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Abstract 

 

 
Steam-assisted gravity drainage (SAGD), an in-situ thermal oil recovery method is 

successfully utilized to extract bitumen from the Canadian oil sands. To improve the 

reservoir performance, an idea of closed-loop reservoir management (CLRM) was 

proposed that comprises near-continuous data assimilation to estimate unknown 

parameters and model-based optimization at distinct decision-making levels. 

Commercialization of CLRM is vital, however, it poses a significant challenge given the 

intensive computational requirements of data assimilation techniques, highly nonlinear 

nature of SAGD process and rare field-scale testing of the concept. In this research, 

limitations of the fundamental elements of CLRM i.e., data assimilation and short-term 

production optimization are addressed by developing computationally efficient 

dynamic modeling workflows and advanced control frameworks. 

Data assimilation using contemporary techniques at reservoir scale requires high 

fidelity simulation of many stochastic realizations, resulting in an impractical 

computational cost. Two solutions proposed in this work are initial sampling method 

and metamodel. To select few realizations from the ensemble in proposed “scenario 

reduction” method, Kantorovich distance that quantifies disparity between ensembles 
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using static measures is minimized by solving a mixed-integer linear programming 

(MILP) problem. In another approach, computationally expensive reservoir simulator 

is replaced by an integrated Karhunen-Loeve (KL) parameterization and polynomial 

chaos expansion (PCE) metamodel in Ensemble Kalman Filter (EnKF) and Markov chain 

Monte Carlo (MCMC). 

Short-term (or real-time) production optimization using model predictive control 

(MPC) requires adequate representation of a complex, spatially distributed, nonlinear 

SAGD process. Variants of MPC that integrate real-time production and temperature 

data along with well and surface constraints are implemented in this research to 

achieve steam conformance and an optimum subcool. Adaptive MPC involves 

continuous re-estimation of model coefficients at each control interval, reflecting the 

current reservoir dynamics while gain-scheduled MPC decomposes the control problem 

in a parallel manner with a separate controller for each operating region. Also, 

nonlinear MPC (NMPC) is employed using Hammerstein-Wiener model, which is either 

linearized or nonlinear optimization problem is solved using interior point method.  

Proposed workflows/frameworks are tested using a field-scale model of a SAGD 

reservoir located in northern Alberta, Canada. Both “scenario reduction” sampling 

method and PCE metamodel significantly reduce the computational cost while 

obtaining reasonable posterior distribution and production forecast. In addition, all four 

MPC variants successfully control the subcool in real-time, leading to lower cumulative 

steam-oil-ratio (cSOR) and more than 20% increment in the net present value (NPV).  

Practical implications of the proposed research will be consequential in designing 

accurate and energy efficient CLRM workflows while satisfying the constraints offered 

by the SAGD surface facilities, reducing carbon footprints, and improving economics.  
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 Background 

Alberta’s oil sands are the third largest proven crude oil reserves in the world, which 

is 70% of Alberta’s and 25% of Canada’s total oil reserves. Only 10% of the oil sands 

are located near the surface for which surface mining can be economical. As a result, 

a thermal in-situ recovery process is used to extract bitumen, widely known as Steam 

Assisted Gravity Drainage (SAGD). The primary mechanism of this process is viscosity 

reduction by heating the bitumen to increase its mobility. In this process, steam is 

injected through horizontal well at the top of the reservoir and bitumen is produced 

through gravity drainage from the horizontal well at the bottom. SAGD was devised in 

1978 and it has been implemented successfully in oil sands. However, the research 

and field experience indicate the substantial chances of improvement and optimization 

of the process. In order to optimize various process parameters, it is necessary to 

enhance and update our knowledge about reservoir parameters because reservoir 

dynamics play a larger role in production performance and often drives the decision 

related to oil/gas fields. Though uncertainty in geological properties cannot be 

removed, it can certainly be reduced up to a level that firm decisions can be made 

related to the reservoir. The process of reducing uncertainty in reservoir parameters 

by integrating the abundant different types of data available from the field is widely 

known as history matching. Once the history matched model is obtained, it can be 

further used for production optimization at various decision-making levels.  

Recently, Closed-Loop Reservoir Management (CLRM) – a combination of near-

continuous data assimilation and model-based optimization – has been proposed by 

several authors. While the data-assimilation reduces uncertainty in the unknown 

reservoir properties, optimization provides the best operating strategy. The aim of 

CLRM is to improve the reservoir performance in terms of oil recovery and hence the 

economics of the process. Jansen et al. (2009) provide a detailed explanation of the 

CLRM concept. Foss and Jensen (2011) further develops the concept of CLRM and 

provides new insights. Figure 1.1 outlines the different elements of the CLRM. The 

improvement of two of the elements i.e., assisted history matching and short-term (or 

real-time) production optimization is focused in this thesis. In the next two sub-

sections 1.1.1 and 1.1.2, an overview of assisted history matching methods and real-

time production optimization of SAGD reservoirs are explained respectively. 
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Figure 1.1 – Workflow of closed-loop reservoir management. 

1.1.1 Overview of Assisted History Matching  

History matching is an inverse problem in which observations are used to calculate the 

unknown model parameters. Like other inverse problems, history matching is also 

challenging to solve due to its non-uniqueness. To try various possible combinations 

of unknown parameters manually is a tedious and inefficient task. Agarwal et al. 

(2000) noted that it took them almost 12 months of intensive work to obtain history 

match manually, which is not a desirable approach, especially in the era of real-time 

history matching. Therefore, various statistical and mathematical methods have been 

applied in history matching (see Figure 1.2) with the help of easily available computing 

resources. It is widely known as assisted/automatic history matching. The process is 

systematic, computationally efficient, and capable of providing fruitful results. 

Therefore, many applications of the assisted history matching techniques can be found 

in the literature. 
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Figure 1.2 – Overview of assisted history matching techniques. 
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Multiple history-matched models are required to quantify risk and uncertainty 

associated with the reservoir management. Randomized Maximum Likelihood (RML) 

comprises joint sampling of model parameters (𝑚) and observation data from the 

Gaussian prior and then conditional realization 𝑚𝑟𝑚𝑙 is obtained by solving the 

following equation: 

 

𝑚𝑟𝑚𝑙 = argmax
𝑚

[exp (−
1

2
(𝑚 −𝑚∗)𝑇𝐶𝑀

−1(𝑚 −𝑚∗)

−
1

2
(𝑔(𝑚) − 𝑑𝑜𝑏𝑠

∗ )𝑇𝐶𝐷
−1(𝑔(𝑚) − 𝑑𝑜𝑏𝑠

∗ ))] 
(1.1) 

where 𝑚∗ and 𝑑𝑜𝑏𝑠
∗  are the unconditional realizations of model variables and 

observation data respectively, 𝑔(𝑚) is the functional relationship between model 

parameters and data while 𝐶𝑀
−1 and 𝐶𝐷

−1 are covariance of model parameters and error 

variance respectively. The only difficulty in RML is minimizing Eq. (1.1). Markov chain 

Monte Carlo (MCMC) method is another technique capable of producing several 

reservoir models from posterior distribution such that its probability depends on the 

prior distribution. The process includes two steps i.e. proposal step and acceptance 

step. Initially, a model is proposed from the prior distribution and at each step in the 

chain, new model is proposed. Based on acceptance probability defined by Hastings, 

the model is tested and it is decided whether to accept the new model or retain the 

old model. However, this technique requires large number of iterations to converge to 

a stationary posterior and ultimately results into impractical computational cost, 

especially when number of model parameters are large.  

Ensemble Kalman Filter (EnKF) has emerged as an efficacious tool of history matching, 

mainly because of its ability to adapt large-scale nonlinear systems and simplicity. 

EnKF, unlike other assisted history matching methods, can provide sequential updating 

of multiple reservoir models simultaneously, assimilate different types of data, and 

manage a large number of model parameters. Also, it offers the uncertainty 

quantification as an outgrowth. EnKF was used initially for estimation of approximately 

known parameters in the dynamic two-phase model by Lorentzen et al. (2001). 

Application of EnKF in history matching was first proposed by Naevdal et al. (2003) 

indicating promising results.  



6 

 

As demonstrated in Figure 1.3, the workflow of history matching using EnKF primarily 

includes two steps: Forecast Step and Analysis Step. In forecast step, all the 

realizations in the ensemble are forwarded using numerical simulation from current 

timestep to next timestep. Equation that represents forecast step can be shown as, 

 [
𝑢𝑘
𝑗

𝑑𝑘
𝑗
] = 𝑓 [

𝑚𝑘−1
𝑗

𝑢𝑘−1
𝑗

]  ∀𝑗 ∈ [1 , 𝑁𝑒] (1.2) 

where 𝑢𝑘
𝑗
 denotes state variables of 𝑗𝑡ℎ realization at timestep 𝑘, 𝑑𝑘

𝑗
 denotes 

production data for the forecast realization 𝑗 at timestep 𝑘, 𝑚𝑘−1
𝑗

 is the model 

parameters of 𝑗𝑡ℎ realization at timestep 𝑘 − 1 that can be either initial timestep or 

previously updated timestep, and 𝑁𝑒 shows total number of realizations in ensemble. 

Then, state vectors are used to calculate covariance of predicted model states using 

equation,  

 𝐶𝑌𝑘
𝑝 =

1

𝑁𝑒 − 1
(𝑌𝑘

𝑝 − 𝑦𝑘
𝑝̅̅̅̅ )(𝑌𝑘

𝑝 − 𝑦𝑘
𝑝̅̅̅̅ )
𝑇
 (1.3) 

where subscript 𝑝 symbolizes predicted state (before update), 𝐶𝑌𝑘
𝑝

 denotes covariance 

matrix calculated for all state vectors 𝑌𝑘 while 𝑦𝑘
𝑝̅̅̅̅  shows mean of state variables 

calculated across the ensemble before update. Then, Kalman gain denoted as 𝐾𝑔𝑎𝑖𝑛 is 

computed using equation,  

 𝐾𝑔𝑎𝑖𝑛 = 𝐶𝑌𝑘
𝑝 𝐻𝑇(𝐻𝐶𝑌𝑘

𝑝 𝐻𝑇 + 𝑅)
−1

 (1.4) 

where 𝐻 and 𝑅 are measurement operator and measurement error covariance matrix 

respectively.  

Next, in the analysis step, each realization of the ensemble is updated using the 

Kalman gain where the value of update is different for each realization, which is 

proportional to the error between predicted output and noisy measurements (𝑑𝑘
𝑜𝑏𝑠), 

equation for which can be written as,   

 𝑦𝑘
𝑗,𝑎
= 𝑦𝑘

𝑗,𝑝
+ 𝐾𝑔𝑎𝑖𝑛(𝑑𝑘

𝑗,𝑜𝑏𝑠
− 𝐻𝑦𝑘

𝑗,𝑝
)  ∀𝑗 ∈ [1 , 𝑁𝑒] (1.5) 
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where subscript 𝑎 represents analyzed (updated) state vector. As the history matching 

using EnKF only depends on the predicted ensemble (or ensemble from the previous 

analysis step) and measurements from the field, it has an upper hand for continuous 

or real-time updating of reservoir model as compare to other methods. 

 

Figure 1.3 – Workflow of assisted history matching using EnKF. 

Non-iterative nature of EnKF makes it computationally efficient in analysis step; 

however, forward simulation of each ensemble member in forecast step is generally 

performed by a numerical simulator. Iterative solution of highly nonlinear pressure 

and saturation equations in the simulator results into impractical computing cost, 

especially in case of SAGD reservoirs. Therefore, it has been a major challenge against 

the application of EnKF in field cases. In the proposed research, a couple of ways to 

make EnKF viable in terms of computing cost are implemented. Related literature 

review and methodology are described in the upcoming chapters.   

1.1.2 Real-Time Production Optimization of SAGD Reservoirs 

Once the reservoir model with minimum uncertainty in unknown parameters is 

obtained through assisted history matching, it is used further to optimize various input 

parameters in reservoir management with a view to maximize oil recovery and achieve 

better economics. At distinct decision-making levels that are typically distinguished 

based on time-scale, optimizations with different objective functions and variables are 

carried out. Figure 1.4 describes various types of optimization and the corresponding 

time scale for which decisions can be made. Arrows in the figure indicate the typical 

flow of execution for each level, however, seldom is the whole exercise performed in 

an integrated manner. As shown in the figure, long-term and medium-term 
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optimization are generally implemented before day-to-day operations of the reservoir 

start. Initially, at the reservoir development stage, future field plans are designed 

using long-term optimization that involves decisions related to surface facilities and 

drainage strategy. Mid-term optimization is performed to decide the well placements 

and their target injection-production rates after the end of exploration phase. 

However, only long-term and mid-term optimizations are not sufficient for the efficient 

and dynamic routine field operations as they involve many assumptions regarding well 

operations (for e.g. injection well is operated at a constant rate for a particular time 

interval) and small-scale heterogeneities, which cannot be captured by history-

matched model due to its higher grid resolution. Also, due to inherent errors in several 

parameters used to create the numerical reservoir model, decisions of long-term and 

mid-term optimizations won’t be effective enough for reservoir operations with shorter 

time-scale. As a result, short-term optimization, commonly referred as “real-time 

production optimization” in the literature that involves supervisory and regulatory 

control of well operations has become popular in the latest field practices.  

 

Figure 1.4 – Different types of optimization carried out at various decision-making 

levels in field development. 

As per the definition proposed by Saputelli et al. (2003), real-time production 

optimization consists of measuring real-time data, calculating the production 

parameters for the next control interval and then implementation of the calculated 

controls at a particular frequency. Advancement in field monitoring technology over 

the last decade has led the oil industry towards the development of “intelligent oil 
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fields” (also known as “smart fields” or “i-field” or “e-field”). Such fields are equipped 

with modern sensing and control devices such as permanent downhole sensors, fiber-

optic sensor arrays and inflow/outflow control devices that can measure and regulate 

various parameters in real-time; making the implementation of real-time optimization 

possible. Frequency or time-scale in real-time production optimization is generally 

decided based on the maximum time that can be afforded between the measurement 

of the data and control of the variables. However, time-scale for real-time optimization 

is much shorter as compared to long or mid-term optimization, normally spanning 

from sec/minutes to hours/day. Since real-time data depicts the current reservoir 

conditions, well parameters are optimized such that a variable can be maintained at a 

specified target. Ultimately, this practice results into the maximum efficiency of the oil 

recovery process for that particular control interval and when it is continued for a 

longer period, real-time optimization can provide a considerable benefit in terms of 

the economics of the process. 

The primary objective of the real-time production optimization is to improve efficiency 

and hence the economics of the oil recovery process. In SAGD, it immensely depends 

on the amount of steam injected and its conformance in the reservoir. Uniform growth 

of steam chamber along the wellbore is important as it leads to the improved steam 

delivery in the reservoir, ultimately increasing bitumen recovery. However, as shown 

in Figure 1.5, steam conformance near the wellbore region in SAGD is restricted by 

numerous parameters like heterogeneity in geological properties (i.e. porosity and 

permeability), fluid composition and their properties as well as saturations. These 

heterogeneities may lead to different steam conformance in well pairs as close as 100 

meters (Gotawala and Gates 2012) mostly due to variable injectivity along the 

wellbore, different mobility ratio, and the distinct temperature-viscosity relationship of 

bitumen. Also, wellbore geometry creates a significant pressure drop in the annulus of 

the injector well due to lower density and high flow rates of steam. It allows the 

injection of varying steam quality and amount injected along the wellbore (Edmunds 

and Gittins 1993) that contributes to the heterogeneous steam chamber development. 

Since non-conformance of steam may lead to suboptimal usage of steam, it will affect 

the bitumen recovery and economics of SAGD adversely. It can be mitigated by 

controlling the liquid pool around producer well (Gates and Leskiw 2010), the process 

commonly known as steam trap control.  
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Figure 1.5 – Non-uniform steam chamber growth along the wellbore in SAGD. 

Working principle of steam trap control in SAGD is analogous to that of thermodynamic 

traps used for steam heating control in the process industry. However, in SAGD, liquid 

pool acts as a steam trap that directs the live steam away from the producer due to 

its lower temperature. The liquid pool is basically a mixture of mobilized bitumen and 

steam condensate accumulated near the producer well because of convective heat 

transfer (between steam and reservoir at the edge of the steam chamber) and gravity 

drainage. The height of liquid pool is controlled by changing the liquid production rate 

of the producer well. If the liquid is produced at a lower rate, the liquid pool may rise 

well above the producer. It can reduce the exposure of steam chamber to the bitumen, 

a consequence detrimental to oil recovery. In contrast, when the height of liquid pool 

is significantly reduced by producing more fluid, most of the injected steam may 

directly be produced instead of heating the bitumen in the reservoir. The phenomenon 

is known as steam breakthrough which reduces the thermal efficiency of SAGD. As the 

height of liquid pool cannot be measured directly, subcool (or interwell subcool) is 

considered. It can be defined as the temperature difference between injected steam 

and produced liquid (Le Ravalec et al. 2009). 

Figure 1.6 depicts optimization of injection-production parameters in real-time, which 

is often of very high importance due to relatively higher production cost in SAGD. By 

maintaining the subcool at a predefined optimum set-point with the help of adequate 

control strategy, production of live steam can be avoided without undermining the 

steam chamber development.  
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Figure 1.6 – Workflow for real-time production optimization of SAGD reservoirs. 

 Problem Statement 

As noticed before, the primary limitation for assisted history matching of field-scale 

reservoir models is impractical computational cost, making them less prone to 

sequential updating of the reservoir properties. Likewise, Model Predictive Control 

(MPC) has been used for real-time production optimization, yet with confined 

capabilities due to lack of proper approaches to handle the nonlinearity of the reservoir 

dynamics. Limitations offered by current methods are described in this section that 

can lead to several hypotheses stated at the end of the section.  

For effectual EnKF performance with a smaller ensemble size, the subset selected using 

a ranking/selection method should retain three important characteristics of the initial 

ensemble i.e. span, variability, and unbiasedness. Solution space of EnKF algorithm is 

bound by the span of the ensemble (Evensen 2009). Therefore, if the span of the 

subset chosen is smaller than initial ensemble then solution space for the subset will 

also be smaller and hence there will be chances of ensemble moving in unrealistic 

domains after updates (Chitralekha et al. 2010). The subset should have maintained 

the same variability among the realizations as the initial ensemble because if the 

variability of the subset is limited then after few assimilation steps in EnKF, the 

ensemble will be collapsed (Myrseth et al. 2012). Also, Kalman gain calculated from 
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such ensemble may introduce spurious correlations and update state parameters in 

impractical regions (Chen and Oliver 2010). In addition, realizations should be selected 

from all quantiles of the initial ensemble so that subset will be unbiased. If the subset 

is biased, then the solution may lie outside of the space covered by the subset and 

hence it will create the convergence problem (Jensen 2007). A comprehensive 

ranking/selection method that considers all these aspects and is computationally 

efficient requires further attention for history matching applications.  

Most of the proxy/meta/surrogate models in literature have been utilized for history 

matching of a single reservoir model with few undiagnosed reservoir parameters. 

Primary reasons can be either the complexity current proxy models create when used 

for a higher number of realizations or its inability to incorporate a higher number of 

parameters. In addition, when the proxy model is used in history matching, it might 

not be able to represent the physical process since it is purely a mathematical model, 

expressing the relationship between input and output parameters. Therefore, proxy 

models may not serve as intended in uncertainty assessment if applied without proper 

care (Goodwin 2015), which can lead to the poor estimation of history matching 

parameters. Such restraints offered by current techniques create a scope for an 

improved metamodel that can be incorporated in the framework of latest assisted 

history matching methods while reducing computing cost. The effect of forecast model 

uncertainty on data assimilation also requires additional consideration. 

MPC controller is flawless if a mismatch between output predicted by a dynamic model 

and physical plant is zero. Such controller can predict the outputs with no error, leading 

to exact cost function calculation and hence, the foolproof change in input variables to 

achieve the prescribed target. Dynamic models based on first principles generally give 

accurate estimates. However, for complex systems like SAGD reservoirs, such models 

are in form of differential equations that can be solved using computationally intensive 

numerical solvers. So far in the literature, reservoir dynamics in MPC is mostly 

represented using either linear step response model or one-dimensional ordinary 

differential equation (ODE). Although MPC is robust enough to handle minor 

plant/model mismatch, use of such simplified models may undervalue the capability 

of MPC in controlling SAGD reservoirs as it is more complex and highly nonlinear 

process. Therefore, an all-inclusive control framework that addresses the nonlinear 

behavior of SAGD over an extended control period, and also comply with constraints 
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of surface facilities is necessary for efficacious real-time production optimization. It 

can eventually render maximum NPV of bitumen asset while minimizing the 

environmental footprints.  

Scopes of improvement in current methods as well as research gap explained in this 

section led to following hypotheses: 

H1 –  Subset of realizations with similar statistical characteristics as a large initial 

ensemble can reduce the required simulations without compromising the quality of 

assisted history matching results. 

H2 – Mathematical model that handles a large number of unknown parameters can be 

built using few full physics simulations and integrated easily into current assisted 

history matching frameworks to replace commercial reservoir simulator. 

H3 – Real-time production optimization can be improved using strategies that can 

correctly represent nonlinear reservoir dynamics in MPC, which will ensure faster 

convergence and better subcool control.  

Considering the 168 billion barrels of estimated reserves of bitumen in Alberta, the 

invention of viable methods and approaches for real-time model updating and 

production optimization will be of practical interest to petroleum industries while 

improving production, reducing fuel costs and mitigating environmental footprints. 

 Key Objectives of Research 

To address the above described problems and test the proposed hypotheses, the 

proposed research is divided into 4 sequential components. Research objectives and 

corresponding questions to be answered for each of them can be outlined as follows: 

1) Formulate optimal sampling/screening method for subset selection 

based on probability distance minimization. 

✓ How to provide a unique identity to each realization? 

✓ How to compare and minimize dissimilarity between two ensembles? 

✓ How is the performance of proposed sampling method as compared to 

other well-known methods after sampling as well as history matching? 
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2) Develop a workflow for computationally efficient assisted history 

matching using appropriate proxy model. 

✓ Can a large number of unknown geological parameters be parameterized? 

✓ How to build a versatile proxy model for SAGD reservoirs? 

✓ How to integrate the proxy model with the EnKF framework? 

✓ How are the history matching results as compared to conventional EnKF 

workflow? 

3) Implement Adaptive MPC and Gain-Scheduled MPC for effective real-

time subcool control in SAGD reservoirs. 

✓ How to find a proper linear model structure based on system identification 

theory? 

✓ How to incorporate recursive estimation of coefficients in control 

workflow? 

✓ Can multiple controllers with different configurations handle the 

challenging control situations during the life-cycle of SAGD reservoirs? 

✓ How is the performance of proposed approaches as compared to Linear 

MPC? 

4) Employ nonlinear system identification model in MPC for precise 

representation of reservoir dynamics. 

✓ Which nonlinear dynamic model should be used? 

✓ How to comprise nonlinear model in MPC?  

✓ Does nonlinear system model make a positive impact on subcool control 

as compare to linear model? 

In addition, all proposed objectives of research are verified using a field-scale reservoir 

model of Underground Test Facility (UTF) Phase B1, a SAGD reservoir located 60 km 

north of Fort McMurray in northeastern Alberta, Canada. Reservoir model was built in-

house using operational data and well logs provided by Alberta Oil Sands Technology 

and Research Authority (AOSTRA), currently known as Alberta Energy Research 

Institute (AERI).  
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 Thesis Outline 

The organization of this dissertation is summarized below with a brief explanation of 

each chapter: 

Chapter 2: Literature review 

Chapter 2 contains the detailed review of the previous work done to improve the 

computational cost of the assisted history matching as well as real-time production 

optimization. In literature, two approaches are discussed that are either to reduce the 

number of realizations in the initial ensemble or replace simulator with a mathematical 

model. Subsection 2.1 comprises different techniques for screening/ranking/sampling 

of the initial ensemble proposed by various authors while next subsection contains 

details about distinct proxy models used in place of commercial reservoir simulator for 

assisted history matching. Similarly, in the last subsection, various attempts made to 

improve control strategy used in production optimization of SAGD reservoirs are 

reviewed.  

Chapter 3: Initial sampling of ensemble for SAGD reservoir history matching  

In this chapter, a novel sampling method based on the probability distance 

minimization is discussed to generate an initial ensemble of reduced size. The method 

considers multiple static measures and geological properties, and uses Kantorovich 

distance to quantify the probability distance between original ensemble and reduced 

ensemble, which is then optimized using mixed integer linear programming (MILP) 

technique. To show the effectiveness of the method, we have shown history matching 

of a SAGD reservoir using the smaller size initial ensemble derived from the proposed 

method and compared with the original ensemble. 

Chapter 4: Polynomial-Chaos-Expansion based integrated dynamic modeling workflow 

for computationally efficient reservoir characterization 

In this chapter, we take the opportunity to evaluate and compare the performance of 

EnKF and MCMC using Polynomial Chaos Expansion (PCE) based forecast model. 

Proposed forecast model relies on reducing parameter space using Karhunen–Loeve 

(KL) expansion that preserves the two-point statistics of the given random field. 

Random variables from KL expansion and orthogonal polynomials corresponding to the 
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prior probability density function (pdf) constitute the set of input parameters in PCE. 

Further, non-intrusive probabilistic collocation method (PCM) is used to compute PCE 

coefficients. PCE forecast model is then used in EnKF and MCMC to calculate the 

likelihood of the samples in place of high fidelity full physics simulation runs. 

Performance of both assimilation techniques is assessed under forecast model 

uncertainty using rigorous qualitative and quantitative analysis as well as posterior 

distribution characterization. 

Chapter 5: SAGD real-time production optimization using adaptive and gain-scheduled 

model predictive control 

In this chapter, two novel workflows are proposed to handle nonlinear reservoir 

dynamics in MPC. The first approach is adaptive MPC that includes continuous re-

estimation of the model at each control interval. It allows the evolution of the 

coefficients of a fixed model structure such that the updated system identification 

model in MPC controller reflects current reservoir dynamics adequately. Another 

approach, gain-scheduled MPC, decomposes the subcool control problem in a parallel 

manner and uses a bank of multiple controllers rather than only one controller. It 

ensures effective control of the nonlinear reservoir system even in adverse control 

situations by employing appropriate variations in input parameters based on the 

operating region. 

Chapter 6: Nonlinear Model Predictive Control of SAGD Well Operations for Real-Time 

Production Optimization 

Two completely novel approaches to implement nonlinear plant model in MPC are 

proposed in Chapter 6. First approach includes linear approximation of nonlinear 

dynamic model using structurally similar linear model. Approximations is used to 

estimate nonlinear dynamics of the system in local neighbourhood of the input signals 

used for linearization. Cost function in the MPC can be minimized using quadratic 

programming (QP) over the specified prediction horizon using linear approximation. 

Another approach is to use nonlinear dynamic model for prediction of the plant states 

and/or outputs, which makes the cost optimization problem nonconvex. Interior point 

algorithm is implemented to minimize the nonlinear cost function and thereby, to 

obtain the optimum input parameters. 
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Chapter 7: Concluding remarks and recommendations 

Final outcomes are summarized and possible directions for future research are 

discussed in this chapter. 

Finally, this is a paper-based thesis and hence some information may repeat in the 

different chapters, especially in the “Introduction” section and reservoir model 

description. 
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 Screening/Ranking/Sampling Methods 

Various authors have presented different methods that use either dynamic or static 

measures to rank/select the subset of realizations from the initial ensemble. Ballin et 

al. (1992) first proposed the idea of ranking stochastic realizations. Instead of using 

comprehensive flow simulator for all realizations, they used tracer model as a fast 

simulator to first rank the realizations by preserving the quantiles and then applied 

fine-scaled simulations to only those ranked realizations. Saad et al. (1996) used 3D 

streamtube tracer simulator and ranked the geological realizations based on the results 

of single phase tracer simulations. Streamline simulation based ranking criterion was 

proposed by Idrobo et al. (2000) in which realizations were ranked on the basis of 

time-of-flight connectivity calculated for each realization using streamline simulator. 

Ates et al. (2003) presented a field example using the method proposed by Idrobo et 

al. (2000) and selected optimistic, most likely and pessimistic realizations for history 

matching. Though streamline simulation is much faster than the conventional 

simulation with finite difference approaches, it might not capture the gist of 

simultaneous flow of fluid and heat in the case of thermal recovery processes. In 

addition, various simplified fluid flow assumptions are made in streamline simulation 

(Gilman et al. 2002). Such limitations of dynamic ranking measures make it 

inappropriate to select geological realizations of SAGD reservoirs from the original 

ensemble in an efficient manner; a necessity for computationally effective assisted 

history matching using EnKF. 

Ranking methods based on static measures were also proposed by numerous authors. 

Deutsch and Srinivasan (1996) proposed a ranking method based on the static 

measures like net-to-gross ratio, net pore volume and average permeability where a 

cell is considered to be a net cell based on some combination of lithofacies, porosity, 

and permeability threshold. Deutsch (1999) used geo-object connectivity, connectivity 

to a well location and connectivity between multiple wells as static ranking measures. 

Hird and Dubrule (1998) tried to predict the reservoir performance based on reservoir 

connectivity characteristics. They defined a connectivity parameter named ‘resistivity 

index’ for each grid block where the minimum cumulative value of the parameter 

shows the path that offers minimum resistance. Reservoir performance parameters 

such as secondary recovery efficiency and drainable hydrocarbon pore volume were 
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estimated using the connectivity parameter. McLennan and Deutsch (2005) proposed 

four different types of static measures, volumetric, statistical, global connectivity and 

local connectivity measures, to rank the geological realizations of SAGD reservoirs. 

Fenik et al. (2009) also used the connected hydrocarbon volume (CHV) as a ranking 

measure for SAGD reservoir cases. Li et al. (2012) proposed a new static quality 

measure for a particular well distribution and geological model. By comparing the 

results of ranking using static quality measure and CHV, they concluded that static 

quality measures give better results as they account for permeability and distance of 

productive cells from production wells. Yazdi and Jensen (2014) suggested a new (kH)A 

method to rank realizations in which harmonic average of permeability of the grid 

blocks within a search radius considering producer as a center is calculated. However, 

Deutsch and Srinivasan (1996) remarked that no ranking measure is perfect and 

unique and hence they must be chosen very carefully. If these measures have poor 

correlation with output parameters from the field, then the realizations selected will 

not be an efficacious representation of initial ensemble. Also, even if the ranking 

methods based on static measures might be able to identify high, low and intermediate 

performing realizations, the ability of these methods to maintain diversity within the 

subset selected is not verified, which is again the much-needed characteristic to apply 

EnKF successfully.  

Various other methods, widely known as sampling strategies are also proposed by 

several authors to reduce the size of the initial ensemble for the application of assisted 

history matching. Evensen (2004) proposed the sampling scheme in which ensemble 

with fewer realizations is generated by selecting the required number of dominant 

singular values from the singular value decomposition (SVD) of the initial ensemble. 

In this method, the subspace denoted by first few eigenvectors does not actually cover 

the entire space spanned by the original ensemble, which in turn may affect the 

variability of ensemble and ultimately the results of EnKF history matching. Another 

sampling method known as importance sampling is used extensively in communication 

theory (Lu and Yao 1988).  In this method, a weighting factor is used to derive new 

probability density from the prior one such that it will include an important region of 

the sample space. The issue with this method is the selection of proper weighting 

factor for reservoir applications. It is difficult to have a single weighting factor that has 

good correlation with different reservoir output parameters. Scheidt and Caers (2009) 
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proposed distance-based kernel clustering method to select the subset of realizations. 

They parameterized the realizations through a distance function calculated using a 

streamline simulator and modeled a multi-dimensional space using kernel principal 

component analysis that allows the selection of subset from the larger initial ensemble. 

Though this method can give a robust representation of original ensemble, use of 

streamline simulation to calculate distance function may undermine the flow responses 

in case of SAGD reservoirs. Also, computing cost for streamline simulation of 3D model 

increases by the cube of third dimension times as compare to 2D model when direct 

methods are used and to a lower power (still greater than one) of the third dimension 

in case of using iterative methods (Aziz and Settari 1979). As streamline simulation of 

each realization is required, it would increase the total computing cost significantly, 

making EnKF computationally less efficient in large-scale real field cases. 

 Proxy Models Used in Assisted History 
Matching 

For later approach, i.e. to replace computationally demanding reservoir simulators in 

history matching and optimization, different techniques have been proposed. A type 

of proxy model, commonly known as “Response Surface Model” (RSM) is studied by 

several authors. Li and Friedmann (2007) generated response surfaces using thin-

plate spline interpolant in order to approximate objective function in history matching 

of two waterflooded reservoirs. Two separate proxy models, one to calculate 

production parameters and another to distinguish good and bad reservoir models in 

the initial parameter space were developed by Yu et al. (2007) using genetic 

programming based symbolic regression for history matching and uncertainty analysis 

of a large oil field in West Africa. For uncertainty assessment of a mature field in 

Norway, Slotte and Smorgrav (2008) also designed a couple of proxy functions based 

on polynomial regression and multidimensional kriging to determine production 

parameters and importance of each unknown parameter respectively where the 

convergence of proxy models was achieved through iterative sampling. Zubarev 

(2009) presented the comparative study of different proxy models and explained 

several pros and cons of both, proxy models and full reservoir simulations in history 

matching. An integrated approach with RSM and a genetic algorithm was suggested 
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by Monfared et al. (2012) where the one-factorial experimental design was used to 

select proper experiments while p-value associated with each coefficient was 

calculated to discard insignificant terms in the proxy model. Though RSMs are very 

attractive due to the lower computational cost of the fitting process, they do not honor 

the basic assumption of random error that may lead to poor least-squares regression 

(Jurecka 2007). Also, a large number of unknown parameters in history matching 

cannot be handled by such proxy models, an important attribute required to integrate 

a proxy model in the EnKF framework.  

Recently, Artificial Neural Network (ANN) based proxy models have gained much 

popularity due to its extreme versatility. Queipo et al. (2000) presented surrogate 

modeling based on neural network, Design and Analysis of Computer Experiments 

(DACE) modeling and adaptive sampling for optimization of the objective function in 

reservoir characterization. A small set of numerical simulations obtained from 

experimental design was used to create a nonlinear proxy neural network by Cullick 

et al. (2006), which was then implemented in history matching to find the solution set 

for unknown parameters. For uncertainty assessment of estimated ultimate recovery 

(EUR), Jeong et al. (2013) built a neural network using only high-quality history 

matched models of basement fracture reservoir located in Vietnam. Bruyelle and 

Guerillot (2014) demonstrated the superior predictive capability of neural networks as 

compare to second order polynomials and kriging method with the help of PUNQ-S3 

reservoir history matching case study and concluded that first and second order 

derivatives of the neural network can be computed with gradients and Hessian in the 

learning process. Application of ANN in history matching of a synthetic water flooded 

reservoir is discussed by Costa et al. (2014), mostly considering multipliers and 

exponents as unknown reservoir parameters. A newly developed proxy model, named 

as “Smart Proxy” is a combination of one or more interconnected Neuro-Fuzzy systems 

and capable to learn fluid flow behavior in multi-well, multilayer reservoir model. It 

has been utilized for continuous model updating in history matching by He (2016). 

