
 University of Alberta

Incorporating the Effects of Complex Dynamic Interactions in the
Construction Decision Making Process

By

Amin Alvanchi

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Construction Engineering and Management

Department of Civil and Environmental Engineering

©Amin Alvanchi

Fall 2011
Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or
otherwise reproduced in any material form whatsoever without the author's prior written permission.

Examining Committee

Dr. Simaan AbouRizk, Civil and Environmental Engineering

Dr. SangHyun Lee, Civil and Environmental Engineering, University of Michigan

Dr. Aminah Robinson Fayek, Civil and Environmental Engineering

Dr. Marwan El-Rich, Civil and Environmental Engineering

Dr. Eleni Stroulia, Computing Science

Dr. Lucio Soibelman, Civil and Environmental Engineering, Carnegie Mellon University

Dedication

This thesis is dedicated with love, admiration, and respect

to my kind mother, dear father, my lovely wife

and my beloved brothers;

Abstract

Construction projects involve complex interactions among operational

components such as labour, materials and equipment and context or

organizational components such as worker morale and organizational policies.

Interactions among different components of construction projects form byzantine

chains of cause and effect, and determining their final impact on project

behaviour can be beyond human capabilities. Specialized tools that can capture

these interactions and provide perspective on the outcomes of construction

mangers’ prospective decisions are needed. In this research I proposed and

applied a modeling approach that uses a hybrid model of System Dynamics (SD)

and Discrete Event Simulation (DES), combining the capabilities of these two

powerful modeling tools to foresee a construction project’s ultimate outcome as

the result of changes in the different components.

The first stage of the research was to recognize different aspects of the hybrid SD-

DES modeling approach and to assess the current and potential challenging issues

which might affect hybrid model developments in the construction domain. A

customized hybrid modeling framework and architecture targeted construction

projects and was developed to address the previously described challenges. The

hybrid modeling framework is meant to assist hybrid model developers during the

design phase; the framework provides and suggests a set of tools that can be used

during the implementation phase of hybrid model development.

The proposed hybrid model framework and architecture provided the foundation

used in the next stage of the research: applying hybrid SD-DES modeling

approach to complex construction decision making problems. Two common

decision and policy making problems found in construction projects – identifying

improved working hour arrangements and human resource policies – were

analyzed in this stage, and original hybrid models were developed to assist

construction managers in finding the best answers. The models developed for both

applications were then validated through real construction projects.

In sum, in this research I introduced and validated a new hybrid approach which

can be used for improving complex dynamic construction decision making

processes by capturing feedbacks between operational level and organizational

level effective factors within construction projects. Furthermore, the research

contributes to two prevalent construction decision making problems (construction

working hour arrangement and human resource policy improvement) by

developing hybrid models which can be used for improving the decision making

processes.

Acknowledgement

I would like to express my deepest gratitude to my beloved family who taught me

how to live. My sincere thanks to my lovely parents for their never ending

support. I am but a product of your dreams and sacrifices. Although I have been

away from you, your prayers have always paved my road to success. This journey

could not be finished successfully without the help, support, and warm

companionship of my dearest lovely wife Soreh. How her kind companionship

can be appreciated! Thank you for your continuous love, inspiration, and patience.

Words cannot express my gratitude and everlasting love toward you.

This research work would not have been done without the kind support of my

supervisors, Dr. Simaan AbouRizk and Dr. SangHyun Lee. I have been truly

fortunate to have both of them as my mentors. Dr. AbouRizk guided me with his

keen advice, great insights, and confidence throughout the whole dissertation

process. Dr. SangHyun Lee also inspired me with his wisdom, knowledge and

effective guidance. I thank both of them and will be in their debt forever.

I would like to acknowledge Dr. Lucio Soibelman for serving as my external

examiner and providing supportive advice. I am also grateful to my doctoral

committee chair Dr. Aminah Robinson, and other committee members Dr. Eleni

Stroulia, and Dr. Marwan El-Rich, for their thoughtful review and invaluable

suggestions.

I would like to take this opportunity to thank all the individuals, colleagues and

friends who assisted me during this research project. I extend my sincere thanks to

Paul Zubick and Jim Kanerva, the Managers at Waiward Steel Fabricators Ltd.,

for their support and collaboration during this research project. I also appreciate

the assistance of Dr. Yasser Mohammed, Brenda Penner, Holly Parkis, Stephen

Hague, Maria Al-Hussein and other faculty members and staff in the Construction

Engineering and Management Program who assisted me in various aspects of this

research.

And finally my special thanks go to my dear brother Hosein who was always an

honest help, a good colleague and a true friend during this journey to me.

Table of Contents

Chapter 1. Introduction .. 1

1.1. Problem Statement .. 1

1.2. Research Objectives .. 4

1.3. Scope of Research ... 6

1.4. Implementation Environment ... 8

1.5. Terminology .. 10

1.6. Thesis Organization .. 12

Chapter 2. Hybrid Framework and Architecture 14

2.1. Introduction ... 14

2.2. Hybrid Simulation Challenges .. 18

2.2.1. Lack of Modeling Framework .. 18

2.2.2. Time Advancing.. 20

2.2.3. Communication Architecture .. 21

2.3. Hybrid Modeling Framework ... 23

2.3.1. Basic Hybrid Structures .. 23

2.3.2. Different Forms of Interacting Variables .. 29

2.4. Proposed Hybrid Architecture .. 31

2.4.1. Time Advancing Assessment .. 32

2.4.2. Communication Architecture .. 36

2.5. Experimental Model.. 39

2.5.1. Case Description ... 39

2.5.2. Fabrication Shop Hybrid Model Development ... 40

2.5.3. Performance Test .. 54

2.5.4. Expandability Test of The Model ... 59

2.6. Chapter Conclusion ... 62

Chapter 3. Dynamics of Working Hours in Construction 65

3.1. Introduction ... 65

3.2. Dynamics of The Working Hours ... 67

3.2.1. Dynamics of Prolonged Working Hours... 67

3.2.2. Dynamics of Time of Day... 84

3.2.3. Dynamics of Overtime Work .. 87

3.2.4. Critical Parameters for Worker Capability ... 92

3.3. Model Testing ... 94

3.4. Sensitivity Analysis of Model Behavior ... 98

3.5. Hybrid Model of Integrated Working Hour Dynamics........................... 101

3.6. Case Study .. 103

3.6.1. Case Specification ... 104

3.6.2. Base Model Experiment .. 105

3.6.3. Shift Alternatives .. 109

3.6.4. Case Analysis .. 110

3.7. Chapter Conclusion ... 112

Chapter 4. Construction Workforce Evolution Dynamics 114

4.1. Introduction ... 114

4.2. Conceptual Model of The Workforce Dynamics 116

4.2.1. Workforce Dynamics in Literature ... 116

4.2.2. Conceptual Model of Workforce Dynamics in Construction 119

4.2.3. Model Analysis ... 125

4.3. Inclusive Model of Construction Workforce Dynamics 132

4.3.1. Core Dynamic Model of Workforce Evolution 132

4.3.2. Workload Dynamics ... 136

4.3.3. Overtime Dynamics .. 138

4.3.4. Dynamic Data Collecting .. 141

4.3.5. Model Validity .. 143

4.4. Hybrid Model of Construction Worker Dynamics 149

4.5. Case Study .. 150

4.5.1. Case Specification ... 151

4.5.2. Base Model Experiment .. 152

4.5.3. Alternative Policies Simulation .. 154

4.5.4. Case Analysis .. 158

4.6. Chapter Conclusion ... 159

Chapter 5. Conclusions and Recommendations 161

5.1. Research Summary ... 161

5.2. Research Contributions ... 165

5.3. Lessons Learned.. 167

5.4. Recommendations for Future Research .. 170

References ... 173

Appendix A. Meaningful Level of Change in Hybrid Simulation for

Construction Analysis ... 184

Appendix B. Programming Details of the Simulation Model Used for

Hybrid Framework and Architecture Test .. 200

Appendix C. Programming Details of The Simulation Model Used for

Working Hours Dynamics .. 252

Appendix D. Programming Details of the Simulation Model Used for

Construction Workers Evolution .. 266

List of Tables

Table 2-1. Brief assessment of the interacting variables of basic hybrid models . 44

Table 2-2. Steel Construction Federation Object Model Template 48

Table. 2-3. Comparison of the results of the proposed and base hybrid models .. 56

Table. 2-4. Simulation time for different developed models 57

Table 3-1. Average performance indexes during day and night shift 85

Table 3-2. Performance indexes in different hours of the day 86

Table 3-3. Summary of applied validation tests ... 96

Table 3-4. Productivity ratio (%) and fabrication duration in calendar days (cd)

and working days (wd) achieved in simulation runs of different shift alternatives

... 110

Table 4-1. Summary of applied validation tests ... 144

Table 4-2. Base values considered for the test model’s exogenous variables and

constant parameters ... 145

Table 4-3. Simulation results for employment and overtime extreme policies .. 146

Table 4-4. Simple alternative policies applied to the case 155

Table 4-5. Results achieved for simple alternative policies 156

List of Figures

Figure 2-1. SD-dominant hybrid structure of capital level in a fabricating

company ... 25

Figure 2-2. DES-dominant hybrid structure of a fabrication shop 27

Figure 2-3. Parallel SD and DES to model fabrication operations and labor

employment... 28

Figure 2-4. Turning the conceptual model to HLA based design 37

Figure 2-5. Shop structure and material flow of the experimental case 40

Figure 2-6. Sample managerial and context-level feedback loops 41

Figure 2-7. Sample basic hybrid interactions used in the model 42

Figure 2-8. Top-level architecture of the developed hybrid model 46

Figure 2-9. Interface of the calendar federate ... 49

Figure 2-10. Interface of the Data Management federate 50

Figure 2-11. Main interface of the DES federate .. 51

Figure 2-12. Stations specification form in the DES federate 52

Figure 2-13. Mid-buffers or storages specification form in the DES federate 52

Figure 2-14. Movers specification form in the DES federate 52

Figure 2-15. Interface of the SD federate ... 53

Figure 2-16. Interface of the Visualization federate ... 60

Figure 2-17. A snap shot from Tekla during the model run 61

Figure 2-18. A schematic view of integration between the developed federation

and RFID technology .. 62

Figure 3-1. The dynamics of physical fatigue as a result of prolonged high

physical involvement .. 68

Figure 3-2. The dynamics of mental fatigue as a result of prolonged sustained

attention... 68

Figure 3-3. The dynamics of performance factor changes based on biological

clock .. 85

Figure 3-4. The dynamics of overtime working and performance 89

Figure 3-5. The effect of different types of fatigue on workers’ productivity ratio

... 97

Figure 3-6. Deviations in the efficient working hours by changing length of

working periods .. 99

Figure 3-7. The effects of start time on productivity ratio in physical and mental

tasks... 100

Figure 3-8. The effects of overtime on weekly efficient working hours 100

Figure 3-9. The effects of worker’s strength on productivity ratio in Physical and

mental tasks ... 101

Figure 3-10. Modified dynamics of fatigue models in hybrid model 103

Figure 3-11. Comparison between completed fabrication in simulation and actual

case .. 108

Figure 4-1. Conceptual dynamic model of experience chain 117

Figure 4-2. Conceptual model of construction workforce 119

Figure 4-3. Four-level dynamic model for construction Workforce 125

Figure 4-4. Workers fluctuation in construction workforce evolution and

experience chain dynamics ... 127

Figure 4-5. Fluctuation in experienced workers percentage over the course of the

project ... 129

Figure 4-6. Weekly workload distribution for different work skills during the

project ... 130

Figure 4-7. Effects of skill distinction on the number of workers 131

Figure 4-8. Core dynamic model of the workforce evolution in a two-level

skill/wage organization ... 133

Figure 4-9. Supporting dynamics on the required workload 137

Figure 4-10. Overtime dynamics in construction projects 140

Figure 4-11. Built in mechanism for collecting the cost information 141

Figure 4-12. Sensitivity analysis on the maximum number of new workers 148

Figure 4-13. Comparison between the results from simulation model and the

actual results.. 154

1

CHAPTER 1. Introduction 1

1.1. Problem Statement

The operational details involved in construction projects, the variable nature of

construction projects over the course of time, and the significant impacts of

human factors on the project progress add to the complexity of construction

projects. For completing a construction project a complex combination of

dependent tasks takes place using a variety of workers with different types and

levels of expertise equipped with a range of tools with various functionalities and

capabilities. Missing any operational detail in the project might have a significant

effect on the project. For example just shipping out of order material to the

project’s job site can cause long delays in the project completion.

Many construction projects continue for several years during which different

effective factors in the project dynamically fluctuate. Many of these fluctuations

in the project happen as the results of changes in project performance over time.

For example, worker skill continuously grows as a project goes on and the

workers gain experience because of their involvement in the project, or equipment

performance is diminished as it wears out as a result of the assigned workload.

The managers’ decisions and organizational policies also contribute to project

1 Parts of this chapter have been published in the Proceeding of the Construction Research
Congress, Seattle, April 2009, pp. 1290-1299.

2

fluctuations over time. For example, workload thresholds set for hiring new or

firing redundant workers, incentive policies put in place for workers, and

decisions made to outsource a part of the project affect the pace of project

progress and its future condition. Changes imposed by the project’s environment

are another group of changes affecting project’s fluctuations. Weather changes,

job market fluctuations and material market conditions are some examples of

fluctuations which may affect project condition.

Unlike the tool based and repetitive nature of manufacturing, every construction

project is unique and requires an enormous amount of human communication and

judgment during the project implementation. Therefore, the way that the project

crew reacts in response to its assigned tasks might be different from one project to

the other. In fact, the level of the productivity expected from a group of workers

working on the same type of project during winter, spring, summer and fall can be

quite different; so can the workers’ fatigue from different types of tasks.

Mutual interactions between organizational effective factors and construction

operation form different effective feedback loops within the construction projects

which prevent construction managers from tracking the ultimate effects of their

decisions on the project’s productivity and final cost using traditional project

management tools. This causes construction managers to remain dependent on

their past experiences and common sense during their daily decisions, which are

subject to the human mind’s inference limitations. Some examples of such

3

decision making situations in construction projects can be 1) whether to set

overtime, to set a new shift, to outsource the job or to hire new workers as the

response to over-capacity workload assigned to the project’s crew, 2) what is the

best working hour arrangement for the new project assigned? or 3) what

combination of the best incentive and penalty policies results in the highest

productivity for the project? Some of these decisions, especially when they form a

project’s policies or determine trends or structures to be followed perpetually, can

have substantial impacts on the final project outcome.

In this research I have addressed this concern of construction project managers

and have proposed and developed a framework and architecture which can

capture the effects of complex internal and external interactions among different

organizational and operational effective factors on construction project outcomes.

This framework and architecture will assist construction managers by tracing the

effects of their alternative decisions and improve their project performance by

allowing them to select the alternative which gives the improved result.

The proposed framework and architecture contains a hybrid modeling approach

which is formed by integrating system dynamics (SD) and discrete event

simulation (DES) modeling tools. Both SD and DES are well-known simulation-

based decision support tools which have been used in many construction

simulation cases (e.g., Halpin 1973, Paulson 1987, Martinez et al. 1994,

AbouRizk and Hajjar 1998 have used DES and Sterman 1992, Park and Pena-

4

Mora 2003, Ford et al. 2004, Lee et al. 2006 have applied SD to construction

simulation cases). While SD is an appropriate tool for capturing the effects of

system control variables which affect the system’s behavior through chains of

cause and effect and create causal feedback loops, DES is useful for modeling

operational details of the systems. Although most real world systems are

combinations of feedback and sequential processes, context or organizational -

level and operation-level parameters, and continuous and discrete changing

variables, most simulation-based analyses are still facilitated by the use of either

SD or DES, with the modeller’s selection based on which tool can capture more

aspects of the problem. This conventional type of analysis may force system

analysts to make simplifying assumptions and to accept a lower level of accuracy.

Hybrid SD and DES modeling framework and architecture provides a set of tools

that use the capabilities, while improving upon the disadvantages, of these two

approaches. The result of this is a stronger modeling tool which can capture more

aspects of the construction project; however, there are some implementation

challenges which should be addressed as well.

1.2. Research Objectives

The main objective of this research is to introduce a new framework and

architecture to construction project managers with which they will be able to

follow the effective feedback loops between different organizational and

operational effective factors within construction project. The introduced

5

framework and architecture let them to trace the ultimate effects of their decisions

on the final construction project output and pick the choices that improve their

projects the most. The functionality and applicability of the proposed hybrid SD-

DES modeling framework and architecture are tested and validated to make sure

that the proposed hybrid SD-DES modeling framework and architecture can be

used for assisting construction managers in their complex dynamic decision

making problems.

The research also elaborates on two applications of using a hybrid modeling

approach in construction projects. These applications are firstly meant to serve as

examples for the applicability and usefulness of the proposed hybrid framework

and architecture and, secondly, aim to introduce new interactions within

construction projects which have not been looked into in the past, since

traditionally used tools have limited capabilities for capturing them. Therefore,

the use of a hybrid SD-DES modeling approach represents a new area, still

unexplored, and where new insight on these interactions within the construction

domain can be found. With this perspective, another objective of the research is

introducing new hybrid interactions within the construction domain which result

in a better understanding of the effective mechanisms of construction.

6

1.3. Scope of Research

Although research on using hybrid SD-DES simulation models for modeling the

behavior of the complex systems has been around since the early 2000s (Rus et al.

1999; Zeigler et al. 2000; Martin and Raffo 2001; Choi et al. 2006), there are

some challenging issues which have prevented them from being applied to

construction cases. In the first phase of this research I have looked into these

challenging issues and proposed a hybrid SD-DES modeling framework and

architecture to address them. The proposed hybrid modeling framework

introduces a set of hybrid concepts, terminologies, and guidelines to be used and

followed when designing the hybrid models. The proposed architecture suggests a

group of tools to be used for implementing hybrid simulations. The applicability

and usefulness of the proposed hybrid framework and architecture were then

tested by applying the framework and architecture in a real construction case. A

detailed explanation of the hybrid framework and architecture is given in Chapter

2.

The proposed framework and architecture in the first phase of the research created

a strong foundation upon which to base the second phase of my research into

exploring and capturing different aspects of complex construction project

behaviours. Improving the working hour arrangement for construction projects by

exploring and capturing the effects of alternative arrangements on the final output

of the construction projects was the first application explored. This is a decision

7

making problem that perpetually affects construction projects. However, complex

interactions among a variety of organizational and operational effective

parameters in every working hour arrangement do not allow construction

managers to evaluate final effects of different working hour alternatives using

conventional decision making tools. Some examples of these effective parameters

are work start time and finish time, duration of the work and rest periods, shift

work and the amount of overtime during the week. Many studies have measured

the effects of changes in single aspects of the working hours on worker

performance levels, such as shift work and time of the work (e.g., Dijk et al. 1992;

Folkard and Tucker 2003; Baltter and Cajochen 2007), work duration (e.g.,

Taylor 1911; Rohmert 1973b; Oglesby et al. 1989) or overtime (e.g., Homer

1985; Sterman 2000; RSMeans 2010). However, in addition to the limited aspects

they cover, these types of research efforts typically result in proposing general

guidelines for working hour adjustments, rather than introducing a tool that can be

customized based on some system parameters, then applied to different projects

with different specifications. A hybrid SD-DES modeling approach was used in

this part of the research to introduce a new inclusive approach for improving

working hour arrangements for construction projects. The results achieved in a

variety of studies into different aspects of the working hours first were compiled

into dynamic models and then were integrated in the form of a hybrid SD-DES

model of construction working hours. It can be dynamically applied to different

types of construction projects with different operational details and specifications

8

to track project behaviour with different working hour adjustments. A complete

explanation of this application is provided in Chapter 3.

As another application of the hybrid SD-DES modeling approach I modeled

workforce evolution dynamics within construction projects. This application was

meant to propose a method for modeling the effects of human resource policy

adjustment in construction projects which is a major concern in many

construction companies. A generic SD model customized for construction projects

was first developed in this part of the research for capturing the causal effects of

human policy adjustments and then was integrated with the DES model of a

construction project in a hybrid manner. The model was then used to improve the

human resource policies of a real construction case. Chapter 4 provides a detailed

explanation of this application.

1.4. Implementation Environment

The proposed hybrid SD-DES modeling framework and architecture as well as its

applications have been implemented and validated in real construction cases. A

different set of computer software packages were used for these model

implementations, explained below:

− Microsoft Visual Studio.NET was used as the programming environment

during the first phase of the research. All externally used software packages

in phase one of the research were either implemented directly (e.g., the SD

9

part of the model) or controlled and managed by Visual Studio.NET (e.g.,

DES and supporting packages)

− The Simphony.NET 3.5 modeling engine (http://irc.construction.ualberta.ca/

Simphony35/) was used for implementing the DES part of the hybrid

framework. The Simphony.NET 3.5 modeling engine provided a pre-

developed set of required DES classes and functions to facilitate DES model

implementation in my experiment in the first phase of the research.

− The Construction Synthetic Environment (COSYE) (AbouRizk and Hague

2009) facilitated data communication between different parts of the hybrid

model and provided a framework through which different parts of the

previously developed hybrid models could be implemented independently

and run in a distributed manner on multiple computers.

− Microsoft Access (MS Access) was used as the database medium in the

entire research project. The construction project data used in the research

either were directly stored in MS Access and used as the data fed into the

simulation model or were directed to the simulation model through the links

to the remote server (where the original data were stored) provided by MS

Access (run on the Windows XP operating system).

− AnyLogic 6.4 (http://www.xjtek.com/) was the main simulation

environment in the second phase of the research used for implementing the

experimental cases of the hybrid SD-DES modeling applications. AnyLogic

10

provided SD, DES and the communication channels required for the hybrid

model at this phase of the research.

1.5. Terminology

Different terms associated with the hybrid SD-DES modeling approach are

frequently used throughout this document. Since the use of the hybrid SD-DES

modeling approach is a new experience in the construction domain, and its related

terminology still is not commonly agreed upon and documented, to eliminate any

points of confusion related to the terminology, the following definitions are

provided for the major terms used in the research. These definitions do not

necessarily match definitions provided for similar terms in other areas of research

or disciplines.

Effective Factor/Parameter: When any changes made to an internal (indigenous)

or external (exogenous) element, component or aspect can affect the system

behaviour, this element, component or aspect is called an effective factor/

parameter for that system. The number of project resources, level of skill in the

workers, and the environmental condition on the job site are some examples of

effective factors/parameters in construction projects.

Operation Level of the Construction System: The operation level “is concerned

with the technology and details of how construction is performed.” (Halpin 2011,

p17) The operation level aspects of construction systems can be measured directly

11

by using the prevalent measuring tools. The capacity and number of project

resources, the durations of construction tasks, and the hauling distance of the

truck are in the operation level of the system.

Context/Organizational/ Non-operation Level of the Construction System:

Different aspects of the system which cannot be measured directly by using

common measuring apparatus are categorized in the context or organizational

level of the system. These aspects of the system are usually linked to human

behaviour. Level of fatigue, level of skill, and satisfaction level of the workers are

some examples of aspects of the system in the context or non-operation level.

Hybrid or Combined Interaction in the System: Hybrid or combined interaction in

the system happens when continuously changing variables (e.g., by reaching a

threshold) trigger changes in discretely changing system variables or, conversely,

when discretely changing variables affect values of continuously changing

variables in the system (Pritsker et al. 1997). Reduction in worker fatigue (a

continuously changing variable) as a result of change in work status from work

period to rest break (a discretely changing variable) and employing new workers

(discretely changing variable) as a result of reaching a certain level of work delay

(a continuously changing variable) are two examples of hybrid interaction.

12

1.6. Thesis Organization

The organization of the remainder of this thesis is as follows: Chapter 2 provides

an introduction to hybrid simulation and its related literature and elaborates on the

hybrid framework and structure proposed in the research. A major part of the

discussion provided in this chapter has been published in the Journal of Computer

Aided Civil and Infrastructure Engineering (Alvanchi et al. 2011a) and some

other parts have been published in the Proceedings of the Construction Research

Conference, Seattle, April 2009 (Alvanchi et al. 2009a) and the Proceedings of

the 10th International Conference on Construction Applications of Virtual

Reality, Sendai, Miyagi, Japan, Nov 2010 (Alvanchi et al. 2010). Chapter 3

presents the research into exploring new hybrid interactions related to

construction working hour adjustments and human fatigue. The development of

the related hybrid model has been explained in this chapter as the first application

of the hybrid SD-DES modeling approach. The majority of the material presented

in this chapter is published in the ASCE Journal of Construction Engineering and

Management (Alvanchi et al. 2011b). Chapter 4 explains the hybrid model

developed for the dynamics of workforce evolution customized for construction

projects. This is another example (out of a variety of hybrid model applications)

of how the hybrid SD-DES modeling approach can be used for improving

construction projects. Parts of the material presented in this chapter have been

published in the Proceedings of the Annual Conference of Canadian Society for

Civil Engineering, Ottawa, Canada, June 2011 (Alvanchi et al. 2011c) and some

13

other parts are in preparation to be submitted in the form of a paper to the journal

of Automation in Construction (Alvanchi et al. 2011d). Chapter 5, the research

conclusion, includes the research summary, research contributions, lessons

learned, and, finally, recommendations for future research work. Appendix A

presents a paper on the “Meaningful Level of Change in Hybrid Simulation for

Construction Analysis” published in the Proceedings of the Winter Simulation

Conference, Austin, Texas, USA, Dec 2009 (Alvanchi et al. 2009b). This paper

elaborates on the Meaningful Level of Change concept, introduced in Chapter 2,

as a part of the proposed hybrid modeling framework and architecture.

14

CHAPTER 2. Hybrid Framework and Architecture2

2.1. Introduction

Construction systems are influenced by operation level and context level variables

(Lee et al. 2007). System behaviors may be affected by physical and tangible

aspects of system components (i.e. operation level), such as the number of

laborers and equipment capacity, as well as non-physical aspects of system

components (i.e. context level), such as laborer skill level and organizational

policies. The system behavior over time results from interactions among different

system components (Sterman, 2000, p. 28). These interactions might remain at the

operation level (i.e. among operation variables) or context level (i.e. among

context variables), or may be interactions among operation and context variables.

Such interactions between operation and context can occur in a bidirectional

manner; that is, while the changes in operation variables have effects on the

context level variables, the context level variables in turn affect operation level

variables.

The main problem with most modeling approaches in this regard is that they can

only capture system interactions at either the operation level or context level of

the system. However, during system modeling, it should be taken into account

2 Parts of this chapter have been published in Computer-Aided Civil and Infrastructure
Engineering Journal, 2011, Volume 26, Issue 2, pp. 77-91; the Proceeding of the Construction
Research Conference, Seattle, April 2009, pp. 1290-1299; and the Proceeding of the 10th
International Conference on Construction Applications of Virtual Reality, Sendai, Miyagi, Japan,
Nov 2010, pp. 283-290.

15

that without considering the effects of feedback between the context level and

operation level variables inside that system, the complicated behaviors of

construction systems cannot be properly captured, especially over the long-term

life cycle of that system.

