
MINT Capstone Project

Email-to-REST User-Request System

Supervisor: Paul Lu

Student Name: Sam El-Awour

Email:​Elawour@Ualberta.ca

mailto:Elawour@Ualberta.ca

Acknowledgement 4

Introduction 4
Propose 4
Problem 4
System Overview 4
Goal & Motivation 5

Application’s Functionality 6
Figure (1):Application’s Functionality Diagram 6

Use-Case Scenarios for the E2R Application 7

Processed Email Types : 8
1- Shopify Emails (Figure (3), (11)): 8
2- Customer Emails (Figure (8)): 8
3- Follow Up Emails (Figure (2)): 8

Figure (2):Follow Up Email Sample 8

Application Processing Steps: 9
1- Shopify Emails: 9

Step 1: 9
Figure (3): Shopify Email Sample 9

Step 2: 10
Figure (4):REST Call in JSON format 10

Step 3: 10
Step 4: 10

Figure (5):Ordering Server Response 10
Figure (6): Order Confirmation Sample 11

2- Customer Emails: 11
Figure (7): Item List Sample 11

Step 1: 11
Figure (8): Customer Email Sample 12

Step 2: 12
3- Follow Up Emails (Figure (32)): 12

Email Order Templates 13
Figure (9): Simple Single Item Sample 13
Figure (10): List of Simple Items Sample 13
Figure (11): Complex Single Item Sample 14

1

Figure (12): List of Complex Items Sample 14

Requirements and Specifications 14
Functional Requirements 14

Figure (13): Application Functional Requirements 15
1- Source 15

Figure (14): Email Sample in HTML Format 15
Figure (15):Email Sample in Plain Text Format 16

2- Application 16
Table(1): Application Python Libraries 17

3- Destination 17
Hardware Requirements 17

Application’s Limitations and Assumptions 17
Email Data Error 18

Figure (16):Well-Formed Email Sample 19
Figure (17): Non-Well-Formed Email Sample 19

Application Errors: 20

Design 20

Application Code 23
Main application 23

Figure (19): Application Main Function (Main-ver7_.Py) 23
Check_Inbox() function: 24

Figure (20): Application Check_Mail Function (Main-ver7_.Py) 24
ProcessOrderFromShopify() function: 25

Figure (21): Application ProcessOrderFromShopify Function (Main-ver7_.Py) 25
Figure (22): Application ProcessOrderFromCustomeremail Function - Part 1
(Main-ver7_.Py) 26
Figure (23): Application ProcessOrderFromCustomeremail Function - Part 2
(Main-ver7_.Py) 27

SendDataToIncompleteStateServer() function: 28
Figure (24): Application SendDataToIncompleteStateServer Function
(Main-ver7_.Py) 28
Figure (25): Application SendDataToOrderingServer Function (Main-ver7_.Py) 28

SendAckemail() function: 29
Figure (26): Application SendAckemail Function (Main-ver7_.Py) 29
Figure (27): Application ResendemailToCustomerFunction (Main-ver7_.Py) 30

Ordering Server Code: 31
Figure (28):Ordering Server (Ordering_Server.Py) 31

Incomplete State Server Code: 32

2

Figure (29): Incomplete State Server (IncompleteStateServer.py) 32

Testing 32
Test Plan 32

Test Items 32
Functional Testing 33
Test Environment 33

Table (2): Testing Environment 33
Test Results 34

Figure (30): Application Test Results 34
Figure (31): Ordering Server Test Results 35
Figure (32): Incomplete State Server Test Results 35

Installation Instruction 36

Conclusion 37

Confirmation of Originality 37

References 37

3

Acknowledgement
At first, I would like to acknowledge the access to Wenting Zhang’s capstone project proposal,

which helped forming the structure and the main headings of this proposal. I would also like to

express my great appreciation to Professor Paul Lu for the willingness to supervise this project

and his valuable suggestions and directions.

Introduction
This introduction gives a brief description of the scope of this project including an explanation

of the problem project aimed to resolve, an overview of the system developed and finally a goal

and motivation intended from working on this project.

