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Abstract—To alleviate the communication, storage, and com-
putation burden on the control center and make full use of
edge computing resources, fully distributed state estimation
has received increasing interest recently. This paper intends to
improve the efficiency and robustness of the fully distributed
state estimation by introducing a meter-level method based on
the Gaussian belief propagation theory. Specifically, we propose
a complex domain factor graph, which extends the state variable
vector from voltage phasors to multiple electrical quantities,
including voltage phasors, current phasors, voltage magnitudes,
and active/reactive power, enabling the direct processing of
nonlinear measurement models and significantly reducing the
number of iterations. Furthermore, based on the M-estimation
theory, we innovatively incorporate multiple robust functions to
the Gaussian belief propagation method to enhance the robust-
ness of the proposed fully distributed estimator. The effectiveness
of the proposed method is demonstrated under various operation
conditions.

Index Terms—Complex domain, fully distributed state estima-
tion, factor graph, Gaussian belief propagation, M-estimation,
power system analities.

I. INTRODUCTION

W ITH the deregulation of the power industry and the
increasing penetration of distributed renewable energy

generation, the interaction between regional power grids, as
well as between transmission and distribution systems, has
grown significantly. An important requirement arising from
this transformation is the system-wide power system state
estimation (SE) that is capable of unified analysis across the
entire power system [1]. In this context, the conventional
centralized SE method would lead to unprecedented communi-
cation, storage, and computation burdens on the control center,
increasing the need for a distributed SE.

Distributed SE has received notable interest recently and can
be categorized into two main groups based on the size of the
minimum computation units: multi-area SE (MASE) and fully
distributed SE (FDSE). The MASE method divides the system
into several subsystems, each with an individual centralized
estimator, while FDSE is capable of being implemented at
either bus-level or meter-level, thereby eliminating the need
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for the centralized estimator. Their main goal is to achieve the
same estimation accuracy as the centralized SE method while
reducing the communication, storage, and computation burden
on each control center.

The MASE method can be further divided into two groups:
hierarchical and decentralized approaches. In the early litera-
ture on MASE, most research focused on the hierarchical ap-
proach, which requires a fusion center to coordinate the local
estimates of all subsystems [2]–[5]. However, these methods
would result in excessive communication and storage burden
in the fusion center. Recent research on MASE has focused
more on decentralized approaches, which eliminate the need
for a fusion center through data exchange between subsystems.
In this regard, the method presented in [6] combined the
alternative direction method of multipliers (ADMM) and the
semidefinite relaxation technique to resolve the non-convex SE
problem. Similarly, the authors of [7] exploit proximal ADMM
and matrix completion to address the low-observability prob-
lems in MASE. Further, [8] presented a model-free method
based on distributed tensor completion to recover the state
information of the whole system. In [9], a non-overlapping
approach was presented considering the switching of inter-area
communication graphs. However, whether it is hierarchical
or decentralized MASE, the numerical stability, estimation
accuracy, and computational efficiency heavily depend on the
partitioning strategy [10], limiting the flexibility of algorithm
application. Furthermore, with the ongoing expansion of the
system scale, regular re-partitioning to ensure the performance
of SE will be inevitable, which is impractical for field imple-
mentation.

The FDSE method takes buses or meters as the minimum
computation units, thereby eliminating the impact of system
scale on state estimators. Additionally, with the continuous
integration of intelligent electronic devices (IEDs) into power
systems [11], FDSE can even be implemented directly into
these IEDs, completely eliminating the dependence on the
control center. [11] proposed an agent-based FDSE method,
which estimates the local state of the system through bus-
level local computations and asynchronous message exchange
between neighboring buses. The authors of [12] introduced
a meter-level method based on the weighted least square
(WLS) method and graph theory. Moreover, many recent
FDSE approaches developed their estimators using belief
propagation (BP), which is a highly efficient probabilistic
inference algorithm and is free of ill-conditioning problems
since no matrix operations are required [13], [14]. In this
regard, the authors of [15] applied the BP to the power system
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SE problem for the first time. [16] proposed an alternating
Gaussian belief propagation method for linear SE problems
to reduce the iterations by dividing the factor graph into
clusters. In [17], a Gauss-Newton BP (GN-BP) method was
introduced to solve nonlinear SE problems by applying BP
sequentially over a sequence of linear approximations of the
SE model. However, these approaches face three common
challenges: First, they generally require excessive iterations to
converge for nonlinear SE problems, making it difficult to meet
the requirements of accuracy and efficiency simultaneously.
Second, while there is no centralized estimator, a global view
(i.e., the capability to obtain information about the entire
power system) is still needed to decide when to initiate/stop
calculation and determine the order of message propagation.
Finally, the robustness of these methods is insufficient, as
they generally do not handle bad data (BD) [12], [15], [16],
or rely on the largest normalized residual test (LNRT)-like
procedures [11], [17], which may have low levels of accuracy
and efficiency in BD processing, especially when dealing with
a large number of BD [18]. Hence, further research on FDSE
is necessary to achieve truly practical distributed computation.

To address the aforementioned challenges, this paper pro-
poses a complex domain FDSE method based on Gaussian BP
(GaBP) theory. The SE model is established by constructing a
complex domain factor graph, where variables, measurements,
and their relationships are represented as variable/factor nodes.
Subsequently, each node exchanges messages with its neigh-
boring nodes to get the final estimates. The main contributions
and advantages are described below.

• We propose a complex domain factor graph and corre-
sponding GaBP message passing rules for FDSE, allow-
ing the direct processing of nonlinear measurement mod-
els without a global view. Compared to the conventional
FDSE methods, the number of iterations is significantly
reduced.

• We construct robust data factor nodes with multiple cost
functions based on the M-estimation theory, achieving
fully distributed bad data processing. Comprehensive
comparative studies demonstrate the strong robustness of
the proposed method.

The remainder of this paper is structured as follows. Section
II presents an overview of GaBP. Section III introduces the
proposed method in detail. Simulation results are described in
Section IV. Conclusions are drawn in Section V.

II. FUNDAMENTALS

GaBP is a probabilistic graphical model-based inference
algorithm, which is capable of solving an overdetermined
linear system in a fully distributed way [13]. Consider the
measurement functions of a linear system in the complex
domain:

z = h(x) + ε, (1)

where z = [z1, z2, · · · , zm]T and x = [x1, x2, · · · , xn]T

denote the measurement vector and the state vector, respec-
tively; h(·) is the linear function mapping states to measure-
ments through measurement matrix H; ε = [ε1, ε2, · · · , εm]T

denotes the measurement noise vector. The variance of a
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Fig. 1. Messages in the GaBP algorithm: (a) message from variable node to
factor node; (b) message from factor node to variable node.

complex random variable X is generally defined as σ2
X ≜

E[(X − µ)(X − µ)∗] [19], where µ denotes the mean value,
E[·] and (·)∗ are the expected value and complex conjugate
of the argument, respectively. With this definition, for a
complex measurement zc, if its real and imaginary parts are
independent, the measurement variance can be obtained as
σ2
c = σ2

r + σ2
i [19, Sec. 5.2], where σr and σi are the

standard deviations of the real and imaginary parts of the
complex measurement, respectively. Similarly, if its magnitude
and phase angle are independent, the measurement variance
can be obtained using its expected value conditioned on the
measured value as E[σ2

c |zc] = σ2
m(2− e−σ2

θ ) + r2m(1− e−σ2
θ )

[20, Thm. 3], where rm denotes the magnitude of the complex
measurement, σm and σθ are the standard deviations of the
magnitude measurement and the phase angle measurement,
respectively. When GaBP is performed on the factor graph, a
type of probabilistic graphical model that represents the rela-
tionship between variables [13], the state variables could be
constructed as variable nodes, while the measurements and the
corresponding measurement functions could be constructed as
factor nodes. Each factor node is connected with the involved
variable nodes according to the measurement function through
edges. By passing messages, which contain probability dis-
tribution information such as mean and variance, between
interconnected nodes, the GaBP algorithm could estimate the
global system state and achieve the same accuracy as the
centralized WLS estimator [13], [17].