In an effort to provide decision-makers with more reliable system analysis, a

system modeling approach that considers both operation level and context level

system variables, while capturing their evolution through feedback and sequential

interactions, has been introduced by the researchers. This is a hybrid simulation

modeling approach that combines System Dynamics (SD) and Discrete Event

Simulation (DES). Hybrid SD-DES simulations attempt to integrate these

simulation approaches in order to create a unified modeling approach in which the

deficiencies of each approach are compensated by the other approach’s

capabilities. In the SD modeling approach, the dynamic behaviors of systems are

derived from system structures (Richardson and Pugh 1981). SD attempts to

capture system structures through chains of cause and effect variables which

model the controlling behaviors of systems through causal feedback loops. On the

other hand, the DES modeling approach tries to model system behavior as its state

evolves over time by following the system events, which are recognized as the

change initiators in the state of the system. While SD can capture the effects of

context level variables in feedback systems, DES is extremely useful in modeling

the effects of operation level variables in sequential systems (for further

information, see Borshchev and Filippov, 2004).

16

The first attempts to develop and use a hybrid SD-DES system originate from the

software industry in the late 1990s and early 2000s. At that time, a booming

market in the software industry and fears of widespread Y2K software crashes led

developers to seek ways to improve the software development process and gain

knowledge on how to design and develop more powerful hybrid simulation tools.

Rus et al. (1999) have tried to incorporate feedback loops into discrete-based

activities in the software development process, and this work was built upon by

Zeigler et al. (2000), Martin and Raffo (2001), and Choi et al. (2006). These

research efforts focused on improving the software development process by

providing more accurate evaluation strategies required for important decision-

making (e.g. staff hiring, training, and firing polices). For example, Martin and

Raffo (2001) proposed their hybrid model for the industrial software development

process and validated this model through an aerospace software development

project. They attempted to address important problems that face software project

managers, problems that deal with both the context level and operation level of

software development projects, including the effects of staffing and training on

the operation, the impact of increased overtime on quality, and the effects of

experienced and inexperienced staff arrangements on the operation. In this study,

a DES model was used to capture operation details of the software development

process and SD was utilized to model the project policies. Most research studies

run in the software industry were followed by producing simulation software

17

applications that can support hybrid simulation models such as ExtendSim,

SimuLog and AnyLogic.

More recently, scholars from disciplines other than software engineering, such as

manufacturing (Venkateswaran et al. 2004; Rabelo et al. 2005) and construction

(Lee et al. 2007; Pena-Mora et al. 2008; Lee et al. 2009) have begun work on

hybrid SD-DES simulation. A literature review indicated that research on hybrid

simulation can be divided into two main categories: (1) works focused on

improving hybrid architecture development (e.g. Zeigler et al. 2000; Borshchev et

al. 2002; Venkateswaran et al. 2004; Choi et al. 2006); and (2) works proposing

improvements for system modeling by integrating previously neglected hybrid

interactions to increase modeling accuracy (e.g. Martin and Raffo 2001; Rabelo et

al. 2005; Lee et al. 2007; Pena-Mora et al. 2008; Lee et al. 2009).

So far, hybrid research efforts within the construction industry have been focused

on the potential benefits the construction industry could gain by using hybrid

simulation; the efforts done in other disciplines are mainly kept within academia.

However, we are still missing hybrid models that are fully developed and

operational for real construction systems. This can affirm the existence of

challenging issues which hinder the use of hybrid SD-DES models within the

construction domain. To facilitate the hybrid SD-DES model development

process, this research investigates these challenging issues, including the lack of a

modeling framework and the time advancing and communication issues, and

18

proposes a hybrid modeling framework and model development architecture for

construction related systems that can be used to address these issues. This chapter

consists of the following 5 sections: Section 2.2, an overview of hybrid simulation

and its related challenges; Section 2.3, the introduction of the proposed hybrid

modeling framework; Section 2.4, the introduction of the hybrid model

development architecture; Section 2.5, a case study that applies the proposed

framework and architecture at an actual steel fabrication shop to investigate the

applicability and functionality of the proposed model; and finally Section 2.6, a

brief conclusion.

2.2. Hybrid Simulation Challenges

As indicated by existing hybrid SD-DES research efforts, there remain several

challenging issues that create deficiencies and slow down the model development

process. These challenging issues have been divided into three main categories:

(1) lack of modeling framework; (2) time advancing; and (3) communication

architecture. Further explanation of each challenge will be provided in the rest of

the section.

2.2.1. Lack of Modeling Framework

The term “hybrid modeling framework” refers to the set of basic elements and

concepts that help hybrid model developers during the conceptual design stage of

hybrid model development. Construction hybrid modeling aims at capturing the

19

complex behaviors of construction systems. However, the lack of basic modeling

elements and concepts—which could assist hybrid model developers in describing

the system and conceptualizing the “big picture” of the model—is a significant

hindrance on hybrid model development. In the absence of such a modeling

framework, it is possible for model developers to lose view of the scope and main

purpose of their built model, or to over-simplify it. In this case, it is more likely

that completing such a hybrid model will cost a considerable amount of extra

money for model developers, and that the model capabilities will not meet the

developers’ expectations.

As demonstrated by different existing hybrid modeling studies, this area of

research is still missing a set of modeling elements and concepts that can be used

during the conceptual stages of hybrid model development. Although researchers

within the software industry have introduced several modeling concepts in this

area, these concepts are mainly customized for the software industry and

generally attempt to address the implementation details rather than framing and

conceptualizing the model. For example, one of the most widely utilized concepts

in hybrid modeling development is hybrid formalism, proposed by Zeigler et al.

(2000). This concept is specialized for software development projects which

follow a phase-to-phase process, whereas in the construction industry, based on

the selected construction project delivery system (e.g. design-bid-build, design-

build, lump sum, and cost plus), the construction process may have diverse

variations.

20

Therefore, to capture complex behaviors of construction systems, the hybrid

modeling framework should have the capacity to consider all types of interactions

inside the hybrid model and to help model developers create presentable, well-

defined, and comprehensible hybrid model designs for those responsible for

model implementation.

2.2.2. Time Advancing

In an SD based model, the time advancing step is a preset interval in which any

significant changes can be captured; however, in a DES model, time advancing is

based on scheduled events which are created dynamically during the simulation

run as a result of previously occurring events. A method to synchronize different

interacting simulation models, which can be either continuous or discrete, has

been well documented: the High Level Architecture framework (Kuhl et al.

1999). However, another challenging issue can occur, because of the effect of SD

and DES interactions on time advancement. While the effects of any interactions

between the DES and SD components are considered during the next time step of

SD calculations, the interactions originating from the SD components may

instantly change and cause successive changes to the timing of the pre-scheduled

events of the DES model.

This time advancing issue is amplified when there is a continuously changing

variable within an SD related component, which affects some DES modules. In

this case, every updated value from the SD module can cause new rescheduling in

21

the Future Event List (FEL) of the affected DES module. These actions and

reactions might radically increase the simulation time required for updating and

rescheduling the FEL.

The time advancing issue in hybrid continuous and discrete simulation techniques

has also been addressed in other areas besides hybrid SD-DES simulation, such as

high speed or concurrent animation and visual interactive simulation (Rekapalli et

al. 2009; Rekapalli and Martinez1 2007) in construction related cases. The

proposed time advancing methods in these research efforts can also be employed

for prospective hybrid SD-DES models when hybrid SD-DES model developers

want to add concurrent animation or real time user interactions (regardless of

interaction medium) as supporting capabilities.

2.2.3. Communication Architecture

Communication among the different parts of a hybrid model, particularly among

the SD and DES components, is another challenge for the development of a

hybrid model for construction related systems. Most proposed hybrid

architectures have been developed by software industry researchers trying to deal

with existing issues in the software industry (e.g., Zeigler et al. 2000; Borshchev

et al. 2002; Choi et al. 2006). However, there are fundamental differences

between construction-related works and software-related works. While the

software industry is considered to be a labor-consuming industry, the construction

industry combines industrial equipment and labor. Furthermore, environmental,

22

safety, material, and equipment issues are some of the most significant factors

involved in construction-related jobs (and effectiveness) that do not have a

comparable level of importance in the software industry.

If one considers these fundamental differences between the software and

construction industries, it is reasonable to expect more hybrid interactions in

construction-based systems. Current data communication architectures propose

using specified input and output ports that can communicate with specified output

and input ports in other parts of the model. While this approach may be effective

for software development projects because of their sequential nature and the

limited number of interactions between context and operation variables, as

illustrated by the research of Choi et al. (2006), it creates increasingly

complicated communication combinations when dealing with larger scale and

more interrelated systems, as is expected in construction related systems. For

example, with n different interacting components in a system, the minimum

number of required communication channels, achieved through a sequentially

interacting system, is (n-1). However, the maximum required communication

channels, as occurring in a fully interrelated hybrid system, will go up to n*(n-1).

As a result, even in two systems with the same number of interacting components,

the number of required communication ports may be exponentially different.

23

2.3. Hybrid Modeling Framework

To help hybrid model developers during the conceptual design phase of model

development, a hybrid model framework is proposed here. This modeling framework

aims to assist hybrid model developers in establishing a confined scope for their work

and an outline for the prospective hybrid model. Two main concepts are introduced in

this modeling framework: (1) the possible types of basic hybrid structures; and (2) the

different types of interacting interfaces, or interface variables. Additional explanation of

these concepts follows.

2.3.1. Basic Hybrid Structures

The term “hybrid structure” refers to any arrangement of different interacting SD

and DES modeling parts that consists of at least one SD and one DES model. I

call a hybrid structure a “basic hybrid structure” if there is only one SD model and

one DES model participating in the structure. Before developing a hybrid

simulation model, the model developer should have an informed understanding of

the hybrid system. That is, the developer should be aware of the different possible

types of basic hybrid structures and the interactions among them. To identify the

possible basic hybrid structures within complex construction systems, different

construction systems, such as steel construction, pipeline construction, and spool

construction, have been investigated. Consequently, three major basic hybrid

structure types have been identified: (1) SD dominant, (2) DES dominant, and (3)

24

parallel SD-DES structures. These can all be used to capture the different

components of hybrid systems.

Therefore, a hybrid SD-DES model can be presented as a combination of these

three basic structures, and hybrid model developers will be able to capture every

hybrid interaction inside a system by mapping it to one of the introduced SD and

DES interacting basic hybrid structures. The development of each of the

recognized SD and DES parts will be pursued via the methods established for SD

and DES modeling tools.

1) SD Dominant Hybrid Modeling

Consider a system in which interacting components at the top level of the system

form a feedback loop, while several effective variables are internally affected by a

set of sequential interactions at the operation level. In SD dominant hybrid

modeling, the top level feedback interactions are modeled through SD, while DES

is employed to simulate the sequential interactions and track the values of

operation based variables. The direction of the interactions in an SD dominant

model will be from the DES part to the SD part while the results of calculations

within the DES part will be used in the SD part.

Figure 2-1 depicts the dynamics of the capital level of a fabricating company at

the top, modeled by an SD model, which has a supportive DES model of

production beneath it. The plus sign (+) on the arrows at the SD part of the model

indicates that two variables are directly related (i.e. an increase in the first

25

variable results in an increase in the second). Use of the minus sign (-) on the

arrow resembles the inverse relation between the variables (i.e. increase of the

first variable causes decrease in the second). Arrows on the DES part of the figure

show the direction of the flow of material.

Figure 2-1. SD-dominant hybrid structure of capital level in a fabricating
company

According to Figure 2-1, changes in the capital level during the current period are

based on the current net profit flow, which is a function of the sale and the rate of

return during the current period, and the total capital during the last period. The

annual sales depend on the current Potential Demand and Production. The DES

model here is for more accurately estimating the amount of Production over time

by following the fabrication operations. I place the Production in a dashed

rectangle with a bold font in order to distinguish Production as the contact point

between the DES and SD parts.

Capital
Prof it

Sale

CuttingWeldingPainting

ProductionPotential Demand

Production

Rate of Return

+
+

+

+
+

26

2) DES Dominant Hybrid Modeling

DES dominant hybrid models are commonly used for system structures in which

there are sequential interactions between different system components at the top

level, while the values of several effective system variables are changed through

the feedback interactions between other system components at the context level.

When modeling this system with a DES structure, context level variables are

generally assumed to be constant during the simulation runs. However, when

using a DES dominant hybrid structure, the top level of the system is modeled

through DES, and the SD approach is applied to track the values of the context-

level variables during simulation to increase the model’s accuracy. The direction

of interactions in a DES dominant model will be from the SD part to the DES part

since the results of the calculations inside the SD part will be used in the DES

part.

Figure 2-2 shows a basic schematic of a DES dominant hybrid model inside a

fabrication shop in which the welding operation duration is set by the fatigue

feedback loop presented in the causal loop diagram. DES is used to simulate the

fabrication shop operation interactions, while SD is the tool selected to capture

the effects of the feedback loop between worker fatigue level and welding

duration. It should be noted that the same basic DES dominant hybrid model can

be used at the cutting and painting stations of the shop.

27

Figure 2-2. DES-dominant hybrid structure of a fabrication shop

3) Parallel Hybrid SD-DES Modeling

In many systems, there are mutual effects between sequentially interacting

components and the interacting components of the feedback loop. Generally, to

model such systems, separate models, either DES or SD, might be selected. In

such cases, the interacting variables between sequential and feedback components

are assumed to be constant or pre-estimated values. However, when using a

parallel SD-DES basic hybrid structure, model accuracy will be improved by the

addition of the capacity to track interacting variables during the entire life cycle of

a system. For example, the evolved hybrid structure can be used to perform a

hybrid simulation of a fabrication shop’s operations and labor employment

(Figure 2-3). While SD is used to model the company’s labor employment

process, DES modeling is utilized to simulate the fabrication shop operations. The

number of laborers set during the SD process determines the working resources in

the DES structure. Furthermore, the schedule delay variable, which is determined

by the DES components, plays an integral role in decision-making regarding labor

employment. Unlike the two previously mentioned basic hybrid interactions, this

Overtime

Utilization

Fatigue

Welding
Duration

Station Productivity

Assigned Jobs

CuttingWeldingPainting

_
+

+

+

+

_

Welding
Duration

28

type of basic hybrid structure has bidirectional interactions (i.e. from the SD part

to the DES part as well as from the DES part to the SD part). Dashed arrows have

been used to demonstrate the contact points and directions of the hybrid

interactions for this type of hybrid structure.

Figure 2-3. Parallel SD and DES to model fabrication operations and labour
employment

4) Guidelines to Develop the Basic Hybrid Structures

Generally, hybrid systems can be modeled in different ways and with different

combinations of the basic model structures to meet various purposes. However, I

will introduce several modeling guidelines that model developers can follow

during model development to facilitate the hybrid model design process.

After recognizing the basic hybrid structures of the model, a critical step is to

determine the modeling parts that will stay at the top-center level of the entire

hybrid model. A Top-Center Level modeling Part(s) (TCLP) is a part that

participates as the dominant part in basic hybrid interactions. It may also have

several parallel hybrid interactions, but it does not participate in basic hybrid

Total Labors

Labor
Change

Schedule Delay

Max
Allowed
Labors

CuttingWeldingPainting

LaborsSchedule Delay

+
_

+

29

interactions in which another part of the system is dominant. Sometimes,

prospective hybrid SD-DES models improve upon, or act as substitutes for,

previously developed SD or DES models. Thus, in these cases, the TCLP will

usually be the previously developed SD or DES model. After determining the

TCLP of the proposed hybrid model, it is also possible to drive new rounds to

recognize new basic hybrid structures, determine new TCLPs, and link newly

recognized hybrid structures together to come up with a more comprehensive

hybrid model.

2.3.2. Different Forms of Interacting Variables

With a closer look at the interactions among different feedback and operation

components of hybrid systems, the system variables, namely interface variables,

can be identified. These are the main contact points (between the SD and DES

parts) during the hybrid interactions. For example, when changes in interface

variables in one part depend on changes in interface variables in another part of

the system, or when feedback and operational components in the system share an

interface variable, these two interacting structures affect each other during the

system’s life cycle.

When model developers use non-hybrid modeling techniques, they are usually

forced to simplify the interactions among interface variables as constants or as a

series of roughly estimated values during the system’s life cycle. However, in

hybrid models such as hybrid SD-DES models, the values of the interface

30

variables are calculated at interaction initiator parts and monitored by the

interaction receiver parts to set their own interface variables. Thus, variables that

have initially been assumed to be static or pre-defined in non-hybrid models can

be defined as dynamically changing interface variables, which may change

continuously or discretely in the hybrid models.

Furthermore, interface variables are recognizable at the contact points of each

(previously identified) basic hybrid structure. However, it must be taken into

account that the ways in which different interface variables interact with each

other can vary. Thus, a comprehensive understanding of the possible types of

interaction, and their expected behaviors, can assist model developers in

predicting the appropriate interaction channels for the model.

According to the changing behavior of each system variable, different forms of

interaction can occur among interface variables. In 1997, Pritsker et al. (1997)

classified all of the possible interaction combinations (i.e. the fundamental

interactions) between two continuously changing and discretely changing

variables into three main process types: (1) a discrete change in a variable may

cause a discrete change in other continuous variables; (2) a continuous change in

a variable, by reaching a threshold, may cause a discrete change in interacting

variables; and (3) a discrete change in a variable may change the functional

description of a continuously changing variable.

31

Interface variables in hybrid SD-DES modeling are derived from the previously

determined static values of the SD or DES components. However, shifting from

static values to dynamically changing variables does not necessitate that the

interacting variables be derived from the differently changing modes (i.e.

continuous and discrete). Thus, in addition to the three previously mentioned

variable interaction forms (Pristker et al. 1997), I also used two more forms of

interface variable interaction: (4) when both interacting interface variables are

continuously changing variables, and continuous changes in one variable causes

continuous changes in its related variable; and (5) when two discrete variables

interact and the changes in one variable cause discrete changes at the other. The

results of this variable classification for five different forms of interface variables

will be used in the proposed model architecture in Section 2.4.

2.4. Proposed Hybrid Architecture

The term “hybrid modeling architecture” refers to the set of methods and tools

which help hybrid model developers during the detailed design and

implementation phases of hybrid model development. A hybrid architecture,

which addresses the challenges involved in hybrid modeling (see Section 2.2), is

proposed in this section. This architecture involves two main processes: (1)

driving a time advancing assessment, and (2) developing a proper simulation

architecture while considering data communication issues. These processes are

discussed below.

32

2.4.1. Time Advancing Assessment

Time advancing may become an issue when the updating rate of an interaction

initiator variable in the SD part of the model becomes significantly faster than the

normal changing rate of the interaction receiver variable in the DES part. As a

result, after recognizing the different interface variables, a comparison should be

conducted between the expected updating rates of interface variables on both

sides of every interaction. In cases in which the interaction initiator variables of

the SD model have a significantly faster updating rate, or when the SD time step

is shorter than the normal updating rate for the interaction receiver variable in the

DES model, the hybrid model may be overloaded with an enormous number of

calculations by repetitively rescheduling previously scheduled events in the FEL,

which subsequently slows down the simulation runs.

For example, a change in work station utilization (or a busy portion of a station’s

working time) causes change in the fatigue level of the welding station’s working

crews; in turn, this continuously affects the station’s productivity and

correspondingly impacts welding duration (Figure 2-2). Using a conventional

DES model to simulate the fabrication shop, normally the finish time of each

welding operation is scheduled once, as soon as each welding operation

commences. Based on the type of welding operation, the finish time scheduling

occurs every several minutes or hours. However, with the effect of worker fatigue

on the station’s productivity, while the fatigue level constantly changes in

33

response to continuous changes in station utilization level, the finish time of each

operation keeps changing and requires numerous instances of rescheduling the

welding operation finish time in the FEL. This adds a considerable number of

extra calculations during the simulation runs.

In the literature, two different approaches can be found that try to reduce the

number of interactions and thus decrease the negative effects of the time

advancing issue. One of these approaches considers adapting criteria for SD time

steps, based on the fourth-order Runge-Kutta method, to adjust the length of time

steps according to the chronological rates of change (Fehlberg 1970). Proposed by

Venkateswaran et al. (2004), the other approach limits all required data exchanges

among different SD and DES parts within the SD-DES hybrid models to the set

time intervals.

The adjusted time steps in the first approach are based on the recent trend of the

changes in the SD part, which will reduce the number of null interactions (i.e., the

interactions that send the same value as the previously sent value). However, if

the interacting variables in the SD part are changed at every short time interval,

this approach cannot help in improving the simulation time. On the other hand, by

adjusting the length of time steps based on the chronological rates of change,

there is a possibility that the unexpected fluctuations of the SD variables over a

short period of time will be neglected.

34

In the second approach, the SD and DES model parts work separately according

to their regular solving methods, and a time step is set for the data exchanges

among the different parts. The set time step in this approach should be big enough

to cause no interruptions to the DES parts due to sent interactions from the SD

parts. On the other hand, the time step should be small enough to be able to

capture all significant changes within the SD model parts. While the system

behavior and rate of change in different parts of the system may vary during the

system life cycle, by setting a constant time step for hybrid interactions among

different model parts, this approach may not efficiently capture all hybrid

interactions during the system life cycle.

To address this issue, this research introduces a concept called the Meaningful

Level of Changes (MLC), which prevents the overloading of hybrid models

caused by excessive calculations. This concept proposes setting a meaningful

level of changes for interface variables on the SD parts which may cause time

advancing issues. The MLC prevents the interface variable from initiating hybrid

interactions if the magnitude of change is assumed to be trivial (i.e. less than the

defined MLC). For example, if the last reported productivity level is 90% and the

MLC for productivity is 1%, the productivity is reported if the value of

productivity crosses 89% or 91%.

To be able to set an appropriate value for the MLC, first, a range of MLC values

for the variables with the potential time advancing issues is estimated based on

35

the accepted level of inaccuracy provided by the construction manager. In the

second step, the effects of different chosen values for the MLC on the final

simulation results are investigated through a sensitivity analysis. This can be done

after model development by observing the achieved results and the occurred

inaccuracies for different set MLC values. The proper MLC values for the

interface variables can be determined by the users of the hybrid model and based

on their accepted level of accuracy for the final results.

The MLC concept introduced here plays the same role as the set thresholds in

quantization based filtering in distributed discrete event simulation discussed by

Zeigler et al. (2002). Zeigler et al. (2002) proposed utilizing the quantization

approach to reduce the number of interactions among interacting variables in

distributed DES by limiting them to the situation in which their values cross the

preset thresholds. However, the MLC concept should reduce the number of

interactions in hybrid SD-DES simulation, rather than DES, and will reduce the

number of interactions from the SD parts to the DES parts. Applying the MLC

concept in hybrid models will minimize the number of interactions while the

model continues to be updated, reporting major and consequential changes.

Different aspects of the MLC have been investigated and tested in detail; the

result of this part of the research was published in a form of conference paper in

the 2009 Winter Simulation Conference (Alvanchi et al. 2009b) and is presented

in Appendix A.

36

2.4.2. Communication Architecture

In this study, the communication architecture of the proposed hybrid model is

based on the High Level Architecture (HLA). The HLA is a framework for

performing distributed simulation modeling developed in the 1990s by the United

States Department of Defense (DoD) to simulate military systems (Kuhl et al.

1999). There are three main elements in an HLA-based simulation program: (1)

federates; (2) runtime infrastructure (RTI); and (3) object model template (OMT).

An HLA-based computer simulation program, called a federation, includes these

three elements to simulate the system of interest in a distributed manner. A

federate is an independently implemented and run simulation program that

represents some parts of the system and interacts with other federates inside the

federation. The RTI provides the data communication among different federates,

and the OMT defines the structure and formation of the shared data inside the

federation (for further information, see [Kuhl et al. 1999]).

Every recognized SD and DES sub-model in a conceptual model, regardless of its

level of hierarchy, may be implemented as a federate in a hybrid simulation

federation (Figure 2-4). However, according to the level of complexity inside

each identified sub-model, these sub-models can be implemented in more than

one federate. It is also possible that several sub-models employing a similar

modeling approach (i.e. SD or DES) can be merged into one federate while they

follow the same method of implementation. The shared data among different

37

federates are reflected in the OMT, while the recognized interface variables

constitute the major part of it. Federates which contain interaction initiator

variables are registered in the OMT as the data publisher for those pieces of data;

federates that are affected by initiated interactions are registered as subscribers to

those variables to be informed by every change made to those variables.

Figure 2-4. Turning the conceptual model to HLA based design

Furthermore, the HLA-based approach to hybrid modeling development

eliminates the need for dedicated data import-export communication channels. In

addition, each federate simply subscribes to the interacting variables from other

parts of the system and publishes these variables, while the RTI handles all of the

issues related to additionally required communication processes.

Many hybrid systems are complex systems and their development phases are

labor-intensive and require different sorts of expertise. Also, their simulation runs

need huge amounts of calculations and a long time on a single computer. The

HLA supports distributed model development by groups of experts working

separately, thus decreasing the total model development time, as well as

supporting distributed simulation on multiple computers, thereby dividing

SD1

SDn

DES1

DESi

DESn

SDi

SD Dominated Structure DES Dominated Structure

Parallel Structures

SD1
Federate

DESi
Federate

RTI

SDi
Federate

DES1
Federate

SDn
Federate

DESn
Federate

Federation

38

simulation time among various computers. This capability of HLA-based

development also enables hybrid model developers to develop their federation in

different stages and time frames. Accordingly, a federation can begin with a

limited number of federates and gradually grow by adding new federates as they

are implemented.

In addition, by using an HLA based architecture hybrid simulation, developers

will be capable of adding prevalent construction supporting services, such as

2D/3D visualization capabilities (Rekapalli and Martinez 2007; Rekapalli et al.

2009), automated material and equipment tracking capabilities (Chi et al. 2009;

Azimi et al. 2009; Skibniewski and Jang 2009), and construction cost and

schedule optimization (Adeli and Karim 1997; Karim and Adeli 1999) to hybrid

simulation as supporting federates for the federation. The distributed model

development capability of the HLA framework will also facilitate implementation

of future changes in the methods and technologies utilized within specific areas of

the construction industry by just adjusting those specific areas in the affected

federates.

Every SD, DES, or supporting federate in an HLA federation can use a different

development package; however, the selected package should be able to

communicate with the RTI, and it should be flexible enough to include all the

proposed steps in the hybrid architecture. The detailed methods and requirements

39

for designing and implementing an HLA-based simulation program have been

explained by Kuhl et al. (1999).

2.5. Experimental Model

An experimental hybrid model has been developed for a structural steel

fabrication shop. The main purpose of this model is to investigate whether the

proposed hybrid framework and architecture can address the aforementioned

hybrid modeling challenges (Section 2.2) when applied to a real scale

construction related system. Therefore, the assessment of the experimental model

is mainly focused on testing the performance and functionality of the model rather

than its analysis capabilities. Further elaboration on the experimental case, model

development stages, and model verification follows in the remainder of this

section.

2.5.1. Case Description

The fabrication shop observed for this study fabricates approximately 50,000 tons

of structural steel annually, and in 2008 it completed 30 different projects

involving 3,000 divisions and more than 100,000 pieces. The five different

operation types executed in the fabrication shop are cutting, fitting, welding,

inspection, and painting. In the case study shop, all of the fabricated pieces

sequentially pass the cutting, fitting, welding, and inspection operations, while

only approximately 40% of the pieces require the final fabrication operation:

40

painting. This fabrication shop contains a main cutting shop which serves all

kinds of pieces; three fitting/welding shops, each of which have been designed to

serve one of the three types of pieces (i.e. heavy, average, and light); one

inspection station; and one painting station. There are also three areas for storing

in-progress pieces and internal movers (i.e. rail-based carts and cranes) that

handle all the required movements inside the fabrication shop (see Figure 2-5).