Purpose
The purpose of this project is to automate email orders processing with a well-structured

application that monitors email inboxes for incoming email orders that has a particular

structure. The application also parses order information and communicates them as a REST call

to an electronic ordering service in a language that the service understands. This process is

often referred to as email to REST (E2R) system which intends to listen to orders that come

from e-commerce services such as Shopify and Pinnacle Cart in the form of an email.

Problem

E-commerce services enable merchants to post products they intend to sell and allow

customers to purchase online. Merchants also receive order emails from customer directly.

Once orders are made, they get sent to merchants in the form of emails that contain orders’

information such as item, price, and quantity including items properties such as color, size, and

materials, where merchants retrieve order information from the email and place the order

manually.

As the number of orders increases, the number of email orders increases and at some point it

may become very difficult to handle manually and keep up with responding to orders in a

timely manner.

System Overview
The E2R Application is designed to automate this process by actively monitoring the merchant

mailbox, capture information required, and direct it to an electronic ordering system through

REST calls.

The E2R application is developed as an implementation for the client-server architecture using

the Internet Message Access Protocol (IMAP) to retrieve emails. Simple Mail Transfer Protocol

(SMTP) is used to send emails and implements a REST-protocol system to transfer order

4

information.

Most E2R email parsers that are currently available are exclusive services that are offered by

profitable third parties with very particular and limited purposes which could raise some

security concerns. An example of an email parser is https://mailparser.io/

Goal & Motivation

The goal of he E2R system is to provide an alternative to both closed source profitable

software available and manual processing with a fully integrated, and customizable Python

implementation that can be used not only for this purpose but can be customized for

different other purposes.

My main motivation for developing this application is to get a full understanding of Python

implementation, working on and interacting with different server platforms such as email,

web, and database servers and thus allowing me to put programming languages for use in

network automation.

5

Application’s Functionality

Figure (1):Application’s Functionality Diagram

Figure (1) shows the functionality of the E2R application. As shown in step 1 from the figure, an

order email is sent by either Shopify or a customer to the marchant’s email inbox. This email is

then received and stored on the email server mailbox. Step 2 shows that the application

regularly monitors the email server for new emails - Figure (19) shows the application code

that is responsible for this function - and matches a certain criteria to identify the source of the

email. Figure (21) and Figure (22) show the application code responsible for processing emails

based on the source.

6

If an email was identified as a well-formed format, it gets extracted and formatted then steps 3
and 4 in Figure (1) are implemented. In step 3,​ ​an email acknowledgement is sent back to the
email sender confirming that the order is received. Step 4 in the figure is the final step in this
scenario where formatted email data is sent to ordering server to place the order as done by
the code in Figure (25)

However, if email is not in a well-formed format, issues are recorded, steps 5 and 6 in Figure (1)
are implemented. In step 5, ​ ​a follow up email is sent back to the email sender stating issues
found and requesting missing information. Step 6 in the figure is the final step in this case
where obtained email data is sent to an incomplete state server to store information until it is
complete as done by the code in Figure (24)

As shown in Figure 1, the application focuses on three main functionalities:

1- Monitoring email server for email orders

2- Verifying email format

3- Sending order data to the proper destination

Use-Case Scenarios for the E2R Application
Although this application is built and tested on a specific platform (Shopify email orders) and

customer email orders, it can also be used to pull data fields from any auto-generated emails

such as online service requests, emails from contact forms, or any machine sent type of emails.

Application is designed to make an efficient, automated, and reliable tool for a variety of

scenarios.

As a proof of concept, this application has been tested against a practical use case scenario

using the Shopify business model email templates and customer email orders. As they define

themselves, Shopify is an e-commerce platform that allows merchants to set up online stores to

sell their products online. Customers can shop items from several online stores and once an

order is placed and checked out Shopify sends an email to merchants pre-configured email

address to deliver order details.

The E2R application monitors merchants mailboxes for a specific email format and templates to

capture order values and process them.

Primarily, Shopify order emails come from Shopify's electronic system with a controlled

pre-configured product list, which helps the E2R match certain criteria for incoming email

orders and extract order information easily. However, when processing emails that come

straight from customers, the application will have to verify the consistency of the emails

ensuring all required information is present.