1) Messages from variable nodes to factor nodes: Consider
a local factor graph that centers on the variable node xi in
Fig. 1(a). Let vxi→fs denotes the message from variable node
xi to factor node fs. When this message follows a Gaussian
distribution, it could be represented by its mean µxi→fs and
variance σ2

xi→fs
. According to the sum-product rule [21], the

message from the variable node xi to the factor node fs is
formulated as the product of incoming messages from all
connected factor nodes except fs:

µxi→fs =
( ∑

fl∈N{xi}\fs

µfl→xi

σ2
fl→xi

)
σ2
xi→fs , (2)

1/σ2
xi→fs =

∑
fl∈N{xi}\fs

1/σ2
fl→xi

, (3)

where µfl→xi
and σ2

fl→xi
are the mean and variance of vfl→xi

(i.e., the message from factor node fl to variable node xi),
respectively; N{xi}\fs denotes the set of factor nodes that
are neighbors of the variable node xi except fs.
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2) Messages from factor nodes to variable nodes: Consider
a local factor graph in Fig. 1(b), the factor node fs represents
a function of xi as well as K other neighboring variable nodes
xk ∈ {x1, · · · , xK}. According to (1), the mean and variance
of the message vfl→xi

could be obtained as

µfs→xi
=

1

Hxi,fs

(
µs −

∑
xk∈N{fs}\xi

Hxk,fsµxk→fs

)
, (4)

σ2
fs→xi

=
1

|Hxi,fs |
2

(
σ2
s +

∑
xk∈N{fs}\xi

|Hxk,fs |
2
σ2
xk→fs

)
, (5)

where µs and σ2
s denote the measured value and the corre-

sponding variance of measurement noise, respectively; Hxi,fs

and Hxk,fs are corresponding elements of the measurement
matrix H; N{fs}\xi is the set of variable nodes neighboring
the factor node fs, excluding xi.

When there are cycles in the factor graph, the GaBP
algorithm has to be implemented in an iterative way, which
requires a message-passing schedule. Generally, the messages
can be passed in a synchronous or asynchronous manner [13]:

• Synchronous scheduling: All variable and factor nodes
update outgoing messages at each iteration using the
incoming messages of the previous iteration.

• Asynchronous scheduling: Messages could be updated in
an event-triggered way, where each variable/factor node
broadcasts the outgoing messages immediately as the
incoming messages are updated.

We could find that synchronous scheduling requires a global
view of the iteration process, while asynchronous scheduling
only focuses on individual nodes and hence could better
support the distributed calculation. For single-connected factor
graphs, GaBP is guaranteed to converge, while for factor
graphs with cycles, the convergence of GaBP could be de-
termined by the spectral radius of the matrix that reflects
mean updates [14], [17], [22]. Moreover, the convergence
of GaBP could be improved by message damping, which is
achieved by replacing the current message with a combination
of the message at the current and previous iterations [22].
Readers may refer to [22] for the detailed description of the
convergence analysis for GaBP. After convergence, the belief
of each variable node, which represents the estimated values
of the mean and variance of each state variable, is obtained by
collecting incoming messages from all connected factor nodes
as follows.

µxi
=

( ∑
fl∈N{xi}

µfl→xi

σ2
fl→xi

)
σ2
xi
, (6)

1/σ2
xi

=
∑

fl∈N{xi}

1/σ2
fl→xi

, (7)

where N{xi} is the set of factor nodes that are neighbors
of the variable node xi. Note that the GaBP algorithm could
only deal with linear estimation problems. However, for legacy
measurements (i.e., voltage magnitudes, active/reactive power
flows, active/reactive power injections, etc.), the relationships
between measurements and state variables are nonlinear. To
address this problem, the state-of-the-art method sequential

linearizes the nonlinear state estimation model by the Gauss-
Newton (GN) method and applies GaBP to each linear sub-
problem [17]. Then, the outer iteration loop of GN and the
inner iteration loop of GaBP will exist concurrently, resulting
in a significant increase in the number of iterations. More-
over, in order to ensure that the previous outer iteration has
been completed before the next outer iteration begins, it is
necessary to globally control the order of message passing,
which requires a global view, and hence, makes it difficult
for such algorithms to achieve fully distributed execution. We
will introduce a complex domain GaBP (CD-GaBP) method
to address these issues in the next section.

III. PROPOSED STATE ESTIMATION METHOD

In this section, a complex domain factor graph for power
system state estimation is established, which is capable of
representing the nonlinear measurement functions of legacy
measurements. Furthermore, the bad data processing (BDP)
algorithm and distributed iteration strategy for the proposed
method are presented in detail.

A. CD-GaBP

In the proposed CD-GaBP method, the factor nodes are
divided into data factor nodes and smoothness factor nodes,
which correspond to measurement data and measurement
functions, respectively. It is worth noting that this modification
is not a necessary condition for constructing the proposed
estimator. In fact, all types of probabilistic graphical models,
including these two types of factor graphs, can be mutually
converted [13].

1) CD-GaBP with phasor measurements: Under the con-
dition that only phasor measurements are utilized, the voltage
phasors and current injections of all buses, as well as the
current flows of all branches are constructed as variable nodes,
each of which has a corresponding data factor node. Given
that typically not all data factor nodes have measurement
data, and there are no current injections in practical phasor
measurements [23], data factor nodes without measurements
will be assigned pseudo means (e.g., a mean of 0 for current
flow/injection and 1 for voltage phasor) and near-infinite
variances (e.g., 1050) to mitigate their potential adverse impact
on estimation accuracy. Note that the current injections are
modeled for establishing the relationships between legacy and
phasor measurements, which will be detailed in Section III-A2.
In those cases where a bus lacks power injection and current
injection magnitude measurements, the corresponding part of
complex current injections can be removed from the factor
graph. The smoothness factor nodes represent the functions of
the connected variable nodes as

İfl = h(İfl)
(V̇) = H(İfl)

V̇, (8)

İinj = h(İinj)
(İfl) = H(İinj)

İfl, (9)

where V̇, İfl, and İinj denote the vectors of voltage phasor,
current flow, and current injection, respectively; h(İfl)

(·) and
h(İinj)

(·) are the linear measurement functions, whose mea-
surement matrices are H(İfl)

and H(İinj)
, respectively.
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Fig. 2. 3-bus sample system with phasor measurements.
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Fig. 3. Complex domain factor graph with phasor measurements for the 3-bus
sample system.

