic kernel de-
creases the similarity of points found along non-principle orientations. The result is similar to
anisotropy applied globally; disconnected regions become connected and local features stretch
to become more representative of the local dataset. For example, a set of local orientations and
ranges of anisotropy are generated through manual interpretation, where continuity is expected
down-dip on the limbs of the folded structure. The interpreted orientations are shown as blue
vectors with the partition centroid in red in Figure 3.5b. The result of PU interpolation with local
anisotropy is shown as the white boundary in Figure 3.5b. This boundary has the expected
down-dip continuity and improves the geological feature reproduction when compared to the

globally anisotropic model.

3.3.2 Inference of LVA Parameters

Inference of LVA parameters is well studied (Fouedjio, 2016b; Lillah & Boisvert, 2015; Machuca-
Mory & Deutsch, 2013). Lillah and Boisvert (2015) develop several methodologies to infer the
local orientations from both point and gridded data sources. When a point dataset provides

insufficient information, Lillah and Boisvert (2015) recommend to generate a neutral gridded
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model with global ordinary kriging and a high-nugget isotropic variogram. The goal is to as-
sign values of the sparse point data to the modeling grid to ensure exhaustive information is
available for orientation extraction algorithms. Orientations are extracted from gridded datasets
by analyzing covariance or gradients calculated in moving windows (Feng & Milanfar, 2002;
Hassanpour & Deutsch, 2007; Lillah & Boisvert, 2015).

Feng and Milanfar (2002) develop a multi-level algorithm where block averaging and
between-layer weighting extracts orientations from noisy input datasets. Those authors use
singular value decomposition (SVD) of an N-long gradient matrix constructed from the gradient

values calculated in local windows:

Vi)

G = V@) , G=U-sv-VT (3.2)

i)
Where ¢ is the gradient matrix for N cells found in each window, sv are the singular values and
V is the rotation matrix obtained from SVD. The implementation from Feng and Milanfar (2002)
is developed for 2D applications applied to images; the algorithm is modified here for 3D by
including calculations in the third coordinate dimension. Thus for 3D domains the G matrix is
N x 3, and the SVD of G produces a 3 x 3 orthogonal rotation matrix vV, with the first vector
indicating in the direction of the largest change in gradients for each local window. The multi-
layer algorithm takes an input gridded dataset and block averages the gridded data to a coarser
resolution. Beginning at the coarsest top-most layer, estimated orientations are propagated by
weighting the components of the estimated orientation vectors from the current layer with those

estimated from the layer above:

[Xer Ver el = alxe, Yer ze] + B [xupr Yup» Zup] (33)

where the ¢ and up indicate the current and upper layer, respectively. Weights for each orien-

tation estimate are calculated as:

Q—L‘, ﬁ_eri (3.4)

er. + enyy,
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Figure 3.6: Example of the orientation extracted from the gradient-SVD algorithm implemented in 3D

where er are the energies calculated for each layer as:

_ sv(1) —sv(3)

er= sv(1) +sv(3)

(3.9)

When an orientation is dominant within a local window, the magnitude of the singular values
from gradient decomposition will differ significantly, resulting in a high energy calculated for that
local window, and thus more weight given to that orientation estimate when considering finer
layers. Conversely if the orientation is not dominant, the singular values are more equal in
magnitude resulting in a lower energy for that orientation estimate.

The orientation extracted from the gradient algorithm points in the direction of greatest
change, and in 2D the conversion from this to the direction of greatest continuity is trivial. How-
ever, extra consideration is required to extract orientations in 3D. Figure 3.6 shows the different
directions extracted from the 3D-gradient algorithm. The SDF represents an ideal target for
this orientation extraction algorithm since the SDF is hyper-continuous as iso-value surfaces
parallel with the target bounding surfaces, and the vector extracted from the gradient algorithm
is surface-normal to these boundaries (Fig. 3.6). The dip-direction and dip (GSLIB ang1, ang2)

are extracted as:

dipdir = g —arctan2(y,x)
(3:6)

'
dip = 7~ arcsin(z)
where x, y and z are the components of the normal vector extracted at each location from
the gradient-SVD algorithm, and the extracted ang1 and ang2 are modified to ensure that the

vector is always down-dipping.
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Figure 3.7: Extraction of the partition-representative orientations. (a) Shows the partition centers (red
points), boundaries (colored boxes), and the exhaustive local anisotropy extracted using the Feng and
Milanfar (2002) algorithm. (b) Shows 3 inset maps where the partition-representative orientation (red) is
extracted from the exhaustive orientations (blue).

Figure 3.7 shows an SDF model of the sample domain where the color of the interpolated
SDF is binned to between -75 and +75, highlighting the location of the boundary and the loca-
tions of important gradients in the SDF (e.g. near the boundary). The set of partition bound-
aries and centers are shown with the colored boxes and red points, respectively (Fig. 3.7a).
The set of local orientations extracted using the gradient-pyramid technique developed above

are shown with the blue vectors (Fig. 3.7a). This multilevel gradient-SVD analysis defines a

ahmin __ avert

set of anisotropic parameters (strike, dip, plunge, r; = ) for all locations in

ahmax’ ' ahmax
the domain (Fig. 3.7a). For each partition from the PU decomposition, the problem is now to
optimally combine the anisotropic parameters from the partition to represent the most important

orientation for that partition.

3.3.3 Extracting a Representative Partition Anisotropy

One useful value generated from the gradient decomposition is the relative energy of each
orientation in the gradient window. As shown in Equation 3.5, the energy is derived from the
magnitude of the singular values, and gives a measure of the dominance of the orientation es-
timated within each local window. Feng and Milanfar (2002) use these energies to propagate
orientation estimates between layers to ensure that reasonable orientations are extracted in the
presence of noise. Here, the goal is to obtain an orientation estimate for each partition consid-

ering the set of orientations encompassed within each partition. Using the energy associated
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with each orientation, the partition orientation is estimated by weighting orientations estimated

in each cell by the associated energy, and ensuring the weights sum to 1:

n
[x Jyp! Z‘p] = Z th [x(."yf."zf.']i
i=1

n
ZWti =1

i=1
for all n cells contained in each partition. Since the estimated orientations do not contain a
tilt-component (e.g., ang3 = 0) the orientation averaging is greatly simplified as the weighted
linear combination of the vector components with consideration to the axial nature is suitable
(as in: Machuca-Mory, Rees, & Leuangthong, 2015). The resulting partition-orientation repre-
sents the most dominant orientation from the estimated energies. Sets of partition orientations
estimated from the exhaustive orientations are shown in Figure 3.7b. The inset maps show the
representative partition orientation(s) extracted from the exhaustive orientation field. In cases
where partitions encompass many predominant sets of orientations, this averaging could result
partition orientations that do not reflect the data. In this case, modifying the partitioning overlap
in the x, y or z directions to encompass less of the orientation-variability or re-partitioning with

fewer data-per-partition is recommended.

3.3.4 Automatic lterative Refinements

The combination of partition orientation extraction and the PU RBF interpolation algorithm com-
prises the proposed iterative boundary modeling algorithm. The steps of the iterative algorithm
are shown in Figure 3.2: model (local) anisotropy; and interpolate with (local) anisotropy. The
first iteration is special in the sense that anisotropy is global and characterized from the compos-
ite dataset rather than a previously interpolated SDF model. The first SDF model is generated
under stationary conditions using anisotropic parameters estimated from the composite dataset.
The iterative algorithm begins at this step by analyzing the local anisotropy using the gradient-
SVD algorithm and the energy-weighting to estimate the representative local anisotropy for each
partition. The next interpolation step considers this refined local anisotropy, and the process

repeats by analyzing local anisotropy and regenerating the boundary model with refined local
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parameters (Fig. 3.2). The individual components of this algorithm are flexible. Any method to
estimate local anisotropy could be considered. Similarly, the SDF interpolator is not required to
be the PU RBF interpolator; this is simply used here since there are other benefits to considering
this formulation for iterative geological modeling.

The final component of the iterative refinements is to choose a stopping criteria. If refine-
ment of a partition has generated no beneficial changes, then further refinement of that partition
may be skipped without adversely affecting the boundary model for nodes contained within
that partition. Some potential stopping criteria might include: boundary smoothness; volumetric
properties; or error on overlapping sites. Here, the implemented metric is to stop refining par-
titions when there is an insufficient amount of changed cells between iterations. For example,
if a cell in a partition changes category between iterations, that cell is considered changed. If
fewer than some specified number of cells, say 1%, change between iterations, then this par-
tition could be considered ‘refined’, and be frozen for all following iterations. In this case, the
un-weighted local solution can be stored so that the global interpolant can be quickly recovered
with Equation 2.7.

The iterative algorithm is applied to the synthetic test domain and the resulting fully auto-
matic refinements are shown in Figure 3.8. Even a single iteration represents a modest visual
improvement over the global anisotropy model (Fig. 3.8b vs a). Further iterations generate
improved continuity on the dipping limbs which better matches the interpretation of the folded
geological body. By the final iteration the boundary model smoothly reflects the local orienta-

tions that were manually inferred in Figure 3.5b.

3.3.5 Parameterization and Sensitivity

Parameters required for this iterative algorithm include the partitioning parameters, the choice of
local orientation algorithm, the conditions of the initial boundary interpolation and some form of
stopping criteria. The conditions of the initial boundary interpolation are partly subjective. Past
experience has shown that representative global anisotropy included in the first boundary model
can aid in the iterative refinements to better match the preliminary interpretation. Choosing the

local orientation estimation algorithm is also subjective. te Stroet and Snepvangers (2005) use
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Figure 3.9: Splitting (left) and expansion (right) overlap applied to a 1D domain. Note the asymmetry in
overlap between partitions depending on the data configuration in the splitting case.

an iteratively decreasing window size in their local orientation analysis to resolve small-scale
details at later stages of their algorithm. A similar strategy could be considered here, though
it is worth noting that the PU RBF interpolator used in this work is only able to resolve local
features at the scale of partitioning. Thus in sparsely sampled environments, LVA features
will be relatively large-scale when compared to densely sampled environments, which naturally
follows the support of local information. The most consequential consideration for the PU RBF
interpolator is the choice of partitioning parameters, which in turn affect the local anisotropy
and iterative refinements. The binary partitioning used in this work requires 3 parameters: the
data-per-partition; splitting overlap; and expansion overlap (Sec. 2.2.5).

The data per partition roughly controls the size of each partition. Partition size is inversely
proportional to the density of local sampling. Fewer data per partition is more computationally
efficient since the local linear system of equations has a smaller N. Fewer data per partition also
allows more variable local anisotropy to be considered, since there are more partitions available
to specify unique local parameters. However, an anecdotal lower bound, based on several test
datasets, appears to be around 6-10 samples for 2D domains and around 15-40 samples in 3D
domains, depending on the total number of data and the data configuration.

The different overlap parameters for binary partitioning are discussed in Section 2.2.5 and

shown schematically for a 1D case of domain partitioning in Figure 3.9. Splitting overlap is
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specified as a fraction of the data contained in the parent partition. A large splitting overlap may
result in recursion issues for specific data configurations since a split may generate two parti-
tions largely containing the same dataset as the parent. However, specifying a small overlap
here may cause artifacts in the final model. Additionally, depending on the data configuration,
the overlap on either side of the split may be asymmetric (Fig. 3.9, left). Past experience has
shown that taking between Flnm and %m of the data found in a partition as common to both
child partitions is reasonable. A larger overlap at this stage can potentially generate many redun-
dant partitions with a large amount of overlap with one another. The second overlap parameter
expands partition boundaries symmetrically once the partitions are generated (Fig. 3.9). Care
must be taken with this parameter since the goal is to ensure a suitable amount of overlap be-
tween partitions, simultaneously reducing the number of data contained within each to ensure
the efficient solution of the linear system of equations. The recommended method for choosing
the required parameters for a given domain is to use a K-fold validation and to choose the min-
imum possible data per partition and smallest overlap parameters that give a reasonably small
and stable root mean squared error (RMSE).

For the synthetic domain the partitioning parameters are determined using a 5-fold validation
by permuting the required input parameters and observing the prediction errors associated with
each set. Figure 3.10a shows the RMSE obtained by varying the data per partition and the
splitting overlap. For a lower data per partition, the interpolation appears to be fairly variable
with different splitting overlap. With > 11 data per partition, the error results seem more stable.
Thus, a data per partition of 11 and splitting overlap of 0.06 are chosen. Figure 3.10b shows
the error associated with different x and y expansion overlap following the partitioning with the
chosen data per center and splitting overlap. Here, a final overlap of 0.6 and 0.5 are chosen for

the x and y directions, respectively.

3.4 Assessing Geological Boundary Models

Assessment of a geological boundary models at this scale is based on subjective visual inspec-
tion and is practitioner dependent. Objective measures such as a K-fold validation and other

error metrics are useful to compare models generated with different algorithms or different pa-
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Figure 3.10: K-fold validation RMSE the PU RBF interpolation for different partition parameters. (a) the
data per partition and data overlap. (b) the final overlap applied after partitioning.

rameterizations of the same algorithm. Generally, a ‘good’ implicit model is one that accounts
for the data, conforms to the conceptual geological model, accounts for uncertainty (perhaps
both volumetric and geometric), and has idealized shape properties like smoothness and rep-
resentative local anisotropy. A ‘good’ implicit model also lacks features present in subjectively
poor implicit models, including: disconnected bodies that could otherwise be connected given
the local structural interpretation (Deacon, 2017); and blob- or bubble-like local features that
are commonly observed in poorly parameterized implicit models (Fig. 3.1a vs. Fig. 3.1b). The
‘blobby’ nature of poorly constructed implicit models should be avoided, unless the geological

topology warrants such features (Fig. 3.1a). However, these blob-like features are more com-
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monly the result of interpolation parameterizations that are not representative of the local data.

The subjectively poor features of an implicit model have distinct shape properties. A sphere,
for example, minimizes the surface area to volume ratio (SA:V) for a given volume. By mea-
suring the SA:V of implicit models, models with more blobs or other features approximating
spheres (e.g., Fig. 3.1a) will have a lower SA:V metric than models without these features. As
demonstrated in this chapter, a reasonable goal for implicit geological modeling is to gener-
ate local geometric anisotropies that reflect the underlying geological shapes. Similar shape
property-metrics of geological models are proposed by Lindsay et al. (2013). Their metrics (of
‘geodiversity’) quantify: the top and bottom elevation of each unit; the volume; the surface area
of contacts; the surface curvature of contacts; and the geological complexity of a suite of geo-
logical models (Lindsay et al., 2013). The goal of their work is to assess the uncertainty in the
geological models, identify outlier models that are significantly different from the ensemble, and
to come up with models that are most representative of the suite.

The SA:V metrics proposed here, calculated for each iteration of the iterative refinements of
the synthetic domain, are shown in Figure 3.11a. One drawback of the SA:V metric is that direct
comparison between different models assumes that the volume between models is constant. If
this condition is satisfied, this metric essentially quantifies differences in the surface area be-
tween two models. However for the synthetic domain presented here, this constraint is not
satisfied between iterations; for example, between iteration 1 and 2 the volume of the model in-
creases since the disconnected regions become connected. The result is a higher SA:V metric
for a subjectively poorer model in iteration 1 when compared to the model generated in iteration
2. To address this limitation, the ratio of the implicit model surface area to the surface area of
a sphere with the same volume is proposed (Fig. 3.11b). In this case, the increase in volume
between iterations does not appear to affect the metric as in the case of SA:V and there is a
consistent increase in the proposed metric with model development. With K-fold validation and
these shape properties, sets of implicit models (or iterations of refined models) can be subjec-
tively and objectively assessed against one another for reproduction of the data, reproduction

of the geological interpretation, and a comparison of the shape properties of the model.
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Figure 3.11: (a) Surface to volume ratio for iteratively refined implicit models where the different in model
volumes between iterations makes interpretation of the metric difficult. (b) Ratio of implicit surface area
to sphere of same volume surface area. Normalizing the surface area of the implicit model by the surface
area of a sphere with the same volume as the implicit model seems to generate less dependence on
changes in volume between different models.
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3.5 Uncertainty Through the C-Parameter Framework

Uncertainty in the location of boundaries is an important consideration for implicit models since
these boundaries inform whether or not a location is assigned a value with geostatistical meth-
ods. The locally anisotropic RBF interpolator developed in this chapter is compatible with the
bandwidth-style uncertainty (Munroe & Deutsch, 2008; Wilde & Deutsch, 2012). Recall that
the bandwidth modifies the underlying volumetric function such that two locations in different
domains are further away from one another. This bandwidth parameter, C, is a global mod-
ifier and must be calibrated for different domains and interpolation conditions. Calibration of
C requires a K-fold validation workflow where the prediction errors for different bandwidth pa-
rameters are analyzed with a calibration curve, and a representative bandwidth of uncertainty
is chosen. The chosen uncertainty bandwidth is deposit and data configuration specific. The
C-parameter should be less than the ‘effective’ data spacing for a particular deposit, and in the

absence of the K-fold analysis the data spacing can be used as the C-parameter.

