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Abstract

Integrodifference equations are a common tool used in ecology to model the

spread of populations. In this thesis, I explore the neutral genetic patterns

formed by range expansions and how dispersal-reproduction trade-offs impact

the spread of populations. In Chapter 2, we investigate the inside dynam-

ics of integrodifference equations to understand the genetic consequences of a

population with nonoverlapping generations undergoing range expansion. We

consider thin-tailed dispersal kernels and a variety of per capita growth rate

functions to classify the traveling wave solutions as either pushed or pulled

fronts. We find that pulled fronts are synonymous with the founder effect

in population genetics. Adding overcompensation to the dynamics of these

fronts has no impact on genetic diversity in the expanding population. How-

ever, growth functions with a strong Allee effect cause the traveling wave

solution to be a pushed front preserving the genetic variation in the popula-

tion. In Chapter 3, a stage-structured model of integrodifference equations is

used to study the asymptotic neutral genetic structure of populations under-

going range expansion. We show that, under some mild assumptions on the

dispersal kernels and population projection matrix, the spread is dominated

by individuals at the leading edge of the expansion. This result is consistent

with the founder effect. In the case where there are multiple neutral fractions

at the leading edge, we are able to explicitly calculate the asymptotic propor-

tion of these fractions found in the long-term population spread that depends

only on the right and left eigenvectors of the population projection matrix
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evaluated at zero and the initial proportion of each neutral fraction at the

leading edge. In the absence of a strong Allee effect, multiple neutral fractions

can drive the long-term population spread, a situation not possible with the

scalar model. In Chapter 4, we develop a neutral genetic mutation model by

extending the previously established scalar inside dynamics model. We show

that the spread of neutral genetic fractions is dependent on individuals at the

leading edge of population as well as the structure of the mutation matrix.

Specifically, we find that the neutral fractions that contribute to the spread of

the population are those that belong to the same mutation class as the neutral

fraction found at the leading edge of the population. We prove that the asymp-

totic proportion of individuals at the leading edge of the population spread

is determined by the dominant right eigenvector of the associated mutation

matrix, independent from growth and dispersal parameters. In Chapter 5, we

construct a model that incorporates a dispersal-reproduction trade-off effect

that allows for a variety of different shaped trade-off curves. We show there is

a unique reproductive-dispersal allocation that gives the largest value for the

spreading speed and calculate the sensitivities of the reproduction, dispersal,

and trade-off shape parameters. Uncertainty in the model parameters affects

the expected spread of the population and we calculate the optimal allocation

of resources to dispersal that maximizes the expected spreading speed. Higher

allocation to dispersal arises from uncertainty in the reproduction parameter

or the shape of the reproduction trade-off curve. Lower allocation to dispersal

arises form uncertainty in the shape of the dispersal trade-off curve, but does

not come from uncertainty in the dispersal parameter. Our findings give in-

sight into how parameter sensitivity and uncertainty influence the spreading

speed of a population with a dispersal-reproduction trade-off.

iii



Preface

This thesis has been structured as paper based where Chapters 2-5 are the

four main components of original work. Chapter 2 of this thesis in an original

work that has been published as Marculis, N.G., Lui, R., & Lewis, M.A. (2017)

“Neutral genetic patterns for expanding populations with nonoverlapping gen-

erations.” Bulletin of Mathematical Biology, 79.4, pp. 828-852.

https://doi.org/10.1007/s11538-017-0256-7 N.G. Marculis was responsible for

the model development, analysis, and manuscript composition. R. Lui assisted

in the model analysis and contributed to manuscript edits. M.A. Lewis was

the supervisory author and assisted in the model analysis and contributed to

manuscript edits.

Chapter 3 of this thesis is an original work that has been published as

Marculis, N.G., Garnier, J., Lui, R., & Lewis, M.A. (2019) “Inside dynam-

ics for stage-structured integrodifference equations.” Journal of Mathematical

Biology, pp. 1-31. https://doi.org/10.1007/s00285-019-01378-9 N.G. Marculis

was responsible for the model development, analysis, and manuscript compo-

sition. J. Garnier and R. Lui assisted in the model analysis and contributed

to manuscript edits. M.A. Lewis was the supervisory author and assisted in

the model analysis and contributed to manuscript edits.

Chapter 4 of this thesis is an original work that is currently under review

as Marculis, N.G. & Lewis, M.A. (2019) “Inside dynamics of integrodifference

equations with mutations.” Bulletin of Mathematical Biology. N.G. Marculis

was responsible for the model development, analysis, and manuscript com-

iv

https://doi.org/10.1007/s11538-017-0256-7
https://doi.org/10.1007/s00285-019-01378-9


position. M.A. Lewis was the supervisory author and assisted in the model

development, analysis, and contributed to manuscript edits.

Chapter 5 of this thesis is an original work that is currently under review as

Marculis, N.G., Evenden, M.L., & Lewis, M.A. (2019) “Modeling the dispersal-

reproduction trade-off in an expanding population.” Theoretical Population

Biology. N.G. Marculis was responsible for the model development, analysis,

and manuscript composition. M.L. Evenden assisted in model development

and manuscript edits. M.A. Lewis was the supervisory author and assisted in

the model development, analysis, and contributed to manuscript edits.

v



Acknowledgements

I want to start by thanking my supervisor for providing me the privilege to

work with him. Over the five years, Mark has opened up many opportunities

for myself and has always looked out for my best interest. Thanks to the other

members on my supervisory committee: Roger for introducing me into the

world of integrodifference equations and continuing to encourage my growth

in the area, and Maya for being available to answer my biological questions.

I would also like to thank Jimmy Garnier for inviting me to visit France and

collaborate with him. A big shout out to the Lewis Lab is also necessary,

without fail they have always been supportive of my research and have provided

a countless amount of constructive feedback over the years.

I would like to acknowledge financial support from a Joesphine M. Mitchell

Scholarship, a PIMS Student Training Acceleration Award, and TRIA-Net.

Finally, I would like to thank my friends and family for all of their support

through what seemed like endless years of research and studying, and to Wafa

for believing in me and keeping me in good spirits.

vi



Table of Contents

1 Introduction 1

1.1 Integrodifference equations . . . . . . . . . . . . . . . . . . . . 1

1.2 Inside dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Dispersal-reproduction trade-offs . . . . . . . . . . . . . . . . 7

2 Neutral genetic patterns for expanding populations with nonover-

lapping generations 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Mathematical preliminaries and model . . . . . . . . . . . . . 13

2.2.1 Model structure . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Integral transforms . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Inside dynamics . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Traveling wave solutions . . . . . . . . . . . . . . . . . 19

2.3 Large time neutral genetic variation . . . . . . . . . . . . . . . 21

2.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.1 Proof of Lemma 2.3.1 . . . . . . . . . . . . . . . . . . . 42

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Inside dynamics for stage-structured integrodifference equa-

tions 46

vii



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Inside dynamics . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 Demographic and dispersal assumptions . . . . . . . . 51

3.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Inside dynamics not at the leading edge . . . . . . . . 55

3.3.2 Inside dynamics at the leading edge . . . . . . . . . . . 57

3.3.3 Proofs of the main theorems . . . . . . . . . . . . . . . 58

3.4 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6.1 Asymptotic speed of propagation for a system . . . . . 77

3.6.2 Mathematical details . . . . . . . . . . . . . . . . . . . 78

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Inside dynamics of integrodifference equations with mutations 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Mutation matrix model . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Preliminary material . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Asymptotic results . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . 98

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.7.1 Derivation of a general mutation matrix . . . . . . . . 110

4.7.2 Proofs of the theorems . . . . . . . . . . . . . . . . . . 111

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 Modeling the dispersal-reproduction trade-off in an expanding

population 121

viii



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . 125

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3.1 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . 130

5.3.2 Parameter uncertainty . . . . . . . . . . . . . . . . . . 135

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5.1 Proofs of the theorems . . . . . . . . . . . . . . . . . . 151

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6 Conclusion 166

References 176

ix



List of Figures

1.1 Theoretical example of the inside dynamics decomposition. . . 5

1.2 Theoretical example of a dispersal-reproduction trade-off. . . . 8

2.1 Plot of the growth functions used in the numerical simulations. 15

2.2 Numeical realizations for the solution, ut(x), of System (2.13). 35

3.1 Numerical realization of (3.114) for initial conditions with the

same spatial ordering. . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Numerical realization of (3.114) for initial conditions with a

different spatial ordering. . . . . . . . . . . . . . . . . . . . . . 72

4.1 Numerical realization of (4.15) with a Gaussian dispersal kernel. 99

4.2 Numerical realization of (4.19) with a Lapalce dispersal kernel. 102

4.3 Numerical realization of (4.15) with a weak linkage between

mutation classes. . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1 Resource allocation for dispersal and reproduction for different

trade-off shape parameters. . . . . . . . . . . . . . . . . . . . . 126

5.2 Persistence curve for varied values of the resource allocation to

dispersal and the growth rate per generation. . . . . . . . . . . 129

5.3 A contour plot for the spreading speed with the unique optimal

resource allocation that maximizes the spreading speed. . . . . 132

5.4 Three plots for the spreading speed versus the dispersal resource

allocation where the shape parameters for the trade-off are varied.133

x



5.5 Plot of the sensitivity for different values of the optimal resource

allocation to dispersal. . . . . . . . . . . . . . . . . . . . . . . 134

5.6 A sensitivity plot for the spreading speed with respect to the

growth rate per generation and the standard deviation in dis-

persal distance. . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.7 Two plots indicating how uncertainty influences the optimal

resource allocation to dispersal. . . . . . . . . . . . . . . . . . 139

5.8 Two contour plots for the optimal resource allocation to dis-

persal when the shape parameter for the reproduction trade-off

curve is uncertain. . . . . . . . . . . . . . . . . . . . . . . . . 141

xi



Chapter 1

Introduction

1.1 Integrodifference equations

Integrodifference equations are mathematical tools that are commonly used for

studying problems in spatial ecology. These equations model two primary pro-

cesses; the reproduction and the dispersal of the population. What separates

integrodifference equations from other common mathematical models such as

reaction-diffusion equations and integro-differential equations is that integrod-

ifference equations are discrete-time continuous-space models. These discrete-

time continuous-space models are particularly useful for modeling populations

with synchronous, nonoverlapping generations. To apply the integrodifference

equation as a reasonable model, we must assume that dispersal occurs during

a distinct phase of the life cycle and the population is sedentary for the re-

mainder of the time. This allows the user to consider the processes of dispersal

and reproduction separately. Let ut(y) be the population density at location

y and time t. During the sedentary stage reproduction occurs according to

the density-dependent map f(ut(y)). Once the sedentary stage is over, the

probability that an individual disperses from the interval (y, y + dy] to the

point x is given by k(x − y) dy where k is the dispersal kernel function. To

account for all possible intervals, we then integrate over the real line to obtain
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the classical integrodifference equation

ut+1(x) =

∫︂ ∞

−∞
k(x− y)f(ut(y)) dy (1.1)

which gives the population density at location x and time t+ 1.

In the literature, these models gained traction in the early to mid 1980’s.

The theoretical work by Hans Weinberger paved the way for future analyses of

these models. In his seminal work, Weinberger studied the long-time behavior

of an abstract operator where time was assumed to be discrete and space may

or may not be discrete (Weinberger, 1982). While the word itself “integrod-

ifference” is never mentioned in this work, a particular case of the abstract

operator studied gives rise to the classical integrodifference equation. The sig-

nificance of the work from Weinberger (1982) was that Weinberger was able

to prove many important results pertaining to the existence, persistence, and

asymptotic speed for traveling wave solutions of integrodifference equations.

Throughout this thesis, I will regularly use the results from this important

study.

The first reference of integrodifference equations in the literature dates

back to the work by Mark Kot and William Schaffer on modeling discrete-

time growth dispersal processes (Kot and Schaffer, 1986). In their work, they

present and discuss a number of simple integrodifference equations to study

problems such as determining the minimum habitat size for population per-

sistence and understanding how diffusive processes can cause instability in a

model and create complex spatial patterns. Throughout their study they em-

phasize how integrodifference equations are related to their continuous-time

counterparts and emphasize the differences between modeling techniques. In

their conclusion, they state that there are simply too many avenues that need

to be pursued in regard to studying integrodifference equations. To this day,

this comment remains true while the field of integrodifference equations has
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continued to grow over the years.

One important concept that I will use throughout this thesis is the idea of

the spreading speed for the population typically denoted by c∗. The spreading

speed can be thought of in the following way: If an observer is in a moving

frame with speed c > c∗, then eventually the observer sees the population

level at zero, but if the observer is in a frame that moves with speed c < c∗,

then eventually the observer sees the population at its carrying capacity K.

Formally, this can be written in mathematical terms as

lim
t→∞

sup
|x|≥t(c∗+ε)

ut(x) = 0 and lim
t→∞

sup
|x|≤t(c∗−ε)

(K − ut(x)) = 0 (1.2)

where ε is a positive constant and ut(x) is the population density at time t and

location x (Weinberger, 1982). Under some mild assumptions on the growth

function and the dispersal kernel, see Weinberger (1982) for the details, there

is a simple formula for the asymptotic spreading speed. This result has been

extended for structured population models (Lui, 1989a) and growth functions

with overcompensation (Li et al., 2009). However, in the case of the strong

Allee effect, there is no general formula for the spreading speed and this still

remains as an area for future research.

Since their debut, integrodifference equations have been applied to study

many different problems in spatial ecology. In particular, these models have

been used to study range expansions (Krkošek et al., 2007; Zhou and Kot,

2011), the spread and control of invasive species (Bateman et al., 2017; Kot

et al., 1996; Lewis et al., 2016), and determining the critical domain size for

population persistence (Lutscher et al., 2005; Reimer et al., 2016; Van Kirk

and Lewis, 1997a). In these applications the modeling efforts focus on the

population level dynamics and ignore the genetic consequences. The first part

of this thesis is devoted to understanding the neutral genetic structure of

expanding populations.
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1.2 Inside dynamics

Neutral genetic patterns formed by expanding populations have been a recent

topic of interest (Hallatschek and Nelson, 2008). One of the main drivers

said to reduce the genetic diversity of a population is the founder effect. The

founder effect occurs when the establishment of a new population is achieved

by a small number of original founders who carry only a small fraction of

the total genetic variation of the parental population (Mayr, 1940). During

range expansion consecutive founder effects result in the process known as

gene surfing (Excoffier and Ray, 2008). This is the spatial analog of genetic

drift and occurs when certain alleles reach higher than expected frequencies at

the front of a range expansion (Slatkin and Excoffier, 2012). In a theoretical

context, I will attempt to determine how and when these processes occur by

using an integrodifference equation model.

The term “inside dynamics” was coined by Garnier et al. (2012) where

they studied the inside structure of a scalar reaction-diffusion equation. The

vital assumption made in their analysis was that the population is composed

of several groups with identical diffusion and growth rates. Then the analysis

is performed by studying the spatio-temporal development of the distinct sub-

groups. A theoretical illustration of this decomposition is provided in Figure

1.1(b). One direct application to this work is studying the structure of neutral

genetic components in an expanding population. The key word here is neutral,

without this assumption of the different components dispersing and growing in

the same manner, the analysis becomes substantially more challenging. Even

though these neutral genes do not tell us anything about the adaptive or evo-

lutionary potential of a population, neutral genes can be used to understand

processes such as gene flow, genetic drift, migration, or dispersal (Holderegger

et al., 2006).
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(a) (b)

Figure 1.1: Here I provide a theoretical example for the decomposition of a
population into neutral genetic components. In (a), we see a traveling wave
solution for an expanding population where the curve is the population des-
tiny. In (b), I illustrate the decomposition of the entire population density
into distinct subgroups that can be classified by neutral genetic components
denoted by the different shapes.

The inside dynamics analysis was quickly applied to a variety of differ-

ent continuous-time models. In particular, the inside dynamics of reaction-

diffusion equations (Garnier et al., 2012; Garnier and Lewis, 2016; Roques

et al., 2012, 2015), delay reaction-diffusion equations (Bonnefon et al., 2013),

and integro-differential equations (Bonnefon et al., 2014) were studied. In

this thesis, I aim to extend the previous work from continuous-time models

to the discrete-time models by applying the inside dynamics analysis to in-

tegrodifference equations. Our results pertaining to the inside dynamics of

the population are provided in Chapters 2-4. In Chapter 2 we study the in-

side dynamics of a scalar integrodifference equation, in Chapter 3, we analyze

the inside dynamics for a stage-structured integrodifference equation, and in

Chapter 4 we incorporate neutral mutations into the scalar inside dynamics

model.

In Chapter 2, we study the neutral genetic patterns formed by an expand-

ing population with nonoverlapping generations using a scalar integrodiffer-
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ence equation. In particular, the study focuses on the effect that different

kinds of growth functions have on the neutral genetic patterns formed by ex-

panding populations. For this study, we compare and contrast the long-term

dynamics for three common growth functions with different features. In par-

ticular, we look at a monotone growth function with maximal growth rate at

zero, a growth function with a strong Allee effect, and a growth function with

overcompensation. Previous studies have looked at this same question in the

continuous-time framework for the first two growth functions mentioned (Gar-

nier et al., 2012; Roques et al., 2012). In this study, we am able to consider

growth functions with overcompensation, because integrodifference equations

are discrete-time models. Previous studies were not able to achieve this be-

cause this phenomena is not possible to model with a continuous-time scalar

equation. Moreover, we can classify our results in terms of pushed and pulled

fronts. In particular, we show how a strong Allee effect can promote genetic

diversity in an expanding population while monotone growth functions with

maximal growth rate at zero and those with overcompensation are prone to

extreme founder effects where individuals initially located at the leading edge

of the population have an advantage.

In Chapter 3, we then expand the inside dynamics analysis to understand

the effects that stage-structure has on the neutral genetic diversity of expand-

ing populations. Previous work has shown that the inclusion of a juvenile

class into the population dynamics for the model has shown to decrease the

founder effect (Austerlitz et al., 2000). In this chapter, we construct a general

stage-structured model and analyze the inside dynamics to see how the ge-

netic diversity would change for an expanding population. Since our focus is

on the interactions between stages in the model, we do not consider a variety

of dispersal kernels and growth functions as done in Chapter 2, but focus on

the structure of the population. In particular, we show how the initial spatial
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orientation and the structure of the population influences the neutral genetic

patterns of spatial spread.

By performing experiments in the laboratory on two florescently labeled

strains of Escherichia coli, Hallatschek et al. (2007) reported on how an ini-

tially well mixed population can spread in well defined sector-like regions.

Moreover, they claim that the formation of these regions is driven by ran-

dom fluctuations in the pioneers at the leading edge of the population spread.

More generally, the experiments by Hallatschek et al. (2007) demonstrate how

it is possible for mutations at the leading edge of the population to dominate

population spread without any selective advantage illustrating the importance

of neutral genetic diversity. In Chapter 4, we consider this complexity by

constructing a model that includes neutral genetic mutations. We focus the

analysis in Chapter 4 on the mutation structure of the population and its impli-

cation on the long term dynamics of neutral genetic structure of the expanding

population.

1.3 Dispersal-reproduction trade-offs

In Chapter 5, we shift the interest from the neutral genetic structure of ex-

panding population and focus on how resource allocation to reproduction and

dispersal affect population spread. The idea for this is motivated by the prin-

ciple of allocation which states that if an organism has limited resources, then

energy allocation to one function reduces the amount of energy available to

all other functions (Cody, 1966). Thus, under resource limitation, there is an

inherent trade-off between the different processes. While there are a variety

of different trade-offs in natural systems, we limit the scope of the research to

the life-history trade-off between dispersal and reproduction that arises from

limited resource allocation. That is, the assumption is made that if an indi-

vidual disperses a long distance, then there will be few resources left over to
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Figure 1.2: Here I provide a theoretical example for the dispersal-reproduction
trade-off. The solid lines represents linear trade-off between the dispersal dis-
tance and number of offspring produced. The dashed (dotted) line represents
a nonlinear trade-off curve that is convex (concave).

be dedicated to producing offspring. A theoretical example of this trade-off is

presented in Figure 1.2.

The primary conclusion to draw from Figure 1.2 is that the shape, in

particular the curvature, of the trade-off influences the parameter values in

the model. For example, by inspecting the trade-off curves in Figure 1.2 we

can see that if the dispersal distance is one kilometer, then according to the

convex, linear, and concave trade-off curves, the number of offspring produced

is less than one, five, and greater than eight, respectively. Thus, even though

all these trade-off curves are decreasing and starting and ending at the same

value, the curvature can greatly influence the population dynamics. Therefore,

when developing our model for the dispersal-reproduction trade-off we attempt

to make the model relatively general by including parameters to obtain these

different shapes in the dispersal-reproduction trade-off curve.
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The understanding of the trade-off curve is commonly described in terms

of how much we know about the biological system. First-order understanding

of the trade-off curve refers to knowing the slope, second-order understand-

ing is knowing the curvature of the trade-off curve, and third-order refers to

knowing all details including interactions terms (Stearns, 1989). While the

information for first-order understanding is known in many cases, theoretical

studies have argued that the second-order understanding is of vital important

for understanding life-history evolution (Schaffer, 1974). Measurement of the

third-order understanding is the ultimate goal, but outside of a theoretical or

lab study, this may be too complicated to determine.

The inclusion of resource allocation is not typically considered in mathe-

matical models of spread, but are known to produce rich dynamics. By incor-

porating a trade-off between reproduction and dispersal ability in a popula-

tion of non-pollinating fig wasps Duthie et al. (2014) constructed a theoretical

model that showed coexistence between these different strategies can occur. At

first glance, this result appears to be paradoxical to the competitive exclusion

principle because non-pollinator species are often closely related, share similar

life histories, and compete for similar resources. However, the trade-off in the

model influenced individuals to specialize to different degrees on dispersal and

reproductive abilities and create individual niches.

Theoretical models have been developed to study the evolution of dispersal

in populations with multiple phenotypes. One of the important results from

these studies is that there is an evolutionary force causing the phenotype with

the lowest diffusion rate to be selected in a competitive environment (Dockery

et al., 1998; Hastings, 1983). However, in this thesis we are not interested

in what is happening in a competitive environment, but rather during colo-

nization. During colonization, the spreading speed of the population is the

primary driving force not high level density-dependence or intraspecific com-
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petition unlike in stationary competitive systems. Thus, our analysis aims to

address a complementary area that the evolution of dispersal models have not

considered. That is, we are interested in understanding how dispersal should

be selected for in a colonizing population.

To understand the effect that the dispersal-reproduction trade-off has on

population spread, we analyze how the spreading speed for the population is

altered by different resource allocations in Chapter 5. To determine how the

spreading speed changes with model parameter values, we perform a sensitiv-

ity analysis on the demographic, dispersal, and trade-off parameters. Using

sensitivity analysis, we then determine the optimal resource allocation to dis-

persal that maximizes the spreading speed for the population. We also explore

how parameter uncertainty affects the population spread and resource alloca-

tion. To achieve this, we assume that the model parameters of interest are

random variables with a given probability distribution, and then compute the

expected value for the spreading speed.

The organization of this thesis is laid out as paper-based where Chapters

2-5 are the four main original works. Chapters 2-5 can be read independently

on their own because they each contain their own introduction and discussion

sections. The outline for the four original works is given as follows: In Chap-

ter 2, we study the inside dynamics of a scalar integrodifference equations, in

Chapter 3, we study the inside dynamics of a stage-structured integrodifference

equations, in Chapter 4, we study the inside dynamics of a scalar integrodif-

ference equation with neutral genetic mutations, and in Chapter 5, we study

the dispersal-reproduction trade-off effect in an expanding population. I finish

with a conclusion of the work in Chapter 6.
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Chapter 2

Neutral genetic patterns for
expanding populations with
nonoverlapping generations

2.1 Introduction

The topic of populations undergoing range expansions in spatial ecology is

well studied (Holmes et al., 1994; Ibrahim et al., 1996; Thomas et al., 2001).

However, many of the previous mathematical studies focus on the spread of

entire populations and ignore the neutral genetic consequences of the expansion

(Kot, 1992; Lutscher, 2008; Wang et al., 2002). The aim of this work is to

connect the range expansion of a population to the genetic consequences for

populations with nonoverlapping generations. To achieve this goal, we develop

and analyze a mathematical model of integrodifference equations to connect

the fundamental ecological and genetic concepts with mathematical structure.

A recent interest in ecological literature is focused around the neutral ge-

netic consequences of range expansions (Hallatschek and Nelson, 2008). A

founder effect is said to occur when the establishment of a new population

is performed by a few original founders who carry only a small fraction of

the total genetic variation of the parental population (Mayr, 1942). It is a

widely accepted notion that range expansions often lead to a loss of genetic
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diversity because of the founder effect (Dlugosch and Parker, 2008; Ibrahim

et al., 1996). Serial founder events that occur when a population undergoes

a range expansion result in the phenomena known as gene surfing (Excoffier

and Ray, 2008). This is the spatial analogue of genetic drift and occurs when

alleles reach higher than expected frequencies at the front of a range expan-

sion (Slatkin and Excoffier, 2012). By understanding the effect that spatial

assortment plays in expanding populations, we can begin to understand the

effect that dispersal has on genetic diversity, independent of selection.

It has been shown that, in some scenarios, genetic drift in edge populations

can be a stronger driver than selection during range expansion because of the

spatial structure of the population (Müller et al., 2014). A simple theoretical

experiment was conducted to demonstrate that mutations at expanding fron-

tiers can sweep through a population, even without any selective advantage

(Hallatschek et al., 2007). This experiment provides support for theoretical

arguments and genetic evidence that common genes in a population may not

necessarily reflect positive selection but, instead, may be due to recent range

expansions (Hewitt, 2000). This evidence motivates the work conducted in

this paper to understand the effect that growth and dispersal have on the

neutral genetic composition of a population.

Often, large scale genomic surveys are motivated, in part, by the idea

that the neutral genetic variation observed in a population may be used to

reconstruct the history of its range expansion (Hewitt, 1996). However, the

ability to trace back the colonization pathways of a species from their genetic

footprints is limited by our understanding of the genetic consequences of a

range expansion (Excoffier, 2004; Hallatschek and Nelson, 2008). The model

considered in this work provides a framework for understanding the genetic

consequences that in turn can assist the inverse problem of understanding

where the species originated.

12



Mathematically, the concept of modeling the evolution of the neutral ge-

netic diversity of an expanding population is known as the “inside dynamics”

of the population. The term comes from the idea that we break the population

into subpopulations that can be identified by a neutral genetic marker used

to study the underlying structure of the population. A recent series of papers

focused on understanding the inside dynamics for a variety of different types

of continuous-time models(Bonnefon et al., 2014, 2013; Garnier et al., 2012;

Roques et al., 2012). Early work on inside dynamics focused on the study of

the classical reaction diffusion equations with monostable, bistable, or ignition

type reaction dynamics. The authors were able to classify the inside dynamics

of the deterministic population structure in terms of pulled and pushed trav-

eling wave solutions (Garnier et al., 2012). The theory was quickly extended

by incorporating biological insight to the original work by showing that Allee

effects preserve genetic diversity (Roques et al., 2012). The inside dynamics

analysis has also been extended to other kinds of one-dimensional equations

such as delayed traveling waves (Bonnefon et al., 2013) and integro-differential

equations (Bonnefon et al., 2014).

As was done for the previous studies on continuous time models, this work

aims to classify the inside dynamics of solutions to integrodifference equa-

tions as pushed or pulled fronts. The classical integrodifference equation is a

discrete-time continuous space equation that describes a populations growth

and spread. The discrete-time aspect coincides with the assumption that the

population has nonoverlapping generations. This provides a widely used bio-

logical model for population dynamics (Lewis et al., 2016).

2.2 Mathematical preliminaries and model

In this section we provide necessary background material for the reader. We

first discuss the basic model structure with the types of growth functions and

13



dispersal kernels considered in this work. A few integral transforms are then

defined for use in the long time analysis of the model. Next, the concept of

inside dynamics is then introduced and the model is formulated. To com-

plete this section we discuss some classical results for traveling wave solutions

and define pushed and pulled traveling wave solutions in terms of the inside

dynamics.

2.2.1 Model structure

The classical integrodifference equation, describing the growth and dispersal

of a population density u, is given by

ut+1(x) =

∫︂ ∞

−∞
k(x− y)g(ut(y))ut(y) dy. (2.1)

In Equation (2.1) g is the density-dependent per capita growth rate function

describing the local growth of the population at location y and time t. We

assume that g is a nonnegative continuous function where g(u)u has a trivial

steady state and a steady state at 1. The function k is a probability density

function that describes the probability of movement of individuals from loca-

tion y to location x. That is, k is a nonnegative function that integrates to

one. The recursion in Equation (2.1) describes the reproduction and dispersal

of a population with nonoverlapping generations. That is, all individuals first

undergo reproduction and then the offspring are redistributed before repro-

duction occurs in the next generation. Given an initial condition u0(x), ut(x)

is the solution to Equation (2.1) defined recursively.

For the population growth we consider three different types of functions

that include different kinds of effects. In particular, we look at Beverton-Holt,

Ricker, and Sigmoid Beverton-Holt type growth functions; see Figure 2.1. The

classical Beverton-Holt growth is the discrete analog of logistic growth and the
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Figure 2.1: The fecundity functions, g(u)u, used in the numerical simulations.
The intrinsic growth rate, R, for the Beverton-Holt, Sigmoid Beverton-Holt,
and Ricker type growth functions are 2.5, 4, and 1.5 respectively. The positive
sigmoid scaling parameter, δ, for the Sigmoid Beverton-Holt function is chosen
to be 2. The solid line is the reference line g(u)u = u dictating when there is
no change in population density.

per capita growth is defined by

gbh(u) =
R

1 + (R− 1)u
, (2.2)

whereR is the geometric growth rate. A model introduced by Grant Thompson

for fisheries, called the Sigmoid Beverton-Holt model, has per capita growth

rate

gs(u) =
Ruδ−1

1 + (R− 1)uδ
, (2.3)

where R is the intrinsic growth rate and δ is a positive sigmoid scaling pa-

rameter (Thompson, 1993). It is known that when δ > 1 this growth function

exhibits a strong Allee effect.
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Since we have scalar discrete time equations we can consider growth func-

tions with overcompensation. This is not possible for a scalar first order con-

tinuous time model. Ricker type growth is commonly used when overcompen-

sation is present. The Ricker model has the form

gr(u) = eR(1−u), (2.4)

where R is the intrinsic growth rate (Ricker, 1954). Note that gbh(u)u and

gs(u)u are monotone where gr(u)u is not, see Figure 2.1.

Definition 2.2.1 (Thin-tailed dispersal kernel). A dispersal kernel k(x) is

called thin-tailed if there exists a real valued ξ > 0, such that∫︂ ∞

−∞
k(x)eξ|x| dx < ∞. (2.5)

If a dispersal kernel is not thin-tailed, then we say the dispersal kernel is

fat-tailed. For simplicity, we only consider thin-tailed dispersal kernels in this

work. Many of the classical mathematical results for the dynamics of Equation

(2.1) focus on thin-tailed dispersal kernels. The thin-tailed assumption implies

that k(x) decays at least as fast as an exponential function as |x| → ∞. A

consequence of the thin-tailed assumption is that k has a moment generating

function. A common dispersal kernel that we consider throughout our work is

the Gaussian probability distribution function. That is:

k(x;µ, σ) =
1√
2πσ2

e−
(x−µ)2

2σ2 , (2.6)

where µ is the mean shift in location and σ2 is the variance in dispersal dis-

tance. In the following sections we use the shorthand notation k is N(µ, σ2).

2.2.2 Integral transforms

The two integral transforms that are particularly useful in our work are the

Fourier transform and the reflected bilateral Laplace transform (Zemanian,
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1968). These transformations and their inverses are given in Definitions 2.2.2

and 2.2.3.

Definition 2.2.2 (Fourier transform). Let f : R → R where f ∈ L1(R).

Then, the Fourier transform and its inverse are respectively defined to be

f̂(ω) = F [f(x)] =

∫︂ ∞

−∞
f(x)e−iωx dx, and (2.7)

f(x) = F−1[f̂(ω)] =
1

2π

∫︂ ∞

−∞
f̂(ω)eiωx dω. (2.8)

Definition 2.2.3 (reflected bilateral Laplace transform). Let f : R → R

where f is piecewise continuous on every finite interval in R satisfying |f(x)| ≤

Me−sx for all x ∈ R and 0 < s < smax. Then, the reflected bilateral Laplace

transform and its inverse are respectively defined to be

F (s) = M[f(x)] =

∫︂ ∞

−∞
f(x)esx dx, and (2.9)

f(x) = M−1[F (s)] =
1

2πi
lim
R→∞

∫︂ γ+iR

γ−iR

F (s)e−sx ds (2.10)

for 0 < s < smax, where the integration in Equation (2.10) is over the vertical

line, Re(s) = γ in the complex plane and γ is greater than the real parts of all

singularities of F (s).

The reflected bilateral Laplace transform can be used to write the solution

to our model in terms of its initial condition by using the convolution theo-

rem. This theorem states that the reflected bilateral Laplace transform of a

convolution is the product of the reflected bilateral Laplace transforms. That

is,

M[f(x) ∗ h(x)](s) = F (s)H(s). (2.11)

Note that the reflected bilateral Laplace transform of a probability density

function is also referred to as its moment generating function (Casella and

Berger, 2002).
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2.2.3 Inside dynamics

To include neutral genetic diversity we assume that the population density

is composed of either haploid individuals or genes. To analyze the inside

dynamics we separate the population into different neutral fractions vit(x).