Overall, ANN-based proxy models have been successfully implemented in history 

matching workflows, however, due to their nested layout, the imagination of the 

process is restricted to the graphical representation of outputs. In addition, 

inexperience in setting up network architecture may lead to overfitting of the data, 
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ultimately resulting in the unstable proxy model. Also, ANN’s ability to forecast outside 

the trained parameter space needs further investigation. 

In proxy modeling, some other approaches based on statistical methods have also 

been proposed by numerous authors. Sarma and Xie (2011) applied Polynomial Chaos 

Expansion (PCE) for uncertainty quantification of water flooded reservoirs while 

considering limited reservoir parameters as unknown and using Non-Intrusive Spectral 

Projection (NISP) to estimate PCE coefficients. Similarly, Bazargan et al. (2015) used 

PCE for uncertainty quantification of a synthetic 2D model with fluvial channels, 

however, used regression-based Probabilistic Collocation Method (PCM) to calculate 

dynamic coefficients. He concluded that it is feasible to construct a proxy based on 

PCE and its precision improves as PCE order and hence the corresponding number of 

initial simulation runs increases. He et al. (2011) proposed reduced-order models that 

consider Trajectory Piecewise Linearization (TPWL) and incorporated them into EnKF 

for history matching of the synthetic reservoir model. An innovative approach was 

presented by Sayarpour et al. (2010) that involves Capacitance-Resistance Model 

(CRM) and Buckley-Leverett-based fractional flow model to obtain equiprobable history 

matched solutions using only past injection-production data. However, none of these 

methods are tested for thermal reservoirs yet.  

In case of thermal recovery processes, in addition to purely data-driven proxy models, 

several authors have discussed the application of analytical or semi-analytical proxy 

models for history matching. Akram (2011) considered a simple linear or quadratic 

polynomial regression model determined by least square fit for optimization of a test 

model with 5 facies. Also, a proxy model that used Green’s functions was suggested 

by Fedutenko et al. (2012) for production forecasting in SAGD reservoirs. In order to 

add some physical meaning to proxy models, Vanegas et al. (2008) developed a semi-

analytical proxy model based on Butler’s SAGD theory to predict time profile of oil flow 

rate, cumulative oil production and cumulative steam injection for SAGD reservoirs. 

Application of physics-based analytical models for fast history matching of field cases 

is demonstrated by Azad and Chalaturnyk (2013). However, Shi and Leung (2013) 

pointed out that many assumptions and approximations are associated with physics-

based proxy models, which undermine their capability in assisted history matching of 

complex thermal reservoirs. 
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 Strategies Used for Real-Time Production 
Optimization 

As discussed before, real-time production optimization is primarily achieved by 

maintaining the subcool to an optimum set-point. In order to obtain the optimal target, 

several attempts have been made to understand the effect of different subcool values. 

Ito and Suzuki (1999) conducted a series of parametric numerical simulations using a 

2D reservoir model and concluded that 36⁰C is the optimum subcool as it provided 

minimum cumulative Steam-Oil-Ratio (cSOR). Edmunds (2000) performed different 

simulations to investigate the effect of steam trap constraints by varying it between 5 

to 50⁰C in a prototype 2D & 3D Athabasca reservoir and also discussed its economic 

consequences. He demonstrated that optimum subcool for 2D reservoir was 20 to 30⁰C 

and supply cost would be reduced by 2 $/bbl if 20⁰C subcool is maintained over the 

life cycle of well pair. Effect of different subcool targets on oil production rates at 

distinct operational pressures was studied by Das (2005) and based on the results of 

numerical simulations, he determined that subcool plays a significant role if it exceeds 

a critical value that appeared to be 20 ⁰C for the Athabasca reservoir model he 

considered. Vander Valk and Yang (2007) carried out several sensitivity analyses using 

a reservoir model with typical rock and fluid properties of Athabasca oil sands to 

evaluate the combined effect of frictional pressure drop and subcool on bitumen 

production. They mentioned couple of remarks: 1) productivity, as well as cSOR, were 

optimal near 20⁰C subcool and 2) oil production rate is very sensitive to subcool when 

frictional pressure drop in wellbore is significant, from which it can be inferred that not 

only liquid production rate but also steam injection rate (which causes high frictional 

pressure drop) should be taken into account to determine overall effect of subcool on 

oil recovery. Using commercial optimizer, Bao et al. (2010a) optimized target subcools 

for different time intervals in a SAGD reservoir life cycle with an objective to minimize 

cSOR and concluded that initially higher subcool target, followed by the lower value 

provided better economic performance. Gates and Leskiw (2010) analyzed the effect 

of different liquid production rates on subcool profile with time at multiple locations of 

a 3D reservoir model and concluded that critical subcool value that should be 

maintained for energy efficient SAGD operation was about 20 ⁰C. Using history 

matched the model of Surmont pilot study area, Bao et al. (2010b) examined the effect 
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of different subcool values on 3 different well pairs and concluded that 15⁰C is the 

optimum value of subcool at 1500 kpa injection pressure for a particular well pair since 

it yielded higher cumulative bitumen production and minimum cSOR. Though literature 

suggests a range of optimum subcool between 5 to 40⁰C, as Edmunds and Gittins 

(1993) mentioned, optimum liquid drawdown (or subcool) changes during the life-

cycle of SAGD well pair. Also, as critical subcool value depends on average reservoir 

properties (Gates and Leskiw 2010) between wells, due to heterogeneity, it may vary 

from well pair to well pair and obviously, reservoir to reservoir.  

Several authors have made efforts to achieve steam chamber conformance by 

implementing state-of-the-art well completion technology in the field. Kisman (2003) 

designed two-stage artificial lift system called ELift to maintain low subcool values at 

lower pressures, as standard bottom hole pump cannot be used due to a lower liquid 

level that does not provide enough net positive suction head (NPSH). As reported by 

Clark et al. (2010), a well pair in Orion SAGD field was divided into 4 segments using 

Interval Control Valves (ICV) for differential steam trap control and hence better steam 

injection conformance, which resulted into improved injectivity in poorer zones and 

almost 20% lower cSOR. Stalder (2013) concluded that flow-distribution-control (FDC) 

liners installed in Surmont field provided uniform temperature profiles along the wells 

without toe strings and appeared to achieve steam trap control regardless of the 

vertical spacing between wells. Banerjee et al. (2013a) and Banerjee et al. (2013b) 

discussed the use of autonomous Inflow Control Devices (ICD) and hybrid-geometry 

Passive ICDs as a secondary level of steam trap control that restricts steam 

breakthrough by choking behavior when a shift in Reynolds number regime is 

observed. Similarly, Shad and Yazdi (2014) used nozzle-based ICD and compared the 

simulation results with the case where no ICDs were installed and determined that due 

to uniform pressure distribution, lower subcool values can be maintained while 

producing no live steam in the case where ICDs were used. A simple approach of 

blanking off the part of the injection or production liner strings according to the SAGD 

well trajectory was mentioned by Taubner et al. (2015) to avoid steam breakthrough. 

Though these permanent downhole technologies can enhance steam chamber 

conformance and maintain low subcool, significant fiscal investment is required for 

their development and installation. Also, workover and maintenance of such systems 

are costly and disrupts the SAGD operations. Therefore, control strategies which can 
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be implemented without any change in SAGD well pair design as shown in figure 3, 

has attracted researchers’ attention in recent times. 

Different control strategies have been explored by intellectuals to optimize operational 

parameters of SAGD, thereby maintaining optimum subcool level for real-time 

production optimization. Gotawala and Gates (2009) presented a dynamic injection 

strategy in which steam injection pressure of 6 intervals of the well was controlled 

using Proportional-Integral-Derivative (PID) feedback control algorithm to retain 

subcool at a particular set-point, leading to better cSOR, higher cumulative oil 

production, and uniform steam conformance. Guyaguler et al. (2010) proposed a 

generic feedback-based controller and employed it to maintain an average 

temperature in a particular region of the heavy oil reservoir, results of which were 

obtained using both PI and fuzzy controller and comparison was made with the base 

case, indicating improvement in cSOR. A simplistic theory which uses material balance 

and heat balance was formulated by Gotawala and Gates (2012) for estimation of PID 

controller parameters, demonstrating the capability of PID controller to ensure the 

optimum liquid pool above producer. Two single-loop PID controllers were designed by 

Khaledi et al. (2012) to control chamber pressure and temperature of the produced 

liquid in SAGD where the open-loop dynamic response of the process was determined 

by inducing series of step changes and fitting a first order plus dead-time (FOPTD) 

model. Performance of a SAGD well pair with ICD equipped producer and dual tubing 

strings, steam injection rates of which were controlled by two separate PID controllers 

was examined by Stone et al. (2013), exhibiting improvement in cSOR as well as 

cumulative oil production while maintaining toe and heel subcool near the predefined 

target value. Stone et al. (2014a) also demonstrated the ability of identical feedback 

based PID controllers to control steam injection rates at both injection points (i.e. toe 

and heel) in SAGD fields with varying degrees of heterogeneity and concluded that 

improved steam conformance could be achieved. PID controllers with configurations 

similar to previous work were used by Stone et al. (2014b) to optimize the NPV of the 

bitumen asset using Radial Basis Function (RBF) scheme while controlling optimum 

subcool by manipulating SAGD operational parameters, specifically, initial circulation 

period, maximum injection rate as well as water production limit of each tubing string 

and proportionality constant (𝐾𝑝) of the controllers. Though the use of PID controllers 

has been extensively studied for subcool control, they are Single Input Single Output 
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(SISO) control strategy, meaning that it cannot consider the interaction between 

different manipulated and controlled variables. Also, it does not have the predictive 

capability, which may result in underrated subcool control and steam conformance, 

ultimately affecting the oil recovery and economics of the SAGD reservoir.  

More advanced and Multi Input Multi Output (MIMO) control method, Model Predictive 

Control (MPC) is also considered by several authors in which system to be controlled 

is mimicked using either physical or empirical dynamic model. Use of empirical model 

based on system identification theory is not strange to the petroleum industry as 

Nikolaou et al. (2006) employed state space model identified using parametric system 

identification approach for short-term prediction where parameters were updated on 

a daily basis using continuously available field data over the moving horizon. Likewise, 

MPC has also been used in petroleum engineering before. For example, Van Essen et 

al. (2013) proposed two-level optimization strategy for waterflooding reservoir in 

which MPC was used for lower level optimization with a view to tracking the injection 

profiles obtained in life-cycle optimization and reported that performance drop of 6.4% 

in NPV was reduced to 0.5% when MPC was used for tracking optimized injection 

profiles. For subcool control, MPC was first exercised by Patel et al. (2014) considering 

a combination of many linear empirical step-response models as plant model. They 

successfully tested the capability of MPC for stable SAGD operations in general as well 

as while transitioning between a set of targets. However, the methodology for subcool 

control was implemented using proprietary software called SEPTIC (Strand and Sagli 

2004). Vembadi et al. (2015) implemented MPC with 2nd order ARX model as a plant 

model to manipulate injection/production rates of both tubing strings for better subcool 

control where varying subcool targets were obtained from NPV optimization over the 

life-cycle of SAGD reservoir. An adaptive-predictive control approach comprised of 

neural network based ARMAX model and MPC was applied by Guevara et al. (2015) 

for subcool control as well as Net Present Value (NPV) optimization of a synthetic 

reservoir, results of which outperformed those obtained using decentralized PID 

control. Purkayastha et al. (2015) also practiced MPC to calculate steam injection rate 

using recursive parameter estimation of the model proposed by Gotawala and Gates 

(2012) in order to achieve better steam conformance. It was concluded that oil 

recovery was improved by 35.7% for a synthetic reservoir, however, such one-

dimensional ODE plant model is computationally expensive (Vembadi 2014), 
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potentially enforcing larger control intervals, which is an undesirable characteristic for 

an efficient MPC controller. 
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Chapter 3  
 

Initial Sampling of  

Ensemble for SAGD Reservoir 

History Matching 1 
  

                                           
1 A version of this chapter has been published in the proceedings of the World Heavy 

Oil Congress 2015 and Journal of Canadian Petroleum Technology, 54(6): 424-441. 
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 Introduction 

In this chapter, a new method based on probability distance minimization, earlier 

proposed by Rahim et al. (2014), is used to select a subset of realizations. The method 

calculates multiple static measures for each realization of the initial ensemble and 

along with geological properties, uses them to differentiate each realization from 

others. Kantorovich distance is defined to quantify probability distance between the 

initial ensemble and reduced ensemble. An MILP model with appropriate constraints is 

suggested in the work, which can be solved using an appropriate MILP solver. The 

objective of the MILP model is to minimize the Kantorovich distance between initial 

ensemble and reduced ensemble by optimally selecting realizations for the reduced 

ensemble. The main goal of the proposed method is to select the subset of realizations 

such that it has same statistical characteristics as an initial ensemble and also serves 

as an ideal smaller size ensemble for history matching in terms of spread, variability, 

and unbiasedness.  

Section 3.2 and 3.3 describe other ranking/selection methods briefly and the pedagogy 

of the proposed method in detail respectively. Also, the conventional EnKF procedure 

is shown in the next section. In order to verify the proposed method, it is applied to a 

real SAGD reservoir field case and history matched using EnKF. The results are 

compared with other existing sampling methods. A detailed explanation of case study 

and application of each screening method to the field case is provided in section 3.5. 

Section 3.6 comprises results of the case study and discussion about the performance 

of the proposed method in comparison with other realization selection methods in 

terms of statistical characteristics of selected subset and results obtained after 

applying EnKF history matching on the reduced ensemble. At the end, a summary of 

the results of the case study is presented in section 3.7. 

 Contemporary Sampling Techniques 

In this section, different ranking/selection methods proposed by various authors are 

described briefly with which results of the proposed method is compared.  
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3.2.1 Orthogonal Ensemble Members 

Evensen (2004) proposed an improved sampling scheme to reduce the direct 

computation of eigenvectors in case of a large ensemble. He used singular value 

decomposition (SVD) to resample the members from the initially larger ensemble. A 

similar approach can be applied in the screening of realizations to reduce the size of 

the initial ensemble of model parameters. Steps to be carried out to apply this sampling 

method are as follows: 

1) Generate large ensemble of reservoir model parameters with 𝑁𝑒(= 𝛽𝑁𝑠) 

members and assign them to �̂�′ ∈ ℜ𝑁𝑐×𝛽𝑁𝑠 , where size of initial ensemble is 

𝛽 times (value greater than 1) the required size of reduced ensemble. 

2) Compute the SVD, 𝒁′̂ = �̂��̂��̂�𝑻. 

3) Retain only 𝑁𝑠 ×𝑁𝑠 quadrant of �̂� and assign them to 𝜮 ∈ 𝕽𝑁𝑠×𝑁𝑠, where 

diagonal values of �̂� are non-zero singular values of original ensemble. 

4) Scale the non-zero singular values by √𝛽 to maintain the correct variance. 

5) Generate a random orthogonal matrix 𝑽𝟏
𝑻 by SVD of a random 𝑁𝑠 × 𝑁𝑠 matrix 

𝒁𝟏 = 𝑼𝟏𝜮𝟏𝑽𝟏
𝑻. 

6) Choose only first 𝑁𝑠 singular vectors from �̂� and assign them to 𝑼. 

7) Generate reduced ensemble using singular vectors stored in 𝑼, non-zero 

singular values stored in 𝜮 and orthogonal matrix 𝑽𝟏
𝑻. 

The equation used here to create reduced ensemble with only 𝑁𝑠 members is, 

 
𝒁 = 𝑼

1

√𝛽
𝜮𝑽𝟏

𝑻 
(3.1) 
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3.2.2 Importance Sampling 

The main objective of importance sampling is, instead of taking samples from the 

original pdf, identifying another distribution that is more heavily weighted and samples 

are taken from that pdf so that some important regions of sample space gets more 

samples. As Oliver and Chen (2009) noted if 𝑝(𝑚) is the prior probability density and 

𝑝(𝑚) is related to prior probability density by the weighting factor 𝑤(𝑚), then relation 

of those pdfs can be shown as, 

 𝑝(𝑚) = �̃�𝑤(𝑚)𝑝(𝑚) (3.2) 

Now, as 𝑝(𝑚) is also a probability density, it should also be licit. 

 ∫𝑝(𝑚)𝑑𝑚 = ∫ �̃�𝑤(𝑚)𝑝(𝑚)𝑑𝑚 = 1 (3.3) 

To implement importance sampling in reservoir application stepwise procedure can be 

written as follows: 

1) Generate initial ensemble of model parameters (e.g. porosity, permeability) 

with 𝑁𝑒 members that serves as a prior probability density 𝑝(𝑚). 

2) Select the computationally inexpensive weighting factor 𝑤(𝑚), since it is 

evaluated for each ensemble member. 

3) Calculate the normalization constant c̃ in Eq. (3.2), and approximate the 

integral in Eq. (3.3): 

 
�̃� =

𝑁𝑒

∑ 𝑤(𝑚𝑖)
𝑁𝑒
𝑖=1

 
(3.4) 

4) Compute the weighting factor 𝑤𝑖 for each realization in the large ensemble. 

5)  Using 𝑤𝑖 ∑ 𝑤𝑖
𝑁𝑒
𝑖=1⁄  as the resampling probability density, resample 𝑁𝑠 

realizations from the large ensemble. 
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3.2.3 K-Means Clustering 

Scheidt and Caers (2009) proposed a distance-based kernel clustering method that 

depends on a realization-based model of uncertainty, parameterized by distances. The 

workflow of this method can be explained as follows: 

1) Generate a larger ensemble of geological realizations with 𝑁𝑒 members 

initially. 

2) Calculate the dissimilarity distances between realizations by use of the 

distance function and construct the dissimilarity-distance matrix 𝑫. 

3) Map the dissimilarity matrix 𝑫 into Euclidean space 𝑹 by use of 

multidimensional scaling. 

4) Transform Euclidean space 𝑹 into featured space 𝑭 using kernel functions so 

that points mapped in space behaves linearly. In general, Gaussian kernel 

(radial basis function) is used, equation for which can be given as 

 𝐾(𝑋, 𝑌) = exp (−
||𝑋 − 𝑌||

2

2𝜎2
)        𝑤𝑖𝑡ℎ  𝜎 > 0 (3.5) 

5)  Apply a clustering algorithm, a standard linear pattern recognition tool that 

assigns points in a featured space 𝑭 to a cluster by minimizing the expected 

squared distances between the points of cluster (𝑥𝑔) and its center 𝜇𝑢: 

 𝐺 = ∑ ∑ |𝑥𝑔 − 𝜇𝑢|
2

𝑥𝑔∈𝐻𝑢

𝑁𝑘

𝑢=1

 (3.6) 

 where 𝑆𝑖 denotes initial clusters and number of clusters generated here is 

equal to number of realizations (𝑁𝑠) we want to select from initial ensemble. 

6)  Select one realization from each cluster that is nearest to the centroid of that 

cluster to select 𝑁𝑠 realizations. 
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 Proposed Scenario Reduction Method 

The proposed method consists of two important steps. The first step is to calculate 

multiple static measures and use them to quantify dissimilarity between geological 

realizations in the initial ensemble, which is described in subsection 3.3.1. In the next 

step, Kantorovich distance is computed that is used to quantify disparity between pdf 

of model parameters in the initial ensemble and reduced ensemble elaborated in 

section 3.3.2. The proposed method follows similar steps to select realizations as 

optimization based uncertainty quantification method by Rahim et al. (2014) except 

some changes in static measures. 

3.3.1 Static Measures and Quantification of Dissimilarity in 

Realizations 

As Hovadik and Larue (2007) discussed, static measures are important links between 

reservoir characterization and simulation studies. Also, they are simple in concept with 

minimal computing costs as compared to dynamic measures or flow simulation. In 

order to use the static measures efficiently, it should be confirmed that static measures 

being used have good correlation with the output parameters. Sometimes, one single 

static measure does not show good correlation with several different output 

parameters. In such cases, multiple static measures must be used in order to give 

each realization a unique identification. McLennan and Deutsch (2005) used four 

different kinds of static measures i.e. volumetric, statistical, global connectivity and 

local connectivity. 

In the proposed method, three types of static measures are used i.e. statistical, 

fractional and volumetric measures. Total 7 separate static measures are used in the 

method out of which 3 are statistical, 1 is fractional and 3 are volumetric measures. 

Statistical measures are usually calculated by arithmetic average and are computed 

only for net cells. A grid block with very low permeability and porosity in reservoir 

model does not contain much oil or gas and hence it will not contribute to any 

production parameter. So, to increase the correlation between measure and output 

parameter, it is necessary to differentiate between producing and non-producing cells 

in reservoir model and as a result, the concept of the net cell is introduced. Any cell 
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or grid block in the geological realization that has higher permeability and porosity 

value than the threshold value is considered as a net cell. Binary indicator 𝐼𝑐
𝑛𝑒𝑡 is used 

to identify whether the cell is net cell or not. In other words, 𝐼𝑐
𝑛𝑒𝑡equal to 1 show that 

cell 𝑐 in particular realization is a net cell and vice versa. In mathematical notations, 

indicator 𝐼𝑐
𝑛𝑒𝑡 can be defined as (McLennan and Deutsch 2005), 

 𝐼𝑐
𝑛𝑒𝑡 = {

1, 𝑤ℎ𝑒𝑛 𝜙𝑐 ≥ 𝜙0 𝑎𝑛𝑑 𝑘𝑐 ≥ 𝑘0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              

 (3.7) 

where 𝜙𝑐 and 𝑘𝑐 are porosity and horizontal permeability value of cell 𝑐 respectively 

in a particular realization while 𝜙0 and 𝑘0 are threshold porosity and threshold 

horizontal permeability respectively. Any cell in reservoir is not a net cell only if it has 

either lower porosity than 𝜙0 or lower permeability than 𝑘0. 

First statistical measure, average net permeability (𝐾𝑛𝑒𝑡) for each realization can be 

defined as, 

 𝐾𝑛𝑒𝑡 =
∑ 𝑘𝑐𝐼𝑐

𝑛𝑒𝑡𝑁𝑐
𝑐=1

∑ 𝐼𝑐
𝑛𝑒𝑡𝑁𝑐

𝑐=1

 (3.8) 

Similarly, average net porosity (𝜙𝑛𝑒𝑡) for each realization can be calculated using 

equation, 

 𝜙𝑛𝑒𝑡 =
∑ 𝜙𝑐𝐼𝑐

𝑛𝑒𝑡𝑁𝑐
𝑐=1

∑ 𝐼𝑐
𝑛𝑒𝑡𝑁𝑐

𝑐=1

 
 

(3.9) 

Also, average net irreducible water saturation (𝑆𝑛𝑒𝑡) for each realization can be given 

as, 

 𝑆𝑛𝑒𝑡 =
∑ 𝑆𝑐𝐼𝑐

𝑛𝑒𝑡𝑁𝑐
𝑐=1

∑ 𝐼𝑐
𝑛𝑒𝑡𝑁𝑐

𝑐=1

 
 

(3.10) 

where 𝑆𝑐 is irreducible water saturation of cell 𝑐 for particular realization. Here, in all 

three equations of static measures, 𝐼𝑐
𝑛𝑒𝑡 is introduced to make sure that only net cells 

are being used to calculate the measures. Also 𝑁𝑐 is total number of cells in a reservoir 

model in all equations. 
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Fractional static measures are good candidates to identify the quality of reservoir 

model. Fraction of net cells (𝐹𝑛𝑒𝑡) is the only fractional static measure used in the 

method. It is a ratio of net cells to the total number of cells in reservoir model, hence 

it is also known as a net to gross ratio. Equation of 𝐹𝑛𝑒𝑡 can be given as, 

 𝐹𝑛𝑒𝑡 =
∑ 𝐼𝑐

𝑛𝑒𝑡𝑁𝑐
𝑐=1

𝑁𝑐
 (3.11) 

Higher 𝐹𝑛𝑒𝑡 value shows that a particular realization has more number of net cells and 

therefore higher chances for good SAGD production performance. 

Another type of static measure we used is volumetric static measures. These measures 

are being considered as global properties of a realization. As Hovadik and Larue (2007) 

noticed, these measures are most important discriminator to differentiate realizations. 

Also, there is a strong correlation between reservoir volume and cumulative recovery. 

Three different volumetric measures are used in the proposed method. 

Net pore volume (𝑃𝑉𝑛𝑒𝑡) is the volumetric measure that represents total pore volume 

of net cells in a particular realization. It can be calculated by summation of 

multiplication of porosity and volume of each net cell in a realization. Mathematically, 

it can be shown as, 

 𝑃𝑉𝑛𝑒𝑡 =∑𝑉𝑐𝜙𝑐𝐼𝑐
𝑛𝑒𝑡

𝑁𝑐

𝑐=1

 (3.12) 

where 𝑉𝑐 is volume of cell 𝑐 in a reservoir model.  

Original oil-in-place (𝑂𝑂𝐼𝑃) is another volumetric measure used in proposed method. 

It is the simplest summary of reservoir in terms of hydrocarbon volume. Equation to 

calculate 𝑂𝑂𝐼𝑃 can be shown as, 

 𝑂𝑂𝐼𝑃 =∑𝑉𝑐𝜙𝑐(1 − 𝑆𝑐)

𝑁𝑐

𝑐=1

 (3.13) 
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Net original oil-in-place (𝑂𝑂𝐼𝑃𝑛𝑒𝑡) is the final volumetric measure used. As only net 

cells have a considerable 𝜙𝑐 and 𝑘𝑐, amount of hydrocarbon possessed by those cells 

is important in terms of production performance. Therefore, 𝑂𝑂𝐼𝑃𝑛𝑒𝑡 must be having 

a better correlation with SAGD production parameters as compare to 𝑂𝑂𝐼𝑃. Net 

original oil-in-place can be computed using the formula, 

 𝑂𝑂𝐼𝑃𝑛𝑒𝑡 =∑𝑉𝑐𝜙𝑐(1 − 𝑆𝑐)

𝑁𝑐

𝑐=1

𝐼𝑐
𝑛𝑒𝑡 (3.14) 

Now, to differentiate two realizations, we need to define a function that can quantify 

the dissimilarity between them. The function should be also simple in terms of 

computing cost. A function that considers static measures and geological properties is 

defined to calculate the difference between two realizations. As discussed, static 

measures are simple non-iterative equations that can be computed very easily and 

hence computing of proposed dissimilarity function also becomes cost efficient. To 

quantify dissimilarity between two realizations 𝑖 and 𝑖′, the function used can be shown 

as, 

 𝑐𝑖,𝑖′ =∑ ∣ 𝑠𝑖𝑗 − 𝑠𝑖′𝑗 ∣  

𝑁𝑠

𝑗=1

+∑∑𝛾 ∣ 𝜃𝑖𝑙𝑝 − 𝜃𝑖′𝑙𝑝 ∣     ∀ 𝑖, 𝑖
′

𝑁𝑐

𝑙=1

𝑁𝑔𝑝

𝑝=1

 (3.15) 

where 𝑠𝑖𝑗 is the value of static measure 𝑗 for realization 𝑖, 𝑁𝑠 is total number of static 

measures, 𝜃𝑖𝑙𝑝 denotes value of geological property 𝑝 of cell 𝑙 of realization 𝑖 and 𝑁𝑔𝑝 

stands for total number of geological properties used to calculate the dissimilarity 

function. Also, 𝛾 denotes the weight given to the geological properties while 

quantifying dissimilarity between two realizations. As static measures are better 

indicator of dissimilarity and also calculated using geological properties, more 

importance is given to them by adjusting 𝛾 equal to 0.01 in proposed work. 

3.3.2 Kantorovich Distance and its Minimization 

The principal objective of the proposed method is to identify the subset of realizations 

which is as similar as an initial ensemble so that EnKF can be applied successfully on 
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a subset. In order to select a subset that has similar characteristics as an initial 

ensemble, it is necessary to quantify dissimilarity between initial ensemble and subset 

selected. Kantorovich distance is used in a proposed method to quantify dissimilarity 

between initial ensemble and subset selected and by minimizing it, we can select the 

subset that can represent initial large ensemble effectively in terms of reservoir 

production performance. 

Kantorovich distance is basically a probabilistic measure to distinguish two probability 

distributions i.e. initial ensemble and reduced ensemble in our case. It was first 

introduced in transportation problem in 1942 and since then it has been used in many 

applications such as mining (Armstrong et al. 2013), image compression (Alexopoulos 

and Drakopoulos 2012), stochastic programming (Dupacova et al. 2003) etc. In our 

case, for realization reduction problem, Kantorovich distance between original 

ensemble and reduced ensemble can be defined by optimal value of a linear 

transportation problem which can be shown as, 

  (3.16) 

where 𝑖 and 𝑖′ are realizations, 𝜂𝑖,𝑖′ is the decision variable that represents probability 

mass transportation plan, 𝑐𝑖,𝑖′ is dissimilarity between realizations explained in Eq. 

(3.15), 𝐼 is initial ensemble and 𝑆 is reduced ensemble and 𝑝𝑖′
𝑛𝑒𝑤

 is the probability of 

realization 𝑖′ in reduced ensemble while 𝑝𝑖
𝑜𝑟𝑖𝑔

 denotes the probability of realization 𝑖 

in initial ensemble. In our case, it is considered that all realizations in initial ensemble 

are equiprobable, so 𝑝𝑖
𝑜𝑟𝑖𝑔

 is equal to 1/𝑁𝑒 where 𝑁𝑒 is total number of realizations in 

initial ensemble. 

Dupacova et al. (2003) proved that optimal objective value for the minimization 

problem shown in Eq. (3.16) is, 
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𝐷𝐾𝑎𝑛 = ∑ 𝑝𝑖

𝑜𝑟𝑖𝑔
𝑑𝑖

𝑖∈𝐼−𝑆

 
(3.17) 

where 𝑑𝑖 = min
𝑖′∈𝑆

𝑐𝑖,𝑖′  ∀𝑖 ∈ 𝐼 − 𝑆 is the cost of removing realization 𝑖. Also, it is the 

minimum dissimilarity distance between a removed realization 𝑖 and all the realizations 

selected in subset 𝑖′ ∈ 𝑆. If we consider 𝑝𝑖′
𝑛𝑒𝑤

 as a decision variable, optimal solution 

for problem in Eq. (3.16) can be shown as, 

 
𝑝𝑖′
𝑛𝑒𝑤 = 𝑝

𝑖′
𝑜𝑟𝑖𝑔

+ ∑ 𝑝𝑖
𝑜𝑟𝑖𝑔

𝑖∈𝐽(𝑖′)

 ∀𝑖′ ∈ 𝑆 
(3.18) 

where 𝐽(𝑖′) = {𝑖 ∣ 𝑖 ∈ 𝐼 − 𝑆, 𝑐𝑖,𝑖′ ≤ 𝑐𝑖,𝑖′′ , ∀𝑖
′′ ∈ 𝑆}. Eq. (3.18) shows that new 

probability of a selected realization is equal to the sum of its original probability and 

all probabilities of removed realizations which are nearest to it. 

Now, the objective value of Eq. (3.17) needs to be minimized in order to select a better 

reduced ensemble. To specify whether a particular realization is selected in a reduced 

ensemble or not, a binary variable for each realization in the initial ensemble is defined 

where 0 and 1 indicate selection and rejection of particular realization respectively. 

Since our optimization model consists both binary and continuous variables, a 

constrained mixed integer linear optimization algorithm is used to minimize the 

Kantorovich distance between original ensemble and reduced ensemble. Constraints 

for the optimization problem in the proposed scenario reduction method are explained 

in detail by Rahim et al. (2015) and detailed proofs are described in Li and Floudas 

(2014). 

Mixed Integer Linear Optimization (MILP) is well-known since 1960s and commercial 

solvers (e.g. CPLEX, Gurobi, PICO) are available to solve the optimization problems 

(Bixby 2012). Mathematically, MILP problem can be generally defined as, 

 

𝑧 = 𝑚𝑖𝑛𝑥,𝑦   𝑓
𝑇𝑥 + 𝑔𝑇𝑦 

𝑠. 𝑡.     𝐴𝑥 + 𝐸𝑦 ≤ 𝑏 

            𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥  ,   𝑦 ∈ ℤ 

(3.19) 
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where 𝑧 is the optimal value of the linear objective function comprising continuous and 

integer variables with 𝑓𝑇 and 𝑔𝑇 being the coefficients. Here, 𝑥 denotes continuous 

variable defined between lower bound 𝑥𝑚𝑖𝑛 and upper bound 𝑥𝑚𝑎𝑥 while 𝑦 represents 

the integer variable that belongs to ℤ (i.e. set of integers in general). As Kostuik et al. 

(2013) noted, MILP can guarantee an optimal solution for any mixed integer 

optimization problem with linear objective function and constraints. Various algorithms 

are available to solve the above MILP problem shown in Eq. (3.19), e.g., branch and 

bound, branch and cut, branch and price and dynamic search algorithm. As the 

minimization of Kantorovich distance is modeled as an MILP optimization problem, it 

can be solved using any MILP solver. 

 Ensemble Kalman Filter 

After selecting a reduced ensemble using different methods discussed in previous 

sections, EnKF is implemented to perform assisted history matching on reduced 

ensemble in proposed work. EnKF is a data assimilation technique for large-scale 

systems, based on theory of Kalman filters and sequential Monte Carlo methods. 

Evensen (2009) has a well documented theoretical basis for various aspects of EnKF. 

Also, Aanonsen et al. (2009) have reviewed the application of EnKF in reservoir 

engineering, specifically for estimation of reservoir parameters. To apply the traditional 

EnKF for history matching, the stepwise procedure is provided here with necessary 

explanations. 

1) Create an initial ensemble consisting 𝑁𝑒 independent ensemble members 

primarily using data available from well logs, core analysis, seismic analysis 

and other prior information available. Simulation techniques like Sequential 

Gaussian Simulation (SGS), Sequential Indicator Simulation (SIS), etc. are 

used to generate multiple stochastic realizations. 

2) In forecast step of EnKF, forward each member of initial ensemble separately 

to a next time step using a state transition function (𝑓) that relates current 

state of system to the previous or initial state of system. In reservoir 

applications, commercial reservoir simulators are used to propagate 

realizations that solve nonlinear differential equations using finite element or 
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finite difference method. Eq. (1.2) shows the forecast step of EnKF in 

mathematical terms. It can be considered here while keeping the notations 

consistent. 

3) Construct a state vector for each realization in the initial ensemble by 

combining interested parameters (commonly known as state variables) of it. 

State vector 𝑧 at time step 𝑘 for a particular realization 𝑗 can be defined as, 

 𝑧𝑘
𝑗
= [

𝑚𝑘
𝑗

𝑢𝑘
𝑗

𝑑𝑘
𝑗

]     ∀𝑗 ∈ [1 , 𝑁𝑒] (3.20) 

where typically, model parameters 𝑚𝑘
𝑗
 can be logarithmic of permeability, 

porosity, state parameters 𝑢𝑘
𝑗
 can be time dependent parameters like 

pressure, water saturation and production data 𝑑𝑘
𝑗
 can be oil rate, water rate, 

steam oil ratio, etc. at all or selected wells in the reservoir model. 