3.6 Review of Main Points

This chapter introduces a practical geological boundary modeling algorithm exploiting domain
decomposition to improve geological models where local structural continuity is important. Specif-
ically:

1. A practical geological boundary modeling methodology using PU domain decomposition

and independent locally anisotropic parameters;

2. A method for automatically and iteratively inferring local anisotropy from generated bound-

ary models to improve the geological feature reproduction.

3.7 Conclusions

The proposed iterative boundary modeling algorithm is suitable for capturing non-stationary
features present at a relatively large-scale. Manual inference of local features at this scale is

possible, but is subject to interpretation biases and requires significant time and effort on the
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part of the geomodeler. The proposed iterative refinement algorithm provides a better first-pass

locally anisotropic model for the expert to consider during geomodeling.
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CHAPTER 4

STATIONARY DECISION MAKING WITH
CLUSTERING

Cluster analysis has many similarities with a stationary domaining workflow. The goal of clus-
tering is to find natural partitions of a dataset where samples within a partition are more related
to each other than they are to samples in other partitions, and ‘related’ is described in terms of
the multivariate properties of the dataset. Finding stationary domains from a geological dataset
can be formulated in a similar manner except that the notion of similarity includes spatial, mul-
tivariate and geological relationships. However, identifying stationary domains in practice is

exceedingly complex and novel techniques reducing subjectivity and biases are needed.

4.1 Introduction

This chapter develops three contributions to improve stationary decision making in geostatistical
domains. First, a combined spatial-multivariate metric is proposed to permit objective compar-
isons between different cluster configurations. Second, a novel random-path spatial clustering
algorithm is developed that alleviates parameterization concerns in a spatial-clustering work-
flow, which in turn allows for straight forward tuning of the spatial contiguity or multivariate
delineation of the generated spatial clusters. Finally, an ensemble-clustering based framework
is developed to assemble a prior distribution of uncertainty for the decision of stationarity. This
prior distribution could represent the parameter uncertainty for the decision of stationarity which
can be incorporated in a traditional geostatistical uncertainty characterization workflow.

Note, in the following text the term ‘clustering’ refers to a set of K € {1, .., K} categories
assigned to each sample location following some method that partitions the dataset (e.g., man-
ual or automatic). The following terms are synonymous with ‘clustering’: stationary domains,

partitions, groups, sets, classes, categories, facies, and rock types. All terminology refers to
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a set of mutually exclusive categories, each reflecting one category, domain, partition, group,
etc., within the K categories, domains, partitions, groups, etc. The only divergence from this

notation is with a ‘clustering’, which comprises K individual clusters.

4.2 Metrics of Stationary Domains

One goal of stationary domaining is to improve the estimate of value at the unsampled location.
The estimate is improved in two ways: 1) nearby samples from the same stationary domain
are increasingly related, and 2) stationary domains themselves are increasingly contiguous
throughout the spatial domain. The estimate at the unsampled location involves many steps
including parameter inference, categorical modeling, and choosing a suitable algorithm to infer
the distribution of uncertainty conditional to the related nearby data. Thus, validating a set of
stationary domains should include a measure of how well the true value has been predicted
at an unsampled location. In other words, one reasonable goal of stationary domaining is to
minimize prediction errors in a K-fold cross validation study. However, evaluating all N¥ possible
combinations is impractical not only because of the large combinatorial problem, but also since
each combination requires a full geostatistical estimation or simulation workflow to assess the
effects.

Consider the porphyry domain show in Figure 4.1 (from: Boisvert, 2010). Figure 4.1a shows
two populations that nearly completely overlap with respect to their Cu-Au (hereafter, multi-
variate) properties, which results in first and second order statistical properties that are similar
between domains. By contrast, the spatial configuration in Figure 4.1b shows clearly defined
spatial partitions of this domain; presumably the central feature is the porphyry intrusion (RT1)
that has intruded the surrounding country rock (RT2). Given the poor delineation of multivari-
ate classes, geostatistical modeling of this dataset should consider additional partitioning of the
multivariate space and subsequent boundary analysis in each domain to ensure the assumption
of stationarity is reasonable. The high correlation between Cu and Au here suggests a typical
2-variable grade-domain is appropriate. Alternatively, the entire domain could be considered
as a single population since the statistical properties of each delineated domain are similar.

A partitioning based on the multivariate properties for this domain could resemble the con-
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figuration in Figure 4.2. Here the multivariate space is partitioned nearly perfectly between the
high and low grade values considering both variables, with minimal mixing of the two popula-
tions in the marginal distributions (Fig. 4.2a). However there are less clearly defined spatial
classes (Fig. 4.2b). The lack of spatial continuity of the defined classes may adversely affect
geostatistical modeling since there may be difficulties obtaining a spatial model of continuity,
which will in turn impact how value is assigned to the unsampled location. The relationship
between a partitioning of the dataset and prediction error must be established.

Considering the above domain, two criteria can be considered to rank the two configurations
for relative ‘goodness’. The spatial contiguity of the classes and the multivariate delineation are
both important factors for the resulting modeling domains. If the delineated domains are identi-
cal in their multivariate and spatial properties, why bother modeling them separately? Similarly,
if the delineated domains result in random spatial features, geostatistical modeling will suffer
from a lack of continuity in the spatial model of the categorical variables. In practice, both the
multivariate and spatial properties should be considered to ensure that a set of domains are
suitable for geostatistical modeling. In the following sections, a multivariate-spatial metric is
proposed to aid in the interpretation of the quality of a set of modeling domains. The metrics
measure the multivariate delineation and spatial contiguity of a set of categories to provide a

relative measure of the properties of different stationary delineations made for the same dataset.

421 Multivariate Metrics

The multivariate metric describes uniqueness of classes with respect to their multivariate prop-
erties. Uniqueness in this space is synonymous with compactness and describes the relative
delineation of each category given the multivariate properties. For example, categories defined
in Figure 4.1a represent a poor delineation of the multivariate space. A measure of the multivari-
ate delineation requires assumptions on the forms of each population. For example, for a set of
categories generated using the K-means clustering algorithm, like those found in Figure 4.2a, a

suitable measure of separation is the within cluster sum of squares (WCSS), since this measure
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is minimized during K-means clustering (Witten & Tibshirani, 2010):

WCSS = Z Z Z(xU %ej)? 4.1)

k=1x;EK}, j=
For a simple synthetic dataset with M = 2 and K = 3, a sulite of different clusterings are shown
in Figure 4 .4a. The clustering with the most separation between clusters results in the lowest
WCSS. Increased mixing of the populations in this 2-dimensional space leads to higher WCSS.
The WCSS is best suited to clusters of equal size and a Mahalanobis-distance-based WCSS
could be considered for populations with linearly correlated variables.

A number of other metrics can be considered to measure the relative delineation of multi-
variate space. In the following discussion consider the populations 4 and B to each be one
of K different clusters of a given dataset, k,, kg € {1,..K}, ks # kg and A = {x,,..,X,} and
B ={y,,..¥,,} contain n and m samples, respectively. Ward’s distance computes the increase

in the sum of squared error (SSE) obtained by merging populations 4 and B (Ward, 1963):
Dward - SSEAB — (SSEA + SSEB) (4.2)

where:

n+m

SSEap = Z [xy: — Xy, SSEA—leI I,

SSEg = Z y: -l
i=1

Alternatively, the energy distance D, developed by Rizzo and Székely (2016) computes a cen-

(4.3)

tered measure of dissimilarity about each population:

B 2a—b—c
e 2a

(4.4)

where:
1 n m 1 n n 1 m m
mZZm b=z 2 QKK em oz ) ) iyl (49)
i=1 j= i=1j=1 i=1j=1
This measure is bounded [0, 1] and equal to zero only if the populations X and Y are identically
distributed (Rizzo & Szekely, 2016). Both the Ward and energy distances effectively capture

differences in the mean of each population, but fail to capture differences in the (co)variance
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between populations (Fig. 4.3 a to b vs a to ¢). The implication is that populations that differ
with respect to (co)variance can not be differentiated with these measures. The energy distance
is modified here to account for linear correlation using the Mahalanobis distance; the modified

Mahalanobis energy distance becomes (Fig. 4.3):

a—b—rc
Depp = —— (46)

a

where:
1
@ = — [0 = B~ ) + (y — IZTY — )],

b= [ Bt - )], (@.7)

1
c=— |- mI%y - )]
The Kullback-Leibler divergence (KLD) could also be considered. A non-parametric version
is required as the multivariate populations are unlikely to be multiGaussian (e.g., Hershey &
Olsen, 2007). Figure 4.3 also shows the scores from a kernel density estimate (KDE)-based
KLD calculated between the different populations; the metric shows sensitivity to both mean and
covariance differences between populations, but additionally provides sensitivity to non-linear

features not captured by linear methods.

4.2.2 Spatial Metrics

A measure of the spatial interconnectedness of the clusters in Cartesian space is required. The
WCSS and other multivariate measures are not suitable for Cartesian space since the center
of a cluster may not be relevant to how it is distributed and connected throughout the spatial
domain. Instead, the entropy calculated in a local window at each location and summed over
all locations is proposed. In practice this gives a relative measure of the amount of randomness

found in Cartesian space. The total windowed entropy is calculated as:

K
Heotat == ) ) (U NPy (uy) (48)

N
=1k=1

where pi (u;) is the probability of finding category k in the local search around the i*" location.

This is shown graphically in Figure 4.4b; the local entropy is low where a single category is

found in a local search and high where several categories are found (e.g., left vs. right circle,
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Figure 4.3: The different population difference metrics are calculated for 4 cases between two randomly
sampled Gaussian populations generated with different mean and (co)variance. The energy distance,
M-energy distance, Wards distance and the KLD calculated between each population is labeled. The
scenarios between the red and blue population are as follows: (a) uncorrelated, identical mean, (b)
uncorrelated, different mean, (c) linearly correlated (blue) and uncorrelated (red), identical mean, and (d)
linearly correlated (blue) and uncorrelated (red), different mean.
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respectively, in Fig. 4.4b). The summation over all i locations gives a measure of the connectivity
of a particular configuration for a given clustering. In general, a lower total entropy, or higher

spatial order, is preferred.

423 Combined Metrics

The conceptual relationship between the multivariate and spatial metrics is shown in Figure 4.5.
Oliver and Webster (1989) noted the trade-off between spatial fidelity of clusters and the mul-
tivariate delineation through tuning a kernel bandwidth. Inspection of this metric space is the
proposed method for choosing one clustering over another where, for a given level of spatial
ordering, a clustering with the lowest WCSS is preferred.

Again, consider the example domain from the beginning of this chapter. Of the two sets of
categories, one maximizes the spatial order (Fig. 4.1b), and the other maximizes the multivariate
delineation (Fig. 4.2a). In practice some trade-off between spatial and multivariate delineation
could be reasonable for a stationary domain. On one hand, additional spatial continuity of
the categorical variables is desirable so that the category at the unsampled location can be
inferred with minimal uncertainty. Simultaneously, it is desirable to increase the relatedness of
samples with respect to their multivariate properties, including their spatial continuity, to ensure

the stationary assumption within that domain is reasonable.

424 Metric Limitations

The main limitation to the proposed metrics comes from comparing configurations with a dif-
ferent number of clusters. Using the domain shown in Figure 4.1 as an example, Figure 4.6a
shows the spatial entropy metric for random permutations for each K and the same spatial data
configuration. For this experiment the configuration between different numbers of clusters are
completely random; the decreasing entropy in Figure 4.6a is entirely due to K. This implies that
direct comparison of the spatial entropy between configurations with different K will be problem-
atic. Silva and Deutsch (2012a) also noted that comparison of entropy between configurations
is only valid with a consistent K between configurations.

Since clusterings with a different number of clusters do not produce consistent spatial en-
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Figure 4.4: Proposed multivariate and spatial metrics to gauge the quality of spatial clusters for the
geostatistical workflow. (a) The WCSS shown from best to worst, left to right. (b) Entropy calculated in

local windows.

tropy scores they cannot directly be compared. One could argue that the reduced number of
categories (and lower scores) from domains with a smaller K reflects a decreased workload
for the practitioner and thus represents an improved decision of stationarity. However, a nor-
malized spatial entropy metric could be considered to compare configurations with different K.
The entropy calculated for a particular configuration is normalized by the entropy calculated
from a random permutation of the cluster labels. For example, if two configurations with a dif-
ferent K are normalized by the entropy of a permutation, the resulting scores can be compared

(Fig. 4.6b). The permutation of the cluster codes from each configuration is important as the

proportion of each category is constant in the permutation.
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Figure 4.5: Conceptual inverse relationship between the multivariate delineation and the spatial conti-
guity.
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Figure 4.6: (a) Spatial entropy calculated for a constant spatial data configuration. (b) Spatial entropy of
the random configuration normalized by the entropy of another random configuration with the same K.
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4.3 Dual-Space Ensemble Spatial Clustering

One of the issues with spatial clustering for stationary decisions is that subjective decisions are
required to ensure that the generated clusterings are representative and suitable for geostatisti-
cal analysis. The clustering metrics introduced in this chapter can be used to guide selection of
different decisions of stationarity for a geostatistical analysis. However, parameterizing different
algorithms to produce suitable results is still a major challenge for spatial clustering applied to
stationary decision making. Furthermore, the results generated between experts and algorithms
are different and perhaps incompatible.

A new clustering algorithm is proposed that generates many clustering realizations using a
random-path and a ‘dual-space’ search. The random path and ensemble analysis simplifies the
parameter inference required from the user. The implementation uses a K-nearest-neighbor
spatial search and the multivariate difference metrics developed above. The full algorithm is
given in Algorithm 4. The proposed clustering algorithm has three stages outlined in the follow-
ing section, and is demonstrated conceptually in Figure 4.7. In the following text consider a set

of N geographically located samples where M attributes are recorded at each location.

43.1 Stage 1, Primary Spatial Merging

Stage 1 merging generates spatial-first groupings, where samples are merged primarily con-
sidering a related spatial neighborhood. For each location along a random path, the neigh-
bors in Cartesian space are identified with a K-nearest-neighbor spatial search that is optionally
anisotropic. The Euclidean distance in M-dimensional attribute space is calculated between the
current location and those found in the local search. Locations with the smallest M-dimensional
distance are merged into mini-clusters. This phase of merging is repeated until every sample

belongs to a mini-cluster.

43.2 Stage 2, Secondary Multivariate Merging

Stage 2 finalizes a clustering realization by iteratively merging the K,,;; _ciusters 9€nerated from

stage 1 to the K;4,.40. NUMber of clusters. At this stage the K, 4., is not required to be the final
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Algorithm 4 DS clustering algorithm

1: spatial_tree = kdtree built from data locations;
2: for each L iteration do
3 Generate a random path through the data locations;

» Stage 1 Merging
for each N data location do
Query spatial_tree for the P closest locations around x;;
Compute the M dimensional Euclidean squared distance between the current loca-

tion and each P neighbor found above;
9: Sort P locations based on squared Euclidean distance;

10: Merge randomly between 1 and P ‘closest’ neighbors based on the sorted distances;
11:

12: At this stage we have Kp,ini—ciusters >> Ktarger ClUsters that are spatially compact;

13:

14: » Stage 2 Merging

15: Generate a random path through the mini-clusters;

16: Kcurrent = K;

O NS OA

17: for each K mini clusters do

18: if Keyrrent == Ktarget then

19: Go To stage 3;

20: Randomly choose a population difference metric from the available pool;

21: Calculate the population difference between the current cluster and all other clusters;
22: Merge the two closest mini-clusters;

23: Keurrent = Keurrent — 15

24:

25: p Stage 3, Final Class Labels

26: Build a pairings matrix (adjacency matrix);

27: Hierarchical clustering of the pairings matrix extracts the dominant configuration for
the set of random-path clusterings;

K for the dataset since the ensemble analysis in stage 3 can be used to infer K. Each merge
considered in stage 2 uses multivariate distribution difference metrics such as the Ward SSE
distance (Székely & Rizzo, 2005; Ward, 1963), the energy distance (Rizzo & Székely, 2016), or
the KLD (Hershey & Olsen, 2007) (detailed above).