The initial population is defined to be

u0(x) :=
N∑︂
i=1

vi0(x), (2.12)

where vi0(x) ≥ 0 is the initial population density for neutral fraction i and N is

the finite number of distinct neutral fractions. We assume that the individuals

(or genes) in each fraction have the same dispersal and growth capabilities as

the entire population u and only differ by position and their label (or their

alleles). In short, we assume that individuals in each neutral fraction have no

genetic advantage over any other neutral fraction. Then, by decomposing the

population density into the neutral fractions gives the following system of N

equations:

vit+1(x) =

∫︂ ∞

−∞
k(x− y)g(ut(y))v

i
t(y) dy, (2.13)

where g is the common per capita growth rate for all neutral fractions. That

is, the per capita growth rate of each neutral fraction is the same as the per

capita growth rate of the total population giving no genetic advantage of one

fraction over another. A key feature of System (2.13) is that the sum of

the neutral fraction densities, vit(x), is equal to the entire population density

ut(x). When we add together the N equations in System (2.13), we obtain the

integrodifference equation for the entire population density given by Equation

(2.1). Using System (2.13) we are now able to track how individual neutral

fractions spread.
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2.2.4 Traveling wave solutions

We focus our study on classifying the traveling wave solutions of Equation

(2.1). A traveling wave solution U(x − ct) is a solution that connects the

trivial steady state, 0, to the stable nontrivial steady state, 1, and propagates

at a constant speed c. That is ut(x) = U(x − ct) solves Equation (2.1) with

constant density profile U . The traveling wave equation is given by

U(x− c) =

∫︂ ∞

−∞
k(x− y)g(U(y))U(y) dy. (2.14)

Weinberger was a pioneer in this area and created the seminal work that ana-

lyzed traveling wave solutions for scalar discrete time operators (Weinberger,

1982). The main result in his work shows that for thin-tailed dispersal kernels,

if g(u)u is nondecreasing, then Equation (2.1) has a family of monotone travel-

ing wave solutions parameterized by the speed c where c ≥ c∗. The asymptotic

spreading speed, c∗, is defined to be the asymptotic speed that a wave with

compact initial conditions spreads. It was later shown that the asymptotic

spreading speed is the minimum speed for which traveling wave solutions ex-

ist. In addition, if the per capita growth rate is maximal at zero, g(u) ≤ g(0),

then the asymptotic spreading speed can be determined by a simple formula

involving g(0) and the dispersal kernel k(x) given below

c∗ = inf
z>0

1

z
ln

(︃
g(0)

∫︂ ∞

−∞
k(x)ezx dx

)︃
. (2.15)

For Gaussian dispersal kernels, we can write down an explicit formula for the

asymptotic spreading speed

c∗ =
√︁

2σ2 ln(g(0)) + µ. (2.16)

Many of the fundamental techniques and concepts presented by Weinberger

such as the comparison principle, asymptotic spreading speed, and integral

transforms will be used in our analysis.
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Weinberger’s results were extended to include growth functions that have

overcompensatory dynamics (Li et al., 2009). The extended theory requires

some additional assumptions on the growth function, but commonly used func-

tions such as the Ricker or logistic growth functions satisfy the required as-

sumptions. In this scenario, it is not guaranteed that the traveling wave profile

is monotone. The effect of overcompensation allows for complicated or even

chaotic dynamics. Existence of traveling wave solutions with a strong Allee

effect has been proven for a unique speed c = c∗ (Lui, 1983). The decay of

the wave profile is given by U(x) ∼ Ce−s∗x as x → ∞ where s∗ is the unique

positive root of

1

s
ln

(︃
g(0)

∫︂ ∞

−∞
esxk(x) dx

)︃
= c, (2.17)

see Proposition 5 of (Lui, 1983). In the case where k is N(µ, σ2) we can

explicitly calculate s∗ to be

s∗ =
c− µ+

√︁
(µ− c)2 − 2σ2 ln(g(0))

σ2
. (2.18)

Thus, we can conclude that e
c−µ

σ2 xU(x) ∈ L1(R). When Equation (2.1) has

a strong Allee effect there are still many open questions. In our work, we

conjecture about the decay rate of pushed fronts that comes from the proof

for growth functions with a strong Allee effect.

The techniques used to prove results for strong Allee are based on functional

analysis arguments for superpositive operators. A linear operator is called

superpositive (Krasnosel’skii and Zabreiko, 1984) if it has a simple positive

dominant eigenvalue with positive eigenfunction where no other eigenfunction

is positive. In particular, Jentsch’s theorem provides sufficient conditions for

a linear integral operator to be superpositive (Vladimirov, 1971).

In this paper, we focus on pulled and pushed fronts; see Definitions 2.2.4

and 2.2.5 for details. Instead of using the classical definitions of pulled and

pushed fronts, see (Rothe, 1981; Stokes, 1976), we classify the waves using the
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asymptotic dynamics of the neutral fractions. The following definitions come

from the previous work on inside dynamics (Bonnefon et al., 2014).

Definition 2.2.4 (Pulled front). A traveling wave solution ut(x) = U(x− ct)

is said to be a pulled front if, for any neutral fraction vit(x) satisfying (2.13),

0 ≤ vi0 ≤ U and vi0(x) = 0 for large x, the statement

vit(x+ ct) → 0 as t → ∞,

holds uniformly on any compact subset of R.

Next, we define what it means for a traveling wave solution to be a pushed

front in terms of the neutral fractions.

Definition 2.2.5 (Pushed front). A traveling wave solution ut(x) = U(x−ct)

is said to be a pushed front if, for any neutral fraction vit(x) satisfying (2.13),

0 ≤ vi0 ≤ U and vi0 ̸≡ 0, there exists M > 0 such that

lim sup
t→∞

sup
x∈[−M,M ]

vit(x+ ct) > 0.

To recap, the preliminary definitions, theory, techniques, and the mathe-

matical model have been laid out. Now that we have all the required knowledge

we move into the next section where we classify the asymptotic dynamics of

System (2.13).

2.3 Large time neutral genetic variation

In this section, we provide the theoretical results about the neutral genetic

composition for System (2.13). In Theorems 2.3.1 and 2.3.2 we assume that

the dispersal kernel is Gaussian, see Equation (2.6). This allows us to exploit

the fact that the moment generating function for a Gaussian has the following

form:

M(s) = eµs+σ2s2/2. (2.19)
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After the proof of Theorem 2.3.1 we provide two corollaries that provide a

better interpretation for the results of Theorem 2.3.1. We then extend the

results of Theorem 2.3.1 to the general class of thin-tailed dispersal kernels

given by Theorem 2.3.3.

Theorem 2.3.1 (Gaussian kernel with maximum per capita growth at zero).

Consider the solution of System (2.12)-(2.13) where k is N(µ, σ2) and 0 <

g(u) ≤ g(0) for all u ∈ (0, 1). Let c be the speed of a moving half-frame. If

c ≥ c∗ and
∫︁∞
−∞ e

c−µ

σ2 yvi0(y) dy < ∞, then for any A ∈ R, the density of the

neutral fraction i, vit(x), converges to 0 uniformly as t → ∞ in the moving

half-frame [A+ ct,∞).

Proof. For simplicity in notation we focus on a single neutral fraction and

drop the superscript i notation. Using the fact that 0 < g(u) ≤ g(0) for all

u ∈ (0, 1) we can use a comparison principle to show that a new sequence

wt(x) defined by

wt+1(x) = g(0)

∫︂ ∞

−∞
k(x− y)wt(y) dy (2.20)

is always greater than the solution to any neutral fraction vt(x) with the same

initial condition w0(x) = v0(x). The solution of Equation (2.20) is given by

the t-fold convolution

wt(x) = (g(0))tk∗t ∗ w0(x) (2.21)

where k∗t is k convolved with itself t times. Applying the reflected bilateral

Laplace transform to Equation (2.21) and using the convolution theorem, we
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obtain

M[wt(x)](s) = [g(0)]t [M [k(x)] (s)]tM [w0(x)] (s) (2.22)

= [g(0)]t
[︂
e

σ2s2

2
+µs

]︂t
M [w0(x)] (s) (2.23)

= [g(0)]te
σ2ts2

2
+µtsM [w0(x)] (s) (2.24)

= [g(0)]tM
[︃

1√
2πσ2t

e−
(x−µt)2

2σ2t

]︃
(s)M [w0(x)] (s) (2.25)

= [g(0)]tM [kt ∗ w0)(x)] (s), (2.26)

where kt is N(µt, σ2t). Then applying the inverse transform yields

wt(x) = [g(0)]t(kt ∗ w0)(x) (2.27)

= [g(0)]t
∫︂ ∞

−∞

1√
2πσ2t

e−
(x−y−µt)2

2σ2t w0(y) dy. (2.28)

In the moving half-frame [A + ct,∞) with fixed A ∈ R, consider the element

x0+ct with c ≥ c∗ =
√︁

2σ2 ln(g(0))+µ. When we rewrite wt(x) in this moving

half-frame we have

wt(x0 + ct) = [g(0)]t
∫︂ ∞

−∞

1√
2πσ2t

e−
(x0+ct−y−µt)2

2σ2t w0(y) dy. (2.29)

Expanding the exponent, yields

(x0 + ct− y − µt)2

2σ2t
=

(x0 − y)2

2σ2t
+

2(c− µ)t(x0 − y) + (c− µ)2t2

2σ2t
(2.30)

≥ (x0 − y)2

2σ2t
+

c− µ

σ2
(x0 − y) + ln(g(0))t. (2.31)

Thus,

wt(x0 + ct) ≤ eln(g(0))t√
2πσ2t

∫︂ ∞

−∞
e−

(x0−y)2

2σ2t e−
c−µ

σ2 (x0−y)e− ln(g(0))tw0(y) dy (2.32)

=
1√

2πσ2t

∫︂ ∞

−∞
e−

(x0−y)2

2σ2t e−
c−µ

σ2 (x0−y)w0(y) dy (2.33)

=
e−

c−µ

σ2 x0

√
2πσ2t

∫︂ ∞

−∞
e−

(x0−y)2

2σ2t e
c−µ

σ2 yw0(y) dy. (2.34)

Since x0 ≥ A we have

wt(x0 + ct) ≤ e−
A(c−µ)

σ2

√
2πσ2t

∫︂ ∞

−∞
e

c−µ

σ2 yw0(y) dy. (2.35)
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Thus since
∫︁∞
−∞ e

c−µ

σ2 yw0(y) dy < ∞ we have wt(x0 + ct) → 0 uniformly as

t → ∞ in [A,∞). Recall that wt(x) was constructed so that 0 ≤ vt(x) ≤ wt(x).

This implies the uniform convergence of vt(x) → 0 as t → ∞ in the moving

half-frame [A+ ct,∞).

Corollary 2.3.1 (Compact initial conditions). Consider the solution of Sys-

tem (2.12)-(2.13) where k is N(µ, σ2) and 0 < g(u) ≤ g(0) for all u ∈ (0, 1)

with compactly supported initial conditions vi0(x) for i = 1, . . . N . Then each

neutral fraction converges to zero uniformly to zero as t → ∞ in the moving

half-frame [A+ ct,∞) where c ≥ c∗.

This result is clear from the condition that any compact initial conditions

will satisfy the assumption of Theorem 2.3.1 that
∫︁∞
−∞ e

c−µ

σ2 yvi0(y) dy < ∞. This

result is relevant because when we perform numerical simulations we must use

compact initial conditions. Thus, it takes time for the traveling wave solution

to spread at the asymptotic spreading speed c∗. Therefore, we will always

outrun the solution by looking in the moving half-frame [A+ c∗t,∞).

For the next corollary, we consider initial conditions were u0(x) =
∑︁N

i=1 v
i
0(x) =

U(x) and v10(x) = 1x≥aU(x) where a is a constant. Here we call v10(x) the neu-

tral fraction at the leading edge of the traveling wave.

Corollary 2.3.2 (Traveling wave initial conditions). Consider the solution

of System (2.12)-(2.13) where k is N(µ, σ2) and 0 < g(u) ≤ g(0) for all

u ∈ (0, 1) with initial condition
∑︁N

i=1 v
i
0(x) = U(x) with speed c ≥ c∗. Then

the neutral fraction at the leading edge of the traveling wave converges to U(x)

uniformly as t → ∞ in the moving half-frame [A+ct,∞) and all other neutral

fractions converges to zero uniformly to zero as t → ∞ in the moving half-

frame [A+ ct,∞).

In Corollary 2.3.2, the initial conditions for System (2.13) sum to be the

traveling wave solution with speed greater than or equal to the minimum
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asymptotic spreading speed c∗. In this case we know that traveling wave so-

lutions exist for all c ≥ c∗ (Weinberger, 1982). The key question is what

happens to the neutral fraction at the front of the spread. We see that all

other neutral fractions vanish when the moving half-frame is sufficiently far

to the right. Thus, each one of these neutral fractions satisfy the assumption∫︁∞
−∞ e

c−µ

σ2 yvi0(y) dy < ∞ required for Theorem 2.3.1. However, the neutral frac-

tion at the leading edge decays no faster than e−
c−µ

σ2 y. Thus,
∫︁∞
−∞ e

c−µ

σ2 yvi0(y) dy

is not finite, and hence one cannot apply Theorem 2.3.1 to this neutral frac-

tion. However, if all other neutral fractions approach zero then it must be the

case that the neutral fraction at the leading edge of the traveling wave con-

verges to U uniformly as t → ∞ in the moving half-frame [A + ct,∞). From

Definition 2.2.4, it is clear that the results from Corollary 2.3.2 show that the

solution to System (2.12)-(2.13) where k is N(µ, σ2), 0 < g(u) ≤ g(0) for all

u ∈ (0, 1), and
∑︁N

i=1 v
i
0(x) = U(x) is a pulled front.

Next, we extend the theory to consider growth functions with a strong

Allee effect. The idea of proof is different from Theorem 2.3.1 because we can

no longer construct a super solution by using the linearization. Instead, we

use Hilbert Schmidt theory to obtain the asymptotic dynamics.

Theorem 2.3.2 (Gaussian kernel with strong Allee type growth). Consider

the solution of System (2.12)-(2.13) where k is N(µ, σ2), g has a strong Allee

effect, and
∑︁N

i=1 v
i
0(x) = U(x). Then for any A ∈ R, the density of neu-

tral fraction i, vit(x), converges to a proportion pi[vi0] of the total population

U(x− ct) uniformly as t → ∞ in the moving half-frame [A+ ct,∞). That is,

|vit(x)− pi[vi0]U(x− ct)| → 0 uniformly as t → ∞ in the moving half-frame

[A + ct,∞). Moreover, if e
c−µ

σ2 xU(x) ∈ L2(R), then the proportion pi[vi0] can

be computed explicitly:

pi[vi0] =

∫︁∞
−∞ vi0(x)U(x)e

c−µ

σ2/2
x
dx∫︁∞

−∞ U2(x)e
c−µ

σ2/2
x
dx

. (2.36)
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Proof. Consider System (2.13) where k is N(µ, σ2) and g has a strong Allee

effect. For simplicity in notation we focus on a single neutral fraction and drop

the superscript i notation. Define ṽt(x) = vt(x+ ct), then

ṽt+1(x) =

∫︂ ∞

−∞
k(x+ c− y)g(U(y))ṽt(y) dy. (2.37)

Since k is N(µ, σ2),

k(x+ c− y) =
1√
2πσ2

e−
(x+c−y−µ)2

2σ2 (2.38)

=
1√
2πσ2

e−
(x−y)2

2σ2 e−
(c−µ)2

2σ2 e−
c−µ

σ2 xe
c−µ

σ2 y (2.39)

= k̃(x− y)e−
(c−µ)2

2σ2 e−
c−µ

σ2 xe
(c−µ)

σ2 y (2.40)

where k̃ is N(0, σ2). Define v∗t (x) = e
c−µ

σ2 xṽt(x). Then Equation (2.37) becomes

v∗t+1(x) =

∫︂ ∞

−∞
e−

(c−µ)2

2σ2 k̃(x− y)g(U(y))v∗t (y) dy. (2.41)

We know that the weight function ρ(y) = e−
(c−µ)2

2σ2 g(U(y)) is a positive and

continuous function and ρ(y)k̃(x− y) ∈ L2(R). Then we consider

ϕ(x) =

∫︂ ∞

−∞
e−

c−µ

2σ2 k̃(x− y)g(U(y))ϕ(y) dy. (2.42)

Multiplying Equation (2.42) on both sides by
√︁
ρ(x), we have√︁

ρ(x)ϕ(x) =

∫︂ ∞

−∞

√︁
ρ(x)k̃(x− y)

√︁
ρ(y)

√︁
ρ(y)ϕ(y) dy. (2.43)

Since k̃ is N(0, σ2), the function k(x, y) :=
√︁
ρ(x)k̃(x−y)

√︁
ρ(y) is symmetric;

k(x, y) = k(y, x). Therefore, the Hilbert-Schmidt theory can still be applied

with a non-symmetric kernel. Also ϕ(x) = e
c−µ

σ2 xU(x) is a positive eigen-

function of Equation (2.42) with eigenvalue 1. Thus, by Jentsch’s theorem

(Vladimirov, 1971), since our eigenfunction is positive, this eigenfunction is

associated with the eigenvalue with the largest modulus. Therefore, we know

that all other eigenvalues have modulus strictly less than one. We can write

the solution by eigenfunction expansion as

v∗t (x) = pϕ(x) + zt(x) (2.44)

26



where p is a scalar and zt(x) is composed of elements that are orthogonal to

ϕ(x) for each t ∈ N and |zt(x)| ≤ K |λ|t for some constants K > 0 and |λ| < 1.

Hence,

|v∗t (x)− pϕ(x)| ≤ K |λ|t . (2.45)

Converting back to the moving frame coordinates,⃓⃓⃓
e

c−µ

σ2 xṽt(x)− pe
c−µ

σ2 xU(x)
⃓⃓⃓
≤ K |λ|t . (2.46)

Thus,

|ṽt(x)− pU(x)| ≤ Ke−
c−µ

σ2 x |λ|t . (2.47)

From this, we can conclude that |ṽt(x)− pU(x)| → 0 uniformly as t → ∞ in

the interval [A,∞). Therefore, |vt(x)− pU(x− ct)| → 0 uniformly as t → ∞

in the moving half-frame [A+ ct,∞).

To obtain the proportion p we multiply Equation (2.44) evaluated at t = 0

by ϕ(x) and integrate to obtain∫︂ ∞

−∞
v∗0(x)ϕ(x) dx =

∫︂ ∞

−∞
pϕ2(x) dx+

∫︂ ∞

−∞
z0(x)ϕ(x) dx (2.48)

= p

∫︂ ∞

−∞
ϕ2(x) dx (2.49)

by the orthogonality of z to ϕ. Solving for p we find

p =

∫︁∞
−∞ v∗0(x)ϕ(x) dx∫︁∞

−∞ ϕ2(x) dx
(2.50)

=

∫︁∞
−∞ e

c−µ

σ2 xṽ0(x)e
c−µ

σ2 xU(x) dx∫︁∞
−∞

(︂
e

c−µ

σ2 xU(x)
)︂2

dx
(2.51)

=

∫︁∞
−∞ v0(x)U(x)e

c−µ

σ2/2
x
dx∫︁∞

−∞ U2(x)e
c−µ

σ2/2
x
dx

. (2.52)

The proof of Theorem 2.3.2 is complete.

From Definition 2.2.5, it is clear that the results from Theorem 2.3.2 show

that the solution to System (2.12)-(2.13) where k is N(µ, σ2), g has a strong

Allee effect, and u0(x) = U(x) is a pushed front.
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The next step in our work is to extend the result of Theorem 2.3.1 to a

general class of thin-tailed dispersal kernels. To accomplish this goal we must

place some extra constraints on the initial conditions for the neutral fractions.

That is, we define the set Bs := {vi0 : x2vi0(x)e
sx ∈ L1(R) ∩ L∞(R)}. This

condition is given as the assumption of Lemma 2.3.1.

Lemma 2.3.1. Let vi0(x) ∈ Bs for all s > 0, then there exists a positive

constant C such that

wi
0(x) :=

Ce−sx

1 + x2
(2.53)

bounds vi0(x) for all x ∈ R. Moreover, the Fourier transform of wi
0(x)e

sx with

respect to x is in L1(R) and is given by

Cπe−|ω|. (2.54)

The proof of Lemma 2.3.1 is provided in Appendix 2.6.1. Lemma 2.3.1

provides important assumptions to guarantee that the initial conditions can

be bounded by a function that has a Fourier transform in L1(R). This result

allows us to extend the result of Theorem 2.3.1 to a general class of thin-tailed

dispersal kernels.

Theorem 2.3.3 (Thin-tailed kernel with maximum per capita growth at zero).

Consider the solution of System (2.12)-(2.13) where k is a thin-tailed dispersal

kernel and g is the per-capita growth rate that satisfies 0 < g(u) ≤ g(0) for

all u ∈ (0, 1). Let c be the speed of a moving half-frame. If c ≥ c∗ and

vi0(x) ∈ Bs0(c) where s0(c) is the smallest positive root of ln (g(0)K(s)) = sc,

then for any A ∈ R, the density of the neutral fraction i, vit(x), converges to 0

uniformly as t → ∞ in the moving half-frame [A+ ct,∞).

Proof. Consider the neutral fraction model given by System (2.13). For sim-

plicity, we consider a single neutral fraction vit(x) and drop the superscript i
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notation. That is,

vt(x) =

∫︂ ∞

−∞
k(x− y)g(ut−1(y))vt−1(y) dy. (2.55)

Equation (2.1) produces traveling wave solutions ut(x) = U(x − ct). In the

case where k, is a thin-tailed dispersal kernel and 0 < g(u) ≤ g(0) for all

u ∈ (0, 1) we know that the asymptotic spreading speed c∗ can be calculated

by

c∗ = inf
s>0

1

s
ln (g(0)K(s)) (2.56)

whereK(s) =
∫︁∞
−∞ k(x)esx dx is the moment generating function for the disper-

sal kernel k. The function ln(g(0)K(s))/s is positive and convex where K(s)

is finite. Thus, there is a unique minimum for c∗ obtained at some s∗. That

is, ln (g(0)K(s∗)) = s∗c∗. For all c > c∗ the equation ln (g(0)K(s)) = sc has

at most two positive roots. We define the smallest positive root by s0(c) < s∗.

Using the fact that the per-capita growth rate is the largest at zero, we obtain

a super-solution wt(x) to System (2.55) . That is, wt(x) satisfies the Cauchy

problem {︄
wt(x) = g(0)

∫︁∞
−∞ k(x− y)wt−1(y) dy, t ∈ N, x ∈ R

w0(x) =
Ce−s0(c)x

1+x2 ≥ v0(x), x ∈ R
(2.57)

where vt(x) ≤ wt(x) for all t ≥ 0. The solution of Equation (2.57) is given by

the t-fold convolution

wt(x) = (g(0))tk∗t ∗ w0(x). (2.58)

Next, we introduce the reflected bilateral Laplace transform defined in Equa-

tion (2.9) for all 0 < s < smax. It is clear that we can apply this transform to

wt(x) because k is thin-tailed and w0(x) is defined by Equation (2.53). Ap-

plying this transform to Equation (2.58) and using the convolution property

we obtain

M[wt(x)](s) = (g(0))t(M[k(x)](s))tM[w0(x)](s) (2.59)

= (g(0))t(K(s))tW0(s). (2.60)
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To obtain our solution for wt(x) we must use the inverse transform, as defined

in Equation (2.10), given by

wt(x) =
1

2πi
lim
R→∞

∫︂ s0(c)+iR

s0(c)−iR

(g(0))t(K(s))tW0(s)e
−sx ds (2.61)

where 0 < Re(s) < smax is the region of convergence for (K(s))tW0(s)e
−sx.

By performing a change of variables to integrate over the real line by letting

s = s0(c) + iω we obtain

wt(x) =
1

2π

∫︂ ∞

−∞
(g(0))t(K(s0(c) + iω))tW0(s0(c) + iω)e−(s0(c)+iω)x dω (2.62)

=
1

2π

∫︂ ∞

−∞
e(Log(g(0))+Log(K(s0(c)+iω))tW0(s0(c) + iω)e−(s0(c)+iω)x dω,

(2.63)

where Log is the principal value of the complex logarithm. In the moving

frame, x = x0 + ct choose x0 ∈ R, the solution satisfies

wt(x0 + ct) =
1

2π

∫︂ ∞

−∞
eJ(s0(c)+iω)tW0(s0(c) + iω)e−(s0(c)+iω)x0 dω, (2.64)

where J is a complex-valued function defined as follows

J(s0(c) + iω) := Log(g(0)) + Log(K(s0(c) + iω))− c(s0(c) + iω). (2.65)

Although we expect that wt(x) as a solution to Equation (2.58) is real, this fact

is not immediately evident from Equation (2.64). Therefore, we treat wt(x) as

if it were a complex-valued function. The modulus of the supersolution is

|wt(x0 + ct)| =
⃓⃓⃓⃓
1

2π

∫︂ ∞

−∞
eJ(s0(c)+iω)tW0(s0(c) + iω)e−(s0(c)+iω)x0 dω

⃓⃓⃓⃓
(2.66)

≤ 1

2π

∫︂ ∞

−∞
eRe(J(s0(c)+iω))t |W0(s0(c) + iω))| e−s0(c)x0 dω. (2.67)

Using the results from Lemma 2.3.1 we have that

W0(s0(c) + iω) =

∫︂ ∞

−∞
w0(x)e

(s0(c)+iω)x dx (2.68)

=

∫︂ ∞

−∞
w0(x)e

s0(c)xeiωx dx (2.69)

= F
[︁
w0(x)e

s0(c)x
]︁
(−ω) (2.70)

= Cπe−|ω| (2.71)
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for all ω ∈ R. Then using Equation (2.67) and the previous result we have

|wt(x0 + ct)| ≤ 1

2π

∫︂ ∞

−∞
eRe(J(s0(c)+iω))tCπe−|ω|e−s0(c)x0 dω. (2.72)

Notice that

Re(J(s0(c) + iω)) = ln(g(0)) + Re(Log(K(s0(c) + iω)))− cs0(c) (2.73)

= ln(g(0)) + Re

(︃
Log

(︃∫︂ ∞

−∞
k(x)es0(c)xeiωx dx

)︃)︃
− cs0(c).

(2.74)

Let us define

I := Re

(︃
Log

(︃∫︂ ∞

−∞
k(x)es0(c)xeiωx dx

)︃)︃
. (2.75)

Using Euler’s formula we find that

I = Re

(︃
Log

(︃∫︂ ∞

−∞
k(x)es0(c)(cos(ωx) + i sin(ωx)) dx

)︃)︃
(2.76)

= ln

⎛⎝√︄(︃∫︂ ∞

−∞
k(x)es0(c)x cos(ωx) dx

)︃2

+

(︃∫︂ ∞

−∞
k(x)es0(c)x sin(ωx) dx

)︃2
⎞⎠ .

(2.77)

Define II :=
(︂∫︁∞

−∞ k(x)es0(c)x cos(ωx) dx
)︂2

+
(︂∫︁∞

−∞ k(x)es0(c)x sin(ωx) dx
)︂2

.

Using Cauchy-Schwarz inequality we find that

II <

∫︂ ∞

−∞
k(x)es0(c)x dx

∫︂ ∞

−∞
k(x)es0(c)x cos2(ωx) dx+ . . .∫︂ ∞

−∞
k(x)es0(c)x dx

∫︂ ∞

−∞
k(x)es0(c)x sin2(ωx) dx (2.78)

=

∫︂ ∞

−∞
k(x)es0(c)x dx

∫︂ ∞

−∞
k(x)es0(c)x

(︁
cos2(ωx) + sin2(ωx)

)︁
dx (2.79)

=

(︃∫︂ ∞

−∞
k(x)es0(c)x dx

)︃2

. (2.80)
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Thus,

Re(J(s0(c) + iω)) < ln(g(0)) + ln

⎛⎝√︄(︃∫︂ ∞

−∞
k(x)es0(c)x dx

)︃2
⎞⎠− cs0(c)

(2.81)

= ln(g(0)) + ln

(︃∫︂ ∞

−∞
k(x)es0(c)x dx

)︃
− cs0(c) (2.82)

= ln(g(0)) + ln (K(s0(c)))− cs0(c) (2.83)

= 0 (2.84)

for ω ̸= 0. When ω = 0, we have that Re(J(s0(c) + iω)) = 0. Returning to

Inequality (2.72), by the Dominated Convergence theorem, we have

lim
t→∞

|wt(x0 + ct)| ≤ lim
t→∞

1

2π

∫︂ ∞

−∞
eRe(J(s0(c)+iω))tCπe−|ω|e−s0(c)x0 dω (2.85)

=
Ce−s0(c)x0

2

∫︂ ∞

−∞
lim
t→∞

eRe(J(s0(c)+iω))te−|ω| dω (2.86)

= 0. (2.87)

Thus, for any A ∈ R

lim
t→∞

max
[A,∞)

wt(x+ ct) = 0. (2.88)

Since w was chosen to be a super-solution of v, we can conclude that

lim
t→∞

max
[A,∞)

vt(x+ ct) = 0. (2.89)

Therefore, we obtain the desired result that for any A ∈ R, the density vt(x)

of the neutral fraction converges to 0 uniformly as t → ∞ in the moving

half-frame [A+ ct,∞).

From Definition 2.2.4, it is clear that the results from Theorem 2.3.3 show

that the solution to System (2.12)-(2.13) where k is thin-tailed, 0 < g(u) ≤

g(0) for all u ∈ (0, 1), and
∑︁N

i=1 v
i
0(x) = U(x) is a pulled front.

This section contains the main mathematical results of our work. We

showed that when the dispersal kernel is assumed to be Gaussian we showed
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two main results. When the per capita growth is maximal at zero we see that

all neutral fractions converge to zero uniformly in the moving frame. If the

growth function has a strong Allee effect then all neutral fractions contribute

to the spread. Moreover, the proportion of each neutral fraction in the spread

is given by Equation (2.36). We then extended the first result to thin-tailed

dispersal kernels showing that when the per capita growth is maximal at zero

we see that all neutral fractions converge to zero uniformly in the moving

frame.

2.4 Numerical Simulations

The numerical simulations were performed using MATLAB. To calculate the

convolution ∫︂ ∞

−∞
k(x− y)g(ut(y))v

i
t(y) dy (2.90)

we use a numerical “fast Fourier transform” (fft) with inverse (ifft). Solv-

ing the problem by using the convolution theorem, changes the numerical

scheme to become O(n log n) instead of O(n2). Numerically, we implement

the following strategy

k ∗ (g · vi) = ifft(fft(k) · fft(g · vi)). (2.91)

For simplicity, in all the numerical simulations we start with the same ini-

tial condition and use the same dispersal kernel. We assume that there

are eight neutral fractions in the population and assume that they satisfy

vi0(x) = 1(−0.5i,−0.5(i−1)] where 1S is the indicator function on a set S. This

assumes that we have the strongest initial spatial heterogeneity between the

neutral fractions, see Figure 2.2(a) for a plot of the initial conditions. The

dispersal kernel is assumed to be Gaussian with µ = 0 and σ2 = 0.002. That

is,

k(x− y) =
1√

0.004π
e−

(x−y)2

0.004 . (2.92)
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Simulations for System (2.13) with the different types of growth functions

are provided in Figure 2.2.

The interpretation of the simulations provided in Figure 2.2 must be made

carefully because, without proper explanation, they may be misunderstood.

In Figure 2.2 the light gray component is the sum all eight neutral fractions.

The red component is plotted in front of the light gray and is given by the sum

of all neutral fractions except the first one. The same process continues for the

rest of the six colors yellow, green, light blue, blue, and dark gray respectively.

The easiest way to interpret the numerical results presented in Figure 2.2 is

by looking at a vertical strip of the solution for a particular value of x. From

this perspective the amount of color showing for each neutral fraction dictates

the proportion of that fraction to the entire population density at a particular

location x. For example, we can see from the initial condition in Figure 2.2(a)

that each neutral fraction has complete spatial segregation from other neutral

fractions.

In Figure 2.2(b) we observe that only the rightmost fraction drives the

propagation of the total population where as the trailing populations will be

left behind in the moving frame. In Figure 2.2(c) we observe that the leading

neutral fraction dominates the spread but in this case the traveling wave is

nonmonotone. In 2.2(d) the inclusion of a strong Allee effect promotes genetic

diversity in the colonization front. The numerical results suggest that the

classification of pulled and pushed fronts should be able to be extended for

initial conditions other than the traveling wave profile U(x). The complexity

in extending the results lie in understanding how to choose the correct speed

for the moving half-frame.

It should be noted that the simulations are numerical approximations to

System (2.13) because the domain where we can compute the numerics is fi-

nite. The results seen in Figure 2.2 provide numerical support for the extension
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(a) (b)

(c) (d)

Figure 2.2: Numerical realization for the solution ut(x) of System (2.13) for
three different per capita growth functions
(a) The initial condition for the simulations
(b) Beverton-Holt growth with parameter values R = 2.5 at time t = 30
(c) Ricker growth with parameter values R = 1.5 at time t = 25
(d) Sigmoid Beverton-Holt growth with parameter values R = 4 and δ = 2 at
time t = 250
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of the results presented in the previous section to compact initial conditions.

For Theorem 2.3.2 and Corollary 2.3.2 the results require that the initial con-

ditions are in the form of the traveling wave solution U(x). However, since

the computational domain is finite, we know that all the initial conditions will

have finite support. This means that we obtain the results from Corollary

2.3.1 when the per capita growth rate is maximal at zero which states that if

we move the frame at speed c∗ then asymptotically all neutral fractions ap-

proach zero. This is because compact initial conditions that converges to a

front moving at speed c∗ would have fallen behind the moving half-frame that

travels at speed c∗ for all time.

2.5 Discussion

The work presented in this paper develops a mathematical model to under-

stand the role that dispersal into new territory has on the neutral genetic

composition of a population with discrete nonoverlapping generations. We

construct our model using the integrodifference framework where space is con-

tinuous but time is discrete.

This work extends the previous results on the mathematical analysis of

inside dynamics to include discrete time dynamics. All previous analyses of

inside dynamics have assumed continuous-time dynamics. By working with

discrete time models we explore how overcompensation affects the neutral

genetic diversity. Since this phenomena is not possible for a scalar continuous

time model, the analysis of the overcompensatory growth is fundamentally

new.

We were able to prove asymptotic results about the genetic structure of the

expanding population. First, we considered Gaussian dispersal with two dif-

ferent kinds of growth functions. The first having maximum per capita growth

at zero, and the second having a strong Allee effect. The results are given by
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Theorems 2.3.1 and 2.3.2. The theorems provide very different asymptotic

behavior for solutions whose initial conditions are in the shape of the traveling

wave solution.