Figure 2-5. Shop structure and material flow of the experimental case

2.5.2. Fabrication Shop Hybrid Model Development

The fabrication shop hybrid model development has been performed based on the

modeling framework and modeling architecture introduced in Sections 3 and 4. In

the rest of this section, different steps of the fabrication shop model development

have been explained. During the explanation of the model development process,

several terms related to the fabrication shop are utilized.

1) Conceptual Design of Fabrication Shop

The operation parts of the fabrication shop, as mentioned in Section 2.5.1, are

simulated by the DES model. Additionally, several managerial and context-level

feedback loops have been considered within the fabrication shop and are modeled

M
id

-S
to

ra
g

e

Light
Pieces

Inspection

PaintingFitting Welding

Average
Pieces Fitting Welding

Heavy
Pieces Fitting Welding

Raw
Materia

Pieces

Cutting

Shop M
id

-S
to

ra
g

e

M
id

-S
to

ra
g

e

41

through SD. Furthermore, hybrid interactions among the feedback loops and

operation parts of the fabrication shop have been captured through basic hybrid

structures. Figure 2-6 demonstrates two examples of the utilized feedback loops

for the fabrication shop, and Figure 2-7 shows their related basic hybrid structures

while feedback loops interact with the operation part of the fabrication shop.

Figure 2-6. Sample managerial and context-level feedback loops

a) Overtime Loop

b) Station Workload Pressure

42

Figure 2-7. Sample basic hybrid interactions used in the model. Bold fonts are
used for interface variables.

In Figures 2-6 and 2-7, schedule delay shows the total number of days that

different divisions of a project are behind the schedule; utilization level shows the

portion of time that a station has been busy with serving the assigned jobs; and

overtime is the additional working hours that fabrication shop managers have set

for the fabrication shop to compensate for project delays.

a) Parallel interaction between overtime loop and shop operation

b) DES dominated interaction of station workload pressure

Schedule Delay

Utilization

Shop Productivity Factor

Cutting Fitting Welding Inspection Painting

Set Over Time

Cutting Fitting Inspection PaintingWelding

43

In model (a) (Figure 2-7), the overtime setting policy exhibits a parallel

interaction with the fabrication shop operation. According to the schedule delay

and utilization level, which are calculated and sent by the DES part of the basic

hybrid structure, shop managers decide whether to increase or decrease the

overtime. The set overtime affects the operating hours of the fabrication shop.

Additionally, the fatigue level that results from the set overtime will have its

influence on the productivity factor of the fabrication shop (see [Sterman, 2000, p.

581] for more information on effects of set overtime on productivity). Model (b)

(Figure 2-7) is a DES-dominant basic hybrid model which contains autonomously

set feedback within every single station. This model captures the direct effect of

the utilization level on station productivity at every single station.

Among the different basic hybrid structures utilized, the DES model of the

fabrication shop operations in its entire hybrid interactions participated in parallel

or as a dominant part to all other related parts. Thus, it was considered to be the

Top-Center Level modeling Part (TCLP) of the experimental case. Additionally,

there were no SD dominant basic structures recognized for the experimental case.

The main reason is because the DES modeling part of the fabrication shop was

put at the highest level of interest for the case study, and because all the other SD

modeling part were involved as supplements to it.

44

2) Fabrication Shop Time Advancing Assessment

Table 2-1 presents a brief assessment of the interacting variables related to the

basic hybrid structures (a) and (b) presented in Figure 2-7. According to the data

presented, there are a total of six contact points of hybrid interactions: three

initiated from the SD model, and three initiated from the DES model. To

determine potential challenges regarding the time advancing issue, an assessment

of the interacting variables identified was performed.

Table 2-1. Brief assessment of the interacting variables of basic hybrid models

 Initiator Receiver

 Variable Model
Variable

Type
Updating

Rate
Variable Model

Variable
Type

Updating
Rate

Time
Issue

a

Overtime SD Discrete Daily
Operation
Duration

DES Continuous
Per

Minute

No

Shop
Productivity

SD Continuous Daily No

Schedule
Delay

DES Discrete Daily Request for
Overtime
Change

SD Discrete Daily
No

Shop Max.
Utilization

DES Continuous
Per

Second
No

b

Station
Utilization

DES Continuous
Per

Second
Station

Productivity
SD Continuous

Per
Second

No

Station

Productivity
SD Continuous

Per

Second

Operation

Duration
DES Continuous

Per

Minute Yes

Based on the five forms of interacting variables (see Section 2.3.2), the only

critical time advancing issue occurs in model (a), where the station productivity is

updated every second based on the station utilization rate and the shop

productivity factor. However, duration updates for a station operation are

normally performed every several minutes. The hybrid interactions at this point

might require sixty extra rescheduling occurrences of the finish time for every

45

scheduled operation. Following the proposed MLC approach (Section 2.4.1), an

MLC of 1% is set for the station productivity.

Interactions at all the other interface variables are not critical; this means that the

interaction initiators either have longer updating rates, or they originated from the

DES part of the hybrid model. For example, the “Overtime” variable in the SD

part of the hybrid model (a) is updated every day and has an effect on “Operation

Duration” which is updated every minute. In this case, even if Overtime occurs

every day, it will only change one pre-scheduled event out of hundreds of

scheduled and occurring events. Thus, although the Operation Duration in the

DES component will be impacted, it will have a minimal effect on the total

system simulation time.

3) Fabrication Communication Architecture

While the estimated number of calculations required for the SD parts was lower

than the DES-related calculations, all of the SD-based models have been assigned

to one federate. Thus, the hybrid simulation of the fabrication shop federation

consists of one SD and one DES federate. There are also two supporting federates

recognized for the hybrid model: (1) a federate for communicating with the

company’s main data server, and (2) a calendar federate to regulate the current

time and date within the federation. Figure 2-8 shows the top level architecture for

the federation and how different federates (i.e. SD, DES, Calendar and Data

46

Management) communicate only to the RTI which works as a bridge for all

required communications.

Figure 2-8. Top-level architecture of the hybrid model

4) Fabrication Implementation

The Construction Synthetic Environment (COSYE) (AbouRizk and Hague 2009),

an HLA-based framework developed especially for construction engineering and

management researchers at the University of Alberta, has been employed for the

hybrid modeling. For more flexibility in implementing the proposed architecture

and because of its compatibility with COSYE, Microsoft Visual Studio (VS) 2008

was used as a general programming tool to implement the hybrid model. SD

components were characterized by discrete difference equations (i.e. a set of

equations connecting differences between consecutive values of functions) and

were coded directly in VS. However, to implement the DES component of the

model, the DES-related Dynamic Link Library (DLL) files provided by

Simphony.NET 3.5 (http://irc.construction.ualberta.ca/Simphony35/), developed

by construction engineering and management researchers at the U of A, have been

employed. Furthermore, MS Access 2007 was used as an interim database to

Calendar DES
Data

Management
SD

RTI

47

handle the required data link between the simulation program and the

collaborative company’s SQL server database.

The four federates and the Object Model Template (OMT) were implemented as

different projects of a VS solution in order to be able to distribute them among

different computers. The OMT contains the object classes and the attributes (i.e.,

interacting variables) which are shared among multiple federates. Table 2-2

presents the OMT that has been used in the steel construction federation.

According to HLA terminology, when a federate is responsible for updates to an

attribute, the federate is Publishing that attribute (represented by P in the table);

when a federate uses the updated values of an attribute, the federate is Subscribing

to that attribute (represented by S in the table). In addition to shared object classes

and their attributes, the OMT should be aware of the Publishing and Subscribing

federates. Every attribute should have at least one Publishing federate and one

Subscribing federate to be eligible for OMT inclusion. The shared OMT contains

four object classes, ShopProductivity, StationProductivity, Calendar, and

PieceEntity, which handle all required data exchanges inside the hybrid

federation. ShopProductivity and StationProductivity objects contain the

recognized interface variables (Table 2-1), while the main hybrid interacting

variables in the Calendar and PieceEntity objects contain supporting variables to

enable communication among the supporting federates with the SD and DES

federates. Because the supporting federates, i.e., Data Management and Calendar,

48

provide services to the other federates they will do more Publishing than

Subscribing; for the main federates, i.e., DES, and SD, I expect more Subscribing.

Table 2-2. Steel Construction Federation Object Model Template

Object Class Attribute Type
Federates*

DES SD Data Management Calendar

Calendar

StartDate Date S P
CurrentDate Date S S P/S P/S
CurrentShiftHours Integer S S P P
CurrentShiftType Integer S S P P
DayNo Integer S S S P
DesireOvertime Double P S
MaxOvertime Double S P
SetOverTime Double S P P

Entity (Piece)

PieceID Integer S P
 PieceStartDate Date S P
 Weight Integer S P
 Cutting Man Hour Double P/S P/S
 Fitting Man Hour Double P/S P/S
 Welding Man Hour Double P/S P/S
 Inspection Man Hour Double P/S P/S
 Painting Man Hour Double P/S P/S
 CuttingStart Date P/S P/S
 CuttingFinish Date P/S P/S
 FittingStart Date P/S P/S
 FittingFinish Date P/S P/S
 WeldingStart Date P/S P/S
 WeldingFinish Date P/S P/S
 InspectionStart Date P/S P/S
 InspectionFinish Date P/S P/S
 PaintingStart Date P/S P/S
 PaintingFinish Date P/S P/S

Shop
Productivity

DelayRate Double S P
 TotalDelay Double S S P
 Accuracy (MLC) Double S P S

Station
Productivity

ID Integer P S
 CurOperator Integer P/S P/S

MaxOperator Integer P S
MinOperator Integer P S
Productivity Double S P
State Integer P S
Utilization Double P S

* P stands for Publisher of an attribute and S stands for Subscriber to an attribute.

In the federation, the Calendar federate is responsible for advancing the date and

determining the working hour arrangements (day shifts, night shifts and

49

overtime). Users can enter upcoming holidays, and the model will take care of set

holidays during the simulation. The Calendar federate publishes the date

information to the federation to be used by other federates. Figure 2-9 presents the

interface form of the calendar federate. The calendar interface has three main

parts. The first part determines the required information for linking to the RTI,

which is similar in all federates. The second customizes the working hours, and

the third provides a place for setting the holiday schedule.

Figure 2-9. Interface of the calendar federate.

The Data Management federate provides database communication services for

different federates. This federate retrieves the piece information from the

database, directs the piece information to the fabrication shop (i.e., DES and SD

federates) and reports the fabrication completion of the pieces to the database.

Figure 2-10 presents the interface form of the Data Management federate. The

federate interface allows the user to set the simulation start time and the duration

50

of the shop simulation as the main constraints for running related queries in the

database; other inputs to this federate are the importance weights of different

fabrication operations. The federate reports some managerial project information

through the interface – such as delays, number of completed pieces, and finish

time – and writes aggregated reports on project performance to the database.

Figure 2-10. Interface of the Data Management federate.

The Discrete Event Simulation (DES) federate captures the operational part of the

fabrication process. The fabrication operation starts by sending the fabrication

orders and their related materials to the fabrication shop. The DES federate then

simulates the flow of materials in the fabrication shop from one station to the

other and sends the pieces out when the required set of operations is completed.

Figure 2-11 presents the main interface of this federate. Three buttons on the left

side of the form open the detailed forms for entering the specifications of stations

51

(Figure 2-12), mid buffers or storage (Figure 2-13) and movers including cranes

and rail cars (Figure 2-14) within the fabrication shop. The pink and green buttons

on the middle of the form represent different stations, including cutting, fitting,

welding, inspection and painting. The user can set the number of dedicated

stations for each operation type, e.g., welding, by selecting the proper number of

stations from the drop down combo box on the top of each series of stations. The

buttons are green when stations have no job to do and are pink with the number of

the piece written on them when they are busy serving pieces. The initial number

of in-progress pieces at each station is also listed in the list boxes at the bottom of

the form.

Figure 2-11. Main interface of the DES federate.

52

Figure 2-12. Station specification form in the DES federate.

Figure 2-13. Mid-buffers or storage specification form in the DES federate.

Figure 2-14. Movers specification form in the DES federate.

53

Finally the System Dynamics (SD) federate captures the effects of non-

operational mechanisms on the fabrication shop’s productivity. The non-

operational mechanisms which I included in the SD model are: fatigue, skill level,

hiring and firing, and the work balance (detailed supporting equations used in the

program for the SD model are presented in Section B.2 of Appendix B). Figure 2-

15 presents the interface of this federate. The user can enter the marginal

inaccuracy that is acceptable for calculating and reporting the productivity rate

through different feedback loops in the model. Different types of feedback loops

have been put in the tabular forms on the main form and the user can browse

through them during the simulation run and see the changes in the non-operational

mechanisms of the fabrication shop.

Figure 2-15. Interface of the SD federate.

54

The Visual Basic codes used for developing different federates are presented in

Appendix B.

2.5.3. Performance Test

The proposed modeling framework was efficiently employed to design different

parts of the steel fabrication hybrid model, whereas the model implementation

was subsequently conducted based on the proposed architecture. One of the most

significant achievements of the proposed architecture was the introduction of the

interface variables to the entire federation by easily implementing an OMT

project as the container of all the interacting variables inside the HLA-based

architecture.

To test the usefulness of the hybrid architecture, two types of quantitative

evaluation have been conducted: (1) investigating the effects of the MLC concept

in the achieved simulation results, and (2) comparing the effects of distributed

simulation (based on the HLA framework) and MLC concept on the simulation

time of the fabrication shop model. In each evaluation, two types of models were

compared: (1) the proposed hybrid modeling, which utilizes the MLC concept,

and (2) base hybrid modeling, in which all variable updates are immediately

reflected in the interaction receiver components of the model. Other aspects of the

modeling approach stay the same.

55

The MLC concept should improve the total simulation time without affecting the

final achieved results of the simulation compared to the base model. Thus, the

first evaluative test was conducted to compare the achieved results of the two (i.e.

proposed and base) models. The hybrid simulation models are developed to

examine the effects of the latest changes or different scenarios in the modeled

system and are meant to be regularly used during the job. Hence, any

enhancements that keep their simulation time within a reasonable range (i.e. no

more than several hours) will make the hybrid models more applicable to real

cases. The second evaluative test was conducted to assess how introducing the

distributed simulation and MLC concepts would affect the reduction of the hybrid

models’ simulation time. Simulation time of hybrid simulation models can

significantly affect the applicability of the hybrid SD-DES models in the real

construction decision making problems. The complexity involved in such hybrid

simulation models requires longer simulation runs compared to the conventional

models; multiple decision alternatives usually should be run and tested to be able

to improve the final decision; construction managers are usually under time

pressure to decide and make their final decisions. In this perspective reducing the

simulation time in many hybrid modeling applications can affect the construction

managers’ choice on using or not using a hybrid modeling approach in their

decision making process.

All of the simulation runs were based on three months of material feed to the

fabrication shop from January 20, 2009 to April 20, 2009. During this period, the

56

steel materials required for fabricating (approximately 20,000 pieces) were fed

through the steel fabrication shop. The simulation runs were completed when all

of the pieces were fabricated. Sample input data-tables, containing piece data, and

output data-tables, used for storing the model reports, are presented in Appendix

B.

1) MLC Verification

Table 2-3 presents the duration required to complete the total assigned fabrication

jobs, which is derived from five different runs of the two developed hybrid

models. The difference between duration time achieved in the proposed and base

hybrid models is 0.41%, which is less than one percent of the accepted level of

inaccuracy (i.e. the established value for the MLC). Normally such a level of

inaccuracy within the construction industry is considered minimal and does not

affect the system analysis and final decision-making processes in construction.

Table. 2-3. Comparison of the results of the proposed and base hybrid models

 Duration (Day)

 Average Standard Deviation Avg. Difference

Proposed Model 144.2 2.9
0.41%

Base Model 144.8 3.0

As a result, this test verifies the MLC concept by affirming the trivial difference

between the results of the base hybrid model and the proposed hybrid model.

However, it should be noted that this test was not conducted to evaluate the

57

accuracy of the two models, but was intended to simply depict how adopting the

MLC concept can affect the expected results of hybrid models.

2) Simulation Time

To assess the effects of applying the MLC to the hybrid models, both the

proposed and base hybrid models were run in a centralized manner using a single

computer. Additionally, the models were run in a distributed manner, using two

computers, to evaluate the concurrent effects of the COSYE framework and the

MLC concept on simulation time. The computers that were used each have 3.06

GHz CPU and 1 GB RAM, and the speed of the main local network was 1 gigabit

per second (Gbps). Table 2-4 shows the achieved average simulation time for

different simulation runs, which is calculated based on the five different

observations for each case.

Table. 2-4. Simulation time for different developed models

Model
Hybrid Interactions Computer

Employed
Average Simulation

Time (minute) SD to DES DES to SD Total
Proposed hybrid

model run 19,500 42,000 61,000 One 126
Two 127

Base hybrid
model run 35,000 58,000 93,000 One 281

Two 323

As was expected, by using the MLC, the number of hybrid interactions

significantly decreased from the base hybrid model to the proposed hybrid model.

As presented in Table 2-4, although MLC’s direct effect is on the interaction

reduction from the SD part of the model to the DES part, the reduction has

happened at both directions and approximately at the same level (i.e. close to

58

15,000 interactions at each side). This shows while MLC eliminates insignificant

interactions from the SD part of the model, the consequent changes within the

DES parts which accordingly would cause hybrid interactions originated from the

DES part also have been eliminated.

As a result, the proposed hybrid model had a shorter simulation time, 55% shorter

than that of the base hybrid model. Furthermore, when comparing the centralized

and distributed simulation of each type of simulation model, it can be seen that

distributing the simulation run causes a small increase in the proposed hybrid

model and a 15% increase in simulation time in the base model. The main reason

for this contradictory result is related to the number of data interactions in the

base model, where every hybrid interaction is reported to the RTI to be considered

in simulation. Thus, the number of data transmissions through the employed

network will be much higher than in the proposed hybrid model simulation.

Further, although data communication between computers via a computer

network is slower than the communication within a computer, the communication

delays involved in base hybrid simulation offset the time saved by distributing the

simulation between two computers.

The first distributed tests were held in a 100 Mbps local network that caused a

longer simulation time even for the proposed hybrid model. Changing the local

network speed to 1 Gbps resulted in an improved simulation time for the proposed

hybrid model but not for the base hybrid model (see Table 2-4). These tests

59

indicated that simulation time is highly sensitive to the way in which different

federates are distributed in different computers. Because network speed is a major

constraint for distributed simulation speed, better results will be achieved when

highly interacting federates are located on one computer. So, to reduce the

simulation time in this federation the SD and DES federates, which share more

interactions, were run on one computer, and two supporting federates were run on

another computer.

2.5.4. Expandability Test of the Model

To investigate the expandability capability of the models, another supporting

federate, called the Visualization federate, was added to the federation several

months after the development of the first group of federates. The Visualization

federate visualizes the progress of the fabrication shop using 3D models of

structural steel projects. This federate lists the current steel divisions that are

under way in the fabrication shop. The user can select any division to load the

related 3D model. The completed pieces in the fabrication shop are found and

highlighted inside the 3D model. Different colors have been used to visually

illustrate the cost and time performance of the completed pieces (resulting in a 5D

model). Figure 2-16 presents the main interface of this federate. In-progress steel

divisions are listed in the list box on the left side of the form. The user can select

every in-progress or completed division from this list box and push the Change

the Division button; the federate will then show the progress and performance

60

indices of related pieces in the list box on the right. Because the visualization

process slows down the simulation, the default option in the visualization federate

is set to just update the progress in the text. The user can also select the Show in

Tekla radio button on the form and ask the federate to run Tekla, a structural steel

3D detailing package (Tekla Corporation, Finland, http://www.tekla.com), and

reflect the progress concurrently in the 3D model. The color coded structural steel

3D model in Figure 2-17 shows a snap shot from Tekla during the model run (for

further information about the visualization federate please refer to Azimi et al.

2011)

Figure 2-16. Interface of the Visualization federate

61

Figure 2-17. A snap shot from Tekla during the model run

To further test expandability of the model, I successfully integrated the steel

federation with a process control system based on RFID technology. The RFID

tags were linked to the pieces and used for tracking the current location of the

piece within the shop floor and updating the most recent operations done on the

pieces. These data then were used for setting up the initial condition of the

fabrication shop and using the most current data for the simulation (see Azimi et

al. 2011 for the detail information). Figure 2-18 presents a schematic view of the

way that the simulation federation was integrated with RFID technology.

62

Figure 2-18. A schematic view of integration between the developed federation
and RFID technology

2.6. Chapter Conclusion

The hybrid SD-DES modeling approach is a new approach introduced for

dynamically capturing both operation and context levels of complex systems.

Using such a powerful tool for modeling complex construction systems requires a

robust modeling framework and architecture to assist hybrid model developers in

the design and implementation stage of the construction hybrid model

development. In this part of the research I introduced and validated a new hybrid

framework and architecture which addresses challenging issues involved in the

Cutting Fitting Welding

63

method of model development and presents a step by step guide for construction

hybrid model developers.

Introducing different types of the basic hybrid models and the interface variable

concept provides a guideline to model developers during the design phase of the

hybrid model. The MLC concept was introduced as a response to the

computational problem made because of the mutual effects of SD and DES model

components to increase the efficiency of the simulation runs. This research also

proposes use of the HLA framework to create equally accessible communication

channels for all of the model components in order to eliminate the need to create

bilateral communication channels between every two interacting variables, and to

facilitate model expansion over time.

To test the applicability and functionality of the proposed hybrid framework and

architecture for real world construction related systems, a case study was

conducted using an actual structural steel fabrication shop. The development of

the case study affirmed the appropriateness of the proposed hybrid framework and

its related concepts to be used for the conceptual design phase of hybrid model

development. The computational results of the evaluation also confirmed that the

proposed hybrid model can capture a system as realistically as the base hybrid

model can, with significantly faster simulation runs and an easier implementation

of its communication channels, which is made possible by adopting the HLA

64

framework. The use of HLA and its distributed implementation capability showed

its benefits during the expansion of the model which was developed.

The implementation of the hybrid model requires significant effort, but it should

be considered that the set of tools, methods, and procedures provided by the HLA

can facilitate the entire implementation process. In addition, I found

implementation of the DES federate to be the most challenging part of the

implementation process; it is expected that using an HLA based simulation

package, which provides a visual approach to DES modeling, may reduce the

duration of implementation for DES federates.

One reason for adopting the hybrid simulation modeling approach is to capture

real, complex construction systems in greater detail than traditional modeling

tools. The proposed hybrid modeling approach can be used for exploring new

hybrid interactions in the construction industry in order to enhance system

analysis capabilities for construction projects. These new models are expected to

provide new types of analysis for construction managers which were not available

prior to development of such models. Two different applications of hybrid SD-

DES models within the construction industry are described in the rest of the

thesis.

65

CHAPTER 3. Dynamics of Working Hours in Construction 3

3.1. Introduction

Construction project owners generally would like their projects to be finished and

operable as quickly as is practical. To achieve this, one typical method is

increasing construction working hours, using evening and night shifts as well as

overtime. However, this may not be effective: diminished performance during

night and overtime work has been addressed in many studies (e.g, Cohen and

Muehl 1977; Homer 1985; Vidacek et al. 1986; Rosa et al. 1998; Folkard and

Tucker 2003). Research has shown that the adverse effects of overtime or night

shifts on work performance can negate any positive effects of additional working

hours.

Performance reduction due to fatigue during continuous or prolonged work and

the positive effects of a rest allowance (i.e., the length of the rest break divided by

the length of the preceding working period) on performance have been studied

extensively (e.g, Taylor 1911; Rohmert 1973b; Oglesby et al. 1989; Smit et al.

2004; Helton and Warm 2008). For example, Taylor, in the late 19th century,

studied a material handling job in which laborers were loading pig-iron into

gondola cars. The job output increased from 12.5 to 47 long tons per day per man

when Taylor set 58 percent of their time for rest (Oglesby et al. 1989, p. 245).

3 Parts of this chapter have been accepted for publication in the Journal of Construction
Engineering and Management, ASCE.

66

This is an example of how construction managers can use work and rest period

arrangements to maximize productivity.

However, past research into the effects of working hour arrangements on worker

performance shares three main issues which may prevent results from being used

widely in the construction industry: (1) studies are limited to one or two aspects of

work hours (i.e., overtime, time of day, work length, or prolonged working

hours); (2) the results are too narrow, involving specific types of work and levels

of workers with no instructions for generalizing the results; and (3) most are

static, where just one type of work has been assigned to the workers during the

study. In contrast, construction jobs are usually project based and the type of work

that is assigned to the workers is dynamic.

To address these issues, I have developed a computer simulation model that

integrates System Dynamics (SD) and Discrete Event Simulation (DES) to

account for the effects of working hours on performance (i.e., a hybrid SD-DES

model). The SD model continuously sets the level of performance in construction

jobs and captures feedback associated with working hour arrangements; the DES

model follows the construction operation details and provides the SD model with

operational updates, such as worker status (i.e., busy or idle), type of assigned

work and amount of work done. Using this hybrid model, I have completed a

series of quantitative assessments on the effects of working hour arrangements on

work performance, which may assist management personnel in finding working

67

hour arrangements resulting in improved performance and cost savings.

Furthermore, the hybrid model developed in this chapter is basically used as a

validation test for the proposed hybrid framework and architecture in Chapter 2

and demonstrates an instance for the benefits that it can bring to the construction

industry.

3.2. Dynamics of the Working Hours

In this section I describe the SD model development, which accounts for the

effects of a variety of factors impacting performance, in accordance with the

literature. My main focus for these effects is productivity and quality. In this part

of the research, I use the productivity ratio to measure productivity. I consider the

productivity ratio as 100% for a normal skilled person in regular working

conditions, though fluctuations in the productivity ratio can occur due to changes

in the worker and job conditions. To measure quality, reliability (Lee et al. 2005)

is used, an index which indicates the probability of deficiency occurrence.

3.2.1. Dynamics of Prolonged Working Hours

Performance decrease because of fatigue during a prolonged or a continuous

period of working has been attributed to two main causes: (1) decreased muscular

strength because of physical work (e.g., Taylor 1911; Rohmert 1973b; Oglesby et

al. 1989); and (2) increased strain because of over-capacity mental stress (e.g.,

Nuechterlein et al. 1983; Matthews et al. 1990; Smit et al. 2004; Helton and

68

Warm 2008). The recognized dynamics of these two causes have been

summarized in Figures 3-1 and 3-2 and are discussed below. Circle arrows

labeled “B” and “R” in the figures refer, respectively, to the balancing and

reinforcing feedback loops in System Dynamics (SD). In a balancing loop, an

increase in a variable later on causes a reduction in that variable through a causal

feedback loop; in a reinforcing loop, this increase is followed by a further increase

(Sterman 2000).