4) Introduce initial ensemble in a matrix form by combining state vector 𝑧𝑘
𝑗
 of 

each realization. Mathematically, it can be written as, 

 𝑍𝑘 = [ 𝑧𝑘
1, 𝑧𝑘

2, … , 𝑧𝑘
𝑗
, … , 𝑧𝑘

𝑁𝑒  ] (3.21) 

5)  Calculate ensemble mean 𝑍𝑘 of the prediction ensemble using equation, 

 𝑍𝑘 = [𝑧𝑘
1̅̅ ̅, 𝑧𝑘

2̅̅ ̅, … , 𝑧𝑘
𝑗̅̅̅, … , 𝑧𝑘

𝑁𝑒̅̅ ̅̅̅] = 𝑍𝑘𝑤𝑘 (3.22) 

where 𝑤𝑘 is the 𝑁𝑒 ×𝑁𝑒 matrix with each element of it equal to 1/𝑁𝑒. 

6)  Next, compute ensemble perturbation matrix ∆𝑍𝑘 by subtracting ensemble 

mean from state vector of each realization, equation of which can be shown 

as, 

 ∆𝑍𝑘 = 𝑍𝑘 − 𝑍𝑘 (3.23) 

7)  Determine ensemble covariance matrix 𝐶𝑍𝑘
𝑝

 of an initial ensemble 𝑍𝑘 shown in 

Eq. (3.21) using standard statistical formula that can be written as, 
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 𝐶𝑍𝑘
𝑝 =

∆𝑍𝑘(∆𝑍𝑘)
𝑇

𝑁𝑒 − 1
 (3.24) 

where superscript 𝑝 symbolizes predicted (before update) state of particular 

matrix. Here, from Eq. (3.24) it can be said that calculation of covariance 

matrix 𝐶𝑍𝑘
𝑝

 only requires data available at time step 𝑘, providing EnKF an edge 

over standard Kalman filter (Gu and Oliver 2006). 

8)  Prepare 𝑁𝑒 perturbed observations by adding a random Gaussian noise (also 

known as measurement error) 𝑣𝑘~𝑁(0, 𝑅) to original observation 𝑑𝑘
𝑜𝑏𝑠 at time 

step 𝑘 as follows, 

 𝑑𝑘
𝑗,𝑜𝑏𝑠

= 𝑑𝑘
𝑜𝑏𝑠 + 𝑣𝑘

𝑗
     ∀𝑗 ∈ [1, 𝑁𝑒] (3.25) 

where 𝑣𝑘 follows a zero mean Gaussian distribution with measurement noise 

covariance matrix 𝑅 and 𝐸[𝑣𝑘𝑣𝑘
𝑇] = 𝑅 assuming that 𝑅 is known. 

Observations calculated after adding random measurement error in Eq. (3.25) 

can be considered as random variables, a necessity to maintain variance of 

updated ensemble (Burgers et al. 1998). 

9)  In order to update state vector in analysis step, Kalman gain 𝐾𝑔 needs to be 

calculated using ensemble covariance matrix, equation for which can be 

written as, 

 𝐾𝑔 = 𝐶𝑍𝑘
𝑝 𝐻𝑇(𝐻𝐶𝑍𝑘

𝑝 𝐻𝑇 + 𝑅)
−1

 (3.26) 

where 𝐻 is a measurement operator which relates state vectors to theoretical 

observations. Generally, it has only 0 and 1 as its elements. Mathematically it 

can be shown as, 

 𝐻 = [0 | 𝐼] (3.27) 

10)  Finally, state vector of each realization in the predicted ensemble is updated 

using Kalman update equation in the analysis step. Mathematically, it can be 

shown as, 



43 

 

 𝑧𝑘
𝑗,𝑎
= 𝑧𝑘

𝑗,𝑝
+ 𝐾𝑔(𝑑𝑘

𝑗,𝑜𝑏𝑠
− 𝐻𝑧𝑘

𝑗,𝑝
)    ∀𝑗 ∈ [1, 𝑁𝑒] (3.28) 

where superscript 𝑎 denotes analyzed (after update) state vector. If 

uncertainty in production forecast of updated state vector 𝑧𝑘
𝑗,𝑎

 is high then 

repeat step 2 to 10 considering updated ensemble as a predicted ensemble 

until it is reduced to a level that firm decisions related to field development 

can be taken. 

 Application to a SAGD Reservoir 

In order to verify the proposed sampling method and also to compare it with other 

methods, we applied all 4 methods to a SAGD reservoir located in northern Alberta. A 

workflow using MATLAB® (release R2014a) was developed in-house, which consists 

several user-defined functions in order to implement different screening methods and 

EnKF explained in the previous section. It also integrates different software like CMG 

STARSTM (CMG 2013a) for reservoir simulations, Results ReportTM (CMG 2013b) to 

export data once simulations are done and CPLEX® (IBM 2010) for solving MILP 

optimization model in proposed scenario reduction method. In section 3.5.1, general 

description of reservoir model is provided. Also, application of different methods, 

including the proposed method on real reservoir model is discussed in section 3.5.2 to 

3.5.5. In section 3.5.6, application of EnKF on reduced ensemble derived using all four 

different methods is discussed. 

3.5.1 Description of the Reservoir Model 

Reservoir model was built from the ground up by use of the various data available 

from the field. Different types of well logs from the vertical core holes near a particular 

horizontal well pair were used to build a static model in Petrel exploration and 

production software platform from Schlumberger. The corner point grid was generated 

in which dimensions of each grid block are 25 × 2 × 1.5 m and number of grid blocks 

are 25 × 50 × 16 in i (East), j (North) and k (Elevation) direction respectively. The 

porosity of the grid blocks containing vertical core holes was obtained using the well 

logs and also permeability was calculated for those grid blocks (Figure 3.1). Sequential 

Gaussian simulation (SGS) was performed to generate 100 realizations of permeability 



44 

 

using the data at the wells as conditioning data. Bitumen viscosity at initial reservoir 

temperature (7 ⁰C) was 625,000 cp and at a higher temperature of 216 ⁰C, it was 10 

cp. Also, rock type with appropriate relative permeability curves was used in the model 

detail of which is not provided due to confidentiality. A horizontal well pair of length 

500 m and 6 m spacing between injector at top and producer at the bottom was 

modeled. Also, different constraints of both wells from the field data were used in the 

simulation model. Permeability values range from 1525 md to 7150 md in the 

realizations. Porosity values range from 31.5 to 41.5% while irreducible water 

saturation ranges from 0.16 to 0.2 in 100-member initial ensemble. Realizations were 

simulated for 1355 days in order to compare results of various sampling methods with 

proposed method by use of the thermal simulator CMG STARSTM (CMG 2013a). 

 

Figure 3.1 – Permeability values (in i-direction) of grid blocks containing core holes 

that were used as conditional data in Sequential Gaussian Simulation. 

3.5.2 Application of Orthogonal Ensemble Members Method 

The ensemble containing 100 realizations was used as an initial ensemble. Smaller 

size ensemble with only 50 members was created by following the steps described in 

section 3.2.1. Singular value decomposition was calculated much faster and reduced 

ensemble was generated using Eq. (3.1). 
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3.5.3 Application of Importance Sampling 

To select the smaller ensemble of 50 realizations using importance sampling, steps 

explained in section 3.2.2 is followed. As pointed out in step 2 of the method, weighting 

factor needs to be selected in order to give more importance to the certain region of 

prior model space. As we need to calculate weighting factor for each realization in the 

original ensemble, it must be simple and inexpensive to compute. Though there is no 

particular guideline to select a weighting factor, it should represent the realization 

fairly i.e. value of the weighting factor for a realization should be small when the value 

of production parameter to be predicted is small for the same realization or vice versa 

(Oliver and Chen 2009). In SAGD, oil recovery is highly affected by the vertical 

permeability of the reservoir. Edmunds and Best (1989) has discussed the effect of 

anisotropy on the growth of steam chamber in detail. Hence, vertical permeability can 

be a good weighting factor. However, before using the weighting factor, the correlation 

between the parameter and weighting factor should be ensured.  

 

Figure 3.2 - Proportionality between 𝑙𝑛(𝑘𝐴
𝑣) and normalized oil rate at 1200 days. 

As shown in Figure 3.2, the plot of oil rate at 1200 day and the natural logarithm of 

the arithmetic average of vertical permeability of each cell of realization is proportional. 
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However, in our case, multiple production parameters need to be predicted and 

therefore instead of using ln (𝑘𝐴
𝑣) as a weighting factor, we use 

 𝑤𝑖 =
λ × ln (𝑘𝐴

𝑣)

1 + λ × ln (𝑘𝐴
𝑣)

 (3.29) 

where 𝑘𝐴
𝑣 is arithmetic average of vertical permeability of each grid block of realization 

𝑖 in units of μm2. 𝜆 is an empirical constant in Eq. (3.29) and is equal to 10.8 in the 

case study considered. For Figure 3.2, we simulated all 100 realizations of initial 

ensemble. However, in practical application, one can run few simulations and identify 

the appropriate weighting factor. Once the weighting factor is decided, the 

computational cost to select realizations with higher probability density is quite low. 

3.5.4 Application of K-Means Clustering 

In order to select 50 member reduced ensemble using k-means clustering method, 

steps described in section 3.2.3 were followed. 

 

Figure 3.3 – Realizations in multidimensional space where square box shows 

realizations selected by K-Means clustering. 
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To implement the method, codes available publicly by Stanford Center for Reservoir 

Forecasting (SCRF) were modified. As authors Scheidt and Caers (2009) proposed to 

use oil rate or cumulative oil production at a particular time interval as a distance 

function, we used oil rate at 5 different time steps to calculate the distance function. 

After calculating distance matrix, classical multidimensional scaling was applied to map 

realizations on 2D Euclidean space. In order to apply standard linear pattern 

recognizing tools, Gaussian radial basis function kernel (Eq. (3.5)) with 𝜎 = 250 was 

used to transform Euclidean space into featured space and clustering algorithm was 

applied. 50 clusters were generated and realizations nearest to the centroid of the 

clusters were selected as a subset. The realizations mapped in 2D space are shown in 

Figure 3.3 where square box represents selected realizations. 

3.5.5 Application of Scenario Reduction Method 

To apply proposed method, initially, we identified net cells in each realization in the 

initial ensemble using criteria explained in Eq. (3.7). Threshold porosity (𝜙0) and 

threshold permeability (𝑘0) were considered as half of mean of the porosity and 

permeability of a particular realization respectively. Then static measures explained in 

Eq. (3.8) to Eq. (3.14) were calculated for each realization. Also, dissimilarity distance 

between realizations was calculated using Eq. (3.15). Next, to select reduced 

ensemble, Kantorovich distance was calculated between two distributions and a 

constrained MILP model was defined to minimize the objective value defined in Eq. 

(3.17). The optimization model was solved using CPLEX solver and 50 realizations were 

selected when Kantorovich distance between initial distribution and reduced 

distribution was minimum. Solving the optimization model took even less than a 

second, which shows computational efficiency of the proposed method. It is important 

to note that proposed scenario reduction method can also be effective in case of 

reservoir with multimillion grid blocks since the MILP based scenario reduction method 

only needs static measure that is calculated for the whole reservoir and irrespective of 

the total number of grid blocks in a particular realization. The static measures provide 

exclusive identification to each realization in the initial ensemble and ultimately form 

a basis for ensemble reduction. 
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3.5.6 Application of EnKF 

In order to check the performance of reduced ensemble selected using all four different 

methods in history matching, EnKF was applied on each of them. The model parameter 

used here is natural logarithm of permeability in order to fulfill Gaussian statistics 

assumption of EnKF and production parameters used are oil rate and steam oil ratio. 

Hence, state vector for all realizations together can be shown as, 

 
𝑍𝑘 = [

{ln(𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦)}𝑁𝑐×𝑁𝑠
{𝑂𝑖𝑙 𝑅𝑎𝑡𝑒}1×𝑁𝑠

{𝑆𝑡𝑒𝑎𝑚 𝑂𝑖𝑙 𝑅𝑎𝑡𝑖𝑜}1×𝑁𝑠

]

20002×𝑁𝑠

 
(3.30) 

where 𝑁𝑐 is number of cells in reservoir model i.e. 20000 and 𝑁𝑠 is number of 

realizations in reduced ensemble i.e. 50. Reduced ensemble with even less number of 

realizations could be selected using other screening methods as well as proposed 

scenario reduction method. However, small ensemble in EnKF update converge to the 

same ensemble member (Sarma and Chen 2013), ultimately resulting into ensemble 

collapse and poor uncertainty quantification. Therefore, to obtain credible results in 

history matching using EnKF, reduced ensemble with 50 realizations was sampled. 

State parameters are not used in Eq. (3.30) as they are time dependent and can cause 

potential inconsistency (Gu and Oliver 2006). All the forward simulations were run 

using thermal simulator CMG STARS. State vector was assimilated at 760 days and 

results in the forecast period (761 days to 1355 days) were obtained by simulating the 

updated ensemble. Performance of each method was verified by analyzing decrease in 

average data mismatch and closeness of mean of ensemble to the true value. 

 Results and Discussions 

As discussed before, our main intention is to select reduced ensemble such that it has 

same statistical distribution as initial ensemble after sampling/screening and to check 

the performance of the reduced ensemble in history matching using EnKF. To analyze 

results in a lucid manner, they are divided into two subsections. In section 3.6.1, only 

results after sampling/screening are discussed while in section 3.6.2, results after 

applying EnKF is compared. Note that all the production parameters presented in 

proposed work are normalized by a target value of respective production parameter. 
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3.6.1 Screening for reduced initial ensemble 

To compare the results after initial screening, simulations were carried out for each 

realization in the reduced ensemble as well as an initial ensemble. For uncertainty 

assessment after the screening, oil rate, cumulative oil production, and steam oil ratio 

(all normalized) of the reduced ensemble are superimposed on the results of original 

ensemble. Also, a histogram of each production parameter at 1200 days are plotted 

to verify the statistical characteristics of both distributions, original and after 

screening. In addition, detailed quantitative analysis of production parameters 

obtained from simulation of the reduced ensemble is shown and compared with the 

original ensemble in Table 3.1. The true expected mean values of the original ensemble 

for oil production rate, cumulative oil produced and SOR are 0.513, 0.594, and 0.271, 

respectively. The standard deviation of the estimates of mean values, minimum and 

maximum values of these production parameters of screened ensembles are also 

compared with the original ensemble in Table 3.1. 

If the method estimates mean and standard deviation close to those estimated by the 

original ensemble, it is considered as an unbiased method. It is also important to retain 

variability among ensemble members. The loss of ensemble variability could severely 

underestimate the underlying uncertainties of the geological models (Devegowda et 

al. 2007). Because of loss of variability in the prior model (after initial sampling in our 

case), the sample-derived covariance could become negligible (i.e. uncertainties in 

prior models are negligible) and therefore ensemble losses the ability to assimilate 

new observations. It can lead to spurious errors and unrealistic updates of state 

vectors referred as “ensemble collapse” (Chen and Oliver 2010). A method of 

screening whether retains variability among the ensemble members or not can be seen 

by superimposing their forecast on the original ensemble forecast and observing the 

spread or subspace spanned by the ensemble. Similarly, if the spread of ensemble is 

maintained after initial sampling/screening, the maximum and minimum values of the 

production parameters from the forecast of the method should be closer to that of 

original ensemble. If the spread is underestimated, filter divergence will occur in the 

analysis step with analysis result far away from the true observations (Anderson 

2010). 
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Table 3.1 – Quantitative analysis of production data at 1200 days after sampling 

 Original 

Ensemble 

Scenario 

Reduction 

Orthogonal 

Ensemble 

Members 

K-Means 

Clustering 

Importance 

Sampling 

Normalized Oil Rate SC 

Mean 0.513 0.468 0.552 0.463 0.621 

Std Dev 0.127 0.136 0.029 0.128 0.046 

Min 0.225 0.225 0.484 0.225 0.530 

Max 0.728 0.728 0.623 0.696 0.728 

R2 -0.408 -0.230 -0.132 -0.168 -1.102 

RMSE 0.146 0.136 0.137 0.133 0.186 

Normalized Cumulative Oil Production 

Mean 0.594 0.549 0.645 0.546 0.689 

Std Dev 0.117 0.128 0.017 0.125 0.026 

Min 0.306 0.306 0.605 0.306 0.627 

Max 0.734 0.734 0.687 0.718 0.734 

R2 0.859 0.842 0.939 0.848 0.846 

RMSE 0.073 0.077 0.053 0.075 0.084 

Normalized Cumulative Water Production 

Mean 0.271 0.295 0.239 0.296 0.225 

Std Dev 0.066 0.074 0.007 0.073 0.009 

Min 0.212 0.212 0.224 0.215 0.212 

Max 0.490 0.490 0.253 0.490 0.247 

R2 0.296 -0.001 0.808 0.010 0.716 

RMSE 0.050 0.061 0.031 0.060 0.038 

The oil production rate of reduced ensembles (blue lines) superimposed on the oil rate 

of the original ensemble (green lines), and the actual field oil rate (red line) are shown 

in Figure 3.4. Similarly, the comparisons for cumulative oil production are shown in 

Figure 3.7. Improper weighting factor could lead to bias in screening in importance 

sampling. As shown in Figure 3.2, the weighting factor selected for the case study has 

a good correlation with production parameter. Therefore, the bias in screening is not 

due to the weighting factor. Rather, it is due to the fact that the orthogonal ensemble 

members and importance sampling methods are screening the realizations only having 
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higher oil rate. A similar bias in terms of cumulative oil production was also evident 

for the ensemble screened using these methods. On the other hand, the proposed 

scenario reduction method and k-means clustering cover the entire spread of oil rate 

and cumulative oil production displayed by the original ensemble. The distribution 

histograms of oil production rate and cumulative oil production are plotted in Figure 

3.5 and Figure 3.6 respectively. The proposed scenario reduction method has a similar 

distribution as that of original ensemble. Also, from Table 3.1, minimum and maximum 

of oil production parameters for original ensemble and reduced ensemble using 

scenario reduction method show the similar values. Therefore, it is evident that the 

screened realizations using scenario reduction method correctly represent the original 

ensemble in terms of oil rate. 

 

 

Figure 3.4 – Normalized oil rate of reduced ensembles (blue lines) obtained using 

different sampling methods, superimposed on normalized oil rate of the initial 

ensemble (green lines). Red line shows history from field data. SC = surface 

conditions. 
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Figure 3.5 – Histogram of normalized oil rate at 1200 days for realizations obtained 

using different sampling methods and the original ensemble. SC = surface conditions. 
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Figure 3.6 – Histogram of normalized cumulative oil production at 1200 days for 

realizations obtained using different sampling methods and the initial ensemble. 
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Figure 3.7 – Normalized cumulative oil production of reduced ensembles (blue lines) 

obtained using different sampling methods, superimposed on normalized cumulative 

oil production of the initial ensemble (green lines). Red line shows history from field 

data. 

An important production parameter that depicts efficiency of the SAGD process, steam 

oil ratio (SOR) is also plotted in Figure 3.9. As no oil is produced in circulation phase, 

steam oil ratio will be very high. To see the difference in output of different realizations, 

SOR is plotted for 700 days to 820 days. The proposed scenario reduction method and 

k-means clustering method both show similar SOR predictions as the original 

ensemble. However, the scenario reduction method identifies the high-frequency and 

low-frequency areas of distribution of original ensemble precisely in case of SOR than 

other methods (Figure 3.8). Likewise, for scenario reduction method the minimum and 

maximum values of SOR, and the values of mean and standard deviation are similar 

to those of initial ensemble (Table 3.1). 
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Figure 3.8 – Histogram of normalized steam oil ratio at 1200 days for realizations 

obtained using different sampling methods and the initial ensemble. 
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Figure 3.9 – Normalized steam oil ratio of reduced ensembles (blue lines) obtained 

using different sampling methods, superimposed on normalized steam oil ratio of the 

initial ensemble (green lines). Red line shows history from field data. 

The R2 and RMSE for each ensemble are calculated where R2 represents the quality of 

ensemble as compare to original data while RMSE stands for Root Mean Square Error 

that represents average data mismatch. R2 of any realization 𝑖 for any particular 

production parameter can be defined as (Chitralekha et al. 2010), 

 𝑅𝑖
2 = 1 −

∑ (�̂�𝑖 − �̂�𝑜𝑏𝑠)
2𝑡𝑛

𝑘=𝑡1
 

∑ (�̂�𝑜𝑏𝑠 − �̅�𝑜𝑏𝑠)2
𝑡𝑛
𝑘=𝑡1

 (3.31) 

where 𝑅𝑖
2  is the R2 for 𝑖𝑡ℎ realization, �̂�𝑖 and �̂�𝑜𝑏𝑠 are the simulated value and observed 

true value from the field of a production parameter for 𝑖𝑡ℎ realization respectively and 



57 

 

�̅�𝑜𝑏𝑠 is time average of a production parameter, averaged over time interval 𝑡1 to 𝑡𝑛. 

To calculate R2 of ensemble, equation can be shown as, 

 𝑅2 =
1

𝑁𝑒
∑𝑅𝑖

2

𝑁𝑒

𝑖=1

 (3.32) 

Value of 𝑅2 in Eq. (3.32) can vary from -∞ to 1 where 𝑅2 = 1 represents a perfect 

match. To calculate RMSE of realization 𝑖 for any production parameter, equation can 

be shown as (Gu and Oliver 2006), 

 𝑅𝑀𝑆𝐸𝑖 = √
1

𝑡𝑛
∑(�̂�𝑖 − �̂�𝑜𝑏𝑠)

2

𝑡𝑛

𝑘=1

 (3.33) 

By averaging the root mean square error of each realization, average data mismatch 

of ensemble can be calculated equation for which can be shown as, 

 𝑅𝑀𝑆𝐸 =
1

𝑁𝑒
∑𝑅𝑀𝑆𝐸𝑖

𝑁𝑒

𝑖=1

 (3.34) 

where 𝑅𝑀𝑆𝐸 equal to 0 shows that ensemble has no data mismatch and it has exact 

value of the parameter as true data. 

Table 3.1 indicates R2 and RMSE for all production parameters of the reduced ensemble 

as well as an initial ensemble. If a subset of realizations selected shows same statistical 

characteristics and distribution as an original ensemble, then R2 and RMSE of the 

reduced ensemble should also be same as that of original ensemble. In case of oil rate, 

R2 for the original ensemble is -0.408 while for proposed scenario reduction method it 

is -0.230, closer than any other sampling method. R2 for oil rate is negative because 

of high fluctuation in daily oil rate as constraints are not constant with time. Also, the 

trend of oil rate changes in SAGD with a change in permeability (Marianayagam 2012) 

and hence output differs with respect to original data from the field at a particular 

time, which leads to negative R2 values. 



58 

 

Box and whisker plots for all production parameters are also shown in Figure 3.10. In 

this figure, the box spans from the 0.25 quantile to 0.75 quantile and the whiskers 

span the entire range of the set. The horizontal red line in this figure shows the median 

of the distribution. It is evident from the figure that reduced ensemble sampled using 

orthogonal ensemble members method and importance sampling method are biased 

and with less variability than an original ensemble, hence these methods are not 

suitable for sampling/screening of realizations for the reservoirs with nonlinear 

processes such as SAGD. K-Means clustering shows comparable results except for 

distributions of some production parameters like steam oil ratio in this case. On the 

other hand, Figure 3.10 confirms promising results of proposed scenario reduction 

method for all production parameters studied here. 

 
Figure 3.10 – Box and whisker plots representing distributions of different normalized 

production parameters at 1200 days obtained using simulations of all realizations of 

the original ensemble as well as reduced ensembles obtained using different sampling 

methods. Red line shows the median of each distribution. 
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3.6.2 Effect of initial screening/sampling on EnKF 

After selecting reduced ensemble using four different methods, EnKF was applied on 

each of them in order to study their performance for history matching. To compare 

the results of different reduced ensemble after applying EnKF, simulations were rerun 

using updated reduced ensembles and production parameters were plotted. Also, the 

detailed quantitative analysis was performed in terms of data mismatch, standard 

deviation, and closeness of mean of the updated ensemble to the true value. 

 

 

 

Figure 3.11 – Normalized oil rate of reduced ensembles (grey lines) obtained after 

EnKF update. Red line shows history from field data. History up to 760 days was used 

in EnKF and subsequent period from 761 days to 1355 days constitutes the forecast 

region. 
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Table 3.2 – Quantitative analysis of production data at 1200 days after update 

  Scenario 

Reduction 

Orthogonal 

Ensemble 

Members 

K-means 

Clustering 

Importance 

Sampling 

  Normalized Oil Rate SC (True Value = 0.398) 

Mean 0.490 0.555 0.494 0.636 

Std Dev 0.084 0.029 0.072 0.039 

Min 0.377 0.487 0.367 0.557 

Max 0.733 0.613 0.641 0.702 

R2 0.142 -0.145 0.142 -1.280 

RMSE 0.115 0.138 0.116 0.195 

  Normalized Water Rate SC (True Value = 0.6) 

Mean 0.705 0.710 0.703 0.702 

Std Dev 0.012 0.015 0.014 0.023 

Min 0.664 0.667 0.668 0.652 

Max 0.724 0.754 0.735 0.756 

R2 -0.131 -0.419 -0.150 -0.595 

RMSE 0.161 0.181 0.162 0.193 

  Normalized Cumulative Oil Production (True Value = 0.562) 

Mean 0.580 0.646 0.593 0.695 

Std Dev 0.071 0.017 0.068 0.021 

Min 0.475 0.602 0.460 0.646 

Max 0.689 0.678 0.698 0.733 

R2 0.948 0.938 0.949 0.831 

RMSE 0.045 0.053 0.046 0.089 

  Normalized Steam Oil Ratio (True Value = 0.268) 

Mean 0.269 0.240 0.263 0.222 

Std Dev 0.032 0.006 0.030 0.007 

Min 0.223 0.226 0.221 0.210 

Max 0.320 0.255 0.334 0.237 

R2 0.679 0.845 0.692 -1.280 

RMSE 0.039 0.028 0.038 0.038 
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Figure 3.12 – Normalized water rate of reduced ensembles (grey lines) obtained after 

EnKF update. Red line shows history from field data. 

The oil production rates and cumulative oil production of the updated reduced 

ensemble (plotted in grey lines) and the original oil rates from the field data (red line) 

are shown in Figure 3.11 and Figure 3.13 respectively. By comparing the ensembles 

after sampling (blue lines in Figure 3.4 and Figure 3.7) and ensemble after update 

(grey lines in Figure 3.11 and Figure 3.13), it can be seen that the uncertainty 

represented by ensemble spread after the update has decreased considerably 

compared to prior. However, ensembles selected using orthogonal ensemble members 

method and importance sampling method did not converge towards the true data after 

EnKF update because of the bias introduced during sampling step. The narrow 

ensemble spread for these two methods is a sign of ensemble collapse and may lead 

to underestimation of predicted uncertainty in the model variables. Also, mean of 

updated reduced ensemble obtained using scenario reduction method is the closest to 
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the true value from the field as compared to other methods (Table 3.2). The average 

data mismatch is lowest for scenario reduction method. In addition, R2 value has 

increased from -0.408 to 0.142 that shows improvement in the quality of history 

matching after EnKF update. Also, the standard deviation in oil production rate and 

cumulative oil production decreased for the ensemble screened using scenario 

reduction, which depicts the convergence of reduced ensemble towards the true data 

after history matching. 

 

 

Figure 3.13 – Normalized cumulative oil production of reduced ensembles (grey lines) 

obtained after EnKF update. Red line shows history from field data. 

The water production rate from simulations of updated reduced ensembles (grey lines) 

and original water rate from the field data (red line) is shown in Figure 3.12. After the 

update, water rate converged to the lowest standard deviation (equal to 0.012) for the 

reduced ensemble obtained using scenario reduction among all other methods studied 

here (Table 3.2). The RMSE in updated ensemble selected using k-means clustering is 
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also lower than those selected using orthogonal and importance sampling, however 

RMSE for ensemble selected using scenario reduction method was lowest. 

In addition, to confirm the performance of proposed scenario reduction method in 

history matching using EnKF, steam oil ratio obtained from simulations of updated 

reduced ensembles are plotted and compared with original data in Figure 3.14. The 

standard deviation in case of orthogonal ensemble members and importance sampling 

is lower but the mean of the updated reduced ensemble did not converge to the true 

value. K-Means clustering method shows mean closer to the true value, however, 

mean of ensemble screened using scenario reduction method is same as a true value, 

which shows the superiority of proposed method over other techniques studied in this 

case study. 

 

 

 

Figure 3.14 – Normalized steam oil ratio of reduced ensembles (grey lines) obtained 

after EnKF update. Red line shows history from field data. 
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Figure 3.15 – Box and whisker plots representing distributions of different production 

parameters at 1200 days, obtained using simulations of all realizations of reduced 

ensembles obtained after EnKF update, red line shows median of each distribution 

while green continuous horizontal line shows true value of particular production 

parameter at 1200 days and ‘+’ mark shows mean of each ensemble. 

The box and whisker plots for all production parameters (obtained from a rerun of 

updated reduced ensembles) are shown in Figure 3.15. In the figure, the red line 

shows the median of the distribution, ‘+’ sign in interquartile range shows the mean 

of the distribution while the green horizontal line represents the true value of a 

particular parameter from the field. It can be noticed that performance of importance 

sampling is poorer as compare to other methods with low standard deviation but 

biased ensemble means for all production parameters. Similar results can be observed 

for orthogonal ensemble member method. The reason for the poor performance of 

both methods is the smaller subspace spanned by the reduced ensembles due to which 

ensemble variability is not maintained, ultimately resulting into poor convergence in 
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the assimilation of data using EnKF. K-Means clustering shows comparable results in 

both sampling and updating using EnKF. However, streamline simulation model needs 

to be reformulated if numbers of wells or well locations are changed in the model. Also, 

streamline simulation takes significant time as compared to the time required to 

compute simple static measures in the proposed method. Facts explained here using 

various figures and tables endorse that ensemble selected using proposed scenario 

reduction method performs well in data assimilation, honoring the observations, and 

at the same time preserves variability in the prior. 

 Summary 

We have presented a novel method with a primary objective of screening realizations 

from a large initial ensemble such that selected ensemble correctly represents the 

uncertainty of initial ensemble by maintaining model variability, preventing ensemble 

collapse and filter divergence, and gives good performance in history matching using 

EnKF even with less number of ensemble members. Proposed scenario reduction 

method is based on probability distance minimization in which dissimilarity between 

initial ensemble and subset selected is quantified using Kantorovich distance. In order 

to minimize it, a constraint-based mixed integer linear optimization model is used that 

assigns a new probability to each of those selected realizations. Moreover, this method 

uses multiple static measures relevant to the reservoir and the process. We have 

applied the scenario reduction method on a real field SAGD reservoir. The scenario 

reduction method maintained the variability in the screened ensemble, which is 

important for avoiding ensemble collapse, whereas the orthogonal ensemble and 

importance sampling methods introduced bias. During the history match, the spread 

of ensemble results is reduced significantly for all the methods demonstrating 

uncertainty reduction in geological models due to the assimilation of production data. 

However, EnKF was unable to correct the bias introduced due to orthogonal and 

importance sampling methods. Therefore, true observations did not fall within the 

ensemble results for these two methods. Scenario reduction method significantly 

reduced the computing cost without compromising uncertainty in forecast model that 

allows real-time updating of large-scale SAGD reservoirs at smaller time intervals.  
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Chapter 4  
 

Polynomial-Chaos-Expansion 

Based Integrated Dynamic 

Modeling Workflow for 

Computationally Efficient 

Reservoir Characterization 2 
  

                                           
2 A version of this chapter has been published in the proceedings of the SPE Europec 

featured at 79th EAGE Conference and Exhibition and submitted to Journal of Petroleum 

Science and Engineering. 
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 Introduction 

Reservoir simulation is an important tool for optimal decision making and risk 

management in reservoir operations, however, not all the petrophysical properties are 

known in the reservoir model. A prior distribution of the geological properties 

conditioned to static data can be generated using various geostatistical techniques 

(Deutsch 2002). Also, different subsurface flow measurements (𝑦) pertinent to 

unknown model parameters (𝜃) are available from surface and downhole sensors. 

From probabilistic perspective, Bayesian inference provides an excellent platform to 

compute the posterior probability density function (pdf) 𝑝(𝜃|𝑦) conditioned to 

available data. Bayes’ rule in the context of this work can be shown as follows (Robert 

and Casella 2004, Kaipio and Somersalo 2005): 

 𝑝(𝜃|𝑦) =
𝑝(𝑦|𝜃) 𝑝𝑝𝑟(𝜃)

𝑝(𝑦)
 (4.1) 

where 𝑝𝑝𝑟(𝜃) is the prior distribution, 𝑝(𝑦) is the density function of all the 

measurements used for conditioning and 𝑝(𝑦|𝜃) is the likelihood function for obtaining 

𝑦 given the model parameters 𝜃. From Eq. (4.1), it can be inferred that problem of 

uncertainty quantification is now reduced to sampling from pdf 𝑝(𝜃|𝑦). However, 

thorough characterization of density is prohibitively expensive and not possible in most 

practical cases (Tarantola 2005). 

Markov chain Monte Carlo (MCMC) is a standard sampling technique to implement 

Bayes’ theorem. Given the conditioning data and likelihood function, it allows rigorous 

sampling of prior by performing a random walk constrained to some probabilistic rules 

such as Metropolis-Hastings algorithm (Metropolis et al. 1953). However, obtaining 

posterior in MCMC is not a finite-dimensional problem except in strictly linear and 

Gaussian cases (Iglesias et al. 2013). Therefore, evaluation of likelihood function – 

which commonly includes the use of reservoir simulator – may be required for 

thousands or millions of times to characterize the posterior, especially in reservoir 

applications that are highly nonlinear and non-Gaussian. Higher dimensions of 

unknown model parameters make this problem only worse. For computationally 

efficient implementation of MCMC, several workflows are developed to increase the 
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probability of acceptance of new proposals in Markov chain using discretization (Cotter 

et al. 2013), error modelling (Efendiev et al. 2009), linear approximation (Ma et al. 

2008), and state vector covariance (Emerick and Reynolds 2012). However, longer 

chains required for legitimate posterior characterization has mostly restricted the 

MCMC applications for data assimilation in reservoir models to toy models (Efendiev 

et al. 2009, Emerick and Reynolds 2010, Liu and Oliver 2003, Oliver et al. 1997). 

Currently, there is a growing interest in sequential ensemble-based methods, 

particularly the ensemble Kalman filter (EnKF). Initially introduced as an extension to 

the linear Kalman filter for state estimation in nonlinear systems (Evensen 1994), it is 

widely used for model parameter estimation. It approximates the solution space using 

few samples and updates the unknown parameters through state space augmentation, 

given a perturbed set of observations. To obtain an updated empirical estimate of 

posterior, Kalman gain (similar to weighting matrix in particle filter) is calculated using 

mean and covariance of prior pdf and cross-covariance between parameters and 

observations. Since computational cost is independent of the dimensions of model 

parameters and measurements in EnKF, its applications can be found in various 

engineering and science fields, including oceanography and atmospheric science 

(Anderson 2001, Houtekamer and Mitchell 1998, Evensen and van Leeuwen 1996), 

hydrology (Chen and Zhang 2006), and petroleum engineering (Lorentzen et al. 2001, 

Naevdal et al. 2003, Oliver and Chen 2011). However, when high fidelity simulation is 

used in EnKF, the overall computational cost is dominated by the forward model runs 

(Jafarpour and McLaughlin 2008). Various sampling/screening techniques (Oliver and 

Chen 2009, Patel et al. 2015) are proposed to reduce the size of ensemble, however, 

it may affect the quality of covariance estimates (Oliver and Chen 2011) and in turn 

the estimation of model variables. 