For growth functions whose per capita growth is maximal at zero we see

that the spread of the population is dominated by the leading neutral fraction

and all other neutral fractions approach zero, see Corollary 2.3.2. However, we

are only able to conclude this result when the initial population density is in the

shape of the traveling wave solution. Mathematically, this is analogous with

the concept of a pulled front where the dynamics of the spread are governed

solely by what happens at the leading edge of the wave. From a biological

perspective this is an extreme case of the founder effect where the uninhabited

area is settled by only one of the neutral fractions. Numerical results suggest

that for compact initial conditions the spread is still dominated by the leading

neutral fraction. The setback is that we do not know exactly how fast compact

initial conditions converge to the traveling wave solution, but the proof of

Theorem 2.3.1 suggests that solutions starting with initial conditions spread

at most like c∗t− 1/2 ln(t). Hence, we are only able to show that for compact

initial conditions that spread at c∗, all neutral fractions will be outrun by the

moving half-frame, see Corollary 2.3.1.

When the growth function has a strong Allee effect, we are able to show

that asymptotically each neutral fraction converges to a proportion of the trav-

eling wave solution given by Equation (2.36). The proportion of individuals is

dependent on the initial condition of the neutral fractions, the traveling wave

solution, and the asymptotic spreading speed of the population. It is also clear

from Equation (2.36) that the neutral fractions at the wave front contribute a

larger proportion of the total population density than those at the rear. This

is analogous with the concept of a pushed front, where the genetic variation

at the front of the wave comes from the spill over effect from the strong Allee
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effect. Generally, the Allee effect is thought to have a negative connotation on

expanding populations because of the ability of the population to die out for

low density levels. Our results show that the strong Allee effect preserves the

neutral genetic variation in an expanding population. Thus, the strong Allee

effect has a positive effect on the neutral genetic variation of an expanding

population. We did not generalize this result for the general class of thin-

tailed dispersal kernels as done in the case where the per capita growth was

maximal at zero.

The results proven in this paper can be connected to those for partial

differential equations. When the dispersal kernel is Gaussian with mean zero,

we are able to compare the results of Theorems 2.3.1 and 2.3.2 to the previous

results for reaction diffusion equations, see (Garnier et al., 2012; Roques et

al., 2012). The conclusions from Theorem 2.3.1 are the same as for reaction

diffusion equations where the growth function is of KPP type. When the

growth function has a strong Allee effect, Theorem 2.3.2 predicts that each

neutral fraction converges to a proportion of the traveling wave solution given

by Equation 2.36. This proportion is the same as the one calculated for the

bistable reaction diffusion equation when k is N(0, 2).

We were able to extend the results of Theorem 2.3.1 to thin-tailed dispersal

kernels. This result is given by Theorem 2.3.3. Here we see the same results as

seen in the previous result for Gaussian kernels that the traveling wave solution

is a pulled front and the spread is dominated by the leading neutral fraction.

The proofs for Theorems 2.3.1 and 2.3.3 are very different because in the thin-

tailed case we were not able to exploit the form of the moment generating

function for Gaussian dispersal kernels. Thus, when inverting the bilateral

Laplace transform we could not use the convolution theorem to simplify the

calculations and were left to compute the complex integral. The extension

was not direct because we were forced to place an assumption allowing for our
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initial condition to be bounded by a function whose Fourier transform is in

L1(R).

This theory provided by Theorems 2.3.1 and 2.3.3 require that the per

capita growth rate is maximal at zero. Thus, we are able to apply these

results to growth functions with overcompensation such as the Ricker and

logistic type growth. Growth functions with overcompensation can produce

nonmonotone traveling wave solutions as seen in Figure 2.2(c). We conjecture

that in this scenario the shape of the nonmonotone shape of the traveling wave

does not change the inside dynamics results for pulled fronts. The ability to

analyze how overcompensation affects the neutral genetic patterns of spread

is a unique feature that differentiates our work from previous studies. These

types of dynamics were not possible in the previous works due to the fact

that the entire population spread was governed by a scalar continuous time

model. We see that the sole effect of overcompensation does not promote

neutral genetic variation in an expanding population. Thus, the traveling

wave solution for the population density is still classified as a pulled front

because the spread is dominated by the leading neutral fraction.

The collective results provide a way of classifying traveling wave solutions

of integrodifference equations in terms of pulled and pushed fronts. That is,

if the spread is dominated by the leading neutral fraction, then the traveling

wave solution is a pulled front. If the leading edge of the spread includes

components from many neutral fractions, then the traveling wave solution

is a pushed front. In the case where we have a Gaussian dispersal kernel, we

conjecture that a traveling wave solution can be determined simply by how fast

the wave decays at the leading edge. This was stated in Conjecture 2.5.1 where

the critical decay depends on the spreading speed and dispersal parameters.

Even though this work answers some of the interesting questions about

neutral genetic patterns in populations undergoing a range expansion in dis-
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crete time, it is clear that there is still more work to be done. There is still

room to extend the result of Theorem 2.3.2 to a general class of thin-tailed

dispersal kernels. The inclusion of a fat-tailed dispersal kernel is known to

produce accelerating traveling waves. Whether this occurs when the growth

function has an Allee effect is still unknown. Another direction of future work

is to consider what happens to solutions with fat-tailed dispersal. In this case

we have accelerating traveling waves meaning that the speed that the wave

travels increases with time.

The convergence rate for compact initial conditions to traveling wave solu-

tion is not known for integrodifference equations. If such a result was known

then we would be able to alter the speed of the moving half-frame to extend

this result as to never outrun the solution of System (2.13). This points toward

the need for convergence theory about the speed of the solution approaching

the traveling wave solution for integrodifference equations. For example, with

partial differential equations, a well-known result by Bramson shows that in

the frame of reference moving at 2t − 3
2
ln(t) + x∞, where x∞ is dependent

on the initial condition, the solution of the Fisher KPP equation converges as

t → ∞ to a translation of the traveling wave solution corresponding to the

minimal asymptotic spreading speed c∗ = 2 (Bramson, 1983). This result gives

us the exact speed needed for the moving frame to capture the solution for

compact initial conditions in the reaction diffusion equation framework with

KPP type growth.

Based on the assumption made on the decay of the initial condition in The-

orem 2.3.1 and the decay traveling wave solution made in Theorem 2.3.2, we

make the following conjecture for the classification of traveling wave solutions

to Equation (2.1).

Conjecture 2.5.1 (Decay properties of Gaussian traveling waves). Consider
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a traveling wave solution U(x−ct), to Equation (2.1) with a Gaussian dispersal

kernel. If we have that
∫︁∞
−∞ e

c−µ

σ2 yU(y) dy < ∞ (U decays faster than e
c−µ

σ2 y)

then U(x−ct) is a pushed front. If we have that U(x−ct) decays exactly at the

exponential rate e
c−µ

σ2 y, then U(x−ct) is a pulled front solution corresponding to

the minimum asymptotic spreading speed c∗ =
√︁

2σ2 ln(g(0))+µ. If U(x− ct)

decays slower than e
c−µ

σ2 y, then U(x− ct) is a pulled front with speed c > c∗.

If Conjecture 2.5.1 is true, then it could give insight to the issue of pushed

versus pulled fronts for growth functions with a weak Allee effect. Moreover,

Conjecture 2.5.1 provides the critical decay rate for differentiating traveling

wave solutions as pulled or pushed fronts.

Outside of the realm of the inside dynamics analysis, this work also moti-

vates future work for many general questions about traveling wave solutions

for integrodifference equations. The open questions that we encountered for

integrodifference equations when completing this work were as follows:

1. What are the asymptotic decay properties for traveling wave solutions?

2. How fast do pulled front solutions with compact initial conditions ap-

proach the traveling wave solution?

3. What is the asymptotic spreading speed for growth functions with a

strong Allee effect?

In summary, our work presents a framework for understanding the neu-

tral genetic consequences of a population with nonoverlapping generations

undergoing a range expansion. By connecting the ecological concepts with a

mathematical model we encounter many interesting mathematical problems.

The results shown in Section 2.3 provide an excellent start to understanding

the question of interest; however, there are many questions that we were not

able to answer due to limited mathematical theory. Therefore, with improved
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mathematical theory we can provide better insight to understanding the neu-

tral genetic diversity of expanding populations.

2.6 Appendix

2.6.1 Proof of Lemma 2.3.1

Proof. For simplicity in notation we focus on a single neutral fraction and

drop the superscript i notation. By assumption, x2v0(x)e
sx ∈ L1(R)∩L∞(R).

Thus, we have

x2v0(x)e
sx ≤ (1 + x2)v0(x)e

sx ≤ C (2.93)

for all x ∈ R where C is a positive constant. Rearranging the previous in-

equality,

v0(x) ≤
Ce−sx

1 + x2
(2.94)

for all x ∈ R. Thus, there exists a positive constant C such that the function

w0(x) defined by

w0(x) :=
Ce−sx

1 + x2
(2.95)

satisfies v0(x) ≤ w0(x) for all x ∈ R. It is easy to see that w0(x)e
sx ∈ L1(R)∩

L∞(R). Hence, the Fourier transform of w0(x)e
sx ∈ L1(R). To calculate the

Fourier Transform of w0(x)e
sx, note that

F
[︁
e−|x|]︁ (ω) = ∫︂ ∞

−∞
e−|x|e−iωx dx (2.96)

=

∫︂ 0

−∞
e(1−iω)x dx+

∫︂ ∞

0

e−(1+iω)x dx (2.97)

= lim
b→∞

[︄
e(1−iω)x

(1− iω)

⃓⃓⃓⃓0
−b

− e−(1+iω)x

(1 + iω)

⃓⃓⃓⃓b
0

]︄
(2.98)

= lim
b→∞

[︃
1

(1− iω)
− e−(1−iω)b

(1− iω)
− e−(1+iω)b

(1 + iω)
+

1

(1 + iω)

]︃
(2.99)

=

[︃
1

(1− iω)
+

1

(1 + iω)

]︃
(2.100)

=
2

1 + ω2
. (2.101)
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From the inverse Fourier Transform,

πe−|x| =
π

2π

∫︂ ∞

−∞

2

1 + ω2
eiωx dω (2.102)

=

∫︂ ∞

−∞

1

1 + ω2
eiωx dω. (2.103)

Using the above result,

F
[︃

C

1 + x2

]︃
(ω) = F

[︃
C

1 + (−x)2

]︃
(ω) (2.104)

= C

∫︂ ∞

−∞

1

1 + (−x)2
e−iω(−x) dx (2.105)

= C

∫︂ ∞

−∞

1

1 + x2
eiωx dx (2.106)

= Cπe−|ω|. (2.107)

The proof of the lemma is complete.
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Chapter 3

Inside dynamics for
stage-structured
integrodifference equations

3.1 Introduction

There are a wide array of observational (Cullingham et al., 2011), empirical

(Liebhold et al., 1992; Lubina and S. A. Levin, 1988), and theoretical stud-

ies (Li et al., 2009; Lui, 1989a; Weinberger, 1982) for the spatial spread of

populations by range expansion. Over the last decades, theoretical studies

about range expansion mainly focused on the asymptotic speed of propaga-

tion of the expanding population or the profile of invasion (Hastings et al.,

2005). Spatial models in population genetics have also been developed for

studying the spread of an advantageous gene in a population (Lui, 1982a,b,

1983; Weinberger, 1978, 1982). Recently, much effort have been invested to

understand the genetic consequences of range expansion (Hallatschek and Nel-

son, 2008; Roques et al., 2012). Indeed, range expansions are known to have

significant effects on genetic diversity (Davis and Shaw, 2001; Hewitt, 2000).

For instance, if range expansion occurs through successive founder effects, ge-

netic diversity is likely to decrease. However, empirical and theoretical studies

have shown that many mechanisms may reduce or reverse the loss of diversity
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in an expanding population (Pluess, 2011). In particular, the presence of an

Allee effect (Roques et al., 2012) which reduces the per-capita growth rate at

low density, the occurrence of long distance dispersal events (Bonnefon et al.,

2014; Ibrahim et al., 1996), or the existence of a juvenile stage (Austerlitz and

Garnier-Géré, 2003) may promote neutral genetic diversity in traveling waves

of colonization. In this work, we are interested in the neutral genetic dynamics

of a stage-structured population undergoing range expansion.

It is well known that the structure of the population is important for un-

derstanding the asymptotic dynamics. For example, individuals often must

undergo a maturation period before they can produce offspring. For discrete

population models, the dynamics of the life history traits have typically been

structured according to age, Leslie matrix (Leslie, 1945), or developmental

stage, Lefkovitch matrix (Lefkovitch, 1965), but matrix models can be easily

generalized to include other physiological characteristics. It is also common

for sessile species to typically have a motile stage in their development, such

as seed dispersal in plant populations (Howe and Smallwood, 1982) and larval

dispersal in marine environments (L. A. Levin, 2006).

Our study considers a stage-structured integrodifference equation describ-

ing range expansion for a population of the form:

ut+1(x) =

∫︂ ∞

−∞
[K(x− y) ◦B(ut(y))]ut(y) dy, (3.1)

where ut(x) corresponds to the population density at time t and location

x. The population is structured into m stages, whose densities are given by

ut(x) = [u1,t(x), . . . , um,t(x)]. Each stage distribution changes in time and

space through the successive effects of dispersal, described by the dispersal

matrix K = [kjl], and the demography, embodied in the population projection

matrix B(u) = [bjl(u)] which takes into account density-dependence. The

succession of the reproduction stage and dispersal stage is described by the
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Hadamard product ◦ (element-wise multiplication of matrix). This model

allows the different stages to spread, reproduce, and interact in a variety of

ways that cannot be captured by scalar models (Neubert and Caswell, 2000).

More precisely, if we consider stage j, where j = 1, . . . ,m, then its density,

uj,t(x), satisfies the following equation

uj,t+1 =

∫︂ ∞

−∞

m∑︂
l=1

kjl(x− y)bjl(u1,t(y), . . . , um,t(y))ul,t(y) dy (3.2)

where kjl(x − y) dy is the probability that an individual transitioning from

stage l to stage j disperses from the interval (y, y + dy] to location x, and

the function bjl is the per-capita production of stage j individuals from stage

l individuals. Such a model has been used to describe epidemic spread (Lui,

1989b), biological invasions (Bateman et al., 2017; Veit and Lewis, 1996), and

critical domain size (Lutscher and Lewis, 2004).

The model (3.1) is biologically valid if the stages are chosen in a way such

that the life history and dispersal parameters vary within stages as little as

possible. In some cases this is easy; for example, a division between juvenile

and adult individuals is normally determined by the ability to reproduce. In

other cases, the division may not be so clear, and partitions may be difficult to

decide. Fortunately, there are algorithms that can be used to minimize errors

associated with partitioning a population into distinct stages (Moloney, 1986;

Vandermeer, 1978). If the division of population structure is modeled using a

continuous variable such as size or mass, and there is no natural break point to

structure the population into distinct stages then an integral projection model

may be more appropriate (Easterling et al., 2000).

The goal of this work is to understand the neutral genetic patterns of struc-

tured populations. Neutral genetic markers are genes that have no direct effect

on individual fitness. Even though this type of gene tells us nothing about the

adaptive or evolutionary potential of a population, neutral genetic markers can
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be used to understand processes such as gene flow, genetic drift, migration,

or dispersal (Holderegger et al., 2006). It has also been shown by simulations

that high levels of neutral genetic diversity can be correlated with increased

allelic richness at loci under selection (Bataillon et al., 1996). Our analysis

will be focused on the inside dynamics of stage-structured integrodifference

equations.

This paper is organized as follows. Section 3.2 is dedicated to providing

necessary background material for understanding the main results. Within this

section, we break it into two subsections: Section 3.2.1 provides background

to the analysis of inside dynamics and the stage-structured integrodifference

equation used in our analysis and Section 3.2.2 lays out four of the major

assumptions made about the demographic and dispersal processes. In Section

3.3, we provide asymptotic results regarding population structure. This section

is broken into three parts. Section 3.3.1 covers the inside dynamics of neutral

fractions not present at the leading edge, Section 3.3.2 discusses the inside

dynamics of neutral fractions that are located at the leading edge, and Section

3.3.3 contains proofs for our main theorems. To complement the analytical

results, numerical simulations are given in Section 3.4. Finally, in Section

3.5, we discuss the modeling technique, results, numerical simulations, and

implications of our work.

3.2 Materials and methods

3.2.1 Inside dynamics

To study the neutral genetic distribution of a population, we consider the

inside dynamics of the population. The term inside dynamics refers to the

inside structure of the population rather than the total density. The key

assumption in the analysis of inside dynamics is that all individuals grow and
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disperse in the same manner, differing only with respect to neutral genetic

markers. In other words, all individuals in the population have the same

fitness. This allows us to split up the population into distinct subgroups

called neutral fractions with which we track the spatiotemporal evolution of

these subgroups.

Inside dynamics have been studied for reaction-diffusion equations (Gar-

nier et al., 2012; Garnier and Lewis, 2016; Roques et al., 2012), delay reaction-

diffusion equations (Bonnefon et al., 2013), integro-differential equations (Bon-

nefon et al., 2014), and integrodifference equations (Lewis et al., 2018; Marculis

et al., 2017). In these works, the subject for analysis was a scalar population

model. Indeed, to date, there is only one study of the inside dynamics of

systems of equations. This study concentrated on the analysis on a diffusive

Lotka-Volterra competition system (Roques et al., 2015). Our mathematical

contribution to this area of research is to extend the analysis of inside dynamics

to stage-structured integrodifference equations.

Recall the stage-structured population model in (3.1). Separating the ini-

tial population up into distinct neutral fractions, we obtain the initial condition

u0(x) =
n∑︂

i=1

vi
0(x), (3.3)

where vi
0(x) ≥ 0 is the initial population density for neutral fraction i and n

is the finite number of neutral fractions. An illustration of this decomposition

can be seen in Figures 3.1(a) and 3.2(a). By assuming that individuals in each

neutral fraction grow and disperse similarly, we obtain the following system of

equations:

vi
t+1(x) =

∫︂ ∞

−∞
[K(x− y) ◦B(ut(y))]v

i
t(y) dy, i = 1, . . . , n, (3.4)

where ut(y) =
∑︁n

i=1 v
i
t(y). Throughout the remaining sections, we use the

superscript i to denote the neutral fraction and, when not written in vector
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form, subscript j to denotes the stage. Note that the number of neutral frac-

tions, n, and the number of stages in the population, m, need not be the same

(n ̸= m). Also, observe the model given in Equation (3.4) is natural extension

of the scalar model to a system of recursions (Marculis et al., 2017). Thus, it

can be expected that many of the results proven for the scalar equation can be

extended to systems of cooperative equations. This is the approach we take

in what follows.

3.2.2 Demographic and dispersal assumptions

For each of our main theorems, we make five assumptions regarding Equations

(3.3)-(3.4). The first three assumptions are related to the population projec-

tion matrix, the fourth assumption is related to the dispersal kernel, and the

fifth and final assumption is related to the decay of the initial conditions. In

this section, we outline the first four assumptions related to the demography

and dispersal of the population.

Population projection matrix

We begin with looking at the population projection matrix B(u). Here, we

outline three assumptions about the population projection matrix. The pop-

ulation projection matrix describes reproduction, survival, and interactions

between stages. As a projection matrix, its entries should be nonnegative:

A1 : The matrix B(u) is nonnegative for any u ∈ (0,∞)m.

Moreover, we can see from (3.1) that 0 is a steady state of the problem. Define

B0 := B(u)
⃓⃓
u=0

. (3.5)

Notice that B0 is the population projection matrix evaluated at u = 0. We

will assume that this steady state is unstable. More precisely, we assume:
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A2 : B0 is a primitive matrix, that is there exists k > 0 such that Bk
0 is

positive, and its dominant eigenvalue, λ1, is greater than 1, λ1 > 1.

Finally, we assume that there are no Allee effects. That is:

A3 : B(u) is bounded by its linearization at the steady state 0, B(u)v ≤ B0v

for all v ∈ (0,∞)m.

Dispersal kernel

In our model, we assume that individuals in the population may disperse at

long distance but those events are rare in the following sense:

Definition 3.2.1. A dispersal kernel, k(x), is called thin-tailed if there exists

a ξ > 0, such that ∫︂ ∞

−∞
k(x)eξ|x| dx < ∞. (3.6)

A dispersal kernel that is not thin-tailed is called a fat-tailed dispersal

kernel, and in this case, the long distance dispersal events become frequent,

which leads to different behaviors for some solutions, such as accelerating

waves. Many of the classical mathematical results for (3.1), such as traveling

wave solutions and the asymptotic speed of propagation, rely on the assump-

tion that the dispersal kernel is thin-tailed. A common dispersal kernel that

we consider throughout our work is the Gaussian probability density function:

k(x;µ, σ) =
1√
2πσ2

e−
(x−µ)2

2σ2 , (3.7)

where µ is the mean shift in location and σ2 is the variance in dispersal dis-

tance. In the following sections, we use the following shorthand notation to

denote that the dispersal kernel is Gaussian by k is N(µ, σ2). In what follows,

we will make one of two assumptions about the dispersal kernels.

A4 : Each kernel, kjl(x− y), is thin-tailed.
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A4′ : Each kernel, kjl(x− y), is N(µ, σ2).

From above, we see that our fourth assumption provides a condition on the

dispersal kernels. In both cases, we assume, at a minimum, that every dispersal

kernel is thin-tailed in order to calculate the asymptotic speed of propagation.

The above assumption implies that we are not considering a population with

accelerating waves (Kot et al., 1996).

Asymptotic speed of propagation

Under the previous assumptions A1-A4 we can deduce from the work of Lui

(1989a) that solutions of (3.1) will spread to the right with an asymptotic

spreading speed c greater than or equal to a critical spreading speed c∗ > 0 for

appropriately chosen initial conditions. Moreover, the critical spreading speed

c∗ can be computed explicitly by the following formula

c∗ := min
0<s<s+

1

s
ln ρ(s), (3.8)

where ρ(s) := ρ(H(s)) > 1 is the dominant eigenvalue of H(s) defined by

H(s) := M(s) ◦B0. (3.9)

The moment generating function matrix M(s) is calculated by applying the

reflected bilateral Laplace transform to the dispersal kernel matrix K and is

defined by

M(s) :=

∫︂ ∞

−∞
K(x)esx dx. (3.10)

Since the entries of the dispersal kernel matrix, kjl, are thin-tailed by Assump-

tion A5, this matrix is well defined over (0, s+) where s+ ∈ (0,∞]. Throughout

our analysis, we let s0(c) be the smallest positive root of the equation

cs = ln(ρ(s)) for c ≥ c∗. (3.11)
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We know that s0(c) exists because ρ(s) is log convex; see Lemma 6.4 by Lui

(1989a). In particular, when each kernel is Gaussian, kjl is N(µ, σ2), then we

have an explicit formula for the asymptotic speed of propagation given by

c∗ =
√︁
2σ2 ln(λ1) + µ, (3.12)

where λ1 is the dominant eigenvalue of B0 and we can explicitly compute s0(c)

to be

s0(c) =
c− µ+

√︁
(c− µ)2 − 2σ2 ln(λ1)

σ2
. (3.13)

The technical details for the asymptotic speed of propagation are provided in

Appendix 3.6.1.

3.3 Main results

Henceforth, we assume that the structured population, ut(x), satisfies (3.1)

with an initial condition u0(x). With such initial condition, the population is

spreading to the right with an asymptotic speed of propagation, c, greater than

or equal to c∗, given by formula (3.8). We first consider neutral fractions that

are not present at the leading edge of the solution and then afterwards consider

neutral fractions that are at the leading edge of the expanding population.

Our fifth and final assumption places a requirement on the initial condi-

tions for the neutral fractions. This requirement is closely connected to the

decay rate of the solution for the population and determines whether or not

an individual is at the leading edge of the population spread. In particular,

we know that the traveling wave solution for the linearized equation is given

by an exponential function and the decay rate defines the leading edge of the

population. The technical details of whether or not a neutral fraction is lo-

cated at the leading edge is defined in the statement of our main theorems. We

do not explicitly write these out here, but rather save them for the statement

of our theorems because this assumption takes different forms based on our
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assumptions. We are now ready to present our first two theorems, that pro-

vides sufficient conditions for when the density of neutral fractions converges

to zero in the moving half-frame.

3.3.1 Inside dynamics not at the leading edge

Theorem 3.3.1. Let us assume that A1-A4 hold true. Let vi
t(x) be a neutral

fraction satisfying (3.4) with initial condition vi
0(x) satisfying (3.3) that is not

present at the leading edge of the expanding population, in the sense that

A5 : x2vi
0(x)e

s0(c)x ∈ L1(R) ∩ L∞(R) for a given c ≥ c∗.

Then, for any A ∈ R, the density of neutral fraction i, vi
t(x), converges to 0

uniformly as t → ∞ in the moving half-frame [A+ ct,∞).

In summary, Theorem 3.3.1 provides sufficient conditions for neutral frac-

tions in the population to approach zero asymptotically. This result implies

that the only neutral fractions that will contribute to the spread of the pop-

ulation are those that are initially at the leading edge. In this scenario, we

observe an extreme founder effect for the population spread. For this proof,

see Section 3.3.3.

By making a stronger assumption on the dispersal kernels, we are able to

relax Assumption A5 on the initial conditions in Theorem 3.3.1. In particular,

for the next theorem we assume that all dispersal kernels are Gaussian with

the same mean and variance as given by Assumption A4′ and the assumption

on the initial condition becomes a simple integrability condition.

Theorem 3.3.2. Let us assume that A1-A3 and A4′ hold true. Let vi
t(x) be

a neutral fraction satisfying (3.4) with initial condition vi
0(x) satisfying (3.3)

that is not present at the leading edge of the expanding population, in the sense

that
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A5′ :
∫︁∞
−∞ e

c−µ

σ2 yvi
0(y) dy < ∞ for a given c ≥ c∗.

Then, for any A ∈ R, the density of neutral fraction i, vi
t(x), converges to 0

uniformly as t → ∞ in the moving half-frame [A+ ct,∞).

In summary, Theorem 3.3.2 provides the same result as Theorem 3.3.1 but

with different assumptions on the dispersal kernels and initial conditions. That

is, Theorem 3.3.2 provides sufficient conditions for when the neutral fractions

do not contribute to the population spread. Under Assumption A5′ , we see

that the leading edge is determined by the decaying exponential e−
c−µ

σ2 x. This

condition is much different than those given by Assumption A5 in Theorem

3.3.1. As in the previous theorem, we also observe here that the only neutral

fractions that will contribute to the spread of the population are those that

are initially at the leading edge. For this proof, see Section 3.3.3.

The proof of Theorem 3.3.1 is more complicated than that of Theorem

3.3.2, even though the method of proof and conclusions are the same. The

difference is due to the assumptions made about the dispersal kernels. In

Theorem 3.3.1 we assume the dispersal kernels are thin-tailed and must use

the definition of the inverse reflected bilateral Laplace transform. In Theorem

3.3.2 we assume all dispersal kernels are Gaussian with the same mean and

variance. This assumption simplifies the proof because convolving Gaussian

distributions results in another Gaussian.

If the initial conditions are all compactly supported, then all neutral frac-

tions will satisfy Assumption A5 and A5′ respectively in Theorems 3.3.1 and

3.3.2. If the initial conditions decay according to the traveling wave solution,

then all neutral fractions except those at the leading edge will satisfy Assump-

tion A5 and A5′ in Theorems 3.3.1 and 3.3.2 respectively. This means that

the only neutral fractions that we will see in the moving half-frame are those

that were initially at the leading edge. However, Theorems 3.3.1 and 3.3.2 do
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not tell us anything about these neutral fractions.

3.3.2 Inside dynamics at the leading edge

In the next theorem, we look at initial data that decay slower than Assumption

A5′ in Theorem 3.3.2. Here we are able to calculate the asymptotic proportion

of each neutral fraction provided we move at the slowest speed c∗.

Theorem 3.3.3. Let us assume that A1-A3 and A4′ hold true. Let vi
t(x) be

a neutral fraction satisfying (3.4) with initial condition vi
0(x) satisfying (3.3)

that is present at the leading edge of the expanding population, in the sense

that for c = c∗

A5′′ : vi
0(x) = (pi

0 ◦ r) e
− c−µ

σ2 x, where pi
0 is the initial proportion for neutral

fraction i in each stage, r is the right eigenvector of B0 corresponding to

λ1.

Then, for any A ∈ R, the density of neutral fraction i, vi
t(x), asymptotically

approaches a proportion, pi, of the traveling wave for the linear equation as

t → ∞ in the moving half-frame [A+ ct,∞). That is,

lim
t→∞

vi
t(x0 + ct) = e−

c−µ

σ2 x0rpi (3.14)

for x0 ≥ A. Moreover, the proportion can be calculated to be the scalar

pi = ℓ
(︁
pi
0 ◦ r

)︁
(3.15)

where ℓ is the left eigenvector of B0 corresponding to λ1 with ℓ normalized by⟨︁
ℓT , r

⟩︁
.

Theorem 3.3.3 provides a formula for the asymptotic proportion of neutral

fractions based on the initial distribution at the leading edge of the popu-

lation. The formula is simple because it depends only on the right and left

eigenvectors ofB0 and the initial proportion of neutral fractions. This theorem
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characterizes the fate of neutral fractions at the leading edge. One drawback

to this theorem is that it is only valid for initial conditions that decay at a

specific rate, e−
c−µ

σ2 x, with a solution that moves at a specific speed, c = c∗.

The reason why we cannot prove this theorem for c > c∗ and a slower decay

rate for the initial condition is because we do not have an explicit formula for

the spreading speed c > c∗. For this proof, see Section 3.3.3.

It is also important to note that A5′′ in Theorem 3.3.3 is not completely

biologically realistic since the population grows without bound as x → −∞.

However, this type of initial condition is needed based on the construction of

our sub-solution and super-solutions. It may be possible to relax this assump-

tion by studying the nonlinear operator and considering a more biologically

realistic class of initial conditions. Next, we present the proofs of Theorems

3.3.1-3.3.3 in Section 3.3.3. For a comprehensive review of the necessary math-

ematical material needed in the proofs of the theorems, we direct the reader

to Appendix 3.6.2.

3.3.3 Proofs of the main theorems

Proof of Theorem 3.3.1

Proof. For simplicity, we drop the superscript i in (3.4) and focus on a single

neutral fraction. Our equation of interest is

vt+1(x) =

∫︂ ∞

−∞
[K(x− y) ◦B(ut(y))]vt(y) dy. (3.16)

Let

w0(x) =
Ce−s0(c)x

1 + x2
(3.17)

where C = κϕ and ϕ is the eigenvector of H(s0(c)) with dominant eigenvalue

ρ(s0(c)). From Lemma 3.6.1, we know that w0(x) is an upper bound for v0(x).

By Assumption A3, we know that B(ut(y))v ≤ B0v for all v ≥ 0. Hence, we
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can construct a super-solution wt(x) that satisfies the following equation

wt+1(x) =

∫︂ ∞

−∞
[K(x− y) ◦B0]wt(y) dy (3.18)

with initial condition given by (3.17). By iterating we can write the solution

to the above system as the t-fold convolution

wt(x) = [K(x− y) ◦B0]
∗t w0(y). (3.19)

Applying the bilateral Laplace transform

Wt(s) = [M(s) ◦B0]
tW0(s) (3.20)

= [H(s)]t W0(s). (3.21)

Recall that s0(c) is the smallest positive root of sc = ln(ρ(s)) for c ≥ c∗. Then,

the inverse transform as defined in Appendix 3.6.2, see (3.130), yields

wt(x) =
1

2πi
lim
R→∞

∫︂ s0(c)+iR

s0(c)−iR

[H(s)]t W0(s)e
−sx ds (3.22)

=
1

2π

∫︂ ∞

−∞
[H(s0(c) + iω)]tW0(s0(c) + iω)e−(s0(c)+iω)x dω (3.23)

for c ≥ c∗. In the moving frame we have

wt(x0 + ct) =
1

2π

∫︂ ∞

−∞
[H(s0(c) + iω)]t W0(s0(c) + iω)e−(s0(c)+iω)x0e−(s0(c)+iω)ct dω.

(3.24)

Using the results from Lemma 3.6.1, see Appendix 3.6.2 for details, we are able

to write the initial condition in terms of a Fourier transform that is known.

This is seen as follows,

W0(s0(c) + iω) =

∫︂ ∞

−∞
w0(x)e

(s0(c)+iω)x dx (3.25)

=

∫︂ ∞

−∞
w0(x)e

s0(c)xeiωx dx (3.26)

= F
[︁
w0(x)e

s0(c)x
]︁
(−ω) (3.27)

= Cπe−|ω| (3.28)
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for all ω ∈ R. Recall that C = κϕ. This gives

wt(x0 + ct) =
1

2π

∫︂ ∞

−∞
[H(s0(c) + iω)]t Cπe−|ω|e−(s0(c)+iω)x0e−(s0(c)+iω)ct dω

(3.29)

=
1

2

∫︂ ∞

−∞
[H(s0(c) + iω)]t κe−s0(c)ctϕe−|ω|e−(s0(c)+iω)x0e−iωct dω.

(3.30)

Since s0(c)c = ln(ρ(s0(c))), we have

wt(x0 + ct) =
κe−s0(c)x0

2

∫︂ ∞

−∞
[H(s0(c) + iω)]t e− ln(ρ(s0(c)))tϕe−|ω|e−iωx0e−iωct dω

(3.31)

=
κe−s0(c)x0

2

∫︂ ∞

−∞
[H(s0(c) + iω)]t (ρ(s0(c))

−tϕe−|ω|e−iωx0e−iωct dω.

(3.32)

Since ρ(s0(c)) is the dominant eigenvalue of H(s0(c)) with eigenvector ϕ,

wt(x0 + ct) =
κe−s0(c)x0

2

∫︂ ∞

−∞
[H(s0(c) + iω)]t [H(s0(c))]

−tϕe−|ω|e−iωx0e−iωct dω.