Figure 3-1. The dynamics of physical fatigue as a result of prolonged high
physical involvement

Figure 3-2. The dynamics of mental fatigue as a result of prolonged sustained
attention

Workload Status

Productivity Ratio
<Working

Hours
Schedule>

<Work
Assignment
Schedule>

Assigned

Work
Work

DoneFabrication Rate

+

Work Assignment Rate

+

+

<Work
Energy
Rate

Index>

Physical

Energy
Energy Recovery

Rate

Energy

Consumption Rate

+ +
R1

B1

Maximum
Energy

Recovery
Rate

Maximum

Physical

Energy

Capacity
+

+-

Physical
Burnout

Fabrication

Workload Status

Productivity Ratio
<Working

Hours
Schedule>

<Work
Assignment
Schedule>

Assigned

Work
Work
DoneFabrication Rate

+

Work Assignment Rate

+

+

<Resource
Consumption

Index>

Attention
Resource

Level Resource
Recovery Rate

Resource
Consumption Rate

+
+

-

R2
Mental
Burnout

B1Fabrication

Maximum
Resource
Recovery

Rate

+

69

1) Dynamics of Physical Fatigue

As a complement to Taylor (1911) and Rohmert (1973a and 1973b), Oglesby et

al. (1989, pp. 240-251) developed a fatigue model based on human energy

consumption. According to Oglesby et al. (1989, pp. 240-251), a typical 25-year-

old healthy man has a maximum energy reservoir of 25 kcal and a recovery rate

of 5 kcal/minute. With no additional activity, the human body requires 1

kcal/minute for basal metabolism. As a result, work which requires an additional

energy consumption rate of less than or equal to 4 kcal/minute can be done

continuously for a long period of time with no fatigue. This 4 kcal/minute energy

consumption resembles the 15% of maximum strength mentioned by Rohmert

(1973b), below which one can do static muscular work with no fatigue. According

to the Oglesby et al. model (1989, pp. 240-251), energy required above the

available 4 kcal/minute is provided by the energy reservoir until it is completely

depleted, resulting in sudden pain and weakness and a drastic decrease in

performance.

Figure 3-1 illustrates the stock and flow diagram of the SD model for physical

fatigue as a result of high physical involvement based on the human energy

consumption theory. In SD, stocks, which appear in rectangles, are the system

variables whose values are accumulated or depleted over time at the rate of the

flow variables linked to the stock; the flow variables are represented by a double

line arrow with a “valve” (an hourglass shape) in the middle. Other variables are

70

called “auxiliary variables” which are represented by plain text. The auxiliary

variables surrounded by angle brackets (“< >”) are read from data tables. Single

line arrows show the cause and effect relations between two variables. The plus

(+) and minus (-) signs on the arrows indicate direct and inverse relations,

respectively, between the variables at the tail and the head of the arrow.

A reinforcing feedback loop, Physical Burnout (R1), is present in the model. The

worker will be in busy status if he/she has Assigned Work to do and if, based on

the Working Hours Schedule, he/she is in his/her working period. Workload

Status value of a worker is 1 if the worker is busy and 0 if the worker is idle. The

value of Workload Status for a group of workers (e.g., working in a station) is

calculated by dividing the number of busy workers by total number of workers. If

the worker is busy, he/she is consuming energy. The Energy Consumption Rate

will be set based on the type of work, using the Work Energy Rate Index, which

represents the energy consumption rate for a range of basic and construction

related activities (Oglesby et al. 1989, p. 248). The level of Physical Energy in the

working period is the result of the gap between Energy Consumption Rate and

Energy Recovery Rate during the last working period. Thus, an Energy

Consumption Rate higher than the Energy Recovery Rate will result in depleted

Physical Energy over time and ultimately a reduced Productivity Ratio. The effect

of Physical Energy depletion on the Productivity Ratio has been considered using

the results of the research done by Rohmert (1973b). A decreased Productivity

71

Ratio reduces the Fabrication Rate, keeps the level of Assigned Work higher, and

consequently will increase the Workload Status of the workers.

Furthermore, as a result of balancing causal feedback loop of Fabrication (B1), a

larger Workload Status will result in an increased Fabrication Rate and a

correspondingly lower level of Assigned Work, resulting in a reduced Workload

Status. In addition to the model variables which are set internally through the

recognized feedback loops, there are two variables which are set externally and

affect dynamics of physical fatigue: Work Assignment Schedule and Working

Hours Schedule. The Work Assignment Schedule contains the list of work

assigned to workers or work stations on a daily or hourly basis. Different factors,

such as scope of contracts, suppliers, financial condition, and construction

managers’ preferences, affect the Work Assignment Schedule. The first three

factors are set externally; therefore, the construction manager’s preference is the

main control mechanism for this variable. The Working Hours Schedule refers to

the shift start time, the length and arrangement of the work and rest periods within

the shifts, and the amount and location of overtime. Setting the Working Hours

Schedule is another control mechanism that construction managers can use to

influence the physical fatigue dynamics. The set of supporting definitions,

equations, descriptions and initial values related to the objects used in the SD

model of physical fatigue are presented below:

1. Maximum Physical Energy Capacity:

72

Type: Constant

Units: Kilocalories (kcal)

Equation:

-

Description: Presents the maximum energy reservoir that can be stored in

the muscles.

Initial Value: 25 kcal (Oglesby et al., 1989, p. 249)

2. Maximum Energy Recovery Rate:

Type: Constant

Units: Kilocalories per minute (kcal/minute)

Equation:

-

Description: Presents the maximum energy recovery rate that can be done

as compensation to the consumed energy.

Initial Value: 5 kcal/minute (Oglesby et al., 1989, p. 249)

3. Work Energy Rate Index:

Type: Constant

Units: Kilocalories per minute (kcal/minute)

Equation:

Chosen based on the type of work; read from the table provided by

Oglesby et al. (1989, p. 248 for more information)

Description: Represents how much energy is going to be consumed

according to the type of task assigned to the worker.

Initial Value: Depended on the type of the task might be a value from 1

kcal/minute to 20 kcal/minute.

4. Energy Consumption Rate:

Type: Flow

73

Units: Kilocalories per minute (kcal/minute)

Equation:

EnergyConsumptionRate� =
Min((Work Energy Rate Index − 1) ∗ WorkloadStatus� + 1, #$%&'()*+,-./%0∆� +
EnergyRecoveryRate�)

Description: Presents the rate of muscular energy consumption in the

worker’s body and is related to the current task performed by the worker.

Initial Value: 1 kcal/minute

t: current time

∆t: length of time interval (= 1 minute)

5. Energy Recovery Rate:

Type: Flow

Units: Kilocalories per minute (kcal/minute)

Equation:

EnergyRecoveryRate� =
Min(MaximumEnergyRecoveryRate, 4)5'676#$%&'()*+,-./%8)9)('�%:#$%&'()*+,-./%0∆� +
EnergyConsumptionRate�)

Description: Presents the rate of muscular energy recovery in the

worker’s body.

Initial Value: 1 kcal/minute

Note: EnergyConsumptionRate and EnergyRecoveryRate are mutually

dependent variables as is shown in the equations for these objects (i.e.,

items 4 and 5); mathematically these equations might form a circular link

error. But while the dependency of these variables is conditional (as a part

of minimum functions), circular link does not happen case here. In the

equation for EnergyConsumptionRate, EnergyRecoveryRate only

contributes to the value of EnergyConsumptionRate where the value of

PhysicalEnergy approaches its lower limit (i.e., 0 kcal), at which point the

second part of the minimum function becomes smaller than the first part.

74

Conversely, in the EnergyRecoveryRate equation, the value of

EnergyConsumptionRate participates in the value of EnergyRecoveryRate

where the value of PhysicalEnergy approaches its upper limit (i.e., 25 kcal)

at which point the second part of the minimum function becomes smaller

than the first part. So, these variables will not concurrently affect each

other and there will be no circular link error for these equations.

6. Physical Energy:

Type: Stock

Units: Kilocalories (kcal)

Equation:

PhysicalEnergy� =
PhysicalEnergy�:∆� + (EnergyRecoveryRate�:∆� − EnergyConsumptionRate�:∆�)∆t
Description: Represents the level of physical energy in the worker’s

muscles

Initial Value: 25 kcal

7. Productivity Ratio (Physical Fatigue Factor):

Type: Auxiliary Variable

Units: Percentage (%)

Equation:

ProductivityRatioFactor ∗�

=
>?@
?A 100%; if PhysicalEnergy� = 0 and 0 ≤ Work Energy Rate Index ≤ 5.290%; if PhysicalEnergy� = 0 and 5.2 < LMNO PQRNST UVWR XQYRZ ≤ 5.480%; if PhysicalEnergy� = 0 and 5.4 < LMNO PQRNST UVWR XQYRZ < 5.865%; if PhysicalEnergy� = 0 and 5.8 ≤ Work Energy Rate Index < 7.50.5; else

_

* Equation is based on the research done by Rohmert (1973b)

Note: The final Productivity Ratio in the model is calculated as a product

of four Productivity Ratio Factors: (1) physical fatigue, (2) mental fatigue,

(3) overtime and (4) time of day.

75

Description: Productivity ratio represents the speed of the work done by

the worker. I consider the productivity ratio as 100% for a normal skilled

person in regular working conditions, though fluctuations in the

productivity ratio can occur due to changes in the worker and job

conditions.

Initial Value: 100%

8. Fabrication Rate:

Type: Flow

Units: Man-hours per minute

Equation:

Is set in discrete event simulation (DES) model and is sent to the SD

model. In this case study the entities (representing pieces in the DES

model) which have been served and have left an activity (or work station

in the DES model) during the last time interval (minute) determine the

Fabrication Rate during that time interval. The value of fabrication rate is

a function of Productivity Ratio, which affects the service time, and the

time that the activity is busy serving the entities.

Description: Represents the rate of the work done over the time interval.

Initial Value: 0 man-hours per minute.

9. Work Assignment Rate:

Type: Flow

Units: Man-hours per minute

Equation:

Is set in discrete event simulation (DES) model and sent to the SD model.

In this case the entities arriving to an activity (or work station in the DES

model) during the last time interval (minute) determine the Fabrication

Rate during that time interval. The entities’ arrival is a function of Work

Assignment Schedule and prior activities’ performance.

76

Description: Represents the rate of the work assigned to an activity over

the time interval.

Initial Value: 0 man-hours per minute.

10. Work Assignment Schedule:

Type: Exogenous Variable

Units: Man-hours per day

Equation:

Is read from the schedule developed for the project on the daily basis. In

the DES model, all of the assigned work from the schedule for the day is

released to the related activity (or work station, in the DES model) in the

first minute (or interval) of the day.

Description: Represents the daily work assigned to an activity. This is

usually set for the first activities on the chains of activities (tasks) of the

project.

Initial Value: 0 man-hours per day.

11. Work Done:

Type: Stock

Units: Man-hours

Equation:

WorkDone� = WorkDone�:∆� + (FabricationRate�:∆�)∆t
Description: Represents the total man-hours spent for the completed

tasks.

Initial Value: 0 man-hours.

12. Assigned Work:

Type: Stock

Units: Man-hours

Equation:

77

AssignedWork� =
AssignedWork�:∆� + (WorkAssignmentRate�:∆� − FabricationRate�:∆�)∆t
Description: Represents the total man-hours to be served in an activity (or

work station in the DES model).

Initial Value: 0 man-hours.

13. Working Hours Schedule:

Type: Exogenous Variable

Units: No unit

Equation:

Is read from the working hours schedule in every time interval (minute).

The time interval might be working (equal to 1) or non-working (equal to

0).

Description: Determines whether workers in the activity are present on

their related activity (or work station in the DES model) or off the activity.

Initial Value: 0

14. Workload Status:

Type: Auxiliary Variable

Units: No unit

Equation:

Workload status is determined in DES model. In the DES model the value

of Workload Status in an activity, with a number of resources (or workers)

assigned to, is calculated by dividing the number of busy resources by the

total number of the resources. The value of Workload Status is a function

of Assigned Work (or entities) to the activity (or work station in the DES

model), which determines whether there are jobs to be done, and the

Working Hours Schedule, which determines whether it is working or non-

working time.

78

Description: Represents the fraction of the activity which is busy serving

assigned entities (or pieces in the DES model).

Initial Value: 0

2) Dynamics of Mental Fatigue

The “mindlessness” theory and the limited resource theory are two rival theories

for describing the origins of mental fatigue (Helton and Warm 2008). The

mindlessness theory states that the worker’s mind becomes filled with unrelated

thoughts and daydreams during prolonged mental tasks; responses to infrequent

signals deteriorate and more errors occur (Healy et al. 2004; Steinborn et al.

2009). In the limited resource theory, the human mind has limited resources for

thoughtful processing of assigned tasks. There is a recovery rate for the resource

reservoir and a consumption rate for mental activities. In prolonged sustained

attention tasks, where the resource consumption rate exceeds the resource

recovery rate, the resource reservoir decreases over time. This results in a

reduction in the worker’s perceptual sensitivity and a decline in the productivity

ratio. Smit et al. (2004) and Helton and Warm (2008) show that the mindlessness

theory cannot justify the worker’s reaction time increase (or, in this research’s

terminology, productivity ratio decrease) during prolonged working hours for

mentally demanding tasks. I have therefore based the model of mental fatigue

during prolonged working hours on the limited resource theory.

Figure 3-2 presents the dynamics for mental fatigue as a result of sustained

attention tasks based on the limited resource theory. Here, again, mental fatigue

79

dynamics consist of a Mental Burnout reinforcing feedback loop (R2) and a

Fabrication balancing feedback loop (B1). Both feedback loops follow similar

causal chains as the physical fatigue dynamics. As in the physical fatigue

dynamics, Work Assignment Schedule and Working Hours Schedule are two

external variables which construction managers can set. The set of supporting

definitions, equations, descriptions and initial values related to the objects used in

the SD model of mental fatigue are presented in below:

1. Maximum Resource Recovery Rate:

Type: Constant

Units: Percent per minute (%/minute)

Equation:

-

Description: Presents the maximum resource recovery rate that can occur

as compensation for the consumed resources.

Initial Value: 1 %/minute

2. Resource Consumption Index:

Type: Constant

Units: Percent per minute (%/minute)

Equation:

-

Description: Determines the mental resource consumption rate according

to the type of task assigned to the worker.

Initial Value: 1.1 %/minute for sustained attention tasks and 1%/minute

for non-sustained attention tasks.

3. Resource Consumption Rate:

80

Type: Flow

Units: Percent per minute (%/minute)

Equation:

ResourceConsumptionRate� =
Min((ResourceConsumptionIndex − MaximumResourceRecoveryRate) ∗
WorkloadStatus� ∗ SustainedAttention, c��-,�'d,e-&d7.(-f-g-*0∆� +
ResourceRecoveryRate�)

t: current time

∆t: length of time interval (= 1 minute)

Description: Presents the rate of mental resource consumption in the

worker which is related to the current task performed by the worker.

Initial Value: 0 %/minute

4. Resource Recovery Rate:

Type: Flow

Units: Percent per minute (%/minute)

Equation:

ResourceRecoveryRate� = Min(MaximumResourceRecoveryRate ∗ (1 −
WorkloadStatus�), hii%:c��-,�'d,e-&d7.(-f-g-*0∆� + ResourceConsumptionRate�)

Description: Presents the rate of mental resource recovery in the worker.

Initial Value: 0 %/minute

Note: ResourceConsumptionRate and ResourceConsumptionRate are

mutually dependent variables as is shown in the equations for these

objects (i.e., items 3 and 4); mathematically these equations might form a

circular link error. But while the dependency of these variables is

conditional (as a part of minimum functions), circular link does not

happen here. In the equation for ResourceConsumptionRate,

ResourceConsumptionRate only contributes to the value of

ResourceConsumptionRate where the value of AttentionResourceLevel

approaches its lower limit (i.e., 0%), at which point the second part of the

81

minimum function becomes smaller than the first part. Conversely, in the

ResourceConsumptionRate equation, the value of

ResourceConsumptionRate participates in the value of

ResourceConsumptionRate where the value of AttentionResourceLevel

approaches its upper limit (i.e., 100%) at which point the second part of

the minimum function becomes smaller than the first part. So, these

variables will not concurrently affect each other and there will be no

circular link error for these equations.

5. Attention Resource Level:

Type: Stock

Units: Percentage (%)

Equation:

AttentionResourceLevel� =
AttentionResourceLevel�:∆� + (ResourceRecoveryRate�:∆� −
ResourceConsumptionRate�:∆�)∆t
Description: Represents the level of availability of mental resources in the

worker compared to the maximum possible level of the worker’s mental

resources.

Initial Value: 100%

6. Productivity Ratio (Mental Fatigue Factor):

Type: Auxiliary Variable

Units: Percentage (%)

Equation:

ProductivityRatioFactor � = AttentionResourceLevel�
* Equation is an implicit result from the research done by Rohmert (1973b)

and Smit et al. (2004)

82

Note: The final Productivity Ratio in the model is calculated as a product

of four Productivity Ratio Factors: (1) physical fatigue, (2) mental fatigue,

(3) overtime and (4) time in the day.

Description: The Productivity ratio represents the speed of the work done

by the worker. I consider the productivity ratio as 100% for a normal

skilled person in regular working conditions, though fluctuations in the

productivity ratio can occur due to changes in the worker and job

conditions.

Initial Value: 100%

7. Remaining Objects

The rest of the objects, including Fabrication Rate, Work Assignment Rate,

Work Assignment Schedule, Work Done, Assigned Work, Workload

Status and Working Hours Schedule, have been explained in the dynamics

of Physical Fatigue.

One issue that arises when developing a dynamic model of mental fatigue based

on the limited resource theory is that its effective parameters, including Maximum

Resource Capacity, Resource Consumption Index and Maximum Resource

Recovery Rate, have not yet been thoroughly quantified. I used the commonalities

among different empirical case studies and used relational or percentage based

values for quantifying different parameters in limited resource theory. One

commonality among empirical case studies is that the productivity ratio decreases

nearly linearly (e.g. Nuechterlein et al. 1983; Matthews et al. 1990; Smit et al.

2004; and Helton and Warm 2008). To estimate the slope of the productivity ratio

reduction, I used Smit et al. (2004)’s study, in which the effects of mental fatigue

were isolated via a controlled environment. In addition, continuous task duration

83

in the study was 50 minutes, which is closer to a typical construction working

period duration than task durations used in other similar studies (Nuechterlein et

al. 1983, 5 to 10 minutes; Matthews et al. 1990, 5 to 10 minutes; Helton and

Warm 2008, 12 minutes). Smit et al. (2004) found no significant effects n

performance in low-demand mental tasks, but found performance decreases

during high-demand (or sustained attention) tasks by 0.1% per minute, because of

the gap between resource consumption and resource recovery rates. During rest

time the mental resource “reservoir” is refilled. According to Rohmert (1973b), a

rest allowance of 10% is required for recovery from fatigue caused by mental

work. This means the required recovery period is one tenth of the working period,

so the resource recovery rate is 10 times the gap between Resource Consumption

Rate and Resource Recovery Rate during work (i.e., 0.1% per minute), or 1% per

minute.

For the mental fatigue dynamics I postulated that availability of all (or 100% of)

mental resources shows the maximum mental resource capacity, regardless of the

actual value; the value of Attention Resource Level is set as a percentage of the

maximum mental resource capacity. The mental resource value component of all

other parameters in the limited resource theory is also determined as a percentage

of the maximum mental resource capacity. So, the Maximum Resource Recovery

Rate will be 1% per minute, and the Resource Consumption Index simply returns

1.1% per minute for all sustained attention tasks. For non-sustained attention

tasks, which do not consume mental resources over time, Resource Consumption

84

Index is equal to or less than Maximum Resource Recovery Rate. For the sake of

simplification I assumed the Resource Consumption Index for all non-sustained

attention tasks was equal to 1% per minute (equal to Maximum Resource

Recovery Rate) since this will result in a mental resource consumption-recovery

balance similar to reality. While the rate of resource consumption and resource

recovery are set based on the changes in worker performance presented in

Rohmert (1973b) and Smit et al. (2004), there is a one-to-one relation between

changes in the Attention Resource Level and Productivity Ratio.

3.2.2. Dynamics of Time of Day

Typically, performance is higher during the day and lower at night (Dijk et al.

1992; Folkard and Tucker 2003; Baltter and Cajochen 2007); however,

performance level fluctuates hourly. Interestingly, both work speed and work

quality follow almost the same 24-hour trend (Baltter and Cajochen 2007).

Because work performance fluctuates throughout the day, it is expected that work

start and finish time can affect final work performance. Figure 3-3 illustrates the

dynamics of performance factor changes over 24 hours. Hour in the Day Index

reflects the hourly fluctuations in the performance indexes and is the main change

driver in the model. It is set based on the normalized circadian performance

changes provided by Folkard and Tucker (2003). For example, using the

normalized performance changes and the work specification, productivity ratio in

the case study fluctuates from 73% at 3 am to 107% at 10 am.

85

Figure 3-3. The dynamics of performance factor changes based on biological
clock

Details of the supporting definitions, equations, descriptions and initial values for

objects used in the dynamic model of the time of day are presented below:

1. Hour in the Day Index:

Type: Exogenous Variable

Units: Percentage

Equation:

For calculating the Hour in the Day Index in the case study, first I

averaged the provided normalized fluctuations by Folkard and Tucker

(2003) during the day and night shifts of the case. Then, I acquired the

average productivity ratios and reliabilities of the day shift and night shift

through a series of interviews with the managers and superintendents at

the collaborative company. The results are summarized in Table 3-1.

Table 3-1. Average performance indexes during day and night shift

Average Normalized

Values*
Average Productivity

Ratio **
Average

Reliability**

Day Shift Average (5:30am to
4:00pm)

0.29 100% 1.0%

Night Shift Average(4:30pm
to 2:30am)

-0.13 95% 1.5%

* Based on estimated values from the normalized diagram provided by Folkard
and Tucker (2003)

<Work Assignment

Schedule>

Assigned

Work
Work done

Fabrication RateWork Assignment Rate

<Hour in the Day

Index> Productivity Ratio

Reliability

+-

86

** Based on interviews with the shop managers in the collaborative company

Then, hourly fluctuations in the productivity ratio and reliability were

calculated through a relative equation between actual and normalized

averages for the day shift and the night shift by using the following

formula:

PIF� = kXlmn + opqrs:opqtsturs:tuts × (mwx − mwmn)
PIFt: Performance Index Factor at time t

PIFDS: Performance Index Factor average for the Day Shift

PIFNS: Performance Index Factor average for the Night Shift

NVDS: Normalized Values (from Folkard and Tucker, 2003) average for

the Day Shift

NVNS: Normalized Values (from Folkard and Tucker, 2003) average for

the Night Shift

NVt: Normalized Values (from Folkard and Tucker, 2003) at time t

Some calculated performance index factors for hours of the day are

presented in the Table 3-2.

Table 3-2. Performance indexes in different hours of the day

Hour in the day Normalized Values* Productivity ratio Factor Reliability Factor

1 -1.18 83% 2.7%

6 -0.09 96% 1.4%

12 0.24 99% 1.1%

18 0.88 107% 0.3%

24 -0.74 88% 1.3%

* Based on estimated values from the normalized diagram provided by
Folkard and Tucker (2003)

The Hour in the Day Index is updated in every time interval (i.e., every

minute in out model minute).

Description: Reflects the fluctuations in the workers’ performance as a

result of biological change in the human body over 24 hours of the day.

Initial Value: 100%

87

2. Productivity Ratio (Circadian Factor):

Type: Auxiliary Variable

Units: Percentage (%)

Equation:

As explained for the first item (Hour in the Day Index)

Description: Productivity ratio represents the speed of the work done by

the worker. I consider the productivity ratio as 100% for a normal skilled

person in regular working conditions, though fluctuations in the

productivity ratio can occur due to changes in the worker and job

conditions.

Initial Value: 100%

3. Reliability:

Type: Auxiliary Variable

Units: Percentage (%)

Equation:

As explained for the first item (Hour in the Day Index)

Description: Reflects the probability of deficiency occurrence. In the DES

model, in case of any deficiencies in the served entities (or fabricated

pieces) the deficiencies are recognized in the inspection activities and the

entities are directed to the previous activity where rework is done and their

problems are fixed. The defective entities are not counted as fabricated

entities.

Initial Value: 1%

3.2.3. Dynamics of Overtime Work

The main idea of scheduling overtime is to compensate for delays by working

additional hours. However, fatigue from overtime can adversely affect job

88

performance. According to Homer (1985) and Sterman (2000, pp. 577-583), while

weekend breaks relieve the fatigue accumulated during the week, overtime hours

will add to accumulated fatigue such that complete relief cannot be achieved

during the weekend, so some fatigue from the previous week is transferred to the

next. The adverse effects of overtime on construction productivity are also

reflected in the RSMeans (2010) reference tables.

The overtime dynamics are mainly affected by a balancing feedback loop,

Increased Working Hours (B2), and a reinforcing feedback loop, Overtime

Burnout (R3) (Figure 3-4). Similar feedback loops were used by Lyneis and Ford

(2007) as control feedback loops in their research on project schedule

performance. In the Increased Working Hours loop, a higher Set Overtime for the

week increases the amount of working hours during the week and will increase

the Fabrication Rate and ultimately the actual Work Done. This will decrease the

gap between actual Work Done and Scheduled Work Finish and will reduce the

Required Amount of Overtime for the next week. The reinforcing Overtime

Burnout loop starts with the calculated Amount of Overtime Required as a result

of difference between actual Work Done and Scheduled Work Finish divided by

Number of Workers. According to the calculated Required Amount of Overtime,

the Maximum Overtime and the company’s overtime policy, Set Overtime for the

following week is determined. Any adverse effect of Set Overtime on the

Productivity Ratio will occur a week later. The value of the Productivity Ratio is a

function of Set Overtime for the last week, based on Sterman’s Overtime

89

Productivity Index (2000, p. 581). A reduced productivity ratio will reduce the

Fabrication Rate and Work Done will increase more slowly, resulting in a bigger

gap between scheduled work and actual work done. The main external effective

factor in the dynamic model that can be adjusted by construction project managers

is Maximum Overtime, or any other company overtime policies.

Figure 3-4. The dynamics of overtime working and performance

The complete set of supporting definitions, equations, descriptions and initial

values for overtime dynamics are presented in below:

1. Scheduled Work Finish:

Type: Exogenous Variable

Units: Man-hours

Equation:

Read from the developed work finish schedule for the project on a daily

basis.

Description: Represents the expected daily work progress for an activity.

Initial Value: 0 man-hours

2. Number of Workers:

<Work Assignment
Schedule>

Assigned

Work
Work
Done

Fabrication RateWork
Assignment Rate

<Overtime
Productivity Index>

Productivity Ratio

+

Set Overtime

Required Amount

of Overtime

Maximum

Overtime

-

+

-

+

+

R3Overtime
Burnout B2

Increased
Working Hours

<Scheduled Work Finish>

Number of
Workers

-

90

Type: Exogenous Variable

Units: Workers

Equation:

Set in the DES model and sent to the SD model. Workers are represented

by resources in the DES model developed for the case.

Description: Number of workers assigned to an activity.

Initial Value: Varies from one activity to the other.

3. Required Amount of Overtime:

Type: Auxiliary Variable

Units: Hours

Equation:

RequiredAmountofOvertime{ = Max(|($-}7*-}~d.��','&$�: ~d.��d,-��76�-. d� ~d.�-.& , 0)

w: current time (in week)

Description: Presents the amount of overtime in hours that is required for

the workers assigned to the activity to advance the work progress to what

was originally scheduled.