For illustration consider a 3-bus sample system with phasor
measurements in Fig. 2, whose complex domain factor graph
is presented in Fig. 3. As depicted in Fig. 3, variable nodes
are constructed for all voltage phasors, current injections, and
current flows, which are denoted as xV̇ , xİinj

, and xİfl
,

respectively. Each variable node is paired with a corresponding
data factor node, representing either measurement or pseudo
measurement data, which are represented as zV̇ , zİinj

, and
zİfl

. Additionally, two types of smoothness factor nodes are
constructed to model the relationships between the variable
nodes, denoted herein as hİfl

and hİinj
, corresponding to

equations (8) and (9), respectively.
Based on the node type and the direction of message

passing, messages are divided into four types: vx→z , vx→h,
vz→x, and vh→x, which denote messages from a variable node
to a data factor node, from a variable node to a smoothness
factor node, from a data factor node to a variable node, and
from a smoothness factor node to a variable node, respectively.
The messages sent from the variable node, including vx→z

and vx→h, could be formulated according to (2) and (3), the
message vz→x is represented by the measured value and the
corresponding variance. In the following, we will discuss the
message vh→x, which could be further categorized into four
types: vhİfl

→xV̇
, vhİfl

→xİfl
, vhİinj

→xİfl
, and vhİinj

→xİinj
.

As shown in Fig. 4(a), the message vh(i)

İfl
→x

(j)

V̇

from a current

flow smoothness factor node h(i)

İfl
to a voltage phasor variable

node x(j)

V̇
could be obtained according to (8) as

µ
h
(i)

İfl
→x

(j)

V̇

=
1

H
x
(j)

V̇
,h

(i)

İfl

(
µ
x
(l)

İfl
→h

(i)

İfl

−

∑
k∈XV̇ (i)\j

H
x
(k)

V̇
,h

(i)

İfl

µ
x
(k)

V̇
→h

(i)

İfl

)
,

(10)

( )k

V
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V
x
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v
→
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Fig. 4. Messages from current flow smoothness factor node (a) to voltage
phasor variable node and (b) to current flow variable node.

σ2

h
(i)

İfl
→x

(j)

V̇

=
1∣∣H

x
(j)

V̇
,h

(i)

İfl

∣∣2(σ2

x
(l)

İfl
→h

(i)

İfl

+

∑
k∈XV̇ (i)\j

∣∣H
x
(k)

V̇
,h

(i)

İfl

∣∣2σ2

x
(k)

V̇
→h

(i)

İfl

)
,

(11)

where the superscripts (·)(i), (·)(j), (·)(k), and (·)(l) represent
unique node numbers; Hx

(k)

V̇
,h

(i)

İfl

is the corresponding element
of H(İfl)

; XV̇ (i)\j denotes the set of node numbers of the
voltage phasor variable nodes incident to the smoothness factor
node with node number i, excluding j. Similarly, refer to Fig.
4(b), the message vh(i)

İfl
→x

(j)

İfl

could be obtained as

µ
h
(i)

İfl
→x

(j)

İfl

=
∑

k∈XV̇ (i)

H
x
(k)

V̇
,h

(i)

İfl

µ
x
(k)

V̇
→h

(i)

İfl

, (12)

σ2

h
(i)

İfl
→x

(j)

İfl

=
∑

k∈XV̇ (i)

∣∣H
x
(k)

V̇
,h

(i)

İfl

∣∣2σ2

x
(k)

V̇
→h

(i)

İfl

, (13)

where XV̇ (i) denotes the set of node numbers of the volt-
age phasor variable nodes incident to the smoothness fac-
tor node with node number i. Analogously, the message
vh(i)

İinj
→x

(j)

İfl

, which is represented by µh
(i)

İinj
→x

(j)

İfl

and σ2
h
(i)

İinj
→x

(j)

İfl

,

and v
h
(i)

İinj
→x

(j)

İinj

, which is represented by µ
h
(i)

İinj
→x

(j)

İinj

and

σ2
h
(i)

İinj
→x

(j)

İinj

, could be formulated as follows.

µ
h
(i)

İinj
→x

(j)

İfl

= µ
x
(l)

İinj
→h

(i)

İinj

−
∑

k∈Xİfl
(i)\j

µ
x
(k)

İfl
→h

(i)

İinj

, (14)

σ2

h
(i)

İinj
→x

(j)

İfl

= σ2

x
(l)

İinj
→h

(i)

İinj

+
∑

k∈Xİfl
(i)\j

σ2

x
(k)

İfl
→h

(i)

İinj

, (15)

µ
h
(i)

İinj
→x

(j)

İinj

=
∑

k∈Xİfl
(i)

µ
x
(k)

İfl
→h

(i)

İinj

, (16)

σ2

h
(i)

İinj
→x

(j)

İinj

=
∑

k∈Xİfl
(i)

σ2

x
(k)

İfl
→h

(i)

İinj

. (17)

2) CD-GaBP with hybrid measurements: For most power
systems, phasor measurements are insufficient to ensure full
system observability. In this subsection, we present a novel
factor graph structure to directly process the nonlinear models
of legacy measurements, avoiding the requirement of a global
view and additional computational burden. The relationships
between legacy and phasor measurements are formulated as
follows.

V̇f = |Vf |ejθf , (18)
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İft = (Ṡft/V̇f )
∗
, (19)

İf = (Ṡf/V̇f )
∗
, (20)

where V̇f , |Vf |, θf , İf , and Ṡf denote the voltage phasor,
voltage magnitude, phase angle, current injection, and complex
power injection of bus f , respectively; İft and Ṡft are the cur-
rent flow and complex power flow of branch f -t, respectively.
According to (18), (19), and (20), three types of smoothness
factor nodes (h|V |, hṠfl

, and hṠinj
), three types of data factor

nodes (z|V |, zṠfl
, and zṠinj

), and three types of variable nodes
(x|V |, xṠfl

, and xṠinj
) are added to the complex domain

factor graph. Furthermore, the virtual variable node xejθ is
established to link voltage magnitude with voltage phasor.

For illustration consider the 3-bus sample system in Fig. 2.
When the power injection and the voltage magnitude of all
buses as well as the power flow of all branches are modeled,
the complex domain factor graph of bus 2 is depicted in Fig.
5. Note that each variable node (excluding the virtual variable
node) is connected to a corresponding data factor node, which
is omitted in Fig. 5 for brevity. Aside from the messages
from variable nodes and data factor nodes, seven additional
types of messages are modeled, including messages related
to voltage magnitude (vx

ejθ
→h|V | , vh|V |→xV̇

, vh|V |→x|V | , and
vh|V |→x

ejθ
), as well as messages related to power injection

and power flow (vhṠ→xV̇
, vhṠ→xİ

, and vhṠ→xṠ
), where the

subscript (·)S denotes both power flow and power injection.
Since the virtual variable nodes are not connected to any of the
data factor nodes, they will transmit their beliefs (i.e., means
and variances) to the smoothness factor node, equivalent to
directly sending it back after receiving the message (i.e.,
vx

ejθ
→h|V | = vh|V |→x

ejθ
). Note that according to Theorem 1,

the magnitude of σ2

x
(i)

ejθ

should be restricted to interval (0, 1).