Another approach for efficient data assimilation would be to implicate computationally 

less demanding data-driven meta/surrogate/proxy model as the forward model. These 

metamodels are essentially linear/nonlinear functions or their combinatorial with 

specified regressors. Using an available set of input-output data, unknown regressors 

(for e.g., coefficients, weights, biases) can be regressed or trained to forecast 

observations in EnKF. In section 2.2, ample studies have been reported employing 

different metamodels for various petroleum applications. Since architecture and 

underlying training algorithms are different for each metamodel, pros and cons offered 
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by them vary. However, a common drawback offered by the use of metamodel is the 

compromised accuracy. In the context of this work, deviation of metamodel responses 

from grid-based simulation introduces uncertainty in the forecast model, essentially 

motivating the proposed study. 

While several comparative studies evaluating the uncertainty quantification properties 

of data assimilation techniques are reported in literature (Barker et al. 2001, Liu and 

Oliver 2003, Gao et al. 2006, Tavakoli and Reynolds 2011, Emerick and Reynolds 

2013), it would be relevant to mention the work of Iglesias et al. (2013) and Jafarpour 

and Tarrahi (2011). Iglesias et al. (2013) evaluated the Gaussian approximations in 

ad-hoc techniques based on linearization around the maximum a posteriori estimate 

(LMAP), randomized maximum likelihood (RML) and EnKF methods. Using posterior 

distribution characterization, they concluded that Gaussian approximations provided 

the suboptimal estimations, for e.g., converged Gaussian approximation in EnKF with 

sufficient ensemble size was at least 10% off both in mean and variance as compared 

to the posterior obtained using MCMC. Jafarpour and Tarrahi (2011) investigated the 

performance of EnKF under the varying level of variogram uncertainty. They showed 

that overestimating uncertainty in variogram parameters was a better choice rather 

than introducing bias by use of incorrect initial values. From both the studies, it can 

be concluded that data assimilation algorithms are sensitive to uncertainties induced 

from different sources and neglecting them may lead to erroneous estimations. 

However, to the best of our knowledge, consequences of uncertainty in forecast model 

on the outcomes of various sampling/data-assimilation algorithms has not been 

systematically understood yet. 

In this chapter, the performance of EnKF and MCMC is studied under uncertainty in 

the forecast model. The metamodel is based on cost-effective PCE that can handle 

nonlinearity and integrating high-dimensional state vectors through Karhunen-Loeve 

(KL) parameterization (Patel et al. 2017). KL expansion represents the initial ensemble 

in terms of uncorrelated random variables using eigen decomposition of covariance 

function, while PCE based mathematical model relates the random variables and 

production parameters using orthogonal polynomials and deterministic coefficients. As 

shown in Figure 4.1, the metamodel is comprised in the EnKF framework by utilizing 

PCE model to predict production parameters in forecast step and updating random 

variables obtained by KL expansion instead of permeability of each grid block in 



70 

 

analysis step of EnKF. Significant contributions of this work can be summarized as (1) 

assessing the ability of EnKF and MCMC to recover the quantities of interest (QoI) 

within a confidence interval under forecast model uncertainty, (2) evaluating the 

impact of PCE forecast model on EnKF and MCMC performance at distinct phases, and 

(3) illustrating the advantage of using MCMC with PCE metamodel through posterior 

distribution characterization. Results and analysis reported in this chapter will be 

instrumental in designing computationally efficient reservoir characterization, 

uncertainty quantification and real-time data assimilation workflows for improved 

closed-loop reservoir management. 

 

Figure 4.1 – Proposed idea of comprising PCE metamodel in the EnKF framework. 

Section 4.2 and 4.3 comprises parameter inference methodologies MCMC and EnKF 

respectively. The explanation of the metamodel including KL, PCE and their integration 

in EnKF framework is given in section 4.4. Section 4.5 elaborates the application setup 

for the study including details of the reservoir model, PCE metamodel development 

and design of numerical experiments. In section 4.6, we report the inference results 

and analyze them qualitatively and quantitatively to discuss and compare different 

numerical cases considered in this work. Summary of this numerical study is presented 

in section 4.7. 

 Markov Chain Monte Carlo (MCMC) 

MCMC is an iterative sampling algorithm (Gamerman and Lopes 2006) for Bayesian 

inference of the posterior distributions that are often difficult to obtain analytically. As 

the name suggests, it is a conjugation of two properties: Monte Carlo and Markov 

chain. In Monte Carlo approach, samples are randomly drawn from a distribution with 
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known density while Markov chain is a probabilistic sequential process that gives the 

sampling process a formal direction to make it more efficient. Assuming prior 

distribution with mean �̅� and covariance 𝐶, the algorithm shown below can be followed 

to obtain the posterior distribution. 

Algorithm 4.1 [MCMC] 

1.  Set proposal index 𝑖 = 0 and initial model 𝜃0 ~ 𝒩(�̅�, 𝐶). 

2.  Generate a proposal 𝜃′ = 𝜃𝑖 + 𝜖 where 𝜖 ~ 𝒩(0, 𝛽2𝐼). 

3.  Calculate the probability of acceptance using likelihood function 𝐿(𝜃) for 

proposal 𝜃′ and original sample 𝜃𝑖: 

 𝑟 =
𝐿(𝜃′)

𝐿(𝜃𝑖)
  ,    𝑤ℎ𝑒𝑟𝑒  𝐿(𝜃) =̇  𝜋(𝜃|𝑦) (4.2) 

4.  Select the new model in Markov chain as per the following rule: 

 𝜃𝑖+1 = {
𝜃′, 𝑖𝑓 𝑟 > 𝛼        (𝐴𝐶𝐶𝐸𝑃𝑇)

𝜃𝑖 , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   (𝑅𝐸𝐽𝐸𝐶𝑇)
 (4.3) 

5.  𝑖 ⟼ 𝑖 + 1 and repeat from step 2. 

 

In the algorithm, 𝜖 is the local perturbation, 𝛽2 is the variance of proposal distribution, 

and 𝛼 is the random sample such that 𝛼 ∈ 𝒰(0,1). To obtain a well-mixed chain, 

acceptance rate should be far from both 0 and 1. Recently, considerable theoretical 

and empirical support has been given to the notion of optimal acceptance rate between 

0.2 and 0.3 (Gelman et al. 1996, Roberts et al. 1997, Roberts and Rosenthal 2001). 

𝛽2 can be scaled by trial and error or adaptively to achieve the optimal acceptance 

rate; higher the 𝛽2, lower the acceptance rate and vice versa. 

 EnKF Algorithm 

EnKF is an alternative filtering approach to obtain the posterior 𝑝(𝜃|𝑦) by assimilating 

new observations sequentially in a Bayesian framework. It has found applications in 
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distinct nonlinear inverse problems for parameter estimation including subsurface 

characterization due to its reasonable computational cost, ability to incorporate higher 

dimensional state space, and ease of implementation. We refer the readers monograph 

by Aanonsen et al. (2009) in which application of EnKF in reservoir engineering is 

reviewed. 

Joint EnKF estimation comprises two steps: prediction (forecast) step and analysis 

step. Augmented state vectors containing model parameters (𝜃) and system states 

(𝑢) are propagated in the future using a forecast (forward) model in prediction step 

and latest observations (𝑦) are assimilated using the analysis equation to estimate the 

unknown parameters. With Gaussian approximations, standard perturbed observation 

version of EnKF used in this study to understand the effect of uncertainty in forecast 

model is discussed below. The method is similar to the one in section 3.4, except that 

it is presented in the form of algorithm in the current context. 

Algorithm 4.2 [EnKF] 

1.  Create 𝑁𝑒 independent samples of 𝜃0
𝑎,𝑗

 and 𝑢0
𝑎,𝑗

 from their respective priors to 

form an initial state vector: 

 𝑧0
𝑎,𝑗
= {

𝜃0
𝑎,𝑗

𝑢0
𝑎,𝑗
}  ,    ∀𝑗 ∈ [1 , 𝑁𝑒] (4.4) 

2.  Integrate the state vector from timestep 𝑡𝑛 to 𝑡𝑛+1 using forward model 𝐹(⋅). 

3.  Construct an augmented state vector at timestep 𝑡𝑛+1 where 𝑛 = 0, 1, … , 𝑁𝑡 

by adding the observations measured using measurement operator Ψ𝑛+1: 

 𝑧𝑛+1
𝑝,𝑗

= {

𝜃𝑛+1
𝑝,𝑗

𝑢𝑛+1
𝑝,𝑗

𝑦𝑛+1
𝑝,𝑗

} =

{
 

 𝜃𝑛
𝑎,𝑗

𝐹(𝑢𝑛
𝑎,𝑗
, 𝜃𝑛
𝑎,𝑗
)

Ψ𝑛+1 (𝐹(𝑢𝑛+1
𝑝,𝑗

, 𝜃𝑛
𝑎,𝑗
))}
 

 

∈ ℝ𝑁𝜃+𝑁𝑢+𝑁𝑦   ,    ∀𝑗 ∈ [1 , 𝑁𝑒] (4.5) 

4.  Calculate first- and second-order moments using Monte Carlo integration as 

follows: 
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 �̅�𝑛+1
𝑝 = 𝑍𝑛+1

𝑝 𝑊 (4.6) 

                                        𝐶𝑛+1
𝑝,𝑍𝑍 =

1

𝑁𝑒 − 1
(𝑍𝑛+1

𝑝 − �̅�𝑛+1
𝑝 )(𝑍𝑛+1

𝑝 − �̅�𝑛+1
𝑝 )

𝑇
 (4.7) 

       where 

 𝑍𝑛+1
𝑝 = {𝑧𝑛+1

𝑝,1 , … , 𝑧𝑛+1
𝑝,𝑗

, … , 𝑧𝑛+1
𝑝,𝑁𝑒}  ∈ ℝ(𝑁𝜃+𝑁𝑢+𝑁𝑦)×𝑁𝑒 (4.8) 

5.  Update the ensemble using analysis equation, 

 𝑧𝑛+1
𝑎,𝑗

= 𝑧𝑛+1
𝑝,𝑗

+ 𝐾𝑛+1(𝑑𝑛+1
𝑗

− 𝐻𝑧𝑛+1
𝑝,𝑗

)  ,    ∀𝑗 ∈ [1, 𝑁𝑒] (4.9) 

       where  

 𝐾𝑛+1 = 𝐶𝑛+1
𝑝,𝑧𝑦

(𝐶𝑛+1
𝑝,𝑦𝑦

+ 𝑅)
−1

 (4.10) 

       and 

 𝑑𝑛+1
𝑗

 ~ 𝒩(𝑑𝑛+1
𝑜𝑏𝑠 , 𝑅) (4.11) 

6. 𝑛 ⟼ 𝑛 + 1 and repeat from step 2. 

 

In the algorithm, 𝐾𝑛+1 (see Eq. (4.10)) is the Kalman gain for the whole ensemble. 

Since model parameters and system states are not observed in the reservoir 

applications (Gu and Oliver 2006), observation operator 𝐻 = [0, 0, 𝐼] is used in the Eq. 

(4.9). Dimensions of model parameters, state variables, and observations (predicted 

data) are denoted as 𝑁𝜃, 𝑁𝑢, and 𝑁𝑦 respectively. Accordingly, in Eq. (4.10), 𝐶𝑛+1
𝑝,𝑧𝑦

 

and 𝐶𝑛+1
𝑝,𝑦𝑦

 are the cross-covariance between forecast state vector and observations 

and auto-covariance between observations with dimensions (𝑁𝜃 + 𝑁𝑢 + 𝑁𝑦) × 𝑁𝑦 and 

𝑁𝑦 × 𝑁𝑦, respectively. 𝑅 is the 𝑁𝑦 × 𝑁𝑦 measurement noise covariance matrix while 

𝑊 is the 𝑁𝑒 × 𝑁𝑒 matrix with each element of it equal to 1/𝑁𝑒. True observations at 

current timestep 𝑛 + 1 are denoted using 𝑑𝑛+1
𝑜𝑏𝑠  in Eq. (4.11) based on which perturbed 

measurements 𝑑𝑛+1
𝑗

 are created. Superscript 𝑝 and 𝑎 represent the prediction or 

analysis step of EnKF. From Eq. (4.10), it is clear that data obtained in the prediction 
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step is sufficient to calculate both covariance matrices. Also, computing cost of 

updating ensemble (step 5) is trivial as compared to propagation of each ensemble 

member (step 2) in prediction step using nonlinear forward model 𝐹(⋅) (typically a 

reservoir simulator). 

 PCE Metamodel 

Constructing KL-PCE based mathematical model comprises several steps that are 

described in following subsections. The first step includes the reduction in 

dimensionality of geological parameters using KL expansion, which is described in 

subsection 4.4.1. Then PCE is described in next subsection that ultimately substitutes 

full physics simulation in assisted history matching. Also, details about Probabilistic 

Collocation Method (PCM) used to determine time-dependent coefficients in PCE is 

provided. The last subsection delineates the integration of KL, PCE, and EnKF which 

can be further used for history matching of SAGD reservoirs. 

4.4.1 Karhunen-Loeve Parameterization 

KL parameterization/transformation/expansion is the most popular parameterizing 

technique to represent a random field in the form of series expansion. It uses 

deterministic basis functions and uncorrelated random variables for linear 

approximation of spatial properties. KL transformation can retain two-point statistics 

of a random field (Bazargan 2014), which is one of the unique properties responsible 

for its extensive use in different applications. In addition, Huang et al. (2001) 

mentioned that if deterministic basis functions, as well as random coefficients, are 

orthogonal, then such bi-orthogonal property of KL transformation ensures that it 

epitomizes the maximum information about the random field in the form of random 

variables. Furthermore, random variables in KL expansion can be treated as a reduced 

number of differentiable parameters of original high dimensional random field 

(permeability realizations in our case). 

In this study, to tackle the curse of dimensionality in PCE metamodel, prior distribution 

is honored by obtaining the model parameters in terms of an optimal 𝐿2 basis through 

KL expansion. By truncating the KL series, prior can be parameterized in terms of few 
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stochastic variables. A random field 𝑀(𝜃) with first-order moment 𝐸[𝑀(𝜃)] = �̅�(𝜃) 

and 𝐸 ∫ 𝑀2(𝜃)𝑑𝜃 < ∞
Ω

 can be expanded using orthogonal basis {𝜙𝑙} as, 

 𝑀(𝜃) = �̅�(𝜃) +∑𝜔𝑙𝜙𝑙(𝜃)

∞

𝑙=1

 (4.12) 

where random variables 𝜔𝑙 can be expressed as, 

 𝜔𝑙 = ∫ (𝑀(𝜃) − �̅�(𝜃))𝜙(𝜃)𝑑𝜃
Ω

 (4.13) 

Following Mercer’s theorem, spectral decomposition of covariance function 𝐶(𝜃1, 𝜃2) 

is, 

 𝐶(𝜃1, 𝜃2) =∑𝜆𝑙𝑓𝑙(𝜃1)𝑓𝑙(𝜃2)

∞

𝑙=1

 (4.14) 

where 𝜆𝑙 is the eigen values of prior covariance ordered as 𝜆1 ≥ 𝜆2 ≥ ⋯ and 𝑓𝑙(𝜃) are 

eigen functions, which is a special case of orthogonal basis {𝜙𝑙} in 𝐿2(Ω). 

Denote 𝜉 =
𝜔𝑙

√𝜆𝑙
 with 𝐸[𝜉𝑙] = 0 and 𝐸[𝜉𝑙1𝜉𝑙2] = 𝛿𝑙1𝑙2 where 𝛿𝑙1𝑙2 = 1  if 𝑖 = 𝑗 and zero 

otherwise. As Eq. (4.12) and (4.14) entails each other, it follows the well-known KL 

expansion (truncated by 𝑁𝑠 terms) that can be expressed as, 

 𝑀(𝜃) = 𝑀(𝜃) +∑√𝜆𝑙𝜉𝑙𝑓𝑙(𝜃)

𝑁𝑆

𝑙=1

 (4.15) 

where 𝜆𝑙 and 𝑓𝑙(𝜃) satisfy the homogeneous Fredholm equation of second kind that 

can be given as, 

 ∫ 𝐶𝜃𝑓(𝜃)𝑑𝜃
Ω

= 𝜆𝑓(𝜃) (4.16) 

𝐿2 basis functions in Eq. (4.15) are deterministic and resolves spatial variance of 

random field, enabling parameterization of the model parameters.  
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If ensemble size is large enough then covariance matrix calculated using Eq. (4.14) is 

bounded, symmetric and positive definite. Eigen values for such covariance matrix are 

calculated using standard methods like singular value decomposition that gives square 

roots of eigen values diagonally in a singular matrix. In addition, due to the symmetry 

of covariance matrix, monotonic reduction in eigen values is guaranteed (Saad 2007) 

as represented in Figure 4.2. In KL parameterization truncated by 𝑁𝑆 larger eigen 

values, the rate of reduction in eigen values depends on the correlation length of the 

initial ensemble (Bazargan et al. 2015). Higher the spatial change in field variance is, 

slower the rate of monotonic reduction in eigen value will be. Hence, more eigen values 

should be considered in such cases to absorb the maximum information of the original 

random field. Contrary to that, reduction in eigen values with highly correlated random 

field happens much faster and the small number of eigen values will be sufficient to 

represent the random field. Ghanem and Spanos (1991) demonstrated that even the 

truncated KL expansion is optimal in the sense that mean square approximation error 

is converged and minimized. 

 

Figure 4.2 – Monotonic reduction in eigen values of covariance matrix obtained using 

singular value decomposition. 
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The stepwise procedure used in this work to implement KL expansion is as follows: 

Algorithm 4.3 [KL] 

1.  Calculate the covariance matrix 𝐶𝜃 ∈ ℝ
𝑁𝜃×𝑁𝜃 using samples from prior as 

shown below: 

 𝐶𝜃 =
1

𝑁𝑒
(𝜃0 − �̅�0)(𝜃0 − �̅�0)

𝑇 (4.17) 

2.  Obtain the eigenvalues 𝜆 ∈ ℝ𝑁𝜃×𝑁𝜃 and eigen functions 𝑓(𝜃) ∈ ℝ𝑁𝜃×𝑁𝜃 by 

solving the following discretized equation: 

 𝐶𝜃𝑓(𝜃) = 𝜆𝑓(𝜃) (4.18) 

3.  Retain the 𝑁𝑠 leading eigen values such that energy ratio (𝑒) is as close to 1 

as possible. 

 𝑒 =
∑ 𝜆𝑙
𝑁𝑠
𝑙=1

∑ 𝜆𝑙
𝑁𝜃
𝑙=1

 (4.19) 

4.  Generate the model parameters by substituting distinct 𝜉𝑙 in Eq. (4.15). 

 

For rapid reduction rate of 𝜆𝑙, ∀𝑙 ∈ [1, 𝑁𝜃], truncated KL can be optimal in the 𝐿2 sense. 

When analytical covariance function is not known priori, number of samples considered 

to calculate it should be carefully chosen so that converged covariance function yields 

(Bazargan 2014). KL expansion reproduces the second-order statistics, proof of which 

is given by Huang et al. (2001). 

4.4.2 Polynomial Chaos Expansion (PCE) 

PCE is an efficient way to represent computationally prohibitive dependent differential 

equations of nonlinear subsurface systems by including nonlinearity in stochastic 

analysis through fast converging polynomials in probability space. It is a spectral 

expansion of stochastic quantities using orthogonal polynomials and weights 

associated with a specific probability density (Debusschere et al. 2004). Among several 

advantages offered by PCE, the most significant benefit is that convergence in 
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probability space is assured as the order of PCE increases (Babaei et al. 2015). In fact, 

Li et al. (2011) concluded that PCE converges with a faster rate as compared to other 

polynomials for a particular type of probability density function of input variables. 

Hence, PCE is an appropriate choice as a forward model in this study. 

Since its inception in 1938 by Wiener, PCE has been used in numerous engineering 

applications. Especially, implementation of truncated Hermite polynomials in stochastic 

finite element methods by Ghanem and Spanos (1991) re-established the popularity 

of PCE. For numerical model of form 𝑦 = 𝑔(𝜉), in a probability space Ω, PCE can be 

written as (Wiener 1938), 

 

�̂� = 𝑐0Γ0 + ∑ 𝑐𝑘1Γ1 (𝜉𝑘1(Ω)) + ∑ ∑ 𝑐𝑘1𝑘2Γ2 (𝜉𝑘1(Ω), 𝜉𝑘2(Ω))

𝑘1

𝑘2=1

∞

𝑘1=1

∞

𝑘1=1

+ ∑ ∑ ∑ 𝑐𝑘1𝑘2𝑘3Γ3 (𝜉𝑘1(Ω), 𝜉𝑘2(Ω), 𝜉𝑘3(Ω)) + ⋯

𝑘2

𝑘3=1

𝑘1

𝑘2=1

∞

𝑘1=1

 

(4.20) 

where 𝜉𝑘 ∈ Ω ⊆ ℝ
𝑑 are independent random variables, 𝑐𝑘 are the deterministic 

coefficients, and Γ𝑘 are the d-variate orthogonal basis set, chosen as per the pdf of 

the random variables. Typically, type of orthogonal polynomials in PCE depends on the 

probability distribution of input random variables. It is recommended to use specific 

orthogonal polynomials with a particular kind of probability distribution to achieve 

better convergence rate in chaos expansion for e.g. Legendre polynomials for uniform 

distribution, Hermite polynomials for Gaussian distribution, Laguerre polynomials for 

gamma distribution and Jacobi polynomials for beta distribution (Li et al. 2011). 

In our case, random variables used in PCE are identical to those employed in KL 

transformation, i.e. 𝜉 ∼ 𝒩(0,1)𝑑. Therefore, Γ𝑘 are Hermite polynomials in chaos 

expansion as they form best orthogonal basis for Gaussian independent random 

variables (Ghanem and Spanos 1991). Hermite polynomial of 𝑛𝑡ℎ order (𝐻𝑛) can be 

calculated using the following equation (Li and Zhang 2007): 

 𝐻𝑛(𝜉𝑘1 , 𝜉𝑘2 , … , 𝜉𝑘𝑛) = (−1)𝑛𝑒(
1
2
𝜉𝑇𝜉) 𝜕𝑛

𝜕𝜉𝑘1𝜕𝜉𝑘2 …  𝜕𝜉𝑘𝑛
𝑒−(

1
2
𝜉𝑇𝜉)

 (4.21) 
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where 𝜉 is a vector of 𝑛 Gaussian random variables that can be shown as, 

 𝜉 = [𝜉𝑘1 , 𝜉𝑘2 , … , 𝜉𝑘𝑛]
𝑇 (4.22) 

After obtaining one-dimensional Hermite polynomials of different orders using Eq. 

(4.21), higher order polynomials (𝑛 > 2) can be derived using lower order 

polynomials. Relationship between them can be expressed as (Bazargan 2014), 

 𝐻𝑛(𝜉) = 𝜉𝐻𝑛−1(𝜉) − (𝑛 − 1)𝐻𝑛−2(𝜉) (4.23) 

Like KL parameterization, it is not pragmatic to implement PCE with an infinite number 

of terms. Furthermore, the number of coefficients to be computed increases as the 

order of PCE increases. Hence, if PCE is truncated to 𝑁𝑠 number of terms, then using 

term-based indexing in Eq. (4.20), it can be shown mathematically as follows: 

 �̂�(𝜉) = ∑𝑐𝑘Γ𝑘(𝜉)

𝑁𝑠

𝑘=0

 (4.24) 

Here, each term in Eq. (4.24) corresponds on one to one basis with the terms of Eq. 

(4.20) if the total number of terms in the later equation is limited to 𝑁𝑠. The complexity 

of truncated PCE should also be considered to determine its feasibility in practical 

application. It is defined by the total number of terms in polynomial, which ultimately 

depends on the order of PCE and dimensions of random variables. Maximum number 

of terms (𝑃) in the 𝑑-variate PCE of order 𝑚 can be determined using the equation 

shown below (Augustin et al. 2008): 

 𝑃 =
(𝑑 + 𝑚)!

𝑑!𝑚!
 (4.25) 

From Eq. (4.25), it can be said that as order and/or a number of random variables 

increases, complexity in PCE increases immensely. Also, a number of summands for 

different orders of PCE and random variables dimensions is plotted in Figure 4.3 from 

which it can be said that the number of terms in PCE increases exponentially with 

increment in either of two responsible parameters. As the number of polynomial terms 

increases, coefficients to be computed will also increase, creating the need for 

additional numerical simulations. To alleviate this issue, KL expansion is used in this 
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work to decrease the dimensions of random numbers as discussed in the previous 

subsection. Furthermore, Li et al. (2011) demonstrated that by considering only pure 

terms, a reasonable estimate can be obtained for slightly nonlinear problems. 

However, neglecting cross terms is only valid if the true model contains only pure 

terms.  

 

Figure 4.3 – Number of total terms (𝑃) for different orders and dimensions of random 

variables in PCE. 

The algorithm used to formulate PCE forecast model is presented below. 

Algorithm 4.4 [PCE] 

1.  Construct a truncated, 𝑑-variate polynomial chaos of (initially lowest) order 

𝑚 as follows: 

 �̂�(𝜉) = ∑𝑐𝑘Γ𝑘(𝜉)

𝑃

𝑘=0

 (4.26) 

2.  Using zeroes of (𝑚 + 1)𝑡ℎ order Γ(𝜉), sample the 𝑁𝑞 quadrature nodes with 

higher probability, set of which can be shown as: 
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 ℒ = {𝜉𝑘}𝑘=1
𝑁𝑞

 ⊂  Ω (4.27) 

3.  Compute 𝑦(𝜉𝑞) for ∀𝜉𝑞 ∈ ℒ using high fidelity forward model 𝐹(⋅). 

4.  Discretize polynomial chaos in form of system of equations to obtain unique 

𝑐𝑘 as shown below: 

 

{
 
 

 
 
𝑐0
𝑐1
.
.
𝑐𝑃}
 
 

 
 

=

{
 
 

 
 
Γ0(𝜉1)   Γ1(𝜉1)  …   Γ𝑃(𝜉1)

Γ0(𝜉2)   Γ1(𝜉2)  …   Γ𝑃(𝜉2)
.               .                   .
.               .                   .

Γ0(𝜉𝑞)   Γ1(𝜉𝑞)  …   Γ𝑃(𝜉𝑞)}
 
 

 
 
−1

{
 
 

 
 
𝑦(𝜉1)

𝑦(𝜉2)
.
.

𝑦(𝜉𝑞)}
 
 

 
 

  ,    𝑞 = 𝑃 (4.28) 

5.  Determine responses �̂�(𝜉𝑞) using Eq. (4.26) for ∀𝜉𝑞 ∈ ℒ. 

6.  Calculate the approximation error as follows: 

 𝐸𝑚 =∑|𝑦(𝜉𝑘) − �̂�(𝜉𝑘)|

𝑁𝑞

𝑘=1

 (4.29) 

7.  If 𝐸𝑚 > 𝜏, 𝑚⟼ 𝑚+ 1 and repeat the procedure. 

 

In the algorithm, 𝜏 represents the tolerance in PCE responses that varies for distinct 

applications. In Eq. (4.28), rank of the matrix containing Γ(𝜉) should be equal to the 

number of coefficients (𝑃) to ensure the unique solutions. Probabilistic collocation 

method (PCM) is used in algorithm to calculate PCE coefficients as explained in detail 

in section 4.4.3. As mentioned before, use of PCM is restricted by the dimensionality 

of 𝜉 and PCE order 𝑚 since required numerical simulation runs (step 3) increase 

exponentially. Non-intrusive spectral projection (NISP) can be used in such cases, 

which is almost independent of the dimensionality (Sarma and Xie 2011). As evident 

from Eq. (4.26), both pure terms and cross terms are considered in this study since 

subsurface dynamics of thermal oil recovery processes exhibits highly nonlinear 

behaviour. 
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4.4.3 Probabilistic Collocation Method (PCM) 

After obtaining Hermite polynomials (or orthogonal polynomials in general), next step 

in constructing PCE is to determine coefficients (steps 2-4 in algorithm 4.4). Though 

convergence in PCE is guaranteed, there is an underlying assumption that coefficients 

are accurate (Bazargan 2014). Hence, computing coefficients is a crucial task to 

achieve the convergence and obtain efficacious PCE. Several methods to calculate 

coefficients of polynomial chaos can be classified broadly into two categories: Intrusive 

methods and Non-intrusive methods. Intrusive methods determine the polynomial 

chaos coefficients considering that residuals are always orthogonal to the subspace 

spanned by polynomial basis. Galerkin projection approach is a well-known intrusive 

method in which coefficients are calculated by solving weighted residual integral. 

Mathematical formulation of weighted residual for a random field can be shown as, 

 ∫ 𝑅𝑃𝑆({𝑐𝑖}, 𝜉)𝑊𝑖(𝜉)𝑝(𝜉)𝑑𝜉
𝜉

= 0           𝑖 = 1, 2, … ,𝑁 (4.30) 

where 𝑅𝑃𝑆 denotes residual defined as difference between approximated output 

obtained using PCE and output of full physics simulation while 𝑝(𝜉) represents joint 

pdf of random variables 𝜉. Weighting function 𝑊𝑖 in Eq. (4.30) is considered same as 

basis function of the approximation (orthogonal polynomials in our case). Such choice 

of weighting function in Galerkin approach requires the manipulation of governing 

equations to solve the integral in Eq. (4.30). On the other hand, as name suggests, 

non-intrusive methods do not need any access to governing equations and simulators 

can be considered as a black-box (Sarma 2006). Due to this essential benefit of non-

intrusive methods, probabilistic collocation method (PCM) proposed by Tatang (1995) 

is used in this proxy model to calculate PCE coefficients. 

PCM (Tatang et al. 1997) is the most used non-intrusive method to calculate PCE 

coefficients. Several full physics simulation runs are required to apply PCM. Outputs 

obtained from simulation runs are then used as a training data and PCE coefficients 

are achieved by solving the system of equations. In other words, collocation method 

forces residual to be zero for selected random variables. Also, delta function is used 

as a weighting function in PCM, which is the reason original model can be considered 

as a black-box model. Now, full physics simulations with different input random 
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parameters (widely known as collocation points or collocation nodes) will give different 

results and consequently the coefficients of PCE. Therefore, it is necessary to select 

such collocation points that encompass maximum information about the domain of 

interest. Otherwise stated, chosen collocation points should give a better 

representation of the high probability region in order to achieve better performance in 

PCM (Lin and Tartakovsky 2009). Selecting collocation points randomly may not 

provide a proper estimation of coefficients.  

 

Figure 4.4 – Representation of Gaussian quadrature technique where roots of the 2nd 

order polynomial span high probability region of 𝑃(𝑋) and gives good linear 

approximation of output 𝑌(𝑋). 
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As Webster et al. (1996) noted, Gaussian quadrature technique gives the estimate of 

an integral with zero error when roots of next higher order polynomials are utilized. 

As shown in Figure 4.4, if the linear function is to be approximated for any pdf of 

random variable 𝑋, then we need to define two points that cover high probability region 

of given pdf 𝑃(𝑋). As per Gaussian quadrature technique, these two points are set 

same as two roots of 2nd order polynomial. Once these two points which cover 

maximum area under pdf are specified, the output variable �̂� can easily be 

approximated with negligible error. As shown in Figure 4.4, linear approximation that 

gives zero error between two roots of higher order polynomial may deviate from the 

correct solution in low probability region. However, it contributes very less to the 

cumulative approximation error as chances of variable 𝑋 to occur from the low 

probability region is very less. A similar method is followed in proposed proxy model 

to obtain collocation nodes i.e. if coefficients of 𝑚𝑡ℎ order PCE is to be determined, 

roots of (𝑚 + 1)𝑡ℎ order orthogonal polynomial are used as collocation nodes. 

Generally, number of roots of polynomials are more than number of collocation points 

required. Therefore, among all the collocation points obtained, 𝑁𝑞 collocation points 

with higher probability are selected (Bazargan 2014).  

Once 𝑁𝑞 collocation nodes of input random variables 𝜉 are selected, by use of 𝑁𝑞 full 

physics simulations, output for each collocation point is obtained. By substituting the 

𝑁𝑞 outputs and 𝑁𝑞 collocation points in truncated PCE equation (Eq. (4.26)), system 

of equations (similar to the Eq. (4.28)) can be obtained. In matrix form, it can be 

written as follows: 

 [𝑌] = [Γ(ξ)][𝐶] (4.31) 

where [𝑌] is the vector of dimension 𝑁𝑞 × 1 containing correct responses at each 

collocation point while [Γ(𝜉)] denotes the space-independent matrix of dimension 

𝑁𝑞 × 𝑁𝑞 consists of orthogonal polynomials computed at each collocation node. As 

both matrices [𝑌] and [Γ(ξ)] are known, matrix [𝐶] of dimension 𝑃 × 1 containing 

coefficients can be easily calculated by solving system of 𝑁𝑞 equations in Eq. (4.31). 

As noted before, a unique solution for coefficients can be obtained if and only if the 
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rank of matrix equals the number of variables. Hence, collocation points in PCM should 

be selected such that the total number of collocation nodes are equal to number of 

deterministic coefficients. 

4.4.4 Integration of PCE Metamodel in EnKF Framework 

In the last step, PCE metamodel is integrated with the conventional iterative EnKF 

framework. The workflow that shows how three different mathematical techniques are 

associated and stepwise procedure to be followed to implement assisted history 

matching with reasonable computing cost is provided in Figure 4.5. The starting point 

of proposed integrated dynamic modeling workflow is to represent initial ensemble in 

terms of eigen values and corresponding eigen functions of covariance matrix along 

with random variables using Eq. (4.15). As stated before, Gaussian random variables 

with standard normal pdf are used and accordingly, Hermite polynomials are employed 

in polynomial chaos. Using Gaussian quadrature technique, quadrature nodes are 

obtained. Considering each set of random variables as separate input, full physics 

simulations using commercial reservoir simulator are run and output data is collected. 

The system of equations is developed using each input-output pair and coefficients are 

determined. If the error in approximation using PCE is not significant, then the same 

polynomial model is used in forecast step of EnKF. 

The only loop in proposed assisted history matching workflow is of EnKF. It starts with 

the construction of a state vector. Since initial ensemble is represented by random 

variables in KL parameterization, they are used as model parameters. Then using PCE 

metamodel in forecast step, production parameters are computed considering the 

random variables in state vector as input parameters. Uncertainty in production 

forecast is analyzed and if it is high then state vector is updated using true production 

data from the field and Kalman gain in analysis step of EnKF loop. The loop is repeated 

using random variables from updated state vector and when uncertainty in production 

parameters is less enough, realizations can be generated by substituting latest 

updated random variables into Eq. (4.15). Best realization from the ensemble then 

can be used further to outline future field development strategies.  