Initial Value: 0 hours

4. Maximum Overtime:

Type: Constant

Units: Hours per week (h/w)

Equation:

Is set based on the organization’s policy and labor code.

Description:

Initial Value: 20 h/w

5. Set Overtime:

Type: Auxiliary Variable

Units: Hours per week (h/w)

91

Equation:

SetOvertimefortheWeek{�∆{ =
Min(RequiredAmountofOvertime{, MaximumOvertime)

∆w: length of time interval (= 1 week)

Description: Refers to the set overtime for week. The set overtime for the

week contributes directly to the Fabrication Rate by increasing the

working hours of the week and affects the Fabrication Rate indirectly as a

result of occurred fatigue and decreased productivity ratio for the next

week.

Initial Value: 0 h/w

6. Overtime Productivity Index:

Type: Exogenous Variable

Units: No unit

Equation:

Is based on the empirical research study presented by Sterman (2000, p.

581).

Description: Reflects the fluctuations in the current week’s productivity

ratio as a result of set overtime for the last week. The index shows the

instruction for calculating Productivity Ration (Overtime Factor) in

different Set Overtime conditions.

Initial Value: -

7. Productivity Ratio (Overtime Factor):

Type: Auxiliary Variable

Units: Percentage (%)

Equation:

92

ProductivityRatioFactor{�∆{∗ =

>?
??
@
???
A 1; if SetOvertime(W) = 0(hours)80% + �i:|-��g-.�'6-��i ∗ 20%; if 0h < SetOvertime{ ≤ 20h

40% + �i:|-��g-.�'6-��i ∗ 40%; if 20h < SetOvertime{ ≤ 40h
10% + �i:|-��g-.�'6-��i ∗ 30%; if 40h < SetOvertime{ ≤ 60h

h�i:|-��g-.�'6-��i ∗ 10%; if 60h < SetOvertime{ ≤ 100h0; else

 _

* Extracted from the table provided by Sterman (2000, p. 581)

Note: The final Productivity Ratio in the model is calculated as a product

of four Productivity Ratio Factors related to (1) physical fatigue, (2)

mental fatigue, (3) overtime and (4) time in the day.

Description: Productivity ratio represents the speed of the work done by

the worker. I consider the productivity ratio as 100% for a normal skilled

person in regular working conditions, though fluctuations in the

productivity ratio can occur due to changes in the worker and job

conditions.

Initial Value: 100%

3.2.4. Critical Parameters for Worker Capability

The effective parameter values within the dynamic models presented here (i.e.,

the base values) represent the behaviors of a range of workers with a certain level

of capabilities. Deviations of some of the model parameters (critical parameters)

should therefore be taken into account when determining the effects of working

hours on productivity for different groups of workers.

In physical fatigue dynamics, two main effective factors may vary among

different working groups according to capability: Maximum Physical Energy

93

Capacity and Maximum Energy Recovery Rate (see Figure 3-1). During a rest

period, a weak worker takes longer to recover from occurred fatigue than a strong

worker. One possibility is increasing Maximum Physical Energy Capacity to

adjust the model to a weak worker. While this increases recovery time, it is not

realistic, as a weak worker typically has a lower-capacity energy reservoir. The

other possibility is decreasing the Maximum Energy Recovery Rate, which also

increases recovery time, but conforms to the expected decreased recovery rate in

weak workers. The critical effective parameter here is therefore the Maximum

Energy Recovery Rate.

In the mental fatigue model, because there was no comprehensive quantification

found for the effective parameters in this model, I have set the maximum resource

capacity as a base value equal to 100%, regardless of its absolute value. The

Resource Recovery Rate is the only effective parameter that can be changed to

adjust for the worker’s capability (Figure 3-2), and is therefore the critical

parameter. Likewise, in the overtime fatigue model, the Overtime Productivity

Index is the only effective parameter that can be changed (see Figure 3-4), and

therefore the fatigue effect of overtime will be adjusted by increasing the slope of

Overtime Productivity Index function.

Finally, for circadian dynamics, the base values for the circadian effects on

worker performance are from the normalized diagram prepared by Folkard and

Tucker (2003). These indexes are customized for every group of workers

94

according to their capabilities. For example (as indicated in Section 3.2.2), I have

used the average of performance index factors for the day shift and the night shift

to customize the provided normalized values. It is expected that weak workers’

productivity will decrease more during the night shift compared to strong

workers.

The weak group of workers in the research was created by deviating -20% in the

critical parameters in the dynamic models, corresponding to the Oglesby et al.’s

estimated maximum energy recovery rate reduction in 60-year-old male workers

(1989, p. 250). The base model parameters were assumed to be a representation of

strong workers.

3.3. Model Testing

All dynamics mentioned in Section 3.2 work in parallel in actual construction

work. To be able to capture different aspects of working hour dynamics more

precisely, I merged all the previously described dynamic models into one SD

model. The time interval of all SD sub-models in the integrated model is one

minute, except for the overtime dynamics, which adopts one week as its time

interval. Therefore, the set time interval for the integrated model is one minute.

However, in the overtime dynamic model minute-by-minute updates for the

overtime are meaningless, because in reality it is set week by week. To resolve

these issues in the overtime dynamics, although the value of Work Done in the

integrated model is updated every minute, its effects on the Required Amount of

95

Overtime are considered on a weekly basis by counting the number of minutes

within the week. Values of other variables down the causal chains of the overtime

dynamics therefore stay constant during the week. In the case that variables from

the overtime dynamic participate as causal variables in the equations together

with variables from other parts of the model (e.g., in the productivity ratio

equation), the variables from overtime dynamics stay constant during the week,

regardless of the minute-by-minute changing nature of the rest of variables.

Since the developed SD models are heavily dependent on well-established

theories, according to Cronbach and Meehl (1955) a construct validity test is

suitable type of validation to test whether the SD models are proper

representations of the adopted theories. For this purpose, I followed the methods

suggested specifically for dynamic models by Sterman (2000, pp. 843-858) (Table

3-3). However, it should be noted that Sterman indicates that because of the

measurement errors, abstractions, aggregation, and simplifications, true model

validation for the developed SD models is impossible. Rather, these tests are to

demonstrate the model’s usefulness by revealing its capabilities, limitations, and

flaws, to assist prospective model users in properly applying the model to their

applications. Most of the structure validation tests were applied concurrently

during the model development process and have been mentioned in the model

descriptions in Section 3.2. The following are some examples of behavioral tests

that were also conducted. All test models were implemented in AnyLogic 6.4; the

details of the test models have been presented in Appendix C.

96

Table 3-3. Summary of applied validation tests

Test Purpose of the Test Summary of Test Process

Boundary
adequacy

To ensure that the important
concepts have been included
in the model.

The dynamic models have been developed
based on established theories in their related
area of research (i.e., effect of working hours
on workers’ productivity). All variables in the
theories are included in the models and the
stock and flow diagrams (Figure 3-1 to 3-4).

Structure
assessment

To test the model structure
consistency with the relevant
declarative knowledge of the
system.

The model structure is built in accordance with
the theory descriptions in the literature (Section
3.2). The descriptions of the dynamic models
(Figure 3-1 to 3-4) affirm this.

Dimensional
consistency

To test whether all used
variables have meanings in
the real world and all
equations are consistent in
the dimension of their used
variables.

The meaning of each model variable and its
counterpart in the real system has been
described in Section 3.2. Dimensional analysis
of the equations has been conducted to check
consistency of the variables.

Parameter
assessment

To test if values of model
parameters can represent
different aspects of the
system.

Critical parameters which could represent
different aspects of construction working
groups were determined and explained in
Section 3.2.4.

Extreme
conditions

To test reasonable behavior
of the model in response to
extreme values for model
inputs.

Extreme values were set in the model critical
parameters (Section 3.2.4) and the model was
run. The model behaved plausibly in response
to all extremely set values.

Integration error
To check the sensitivity of
the model to different time
steps.

Different time steps (including 0.05, 0.1, 0.2
and 0.5) were tested in the model and no
substantial differences were observed.

Behavior
reproduction

To test whether model can
generate different possible
behaviors of the system.

Systems with different working hours
conditions, types of work and start and finish
time and overtime policies were successfully
modeled. Some results are presented in Figure
3-5 and discussed in Section 3.3.

Sensitivity
analysis

To assess how reasonable
changes in some uncertain or
adjustable assumptions can
affect the final conclusion.

Sensitivity analysis conducted for the model
(Section 3.4).

As a test for behavior reproduction capacity, I simulated worker behavior during

physical and mental tasks. The shifts for the test were 11.25 hours long; the

workers were assumed to be busy during the working periods, and each period

was followed by a 15-minute rest break. I also set one rest break as a lunch break,

30 minutes in duration. The productivity ratio changes were simulated in the base

97

model for the physical, mental and combined physical and mental tasks (Figure 3-

5). In accordance with the energy consumption theory, physical fatigue appeared

right after energy depletion and caused a sudden decrease in the worker’s

productivity ratio (Figure 3-5a). Mental fatigue caused a gradual decrease in the

productivity ratio, as predicted by the limited resource theory (Figure 3-5b). The

combined physical and mental tasks showed both sudden and gradual productivity

decrease (Figure 3-5c).

Figure 3-5. The effect of different types of fatigue on workers’ productivity ratio

An extreme condition test was performed by creating extremely strong workers

through deviating +100% in the critical parameters from the dynamic models (see

Section 3.2.4). I exposed this group of the workers to the regular physical and

mental tasks. As expected, the model indicated no fatigue and no reduction in the

productivity ratio for the extremely strong workers. Extremely weak workers,

0.6

0.7

0.8

0.9

1.0

a. Physical Fatigue

0.6

0.7

0.8

0.9

1.0

b. Mental Fatigue

0.5

0.6

0.7

0.8

0.9

1.0

c. Physical/Mental Fatigue

0 1 2 3 4 5 6 7 8 9 10 11 12

Hours of the Day

98

who only had enough energy and resource recovery rates to maintain their basal

metabolisms, naturally had no productivity.

3.4. Sensitivity Analysis of Model Behavior

I investigated the extent of the effects of fatigue on the worker productivity ratio

in different effective factors, concentrating on the effective factors which are

adjustable through work policies. First, a series of simulation runs were conducted

by varying work period length from 0.5 to 3.5 hours for different types of tasks in

the base model. Although the length of the shift was the same (i.e., 11.25 hours),

total working and rest hours changed, as shorter work periods resulted in more

rest periods. Figure 3-6 shows the simulation results in different categories; the

table below the graph shows total working and rest hours for each different work

period length. The effect on efficient working hours of changing the work period

length can be as substantial as 2.2 hours for mental tasks, or as minimal as 0.1

hours a shift for physical tasks within the 11.25 hour shift.

99

Length of Working
Periods (h)

0.5 1 1.6 2 2.6 3.5

Working Hours (h) 7.375 9 9.75 10 10.25 10.5

Rest Hours (h) 3.875 2.25 1.5 1.25 1 0.75

Shift Duration(h) 11.25 11.25 11.25 11.25 11.25 11.25

* P letters in the curve indicate the achieved Peak point for the
different types of works with different types of workers

Figure 3-6. Deviations in the efficient working hours by changing length of
working periods

I also ran a series of sensitivity analyses to investigate the effects of changes in

time of day (Figure 3-7), overtime (Figure 3-8), and worker strength (Figure 3-9)

on worker performance. In sum, the observed productivity sensitivity to the length

of working periods and shift start time is noteworthy here because they are

adjustable with no additional investment or change in the workers (Figures 6 and

7). The dynamic model can also be used to improve overtime, another control

mechanism (Figure 3-8). Finally, the model can investigate the effects of worker

strength and different types of jobs, a control mechanism which may be useful

when construction managers are recruiting new workers (Figure 3-9).

6.0

7.0

8.0

9.0

0.5 1.0 1.5 2.0 2.5 3.0E
ff

ic
ie

n
t

W
o
rk

in
g
 H

o
u
rs

Length of Working Period (h)

Physical-Strong Worker Mental-Strong Worker

P

100

Figure 3-7. The effects of start time on productivity ratio in physical and mental
tasks

Figure 3-8. The effects of overtime on weekly efficient working hours

55%

65%

75%

85%

95%

P
ro

d
u

ct
it

iv
y
 R

at
io

Day Shift Start Time

Physical-Night Shift Mental-Night Shift Combined-Night Shift
Physical-Day Shift Mental-Day Shift Combined-Day Shift

4:30am 5:30am 6:30am 7:30 am 8:30am

16:30pm 17:30pm 18:30pm 19:30 pm 20:30pm
Night Shift Start Time

20

30

40

50

0 10 20 30 40

E
ff

ic
ie

n
t
W

o
rk

in
g

 H
o

u
rs

 i
n

 t
h

e
W

ee
k

Set Overtime for the Week (h)

Physical-Strong Worker Mental-Strong Worker Combined-Strong Worker

Physical-Weak Worker Mental-Weak Worker Combined-Weak Worker

Overtime above 20h decreases
efficient working hours 32.3h overtime offsets the

effects of all set overtime

101

Figure 3-9. The effects of worker’s strength on productivity ratio in Physical and
mental tasks

3.5. Hybrid Model of Integrated Working Hour Dynamics

Several simplifying but unrealistic assumptions were used in the sensitivity

analyses in Section 3.4 (e.g., continuous work during work periods and no change

in task type). More realistic assumptions would involve capturing operational

structure: keeping track of the work schedule and flow of material within jobs

102

and running the model based on actual changes in worker status and types of

assigned tasks. To accomplish this, I use Discrete Event Simulation (DES) for

modeling the operational and SD for modeling the non-operational parts of the

system (i.e., feedback); this combination is called the Hybrid SD-DES modeling

approach. In the hybrid SD-DES modeling approach, one model’s capabilities

cover the other’s shortcomings to provide more accurate results for system

analysis (hybrid SD-DES modeling approach has been discussed in detail in

Chapter 2).

The values for Work Assignment Rate, Assigned Work, Workload Status,

Fabrication Rate and Work Done (Figures 3-1 to 3-4) will be determined in the

DES part of the model. The methods for calculating the value of the mentioned

parameters, developed for the case study, are presented in Section 3.6.2.

Conversely, the Productivity ratio and Reliability are calculated and sent from the

SD part to the DES part (more details the mechanism of the interactions between

DES and SD parts are provided in Chapter 2). This causes all of the feedback

loops described in Section 3.2 to have their cause and effect chains continued in

the DES part of the model. Figure 3-10 illustrates this integrated hybrid model.

The variables with the highlighted background and bold fonts in the figure

represent the variables which send/receive updated values to/from other parts of

the model. The dashed arrows show the direction of communication between the

SD and DES modeling parts. Supporting equations for the SD part of the model

have been presented in different parts of Section 3.2.

103

Figure 3-10. Modified dynamics of fatigue models in hybrid model

3.6. Case Study

To observe the effects of different working hour arrangements and policies on

final productivity in a real construction case, I have developed a hybrid SD-DES

model of working hours in a structural steel fabrication shop in a collaborative

company. Off-site fabrication has been introduced to construction project

processes due to the expected improvement in productivity compared to

traditional on-site construction (Eastman and Sacks 2008). Unlike the repetitive

work procedures and similar outputs of manufacturing work stations, jobs

assigned to the fabrication shop stations fluctuate over time. Although fabrication

shop stations are specialized for one type of operation (e.g., welding, cutting, or

Workload Status

Productivity

Rate

<Working

Hours

Schedule>

Physical fatigue in prolonged working hours

<Work Energy
Rate Index>

Physical
Energy

Energy
Recovery

Rate

Energy
Consumption

Rate

+ +

Maximum
Energy

Recovery
Rate

Maximum Physical

Energy Capacity

+

+-

DES
Model

Mental fatigue in prolonged working hours

<Attention
Resource Rate

Index>

Attention

Resource

Resource

Recovery Rate

Resource
Consumption

Rate

+

-

Maximum Attention

Resource Capacity
Maximum Resource

Recovery Rate

+
+

Hour in the Day

<Hour in the
Day Index>

<Work
Required
Finsh>

Work
done

Overtime Working

<Overtime
Working Index>

Overtime
Productivity
Rate Factor

+

Set
Overtime

Amount
Overtime
Required

Maximum Possible

Overtime

-

+
-

+
+

Rework ChanceR

R

R
B

104

painting), as time passes they serve different projects with different specifications

and work scopes; even within a project they serve different parts of the project

which are not necessarily similar to the others. I have tested the effects of

different overtime policies, working period durations and rest break arrangements

on the shop throughput for 3 months of operation. Data used in the case are real

data collected as part of the fabrication shop’s tasks and used for actual daily

planning and control tasks in the shop.

3.6.1. Case Specification

Five major operation types are done in the fabrication shop: cutting, fitting,

welding, inspection, and painting. There is one centralized cutting shop which

serves the entire fabrication shop; three shops for fitting, welding and required

inspections (called Shop AB, Shop C, and Shop D); and finally one painting shop.

The cutting operation is almost completely mechanized, but the remaining

operations are done mainly by hand tools. Shop AB is used for heavy pieces, and

Shop D for light pieces, which require a high number of man-hours for the fitting

and welding operations on each piece. Shop C is designed for pieces which

require a small number of man-hours; the assigned operations here are usually

less complicated and more routine than the other shops.

According to the dynamic models presented in Figure 3-10, Work Energy Rate

Index and Attention Resource Rate Index are two inputs to the SD models. These

indexes were set based on the station work type. I used the table provided by

105

Oglesby et al. (1989, p. 248) as the reference for the Work Energy Rate for

different categories of construction tasks. For example, in this table the Energy

Consumption Rate of male workers doing carpentry is 4 kcal/minute; continuous

sawing and hammering is 8.1 kcal/minute; and average construction work is 6

kcal/minute. Most work is done with electrically powered tools, so I used a Work

Energy Rate of 4.8 Kcal per minute, except for welding of heavy pieces (shop

AB) which requires more manual effort and is set to 6 Kcal per minute. Since no

references which have provided an Attention Resource Rate Index for

construction operations could be found, to classify construction operations into

low and high demand mental tasks in the case study (Section 3.2.1 part 2) I based

the classification on the shop observation and interviews with the shop workers.

The Required Attention Resource Rate for welding, which requires concentrated

attention on the welding point, was set as one; it was set as zero for all other

operation types.

3.6.2. Base Model Experiment

Currently the standard working hours for the fabrication shop in this collaborating

company consist of a day shift (10.5 hours, 5:30 am – 4:00 pm) and night shift (10

hours, 4:30 pm – 2:30 am), Monday to Thursday. Every shift consists of 5 2-hour

working periods, followed by 15 minutes rest, except the last working period,

which is 1.25 hours for the day shift and 0.75 for the night shift. The second rest

106

break is half an hour long for the lunch break. When overtime is required, the

company’s policy is to set all of Friday and/or Saturday as overtime.

A DES model was developed for simulating the fabrication shop operation. In the

DES model, entities represent steel pieces, workers are represented by resources

and each station (a place where a group of workers perform the same type of

operation on the received pieces) is represented by an activity (for a detailed

description on building elements of DES, see Banks, 2010). Work Assignment

Rate, Assigned Work, Workload Status, Fabrication Rate and Work Done are the

parameters in the causal feedback loops (Figures 1 to 4) which are calculated in

the DES model. The Values of Work Assigned Rate and Fabrication Rate are

calculated based on the entities’ (or pieces’) flow from one activity (or station) to

the other. The Productivity Ratio, calculated from the SD component of the

model, here participates as a factor for determining the time that each entity

spends to be served in an activity. The entities which arrived at an activity during

a time interval determine the Work Assign Rate during that time interval and the

entities which have left an activity during the last time interval determine the

Fabrication Rate. The accumulation of the Fabrication Rate determines the Work

Done and the accumulation of the Work Assign Rate minus Work Done

determines the value of Assigned Work to an activity. The value of Workload

Status in an activity (or station), which has a number of resources (or workers)

assigned to it, is calculated by dividing the number of busy resources by the total

107

number of the resources. The implementation details of the model have been

presented in Appendix C.

Every station in the DES model has a supporting SD model which captures the

effect of different types of fatigue on the productivity ratio and reliability (if

applicable), as explained in Section 3.5 and illustrated in Figure 3-10. The DES

model is linked to the collaborative company’s database and releases the steel

piece fabrication orders to the fabrication shop according to the scheduled start

dates, read from the database. I simulated a period of 3 months of material feed,

from January 5th to April 5th, with around 30,000 pieces and scheduled working

hours of 250,000 man-hours. The simulation was run until the last piece fed to the

shop was fabricated. According to the simulation results fabrication will be

completed on April 15th and the average productivity ratio will be 88.8%.

As illustrated in Figure 3-11, the simulated completion curve almost follows the

actual completion curve. The only exceptions are at the beginning and at the end.

The actual completion starts at a lower rate because of previously assigned work.

After two weeks the progress slopes are very close, until the end of 3 months of

material feed. At this stage, because the actual fabrication shop continues to

receive new orders but the simulated shop does not, the simulated progress rate

surpasses the actual progress. The simulation also does not take material shortage

into account, which postponed fabrication completion for the actual fabrication

shop. To assess the compatibility of the model results with the real shop output,

108

tests have been run on the first 3 months of the simulation results following the

behavior reproduction tests presented by Sterman (2000, pp. 874-880). The actual

data and simulation results showed a correlation coefficient (r) of 0.989 and

coefficient of determination (R2) of 0.979 which indicates a strong relation

between the reproduced and actual data. For investigating systematic errors in the

behavior reproduction, I used Theil's inequality statistics (Theil 1966). The test

showed a bias index of 0.008, unequal variation index of 0.342, and unequal co-

variation of 0.651. According to the interpretation method provided by Sterman

(2000, p. 876), the results indicate unsystematic error, which affirms the goodness

of behavior reproduction.

Figure 3-11. Comparison between completed fabrication in simulation and actual
case

0

50

100

150

200

250

300

01-Jan 31-Jan 02-Mar 01-Apr 01-May

Simulated Actual

Simulation finishes
feed of material to

the shop

F
a

b
ri

ca
te

d
 S

te
el

s
(1

0
0

0
 M

a
n

 H
o

u
rs

)

Simulation finishes
feed of material to

the shop

109

3.6.3. Shift Alternatives

To investigate the effects of deviations to the base working hours schedule on the

final productivity of the fabrication shop, I developed 22 possible working shifts,

described below:

Alternative 1: Shifted work schedule. 6 working schedules were formed by

setting the start time 1, 2 or 3 hours before or after the regular work start time

(5:30 am).

Alternative 2: Work schedule with evenly distributed time breaks. 7 working

schedules were formed by setting the work periods to 1.85 hours for the day shift

and 1.75 hours for the night shift, then different working schedules were created

by setting the work start time 1, 2 or 3 hours before or after the current work start

time.

Alternative 3: Work schedule with shortened working periods to 1 hour. 7

working schedules were formed by reducing the work periods to 1 hour and

shifting the start time 1, 2 or 3 hours before or after the current work start time.

Alternative 4: Work schedule with overtime. 2 working schedules were formed

by setting 1 or 2 permanent overtime days for the current working schedule.

110

3.6.4. Case Analysis

The average productivity ratio and fabrication completion were calculated

through the simulation model for all of the working shift alternatives. As

presented in Table 3-4, the best productivity ratio, 94.4%, was achieved through a

work schedule with working periods shortened to 1 hour (shift alternative 3) and a

work start time of 5:30 am. The least productivity ratio, as expected, was the work

schedule with 1 and 2 days overtime (shift alternative 4), respectively with

productivity ratios of 79.7% and 70.8%. The improved productivity ratio shows a

potential improvement of 6% compared to the current work schedule, which has

longer work periods (i.e. 1.75 hours).

Table 3-4. Productivity ratio (%) and fabrication duration in calendar days (cd)
and working days (wd) achieved in simulation runs of different shift alternatives

 Work Start Time
Shift Alternative 2:30 am 3:30 am 4:30 am 5:30 am 6:30 am 7:30 am 8:30 am

Current work schedule*

88.3%

94 cd

55 wd

1. Shifted work schedule
87.5%
98 cd
56 wd

88.5%
94 cd
55 wd

88.8%
94 cd
55 wd

87.5%
98 cd
56 wd

86.9%
98 cd
57 wd

85.7%
99 cd
58 wd

2. Work schedule with evenly
distributed time breaks

87.4%
98 cd
56 wd

88.6%
93 cd
55 wd

88.8%
94 cd
55 wd

88.5%
94 cd
55 wd

87.5%
94 cd
56 wd

87.1%
94 cd
56 wd

86.5%
98 cd
57 wd

3. Work schedule with
shortened working periods to
1h

89.4%
93 cd
54 wd

91.4%
92 cd
54 wd

91.5%
92 cd
54 wd

94.4%
92 cd
54 wd

89.8%
92 cd
54 wd

89.8%
93 cd
54 wd

89.4%
92 cd
54 wd

4. Work schedule
with overtime

one day
overtime

79.7%
92 cd
66 wd

two days
overtime

70.8%
92 cd
79 wd

* Results from the base model experiment are reflected for the current work

schedule.

111

Shift alternatives 3 and 4 had the shortest fabrication finish times with 92 calendar

day, 2 days shorter than the current work schedule. Shift alternative 3 achieves

this improved productivity even though the total duration of actual working

periods is decreased from 18 hours (in current work schedule) to 16.5 hours a day.

Although shift alternatives 4 increase weekly working hours by 25% and 50%

(i.e., adds 10 and 20 hours a week, respectively, to the 40 standard working

hours), interestingly the final fabrication time was the same as shift alternative 3,

indicating that no overtime payment will be required if this work schedule is used.

Finally the results indicate that shift alternative 3 uses the fewest working days

(54 days); shift alternative 4 uses the most, respectively with 66 and 79 working

days for 1 and 2 days of overtime. In current work schedule, fabrication is

finished in 55 days (i.e., 1 days longer than improved alternative).

Achieving the improved result by shortening the length of working periods (i.e.,

shift alternative 3) indicates that the driving feedback loops in the current work

schedule of the fabrication shop are Physical Burnout (R1) (Figure 3-1) and

Mental Burnout (R2) (Figure 3-2) since reduction in the working periods and

therefore workload status has resulted in increases in the productivity ratio and

fabrication rate (Sections 2.1.1 and 2.1.2). The fabrication balancing feedback

loop (B1) (Figures 1 and 2) is a non-driving loop, while decrease in working

period and therefore in the workload status of the workers has shown in increase

in fabrication rate.

112

3.7. Chapter Conclusion

I have introduced a new approach for improving final productivity in construction

jobs by adjusting working hours. Worker productivity and accuracy vary

according to the type and number of assigned tasks, length of work and rest

periods, overtime, and time of the day, and these factors can be arranged for

maximum productivity and accuracy. I first developed SD models for these

factors using the literature. Next, I ran a sensitivity analysis based on different

effective factors, and finally, I developed a hybrid model of system dynamics and

discrete event simulation for a real structural steel fabrication shop, and explored

different types of working shifts.

Although many construction managers may have noticed the potential effects of

working hour arrangements on construction workers, the complex mechanism by

which working hour arrangements affect workers’ behavior usually prevents

construction managers from considering adjusting working hours as an effective

method for improving work productivity. However, the SD model of the working

hour dynamics developed in this part of the research can provide a better

understanding of the way this mechanism affects construction workers. For

example, the model can be used to investigate how shortening the work periods

can improve productivity in physically or mentally demanding tasks, how the

contrary effects of overtime can be prevented, and how work start time can

contribute to final productivity.