In this paper, σ2

x
(i)

ejθ

is restricted to [10−50, 1− 10−50], for the
sake of implementation convenience.
Theorem 1: For a Gaussian random variable θ ∼ N (µθ, σ

2
θ),

the variance of ejθ is Var(ejθ) = 1− e−σ2
θ ∈ (0, 1).

Proof: The characteristic function of θ is given by ϕθ(t) =
E[ejtθ] = ejtµθ−σ2

θt
2/2 [24]. By setting t to 1 and −1, we get

E[ejθ] = ejµθ−σ2
θ/2 and E[e−jθ] = e−jµθ−σ2

θ/2, respectively.
Then, the variance of ejθ can be derived as

Var(ejθ) = E
[
(ejθ − E[ejθ])(ejθ − E[ejθ])∗

]
= E[(ejθ − ejµθ−

σ2
θ
2 )(e−jθ − e−jµθ−

σ2
θ
2 )]

= 1 + e−σ2
θ − e−jµθ−

σ2
θ
2 E[ejθ]

−ejµθ−
σ2
θ
2 E[e−jθ]

= 1− e−σ2
θ .

(21)

Here, Var(ejθ) = 1− e−σ2
θ ∈ (0, 1) for any σθ > 0. ■

The message vh|V |→xV̇
, whose local factor graph is depicted

in Fig. 6(a), could be formulated as

µ
h
(i)

|V |→x
(k)

V̇

= µ
x
(l)

|V |→h
(i)

|V |
µ
x
(j)

ejθ
→h

(i)

|V |
, (22)

σ2

h
(i)

|V |→x
(k)

V̇

=
∣∣µ

x
(l)

|V |→h
(i)

|V |

∣∣2σ2

x
(j)

ejθ
→h

(i)

|V |
+ σ2

x
(j)

|V |→h
(i)

|V |

+σ2

x
(j)

ejθ
→h

(i)

|V |
σ2

x
(j)

|V |→h
(i)

|V |
,

(23)

2| |Vx

2je
x 

Variable node for phasor 
measurements

Smoothness factor node 
for phasor measurements

Variable node for legacy 
measurements

Smoothness factor node 
for legacy measurements

2| |Vh

Virtual variable node

2I
x

2I
h

2S
x

2S
h

2V
x

2 1S
x

−

2 3S
h

−

2 1I
x

−2 1I
h

−

2 1S
h

−

2 3S
x

−

2 3I
h

−

2 3I
x

−

Fig. 5. Complex domain factor graph with hybrid phasor/legacy measure-
ments for bus 2 of the 3-bus sample system. The solid circles and squares,
which are already modeled in Fig. 3, represent the phasor measurements,
while the hollow circles and squares represent the legacy measurements or
virtual measurements (data factor nodes are omitted for brevity).
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Fig. 6. Messages sent from voltage magnitude smoothness factor node h
(i)

|V |:
(a) v

h
(i)
|V |→x

(k)

V̇

; (b) v
h
(i)
|V |→x

(l)
|V |

; (c) v
h
(i)
|V |→x

(j)

ejθ
.

where the value of variance σ2
h
(i)

|V |→x
(k)

V̇

is obtained according to
Theorem 2 as follows.
Theorem 2: For independent complex random variables X
and Y , the variance of XY is Var(XY ) = |E(X)|2Var(Y )+
|E(Y )|2Var(X) + Var(X)Var(Y ).

Proof: For independent complex random variables X and
Y , the variance of their product XY could be obtained as

Var(XY ) = E
[
(XY − E[XY ])(XY − E[XY ])

∗]
= E

[
|X|2|Y |2 + |E[XY ]|2

−XY (E[XY ])
∗ − (XY )

∗E[XY ]
]

= E[|X|2]E[|Y |2]− |E[XY ]|2

=
(
Var(X) + |E[X]|2

)(
Var(Y )

+|E[Y ]|2
)
− |E[X]|2|E[Y ]|2

= |E[X]|2Var(Y ) + |E[Y ]|2Var(X)

+Var(X)Var(Y ).

(24)

We note that Theorem 2 is a complex-variable extension of
[25], which employs real-valued random variables. ■

For the message vh|V |→x|V | , as shown in Fig. 6(b), the mean
and variance could be obtained from vx

(k)

V̇
→h

(i)

|V |
as

µ
h
(i)

|V |→x
(l)

|V |
=

∣∣µ
x
(k)

V̇
→h

(i)

|V |

∣∣, (25)

σ2

h
(i)

|V |→x
(l)

|V |
= σ2

x
(k)

V̇
→h

(i)

|V |
. (26)

Here, σ2
h
(i)

|V |→x
(l)

|V |
is larger than the theoretical value, as the

error of the phase angle contained in σ2
x
(k)

V̇
→h

(i)

|V |
is counted

into the variance of voltage magnitude σ2
h
(i)

|V |→x
(l)

|V |
. However,

it is worth noting that this approximation will not affect the
estimation result since the only message sent from x(l)

|V | to
smoothness factor node (i.e., vx

(l)

|V |→h
(i)

|V |
) is solely determined
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→
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→
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S
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Fig. 7. Messages sent from power injection smoothness factor node h
(i)
Ṡinj

:
(a) vh

(i)

Ṡinj
→x

(k)

V̇

; (b) vh
(i)

Ṡinj
→x

(j)

İinj

; (c) vh
(i)

Ṡinj
→x

(l)

Ṡinj

.

by the measurement data of voltage magnitude. Similarly, the
message vh|V |→x

ejθ
, whose local factor graph is shown in Fig.

6(c), could be formulated as

µ
h
(i)

|V |→x
(j)

ejθ

= µ
x
(k)

V̇
→h

(i)

|V |

/∣∣µ
x
(k)

V̇
→h

(i)

|V |

∣∣, (27)

σ2

h
(i)

|V |→x
(j)

ejθ

= σ2

x
(k)

V̇
→h

(i)

|V |

/∣∣µ
x
(k)

V̇
→h

(i)

|V |

∣∣2, (28)

where the variance σ2
h
(i)

|V |→x
(j)

ejθ

is also larger than the theoretical
value, but this is acceptable for a virtual variable.

The formulas for messages sent from hṠfl
and hṠinj

have
the same structure. In this context, we will only discuss the
messages sent from hṠinj

below due to space limitations. As
shown in Fig. 7(a), the message v

h
(i)

Ṡinj
→x

(k)

V̇

could be obtained

based on (20) as follows.