7

Processed Email Types :

1- Shopify Emails (Figure (3), (11)):
- Email is always received from the same source
- Email always has the store name in the subject line
- Email body is within a consistent format.

2- Customer Emails (Figure (8)):
- All other email orders
- Emails are always verified

3- Follow Up Emails (Figure (2)):
- Emails response for incomplete requests
- Email always has a reference number in the subject line

Figure (2):Follow Up Email Sample

Application Processing Steps:

1- Shopify Emails:

Step 1:

The application uses the IMAP protocol to perform an email client function to retrieve new
email information from the email server. As in Figure (3), customer “Steve Shipper” places an

8

order to buy products from merchant “Danny”. Order details is sent to Danny with Steve’s
shipping information and order details.

As shown in the figure, the email from address, email to, subject line are pretty consistent.

As for order details, this E2R application handels four email templates with four different order
details - templates are discussed in a subsequent section.

Figure (3): Shopify Email Sample

9

Step 2:

As in Figure (4), order details are extracted from the email received and translated into a

different format which the ordering system understands, then sent over to the ordering server.

REST call:
{​ quantity:1,item:”Aviator
sunglasses”, SKU:SKU2006-001,
unitprice:$89.99},{quantity:1,item:”
Mid-century lounge”,
SKU:SKU2006-020,
unitprice:$154.99}

Send REST call for ordering
server

Figure (4):REST Call in JSON format

Step 3:

System waits until the order is acknowledged by the ordering server. Other responses may
come back as (Sold out, Order rejected, or Order cancelled)

Step 4:

Finally and as Figure (5) shows, ordering system replies back with a confirmation email. System

uses SMTP protocol to perform an email client function and send an email from marchant’s

account.

Response:
Order acknowledged

Sent from ordering server

Figure (5):Ordering Server Response

To: orders@shopify.com
From: danny@marchants.com
Subject: order#9999
confirmed

10

This is an automated response
for:
 1x Aviator sunglasses (SKU:
SKU2006-001) for $89.99 each
 1x Mid-century lounger (SKU:
SKU2006-020) for $154.99
each

Figure (6): Order Confirmation Sample

2- Customer Emails:
When working with customer emails, unlike Shopify orders are not controlled with

pre-configured listing, instead a database reference will have to be used to cross reference

against items ordered in the email. For the purpose of this capstone, a static list is suggested in

the form of a Python dictionary (Figure (7))

Figure (7): Item List Sample

Step 1:

Figure (8) on the next page shows an email that was received from a customer. At first, email
subject and body data is extracted.

11

Figure (8): Customer Email Sample

Step 2:

Order details are extracted from the email received and extracted data is verified:

A. If the received email has all order information required (well-formed email) then email

data is translated into the appropriate format which the ordering system understands,

the email is then sent over to the ordering server.

B. If the received email is missing some order information (non-well-formed emails), email

is sent to a store location (incomplete-state server) and a request is sent to the sender

including a reference number to reply with missing information.

Steps 3 and 4 are similar to the above.

3- Follow Up Emails (Figure (32)):

Although this email type is listed last, it actually is the first check on the application process.
Application always checks to see if there is a reference number in the email subject to identify if
this is a follow up email from a previous non-well-formed email. If it is the case, it sends the
email directly to the incomplete state server along with the reference number and a time
stamp. If not, it will move on to check whether it is one of the two other types above.

12

Email Order Templates

The application is designed to process orders with four different email order templates and
various properties such as item, price and quantity including items properties such as color,
size, and materials. The four templates are as follow:

1- ​Simple single item order: ​As in Figure (9), the application will be able to process email orders
that have a single item with no properties (simple item includes: item name, price, and
quantity)

Figure (9): Simple Single Item Sample

2-​ Simple item list orders:​ As in Figure (10), the application will also be able to process email
orders that have a list of simple items

Figure (10): List of Simple Items Sample

3- ​Complex Single Item Order:​ Figure (11), shows email orders that have a single item with
properties (Complex Item Includes: Item Name, Size, Color, Material, Price, and Quantity)

13

Figure (11): Complex Single Item Sample

4- ​Complex Item List Orders:​ and finally Figure (12), shows email orders that have a list of
complex items

Figure (12): List of Complex Items Sample

Requirements and Specifications

Functional Requirements
As shown in Figure (13) below, the E2R application functions in between the source (order

Email data) and the Designation (receiving system). After email order is received and verified,

data output is formed in a universal modern format that is understood by the receiving system.