4 3.3 Stage 3, Final Class Labels

The ensemble of clusterings is recorded in an N x L matrix where each column contains N labels
for each L clustering realization. Ensemble clustering techniques are used to extract the final
cluster labels consisting of the consensus of all realizations (Sec. 2.4.2; Strehl & Ghosh, 2002).

The simplest consensus function consists of hierarchical clustering of a sample similarity
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matrix (Manita, Khanchel, & Limam, 2012; Strehl & Ghosh, 2002). The N x N sample similarity
matrix counts the number of times each i location is found in the same cluster as each j location,
i,j = 1,.., N. The similarity matrix normalized by the number of clusterings L gives the likelihood
for each sample to be paired with one another over all clustering realizations. Hierarchical
clustering of the similarity matrix with Ward’s minimum variance is used to extract the dominant

configuration (Strehl & Ghosh, 2002; Ward, 1963).

43.4 Synthetic Example

A simple test domain shown in Figure 4.8 is used to illustrate the proposed clustering. The
dataset consists of two variables which are approximately normally distributed, with an inter-
variable relationship that is not completely described by linear correlation (Fig. 4.8e). Four
different clustering algorithms are applied: 1) hierarchical clustering; 2) hierarchical clustering
with the coordinates as data; 3) Morans-autocorrelation based spatial clustering (Sec. 2.3.5.2;
Scrucca, 2005); and 4) the proposed dual space search (DS) clustering developed above.

The hierarchical clusters generated without considering the coordinates best delineate the
multivariate space into 3 clusters (Fig. 4.9a). However, as expected, this generates clusters that
have the poorest spatial properties for this domain (Fig. 4.9e). Hierarchical clusters using stan-
dardized coordinates are more spatially contiguous at the expense of multivariate delineation
(Fig. 4.9b and f). The Moran’s clusters have less spatial mixing than the multivariate only clus-
ters (e.g., Fig. 4.9g vs e) and multivariate properties between the first two clusterings. Finally
the proposed DS algorithm generates clusters that have similar spatial contiguity compared to
the Moran’s clustering (e.g., Fig. 4.9h vs g) but with better multivariate delineation (Fig. 4.9d).

To understand how each variable influences each clustering algorithm, a RF classifier is
trained to predict the cluster labels using the M input variables and the sample locations
(Breiman, 2001; Fouedjio, 2016a; Liaw & Wiener, 2002). Variable importance is calculated
from the number of times a variable is used to improve the split results for all branches over all
binary decision tree’s trained in the RF. The more a variable is used to improve the results of the
RF classifier over all decision tree’s, the more important that variable is for classification. Pre-

dictably, spatial coordinates are the least important variable to predict multivariate-only cluster
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Figure 4.8: (a, b) Synthetic test data locations showing the value of the normal scored variables sampled
at each location. (c, d) Univariate histograms and (e) bivariate scatter plot of the two variables in the test

dataset.

labels, whereas they are the most important when included as data in the clustering algorithm

(Fig. 4.10). Predicting cluster labels from the spatial methods shows increased dependence on

coordinates when compared to the multivariate only method (Fig. 4.10).
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Figure 4.9: Spatial cluster results from (a) hierarchical clustering, (b) hierarchical clusters with standard-
ized coordinates as data, (c¢) autocorrelation-based spatial clusters, and (d) the proposed random-path

clustering algorithm.
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Figure 4.10: Variable importance determined by training a RF classifier to predict the cluster labels for
each clustering algorithm, as in (Fouedjio, 2016a)

43.5 Addressing Strings of Data

Strings of tightly spaced and highly correlated data are an outstanding issue for spatial clustering
of geostatistical datasets (e.g., Fig. 4.1b; Romary et al., 2015). The solution presented here
uses an anisotropic spatial search for stage 1 merging to account for the contrasting sampling
density based on orientation. The Cu-Au porphyry dataset introduced in this chapter is used to
test this solution (Fig. 4.11). An anisotropic search is defined that is isotropic in the horizontal
plane (major = minor) with a shortened vertical axis equal to 0.5 * major. A 3 x 3 rotation matrix
R is calculated using the ang1, ang2, ang3, 11, and r, conventions (as in: Rossi & Deutsch,

2014) and the anisotropic distance is computed as:
Dgniso =R~ ((ug — UZ)T)Z (49)

The K-nearest-neighbor search is performed in the anisotropic space. The same suite of 4
clustering methods are applied. In this case, the autocorrelation-based clustering and the DS
clustering use the anisotropic 3D search.

Clustering results are shown in Figure 4.12. Similar to the synthetic dataset the multivariate
delineation is best in the case of the multivariate-only clusters (Fig. 4.12a). The rock types from

the geological log generate the most spatially continuous units, however, this comes with the
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(a) Au grade values (b) Cu grade values
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Figure 4.11: Location map colored by (a) Au and (b) Cu grade values at each location.

poorest delineation of multivariate space (Fig. 4.1). It should be noted that the units defined
in the geological log are likely defined to capture distinct geological differences (e.g., intrusive
phases) rather than the spatial-multivariate populations targeted for geostatistical modeling. Hi-
erarchical clustering with the coordinates as data results in clusters that spatially similar to the
multivariate-only clusters but with a higher proportion of cluster 2 (Fig. 4.12b). The result is a
significantly more ordered spatial domain (more areas with only ‘Clus 2), but with additional
mixing of the populations in multivariate space. The autocorrelation-based spatial clusters are
more spatially contiguous than the multivariate-only clusters, however, the multivariate delin-
eation suffers slightly (Fig. 4.12c). DS generates a configuration compatible with the local-
autocorrelation clusterer, with similar multivariate delineation and only marginally poorer spatial
contiguity (Fig. 4.12d). Depending on the preferences of the modeler, the DS clustering can
easily be tuned to generate either better spatial delineation or better multivariate delineation

simply by choosing how many samples are merged during stage 1 of the algorithm.
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(d) DS ensemble clustering
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Figure 4.12: Clustering results from (a) hierarchical clustering, (b) hierarchical clusters with standard-
ized coordinates as data, (c¢) autocorrelation-based spatial clusters, and (d) the proposed random-path
clustering algorithm.

4.4 Ensemble Clustering for Uncertain Stationary Decisions

The idea of generating multiple different decisions of stationarity for uncertainty characterization
is a novel approach for capturing the uncertainty associated with stationary domaining in geosta-
tistical workflows. The prior uncertainty of input parameters must be expressed for integration
into geostatistical modeling. Conventional stationary domaining techniques have previously
rendered incorporation of this uncertainty impractical.

A set of consensus functions for traditional ensemble analysis are introduced in Sec-
tion 2.4.2. The consensus function combines information from all clusterings in an ensemble
into a single improved clustering. All consensus functions operate on information shared be-
tween clusterers, generally without information about the problem accessible to each individual
clusterer (e.g., attributes that define individual clusters). This can be seen as both a strength
and a weakness of ensemble clustering, depending on the application (Strehl & Ghosh, 2002).
However, most studies note that domain-specific knowledge improves clustering results, since
decisions related to parameterization and important subspaces can be tailored to match known
characteristics of the domain (Senbabaoglu, Michailidis, & Li, 2014; Ghaemi, Sulaiman, Ibrahim,

& Mustapha, 2009; Strehl & Ghosh, 2002).
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For geostatistical datasets, where one must consider both the multivariate and spatial delin-
eation of the final classes, an enhancement to traditional consensus functions is proposed by
using the clustering metrics developed in Section 4.2. The multivariate-spatial metrics are used
in a preprocessing step to preferentially select a subset of the clustering ensemble that has
improved spatial and multivariate properties. The consensus of the sub-ensemble generates
an improved spatial clustering since it incorporates properties of only the best clusterings in the
ensemble.

The clustering ensemble is used for three main cases of geostatistical analysis in this work:
1) to improve a single set of clusters for geostatistical estimation; 2) generate a small set of
scenarios evaluate the main configurations with estimation; and 3) to generate L equally likely
realizations of clusterings that comprise the prior parameter uncertainty for the decision of sta-
tionarity, for use in simulation-based uncertainty characterization workflows. The ensemble
techniques used in the previous section combined with the clustering metrics comprise the

novel geostatistical ensemble consensus function for spatial clustering ensembles.

441 Improved Stationary Domains and Stationary Domain Realizations

To generate the best set of stationary domains considering the clustering ensemble, typically
one would consider the consensus of all clusterings (brown; Fig. 4.13). To improve the sin-
gle classification, a pre-processing of the ensemble is proposed to prioritize which clusterings
form the consensus clustering. This ‘geostatistical consensus function’ comes from utilizing the
metrics of domain goodness combined with conventional ensemble consensus functions.

The proposed geostatistical consensus function is as follows: first, the spatial and multivari-
ate metrics are calculated for all clusterings in a clustering ensemble (black crosses; Fig. 4.13).
In this spatial-multivariate metric space, clusterings that have the best multivariate scores for
a given spatial score are chosen (blue crosses; Fig. 4.13). This sub-ensemble comprises L
clustering realizations that are the ‘best’ in terms of the spatial and multivariate properties. This
sub-ensemble addresses two of three proposed applications of ensemble clustering to geo-
statistics; either the consensus of the sub-ensemble is taken to generate a single consensus

clustering with improved spatial-multivariate properties (pink star; Fig. 4.13), or clusterings from
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this sub-ensemble can be used directly in a simulation based workflow to assess the uncertainty

associated with assigning samples to different stationary domains (blue crosses; Fig. 4.13).

4.4.2 Stationary Domain Scenarios

The final proposed application of cluster ensembles for geostatistics is to determine the most
dominant configurations represented in the ensemble. This requires a pairwise comparison of
the similarity of all clusterings in the ensemble. An issue with direct comparison of clusterings
for similarity comes from the randomized initialization of each clustering algorithm, which re-
sults in different labels assigned to each cluster between clustering realizations. The net effect
is incompatible labeling between otherwise identical clusterings (Fig. 4.14). The adjusted Rand
index (ARI) (Hubert & Arabie, 1985; Steinley, 2004) is a popular metric used to compare clus-
terings since it is invariant to permutations, produces scores between [0, 1], and can be used
to compare clusterings with different K. Consider two clusterings with K; and K, clusters, re-
spectively. Calculating the ARI between the clusterings starts by converting the clustering label
vectors to binary matrices, B, and B, (i.e. B; is a N x K; column-wise binary matrix recording
membership of points in each cluster) and then building a K; X K, matrix C = B{Bz. Each entry
in the matrix C records the number of times a pair of points co-occur in each cluster. Once
the co-occurrence matrix C has been calculated the ARI between the clusterings is given by

(Hubert & Arabie, 1985):

cijy _ Zi (92 (%)
¥ (7) ®

g @ 1y (6] - 22D
AGEDIV B

The binomial expansions (CZ—) computes the total number of combinations of each configuration

ARI = (4.10)

possible between each cluster. To identify the most dominant configurations in the ensemble,
the pairwise similarity between clusterings is calculated using the ARI and the result is accumu-
lated in an L x L cluster similarity matrix. Hierarchical clustering of this clustering similarity matrix
results in the dominant cluster configurations from the ensemble, and for each configuration the

consensus of the subset is found by building an N X N pairings matrix using the clusterings from
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Figure 4.13: Example of the geostatistical consensus function, using the clustering metrics calculated
for different stationary domains for the porphyry dataset. Blue crosses represent those that have the
best multivariate properties for a given level of spatial contiguity. Selected single realization decisions of
stationarity are shown for reference.
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Figure 4.14: The outcome of two different clusterings of the same dataset with the same parameters.

The permutation of cluster labels results in incompatible cluster codes between otherwise identical cate-
gories.
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Figure 4.15: WCSS and spatial entropy scores for different number of nearest neighbors and numbers
of data merged in the stage 1 search.

each subset, and extracting the consensus clustering from the pairings matrix with hierarchical

clustering, as above.

4.5 Parameterization Guidelines

Nearly all clustering algorithms require K as input. The exception is hierarchical clustering,
where K can be inferred by inspecting the associated dendrogram. The ensemble clustering
methods developed in this chapter benefit from a hierarchical-clustering based consensus func-
tion, which allows K to be inferred following ensemble construction. Generally, a lower K is
preferable to reduce workflow complexity in the geostatistical modeling that follows.

The DS clustering developed in Section 4.3 requires few input parameters: search param-
eters (Nseqrcn @nd anisotropy), the number of samples merged during stage 1 merging, and a
lower proportion threshold to reject clustering realizations.

Search parameters should generally be chosen to match the variability in the underlying
variables, with some consideration to differences in sample density along drill holes relative to
between drill holes. A general guideline is to mimic the anisotropy and range of the underlying

variables. The number of samples found in the spatial search should be similar to the kriging
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parameters; 10-25 in 2D and 25-50 in 3D.

The number of samples merged (Ny,e,geq) in Stage 1 can optionally be specified, however in
this work it is randomized between 1 and N, ,,..,- The choice of the number of samples merged
during stage 1 merging effectively creates the ‘dial’ that can be used to tune the multivariate
delineation or spatial connectivity of the resulting clusters. Given a constant Ngearch, if Nmergea
during stage 1 is increased, the final result has additional spatial continuity. Conversely, with a
small Nyergea, the output of DS clustering resembles clustering obtained using only multivariate
information. The effect of this ‘dial’ in terms of the metrics developed in Section 4.2 is shown in
Figure 4.15. Increasing the number of samples found in the local search in stage 1 causes the
DS clusters to have additional spatial connectivity at the expense of multivariate delineation.

The lower threshold rejects clusterings if any one of the categories falls below this proportion.
The mainidea is to ensure that all clusterings are reasonable and could be used for geostatistical
analysis. Generally, with a larger input dataset this threshold can be lower. The key is to ensure

that enough samples are available for inference of statistical parameters for modeling.

4.6 Review of Main Points

This chapter introduces clustering metrics and novel clustering algorithms for defining stationary
domains for geostatistical analyses. Specifically:
1. The development of several multivariate metrics and a single spatial metric that summa-

rizes differences in stationary domains;

2. The combination of multivariate and spatial properties as an objective measure of station-

ary domain goodness;

3. Development of a spatial clustering algorithm that reduces the burden of parameterization

through the random subspace and ensemble analysis;

4. A method to generate improved spatial clusters considering ensemble analysis and the

developed clustering metrics.
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4.7 Conclusions

Clustering and spatial clustering tools are effective for partitioning high dimensional spatial
datasets in to groups with unique spatial and statistical properties. The clustering metrics pro-
posed in this chapter represent an important contribution for clustering applied to stationary

delineation since the result can be assessed based on objective rather than subjective criteria.



CHAPTER 5

CASE STUuDY: IMPLICIT MODELING WITH
LOCALLY VARYING ANISOTROPY

5.1 Porphyry Deposit

A dataset of 4525 samples from 168 drill holes from a Chilean Cu-porphyry deposit is used to
demonstrate the implicit geological modeling techniques developed in Chapter 3. The geolog-
ical log delineates 2 large-scale domains (Fig. 5.1a) that separate the economic supergene-
enriched ore from the uneconomic material. The 6 modeling categories are defined to capture
smaller scale variations within this large-scale framework (Fig. 5.1b). Categories 3 and 4 com-
prise the supergene enrichment zone and have the highest average copper grades (Fig. 5.2).
This enriched zone is mostly localized to the east where dense drilling is concentrated, how-
ever, it is also intersected in the west of the property. Category 1 is mainly unmineralized while
2, 5, and 6 are weakly mineralized. Collectively these units form the unmineralized cap and
base of the hydrothermal system. The combined categoriees 3 and 4 comprise the large-scale
geological domain that isf modeled in this chapter.

This chapter evaluates different boundary modeling strategies for the interface between the
large scale geological domains shown in Figure 5.1a. Implicit modeling is well suited to capturing
geological features at this scale since the features are relatively continuous between drill holes.
Further, the spatial pattern of the targeted geological domain suggests that local anisotropy of
some form may be required to characterize all locations in the domain.