µ
h
(i)

Ṡinj
→x

(k)

V̇

= µ
x
(l)

Ṡinj
→h

(i)

Ṡinj

/
µ∗
x
(j)

İinj
→h

(i)

Ṡinj

, (29)

σ2

h
(i)

Ṡinj
→x

(k)

V̇

=
(∣∣µ

x
(j)

İinj
→h

(i)

Ṡinj

∣∣2σ2

x
(l)

Ṡinj
→h

(i)

Ṡinj

+
∣∣µ

x
(l)

Ṡinj
→h

(i)

Ṡinj

∣∣2σ2

x
(j)

İinj
→h

(i)

Ṡinj

)
/∣∣µ

x
(j)

İinj
→h

(i)

Ṡinj

∣∣4,
(30)

where σ2
h
(i)

Ṡinj
→x

(k)

V̇

is obtained through Theorem 3. Moreover,

v
h
(i)

Ṡinj
→x

(k)

V̇

will be assigned a pseudo mean µ
h
(i)

Ṡinj
→x

(k)

V̇

= 1

and a near-infinite variance if µ
x
(j)

İinj
→h

(i)

Ṡinj

= 0.

Theorem 3: For independent complex random variables
X and Y , the variance of Z = X/Y is Var(Z) =(
|X|2Var(Y ) + |Y |2Var(X)

)
/|Y |4 .

Proof: we can estimate Z − E[Z] by the first-order Taylor
series expansion of Z = X/Y as

Z − E[Z] = (X − E[X]) ∂Z
∂X + (Y − E[Y ]) ∂Z∂Y . (31)

Then, the variance of Z could be formulated as

Var(Z) = E
[
(Z − E[Z])(Z − E[Z])∗

]
= E

[
(X − E[X])(X − E[X])

∗ ∂Z
∂X ( ∂Z

∂X )
∗

+(Y − E[Y ])(Y − E[Y ])
∗ ∂Z
∂Y ( ∂Z∂Y )

∗

+(X − E[X])(Y − E[Y ])
∗ ∂Z
∂X ( ∂Z∂Y )

∗

+(X − E[X])
∗
(Y − E[Y ])( ∂Z

∂X )
∗ ∂Z
∂Y

]
.

(32)

Since X is independent of Y , the last two terms (i.e., the last
two lines) of (32) are zero. Substituting ∂Z/∂X = 1/Y and
∂Z/∂Y = −X/Y 2 into (32) yields

Var(Z) = E
[
(X − E[X])(X − E[X])

∗ ∂Z
∂X ( ∂Z

∂X )
∗

+(Y − E[Y ])(Y − E[Y ])
∗ ∂Z
∂Y ( ∂Z∂Y )

∗]
= Var(X)/|Y |2 +Var(Y )|X|2/|Y |4

=
(
|X|2Var(Y ) + |Y |2Var(X)

)
/|Y |4.

(33)

Please note that Theorem 3 could be developed from [26],
which employs real-valued random variables. Furthermore,
the variance obtained here is through a first-order Taylor
expansion, indicating that while this variance is relatively
accurate, it is still an approximation. Therefore, the proposed
method may have a different convergence process than WLS,
and theoretically, it does not converge to the WLS solution.
However, this approximation has little impact on the estima-
tion accuracy, as evidenced by the simulation results in Section
IV. ■

Similar to v
h
(i)

Ṡinj
→x

(k)

V̇

, the message v
h
(i)

Ṡinj
→x

(j)

İinj

, whose local

factor graph is given in Fig. 7(b), could be formulated as

µ
h
(i)

Ṡinj
→x

(j)

İinj

=
(
µ
x
(l)

Ṡinj
→h

(i)

Ṡinj

/
µ
x
(k)

V̇
→h

(i)

Ṡinj

)∗
, (34)

σ2

h
(i)

Ṡinj
→x

(j)

İinj

=
(∣∣µ

x
(k)

V̇
→h

(i)

Ṡinj

∣∣2σ2

x
(l)

Ṡinj
→h

(i)

Ṡinj

+
∣∣µ

x
(l)

Ṡinj
→h

(i)

Ṡinj

∣∣2σ2

x
(k)

V̇
→h

(i)

Ṡinj

)
/∣∣µ

x
(k)

V̇
→h

(i)

Ṡinj

∣∣4.
(35)

Refer to the local factor graph in Fig. 7(c), the message
v
h
(i)

Ṡinj
→x

(l)

Ṡinj

could be formulated as

µ
h
(i)

Ṡinj
→x

(l)

Ṡinj

= µ
x
(k)

V̇
→h

(i)

Ṡinj

µ∗
x
(j)

İinj
→h

(i)

Ṡinj

, (36)

σ2

h
(i)

Ṡinj
→x

(l)

Ṡinj

=
∣∣µ

x
(k)

V̇
→h

(i)

Ṡinj

∣∣2σ2

x
(j)

İinj
→h

(i)

Ṡinj

+
∣∣µ

x
(j)

İinj
→h

(i)

Ṡinj

∣∣2σ2

x
(k)

V̇
→h

(i)

Ṡinj

+σ2

x
(k)

V̇
→h

(i)

Ṡinj

σ2

x
(j)

İinj
→h

(i)

Ṡinj

,

(37)

where (37) is derived based on Theorem 2. Conclusively,
the discussion above shows that the nonlinear relationships
between legacy measurements and phasor measurements could
be represented through the complex domain factor graph. Con-
sequently, the proposed CD-GaBP method could be carried out
in a distributed manner without requiring a global view.

Remark 1: The magnitude measurements of current flows
|Ift| and current injections |If | can also be incorporated into
the proposed CD-GaBP method. The relationship between
them and the phasor measurements can be expressed as İf =
|If |ejφf and İft = |Ift|ejφft . The corresponding messages
can be formulated in the same way as voltage magnitude
(as shown in (22), (23), (25)-(28)). Due to the similarity of
the formulas and space limitations, the detailed description is
omitted.
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Fig. 9. Complex domain factor graph of CD-GaBP for the 2-bus sample
system (data factor nodes are omitted for brevity).

3) A simple case for CD-GaBP: To illustrate the message
propagation process consider a 2-bus sample system with
hybrid measurements in Fig. 8, the corresponding complex
domain factor graph of CD-GaBP is presented in Fig. 9. In the
initialization step, each state variable node send the message
that consist of initial mean value (flat start or warm start
[18]) and near-infinite variance to incident smoothness factor
nodes. Subsequently, the smoothness factor nodes will update
their outgoing messages according to the incoming messages.
For example, when messages vxİ2

→hṠ2
and/or vxṠ2

→hṠ2
are

updated, the mean and variance of message vhṠ2
→x

V̇2

will
be formulated according to (29) and (30) as µhṠ2

→x
V̇2

=

µxṠ2
→hṠ2

/µ∗
xİ2

→hṠ2

and σ2
hṠ2

→xV̇2

= (|µxİ2
→hṠ2

|2σ2
xṠ2

→hṠ2

+

|µxṠ2
→hṠ2

|2σ2
xİ2

→hṠ2

)/|µxİ2
→hṠ2

|4. Similarly, when the incom-
ing messages of a state variable is updated, the corresponding
outgoing message will be formulated according to (2) and
(3). The proposed method takes meters as the minimum
computation units. For illustration consider the 2-bus sample
system in Fig. 8. When measurement data is collected from
phasor measurement units (PMUs) and remote terminal units
(RTUs) at buses 1 and 2, we can map the complex domain
factor graph in Fig. 9 into four minimum computation units,
corresponding to the four measurement devices. In practical
implementation, we can group the minimum computation units
according to actual requirements. For example, we can group
the minimum computation units based on buses as depicted in
Fig. 9. Further, we can even assign the nodes in the complex
domain factor graph of multiple buses to a single computing
device. It is worthwhile to note that the structural differences
between complex domain factor graphs and communication
systems should also be considered in practical implementation.
This aspect will be further investigated in our future studies.