(3.33)

Applying the matrix norm and using the sub-additive property, we find that

∥wt(x0 + ct)∥ ≤ κe−s0(c)x0

2

∫︂ ∞

−∞

⃦⃦⃓⃓
[H(s0(c) + iω)]t

⃓⃓⃦⃦ ⃦⃦
[H(s0(c))]

−t
⃦⃦
∥ϕ∥e−|ω| ⃓⃓e−iωx0

⃓⃓ ⃓⃓
e−iωct

⃓⃓
dω

(3.34)

=
κe−s0(c)x0

2

∫︂ ∞

−∞

⃦⃦⃓⃓
[H(s0(c) + iω)]t

⃓⃓⃦⃦ ⃦⃦
[H(s0(c))]

−t
⃦⃦
∥ϕ∥e−|ω| dω.

(3.35)

We can also see that

|H(s0(c) + iω)| = |M(s0(c) + iω) ◦B0)| (3.36)

=

⃓⃓⃓⃓∫︂ ∞

−∞
[K(x) ◦B0]e

(s0(c)+iω)x dx

⃓⃓⃓⃓
(3.37)

=

⃓⃓⃓⃓∫︂ ∞

−∞
[K(x) ◦B0]e

s0(c)x (cos(ωx) + i sin(ωx)) dx

⃓⃓⃓⃓
(3.38)

= I, (3.39)

where I is defined to be

I :=

√︄(︃∫︂ ∞

−∞
[K(x) ◦B0]es0(c)x cos(ωx) dx

)︃2

+

(︃∫︂ ∞

−∞
[K(x) ◦B0]es0(c)x sin(ωx) dx

)︃2

.

(3.40)
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By the Cauchy-Schwarz inequality, using a similar technique as in Theorem 3

of (Marculis et al., 2017),

I <

∫︂ ∞

−∞
[K(x) ◦B0]e

s0(c)x dx (3.41)

= M(s0(c)) ◦B0 (3.42)

= H(s0(c)) (3.43)

for ω ̸= 0. From the above calculation we can conclude that |H(s0(c)+ iω)| <

H(s0(c)) for ω ̸= 0. Consequently, ρ (|H(s0(c) + iω)|) < ρ(s0(c)) for ω ̸= 0.

By Gelfand’s formula,

lim
t→∞

⃦⃦⃓⃓
[H(s0(c) + iω)]t

⃓⃓⃦⃦ 1
t = ρ(|H(s0(c) + iω)|) and (3.44)

lim
t→∞

⃦⃦
[H(s0(c))]

−t
⃦⃦ 1

t =
1

ρ(s0(c))
. (3.45)

Thus, for ω ̸= 0, we can choose ε > 0 such that (ρ(|H(s0(c) + iω)|) + ε)
(︂

1
ρ(s0(c))

+ ε
)︂
<

1. Therefore, ⃦⃦⃓⃓
[H(s0(c) + iω)]t

⃓⃓⃦⃦ ⃦⃦
[H(s0(c))]

−t
⃦⃦
< 1 (3.46)

for large t and

lim
t→∞

⃦⃦⃓⃓
[H(s0(c) + iω)]t

⃓⃓⃦⃦ ⃦⃦
[H(s0(c))]

−t
⃦⃦
= 0. (3.47)

From (3.35) and the dominated convergence theorem,

lim
t→∞

∥wt(x0 + ct)∥ ≤ κe−s0(c)x0

2

∫︂ ∞

−∞
lim
t→∞

⃦⃦⃓⃓
[H(s0(c) + iω)]t

⃓⃓⃦⃦ ⃦⃦
[H(s0(c))]

−t
⃦⃦
∥ϕ∥e−|ω| dω

(3.48)

= 0. (3.49)

Therefore, for any A ∈ R and c ≥ c∗,

lim
t→∞

max
[A,∞)

wt(x+ ct) = 0. (3.50)

Since w was constructed as a super-solution, we can conclude that

lim
t→∞

max
[A,∞)

vt(x+ ct) = 0. (3.51)

The proof of Theorem 3.3.1 is complete.
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Proof of Theorem 3.3.2

Proof. For simplicity, we focus on a single neutral fraction and drop the su-

perscript i. By Assumption A3, B(ut(y))v ≤ B0v for all v ≥ 0, we can use a

comparison principle to show that a new sequence wt(x) defined by

wt+1(x) =

∫︂ ∞

−∞
[K(x− y) ◦B0]wt(y) dy (3.52)

is always greater than the solution to any neutral fraction vt(x) with the same

initial condition, w0(x) = v0(x). By iterating we can write the solution to

Equation (3.52) as the t-fold convolution

wt(x) = [K(x− y) ◦B0]
∗t w0(y). (3.53)

Taking the bilateral Laplace transform

M[wt(x)](s) = [M[K(x)](s) ◦B0]
tM[w0(x)](s). (3.54)

Since all of the dispersal kernels are Gaussian, we know that M[K(x)](s) =

e
σ2s2

2
+µs1 where 1 is a matrix of all ones. Then,

[M[K(x)](s) ◦B0]
t M[w0(x)](s) =

[︂
e

σ2s2

2
+µs1 ◦B0

]︂t
M[w0(x)](s) (3.55)

=
[︂
e

σ2s2

2
+µsB0

]︂t
M[w0(x)](s) (3.56)

= e
σ2ts2

2
+µts [B0]

t M[w0(x)](s) (3.57)

= [B0]
t M

[︃
1√

2πσ2t
e−

(x−µt)2

2σ2t

]︃
(s)M[w0(x)](s)

(3.58)

= [B0]
t M [(Kt ∗w0)(x)] (s) (3.59)

where Kt is N(µt, σ2t). From (3.54)

M[wt(x)](s) = [B0]
t M [(Kt ∗w0)(x)] (s). (3.60)

Applying the inverse bilateral Laplace transform,

wt(x) = [B0]
t(Kt ∗w0)(x) (3.61)

= [B0]
t

∫︂ ∞

−∞

1√
2πσ2t

e−
(x−y−µt)2

2σ2t w0(y) dy (3.62)
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In the moving half-frame [A+ ct,∞) with c ≥ c∗ we have

wt(x0 + ct) = [B0]
t

∫︂ ∞

−∞

1√
2πσ2t

e−
(x0+ct−y−µt)2

2σ2t w0(y) dy. (3.63)

From (3.12), we know that c∗ =
√︁

2σ2 ln(λ1) + µ, expanding the exponent,

yields

(x0 + ct− y − µt)2

2σ2t
=

(x0 − y)2

2σ2t
+

2(c− µ)t(x0 − y) + (c− µ)2t2

2σ2t
(3.64)

≥ (x0 − y)2

2σ2t
+

c− µ

σ2
(x0 − y) + ln(λ1)t. (3.65)

Thus,

wt(x0 + ct) ≤ [B0]
t

√
2πσ2t

∫︂ ∞

−∞
e−

(x0−y)2

2σ2t e−
c−µ

σ2 (x0−y)e− ln(λ1)tw0(y) dy (3.66)

=

[︃
B0

λ1

]︃t
1√

2πσ2t

∫︂ ∞

−∞
e−

(x0−y)2

2σ2t e−
c−µ

σ2 (x0−y)w0(y) dy. (3.67)

Since x0 ≥ A and e−
(x0−y)2

2σ2t ≤ 1, we have

wt(x0 + ct) ≤
[︃
B0

λ1

]︃t
e−

A(c−µ)

σ2

√
2πσ2t

∫︂ ∞

−∞
e

c−µ

σ2 yw0(y) dy. (3.68)

From Lemma 3.6.2, see Appendix 3.6.2 for details, we know that

lim
t→∞

[︃
B0

λ1

]︃t
= rℓ, (3.69)

where r and ℓ are the right and left eigenvectors of B0 corresponding to λ1

respectively with ℓ normalized by
⟨︁
ℓT , r

⟩︁
to account for the scaling in r. Note

that rℓ is a m × m matrix since r is m × 1 and ℓ is 1 × m. Thus since∫︁∞
−∞ e

c−µ

σ2 yw0(y) dy < ∞ by Assumption A5′ and (3.69) we havewt(x0+ct) → 0

uniformly as t → ∞ in [A,∞). Recall that wt(x) was a constructed as a

super-solution, 0 ≤ vt(x) ≤ wt(x). This implies the uniform convergence of

vt(x) → 0 as t → ∞ in the moving half-frame [A + ct,∞). The proof of

Theorem 3.3.2 is complete.
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Proof of Theorem 3.3.3

Proof. For simplicity, we focus on a single neutral fraction and drop the su-

perscript i. Using the fact that B(ut(y))v ≤ B0v for all v ≥ 0 we can use a

comparison principle to show that a new sequence wt(x) defined by

wt+1(x) =

∫︂ ∞

−∞
[K(x− y) ◦B0]wt(y) dy (3.70)

is a super-solution to any neutral fraction vt(x) with the same initial condition

w0(x) = v0(x). By iterating we can write the solution to Equation (3.70) as

the t-fold convolution

wt(x) = [K(x− y) ◦B0]
∗t w0(y). (3.71)

Taking the bilateral Laplace transform

M[wt(x)](s) = [M[K(x)](s) ◦B0]
tM[w0(x)](s). (3.72)

Since all of the dispersal kernels are Gaussian, we know that M[K(x)](s) =

e
σ2s2

2
+µs1 where 1 is a matrix of all ones. Then, we can see that

[M[K(x)](s) ◦B0]
t M[w0(x)](s) =

[︂
e

σ2s2

2
+µs1 ◦B0

]︂t
M[w0(x)](s) (3.73)

=
[︂
e

σ2s2

2
+µsB0

]︂t
M[w0(x)](s) (3.74)

= e
σ2ts2

2
+µtsI [B0]

t M[w0(x)](s) (3.75)

= [B0]
t M

[︃
1√

2πσ2t
e−

(x−µt)2

2σ2t I

]︃
(s)M[w0(x)](s)

(3.76)

= [B0]
t M [(Kt ∗w0)(x)] (s) (3.77)

where Kt is a diagonal matrix with N(µt, σ2t) entries and I is the identity

matrix. Thus, we have

M[wt(x)](s) = [B0]
t M [(Kt ∗w0)(x)] (s). (3.78)
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Then applying the inverse transform yields

wt(x) = [B0]
t(Kt ∗w0)(x) (3.79)

= [B0]
t

∫︂ ∞

−∞

1√
2πσ2t

e−
(x−y−µt)2

2σ2t w0(y) dy (3.80)

In the moving half-frame [A + ct,∞) with fixed A ∈ R, consider the element

x0 + ct with c = c∗ =
√︁
2σ2 ln(λ1) + µ where λ1 is the dominant eigenvalue of

B0 as given by (3.12). By rewriting wt(x) in this moving half-frame we have

wt(x0 + ct) = [B0]
t

∫︂ ∞

−∞

1√
2πσ2t

e−
(x0+ct−y−µt)2

2σ2t w0(y) dy. (3.81)

Expanding the exponent, yields

(x0 + ct− y − µt)2

2σ2t
=

(y − x0)
2

2σ2t
+

(c− µ)(x0 − y)

σ2
+

(c− µ)2

2σ2
t. (3.82)

Thus,

wt(x0 + ct) =
[B0]

t

√
2πσ2t

∫︂ ∞

−∞
e−

(y−x0)
2

2σ2t e−
(c−µ)(x0−y)

σ2 e−
(c−µ)2

2σ2 tw0(y) dy (3.83)

=

[︃
B0

λ1

]︃t
1√

2πσ2t

∫︂ ∞

−∞
e−

(y−x0)
2

2σ2t e−
(c−µ)(x0−y)

σ2 e

[︃
− (c−µ)2

2σ2 +ln(λ1)

]︃
t
w0(y) dy.

(3.84)

Since c = c∗ =
√︁
2σ2 ln(λ1) + µ, we have that

wt(x0 + ct) =

[︃
B0

λ1

]︃t
1√

2πσ2t

∫︂ ∞

−∞
e−

(y−x0)
2

2σ2t e−
(c−µ)(x0−y)

σ2 w0(y) dy. (3.85)

From Assumption A5′′, w0(y) = (p0 ◦ r) e−
c−µ

σ2 y. Thus,

wt(x0 + ct) =

[︃
B0

λ1

]︃t
(p0 ◦ r) e−

(c−µ)

σ2 x0
1√

2πσ2t

∫︂ ∞

−∞
e−

(y−x0)
2

2σ2t dy (3.86)

=

[︃
B0

λ1

]︃t
(p0 ◦ r) e−

(c−µ)

σ2 x0 . (3.87)

From Lemma 3.6.2, see Appendix 3.6.2 for details, we know that

lim
t→∞

[︃
B0

λ1

]︃t
= rℓ (3.88)
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where r and ℓ are the right and left eigenvectors of B0 corresponding to λ1

respectively where ℓ is normalized by
⟨︁
ℓT , r

⟩︁
. Thus,

lim
t→∞

wt(x0 + ct) = lim
t→∞

[︃
B0

λ1

]︃t
(p0 ◦ r) e−

(c−µ)

σ2 x0 (3.89)

= rℓ (p0 ◦ r) e−
(c−µ)

σ2 x0 (3.90)

= e−
(c−µ)

σ2 x0rp. (3.91)

From the above calculations, we find that the super-solution approaches a

proportion, p, of the traveling wave for the linear equation where p = ℓ (p0 ◦ r).

We now move onto our sub-solution. For any 0 < ε ≪ 1, δ is chosen such that

(1− ε)B0δ = B(δ)δ and we define

(Bsub(u; ε))jl :=

{︄
(1− ε) (B(u))jl if (B(u))jl is constant

βjl(u; ε) if (B(u))jl is non-constant,
(3.92)

where

βjl(u; ε) :=

{︄
(1− ε) (B0)jl for 0 ≤ u < δ

(B(u))jl for u ≥ δ.
(3.93)

Then,

zt+1(x) =

∫︂ ∞

−∞
[K(x− y) ◦Bsub(ut(y); ε)] zt(y) dy (3.94)

with z0(x) = v0(x) is a sub-solution of vt(x) by the comparison principle since

Bsub(u; ε)v ≤ B(u)v for all v ≥ 0. Define c(ε) :=
√︁
2σ2 ln((1− ε)λ1) + µ

where (1− ε)λ1 is the dominant eigenvalue of the constant matrix (1− ε)B0.

In the moving half-frame [A+c(ε)t,∞) with fixed A ∈ R, choose x0 large such

that ut(y) in (3.94) satisfies ut(y) < δ for all t where y ∈ [x0+c(ε)t,∞). Then

by the definition of Bsub(u; ε)

zt+1(x0 + c(ε)t) =

∫︂ ∞

−∞
[K(x0 + c(ε)t− y) ◦ (1− ε)B0] zt(y) dy. (3.95)

By iterating we can write the solution to (4.61) as the t-fold convolution

zt(x0 + c(ε)t) = [K(x0 + c(ε)t− y) ◦ (1− ε)B0]
∗t z0(y). (3.96)
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Since we assumed that all of the dispersal kernels are Gaussian, by repeating

calculations done previously we find that

zt(x0 + c(ε)t) = [(1− ε)B0]
t

∫︂ ∞

−∞

1√
2πσ2t

e−
(x0+c(ε)t−y−µt)2

2σ2t z0(y) dy (3.97)

=
[(1− ε)B0]

t

√
2πσ2t

∫︂ ∞

−∞
e−

(x0−y)2

2σ2t e−
(c(ε)−µ)(x0−y)

σ2 e−
(c(ε)−µ)2

2σ2 tz0(y) dy

(3.98)

=

[︃
(1− ε)B0

(1− ε)λ1

]︃t
1√

2πσ2t

∫︂ ∞

−∞
e−

(x0−y)2

2σ2t e−
(c(ε)−µ)(x0−y)

σ2 e

[︃
− (c(ε)−µ)2

2σ2 +ln((1−ε)λ1)

]︃
t
z0(y) dy

(3.99)

=

[︃
B0

λ1

]︃t
1√

2πσ2t

∫︂ ∞

−∞
e−

(x0−y)2

2σ2t e−
(c(ε)−µ)(x0−y)

σ2 e

[︃
− (c(ε)−µ)2

2σ2 +ln((1−ε)λ1)

]︃
t
z0(y) dy.

(3.100)

Since c(ε) =
√︁

2σ2 ln((1− ε)λ1) + µ,

zt(x0 + c(ε)t) =

[︃
B0

λ1

]︃t
1√

2πσ2t

∫︂ ∞

−∞
e−

(x0−y)2

2σ2t e−
(c(ε)−µ)(x0−y)

σ2 z0(y) dy. (3.101)

Note that the integrand in (3.101) is nonnegative and integrable. Using Fatou’s

lemma we fix t and let ε → 0, giving

zt(x0 + ct) = lim inf
ε→0

zt(x0 + c(ε)t) (3.102)

= lim inf
ε→0

[︃
B0

λ1

]︃t
1√

2πσ2t

∫︂ ∞

−∞
e−

(x0−y)2

2σ2t e−
(c(ε)−µ)(x0−y)

σ2 z0(y) dy

(3.103)

≥
[︃
B0

λ1

]︃t
1√

2πσ2t

∫︂ ∞

−∞
lim inf
ε→0

e−
(x0−y)2

2σ2t e−
(c(ε)−µ)(x0−y)

σ2 z0(y) dy

(3.104)

=

[︃
B0

λ1

]︃t
1√

2πσ2t

∫︂ ∞

−∞
e−

(x0−y)2

2σ2t e−
(c−µ)(x0−y)

σ2 z0(y) dy. (3.105)

From Assumption A5′′, z0(y) = (p0 ◦ r) e−
(c−µ)

σ2 y. Thus, by the same calcula-

tions used in (3.86)-(3.87) for the super-solution

zt(x0 + ct) ≥
[︃
B0

λ1

]︃t
(p0 ◦ r) e−

(c−µ)

σ2 x0 . (3.106)

From Lemma 3.6.2, see Appendix 3.6.2 for details, we see that

lim
t→∞

[︃
B0

λ1

]︃t
= rℓ, (3.107)
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where r and ℓ are the right and left eigenvectors corresponding to λ1 respec-

tively where the ℓ is normalized by
⟨︁
ℓT , r

⟩︁
. Thus,

lim
t→∞

zt(x0 + ct) ≥ lim
t→∞

[︃
B0

λ1

]︃t
(p0 ◦ r) e−

(c−µ)

σ2 x0 (3.108)

= rℓ (p0 ◦ r) e−
(c−µ)

σ2 x0 (3.109)

= e−
(c−µ)

σ2 x0rp. (3.110)

Asymptotically, our sub-solution is bounded below by a proportion of the

traveling wave for the linear equation where p = ℓ (p0 ◦ r). Since our super-

solution satisfies

lim
t→∞

wt(x0 + ct) ≤ e−
(c−µ)

σ2 x0rp, (3.111)

and our sub-solution satisfies

lim
t→∞

zt(x0 + ct) ≥ e−
(c−µ)

σ2 x0rp (3.112)

it follows that

lim
t→∞

vt(x0 + ct) = e−
(c−µ)

σ2 x0rp. (3.113)

The proof of Theorem 3.3.3 is complete.

3.4 Numerical simulations

In this section, we illustrate the theory of Section 3.3 with a numerical example.

All simulations were done using the fast Fourier transform technique (Cooley

and Tukey, 1965). This method is better than classical quadrature because it

speeds up the numerical process from O(n2) to O(n log(n)).

We begin with a two-stage population model of juveniles, J , and adults,

A. The equations in this model are given below,

J i
t+1(x) =

∫︂ ∞

−∞
k(x− y)ζ(1−m)J i

t (y) dy +

∫︂ ∞

−∞
k(x− y)f0e

−
∑︁n

i=1(Ji
t (y)+Ai

t(y))Ai
t(y) dy,

Ai
t+1(x) =

∫︂ ∞

−∞
k(x− y)ζmJ i

t (y) dy +

∫︂ ∞

−∞
k(x− y)ζAi

t(y) dy,

(3.114)
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where

k(x− y) =
1√
2πσ2

e−
(x−y)2

2σ2 . (3.115)

The demography in (3.114) follows a classical model for biological invasions

(Neubert and Caswell, 2000), but we assume Gaussian dispersal to align with

the assumptions in our theorems. In (3.114), ζ is the probability of survival

to the next generation, m is the probability of maturation from a juvenile to

an adult, f0 is the number of juveniles produced by an adult in the absence of

density-dependent effects. All individuals are assumed to disperse according

to a Gaussian dispersal kernel. The growth function for adults producing

juveniles is assumed to be a Ricker type growth function where the nonlinearity

depends on the density of both juveniles and adults. In the juvenile equation

of (3.114), juveniles can remain juveniles if they survive and do not mature

and adults from location y can produce juveniles that disperse to location x.

In the adult equation of (3.114), juveniles become adults if they survive and

mature, and adults remain adults if they survive from the previous year.

Let

vi
t(x) =

[︃
J i
t (x)

Ai
t(x)

]︃
, (3.116)

K(x− y) =

⎡⎣ 1√
2πσ2

e−
(x−y)2

2σ2 1√
2πσ2

e−
(x−y)2

2σ2

1√
2πσ2

e−
(x−y)2

2σ2 1√
2πσ2

e−
(x−y)2

2σ2

⎤⎦ , and (3.117)

B(ut(y)) =

[︄
ζ(1−m) f0e

−
∑︁n

i=1(Ji
t (y)+Ai

t(y))

ζm ζ

]︄
. (3.118)

Then we can write (3.114) in the matrix and vector notation provided in (3.4).

First, let us verify that the assumptions of Theorems 3.3.2 and 3.3.3 are

satisfied. Recall that Assumptions A1-A3 and A4′ are the same for these

two theorems. For Assumption A1, it is clear that our population projection

matrix, B(ut(y)), is nonnegative from (3.118) since ζ,m, f0 > 0. We can
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calculate B0 to be

B0 =

[︃
ζ(1−m) f0

ζm ζ

]︃
. (3.119)

Thus, B0 is primitive. For Assumption A2, the dominant eigenvalue of B0 is

greater than one if

f0 >
(1− ζ)(1− ζ(1−m))

ζm
. (3.120)

For details of this calculation see Proposition 3.1 of Marculis and Lui (2016).

Since e−
∑︁n

i=1(Ji
t (y)+Ai

t(y)) ≤ 1 we have B(ut(y))v ≤ B0v for all v ≥ 0 and

Assumption A3 is satisfied. Even though our operator is not order preserving

because of the overcompensation in the Ricker function, Proposition 3.1 in Li

et al. (2009) suggests that the calculation for the spreading speed should still

hold true. Assumption A4′ is clear from the definition of (3.117). Finally, if

we assume our initial condition to decay faster than e−
c−µ

σ2 x, then the neutral

fractions will satisfy Assumption A5′ of Theorem 3.3.2 and we can see that

(3.114) has a unique positive steady state given by

J∗ =
1− ζ

ζm
A∗ and A∗ = − ln

(︃
(1− ζ)(1− ζ(1−m))

f0ζm

)︃
, (3.121)

see again Proposition 3.1 of Marculis and Lui (2016). In our numerical simu-

lations the only neutral fraction that does not decay faster than e−
c−µ

σ2 x is the

one at the leading edge because it was chosen to have an initial form of the

traveling wave solution with c = c∗. It should be mentioned here that since we

are solving this problem numerically it is solved on a finite domain and this is

only an approximation to the solution. Therefore, in the moving half-frame,

the only neutral fractions that we see are the ones initially at the leading edge.

The neutral fractions at the leading edge do not satisfy the exact Assumption

A5′′ of Theorem 3.3.3, but asymptotically they decay like e−
c−µ

σ2 x. However,

the asymptotic proportion calculated from Theorem 3.3.3 agrees with the nu-

merical simulation suggesting that this result should be able to extend to a

wider array of initial conditions.
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We provide some numerical simulations to see the neutral genetic patterns

produced by (3.114). We begin by running a simulation where the juvenile

and adult populations have the same initial distribution as seen in Figure

3.1(a). This simulation shows that the spread of both juveniles and adults is

dominated by the neutral fraction at the leading edge as seen in Figure 3.1(b).

Switching the ordering of the neutral fractions behind the leading edge does

not affect the asymptotic behavior in the moving frame. This observation is

consistent with the founder effect. The simulations seen in Figure 3.1 agree

with the results of Theorems 3.3.2 and 3.3.3.

(a) (b)

Figure 3.1: Numerical realization of (3.114) for the parameter values σ2 = 0.01,
µ = 0, ζ = 0.7, m = 0.8, and f0 = 2.5 for n = 8 neutral fractions. In (a) the
plots are the initial conditions for the juvenile and adult populations. Notice
that the distribution of neutral fractions for juvenile and adult populations
have the same order. In (b) we plot the densities of the juvenile and adult
neutral fractions at t = 100.

For our next simulation, we consider the case where the distribution of the

neutral fractions of juveniles and adults do not appear in the same order. This

is seen in Figure 3.2(a). Here we keep the same initial distribution of juvenile

individuals as in Figure 3.1(a), but the initial distribution of adult neutral

fractions is assorted differently. In Figure 3.2(a) we can see that initially the
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neutral fractions at the leading edge of the juvenile and adult populations are

light gray and red respectively. Figure 3.2(b) shows the distribution of neutral

fractions at t = 100. At the leading edge the spread is dominated by the light

gray and red neutral fractions. This simulation agrees with our theoretical

results because Theorem 3.3.2 and 3.3.3 suggest that the spread should be

dominated by the neutral fractions that are initially at the leading edge of the

population. Again we see that the neutral fractions behind the leading edge

do not contribute to the asymptotic spread.

(a) (b)

Figure 3.2: Numerical realization of (3.114) for the parameter values σ2 = 0.01,
µ = 0, ζ = 0.7, m = 0.8, and f0 = 2.5 for n = 8 neutral fractions. For these
parameters u∗ = (J∗, A∗) = (0.5900, 1.1013). In (a) the plots are the initial
conditions for the juvenile and adult population. Notice that the distribution
of the first two neutral fractions is different for juveniles and adults. The plots
in (b) are the densities of the juvenile and adult neutral fractions at t = 100.
The neutral genetic pattern produced here is due to the difference in the initial
distribution of neutral fractions for juveniles and adults. The dashed lines in
(b) are calculated from Theorem 3.3.3, they represent the proportions of red
juveniles and adults. Behind the leading edge the proportions are p2J∗ =
0.3629 for juveniles and p1A∗ = 0.4238 for adults.
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3.5 Discussion

The main objective of this work is to understand the effect that stage-structure

has on the neutral genetic composition of expanding populations as outlined

in Section 3.1. We derived the model for the inside dynamics of a stage-

structured integrodifference equation in Section 3.2.1. Section 3.2.2 describes

five of our main assumptions related to demography and dispersal. Four of

these assumptions are related to the population projection matrix and the fifth

is related to the form of the dispersal kernel.

The three main results of the paper are provided in Section 3.3, with their

respective proofs in Section 3.3.3. Theorem 3.3.1 is our first main result, which

provides sufficient conditions for a neutral fraction to converge uniformly to

zero in the moving half-frame. The five assumptions that must be satisfied are

as follows: the population projection matrix must be nonnegative, the popu-

lation projection matrix evaluated at zero must be primitive and its dominant

eigenvalue must be greater than one, the population projection matrix must be

maximal at the trivial steady state, all dispersal kernels must be thin-tailed,

and the initial condition must satisfy the decay assumption given in Lemma

3.6.1. It should be noted that the Dirac delta function is a thin-tailed disper-

sal kernel and thus we can consider cases where there is no dispersal between

some transitions making this theorem very general in terms of the dispersal

assumptions.

The second main result is Theorem 3.3.2. Similar to Theorem 3.3.1, this

theorem also shows conditions under which each neutral fraction converges

uniformly to zero in the moving half-frame. The difference with this theorem

is that we make a stronger assumption on the dispersal kernels in exchange for

a weaker condition on the initial condition. In particular, we assume that all

dispersal kernels are Gaussian with identical means and variances. Due this
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this assumption, we are then able to relax the decay condition on the initial

condition of the population to be slightly weaker than is required for Theorem

3.3.1. The proof for Theorem 3.3.2 is more elegant than the proof for Theorem

3.3.1. However, this comes at some cost in the biological realism of the model

since it is not common for all stages and transitions to disperse exactly via a

Gaussian distribution.

The final result is given in Theorem 3.3.3. The first four assumptions of

this theorem are the same as Theorem 3.3.2. The fifth assumption assumes

that the initial condition decays according to the traveling wave ansatz for

the linear equation. Under these assumptions, we are able to asymptotically

calculate the proportion that each neutral fraction approaches in the moving

frame. This proportion is dependent on the right and left eigenvectors of the

population projection matrix evaluated at zero and the initial proportion of

each neutral fraction at the leading edge. The proof relies on the construction

of super- and sub-solutions to the system. The super-solution, as expected, is

chosen to be the linearization of our operator while the sub-solution is defined

in a piecewise manner to lie below the nonlinearities. Since all dispersal kernels

were assumed to be identical Gaussian distributions, the proportion calculated

by Theorem 3.3.3 does not apply when some stages and transitions do not

disperse in the same way.

After completion of the mathematical results, we performed some numeri-

cal simulations in Section 3.4 to compare our analytical results to a reasonable

biological model. We chose to look at a classical two-stage juvenile adult

model where dispersal occurs between all stages and transitions. The first

simulation, in Figure 3.1, shows that the spread is dominated by the neutral

fraction at the leading edge which is an extreme version of the founder effect.

However, since we are working with a system of equations, it is possible for the

initial distribution of neutral fractions in the juvenile and adult stages to be
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different. This is seen in Figure 3.2(a). As predicted from Theorem 3.3.2, in

Figure 3.2(b), we see that all neutral fractions, except the ones at the leading

edge of the juvenile and adult populations, converge uniformly to zero in the

moving half-frame. The asymptotic proportions for the two neutral fractions

that were initially at the leading edge of the juvenile and adult populations

are given by the formula in Theorem 3.3.3 and plotted as the dashed line in

Figure 3.2(b).

As expected, some of the same results obtained here are similar to those for

the scalar population model. That is, Theorem 3.3.1 and Theorem 3.3.2 are

equivalent to their scalar counterparts, Theorem 3 and Theorem 1 respectively,

given in Marculis et al. (2017). However, Theorem 3.3.3 provides a new result

for a special case of interacting neutral fractions at the leading edge. This

is not possible in the scalar population model. From this theorem, we see

the ability for multiple neutral fractions to contribute to the spread of the

population. Contributions from multiple neutral fractions to the population

spread are only possible in the scalar model when there is a strong Allee effect

(Marculis et al., 2017). Although we would expect similar behavior from

our stage-structured model, we are not able to analyze the inside dynamics

of a stage-structured model with a strong Allee effect. This is due to the

requirement that our results for the strong Allee effect in scalar systems rely

on the operator being compact. For a system of equations the necessary theory

is more complicated and we were unable to perform this analysis. In the special

case where all dispersal kernels are Gaussian with the same mean and variance

and all entries of the population projection matrix have the same strong Allee

effect type per-capita growth function, then Theorem 2 given in Marculis et al.

(2017) can be applied. However, such stringent assumptions would defeat the

purpose for considering a stage-structured population model because all stages

and transitions would grow and disperse in the same way, essentially reducing
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the stage-structured model to a scalar equation.

The interesting additional feature that the stage-structured population

model offers over scalar models is the ability to have a different initial dis-

tribution of neutral fractions for each stage. This difference can lead to multi-

ple neutral fractions driving the spread of the population. Here, we see these

dynamics solely for the reason that the initial spatial distribution of neutral

fractions is different for each stage.

Several assumptions about the integrodifference dynamics and dispersal

kernels limit the applicability of the results in this paper. One limitation to

the applicability of our work is seen in Assumption A3. Here we require that

our population projection matrix is maximal at zero. This means that we are

not considering any kind of demography with Allee effects. In order to prove

the asymptotic proportion result seen in Theorem 3.3.3 we make some restric-

tive assumptions on the dispersal kernels and initial conditions in the model.

Assumption A4′ in Theorem 3.3.3 states that all dispersal kernels are Gaus-

sian with the same mean and variance. This assumption may be unrealistic

for many populations because the reason to use a stage-structured population

model over a scalar population model is to include differences in demography

and dispersal between stages. Assumption A5′′ in Theorem 3.3.3 makes the

assumption that the initial conditions are in the form of the traveling wave

ansatz for the linear equation. It would be beneficial to generalize Theorem

3.3.3 for initial conditions that are in the form of the traveling wave solution.

The numerical simulations show that we should be able to relax our sixth

assumption in our in theorems to a more general class of initial conditions.

These simulations are not only useful for verifying our mathematical results,

but they also provide some insight into opportunities for further mathematical

analysis.
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3.6 Appendix

3.6.1 Asymptotic speed of propagation for a system

The following Proposition is taken from (Lui, 1989a). Let β ∈ Rn be a positive

vector. We define

C = {u = (u1, ..., un) | 0 ≤ u(x) ≤ β, ui(x) : R → [0,βi]

is piecewise continuous for i = 1, ..., n}.

The operator Q used in our analytical results is given by

Q[u] =

∫︂ ∞

−∞
[K(x− y) ◦B(u(y))]u(y) dy. (3.122)

Proposition 3.6.1. Let Q = (Q1, ..., Qn) : C → C satisfy the following condi-

tions:

(1) Q[0] = 0 , Q[β] = β, 0 is unstable and β is stable with respect to Q.

(2) Q is translation invariant and has no other fixed-point besides 0 and β

in C.

(3) Q is monotone or order-preserving in C; that is, if u ≤ v in C, then

Q[u] ≤ Q[v].

(4) Q is continuous in the topology of uniform convergence on bounded sub-

sets of R.

(5) Let

(M[u](x))i =
n∑︂

j=1

∫︂ ∞

−∞
uj(x− y)mij(y) dy . (3.123)

be the linearization of Q at 0, where mij(y) ≥ 0 is an integrable function.

We assume that

Q[u] ≤ M[u] for all u ∈ C . (3.124)
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(6) The matrix B(s) = (bij(s)), where

bij(s) =

∫︂ ∞

−∞
esy mij(y) dy (3.125)

is irreducible for 0 < s < s+.