Inspecting the location map in Figure 5.1a shows that an overall horizontal planar structure is
the target of boundary modeling. However, from the north-looking view of Figure 5.1a, a gentle
folded structure is present, with a central high point and west and east-dipping limbs on the west
and east sides, respectively. The portion to the east is thicker than the west, but presumably the

two are continuous through the central high feature, and local continuity between the different
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Figure 5.1: Large porphyry location data, looking north. (a2) Geological Domains. (b) Categories.
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(a) Large-scale geological domains (b) Categories based on geological properties
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Figure 5.2: Histograms (a) by geological domain, (b) by geological category.

areas should be maintained.

The thick unit on the east side of the domain poses no challenges for implicit modeling.
The density of the information in this area imparts strong controls on the recoverable geometry
since the dense information controls the local anisotropy, even with isotropic interpolation con-
ditions. However, through the central and west portions of the domain, information is sparser
and the local continuity of the geological boundaries may suffer without a representative local
interpretation.

All implicit models in this section are generated with a Gaussian kernel in the PU domain
decomposition framework developed in Section 2.2.5. Extrapolation from data locations is lim-
ited to 200 ft. The parameters of the PU decomposition are constant between all models; 35
data-per-center, 0.01% data overlap during partitioning, and final expansion-overlap of 60% in
the x, y and z directions. The models presented in the following sections are built with constant
input data, partitioning parameters, and support parameters. The only difference between mod-
els is the anisotropy input to the boundary modeling algorithm. Four methods for inference of
anisotropy are tested: 1) isotropic; 2) manually inferred global anisotropy; 3) global anisotropy
from the variogram model; and 4) iteratively refined local anisotropy (Chap. 3). An isotropic
model serves as a baseline for inspection purposes; it is expected that either global or local
anisotropy will improve the reproduction of geological features given the interpretation of the

geological continuity.
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5. Case Study: Implicit Modeling with Locally Varying Anisotropy

5.2 Globally Isotropic Boundaries

Boundaries generated under isotropic conditions are shown in the north-looking oblique view
in Figure 5.3. The reproduction of the dataset is good in the densely sampled area in the
east, however, in the central and west-end of the domain the connectivity does not match the
interpretation of gently folded geological continuity. The model could also be described as overly
rounded, perhaps blob-like, though this is a subjective observation of the shape of the generated

boundaries.

5.3 Globally Anisotropic Boundaries

5.3.1 Anisotropy from Manual Inference

The manual inference of anisotropy comes from inspecting the isotropic model and inferring
orientations and ranges of continuity that describe the expected continuity of the geological
solid. The goal is to address the holes in the sparsely sampled west-end of the deposit. Thus,
a horizontal isotropic variogram model without strike or dip rotation is specified; the vertical
anisotropic ratio is manually set to r, = i. The resulting boundaries are shown in Figure 5.4.
Boundaries generated with interpreted local anisotropy improve continuity of the geological
boundary across the sparse locations by connecting the areas between drill holes in the central

portion of the domain (Fig. 5.4b).
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Figure 5.3: Isotropic boundary model.
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Figure 5.4: Anisotropic boundary model from manual inference.
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Figure 5.5: Anisotropic boundary model from the variogram model.
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Figure 5.6: Experimental and model indicator variograms for the geological domains.

5.3.2 Anisotropy from Variograms

A set of orientations (ang,=75, ang,=-10) for experimental variogram calculation are deter-
mined by inspecting the isotropic model in Figure 5.3 and the composite indicator data. An
horizontal-omnidirectional indicator variogram is calculated and fit with a model variogram (Fig. 5.6).
The range parameters extracted from the fitted variogram models parameterize the RBF kernel
with a set of rotation angles and the magnitudes of anisotropy along each direction.

The experimental variograms show two pronounced structures (Fig. 5.6). The first structure
accounts for approximately 75% of the variance and shows that there is additional continuity in
the vertical direction at a short range. However, the long range structure captures the expected
horizontal continuity of the domain, and thus, the set of anisotropic parameters for RBF inter-
polation are extracted from the second structure. This is a subjective decision according to the
interpretation of the continuity and desired properties of the model. Anisotropic ratios r; = 1
andrn, = ﬁ — 1 are taken from the relative ranges.

Boundary models generated with the variogram-inferred global anisotropy are shown in Fig-
ure 5.5. These globally anisotropic models show a minor improvement in continuity in the area

of sparse sampling, however, the interpreted global anisotropy does a better job in this area

filling out the interpolation.
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5.4 lteratively Refined Local Anisotropy

The iterative refinement algorithm developed in Chapter 3 is applied here to refine local orienta-
tions of continuity from the geological boundaries. The iterative algorithm requires a seed model.
As shown in Chapter 3, a seed model with the best global anisotropy should be considered.
Figures 5.7 and 5.8 show the N-looking and SE-looking views, respectively, of the seed
model (a) and 5 iterative refinements (b) - (f). The local orientations inferred at each stage are
shown as vectors in (b) - (f). In each case the vector orientations indicate the local anisotropy
that went into building that model, generated from the previous model in the refinements; the
final iteration of the algorithm does not generate new orientation vectors. Figures 5.7 and 5.8
focus mainly on the central-west portion of the project since the dense sampling in the east end

constrains the shape refinements possible from this technique.

5.5 Geological Model Performance

The goodness of a geological boundary model depends on multiple criteria (Lindsay et al., 2013;
Oreskes et al., 1994). Section 3.4 highlights the issues validating implicit geological models cit-
ing the deficiency of K-fold validation for capturing the shape properties of the model. In that
section, a SA:V metric is proposed to quantify subjectively poor features in implicit models. How-
ever, the K-fold validation remains an important criteria to gauge relative predictive performance
between different algorithms or parameterizations of the same algorithm operating on the same
dataset.

A 5-fold cross-validation and shape-property study is undertaken to assess the performance
of each set of anisotropic parameters for reproducing the underlying features. The sample
locations colored by fold number are shown in Figure 5.9. The goal of the K-fold analysis
is to assess how well the predictive algorithm reproduces the expected domain codes at the
removed locations, over all folds. The shape properties of the generated models are assessed
by constructing final models considering all samples under each set of anisotropic conditions.
Surface properties of each final model are calculated for comparison (as in Sec. 3.4). The

different sets of anisotropy include: isotropic (Fig. 5.3); inferred anisotropy (Fig. 5.4); variogram
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Figure 5.7: Iterative refinements of the boundary model, looking N. (a) Seed model with global anisotropy,
(b) to (f) iterations 1 to 5, respectively. Vectors shown in (b) to (f) reflect the orientation of the local
anisotropy, sized by the relative magnitude of the anisotropy.
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Figure 5.8: Iterative refinements of the boundary model, looking SE. (a) The seed model with global
anisotropy, (b - f) Refinement iterations 1 to 5, respectively. Vectors shown in (b - f) represent the
orientation of the local anisotropy, sized by the relative magnitude of the anisotropy.
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Figure 5.9: Sample locations colored by fold number for K-fold analysis.

anisotropy (Fig. 5.5); and iteratively refined local anisotropy for 5 iterations (Fig. 5.7).

Figure 5.10a shows the percentage of locations where the boundaries generated under each
set of anisotropic conditions did not correctly identify the category at the unsampled location.
Logically, a lower error is desirable; the best anisotropy is the one that informs boundaries that
have the minimum number of misclassified locations. The iteratively refined models generate
lower errors than models with inferred or variogram anisotropy. The relatively large difference
between the inferred model and the first iterative refinement is interesting as the refinements are
seeded with the inferred anisotropy. Interestingly the lowest error is produced with an isotropic
interpolator. This is an unexpected result since the subjectively improved properties of the
model do not translate into improved cross validation scores.

Figure 5.10b shows the SA:V metric calculated for each implicit model. Here the goal
is to minimize the subjectively poor features of bubbly and rounded-looking implicit models.
Thus, preference is given to models that maximize the SA:V. Predictably, the isotropic model
generates the lowest SA:V score indicating that the model contains blob-like shapes. Global
anisotropy improves the models significantly, and the iterative refinements further improve over
the global anisotropy. In this case iteration 3, 4, and 5 of local refinements produce the maxi-

mum SA:V scores.
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Figure 5.10: Implicit model (a) cross validation and (b) shape properties for the models generated as
part of this study. The best model should minimize predictions errors while simultaneously maximizing
the SA;y : SAsph-

Ultimately the structural interpretation adopted for implicit modeling is a choice made by the
geomodeler based on several criteria, both subjective and objective. This section demonstrates
that the iterative refinements proposed for implicit geological models can capture representative
local anisotropy that is competitive with global anisotropy in terms if prediction errors and outper-
forms global anisotropy in terms of shape properties. In conventional workflows the iteratively

refined anisotropy could be used to aid the interpretation of local anisotropy for the practitioner

- the final choice of global or local anisotropy is left to their discretion.
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5.6 Volumetric Uncertainty

The iteratively refined local anisotropy developed in this thesis can be easily incorporated into
existing methodologies for quantifying the the volumetric uncertainty in implicit modeling frame-
works (Sec. 2.2.7; Wilde & Deutsch, 2012). Twenty-five training-test datasets are generated by
randomly assigning 75% and 25% of the drill holes to the training and test set, respectively, for
each run. Fifty random C-parameters in the interval [0, 500] are generated. The local anisotropy
from iteration 5, above, is used in this case as the representative set of structural anisotropy.
The result of error-classification with increasing C-parameter is shown in Figure 5.11.

The guideline to choose a C-parameter from the error in Figure 5.11 is to consider some
notion of acceptable error. For example, a large C-parameter tends to dilate boundaries so that
a smaller number of locations are incorrectly classified. Manchuk and Deutsch (2015) suggests
2.5% is an acceptable rate for the tabular deposit modeled in that study. There, the C-parameter
corresponding to 2.5% error generally represents the larger voids in the sparsely sampled areas.
This parameter could also be chosen from expert judgment considering the data spacing and the
geometric features. For the current domain the densely sampled regions have an approximate
data spacing of 50 ft, whereas the data spacing is > 200 ft in the sparser regions. Therefore, a
C-parameter of 250 ft with error of ~4% is chosen (Fig. 5.11). Since this spacing is roughly the
spacing of the data in the sparse areas, it is considered reasonable.

A final SDF model is generated by modifying the underlying distance function for boundary
uncertainty with the C-parameter, as detailed in Section 2.2.7. This final model also uses the
local anisotropy refined above. One-hundred unconditional Gaussian realizations are gener-
ated with a Gaussian variogram model and the anisotropy parameters from the case of global
anisotropy inferred above. The simulated realizations are first and second-order stationary and
thus do not match the local orientations inferred during iterative refinement. SGS with LVA
could be considered; local orientations and magnitudes of anisotropy are available at the par-
tition centers, and could be interpolated to the estimation grid (Lillah, 2014). The 100 uncon-
ditional realizations are truncated against the final SDF model by transforming the simulated
Gaussian values to a uniform distribution between -250 and +250, corresponding to the range

of the trained C-parameter on either side of the boundary. For each unconditional Gaussian
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Figure 5.11: Percentage of misclassified locations as a function of C-parameter

realization the final simulated domain code is determined as (Wilde & Deutsch, 2012):

inside  if dfl(u) > df(u)
i(u) = (5.1)

outside if df'(u) < df(u)
where df! is the distance function from unconditional simulation and df is the modified signed
distance function accounting for the C-parameter. Truncation with each realization results in
100 boundary realizations generated from the implicit model. Figure 5.12 shows the p1o, Pso
and po, isosurfaces generated by counting how many times each location is found inside the
boundary over all realizations. The uncertainty associated with the boundaries is evident in
the west portion of the domain where the spread between the red po, and grey p,, surface
is relatively large. By contrast in the east end, with dense drilling, there is less uncertainty.
The distribution of global volumetric uncertainty generated by these realizations is shown in

Figure 5.13. The contained volumes range from 59 M to 115 M ft3.
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Figure 5.12: Iso-probability shells generated from implicit modeling with uncertainty. The p;q, P and
Pge surfaces are grey, yellow and red, respectively.
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Figure 5.13: Volumetric uncertainty for boundary models generated with local anisotropy.

5.7 Review of Main Points

This chapter demonstrates the implicit modeling and iterative refinement algorithms developed

in Chapter 3. Specifically:

1. The PU implicit modeling framework is effective for implicit modeling of geological do-

mains;

2. Local anisotropy

refined iteratively from implicit models reasonably captures the expected

local features from the targeted domain;

3. Cross validation of implicit models is only one part of implicit model validation; equally im-

portant are the shape properties of the generated models, which should minimize bubbles

and other subjectively poor features.

5.8 Conclusions

The implicit geological

modeling techniques presented in this thesis effectively capture local

structures given a composite dataset and targeted geological domains. The inference and ex-

ecution of local anisotropy to implicit modeling can be time consuming, subjective, and error

prone. This chapter demonstrates automatic iterative refinements of local features provides
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a reasonable structural interpretation of a domain. Furthermore, the best models in terms of
subjective shape properties does not correspond to the best model in terms of prediction errors.
The relatively small increase in errors should be carefully considered when implementing local

features to implicit models.
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CHAPTER 6

CASE STUDY: THE EFFECT OF IMPROVED
STATIONARY DECISIONS ON
GEOSTATISTICAL PREDICTIONS

6.1 Introduction

Assessing local and global uncertainty in geostatistical models is critical for decision making and
subsequent process optimization. Uncertainty in the input parameters represents an important
source that must be quantified and transferred through the geostatistical modeling workflow.
Assessing and incorporating known uncertainties to geostatistical models is well studied (Khan
& Deutsch, 2016). However, missing from the current state-of-the-art are techniques to quantify
the uncertainty associated with partitioning the dataset into stationary domains amenable to
statistical modeling. Instead, uncertainies are more commonly characterized in the presence of
a single decision of stationarity deemed reasonable at the start of the workflow.

This chapter implements the clustering algorithms and tools developed in Chapter 4 and ver-
ifies that the proposed methodologies improve geostatistical models. Four main contributions
are developed in Chapter 4: 1) a suite of metrics that aid in the interpretation of different sta-
tionary decisions; 2) a novel clustering algorithm that reduces parameterization requirements;
3) a geostatistical consensus function for improved spatial clusters generated from clustering
ensembles; and 4) a method to generate realizations of stationary domains for uncertainty char-
acterization. Here, a K-fold validation workflow is undertaken with two datasets to assess what
benefit the developed tools provide over other stationary decision making strategies.

The first dataset follows from the geological modeling in Chapter 5. This domain is referred
to as porphyry in the following text, and has a single lognormally-distributed modeling variable,
Cu total (CuT), from two geologically defined rock types. This dataset can be considered a
simplified case of stationary domaining since only a single variable must be considered. The
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second oilsands dataset contains 3 variables and 10 facies, with a mix of Gaussian-like and

lognormal distributions. However, the multivariate relationships are non-Gaussian.

6.2 Experimental Methodology

The validation methodology employed here consists of a 5-fold cross validation that quantifies
prediction error between geostatistical models generated under different decisions of stationar-

ity.

6.2.1 Types of Decisions of Stationarity

For each dataset, a total of 7 decisions of stationarity (hereafter: domains, categories or clus-
ters) are assessed, including: a single domain (no dataset partitioning); geological categories;
multivariate clusters; spatial clusters; improved spatial clusters; realizations of spatial clusters;
and realizations of random clusters. The single domain (‘no domains’) tests the assumption
that there is only a single stationary population, and subdivision of the dataset is detrimental
to the geostatistical analysis. Spatial clusters are generated using the DS clustering algorithm
developed in Section 4.3. Improved spatial clusters are generated from the clustering ensemble
using the geostatistical consensus function developed in Section 4.4. Finally, the cluster real-
izations are taken from the sub-ensemble selected to generate the improved spatial clusters.
Together, these three methods comprise the novel contributions of Chapter 4 for generating

stationary domains and assessing the associated uncertainty.

6.2.2 Validation Methodology

Figure 6.1 left shows a conventional decorrelation-based geostatistical workflow for a constant
set of categories. The modification to have different categories for each realization is straight for-
ward (right; Fig. 6.1). Sequential indicator simulation (SIS) and SGS (Deutsch, 2006; Manchuk
& Deutsch, 2012) are used for simulating the categorical and continuous variables, respectively.
For each geostatistical realization and at each unsampled location, SIS is used to simulate the
category given the categories found at nearby sample locations and previously simulated nodes.

Within each simulated categorical domain, SGS is used to simulate the continuous variables
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Figure 6.2: Location map of the porphyry deposit colored by CuT.

conditional to the related samples and simulated locations from the same category. For the
univariate large-porphyry dataset, a normal-score transformation is performed independently in
each category, and independently for each realization of categories in the modified workflow.
Similarly, for the oilsands datasets, a linear decorrelation transformation (e.g., sphere-R; Barnett
& Deutsch, 2015) is undertaken to permit independent simulation of the Gaussian-transformed
variables, and is applied independently for each realization of categories in the modified work-

flow.