Similarly, to implement MCMC with PCE metamodel, the EnKF loop in Figure 4.5 is 

replaced by the algorithm 4.1. 
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Figure 4.5 – Reservoir characterization workflow using PCE metamodel with EnKF. 
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 SAGD Field Case Study 

Realistic performance assessment of EnKF and MCMC under forecast model uncertainty 

is made possible in this case study by considering the oil sands reservoir located in 

northern Alberta, Canada. Several routines and subroutines were developed using 

MATLAB® (release R2014a) to create a platform that integrates CMG STARSTM (CMG 

2013a) and Results ReportTM (CMG 2013b) in order to implement the proposed 

workflow. In this section, we discuss the 3D reservoir model, development of the PCE 

forward model, and three numerical experiments designed for this work.  

4.5.1 SAGD Reservoir Model 

 

Figure 4.6 – 3D view of the field-scale reservoir model (left) and trajectories of all 

wells (right). 

The test problem considered in this case study is a field-scale 3D reservoir model, 

representing a segment of the oil sands reservoir with one horizontal well pair and six 

vertical observation wells. Thermal oil recovery process steam-assisted gravity 

drainage (SAGD) is employed to extract the bitumen. Well logs are used to determine 

reservoir top and a bottom surface and the domain is discretized spatially on an 

optimal corner point grid (Shin et al. 2012) containing 20000 cells. Prior information 

about the permeability at well locations is used as conditioning data to generate an 

ensemble of 100 models using geostatistical simulation. A 3D view of the reservoir 

model (left) and well trajectories (right) are shown in Figure 4.6. The detailed 
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information regarding simulation inputs is given in Table 4.1. The objective is to sample 

the model parameters – permeability of each cell of the reservoir model – from the 

posterior distribution conditioned to data observed in the field using PCE metamodel. 

Table 4.1 – Reservoir model parameters for the case study 

Variable Description 

Phases Oil/water 

Grid system 25×50×16 

Cell dimensions 25×2×1.5 m 

Reservoir depth 135 m 

Reservoir thickness (net) 22 m 

Well spacing 6 m 

Rock porosity 0.315 to 0.41 

Horizontal permeability 1525 to 7150 md 

Vertical permeability 1144 to 5362 md 

Initial oil saturation 0.8 

Initial pressure 650 kpa 

Oil viscosity 625000 cp (at 7 ºC), 10 cp (at 216 ºC) 

Bitumen heat conductivity 11500 J/(m.day.C) 

Rock heat conductivity 660000 J/(m.day.C) 

Overburden heat conductivity 172800 J/(m.day.C) 

Geostatistical simulation Sequential Gaussian simulation 

Injection well constraints Steam injection rate* 

Production well constraints Well bottom-hole pressure* 

Field history 45 months 

 * varies on daily basis as per field measurements 

4.5.2 PCE Forward Model 

PCE forward model essentially integrates two mechanisms: parameterization and 

prediction. Following the algorithm 4.3, uncertainty in model parameters is reproduced 
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using lower dimensional subspace. In our field case study, it is challenging since prior 

parameterization is not available for any reference case. Therefore, we start with the 

100 ensemble members to calculate the covariance matrix, and corresponding 

eigenvalues and eigenfunctions are obtained using Cholesky factorization. Figure 4.7 

depicts 100 initial eigenvalues (normalized by the highest component) ordered 𝜆1 ≥

𝜆2 ≥ ⋯ and energy associated with them (see Eq. (4.19)). From the swift reduction in 

eigen values, it can be inferred that spatial change in field variance is moderate. The 

same is also evident from the energy plot in which energy corresponding to 60 eigen 

values is almost 98%. Though discarding small eigen values will smoothen out the 

high-frequency changes in variance, few eigen values should be sufficient to 

parameterize the field effectively. In this work, we have considered 3 eigen values – 

resolving more than 90% of the field variance spatially – in KL parameterization for 

the minimal cost of generating PCE forward model. 

 

Figure 4.7 – First 100 normalized eigen values of the covariance matrix (left) and 

energy associated with each of them (right). 

Uncertainty in model parameters is reflected in PCE through stochastic variables 𝜉 ∈

ℝ𝑁𝑠 sampled from 𝒩(0,1). We follow the algorithm 4.4 to first create a 2nd order PCE. 

Collocation nodes are determined using roots of 3rd order Hermite polynomial 𝐻3 =

𝜉3 − 3𝜉. With three stochastic dimensions, the construction of PCE metamodel 

requires 10 full physics simulation runs. Hence, from total 33 = 27 collocation nodes, 

10 nodes (𝜉𝑞) with higher probability are selected to obtain 𝑦(𝜉𝑞) that corresponds to 
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any QoIs, particularly, oil rate, cumulative oil/water production and steam-oil ratio 

(SOR) in this study. 

 

Figure 4.8 – Blind test results of 2nd order PCE metamodel using 100 random vectors 

(left) and convergence of PCE coefficients for each QoI (right). 

To evaluate convergence and accuracy of PCE surrogate, a blind test is performed by 

generating 100 random vectors (not used before in PCE construction) and predicting 
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corresponding QoIs. Approximation error is calculated against the simulator outputs 

and results for selected timesteps are plotted in Figure 4.8. Also, the convergence of 

PCE coefficients is shown in the same figure. According to these results, 2nd order PCE 

is sufficient for the given problem with most of the data points forming the cloud near 

the 45-degree line and converging coefficients. In addition, all the QoIs are estimated 

with less than 10% error. However, to confirm this, 3rd order PCE model is created 

using 21 collocation nodes and results are compared with the previous model for all 

the QoIs. Various quantitative measures are shown at a particular timestep in Table 

4.2 to summarize the comparison. It can be concluded that 3rd order model marginally 

deteriorates the prediction accuracy possibly due to the no third order terms in the 

true model or better performance of even order PCM as compared to next higher odd 

order (Li and Zhang 2007). Therefore, 2nd order model is used as the forecast model 

in numerical experiments of the case study. Note that in the assessment of PCE model, 

input parameters are sampled from all the regions of prior distribution to avoid the 

notion of inferior metamodel performance in low probability regions. In addition, 

uncertainty introduced in the prediction of QoIs is due to not only lower order PCE but 

also parameterization. 

 

Table 4.2 – Quantitative assessment of QoI approximated using 2nd and 3rd order PCE 

model at 𝑡 = 1200 days 

Quantitative 

Measures 

Normalized 

Oil Rate 
 

Normalized 

Cumulative Oil 

Production 

 
Normalized 

Steam Oil Ratio 

𝑚 = 2 𝑚 = 3   𝑚 = 2 𝑚 = 3  𝑚 = 2 𝑚 = 3 

Mean 0.532 0.482  0.628 0.556  0.255 0.22 

Std Dev 0.107 0.177  0.103 0.197  0.063 0.083 

Min 0.212 0.037  0.234 0.013  0.195 0.017 

Max 0.717 0.8  0.768 0.829  0.524 0.39 

RMSE 0.073 0.151  0.016 0.178  0.019 0.111 
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4.5.3 Numerical Experiments 

 

Figure 4.9 – QoIs for initial ensemble (grey lines) in traditional EnKF demonstrating 

sufficient solution space mapped by the prior distribution. The red curve shows the 

history obtained from the field. 

In this study, three different experiments are composed to assess the effect of 

uncertainty in PCE forecast model on posterior inference. To set up a benchmark, we 

consider the traditional iterative EnKF acknowledging the nonlinear propagation of 

time-dependent system states. Model parameters for this experiment are log 

permeability (ln (𝑘)) of grid blocks. The prior distribution for model parameters is 

assumed to be Gaussian and error covariance matrix to be an identity matrix. From 

the 100 samples (realizations) created initially (as explained in section 4.5.1), 50 are 

retained in the initial ensemble using mixed-integer linear optimization (MILP) based 

screening technique (Patel et al. 2015). The technique ensures adequate solution 

space even with the smaller ensemble, making EnKF pragmatic for the field-scale 
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problem considered in this case study. The same is evident from the Figure 4.9 as 

ensemble spread of QoI displays overestimated uncertainty in the prior distribution. 

State vector 𝑍𝑛 for the benchmark case can be written as, 

 
𝑍𝑛 = [

{ln(𝑘)}20000×50
{𝑂𝑖𝑙 𝑅𝑎𝑡𝑒}1×50

{𝑆𝑡𝑒𝑎𝑚 𝑂𝑖𝑙 𝑅𝑎𝑡𝑖𝑜}1×50

]

20002×50

 
(4.32) 

Logarithmic permeability in Eq. (4.32) is necessary to fulfill Gaussian statistics 

assumption of EnKF. Furthermore, state parameters are not used in the state vector 

since their time dependency can cause potential inconsistency (Gu and Oliver 2006). 

Measured data includes daily oil rate and SOR that are assimilated after 20, 25, 28 

and 38 months. Subsequently, production parameters are predicted up to 45 months 

and compared against the field history. Thermal reservoir simulator CMG STARSTM 

(CMG 2013a) is used as the high fidelity forecast model in this study. 

For the second experiment, we consider 2nd order PCE model in the prediction step of 

EnKF to evaluate its performance under forecast model uncertainty. Since PCE accepts 

random variables with standard Gaussian prior to inputs, their posterior distributions 

are estimated. State vector used in this experiment can be expressed as, 

 
𝑍𝑛 = [

{𝑅𝑎𝑛𝑑𝑜𝑚 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 (𝜉)}3×50
{𝑂𝑖𝑙 𝑅𝑎𝑡𝑒}1×50

{𝑆𝑡𝑒𝑎𝑚 𝑂𝑖𝑙 𝑅𝑎𝑡𝑖𝑜}1×50

]

5×50

 
(4.33) 

To evaluate the results against a benchmark, we used the identical measured data, 

assimilation time steps, and ensemble size (𝑁𝑒=50) in this experiment. However, the 

computational cost of forecast step is decreased significantly with the use of PCE 

forecast model and hence, the large ensemble is recommended in practice. Note that 

ensemble size in this experiment is much larger than the stochastic variable 

dimensions. Therefore, amendments such as covariance inflation (Evensen 2009) and 

covariance localization (Houtekamer and Mitchell 1998, Sakov and Bertino 2011) 

applied to mitigate effects of sampling errors and singularity of covariance matrices 

are not utilized. Also, the study of such ad hoc fixes is not the primary interest of this 

work. 
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Figure 4.10 – Experimentation for scaling of proposal variance in MCMC. Top left: 

high acceptance rate (65.03%). Top right: low acceptance rate (9.9%). Bottom: 

optimal acceptance rate (23.6%). 

The last experiment includes inference of stochastic variables using PCE forward model 

in MCMC. The posterior distributions are estimated with long Markov chain of 10 million 

proposals assuming that they are enough to provide samples from the converged 

posterior. To obtain a well-mixed chain, variance of proposal distribution (𝛽2) should 

be scaled properly. Higher the 𝛽2, lower the acceptance rate and vice versa. We did 

some experimentation using different values of proposal variance as shown in Figure 

4.10 and finally chose 𝛽2 = 0.15 for this case. It provides the acceptance rate of 23.6% 

which is within the optimal range (refer section 4.2). For the initial approximation (𝜃0) 

of model parameters, mean of the corresponding variables in initial ensemble after KL 

parameterization is used. Despite the distant guess in random variables, burn-in period 



95 

 

is not more than 1000 iterations as shown in Figure 4.11. Likelihood function used to 

calculate probability of acceptance in this experiment is as follows (Nejadi et al. 2014): 

 𝐿(𝜃) = [�̂�(𝜉) − 𝑑𝑜𝑏𝑠]𝑇𝑅−1[�̂�(𝜉) − 𝑑𝑜𝑏𝑠] (4.34) 

where 𝑦(𝜉) is the response obtained using PCE forecast model, 𝑑𝑜𝑏𝑠 is the true 

observations from the field, and 𝑅 is the noise covariance matrix used in EnKF. 

 

Figure 4.11 – First 1000 proposals displaying smaller burn-in period for model 

parameters in Markov chain with 10 million samples. 

 Results and Discussion 

We present the outcomes of numerical experiments to evaluate the effect of 

uncertainty in forecast model on various aspects of data assimilation. In the three 

subsections, we present the (1) qualitative analysis to examine the distribution of QoI, 
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(2) quantitative analysis to investigate the performance of MCMC and EnKF after each 

assimilation step, and (3) posterior characterization in terms of their ability to produce 

converged pdf using PCE metamodel. 

4.6.1 Distribution of QoI 

 

 

Figure 4.12 – Normalized oil rate after each data assimilation step in numerical 

experiment 1 (benchmark case). Red curve represents the field history and grey-

shaded area corresponds to the ensemble predictions. History up to 1160 days was 

used in data assimilation and subsequent period from 1161 days to 1355 days 

constitutes the forecast region. 

In subsurface flow applications, one of the objectives of obtaining the posterior 

distribution is to forecast the relevant quantities accurately such that they can add 

value in decision making. To assess the performance of each numerical experiment in 

reproducing the truth, we compute and plot the QoI using the samples from the 

parameter posterior and respective forecast model after every step in sequential 
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assimilation. Note that all the plots are normalized by a corresponding target value 

that is consistent throughout the analysis. For benchmark case, we plot the oil rate 

and cumulative oil production in Figure 4.12 and Figure 4.13 respectively. Ensemble 

spread of predictions (grey-shaded area) in both figures is converging towards field 

history as more data is assimilated, as one might expect. Especially, after the 1st 

update, a significant reduction in variance of ensemble predictions is observed as 

compared to the initial ensemble (Figure 4.9). Likewise, we notice the decreasing 

uncertainty in predictions of steam oil ratio in Figure 4.15. Contrarily, estimates of 

cumulative water production in Figure 4.14 is pretty much unchanged throughout the 

experiment. It is due to the direct proportionality between the amount of produced 

water and injected steam in SAGD. It is worthy to mention that amount of injected 

steam is in line with the field observations and kept same across the ensemble. 

 

 

Figure 4.13 – Normalized cumulative oil production after each data assimilation step 

in numerical experiment 1 (benchmark case). Legends in this figure can be described 

similarly as Figure 4.12. 
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Figure 4.14 – Normalized cumulative water production after each data assimilation 

step in numerical experiment 1 (benchmark case). Legends in this figure can be 

described similarly as Figure 4.12. 
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Figure 4.15 – Normalized steam oil ratio after each data assimilation step in numerical 

experiment 1 (benchmark case). Legends in this figure can be described similarly as 

Figure 4.12. 
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Figure 4.16 – Normalized oil rate after each data assimilation step in numerical 

experiment 2 (EnKF under PCE uncertainty). Legends in this figure can be described 

similarly as Figure 4.12. 
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Figure 4.17 – Normalized cumulative oil production after each data assimilation step 

in numerical experiment 2 (EnKF under PCE uncertainty). Legends in this figure can 

be described similarly as Figure 4.12. 
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Figure 4.18 – Normalized cumulative water production after each data assimilation 

step in numerical experiment 2 (EnKF under PCE uncertainty). Legends in this figure 

can be described similarly as Figure 4.12. 

Accurate estimates of observations provide accurate estimates of model variables and 

vice versa (Siripatana et al. 2017). With the use of PCE model in experiments 2 and 

3, the estimation performance is expected to be altered due to the forecast 

uncertainty; however, encouraging results are achieved overall, especially with MCMC 

in experiment 3. To compare the predictions with benchmark case, a similar qualitative 

analysis is performed for both experiments. It is clear from the Figure 4.16 that 

uncertainty reduced in the oil rate predictions after the 1st update is not as good as 

the benchmark case. Likewise, cumulative oil production and steam oil ratio in Figure 

4.17 and Figure 4.19 respectively, depict larger span of ensemble predictions in the 

first two assimilation steps. It is because of the uncertainty introduced by the PCE 

forecast model which led to the different update of model parameters than the 
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experiment 1. Nevertheless, the effect of forecast model uncertainty diminishes with 

the sequential assimilation as almost all QoI are converging towards the truth like 

benchmark case after the final analysis step. As expected, no significant change is 

observed in predictions of cumulative water production in Figure 4.18. 

 

 

Figure 4.19 – Normalized steam oil ratio after each data assimilation step in numerical 

experiment 2 (EnKF under PCE uncertainty). Legends in this figure can be described 

similarly as Figure 4.12. 

In Figure 4.20, we display all four QoI for experiment 3 using every 1000th sample 

(i.e., 10,000 samples from the total 10 million proposals) of the Markov chain shown 

in Figure 4.22. Despite the forecast model uncertainty, improvement in estimates of 

all the relevant quantities in terms of variance and accuracy is clearly evident from the 

figure. Also, overestimation of uncertainty in QoI forecast is observed in the 

benchmark case as compared to MCMC with PCE forecast model, consistent with the 

study of Oliver and Chen (2011). Further, we assess the predicting distribution of QoI 

in Figure 4.21 at arbitrarily selected time instant outside of the assimilation bounds. 



104 

 

Notice that both EnKF based experiments 1 and 2 provide the reasonable estimations 

of all four quantities’ distributions in terms of mean, median, P25 and P75 values, and 

ensemble span; however, their characterization of predicting distributions is poor as 

compared to MCMC in experiment 3. In addition, experiment 2 exhibits similar 

predicting distributions of oil rate and steam oil ratio as benchmark case while better 

in both cumulative oil and water production with mean closer to the truth. For the test 

problem considered, it suggests the capability of EnKF to reproduce the truth under 

reasonable uncertainty in the forecast model. 

 

 

 

Figure 4.20 – Normalized QoI for every 1000th sample of Markov chain in numerical 

experiment 3 (MCMC under PCE uncertainty). Legends in this figure can be described 

similarly as Figure 4.12. 
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Figure 4.21 – Box plots comparing the distribution of QoI at 1200 days for all 

numerical experiments. Red line and blue dots show median and mean of each 

distribution respectively while continuous green line depicts true value of the QoI. The 

top and bottom of every box correspond to percentiles P25 and P75 and end points of 

the whisker represent the minimum and maximum values. 

 

 

Figure 4.22 – Every 1000th sample of well-mixed Markov chain in numerical 

experiment 3 (MCMC under PCE uncertainty). 
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4.6.2 Sensitivity of QoI to Forecast Model Uncertainty 

We explore how sensitive QoI are to forecast model uncertainty in different numerical 

experiments. Time instant chosen for this analysis is same as the one used for box 

plots in Figure 4.21. In Table 4.3, Table 4.4, and Table 4.5, we display several 

quantitative measures for every production variable obtained in experiments 1, 2, and 

3 respectively. Root-mean-square-error (RMSE) and R2 (coefficient of determination 

or Nash-Sutcliffe coefficient) of a quantity (𝑦) are defined by 

 𝑅𝑀𝑆𝐸(𝑦) =
1

𝑁𝑒
∑√

1

𝑡
∑(𝑦𝑙,𝑘 − 𝑑𝑙

𝑜𝑏𝑠)
2

𝑡

𝑙=1

𝑁𝑒

𝑘=1

 (4.35) 

and 

 𝑅2(𝑦) =
1

𝑁𝑒
∑[1 −

∑ (𝑦𝑙,𝑘 − 𝑑𝑙
𝑜𝑏𝑠)

2𝑡
𝑙=1

∑ (𝑑𝑙
𝑜𝑏𝑠 − �̅�𝑜𝑏𝑠)𝑡

𝑙=1

2]

𝑁𝑒

𝑘=1

 (4.36) 

where 𝑡 is the time horizon and 𝑦𝑙,𝑘 is the predicted observation for 𝑘𝑡ℎ sample at time 

𝑙. We reiterate that 𝑁𝑒 is the ensemble size, 𝑑𝑙
𝑜𝑏𝑠 is the field observation (or truth) at 

time 𝑙 and �̅�𝑜𝑏𝑠 is its time average. Since all the quantities are normalized, RMSE 

reported here is scale-independent. 

Quantitative analysis of initial ensemble predictions in Table 4.3 and Table 4.4 

demonstrates some mismatch. It is expected due to the uncertainty introduced by KL 

parameterization in the initial ensemble of experiment 2. Lower the energy captured 

by eigen values, higher the difference in initial ensemble predictions will be. Despite 

this difference in the initial ensemble, experiment 2 displays improved error statistics 

for steam oil ratio, which can be attributed to its accurate forecast by PCE metamodel 

as evident in the blind test results (Figure 4.8). Further, ensemble predictions for 

cumulative oil production are better in the 1st and 2nd update of benchmark case when 

compared to experiment 2 in terms of mean, standard deviation, R2 and RMSE. 

However, results after final assimilation step are very similar in both experiments, 

supporting our previous qualitative observation that update of model parameters and 

therefore, predictions of QoI are least sensitive to forecast model uncertainty in 



107 

 

sequential data assimilation. In other words, assimilation of more data helps to offset 

the uncertainty in forecast model predictions. Consistent results with qualitative 

analysis (i.e. no major changes throughout the assimilation) are observed for 

cumulative water production in both EnKF based experiments. 

Table 4.3 – Quantitative analysis of QoI at 𝑡 = 1200 days in numerical experiment 1 

 Initial 

Ensemble 

After 1st 

Update 

After 2nd 

Update 

After 3rd 

Update 

After 4th 

Update 

Normalized Oil Rate SC (Truth = 0.404) 

Mean 0.458 0.510 0.530 0.519 0.454 

Std Dev 0.131 0.063 0.059 0.046 0.029 

Min 0.214 0.403 0.394 0.419 0.405 

Max 0.672 0.665 0.654 0.613 0.551 

R2 -0.306 -0.048 -0.153 0.053 0.476 

RMSE 0.143 0.129 0.136 0.124 0.093 

Normalized Cumulative Oil Production (Truth = 0.562) 

Mean 0.513 0.568 0.590 0.586 0.525 

Std Dev 0.132 0.055 0.047 0.038 0.024 

Min 0.253 0.433 0.453 0.503 0.476 

Max 0.701 0.684 0.664 0.668 0.600 

R2 0.801 0.960 0.966 0.976 0.968 

RMSE 0.085 0.040 0.037 0.032 0.038 

Normalized Cumulative Water Production (Truth = 0.67) 

Mean 0.672 0.678 0.677 0.681 0.679 

Std Dev 0.022 0.025 0.024 0.022 0.018 

Min 0.631 0.648 0.640 0.649 0.651 

Max 0.737 0.761 0.766 0.767 0.742 

R2 0.987 0.987 0.988 0.988 0.989 

RMSE 0.026 0.025 0.025 0.024 0.024 

Normalized Steam Oil Ratio (Truth = 0.268) 

Mean 0.318 0.274 0.263 0.264 0.291 

Std Dev 0.087 0.026 0.021 0.017 0.012 

Min 0.219 0.229 0.233 0.230 0.259 

Max 0.553 0.337 0.338 0.305 0.314 

R2 -1.914 -0.198 0.301 0.288 -0.051 

RMSE 0.102 0.069 0.052 0.053 0.069 
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Table 4.4 – Quantitative analysis of QoI at 𝑡 = 1200 days in numerical experiment 2 

 Initial 

Ensemble 

After 1st 

Update 

After 2nd 

Update 

After 3rd 

Update 

After 4th 

Update 

Normalized Oil Rate SC (Truth = 0.404) 

Mean 0.511 0.525 0.556 0.500 0.460 

Std Dev 0.119 0.116 0.061 0.020 0.017 

Min 0.157 0.165 0.392 0.439 0.430 

Max 0.726 0.770 0.725 0.542 0.506 

R2 -0.400 -0.362 -0.337 0.161 0.401 

RMSE 0.148 0.146 0.147 0.118 0.099 

Normalized Cumulative Oil Production (Truth = 0.562) 

Mean 0.611 0.625 0.653 0.601 0.554 

Std Dev 0.112 0.091 0.048 0.030 0.028 

Min 0.266 0.366 0.535 0.474 0.475 

Max 0.756 0.748 0.777 0.672 0.672 

R2 0.863 0.886 0.906 0.978 0.987 

RMSE 0.070 0.066 0.060 0.030 0.022 

Normalized Cumulative Water Production (Truth = 0.67) 

Mean 0.659 0.658 0.659 0.662 0.664 

Std Dev 0.010 0.011 0.010 0.010 0.009 

Min 0.635 0.627 0.622 0.621 0.621 

Max 0.678 0.682 0.684 0.687 0.687 

R2 0.988 0.988 0.990 0.991 0.991 

RMSE 0.026 0.026 0.023 0.023 0.023 

Normalized Steam Oil Ratio (Truth = 0.268) 

Mean 0.265 0.255 0.235 0.263 0.295 

Std Dev 0.070 0.056 0.025 0.017 0.015 

Min 0.194 0.197 0.197 0.237 0.238 

Max 0.498 0.438 0.317 0.334 0.334 

R2 0.259 0.518 0.738 0.807 0.586 

RMSE 0.053 0.046 0.036 0.031 0.046 

In Table 4.5, we perform the similar analysis for MCMC under forecast model 

uncertainty with the same 10,000 samples used to plot Figure 4.20. Final estimates of 

oil rate and cumulative oil production for the given time instance in experiment 3 are 

slightly away from the truth when compared to other two experiments. In contrast, 
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improved error metrics for all production variables that are calculated over the time 

horizon (see Eq. (4.35) and (4.36)) prove the superiority of MCMC in data assimilation 

under uncertainty in predictions. Also, lower standard deviations in experiment 3 

suggest reduced uncertainty in QoI estimations. 

Table 4.5 – Quantitative analysis of QoI at 𝑡 = 1200 days in numerical experiment 3 

 
Normalized 

Oil Rate 

(Truth = 0.404) 

Normalized 

Cum Oil 

Production 

(Truth = 0.562) 

Normalized 

Cum Water 

Production 

(Truth = 0.67) 

Normalized 

Steam Oil 

Ratio 

(Truth = 0.268) 

Mean 0.470 0.579 0.665 0.278 

Std Dev 0.010 0.008 0.001 0.005 

Min 0.434 0.549 0.645 0.260 

Max 0.509 0.607 0.668 0.298 

R2 0.476 0.995 0.991 0.808 

RMSE 0.094 0.015 0.024 0.032 

4.6.3 Characterization of Posterior Distribution 

Appreciating the data assimilation techniques by their ability to reproduce the QoI 

within a confidence interval only is not sufficient because it does not affirm the 

convergence of model parameters in nonlinear inverse problems, like the one 

considered in this study. Therefore, we present the characterization of posterior 

distributions of model parameters for both the experiments performed using PCE 

metamodel. Note that model parameters are referred as the random variables here; 

however, we reiterate that except in creating the samples for initial ensemble, they 

are not stochastic in nature throughout the data assimilation. 

In Figure 4.23, we display the prior and posterior pdfs of all three model variables after 

each assimilation step in experiment 2. Relatively significant convergence is observed 

after 3rd and 4th updates in the approximations of model variables, which is also 

reflected by the reduction in standard deviation and RMSE of several QoI predictions 

in Table 4.4. Further, evolution in posterior of random variable 1 is conspicuous as 
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compared to other model parameters. It can be explained by the maximum energy 

associated with the eigen value (see Figure 4.7) corresponding to random variable 1. 

 

Figure 4.23 – Posterior characterization of model parameters after each assimilation 

step in numerical experiment 2 (EnKF under PCE uncertainty). 

Figure 4.24 compares the posterior pdfs inferred from experiments 2 and 3 with the 

prior distributions. Notice that reference (or truth) for model parameters is unknown 

as our test problem is a field case. In such cases, many studies (Liu and Oliver 2003, 

Iglesias et al. 2013) consider the MCMC as a gold standard to obtain the true 

posteriors. Based on the similar notion, we found that EnKF using PCE metamodel 

overestimates the uncertainty in parameter space as evident from the wider spread of 

pdfs in Figure 4.24. Also, the accuracy of the inference results is poor in experiment 

2. Table 4.6 shows that both mean and variance are offset by at least 14% as 

compared to MCMC with the similar initial guess. The deficient characterization here 

indicates that nonunique relation between model variables and subsurface 
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observations is difficult to explain using second-order moments of EnKF analysis 

equation under forecast model uncertainty. 

Table 4.6 – Final estimates and pdf variance of model parameters estimated in 

experiments 2 and 3 

Model 

Parameters 

Initial 

Guess 

 Final Estimate  Variance 

 Exp 2 Exp 3  Exp 2 Exp 3 

Rand Var 1 1.4  -0.575 -0.449  0.149 0.056 

Rand Var 2 -1.5  -0.707 -0.161  0.832 0.161 

Rand Var 3 2.9  -0.194 1.588  0.849 0.216 

 

 

Figure 4.24 – Posterior density estimate of stochastic variables obtained in numerical 

experiments 2 and 3. The prior is 𝒩(0,1) for all model parameters. 
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At this point, it is important to discuss the practical implications of both EnKF and 

MCMC approaches under forecast model uncertainty. As observed, the overall 

performance of EnKF is not as good as MCMC. Also, aspects such as ensemble size, 

assimilation time interval, iterative/non-iterative implementation, and bias in initial 

ensemble affect the final estimates of model parameters and QoI (Wen and Chen 2007, 

Jafarpour and Tarrahi 2011). On the other hand, MCMC is a rigorous assimilation 

method and requires only the density of model parameter distribution. Further, the 

summary of computational cost in Table 4.7 confirms that the cost of MCMC is higher 

than EnKF only by an order of the magnitude (102 sec for EnKF and 103 sec for MCMC). 

Therefore, MCMC with PCE metamodel would be a learned choice to characterize 

uncertain parameters. The only limitation for MCMC is the high dimensionality of model 

parameters that may increase with longer correlation lengths in subsurface inverse 

problems. In such cases, EnKF would be a preferred option as it can provide reasonable 

estimations – if not perfect – with the assimilation of sufficient data. Finally, 

computational cost for both experiments 2 and 3 is less by two orders of magnitude 

(see Table 4.7) as compared to benchmark case. Together with reliable inference 

under forecast model uncertainty, it advocates the use of metamodels in practical data 

assimilation cases. 

 

Table 4.7 – Computational cost of different numerical experiments 

Numerical Experiment 
Number of 

Simulation Runs 

Execution Time 

(sec) 

Traditional Iterative EnKF 400 4.573 × 105 

EnKF with PCE metamodel 10 3.051 × 102 

MCMC with PCE metamodel 10 6.073 × 103 

  

 

 

Routines and subroutines are written in MATLAB® (MathWorks 2014) 

and codes are executed on Intel CoreTM i7-2600 CPU @ 3.40 GHz × 8 

processor with the memory of 12.0 GiB. Computational cost of PCE 

construction is not included. 
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 Summary 

In essence, our study throws light on the role of the forecast model uncertainty in 

estimating high dimensional posterior distributions of geological properties. We used 

PCE metamodel with two most popular data assimilation methods: EnKF and MCMC. 

Through qualitative and quantitative characterization of posterior pdfs and QoI 

predictions in the field case study, we list the important outcomes as follows: 

1.  PCE metamodel is suitable to forecast relevant flow properties within a 

confidence interval in highly nonlinear subsurface problems. 

2.  EnKF can provide reliable estimations of model parameters and observations 

under PCE model uncertainty. Also, assimilation of additional data reduces the 

effect of forecast uncertainty in posterior estimation. 

3.  With accurate mean and variance of posterior distributions, MCMC is more 

robust than EnKF against the forecast model uncertainty. 

4.  High computational cost of data assimilation can be avoided in practical 

applications by use of forecast model providing reasonable approximations. 

In our opinion, this kind of assessments can be significant in the evolution of the future 

subsurface characterization workflows. Further evaluation of different forecast models 

suggested in the literature (see section 2.2) may be useful to understand the 

performance and tolerance of assimilation techniques under various conditions and 

sources of uncertainty respectively. 
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Chapter 5  
 

SAGD Real-Time Production 
Optimization Using Adaptive 
and Gain-Scheduled Model 

Predictive Control 3 

  

                                           
3 A version of this chapter has been published in the proceedings of the SPE Western 

Regional Meeting and submitted to SPE Production & Operations. 
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 Introduction 

In this chapter, two novel control workflows based on adaptive and gain-scheduled 

MPC are proposed for real-time production optimization of SAGD reservoirs. In the first 

one, rather than using only a single linear model for the whole control period, re-

estimation of coefficients at each control interval based on system identification theory 

is included in the control workflow. In the other, the operating range of the controlled 

variable is divided into multiple control regions and a separate controller is designed 

for each of them, rather than using only one controller for the entire range of operation 

of the SAGD process. Switching between controllers is incorporated in the workflow by 

considering output variables of the previous interval as the scheduling variable. The 

main goal is to maintain subcool near the predefined optimum set-point along the well 

pair, which will eventually result in maximum NPV of the SAGD asset while minimizing 

the environmental and carbon footprint. 

Section 5.2 covers various aspects of system identification while section 5.3 explains 

MPC including adaptive and gain-scheduled MPC. It also includes control workflows to 

implement the proposed ideas in SAGD reservoirs. Details of the field-scale reservoir 

model used to verify the suggested approaches are given in the section 5.4 along with 

the specific details related to the application of adaptive and gain-scheduled MPC. 

Results explaining the impact of the proposed approaches on real-time production 

optimization are then presented and discussed. They are also compared with linear 

MPC and the true field case where no control strategy was used. Section 5.6 provides 

the summary of the study. 

 Identification of Dynamic Systems 

The primary objective of identifying a dynamic model here is to predict the future 

behaviour for process control. Physical, empirical and semi-empirical models can be 

considered (Seborg et al. 2011) to represent the process. Physical models are derived 

analytically considering first principles of the process. However, for many complex 

systems, physics is not known explicitly. Similarly, semi-empirical models involve use 

of first principles in which unknown parameters are determined empirically. Such 

models are typically in form of ordinary and/or partial differential equations that are 
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difficult to develop and computationally expensive to solve. In contrast, empirical 

models, also known as black box models, can easily be identified by fitting the input-

output data available. Also, computational time required to solve these models is very 

less, which enables the real-time prediction of the system. Considering their suitability 

for application in control engineering (Foss et al. 1998), we choose to develop empirical 

models based on system identification using input-output data. 

A dynamic system can be represented using an empirical linear time invariant (LTI) 

model as follows (Ljung 1999): 

 𝑦(𝑡) = 𝐺𝑝(𝑧
−1, 𝜃)𝑢(𝑡) + 𝐺𝑙(𝑧

−1, 𝜃)𝑒(𝑡) (5.1) 

where 𝑦(𝑡), 𝑢(𝑡) and 𝑒(𝑡) are the output, input, and disturbance (Gaussian white 

noise), respectively at current time step 𝑡. 𝐺𝑝 in Eq. (5.1) is a process model 

representing the relationship between output and input while 𝐺𝑙 is a disturbance (or 

noise) model that relates the output and unmeasured disturbances in the system. 

Process and disturbance models are defined in terms of 𝑧, the time-shift operator and 

𝜃, the vector of parameters to be estimated. 

 

Figure 5.1 – Structure of Prediction Error (PE) model in System Identification. 