113

By developing a hybrid SD-DES model of working hour dynamics for an

experimental case of a structural steel fabrication shop, I showed how tuning the

working hours can result in productivity improvement in real construction jobs.

This can stand as an example for construction managers on how they can improve

their project’s productivity by adjusting their project work schedule. A hybrid

simulation model which captures the sequences of the project’s tasks (e.g., from

the schedule prepared for the project) and considers the working hour dynamics

can be developed prior to the implementation phase and used to adjust the worker

productivity ratio over the course of the project. Improving the productivity ratio,

even by a few percent, decreases the final project’s cost and can increase the final

profit of the construction company considerably. This approach does not require

special equipment or much additional investment from the company, since the

main driver is changing the work schedule. Additionally, the dynamics of

working hours, fatigue and productivity provide examples of how operational

parts and non-operational, or context, parts of construction jobs can affect each

other. In the future, as an expansion to the current model, dynamic models of

other aspects of construction industry, such as skill level and changes in work

assignment, can also be integrated with the model.

114

CHAPTER 4. Construction Workforce evolution Dynamics 4

4.1. Introduction

The project based nature of the construction industry makes it one of the most

unpredictable industries for the amount of the work on hand and the number of

the workers needed to do the job. Completion of each phase of a construction

project may force the company to lay off workers; conversely, when new projects

begin the company might need to recruit new workers. Furthermore, a down

economy situation creates a conservative attitude in the market which encourages

private investors to suspend expansions or new investment plans. This directly

affects the number of construction projects in the market. The effect of a growing

economy is, however, a greater tendency for expansion and new projects to meet

the growing demands in the market, which introduces more construction projects

to the market.

Additional cost spent for human resource departments is the result of this project-

based nature of the construction industry, required to handle these workforce

fluctuations. Annually, construction companies spend a considerable amount of

money on their human resource departments to find the new workers required and

to evaluate them. Experienced workers are usually hard to find and expect high

wage levels; inexperienced workers typically have reduced performance and need

4 Parts of this chapter has been accepted for publication in 2011 CSCE Annual General Meeting
and Conference

115

training courses to build up their capabilities. However, the money spent for

hiring the new workers and the training provided for them during their service is

lost when the workers leave. Any adjustments to human resource policies (e.g.,

hiring/firing policies, training policies, and overtime policies) can affect the

fluctuations in the number and quality of the workers and contribute to the final

cost. However, the complexity involved in the mechanism by which different

effective factors (e.g., level of wage, level of skill and performance, and the

workload) dynamically affect the final cost is a challenging issue which does not

allow construction managers to track the results expected from any adjustments

made to human resource policies. For example, the ultimate cost and benefit for

hiring either fully experienced or inexperienced workers in a one-, two- or three-

year project cannot be determined even by experienced construction managers

using traditional project planning tools.

In this part of the research I have introduced and validated a new approach for

improving human resource policies in the construction industry using the

capabilities provided by system dynamics (SD) and discrete event simulation

(DES) in a hybrid manner, where the SD parts track the dynamic changes in the

organizational characteristics (e.g., hiring and firing policies, changes to the level

of skill and wage in the workers, and overtime policies) following the causal

feedback loops between organizational and operational level system variables and

DES parts capture the operational details in the project over time (e.g., work

dependencies, material flow, and stations status) since they incorporate

116

organizational updates modeled by SD parts. This chapter of the thesis presents

another successful application of the way that the hybrid SD-DES modeling

approach can contribute to solving complex decision making problems in the

construction industry. This chapter includes 6 sections. Section 4-2 discusses the

conceptual models of workforce dynamics and introduces and validates a

customized conceptual model of workforce dynamics for construction projects.

Section 4-3 explains different aspects of the construction worker dynamics and

presents the development and validation steps of the inclusive model of

construction worker dynamics. Section 4-4 highlights the main aspects of the

prospective human resource hybrid SD-DES model that can be applied to

different construction projects. The steps and the results of applying this hybrid

model to a real structural steel fabrication case are explained in Section 4-5. The

highlights and results have been summarized as a conclusion in Section 4-6.

4.2. Conceptual Model of the Workforce Dynamics

4.2.1. Workforce Dynamics in Literature

Tracking human resource skill evolution and workforce dynamics (i.e., changes in

the quantity and quality of workers over time) within organizations for purposes

of adjusting organizations’ hiring/firing policies has been a major part of many

SD models developed for analyzing organizational behaviours. For example, the

SD dynamic model developed by Forrester (1958) helped a manufacturing

company to recognize the origins of the employment disorder in the company;

117

since then, workforce dynamic models have been addressed in a variety of

disciplines such as high-tech firms (Packer 1964), software companies (Abdel-

Hamid and Madnick 1989), the service industry (Oliva 1996), academia (Sterman

2000), and the military (Wang 2005).

Because of the similarities between human resource dynamics in many industries,

most previously developed dynamic models follow a general structure for

developing their conceptual models. The human resource dynamic model

presented by Sterman (2000) (hereafter called the experience chain) is one of the

most cited models in the literature (e.g., Wang 2005; An et al. 2007; Koshio and

Akiyama 2008). In the research I have selected this model, as a typical conceptual

human resource dynamic model, and elaborated on its specifications; then I have

tuned it to the work conditions within construction projects to develop a

conceptual model of the workforce dynamics. Figure 4-1 depicts the stock and

flow diagram representing the conceptual model of workforce dynamics.

Figure 4-1. Conceptual dynamic model of experience chain (adapted from
Sterman 2000)

Inexperienced

Workers

Experienced

Workers

Growth
Rate

Total Workers

Inexperienced
Quit Fraction

Assimilation
Time

Experienced

Quit Fraction

Total Quit Rate

Inexperienced

Hire Rate

Inexperienced

Quit Rate

Assimilation Rate

Experienced Quit

Rate

+
+

+

+

+

+

+ +

+

++

-

+

Performance Level

Inexperienced

Performance Fraction

+ - +

118

Sterman (2000, pp. 490-493) has explained the experience chain model details

and the attendant formulas; for a detailed explanation of the model, the reader is

referred to Sterman (2000). Some aspects of the experience chain are highlighted

below;

1. The model captures human resource dynamics in businesses with

special expertise which is not available or is scarce in the job market;

all new workers introduced to the organization are assumed to be

inexperienced.

2. Types of expertise are either unique or easily exchangeable in the

entire organization. For example large portion of assembly line

workers in manufacturing companies can be moved from one station to

the other, or bank tellers in service industry can be sent from one

branch to the other.

3. The main decision making factor related to the number of workers is

the growth rate estimated for the organization. Therefore, there are no

major operational changes in business processes that can affect the rate

of employment.

These aspects of Sterman’s model are in fact the major points where workforce

dynamics in construction projects diverges; the conceptual workforce dynamic

model developed in this part of research for construction projects is formed based

on these divergence points.

119

4.2.2. Conceptual Model of Workforce Dynamics in Construction

Unlike the scarce types of skill in the experience chain in the job market (Section

4.2.1, aspect 1), the skills required in construction projects, such as welding,

painting, carpentering, fitting and crane operating, are usually well recognized

and established in the construction job market. A variety of apprenticeship

programs at different levels of expertise are offered across the country (e.g., EI

Group 2011); the graduates from these programs can gain the skills that are used

in construction projects. In addition, it is quite possible that experienced

construction workers are laid off after completion of a construction project and

hired for a new construction project. So, in the customized model for construction

projects I am going to add another inflow to the Experienced Workers stock

variable (presented as Experienced Hire Rate in Figure 4-2) directly originating

from out of the system. The chance of hiring experienced workers is shown by

Experienced Workers Fraction in the model (Figure 4-2).

Figure 4-2. Conceptual model of construction workforce (new variables are bold)

Inexperienced

Workers

Experienced

Workers

Required
Workload Total

Workers

Inexperienced
Quit Fraction

Assimilation
Time

Experienced
Quit Fraction

Inexperienced

Hire Rate

Inexperienced

Quit Rate

Assimilation
Rate

Experienced

Quit Rate

+

-
+

+

+

+

+

+
+

Performance
Level

Inexperienced
Performance

Fraction

+

-

+

Experienced
Hire Rate

+
-

Training
Fraction

+
+Experienced

Workers
Fraction

-

+

120

Different types of skills in the construction are not very exchangeable, unlike

what is presumed in the experience chain (Section 4.2.1, aspect 2). For example,

construction managers cannot assign an idle and available welder to a painting job

while he/she has not been trained for the job. As a result, modeling workforce

dynamics within construction projects or a construction based organization in a

single workforce dynamic model mixing all types of skill together might not be

good practice. Instead, more relevant results are expected from a model formed

out of a collection of separate workforce dynamic models, capturing workers with

different types of skills.

It is true that the growth rate in the construction organizations is highly tied to the

economic growth and it is rational for construction companies to keep their

workers from one project to the next, as long as their new construction projects

are within one region. But even with this perspective on construction projects, the

growth rate in construction projects does not mean an equivalent growth in

demand for all types of workers. From one construction project to another the

portion of concrete, steel, wood or earth moving work might differ and

correspondingly the amount of required skills will fluctuate. The interesting point

here is that even within a project the distribution of required expertise might be

different. For example, in a high-rise building project, the project starts with more

demand for welders or concrete workers, while approaching the end of project,

painters, carpenters, plumbers, and electricians are more in demand.

121

In mass production types of work, the required workforce growth rate depends on

many effective factors such as labour cost, company revenue, supply and demand,

and competitors’ positions (Sullivan 2002) and is highly random. However, in

construction projects, because of the limited and pre-defined scope of the work,

the level of randomness drops sharply when estimating future workload and the

required workforce over the course of projects. Usually, before a construction

project reaches the stage in which construction workers can start working on the

project, there is a long list of preparations that the project should go through. The

design, engineering, procurement and mobilization processes of construction

projects are usually time consuming, and give construction managers enough time

to develop a reasonable construction plan and workload flow to the end of project.

As such, rather than an estimation of the workforce growth rate, workload

required (or number of workers required for the next interval) is the main

indicator for determining the number of workers required in construction projects

(Required Workload in Figure 4-2).

Time interval or adjustment time is another potential divergence in the model of

construction workforce compared to the experience chain model. The workforce

adjustment time – i.e., when the company makes decisions about hiring/firing its

workers – in manufacturing based industries is considered on an annual or

sometimes a semi-annual or monthly basis. Construction project progress is

usually controlled on weekly basis; however, depending on the project type and

the rate of progress, it might be controlled on daily, bi-weekly or monthly basis as

122

well. The difference between annual and weekly adjustment time creates some

differences in the level of detail in the dynamic model. For example, although a

delay of one week or two in the employment process for new workers is

negligible in a model with a time adjustment of one year, this is an effective factor

in a dynamic model with weekly time adjustments. Another example of the pace

difference is the change in employment policies. It is unlikely that a manager

loads an annual increase of 30% in workloads for the workers; he or she employs

additional workers required for the job. However, due to the weekly nature of

workload fluctuation in construction projects (compared to the mass-production

work environment). For example, construction managers might decide to set 20

hours of overtime for their workers in addition to the 40 hours of standard

working time as a response to a 50% workload increase on a weekly basis.

In reality, some part of the skills gained by construction workers come from

apprenticeship programs which are usually held during a short period of time

(e.g., several weeks). These apprenticeship programs generally increase workers’

skill levels in a short period of time. These training programs are considered in

the construction workforce dynamics model by introducing a training fraction

which determines the extent of the effect of training on worker skill enhancement,

compared to experiencing real construction work during the time of assimilation.

Every inexperienced worker hired passes this training program in a short period of

time during the assimilation period (e.g., at the end of the assimilation period).

123

Training Fraction in Figure 4-2 returns the share (as a percentage) that training

has in enhancing the level of worker skill from inexperienced to experienced.

The following equations describe the changes applied in the Workforce model

compared to the experience chain dynamics, presented by Sterman (2000).

• ExperiencedWorkers�(Worker) = ExperiencedWorkers �:∆�(Worker) + �AssimilationRate�:∆� � ~d.�-.�'6-�,'�� + ExperiencedHireRate�:∆� � ~d.�-.�'6-�,'�� −
ExperiencedQuitRatet−∆tWorkerTimeUnit×∆t
(4-1)

• ExperiencedHireRate� � ~d.�-.�'6-�,'�� = �e-�7'.-}~d.�*d)}0�∆0(~d.�-. .�d7.)∆�(�'6-�,'�) ×1(Hour)−TotalWorkerstWorker∆t(TimeUnit) × ExperiencedWorkersFraction
(4-2)

• InexperiencedHireRate� � ~d.�-.�'6-�,'�� = �e-�7'.-}~d.�*d)}0�∆0(~d.�-. .�d7.)∆�(�'6-�,'�) ×1(Hour)−TotalWorkerstWorker∆t(TimeUnit)× (1−ExperiencedWorkersFraction)
(4-3)

• AssimilationRate� � ~d.�-.�'6-�,'�� = Min((�,-59-.'-,(-}~d.�-.&0(~d.�-.)c&&'6'*)�'d,�'6-(�'6-�,'�) ×
 (1 − TrainingFraction) + InexperiencedHireRate �:c&&'6'*)�'d,�'6- � ~d.�-.�'6-�,'�� ×TrainingFraction), InexperiencedWorkers�) (4-4)

t: Current time ∆t: Length of time interval

In equation 4-1, Experienced Hire Rate is the new flow variable added to the

original equation for Experienced Workers in the experience chain. Equations 4-2

and 4-3 represent the new methods for calculating Hiring Rates as functions of the

Required Workload. For calculating the Assimilation Rate in equation 4-4, first

the portion of training related to the assimilation rate (or Training Fraction) has

been deducted from the effect of the assimilation period. Then, the effect of the

124

crash training course has been involved in the equation by considering its effect

on inexperienced workers hired at the end of the assimilation period. The

minimum function added to this equation is to prevent the value of Inexperienced

Workers from going below zero in the case that some inexperienced workers

leave the job prior to the assimilation period.

There are different levels of certificates that construction workers in different

types of skills can receive by attending apprenticeship programs and passing the

tests. For example, levels 1 (flat welding), 2 (horizontal welding), 3 (vertical

welding) and 4 (overhead welding) certification positions are granted to welders

who were able to complete the related training and pass the qualification tests

(refer to Go Welding.Org 2011 for more details on welding certifications). Such

strict distinctions among different construction workers in one type of skill might

justify introduction of several levels of experience to the dynamic model, instead

of maintaining just two levels of experience (i.e., inexperienced and experienced).

According to the body of research done since the 19th century in cognitive

psychology (refer to Ritter and Schooler 2002 for a literature review), it is

commonly agreed that the learning rate of workers is subject to changes over

time. As such, assuming a flat rate for the progression from an inexperienced to

an experienced worker (i.e., the assimilation rate) ― especially when there are

different levels of worker experience ― over long period of time adds to the

model inaccuracy. A multi-level dynamic model of the Workforce can be created

by repeating structures similar to the two level experience model (as presented in

125

Figure 4-2) between every two consecutive experience models. As an example of

a multi-level Workforce model, Figure 4-3 depicts a four-level Workforce

dynamic.

Figure 4-3. Four-level dynamic model for construction Workforce

4.2.3. Model Analysis

A fabricated example of the construction of a high-rise building is discussed in

this section. The effects of the changes made in the experience chain structure for

developing the construction workforce evolution model have been observed

through simulation runs of this example. The high-rise building project is

scheduled for three years or 150 weeks of construction. For the sake of

Experienced
Workers
Level 0

Experienced
Workers
Level 1

Future
Workload

Total
Workers

Experienced 0 Quit

Fraction

Assimilation
Time 1

Experienced 1 Quit

Fraction

Experienced 0

Hire Rate

Experienced 0

Quit Rate

Assimilation
Rate 1

Experienced 1
Quit Rate

Performance
Level

Experience
Performance

Fraction 0

Experienced 1
Hire Rate

Training 1

Contribution

New
Workers
Required

Experienced
Workers
Level 2

Experienced 2 Quit
Fraction

Experienced 2

Quit Rate
Experienced 2

Hire Rate

Experienced
Workers
Level 3

Experienced 3 Quit
Fraction

Experienced 3
Quit Rate

Experienced 3

Hire Rate

Assimilation
Rate 2

Assimilation
Rate 3

Experience
Performance

Fraction 1

Experience

Performance
Fraction 2

Assimilation
Time 3

Assimilation

Time 2

Training 2
Contribution

Training 3
Contribution

Hiring
Firing
Policy

126

simplification I considered just two levels of expertise (i.e., experienced and

inexperienced workers) for the project. The assimilation time for an inexperienced

worker to become experienced is assumed to be one year, or 50 weeks. It is

supposed that inexperienced workers participate in a crash training course at the

end of the first year and will receive certification. This crash course will

contribute to their experience improvement by 20%. It is assumed that

experienced workers have a performance level of 100% and the performance level

of inexperienced workers is 50%. It is also assumed that 70% of the available

workers in the market are inexperienced and 30% are experienced; workloads

within 50% over the standard working capacity are covered by overtime set

during the week (e.g., 40 standard working hours and 20 hours of overtime) and

no new workers are employed; workloads below 20% of the standard working

capacity are also tolerated and no worker is laid off. The quit rate for experienced

workers is 20% per year and the annual quit rate of inexperienced workers is

10%. Implementation details of the SD model have been presented in Appendix

D.

Analyzing the effects of different modeling structures on the final results of the

model simulation occurred in two steps. For the first step, I focused on differences

between the results achieved from the construction workforce evolution dynamics

model and the experience chain model. For the second step, I investigated the

effects of skill distinction in the final model simulation results. Explanations of

each step are found in the rest of the section.

127

1) Effects of Changes in the Experience Chain Model

Normally the control process of such construction projects is done on a weekly

basis. The time interval in the model of construction workforce evolution in the

project is one week. However, since growth rate is the main control factor in the

experience chain and longer intervals are normally used when considering growth

rates as a control factor in addition to the weekly intervals, monthly and half-

yearly time intervals are also used for the experience chain model. At this step no

distinction is supposed among different construction workers. The simulation

results from different models are shown in Figure 4-4.

Figure 4-4. Workforce fluctuation in construction workforce evolution and
experience chain dynamics

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
u

m
n

er
 o

f
W

o
rk

er
s

Week

Construction Workers Evolution Experience Chain (Week)

Experience Chain (Month) Experience Chain (6Months)

128

The use of the experience chain model at all time interval alternatives shows an

inflated and highly fluctuating number of workers compared to the construction

workforce evolution model. The total number of worker-weeks over the course of

the project in the experience chain model with weekly time intervals becomes

4086; for monthly time intervals it becomes 4035, and for 6-monthly time

intervals become 4510. It becomes 3435 worker-weeks in the construction

evolution dynamic model. The number of workers in the experience chain model

with weekly time intervals nearly follows all weekly fluctuations in the workload,

which is not true in real construction work, where small fluctuations in workloads

are handled by overtime or reduced working hours rather than continual

hiring/firing. This behaviour from the experience chain model, which may not

reflect construction work practices, is mainly because the experience chain is

meant for modeling long term (e.g., annual) worker fluctuation and related

policies, and it does not support organizational workforce policy with short term

(e.g., weekly) periods of effect. Because of their larger time intervals, models

with monthly and 6-monthly time intervals skip weekly fluctuations, but rapid

fluctuations still are present from one time interval to the other. For example, the

number of workers in the 6-monthly experience chain model during the first 6

months is 16; the number of workers jumps from 16 to 38 for the second 6 months

of the project. Increasing the length of the time interval adds to the inaccuracy,

and the model ignores fluctuation of the workload during a long period of time.

129

30% of the workers in the market are experienced workers and there is no inflow

to the Experienced Workers stock variable in the experience chain model; new

workers are assumed to be inexperienced. As such, the combination of

experienced and inexperienced workers in the experience chain model is biased in

favour of inexperienced workers, which returns a reduced percentage for

experienced workers over time (Figure 4-5). It results in reduced performance and

causes an inflated number of required workers during the course of the project

(Figure 4-4).

Figure 4-5. Fluctuation in percentage of experienced workers over the course of
the project

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

E
x

p
er

ie
n

ce
d

 W
o

rk
er

s
P

er
ce

n
ta

g
e

(%
)

Week

Construction Workers Evolution Experience Chain (Week)

Experience Chain (Month) Experience Chain (6Months)

130

2) Skill Distinction

In real construction work different types of skills are required at different periods

of time to complete the project. To make the example more realistic, I divided the

project into the four main work packages, including earthmoving, concrete work,

steel work, and carpentry. In real construction work, the types of skills required

for each of these packages are different. Therefore, the workers are not movable

from one work package to the other. This is contrary to what is assumed in the

experience chain model, where a workforce growth rate is assumed for an entire

organization. Figure 4-6 presents the workloads required for different types of

skills. The workload related to every skill is distinguished through a different

colour.

Figure 4-6. Weekly workload distribution for different work skills during the
project

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

W
o
rk

lo
a
d

 (
w

o
rk

er
s

p
er

 w
ee

k
)

Week

EarthMoving Concrete Steel Carpentry Accumulation

131

In this step I compare the accumulative results of the separate workforce

evolution models developed for each working package and the model which just

tracks the aggregated workload with no skill separation. Figure 4-7 presents the

fluctuations in the numbers of workers achieved from these two models. As it was

expected, making a distinction among different types of skills imposes higher

level of fluctuations and boosts the number of workers required over the course of

the project; it ends up with the total number of 3998 worker-weeks, which is 16%

higher than the results from the aggregated workload model. This indicates a high

potential discrepancy between models developed for aggregated workload and

separate workload when different skills working in the project.

Figure 4-7. Effects of skill distinction on the number of workers

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
u

m
n

er
 o

f
W

o
rk

er
s

Week

EarthMoving Concrete Steel
Carpentry Skills Accumulation Aggregated Workload

132

4.3. Inclusive Model of Construction Workforce Dynamics

The conceptual dynamic models discussed in the previous section are more

focused on the skill evolution dynamics rather than tracing concurrent changes in

skill and wage. A single focus on the skill evolution in the systems is suitable

whenever only the final productivity of the workers is most important, not the

total money spent for human resources. However, for an inclusive view of

workforce dynamics in construction projects I have covered both productivity and

monetary aspects of human resources in the model, since both are important

factors to be considered concurrently in the decision making process for many

construction projects.

4.3.1. Core Dynamic Model of Workforce evolution

The main focus of the customized conceptual dynamic model of workforce

evolution in construction projects presented in Section 4.2 is the skill evolution

dynamics. In this part of the research I have developed the core dynamic model of

workforce evolution by maintaining the capabilities of the conceptual dynamic

model and adding new capabilities to the model for tracing dynamic changes in

the number and wage levels of the workers. Figure 4-8 presents the core

workforce evolution model in the form of a stock and flow diagram for a two-

level skill and wage organization.

133

Figure 4-8. Core dynamic model of the workforce evolution in a two-level
skill/wage organization

The main modification in this model, compared to the conceptual model of

workforce dynamics in construction (Figure 4-2), is the interim stock variable

introduced between inexperienced and experienced workers, called Wage1

Experienced Workers. This stock variable accumulates the experienced portion of

the workers who still receive low level wages, i.e., the same as inexperienced

workers. By adding this middle stock variable, the meaning and the name of two

other stock variables also is changed; Wage1 Inexperienced Workers (previously

called Inexperienced Workers) refers to the inexperienced portion of workers who

receive low level wages, and Wage2 Experienced Workers (previously called

Experienced Workers) present the skilled workers who receive higher level

wages. The Promotion Rate is also a new flow variable introduced to the core

model (Figure 4-8) and represents the rate of workers promoted from the low

wage level (or Wage1 Experienced Workers) to the high wage level (or Wage1

Wage1

Inexperienced

Workers

Wage2

Experienced

Workers

Required

Workload

Total
Workers

Wage1 Quit

Fraction

Assimilation
Time

Wage2 Quit

Fraction

Wage1 Inexperienced

Hiring(Firing) Rate

Wage1 Experienced
Quit Rate

Assimilation
Rate

Wage2 Quit Rate

+

-

+

+

+

+

+

++

Wage2 Experienced

Hiring(Firing) Rate

+
-

Training

Fraction

+

Hiring

Policy

Wage1
Experienced

Workers

Promotion
Rate

+
+

+

B1

B3

B2

Promotion
Time

Wage1 Inexperienced
Quit Rate

+

Performance
Level

-

+

+

Inexperienced
Performance

Fraction

+

Wage1
Experience

Fraction

Wage1 Hiring

(Firing) Rate

Wage1 Experienced

Hiring (Firing) Rate

+

+

+

Wage1 Fraction

+

Wage2

Fraction
+

134

Experienced Workers). These modifications in the model enable tracking both the

level of skill (by comparing the summation of Wage1 Experienced Workers and

Wage2 Experienced Workers with the value of Wage1 Inexperienced Workers)

and the number of workers at different levels of wages (summation of Wage1

Inexperienced Workers and Wage1 Experienced Workers represents the number

of workers with lower wage levels and the value of Wage2 Experienced Workers

represents the number of workers with higher wage levels). Each of the stock

variables mentioned in the core model forms a balancing causal feedback loop;

i.e., an increase in the number of any group of workers causes an increase to the

Total (number of) Workers and reduces the Hiring (Firing) Rate which, later on,

slows down the increase in that group of workers.

As a result of the changes made to the construction workforce evolution model,

the set of equations describing the workforce evolution model, discussed in

Section 4.2, is subject to some changes. Four equations which describe the major

changes in the model developed are presented here:

• Wage1ExperiencedWorkers�(Worker) =Wage1ExperiencedWorkers t−∆t(Worker)+AssimilationRatet−∆tWorkerTimeUnit+Wage1ExperiencedHiringRatet−∆tWorkerTimeUnit−PromotionRatet−∆tWorkerTimeUnit−Wage1ExperiencedQuitRatet−∆tWorkerTimeUnit×∆t(TimeUnit) (4-5)

• Wage2ExperiencedWorkers�(Worker) =Wage2ExperiencedWorkers �:∆�(Worker) + �PromotionRate�:∆� � ~d.�-.�'6-�,'�� +
ExperiencedHiringRate�:∆� � ~d.�-.�'6-�,'�� − Wage2QuitRate�:∆� � ~d.�-.�'6-�,'��� ×∆t(TimeUnit) (4-6)

135

• PromotionRate� � ~d.�-.�'6-�,'�� =
 Min(InexperiencedHiringRate �:#.d6d�'d,�'6- � ~d.�-.�'6-�,'�� ,
~)/-h+59-.'-,(-}~d.�-.&0(~d.�-.)∆�(�'6-�,'�)) (4-7)

• Wage1ExperiencedHiringRate � ~d.�-.�'6-�,'�� = Wage1HiringRate � ~d.�-.�'6-�,'�� ×Wage1ExperienceFraction() (4-8)

t: Current time (e.g., in week) ∆t: Length of time interval (e.g., one week)

Equations 4-5 and 4-6 present the stock and flow relations. Equation 4-7 refers to

the prevalent method of wage increase or promotion which is enforced after

working for a specific period of the Promotion Time (e.g., one year). The

minimum function here is for accounting for the number of the workers who have

been fired or have quit the job before reaching their Promotion Time, which may

cause the number of Wage1 Experienced Workers accumulated to become less

than the original number of workers hired; the minimum function prevents the

number of Wage1 Experienced Workers from going below zero. Equation 4-8

calculates the experienced portion of the new workers hired at the low wage level

by multiplying the Experience Fraction of the new workers by the Wage1 Hiring

Rate. The model presented in Figure 4-8 is for tracking workforce evolution in

two-level (skill and wage) jobs where Assimilation Time is less than or equal to

the Promotion Time. If more than two levels of skill or wage are distinguishable

or the length of Assimilation Time is longer than the Promotion Time, the model

should be extended to a multi-level workforce evolution model which is formed

by repeating a similar structure of two-level models on every other level.