6.3 Porphyry Dataset

The setting of the porphyry is detailed in Chapter 5. Sample locations, colored by CuT, within
the context of the geological domain boundaries are shown in Figure 6.2. The dataset for geo-
statistical modeling comes from within the geological boundaries and consists of 1299, 10 ft

composite assays from 139 drill holes.
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Figure 6.3: Elbow plot for CuT.

6.3.1 Defining Categories

The first step is to choose how many categories to model. An elbow plot measures the com-
pactness of a configuration in multivariate space for different K by calculating the total WCSS
of the configuration for each K. A preferred K can be selected by inspecting the plot of K vs
WCSS, and looking for inflection points. The elbow plot for this dataset is shown in Figure 6.3
and does not show a clear preferred K. Since there are two geological categories defined in
the geological log, K = 2 is used for all sets of categories defined in this section.

The univariate properties for all single-realization categories are shown in Figure 6.4, and
selected slices through the composite dataset, colored by assigned category, are shown in Fig-
ure 6.5. The clustering metrics developed in Chapter 4, calculated for all generated clusterings,
are shown in Figure 6.6. For this dataset the WCSS and spatial entropy are selected as the

multivariate and spatial metrics, respectively.

6.3.1.1 Geological Categories

Geological categories are defined in the drill logs by site practitioners. The univariate proper-
ties of each category are very similar and nearly completely overlap (Fig. 6.4a). However, the
spatial delineation of the categories is the best out of all techniques considered here. This com-

bined score is reflected in Figure 6.6 (green) where the geological categories plot with a high
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Figure 6.4: KDE (shaded area) and box plots (vertical line) of CuT grades from each defined category
from the porphyry dataset. (a) Geological categories, (b) multivariate clusters, (c) spatial clusters, and
(d) improved spatial clusters.

117



6. Case Study: The Effect of Improved Stationary Decisions on Geostatistical Predictions

Geological Categories Multivariate Clusters
—un (@) i i i i —un|(B) i
A I R \ o L 4 I 0l pr=y - I A AR S A T T S |-
0 0 H
[= c |
LSo Lo o
o o
<+ [ I I [ < I [
200 400 600 800 1000 1200 200 400 600 800 1000 1200
Easting (ft) Easting (ft)
Spatial Clusters Improved Spatial Clusters
(c) | | K i 1 (d)
= | | | =
E’B —t ¥ __.____..____..____..____._ ______ E'[B — T+ ik
c | c
Lo 1 So
R ] ¢ |9 : 5@ ———
=0 | N |
-4 R S g THRY ¢ 3§ W SEY Y g Y
= i H i =t i }
200 400 600 800 1000 1200 200 400 600 800 1000 1200
Easting (ft) Easting (ft)
| ——
1 2
Categories

Figure 6.5: E-W slice of the sample locations from the porphyry dataset, colored by category. (a) Geo-
logical categories, (b) multivariate clusters, (c) spatial clusters, and (d) improved spatial clusters.

multivariate score and a low spatial score. Recall that, in this metric space, minimizing both
metrics is the goal, and a tradeoff between multivariate and spatial scores is expected. The cat-
egorical variograms calculated for this set (Fig. 6.7a) support the spatial score, since the spatial
continuity is the highest out of all sets. Variograms for CuT within each geological category are

shown in Figure 6.8a. The spatial continuity within each category is distinct, further supporting

this delineation.

6.3.1.2 Multivariate Clusters

Multivariate clusters are generated with K-means clustering using 100-random initializations.
This set differs from the rest since only the continuous variables, and no spatial information, is
considered to form the clusters (Fig. 6.4b & 6.5b). Clusters generated from this dataset are not
multivariate since only CuT is used; in this sense these categories are identical to grade domains
defined on CuT cutoffs. As expected, the resulting categories best delineate the univariate
properties of the domain (Fig. 6.4a and red in Fig. 6.6). However, the spatial properties are
comparatively poor, especially with respect to the geological domains (Fig. 6.5a vs. b), which
is also reflected in the categorical variograms (Fig. 6.7a vs. b). Variograms of CuT within each

category show continuity similar to the geological categories, but with slightly shorter ranges
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Figure 6.6: Standardized spatial-multivariate metrics calculated for all categories for the porphyry
dataset.

(Fig. 6.8b).

6.3.1.3 Spatial Clusters

Spatial clusters are generated using the DS clustering methodology developed in Chapter 4
(Fig. 6.4c & 6.5c). The DS algorithm generates 1000 clusterings, using 35 nearest-neighbors,
and merging 3 neighbors per location in the spatial merging stage. Clusterings are rejected from
the ensembile if any one of the categories contains less than 25% of the composite database.
The search anisotropy is omnidirectional in the horizontal plane with a 2:1 horizontal:vertical
anisotropy ratio to preference the local spatial search for samples between, rather than along,
drill holes. The spatial and multivariate scores for all clusterings in the ensemble are shown
in black in Figure 6.6, and show the expected inverse relationship between multivariate and
spatial delineation.

Spatial clusters are generated from the consensus of all clusterings in this ensemble using
the pairwise-similarity matrix consensus function; the metric score is shown as the purple star

in Figure 6.6. This consensus clustering has properties seemingly representative of the entire
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Figure 6.7: Experimental and model categorical variograms for each set of categories. (a) geological
categories, (b) multivariate clusters, (c) spatial clusters, and (d) improved spatial clusters.

ensemble. The spatial properties are improved with a corresponding degradation in multivariate
properties when compared to the multivariate clusters. In the spatial domain these clusters do
appear to be more continuous (Fig. 6.5c), which is also supported by the categorical variograms
(Fig. 6.7cvs. b). Variograms of CuT within each cluster are similar to those from the multivariate

clusters (Fig. 6.8c).

6.3.1.4 Improved Spatial Clusters

The proposed improvement to spatial clustering chooses a subset of the ensemble that has
the best spatial and multivariate properties. These are selected by finding 100 clusterings that
have the minimum multivariate score for a given spatial score (blue crosses; Fig. 6.6). Improved

spatial clusters are generated from this subset using the same pairwise-similarity matrix consen-
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Figure 6.8: Experimental and model variograms of normal scored NS_CuT within each category, for
each set of categories.

121



6. Case Study: The Effect of Improved Stationary Decisions on Geostatistical Predictions

Cluster 1 Cluster 2

Elevation (ft)
425 550 675
L]
L ]
o T
5
-
AL
Elevation (ft)

425 550 675
-

| _ B N AT
| | ! | ! 1 |

200 400 600 800 1000 1200 200 400 600 800

Easting (ft) Easting (ft)

| aa—
0 025 05 075 1
Probability to be inside

Figure 6.9: E-W slice of the porphyry domain, colored by probability to be part of each category.

sus function, as above (Fig. 6.4d & 6.5d). The resulting categories have improved multivariate
properties, with a corresponding decrease in spatial properties when compared to the spatial
clusters generated from the total ensemble (brown vs. purple; Fig. 6.6). The categorical vari-
ograms also support this decrease in spatial continuity (Fig. 6.7d), whereas variograms of CuT

within each category show slightly longer-range continuity when compared to the clusters from

the full ensemble (Fig. 6.8d).

6.3.1.5 Cluster Realizations

The suite of improved clusterings selected above each define the categories used for a single
realization in the simulation workflow (blue crosses; Fig. 6.6). Each clustering realization is re-
coded to have the maximum similarity to the improved clusters generated above. The recoded
cluster realizations compared against the improved clustering from above gives the likelihood
of each location to belong to each category over all realizations (Fig. 6.9). In this case, categor-
ical and continuous variogram models calculated from the improved clustering are used for all
realizations, however, automatic fitting of variograms from each category realization could be
considered.

The proportion of samples allocated to each category over all realizations is shown in Fig-
ure 6.10b. This distribution of uncertain proportions is not typically available in conventional
stationary domaining workflows, and instead must be generated through bootstrap analysis
and trend modeling (Hadavand & Deutsch, 2017). A set of KDE of CuT contained in each cate-
gory, colored by category type, are shown in Figure 6.10b. The clustering realizations delineate

consistent low and high grade populations in terms of their univariate and spatial properties.
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Figure 6.10: (a) KDE for CuT for each category (i) 1 and (ii) 2, for each set of categories. (b) Distribution
of proportions of each stationary domain over all realizations.

6.3.1.6 Control Groups

Two control groups are implemented for comparison. The first set considers all samples to be
from a single stationary population. This may be a reasonable decision in this domain since the
single variable follows a relatively stable lognormal distribution, the controls to mineralization
are relatively large-scale and diffuse, and the large-scale geological partitioning mostly sepa-
rates the low grade from the high grade populations. The second control group considers the
stationary domains to be random, and generates a different random set of stationary domains
for each realization. According to the developed metrics, considering random categories results

in the worst spatial and multivariate delineation out of all clusterings (orange; Fig. 6.6).

6.3.2 K-Fold Results

The geostatistical analysis follows the steps outlined in the left and right of Figure 6.1, for the
static and uncertain categories, respectively. The sample locations colored by fold are shown
in Figure 6.11. The full SIS and SGS simulation workflow is repeated independently for each
fold, using the training set to build geostatistical models, and the test dataset to evaluate how
well the true values are predicted at the removed locations.

The performance of each set of categories is assessed by comparing the mean of simulated
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Figure 6.11: Sample locations colored by fold for the large-porphyry dataset.

Table 6.1: CuT K-fold error statistics by category, porphyry dataset.

Covariance Correlation RMSE

Category Realizations 0.33
Random Domain 0.33
Geological Categories 0.33
Multivariate Clusters 0.16
Spatial Clusters 0.29
Improved Spatial Clusters 0.31
No Domains 0.37

0.42
0.42
0.44
0.37
0.42
0.45
0.45

1.13
1.14
1.11
1.14
1.11
1.10
1.11

values with the true values at removed sample locations. This E-type estimate is the best esti-

mate given the modeling parameters for each set of categories tested in this workflow (Fig. 6.12

and Tab. 6.1). The goal is to reproduce the true values, minimizing the RMSE and maximizing

the correlation and covariance between the estimate and the truth.
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Figure 6.12: Cross plot between the E-type estimate and the true values from the porphyry dataset.

The best set of estimates are obtained from the improved spatial clusters since they give
the lowest RMSE and highest correlation (Fig. 6.12f). There is an incremental improvement be-
tween multivariate clusters, spatial clusters and improved spatial clusters in terms of correlation
and RMSE, confirming that spatial information incorporated in unsupervised learning algorithms
for stationary domaining is beneficial for geostatistical modeling.

Another important measure is how the predicted distributions of uncertainty match the
data across validated locations; this is assessed using the accuracy plots of Deutsch (1996)
(Fig. 6.13). This plot compares the expected and observed number of times a true value falls

within a given probability interval for the local distributions of uncertainty. The goal is to gener-
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Figure 6.13: Accuracy plots for CuT from the porphyry dataset, for each set of categories.

ate local distributions where the true value always falls within the expected probability interval
over all locations in the domain, such a case would result in points plotting along the 1:1 line.
Points falling below the 1:1 line indicate that local distributions of uncertainty are too narrow,
and points above the 1:1 line indicate the local distributions that are too wide. Either case could
be acceptable, but generally, narrower distributions of uncertainty that are equally accurate are
preferred (Deutsch, 1996).

For the tested sets, the improved spatial clustering methodology generates the best local
distributions of uncertainty (Fig. 6.13a, and f), since points plot closest to the 1:1 line over all

probability intervals. Multivariate clusters and regular spatial clusters generate local distribu-
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tions that are slightly too narrow (below 1:1), whereas the control groups and the geological
categories generate local distributions that are too wide (above 1:1). All methods generate

local distributions of uncertainty that could be considered reasonable.

6.3.3 Global Realization Checks

A suite of final realizations are generated with the entire modeling dataset to assess how well
realizations generated with different sets of categories reproduce the global statistics.

The first check is to reproduce the representative histogram (Fig. 6.14). All sets of cate-
gories result in reasonable histogram reproduction, except for the multivariate clusters which
fail to reproduce the medium to high grade values. Here, the control groups and the geologi-
cal categories generate realizations that have a slightly higher average grade, which could be
attributed to uncontrolled extrapolation of high-grade material in the sparsely sampled areas.

Next, the spatial continuity between locations should be reproduced. Variograms calcu-
lated on back transformed realizations show reasonable reproduction of the CuT experimental
variogram calculated from all data in the dataset (grey vs. red; Fig. 6.15). All methods fail to re-
produce the long-range horizontal structure in the global variogram model, though the vertical
direction is well reproduced by all methods except the random and multivariate cluster cate-
gories. The poor horizontal variogram reproduction could be attributed to the domain clipping

by the bounding implicit model.

6.3.4 Discussion

The control groups perform very well in this domain in terms of reproduction of global statistics,
and the local error in reproducing the data. However, local distributions overestimate the local
uncertainty across the domain. The DS spatial clustering and improved ensemble clustering
methodology proposed in Chapter 4 generate categories that are measurably better as station-
ary domains in terms of local accuracy, representative local distributions and the reproduction
of global statistics.

Overall, in terms of reproducing the data, generating representative distributions of uncer-

tainty and reproducing the input statistics, the spatial clustering methodologies match or outper-
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Figure 6.14: Histogram reproduction plots for the porphyry dataset.
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Figure 6.15: Variogram reproduction for realizations generated by each method. Horizontal reproduction
shown in the top and vertical shown below for each set of stationary domains (a-g).
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form traditional stationary decision making methodologies in this domain. This domain repre-
sents a simple case since the spatial properties of only a single variable must be considered and
the geological delineation has already imparted some consistency to the delineated populations.
Compared to the categories defined in the geological logs, the spatial clusters or the improved
spatial clusters represents an improvement in three ways: 1) a reduction in prediction errors; 2)
a tractable and reproducible domaining workflow that can easily integrate new information; and

3) assessment of the uncertainty associated with partitioning the domain into stationary sets.

6.4 Oilsands Dataset

The oilsands dataset consists of 3196 3 m composites from 150 wells, sampling 3 variables
and 9 unique facies (Fig. 6.16a). Inspection of the normal-scored multivariate distribution in
Cartesian and multivariate space suggests that 3 domains will reasonably capture the properties
of this domain. However, an elbow plot generated for different K (Fig. 6.17) does not show a
conclusive best K, though 3 or 4 could be argued. Vertical zonation is an important feature
of this dataset; a laterally continuous bitumen-rich and fines-poor layer forms the center of the
domain with a bitumen-poor unit above and a chlorides-rich unit below (Fig. 6.16b). One method

to account for this vertical zonation is to partition the domain.

6.4.1 Defining Categories

The same set of 7 methods to generate modeling categories are applied to this dataset. All
methods requiring a spatial search use a 50:1 horizontal:vertical anisotropy ratio, which is war-
ranted owing to the long-range horizontal continuity of the underlying variables and the large
differences in sample spacing down-well versus between wells. The spatial and multivariate
metrics calculated for all generated categories are shown in Figure 6.19. For this dataset the
WCSS and spatial entropy are selected as the multivariate and spatial metrics, respectively.
KDEs showing the distribution of continuous variables contained within each category, for all

sets of categories, are shown in Figure 6.20.
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Figure 6.16: (a) Drill hole locations colored by facies. Dotted lines in (ai) show the location of the E-
W and N-S slices in (aii) and (aiii), respectively, and (b) Gaussian transformed values of the oilsands

dataset.
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Figure 6.17: Elbow plot for Bitumen, Fines and Chlorides.
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Figure 6.18: Individual sets of categories for the ocilsands dataset on the E-W section looking north.
6.4.1.1 Geological Categories

Nine facies are manually merged to 3, by considering the multivariate populations and the large-
scale spatial Cartesian relationships. Categories are merged if they form contiguous groups in
the Cartesian domain and if the multivariate properties of the two categories are similar (Rossi &
Deutsch, 2014). This multivariate similarity could be measured with the cluster metrics proposed
in Chapter 4. The resulting merged-geology categories are shown in Figure 6.18a, hereafter
referred to as geological categories.