4) Complexity analysis: The computational complexity of
GaBP depends on the following three aspects: the complexity
involved in calculating each message, the number of edges
in the factor graph, and the number of iterations required
for convergence. Given the inherent sparsity in the topology
of power systems, the complexity of each message could be
considered O(1) [17]. In this way, the complexity of a GaBP

algorithm can be expressed by O(
∑E

i=1 Li), where E and Li

are the number of edges and the number of iterations for ith
edge, respectively. In CD-GaBP and GN-BP, the number of
edges is 3n + 10b + 4mL and

∑2n
i=1 di, respectively, where

n, b, and mL denote the number of buses, branches, and
legacy measurements, respectively, di denotes the degree of
the variable node i. The above analysis indicates that the
computational complexities for CD-GaBP and GN-BP are both
O(n) per iteration. Furthermore, according to our tests, the
total number of edges in the proposed method is comparable
to that in GN-BP, and it may even be fewer, especially for
power systems with high measurement redundancy. Moreover,
compared to the conventional factor graph that only constructs
voltage phasors as variable nodes, the proposed complex do-
main factor graph decouples the relationship between current
injections and voltage phasors, leading to fewer short cycles,
thereby enhancing convergence and reducing the number of
iterations [13]. Furthermore, the GaBP model for GN-BP
needs to be executed multiple times to achieve convergence in
the outer iteration loop (as illustrated in Section II), thereby
further increasing the total iteration number. Therefore, the
overall computational complexity of the proposed method is
expected to be lower than that of GN-BP.

B. Robust Data Factor Nodes based on M-estimation

Compared to centralized estimators, the proposed method
faces greater challenges in processing bad data because each
node can only leverage the information from itself and the
connected edges. To deal with this challenge, we employ the
M-estimation theory to construct robust data factor nodes by
scaling the variance of the measurement data. Consider a data
factor node whose noise follows a Gaussian distribution as

zs(x) = Ke−
1
2M

2
s = Ke−

1
2 (z

m
s −hs(x))

Tws(z
m
s −hs(x)), (38)

where zms is the sth measurement; hs(·) and ws are
the corresponding measurement function and weight, re-
spectively; K denotes the scaling factor for normal-
ization, which does not need to be calculated [13];
Ms =

√
(zms − hs(x))T ws (zms − hs(x)) represents the Ma-

halanobis distance [27]. To mitigate the impact of outliers and
non-Gaussian noises, we could replace M2

s , which correspond
to L2 cost, with a sub-quadratic cost function. Some com-
monly used cost functions, including L2, L1, Huber [28], and
Hampel [29], are depicted in Fig. 10. The Huber and Hampel
functions yield the same cost as L2 for small errors, indicating
that they can provide accurate estimates similar to L2 under
the Gaussian distribution. In this paper, the Huber and Hampel
cost functions are utilized for handling bad data. Specifically,
the Huber function is applied to the initial calculation after
updating measurement data to mitigate the impact of outliers
on convergence performance, given that the Hampel function
is non-convex, while the Hampel function will be employed in
the subsequent calculation processes for superior robustness.

A data factor node with Huber cost could be expressed as

zHu
s (x) =

{
Ke−

1
2M

2
s Ms ≤ c

Ke−cMs+
1
2 c

2

c<Ms,
(39)
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Fig. 10. Some commonly used cost functions.

where c is a positive parameter that adjusts the shape of the
cost function and is set to 1.96 with confidence levels of 95%
[29]. Then, the equivalent L2 cost for Huber, MHu

s , could be
obtained through

1

2
(MHu

s )
2
=

{
1
2M

2
s Ms ≤ c

cMs − 1
2c

2 c<Ms.
(40)

Then, the scaling ratio kHu
s can be obtained as

kHu
s =

(MHu
s )2

M2
s

=

{
1 Ms < c
1

M2
s
(2cMs − c2) c<Ms.

(41)

For the Hampel function, its data factor node is expressed
as

zHa
s (x) =


Ke−

1
2M

2
s Ms ≤ c1

Ke−c1Ms+
1
2 c

2
1 c1 <Ms ≤ c2

Ke−
1
2 c1(c2+c3−c1+

Ms−c3
c2−c3

) c2 <Ms ≤ c3
Ke−

1
2 c1(c2+c3−c1) c3 < Ms,

(42)

where the thresholds c1, c2, and c3 adjust the shape of the
Hampel cost function. The smaller the value of these thresh-
olds, the higher the robustness, but the lower the accuracy.
In this paper, we follow the suggestions in [29] and [30] by
setting these thresholds to c1 = 1.96, c2 = 2.24, and c3 = 2.58
with confidence levels of 95%, 97.5%, and 99%, respectively.
In the same way as kHu

s , the scaling ratio for the Hampel cost
function could be obtained as follows

kHa
s =


1 Ms ≤ c1
1

M2
s
(2c1Ms − c21) c1 <Ms ≤ c2

1
M2

s
c1(c2+c3−c1+

Ms−c3
c2−c3

) c2 <Ms ≤ c3
1

M2
s
c1(c2+c3−c1) c3 < Ms.

(43)

For the sth data factor node, the variance of the outgoing
message will be initially scaled by the scaling ratio kHu

s and
subsequently by kHa

s to suppress the impact of bad data.

C. Distributed Iteration Strategy

In conventional GaBP methods, the convergence is deter-
mined by checking whether the changes in all state variables or
messages between two iterations are smaller than a predefined
threshold. However, this strategy requires a global view, and
hence, is not feasible for CD-GaBP in distributed execution
scenarios, where each variable node can only access infor-
mation from itself and its neighbors. To address this issue, a
distributed iteration strategy is proposed as follows.

TABLE I
MEASUREMENT STANDARD DEVIATIONS

Legacy measurements Phasor measurements

Voltage Injected power Power flows Voltage Current Phase angle

0.5% 1% 1% 0.1% 0.1% 0.1◦

1) Consecutive Convergence Test: For each variable node,
the convergence counter is incremented when the change in its
mean exceeds the convergence threshold α; otherwise, it is re-
set to 0. Convergence is confirmed only when the convergence
counter reaches a preset value τ . This design aims to enhance
the robustness of convergence determination, mitigating the
risk of erroneous judgments caused by occasional fluctuations.
In this paper, the α and τ are set to 10−6 and 10, respectively.

2) Reactivation of Computation: For each variable node that
has already converged, if the change in its mean exceeds the
reactivation threshold γ, this variable node will be reactivated
and require further iterations. In this paper, the reactivation
threshold γ is set to 10−5.

With the distributed iteration strategy, each variable node
can autonomously provide estimates without waiting for the
entire SE model to converge. In the scenario of large-scale
power system state estimation, the calculation of the proposed
method can be distributed to various substations or edge
computing devices, thereby alleviating the communication,
storage, and computation burdens on the control center.