Different process and disturbance models can be implemented in Eq. (5.1). As a result, 

numerous different model structures are possible. The prediction error (PE) model is 
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the most common model structure used in linear system identification models (Figure 

5.1). Mathematically, it can be expressed as (Huang et al. 2013), 

 𝐴(𝑧−1)𝑦(𝑡) =
𝐵(𝑧−1)

𝐹(𝑧−1)
𝑢(𝑡) +

𝐶(𝑧−1)

𝐷(𝑧−1)
𝑒(𝑡) (5.2) 

where 𝐴(𝑧−1), 𝐵(𝑧−1), 𝐶(𝑧−1), 𝐷(𝑧−1) and 𝐹(𝑧−1) are polynomials of the time-shift 

operator 𝑧.  

 

𝐴(𝑧−1) = 1 + 𝑎1𝑧
−1 +⋯+ 𝑎𝑛𝑎𝑧

−𝑛𝑎 

                                𝐵(𝑧−1) = 𝑏1𝑧
−1 +⋯+ 𝑏𝑛𝑏𝑧

−𝑛𝑏 

𝐶(𝑧−1) = 1 + 𝑐1𝑧
−1 +⋯+ 𝑐𝑛𝑐𝑧

−𝑛𝑐 

  𝐷(𝑧−1) = 1 + 𝑑1𝑧
−1 +⋯+ 𝑑𝑛𝑑𝑧

−𝑛𝑑 

𝐹(𝑧−1) = 1 + 𝑓1𝑧
−1 +⋯+ 𝑓𝑛𝑓𝑧

−𝑛𝑓 

(5.3) 

Note that in Eq. (5.3), polynomial 𝐵(𝑧−1) starts from negative power of time-shift 

operator unlike zero power in other polynomials in order to reinforce the fact that 

process has delay of at least one sampling interval. Various linear model structures 

like ARX (autoregressive with exogenous input), ARMAX (autoregressive moving 

average with exogenous input), OE (output error) and BJ (Box-Jenkins) can be 

obtained by considering different polynomials in numerator and denominator (see 

Table 5.1) of PE model shown in Eq. (5.2) (Huang et al. 2013). In addition, state-

space model structure which considers system states is widely used to model dynamic 

processes, especially MIMO systems. It can be defined as, 

 

𝑥(𝑡 + 1) = 𝐴(𝜃)𝑥(𝑡) + 𝐵(𝜃)𝑢(𝑡) + 𝐾(𝜃)𝑒(𝑡) 

                               𝑦(𝑡) = 𝐶(𝜃)𝑥(𝑡) + 𝑒(𝑡) 
(5.4) 

where 𝑥(𝑡) is a state vector comprising system states at time 𝑡 while 𝐴, 𝐵, 𝐾 and 𝐶 

are system matrices/vectors in terms of model parameters 𝜃. All the model structures 

shown in Table 5.1 can easily be converted to state-space model and vice versa (Yao 
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et al. 2015). Therefore, state-space model is also suitable for designing modern control 

algorithms. 

Table 5.1 – Various linear model structures in System Identification 

Model 

Structure 

Process Model  Disturbance Model 

Numerator Denominator  Numerator Denominator 

ARX 𝐵(𝑧−1) 𝐴(𝑧−1)  1 𝐴(𝑧−1) 

ARMAX 𝐵(𝑧−1) 𝐴(𝑧−1)  𝐶(𝑧−1) 𝐴(𝑧−1) 

OE 𝐵(𝑧−1) 𝐹(𝑧−1)  1 1 

BJ 𝐵(𝑧−1) 𝐹(𝑧−1)  𝐶(𝑧−1) 𝐷(𝑧−1) 

Model parameters 𝜃 (the coefficients of polynomials shown in Eq. (5.3)) can be 

estimated using different techniques like subspace identification, least squares method 

and Prediction Error Method (PEM). Though subspace identification method is non-

iterative and avoids local minima, it cannot obtain maximum likelihood like PEM 

(Huang et al. 2013). Also, unlike least squares method, PEM can be used to estimate 

parameters of almost whole family of model structures (Ljung 2002). Due to such 

advantages, PEM that minimizes difference between original observation and predicted 

output is used in the proposed work. The technique exploits dynamic structure of the 

system explicitly to get the accurate prediction. The procedure to calculate the 

parameters of the process and the disturbance model using PEM is shown below: 

1.  Derive an optimal one-step ahead predictor in terms of past outputs and 

inputs for the selected model structure. For the generic system identification 

model shown in Eq. (5.1), an optimal predictor denoted by �̂�(𝑡|𝑡 − 1) can be 

determined as (Ljung 1999), 

 �̂�(𝑡|𝑡 − 1) = 𝐺𝑙
−1(𝑧−1, 𝜃)𝐺𝑝(𝑧

−1, 𝜃)𝑢(𝑡) + [𝐼 − 𝐺𝑙
−1(𝑧−1, 𝜃)]𝑦(𝑡) (5.5) 

2.  Substitute input values recorded from the process and corresponding output 

measurements in Eq. (5.5) and calculate the one-step ahead prediction in 

terms of model parameters 𝜃. 
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3.  Compute the one-step ahead prediction error (or residual) for the entire 

dataset. The prediction error at time step 𝑡 is 

 𝜀(𝑡) = 𝑦(𝑡) − �̂�(𝑡|𝑡 − 1) (5.6) 

4.  Calculate the loss function, which is the sum of squared one-step ahead 

prediction errors for each pair of the input-output data. It can be calculated 

using the following equation: 

 𝐽(𝜃) =∑𝜀2(𝑡)

𝑁

𝑖=1

 (5.7) 

 where 𝑁 is the total number of samples in the dataset. 

5.  Finally, minimize the loss function by considering model parameters 𝜃 as 

regressors. 

 𝜃∗ = argmin
𝜃

𝐽(𝜃) (5.8) 

 where 𝜃∗ represents the optimum model parameters. In general, the 

optimization problem shown in Eq. (5.8) is nonlinear and iterative numerical 

algorithms are required to obtain optimal model parameters. 

Model validation is performed using four distinct criteria: autocorrelation and cross-

correlation tests, cross-validation and Akaike’s Information Criterion (AIC). Initially, 

autocorrelation test is conducted in which autocorrelation of residuals defined in Eq. 

(5.6) is calculated. An autocorrelation is a normalized autocovariance given by 

 𝜌𝜀(𝜏) =
𝑟𝜀(𝜏)

𝑟𝜀(0)
 (5.9) 

where 𝑟𝜀(𝜏) is the autocovariance of residuals respectively at lag 𝜏. Initially, in Eq. 

(5.1), it was assumed that 𝑒(𝑡) is a white noise, and therefore, if process model and 

disturbance model are estimated accurately then residual should be equal to the white 

noise. If more than 99% of the autocorrelation values lie within [−
3

√𝑁
 ,
3

√𝑁
], the 

residuals can be considered as white noise (Huang et al. 2013) and hence the model 

is valid. The cross-correlation between residuals and the input is 
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𝜌𝜀𝑢(𝜏) =

𝑟𝜀𝑢(𝜏)

√𝑟𝜀(0)𝑟𝑢(0)
 

(5.10) 

where 𝑟𝜀𝑢(𝜏) represent the cross-covariance between residuals and input at lag 𝜏 and 

𝑟𝑢(0) is the autocovariance of the input. If 99% of the cross-correlations at different 

lags lie within [−
3

√𝑁
 ,
3

√𝑁
] while displaying no significant trend, the model is considered 

to be valid. Note that for OE model structure, autocorrelation test is not applicable 

since noise model is considered as unity. 

In cross-validation, the model fit on a separate validation dataset (which is not used 

in model identification) is calculated (Ljung 2016): 

 𝑀𝑜𝑑𝑒𝑙 𝐹𝑖𝑡 (%) = [1 −
|𝑦 − �̂�|

|𝑦 − �̅�|
] × 100 (5.11) 

where 𝑦 is the observed output, �̂� is predicted output while �̅� denotes the mean of 

output. Model fit equals to 100% refers to a perfect model while 0% indicates that 

predicted output is no better than a speculation equal to the mean value. 

Finally, the AIC is given by (Soderstrom and Stoica 1989): 

 𝐴𝐼𝐶 = 𝑁 log 𝐽(𝜃∗) + 2𝑝 (5.12) 

where 𝑝 represents number of model parameters. Since the AIC penalizes the number 

of parameters and a larger number of parameters leads to an increase in the degrees 

of freedom and usually a reduction in the loss function, the AIC provides a metric to 

choose between models with different numbers of parameters. While comparing 

different models, one with lower AIC should be chosen as it provides best trade-off 

between accuracy and model dimensions.  

The most important and time consuming task in system identification is to select the 

appropriate model order; too low an order may result into inaccurate prediction while 

unnecessarily high orders may lead to overfitting of the data. Figure 5.2 demonstrates 

the workflow used in our work to determine model orders in linear system 

identification. First, we choose a simple model structure (e.g., ARX) and try to identify 

a lower order model. If the model fails the residual analysis or cross-validation tests, 

the order of the noise model is increased and if this does not provide a satisfactory fit, 
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the order of the process model is increased. The procedure is repeated until an 

acceptable model is found. It is also repeated with other model structures, and the 

AIC is used to select the best system identification model. It is observed that same 

order for numerator and denominator of noise model provides encouraging results and 

hence, order for both should be increased simultaneously keeping in mind the model 

structure. In case of process model, order of the numerator should be given first 

preference since increasing the denominator order will increase the overall order of 

dynamic model. 

 

Figure 5.2 – Workflow for linear model order selection in System Identification. 

 Model Predictive Control 

In real-time production optimization, controlling subcool at a set-point is the central 

intention to achieve uniform steam chamber along the wellbore. Various control 

methods are available including manual, PID or fuzzy control to fulfill this objective. 

Though such methods have simple control laws and easy practical applications, they 

are not suitable for controlling complex MIMO systems (Richalet 1993). In contrast, 
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MPC is an advanced multivariable control strategy that considers internal dynamics of 

the system while defining interaction between distinct output and input variables by 

means of physical or empirical models. In addition, such internal models provide 

predictive capability to MPC controller due to which it can anticipate future 

contraventions and take corrective measures at current time interval (Seborg et al. 

2011). Various equality and inequality constraints can also be handled explicitly by 

MPC, which is one if its key characteristic (de Oliveira and Biegler 1994). Further, 

feedback nature of the algorithm compensates for the offset in model predictions up 

to some extent, which ensures robust control of a given process (Camacho and 

Bordons 2007). Considering its versatility and suitability to the problem of subcool 

control, MPC is an excellent control technique to optimize the performance of SAGD 

process by manipulating input variables. 

Concept of model based predictive control started evolving in late 1960s (Lee and 

Markus 1967) and initial applications were reported in 1970s by Richalet et al. (1978) 

and Cutler and Ramaker (1979). Since then it has been applied to more than 4600 

control problems (Qin and Badgwell 2003). It comprises mainly two components i.e. 

dynamic model and cost function optimization. Details regarding types of dynamic 

models which can be used in MPC as well as how an empirical model is identified in 

proposed work is given in previous section. Another component involves minimization 

of a cost function (also known as an objective function) that ultimately provides the 

inputs for next sampling interval. Therefore, cost function should be defined such that 

it considers the necessary control effort required by an output variable to follow the 

reference trajectory. Equation of the cost function used in this work can be given as 

(Bemporad et al. 2015), 

 𝐶 = 𝐶𝑦 + 𝐶𝑢 + 𝐶∆𝑢 (5.13) 

where 𝐶 represents the total cost. For simplicity, each term on right hand side of the 

Eq. (5.13) is explained separately. 𝐶𝑦 that denotes cost due to error in output 

reference tracking can be explained as follows: 

 𝐶𝑦 =∑∑{𝑤𝑗
𝑦
[𝑟𝑗(𝑡 + 𝑖|𝑡) − 𝑦𝑗(𝑡 + 𝑖|𝑡)]}

2
𝑃

𝑖=1

𝑁𝑦

𝑗=1

 (5.14) 
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where 𝑟𝑗 and 𝑦𝑗 are reference set-point and predicted output value from dynamic 

model respectively for output 𝑗. Here, 𝑡 + 𝑖|𝑡 suggests values at time interval 𝑡 + 𝑖 as 

MPC calculations are being done at current time interval 𝑡. 𝑤𝑗
𝑦
 refers to the tuning 

weight associated with output 𝑗 while 𝑁𝑦 denotes total number of outputs. Number of 

future sampling intervals to be considered in calculations of MPC is known as prediction 

horizon, which is represented by 𝑃 in Eq. (5.14). 

Similarly, equation for cost corresponding to input variable mismatch that is referred 

as 𝐶𝑢 in Eq. (5.13) can be written as, 

 𝐶𝑢 =∑∑{𝑤𝑗
𝑢[𝑢𝑗(𝑡 + 𝑖|𝑡) − 𝑢𝑗

𝑜𝑝𝑡(𝑡 + 𝑖|𝑡)]}
2

𝑃−1

𝑖=1

𝑁𝑢

𝑗=1

 (5.15) 

where 𝑢𝑗 represents input value while 𝑢𝑗
𝑜𝑝𝑡

 denotes optimum target value obtained 

from the mid-term optimization for 𝑗𝑡ℎ input variable. 𝑁𝑢 and 𝑤𝑗
𝑢
 in Eq. (5.15) refer 

to total number of inputs and tuning weight for input 𝑗 respectively.  

Finally, last term 𝐶∆𝑢 in Eq. (5.13) that addresses rate of change (or adjustments) in 

input variables can be expressed as, 

 𝐶∆𝑢 =∑∑{𝑤𝑗
∆𝑢[𝑢𝑗(𝑡 + 𝑖|𝑡) − 𝑢𝑗(𝑡 + 𝑖 − 1|𝑡)]}

2
𝑃−1

𝑖=1

𝑁𝑢

𝑗=1

 (5.16) 

where 𝑤𝑗
∆𝑢

 is the tuning weight related to rate of change of input 𝑗. Note that in both 

Eq. (5.15) and (5.16), summations are done only till 𝑃 − 1 sampling intervals. Since 

it is assumed that process has delay of at least one sampling interval, output at 

sampling interval 𝑃 will not be affected by input at the same sampling interval and 

hence it is not considered in the cost function. 

Minimization of Cost function 𝐶 in Eq. (5.13) is subjected to following constraints: 
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𝑦𝑗
𝑚𝑖𝑛 ≤ 𝑦𝑗(𝑡 + 𝑖|𝑡) ≤ 𝑦𝑗

𝑚𝑎𝑥 

𝑢𝑗
𝑚𝑖𝑛 ≤ 𝑢𝑗(𝑡 + 𝑖|𝑡) ≤ 𝑢𝑗

𝑚𝑎𝑥 

∆𝑢𝑗
𝑚𝑖𝑛 ≤ ∆𝑢𝑗(𝑡 + 𝑖|𝑡) ≤ ∆𝑢𝑗

𝑚𝑎𝑥 

∆𝑢(𝑡 + 𝑀|𝑡) = 0 

(5.17) 

where 𝑦𝑗
𝑚𝑖𝑛, 𝑢𝑗

𝑚𝑖𝑛
 and ∆𝑢𝑗

𝑚𝑖𝑛
 are the lower bounds of output, input, and rate of change 

of input 𝑗 respectively. Similarly, 𝑦𝑗
𝑚𝑎𝑥, 𝑢𝑗

𝑚𝑎𝑥
 and ∆𝑢𝑗

𝑚𝑎𝑥
 are the upper bounds of 

output, input, and rate of change of input 𝑗 respectively. Here, last constraint signifies 

that in optimization, inputs up to only 𝑀 (control horizon) sampling intervals are 

manipulated and after that, inputs are held constant. 

 

Figure 5.3 – Control framework of Model Predictive Control. 
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Control framework of MPC is explained in Figure 5.3 using block diagrams. Set-point 

or reference trajectory 𝑦𝑟𝑒𝑓 for output variables are available from the supervisory 

control or mid-term optimization. Also, constraints for cost function optimizer are 

decided according to surface facilities available and safe operation of the system. Then 

predefined cost function is calculated where future outputs are estimated using 

dynamic model for the given prediction horizon. Suitable optimization algorithm is used 

to minimize the cost function by changing the input variables for the given control 

horizon. Input for the next control interval that corresponds to minimum cost function 

is then implemented in the physical plant. Output 𝑦(𝑡) at current time step is recorded 

in the plant and then fed back to the MPC controller to calculate input of the next 

control interval. The process is repeated at each sampling interval, which depicts the 

moving horizon nature of MPC. Note that input (IV) and output variables (OV) can also 

be referred as manipulated (MV) and controlled variables (CV) respectively. 

5.3.1 Adaptive MPC 

Primary concern in model based control strategies is the availability and accuracy of 

the process model (Kozak 2014). Especially in case of empirical models which does 

not involve any physics and are trained using only required range of operating 

conditions, estimations may not be accurate enough when extrapolated (Seborg et al. 

2011). If output predictions from dynamic model are erroneous then cost function 

optimization will be inappropriate, which ultimately leads to incorrect calculation of 

future inputs by MPC controller. In addition, Fukushima et al. (2007) noted that there 

are always uncertainties present in the model that can significantly affect the controller 

performance. Therefore, only an LTI empirical model would not be sufficient to 

represent the continuously changing states of nonlinear SAGD process in real-time 

production optimization using MPC. 

Adaptive model predictive control, a variant of MPC is proposed in this work to 

incorporate time varying plant characteristics in real-time production optimization. 

One of the well-known adaptive schemes, widely recognized as generalized predictive 

control (GPC), was proposed by Clark et al. (1987) for control applications utilizing 

long range predictive controllers. Also, Genceli and Nikolaou (1996) suggested a 

control framework that performs simultaneous MPC calculations and model 
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identification such that process is least interrupted. A similar approach has been 

employed in this work schematic representation of which is shown in figure 7. Instead 

of using linear model with fixed coefficients in MPC controller, new coefficients are 

identified online at each control interval. The model with new coefficients is then used 

to determine inputs for next control interval in MPC. Corresponding outputs are 

recorded from the plant and an input-output dataset is prepared, which represents the 

latest plant behaviour. It is further used to estimate coefficients of the plant model for 

next control interval and the loop goes on. Since PEM explained in section 5.2 can be 

used to calculate new coefficients online while keeping the linear model structure 

same, empirical models used in this work are suitable for Adaptive MPC. In addition, 

time required for online calculation of coefficients is much less as compared to the 

sampling interval with commonly available computational resources, a key feature due 

to which Adaptive MPC has become prominent (Karra et al. 2008) from the 

implementation point of view. Such evolution of coefficients represents current states 

of the reservoir that allows for better prediction of outputs and in turn better control 

of the SAGD process. 

 

Figure 5.4 – Schematic representation of Adaptive MPC. 

5.3.2 Gain-Scheduled MPC 

Gain scheduling is an effective method to design controllers for nonlinear systems by 

employing linear control techniques. As the name suggests, controller gains are 
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adjusted (scheduled) for the different operating regions of the plant based on the 

current value of scheduling variables. Several approaches such as switching or 

blending of controllers or their parameters or plant models can be practiced to achieve 

gain scheduling. Rugh and Shamma (2000) has reviewed latest development in the 

gain scheduling methods including classical linearization-based scheduling as well as 

linear parameter varying (LPV) approaches. Main advantage of gain scheduling is the 

properties that it inherits from linear control methods, making it computationally 

efficient as compare to other nonlinear control approaches. As Ilka (2015) noted, gain 

scheduling basically facilitates the nonlinear control problem by parallel decomposition 

of the whole system into numerous sub-problems where communication between sub-

problems is defined by scheduling variables. It allows the aggressive variation in 

control parameters, ultimately leading to tighter and efficient control of the system 

even in adverse situations like beginning of the SAGD production phase that depicts 

substantially offset subcool values from the optimum target. 

 

Figure 5.5 – Schematic representation of Gain-Scheduled MPC. 

We have implemented gain-scheduled MPC for real-time subcool control by 

constructing a family of linear controllers as shown in Figure 5.5.  The operating range 

of the SAGD reservoir is divided into numerous control regions and a separate 

controller is designed for each of the control region, with constraints being set 

according the operating region. Minimum subcool is considered as the scheduling 

variable to switch between the controllers. Several measures are considered for 
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smooth transfer between controllers such as limiting the maximum allowable change 

in manipulated variables for a particular timestep, tuning the operating range of each 

controller and specifying the priority of the controller based on the physics of SAGD. 

In addition, as in adaptive MPC, the coefficients of the plant model are updated after 

each control interval to account for changes in reservoir dynamics while calculating 

optimum input parameters for the next control interval. 

5.3.3 Control Framework for Real-Time Production 

Optimization Using MPC 

Workflows to implement the different variants of MPC are shown in Figure 5.6. The 

history-matched reservoir model is used as a virtual plant in proposed workflows. 

Figure 5.6(a) depicts the control framework for linear MPC that uses only one 

controller. Since determination of the model based on system identification requires a 

training dataset, the reservoir model is simulated up to the date when the MPC phase 

is set to begin. Then, linear empirical models are identified by following the procedure 

discussed in section 5.2. All the dynamic models are then converted to state space 

formulations. The conversion includes transformation of identified model parameters 

into a state space canonical realization (Ljung 1999), which is followed by balancing 

and rescaling of state space matrices to improve numerics and accuracy of the model 

(Ljung 2016). 

 

(a) 
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(b) 

 

(c) 

Figure 5.6 – Control framework for real-time subcool control using (a) Linear MPC (b) 

Adaptive MPC and (c) Gain-Scheduled MPC. 

An appropriately designed controller which considers MVs and OVs from the last control 

interval along with estimated controller states and set-point for OVs is used to calculate 

optimum values of MVs for next control interval. The necessary input files for the 

reservoir simulator used are then prepared using the MPC-recommended MVs for the 

next control interval; this is equivalent to supplying the MV to the real process in 

industrial implementation. The reservoir model is simulated up to the next sampling 
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interval, following which real-time measurements are collected and used to calculate 

OVs in the next step of the workflow. Workflows for adaptive and gain-scheduled MPC 

are presented separately in Figure 5.6(b) and Figure 5.6(c) respectively with orange 

blocks indicating the additional steps to be carried out.  

 Application to the SAGD Field: A Case 
Study 

To assess the effectiveness of suggested ideas in real-time production optimization, 

all three variants of MPC have been applied to a SAGD reservoir located in northern 

Alberta. A bidirectional link between the MPC controller developed using the Model 

Predictive Control ToolboxTM (Bemporad et al. 2016) and the virtual process plant, i.e. 

the thermal reservoir simulator CMG STARSTM (CMG 2013a), was established using 

routines written in MATLAB® (MathWorks 2014). In addition, Results ReportTM (CMG 

2013b) is integrated in the workflow to facilitate import-export of the data between 

the controller and the plant. 

5.4.1 Details of History-Matched Reservoir Model 

 

Figure 5.7 – 3D view (left) and IK view for plane 26 along j-direction with well pair 

divided in five sections (right) of history-matched reservoir model. 

As noted before, a history-matched reservoir model of a SAGD field is used as a virtual 

process plant in this work. In history matching (Oliver and Chen 2011), unknown 

reservoir parameters are estimated by matching the production outputs of reservoir 
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model with field history. In our work, permeability values of all the grid blocks of the 

reservoir model were considered as unknown parameters and history matching was 

performed using the EnKF as explained in Chapter 3 and Chapter 4 (Patel et al. 2015, 

Patel et al. 2017). The reservoir model depicting the best match with field data was 

chosen from the updated ensemble for real-time production optimization. Figure 5.7 

presents the 3D view of the selected model while history matching results of the same 

are shown in Figure 5.8, which clearly indicate that the reservoir model used in this 

work meticulously represents the actual oilfield. 

 

Figure 5.8 – History matching results of reservoir model selected for real-time 

production optimization. 

Grid dimensions of the reservoir model shown in Figure 5.7 can be given as 25×50×16 

with size of each grid being 25 m, 2 m and 1.5 m in i (East), j (North) and k (Elevation) 

direction respectively. Like the true SAGD reservoir, the history-matched model also 

demonstrates heterogeneity with horizontal permeability values ranging from 1561 md 
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to 7765 md and porosity values varying from 31.6 % to 42.6 %. The initial average 

reservoir pressure and temperature are set at 650 kpa and 7 ºC, respectively, while 

the oil saturation is estimated to be 0.8 with no solution gas present in the reservoir. 

The fluid model is developed using a typical viscosity-temperature relationship of 

bitumen where the viscosity is around 625,000 cp at initial reservoir temperature and 

decreases to 10 cp at operating temperature of 216 ºC. The rock type is defined using 

appropriate relative permeability curves that indicate the usual water-wet behaviour. 

Note that relative permeability and viscosity vs. temperature curves are not provided 

here because of the confidentiality of that data. A horizontal well pair with injector 

consisting long and short tubing strings is modeled, while the producer comprised of 

only annulus. Both wells are 500 m long and placed 6 m apart, and well constraints 

are assigned to be the same as for the field history. The model is simulated for 1355 

days using the CMG STARSTM thermal reservoir simulator. The results obtained from 

the simulation of history-matched model are considered as the base case where no 

control algorithm is used and the performance of the proposed approaches is compared 

to it. 

5.4.2 Application of System Identification Techniques 

System Identification ToolboxTM (Ljung 2016) was used in this work to estimate the 

behaviour of the system in MPC. To simplify the control problem, well pair was divided 

in 5 sections as shown in Figure 5.7 and subcool of each section was considered as an 

output variable. Steam injection rate of long and short tubing as well as liquid 

production rate that directly affect subcool were considered as input variables. 

Separate model was identified for each of the five multiple input single output (MISO) 

systems that considers one subcool as an output and all three input variables. Such 

decoupling of the system introduces an assumption that OVs do not interact with each 

other, which is reasonable in our case since subcool is influenced by input variables 

rather than adjacent subcool. 

To consider the practical situation that would arise in the field, it was decided to identify 

model based on data available from the field if it is persistently excited. Since 

temperature measurements from the DTS were not consistent in the field, IVs recorded 

on daily basis were implemented in history-matched reservoir model explained in 
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previous subsection to obtain the subcool data. Temperature measurements of the 

respective grid blocks were averaged to calculate subcool for a section of the well pair. 

In total, 250 samples of input-output data with sampling interval of 1 day were 

obtained from the simulation. Roughly 2/3rd of the data i.e. 165 samples were used 

for identification of the model while rest 85 samples were used to cross-validate the 

estimated model. Time delay is estimated for each MISO system, which can be 

different for each input variable considered in the model. 

 

Figure 5.9 – Results of autocorrelation and cross-correlation tests for Subcool 2. 

Yellow rectangle box shows 99% confidence interval. 
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More than 50 models were investigated in the system identification procedure for each 

MISO system. Residual tests and cross-validation were performed to select the best 

model for each subcool. Results of autocorrelation and cross-correlation tests for 

Subcool 2 are shown in Figure 5.9. It can be observed that residuals are well within 

the 99% confidence interval indicated by yellow rectangle box. Also, there is no trend 

in the residuals for different lags, which confirms that models are legitimate. The 

performance of the models for all subcools in cross-validation is shown in Figure 5.10, 

and the models perform well in infinite-step ahead prediction. Specifications of the 

system identification models including its structure, delay, order, fit and AIC are 

presented in Table 5.2 for each subcool. Orders of polynomials 𝐵(𝑧−1), 𝐶(𝑧−1), 𝐷(𝑧−1) 

and 𝐹(𝑧−1) in Eq. (5.3) are shown using 𝑛𝐵, 𝑛𝐶, 𝑛𝐷 and 𝑛𝐹, respectively, in Table 

5.2.  Models identified separately for each subcool were then combined by replacing 

scalar coefficients in polynomials 𝐴(𝑧−1), 𝐵(𝑧−1) ,𝐶(𝑧−1) , 𝐷(𝑧−1) and 𝐹(𝑧−1) (refer 

Eq. (5.3)) with matrices 𝐴, 𝐵, 𝐶, 𝐷 and 𝐹, respectively. After vertical concatenation 

of the MISO systems, the dimension of the matrix 𝐴 is 𝑁𝑦 × 𝑁𝑦 while matrices 𝐵 and 

𝐹 are of dimension 𝑁𝑦  ×  𝑁𝑢 and matrices 𝐶 and 𝐷 are of dimension 𝑁𝑦  ×  1 (Vembadi 

2014). In addition, the noise variance of each system was preserved by creating a 

separate 𝑁𝑦  ×  𝑁𝑦 matrix in the combined MIMO system. Finally, as explained in the 

workflow to implement MPC (Figure 5.6), the combined MIMO model was converted to 

a state space formulation. Current states of the state space models were obtained 

using the training data such that model fit with output signal is maximum. 

Table 5.2 – Specifics of system identification models identified for each subcool 

Output 

Variables 

System Identification Models 

Structure Delay 
Order Fit 

(%) 
AIC 

nB nC nD nF 

Subcool 1 BJ [1 2 1] [1 3 1] 3 3 [1 3 1] 59.98 1.66 

Subcool 2 BJ [1 1 1] [1 4 1] 8 8 [1 4 1] 73.73 0.53 

Subcool 3 OE [1 2 1] [1 1 1] - - [1 1 1] 62.77 2.63 

Subcool 4 BJ [1 1 1] [1 2 1] 2 2 [1 2 1] 60.26 2.0 

Subcool 5 BJ [1 1 1] [1 4 1] 8 8 [1 4 1] 80.19 1.27 
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Figure 5.10 – Results of cross-validation for all subcools. Blue line represents 

predicted output from the model while grey line depicts validation data. 
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5.4.3 Application of Linear MPC 

For stable control of the process, constraints should be defined properly while having 

some physical meaning. The constraints applied for this case study are shown in Table 

5.3. The upper bounds (𝑢𝑗
𝑚𝑎𝑥) for IVs were decided based on the available surface 

facilities (e.g., capacity of steam generator and separator). Since a small amount of 

steam is required to be injected to keep the SAGD reservoir alive, lower bounds (𝑢𝑗
𝑚𝑖𝑛) 

for steam injection in both short and long tubing were set at 20 m3/day. The lower 

bound for the liquid production rate was fixed at 50 m3/day. Since a high frequency of 

change in IVs leads to wear and tear of actuators such as valves, a smaller rate of 

change in IVs is desired; this is incorporated by specifying lower values (10 m3/day 

for both steam injection rates and 5 m3/day for liquid production rate) for ∆𝑢𝑗
𝑚𝑎𝑥

 and 

∆𝑢𝑗
𝑚𝑖𝑛

. Next, optimum targets (𝑢𝑗
𝑜𝑝𝑡) for IVs were determined by performing several 

trial simulations runs. However, they are available from the mid-term optimization in 

reality. Lower tuning weight of 0.25 and 0.1 are specified for all IVs (𝑤𝑗
𝑢
) and rate of 

change of IVs (𝑤𝑗
∆𝑢

), respectively. Higher weights for input parameters results into 

conservative approach, which is not desirable when OVs are away from the set-point. 
Sampling time was selected same as that of dynamic model to be consistent. 

Furthermore, longer the prediction horizon (𝑃) is, higher the computational cost will 

be. After conducting a few trials in which 𝑃 was kept higher initially and decreased 

gradually, the control horizon (𝑀) and prediction horizon were chosen to be 3 and 6 

sampling intervals, respectively. 

As Patel et al. (2014) noted, the maximum number of OVs that can be controlled is 

equal to the number of IVs (also known as degree of freedom of the controller). In our 

case, there are 5 subcools and only 3 input variables and therefore not all the subcools 

can be controlled near target. As minimum subcool below target value implies steam 

breakthrough, maintaining it near the specified set-point should be prioritized. To 

incorporate this in MPC, weights for OVs were specified in a hierarchy where subcool 

values were sorted in ascending order after each sampling interval and a higher weight 

(0.9) was assigned to the first 3 subcools and a lower weight (0.1) was assigned to 

the rest of the subcools. Though the optimum subcool varies from well pair to well pair 
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and reservoir to reservoir, the literature suggests that it is between 20 to 30 ºC for 

most SAGD reservoirs studied (Edmunds 2000, Vander Valk and Yang 2007, Gates and 

Leskiw 2010). Hence, the optimum target for subcool was specified as 20 ºC. In this 

case study, the SAGD production phase started from 550 days and data from the initial 

250 days was used for model identification, with the MPC being implemented from 800 

days onwards up to 1355 days.  

 

Table 5.3 – Design of MPC controller for real-time production optimization 

Parameters 

Input Variables 

Steam Inj Rate 

(Short Tub) 

Steam Inj Rate 

 (Long Tub) 

Liquid Prod 

Rate 

𝑢𝑗
𝑚𝑎𝑥

 (m3/day) 250 70 400 

𝑢𝑗
𝑚𝑖𝑛

 (m3/day) 20 20 50 

∆𝑢𝑗
𝑚𝑎𝑥

 (m3/day) 10 10 5 

∆𝑢𝑗
𝑚𝑖𝑛

 (m3/day) -10 -10 -5 

𝑢𝑗
𝑜𝑝𝑡

 (m3/day) 115 35 275 

𝑤𝑗
𝑢 0.25 0.25 0.25 

𝑤𝑗
∆𝑢 0.1 0.1 0.1 

Sampling Time (Day) 1 

Control Horizon (𝑀) 3 

Prediction Horizon (𝑃) 6 

 
Output Variables 

 

𝑟𝑗 (⁰C) 20 

𝑤𝑗
𝑦
 

0.9 (for three minimum subcool) 

 0.1 (for other subcool) 



138 

 

5.4.4 Application of Adaptive MPC 

We have used dynamic models with the same structures and orders as linear MPC in 

adaptive MPC. The input-output data recorded for the immediate past 50 days were 

used to estimate the new coefficients and the model was used in MPC to calculate the 

optimum input parameters for the next control interval. Since the latest available data 

is used to identify model parameters, the current reservoir conditions will be reflected 

in model predictions when used in MPC. The time required to calculate new coefficients 

was much shorter than the sampling interval, which indicates that practical 

implementation of the proposed approach is feasible at the field scale. Since the model 

structure and order are not altered with time, it is not necessary that model with latest 

coefficients computed online will pass the validation tests. However, to ensure that the 

model is acceptable, predicted values obtained from the model were compared with 

training data by calculating the model fit (specified in Eq. (5.11)). It was observed that 

for more than 90% of the control intervals, the model fit was above 60% for all 

subcools. The controller design is the same as for linear MPC. Also, adaptive MPC was 

applied from 800 days to 1355 days to create a common basis of comparison with 

linear MPC. 

5.4.5 Application of Gain-Scheduled MPC 

Practical aspects of gain-scheduled MPC are pretty much similar to those of adaptive 

MPC except the segmentation of operating region into multiple sub-regions and 

designing controller for each of them. As shown in Figure 5.11, operating range of 

subcool is divided into three control regions in this case study. Region 1 is defined for 

the higher subcool values of more or equal to 35 ºC and corresponding controller is 

denoted as C1 in Figure 5.11. Hence, if any of the five subcools goes above the 

specified range then controller C1 is switched and used in MPC to calculate optimum 

IVs for next control interval. Similarly, region 2 comprises subcool values between 18 

ºC and 35 ºC with corresponding controller C2. Since set-point for subcool is 20 ºC, 

smaller lower window is provided for C2 as subcool below the target should be avoided 

as soon as possible. The last control region 3 handles the subcool below 18 ºC, 

meaning that when any of the subcool goes below stated limit, controller C3 will be 

utilized for necessary responses. 
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Figure 5.11 – Segmentation of operating range of subcool in real-time production 

optimization using gain-scheduled MPC. 