Let ρ(s) be the dominant eigenvalue of B(s) and let

c∗ = min
0<s<s+

1

s
ln ρ(s) . (3.126)

Then c∗ is the asymptotic speed of propagation of the operator Q in the positive

direction in the following sense. Let u0 ∈ C, u0 is non-trivial and vanishes

outside of a bounded interval in R. Let u t be defined by u t+1 = Q[ut] for

t = 0, 1, 2.... Then for any small ε > 0,

lim
t→∞

min
x≤t(c∗−ε)

|u t(x)− β| = 0 (3.127)

and lim
t→∞

max
x≥t(c∗+ε)

|u t(x)| = 0 . (3.128)

3.6.2 Mathematical details

The purpose of this section is to provide the mathematical background needed

to prove the theorems in Section 3.3. One tool that is used throughout all of

our theorems is the reflected Bilateral Laplace transform.

Definition 3.6.1. Let f : R → R where f is piecewise continuous on every

finite interval in R and there exists a M ∈ R+ such that |f(x)| ≤ Me−sx for

all x ∈ R and 0 < s < s+. Then, the reflected bilateral Laplace transform and

its inverse are defined to be

F (s) = M[f(x)] :=

∫︂ ∞

−∞
f(x)esx dx, and (3.129)

f(x) = M−1[F (s)] :=
1

2πi
lim
R→∞

∫︂ γ+iR

γ−iR

F (s)e−sx ds (3.130)

for 0 < s < s+, where the integration in Equation (3.130) is over the vertical

line, Re(s) = γ in the complex plane and γ is greater than the real parts of all

singularities of F (s).
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By using the convolution theorem, the reflected bilateral Laplace trans-

form can be used to write the solution to our model in terms of the initial

condition. This theorem states that the reflected bilateral Laplace transform

of a convolution is the product of the reflected bilateral Laplace transforms.

That is,

M[f(x) ∗ h(x)](s) = F (s)H(s). (3.131)

Note that the reflected bilateral Laplace transform of a probability density

function is also referred to as its moment generating function.

Next, we provide results regarding vector and matrix analysis that are

relevant to our subsequent analysis. First, it should be noted that when we

write x ≥ y, the inequality is element-wise. That is, xi ≥ yi for each i. In a

similar manner, x > y means that xi > yi for each i. For the matrix analysis,

the following definitions and proposition are needed:

Definition 3.6.2. Let λ1, . . . , λm be the eigenvalues of a matrix A. Then its

spectral radius ρ(A) is defined as:

ρ(A) := max
i=1,...,m

|λi| . (3.132)

In other words, the spectral radius of a matrix A is the modulus of the

largest eigenvalue.

Definition 3.6.3. A matrix A is called nonnegative, A ≥ 0, if aij ≥ 0 for all

i, j .

Definition 3.6.3 states that a matrix is nonnegative if all elements of the

matrix are greater than or equal to zero. Next, we consider primitive matrices.

Definition 3.6.4. A nonnegative matrix A is primitive if there is a positive

integer k such that Ak > 0.

Another important concept is that of the dominant eigenvalue of a matrix.
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Definition 3.6.5. Let λ1, . . . , λm be the eigenvalues of an m ×m matrix A.

If |λ1| > |λj| for j = 2, . . .m, then λ1 is called the dominant eigenvalue of A.

Next, we discuss the Perron-Frobenius theorem for nonnegative primitive

matrices (Bapat and Raghavan, 1997).

Proposition 3.6.2 (Perron-Frobenius theorem). Let A ≥ 0 be an m × m

primitive matrix. Then Ay = λ1y for some λ1 > 0, y > 0 where

(i) The eigenvalue λ1 is algebraically simple.

(ii) The eigenvalue λ1 is dominant. That is, for any other eigenvalue µ of

A, |µ| < λ1.

(iii) The only nonnegative eigenvectors of A are positive scalar multiples of

y.

By the Perron-Frobenius theorem we know that the spectral radius of a

nonnegative primitive matrix is equal to the dominant eigenvalue of that ma-

trix; ρ(A) = λ1. In our analysis we also make use of the Jordan canonical

form for square matrices. We use this decomposition because while a nonneg-

ative primitive matrix is not necessarily diagonalizable, every square matrix

can none-the-less be written in its Jordan canonical form.

Definition 3.6.6. For any square matrix A, there exists a matrix J such that

A = PJP−1, (3.133)

where J is the Jordan canonical form of A. The Jordan canonical form is a

block diagonal matrix

J =

⎡⎢⎣J1 . . . 0
...

. . .
...

0 . . . Jb

⎤⎥⎦ , (3.134)

where each Ji is called a Jordan block of A. For Jordan block i, the diagonal

entries are λi, the superdiagonal entries are one, and all other entries are zero.
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Next, we present two lemmas that were used in the proofs of the main

theorems. The first lemma was used in Theorem 3.3.1 and bounds our initial

condition for each neutral fraction i for each stage j, vij,0(x), sufficiently to

establish the uniform convergence results for the neutral fractions.

Lemma 3.6.1. Let x → vij,0(x) satisfy x2vij,0(x)e
sx ∈ L1(R)∩L∞(R), then for

each s > 0 there exists a positive constant Cj such that

wi
j,0(x) =

Cje
−sx

1 + x2
(3.135)

bounds vij,0(x) for all x ∈ R. Moreover, the Fourier transform of wi
j,0(x)e

sx

with respect to x is in L1(R) and is given by

Cjπe
−|ω|. (3.136)

For the proof of Lemma 3.6.1, we refer the reader to Lemma 1 by Marculis

et al. (2017).

We next provide a lemma that will be used in the proofs of the Theorems

3.3.2 and 3.3.3. In particular, we make use of the Jordan canonical form and

the Perron-Frobenius theorem outlined above.

Lemma 3.6.2. Assume that the matrix B0 is nonnegative and primitive. Let

λ1 be the dominant eigenvalue of B0, then

lim
t→∞

[︃
B0

λ1

]︃t
= rℓ (3.137)

where r and ℓ are the right and left eigenvectors corresponding to λ1 respectively

with ℓ normalized by
⟨︁
ℓT , r

⟩︁
to account for the scaling in r.

Proof. Writing B0 in terms of its Jordan canonical form, we have

lim
t→∞

[︃
B0

λ1

]︃t
= lim

t→∞

[︃
PJP−1

λ1

]︃t
(3.138)

= lim
t→∞

PJtP−1

λt
1

. (3.139)
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Since J is block diagonal,

Jt =

⎡⎢⎣J
t
1 . . . 0
...

. . .
...

0 . . . Jt
b

⎤⎥⎦ . (3.140)

By the Perron-Frobenius theorem there exists a dominant eigenvalue λ1 of B0

because B0 is nonnegative and primitive . The first Jordan block is J1 =
[︁
λ1

]︁
and Jt

1 =
[︁
λt
1

]︁
. For Jordan block j of size bj × bj we have

Jt
j =

⎡⎢⎢⎢⎢⎢⎢⎣
λt
j

(︁
t
1

)︁
λt−1
j . . .

(︁
t

bj−2

)︁
λ
t−bj+2
j

(︁
t

bj−1

)︁
λ
t−bj+1
j

0 λt
j . . .

(︁
t

bj−3

)︁
λ
t−bj+3
j

(︁
t

bj−2

)︁
λ
t−bj+2
j

...
...

. . .
...

...
0 0 . . . λt

j

(︁
t
1

)︁
λt−1
j

0 0 . . . 0 λt
j

⎤⎥⎥⎥⎥⎥⎥⎦ (3.141)

for t ≥ bj − 1. Since |λj| < λ1, using L’Hôpital’s rule, we have

lim
t→∞

Jt
j

λt
1

= 0 (3.142)

for j = 2, . . . , b. Returning to the Jordan canonical form,

lim
t→∞

Jt

λt
1

=

⎡⎢⎣1 . . . 0
...

. . .
...

0 . . . 0

⎤⎥⎦ . (3.143)

Hence from (3.139),

lim
t→∞

PJtP−1

λt
1

= P lim
t→∞

Jt

λt
1

P−1 (3.144)

= P

⎡⎢⎣1 . . . 0
...

. . .
...

0 . . . 0

⎤⎥⎦P−1 (3.145)

= rℓ (3.146)

because r is the first column vector of P and ℓ is the first row vector of P−1.

Therefore, from (3.139) and (3.146),

lim
t→∞

[︃
B0

λ1

]︃t
= rℓ. (3.147)

The proof of Lemma 3.6.2 is complete.
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Chapter 4

Inside dynamics of
integrodifference equations with
mutations

4.1 Introduction

The neutral theory of molecular evolution posits that most of the genetic

variation in populations is independent of selection and hence is neutral (Duret,

2008). When this theory is true, it suggests that much of the variation in

populations is due to events such as mutations or genetic drift, without the

influence of selection. This provides support for including neutral mutation

dynamics into models of genetic spread. The molecular clock hypothesis states

that genes evolve at a relatively constant rate over time (Bromham and Penny,

2003). We use this hypothesis in our model formulation by assuming the

probability genes mutating is constant over time. This theory suggests the

genetic difference between any two species is proportional to the time since

these species last shared a common ancestor. Therefore, if the molecular clock

hypothesis is true, this can be used for estimating evolutionary timescales (Ho,

2008).

Neutral genetic patterns caused by range expansions is a topic of recent in-

terest (Hallatschek and Nelson, 2008). The establishment of a new population,
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undertaken by a few original founders who carry only a small fraction of the

total genetic variation of the parental population is referred to as the founder

effect (Mayr, 1940). Range expansions are commonly thought to reduce ge-

netic diversity of a population due to the founder effect. When a population

is expanding its range, consecutive founder events result in the phenomena

known as gene surfing (Excoffier and Ray, 2008). This is the spatial analog

of genetic drift and occurs when certain alleles reach higher than expected

frequencies at the front of a range expansion (Slatkin and Excoffier, 2012).

However in the presence of neutral mutations, these processes may be altered.

We are not the first to model this problem; previous studies have used sim-

ulation based models (Edmonds et al., 2004; Klopfstein et al., 2006) and lab

experiments (Hallatschek et al., 2007) to understand the effects of neutral

mutations on the wave of range expansions.

Integrodifference equations have played a central role in studying problems

in theoretical ecology such as range expansions (Krkošek et al., 2007; Zhou

and Kot, 2011), the spread of invasive species (Bateman et al., 2017; Kot et

al., 1996; Lewis et al., 2016), determining the critical domain size for popu-

lation persistence (Lutscher et al., 2005; Reimer et al., 2016; Van Kirk and

Lewis, 1997), and more recently understanding the neutral genetic structure

of populations (Lewis et al., 2018; Marculis et al., 2019, 2017). In this work,

we aim to understand role that mutations play in the neutral genetic diversity

of a population undergoing range expansion by studying an integrodifference

equation model.

Recall that the classical integrodifference equation is

ut+1(x) =

∫︂ ∞

−∞
k(x− y)g(ut(y))ut(y) dy (4.1)

where u is the population density, k is the dispersal kernel, and g is the per-

capita growth function. To understand the role that mutations play on the
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neutral genetic diversity of a spreading population, we study the inside dy-

namics of integrodifference equations with neutral mutations. The term inside

dynamics refers to changes in the inside structure of the population rather

than the total density. The key assumption in the analysis for inside dynamics

is that all individuals grow and disperse in the same manner differing only with

respect to neutral genetic markers. In other words, all individuals in the pop-

ulation have the same fitness. This allows us to partition the population into

distinct subgroups called neutral fractions where we track the spatio-temporal

evolution of these subgroups. By making the assumption of neutral fractions,

we obtain the following system of equations for the inside dynamics of our

scalar integrodifference equation,

vit+1(x) =

∫︂ ∞

−∞
k(x− y)g(ut(y))v

i
t(y) dy, for i = 1, . . . , n, (4.2)

where n is the finite number of neutral fractions and ut(x) =
∑︁n

i=1 v
i
t(x).

Inside dynamics have been studied for a variety of different spatio-temporal

population models, including reaction-diffusion equations (Garnier et al., 2012;

Garnier and Lewis, 2016; Roques et al., 2012, 2015), delay reaction-diffusion

equations (Bonnefon et al., 2013), integro-differential equations (Bonnefon et

al., 2014), and integrodifference equations (Lewis et al., 2018; Marculis et

al., 2019, 2017). The three previous studies on integrodifference equations

analyzed a scalar model (Marculis et al., 2017), a model with climate change

(Lewis et al., 2018), and a stage-structured population model (Marculis et

al., 2019). Our extension to these previous works is to analyze the inside

dynamics of a scalar integrodifference equation with neutral mutations. By

comparing the differences between our model and those previously studied,

we can begin to understand what role mutations play in the spread of neutral

genetic markers.

Mutations between neutral fractions are called neutral mutations because
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there is no direct effect on the fitness of the individual. This process adds a

level of biological complexity and increases the biological realism of the model.

The addition of neutral mutations to the model is important for realism be-

cause it is a natural process that is known to occur and can be used in studying

molecular clocks to identify evolutionary events such as speciation and evolu-

tionary radiation. For our analyses, we are interested in how the addition of

neutral mutations into the modeling structure can impact the resulting pat-

terns of genetic spread.

The organization of the paper is laid out in the following way. Section 4.2

provides a derivation of our mutation matrix model. That is, we extend (4.2)

to include mutations between the neutral fractions. In Section 4.3, we lay out

some preliminary material and assumptions that will be useful in the main

theorems. Once the preliminary material has been established, we move on

to the main results. Here, we state four main theorems about the asymptotic

spread of the neutral fractions in Section 5.3. In Section 4.5, we perform

some numerical simulations to support our main results and understand how

different components affect the asymptotic dynamics. These simulations lead

to conjectures regarding which assumptions in the main theorems could be

relaxed without changing the results. Finally, in Section 4.6, we provide a

discussion of the work including model development, outcomes, limitations,

and some future directions.

4.2 Mutation matrix model

Our goal is to extend the system of equations in (4.2) to include neutral mu-

tations that happen during reproduction. To do this, we must determine how

to incorporate mutations into the model. A common method that has been

previously used to study the mutations of DNA is the substitution model.

A substitution model describes the process of genetic variation by which one
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variant is replaced by another, with a given constant mutation rate (Arenas,

2015). To model the substitution process, continuous-time Markov chains are

a common tool of choice. The first and simplest substitution model was de-

veloped by Jukes and Cantor for the mutation of DNA base pairs in amino

acids (Jukes and Cantor, 1969) . This model assumes equal base frequencies

and equal mutation rates, giving a simplistic one parameter depiction. Others

have added complexity to the Jukes Cantor model by distinguishing between

types of transitions (Kimura, 1980), and by allowing the base frequencies to

vary (Felsenstein, 1981). In all of these models, the dynamics are driven by

the rate matrix for the continuous-time Markov chain.

In our work, we are not concerned with modeling DNA sequence evolu-

tion in amino acids, but the change of neutral genetic markers in an organ-

ism which reproduces at discrete time intervals. To achieve this, we use a

modeling framework similar to substitution models, but with a discrete-time

Markov chain. Since our neutral fraction model is an integrodifference equation

and we are assuming that the mutations are occurring during reproduction, a

discrete-time Markov chain is suitable to model the mutation process. Thus,

we can construct a mutation matrix where the entries are described by muta-

tion probabilities. Consider a single locus with n different neutral alleles and

let mjl be the probability of mutation from a type l to a type j individual and

v = [v1, v2, . . . , vn]
T
. Then, we obtain the following equation

vt+1(x) =

∫︂ ∞

−∞
k(x− y)Mg(ut(y))vt(y) dy, (4.3)

where ut(x) =
∑︁n

i=1 v
i
t(x), M is the mutation matrix given by

M =

⎡⎢⎢⎢⎢⎢⎣
1−

∑︁
j ̸=1 mj1 m12 . . . m1(n−1) m1n

m21 1−
∑︁

j ̸=2 mj2 . . . m2(n−1) m2n

...
...

. . .
...

...
m(n−1)1 m(n−1)2 . . . 1−

∑︁
j ̸=n−1mj(n−1) m(n−1)n

mn1 mn2 . . . mn(n−1) 1−
∑︁

j ̸=nmjn

⎤⎥⎥⎥⎥⎥⎦ ,

(4.4)
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and our initial condition, v0(x), satisfies

n∑︂
i=1

vi0(x) = u0(x). (4.5)

It should be noted that the same general form of the mutation matrix,

(4.4), can be attained by assuming there are m loci with a different neutral

alleles; see Appendix 4.7.1. Thus, our model is quite general and could be

applied to commonly studied neutral genetic marks such as microsatellite data

(Selkoe and Toonen, 2006) or mutations by single nucleotide polymorphisms

(SNPs) (Morin et al., 2004). In particular, to study the effects of SNPs on

a single locus the mutation matrix will have dimensions 4 × 4 to account for

the mutation rates between the four nucleotides. Our mutation matrix model

given in (4.3) is different from the scalar model in (4.2) because there are

interactions between the neutral fractions. Thus, for our analysis we must

consider all neutral fractions rather than focusing on a single neutral fraction

as done in previous studies for the scalar model.

4.3 Preliminary material

For expanding populations, there is a classical result for the spreading speed

of a population introduced over a compact region. When the maximum per-

capita growth is at the lowest densities, (g(u) ≤ g(0) for all u ∈ (0, 1)), k is

thin-tailed (i.e., has a moment generating function), and the operator is order

preserving, we can compute the rightward spreading speed with the following

formula,

c∗ = inf
s>0

1

s
ln

(︃
g(0)

∫︂ ∞

−∞
k(x)esx dx

)︃
(4.6)

(Weinberger, 1982). We can find the leftward spreading speed with a calcula-

tion similar to (4.6),

c∗− = inf
s>0

1

s
ln

(︃
g(0)

∫︂ ∞

−∞
k(x)e−sx dx

)︃
. (4.7)
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In particular, when k is a Gaussian dispersal kernel with mean µ and variance

σ2,

k(x;µ, σ) =
1√
2πσ2

e−
(x−µ)2

2σ2 , (4.8)

the rightward spreading speed is

c∗ =
√︁
2σ2 ln(g(0)) + µ, (4.9)

and the leftward spreading speed is

c∗− =
√︁
2σ2 ln(g(0))− µ. (4.10)

Definition 4.3.1. A square matrix is called a Markov matrix if all entries are

nonnegative and the sum of each column vector is equal to one.

One consequence of a Markov matrix that we will frequently use throughout

our work is that the dominant eigenvalue is equal to one. The mutation matrix

given in (4.4) is a Markov matrix. If M is irreducible then it is possible to

mutate from any given genotype to any other genotype in a finite number

of steps. A stricter version of irreducibility is primitivity. If M is primitive

then there exists a t such that it is possible to mutate from any given neutral

genotype to any other in exactly t steps (i.e., Mt > 0). We assume that this is

the case. Recall that a nonnegative matrix is primitive if it is irreducible and

all entries on the diagonal are strictly positive. Thus, by assuming primitivity

instead of irreducibility for the mutation matrix means that at each time step

for each neutral fraction there are some individuals that do not mutate into

another type.

In our work we consider Markov matrices that are not necessarily primitive

but are block diagonal primitive.

Definition 4.3.2. A square matrix M is block diagonal primitive if for some

t > 0, Mt can be written as a block diagonal matrix where each block is prim-
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itive. That is, there exits a t such that

Mt =

⎡⎢⎢⎢⎣
Mt

1 0 . . . 0
0 Mt

2 . . . 0
...

...
. . .

...
0 0 . . . Mt

b

⎤⎥⎥⎥⎦ (4.11)

where Mt
q > 0 for q = 1, . . . , b.

Note that each block could be primitive with a different power tq. This

would mean that (4.11) holds true for t =
∏︁b

q=1 tq. A consequence of the

mutation matrix being a nontrivial block diagonal primitive matrix is that

neutral fractions can only mutate into a select subset of the different types.

The block primitive assumption is much more general than primitivity and

allows us to study models where the mutations of alleles occurs on b different

loci. We next define a set that encompasses how the neutral fractions can

mutate.

Definition 4.3.3. Neutral fraction i is in the mutation class q if mix ∈ Mq

for some x.

In the analysis that follows, we make the following assumptions on Equa-

tion (4.3):

A1 : The matrix M is Markov and block diagonal primitive,

A2 : 0 < g(u) ≤ g(0) for all u ∈ (0, 1), and

A3 : k is Gaussian with mean µ and variance σ2.

Assumption A1 (Markov and block diagonal primitive matrix) is needed so we

can apply the Perron-Frobenius theorem to each block in our analysis. As-

sumption A2 (maximum per-capita growth rate as density approaches zero) is

relevant to expanding populations exhibiting “pulled” waves (Stokes, 1976),

where the leading edge of the wave determines the spreading speed (4.6).
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Assumption A3 (a Gaussian dispersal kernel) is made for mathematical conve-

nience. This will allow us to prove rigorous results about the resulting system.

However, we relax this assumption when conducting numerical simulations in

Section 4.5.

A fourth assumption that will be made in our theorems in the next section

is related to the decay rate of the initial condition. This decay assumption is

derived from Proposition 5 in Lui (1983). To compute the critical decay rate

for the rightward spread we solve for the unique value of s that satisfies (4.6)

for the rightward spread. In the case when the dispersal kernel is Gaussian,

we can explicitly solve for this value of s and obtain the value c−µ
σ2 . Similarly,

for the leftward spread, the critical decay rate for the leftward spread is the

unique value of s that satisfies (4.7). In the case when the dispersal kernel is

Gaussian, we can explicitly solve for this value of s and obtain the value c+µ
σ2 .

In each of the four theorems, which we present in the next section, the precise

form of the fourth assumption differs. Thus, we do not explicitly write out the

different assumptions here, but save them for the statement of the theorems.

With the definitions, assumptions, and preliminary material in place, we can

present the main results of the paper.

4.4 Asymptotic results

In this section, we provide some theoretical results for the asymptotic dynamics

of our model given by (4.3)-(4.5). Here, we state the four main theorems about

the asymptotic spread of the neutral fractions.

Theorem 4.4.1 provides sufficient conditions for when neutral fractions in

a given mutation class are left behind during the population spread and do

not contribute to the spread of the population. In other words, Theorem

4.4.1 states that if there are no neutral fractions in a given mutation class

at the leading edge, then all members of this mutation class converge to zero
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uniformly in the moving half-frame.

Theorem 4.4.1. Consider (4.3)-(4.5) where A1-A3 hold as well as the addi-

tional assumption:

A4 :
∫︁∞
−∞ e

c−µ

σ2 yvi0(y) dy < ∞ for every i in mutation class q.

If c ≥ c∗, then for any A ∈ R, the density of the neutral fraction i, vit(x),

converges to 0 uniformly as t → ∞ in the moving half-frame [A+ ct,∞).

Theorem 4.4.1 shows when neutral fractions for a rightward spreading pop-

ulation converge to zero in the moving half-frame. We can also consider the

case when we have a leftward spreading population in the following theorem.

Theorem 4.4.2. Consider (4.3)-(4.5) where A1-A3 hold as well as the addi-

tional assumption:

A4− :
∫︁∞
−∞ e−

c+µ

σ2 yvi0(y) dy < ∞ for every i in mutation class q.

If c ≥ c∗−, then for any A ∈ R, the density of the neutral fraction i, vit(x),

converges to 0 uniformly as t → ∞ in the moving half-frame (−∞, A− ct].

From Theorems 4.4.1 and 4.4.2 we conclude that if each neutral fraction in

a given mutation class is not located at the leading edge of the spread, then

these neutral fractions will converge to zero in the moving half-frame. The

question remains as to what happens to the neutral fractions at the leading

edge and to the rest of the neutral fractions in the same mutation class. The

next two theorems provide asymptotic results for these neutral fractions for a

particular class of initial data where neutral fractions are proportional to the

exponentially decaying leading edge of the wave.

Theorem 4.4.3. Consider (4.3)-(4.5) where A1-A3 hold as well as the addi-

tional assumption:
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A4′ : vi0(x) = pi0e
− c−µ

σ2 x where pi0 is the initial proportion of neutral fraction i

and belongs to mutation class q of size mq such that
∑︁mq

j=1 p
i
j,0 = 1.

Then, for c = c∗ and any A ∈ R, the density of neutral fractions belonging

to mutation class q, vq,t(x), asymptotically approaches a proportion of the

traveling wave for the linear equation as t → ∞ in the moving half-frame

[A+ ct,∞). That is,

lim
t→∞

vq,t(x0 + ct) = rqe
− c−µ

σ2 x0 (4.12)

for x0 ≥ A where rq is the right eigenvector of Mq.

Theorem 4.4.3 provides the asymptotic proportion of each neutral fraction

in mutation class q for the rightward spread. This proportion is simply the

right eigenvector of Mq corresponding to eigenvalue 1. We can also compute

the leftward proportion in the following theorem.

Theorem 4.4.4. Consider (4.3)-(4.5) where A1-A3 hold as well as the addi-

tional assumption:

A4′− : vi0(x) = pi0e
c+µ

σ2 x where pi0 is the initial proportion of neutral fraction i

and belongs to mutation class q of size mq such that
∑︁mq

j=1 p
i
j,0 = 1.

Then, for c = c∗− and any A ∈ R, the density of neutral fractions belonging

to mutation class q, vq,t(x), asymptotically approaches a proportion of the

traveling wave for the linear equation as t → ∞ in the moving half-frame

(−∞, A− ct]. That is,

lim
t→∞

vq,t(x0 − ct) = rqe
c+µ

σ2 x0 (4.13)

for x0 ≤ A where rq is the right eigenvector of Mq.

The proofs of Theorems 4.4.1-4.4.4 are provided in Appendix 4.7.2.
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4.5 Numerical simulations

In this section we illustrate our theory in Section 5.3 by some simple exam-

ples. All simulations were done by using the fast Fourier transform technique

(Cooley and Tukey, 1965). This method is better than classical quadrature

because it speeds up the numerical process from O(n2) to O(n log(n)).

For our first set of simulations, we consider an example where the Assump-

tions A1, A2, and A3 are satisfied. Specifically, we assume that k is a Gaussian

dispersal kernel and g is the Beverton-Holt growth function. That is, k is given

by (4.8) and

g(ut(y)) =
R

1 + R−1
K

ut(y)
. (4.14)

The model we simulate is

vt+1(x) =

∫︂ ∞

−∞

1√
2πσ2

e−
(x−y−µ)2

2σ2
R

1 + R−1
K

ut(y)
Mvt(y) dy (4.15)

where M is the mutation matrix. In this section, we consider a few differ-

ent mutation matrices. The first mutation matrix is primitive and allows for

mutations between all neutral fractions. This matrix is given by

M1 =

⎡⎢⎢⎢⎢⎣
0.85 0.01 0.04 0.02 0.03
0.03 0.92 0.02 0.01 0.05
0.07 0.05 0.86 0.02 0.03
0.01 0.01 0.06 0.93 0.03
0.04 0.01 0.02 0.02 0.86

⎤⎥⎥⎥⎥⎦ . (4.16)

The second mutation matrix we consider is block primitive. Here, the param-

eters are the same as in M1 except we let m13 = m14 = m15 = m23 = m24 =

m25 = m31 = m32 = m41 = m42 = m51 = m52 = 0. Then M2 is given by

M2 =

⎡⎢⎢⎢⎢⎣
0.97 0.01 0 0 0
0.03 0.99 0 0 0
0 0 0.92 0.02 0.03
0 0 0.06 0.96 0.03
0 0 0.02 0.02 0.94

⎤⎥⎥⎥⎥⎦ . (4.17)

Notice thatM2 is block primitive because it only allows for mutations between

two distinct classes of neutral fractions. The two mutation classes are given
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by {1, 2} and {3, 4, 5}. Thus, neutral fractions 1 and 2 can mutate into each

other but not into neutral fractions 3, 4, and 5 and vice-versa.

(a) (b)

(c)

Figure 4.1: Numerical realization of (4.15) for the parameter values σ2 = 0.01,
µ = 0, R = 2, K = 1. Figure 4.1(a) is the initial condition for the simulations
seen in Figures 4.1(b) and 4.1(c). In 4.1(b) we use the mutation matrix M1
given by (4.16). The dashed lines in Figure 4.1(b) give the asymptotic pro-
portion of neutral fractions as calculated in Theorem 4.4.3. In 4.1(c) we use
the mutation matrix M2 given by (4.17). The dashed lines in Figure 4.1(c)
give the rightward asymptotic proportion of neutral fractions as calculated in
Theorem 4.4.3 and the solid lines in Figure 4.1(c) give the leftward asymptotic
proportion of neutral fractions as calculated in Theorem 4.4.4.

The simulations for our model are given in Figure 4.1. We chose these

initial conditions so as to satisfy Assumptions A4 (see Theorem 4.4.1) and
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A4− (see Theorem 4.4.2). However, note that the initial conditions plotted in

Figure 4.1(a) are not the same as those assumed by A4′ and A4′− for Theorems

4.4.3 and 4.4.4. These initial data were chosen in an effort to see if the results

of the theorems could hold for a more general class of initial data than was

assumed in the statement of the theorems. The initial density of each neutral

fraction is given by vi0(x) = 1−i<x≤−(i−1) where 1 is the indicator function. In

Figure 4.1(b), we are using the mutation matrix M1 given by (4.16) where

there is only one mutation class. Thus, the stable distribution of neutral

fraction is calculated using Theorems 4.4.3 and 4.4.4 and is given by r1 =

[0.1377, 0.2229, 0.2179, 0.2932, 0.1283]T . The stable distribution can be seen

by the dashed lines in Figure 4.1(b). In Figure 4.1(c), we use the mutation

matrix M2 given by (4.17) and we can see that the spread to the right and

left have different neutral fractions because of the initial distribution of neutral

fractions and because the structure of the mutation matrix is block diagonal

primitive with two blocks. The asymptotic distribution of neutral fractions for

the first mutation class {1, 2} in the rightward spread is calculated by Theorem

4.4.3 and is given by r1 = [0.25, 0.75]T . This is seen by the dashed lines in

Figure 4.1(c). The asymptotic distribution of neutral fractions for the second

mutation class {3, 4, 5} in the leftward spread is calculated by Theorem 4.4.4

and is given by r2 = [0.225, 0.525, 0.25]T . This is seen by the solid lines in

Figure 4.1(c).

In this section, we also would like to understand dynamics of mutation

matrices that do not satisfy Assumptions A1 and A3 of Theorems 4.4.1-4.4.4.

In particular, we want to consider a dispersal kernel that is not Gaussian and

matrix structures that do not fit to the block diagonal primitive assumption.

We first, consider the Laplace dispersal kernel,

k(x− y) =
1

2b
e−|x−µ|/b (4.18)
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again with Beverton-Holt growth given by (4.14). Then the model that we

simulate is given by

vt+1(x) =

∫︂ ∞

−∞

1

2b
e−|x−µ|/b R

1 + R−1
K

ut(y)
Mvt(y) dy. (4.19)

For our simulations, we want to compare the effect of the dispersal kernel

on the asymptotic proportion of neutral fractions. Thus, we run simulations

similar to those in Figure 4.1 by using the same demographic parameters and

mutation matrices, but we use a Laplace dispersal kernel.

The simulations for our model are given in Figure 4.2. The initial con-

ditions are plotted in Figure 4.2(a) and are the same initial conditions used

for the simulations in Figure 4.1. The initial density of each neutral fraction

is given by vi0(x) = 1−i<x≤−(i−1) where 1 is the indicator function. In Figure

4.2(b) since we are using the mutation matrix M1 given by (4.16) there is only

one mutation class. We can see that the stable distribution of neutral frac-

tion is given by r1 = [0.1377, 0.2229, 0.2179, 0.2932, 0.1283]T and is the same

distribution as calculated using Theorems 4.4.3 and 4.4.4. This suggests that

the dispersal kernel does not affect the asymptotic proportion, as expected,

since the asymptotic proportion calculated by our main theorems is indepen-

dent of the dispersal parameters. The stable distribution can be seen by the

dashed lines in Figure 4.2(b). In Figure 4.2(c), we can see that the spread

to the right and left have different neutral fractions because of the initial dis-

tribution of neutral fractions and because the mutation matrix M2 given by

(4.17) is block diagonal primitive with two blocks. The asymptotic distribu-

tion of neutral fractions for the first mutation class {1, 2} in the rightward

spread is r1 = [0.25, 0.75]T . This is seen by the dashed lines in Figure 4.2(c).

The asymptotic distribution of neutral fractions for the second mutation class

{3, 4, 5} in the leftward spread is r2 = [0.225, 0.525, 0.25]T . This is seen by the

solid lines in Figure 4.2(c). Notice that these proportions are again the same
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(a) (b)

(c)

Figure 4.2: Numerical realization of (4.19) for the parameter values b =√
0.005, µ = 0, R = 2, K = 1. We chose b and µ this way so that the

mean and variance for the Laplace kernel is the same as the Gaussian kernel
used for the simulations in Figure 4.1. Figure 4.2(a) is the initial condition
for the simulations seen in Figures 4.2(b) and 4.2(c). In 4.2(b) we use the
mutation matrix M1 given by (4.16). The dashed lines in Figure 4.2(b) give
the asymptotic proportion of neutral fractions as calculated in Theorem 4.4.3.
In 4.2(c) we use the mutation matrix M2 given by (4.17). The dashed lines
in Figure 4.2(c) give the rightward asymptotic proportion of neutral fractions
and the solid lines in Figure 4.2(c) give the leftward asymptotic proportion of
neutral fractions.

as suggested by Theorems 4.4.3 and 4.4.4.

Next, we consider a mutation matrix where the mutation classes are weakly

102



linked. An example of this can be seen in the following matrix,

M3 =

⎡⎢⎢⎢⎢⎣
0.97 0.01 0 0 0
0.03 0.99 ε 0 0
0 0 0.92− ε 0.02 0.03
0 0 0.06 0.96 0.03
0 0 0.02 0.02 0.94

⎤⎥⎥⎥⎥⎦ (4.20)

where ε is small. In this scenario, we see that there is only one mutation

class because of the weak linkage parameter ε. This matrix structure violates

Assumption A2 because it is not block primitive or irreducible as the bottom

left block of the matrix is always zero. The structure of this matrix suggests

that eventually all neutral fractions should become one of the first two types.

For our simulation with this mutation matrix, we use a Gaussian dispersal

kernel and Beverton-Holt growth function as given by (4.15). We can see a

simulation of this in Figure 4.3.