Considering the 3 target variables in Figure 6.16b and 6.20, the delineation of the bitumen-
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Figure 6.19: Standardized spatial-multivariate metrics calculated for all categories for the oilsands
dataset.

rich zone is relatively poor with this method. However, this is a reasonable delineation since
there is a clear vertical trend in bitumen content and strong horizontal anisotropy. These cat-
egories are the most spatially contiguous out of all considered here, which is reflected by the

spatial-multivariate metric value calculated for this set (green; Fig. 6.19).

6.4.1.2 Multivariate Clusters

Categories generated considering only the multivariate properties are shown in Figure 6.18b
and red in Figure 6.19 and 6.20. Again, K-means clustering with 100-random initializations
is used. The resulting categories have relatively good spatial delineation given that no spatial
information is considered in the clustering algorithm. This can be attributed to the high horizontal
spatial continuity of the underlying variables and the large-scale zones of consistent variable
properties. These categories clearly account for the bitumen-rich fines-poor central layer (red;

Fig. 6.20aii & bii).
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6.4.1.3 Spatial Clusters

Spatial clusters are generated using the DS clustering algorithm, with 1000 clustering realiza-
tions, 55 spatial neighbors with 3 locations merged during during the spatial search phase. An
additional constraint given to the clustering algorithm is to reject clusterings from the ensemble
if any one of the categories contains less than 10% of the composite database, to ensure that
a suitable number of samples are found within each delineated domain for geostatistical mod-
eling. The ensemble of clusterings (black; Fig. 6.19) is processed with the pairwise-similarity
consensus function; the result is shown in Figure 6.18c and purple in Figure 6.19 and 6.20.
Similar to the multivariate clusters, these also account for the central bitumen-rich fines-poor
layer. However, these clusters have slightly better spatial and poorer multivariate scores when
compared to the multivariate clusters in the cluster metric space (purple vs. red; Fig. 6.19).

Spatial patterns between the two sets of categories are similar (Fig. 6.18b vs. c).

6.4.1.4 Improved Spatial Clusters

A sub-ensemble is selected from the total set of clusterings generated in the previous section
by finding clusterings with the best multivariate properties for different levels of spatial continu-
ity (blue; Fig. 6.19). The same pairwise-similarity consensus function generates the improved
spatial clusters from this sub-ensemble (Fig. 6.18d; brown in Fig. 6.19 & 6.20). The resulting
clusters are improved in terms of spatial and multivariate properties with respect to the multi-

variate clusters and the spatial clusters generated from the full ensemble.

6.4.1.5 Cluster Realizations

The clusterings selected to form the improved spatial clusters are used as realizations of cate-
gories (blue; Fig. 6.19). After ensuring the cluster codes between realizations are compatible
with the improved spatial clusters from above, the probability for each location to be in each cat-
egory can be assessed over all realizations (Fig. 6.21). The spatial configuration of all clusters
realizations is very similar to the improved spatial clusters, but with uncertainty mainly along
the boundaries between the large-scale consistently-categorized zones. Furthermore, the con-

tinuous variables contained within each clustering realization are similar to those from the con-
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Figure 6.21: E-W section, looking north colored by the probability for each location to be part of each
category.
sensus clustering (e.g., grey vs. brown; Fig. 6.20), though several of the cluster realizations

delineate multivariate populations that are better delineated than the other methods.

6.4.1.6 Control Groups

Two control sets are tested; the first considers the total domain to be a single stationary popula-
tion. In general, in a domain with trends, a single stationary population without proper attention
to the trend component should produce poor results in sparse areas. However, given the strong
stationary anisotropy in this domain, at any given unsampled location, a local search for condi-
tioning data will ensure that related samples are found generate the estimate at that location.
The second control group of randomized categories essentially tests three superimposed global

populations, which should perform similar to the single population control group.

6.4.2 K-Fold Results

The geostatistical analysis follows the same steps outlined in the left and right of Figure 6.1
for the static and uncertain categories, respectively. The drillhole locations ordered by fold are
shown in Figure 6.22. Scatter plots between the E-type estimate and the true values are shown
in Figure 6.23, B.6 and B.7, and error metrics tabulated in Table 6.2, 6.4 and 6.3 for bitumen,

fines and chlorides, respectively.
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Figure 6.22: Sample locations colored by fold for the oilsands dataset

Table 6.2: Bitumen K-fold error statistics by category, oilsands dataset.

Covariance Correlation RMSE

Category Realizations 16.28 0.78 3.16
Random Domain 14.57 0.77 3.26
Geological Categories 156.22 0.77 3.20
Multivariate Clusters 16.23 0.78 3.15
Spatial Clusters 16.27 0.78 3.18
Improved Spatial Clusters 16.63 0.78 3.15
No Domains 156.22 0.77 3.23

Table 6.3: Fines K-fold error statistics by category, oilsands dataset.

Covariance Correlation RMSE

Category Realizations 253 0.70 16.01
Random Domain 235 0.68 16.38
Geological Categories 246 0.69 16.15
Multivariate Clusters 248 0.69 16.17
Spatial Clusters 253 0.70 16.13
Improved Spatial Clusters 264 0.70 15.97
No Domains 250 0.68 16.57
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Figure 6.23: Cross plot between the E-type estimate and the true values from the oilsands dataset.

Table 6.4: Chlorides K-fold error statistics by category, oilsands dataset.

Covariance Correlation RMSE

Category Realizations 129725 0.80 272
Random Domain 125968 0.80 274
Geological Categories 128111 0.81 268
Multivariate Clusters 131339 0.81 270
Spatial Clusters 131340 0.80 272
Improved Spatial Clusters 131815 0.81 269
No Domains 131718 0.80 273
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For this dataset all methods produce global error metrics that are similar to one another,
with a very small preference to the spatial clustering methodologies for stationary domains.
The control groups consistently perform the worst with respect to covariance and RMSE, likely
a consequence of the vertical zonation that is not accounted for in the adopted geostatistical
modeling workflow. However, it should be noted that with respect to global prediction error as-
sessed over 100 realizations, all methods generate E-type estimated values that are consistent
with one another.

The error statistics generated by comparing the E-type estimate to the truth are corroborated
by accuracy plots (Fig. 6.24, B.8 & B.9). Here the control groups generate local distributions
of uncertainty that slightly over-predict local uncertainty for bitumen (Fig. 6.24b & g) and under-
predict local uncertainty for fines (Fig. B.8b & g). Multivariate clustering and the category real-
izations generate local distributions that are both accurate and precise for bitumen, as points
are fairly close to the 1:1 relationship. Interestingly, for bitumen and fines the best combined
prediction of local uncertainty is obtained with the proposed category realizations. However,
with respect to chlorides, the best prediction of local uncertainty is obtained by considering no
domains (Fig. B.9g). Ultimately the practitioners stance on risk determines which prediction of

local uncertainty is most suitable.

6.4.3 Global Realization Checks

A suite of final geostatistical realizations are generated using the entire modeling dataset; his-
togram reproduction plots are shown in Figure 6.25, B.10, and B.11 and variogram reproduction
plots in Figure 6.26, B.12, and B.13 for bitumen, fines and chlorides, respectively.

All sets of categories generate realizations that slightly under predict quantiles of the refer-
ence bitumen distribution. Realizations from the control groups are slightly poorer than those
from the other groups. The uncertain categories (Fig. 6.25a) are the only set that encompass
the reference distribution and, relative to the improved spatial clusters, category realizations
have captured greater uncertainty (Fig. 6.25a vs. 6.25f).

Variograms calculated from bitumen realizations show reasonable reproduction of the global

variogram calculated considering all sample locations (Fig. 6.26). The vertical direction is well
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Figure 6.24: Accuracy plots generated from the K-fold validation analysis for bitumen.

reproduced by all methods, whereas reproduction of the short-range horizontal continuity is

problematic for all methods.

6.4.4 Discussion

The oilsands dataset displays results that are consistent with the porphyry dataset. Interest-
ingly, even with clear non-stationarity found in this domain, the high horizontal continuity com-
bined with representative search parameters results in estimates that are largely un-affected by
this non-stationarity; predictions generated considering no domains perform only slightly worse

than the best methods for stationary domaining. However, over all methods there is a slight
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Figure 6.25: Histogram reproduction plots for bitumen from the oilsands dataset.

preference to the spatial clustering methodologies in terms of maximizing the covariance and

correlation and minimizing the RMSE between the estimate and the truth. Spatial clustering and

cluster realization stationary decisions result in the best prediction of local uncertainty. Consid-

ering the final suite of realizations, the additional variability between realizations captured by

the clustering-realization stationary domains suggests that the uncertainty associated with sta-

tionary domaining has been incorporated without adversely affecting the other qualities of the

generated realizations.

141



6. Case Study: The Effect of Improved Stationary Decisions on Geostatistical Predictions

(a) (b) (c) (d)
1.2 T = 1.2 ma-m 1.2 1.2
Horizonta orizonta A 4
1.0 1.0 1.0 1.0
0.8 — 08 +— 0.8 — 08
YO‘G YO.E YO.S YO.S
0.4 0.4 ' 04 / 04 /
— Realizations ’ — Realizations — Realizations — Realizations
0.0 ] 0.0 0.0
o 1000 2000 3000 o 1000 2000 3000 1] 1000 2000 3000 0 1000 2000 3000
Lag Distance (m) Lag Distance (m) Lag Distance (m) Lag Distance (m)
12 ryerricat 1.2 yarricat 1.2 yarticat 1.2 ryarticaf
1.0 10 1.0 1.0
0.8 0.8 0.8 / 0.8 /
Yo,s yo.s / yo.s / Yo.s /
0.4 ! 0.4 / 0.4 7 0.4 /
0.2 ——+t Global Model 0.2 ——+t Global Model 0.2 ——+ Global Model 0.2 ——+ Global Model
— Realizjtions — Realizjtions — Realizptions — Realizptions
0.0 0.0 0.0 0.0
4] 10 20 30 40 4] 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Lag Distance (m) Lag Distance (m) Lag Distance (m) Lag Distance (m)
(e) {f) (g)
12 apatlal Cf 12 :Fprovea 12 WO Domajns
orizonta orizontg orizontgl
1.0 1.0
0.8 08
V 0_5 0.6 — _. 4
0.4 0.4 L4
0.2 e Glnhal Mod 0.2 — L 02 / e Glnhal Mocp!
—_— jon: —— Rpalizations — jon:
0.0 0.0 0.0
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Lag Distance (m) Lag Distance (m) Lag Distance (m)
1.2 ryerticat 1.2 ryerricat 1.2 ryertical
1.0 1.0 1.0
0.8 / 0.8 0.8 l
V 0.6 Yo.s V 0.6 /
0.4 0.4 0.4 H
0.2 / ——t Global Model 0.2 / ——+ Glohal Mods| 0.2 ——+t Global Model
— Realizptions — Realizptions — Realizptions
0.0 0.0 0.0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Lag Distance (m) Lag Distance {m} Lag Distance (m)

Figure 6.26: Variogram reproduction for realizations of bitumen generated by each method. Horizontal
reproduction shown in the top and vertical shown below for each set of stationary domains (a-g).
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6. Case Study: The Effect of Improved Stationary Decisions on Geostatistical Predictions

6.5 Review of Main Points

This chapter demonstrates the consequence of different stationary domaining methodologies,
followed through conventional geostatistical analyses. Specific contributions of this chapter
include:

1. Demonstration of the insight provided by the cluster metrics developed in Chapter 4;

2. Confirmation that spatial clusters represent a better set of categories for geostatistical

analysis over traditional multivariate-only clusters;

3. The DS clustering algorithm and geostatistical ensemble analysis in Chapter 4 are effec-

tive for generating stationary domains within a large-scale geological context;

4. The uncertainty associated with defining categories can be incorporated into existing un-

certainty characterization workflows with minimal scripting efforts;

6.6 Conclusions

Decisions made during delineation of stationary domains impact the predictive performance of
geostatistical models. The proposed cluster-metrics provide a useful summary of how stationary
domains will perform in subsequent geostatistical analysis, thereby facilitating a reproducible
stationary domaining workflow without an arduous geostatistical validation workflow. Spatial
clusters and spatial cluster realizations as stationary domains are indeed beneficial to subse-
quent geostatistical modeling in the form of increased local and global accuracy. However, given
the marginal differences between control groups and the developed methods for stationary de-
lineation, further research into when stationary domaining is appropriate for a given domain is

warranted.
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CHAPTER 7

CONCLUSIONS

This dissertation develops contributions to implicit geological modeling and stationary decision
making that improve decisions made early early in geostatistical analysis. The developed
methodologies and workflows are practical and help capture complex features in geostatisti-

cal datasets.

7.1 Contributions to Geological Boundary Modeling

Geological boundaries are an important component of numerical models as they control domain
extents and inform the setting of mineralized features.

Choosing the algorithm by which a volumetric function is interpolated in implicit modeling
is critical since it affects the speed of the interpolation, the types of anisotropy that can be
included, and the information required to parameterize the interpolation framework. Global
interpolators, like dual kriging or RBF, are advantageous since weights are calculated once and
the interpolators result in an artifact-free map that is ideal for extracting the geological surface.
However, global methods suffer from CPU and RAM limitations for large datasets.

The practitioner must also choose whether or not to model with LVA. This decision depends
on the structural relationships for the given modeling project. This decision may require domain
knowledge or sufficient data to identify LVA as a necessary component for capturing the geolog-
ical relationships. Once the decision has been made to implicitly model with LVA, the next deci-
sion is what kind of LVA to implement. A number of different techniques are available ranging
from manual domain partitioning, stratigraphic transformations, unfolding, distance-weighted
local statistics, automated domain partitioning, or the full LVA implementation using shortest-
paths.

Three main contributions are made to implicit geological modeling in this thesis: 1) a bound-

ary modeling algorithm for large datasets that can incorporate local anisotropy; 2) an iterative
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7. Conclusions

local anisotropy refinement algorithm combining automatic local orientation extraction with the
developed boundary modeling algorithm; and 3) a method to quantify shape properties of sub-

jectively poor implicit models.

7.1.1 Implicit Geological Modeling with Local Anisotropy

Previous works studying implicit modeling with LVA in RBF interpolation frameworks mainly
target a sparse data environment, where local structural orientations integrated into the inter-
polation improves the generated surfaces where no point information is present (Hillier et al.,
2014). Outside of RBF interpolators, several strategies for interpolation considering LVA are
available. However, the unique properties of the underlying SDF restricts which interpolators
are suitable for SDF interpolation. The implicit modeling framework developed in Chapter 3
specifically targets a dense data environment, where the point dataset comprises the bulk of
the information for boundary reconstruction and global interpolation is problematic from a com-
putational standpoint. Such domains are common in earth sciences, where a wealth of point
information is available. Partitioning of the domain into overlapping subdomains has several
benefits for implicit geological modeling. The characteristics of local surfaces can be improved
since parameters can be locally representative. The decomposition of large problems into small
overlapping subproblems intrinsically speeds up boundary interpolation since the large N x N
system of equations is avoided. Interpolation speed can be increased further by parallelizing
partitions across several CPU threads. Moreover, since partitions are independent, if a par-
ticular area receives more information, the model update step only requires re-interpolation of
affected partitions to account for the new data. This greatly reduces the computational com-
plexity of implicit modeling of geological domains and allows rapid iteration between different

interpretations or model updates in the presence of new data.

7.1.2 Iterative Refinement of Geological Features

Identifying and modeling local features in geological domains can be challenging (Lillah &
Boisvert, 2015). The geomodeler must consider the structural environment and the compos-

ite point dataset in three dimensions to determine reasonable structures represented in the
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dataset that can be captured by the geological models. This interpretation of structural continu-
ity is largely achieved through inspection of the composite database with a 3D viewer (Cowan,
2014) and manually iterating through different structural interpretations to generate reasonable
models. An algorithm to iteratively and automatically infer local orientations from the data is
developed by combining local orientation extraction and boundary modeling with LVA. A similar
algorithm is proposed by te Stroet and Snepvangers (2005), however, in that study the refine-
ment of local anisotropy requires a local search such that different kriging parameters are used
at each location. The proposed algorithm in this thesis starts by inferring local orientations
from a boundary model generated considering the best global anisotropy determined for the
target boundaries. Each refinement is generated under the local anisotropic conditions inferred
from the previous step. Given the structural features are present at a scale suitable for implicit
modeling, the result is a reasonable reconstruction of local structural features directly from the
data. The resulting local properties and models can be used to guide further interpretation of

the dataset.

7.1.3 Shape Properties of Geological Boundary Models

Subjectively poor implicit models contain bubble-like features where the local conditions of the
boundary model do not reflect the underlying features of the dataset. A metric is proposed to
quantify these features such that different models generated under different anisotropic condi-

tions can be compared.