14

Figure (13): Application Functional Requirements

1- Source
The data source for the E2R application is email data retrieved from Merchandiser’s email

account. This data is expected to be consistent and in a certain format that contains all required

information for the order to be completed as highlighted in Shopify email example in Figure

(14).

Figure (14): Email Sample in HTML Format

As highlighted above, order Information and order items are the values extracted by E2R

application to be processed. Figure shows data in the HTML format which includes pictures,

attachments, and information that are unnecessary to be captured. Therefore, data at first is

captured in plain text format so that all unnecessary information are ignored and email data are

easier to process as shown in Figure (15) in the following page.

15

Figure (15):Email Sample in Plain Text Format

2- Application
The E2R application is run through the command line interface for user interaction​.

Application uses many Python libraries to perform various tasks. Table (1) below lists Python

libraries and the functionality of every library used in the application:

Python Library Usage

import sys This library is used by the Python interpreter in the application to

access variables and functions

import imaplib This library is used in the application to establish a connection with the

email server and retrieve emails

import getpass This library is used in the application only when email account

password is not in the program’s code and entered manually upon

application run - for security reasons.

import datetime This library is used in the application to convert date and time

information in proper format

import smtplib Most common Python modules to send emails using SMTP. This library

is used in the application when sending order resend requests and

order confirmations

Table(1): Application Python Libraries

16

3- Destination
Application uses modern frameworks for developing both the front end and the backend

interfaces:

JSON: Javascript framework used to format order information

FLASK: Python framework

Hardware​ ​Requirements

Although the E2R system is a very light application that may not require a lot of processing

power, RAM or storage. As the number of emails required to be processed at a time increases,

the requirement for processor power and RAM increases with the increased I/O between

storage and RAM. While coding, testing, and prototyping this application, it was best done with

a regular desktop (4Gb of RAM, Dual Core 2.0GHz).

The recommended hardware requirements and system specification as determined from using

the Python interpreter and Python libraries are as follows:

● 2 GHz Processor

● 2 GB RAM

● Minimum HDD 10GB free space

Application’s Limitations and Assumptions

The E2R Applications assumes that the input data coming from order email is in consistent

format as it processes information from both email subject line and body. Application depends

on the text strings before and after the values required to be captured. That is why if this email

text is not properly formatted, values captured may result in inaccurate values and can not be

trusted.

If the email is not consistent or it has missing values or improperly-formated extracted values

(e.g. quantity is not an integer), the application will be able to detect that and request a resend.

In this case, application does not re-format email contents but rather it requests the missing

information.

As a result of the application’s process, data is returned as a JSON format and it is expected that

the receiving system is able to read them and process them.

Below is the two main error handling the system performs:

17

1. Email Data Error

The main purpose for email data error handling in the application is to capture non-well formed

emails from customers with missing order information. email data errors are handled by

checking for any missing or wrong format data as follows:

- First application checks if the following order information exists (See highlights in Figure

(16) and application code lines 56 through 59 in Figure (21)).:

a. Store Name

b. Order Number

c. Customer Name
- Second, it validates mandatory order items (See highlights in Figure (16) and application

code lines 124 through 154 in Figure (22) and lines 155 through 181 in Figure (23))

a. Item Qty

b. Item Description

c. Item SKU

d. Item Price
- Possibilities and actions (See application code lines 184 through 201 in Figure (23))

1. Unknown source and/or missing ot wrong store name - email is dealt with as

customer email

2. Missing/improper format order # - try to get it from the body - generate an order

number

3. Missing customer name - try to get it from body - Ignored

4. Missing/improper format item qty - assumed as 1

5. Missing/improper format item description - Request Resend

6. Missing/improper format item SKU - retrieved from Order Information

7. Missing/improper format item price - retrieved from Order Information

Figure (16) shows a well-formed email order where mandatory order information highlighted in

Figure (16), elements 1-7. As shown in the figure, some data is duplicated in both the email

subject line and email body (Figure (16), elements 1-7) and as listed above, the action

performed if application fails to extract data from email subject line it will attempt to get them

from email body instead before it fails to request resend.