For the mutation matrix M3 we can see that it has one eigenvalue of 1

with eigenvector r1 = [0.25, 0.75, 0, 0, 0]. Thus, in this scenario, we conjecture

that the asymptotic distribution of neutral fractions is given by r1. To test this

conjecture, we simulate the model in Figure 4.3. One thing to note from Figure

4.3 is the amount time it takes to converge to the asymptotic proportion. Here

we see that the leftward moving front takes over two thousand generations to

reach the steady state. This is due to the fact that there is only one weak

linkage, ε, between {3, 4, 5} and {1, 2}.

4.6 Discussion

By incorporating mutations of neutral fractions into a scalar inside dynamics

model, we developed a neutral mutation model to study the effect of muta-

tions on the neutral genetic structure of an expanding population. In previous

studies concerning the inside dynamics for scalar population models, the anal-

ysis concerns a single neutral fraction at a time (Marculis et al., 2017). In
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(a) (b)

(c) (d)

Figure 4.3: Numerical realization of (4.15) for the parameter values σ2 = 0.01,
µ = 0, R = 2, K = 1 with the mutation matrix M3 given by (4.20) where
ε = 0.01. Figure 4.1(a) is the initial condition for the simulations seen in
Figures 4.3(b), 4.3(c), and 4.3(d). The dashed lines in Figure 4.3(b), 4.3(c),
and 4.3(d) are the conjectured asymptotic proportion of neutral fractions.

our model, the interactions between the neutral fractions by mutation require

us to analyze a system of equations for the neutral fractions. By studying a

system we must include an assumption on the interactions so as to prove the

asymptotic results presented in Section 5.3.

We derive our model from the scalar inside dynamics integrodifference

equation in Section 4.2. To include the mutations in our model, we allow
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for neutral fractions to mutate into one another with a given probability. The

molecular clock hypothesis states that genes evolve at a relatively constant

rate over time (Ho, 2008). Thus, our model is in line with the molecular clock

hypothesis because we assume a constant probability of mutation over time.

This modeling framework is commonly referred to in the genetic literature as

a substitution model. The addition of mutations changes the model by now

having interactions between neutral fractions that are governed by a mutation

matrix.

In Section 4.3 we lay out some of the key definitions and assumptions for

our model. In particular, we assume that the interactions are simply mutation

probabilities and the matrix structure is Markov. We make the additional

assumption that the mutation matrix is block diagonal primitive. These as-

sumptions are given in Assumption A1. The block diagonal assumption allows

for us to have multiple mutation classes and the primitive assumption states

that at some point in time, mutations can occur between all neutral fractions

in a given block. This assumption is necessary so we can apply the Perron-

Frobenius theorem in the proofs of our results. We also must assume that

our maximum per-capita growth rate occurs at low density; see Assumption

A2. This is required so we can compute the asymptotic spreading speed for

the expanding population. In Assumption A3, we assume that the dispersal

behavior is governed by a Gaussian probability density function. This assump-

tion is needed for mathematical convenience. Our final and fourth assumption

is related to the decay rate of the traveling wave for the linear equation. This

assumption takes a different form in each of our four theorems.

The results in Section 5.3 are divided into four theorems. We first show

when neutral fractions converge to zero uniformly in a moving half-frame.

These results are provided in Theorems 4.4.1 and 4.4.2. We see that this

happens when the neutral fractions in a given mutation class are not initially
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present at the leading edge of the expansion. In Theorems 4.4.3 and 4.4.4,

we show that the only neutral fractions that matter are those at the leading

edge and are in the accompanying mutation class. Moreover, Theorems 4.4.3

and 4.4.4 show that the proportion of neutral fractions is given by the right

dominant eigenvector of the mutation matrix for the mutation class that was

initially present at the leading edge of the population.

Our results only apply to a certain class of models. While the mutation

matrix is quite general, the assumptions on the dispersal and demography in

the model are somewhat restrictive. First, we make the assumption that the

mutation matrix is block primitive on top of the Markov structure. This as-

sumption is needed to apply the Perron-Frobenius theorem guaranteeing that

we have a dominant eigenvalue. We also assume that our growth function

is bounded by its value at zero. This assumption does not allow for growth

functions with Allee effects which we know from the scalar model to produce

interesting asymptotic dynamics (Marculis et al., 2017). In addition we assume

that the dispersal kernel is Gaussian. While this is needed for mathematical

convenience, we conjecture that this assumption should be able to be weak-

ened to an assumption that the dispersal kernel is thin-tailed since the results

for the asymptotic proportion of each neutral fraction is independent of the

parameters from the dispersal kernel. We should also mention that our fourth

assumption is restrictive in the sense that we require our initial condition to de-

cay exactly like the traveling wave for the linear equation. We also conjecture

that it should be possible to relax this assumption.

Our numerical simulations in Section 4.5 provide some examples illustrat-

ing the results of our theorems in Section 5.3. In Figure 4.1, we consider two

different kinds of mutation matrices. The first mutation matrix is primitive

and only contains one mutation class because every neutral fraction can mu-

tate into one another. Thus, we see that all neutral fractions contribute the
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spread of the population and each neutral fraction converges to a proportion

of the traveling wave solution. The result of the simulation is seen in Figure

4.1(b). In the second example, the mutation matrix has two mutation classes

and we see the spread of one mutation class to the right and the spread of

the other mutation class to the left in Figure 4.1(c). This is because of the

initial positioning of the neutral fractions as seen in Figure 4.1(a). Therefore,

we conclude that the spread of the neutral fractions is dependent on the initial

positioning of each neutral fraction as well as the structure of the mutation

matrix.

We also provided simulations for a Laplace dispersal kernel as seen in Figure

4.2. These simulations show that by only changing the form of the dispersal

kernel, we can obtain the same asymptotic proportion of neutral fractions as

seen in Figure 4.1. Recall that Assumption A3 in our theorems require the

dispersal kernel to be Gaussian. Thus, we cannot apply the results of our

theorems to this simulation, but since the asymptotic proportion is the same

this suggests that we should be able to extend the results of our main theorems

to a more general class of thin-tailed dispersal kernels. We were not able to

rigorously prove this result and instead leave this conjecture for future analysis.

In addition, we numerically examined a mutation matrix structure that

does not satisfy Assumption A1 of our main theorems. In particular, we con-

structed a mutation matrix that is not block diagonal primitive. This matrix

is similar to our second example with two mutation classes, but we include

a small parameter to introduce a weak linkage between the two mutation

classes. This matrix is given by (4.20). We see that the weak linkage only

allows for individuals to mutate from the second mutation class {3, 4, 5} to

the first mutation class {1, 2}. In particular, we see that the weak linkage is a

small mutation probability from neutral fraction 3 to 2. Thus, because of this

structure, we expect that eventually all individuals will be in the first muta-
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tion class regardless of the initial distribution of individuals. The simulations

for this model are given in Figure 4.3. The initial condition for the neutral

fractions is seen in Figure 4.3(a). Then, the dynamics of the neutral fractions

is seen in Figures 4.3(b)-4.3(d). We see that the asymptotic distribution of

neutral fractions is given by the right eigenvector corresponding to eigenvalue

1. However, convergence to the asymptotic distribution takes a long time be-

cause of the weak linkage. We conjecture that if the linkage were larger or if

there were more linkages then we expect the convergence to the asymptotic

proportion would be faster.

By adding the complexity of mutations into the modeling framework, we

are able to obtain interesting dynamics that are not seen in scalar models

that have no mutations. Unlike the scalar model case, we find that multiple

neutral fractions can contribute to the spread of the population in absence

of an Allee effect. Thus, we can conclude that these neutral mutations and

their structure are an important driver of maintaining genetic diversity in an

expanding population. This conclusion agrees with previous studies that have

shown range expansions affect the neutral genetic variation of the population

(Excoffier et al., 2009; Lehe et al., 2012).

Other spatial models have shown that neutral mutations at the leading

edge of a range expansion sometimes surf on the wave (Edmonds et al., 2004;

Klopfstein et al., 2006). In particular, one study found that due to the gene

surfing, the mutations reach a larger spatial distribution and higher frequency

than would be expected in stationary populations (Edmonds et al., 2004). Our

results agree with these studies that the neutral mutations at the leading edge

are the drivers of the population spread. However, our model predicts that

the spatial distribution of neutral fractions at the leading edge is the same as

what would be expected in a stationary population. The primary conclusion

for another simulation based model found that the final spatial and frequency
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distributions depend on the local size of a subdivided population (Klopfstein et

al., 2006). We showed that the asymptotic distribution of neutral fractions is

dependent on what individuals were at the leading edge, however, our asymp-

totic proportion we calculate does not depend on on the initial size of the

population. We believe that these differences arise because the way we incor-

porate mutations is deterministic, but gene surfing is an inherently stochastic

process. Thus, in some sense our model describes the average behavior as seen

from many realizations of the stochastic process of spread.

Overall, our results show how adding neutral mutations to a model can

strongly influence the spread of neutral fractions. We find that the mutation

matrix structure and the initial distribution of neutral fractions are important

drivers in determining the spread of neutral fractions. However, it should be

noted that our model structure is restricted to consider mutations between

neutral fractions, so there is no selection occurring in the population dynam-

ics. The mutations are incorporated into the model through a matrix where

there are constant probabilities of mutations occurs between individuals. Even

though this mutation matrix structure is very general, there are still other

ways of including mutation dynamics that could be explored such as including

stochastic mutation probabilities. The results we were able to prove in our four

theorems relied upon somewhat restrictive assumptions. First, we make the

assumption throughout every theorem that the dispersal kernel is Gaussian.

However, since our numerical simulations find that our asymptotic proportion

does not directly depend on the Gaussian kernel parameters, we conjecture

that our result should extend to a larger class of thin-tailed dispersal kernels.

Second, the assumption of block primitivity placed on the mutation matrix

is not always satisfied for biological realistic models. We illustrate this with

the weak connectivity example. Finally, the assumptions on the initial con-

ditions for Theorems 4.4.3 and 4.4.4 are not realistic, because they become
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unbounded for large x, even though the predictions of the theorems appear to

hold when the assumptions are relaxed. The ability to analyze a model where

this assumption is relaxed to something that more closely resembles the profile

of the traveling wave solution would generalize our result to a more realistic

initial condition.

4.7 Appendix

4.7.1 Derivation of a general mutation matrix

Here we show how one can generalize the assumption of a single locus with

n different neutral alleles to m loci with two neutral alleles. Let there be m

independent loci ai, 1 ≤ i ≤ m, where each loci has one of two possible alleles,

ai = 0 or ai = 1. Then we define the transition probabilities as follows:

Pr{ai = 0 → ai = 1} = qi and Pr{ai = 1 → ai = 0} = ri. (4.21)

We index this process by t ∈ N where t describes the number of possible

transitions taken so far. There are 2m possible states for this system. Let

n = 2m and let the probability of being in state j, 1 ≤ j ≤ n, be given by vj

where the state is

j = 1 +
m∑︂
i=1

ai2
i−1. (4.22)

In the case when m = 2, there are four total states. We denote our states in

the following form, (︃
a1
a2

)︃
. (4.23)

Our indexing for j gives the following relationship between the state and the

index as follows:

Index j = 1 j = 2 j = 3 j = 4

State

(︃
0
0

)︃ (︃
1
0

)︃ (︃
0
1

)︃ (︃
1
1

)︃
.
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By letting mjl = Pr{vj → vl}, then the mutation matrix becomes

M =

⎡⎢⎢⎣
(1− q1)(1− q2) r1(1− q2) (1− q1)r2 r1r2

q1(1− q2) (1− r1)(1− q2) q1r2 (1− r1)r2
(1− q1)q2 r1q2 (1− q1)(1− r2) r1(1− r2)

q1q2 (1− r1)q2 q1(1− r2) (1− r1)(1− r2)

⎤⎥⎥⎦ .

(4.24)

From this example, one can deduce how to generalize this process for more

than two neutral alleles making the structure of this mutation matrix quite

general.

4.7.2 Proofs of the theorems

Proof of Theorem 4.4.1

Proof. Without loss of generality, we can assume that neutral fraction i belongs

to the mutation class q. Then, since M is block diagonal, we only need to

consider the following equation

vq,t+1(x) = Mq

∫︂ ∞

−∞
k(x− y)g(ut(y))vq,t(y) dy. (4.25)

Using the fact that 0 < g(u) ≤ g(0) for all u ∈ (0, 1) we can use a comparison

principle to show that a new sequence wq,t(x) defined by

wq,t+1(x) = g(0)Mq

∫︂ ∞

−∞
k(x− y)wq,t(y) dy (4.26)

is always greater than the solution to any neutral fraction, vq,t(x), with the

same initial condition wq,0(x) = vq,0(x). The solution of (4.26) is given by the

t-fold convolution

wq,t(x) = [g(0)Mq]
t k∗twq,0(x). (4.27)

Applying the reflected bilateral Laplace transform to (4.27) and using the
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convolution theorem, we obtain

M[wq,t(x)](s) = [g(0)Mq]
t [M [k(x)] (s)]t M [wq,0(x)] (s) (4.28)

= [g(0)Mq]
t
[︂
e

σ2s2

2
+µs

]︂t
M [wq,0(x)] (s) (4.29)

= [g(0)Mq]
te

σ2ts2

2
+µtsM [wq,0(x)] (s) (4.30)

= [g(0)Mq]
tM

[︃
1√

2πσ2t
e−

(x−µt)2

2σ2t

]︃
(s)M [wq,0(x)] (s) (4.31)

= [g(0)Mq]
tM [(kt ∗wq,0)(x)] (s) (4.32)

where kt is Gaussian with mean µt and variance σ2t. Then applying the inverse

transform yields

wq,t(x) = [g(0)Mq]
t(kt ∗wq,0)(x) (4.33)

= [g(0)Mq]
t

∫︂ ∞

−∞

1√
2πσ2t

e−
(x−y−µt)2

2σ2t wq,0(y) dy. (4.34)

In the moving half-frame with fixed A ∈ R, consider the element x0 + ct with

c ≥ c∗ =
√︁
2σ2 ln(g(0))+µ. When we rewritewq,t(x) in this moving half-frame

we have

wq,t(x0 + ct) = [g(0)Mq]
t

∫︂ ∞

−∞

1√
2πσ2t

e−
(x0+ct−y−µt)2

2σ2t wq,0(y) dy. (4.35)

Expanding in the exponential, yields

(x0 + ct− y − µt)2

2σ2t
=

(x0 − y)2

2σ2t
+

2(c− µ)t(x0 − y) + (c− µ)2t2

2σ2t
(4.36)

≥ (x0 − y)2

2σ2t
+

c− µ

σ2
(x0 − y) + ln(g(0))t. (4.37)

Thus,

wq,t(x0 + ct) ≤ Mt
q

eln(g(0))t√
2πσ2t

∫︂ ∞

−∞
e−

(x0−y)2

2σ2t e−
c−µ

σ2 (x0−y)e− ln(g(0))twq,0(y) dy

(4.38)

= Mt
q

1√
2πσ2t

∫︂ ∞

−∞
e−

(x0−y)2

2σ2t e−
c−µ

σ2 (x0−y)wq,0(y) dy (4.39)

= Mt
q

e−
c−µ

σ2 x0

√
2πσ2t

∫︂ ∞

−∞
e−

(x0−y)2

2σ2t e
c−µ

σ2 ywq,0(y) dy. (4.40)
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Since x0 ≥ A we have

wq,t(x0 + ct) ≤ Mt
q

e−
A(c−µ)

σ2

√
2πσ2t

∫︂ ∞

−∞
e

c−µ

σ2 ywq,0(y) dy. (4.41)

Since Mq is a Markov matrix, we know that limt→∞Mt
q = [rq, . . . , rq] where

rq is the right eigenvector of Mq corresponding to eigenvalue 1 such that∑︁
i=1 rq,i = 1. By Assumption A4,

∫︁∞
−∞ e

c−µ

σ2 ywi
q,0(y) dy < ∞ for every i in

mutation class q we have wi
q,t(x0 + ct) → 0 uniformly as t → ∞ in [A,∞).

Recall that wi
q was constructed so that 0 ≤ viq,t(x) ≤ wi

q,t(x). This implies

the uniform convergence of vit(x) → 0 as t → ∞ in the moving half-frame

[A + ct,∞) for each i in mutation class q. The proof of Theorem 4.4.1 is

complete.

Proof of Theorem 4.4.2

Proof. Repeat the proof of Theorem 4.4.1 in the left moving half-frame with

fixed A ∈ R and consider the element x0 − ct with c ≥ c∗− =
√︁
2σ2 ln(g(0))−

µ. From this change, the result follows in the same manner as in Theorem

4.4.1.

Proof of Theorem 4.4.3

Proof. Without loss of generality we may assume that neutral fraction i be-

longs to mutation class q. Using the fact that g(u) ≤ g(0) for all u ∈ (0, 1) we

can use a comparison principle to show that a new sequence wq,t(x) defined

by

wq,t+1(x) = g(0)Mq

∫︂ ∞

−∞
k(x− y)wq,t(y) dy (4.42)

is a super-solution to any neutral fraction vq,t(x) with the same initial condition

wq,0(x) = vq,0(x). By iterating, we can write the solution to Equation (4.42)

as the t-fold convolution

wq,t(x) = [g(0)Mq]
t k∗t(x− y)wq,0(y). (4.43)
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Taking the bilateral Laplace transform

M[wq,t(x)](s) = [g(0)Mq]
t [M[k(x)](s)]tM[wq,0(x)](s). (4.44)

Since the dispersal kernel is Gaussian, we know that M[k(x)](s) = e
σ2s2

2
+µs.

Then, we can see that

[M[k(x)](s)]tM[wq,0(x)](s) = M [(kt ∗wq,0)(x)] (s) (4.45)

where kt is Gaussian with mean µt and variance σ2t. Thus, we have

M[wq,t(x)](s) = [g(0)Mq]
t M [(kt ∗wq,0)(x)] (s). (4.46)

Then applying the inverse transform yields

wq,t(x) = [g(0)Mq]
t

∫︂ ∞

−∞

1√
2πσ2t

e−
(x−y−µt)2

2σ2t wq,0(y) dy. (4.47)

In the moving half-frame [A + ct,∞) with fixed A ∈ R, consider the element

x0 + ct with c = c∗ =
√︁
2σ2 ln(g(0)) + µ. When we rewrite wq,t(x) in this

moving half-frame we have

wq,t(x0 + ct) = [g(0)Mq]
t

∫︂ ∞

−∞

1√
2πσ2t

e−
(x0+ct−y−µt)2

2σ2t wq,0(y) dy. (4.48)

Expanding the exponent, yields

(x0 + ct− y − µt)2

2σ2t
=

(y − x0)
2

2σ2t
+

(c− µ)(x0 − y)

σ2
+

(c− µ)2

2σ2
t (4.49)

=
(y − x0)

2

2σ2t
+

(c− µ)(x0 − y)

σ2
+ ln(g(0))t. (4.50)

Thus,

wq,t(x0 + ct) =
[g(0)Mq]

t

√
2πσ2t

∫︂ ∞

−∞
e−

(y−x0)
2

2σ2t e−
(c−µ)(x0−y)

σ2 e−g(0)twq,0(y) dy (4.51)

=
Mt

q√
2πσ2t

∫︂ ∞

−∞
e−

(y−x0)
2

2σ2t e−
(c−µ)(x0−y)

σ2 wq,0(y) dy. (4.52)

By Assumption A4′, wq,0(y) = pq,0e
− c−µ

σ2 y. Thus,

wq,t(x0 + ct) = Mt
qpq,0e

− (c−µ)

σ2 x0
1√

2πσ2t

∫︂ ∞

−∞
e−

(y−x0)
2

2σ2t dy (4.53)

= Mt
qpq,0e

− (c−µ)

σ2 x0 . (4.54)
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Since Mq is a Markov matrix, we know that

lim
t→∞

Mt
q =

[︁
rq rq . . . rq

]︁
(4.55)

where rq is the right eigenvector of Mq corresponding to eigenvalue 1 normal-

ized such that
∑︁mq

j=1 rq,j = 1. Thus,

lim
t→∞

wt(x0 + ct) = lim
t→∞

Mt
qpq,0e

− (c−µ)

σ2 x0 (4.56)

=
[︁
rq rq . . . rq

]︁
pq,0e

− (c−µ)

σ2 x0 (4.57)

= rqe
− (c−µ)

σ2 x0 . (4.58)

since
∑︁mq

j=1 pq,0,j = 1. From the above calculations, we find that the super-

solution approaches a proportion of the traveling wave for the linear equation.

Next, we move onto our sub-solution. We define

gsub(u; ε) =

{︄
(1− ε)g(0) for 0 ≤ u < δ

g(u) for u ≥ δ
(4.59)

where for any 0 < ε ≪ 1, δ is chosen such that (1− ε)g(0)δ = g(δ)δ. Then,

zq,t+1(x) =

∫︂ ∞

−∞
k(x− y)gsub(ut(y); ε)Mqzq,t(y) dy (4.60)

with zq,0(x) = vq,0(x) is a sub-solution of vq,t(x) by the comparison principle

since gsub(u; ε)v ≤ g(u)v for all v ≥ 0. In the moving half-frame [A+c(ε)t,∞)

with fixed A ∈ R, consider the element x0+c(ε)t large enough such that u < δ

with c(ε) =
√︁

2σ2 ln((1− ε)g(0)) + µ. Then,

zq,t+1(x0 + c(ε)t) =

∫︂ ∞

−∞
k(x0 + c(ε)− y)(1− ε)g(0)Mqzq,t(y) dy. (4.61)

By iterating, we can write the solution to Equation (4.61) as the t-fold convo-

lution

zq,t(x0 + c(ε)t) = [(1− ε)g(0)Mq]
t [k(x0 + c(ε)t− y)]∗t zq,0(y). (4.62)
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Since we assumed that all of the dispersal kernels are Gaussian, by repeating

calculations done previously we find that

zq,t(x0 + c(ε)t) = [(1− ε)g(0)Mq]
t

∫︂ ∞

−∞

1√
2πσ2t

e−
(x0+c(ε)t−y−µt)2

2σ2t zq,0(y) dy

(4.63)

=
[(1− ε)g(0)Mq]

t

√
2πσ2t

∫︂ ∞

−∞
e−

(x0−y)2

2σ2t e−
(c(ε)−µ)(x0−y)

σ2 e−
(c(ε)−µ)2

2σ2 tzq,0(y) dy.

(4.64)

Then,

zq,t(x0 + c(ε)t) = Mt
q

1√
2πσ2t

∫︂ ∞

−∞
e−

(x0−y)2

2σ2t e−
(c(ε)−µ)(x0−y)

σ2 zq,0(y) dy. (4.65)

Note that the integrand in (4.65) is nonnegative and integrable. Using Fatou’s

lemma we fix t and let ε → 0, giving

zq,t(x0 + ct) = lim inf
ε→0

zq,t(x0 + c(ε)t) (4.66)

= lim inf
ε→0

Mt
q

1√
2πσ2t

∫︂ ∞

−∞
e−

(x0−y)2

2σ2t e−
(c(ε)−µ)(x0−y)

σ2 zq,0(y) dy (4.67)

≥ Mt
q

1√
2πσ2t

∫︂ ∞

−∞
lim inf
ε→0

e−
(x0−y)2

2σ2t e−
(c(ε)−µ)(x0−y)

σ2 zq,0(y) dy (4.68)

= Mt
q

1√
2πσ2t

∫︂ ∞

−∞
e−

(x0−y)2

2σ2t e−
(c−µ)(x0−y)

σ2 zq,0(y) dy. (4.69)

By assumption, zq,0(y) = pq,0e
− c−µ

σ2 y. Thus,

zq,t(x0 + ct) ≥ Mt
qpq,0e

− (c−µ)

σ2 x0
1√

2πσ2t

∫︂ ∞

−∞
e−

(y−x0)
2

2σ2t dy (4.70)

= Mt
qpq,0e

− (c−µ)

σ2 x0 . (4.71)

Since Mq is a Markov matrix, we know that

lim
t→∞

Mt
q =

[︁
rq rq . . . rq

]︁
(4.72)

where rq is the right eigenvector of Mq corresponding to eigenvalue 1 normal-

ized such that
∑︁mq

j=1 rq,j = 1. Thus,

lim
t→∞

zq,t(x0 + ct) ≥ lim
t→∞

Mt
qpq,0e

− (c−µ)

σ2 x0 (4.73)

=
[︁
rq rq . . . rq

]︁
pq,0e

− (c−µ)

σ2 x0 (4.74)

= rqe
− (c−µ)

σ2 x0 . (4.75)
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since
∑︁mq

j=1 pq,0,j = 1. From the above calculations, we find that the sub-

solution approaches a proportion of the traveling wave for the linear equation.

Using our results from our super- and sub-solutions we see that

rqe
− (c−µ)

σ2 x0 ≤ lim
t→∞

zq,t(x0+ct) ≤ lim
t→∞

vq,t(x0+ct) ≤ lim
t→∞

wq,t(x0+ct) = rqe
− (c−µ)

σ2 x0 .

(4.76)

Thus,

lim
t→∞

vq,t(x0 + ct) = rqe
− (c−µ)

σ2 x0 . (4.77)

Therefore, asymptotically, our solution approaches a proportion of the travel-

ing wave for the linear equation. The proof of Theorem 4.4.3 is complete.

Proof of Theorem 4.4.4

Proof. Repeat the proof of Theorem 4.4.3 in the left moving half-frame with

fixed A ∈ R. For the super-solution, consider the element x0 − ct with c =

c∗− =
√︁

2σ2 ln(g(0))− µ. For the sub-solution, consider the element x0 − c(ε)t

with c(ε) =
√︁

2σ2 ln((1− ε)g(0)) − µ. Then the result follows in the same

manner as in Theorem 4.4.3.
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Chapter 5

Modeling the
dispersal-reproduction trade-off
in an expanding population

5.1 Introduction

The principle of allocation states that if an organism has limited resources,

then energy allocation to one function reduces the amount of energy available

to all other functions (Cody, 1966). Under resource limitation, it can be as-

sumed that an inherent trade-off will usually occur between different functions.

There are a variety of trade-off effects that occur in populations such as behav-

ioral trade-offs (Cressler et al., 2010; Verdolin, 2006), evolutionary trade-offs

(Burton et al., 2010; Hughes et al., 2003; Yoshida et al., 2004), and life history

trade-offs (Hanski et al., 2006; Zera and Harshman, 2001). In this work, we

are interested in the life history trade-off between dispersal and reproduction.

That is, by the principle of allocation we will consider the case in our study in

which the further an individual disperses the fewer resources it will have for

reproduction and vice versa.

The empirical evidence for the dispersal-reproduction trade-off effect in

natural ecosystems occurs in a variety of insect species (Duthie et al., 2014;

Elliott and Evenden, 2012; Hanski et al., 2006; Hughes et al., 2003; Stevens
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et al., 2000; Tigreros and Davidowitz, 2019; Zhao and Zera, 2002). In ex-

treme cases, some female insects completely lose the ability to fly (Harrison,

1980; Roff, 1984, 1990; Zera and Denno, 1997). This response is commonly

interpreted as an evolutionary adaptation to increase fecundity in a specific

location. To elaborate on one example of this trade-off, we briefly discuss the

results from Elliott and Evenden (2012) on the effect of flight and reproduc-

tion in an outbreaking forest lepidopteran, Choristoneura conflictana. Here,

the population density of the insects limits the post-flight reproductive invest-

ment by females. High density levels reduce the amount of resources available

to the individuals within the population and an adaptive response would be

to disperse in order to access more food. Flight, however, reduces the stores

available and in response individuals that disperse further also produce fewer

eggs.

The dispersal-reproduction trade-off is not limited to insects, this trade-off

has also been examined in diaspores (a seed with additional tissues that assist

dispersal). There is a relationship between seed mass and dispersal capacity in

wind-dispersed diaspores (Greene and Johnson, 1993; Siggins, 1933; Thomp-

son et al., 2002). This is directly related to reproduction because increases

seed mass is proportional to maternal provisioning. Assuming there is only

passive wind-dispersal, the trade-off occurs because diaspores with larger seed

mass will not spread as far as those with a lighter mass by wind due to the

force of gravity causing the larger mass diaspores to settle earlier. There is

also evidence for a trade-off between dispersal and reproduction for migrating

birds (Gill, 2006; Proctor and Lynch, 1993; Prop et al., 2003; Récapet et al.,

2017; Schmidt-Wellenburg et al., 2008). For migratory birds, the reproductive

success of an individual correlates with the migration timing, which is deter-

mined by the pre-migration body fat stores. A similar trade-off has also been

documented in a wild population of lizards (Cotto et al., 2015).
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Incorporation of trade-offs into theoretical models has produced rich dy-

namics that are not present without such effects (Chuang and Peterson, 2016).

By incorporating a trade-off between reproduction and dispersal ability in a

population of non-pollinating fig wasps Duthie et al. (2014) constructed a the-

oretical model to explain the coexistence of these different strategies. At first

glance, this result appears to be paradoxical to the competitive exclusion prin-

ciple because non-pollinating fig wasps share similar life histories and compete

for similar resources. However, the trade-off in the model influences individ-

uals to specialize to different degrees on dispersal and reproductive abilities

and create individual niches.

Theoretical models can also be used to study the evolution of dispersal

in populations with multiple phenotypes in a spatially heterogeneous habi-

tat. A primary finding from these studies is that the phenotype with the

lowest diffusion rate is selected in a competitive environment (Dockery et al.,

1998; Hastings, 1983). However, in our work, we are interested not in what

is happening in a competitive environment but during colonization. During

colonization, the spreading speed of the population is the primary driving

force, not high level density-dependence or intraspecific competition, unlike in

stationary competitive systems. Thus, our analysis aims to address a com-

plementary area that evolution of dispersal models do not consider. That is,

we are interested in understanding how dispersal is selected in a colonizing

population under range expansion.

In this work, we construct a theoretical model for population spread that

incorporates a dispersal-reproduction trade-off. For our mathematical model,

we use an integrodifference equation for reproduction and dispersal. We chose

this particular model type because of its wide applicability in ecological mod-

eling of populations with non-overlapping generations (Kot, 1992). The shape

of trade-off curves are critical for predicting population dynamics (Hoyle et al.,
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2008). Therefore, in our model, we aim to incorporate a general trade-off effect

that can encompass many different scenarios.

Throughout our analysis, we focus on the formula for the spreading speed

because we are interested in how the dispersal-reproduction trade-off influ-

ences the colonizing population dynamics. Our goal is to understand how the

dispersal-reproduction trade-off affects the spreading speed. In particular, we

perform a sensitivity analysis to determine parameter sensitivity to the for-

mula. This allows us to understand how the spreading speed would change

with parameter variation. We then consider how parameter uncertainty in the

trade-off affects the spreading speed formula. To achieve this, we assume that

the uncertain parameters in the model are random variables with an underly-

ing probability distribution, and then analyze the impact on optimal resource

allocation.

In Section 5.2, we provide a general background for integrodifference equa-

tions, describe our assumptions on how the dispersal-reproduction trade-off

is incorporated into the model, and present the trade-off model. We begin

Section 5.3 with determining the condition for population persistence and cal-

culating the formula for the spreading speed. The remainder of Section 5.3

is broken down into two primary parts; the first concerning the sensitivity of

model parameters (Section 5.3.1), and the second for the uncertainty in the

model parameters (Section 5.3.2). In Section 5.3.1, our results are divided into

two pieces; in the first part we perform a sensitivity analysis on the trade-off

parameters (Section 5.3.1.1), and in the second part we perform a sensitivity

analysis on the reproduction and dispersal parameters (Section 5.3.1.2). In a

similar manner for Section 5.3.2, we partition the results into two parts; the

first concerning how the trade-off parameters affect the expected spreading

speed (Section 5.3.2.1), and the second understanding how the reproduction

and dispersal parameters affect the expected spreading speed (Section 5.3.2.2).
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To conclude the results, we provide a discussion of our model, techniques, and

analyses in Section 5.4. For those interested in the technical details of our

results, we present the proofs of the theorems in the Appendix.

5.2 Mathematical model

Integrodifference equations are a popular tool used in theoretical ecology to

model spreading populations (Kot and Schaffer, 1986). Traditionally, the in-

tegrodifference equation is written in the following form

ut+1(x) =

∫︂ ∞

−∞
k(x− y)f(ut(y)) dy, t > 0, x ∈ R (5.1)

where u is the population density, f is the density-dependent local population

growth function, and k(x− y) dy is a probability density function, commonly

called the dispersal kernel, describing the movement of individuals from the

interval (y, y + dy] to location x.

To incorporate a dispersal-reproduction trade-off into (5.1) we assume that

the dispersal capability of an individual and the population growth rate are

each given by a single parameter, and that the proportion of resources allo-

cated to dispersal is given by p and the proportion of resources allocated to

reproduction is given by 1 − p. Under resource limitation, we assume power

functions for the change in reproductive and dispersal ability, so they are pro-

portional to (1 − p)α and pβ, respectively where α, β > 0. When α, β = 0

there is no trade-off in the model. Note that since we are modeling the trade-

off in terms of resources allocated we obtain two different curves, one for the

reproductive value against the allocation of resources, and the second for the

dispersal value against the allocation of resources. We can see from Figure 5.1

that if α, β = 1, then the resource allocation curves are linear. This means

that the growth rate per generation (variation in dispersal distance) has a

constant rate of decrease (increase) with the proportion of resources allocated
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to dispersal. In other words, the change in reproductive and dispersal ability

is directly proportional to the proportion of resources invested. If α, β < 1,

then the curves are concave. This means that the growth rate per generation

(variation in dispersal distance) has an increasing (decreasing) rate of decrease

(increase) with the proportion of resources allocated to dispersal. If α, β > 1,

then the allocation curves are convex. This means that the growth rate per

generation (variation in dispersal distance) has a decreasing (increasing) rate

of decrease (increase) with the proportion of resources allocated to dispersal.

Previous studies have also incorporated trade-off effects using these same types

of power functions (Cressler et al., 2010; Jones and Ellner, 2004).

Figure 5.1: Allocation for dispersal and reproduction for different values of α
and β with parameter values R = 4 and σ2 = 1.