136

The organizational policy for hiring/firing workers has been considered in the

model through Wage1Fraction, Wage2Fraction and Hiring Policy parameters.

Wage1Fraction and Wage2Fraction show the percentage of new workers hired,

respectively considered as level 1 and level 2 of the wage. These parameters may

be set either as a result of number of available workers in the job market or the

company’s policy to only hire workers at specific wage levels. The Hiring Policy

parameter reflects the margin at which the project manager either decides to hire

required or fire redundant workers. Hiring Margin (HM) is the point where, if the

Required Workload goes beyond it, the project manager starts hiring new workers

for the project. When the Required Workload goes below Firing Margin (FM), the

project manager starts firing redundant workers. These two parameters are

determined as the percentage of the total work capacity of current workers. For

example, an HM of 150% indicates that if the workload goes beyond 150% of the

current workers’ capacity, the manager will begin hiring new workers to fill this

gap. As such, the value of FM can have a range between 0 to 100%, and HM can

have values above 100%.

4.3.2. Workload Dynamics

Figure 4-9 presents the supporting dynamics of the Required Workload which is

an exogenous variable to the workforce evolution core dynamic model (Figure 4-

8). For the sake of simplification, I avoided repeating non-contributing elements

of the core dynamic in the new causal relations in Figure 4-9. Six main causal

137

feedback loops are distinguishable in this figure as the causal effects of the

Required Workload on the number of workers with different levels of skill and

wage. The first group of feedback loops (includes three feedback loops) form as a

result of the changes in worker distribution and its consequent effects on the level

of performance, and the second group of feedback loops (includes three feedback

loops) initiate because of changes made in the number of workers. Both the

performance level and the number of workers affect the Work Progress Rate and

the total Work Done, which consequently adjust the Required Workload and

finally Hiring Rates of different types of workers. All recognized feedback loops

in the model are balancing, except one feedback loop. The only reinforcing

feedback loop ― where an increase in a variable on the loop initiates an increase

in that variable in the future ― out of the six feedback loops of the model is

formed as a result of the negative relation between the Wage1 Inexperienced

Workers and the Performance Level.

Figure 4-9. Supporting dynamics on the required workload

Wage1

Inexperienced

Workers

Wage2

Experienced

WorkersRequired

Workload

Total
Workers

Wage1 Inexperienced

Hiring(Firing) Rate

+

-

+

+

Wage2 Experienced

Hiring(Firing) Rate
+

-

Wage1
Experienced

Workers
+

Performance
Level

-

+

+

<Work
Assignment
Schedule>

Assigned

Work

Work

Done

Work
Progress

Rate

Work
Assignment

Rate

<Work
Completion
Schedule>

-

+

+

Assimilation
Rate

Promotion
Rate

Organizational

Policy

Wage1 Hiring

(Firing) Rate

Wage1 Experienced

Hiring (Firing) Rate

+

+

138

The value of exogenous variables inside angle brackets (< >) in the model (Figure

4-9), i.e., Work Assignment Schedule and Work Completion Schedule, are read

from data tables calculated from the project schedule. The equations describing

the new introduced causal relations are formulated as shown below. Because of

their similar structure, equations of the new stocks and flows are not presented

here:

RequiredWorkload��∆�(Worker . Hour) =
WorkCompletionSchedule��∆�(Worker. Hour) − WorkDone�(Worker. Hour) (4-9)

WorkProgressRate� �~d.�-..�d7.�'6-�,'� � =
Min � �d�)*~d.�-.&0(~d.�-.)×#-.�d.6),(-f-g-*0(%)∆t(TimeUnit) , c&&'/,-}~d.�0(~d.�-..�d7.)∆t(TimeUnit) � (4-10)

Equation 4-9 calculates the current Required Workload as a balance between

actual Work Done and the expected Work Completion Schedule. In Equation 4-

10, Current Work Progress Rate is calculated by multiplying the Total (number

of) Workers by the Performance Level, divided by one time unit, subject to the

Assigned Work left.

4.3.3. Overtime Dynamics

Setting overtime is a common practice in construction projects as a response to

working capacity shortfall or schedule delays. It is a rival solution to hiring new

workers when the project is behind schedule. Use of overtime is usually

considered for schedule delays when the capacity shortage is expected to be

temporary or insignificant; hiring new workers for the project happens when a

139

considerable or a permanent capacity shortage occurs in the project. However,

depending on organizational hiring policies, decision rules set for shifting from

setting overtime to hiring new workers may vary from one company to another, or

even in different projects within a company.

The dynamic models of project working hours and the effect of overtime on the

project performance level have been previously discussed in the literature (e.g.,

Homer 1985; Sterman 2000, pp. 577-583). In this part of the research the dynamic

model of overtime is built on the previously developed overtime model

customized for construction (as discussed in Section 3.2.3 of Chapter 3). Figure 4-

10 presents the stock and flow diagram of the adapted overtime model. According

to the diagram, the Required Overtime is calculated based on the Required

Workload, Total (number of) Workers, and Organizational (Overtime) Policy.

The control parameter for overtime policy (OP) here is either using (OP = 1) or

not using (OP = 0) overtime as a response to the over-capacity workload. Setting

up overtime and hiring new workers (Section 4.3.1) are rival policies for

responding to over-capacity workloads. In fact, the hiring margin (HM)

determines the scope of the overtime and hiring new workers actions. For

example, HM = 150% indicates that the organization’s policy on responding to

over-capacity workloads up to 150% is setting overtime, and above this margin is

hiring new workers. In this research I assume that every company has at least one

active policy to respond to over-capacity workloads (i.e., overtime or hiring

policy). This assumption puts a restriction on the maximum value that HM can get

140

based on the overtime maximum set in the organization. For example, if the

standard working hours are 40 hours a week and the maximum overtime is 20

hours a week (50% of the standard time), the maximum possible value for HM

will be 150%, since overtime cannot go beyond this point and hiring new workers

is the only possible action. Because of the complications involved in hiring new

and firing redundant workers, normally project managers prefer to set overtime as

much as they can and to postpone hiring new workers.

Figure 4-10. Overtime dynamics in construction projects (modified from Figure
3.4 in Chapter 3)

The direct effect of overtime is increased working hours and consequently a

higher Work Progress Rate. However, it also has an indirect adverse effect on the

Work Progress Rate by reducing the Performance Level. As the result of causal

relations in the overtime dynamic model, one balancing loop and one reinforcing

Required

WorkloadTotal
Workers

Performance
Level

<Work
Assignment
Schedule>

Assigned

Work

Work

Done

Work
Progress

Rate

Work
Assignment

Rate

<Work Completion
Schedule>

-

+

+

Organizational

Policy

+

Required
Overtime

Maximum

Overtime

Set Overtime

+

+

+

+

-

-

B1

R1

<Overtime

Productivity Index>

141

loop are formed. More explanation of the model and the model’s describing

equations are presented in Section 3.2.3 of Chapter 3.

4.3.4. Dynamic Data Collecting

One reason for developing an SD model of the workforce evolution is tracing the

effects of different organizational policies on the completion cost of construction

projects. This provides a quantitative tool for evaluating potential organizational

policies prior to their implementation. To provide such capability in the model, a

dynamic data collecting mechanism has been foreseen in the model. The total

money paid to the workers, extra costs for covering workload gaps, training

expenses and hiring (firing) expenses are the cost items that have been considered

in the dynamic model (Figure 4-11). Again, here, only contributing variables from

other parts of the model have been presented in the model diagram.

Figure 4-11. Built in mechanism for collecting the cost information

Wage2
Experinced
Workers

Wage1
Inexperinced

Workers

Projet

Cost

Progress Gap

Progress Gap Cost Rate

+

<Progress Gap Cost

Rate Index>

Wage2 Cost Rate

Wag1 Rate

Wage2Rate +
+

Wage1 Cost Rate

+ +

Hiring Cost Rate

Total Hiring Rate Hiring Cost
+

+

Training Cost Rate

Training Rate
Training

Cost
+

+

Wage1
Experinced
Workers+

Work

Done

<Project Milestone>

-

Wage1
Hiring
Rate

Wage2
Experienced
Hiring Rate

+

+ Set
Overtime

+

+

Standard
Time

+

+

Overtime
Cost
Ratio

+

+

142

There is no causal feedback loop formed in this part of the model, since this

model only collects data received from other parts of the model and presents them

in an aggregated manner. The equations describing this part of the model are as

following (some apparent equations have not been presented.)

• ProgressGap�(Boolean) =
�1; if ProjectMilestone�(Worker. Hour) > WorkDone�(Worker. Hour)0; else _ (4-11)

• ProgressGapCostRate� � �d**).�'6-�,'�� =
ProgressGap�(Boolean) × ProgressGapCostRateIndex(�d**).�'6-�,'�) (4-12)

• HiringCostRate� � �d**).�'6-�,'�� =
 TotalHiringRate� � ~d.�-.�'6-�,'�� × HiringCost(�d**).~d.�-.) (4-13)

• TrainingCostRate� � �d**).�'6-�,'�� = TotalTrainingRate� � ~d.�-.�'6-�,'�� ×
TrainingCost(�d**).~d.�-.) (4-14)

• Wage1CostRate� � �d**).�'6-�,'�� = Wage1InexperiencedWorkers�(Worker) + Wage1ExperiencedWorkerstWorker×
¡1 + |-��g-.�'6-0� ¢£¤¥¦§§¨�×�g-.�'6-8d&�e)�'d()

|�),}).}�'6-� ¢£¤¥¦§§¨� © × Wage1Rate(�d**).~d.�-..�'6-�,'�) (4-15)

• Wage2CostRate� � �d**).�'6-�,'�� = Wage2ExperiencedWorkers�(Worker) ×
¡1 + |-��g-.�'6-0� ¢£¤¥¦§§¨�×�g-.�'6-8d&�e)�'d()

|�),}).}�'6-� ¢£¤¥¦§§¨� © × Wage2Rate(�d**).~d.�-..�'6-�,'�) (4-16)

As presented in Equation 4-11, Progress Gap is a Boolean (value 0 or 1) variable

determining whether the current progress achieved in the project meets the

progress expected based on the most recent Project Milestone. Progress Gap

results in an increase in the Project Cost by the rate Progress Gap Cost Rate, read

from the project milestone cost rate index (Equation 4-12). Hiring Cost Rate

143

(Equation 4-13) and Training Cost Rate (Equation 4-14) are set respectively based

on the Total Hiring Rate and Total Training Rate which occurred during the time

period, multiplied by their related cost rate. Finally, Wage1 Cost Rate (Equation

4-15) and Wage2 Cost Rate (Equation 4-16) are calculated based on the total

number of workers in each wage category multiplied by their related Wage Rate

considering their overtime pay. The overtime cost portion of the money is

considered as a coefficient in the equations; it is calculated by comparing the

value of the Set Overtime and the Standard (working) Time multiplied by the

Overtime Cost Ratio.

4.3.5. Model Validity

A series of validity tests have been run for the model, following the methods

suggested for validating dynamic models by Sterman (2000, pp. 843-858).

Through these methods I have investigated the model’s usefulness and revealed

its capabilities, limitations, and flaws to prospective model users. Table 4-1

summarizes the results of validating tests run for the model. Most of the structure

validation tests have been applied during the model development as presented in

Sections 4.2 and 4.3. However, for the behavioral tests, a simple example of a

fabricated construction project was modeled. Table 4-2 presents the base values

assumed for the model’s exogenous variables and constant parameters. Some

examples of the behavioral test run for the model are discussed in the following.

144

Table 4-1. Summary of applied validation tests

Test Purpose of the Test Summary of Test Process

Boundary adequacy
and
Structure assessment

To ensure that the model
contains the important concepts
and is consistent with the
descriptive knowledge of
construction projects.

The dynamic model is based on
established dynamic models and has been
adjusted step by step in accordance with
the main related concepts in construction.

Dimensional
consistency
and
Parameter
assessment

To test the meaning and
dimension of the variables
participated in the equations.

The variables have been adopted from
real concepts in construction. The
consistency of the variable units has been
checked in every equation.

Extreme conditions

To investigate reasonability of
the model behavior in response
to extreme values of the model
parameters.

Extreme values of the model variables
have been tested and the adequacy of the
model behavior has been tested. Some
examples have been presented in this
section.

Integration error
To check the effects of different
time steps on the model results.

Different time steps were tested in the
model. The result of this test has been
presented in this section.

Behavior
reproduction

To test whether the model can
generate behaviors of real
construction projects.

The model has been applied in a real
construction case and the behavior
reproduction test has been conducted for
the case (Section 4.5).

Behavior anomaly

To examine the importance of
the relationships created in
different parts of the model by
observing anomalous behavior
of the system with the absence
of those relationships.

The model behavior has been examined
in response to removal of some
relationships in the model. An example of
this model test has been presented in this
section.

Sensitivity analysis

To analyze the reasonability of
the results achieved in the
model by varying uncertain or
adjustable assumptions.

Sensitivity analysis has been conducted
on the model parameters. An example has
been presented in this section.

145

Table 4-2. Base values considered for the test model’s exogenous variables and
constant parameters

Constant/ Exogenous Variable Value Description

Hiring Cost 5000 $/Worker
Training Cost 2000 $/Worker
Wage1 Rate 700 $/Worker
Wage2 Rate 900 $/Worker
Standard Time 40 h/Week
Overtime Cost Ratio 1.5
Max Overtime 20 h/Week
Project Scheduled Duration 101 Week
Total Scheduled Work 348002 Worker.Week
Project Milestone 1 73997 Worker.Week Week 20 Deadline
Project Milestone 2 198997 Worker.Week Week 45 Deadline
Project Milestone 3 315999 Worker.Week Week 70 Deadline
Project Milestone 4 348002 Worker.Week Week 101 Deadline
Progress Gap Cost Rate Index 100000 $/Week
Wage1 Experience Fraction 0.3
Assimilation Time 50 Week
Promotion Time 50 Week
Training Fraction 0.2
Wage1 Quit Fraction 10% Annually 50 weeks per year
Wage2 Quit Fraction 20% Annually 50 weeks per year

The base model was tested for integration errors by applying a range of time steps

starting as small as 1 x 10-4 weeks up to a time step of 0.1 weeks. The final results

showed small deviations by increasing the time step from 1 x 10-4 to 0.01; for

example, the total cost fluctuated from $11.041 million to $11.027 million (i.e., a

deviation of -0.1%). However, the deviations rapidly increased after going beyond

this point. A time step of 0.05 resulted in a total cost of $10.962 million (i.e., a

deviation of -0.7%), and a time step of 0.1 resulted in a total cost of $10.599

million (i.e., a deviation of -4%). Therefore, to prevent integration errors, time

steps chosen for the model simulation are kept below 0.01.

One example of a model behavior test under extreme conditions was the

investigation of extreme policies regarding hiring new workers and overtime

146

policies. Two extreme conditions set for the hiring policy were: 1) only hiring

inexperienced workers with Wage1 salary, and 2) only hiring experienced

workers with Wage2 salary. The extreme condition for overtime was 1) no

overtime set and, 2) workers always do the maximum overtime. The simulation

results are presented in Table 4-3.

Table 4-3. Simulation results for employment and overtime extreme policies

Extreme Conditions
Cost (M$)

Avg.
Performance

Gap Hiring Training Overtime
Standard

Time
Total Level (%)

Hire Inexperienced/
No Overtime

0.03 1.05 0.31 0.00 8.07 9.46 85%

Hire Inexperienced/
Full Overtime

0.08 0.78 0.20 5.00 6.68 12.73 68%

Hire Experienced/
No Overtime

0.00 0.88 0.00 0.00 7.83 8.71 100%

Hire Experienced/
Full Overtime

0.08 0.68 0.00 4.89 6.52 12.16 80%

Four models were created as the result of the combination of these two policies.

All results achieved in the model were in accordance with the direction of the

changes. The hiring costs when the policy states only inexperienced workers are

to be hired are higher due to the increased number of workers required to account

for the reduced performance level of inexperienced workers. There is no training

cost required when the policy dictates only experienced workers are to be hired.

No overtime is charged with the no-overtime policy; with full overtime, there is a

decreased gap cost. The changes in the average performance level followed the

direction of the changes in the policy; e.g., the minimum performance level of

68% achieved given the scenario of hiring inexperienced workers with full time

147

set overtime, and the 100% performance level happened when the policy was set

to hiring only experienced workers and setting no overtime.

The anomaly test was another type of behavioral test run for the model, in this

case by cutting the workload feedback loop (Section 4.3.2) and setting the value

of the workload required to a constant value. The value of workload was first set

to 3450 worker hours a week ― the average of the weekly workload in the

project. This anomaly in the model resulted in 40 weeks of project delay and

doubled the total cost of the project compared to the base model, reaching $22.6

million. The lowest cost achieved by adjusting the constant value of the workload

in this anomaly test was $14.7 million, when the value of the workload was set to

5500 worker hours a week. The cost achieved at this point was still 33% higher

than the base model. This test affirms the importance of the workload feedback

loop in the project estimation.

The model behavior was also tested via running sensitivity analysis on some

uncertain model parameters. For example, in the base model there are no

constraints set on the construction company’s hiring capacity for new workers.

However, the number of new workers is a constraint in many construction

projects, since construction companies’ project management groups and human

resource departments have limited resources for going through the employment

process, such as background checks, evaluating the certifications, and running

interviews. The result of this sensitivity analysis is summarized in Figure 4-12.

148

The total cost of the project when the maximum possible number of new workers

hired in one period varies from 1 to an infinite value ranges from $10.0 to $22.8

million.

Figure 4-12. Sensitivity analysis on the maximum number of new workers

As was expected, the majority of this deviation can be attributed to the progress

gap cost and overtime cost (Figure 4-11). Increased overtime cost is a direct

response of recruitment constraints. However, with a severe recruitment limitation

(e.g., 1 or 2 maximum new workers per week), increased overtime still cannot

prevent the project from missing milestones and paying gap costs. An interesting

result from the sensitivity analysis was seeing the minimum cost at the point of a

maximum of 9 new workers per week, regardless of easing constraints after this

point. The gap cost at this point approaches zero, which demonstrates that the

constraint on the number of new workers does not cause a delay in the project

anymore. Regardless of the limitation on the maximum number of new workers,

the average number of workers is at its highest level at this point. This requires

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2

4

6

8

10

12

14

16

18

20

22

Capacity for Hiring New Workers (Workers per Week)

P
ro

je
ct

 C
o
st

 (
M

$
)

Standard Salary Overtime Hiring Training Gap

Minimum Cost
at Maximum 9
New Workers After Maximum 11 New

Workers Cost Stays Steady

149

less overtime for the project and minimizes the overtime cost paid. The trend of

the diagram in Figure 4-12 highlights the adverse effects of overtime on the final

cost of the project. It shows that at this project parameter setting, compared to

setting overtime for current workers of the project, hiring more new workers is

preferred. As was expected, when the hiring cost of new workers was gradually

increased, the policy preference moved from hiring new workers to setting

overtime.

4.4. Hybrid Model of Construction Worker Dynamics

Construction projects are complex combinations of interdependent tasks done by

a range of workers with different types of skills. Estimating the workload required

in the project during each time period is not something that can be done properly

with only the project plan, since deviations to the scheduled progress as the result

of dynamic changes in effective factors are quite common in construction

projects. Rather, a tool that can dynamically trace the operational details of

construction projects (e.g., the physical specification of the work environment and

the flow of material, workers, and equipment) can enhance the workload

estimation process. I propose the use of discrete event simulation (DES) as a tool

to capture these operational details and communicate with the SD part of the

model. This approach to system modeling, which accommodates both SD and

DES and their in-between interactions, is called a hybrid SD-DES modeling.

Detailed explanations of different aspects of the hybrid SD-DES modeling tool

150

are found in Chapter 2 of the thesis. When modeling workforce evolution

dynamics with a hybrid approach, a DES model can be used for tracking changes

in the work assigned, work progress rate, and work done at every working station

(i.e., a group of workers with similar types of skills doing similar types of tasks)

of the project. The DES part of the model sends the updated work done to the SD

part of the model where it is used for calculating the workload required and

adjusting the number of workers, overtime, and level of performance. The

updated number of workers, overtime, and performance level are sent from the

SD part to the DES part. One DES model can be used for capturing different

aspects of the operational part of the project. However, since different types of

skills are not usually exchangeable in a given project, I suggest that separate SD

models should be developed for every group of exchangeable workers (i.e.,

workers with similar type of skills).

4.5. Case Study

To investigate the potential effects that different components of human resource

policies can have on construction companies, a hybrid SD-DES model of

workforce evolution dynamics has been developed for a collaborating

construction company fabricating structural steel for multiple construction

projects. First, a hybrid model for the current worker policies (the base model) has

been developed and validated over a period of two and a half years, and then

deviations to the workers policies were made and their effects on the final cost

151

were determined. The best alternative human resource policy has been suggested,

based on the minimum cost achieved.

4.5.1. Case Specification

Steel fabrication projects are a type of off-site construction project which

constitute a major component of many construction projects, to reduce the portion

of on-site construction jobs and improve the final productivity of construction

projects (Eastman and Sacks 2008). Shippable structural steel elements (or pieces)

are the products of the fabrication shop which are mainly fabricated through four

operations, including cutting, fitting, welding, and painting, done on standard

structural steel materials such as beams, angles and plates. The fabrication shop in

this case consists of 3 types of specialized shops; 1) the main cutting shop; 2) the

fitting-welding shops which contain three main shops, shop AB for heavy and

time consuming pieces, shop C for non-time consuming pieces, and shop D for

light but time consuming pieces; and 3) the painting shop. The normal sequence

of fabrication is cutting, fitting, welding, and painting; however, some pieces

might skip some operations or have different orders.

Workers in every specialized shop are divided in 6 categories, including

Apprentice 1, Apprentice 2, Apprentice 3, Apprentice 4, Journeyman 1 and

Journeyman 2 with different levels of wages including 41 $/h for Apprentice 1, 45

$/h for Apprentice 2, 50 $/h for Apprentice 3, 54 $/h for Apprentice 4, 60 $/h for

Journeyman 1 and 65 $/h for Journeyman 2. To be considered as a specific level

152

of apprentice in a specialized shop, the worker should have the related level of

apprenticeship certificate and at least one year of experience working at every

lower level of apprenticeship certificate. The apprenticeship certificate can be

received by attending the related crash program and passing the certificate test.

There is no certificate or special training for the Journeyman 1 and Journeyman 2

workers, just the work experience. The highest level of wage that is given to a

new employed worker, even with highest level of skills and certificates, is

Apprentice 4; Journeyman 1 and Journeyman 2 levels are only achievable by

gaining experience in the company. According to interviews of the shop manager

and foremen, the biggest difference in performance level happens during the first

four levels of apprenticeship, from 70% to 100%, and after that changes in

performance are small. The fabrication shop works in two shifts, a day shift and a

night shift. To minimize hiring and firing fluctuations, the company’s decision on

hiring new or firing current workers is based on the workload average for the next

3 months, which is checked on a weekly basis. Average workload of more than

50% of the shop’s capacity results in new worker employment. The decision on

overtime, however, is decided based on week by week workload and can be set up

to a maximum of 20 hours a week.

4.5.2. Base Model Experiment

In the DES model of the shop, steel pieces are represented by entities, each type

of operation in the specialized shops (or every station) is modeled by an activity

153

(or task), and the workers are represented by resources assigned to activities or

stations (for a detailed explanation of modeling elements in DES, see Banks,

2010). A separate SD model of workforce evolution dynamics has been assigned

to every type of the operation (i.e., cutting, fitting, and welding) held in every

working shift (i.e., dayshift and nightshift). The painting operation in this case

requires a limited number of the workers, and since SD models work with a pool

of workers, not individuals, I avoided linking SD models to this operation. A

constant number of three workers (equal to the usual case in the collaborating

company) and an average shop performance level have been assigned to the

painting shop. Since the pace of operations done in the fabrication shop starts

from several minutes and can go up to several days or even weeks of work, the

time interval selected in the DES model is one minute, though the rate of changes

in the workforce evolution dynamics is suited to a time interval of one week to be

set for the SD models. All parameters in the model are set based on the minute.

The implementation details of the model have been presented in Appendix D.

The case study is from January 1st, 2008 to July 1st, 2010 during which the

fabrication shop served 350 different structural steel construction projects with

nearly 550,000 structural steel pieces (and elements) and scheduled working

hours of 2.5 million man-hours. As shown in Figure 4-13, the simulated

completion curve almost follows the actual completion curve. Behavior

reproduction test has been run on the model as mentioned by Sterman (2000, pp.

874-880). The test results showed a strong relation between actual and simulated

154

results, with a correlation coefficient (r) of 0.999 and a coefficient of

determination (R2) of 0.998. Theil’s inequality statistics (Theil 1966) were also

run to assess possible systematic errors in the results. The calculated values for

Theil’s indices were 0.03 for bias, 0.19 for variation and 0.78 for co-variation,

which indicate unsystematic error according to the interpretation method

presented by Sterman (2000, p. 876).

Figure 4-13. Comparison between the results from simulation model and the
actual results

4.5.3. Alternative Policies Simulation

Many control factors can contribute to human resource policies (see Table 4-4)

and numerous alternative policies can be created as the results of different

combinations of these control factors. Analyzing all possible alternative policies

is not feasible and is not suggested. However, a two level model analysis has been

used here for evaluating different policies. First, simple alternatives, the results of

changing just one control factor, have been created and tested. Then, based on the

0

500

1000

1500

2000

2500

3000

03-Jan-08 03-Jul-08 01-Jan-09 02-Jul-09 31-Dec-09 01-Jul-10

Simulated Actual

F
a

b
ri

ca
te

d
 S

te
el

s
(1

0
0

0
 M

a
n

 H
o

u
rs

)

Simulation
finishes feed
of material to

the shop

To remove
the initial
condition

effects first
month is
discared

155

results achieved in the simple alternatives, compound alternatives have been

created and assessed. Table 4-4 describes the simple alternatives created and

Table 4-5 presents the results.