Other order data as in Figure (16), elements 4-7. Also as listed above, the action performed if

application fails to extract data from email body line it will fail to request resend:

18

Figure (16):Well-Formed Email Sample

Figure (17): Non-Well-Formed Email Sample

19

2. Application Errors:

Main purpose for application error handling is to control and prevent system crashes and data

losses. Application errors are handled through Python error handling (Try and Except).

Action when application errors occurs is to generate an error message that explains the error

occured or send the code prompt to a different function where the process is carried on

differently.

Design

To explain the logic flow of the application, flowchart in Figure (18) demonstrates the

application process step by step.

- At the beginning of the flow, Application tries to login to email account

- If login is successful, emails are checked against the Shopify matching criteria discussed

earlier in this report, if a match is found, email body is handed over to a separate

function called “ProcessOrderFromShopify()” which extracts order information from the

email, sends it to ordering server and sends an ack email to sender.

- Otherwise, email is handled through the “ProcessOrderFromCustomeremail” function

which generates an order number and verifies the consistency of the email:
- Order information is checked (such as customer name, delivery method,...etc)

- Order items and item properties are checked against available item list.

- If order information or items are missing any information order status is marked

as “incomplete” and order issues are recorded. Otherwise order information

from the email, sends it to ordering server and sends an ack email to sender.

- If order status is marked as incomplete, it will be sent to incomplete state server

and a follow up email is sent to sender

- Application will continue to the next email which guarantees that the application flow

and processing other email orders is not affected by inconsistent email orders.

- Once all unread orders have been processed application exits after reformating

captured information and sending them to the ordering system.

20

This design guarantees isolation and reliability where every email order is processed separately.

If a flaw exists either due to an error caused by the application itself or the email format, is is

identified and processed separately with complete isolation from the next email order.

21

Figure (18): Application Flow Chart

22

Application Code

Main application

Figure (19): Application Main Function (Main-ver7_.Py)
As in Figure (19) lines 308 through line 323, using the IMAP protocol, application attempts to

log in to email account and once it is logged in, the inbox folder is selected to start checking

emails from (line 193). Finally, the application calls the CheckMail() function to start looking for

order email match.

23

Check_Inbox() function:

Figure (20): Application Check_Mail Function (Main-ver7_.Py)

Once connection is established, as shown in Figure (20) line code 16 through 51 application

loops through unread emails, captures email data (such as email from field, subject line field,

email body) looking for a match criteria to identify if email was originated from Shopify system

or otherwise.

Once identified, application calls the appropriate function depending on the email type (Figure

(20) line code 48 through 51.

24

ProcessOrderFromShopify() function:

Figure (21): Application ProcessOrderFromShopify Function (Main-ver7_.Py)

As shown in Figure (21) line code 53 through 95, if email was identified as a Shopify email, email

contents are processed using a consistent email text and values are captured based on text

string before and after the values.

Once values are captured and verified, they are formatted into JSON, sent to ordering server,

and returned to the main function.

25

ProcessOrderFromCustomeremail() function:

Figure (22): Application ProcessOrderFromCustomeremail Function - Part 1
(Main-ver7_.Py)

26

Figure (23): Application ProcessOrderFromCustomeremail Function - Part 2
(Main-ver7_.Py)

However, As shown in Figure (22) and Figure (23) line code 101 through 201, if email was

identified as a customer email, an order ID is generated, and email contents are checked line by

line searching for order information then items being orders text and values are captured based

on text string before and after the values. Every Item is checked against available items’ list

shown in line 135 in Figure (22). Order status and order issues are tracked and recorded as

every item is being checked such as in lines 176 through 178 in Figure (23).

27

As in lines 184 through 198 in Figure (23), once values are captured and verified, the order

status is checked. If incomplete, a reference number is generated along with a timestamp, a

follow up email is sent to customer with the reference number, and data is sent to incomplete

state server to store by calling the “sendtoincompletestateserver” function with the reference

number and the timestamp. Otherwise, they are formatted into JSON, sent to ordering server,

and returned to the main function.