For simplicity, we consider a population that spreads by diffusion (Kot et

al., 1996) and reproduces according to a Beverton-Holt type growth function

(Beverton and Holt, 2012). That is, the dispersal kernel k is a Gaussian

probability density function with zero mean and variance σ2,

k(x− y) =
1√
2πσ2

e−
(x−y)2

2σ2 , (5.2)

and the growth function f is given by the Beverton-Holt dynamics

f(ut(y)) =
Rut(y)

1 + R−1
K

ut(y)
(5.3)
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where K is the carrying capacity and R is the growth rate per generation. By

incorporating the dispersal-reproduction trade-off into the model as described

above, the population density is then governed by

ut+1(x) =

∫︂ ∞

−∞

1√︁
2πpβσ2

e
− (x−y)2

2pβσ2
(1− p)αRut(y)

1 + (1−p)αR−1
K

ut(y)
dy. (5.4)

In the trade-off model, the growth rate per generation is given by (1 −

p)αR. Thus, was have that R is the scaling parameter and α acts as a shape

parameter. The variation in dispersal distance is given by pβσ2. In a similar

manner, we see that σ2 is the scaling parameter and β is the shape parameter.

One interesting consequence of our model is the scaling of how we incorporate

the trade-off in the model. For example, if β = 1, then we are assuming

that the variance in dispersal distance is proportional to the proportion of

resources invested. When β = 2, we are assuming that the standard deviation

in dispersal distance is proportional to the proportion of resources invested.

5.3 Results

In this section, we provide the theoretical results for our model with the trade-

off presented in (5.4). We begin with a brief description of fundamental results

related to the existence, persistence, and spread of populations governed by

(5.4). Once this preliminary material is established, we move into our pri-

mary analyses that are composed of two parts. We begin with performing a

sensitivity analysis on the parameters of the model in Section 5.3.1. This sec-

tion is split into two parts, a sensitivity analysis on the trade-off parameters

(Section 5.3.1.1), and a sensitivity analysis on the reproduction and dispersal

parameters (Section 5.3.1.2). Then, we move onto the second part where we

explore the effects of parameter uncertainty in Section 5.3.2, which is also split

into two parts. First, we calculate the expected spreading speed and optimal

resource allocation to dispersal when the trade-off parameters are uncertain
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(Section 5.3.2.1), and second we perform the same kinds of calculations when

the reproduction and dispersal parameters are uncertain (Section 5.3.2.2).

We first deduce when the study population is persistent. When we say the

population is persistent, we mean that there exists a traveling wave solution

to (5.4) that spreads at some positive speed. This idea is consistent with the

concept of weak uniform persistence (Freedman and Moson, 1990; Vasilyeva et

al., 2016). The condition for persistence can be calculated directly by applying

the seminal work from Weinberger (1982) and is provided in Proposition 5.3.1.

Proposition 5.3.1. The population modeled by (5.4) is persistent if

(1− p)αR > 1. (5.5)

Note that this condition does not depend on the dispersal parameter, σ2,

or its shape parameter, β, but it does depend on the proportion of resources

allocated to dispersal, p. In Figure 5.2, we can see that there are two areas of

interest; above each curve is when (1−p)αR > 1 and hence we have population

persistence, and the area equal to or below each curve is when (1− p)αR ≤ 1

and the population becomes extinct. Note that when (1−p)αR = 1 our model

becomes a purely diffusive process and hence the population cannot persist.

Notice that as α increases the (p,R) parameter space where we have popula-

tion persistence decreases, which is evident from the different curves plotted

in Figure 5.2. As α approaches 0, we see that our persistence requirement

becomes the standard persistence requirement in absence of the trade-off; that

is, R > 1.

When the population is persistent, we can also determine the spreading

speed for our traveling wave solution. Weinberger (1982) proved that if the

population is persistent, then (5.4) emits traveling wave solutions. That is,

the population density spreads with fixed spatial profile that is translated

by a fixed distance per generation. This translation is called the spreading
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Figure 5.2: The stability regions for the parameters p and R are shown. For
each value of α, the area above each respective curve corresponds to population
persistence whereas the area below the curve results in population extinction.

speed. For a newly introduced population, the asymptotic spreading speed

can be thought of in the following way. The population is said to spread

with asymptotic speed c∗ if an observer who travels at some speed c > c∗ will

eventually be ahead of the population and see a density of zero whereas an

observer who travels at speed c < c∗ will eventually see the population at this

carrying capacity.

Proposition 5.3.2. Assume that the population in (5.4) is persistent, then

the spreading speed of the population is given by

c∗ =
√︁

2pβσ2 ln[(1− p)αR]. (5.6)

Throughout our analysis we use (5.6) frequently. The first thing we notice

from the formula for the spreading speed is that it depends on the dispersal and

reproduction parameters, the shape of the trade-off curves, and the allocation

of resources. Thus, as we continue our analysis, we break down our results in
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terms of these individual pieces.

5.3.1 Sensitivity analysis

The technique of parameter sensitivity analysis is used to understand how

the model response is altered by perturbations in the parameter values. The

sensitivity is defined by the incremental rate of proportional change in the

response (output) λ related to an incremental rate of proportional change in

parameter values (input) θ (Haefner, 2005). In this paper we use proportional

sensitivity

Sensitivity(λ, θ) :=
θ

λ

∂λ

∂θ
, (5.7)

henceforth referred to simply as sensitivity. In some contexts this is called

elasticity (Neubert and Caswell, 2000). The proportionality in (5.7) allows us

to compare parameters with different scales (Link and Doherty Jr, 2002).

5.3.1.1 Sensitivity of trade-off parameters

In this section, we aim to understand how the trade-off parameters in our

model affect the value for the spreading speed of the population. Using (5.7),

we compute the sensitivity of c∗ with respect to α, β, and p and find that

Sensitivity(c∗, α) =
α ln(1− p)

2 ln ((1− p)αR)
, (5.8)

Sensitivity(c∗, β) =
β ln(p)

2
, and (5.9)

Sensitivity(c∗, p) =
1

2

(︃
β − αp

(1− p) ln ((1− p)αR)

)︃
. (5.10)

Since 0 < p < 1, we can immediately conclude that Sensitivity(c∗, α) < 0

and Sensitivity(c∗, β) < 0. Thus, we find that any increase in α or β will

cause the spreading speed of the population to decrease. We also see that

when Sensitivity(c∗, p) = 0, we obtain an interesting result that we outline in

Theorem 5.3.1. In particular, we can determine the fastest speed at which a

species can spread and how it should allocate its resources to do so.

130



Theorem 5.3.1. Consider (5.4) with the persistence condition (1−p)αR > 1.

Then, the optimal allocation of resources to dispersal (p∗) for the fastest spread

of the population is given by the unique solution to the transcendental equation

β ln ((1− p∗)αR)

p∗
=

α

(1− p∗)
. (5.11)

The proof of Theorem 5.3.1 is provided in the Appendix see Section 5.5.1.

It is interesting to note that the optimal allocation of resources does not depend

on the diffusivity parameter σ2. This is because the formula for the asymptotic

spreading speed scales linearly with σ. We also see that the optimal resource

allocation to dispersal is obtained when Sensitivity(c∗, p) = 0. To illustrate

the results of Theorem 5.3.1, a plot of the spreading speed for different value

of p and R with fixed values for α, β, and σ2 is provided in Figure 5.3. Here

the solid lines are a contour plot for the spreading speed where we vary the

values of proportion of resources allocated to dispersal (p), and the growth

rate per generation (R). The dashed line in Figure 5.3 is the optimal resource

allocation to dispersal as calculated by Theorem 5.3.1. Notice that for each

value of R > 1, there is a unique value for p that maximizes the spreading

speed as predicted by Theorem 5.3.1.

In Figure 5.4 we plot the spreading speed (c∗) against the proportion of

resources allocated to dispersal (p). The difference between the three plots is

the value of α used. The values for α are 1
4
, 1, and 4 for the left, center, and

right plots, respectively. In each of the plots there are three curves where the

value for β is 1
4
, 1, and 4 for the dashed, solid, and dotted lines, respectively.

The optimal resource allocation to dispersal can be determined from the peak

of each curve. From these plots, we can see that, as we increase β, the value

for the optimal resource allocation to dispersal increases. We can see from

comparing the three plots that as we increase the value of α, the value for

the optimal resource allocation to dispersal decreases. This intuitively makes
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Figure 5.3: A contour plot for the spreading speed, c∗, for α = 1, β = 1, and
σ2 = 1. In the plot above we vary the values of p and R. The dashed line
is the optimal resource allocation to dispersal (p∗) as calculated by Theorem
5.3.1.

sense since p is the proportion of resources allocated to dispersal. Next, we

determine whether α or β is more sensitive when the population is at its

optimal resource allocation to dispersal.

Theorem 5.3.2. Let the optimal resource allocation to dispersal be denoted

by p∗. Then, for the spreading speed (c∗)

• If p∗ < 1
2
, then α is less sensitive than β.

• If p∗ = 1
2
, then α and β are equally sensitive.

• If p∗ > 1
2
, then α is more sensitive than β.

The proof of Theorem 5.3.2 is provided in the Appendix see Section 5.5.1.

The first result of Theorem 5.3.2 states that if more resources are allocated to

reproduction than dispersal, then the shape parameter for the dispersal trade-
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Figure 5.4: Three plots for the spreading speed, c∗, where R = 4 and σ2 = 1.
In the left, center, and right plots the values for α are 1

4
, 1, and 4, respectively.

In each plot we vary β as indicated by the legend.

off curve is more sensitive than the shape parameter for the reproduction trade-

off curve. The second result of Theorem 5.3.2 states that if the resources are

split equally between dispersal and reproduction, then the shape parameters

for the dispersal and reproduction trade-off curves are equally sensitive. The

third result of Theorem 5.3.2 states that if more resources are allocated to

dispersal than reproduction, then the shape parameter for the reproduction

trade-off curve is more sensitive than the shape parameter for the dispersal

trade-off curve.

We can see the result of Theorem 5.3.2 illustrated in Figure 5.5. In Figure

5.5, we vary R in the three bar plots. Recall that the optimal resource alloca-

tion to dispersal can be determined by calculating where Sensitivity(c∗, p) = 0

or by solving (5.11). In the left bar plot of Figure 5.5 the optimal resource

allocation to dispersal is approximately 0.3818, in the center plot the optimal

resource allocation to dispersal is 0.5, and in the right plot the optimal re-

source allocation to dispersal is 0.6374. In the left bar plot of Figure 5.5, we

can see that since the optimal resource allocation is less than one half, that β

is more sensitive than α. In the center bar plot of Figure 5.5 since the optimal
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Figure 5.5: In this figure we plot the sensitivity of the spreading speed with
respect to the parameter values α and β against different values for the optimal
resource allocation to dispersal (p∗). In all three simulations we used the
parameter values σ2 = 1, α = 1, β = 1 and vary R = 3, 2e, and 16, for the
left, center, and right bar plots, respectively.

resource allocation is exactly one half, then α and β are both equally sensi-

tive. In the right bar plot of Figure 5.5 since the optimal resource allocation

is greater than one half, then α is more sensitive than β.

5.3.1.2 Sensitivity of reproduction and dispersal parameters

In this section, we aim to understand how the growth rate and standard de-

viation in dispersal distance affect the value for the spreading speed of the

population. This idea is not novel; previous studies have used sensitivity anal-

ysis to understand the effect that dispersal and demographic parameters have

on the spreading speed (Bateman et al., 2017; Gharouni et al., 2015; Neu-

bert and Caswell, 2000). A commonality between all these studies is that the

model used was a structured integrodifference equation. We are able to apply

a simplified version to the theoretical results from Neubert and Caswell (2000)

to perform a sensitivity analysis because we are studying a scalar model.

In our analysis, we consider the sensitivity of the spreading speed with

respect to the population growth rate per generation (R) and the standard
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deviation in dispersal distance (σ). Using (5.7), we calculate

Sensitivity(c∗, R) =
1

2 ln ((1− p)αR)
, and (5.12)

Sensitivity(c∗, σ) = 1. (5.13)

The first thing to notice from these sensitivity calculations is that

Sensitivity(c∗, σ) = 1. Since Sensitivity(c∗, σ) = 1, we can conclude that σ is a

scaling parameter in the formula for the spreading speed. This is also evident

from looking directly at the formula for the spreading speed in (5.6).

Assuming that the population is persistent, we can conclude that the

Sensitivity(c∗, R) is always positive. Since the natural logarithm is a monotone

increasing function, we can conclude that when (1 − p)αR is small (but still

greater than one) then Sensitivity(c∗, R) is high, but when (1− p)αR becomes

large then Sensitivity(c∗, R) becomes smaller. By a direct comparison between

(5.12) and (5.13) we can conclude that if (1− p)αR < (>)e
1
2 , then R is more

(less) sensitive than σ, and if (1 − p)αR = e
1
2 , then R and σ are equally sen-

sitive. This is seen in Figure 5.6. Recall that if population is persistent when

(1 − p)αR > 1, and notice that e
1
2 ≈ 1.6487. Therefore, the region where R

is more sensitive than σ is quite small and only occurs when the growth rate

per generation of the population is small.

5.3.2 Parameter uncertainty

In this section, we attempt to understand how the spreading speed changes

when there is parameter uncertainty in the trade-off shape and scale param-

eters. To achieve this, we assume throughout that the parameter of interest

is a random variable with some underlying probability distribution and then

compute the expected value for the spreading speed. We break the results into

two sections; the first section covers the case when there is uncertainty in the

shape of the trade-off curves (Section 5.3.2.1), and the second section covers
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Figure 5.6: In this figure we plot the sensitivity of the spreading speed with
respect to the parameter values R and σ against the persistence formula (1−
p)αR.

the case when there is uncertainty in the reproduction and dispersal param-

eters or as mentioned earlier the scaling parameters for the trade-off curves

(Section 5.3.2.2).

5.3.2.1 Uncertainty in the shape of the trade-off curves

In this section, we study the uncertainty in the shape parameters for the trade-

off curves α and β. To model the uncertainty in the parameters for α and β,

we assume that these parameters are random variables. Since β can be any

nonnegative real number, the probability density function for β must also cover

the nonnegative real numbers. For α, we need to place a restriction on the

upper bound because we require that the population is persistent. Returning

to (5.5) we can see that the upper bound for α should be − ln(R)
ln(1−p)

. Thus, the

probability density function for α needs to be defined on
(︂
0,− ln(R)

ln(1−p)

)︂
. With

this given uncertainty about the shape parameters for our trade-off curves, we
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wish to find the expected value for the spreading speed.

We begin with the case where the reproduction trade-off shape, α, is known

and the dispersal trade-off shape, β, is uncertain. In this scenario, the param-

eter of interest is defined on (0,∞), and we use the gamma distribution with

shape parameter a > 0 and scale parameter b > 0. This distribution is

f1(β) =
1

Γ(a)ba
βa−1e−

β
b (5.14)

with mean ab and variance ab2. For shorthand notation we denote that β

is a gamma distribution with shape parameter a and scale parameter b by

β ∼ Gamma(a, b). We choose to use this distribution because of its generality

due to the fact that special cases of this distribution are the exponential dis-

tribution, chi-squared distribution, and Dirac-delta distribution. We calculate

the expected spreading speed in Theorem 5.3.3.

Theorem 5.3.3. Let us assume that β is a random variable distributed on

(0,∞). Then, the expected value for the spreading speed is

E [c∗] =
√︁

2σ2 ln[(1− p)αR]Mβ

(︃
ln(p)

2

)︃
(5.15)

where Mβ is the moment generating function of β. Moreover, if β ∼ Gamma(a, b),

then

E [c∗] =

√︁
2σ2 ln[(1− p)αR](︂
1− b ln(p)

2

)︂a (5.16)

and the optimal resource allocation to dispersal (p∗) is given by the transcen-

dental equation

E[β]

α
ln [(1− p∗)αR] (1− p∗) = p∗

(︃
1− 1

2

Var[β]

E[β]
ln(p∗)

)︃
. (5.17)

The proof of Theorem 5.3.3 is provided in the Appendix see Section 5.5.1.

The results from Theorem 5.3.3 can be applied to understand how a population

would expect to spread if the shape of the dispersal trade-off curve is uncertain.
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Here we provide a general formula for the expected spreading speed for a

random variable β defined on (0,∞) in terms of its moment generating function

in (5.15). In the special case when β ∼ Gamma(a, b), we calculate the formula

for the expected spreading speed in (5.16) and calculate the optimal resource

allocation to dispersal by the implicit equation (5.17). When Var[β] = 0, we

have that E[β] = β and (5.17) is equivalent to (5.11) in Theorem 5.3.1.

To understand the effects of the variation in the dispersal trade-off shape

parameter, β, we provide plots of the optimal resource allocation to dispersal

in Figure 5.7. For the plots in Figure 5.7 we illustrate how the optimal resource

allocation to dispersal changes with the expected dispersal trade-off shape for

three different values for the variance of the dispersal trade-off shape. For the

left (right) plot in Figure 5.7, this is when the expected dispersal trade-off

shape is convex (concave). In both plots, we see that as the expected dis-

persal trade-off shape increases, the optimal resource allocation to dispersal

also increases. We also see that as the variation in the shape of the disper-

sal trade-off increases, the optimal resource allocation to dispersal decreases.

That is, if there is a lot of uncertainty in the shape of the dispersal trade-off

curve, then the best choice for the population is to invest more resources into

reproduction.

Next, we consider the case when the reproduction trade-off shape, α, is

uncertain and the dispersal trade-off shape, β, is known. To be able to discuss

the spreading speed for the population here, we need to guarantee that the

population is persistent. That is (1 − p)αR > 1. Recall that this is satisfied

when α < − ln(R)
ln(1−p)

. This provides us with an upper bound on the potential

values for α. Hence, our distribution for α must be defined on the bounded

interval
(︂
0,− ln(R)

ln(1−p)

)︂
to guarantee persistence. In our case we will use a scaled
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Figure 5.7: The plot in this figure shows the dispersal resource allocation
versus the E[β] for different values of Var[β] for the parameter values α = 1
and R = 4.

beta distribution given by

f2(α) =
αa−1

(︂
− ln(R)

ln(1−p)
− α

)︂b−1

B(a, b)
(︂
− ln(R)

ln(1−p)

)︂a+b−1
(5.18)

with shape parameter a ≥ 1 and scale parameter b ≥ 1 where B is the

beta function. For our shorthand notation we say that α ∼ Beta(a, b) on(︂
0,− ln(R)

ln(1−p)

)︂
. We choose this distribution because it has a variety of shapes.

It is interesting to note that when the shape and scale parameters are one, then

the scaled beta distribution becomes the uniform distribution on
(︂
0,− ln(R)

ln(1−p)

)︂
.

Theorem 5.3.4. Let us assume that α is a random variable distributed on(︂
0,− ln(R)

ln(1−p)

)︂
. Then, the expected value for the spreading speed is

E [c∗] =
√︁

2σ2pβ ln(R)
∞∑︂
n=0

(︃
1
2

n

)︃(︃
ln(1− p)

ln(R)

)︃n

E [αn] . (5.19)

Moreover, if α ∼ Beta(a, b) on
(︂
0,− ln(R)

ln(1−p)

)︂
, then

E [c∗] =
√︁

2σ2pβ ln(R)
Γ(a+ b)Γ

(︁
b+ 1

2

)︁
Γ(b)Γ

(︁
a+ b+ 1

2

)︁ (5.20)

139



and the optimal resource allocation to dispersal (p∗) is the largest value of p

that satisfies

p < 1− 1
α
√
R
. (5.21)

The proof of Theorem 5.3.4 is provided in the Appendix see Section 5.5.1.

A plot of the optimal resource allocation to dispersal is provided in Figure

5.8. This figure provides insight into how the optimal resource allocation

to dispersal changes with the reproduction trade-off curve shape, α, and the

growth rate parameter, R. Figure 5.8 is split into two parts for the shape of

the reproduction trade-off curve. That is, in the left plot when 0 < α < 1 the

reproduction trade-off curve is convex and in the right plot when 1 < α < 10

the reproduction trade-off curve is concave. It is clear from the left plot in

Figure 5.8 that when α and R are small, the optimal resource allocation to

dispersal is highly volatile. We also see that by increasing the growth rate

parameter, R, increases the optimal resource allocation to dispersal. This is

interesting because it suggests that by increasing the growth rate parameter

an individual should invest more resources into dispersal to maximize their

spreading speed. We also can conclude from Figure 5.8 that by increasing

the reproduction trade-off shape parameter, α, decreases the optimal resource

allocation to dispersal.

5.3.2.2 Uncertainty in the reproduction and dispersal parameters

In this section we will study the uncertainty in the reproduction and dispersal

parameters R and σ. To model the uncertainty in the parameters for R and σ,

we assume that these parameters are random variables. First, we will consider

when R is known and σ is uncertain. Since σ is the standard deviation in

dispersal distance, this value can be any real valued number so our distribu-

tion for σ should be defined over the nonnegative real line. We begin with

calculating the expected spreading speed and the optimal resource allocation
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Figure 5.8: The contour plots in this figure show the optimal resource allo-
cation to dispersal for different values of α and R. In the left plot, we have
0 < α < 1 that means the shape of the reproduction trade-off curve is convex.
In the right plot, we have 1 < α < 10 that means the shape of the reproduction
trade-off curve is concave.

to dispersal in Theorem 5.3.5.

Theorem 5.3.5. Let us assume that σ is a random variable distributed on

[0,∞). Then, the expected value for the spreading speed is

E [c∗] =
√︁

2pβ ln[(1− p)αR]E [σ] . (5.22)

Moreover, the optimal resource allocation to dispersal (p∗) is given by

β ln ((1− p∗)αR)

p∗
=

α

(1− p∗)
. (5.23)

The proof of Theorem 5.3.5 is provided in the Appendix see Section 5.5.1.

Since σ is a scaling parameter in the formula for the spreading speed, we see

that the by simply replacing σ by E[σ] in (5.6), we obtain the formula for the

expected spreading speed. Notice that (5.23) is the same as (5.11) in Theorem

5.3.1. This means that the optimal resource allocation to dispersal when all

parameter values are known is the same for when σ is uncertain. Therefore, the

uncertainty in σ does not affect the optimal resource allocation to dispersal.

Next, we will consider when R is uncertain and σ is known. Since R is the

population growth rate parameter, this value must be greater than 1
(1−p)α

to
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guarantee population persistence. For simplicity in our calculations, we look

at the distribution of ln(R) on (−α ln(1−p),∞). Thus, we look at a translated

random variable that is shifted by −α ln(1 − p). In this scenario, we assume

that ln(R) is a shifted gamma distribution on (−α ln(1 − p),∞) with shape

parameter a > 0 and scale parameter b > 0. For shorthand notation, we say

that ln(R) ∼ Gamma(a, b) on (−α ln(1− p),∞). This distribution is given by

f4(ln(R)) =
1

Γ(a)ba
(ln(R) + α ln(1− p))a−1 e−

(ln(R)+α ln(1−p))
b (5.24)

for ln(R) ∈ (−α ln(1− p),∞).

Theorem 5.3.6. Let us assume that ln(R) is a shifted random variable dis-

tributed on (−α ln(1−p),∞). Then, the expected value for the spreading speed

is

E [c∗] =
√︁

2pβσ2E
[︂
(ln(R) + α ln(1− p))

1
2

]︂
. (5.25)

Moreover, if ln(R) ∼ Gamma(a, b) on (−α ln(1− p),∞), then

E [c∗] =
√︁

2pβσ2b
Γ
(︁
a+ 1

2

)︁
Γ(a)

, (5.26)

and the optimal resource allocation to dispersal (p∗) is the largest value of p

that satisfies

p < 1− 1
α
√
R
. (5.27)

The proof of Theorem 5.3.6 is provided in the Appendix see Section 5.5.1.

In Theorem 5.3.6, we compute the expected spreading speed for the population

for a shifted random variable distributed on (−α(1− p),∞) in (5.25). Notice

that the expected spreading speed is written in terms of the one halfth moment.

In (5.26) we provide an example for when ln(R) ∼ Gamma(a, b) on (−α ln(1−

p),∞) where the expected spreading speed now depends on the shape and

scale parameters of the distribution. After computing the spreading speed,

we also determine the optimal resource allocation to dispersal in (5.27). Note
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that the optimal resource allocation to dispersal in this theorem is the same

as when we assumed that α was uncertain in Theorem 5.3.4. Therefore, a plot

of the optimal resource allocation when R is uncertain is also given in Figure

5.8.

5.4 Discussion

The model presented in (5.4) provides a framework to understand the effects of

dispersal-reproduction trade-offs on population persistence and the spreading

speed of a population. From our analysis, it is evident that resource alloca-

tion is an important feature that impacts both the persistence and spread of

a population. The influence of the trade-off shows that if an organism allo-

cates too many resources to dispersal there may not be enough resources left

for successful reproduction. Alternatively, if an individual spends too many

resources on reproduction then it will not be able to spread quickly. We also

determined how sensitive the spreading speed is to small changes in the model

parameters, and studied how parameter uncertainty impacts the population

spread.

We first derived the formula for the population persistence in our model.

This formula is given by (5.5) and depends on the proportion of resources

allocated to dispersal, p, the shape parameter for the reproduction trade-off

curve, α, and the growth rate per generation, R. In the case when there

is no trade-off, α = 0, the persistence condition reduces to the classical case

requiring that the growth rate per generation is greater than one. We were also

able to explicitly compute a formula for the spreading speed of the population

in (5.6) which depends on the dispersal, reproduction, and all of the trade-off

parameters. The case when both shape parameters for the trade-off are zero

reduces the formula to the classical spreading speed formula in absence of the

trade-off (Weinberger, 1982).
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To understand how trade-off parameter values affect the spreading speed

of the population we performed a sensitivity analysis in Section 5.3.1 (Haefner,

2005). In Theorem 5.3.1, we were able to prove that there is a unique value for

the optimal allocation of resources to dispersal that maximizes the spreading

speed for the population. We are not able to explicitly solve for this value of

p, but must express it as a transcendental equation in (5.11). This formula

does not depend on the variation in dispersal distance σ2 due to the fact that

σ is a scaling parameter in the formula for the spreading speed. The formula

for the optimal resource allocation to dispersal can also be found by simply

solving for p when the sensitivity of the spreading speed with respect to the

resource allocation to dispersal is equal to zero. That is, we set (5.10) equal

to zero and solve for p. To illustrate this result, we plot an example in Figure

5.3. This plot illustrates that for each value of the growth rate parameter R,

there is a unique value of the resource allocation to dispersal that maximizes

the spreading speed. However, this unique value is not always observed in

practice for other trade-offs. For a trade-off between seed size and number,

Geritz (1995) showed that by assuming asymmetric intraspecific competition

in favor of larger seeds that any unique seed size can be unstable and the

evolutionary stable strategy becomes polymorphic. Intraspecific competition,

determined by a trade-off between egg load and dispersal ability, leads to

coexistence of non-pollinating fig wasps that specialize to different degrees on

dispersal ability and fecundity (Duthie et al., 2014).

By calculating the sensitivity of the spreading speed with respect to the

trade-off shape parameters α and β, we first deduce that these quantities are

always negative. This means that the spreading speed always decreases when

the trade-off shape parameters increase. In Figure 5.4, we illustrate this result

by plotting the spreading speed versus the resource allocation to dispersal for

different values of the trade-off shape parameters. It is clear from the three
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plots that as α and β increase the value for the spreading speed decreases.

This suggests that the value for the fastest spreading speed would be when

α = β = 0 meaning that there is no trade-off in the model. Therefore, the

trade-off effect is not beneficial for expanding populations. From Figure 5.4, we

also see how the optimal resource allocation to dispersal changes for different

values of the trade-off parameters. First, we conclude from looking at the peaks

in Figure 5.4 that by increasing α decreases the optimal resource allocation to

dispersal. In a similar manner, we can also conclude that increasing the value

of β increases the optimal resource allocation to dispersal. Intuitively this

makes sense because α is the shape parameter for the reproduction trade-off

curve and β is the shape parameter for the dispersal trade-off curve.

We were able to prove in Theorem 5.3.2 that if the population is at its

optimal resource allocation and the resources are split equally between disper-

sal and reproduction, then α and β are equally sensitive. The results from

Theorem 5.3.2 also show that if the population is at its optimal resource allo-

cation and more (less) resources are allocated to dispersal than reproduction,

then α is more (less) sensitive than β. An example of this result is seen in

Figure 5.5. This result is somewhat counter intuitive because α is the shape

parameter for the reproduction trade-off curve and β is the shape parameter

for the dispersal trade-off curve. This means that if more (less) resources are

allocated to dispersal than reproduction, then the shape of the reproduction

(dispersal) trade-off curve is more sensitive than the shape of the dispersal

(reproduction) trade-off curve.

To conclude our results on the sensitivity analysis for the spreading speed,

we calculated the sensitivity of the spreading speed with respect to the popu-

lation growth rate per generation (R) and the standard deviation in dispersal

distance (σ). We find that the sensitivity of the spreading speed with respect

to σ is constant because σ is a scaling parameter in the formula for the spread-
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ing speed. Assuming that the population is persistent, the sensitivity of the

spreading speed with respect to R is always positive. In Figure 5.6, we see

that when the persistence formula is small, then R is more sensitive than σ,

but when the persistence formula is greater than e
1
2 , then σ is more sensitive

than R. This means that R is more sensitive than σ when the population is

close to extinction, but if the population is not at risk of extinction, then σ is

more sensitive than R.

In Section 5.3.2, we explored how parameter uncertainty influences the ex-

pected spreading speed of the population and the optimal resource allocation

to dispersal. This problem has been studied before for linear models where

the emphasis is on how stochasticity can influence the spreading speed (Molli-

son, 1991) and more complicated nonlinear models (Lewis and Pacala, 2000).

We split our results into two parts: Section 5.3.2.1 considers the case when

the trade-off shape parameters are uncertain, and Section 5.3.2.2 considers

when the reproduction and dispersal parameters are uncertain. To include

the parameter uncertainty, we simply assume the parameter of interest is a

random variable distributed on a suitable interval. In all cases, we determine

two things; the expected spreading speed for the population and the optimal

resource allocation to dispersal.

We begin with the case where the dispersal trade-off shape parameter (β)

is uncertain, and provide our result in Theorem 5.3.3. We can express the

expected spreading speed for the population in terms of the moment gener-

ating function for β as given in (5.15). We then provide the formula for the

expected spreading speed when β ∼ Gamma(a, b) in (5.16). Moreover, we

can determine the optimal resource allocation to dispersal and express this in

terms of the expected value and variance of our random variable β as seen by

(5.17). We provide two plots for the optimal resource allocation for the convex

and concave trade-off curve shapes in Figure 5.7. Here, we plot the optimal
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resource allocation to dispersal versus the expected dispersal trade-off shape.

Within each plot, we plot different curves for different values of the variance

of β. We can see that when the variance of β is zero, there is no uncertainty

in β, and the optimal resource allocation to dispersal reduces back to (5.11).

We can conclude from the plots that as the variance of β increases, the value

for the optimal resource allocation to dispersal decreases. That is, if there is a

lot of variation in the shape of the dispersal trade-off curve, then it is a better

strategy to invest more resources into reproduction. We can also conclude that

as the expected value of β increases, the optimal resource allocation to dis-

persal increases. This agrees with the our previous results from the sensitivity

analysis as seen in Figure 5.4.

Next, we consider the case when α is uncertain. Here we require an upper

bound on the value of α in order to guarantee population persistence and

hence have a formula for the spreading speed of the population. In Theorem

5.3.4, we are able to derive a formula for the expected spreading speed of the

population in (5.19) written in terms of a series of moments for α. In the case

when α ∼ Beta(a, b) on
(︂
0,− ln(R)

ln(1−p)

)︂
, the expected value for the spreading

speed is given by (5.20). Note that when a = b = 1, this is a special case of

the beta distribution where α is a uniform random variable on
(︂
0,− ln(R)

ln(1−p)

)︂
.

When we attempt to determine the optimal resource allocation to dispersal,

we find that this occurs when as many resources as possible are allocated to

dispersal while still maintaining the persistence criterion. This is given by

(5.21). Thus, due to this uncertainty, the optimal solution is to put as many

resources into dispersal while still maintaining population persistence. Two

plots for the optimal resource allocation to dispersal are provided in Figure

5.8. In these plots, we vary the reproduction trade-off shape (α) and the

growth rate parameter (R). We can see that when α and R are small then the

optimal resource allocation to dispersal is highly volatile.
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In Section 5.3.2.2, we continue our analysis on the parameter uncertainty

by assuming the reproduction and dispersal parameters are uncertain. First,

we assume that the standard deviation in the dispersal distance is uncertain.

In Theorem 5.3.5, we assume that σ is a random variable distributed on the

real line and calculate the expected value for the spreading speed to be given

by (5.22). Due to the fact that σ is a scaling variable in the formula for the

spreading speed, we see that the only difference in the formula for the expected

value for the spreading speed compared to the formula with no parameter

uncertainty by replacing σ by the expected value of σ. In Theorem 5.3.5,

we also calculate the optimal resource allocation to dispersal in (5.23). The

formula in (5.23) is the same as (5.11) in Theorem 5.3.1. Thus, the optimal

resource allocation to dispersal when σ is uncertain is the same for when all

parameter values are known. We believe that this is an artifact of the dispersal

kernel chosen.

To finish our analysis on parameter uncertainty, we consider the case when

the population growth rate parameter R is uncertain. For simplicity in our

calculation we assume that ln(R) is our random variable of interest, and we

must assume that ln(R) > −α ln(1 − p) to guarantee population persistence.

In Theorem 5.3.6, we assume that ln(R) is a shifted random variable on

(−α ln(1−p),∞) and find the expected value for the spreading speed in (5.25).

By assuming that ln(R) is a shifted gamma distribution on (−α ln(1− p),∞)

with shape parameter a and scale parameter b, we calculated the expected

spreading speed in (5.26). Here, we find that the expected spreading speed is

slower than if there was no uncertainty which is consistent with previous stud-

ies (Clark et al., 2001; Snyder, 2003). In this case, we find that the optimal

resource allocation to dispersal happens when as many resources as possible

are allocated to dispersal while still maintaining the persistence criterion. Note

that this optimal resource allocation is the same in the case when we assumed
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that α was uncertain. Thus, if there is uncertainty in the shape of the re-

production trade-off curve or the population growth rate parameter, then the

best strategy to optimize the spreading speed is to allocate as many resources

as possible to dispersal while still maintaining the persistence criterion.