The design of all three controllers is similar to the one shown in Table 5.3 except for 

some changes in constraints for the liquid production rate. As discussed before, higher 

subcool values indicate a higher liquid level above the producer and to avoid that, the 

controller should be allowed to produce more fluid. Hence, 𝑢𝑗
𝑚𝑎𝑥

 for controller C1 was 

increased to 600 m3/day. Also, a higher value of 𝑢𝑗
𝑜𝑝𝑡

 (500 m3/day) was fixed for 

controller C1 while for controller C2 and C3, it was specified as 220 and 150 m3/day, 

respectively. Also, higher rates of change in liquid production were permitted when 

subcools are very far away from the target value by removing ∆𝑢𝑗
𝑚𝑖𝑛

 and ∆𝑢𝑗
𝑚𝑎𝑥

 

constraints for the liquid production rate in controller C1 and C3. As mentioned before, 

the subcool is used as the scheduling variable. Since there are multiple subcools and 

higher subcool hampers steam chamber growth, C1 is given the highest priority, 

meaning that the first condition checked while selecting the controller is whether any 

of the subcools are within the range of its operating region. The second check is 

performed on controller C3 since subcool values lower than the target increase the 

chances of steam breakthrough; finally, controller C2 is selected only if all the subcools 

are within its operating range. Gain-scheduled MPC is tested by implementing it at 600 

days since subcools are generally away from the target at the start of SAGD production 

phase and this makes for a challenging control problem. 
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 Results and Discussion 

Consequences of implementing proposed approaches are discussed and results are 

compared with base case as well as linear MPC in this section. The effectiveness of 

proposed approaches in controlling subcool as well as behaviour of MVs for different 

control algorithms is presented. Effects of adaptive and gain-scheduled MPC on 

different production parameters is also assessed. Finally, statistical measures are used 

to verify the performance of proposed approaches. 

5.5.1 Performance in Real-Time Subcool Control 

Control strategy is successful if it can maintain all the OVs within acceptable operating 

range near specified target. Also, faster convergence rate of OVs towards the set-point 

demonstrates capability of the control method to quickly regain the optimum operating 

states of the system. Furthermore, an ideal control method contemplates and treats 

various uncertainties (for e.g. measurement noise) in the system appropriately to 

provide the robust control. In addition, control method should be such that stability of 

the process is not disturbed to achieve optimum set-points, meaning that IVs 

estimated for the future control interval should be bounded. Keeping in mind these 

key aspects, performance of proposed approaches in subcool control is analyzed. 

The subcool of all segments of the well pair are plotted against time in Figure 5.12 for 

all the control methods considered. For the base case, it can be seen clearly that steam 

breakthrough occurs along the length of the well pair since subcools are almost zero 

after 800 days. Linear MPC demonstrates better performance than the base case as 

subcool values for all sections are around the given target; however, frequent changes 

in subcool profiles can be noticed around 1100 days. Also, near the end of the SAGD 

process, all subcools are below the target in linear MPC with two of them being almost 

equal to zero, indicating failure of the controller to maintain subcool. In the case of 

gain-scheduled MPC, a rapid decrease in subcool values can be observed at the start 

of the MPC period as controller C1 was active for aggressive control action against 

higher subcool values. Though subcool in the first four sections of the well pair are 

very low initially, they increased eventually as all the subcool values fell in the 

operating range of controller C2 and remained within 19 to 33 ºC as desired. Adaptive 

MPC provided robust subcool control as it depicts smooth subcool profiles after its 
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implementation. In addition, offset in subcool values from target is minimum (7 ºC) in 

adaptive MPC, which shows its superiority in real-time production optimization. 

 

Figure 5.12 – Subcool of all segments of the well pair obtained using different control 

methods in real-time production optimization. 

As explained before, not all the subcools can be maintained near the set-point due to 

a lack of sufficient degrees of freedom. Therefore, the minimum subcool among all 

sections of the well pair is the most important parameter to evaluate the proposed 

methods, and it is plotted in Figure 11. The ability of gain-scheduled MPC to maintain 

minimum subcool near the target value is apparent except in the initial period when 

subcools in some sections were very high. The minimum subcool in the case of 

adaptive MPC is close to the target with a maximum error of 2 ºC. Also, a swift increase 

in minimum subcool after the start of the control period is evident in the same figure, 

which results in effective control with adaptive MPC. In contrast, the minimum subcool 

in linear MPC does not remain near the set-point over the control period potentially 

due to the inefficient dynamic model. An additional observation is that the minimum 
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subcool is in sections 4 and 5 for most control intervals in all the control methods. It 

indicates higher probability of steam breakthrough in the toe sections of the reservoir; 

this may be due to higher permeability between well pairs or a relatively high amount 

of steam injection due to wellbore geometry in those sections. 

 

Figure 5.13 – Minimum subcool of the well pair obtained using different control 

methods in real-time production optimization. 

5.5.2 Impact on Input (Manipulated) Variables 

To ensure that IVs calculated using proposed approaches are legitimate and bounded, 

steam injection rate for short tubing, long tubing and liquid production rate are plotted 

against time and compared with linear MPC as well as base case in Figure 5.14, Figure 

5.15, and Figure 5.16 respectively. All the IVs are within the defined constraints for 

the MPC controller and follow the optimum target in all cases; however, they display 

different behaviour for the different control strategies. From Figure 5.14, it is seen that 

the lowest fluctuations in the steam injection rate for short tubing are for adaptive 
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MPC, while gain-scheduled MPC shows some more variation in the beginning, though 

it is still within the acceptable range. Linear MPC displays frequent changes that results 

into continual opening and closing of valves, ultimately causing damage to the 

actuators. Also, the rate of convergence towards the optimum target is slower in linear 

MPC. The steam injection rate of long tubing, shown in Figure 5.15, shows higher 

variation for all controllers; this may be due to the relatively higher order of 

polynomials used in the dynamic model (specified in Table 5.2) for this specific IV. The 

liquid production rate, shown in Figure 5.16, is almost constant for adaptive MPC while 

linear MPC exhibits minor variations around the specified target. In contrast, gain-

scheduled MPC presents the highest fluctuation until the subcools are stabilized due to 

frequent switching of controllers. Also, the operating range of the multiple controllers 

is decided such that changes in liquid production rate do not exceed a certain fraction 

of the overall operating range to avoid damage to the actuators. In our case study, 

changes in liquid production rate are around 12.5% of the total operating range (0 to 

600 m3/day), which is tolerable. Further, frequent variations in gain-scheduled MPC 

are not visible after approximately 1100 days, which endorses the ability of the 

proposed approach to control subcool in adverse control situations. 

 

 

Figure 5.14 – Performance of steam injection rate (short tubing) in adaptive MPC 

(left) and gain-scheduled MPC (right) when compared with base case and linear MPC. 
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Figure 5.15 – Performance of steam injection rate (long tubing) in adaptive MPC (left) 

and gain-scheduled MPC (right) when compared with base case and linear MPC. 

 

Figure 5.16 – Performance of liquid production rate in adaptive MPC (left) and gain-

scheduled MPC (right) when compared with base case and linear MPC. 

5.5.3 Effect on Production Parameters 

The impact of these approaches on various production parameters has also been 

assessed qualitatively. Figure 5.17, Figure 5.18, and Figure 5.19 present the daily oil 

rate, cumulative oil production and cSOR, respectively, for the different control 

algorithms. A common observation is the higher production parameters for the base 

case, which is due to the higher amount of steam injected in the reservoir irrespective 

of the subcool values, ultimately resulting into higher cSOR; this can be observed in 

Figure 5.19. Since the base case represents the current practice in the field, it suggests 
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that the efficiency of the SAGD process can be improved by controlling the subcool in 

real-time. Due to infrequent changes in IVs, adaptive MPC shows the lowest fluctuation 

in oil production rate (see Figure 5.17). Also, a slightly higher cumulative oil production 

is evident for adaptive MPC in Figure 5.18 as compared to linear MPC. Here, it seems 

that the maximum oil production is restricted by the predefined target subcool since 

not only is it the case that more steam than required cannot be injected but also more 

liquid cannot be produced. Hence, the target subcool should be chosen carefully in 

order to obtain as high an oil production as possible.  

 

Figure 5.17 – Effect of adaptive MPC (left) and gain-scheduled MPC (right) on oil 

production rate. SC = surface conditions. 

 

Figure 5.18 – Effect of adaptive MPC (left) and gain-scheduled MPC (right) on 

cumulative oil production. 
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Figure 5.19 – Effect of adaptive MPC (left) and gain-scheduled MPC (right) on 

cumulative steam oil ratio. 

From Figure 5.19, it is seen that cSOR (which is a measure of the efficiency of SAGD) 

is lower for variants of MPC compared to base case. At the end of the control period, 

the cSOR is almost equal for adaptive and linear MPC. Since subcools away from the 

target were handled effectively in gain-scheduled MPC, a sharp decrease in cSOR can 

be observed at start of MPC; however, it increased slightly at later stages due to 

fluctuations in IVs. Overall, the proposed approaches have been successful in achieving 

higher oil production while maintaining lower cSOR. 

5.5.4 Quantitative Analysis Using Statistical Performance 

Measures 

Quantitative analysis of the performance of adaptive and gain-scheduled MPC is 

performed by evaluating the net present value (NPV) and root mean square error 

(RMSE) (Table 5.4). NPV is obtained by discounting the cash flow on a daily basis as 

shown below: 

 𝑁𝑃𝑉 = ∑
𝑞𝑜
𝑖 𝑝𝑜 − 𝑞𝑤

𝑖 𝑝𝑤

(1 + 𝐷𝐹)(𝑖−𝑡𝑟𝑒𝑓)/365

𝑡𝑒𝑛𝑑

𝑖=𝑡𝑠𝑡𝑎𝑟𝑡

 (5.18) 

where 𝑞𝑜 and 𝑞𝑤 represent oil produced and steam injected in STB/day, respectively, 

and 𝑝𝑜 and 𝑝𝑤 are the oil price and steam generation cost in $/STB (specified as 50 

$/STB and 12 $/STB), respectively. 𝐷𝐹 is the discount factor (10% a year) and 𝑡𝑟𝑒𝑓 is 
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the reference time to which NPV is discounted (the start of the production phase, i.e. 

day 527) while the summation is from the start to end of the MPC control period. 

RMSE which quantifies data mismatch has also been calculated to analyze the ability 

of proposed approaches in controlling subcool near the set-point. For a particular 

output 𝑗, it can be defined as, 

 𝑅𝑀𝑆𝐸𝑗 = √
1

𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡
∑ (𝑚𝑗

𝑖 − 𝑟𝑗)
2

𝑡𝑒𝑛𝑑

𝑖=𝑡𝑠𝑡𝑎𝑟𝑡

 (5.19) 

where 𝑚𝑗
𝑖
 refers to the measured value of output 𝑗 at control period 𝑖 while 𝑟𝑗 is the 

set-point for 𝑗𝑡ℎ output. The values for RMSE for all subcools reported in Table 5.4 

were obtained by averaging RMSE of each subcool. 

Table 5.4 – Quantitative analysis of various control algorithms used for real-time 

production optimization 

Case 

Performance Statistics 

Net Present Value 

(in million $) 

RMSE  

(Min Subcool) 

RMSE  

(All Subcool) 

Base Case (no control) 5.623 18.035 32.367 

Linear MPC 7.239 11.652 28.963 

Adaptive MPC 6.956 9.897 28.523 

Gain-Scheduled MPC 6.201 9.024 22.705 

From Table 5.4, it can be stated that SAGD performance in the base case is not 

optimal, because of which its NPV is the lowest and its RMSE the highest for minimum 

and all subcools. Linear MPC achieves the highest NPV; however, this is due to 

ineffective controller performance that allowed more steam injection in short tubing at 

later stages (see Figure 5.14) irrespective of the offset exhibited by subcools (see 

Figure 5.12). Higher values of RMSE in linear MPC is most probably due to the poor 

predictions of fixed linear model. Adaptive MPC shows satisfactory performance with 

its NPV being much higher than the base case and lower RMSE for both minimum and 
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all subcools. The lowest RMSE was obtained for gain-scheduled MPC, but with slightly 

lower NPV than adaptive MPC due to frequent switching of controllers. Thus, 

quantitative analysis using these statistical measures also endorses the superiority of 

the proposed control methods. 

 Summary 

In this work, two advanced control methods are presented for better subcool control 

in SAGD. The first, adaptive MPC, involves continuous re-estimation of model 

coefficients while the other, gain-scheduled MPC, uses multiple controllers in different 

operating regions. Control workflows are developed to validate these approaches using 

a history-matched numerical reservoir model of a SAGD field. The results have been 

assessed qualitatively and quantitatively, leading to the following conclusions: 

1.  Identification of new coefficients in adaptive MPC leads to better subcool 

predictions, ultimately resulting into effective subcool control with lower 

fluctuations in manipulated variables. 

2.  Gain-scheduled MPC can maintain subcools near target values, resulting in 

lower mismatch for a variety of control situations. 

3.  NPV is increased by more than 23% and 10% with adaptive and gain-

scheduled MPC, respectively, when compared to the base case. 

4.  By implementing the proposed approaches, lower cSOR and higher oil 

production can be achieved simultaneously if the target subcool is defined 

properly. 

Thus, both the proposed control approaches can be utilized successfully for real-time 

production optimization of SAGD reservoirs, consequently reducing energy 

consumption and minimizing the CO2 footprint. 
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 Introduction 

In this chapter, a state-of-the-art control framework using nonlinear model predictive 

control (NMPC) is presented for efficient subcool control and optimal SAGD well 

operations in real-time. In the first NMPC workflow, linear approximation of a nonlinear 

dynamic model in mean-square-error sense is implemented, which provides 

reasonable prediction of output variables (OVs) in the neighbourhood of the input 

signal used for linearization. Due to linear representation of nonlinear plant dynamics, 

standard QP algorithm can now be used for minimization of cost function in MPC. In 

the second one, nonlinear plant models are directly used for estimation of different 

OVs, enforcing the use of nonlinear optimization algorithm to calculate the optimum 

input parameters (IVs) for the next control interval. Interior point algorithm is used in 

the proposed workflow. Primary objective of this study is to improve the real-time 

subcool control by manipulating IVs in SAGD well operations, ultimately leading to 

better financial consequences and minimal environmental impact while considering 

available surface facilities and well configurations.  

Various nonlinear dynamic models in system identification are explained in section 6.2. 

In section 6.3, NMPC formulation is discussed including linearization, interior-point 

algorithm and advanced control workflows designed for the SAGD application 

considered in this study. Section 6.4 provides the details regarding the application of 

both NMPC workflows comprising identification of nonlinear models, controller design, 

linearization of nonlinear system identification models as well as nonlinear 

optimization. Effect of NMPC on subcool control, MVs, OVs is reported and analyzed in 

section 6.5 along with the economic evaluation of the proposed approaches. Finally, 

summary of this study is given in section 6.6. 

 Nonlinear Dynamic Models 

In reality, input-output relationships in almost all of the industrial systems are 

nonlinear. Linear models can provide estimations with desired accuracy in case of the 

weakly nonlinear systems; however, when nonlinear nature of the systems is explicitly 

known, nonlinear dynamic models are preferred to represent the systems. Dynamics 

of fluid flow in porous media is highly nonlinear (Wang and Li 2011), especially in case 
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of complex thermal oil recovery processes such as SAGD. Further, the operating range 

is different in distinct phases (i.e., circulation, production ramp-up, production decline, 

and wind-down) of the SAGD lifecycle and to capture the dynamic behavior of the 

output variable in different phases, nonlinear model should be utilized. Also, lower-

than-expected model fit in case of linear models for different subcools (see Table 5.2) 

suggests the need of nonlinear black box models in MPC of SAGD well operations to 

improve the steam conformance and performance in real-time production 

optimization.  

Like LTI model in Eq. (5.1), general form of a discrete nonlinear dynamic model for a 

given system can be shown as follows (Ljung 2016):  

 𝑦(𝑡) = 𝑓(𝑢(𝑡 − 1), 𝑦(𝑡 − 1), 𝑢(𝑡 − 2), 𝑦(𝑡 − 2),… ) (6.1) 

where 𝑓(·) is the unknown nonlinear function demonstrating the relationship between 

output (𝑦(𝑡)) and input (𝑢(𝑡)) respectively, at current time interval 𝑡. Considering the 

characteristics of nonlinearity, different kinds of nonlinear dynamic models are used 

to capture behaviour of a nonlinear process. 

The simplest way to construct a nonlinear model structure is to consider the nonlinear 

input-output relationship in different linear model structures (see Table 5.1). For 

example, using nonlinear function 𝑓(·) shown in Eq. (6.1) and linear ARX model, 

nonlinear ARX (NARX) model of order 𝑚 can be defined as, 

 𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑚), 𝑢(𝑡 − 𝑑),… , 𝑢(𝑡 − 𝑑 −𝑚)) + 𝑒(𝑡) (6.2) 

where 𝑑 is the delay of the system. From Eq. (6.2), it can be said that coefficients of 

the polynomials of time-shift operator in ARX model are replaced by the nonlinear 

function in NARX model. Similar to NARX model, more details about the family of 

nonlinear ARMAX (NARMAX) models is explained by Huang et al. (2013). Such models 

are commonly referred as “external dynamics” model as they directly uses input-

output data to estimate nonlinear function of the model regardless of unknown system 

states, giving them an upper hand as compared to nonlinear state space models. 

Though NARX model is capable enough to model many of the nonlinear systems, it 

cannot represent certain type of nonlinearities for example, hysteresis and backlash, 

restricting its application in modern nonlinear systems. 
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Volterra-Series model, like the linear impulse response (IR) model, is a nonlinear 

model without output feedback and can be used to represent a nonlinear “fading 

memory” system (system with negligible effect of distant past on present) using 

polynomials. It can be represented as (Huang 2013), 

 

𝑦(𝑡) = 𝑦0 + ∑ 𝑎𝑘1𝑢(𝑡 − 𝑘1) + ∑ ∑ 𝑏𝑘1,𝑘2𝑢(𝑡 − 𝑘1)𝑢(𝑡 − 𝑘2)

∞

𝑘2=1

∞

𝑘1=1

∞

𝑘1=1

 

                       + ∑ ∑ ∑ 𝑐𝑘1,𝑘2,𝑘3𝑢(𝑡 − 𝑘1)𝑢(𝑡 − 𝑘2)𝑢(𝑡 − 𝑘3) + ⋯

∞

𝑘3=1

∞

𝑘2=1

∞

𝑘1=1

 

(6.3) 

Here, the first term in Eq. (6.3) is an offset. The Volterra-Series model needs to be 

truncated in practical applications, which is known as “finite Volterra-Series models”. 

Since no feedback is involved in this model structure, it is guaranteed to be stable 

(Nelles 2001). Another variant of this model structure that considers nonlinearity only 

for inputs while incorporating linear feedback is known as “parametric Volterra-Series 

models”. Mathematically, it can be expressed as (Nelles 2001), 

 𝑦(𝑡) = 𝑓(𝑢(𝑡 − 𝑑),… , 𝑢(𝑡 − 𝑑 −𝑚)) − 𝑎1𝑦(𝑡 − 1)−. . . −𝑎𝑚𝑦(𝑡 − 𝑚) (6.4) 

The parametric Volterra-Series model with larger order 𝑚 can be considered as an 

extension of the Eq. (6.3). Linear feedback in the variant would help in reducing the 

dynamic order of the model (Nelles 2001). However, the system in which nonlinearity 

due to the output variable is dominant cannot be replicated using parametric Volterra-

Series model shown in Eq. (6.4).  

 

Figure 6.1 – Hammerstein-Wiener model structure in nonlinear model identification. 

Hammerstein-Wiener model structure is a special subclass of the Volterra approach 

and belongs to the family of widely used block-oriented nonlinear models. It assumes 

both input 𝑓(·) and output 𝑔(·) nonlinearities as static and independent from the linear 
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process dynamics as shown in Figure 6.1. Mathematically, the structure can be 

expressed as, 

 

𝑥(𝑡) = 𝐺𝑝(𝑧
−1, 𝜃)𝑓(𝑢(𝑡))  + 𝐺𝑙(𝑧

−1, 𝜃)𝑒(𝑡) 

𝑦(𝑡) = 𝑔(𝑥(𝑡)) 
(6.5) 

where 𝐺𝑝 and 𝐺𝑙 are the linear process and noise model respectively (see Eq. (5.1)). 

Due to the independent nature of nonlinearities in this model, it provides flexibility to 

model actuator nonlinearities and sensor nonlinearities separately, resulting into better 

representation of a nonlinear system. In addition, stability of the system depends only 

on the process dynamics represented using a linear model in the structure, which 

makes it suitable for controlling the process (Nelles 2001). Furthermore, if needed, 

Hammerstein model (input nonlinearity with linear process dynamics) and Wiener 

model (output nonlinearity with linear process dynamics) can also be used separately 

according to the nature of the process. 

To represent the first principles model of a nonlinear system, state space equation can 

be easily written in a discretized form if the states of the systems are measurable. Like 

Eq. (5.4), 𝑦(𝑡) can be determined using nonlinear state space model as follows: 

 

𝑥(𝑡 + 1) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) 

        𝑦(𝑡) = 𝑔(𝑥(𝑡)) 
(6.6) 

where 𝑥(𝑡) is a vector of system states. Since exact and complete knowledge of states 

of the system is typically uncommon, identification of nonlinear state space model 

using only experimental data is very difficult (Camacho and Bordons 2007), which 

ultimately confines use of such “internal dynamics” model. 

As mentioned earlier, nonlinear functions are not known priori in the black box 

nonlinear models. A common approach to solve this issue is to parameterize nonlinear 

function through series expansion of basis functions which can be shown as follows: 

 𝑓(𝜙(𝑡)) =∑𝛼𝑙𝜅(𝛽𝑙(𝜙(𝑡) − 𝛾𝑙))

𝑛

𝑙=1

 (6.7) 
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where 𝜙(𝑡) is the set of regressors, 𝜅 denotes the basis function while 𝛼𝑙 are the 

coordinates that assigns weight to individual basis functions in series expansion. In 

Eq. (6.7), 𝛽𝑙 and 𝛾𝑙 are the scaling and relocation factor of the standardized basis 

functions. Examples of the basis functions are sigmoid function, piecewise (PW) linear 

function, wavelet function, Fourier series, one-dimensional polynomial function and 

neural networks. In general, higher the number of basis function is, better the 

representation of nonlinearity will be. However, it will increase the number of model 

parameters to be estimated. Selection of a proper basis function that incorporates 

nonlinearity of the process is very critical in identification of a nonlinear model as 

Huang et al. (2013) explained the analogy between construction of a building using 

bricks of various shapes as well as sizes and identification of nonlinear model using 

scaling and shifting of basis functions. 

Due to nonlinearity induced by basis functions, estimation of model parameters in 

nonlinear dynamic models becomes complex. PEM (explained in section 5.2) used in 

case of LTI models can be utilized only for NARX model in nonlinear system 

identification. For parameter estimation in Hammerstein model structures, linear 

optimization techniques can be used with generalized model structure. In contrast, 

straightforward linear parameterization is not possible in Wiener model structures as 

output nonlinearity should be invertible. Therefore, nonlinear optimization algorithms 

such as Gauss-Newton method, gradient method, Levenberg-Marquardt method are 

required for estimation of model parameters in Hammerstein-Wiener model.  

To validate the empirical nonlinear models, all four criterions (i.e., autocorrelation and 

cross-correlation tests, cross-validation and AIC) explained in section 5.2 for linear 

models can be used because all nonlinear models contain the process model and noise 

model. Further, the workflow displayed in Figure 5.2 can also be implemented to 

determine the orders of process and noise model in nonlinear system identification.  

 Nonlinear Model Predictive Control 

NMPC is the most advanced control framework that can be used for real-time subcool 

control and production optimization. It is an extension of linear MPC as conceptually, 

it is possible to integrate the nonlinear models in MPC framework. NMPC incorporates 
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nonlinear dynamics of the process through nonlinear models in time-domain to predict 

the OVs and computes the optimum input sequence for the next control interval. Due 

to the efficient representation of process dynamics, improved and stable control 

performance can be achieved in NMPC (Camacho and Bordons 2007). It can handle 

various constraints effectively – especially the nonlinear ones – and hence, ensures 

the robust control performance. Therefore, short-term optimization of SAGD well 

operations using NMPC can potentially improve the steam conformance and process 

economics while reducing the carbon footprints.  

Like any other MPC strategy, NMPC includes two primary elements: 1) prediction of 

the process outputs and 2) constrained minimization of objective/cost function to 

calculate the future input control sequence. In the previous section, nonlinear models 

which can be used to predict OVs are discussed in detail. A cost function similar to 

linear MPC (see Eq. (5.13)) can be implemented in NMPC to ensure that process 

outputs follow the reference trajectory. Formulation of the cost function minimization 

problem in NMPC can be written as (Camacho and Bordons 2007), 

min
𝑢(𝑡|𝑡),…,𝑢(𝑡+𝑀−1|𝑡)

     𝐽 = ∑||�̂�(𝑡 + 𝑖|𝑡) − 𝑦𝑟𝑒𝑓(𝑡 + 𝑖|𝑡)||

𝑃

𝑖=1

𝑊𝑦
2

+∑ ||𝑢(𝑡 + 𝑖|𝑡) − 𝑢𝑟𝑒𝑓(𝑡 + 𝑖|𝑡)||𝑊𝑢
2 +∑ ||Δ𝑢(𝑡 + 𝑖|𝑡)||𝑊Δu

2

𝑃−1

𝑖=1

𝑃−1

𝑖=1

 

(6.8) 

subject to 

y𝑚𝑖𝑛 ≤ �̂�(𝑡 + 𝑖|𝑡) ≤ 𝑦𝑚𝑎𝑥  

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑡 + 𝑖|𝑡) ≤ 𝑢𝑚𝑎𝑥 

Δ𝑢𝑚𝑖𝑛 ≤ Δ𝑢(𝑡 + 𝑖|𝑡) ≤ Δ𝑢𝑚𝑎𝑥 

∆𝑢(𝑡 + 𝑖|𝑡) = 0 

∀𝑖 ∈ [1, 𝑃] 

∀𝑖 ∈ [1, 𝑃 − 1] 

∀𝑖 ∈ [1, 𝑃 − 1] 

𝑖 ≥ 𝑀 

(6.9) 

where 𝑢(𝑡|𝑡), … , 𝑢(𝑡 + 𝑀 − 1|𝑡) is the future control sequence determined at current 

time step 𝑡. Variables 𝑦𝑟𝑒𝑓 and 𝑢𝑟𝑒𝑓 are reference trajectories for OV and IV 

respectively while �̂� denotes the output predicted by the dynamic model. Adjustment 

in the input variable Δ𝑢 can be defined as Δ𝑢(𝑡 + 𝑖|𝑡) = 𝑢(𝑡 + 𝑖|𝑡) − 𝑢(𝑡 + 𝑖 − 1|𝑡) in 

Eq. (6.8). Like linear MPC, 𝑃 and 𝑀 represents prediction and control horizon 
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respectively while 𝑊𝑦,𝑊𝑢, and 𝑊Δ𝑢 are weighting matrices corresponding to OVs, IVs, 

and rate of adjustment, respectively. The cost function shown here is quadratic, 

however, it can be linear as well in some cases.  

Minimization of objective function is subjected to various constraints, which are 

presented in Eq. (6.9). Lower bounds for outputs, inputs, and rate of change of input 

are denoted with 𝑦𝑚𝑖𝑛, 𝑢𝑚𝑖𝑛, and Δ𝑢𝑚𝑖𝑛 while upper bounds for the same are denoted 

with 𝑦𝑚𝑎𝑥, 𝑢𝑚𝑎𝑥, and Δ𝑢𝑚𝑎𝑥 respectively. The last constraint enforces no change in 

input variables beyond the control horizon. Input constraints are generally “hard 

constraints” which must be satisfied while output constraints can be considered as 

“soft constraints” where deviation from the constraints are penalized for feasible 

optimization problem. Soft constraints can be considered in the problem formulation 

(Eq. (6.8)) by adding the penalty term ||𝑠||𝑊𝑠
2  where 𝑊𝑠 is the weighting matrix 

corresponding to the slack variable 𝑠. In this case, the new constraint for the output 

variable in Eq. (6.9) will be, 

𝑦𝑚𝑖𝑛 − 𝑠 ≤ �̂�(𝑡 + 𝑖|𝑡) ≤ 𝑦𝑚𝑎𝑥 + 𝑠 ∀𝑖 ∈ [1, 𝑃] (6.10) 

Note that in case of fundamental models based on first-principles, there can be some 

additional constraints corresponding to the nonlinear equations. Also, NMPC 

formulation discussed so far is for the SISO system and to consider the multiple OVs 

and IVs, variables in the equations should be replaced with the vectors. 

If nonlinear state space models (see Eq. (6.6)) are used in NMPC, a state observer 

should be introduced when system states are not measurable (which is the case in 

most nonlinear systems). Algorithms based on Kalman Filter theory like extended 

Kalman filter (EKF) and unscented Kalman filter (UKF) can be used as state observer 

to update the controller states. Also, using moving horizon approach, optimization-

based online estimations of the current states of the NMPC controller can be obtained. 

Like linear MPC, solution of the optimization problem in Eq. (6.8) is not possible by the 

well-studied QP algorithm since nonlinear dynamics considered in NMPC will make the 

optimization problem nonlinear and nonconvex that may exhibit multiple minima. It 

introduces additional complexities in terms of control quality, stability, and 

computational cost. Especially, the computational cost increases by a fair margin, 
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prohibiting the online solution of the optimization problem at each control interval. 

Several alternative formulations with better computational efficiency are suggested by 

various authors to handle nonconvex optimization problems in NMPC (Henson 1998, 

Camacho and Bordons 2007). In this work, two different approaches, i.e. linearization 

and nonlinear optimization are implemented for real-time subcool/production control 

using NMPC. Performance of the proposed workflows is analyzed and compared to 

current field practices as well as linear MPC. 

6.3.1 Linearization 

Subsurface flow systems are highly nonlinear and hence, NMPC is desired for real-time 

production optimization in SAGD reservoirs. However, as mentioned earlier, 

optimization of cost function in NMPC is a nonlinear nonconvex optimization problem, 

solution of which is more difficult and complex to obtain. A simple and efficient way to 

solve this issue is to use linear approximations of nonlinear dynamic model for 

prediction of process outputs in NMPC. The approach essentially reduces the NMPC 

problem to linear MPC in which QP can be used (if the cost function is quadratic) to 

obtain global minimum and optimum future input sequence at each control interval. 

 

Figure 6.2 – Linearization of a nonlinear model for a given input signal (left) and in 

the neighbourhood of an operating point (right). 

In literature, various types of linearization schemes such as feedback linearization 

(Kurtz and Henson 1997, Nevistic and Morari 1995), successive linearization (Henson 

1998), and local models network (Camacho and Bordons 2007) have been reported as 

an alternative formulation to NMPC. For linearization of nonlinear black box models, 
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two methods are discussed by Ljung (2016) i.e., tangent linearization and linearization 

for a given input. As shown in Figure 6.2, the nonlinear dynamics is approximated 

using a first-order Taylor series expansion about a nominal operating point (also known 

as equilibrium point or reference point) in tangent linearization. Operating point 

consists of a constant input and corresponding model states values. To illustrate the 

concept, consider a nonlinear system 𝑦(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)). Corresponding Taylor 

series expansion about an operating point (𝑥0(𝑡), 𝑢0(𝑡)) can be written as, 

 

𝑓(𝑥(𝑡), 𝑢(𝑡)) = 𝑓(𝑥0(𝑡), 𝑢0(𝑡)) + (
𝜕𝑓

𝜕𝑥
)
(𝑥0(𝑡),𝑢0(𝑡))

∆𝑥(𝑡) 

                                                                       + (
𝜕𝑓

𝜕𝑢
)
(𝑥0(𝑡),𝑢0(𝑡))

∆𝑢(𝑡) + ⋯ 

(6.11) 

where ∆𝑥(𝑡) = 𝑥(𝑡) − 𝑥0(𝑡) and ∆𝑢(𝑡) = 𝑢(𝑡) − 𝑢0(𝑡) are the deviation variables. 

Truncating higher order terms and considering derivatives with respect to 𝑥 and 𝑢 as 

coefficients 𝑐 and 𝑑 respectively in Eq. (6.11), approximation of the output for given 

nonlinear model can be calculated as, 

         �̂�(𝑡) = 𝑦0(𝑡) + 𝑐Δ𝑥 + 𝑑Δ𝑢 (6.12) 

where �̂�(𝑡) is the linear approximation of the output while 𝑦0(𝑡) is the output obtained 

using the nonlinear model at the operating point. As higher order terms are neglected 

in Eq. (6.12), such linear models are accurate only in the local neighbourhood of the 

operating point. Typically, current operating point is used in tangent linearization. Note 

that tangent linearization is more suitable for nonlinear models in state space form as 

updated states of the model can be approximated through similar series expansion. 

Linearization using an input signal involves the estimation of the best linear model 

(refer Table 5.1) that is structurally similar to the nonlinear black box model. The 

identified linear model provides best fit with the simulated response of a nonlinear 

model for the given input signal in a mean-square-error sense (see Figure 6.2). Any 

random input signal can be utilized in this linearization method. Like tangent 

linearization, linear approximation in this method is accurate only for the input signals 

similar to the one used for linearization. In addition, linearization for a given input 

signal is convenient for input-output nonlinear models rather than state space 
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formulations. According to the nonlinear model used in NMPC, either of the 

linearization technique can be employed. 

6.3.2 Interior Point Algorithm 

As Henson (1998) noted, control performance can be improved in NMPC if nonlinear 

model is directly used in cost function minimization, although at higher computational 

cost. To solve the optimization problem in NMPC, various nonlinear programming 

techniques (refer Nelles 2001 for more details) can be utilized keeping in mind their 

pros and cons and suitability to the optimization problem.  

In this work, interior point method is utilized for nonlinear optimization of the cost 

function in NMPC. Its nature of outlining the optimal path while restricting the search 

in interior space gives an upper hand in terms of computational efficiency and 

complexity of the problem, especially in large-scale problems. Several variants of this 

method have been developed over the time for different types of optimization 

problems, which are reviewed in Potra and Wright (2000). Basic idea behind the 

interior point algorithm implemented in this work is to integrate inequality constraints 

of the optimization problem into the objective function by adding the barrier term 

which also restricts the search within the feasible region. A set of equations is then 

created using Karush-Kuhn-Tucker (KKT) first order optimality conditions, which can 

be solved by employing Newton’s method or conjugate gradient method based on the 

availability of the Hessian of the objective function. As the dominance of the barrier 

decreases, the optimum follows a smooth path to the optimum of the original problem. 

For the solution of an optimization problem given as  

 

min
𝑥
𝑓(𝑥) 

𝑠. 𝑡.   ℎ𝑖(𝑥) ≥ 0,     𝑖 = 1,… ,𝑚 
(6.13) 

interior point algorithm implemented in this work is presented below. 