SendDataToIncompleteStateServer() function:

Figure (24): Application SendDataToIncompleteStateServer Function (Main-ver7_.Py)

As shown in Figure (24) line code 206 through 209, this function’s main purpose is capture data

sent along with reference number and sent over to incomplete state server to store.

SendDataToIncompleteStateServer() function:

Figure (25): Application SendDataToOrderingServer Function (Main-ver7_.Py)

As shown in Figure (25) line code 214 through 218, this function’s main purpose is capture data

sent and forward to ordering server to process.

28

SendAckemail() function:

Figure (26): Application SendAckemail Function (Main-ver7_.Py)

As shown in Figure (26) line code 276 through 300, this function’s main purpose is login to the

email account provided and send an acknowledgement email to sender's email address

provided with order details.

29

Figure (27): Application ResendemailToCustomerFunction (Main-ver7_.Py)

As shown in Figure (27) line code 250 through 272, this function’s main purpose is login to the

email account provided and send a request email to sender's email address provided with a

reference number and order issues found in customer’s email order.

30

Ordering Server Code:

Figure (28):Ordering Server (Ordering_Server.Py)

As shown in Figure (28) line code 1 through 19, this is a demonstration of the ordering system

and as shown in the code, a socket is open, listening and waiting for data to be received then it

is simply printed to the screen.

31

Incomplete State Server Code:

Figure (29): Incomplete State Server (IncompleteStateServer.py)

As shown in Figure (29) line code 1 through 23, this is a demonstration of the incomplete state

server and as shown in the code, a socket is open, listening and waiting for data to be received

and stored in a dictionary format.

Testing

Test Plan

The purpose of the test plan is to identify and correct defects and errors of the

application. By running repetitive tests on different order emails, application is

evaluated for expected results and the number of order emails it can handle.

Test plan aims to run the application with many test order emails and observe results to

see if application behaves as expect​ed. If application fails, errors are noted for debugging
and corrections

Test Items

1. Test application with Shopify email orders
2. Test application with well-formed customer email orders
3. Test application with non-well-formed customer email orders

32

Functional Testing

- Does the application logic run as per the theory demonstrated in the flow chart?

- Does the application successcds to login to email account at all time?

- Does the application manage to distinguish Shopify emails from customer

emails?

- Is the application able to detect non-well-formatted emails at all times?

- Does the application manage to handle non-well-formatted emails and track

issues?

- Is the application able to send data extracted with the proper format?

Test Environment

Tests were run against test items listed above and application was modified as defects

and errors were discovered. Table (2) shows a list of the components used in the test

environment :

Hardware PC:HP 8300 - CPU:Intel i5 - RAM:8GB - Drive: 256GB SSD

Operating System Windows 10 Pro - Application runs on windows CMD

Python 3.7 Running in virtualenv & requests module

Receiving Server Single-threaded Flask server accepting http POSTs

IDE Notepad++

email Gmail account

E-commerce Shopify with basic paid plan

Table (2): Testing Environment

33

Test Results

Figure (30): Application Test Results

Test results shown in Figure (30) are the outcome of a test done against 6 order email:

- 4 emails were identified as Shopify well-formed orders. Orders were accepted and sent

to ordering server

34

- 1 email was identified as a customer well-formed order - Order was accepted and sent

to ordering server

- 1 emails was identified as a customer non-well-form format (missing shipping address).

Order was not accepted and was sent to incomplete state server

Test result show that the details of well-formed emails where non-well-formed emails were

marked as incomplete and a resend request was sent to sender requesting another copy of the

order email.

Figure (31): Ordering Server Test Results

35

Figure (32): Incomplete State Server Test Results

Figure (31) and Figure (32) show test results on the receiving servers side. Orders that came

from well-formed emails made it to the ordering server and orders that came from

non-well-formed emails made it to the incomplete state server.