7.2 Contributions to the Decision of Stationarity

The decision of stationarity is a critical decision made early in the geostatistical workflow and
influences all subsequent modeling steps. Best practice and conventional wisdom states that
a better decision of stationarity improves geostatistical analysis, yet, justification of different
possible decisions of stationarity is commonly subjective, prone to errors and may bias the
geostatistical modeling that follows.

This dissertation develops several contributions that improve the generation and assess-

ment of stationary domains, including: 1) combined spatial and multivariate metrics that express
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the targeted properties of stationary domains for interpretation; 2) novel clustering algorithms
that reduce parameterization requirements; and 3) improvements to conventional ensemble
analysis specifically for geostatistical datasets. Moreover, this dissertation develops a novel
method to assess the uncertainty associated with the decision of stationarity through ensemble

clustering and a practical modification to conventional geostatistical workflows.

7.2.1 Spatial and Multivariate Metrics

Assessment of different stationary domains for geostatistical analysis is a difficult problem, typ-
ically requiring subjective decisions made with statistical justification (Rossi & Deutsch, 2014).
Justification of a clustering algorithm itself, without considering a spatial component, is a simi-
larly difficult problem (Tibshirani & Walther, 2005; Tibshirani et al., 2001). Most studies agree
that domain-specific knowledge improves the results of clustering since decisions can be tai-
lored to the unique properties of the domain. The combined spatial-multivariate metrics devel-
oped in this thesis provide a useful geostatistics-specific criteria for comparing different sets of
categories defined for the same dataset. By considering the relative properties between differ-
ent configurations, the choice of which stationary delineation to consider for modeling can be

improved.

7.2.2 Spatial Clustering Algorithms

Spatial clustering algorithms developed in the literature are well suited to forming spatial-
multivariate clusters in spatial domains. However, the results of those algorithms are subject to
the parameterization determined by the modeling expert. Although the domain specific knowl-
edge is considered an asset in this work, the outcome is based on the subjective criteria of the
expert and does not account for uncertainty.

The random-path ensemble spatial clusterer developed in Chapter 4 generates improved
spatial clusters that require fewer input parameters when compared to other spatial clustering
methodologies. The consensus of an ensemble of clusterings is shown to generate reasonable
clusters for further geostatistical analysis in spatial domains. The random-path and 2-stage

merging is an appropriate strategy for ensemble generation in spatial domains.
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7.2.3 Geostatistical Ensemble Clustering

The use of the spatial-multivariate metric space as a pre-processor for ensemble analysis is
a novel strategy for imparting domain specific knowledge into consensus clustering in spatial
domains. The result is a clustering that is improved in terms of the spatial and multivariate

properties.

7.2.4 Investigation of the Effect of Stationary Domaining on Prediction Errors

Finally, this dissertation develops two case studies that demonstrate the effects of different
stationary decisions on the outcome of geostatistical uncertainty characterization. The two do-
mains are very different in terms of the stationary domaining requirements. In the porphyry case,
the large-scale geological partitioning of the domain accounts for some of the non-stationary fea-
tures. Subsequent partitioning with traditional methods resulted in marginal improvements. In
this case, only the improved spatial clusters matched the performance of the single stationary
population.

The second oilsands dataset reflects conditions more typical of geological domains, where
gradational features may not be captured by a single population. However, in this domain,
the strong anisotropy and stationary nature of the spatial variability resulted in only marginal
differences between methods that partitioned the dataset into stationary domains compared to

considering a single global population.

7.3 Limitations and Future Work

There are several areas for improvement in the developed implicit modeling and stationary

domaining methodologies.

7.3.1 Implicit Geological Modeling

The algorithm chosen to partition the domain in Chapter 3 is important as it controls the time re-
quired for boundary reconstruction and the potential for artefacts at the boundaries of partitions.

The axis-aligned partitioning algorithm chosen for implementation in this thesis may not be ideal
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for all datasets and all domains. Furthermore, the partitioning is solely based on the number
of data contained within each partition and not the properties of the underlying variables. For
example, the partition size should generally be related to the local variability in the underlying
variable; greater variability warrants additional partitioning to better-capture the local features.

The partitioning framework is not immune to other issues of statistical inference. Extrap-
olation is an outstanding issue for all estimation/interpolation methods. Extrapolation in the
partitioning framework is likely to cause noticeable partition-boundary artefacts in the interpo-
lated SDF. This is not usually an issue for implicit models since the O-level is of primary interest,
and is usually well informed by sample locations. However, the issue is exacerbated in the
PU-LVA framework since adjacent partitions with different anisotropic properties may display
inconsistencies along partition boundaries.

For the iterative local refinement algorithm the criteria by which models are considered fin-
ished can be improved. Stopping iterations when there is no further change is an acceptable
first pass, however, iterating model orientations based on cross validation scores could be con-
sidered.

The algorithm used to infer local anisotropy to the boundary models could be simplified; a
moment of inertia (MOI) (Hassanpour & Deutsch, 2007) considering the local composite infor-
mation or the interpolated SDF values could be considered in place of the gradient-SVD method

used in this thesis.

7.3.2 Limitations of the Proposed Stationary Domaining Methodologies

First and foremost, decisions of stationarity must be made within some larger geological context.
However, knowing when geological controls have been reasonably accounted for in the delin-
eation of distinct stationary domains is a challenging task. Ideally the clustering algorithm would
consider the geological partitioning in the generation of clusters for modeling. In this sense a
supervised clustering algorithm should be the target of future works.

The spatial clustering implementations developed for stationary domaining in this thesis
mainly target the unsupervised classification of stationary domains from the spatial-multivariate

dataset. However, future works should integrate logged rock properties from the geological logs
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to improve the classification extracted from the spatial-multivariate dataset.

Although the developed metrics account for spatial and multivariate properties of the dataset,
a third metric that measures the 2-point spatial continuity of the samples contained within each
delineated domain could be considered. This is suggested to account for contrasting relation-
ships observed during verification of the cluster metrics for informing goodness of the clusters as
stationary domains for geostatistical analysis. The developed metrics provide an important start
for unbiased assessment of stationary delineation, but additional investigation into the factors

explaining ‘goodness’ of a stationary delineation is warranted.

7.4 Final Words

Recall the statement of this thesis: Incorporating structural features to large-scale geological
boundaries and improving the definition of stationary domains results in improved geostatistical
models.

The incorporation of local anisotropy to geological boundary models improves the local fea-
ture reproduction and provides reasonable geological boundaries inside which resources can
be estimated. Inferring local anisotropy from dense composite datasets through bootstrap of
previous boundary models results in a reasonable first-pass local structural interpretation of the
features in geological domains.

Improving the delineation of stationary populations by considering spatial-clustering and
spatial-multivariate metrics results in geostatistical models that better reproduce the true val-
ues at unsampled locations. This translates into improved geostatistical models for further
decision making. Automating the delineation of stationary domains with unsupervised learn-
ing algorithms and the developed clustering metrics is reasonable in the context of large-scale

geological features.
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APPENDIX A

SOFTWARE

Software implementations are an integral component of this research. The implementations

range from self-contained Fortran binaries to python modules.

A.1 Boundary Modeling

The PU RBF implicit modeling techniques described in Chapter 3 and 5 are realized as stan-
dalone Fortran binaries following the GSLIB-style parameter-file implementation. Three pro-
grams are developed: rbfdfmod, rbfiterref and rbfuncert, for generalized interpolation, iter-
ative refinement, and bandwidth of uncertainty calibration, respectively. The examples demon-
strated in Chapter 3 and the case study presented in Chapter 5 utilize these tools for all implicit
modeling steps.

These programs are suitable for small to medium sized projects. Commercial RBF-based
implicit modelers permit boundary reconstructions for > 1 M data points using optimized sparse
iterative solvers (Cowan et al., 2003). In this case geological boundaries are constructed one
category at a time following the geological rules of superposition. The programs presented here
use the direct-dense LU-decomposition based solver from LAPACK, and the K-category SDF
modeling algorithm from Silva and Deutsch (2012b). For the ‘direct’ solver method (equivalent
to global kriging), this is possible for up to 30 K data sites (tested on a machine with 16 GB
of memory), but will require significant CPU and RAM resources even for > 15 K input data.
However, the PU framework is implemented to decompose the domain so that many small (and
efficient) subproblems are solved independently and recombined to the global solution. In the
PU framework the resource requirements for very large datasets are modest, however, optimal
overlap and partition parameters are still required for best results considering smoothness and
model run times. For large projects with significant null sites, a keyout can be valuable for

omitting locations that are not required to be modeled. Run times scale linearly with the number
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of blocks in the evaluation grid. The block size in a grid is an important consideration; the
grid should adequately resolve the smallest geological feature and be relevant to the mining
process, but should also be reasonable from a CPU-time point of view (Boisvert, 2013). Further

discussion on this is provided at the end of Chapter 5 (or in: Vasylchuk & Deutsch, 2015).

A1.1 rbfdfmod

The parameter file for this program is shown below. Line 4-6 define the input data file: the
columns for sample locations, the column for the indicator data to be modeled and the null val-
ues in the datafile. Line 8 and 9 define a keyout file, the column of the data in the keyout and
the value at each location to keep. The keyout must be the same dimensions as the modeling
grid, defined on lines 10-12. On line 13, the solver type can be chosen to either be ‘direct’ (1)
or ‘POU’ (2). The following parameters on the same line define the bandwidth parameter to
consider for each category when calculating the SDF. Note: on this line, a bandwidth param-
eter must be present for each category that is defined on line 7. Five different kernels can be
used for interpolation; Gaussian, cubic, Wendland, linear and spherical. Details of each kernel
are tabulated in Table 2.1. Line 14 also includes a nugget effect (NE) that is implemented for
decreasing kernels only. This parameter should be used with caution; in the current implemen-
tation an exponent of 1.8 in instead of 2 is used to alleviate matrix instability with the Gaussian
kernel. Introduction of even a small (0.05) NE to the interpolation problems has a large effect

on the interpolation, which tends to result in un-honored data points.

rbfdfmod
ok ok ok ok ok ok ok
START OF PARAMETERS:
input.dat -file with input dataset
1 2 3 4 - column for x, y, z, indicator data
-999 - trimming value
3235 -ncats, category indicator
keyout.dat -file with the keyout model
1 1 - column for keyout variable, value to keep
50 0.5 1 -nx,xmn,xsz - interpolation grid definitions
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50 0.5 1 -ny,ymn, ysz

50 0.5 1 -nz,zmn,zsz

i 0 0 0 -RBFinterp type (1l:direct, 2:POU)-NOTE 1, tra..
i 0.001 - RBF kermel (NOTE 2), Nugget Effect

0 350 350 - Support (O:manual,l:auto) - NOTE 2, support..
0 -Use different anisotropy for each category?

0 0 O - Anisotropic orientations (str,dip,plunge) /..
1 1 - Anisotropic ratios (minor/major, vertical/m..
1 -Ouput 1:indicators, 2:signed distacnce funct..
outfl.out -file for interpolated output

*** BPT parameter section: **x*

95 0.06 1 -Partition paramters: dpc, d overlap, weight
0.5 0.5 0.5 - final partition overlap im x, y, z directio..
0 -read BPT parameters from file(1=Yes,0=No)
BPT_bounds.out -file with partition boundaries
BPT_aniso_cat2_ref4.out -file(s) with anisotropy for each category

The support is an important parameter for this implementation. For kriging, the range of
continuity is modeled from the variogram along different orientations. The ‘support’ used in
the RBF framework is synonymous with the range of the variogram, and often this support for
RBF problems can be parameterized from the variogram range. Figure A.2 and A.3 show the
affects of the support parameter for a boundary interpolation problem with the Gaussian and
cubic kernels, respectively. The estimated support parameter for this domain modeled from
the indicator variogram is roughly 20 m (Fig. A.1). As can be seen with the cubic kernel, the
support parameter does not affect the interpolation. Conversely for the Gaussian kernel, with
a very small support relative to the data configuration, the influence of data on the interpolated
scalar field is clearly localized, and away from data the interpolant is zero. The idealized support
parameter (~20 m) from the variogram range generates a smooth interpretation of the delineated
categories, whereas increasing the support beyond the ideal value has some affect, but still
largely produces consistent results.

The support parameter can also be estimated from the configuration of the data locations by
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Figure A.1: Categorical omnidirectional variogram for the simple test domain shown in Figure A.2
and A.3
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Figure A.2: Influence of different support parameters on the boundary location for the decreasing Gaus-
sian kernel

finding the maximum distance from any 1 grid cell to the closest data location (Fasshauer, 2007).
The support parameter estimated by this method for this simple dataset is 34 m. Line 15 controls
the support parameters. Following this the anisotropy is parameterized with ratios obtained from
rl = ahmin/ahmax and r2 = avert/ahmax. The extrapolation distance provides the ability
to control how far from a data location will be interpolated in the domain; this will also affect
the estimation of the support parameter for the domain. This parameter is designed to limit
extrapolation, and to reduce run times in the absence of a keyout for oddly configured data
arrangements relative to the axis aligned grid.

As discussed above the kernel, anisotropic parameters and support distance define the

required properties of the RBF interpolation problem. The parameter on line 16 controls how
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Support of 1 Support of 8 Support of 15

Easting (m) Easting (m) Easting (m)

Figure A.3: Influence of different support parameters on the boundary location for the increasing cubic
kernel

(a) Anisotropy File Format (b) Boundaries File Format
BPT Aniso Cat 2 BET Boundaries
6 40 8 30 2
partNo ij;;no
strike miny
dip minz
plunge MEXK

r1 maxy
maxs
xr2

Support
1 243.50908 0.0000000 0.00000¢C 1 30.215000 12.037000 0.0000000

7 73R NARZT n nnnnnnn n nnonnr 2 30.215000 35.236625 ad.0000000

Figure A.4: Format of the anisotropy and boundary files for defining a set of partitions from the scattered
data points

many sets of anisotropic parameters are to be used in the K-category interpolation problem. If
line 16 is 1, then a set of anisotropic parameters are required for each category that is defined
on line 7. Line 19 defines the output format, which can be either a categorical model, or the
interpolated SDF for each category. Setting this option to 2 is useful when considering the SDF
with bandwidth parameters, so that different isosurfaces viewed or used to calculate the volumes
corresponding to different levels in the SDF. At this point it is worthy to note that the K-category
interpolation can be completed completely within rbfdfmod, however, if many categories with
abundant data and large grids are being interpolated, consider scripting rbfdfmod in parallel
by exporting the SDF for each category, and post-processing K-SDF models to generate the
required indicator grid.

Lines 22-26 define all required parameters for partitioning, including the ability to read in
the boundaries and anisotropy output from the rbfiterref program. Line 22 defines the data-

per-center, which guides the decision on whether or not a partition is split, the ‘data overlap’,
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which is the overlap applied to the partitions during recursive splitting and the weighting func-
tion type calculated on overlapping sites. The data-per-center parameter is self explanatory -
partitions are split until the number of data contained within a partition is less than this number.
The data-overlap parameter controls the % of data allowed to overlap between partitions during
the splitting stage of the algorithm. In general the data overlap parameter should be small, <
0.15, or recursive problems may arise for some data configurations, which will be indicated in
the output. The final overlap parameters defined on line 23 control the post-splitting overlap ap-
plied by expanding partitions along the diagonal according to the percentage in each direction.
This can be used to ensure there is sufficient overlap between partitions if no data-overlap is
used; generally some mix of data overlap and post-partitioning overlap should be used. Addi-
tional post-partitioning overlap may be required in the case of extreme differences in anisotropy
between adjacent partitions.

Line 24-26 define the use of partitioning parameters output from rbfiterref; set line 24
to 1 to read in and use these files, or O to generate a new set of partitions according to the
partitioning parameters on the lines above. The file defined on line 25 contains the partition
number, the lower and upper corner of the partition, and the estimated support distances. The
file on line 26 contains the anisotropic properties for each of the partitions. Note: an anisotropy
file must be defined for each of the categories defined on line 7. The format of the boundaries
and anisotropy files are shown in Figure A.4. The second line of the anisotropy file contains the
number of variables and the number of partitions found in the domain. Each entry in this file
contains the strike, dip, plunge, r1 and r2 corresponding to the numbered partition. The second
line in the boundaries file contains the number of variables, the number of partitions and the
weighting function to be used for interpolation, which can be either 1 or 2. Each entry in this
file defines the extent of a partition based on the lower and upper corners of the bounding box.