IV. PRACTICAL CASE STUDIES

The proposed CD-GaBP method was compared against the
GN-BP method [17], the conventional WLS method [18], and
several robust estimators. The performance index used was the
mean absolute error (MAE), which is defined as

MAE =
1

n

n∑
i=1

|V̇ esti
i − V̇ true

i |, (44)

where n is the number of buses; V̇ esti
i and V̇ true

i represent
the estimated and true values of the voltage phasor for bus i,
respectively. Unless stated otherwise, 20% of the buses were
equipped with PMUs, providing voltage phasor and current
flow measurements of all connected branches. Meanwhile, the
voltage magnitudes, injected powers of all buses, and power
flows of all branches are monitored by legacy measurements.
Further, independent zero-mean Gaussian noises with standard
deviations σ, as specified in Table I, are applied to the
measurements. The convergence threshold for all methods was
set to 10−6. Moreover, the total iteration limit for GN-BP
was set to 6× 104, with an upper limit of 10 for the outer
iteration loop and 6000 for each inner iteration loop, to prevent
endless iterations [17]. Unless otherwise specified, all results
were obtained through 3000 Monte Carlo (MC) simulations
conducted on a PC with an Intel Core i7-12700 CPU with
16GB of RAM. Furthermore, for centralized methods, sparse
techniques were utilized to accelerate calculations.
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TABLE II
AVERAGE MAE VALUES FOR DIFFERENT METHODS (P.U.)

System CD-GaBP GN-BP WLS

IEEE 14-bus 6.21×10−4 6.32×10−4 6.19×10−4

IEEE 118-bus 5.15×10−4 6.17×10−4 5.09×10−4

IEEE 300-bus 8.58×10−4 2.99×10−3 8.66×10−4

A. Assessment of Accuracy and Efficiency

In this section, the estimation accuracy and computational
efficiency for the proposed CD-GaBP method, the GN-BP
method, and the WLS method are compared. Table II shows
the average MAE values for the three methods. It is clear
that the estimation accuracy of the proposed algorithm is
significantly higher than that of GN-BP and is comparable to
WLS. This is mainly because the proposed complex domain
factor graph has fewer short cycles, which improves the
convergence and accuracy of CD-GaBP. It can be found from
Tables III and IV that the number of iterations for CD-GaBP is
2 orders of magnitude fewer than that of GN-BP. Accordingly,
the computational efficiency of CD-GaBP is also significantly
superior to that of GN-BP. In addition, it is important to note
that the average iteration number of CD-GaBP corresponds
to the variable nodes with the maximum iteration number.
Therefore, as illustrated by the convergence process in an
arbitrarily selected MC run in Fig. 11, the iteration numbers
for the majority of variable nodes in CD-GaBP are fewer than
those shown in Table III. Moreover, as shown in Table IV,
given that a centralized estimator can choose highly efficient
solvers from a global perspective and utilize accelerated com-
putational methods such as sparse Cholesky decomposition,
the computational efficiency of the proposed method is inferior
to that of the WLS method. This deficiency will be even more
pronounced in large-scale power systems. For example, in the
Polish 2383-bus system, the average execution time for WLS
is 5.41×10−1 seconds, while that for CD-GaBP is 30.82
seconds, which is 3 orders of magnitude greater than that for
WLS. However, we highlight again that the main advantage of
the proposed method lies in its capability for fully distributed
computing. Additionally, the computational efficiency of the
BP-based algorithm can be directly improved by increasing
the number of processors or threads [13]. To demonstrate this
point, we increased the thread count of CD-GaBP to 3 in
the IEEE 14-bus system. Specifically, calculations for buses
1 to 3 and 5 were assigned to thread 1, those for buses 4, 7
to 9 were assigned to thread 2, and those for the remaining
buses were assigned to thread 3. After implementing multi-
threaded calculations, the overall computation time decreased
from 2.78× 10−2 seconds to 1.33× 10−2 seconds. In practical
applications, the calculations of CD-GaBP could be distributed
to various substations or edge computing devices to alleviate
the computational burden on the control center.

B. Impact of Measurement Precision

To assess the impact of measurement precision on the pro-
posed method, three standard deviation values are considered

TABLE III
AVERAGE ITERATION NUMBERS FOR DIFFERENT METHODS

System CD-GaBP GN-BP WLS

IEEE 14-bus 1.82×102 2.30×104 4.00
IEEE 118-bus 2.50×102 6.00×104 1.83×101

IEEE 300-bus 3.84×102 6.00×104 1.16×101

TABLE IV
AVERAGE EXECUTION TIME FOR DIFFERENT METHODS (S)

System CD-GaBP GN-BP WLS

IEEE 14-bus 2.78×10−2 4.64 3.51×10−3

IEEE 118-bus 1.84×10−1 1.60×102 4.94×10−2

IEEE 300-bus 4.67×10−1 3.15×102 6.49×10−2
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Fig. 11. Convergence process for each voltage phasor variable node. The
white lines and numbers correspond to the number of iterations, while the
colors represent the logarithm of absolute errors.
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Fig. 12. Average MAE values for CD-GaBP and WLS with different
measurement precisions.

for all measurements: in addition to the standard deviation
σ shown in Table I, standard deviations of 2σ and 3σ were
considered. Fig. 12 shows the average MAE values of CD-
GaBP and WLS. As expected, a higher standard deviation
led to lower estimation accuracy. Nevertheless, the increase
in MAE for the proposed method is very close to that for
the WLS method, both remaining within the order of 10−3.
This indicates that the estimated accuracy of CD-GaBP is not
heavily dependent on the measurement precision.

C. Impact of Non-Gaussian Noise

Recent studies indicate that the noise in phasor measure-
ments may follow a non-Gaussian distribution [31]. In this
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regard, we simulated the noise of phasor measurements with
Laplace and t location-scale distributions, and the coefficients
of these distributions are set to make the standard deviation
of each distribution equal to σ (as in [32]). The Average
MAE values of CD-GaBP for the IEEE 14-, 118-, and 300-bus
systems are presented in Fig. 13, from which we can observe
that the estimation error under non-Gaussian noise of CD-
GaBP is not significantly different from, and even be lower
than, that under Gaussian noise. This is mainly because the
cost function for the data factor nodes in the proposed method
is a combination of Huber and Hampel, both of which do not
heavily rely on the Gaussian assumption.

D. Impact of Bad Data

In this section, the proposed CD-GaBP method was com-
pared in the IEEE 14-bus system with GN-BP incorporating
a LNRT-like procedure (GN-BPLNR) [17], WLS with LNRT
(WLSLNR) [18], Schweppe-type M-estimator with Huber cost
function (SMHu) [33], and four variants of the proposed CD-
GaBP method with L2 cost function (CD-GaBPL2), L1 cost
function (CD-GaBPL1), Huber cost function (CD-GaBPHu),
and Hampel cost function (CD-GaBPHa). The tests were
conducted for both normal and extreme BD scenarios.

In the normal BD scenario, the standard deviations of a
subset of the measurements were set to 40σ to simulate BD.
The locations of BD were randomly selected in a certain
quantity for each MC run. Fig. 14 depicts the average MAE
values over the rate of the number of BD to the number of
measurements. It is clear that the proposed CD-GaBP method
consistently exhibits the lowest average MAE.