Installation Instruction

All coding, testing, and prototyping were done on Python3.7 on Windows 10 OS. Here is a set of

instructions on how to set up a working on environment for the application to run:

1. Python 3

a. Download the latest version of Python 3 for Windows from the Python ​website

b. Run Installation file and accept all defaults - Note installation location to

reference when running the application

2. Requests Python module:
a. Once Python is installed successfully, open windows command prompt

b. Navigate to location noted above in step 1-b

c. Run the following command: python -m pip install requests

36

https://www.python.org/downloads/windows/

3. Flask:
a. Next, on the same windows command prompt location from Step 2-b

b. Run the following command: pip install flask

4. Setting up virtual Environment for:
a. Once installed, Flask requires a virtual environment which is easier to setup on

Python3.6

b. C:\Users\<User>\AppData\Local\Programs\Python\Python36-32\python.exe -m

venv venv

c. C:\Users\<User>\AppData\Local\Programs\Python\Python36-32\venv\Scripts\ac

tivate

d. (venv)

C:\Users\<User>\AppData\Local\Programs\Python\Python36-32\venv\Scripts>

Conclusion

The E2R application gives a simple and reliable way to process and deliver order information. It

provides custom functionalities to help merchandiser with the ordering process and

programmers with a concise syntax to build applications for other purposes. The experience of

developing the application components in the system also helped me getting exposed to

Python framework and its interaction with other services. Within the Python framework, I have

successfully accomplished the requirements of the system. Once this system code is posted and

made available, it can be used to help students and substitute manual systems currently in

service. In summary, this system intends to bring great user experience to both merchandisers

and ordering systems.

Confirmation of Originality
I affirm that the work done on this project and this report is my original work. I have

acknowledged the access to Wenting Zhang’s capstone project proposal in the

acknowledgment section and identified all used sources in the reference list. I declare that

none of my application code and this report has been developed or submitted by Wenting or

any other student before.

37

References
Designing a RESTful API with Python and Flask. Retrieved from

https://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask

Flask Quickstart. Retrieved from ​http://flask-restful.readthedocs.io/en/0.3.5/quickstart.html

How to use dictionaries in Python.​Retrieved from

http://www.pythonforbeginners.com/dictionary/how-to-use-dictionaries-in-python

IMAP email retrieve. ​Retrieved from ​https://github.com/rae/scripts/blob/master/clear-unread

Installing Python Modules. Retrieved from ​https://docs.python.org/2/installing/index.html

Lu, P. (2017) Possible MINT Capstone Projects

Python imaplib — IMAP4 protocol client. Retrieved from

https://docs.python.org/2/library/imaplib.html?highlight=import%20imaplib

Python smtplib. Retrieved from ​https://docs.python.org/2/library/smtplib.html

Python String Find(). ​Retrieved from​ ​https://www.tutorialspoint.com/python/string_find.htm

Python String Splitlines(). ​Retrieved from

https://www.tutorialspoint.com/python/string_splitlines.htm

Reid E. (2016) Python and IMAP. Retrieved from

https://github.com/rae/scripts/blob/master/clear-unread

Satyanarayana, S. (2011) SMTP Example. Retrieved from

 ​https://github.com/tonyito/Polobot/blob/master/polobot_1.0.py

SMTP email send. ​Retrieved from​ ​https://github.com/tonyito/Polobot/blob/master/polobot_1.0.py

The Python Standard Library. Retrieved from​ ​https://docs.python.org/2/library/index.html

Zhang, W. (2017) email-to-REST​ ​User-Request Translation​ ​System Project Proposal

38

https://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask
http://flask-restful.readthedocs.io/en/0.3.5/quickstart.html
http://www.pythonforbeginners.com/dictionary/how-to-use-dictionaries-in-python
https://github.com/rae/scripts/blob/master/clear-unread
https://docs.python.org/2/installing/index.html
https://docs.python.org/2/library/imaplib.html?highlight=import%20imaplib
https://docs.python.org/2/library/smtplib.html
https://www.tutorialspoint.com/python/string_find.htm
https://www.tutorialspoint.com/python/string_splitlines.htm
https://github.com/rae/scripts/blob/master/clear-unread
https://github.com/tonyito/Polobot/blob/master/polobot_1.0.py
https://github.com/tonyito/Polobot/blob/master/polobot_1.0.py
https://docs.python.org/2/library/index.html