Algorithm 6.1 [Interior Point Method] 

1.  Add slack variable (𝑠) for each inequality constraint and rewrite the 

optimization problem in eq. (6.13) as follows: 
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min
𝑥
𝑓(𝑥) 

𝑠. 𝑡.   ℎ(𝑥) − 𝑠 = 0,     𝑠 ≥ 0 
(6.14) 

2.  Introduce barrier term in the objective function and for 𝜇 > 0, reformulate the 

optimization problem as shown below by denoting 𝑔(𝑥) = ℎ(𝑥) − 𝑠: 

 

min
𝑥,𝑠

𝑓𝜇(𝑥) =  𝑓(𝑥) − 𝜇∑𝑙𝑛

𝑚

𝑖=1

(𝑠𝑖) 

𝑠. 𝑡.   𝑔(𝑥) = 0 

(6.15) 

3.   Apply KKT conditions to the objective function as follows: 

 

∇𝑓(𝑥) + ∇𝑔(𝑥)𝜆 − 𝜇∑
1

𝑠𝑖

𝑚

𝑖=1

= 0 

𝑔(𝑥) = 0 

(6.16) 

4.  By denoting 𝑧𝑖 =
𝜇

𝑠𝑖
, modify KKT conditions as, 

 

∇𝑓(𝑥) + ∇𝑔(𝑥)𝜆 − 𝑧 = 0 

𝑔(𝑥) = 0 

𝑆𝑍𝑒 − 𝜇𝑒 = 0 

(6.17) 

5.  For iteration 𝑙 = 1, initialize 𝑥0, 𝜆0 and 𝑧0. 

6.  If the Hessian (𝐻) is available for the objective function, follow the steps below 

to solve the search directions using Newton’s method: 

a)   Formulate the system of equations to find the KKT solution. 

 [

𝐻𝑙 ∇𝑔(𝑥𝑙) −𝐼

∇𝑔(𝑥𝑙)
𝑇 0 0

𝑍𝑙 0 𝑆𝑙

] [

𝑝𝑙
𝑥

𝑝𝑙
𝜆

𝑝𝑙
𝑧

] = [
∇𝑓(𝑥𝑙) + ∇𝑔(𝑥𝑙)𝜆𝑙 − 𝑧𝑙

𝑔(𝑥𝑙)
𝑆𝑙𝑍𝑙𝑒 − 𝜇𝑒

] (6.18) 

              where 

 𝐻𝑙 = ∇𝑥𝑥
2 𝐿(𝑥𝑙, 𝜆𝑙, 𝑧𝑙) = ∇𝑥𝑥

2 (∇𝑓(𝑥𝑙) + ∇𝑔(𝑥𝑙)
𝑇𝜆𝑙 − 𝑧𝑙) (6.19) 
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             and  

 𝑍𝑙 = [
𝑧1 0 0
0 ⋱ 0
0 0 𝑧𝑚

],     𝑆𝑙 = [
𝑠1 0 0
0 ⋱ 0
0 0 𝑠𝑚

] (6.20) 

b)   Rearrange the Eq. (6.18) to obtain the linear reduced KKT system as 

follows and solve for 𝑝𝑙
𝑥 as well as 𝑝𝑙

𝜆: 

 [
𝐻𝑙 + 𝑆𝑙

−1𝑍𝑙 ∇𝑔(𝑥𝑙)

∇𝑔(𝑥𝑙)𝑇 0
] [
𝑝𝑙
𝑥

𝑝𝑙
𝜆] = − [

∇𝑓(𝑥𝑙)+∇𝑔(𝑥𝑙)𝜆𝑙
𝑔(𝑥𝑙)

] (6.21) 

c)   Calculate 𝑝𝑙
𝑧 explicitly using the equation below: 

  𝑝𝑙
𝑧 = 𝜇𝑆𝑙

−1𝑒 − 𝑧𝑙 − 𝑆𝑙
−1𝑍𝑙𝑝𝑙

𝑥 (6.22) 

7.  Otherwise, calculate search directions using conjugate gradient method in a 

trust region as shown below: 

a)  Obtain Lagrange multipliers (𝜆 > 0) by approximately solving KKT 

equations (see Eq. (6.17)) in least-squares sense. 

b)   Compute search directions 𝑝𝑙
𝑥 and 𝑝𝑙

𝑧 by solving following problem: 

 

min
𝑝𝑙
𝑥,𝑝𝑙

𝑧
∇𝑓(𝑥𝑙)

𝑇𝑝𝑙
𝑥 +

1

2
(𝑝𝑙

𝑥)𝑇 ∇𝑥𝑥
2 𝐿(𝑝𝑙

𝑥) + 𝜇𝑒𝑇𝑆𝑙
−1𝑝𝑙

𝑧 +
1

2
(𝑝𝑙

𝑧)𝑇𝑆−1Λ𝑝𝑙
𝑧 

𝑠. 𝑡.   𝑔(𝑥𝑙) + 𝐽𝑔(𝑝𝑙
𝑥) + 𝑝𝑙

z = 0 
(6.23) 

8.  Determine the optimal step size (𝛼𝑙) according to reduction in the merit 

function shown below: 

 𝜙(𝑥) = 𝑓𝜇(𝑥) + 𝜈∑|𝑔𝑖(𝑥)|

𝑚

𝑖=1

 (6.24) 

9.  Estimate the new value of the optimum as follows: 

 

𝑥𝑙+1 = 𝑥𝑙 + 𝛼𝑙𝑝𝑙
𝑥 

𝜆𝑙+1 = 𝜆𝑙 + 𝛼𝑙𝑝𝑙
𝜆 

𝑧𝑙+1 = 𝑧𝑙 + 𝛼𝑙𝑝𝑙
𝑧 

(6.25) 
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10. Check the convergence criteria by evaluating the following KKT conditions: 

 

max |∇𝑓(𝑥𝑙+1) + ∇𝑔(𝑥𝑙+1)𝜆𝑙+1 − 𝑧𝑙+1| ≤ 𝜖𝑡𝑜𝑙  

max |𝑔(𝑥𝑙+1)| ≤ 𝜖𝑡𝑜𝑙 

max |𝑆𝑍𝑒 − 𝜇𝑒| ≤ 𝜖𝑡𝑜𝑙 

(6.26) 

11. If convergence is not achieved, 𝑙 ⟼ 𝑙 + 1 and repeat from step 6. 

 

In the algorithm, 𝑒 is the vector containing all ones, 𝐼 is the identity matrix while 𝐽𝑔 in 

Eq. (6.23) is the Jacobian of the constraints 𝑔(𝑥). In the barrier term, 𝜇 is a penalty 

parameter, which controls the strength of the barrier function in the reformulated 

objective function 𝑓𝜇(𝑥). Higher values of 𝜇 restricts the objective function away from 

the boundary, which is not desirable when optimal solution lies on the boundary. 

Therefore, 𝜇 is decreased gradually such that 𝜇 > 0 to ensure the smooth convergence 

towards the optimal solution.  

6.3.3 Advanced Control Workflows for SAGD Well Operations 

Using NMPC 

To implement linearization and interior point method in NMPC, control workflows 

designed are shown in Figure 6.3. Like linear MPC workflows in Chapter 5, history-

matched reservoir model is considered as a virtual plant model in this study. To obtain 

the training data for nonlinear model identification, initially, reservoir model is 

simulated considering RBS signals as input. Corresponding output data is exported to 

construct a training dataset in time domain using which appropriate input-output 

nonlinear black box models are identified. For these external dynamics model, 

linearization using a given/random input signal is implemented in NMPC as shown in 

Figure 6.3(a). When NMPC phase is scheduled to commence, linear approximations 

along with past IVs/OVs, set-points, and estimated controller states are used to 

calculate optimum MVs for the next control interval. Required input files are prepared 

for the reservoir simulator and model is simulated for the next control interval. 

Necessary data is stored to calculate latest OVs (i.e. subcools) and the NMPC loop is 

repeated till the end of the control period after which results are analyzed qualitatively 

and quantitatively. 
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(a) 

 

(b) 

Figure 6.3 – Control framework for real-time SAGD well operations using NMPC with 

(a) Linearization and (b) Interior Point algorithm. 
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The only difference in NMPC with nonlinear optimization (see Figure 6.3(b)) is the 

preparation of additional subroutines for cost function and nonlinear constraints and 

use of interior point algorithm in NMPC controller. Significant changes as compared to 

linear MPC are highlighted with orange blocks in both workflows. 

 SAGD Field Application 

Performance of proposed NMPC workflows is tested using the history-matched 

reservoir model explained in section 5.4.1 and therefore, details are not repeated here. 

Like linear MPC workflows in Chapter 5, routines and subroutines were developed to 

establish the communication link between NMPC controller coded in MATLAB® 

(MathWorks 2014), the thermal reservoir simulator CMG STARSTM (CMG 2013a) which 

acts as a virtual process plant, and Results ReportTM (CMG 2013b) that facilitates the 

data acquisition/transfer. Also, the results of NMPC are analyzed and compared with 

linear MPC explained in section 5.4.3. In this section, details regarding the application 

of nonlinear model identification and both NMPC workflows in the case study are given. 

6.4.1 Identification of Nonlinear Dynamic Model 

As mentioned by Henson (1998), five tasks involved in the identification of nonlinear 

models are 1) selection of the structure, 2) design of the input sequence, 3) 

identification of noise model, 4) model parameter estimation, and 5) model validation. 

In this work, they were performed using System Identification ToolboxTM (Ljung 2016) 

in MATLAB. As explained in section 5.4.2, the well pair in reservoir model was 

segmented into five divisions and subcool of each division was considered as an output 

variable while steam injection rate for short tubing as well as long tubing and liquid 

production rate were specified as input variables of the nonlinear model. To decouple 

the complex reservoir process, individual MISO system was identified for each subcool 

considering all three input variables mentioned before. 

Initially, an attempt was made to identify the nonlinear models using field data; 

however, it was concluded that the data is not persistently excited. In other words, 

the data might be missing some important operating points and hence not 

representing the nonlinear dynamics of the process effectively, ultimately leading to 

substandard nonlinear models. Also, more data samples are required for identification 
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of black-box nonlinear models as compared to linear models (Ljung 2016). Therefore, 

it was decided to design an input sequence and obtain the corresponding output using 

history-matched reservoir model considered in the case study. 

 

Figure 6.4 – RBS signals generated for nonlinear system identification in NMPC. 

Random Binary Signal (RBS), a widely used input sequence in process control is 

implemented in this study. As the name suggests, the input randomly varies between 

the binary ranges. To determine the design parameters for an RBS sequence, separate 

step tests were performed and first order plus dead time (FOPDT) models were 

generated for each subcool and input variable. The minimum time constant (𝜏) of all 

SISO systems was chosen as the time constant for the MIMO system since it allows to 

capture the change in output variables accurately. Guidelines provided by Huang et al. 

(2013) and Vembadi (2014) were followed to compute sampling time (𝑇𝑠), bandwidth, 

and range which are reported in Table 6.1 and corresponding RBS input sequences are 

shown in Figure 6.4. RBS signals were further implemented in history-matched 

reservoir model and associated output variables were obtained to build the input-
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output dataset containing 450 samples for nonlinear system identification. Note that 

bandwidth reported in Table 6.1 is essentially a fraction of the highest required 

frequency (𝑘/𝜏) to the Nyquist frequency (𝜋/𝑇𝑠).  

Table 6.1 – Design parameters for input signals used in nonlinear system identification 

Input Variables 
Sampling 

Time 

(Days) 

No. of 

Samples 

Signal 

Type 
Bandwidth 

Range 

(m3/day) 

Short Tub Inj Rate 0.5 450 RBS 0.06 -35 to +35 

Long Tub Inj Rate 0.5 450 RBS 0.05 -15 to +15 

Liquid Prod Rate 0.5 450 RBS 0.11 -60 to +60 

From the input-output dataset, 350 samples (approximately 3/4th of the data) are 

utilized for the identification of nonlinear models while the other 100 samples are used 

for the model validation. Time delays considered here are same as those of linear 

models identified in section 5.4.2 since the system (reservoir model in our case) is 

identical in both cases. More than 100 combinations were tested with different 

nonlinear model structures (NARX and Hammerstein-Wiener models), input/output 

nonlinearities (piecewise linear, sigmoid, wavelet, and polynomial) and orders of 

process/noise models for each MISO system. Based on the performance in residual 

tests and cross-validation, Hammerstein-Wiener models with linear dynamics 

represented by OE model are chosen for all subcools. Details of these models including 

input/output nonlinearity, delay, model fit, model order, and AIC is given in Table 6.2.  

Table 6.2 – Specifics of Hammerstein-Wiener models identified for each subcool 

Output 

Variables 

Nonlinear System Identification Models 

Input 

Nonlin. 

Output 

Nonlin. 
Delay 

Order Fit 

(%) 
AIC 

nB nF 

Subcool 1 Polynomial Polynomial [1 2 1] [3 3 3] [3 3 3] 91.04 0.90 

Subcool 2 PW Linear PW Linear [1 1 1] [2 2 2] [2 2 2] 91.75 -0.19 

Subcool 3 Polynomial Polynomial [1 2 1] [3 3 3] [3 3 3] 92.35 1.97 

Subcool 4 PW Linear Polynomial [1 1 1] [3 3 3] [3 3 3] 80.67 2.62 

Subcool 5 PW Linear Polynomial [1 1 1] [4 4 4] [4 4 4] 81.97 2.16 
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Figure 6.5 – Results of cross-validation for Hammerstein-Wiener models identified in 

nonlinear system identification. Blue line represents predicted output from the model 

while grey line depicts validation data. 
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Figure 6.6 – Results of residual tests for Hammerstein-Wiener model of Subcool 2. 

Yellow rectangle box shows 99% confidence interval. 

Results of the cross-validation tests for chosen nonlinear models displays satisfactory 

fit with validation data (not used before in model identification) in Figure 6.5. As shown 

in Figure 6.6, residuals are well within the 99% confidence interval in all cross-

correlation tests. Also, no significant trend is displayed in case of the Hammerstein-

Wiener model of Subcool 2, which endorses the legitimacy of the model. Similar results 

were obtained for the other nonlinear models presented in Table 6.2. Note that 
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autocorrelation test is not applicable to identified Hammerstein-Wiener models since 

linear dynamics (𝐺𝑝) is represented using OE model in which noise model is unity (see 

section 5.2). Orders of the polynomials 𝐵(𝑧−1) and 𝐹(𝑧−1) (see Eq. (5.3)) of this OE 

model are denoted as 𝑛𝐵 and 𝑛𝐹 respectively in Table 6.2. Finally, identified nonlinear 

models are implemented in NMPC workflows explained in Figure 6.3. 

6.4.2 Application of NMPC Using Linearization 

After the identification of nonlinear dynamic models, they were linearly approximated 

by employing one of the linearization techniques discussed in section 6.3.1. As 

mentioned in Figure 6.3(a), it was performed using a given input signal since 

Hammerstein-Wiener models identified in this study are input-output black box 

models. A linear model with similar structure and order as 𝐺𝑝 of Hammerstein-Wiener 

model (i.e. OE model with orders 𝑛𝐵 and 𝑛𝐹 shown in Table 6.2) was approximated 

for each subcool such that, considering an RBS input sequence (with 350 samples) 

used to identify nonlinear models as input, difference between output predicted using 

linearized model and simulated output of nonlinear model is minimum in mean-square-

error sense. Linearized MISO systems were then combined to create a MIMO system 

that was converted to state space formulations subsequently. Since NMPC problem 

was reduced to linear MPC problem, Model Predictive Control ToolboxTM (Bemporad et 

al. 2016) was implemented for NMPC using linearization. Constraints and design 

parameters of NMPC controller were considered same as those for linear MPC (see 

Table 5.3). Sampling time for the controller was 1 day while for nonlinear dynamic 

models, it was 0.5 days. To avoid this discrepancy, discrete-time dynamic model was 

resampled using controller’s sampling time by implementing the zero-order-hold on 

the inputs. Steady state Kalman filter is applied as a state observer in the NMPC 

controller. Like linear MPC workflows, NMPC was applied from 800 days to 1355 days 

to maintain a common basis for comparison. 

6.4.3 Application of NMPC Using Nonlinear Optimization 

As noted before, prediction of output variables using nonlinear model in MPC can 

improve the control performance; however, it makes the optimization problem 

nonlinear and nonconvex. Using the workflow shown in Figure 6.3(b), interior point 
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method (explained in section 6.3.2) was implemented to solve the nonlinear 

optimization of cost function in NMPC. Additional codes were written to define the cost 

function and linear/nonlinear constraints in the NMPC controller. The mismatch 

between sampling time of NMPC controller and Hammerstein-Wiener models identified 

in this study was managed by cloning the input signal for the consecutive control 

interval in the evaluation of the cost function. In other words, one control interval of 

NMPC controller was represented by two identical consecutive control intervals of the 

nonlinear model in the cost function. Optimization ToolboxTM (MathWorks 2014) was 

used to implement interior point method in NMPC workflow. It was observed that 

optimization problem was feasible and termination criteria were satisfied for almost all 

the control intervals. Instead of using sate observer, controller states were updated 

using input-output data of the immediate past 50 days. The control period considered 

in this workflow was same as that of NMPC using linearization.  

 Results and Discussion 

Primary aim of invoking NMPC in this case study is to maintain subcool near the set-

point in real-time, which ensures the uniform steam chamber propagation along the 

wellbore, optimal automated operation of SAGD well pair, and maximum monetary 

benefits. In this section, the efficacy of NMPC in achieving these objectives is analyzed 

by presenting and discussing qualitative as well as quantitative results on performance 

in subcool control, adjustment in IVs, and change important production parameters. 

Also, results are compared with the base case where no control algorithm was used 

and linear MPC. 

6.5.1 Subcool Control with NMPC 

Ideally, control algorithms should maintain subcool in all the segments near the set-

point in order to be considered successful; however, it is not possible in this case study 

due to the lack of degree of freedom in MPC controller. In Figure 6.7, all subcool values 

are presented for the base case, linear MPC, and proposed NMPC workflows. While 

steam breakthrough is evident in base case with zero subcools, linear MPC also 

displays inferior performance with all subcools away from the set-point for most of the 

control intervals. In contrast, both NMPC workflows show satisfactory performance 



171 

 

with all subcools near or above the set-point throughout the control period. Except in 

the beginning of the NMPC phase when OVs are converging towards the set-point, no 

significant variations can be observed. In addition, subcool 1 is maximum among all 

the OVs in the linear/nonlinear MPC workflows shown in Figure 6.7, indicating highest 

liquid level between injector and producer well. Therefore, probability of steam 

breaking through at heel end of the well pair seems to be minimum.  

 

Figure 6.7 – Subcool of all segments of the well pair obtained using different 

linear/nonlinear control methods in real-time production optimization. 

Among all the OVs, minimum subcool is important since its value lower or higher than 

the optimum indicates the deficient usage of steam or adverse effect on steam 

chamber propagation, respectively. Figure 6.8 shows the minimum subcool throughout 

the control period in different control workflows. In case of linear MPC, significant 

fluctuations are apparent in the minimum subcool around 1100 days. At the end of the 

control period, its value is almost equal to zero which clearly suggests that linear 

models are not sufficient for the control of the nonlinear system in MPC. Swift increase 



172 

 

in minimum subcool of both NMPC frameworks is evident after the start of the control 

period. It follows the set-point after the convergence with the maximum offset from 

the set-point being less than 2 ºC. Hence, satisfactory performance of both NMPC 

workflows can be concluded in real-time subcool control of SAGD reservoirs. 

 

Figure 6.8 – Minimum subcool of the well pair obtained using different 

linear/nonlinear control methods in real-time production optimization. 

6.5.2 Behavior of Manipulated Variables 

It is important to assess the adjustment in MVs since they should be within the 

constraints provided by surface facilities to ensure smooth operation of the SAGD well 

pair. Figure 6.9, Figure 6.10, and Figure 6.11 demonstrate the behavior of steam 

injection rate in short tubing, long tubing, and liquid production rate respectively in 

different control algorithms. Steam injection and liquid production rates are 

significantly high in the base case while in case of linear MPC, maximum fluctuations 

in all MVs are exhibited, which may lead to wear and tear of actuators. Also, it indicates 
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the unstable control operations as reference trajectory for no MVs are followed. In 

NMPC workflows, steam injection rates of both long and short tubing fluctuate slightly 

in the beginning until it converges to the optimum inputs. However, the duration of 

convergence is much smaller as compared to the overall control period. Linearization 

shows slightly deteriorated performance in NMPC with higher variations in MVs. It 

might be due to the linear state observer (Kalman filter) that could not update the 

controller states accurately in case of the nonlinear systems like SAGD reservoirs.  

 

Figure 6.9 – Performance of steam injection rate (short tubing) in NMPC using 

linearization (left) and interior point algorithm (right) when compared with base case 

and linear MPC. 

 

Figure 6.10 – Performance of steam injection rate (long tubing) in NMPC using 

linearization (left) and interior point algorithm (right) when compared with base case 

and linear MPC. 
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Figure 6.11 – Performance of liquid production rate in NMPC using linearization (left) 

and interior point algorithm (right) when compared with base case and linear MPC. 

When compared to linearization, NMPC using interior point algorithm exhibits marginal 

deviations (see Figure 6.9 and Figure 6.10) in terms of amplitude as well as frequency 

since the controller states are updated using immediate past data that represents the 

current reservoir conditions. Once the MVs converge towards the respective optimum 

values, no significant deviations can be observed. It indicates the overall stable control 

performance of proposed NMPC workflows, especially in case of liquid production rate 

(see Figure 6.11). 

6.5.3 Impact on Production Performance 

Subsequent effects of manipulating MVs using NMPC on daily oil rate, cumulative oil 

production, and cSOR are evaluated in Figure 6.12, Figure 6.13, and Figure 6.14 

respectively. As compared to linear MPC, for almost 80% of the total control period, 

higher oil rate in both proposed NMPC approaches can be observed from Figure 6.12. 

In the last few control intervals, oil rate in linear MPC increased suddenly. It is due to 

the control failure which drove subcools much below the set-point (see Figure 6.7), 

indicating the inadequacy of linear control workflows in nonlinear reservoir systems. 

Further, a much lower plateau in oil rate of proposed NMPC workflows as compared to 

the base case is due to the subcool set-point of the controller. Lower subcool set-point 

would have allowed higher steam injection/oil production. Hence, optimum subcool 

set-point should be defined by considering it as one of the variables to be optimized 

in mid-term field development planning. 
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Cumulative oil production in Figure 6.13 is almost equal for both proposed NMPC 

workflows and marginally higher as compared to linear MPC. Similarly, cSOR at the 

end of the control period is slightly lower in linear MPC (2.422) as compared to NMPC 

using linearization (2.468) and interior point method (2.482). However, when 

compared to the base case that represents the current scenario of the SAGD field 

operations, reduction in cSOR is evident after implementing the NMPC workflows (see 

Figure 6.14). Despite higher oil production in the base case, it signifies the necessity 

of real-time production optimization in SAGD operations for efficient steam usage and 

better financial consequences. 

 

Figure 6.12 – Effect of NMPC using linearization (left) and interior point algorithm 

(right) on oil production rate. SC = surface conditions. 

 

Figure 6.13 – Effect of NMPC using linearization (left) and interior point algorithm 

(right) on cumulative oil production. 



176 

 

 

Figure 6.14 – Effect of NMPC using linearization (left) and interior point algorithm 

(right) on cumulative steam oil ratio. 

6.5.4 Statistical Analysis of NMPC Performance 

To analyze the performance of NMPC workflows statistically, NPV and RMSE are 

computed using Eq. (5.18) and Eq. (5.19) respectively. NPV demonstrates the 

economic feasibility of the NMPC while RMSE depicts its capability to reduce the error 

in subcools with respect to set-point. Parameters such as oil price, cost of steam 

generation, discount rate, reference time for discounting cash flow etc. used to 

calculate the quantitative measures are same as those explained in section 5.5.4. In 

addition, RMSE is reported in Table 6.3 for both minimum as well as all subcools. 

Table 6.3 – Statistical analysis of nonlinear control algorithms used for real-time 

production optimization 

Case 

Performance Statistics 

Net Present Value 

(in million $) 

RMSE  

(Min Subcool) 

RMSE  

(All Subcool) 

Base Case (no control) 5.623 18.035 32.367 

Linear MPC 7.239 11.652 28.963 

NMPC (Linearization) 7.002 9.677 28.528 

NMPC (Interior Point) 6.973 9.765 28.461 
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In the base case, higher cumulative oil production (see Figure 6.13) is achieved at the 

cost of significantly greater RMSE in subcools; however, it does not turn out to be the 

best strategy as NPV is lowest among all the cases considered in this study (refer Table 

6.3). Although linear MPC exhibits maximum NPV, it is mainly due to unsuccessful 

subcool control mentioned before, which is also reflected by increased RMSE for 

minimum subcool. In contrast, NMPC workflows studied here display better control 

performance with minimum RMSE and significantly higher NPV as compared to the 

base case. Minor difference in RMSE (for all subcools) between linear and nonlinear 

control workflows is most probably due to lack of degree of freedom in MPC controller. 

Intelligent well completions using inflow/outflow control devices (ICDs/OCDs) may 

have established the superiority of NMPC thoroughly since it allows the steam 

injection/oil production from a particular segment of the well pair unlike dual tubing 

string configuration considered in this study.  

Finally, it is important to discuss regarding the field application of the NMPC 

framework. Most of the current SAGD fields (also known as i-fields/e-fields/smart 

fields) are equipped with permanent downhole sensors and fiber optic arrays or 

distributed temperature sensors (DTS) mounted on the tubings that can be utilized to 

determine the subcools. To implement the MVs in the next control interval, 

pressure/flow controller (PC/FC) or pressure/flow indicator and controller (PIC/FIC) 

along with actuators such as automatic control valves can be employed. Note that the 

only cost an operator company has to incur is for actuators, which is a fraction of a 

total gain in NPV (refer Table 6.3) over a lifecycle of the SAGD reservoir. Also, NMPC 

automates the well pair operations, further reducing the operational costs. Next, the 

computational cost of NMPC using linearization is equivalent to the linear MPC as the 

optimization problem to be solved is a standard QP problem. However, in case of 

interior point algorithm, computing cost increases by almost 2.5 times since a 

nonlinear optimization problem is solved at every control interval. Depending on the 

complexity of the control problem that relies upon the reservoir parameters such as 

heterogeneity in flow properties, fluid saturations as well as wellbore geometry and 

completions, either of the proposed NMPC approaches can be chosen. If appropriate, 

adaptive or gain-scheduled MPC (explained in Chapter 5) can be implemented to 

handle the nonlinearity of the system, which provides the best trade-off between 

accuracy (NMPC) and computational efficiency (linear MPC). 
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 Summary 

In this research, an efficacy of SAGD well operations using NMPC in real-time 

production optimization is investigated. Two NMPC workflows, one using linearization 

and the other one using nonlinear optimization are proposed. Linearization basically 

reduces an NMPC problem to linear MPC by estimating an equivalent linear model of a 

nonlinear black box model for a given input signal in a mean-square-error sense. The 

second approach employs interior point method to solve the nonlinear optimization 

problem in NMPC. Both approaches are tested using a field-scale SAGD reservoir model 

and conclusions derived from the qualitative and quantitative analysis of the results 

are listed below: 

1.  With accurate estimations of subcools, Hammerstein-Wiener models can 

effectively capture the nonlinearity of the SAGD operations.  

2.  Both NMPC frameworks are successful in maintaining the minimum subcool 

above the predefined set-point while ensuring the stability of well operations. 

3.  More than 24% increment in NPV is achieved in NMPC as compared to the 

base case where no control strategy is used. 

4.  Computational cost of NMPC using interior point method is almost 2.5 times 

higher than other linear/nonlinear control methods due to the solution of 

nonlinear optimization problem at each control interval. 

Overall, NMPC can be successfully employed in CLRM of SAGD reservoirs for improved 

real-time subcool control, energy efficiency, and CO2 emissions while satisfying the 

constraints offered by the surface facilities. 
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Chapter 7  
 

Concluding Remarks and 
Recommendations 
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 Concluding Remarks 

Application of CLRM in SAGD fields can potentially improve the reservoir performance 

in terms of oil recovery and monetary benefits. Therefore, two principal challenges in 

CLRM – the high computational cost of data assimilation and incorporating nonlinearity 

of the SAGD process in short-term production optimization – are addressed in this 

research. Numerous approaches developed to alleviate these issues are verified using 

a field-scale model of SAGD reservoir. Through analysis of various results, important 

outcomes are listed in this section for each of the proposed workflow/framework. 

Initial sampling involves the selection of few realizations from original ensemble to 

reduce the computing cost of data assimilation. Difference between the selected subset 

and original ensemble represented by Kantorovich distance is minimized using 

constrained MILP model. From the results, it can be said that statistical characteristics 

of the subset selected using proposed “scenario reduction” method are similar to those 

of original ensemble. Also, equivalent history matching results as an original ensemble 

are obtained, unlike other sampling methods. As compared to full physics reservoir 

simulation, the computational cost of static measures is negligible in proposed 

approach, hence, improving overall computing efficiency of data assimilation. 

However, selection of appropriate static measures is crucial as they provide a unique 

identity to each realization in an original ensemble. Flow based static measures or 

dynamic measures using streamline simulation can be considered for complex 

reservoirs displaying non-Gaussian features. 

Another approach employs KL-PCE based forecast model in data assimilation. KL 

parameterization is used to reduce the dimensions of model parameters and PCE to 

predict production parameters using random variables and corresponding orthogonal 

polynomials. From the results of the blind test, accuracy of PCE in production forecast 

is evident as it can capture the nonlinearity of the SAGD process. Despite uncertainty 

introduced by proposed metamodel, a reasonable estimation of posterior pdf and 

production parameters is obtained in history matching using EnKF. Also, sequential 

nature of EnKF assisted in diminishing the effect of forecast model uncertainty on the 

estimation of model parameters. Further, MCMC showed robust performance with 

proposed KL-PCE metamodel as uncertainty in model parameters is minimum among 

all three cases considered. The computational cost of proposed workflow is minimal as 
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compared to conventional iterative EnKF since full physics simulations are required 

only at collocation nodes. If the spatial variance of the model parameters is very high, 

the number of terms and hence, required simulation runs will increase exponentially.  

To incorporate nonlinearity of SAGD process in real-time production optimization, 

variants of MPC i.e. adaptive MPC, gain-scheduled MPC, NMPC using linearization and 

interior point method are proposed. Both adaptive and gain-scheduled MPC utilize 

linear models; however, in adaptive MPC, model coefficients are estimated at each 

control interval using the latest available real-time data while gain-scheduled MPC uses 

multiple controllers and switching is performed based on minimum subcool. In 

contrast, both NMPC approaches employ nonlinear black box models. When 

linearization is implemented, an equivalent linear model in a mean-square-error sense 

is identified for a given input signal, thus, reducing NMPC problem to linear MPC. 

Otherwise, interior point method is used to solve the nonlinear optimization problem 

in NMPC. Primarily, it can be concluded that Hammerstein-Wiener models provide the 

better estimation of OVs as compared to linear (BJ, OE) models in the case study. All 

four variants performed well in subcool control while displaying stable adjustment in 

MVs. However, more fluctuations can be observed in the liquid production rate of gain-

scheduled MPC due to frequent switching between controllers. Also, due to the same 

reason, only 10.36% increment in NPV is achieved as compared to 23.69%, 24.52%, 

and 24% in adaptive MPC, NMPC using linearization, and NMPC using interior point 

method respectively. The computational cost of NMPC using interior point method is 

approximately 2.5 folds higher than other workflows since nonlinear optimization 

problem is solved at each control interval. Hence, based on the desired accuracy, 

anticipated control environment, and complexity of the reservoir, appropriate control 

workflow can be chosen. In addition, results in the case study indicate that the subcool 

set-point should be selected carefully as higher value restricts the steam 

injection/liquid production and therefore, the oil rate in SAGD. 

Finally, the major contributions of this research in improving CLRM of SAGD reservoirs 

can be summarized as follows: 

1. An effective optimization based sampling algorithm that can maintain diversity 

in the ensemble and applicable to any assisted history matching/uncertainty 

quantification method. 
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2. An encyclopedic KL-PCE based metamodel which can handle large number of 

unknown parameters and be easily integrated in different assisted history 

matching and uncertainty assessment workflows while expediting the overall 

process. 

3.  An advanced control workflow using adaptive MPC for real-time production 

optimization in which coefficients of linear plant model are updated at each 

control interval to maintain the subcool effectively. 

4. An efficient application of gain scheduling by creating a controller bank and 

switching based on output feedback, enabling automatic well operations as 

well as precise subcool control in adverse control situations. 

5. A state-of-the-art control framework that implements nonlinear MPC for 

efficacious subcool control, which ultimately leads to better cumulative steam 

oil ratio and hence monetary benefits while minimizing the environmental and 

carbon footprints. 

 Recommendations for Future Research 

In this thesis, attempts have been made to provide the solutions for some of the 

research questions pertaining to CLRM. However, as you gain more insights during this 

quest of in-depth knowledge, a larger scope of enhancement and possible course of 

future actions arises as an outgrowth. Below here, some of the important research 

objectives to be pursued in near future and influenced by the work in this dissertation 

are listed: 

1.  Static measures in “Scenario Reduction” method provides a unique identity to 

various realizations in the initial ensemble. Inclusion of connectivity based 

measures can improve the identity of the realization and hence ensure the 

better performance of initial sampling method, especially in case of SAGD 

reservoirs with excessive uncertainty in location and volume of the 

impermeable zones. 

2.  Identical static measures as proposed for the case study considered in this 

research will not be useful for different types of reservoirs. Therefore, novel 
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static measures should be developed based on the non-Gaussian features and 

other characteristics of the reservoir. For example, in case of fractured plays, 

global and local fracture intensity, fracture orientation parameters such as 

trend and plunge, number of fractures, matrix-fracture interaction parameters 

etc. can be used. For shale plays with multiple facies, CHV and harmonic 

average of permeability within a search window can be considered. 

3.  PCE metamodel or other machine learning techniques can be implemented in 

discrete fracture network (DFN) model based assisted history matching 

workflows for fractured reservoirs to avoid the high computational cost of 

construction and simulation of DFN models.  

4.  Successful application of NMPC for real-time subcool/production control is 

demonstrated in this work. However, an extensive study of robustness and 

stability of NMPC is required – especially for oil sands reservoirs with 

significant shale barriers and inclined heterolithic strata (IHS) zones – before 

the method/workflow is ready to cater the industry.  

5.  Receding horizon concept of MPC can be extended for the steam allocation to 

different well-pads in heavy oil thermal recovery processes. A proactive steam 

allocation workflow using real-time data acquisition, adaptive parametric 

system identification models that represent the relationship between input 

variables and key performance indicators (KPI), and appropriate optimization 

algorithm that considers the constraints offered by surface facilities can be 

designed for efficient usage of steam as compared to conventional reservoir 

model based open-loop optimization. 

6.  Several endogenous and exogenous uncertainties can be considered in real-

time optimization of SAGD well pair operations along with appropriate 

parameterization techniques and linear/nonlinear programming algorithms for 

improved yet computationally efficient CLRM.   
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