The final column defines the local support parameter to consider in each partition.

A1.2 rbfiterref

This program is used to generate the iteratively refined local anisotropy for a boundary model

considering the partitioning parameters, the iterref parameters and the imorient parameters.
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The current program uses % changed as a stopping criteria, but in the future a jackknife or
cross validation metric could be considered to evaluate if a partition is ‘refined’. In the future
a randomized optimization of the anisotropy angles based on cross validation could also be
considered. Several of the key parameters used in this program are identical to those described
in rbfdfmod above and are not repeated.

Line 13-14 define the partitioning parameters and line 15 defines the parameters for the iter-
ative refinement. The target number of refinements can be defined, however according to the
% difference stopping criteria defined on the same line, there may be fewer actual refinements
than the defined number. On the same line, the max r1 and max r2 parameters define maximum
anisotropy that is allowed, which can be used to permit or prevent excessive anisotropic mag-
nitudes from being inferred to each partition. Line 16 defines the number of layers, the window
size, and the layer for the final orientations that are extracted with the imorient subroutines.
For more detailed information on these parameters, see Martin, Manchuk, and Boisvert (2015).
It should be noted that in the imorient subroutines the anisotropic magnitudes are calculated
from the singular values in SVD which reflects relative dominance of a particular orientation in
a window surrounding each location. Although these ranges of anisotropy are related to the
dominance of orientations in the boundary model, they are not calculated from the point data.
Line 17 allows definition of the type of model to refine orientations from (0: SDF model, 1: in-
dicator model), and the parameters for IDW interpolation for orientations between layers. In
general the SDF carries more orientation information than the indicator model, especially away
from boundaries. Most commonly the default IDW parameters for imorient are sufficient.

The final parameters of importance are on line 24 and 26. The files on these two lines define
the project prefix and output extension for all files from this program. For example, on line 24
if ‘Data/BPT.out’ is defined, the program will export a series of files in the ‘Data/’ folder with
the prefix ‘BPT’, i.e. ‘Data/BPT_bounds.out’ and Data/BPT_diffs.out’. Note: in this case the
folder ‘Data/’ must exist. Similarly, on line 26, a file ‘Data/outfl.out’ will generate a series of
files Data/outfl<ref>.out’ where ref will take values between 1 and the number of refinements

that are completed during the program.
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rbfiterref
ok ok ok ok ok ok Kk K

START OF PARAMETERS:
input.dat -file with categorical data
1 2 3 4 - column for x,y,z, indicator data
-999 1 - trimming value, NCPU for parallel solve
3235 -ncats, category indicator
keyout.dat -file with the keyout for the geological model
1 1 - column for keyout variable, value to keep
50 0.5 1 -nx,xmn,xsz - definitions for interpolation grid
50 0.5 1 -ny,ymn,ysz
50 0.5 1 -nz,zZmn,zZsz
95 0.06 1 -Partition paramters: dpc, data overlap, weight

0.35 0.35 0.35 - final partition overlap in x, y, z directions
5 6 0.1 0.1 -num refinements, %diff stopping, maxrl, maxr2 -..
3 10 1 -Imorient parameters: nlayers, window, final lay..

0 2. 25 - orients from SDF model (0) or ind model (1), i..
1 0.000 -RBF kermnel (NOTE 2.5), nugget effect
0 -Starting Anisotropy, different for each categor..
0 0 O - Anisotropic orientations (str,dip,plunge) / Ca..
1 1 - Anisotropic ratios (minor/major, vertical/majo..
1 350 350 - Support (0O:manual,l:auto), support distance, e..
1 -writeout binary partition LVA parameters (1=Yes..
BPT. out - BPTflnames (becomes “BPT" project prefix) - NO..
1 -Ouput 1:indicators, 2:signed distance function
outfl.out -file for interpolated output - NOTE 5

A.1.3 rbfuncert

This program is used to train the C-parameter from Wilde and Deutsch (2012) using the PU
RBF interpolation implemented in this work. All steps of the workflow are contained in this

program to generate the required summary table that can help make the decision as to the
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correct bandwidth of uncertainty to consider.

Several of the input parameters to this program are identical to the above rbfdfmod and are
not repeated. Notably, for 3D datasets the drill hole ID column is required (line 5) to perform
jackknife analysis. Line 11 defines the number of random datasets, the number of C-parameters,
the random seed and the number of CPU’s to use. All random jackknife datasets are generated
inside this program. Line 12 defines the maximum C-parameter(s) that will be considered in
generating the random C-parameters for each category. A first approximation for this parameter
may include the data spacing.

Similar to rbfdfmod, this program can read in a set of partitioning files generated with
rbfiterref to define the partitioning parameters and local anisotropy that is refined from that

program.
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START OF PARAMETERS:
input.dat

1 2 3 4 5

-999

223

50 0.5 1

50 0.5 1

50 0.5 1

15 25 69069 4
200. 500.

0.25

1

1 0.001

0 350 350

1

0O 0 0

1 1

0O 0 0

1 1

95

0

0

cparamsummary .out

0.06 1

.35 0.35 0.35

BPT_bounds.out

BPT_aniso_cat2_ref4.

out

BPT_aniso_cat3_ref4.out

rbfuncert

* %k

* Kk ok ok k

-file with input indicator dataset

column for dhid(0 if 2D), x,y,z, indicator..

trimming value

-ncategories, categories

-nx,xXmn,xsz - interpolation grid definitions

-ny,ymn,ysz

-nz,zZmn,zsz

-num random datasets, num C parameters, rsee..

-max ¢ parameter, for each categorical varia..

-proportion DHS/samples to remove

-RBFinterp type, (l:direct, 2:PU) - NOTE 1

-RBF kernel (NOTE 1.5), nugget effect

*** BPT parameter section:

-Partition paramters: dpc, d overlap, weight..

Support (0:manual,l:auto) - NOTE 2, suppor..

different anisotropic parameters for each c..

Anisotropic orientations (str,dip,plunge)

Anisotropic ratios (minor/major, vertical/..

Anisotropic orientations (str,dip,plunge)

Anisotropic ratios (minor/major, vertical/..

file for summary output - NOTE 4

* k¥

final partition overlap in X, y, z directi..

-read BPT parameters from file(1=Yes,b0=No)

-file with partition boundaries

-file(s) with anisotropy for each category

-file(s) with anisotropy for each category
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A.2 Spatial Clustering Python Package

This software is distributed as a python library using a . wh1 file, which contains all source code,
a list of dependencies that are resolved on installation, and a set of ‘entry points’ that expose
functionality in the package to GSLIB-style command-line callable programs (see below). If
utilizing this package with an existing python installation, packages upon which this package
depends (e.g., numpy) may require updates. In the case of unresolvable differences between
this package and others installed to the target Python environment, a unique Python environ-
ment for this project, generated with conda create -n <envname> && activate <envname>,
is recommended.

All requirements for installation are contained in the spatialcluster<...>.whl. The pack-
age can be installed to the current python distribution by opening a command prompt in the
same folder as the .whl file and issuing the following command: pip install [.\]sp and
pressing ‘tab’ to complete the sentence (NOTE: the “.\" preceding the .wh1 file may be required
if using ‘powershell’ on windows). Ensure that the machine either already has all required de-
pendencies (this requirement is met with the Anaconda Python distribution), or has web access
so that dependencies can be automatically resolved. If working with environments, remember
to activate the target environment prior to installation and when running any scripts or notebooks
depending on this package.

Functionality provided in this package can be accessed in two ways. First, all classes and
functions can be called from Python providing all functionality developed in this package to
be accessed from a Python-based workflow; this is the most flexible use case since plotting
and other data analysis tools can be freely mixed with the developed software. Second, the
pip-installation of this package to the local Python distribution generates several GSLIB-style
command-line ‘hooks’ (Note: these executables are not portable) that wrap the main functional-
ity of each clustering algorithm. Following pip-installation, the executables spatialclusterex,
acclus, acens, and dssens are available on the path. For example, ‘which acclus’ issued to the
bash shell should point to an acclus.exe in the PYTHONDIRY,/scripts directory.

The parameter files for the programs contained in this package are shown below and out-

lined in more detail in this section. Detailed usage, both the GSLIB-style executable and the
171



10

11

12

13

14

15

16

17

A. Software

recommended Python-only method, are provided as a set of Jupyter notebooks in the exam-
ples folder. These examples are automatically installed alongside the main package in the
spatialcluster/examples folder. These Jupyter notebooks also serve as the documentation
and the guide to usage. A simple 2D test dataset is provided to illustrate the functionality em-
bedded in this package. Note: the executable spatialclusterex Will launch a jupyter notebook

in this folder so that examples can be viewed and utilized.

A.21 acclus
ACCluster
START OF DATA:
datafile.dat - file with the input dataset
1 2 0 - columns for dh, x, y, z data
3 4 5 6 - columns for variables (implicit nvar)
outfile.out - file for clustering output
1 - append output to input file? (0=No, 1=Yes)
START OF AC: # autocorrelation settings
25 - number of nearest neighbors
0O 0 0 - search anisotropy/ angl, ang2, ang3
500 500 500 - rangel, range2, range3
kmeans - cluster method: one of “kmeans™, “gmm~, “hi..
1 - autocorrelation metrics (0O=None, 1=Morans,
5 - number of clusters

The first block in the ACCLuster parameter file is the DATA block which specifies the filename,
X, Y, Z columns, the input variable columns, the output file and whether or not the results of
clustering should be appended to the output file. These lines are self explanatory. The Ac block
defines the parameters for autocorrelation-based clustering. The number of nearest neighbors
on line 12 is what is considered in the spatial weighting, more neighbors has more influence
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from distant points. The search is a K-nearest neighbors search. The search anisotropy defined
on lines 13 and 14 should be chosen to account for differences between versus along drill holes
(in 3D). The clustering method on line 15 is a string, one of ‘kmeans’, 'gmm’ or "hier’, reflecting
the final clustering method that will be used on the generated autocorrelation dataset. The
autocorrelation metric is one of 0, 1, 2 for None, morans and getis, respectively. If ‘None’,
the program simply performs the chosen clustering on the multivariate dataset. Finally, line 17

specifies the number of clusters for output.

A.2.2 acens
ACEnsemble
START OF DATA:
datafile.dat - file with the input dataset
o 1 2 0 - columns for dh, x, y, z data
3 4 5 6 - columns for variables (implicit nvar)
outfile.out - file for clustering output
1 1 - save all reals? recode clusters? (0=No, 1=Y..
1 - append output to input file? (0=No, 1=Yes)
START OF AC: # autocorrelation settings
25 - number of nearest neighbors
0O 0 0 - search anisotropy/ angl, ang2, ang3
500 500 500 - rangel, range2, range3
kmeans - cluster method: one of “kmeans”™, “gmm~, “hi..
1 2 - autocorrelation metrics (0O=None, 1=Moranmns,
0.5 0.5 - autocorrelation props
START OF ENS: # ensemble settings
523151 - random seed
100 - num ensemble
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-1 - min number of variables, -1 to use all

4 6 - final nclus, target nclus

0.0 0.15 - min and max proportion to remove

0.001 0.999 - min and max proportion in found clustering
spec - final consensus method, “spec”(tral) or “hi..

The DATA and AC blocks for ACEnsemble are similar to ACCluster except that multiple autocor-
relation metrics can be chosen to be randomly used in the ensemble. The ENS block specifies
the settings of the ensemble of clusterings. The number of clusterings in the ensemble is cho-
sen up front. Randomization with the random subspace is controlled by specifying a number
of samples to use and the min and max proportion of samples to remove in each clustering.
Furthermore, it is possible to control how much or little of a given cluster is permissible in a
clustering, for example, to ensure that clusters are equally sized or may be very different in size.
Finally, the final consensus method defaults to spectral clustering for efficiency reasons. If ‘hier’

is chosen, then hierarchical clustering with Wards linkage is applied.

A.2.3 dssens
DSSEnsemble
START OF DATA:
datafile.dat - file with the input dataset
1 2 0 - columns for x, y, z data
3 4 5 6 - columns for variables (implicit nvar)
outfile.out - file for clustering output
1 1 - save all reals? recode clusters? (0=No, 1=Y..
1 - append output to input file? (0=No, 1=Yes)
1 - number of parallel processes
START OF DSS: # dual-space-search settings
25 - number of nearest neighbors
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10 number of neighbors merged at spatial search
0O 0 0 search anisotropy/ angl, ang2, ang3
500 500 500 rangel, range2, range3

START OF ENS:

ensemble settings

512671 random seed

100 number of clusterings to generate

4 6 final nclus, target nclus

0.001 0.999 min and max proportion in found clustering
spec final consensus method, “spec(tral)” or “hi..

The DS clusterer has similar input parameters to the other two algorithms. Of note, in the DS
section the number of neighbors and number merged during the spatial search are the two pa-
rameters that have the greatest impact on the spatial contiguity of the final clusters. Anisotropy
should again be chosen to ensure that disparity in sample density with orientation is accounted

for.
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B.1 Porphyry Case Study
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Figure B.2: Probability to be cluster 2 in the porphyry dataset.
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B.2 Oilsands Case Study
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Figure B.3: Probability to be cluster 1 in the oilsands dataset.
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Figure B.4: Probability to be cluster 2 in the oilsands dataset.
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(a) Fines, Category Realizations (b) Fines, Random Domain (c) Fines, Geological Categories
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Figure B.6: Cross plot between the E-type estimate and the true values for fines from the oilsands
dataset.
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(a) Chlorides, Category Realizations (b}  Chlorides, Random Domain (c) Chlorides, Geological Categories
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Figure B.7: Cross plot between the E-type estimate and the true values for chlorides from the oilsands
dataset.
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(a) Fines, Category Realizations (b) Fines, Random Domain (c) Fines, Geological Categories
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Figure B.8: Accuracy plots generated from the K-fold validation analysis for fines.
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(a) Chlorides, Category Realizations (b)  Chlorides, Random Domain (c) Chlorides, Geological Categories
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Figure B.9: Accuracy plots generated from the K-fold validation analysis for chlorides.
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Figure B.10: Histogram reproduction plots for fines from the oilsands dataset.
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(a) Chlorides, Category Realizations (b}  Chlorides, Random Domain (c) Chlorides, Geological Categories
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Figure B.11: Histogram reproduction plots for chlorides from the oilsands dataset.

185




B. Chapter 6 Supporting Figures

(a)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.0

Iiorizonta-

(b)
1.2

1.0

morizanta-

0.8

Y

0.6

0.4

— Realizations — Realizations — Realizations — Realizations
0.0 0.0
o 1000 2000 3000 o 1000 2000 3000 1] 1000 2000 3000 0 1000 2000 3000
Lag Distance (m) Lag Distance (m) Lag Distance (m) Lag Distance (m)
r 12ryertic 1.2 ryarr ro12
10 1.0 1.0
0.8 0.8 0.8

14

0.6

0.6

Y

0.6

0.4 0.4 0.4 -
—— GlohalMadel 0.2 / —— GlobalMaodel 0.2 / —— Global Model 0.2 / — Global Model
— Realizjtions — Realizjtions — Realizgtions — Realizptions
0.0 0.0 0.0
4] 10 20 30 40 4] 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Lag Distance (m) Lag Distance (m) Lag Distance (m) Lag Distance (m)
(e) (g)
12 apatlal Cf 12 WO Domajns
orizontg orizontgl

1.0 1.0

0.8 0.8
VD.B H VO.B H

0.4 04

0.2 e (Jl0shal Mol 0.2 — b 0.2 , e (l0hal Mol

—_— jon: —— Rpalizations — jon:
0.0 0.0 0.0
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Lag Distance (m) Lag Distance (m) Lag Distance (m)

12y ro12 ro 120y -

1.0 1.0 1.0

0.8 0.8 0.8

Y

0.6

) 4

Y

0.6

Y

0.6

0.4 7 0.4 7 0.4 /
0.2 —— Global Modsl 0.2 —— Global Madasl 0.2 —— Global Modesl
— Realizptions — Realizptions — Realizptions
0.0 0.0 0.0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Lag Distance (m) Lag Distance {m} Lag Distance (m)

Figure B.12: Variogram reproduction for realizations of fines generated by each method. Horizontal
reproduction shown in the top and vertical shown below for each set of stationary domains (a-g).
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Figure B.13: Variogram reproduction for realizations of chlorides generated by each method. Horizontal
reproduction shown in the top and vertical shown below for each set of stationary domains (a-g).
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