While dispersal-reproduction trade-offs have been widely accepted in the

literature, it should be mentioned that there are numerous examples for which

this trade-off does not occur, or if it does, the degree of the trade-off varies

greatly (Guerra, 2011; Mole and Zera, 1994; Roff, 1995; Sappington and Show-

ers, 1992; Therry et al., 2015; Tigreros and Davidowitz, 2019). These studies

argue for a lack of a trade-off between dispersal and reproduction in some insect

species, or even a positive association between dispersal and reproduction. A

recent meta-analysis indicates that although trade-offs between dispersal and

reproduction likely occur in many insects, the strength and correlation of the

trade-off vary significantly across insect orders (Guerra, 2011). Our model sug-

gests that the trade-off occurs due to resource limitation, which is supported

by another meta-analysis showing that in 76% of the studies, conditions of

resource restriction result in a negative association between dispersal and re-

production (Tigreros and Davidowitz, 2019). Moreover, negative associations

between dispersal and reproduction do not necessarily indicate a resource al-

location trade-off.

A shortcoming in the model is the assumption that the life history strate-

gies do not evolve over time. This assumption is only biologically reasonable

if the time scale of the model is much shorter than the time it takes for the life

history to change. In many cases this is not feasible. It has been empirically

shown that resource allocation can have seasonal fluctuations (Barbour et al.,

1999) or evolve due to genetic mutations in offspring (Burton et al., 2010).

Typical annual plants, a plant that completes its life cycle within one year

and then dies, devote most resources to growth in the early part of the grow-
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ing season with a small amount of resources for maintenance, and late in the

growing season nearly all the resources are devoted to reproduction. Whereas

stress-tolerant plants such as shrubs in subarctic or dessert regions must al-

locate most resources to maintenance, and a small amount to growth. Only

during good years, when resources are plentiful, can they devote resources to

reproduction (Barbour et al., 1999). Thus, the type of resource allocation is

highly dependent on the particular population of interest. Time-dependent

variation in reproduction and dispersal can accelerate the spread of invading

species (Ellner and Schreiber, 2012). In our study, we find variation in re-

production slows the spread, whereas variation in dispersal does not alter the

expected spreading speed. This provides motivation to extend the model to

include time-dependent trade-offs.

Another drawback of the modeling techniques presented is that there is

no spatial heterogeneity in the resource allocation. In other systems, resource

allocation is highly dependent on the location of the individuals in the pop-

ulation (Burton et al., 2010). Individuals in the core of the population were

found to allocate more resources on reproduction than dispersal while indi-

viduals at the front of the population allocated more resources to dispersal

than reproduction. Understanding the consequences of populations colonizing

new habitats can also be explored by incorporating spatial heterogeneity in

the resource allocation. One way to incorporate this into the model would be

to consider density-dependent trade-offs.

Habitat fragmentation can affect the dispersal-reproduction trade-off (Ziv

and Davidowitz, 2019). Using a common garden experiment, Gibbs and Van

Dyck (2010) studied the effects of increased dispersal on the reproduction

of speckled wood butterflies from closed continuous woodland populations to

open highly fragmented agricultural landscapes. Gibbs and Van Dyck (2010)

concluded that butterflies from fragmented landscapes were better able to cope
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with the increased dispersal demands relative to those from non-fragmented

landscapes suggesting a difference in the strength of trade-off due to the en-

ergetic cost of dispersal. Theoretical studies using integrodifference equations

have previously investigated the role that landscape heterogeneity plays in

predicting population dynamics (Dewhirst and Lutscher, 2009; Kawasaki and

Shigesada, 2007; Latore et al., 1999; Van Kirk and Lewis, 1997), but have yet

to incorporate dispersal-reproduction trade-offs into the models. A natural

extension would be to fuse these two approaches together.

While our model is aimed to be applied to populations with nonoverlap-

ping generations that have distinct dispersal and reproduction phases in their

life cycle, these kinds of dispersal-reproduction trade-offs have also been docu-

mented in smaller scales of daily dispersal and foraging patterns (Bonte et al.,

2012; Van Dyck and Baguette, 2005). Empirical evidence for these small scale

dispersal-reproduction trade-offs have been documented in insects (Harrison,

1980), guppies (Ghalambor et al., 2004), lizards (Cox and Calsbeek, 2010;

Miles et al., 2000), and snakes (Seigel et al., 1987). Thus, extending this mod-

eling approach beyond integrodifference equations would allow for these types

of trade-offs to be considered in a theoretical framework.

5.5 Appendix

5.5.1 Proofs of the theorems

5.5.1.0.1 Proof of Theorem 5.3.1

Proof. To begin, it should be noted that we treat α, β, R, and σ2 as constants

since we are interested in how p affects the asymptotic spreading speed c∗. To

find the optimal allocation of resources for a species to spread we first find

the first derivative of (c∗)2/2σ2 with respect to p. Using Equation (5.6), we
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calculate

d(c∗)2/2σ2

dp
= βpβ−1 ln ((1− p)αR) + pβ

−α(1− p)α−1

(1− p)α
(5.28)

= pβ
(︃
β ln ((1− p)αR)

p
− α

(1− p)

)︃
. (5.29)

Hence, we have a critical point when

β ln ((1− p)αR)

p
=

α

(1− p)
. (5.30)

Next, we show that Equation (5.30) has a unique solution. Define

l(p) :=
ln ((1− p)αR)

p
and (5.31)

r(p) :=
1

1− p
. (5.32)

Both l(p) and r(p) are continuous functions on (0, 1). Also, l(p) is a monotone

decreasing function for p ∈ (0, 1) where limp→0 l(p) = ∞ and limp→1 l(p) =

−∞. We also have that r(p) is a monotone increasing function for p ∈ (0, 1)

where r(0) = 1 and limp→1 r(p) = ∞. Therefore, for each α, β, and R there

exists a unique value p∗ ∈ (0, 1) such that p∗ solves Equation (5.30).

5.5.1.0.2 Proof of Theorem 5.3.2

Proof. Recall that the optimal resource allocation is given by (5.11). That is,

β =
αp

(1− p) ln ((1− p)αR)
. (5.33)

To determine which parameter is more sensitive we compare Sensitivity(c∗, α)

and Sensitivity(c∗, β). Recall that from (5.8) and (5.9) we know that Sensitivity(c∗, α)

and Sensitivity(c∗, β) are both negative. When Sensitivity(c∗, α) = Sensitivity(c∗, β),

this means that α and β are equally sensitive, when Sensitivity(c∗, α) >

Sensitivity(c∗, β) this means that α is less sensitive than β, and finally when

Sensitivity(c∗, α) < Sensitivity(c∗, β), this means that α is more sensitive than
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β. We will first compute when α and β are equally sensitive. That is,

Sensitivity(c∗, α) = Sensitivity(c∗, β) (5.34)

gives

α ln(1− p)

2 ln ((1− p)αR)
=

β ln(p)

2
. (5.35)

Since we are assuming we are at the optimal resource allocation, substituting

(5.33) into the previous equation we have

α ln(1− p)

2 ln ((1− p)αR)
=

αp ln(p)

2(1− p) ln ((1− p)αR)
. (5.36)

Simplifying, we find that

(1− p) ln(1− p) = p ln(p). (5.37)

The only solution to this equation is given by 1− p = p. Solving for p we find

that p = 1
2
. Thus, if the optimal resource allocation is p = 1

2
, then α and β are

both equally sensitive parameters. Repeating these same calculations but with

Sensitivity(c∗, α) > Sensitivity(c∗, β), we find that 0 < p < 1
2
. Thus, if the op-

timal resource allocation is less than 1
2
, then β is more sensitive than α. By re-

peating these same calculations but with Sensitivity(c∗, α) < Sensitivity(c∗, β),

we find that 1
2
< p < 1. Thus, if the optimal resource allocation is greater

than 1
2
, then α is more sensitive than β.

5.5.1.0.3 Proof of Theorem 5.3.3

Proof. Assuming that β is a random variable defined on (0,∞) with probabil-

153



ity density function f1(β), the expected spreading speed is given by

E [c∗] =

∫︂ ∞

0

√︁
2pβσ2 ln[(1− p)αR]f1(β) dβ (5.38)

=
√︁

2σ2 ln[(1− p)αR]

∫︂ ∞

0

p
β
2 f1(β) dβ (5.39)

=
√︁

2σ2 ln[(1− p)αR]

∫︂ ∞

0

eβ
ln(p)

2 f1(β) dβ (5.40)

=
√︁

2σ2 ln[(1− p)αR]Mβ

(︃
ln(p)

2

)︃
. (5.41)

Note that the above integral becomes the moment generating function of f2(β),

with parameter ln(p)
2

. If f1(β) is a gamma distribution, then

Mβ

(︃
ln(p)

2

)︃
=

∫︂ ∞

0

eβ
ln(p)

2
1

Γ(a)ba
βa−1e−

β
b dβ (5.42)

=
1

Γ(a)ba

∫︂ ∞

0

βa−1e−
β
b (1−b

ln(p)
2 ) dβ (5.43)

=
1

Γ(a)ba
Γ(a)

⎛⎝ b(︂
1− b ln(p)

2

)︂
⎞⎠a

(5.44)

=
1(︂

1− b ln(p)
2

)︂a (5.45)

for ln(p)
2

< 1
b
. Since 0 < p < 1 and b > 0, this condition is always satisfied.

Therefore,

E [c∗] =

√︁
2σ2 ln[(1− p)αR](︂
1− b ln(p)

2

)︂a . (5.46)

We can next determine what the optimal resource allocation to dispersal should

be in order to maximize the expected value of the spreading speed. To do this,

we determine when

d

dp
E [c∗] = 0. (5.47)

We find that the implicit equation that satisfies this is given by

a

α
ln [(1− p)αR] (1− p) =

p

b

(︃
1− 1

2
b ln(p)

)︃
. (5.48)
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Recall that the E[β] = ab and Var[β] = ab2. We can rewrite our previous

condition as

E[β]

α
ln [(1− p∗)αR] (1− p∗) = p∗

(︃
1− 1

2

Var[β]

E[β]
ln(p∗)

)︃
. (5.49)

Therefore, the optimal resource allocation for dispersal is given implicitly by

(5.49).

5.5.1.0.4 Proof of Theorem 5.3.4

Proof. Assuming that α is a random variable defined on
(︂
0,− ln(R)

ln(1−p)

)︂
with

probability density function f2(α), the expected spreading speed is given by

E [c∗] =

∫︂ − ln(R)
ln(1−p)

0

√︁
2pβσ2 ln[(1− p)αR]f2(α) dα (5.50)

=
√︁
2pβσ2

∫︂ − ln(R)
ln(1−p)

0

√︁
ln[(1− p)αR]f2(α) dα (5.51)

=
√︁
2pβσ2

∫︂ − ln(R)
ln(1−p)

0

√︁
α ln(1− p) + ln(R)f2(α) dα. (5.52)

Using Newton’s Generalized binomial theorem, we have that

√︁
α ln(1− p) + ln(R) =

∞∑︂
n=0

(︃
1
2

n

)︃
(ln(R))

1
2
−n (α ln(1− p))n (5.53)

=
√︁
ln(R)

∞∑︂
n=0

(︃
1
2

n

)︃(︃
ln(1− p)

ln(R)

)︃n

αn. (5.54)

This series converges when ln(R) > |α ln(1− p)| which is equivalent to our

persistence criterion R(1− p)α > 1. Using Fubini’s theorem,∫︂ − ln(R)
ln(1−p)

0

∞∑︂
n=0

(︃
1
2

n

)︃(︃
ln(1− p)

ln(R)

)︃n

αnf2(α) dα =
∞∑︂
n=0

(︃
1
2

n

)︃(︃
ln(1− p)

ln(R)

)︃n ∫︂ − ln(R)
ln(1−p)

0

αnf2(α) dα

(5.55)

=
∞∑︂
n=0

(︃
1
2

n

)︃(︃
ln(1− p)

ln(R)

)︃n

E [αn] .

(5.56)
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From (5.52), (5.54), and (5.56) we can see that when α is uncertain the ex-

pected value for the spreading speed is given by

E [c∗] =
√︁

2σ2pβ ln(R)
∞∑︂
n=0

(︃
1
2

n

)︃(︃
ln(1− p)

ln(R)

)︃n

E [αn] . (5.57)

Therefore, we can express the expected value for the spreading speed in terms

of a series of the moments of the distribution. In particular, when α ∼

Beta(a, b) on
(︂
0,− ln(R)

ln(1−p)

)︂
,

E [αn] =

∫︂ − ln(R)
ln(1−p)

0

αn
αa−1

(︂
− ln(R)

ln(1−p)
− α

)︂b−1

B(a, b)
(︂
− ln(R)

ln(1−p)

)︂a+b−1
dα (5.58)

=

(︃
− ln(R)

ln(1− p)

)︃n ∫︂ − ln(R)
ln(1−p)

0

αa+n−1
(︂
− ln(R)

ln(1−p)
− α

)︂b−1

B(a, b)
(︂
− ln(R)

ln(1−p)

)︂a+n+b−1
dα (5.59)

=

(︃
− ln(R)

ln(1− p)

)︃n
B(a+ n, b)

B(a+ b)
(5.60)

=

(︃
− ln(R)

ln(1− p)

)︃n
Γ(a+ b)Γ(a+ n)

Γ(a)Γ(a+ b+ n)
(5.61)

for n ≥ 0, and the expected value for the spreading speed is

E [c∗] =
√︁

2σ2pβ ln(R)
∞∑︂
n=0

(︃
1
2

n

)︃(︃
ln(1− p)

ln(R)

)︃n(︃
− ln(R)

ln(1− p)

)︃n
Γ(a+ b)Γ(a+ n)

Γ(a)Γ(a+ b+ n)

(5.62)

=
√︁

2σ2pβ ln(R)
Γ(a+ b)

Γ(a)

∞∑︂
n=0

(︃
1
2

n

)︃
(−1)n

Γ(a+ n)

Γ(a+ b+ n)
(5.63)

Using the fact that

∞∑︂
n=0

(︃
1
2

n

)︃
(−1)n

Γ(a+ n)

Γ(a+ b+ n)
=

Γ
(︁
b+ 1

2

)︁
Γ(a)

Γ
(︁
a+ b+ 1

2

)︁
Γ(b)

, (5.64)

we can simplify (5.63) to

E [c∗] =
√︁

2σ2pβ ln(R)
Γ(a+ b)Γ

(︁
b+ 1

2

)︁
Γ(b)Γ

(︁
a+ b+ 1

2

)︁ . (5.65)
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Attempting to determine the optimal resource allocation to dispersal, we find

that there are no critical points for 0 < p < 1 since

d

dp
E [c∗] =

√︁
2σ2 ln(R)

Γ(a+ b)Γ
(︁
b+ 1

2

)︁
Γ(b)Γ

(︁
a+ b+ 1

2

)︁ d

dp
p

β
2 (5.66)

=
√︁
2σ2 ln(R)

Γ(a+ b)Γ
(︁
b+ 1

2

)︁
Γ(b)Γ

(︁
a+ b+ 1

2

)︁ β
2
p

β
2
−1 (5.67)

> 0. (5.68)

Therefore, we can conclude that the best resource allocation would be to al-

locate as many resources as possible to dispersal while still maintaining the

persistence condition that (1− p)αR > 1. This would mean that

p < 1− 1
α
√
R
. (5.69)

Therefore, we would want to choose p as close to 1− 1
α√R

as possible without

reaching or going over this value.

5.5.1.0.5 Proof of Theorem 5.3.5

Proof. Assuming that σ is a random variable defined on the real line with

probability density function f3(σ), the expected spreading speed is given by

E [c∗] =

∫︂ ∞

0

√︁
2pβσ2 ln[(1− p)αR]f3(σ) dσ (5.70)

=
√︁
2pβ ln[(1− p)αR]

∫︂ ∞

0

σf3(σ) dσ (5.71)

=
√︁
2pβ ln[(1− p)αR]E [σ] . (5.72)

Determining the optima resource allocation to dispersal, we find that

0 =
d

dp
E [c∗] (5.73)

= E[σ]
d

dp

√︁
2pβ ln[(1− p)αR] (5.74)

= E[σ]pβ
ln((1−p)αR)

p
− α

1−p√︁
2pβ ln ((1− p)αR)

. (5.75)
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Hence, we have our critical point when

ln ((1− p)αR)

p
=

α

1− p
. (5.76)

5.5.1.0.6 Proof of Theorem 5.3.6

Proof. Assuming that ln(R) is a random variable defined on (−α ln(1−p),∞)

with probability density function f4(ln(R)), the expected spreading speed is

given by

E [c∗] =

∫︂ ∞

−α ln(1−p)

√︁
2pβσ2 ln[(1− p)αR]f4(ln(R)) d ln(R) (5.77)

=
√︁
2pβσ2
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−α ln(1−p)
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ln[(1− p)αR]f4(ln(R)) d ln(R) (5.78)

=
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2pβσ2
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−α ln(1−p)
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α ln(1− p) + ln(R)f4(ln(R)) d ln(R) (5.79)

=
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2pβσ2E
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(ln(R) + α ln(1− p))

1
2

]︂
. (5.80)

Assuming that ln(R) ∼ Gamma(a, b) on (−α ln(1 − p),∞), we define r =

ln(R) + α(1− p) and calculate the one halfth moment to be

E
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(ln(R) + α ln(1− p))

1
2

]︂
= E
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r
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2

]︂
(5.81)

=
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Then, using (5.86) the expected spreading speed becomes

E [c∗] =
√︁

2pβσ2E
[︂
(ln(R) + α ln(1− p))

1
2

]︂
(5.87)

=
√︁

2pβσ2
Γ
(︁
a+ 1

2

)︁
b

1
2

Γ(a)
(5.88)

=
√︁

2pβσ2b
Γ
(︁
a+ 1

2

)︁
Γ(a)

. (5.89)

Determining the optimal resource allocation to dispersal, we find that

d

dp
E [c∗] =

d

dp

√︁
2pβσ2b

Γ
(︁
a+ 1

2

)︁
Γ(a)

(5.90)

=
√
2σ2b

Γ
(︁
a+ 1

2

)︁
Γ(a)

β

2
p

β
2
−1 (5.91)

> 0. (5.92)

Therefore, we can conclude that the best resource allocation would be to al-

locate as many resources as possible to dispersal while still maintaining the

persistence condition that (1− p)αR > 1. This would mean that

p < 1− 1
α
√
R
. (5.93)

Therefore, we would want to choose p as close to 1− 1
α√R

as possible without

reaching or going over this value.
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Chapter 6

Conclusion

In this thesis, I use integrodifference equations as a modeling tool to study com-

plex ecological processes. In particular, there were two overarching themes; in

the first I use integrodifference equations to understand how range expansions

influence the spatial patterns of genetic spread and the second concerning the

role that dispersal-reproduction trade-offs have on the spreading speed of the

population. The neutral genetic patterns formed by spatial spread was studied

in Chapters 2-4, and the trade-off effect was considered in Chapter 5. In this

conclusion, I put our work in context for how it fits into the current math-

ematical and ecological literature. For the remainder of this section, I will

summarize our results, reference how they fit into the literature, discuss some

shortcomings, and point to some suggestions for future work.

In Chapters 2-4, we studied the effect that range expansions have on the

neutral genetic patterns of a spreading population. The analysis performed

in this section is dubbed “inside dynamics” because we am concerned the

dynamics of the inside structure of the population. The term inside dynamics

was coined by Garnier et al. (2012) in their seminal study. The primary

assumption in this kind of analysis is that the dispersal and reproduction

are the same for all individuals. This allows us to partition the population

into distinct subgroups that only differ by label and location. Thus, the inside
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dynamics of the population, can be directly applied to understand how neutral

genetic components of a population spread through space.

In Chapter 2, we use a scalar integrodifference equation to determine the

spatial patterns of genetic spread. Our motivation is driven by the previous

work on this topic for continuous-time models (Bonnefon et al., 2014, 2013;

Garnier et al., 2012; Roques et al., 2012). In this study, we consider three

different types of growth functions. In the first case, we begin with the classic

monotone growth function, with the maximal growth rate at zero. We prove

that if the dispersal kernel is thin-tailed, then the population spread is dom-

inated by the individuals that are initially present at the leading edge of the

population. This case is equivalent to the concept of pulled fronts because the

spread of the population is pulled by those individuals at low density in the

leading edge (Stokes, 1976). This pattern can be interpreted as an extreme

version of the founder effect (Mayr, 1940).

The second growth function we consider is one with overcompensation.

That is, at high density, reproduction becomes suppressed by crowding and

depletion of resources. We are the first in the inside dynamics literature to

study this growth function because overcompensation cannot be modeled by a

scalar continuous-time model. In the case of the Ricker growth function, if the

dispersal kernel is thin-tailed, then we find that overcompensation does not

impact the genetic patterns of spread and the solution is a pulled front where

the population is driven by individuals initially at the leading edge. This sug-

gests with our simplistic model that the high level density dependence of the

growth function is not a critical factor for determining the genetic patterns of

population spread. However, previous work has found that survival of benefi-

cial mutations increases with stronger overcompensation (Münkemüller et al.,

2011). Thus, with some form of selection and mutation on the neutral genes,

overcompensation has shown to play an important role.
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The final growth function we study in Chapter 2 is one with a strong

Allee effect. Recall that a population exhibiting a strong Allee effect will

have a critical population density under which the population growth rate

becomes negative. With a Gaussian dispersal kernel, we were able to prove

that each neutral component converges to a proportion of the traveling wave

solution. Moreover, we derive an explicit formula for the proportion that

depends on the initial spatial distribution of neutral fractions, the traveling

wave solution, the dispersal parameters, and the spreading speed. This result is

consistent with its counterpart that was previously shown for reaction-diffusion

equations (Garnier et al., 2012). However, our result allows for dispersal to

not only be a diffusive process but also includes advection since we allow

for the mean in the Gaussian dispersal kernel to be non-zero. While the Allee

effect is generally thought to have a negative impact on expanding populations

due to the capability of the population to die out at low density levels, our

results show that the strong Allee effect promotes genetic diversity in spreading

populations. One draw back of this result is the restriction of the dispersal

kernel to be Gaussian. We conjecture that a result similar to this should

be possible for other thin-tailed dispersal kernels and leave this for future

directions of this work.

To expand on the work presented in Chapter 2, we extend our study from

a scalar model to a stage-structure integrodifference equation in Chapter 3. In

this chapter, we shift our focus from understanding how the different growth

functions influence the genetic patterns of population spread into understand-

ing how the structure of the population influences these patterns. Previous

work has shown that the inclusion of a juvenile class into the population dy-

namics has shown a decrease in the founder effect (Austerlitz et al., 2000).

This provides us with motivation for adding the complexity of stage-structure

into our model. In the inside dynamics literature, there is only one study to
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our knowledge that considers a system of equations (Roques et al., 2015). The

study by Roques et al. (2015) considered a diffusive Lotka-Volterra competi-

tion system. Our analysis is quite different from the work by Roques et al.

(2015) because the stage-structured integrodifference equation is a cooperative

not competitive system.

Our results in Chapter 3 illustrate how the structure of the population

and the spatial distribution of individuals alter the neutral genetic patterns

of spread. In particular, we prove that if a neutral fraction is present at

the leading edge of the population, then it approaches a proportion of the

population density. Moreover, this proportion is dependent on the right and

left eigenvectors of the population projection matrix evaluated at zero and

the initial distribution of neutral fractions. Thus, our results are consistent

with those concluded by Austerlitz et al. (2000) that including structure in the

population dynamics reduces the strength of the founder effect in a spreading

population. This is due to the ability for multiple stages to each have a different

neutral fraction present at the leading edge which in turn increases the genetic

heterogeneity of the expanding population.

In Chapter 4, we consider one more complexity in the inside dynamics

analysis by including mutation between neutral fractions into the model. This

is motivated by recent work that has shown spatial patterns in neutral muta-

tions can occur even in homogeneous landscapes (Edmonds et al., 2004; Klopf-

stein et al., 2006). These patterns are said to occur due to the propagation

of low-frequency alleles on the wave front of a population’s range expansion.

This phenomena is commonly referred to as mutation surfing and has been

demonstrated in laboratory experiments using florescently labeled strains of

Escherichia coli (Hallatschek et al., 2007). There are two primary drivers for

this process: first, low population density at the leading edge of the expan-

sion is believed to result in reduced competition pressure, and second, because
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of limited dispersal, the offspring of colonizers of the last generation domi-

nate the population dynamics, resulting in the acceleration of genetic drift

(Münkemüller et al., 2011).

Our primary findings in Chapter 4 show how the neutral mutations influ-

ence the spatial patterns of genetic spread. In particular, we show that the

mutation structure of the population and the initial distribution of neutral

fractions are the two important pieces of information needed to determine the

long-time dynamics of the neutral fractions. We show that if a neutral frac-

tion at the leading edge belongs to a particular mutation class, then asymp-

totically each neutral fraction in this mutation class approaches a proportion

of the population density. Moreover, this proportion is simply given by the

right eigenvector of the mutation matrix for said mutation class. Thus, our

model demonstrates how spatial patterns can form from neutral mutations in

homogeneous landscapes. This agrees with the previous studies that have also

found this same behavior (Edmonds et al., 2004; Klopfstein et al., 2006).

There are still many avenues left to explore for the inside dynamics anal-

ysis of integrodifference equations. One that is immediately evident is to

determine the role that long-distance dispersal plays in the neutral genetic

patterns formed by range expansions. This process is generally modeled by

fat-tailed dispersal kernels, or in other words dispersal kernels whose tails are

not exponentially bounded. A previous study using integro-differential equa-

tions proved that the solution of an accelerating wave is a pushed front showing

that all neutral fractions contribute to the population spread at the leading

edge (Bonnefon et al., 2014), thereby reducing the founder effect in spread-

ing populations. The complexity with studying this problem is that we are no

longer able to analyze traveling wave solutions that spread at a constant speed,

but must instead consider accelerating waves whose speed increases over time.

Another natural extension would be to test how environmental heterogene-

170



ity affects the inside dynamics of the population. It is well known that high

levels of environmental heterogeneity is positively correlated with species di-

versity (Stein et al., 2014). In the context of climate change, this has been

studied in reaction-diffusion equations (Garnier and Lewis, 2016) and inte-

grodifference equations (Lewis et al., 2018) by assuming a finite habitat size

that shifts in space over time. In these studies, it is shown how the size and

speed of the shifting habitat influence the genetic diversity of the population.

More general environmental configurations such as periodic habitats have yet

to be studied, but there are many mathematical results that could be directly

applied to an inside dynamics model with a periodic habitat (Kawasaki and

Shigesada, 2007).

The inherent limitation with the inside dynamics analysis is that the genes

are assumed to be neutral. However in reality, there are many genes that are

chosen for under selection that influence population level dynamics (Saccheri

and Hanski, 2006). While the role of neutral genes can inform us about many

important processes such as genetic drift, gene flow, and migration; by consid-

ering non-neutral genes we can learn more about the evolutionary potential of

individuals. The mathematical complexity with studying non-neutral genes is

that the system of equations becomes a competition model. While many re-

sults pertaining to the case with two different strategies can be applied (Lewis

et al., 2002), understanding in higher dimensions is still an open question.

In Chapter 5, we construct a model using integrodifference equations for

the dispersal-reproduction trade-off. To model the trade-off, we use the princi-

ple of allocation that which states the energy allocation to one function reduces

the amount of energy available to all other functions (Cody, 1966). As done

in previous studies of trade-off effects (Cressler et al., 2010; Jones and Ellner,

2004), the trade-off is modeled using power functions for the amount of re-

sources invested to dispersal and reproduction. This work is motivated by the
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empirical evidence reported for a variety of insects (Duthie et al., 2014; Elliott

and Evenden, 2012; Hanski et al., 2006; Hughes et al., 2003; Stevens et al.,

2000; Z. Zhao and Zera, 2002). In particular, we are motivated to understand

how the spreading speed of the population is altered by this trade-off. For

simplicity in our analysis, we assume that the dispersal kernel is Gaussian and

the growth is modeled by a Beverton-Holt function. This, allows us to write

down an explicit formula for the spreading speed.

The first step in our analysis is to perform a sensitivity analysis on the

spreading speed with respect to the trade-off parameters and the dispersal

and reproduction parameters. While other studies have have determined the

sensitivity of the invasion speed with respect to the dispersal and reproduction

parameters (Gharouni et al., 2015; Neubert and Caswell, 2000), we expand on

these ideas to incorporate a dispersal-reproduction trade-off into the model.

The first conclusion we make is that the sensitivity of the spreading speed with

respect to the trade-off shape parameters is always negative. This means that

as the trade-off becomes more pronounced, then the spreading speed decreases.

We are able to prove that if the population is persistent, then there is a unique

allocation of resources to dispersal and reproduction that allow for the largest

value for the spreading speed. Unfortunately, it is not possible to derive an

explicit form for this resource allocation, but we can write the condition as a

transcendental equation. Next, we prove that if the population is at its optimal

resource allocation and the resources are split equally between dispersal and

reproduction, then the shape parameters for the reproduction and dispersal

trade-off curves are equally sensitive. We also show that if the population

is at its optimal resource allocation and more (less) resources are allocated

to dispersal than reproduction, then the shape parameter for reproduction is

more (less) sensitive than the shape parameter for dispersal.

For the dispersal and reproduction parameters, we find that the sensitivity
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of the spreading speed with respect to the standard deviation in dispersal dis-

tance is equal to one because it is a scaling parameter in the formula for the

spreading speed, and the sensitivity of the the spreading speed with respect to

the population growth rate per generation is always positive when the popu-

lation is persistent. Comparing these two, we find that the population growth

rate per generation is more sensitive than the standard deviation in dispersal

distance when the population is close to extinction, but if the population is

not at risk of extinction, then the sensitivity switches.

After the sensitivity analysis, we move on to test how parameter uncer-

tainty affects the spreading speed for the population and calculate the expected

spreading speed for the population. Previous studies have determined how pe-

riodic and stochastic environments impact the spreading speed (Neubert et al.,

2000; Weinberger et al., 2008). The terms uncertainty and stochasticity should

not be misunderstood. When we say uncertainty, we mean that that param-

eter value of interest is known up to some distribution whereas the stochastic

studies have time dependent parameter values. In the stochastic studies, the

formula for the spreading speed is written in terms of the geometric mean and

because the geometric mean is less than the arithmetic mean the stochastic in-

vasion process eventually spreads slower than the expected population spread

as calculated in our work. This problem has been studied before for linear

models where the emphasis is on how stochasticity can influence the spreading

speed (Mollison, 1991) and more complicated nonlinear models (Lewis and

Pacala, 2000).

Our first uncertainty result pertains to when the dispersal trade-off shape

parameter. In this case, we assume that the parameter is distributed as a

gamma random variable and write the expected spreading speed in terms of

the moment generating function. Moreover, we show that the optimal resource

allocation to dispersal to maximize the spreading speed can be expressed in
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terms of the mean and variable of the random variable. The important con-

clusion to draw from this result is that when the variance increases, the value

for the optimal resource allocation to dispersal decreases. That is, if there is a

lot of variation in the shape of the dispersal trade-off curve, then it is a better

strategy to invest more resources into reproduction. We can also conclude that

as the expected value of increases, the optimal resource allocation to dispersal

increases.

When the standard deviation in the dispersal distance is uncertain, we can

express the expected value for the spreading speed in terms of the expected

value of the standard deviation in the dispersal distance because it is a scaling

parameter. Thus, the optimal resource allocation to dispersal when the stan-

dard deviation in the dispersal distance is uncertain is the same for when all

parameter values are known.

In the cases when we assume that the reproduction parameter and the

shape of the reproduction trade-off curve are uncertain, we can express the

expected value of the spreading speed in terms of Gamma functions that de-

pend on the distribution parameters. Moreover, we find that the optimal

strategy is to invest as many resources into dispersal as possible while still

maintaining the persistence criteria. This is an artifact of the assumption that

the population is persistent. Recall from the sensitivity analysis earlier that

we showed if the population is not in risk of extinction, then the standard

deviation in dispersal distance is more sensitive than the growth rate per gen-

eration. We were required to make this assumption because in its absence,

there is no formula for the spreading speed of the population.

While our model reveals some interesting dynamics in the trade-off between

dispersal and reproduction, it is also limited in its applicability. A shortcoming

in the model is the assumption that the life history strategies do not evolve

over time. This assumption is only biological reasonable if the time scale of
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the model is much shorter than the time it takes for the life history to change

which, in many cases, is not feasible. For example, it has been empirically

shown in the literature that strategies for resource allocation to different pro-

cesses can have seasonal fluctuations (Barbour et al., 1999) or evolve due to

genetic mutations in offspring (Burton et al., 2010). Typical annual plants,

that complete their life cycle within one year and then die, devote a majority

of resources to growth in the early part of the growing season with a small

amount of resources for maintenance, and then late in the growing season a

majority of the resources are devoted to reproduction. Where as stress-tolerant

plants such as shrubs in subarctic or dessert region must allocate most of its

resources to maintenance and only allocate a small amount to growth. Only

during good years, where resources are plentiful, can they devote resources to

reproduction (Barbour et al., 1999). Thus, resource allocation is highly depen-

dent on the particular species of interest and has shown to be time-dependent

in many cases. It has also been shown that time-dependent variation in repro-

duction and dispersal can accelerate the spread of invading species (Ellner and

Schreiber, 2012), something not seen in our results. Including time-dependent

trade-offs would be a natural extension to the work we presented in Chapter

5 that could produce interesting dynamics.

Another drawback of the modeling techniques presented is that there is no

spatial heterogeneity in the resource allocation. As shown by Burton et al.

(2010) we know that resource allocation is highly dependent on the location

of the individuals in the population. In their study, they found that individ-

uals in the core of the population should allocate more resources on growth

than dispersal while individuals at the front of the population will allocate

more resources to dispersal than growth. Understanding the consequences of

species colonizing new habitats can also be explored by incorporating spatial

heterogeneity in the resource allocation.
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