In the extreme BD scenario, PMUs were placed on buses 5
and 11. The magnitudes of the measurements listed in Table

TABLE V
BAD DATA SET IN THE EXTREME BD SCENARIO

Measurement Type Measurement

Phasor
measurement

All current flow measurements, namely İ5−1,
İ5−2, İ5−4, İ5−6, İ11−6, İ11−10

Legacy
measurement

V9, P1, Q1, P2, Q2, P3, Q3, P9, Q9, P13,
Q13, P1−2, Q1−2, P2−4, Q2−4, P4−7, Q4−7,
P4−5, Q4−5, P5−6, Q5−6, P6−12, Q6−12,

P7−4, Q7−4

Average MAE [p.u.]
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Fig. 15. Average MAE values for different methods in the extreme BD
scenario. The error bars indicate the maximum and minimum values of MAE.

V were increased by 50% to simulate BD. As shown in
Fig. 15(a), CD-GaBP, CD-GaBPHa, and SMHu demonstrate
significantly higher accuracy compared to other algorithms.
The accuracy of CD-GaBPHu and CD-GaBPL1 are lower than
CD-GaBP, mainly due to the relatively large costs of Huber
and L1 cost functions when the error is large. Fig. 15(b)
further illustrates the average MAE of each bus for CD-
GaBP, CD-GaBPHa, and SMHu. It can be observed that CD-
GaBP outperforms SMHu in accuracy for all buses. Moreover,
the error of each bus for CD-GaBPHa is comparable to that
of CD-GaBP, but the overall accuracy is lower (the average
MAE for CD-GaBP and CD-GaBPHa are 1.47×10−3 and
1.50×10−3 , respectively). Additionally, please note that the
BD included in critical measurement sets cannot be processed
by any SE method, including the proposed method, if no
redundant measurements are introduced [18].

E. Impact of Measurement Redundancy

The transmission system in some regions and most of
the distribution systems still suffer from low measurement
redundancy. In this context, we assessed CD-GaBP in the
following four cases with different measurement redundancies.

Case 1: No phasor measurements, and about half of the
legacy measurements (i.e., voltage magnitude measurements of
all buses, power injection measurements of half of the buses,
and power flow measurements at one terminal of all branches).

Case 2: 10% of the buses were deployed with PMUs, and
about half of the legacy measurements.

Case 3: 30% of the buses were deployed with PMUs,
and full legacy measurements (i.e., voltage magnitude and
power injection measurements of all buses, and power flow
measurements at both terminals of all branches).
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Fig. 16. Average MAE values for different measurement redundancies on the
IEEE 118-bus system.

Case 4: 50% of the buses were deployed with PMUs, full
legacy measurements.

The measurement redundancy increases gradually from
Case 1 to Case 4. As shown in Fig. 16, under various
measurement redundancies, the estimation accuracy of the
proposed CD-GaBP method is very close to that of WLS,
indicating that the measurement redundancy does not have a
significant impact on the proposed method.

F. Impact of Missing Data
The effectiveness of the proposed method in the presence

of missing data was assessed in the IEEE 14-bus system
through time-continuous simulations, employing an optimal
power flow program [34] and real-world load profiles [35]
with a sampling rate of one frame every 15 minutes. Two
PMUs were deployed on buses 5 and 11. Meanwhile, 37 legacy
measurements were considered, which include 1 voltage mag-
nitude at bus 1, 22 power injections at buses 1 to 4 and 7
to 13, as well as 14 power flows at branches 1-2, 2-4, 4-
7, 7-8, 7-9, 9-10, and 9-14 (all of the power measurements
are in active/reactive pairs). All the phasor measurement data
were missing between 10 to 40 hours, and the power injection
measurements at bus 12, which are critical measurements
without phasor measurements, were missing between 25 to
40 hours. The state estimates over time of bus 12 for an
arbitrarily selected MC simulation run are depicted in Fig.
17, and the average MAE values for CD-GaBP and WLS are
shown in Fig. 18(a). It can be observed that the accuracy of
CD-GaBP decreases rapidly when all phasor measurements
are missing, but remains similar to that of the WLS algorithm.
Moreover, after the critical measurements P12 and Q12 were
missing, WLS failed to converge, whereas CD-GaBP continues
to provide estimates, thanks to the prior information provided
by previous iterations. Additionally, a useful observation can
be found from Fig. 18(b) that the convergence rate of CD-
GaBP could be improved by the use of phasor measurements.
It is important to note that when the system undergoes large
state changes, the absence of crucial measurements may lead
to poor tracking performance for unobservable buses. This
aspect will be discussed in Section IV-G.

G. Impact of Sudden State Changes
To validate the effectiveness of the proposed method under

sudden state changes, a time-domain simulation program [36]
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Fig. 17. State changes and estimates of bus 12 for the IEEE 14-bus system
in the presence of missing data: (a) voltage magnitude; (b) phase angle.
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Fig. 18. Average MAE values, iteration numbers, and execution time for the
IEEE 14-bus system in the presence of missing data: (a) average MAE values;
(b) average iteration numbers and execution time.

was utilized to generate true states for the IEEE 14-bus system,
where a doubly-fed induction generator with the Mexican
hat wavelet wind model [37] was deployed at bus 1, a load
shedding was simulated on bus 9 at 1st second, a generator
shedding was simulated on bus 8 at 3rd second, and branch 1-
5 was disconnected at 7th second. Legacy measurements were
obtained every 2 seconds and PMUs were deployed at buses
5 and 11 with a sampling rate of 30 frames/s. In this context,
buses 3, 7 to 9, and 12 to 14 can not be observed by PMUs. As
can be seen from the state estimates of bus 9 in Fig. 19 and the
average MAE values in Fig. 20(a), when a sudden state change
occurs (at 1st, 3rd, and 7th seconds), the estimation accuracy is
significantly affected until the next legacy measurement update
(at 2nd, 4th, and 8th seconds). Nonetheless, the errors caused
by sudden state changes are bounded. In cases where the
observability of the entire power system cannot be guaranteed
through phasor measurements, these estimates would be still
useful for power system control and protection applications.
Additionally, as shown in Fig. 20(b), the sudden state change
results in an increase in the number of iterations, due to the
significant inconsistency between the prior information in CD-
GaBP and the true system states.

V. CONCLUSION

This paper presents a meter-level FDSE, which is capable
of solving the nonlinear hybrid state estimation problems
through local message exchange with few iterations. By in-
corporating the Huber and Hampel cost functions into the
data factor node, the proposed method achieves comparable
or even superior robustness to centralized robust estimators.
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Fig. 19. State changes and estimates of bus 9 for the IEEE 14-bus system in
the presence of sudden state changes: (a) voltage magnitude; (b) phase angle.
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Fig. 20. Average MAE values, iteration numbers, and execution time for
the IEEE 14-bus system in the presence of sudden state changes: (a) average
MAE values; (b) average iteration numbers and execution time.

Moreover, the proposed distributed iteration strategy not only
ensures the fully distributed nature of the CD-GaBP method
but also improves its estimation accuracy by providing prior
information. Extensive simulations validate the effectiveness
of the proposed method in the presence of non-Gaussian noise,
bad data, missing data, and sudden state changes.
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