Table 4-4. Simple alternative policies applied to the case

Alternative
Control Factor

Base
model

Workload
Average Changes

(WA)

Hiring/ Overtime
Policy Changes (HO)

New Worker
Changes (NW)

Period of Workload
Calculation

Next 12
weeks

WA1) Next 9
weeks

WA2) Next 6
weeks

WA3) Next 3
weeks

WA4) Next 1
weeks

 (The same as the Base

Model)
 (The same as the Base

Model)

Hiring and Overtime
Policy*

FM =
80%
HM=
150%
OP=1

(The same as the Base

Model)

HO1) FM = 70%,
HM=150%, OP=1
HO2) FM = 90%,
HM=150%, OP=1
HO3) FM = 80%,
HM=140%, OP=1
HO4) FM = 80%,
HM=130%, OP=1
HO5) FM = 80%,
HM=120%, OP=1
HO6) FM = 80%,
HM=110%, OP=1
HO7) FM = 80%,
HM=100%, OP=1
HO8) FM = 80%,
HM=100%, OP=0

(The same as the Base

Model)

New Workers
Combination

Wage 1:
50%

Wage 2:
20%

Wage 3:
15%

Wage 4:
15%

(The same as the Base

Model)

 (The same as the Base

Model)
NW1) Wage 1:

100%
NW2) Wage 2:

100%
NW3) Wage 3:

100%
NW4) Wage 4:

100%

* Refer to Section 4.3.1 for definition of HM (Hiring Margin) and FM (Firing
Margin) and Section 4.3.3 for definition of OP (Overtime Policy)

156

Table 4-5. Results achieved for simple alternative policies
Simple Alternative Total Cost M$ Average Performance Level Work Finish

Base 138 67.5% 08-Jul-10

WA1 142 67.0% 08-Jul-10

WA2 141 66.7% 08-Jul-10

WA3 163 65.8% 14-Jul-10

WA4 257 65.2% 08-Jul-10

HO1 141 67.5% 08-Jul-10

HO2 134 67.3% 08-Jul-10

HO3 121 69.0% 08-Jul-10

HO4 117 69.8% 08-Jul-10

HO5 116 70.4% 13-Jul-10

HO6 90 72.6% 07-Jul-10

HO7 96 72.9% 07-Jul-10

HO8 95 73.0% 07-Jul-10

NW1 147 59.8% 08-Jul-10

NW2 135 68.4% 08-Jul-10

NW3 130 76.5% 08-Jul-10

NW4 138 81.9% 08-Jul-10

The rows of the results indicating improvement in the total cost and earlier or

equal project completion compared to the base scenario are highlighted in Table

4-5. The first group of simple alternatives was created by simply decreasing the

workload average period, since 12 weeks is the maximum reliable duration and

workload schedule is subject to changes after that. As shown in the table, none of

the workload average (WA) alternatives indicate improvement. In the second

group of simple alternatives, Hiring/Overtime Policy (HO), increase in the firing

margin (FM), and decrease in the hiring margin (HM) have created improvement.

A comparison between using overtime and a no-overtime policy with no changes

to other parameters can only be made when HM = 100%. This comparison

indicated the no-overtime policy will improve the result. The last group of simple

alternatives was created by changing the proportion of different types of workers

to be hired. The result indicated that hiring wage2 and wage3 new workers

157

improves the final results. In the next step two compound alternatives (CA) were

created and compared as the result of combination of the best results achieved in

the simple alternatives as in below:

CA1: WA = Next 9 weeks, FM = 90%, HM=110%, OP=1, Wage 3: 100%: Total cost of

$82 million and work finished on July 7th 2010

CA2: WA = Next 9 weeks, FM = 90%, HM=100%, OP=0, Wage 3: 100%: Total cost of

$87 million and work finished on July 7th 2010

Combining the values of the parameters with the best results by 1) considering

overtime as a response to over-capacity workloads (OP = 1) created the first

compound alternative (CA1); and 2) setting no overtime (OP = 0) formed the

second compound alternative (CA2). The total costs achieved in both compound

alternatives were lower than every single simple alternative; however, CA1 (with

total cost of $82 million) resulted in $5 million less total cost than CA2 (with total

cost of $87 million). This shows a potential saving of 40% in human resource

related costs compared to the base model (with total cost of $137 million). To

investigate the sensitivity level of the final results of the CA1 alternative, a

sensitivity analysis was run on two control parameters for this alternative. First, a

sensitivity analysis was run by examining a 25% increase in hiring costs (from

$5000 per new worker hired to $6250). This sensitivity was run on the alternative

because it is created as the result of decreased hiring margin (HM) and increased

firing margin (FM), which encourages project managers to hire new and fire

redundant workers more easily. The second sensitivity analysis was run by

decreasing the performance level of the Wage3 workers (Section 4.3.1) by 5%

158

from 80% to 76%. The performance levels in other wage groups were not

changed. Since in this alternative the focus of new hiring is on Wage3 workers, by

this change the effects of possible over-estimation for the performance level in

this group of workers can be investigated. Total cost achieved in the first

sensitivity analysis was $88 million and in the second sensitivity was $89 million,

which shows a 7% and 8% increase in the total cost, respectively. However, the

total cost is still more than 35% below the base model, which is a safe buffer, as

long as deviations in the control parameters stay within this range.

4.5.4. Case Analysis

The result achieved in the case experiment indicated a significant potential

improvement (i.e., 40% of total human resource cost reduction) in the project by

merely adjusting human resource policies during the construction period. It

should be noted that some values used in the models are estimated and

approximate values. For example, the performance level values assigned to

different levels of experience are based on interviews run with shop managers and

superintendents, which are subject to human judgment and approximations. If we

are to be able to consider the proposed approach as an effective and practical tool

for real construction projects, this kind of approximation is inevitable. Running

statistically verified data collecting methods for effective parameters in the model

prior to every construction project is basically impossible. However, the use of

sensitivity analysis on specific parameters with a possible range of variations is

159

suggested, to avoid excessive additional costs in highly sensitive situations. This

experiment was not meant to search for the optimum alternative policy, but was

intended to show the direction that policy control parameters can follow to reduce

the final cost of projects.

4.6. Chapter Conclusion

In this part of the research I introduced and validated a new approach for

improving construction projects using a hybrid SD and DES simulation model.

The model targets improvement in construction projects by adjusting human

resource policies. In the first part of the study I explored different aspects of

workforce dynamics within the construction industry by studying the prevalent

workforce dynamics models in different disciplines, and customizing the model

for construction. I then ran different validity tests to validate the applicability and

validity of the model for construction projects. The SD model I developed was

then integrated with a DES model of a real construction case of structural steel

fabrication, where it was used for simulating two and a half years of the

fabrication operation, serving a variety of structural steel construction projects. In

this experiment I showed a potential cost savings of up to 40% in total human

resource costs by adjusting control parameters in human resource policies. The

same approach introduced in this part of the research can be applied to different

construction projects during the planning and implementation phase of a variety

160

of construction projects to improve their human resource policies and find

potential room for cost savings in their human resource management.

The use of a hybrid SD-DES modeling approach for modeling and improving

different aspects of construction projects is a new practice in the construction

domain. In the previous part of the study (presented in Chapter 3), I introduced

and developed a hybrid SD-DES model of working hours and demonstrated how

we can improve construction productivity by adjusting the working hour

arrangements. These two applications highlight just two out of many other aspects

of the construction industry that can be studied and improved by the use of hybrid

SD-DES modeling. Some other instances for possible future studies using hybrid

SD-DES modeling are improving quality policies, minimizing the adverse effects

of environmental changes on construction, and enhancing sustainability in the

construction.

161

CHAPTER 5. Conclusions and Recommendations

5.1. Research Summary

The main motivation of this research was to introduce a new practical approach

for improving some aspects of construction projects which have previously been

ignored because of limited capabilities of currently available construction

management tools. A hybrid SD-DES modeling approach is the tool introduced in

this research for capturing complex interactions between the operation and

context levels of construction projects and helping construction managers in their

decision and policy-making tasks. The hybrid SD-DES modeling approach was

first introduced about a decade ago (Rus et al. 1999; Zeigler et al. 2000; Martin

and Raffo 2001; Choi et al. 2006) to improve software project development

processes by analyzing hybrid interactions which affect them. Even though a

decade has passed since the introduction of the hybrid SD-DES modeling

approach, the extent of its usage in the construction domain was quite limited and

still in the conceptual and introductory stage. I studied several hybrid SD-DES

models which were developed in other disciplines and analyzed their

specifications. From these studies I recognized several challenging points which

either could have postponed the use of hybrid SD-DES models in the construction

industry or were potential points of future problems during hybrid model

development in construction projects. These challenging issues (which have been

discussed in Chapter 2) are summarized below:

162

1) Lack of a modeling framework which can be used as a guide for

hybrid model developers during the design phase of these model

developments.

2) The computational complexity which might arise as a result of

different time advancing methods in SD (continuous time advancing)

and DES (discrete time advancing).

3) The complexity involved in creating communication channels required

for communication among different parts of the hybrid model.

These challenging issues were addressed in the hybrid modeling framework and

the architecture was proposed and validated (Chapter 2). Three main types of

hybrid structures, five forms of hybrid interactions, the meaningful level of

change (MLC) concept and the use of high level architecture (HLA) were the set

of tools introduced in the hybrid modeling framework and architecture.

Considering the expected duration of the research, the direction of the research at

the next stage could have continued in either of the two following directions: 1)

looking into real applications of hybrid SD-DES models in construction and

investigating their potential benefits, or 2) developing a special purpose hybrid

simulation package which can facilitate implementation of hybrid SD-DES in

construction following the proposed hybrid framework and architecture. To be

able to demonstrate real advantages of the use of hybrid SD-DES in construction,

prior to any investment in the development of a special purpose hybrid simulation

163

package, I chose the first direction (i.e., applying hybrid SD-DES models in

construction applications). However, since there is no hybrid modeling tool which

fully conforms to the proposed hybrid modeling architecture, I used the AnyLogic

simulation package, which supports implementation of hybrid SD-DES models,

but does not support the HLA framework or the MLC concept. Although this

simplification affected the independence of the models from the experimental

case and limited the expansibility of the model, it let me investigate the potential

benefits that each model could bring to two decision making problem instances in

construction.

Improving construction projects by adjusting working hour arrangements was the

first hybrid application of the research (Chapter 3). In this application, different

aspects of working hours in construction projects, including the duration of

working periods and rest breaks, duration of set overtime, and work start and

finish times, were analyzed, and their complex impacts on final worker

performance were captured through a hybrid model. The hybrid model was

developed in accordance with prevalent theories on every aspect of the working

hours. The energy consumption theory presented by Oglesby et al. (1989, pp. 240-

251) was used for capturing the physical effects of the working period duration,

and the limited resource theory (Smit et al. 2004; and Helton and Warm 2008)

was used for modeling the mental effects of the working period duration. The

effects of work start and finish time were traced in the model by using the

normalized function provided by Folkard and Tucker (2003) and the effects of

164

overtime on work productivity were added to the model by using the equations

extracted from Sterman’s (2000, p. 581) work.

The proposed model was first validated and then applied to a real structural steel

fabrication shop serving multiple steel construction projects. The projects

assigned to the fabrication shop during the course of three months were studied.

Four groups of working hour alternatives were studied; finally, I was able to show

that there is potential room for 6% total productivity improvement, just by

adjusting the working hours. The best result achieved was when the working

period duration was reduced from 1.75 hours to 1 hour.

The second hybrid application explored in the research was improving human

resource policies in the construction industry (Chapter 4). There are many

effective parameters in human resource policies which can affect the final output

of construction projects. Some examples of these effective parameters are:

1) Set hiring and firing margins as the responses to the fluctuations in the

workload

2) The Company’s policy for using overtime

3) The Company’s policy regarding the level of skill and training

programs

4) Method for estimating the upcoming workload

165

A hybrid model of human resource policies was developed by capturing the

effects of different aspects of human resource policies in construction projects.

The developed model was first validated and then run for projects assigned to a

structural steel fabrication shop during a course of two and half years. Because of

the numerous possible alternatives, a two step analysis was run for analyzing

different alternatives. First, simple alternatives, created as the result of changes in

just one effective parameter, were evaluated. Then compound alternatives were

created by combining the best simple alternatives and were themselves evaluated.

The result of this analysis indicated a considerable potential improvement of 40%

by adjusting human resource policies.

In sum, this research introduced a new tool to be used by construction managers

to trace the effects of their decisions and set their policies based on the outcomes

expected in construction projects. Two different applications of the introduced

tool were explored and discussed and the capability of this hybrid tool for

improving construction projects was investigated. Both applications presented

considerable room for construction project improvement.

5.2. Research Contributions

The main contributions of this research are summarized below:

1) Introducing and validating a new hybrid SD-DES modeling framework and

architecture for facilitating the hybrid model development process within the

construction industry.

166

2) Demonstrating the capacity of the proposed hybrid modeling framework and

architecture to integrate hybrid SD-DES models with other computer aided

managerial tools used in construction, such as 3D visualization and real time

control systems. The proposed hybrid modeling framework and architecture

can be used for developing a construction “virtual enterprise” where different

aspects of construction are modeled by different types of computer aided

tools.

3) Demonstrating the capabilities and usefulness of the hybrid SD-DES

modeling approach in the construction domain by successfully applying the

hybrid model to two different construction decision making problems.

4) Contributing to construction project working hour management by exploring

and validating the complex effects of working hour arrangements on the final

output of construction projects and demonstrating the implementation method

by applying it to a real construction case.

5) Contributing to construction project human resource management by

exploring and validating the complex effects of human resource policies on

construction project productivity and showing a step by step implementation

method in a real construction case.

6) Contributing to steel construction by running two case studies on structural

steel construction and proposing potential room for improvement in the

structural steel fabrication process.

167

5.3. Lessons learned

Some lesson learned in the research are shown below:

1) PhD research requires continuous work for several years, and contains many

different phases and aspects, including literature review, detecting potential

gaps and points of improvement and potential contributions, theory statement,

model development, tests and experiments, communication skills, teamwork,

data gathering and preparing the equipment required. Good planning and

control is the main tool that can assist PhD students during their long journey.

This planning and control is not usually a day to day activity, but depending

on the expected rate of progress in different periods of PhD research it can

have a range of one week to several months.

2) Unlike my initial perception of literature review – that it mainly happens

during the initial parts of the research – it was almost a permanent aspect of

my research at every stage of the work. In every stage of my research I was

facing new concepts or areas of research which which I was not quite familiar,

and I needed to review the literature to make sure that I was not missing any

major points. Therefore, at least in some types of research and even in the

later stages of the work, the researcher should always be prepared to take

some time to get back to literature review.

3) Although the nature of the construction industry is different compared to other

industries, such as the software and manufacturing industries, methods and

tools introduced for other disciplines can also be useful in the construction

168

industry. However, some adjustments and modifications might be required to

fit those methods and tools to the construction industry. The hybrid SD-DES

modeling approach is one of these methods which was first used in the

software and then manufacturing industries, and I was able to customize it to

meet construction industry requirements. Therefore, when making

improvements in some aspects of the construction industry, looking into and

getting ideas from successful experiences in similar aspects of other

disciplines can be a valid alternative.

4) By breaking complex systems down into simple building blocks, these

complex systems (which were thought to be completely out of reach) can be

captured and their behaviour can be thoroughly studied and analyzed. In my

research, one constant item of feedback I received from my research

audiences when, for example, I was discussing the way that I planned to

capture the effects of working hours on worker fatigue and project

productivity was: “It is impossible! How are you going to measure worker

fatigue? It is so complicated!” But by breaking the complex structure of

hybrid interactions down into building blocks and capturing the effects of

hybrid feedback loops by using the developed hybrid modeling framework

and architecture I could successfully capture the ultimate effects of the hybrid

interactions on construction project behaviour.

5) When it comes to developing models for complex systems, choosing an

iterative approach helps the developer to not get lost during their model

169

development and to stay on the right track. Since the nature of complex

systems usually do not let a person capture all aspects of the system at once,

by starting the development of a simplified model and then adding more

complexity to the model during the next iterations, model developers can

concurrently learn and resolve development issues and improve their

understanding from the system as the model development goes on from one

iteration to the other.

6) Practical examples are an important part of the research which help the

researcher present ideas in a more tangible fashion. In my research, the initial

parts of the research were all about theoretical parts of the hybrid modeling

framework and architecture. It was quite difficult for me to convince my

research audience that this framework and architecture is meant to be used as

an applicable tool in the construction industry to solve issues that construction

managers deal with during their daily jobs. By applying the hybrid modeling

framework and architecture to construction cases, the contributions that this

research can make to the construction industry became quite clear for the

research audience.

7) Unlike the perception that equipping construction projects with advanced

construction equipment and IT technologies is the most important factor for

successful construction projects, the managerial aspects and more specifically

the decision making process in construction projects showed huge potential

for improving projects. Compared to the monetary investment required for

170

equipping construction projects with new equipment, improving the decision

making process in many situations requires less investment, since basically

the main investment required for such improvements is the model

development.

8) Close relationships with the industry gave me a great opportunity to

experiment with my proposed ideas and implement and analyze them in real

world construction conditions. Many initially missed or immature aspects of

the model were discovered during the implementation of these experimental

cases and were added to or fixed in the body of the research. This close

relation with the industry can have benefits to many construction research

efforts and should be considered during construction research development.

5.4. Recommendations for Future Research

This research sheds light on some new areas which warrant further research

efforts. Some of these areas of research are highlighted below:

1) Modeling new complicated decision and policy making issues in the

construction domain that have not been studied previously as the result of

modeling tool shortfalls is a prospective area of research. The capabilities of

the hybrid modeling approach suggest many new areas in construction

projects that can be studied which previously were out of reach. Some

examples for such prospective research topics are improving quality policies,

sustainability policies, and safety policies in construction projects.

171

2) Adding agent based simulation (ABS) to hybrid SD-DES modeling as another

complementary simulation modeling tool, to be used for capturing the effects

of system object (agent) evolution and adaptation during system operation, is

another promising area of research. This type of hybrid model can more

properly capture construction projects that depend on evolving construction

components. One instance of evolving components in construction projects is

the variation in the properties of concrete during its production, transportation,

casting and treatment. Effects of disciplinary action against negligent workers

and its effects on other workers behaviour is another example of evolution and

adaptation in the work environment. Very like the stream of the current

research, the development of a framework and architecture which considers

different aspects of the integration of SD, DES and ABS could be the first

stage of this research project. The potential benefits of this hybrid modeling

approach can be examined by applying it to real construction applications at

the second stage of the research.

3) The development of a special purpose software package for implementation of

a variety of hybrid SD-DES models for construction projects, following and

improving the proposed hybrid architecture in this research, is another

prospective research topic. By providing different capabilities required in the

hybrid SD-DES models, including visual SD and DES modeling elements,

handling the interactions between different parts of SD and DES models,

supporting the MLC concept in the hybrid interactions, and providing HLA

172

services for distributed simulation as well as involving generic hybrid

modeling elements for common hybrid interactions within construction

projects, this simulation package could be very useful for implementing

hybrid models and even virtual enterprises within the construction domain.

This research project could be a joint endeavour between the construction

engineering and software engineering disciplines.

173

References

Abdel-Hamid, T.K. and Madnick, S.E. (1989) Lessons Learned from Modeling

the Dynamics of Software Development. Communications of the ACM, 32(2),

1426-1438.

AbouRizk, S.M. and Hague, S. (2009). An Overview of the COSYE Environment

for Construction Simulation. Proceedings of the Winter Simulation Conference,

Austin, Texas, USA, December 2009, 2624-2634.

AbouRizk, S.M. and Hajjar, D. (1998). A Framework for Applying Simulation in

Construction. Canadian Journal of Civil Engineering, 25(3), 604-617.

Adeli, H. and Karim, A. (1997). Scheduling/Cost Optimization and Neural

Dynamics Model for Construction. Journal of Construction Management and

Engineering, ASCE, 123(4), 450-458.

Alvanchi, A., Azimi, R., Lee, S. and AbouRizk, S. (2010). Virtual Model of

Structural Steel Construction using COSYE Framework. Proceedings of the 10th

International Conference on Construction Applications of Virtual Reality, Sendai,

Miyagi, Japan, Nov 2010, 283-290.

Alvanchi, A., Lee, S. and AbouRizk, S. (2009a). Modeling Architecture for

Hybrid System Dynamics and Discrete Event Simulation. Proceedings of the

Construction Research Conference, Seattle, April 2009, 1290-1299.

174

Alvanchi, A., Lee, S. and AbouRizk, S. (2009b). Meaningful Level of Change in

Hybrid Simulation for Construction Analysis. Proceeding of the Winter

Simulation Conference, Austin, Texas, U.S.A, December 2009, 2647-2652.

Alvanchi, A., Lee, S. and AbouRizk, S. (2011a). Modeling Framework and

Architecture of Hybrid System Dynamics and Discrete Event Simulation for

Construction. Computer-Aided Civil and Infrastructure Engineering, 26(2), 77-

91.

Alvanchi, A., Lee, S. and AbouRizk, S. (2011b). Dynamics of Working Hours in

Construction. Journal of Construction Engineering and Management, ASCE, In

press (Accepted and Published online in March).

Alvanchi, A., Lee, S. and AbouRizk, S. (2011c). Modeling of Workforce

evolution in Construction Projects. Proceeding of the Annual Conference of

Canadian Society for Civil Engineering, Ottawa, Canada, June 2011.

Alvanchi, A., Lee, S. and AbouRizk, S. (2011d). Modeling Evolution of Human

Resources Dynamics in the Construction Projects. Under Preparation to be

Submitted to the Journal of Automation in Construction, September 2011.

An, L., Ren, C., Jeng, J.J. and Lee, Y. (2007). Effective Workforce Lifecycle

Management via System Dynamics Modeling and Simulation. Proceedings of the

2007 Winter Simulation Conference, Washington, D.C., USA, 2187-2195.

175

Azimi, R., Lee, S., AbouRizk, S., (2009). Automated Project Control System for

Steel Projects. Proceeding of the Joint International Conference on Construction

Engineering and Management and Construction Project Management (ICCEM-

ICCPM), Jeju, Korea, 479-486.

Azimi, R., Lee, S., AbouRizk, S., Alvanchi, A. (2011). A Framework for

Automated and Integrated Project Monitoring and Control System for Steel

Fabrication Projects. Automation in Construction, 20(1), 88-97.

Banks, J. (2010). Discrete-Event System Simulation. Upper Saddle River, N.J.,

USA: Prentice Hall.

Borshchev, A. and Filippov, A. (2004). From System Dynamics and Discrete

Event to Practical Agent Based Modeling: Reasons, Techniques, Tools. The 22nd

International Conference of the System Dynamics Society, July 2004, Oxford,

England.

Borshchev, A., Karpov, Y., and Kharitonov, V. (2002). Distributed simulation of

hybrid systems with AnyLogic and HLA. Future Generation Computer Systems,

18, 829-839.

Chi, S., Caldas, C.H., and Kim, D.Y. (2009). A Methodology for Object

Identification and Tracking in Construction based on Spatial Modeling and Image

Matching Techniques. Computer-Aided Civil and Infrastructure Engineering,

24(3), 199-211.

176

Choi, K., Bae, D., and Kim, T. (2006). An approach to a hybrid software process

simulation using the DEVS formalism. Software Process: Improvement and

Practice, 11, 373-383.

Cohen, C.J. and Muehl, G.E. (1977). Human circadian rhythms in resting and

exercise pulse rates. Ergonomics, 20, 475-479.

Dijk, D.J., Duffy, J. and Czeisler, C.A. (1992). Circadian and sleep/wake

dependent aspects of subjective alertness and cognitive performance. Journal of

Sleep Research, 1, 112-117.

Eastman, C.M. and Sacks R. (2008). Relative Productivity in the AEC Industries

in the United States for On-Site and Offsite Activities. ASCE Journal of

Construction Engineering and Management, 134(7), 517-526.

Fehlberg, E. (1970). New high-order Runge-Kutta formulas with an arbitrary

small truncation error. Computing, 6, 61-71.

Folkard, S. and Tucker, P. (2003). In-Depth Review: Shift work; Shift work,

safety and productivity. Occupational Medicine, 53, 95-101.

Ford, D., Anderson, S., Damron, A., Casas, R., Gokmen, N., and Kuennen. S.

(2004). Managing Constructibility Reviews to Reduce Highway Project

Durations. Journal of Construction Engineering and Management, 130(1), 33-42.

Forrester, J.W. (1958). Industrial Dynamics: A Major Breakthrough for Decision

Makers. Harvard Business Review, 36(4), 37-66.

177

Go Welding.Org. (2011). Welding Certification. gowelding.org/Welding_

Certification.html. Accessed January 26, 2011.

Hafeez, K., Aburawi, I. and Norcliffe, A. (2004). Human resource modelling

using system dynamics. Proceeding of the 22nd International Conference of the

System Dynamics Society, Oxford, UK, July.

Halpin, D. W. (1973). An Investigation of the Use of simulation Networks for

Modeling Construction Operations. Doctoral dissertation, Dept. of Civil

Engineering, University of Illinois at Urbana-Champaign, IL.

Halpin, D.W. (2011) Construction Management. Hoboken, NJ:John Wiley and

Sons Ltd.

Healy, A.F., Kole, J.A., Buck-Gengler, C.J. and Bourne, L.E. (2004). Effects of

Prolonged Work on Data Entry Speed and Accuracy. Journal of Experimental

Psychology: Applied. 10(3), 188-199.

Helton, W.S. and Warm, J.S. (2008). Signal Salience and the Mindlessness

Theory of Vigilance. Acta Psychologica, 129, 18-25.

Homer, J.B. (1985). Worker Burnout: a Dynamic Model with Implications for

Prevention and Control. System Dynamics Review, 1(1), 42-62.

Karim, A. and Adeli, H. (1999). CONSCOM: An OO Construction Scheduling

and Change Management System. Journal of Construction Engineering and

Management, 125(5), 368-376.

178

Koshio, A. and Akiyama, M. (2008). Physician’s Burning out and Human

Resource Crisis in Japanese Hospital: Management for Sustaining Medical

Services in Japan. The 2008 International Conference of the System Dynamics

Society, Athens, Greece.

Kuhl F., Weatherly, R., and Dahmann, J. (1999). Creating computer simulation

systems: An introduction to the high level architecture. Prentice Hall PTR, Upper

Saddle River, NJ 07458, 5-6.

Lee, S., Han, S., and Peña-Mora, F. (2007). Hybrid system dynamics and discrete

event simulation for construction management. Proceeding of the ASCE

International Workshop on Computing in Civil Engineering, Pittsburgh, PA, 232-

239.

Lee, S., Han, S., Peña-Mora, F. (2009). Integrating Construction Operation and

Context in Large-scale Construction Using Hybrid Computer Simulation. Journal

of Computing in Civil Engineering, ASCE, March/April 2009, 75-83

Lee, S., Peña-Mora, F., Park, M. (2005). Quality and Change Management Model

For Large Scale Concurrent Design and Construction Projects. Journal of

Construction Engineering and Management, ASCE, Reston, VA, July/August,

2005, 131(8), 890-902.

Lee, S., Peña-Mora, F., Park, M. (2006). Dynamic Planning and Control

Methodology For Strategic and Operational Construction Project Management.

Automation in Construction, Elsevier, New York, NY, 15(1), 84-97.

179

Lyneis, J. and Ford, D. (2007). System Dynamics Applied to Project

Management: A Survey Assessment, and Directions for Future Research. System

Dynamics Review. 23(2-3), 157-189.

Martinez, J. C., Ioannou, P. G., and Carr, R. I. (1994). State and Resource Based

Construction Process Simulation. Proceedings of the First Congress on

Computing in Civil Engineering, ASCE, Washington, D.C., US, 177-184.

Martin, R., and Raffo, D. (2001). Application of a Hybrid Process Simulation

Model to a Software Development Project. Journal of systems and software, 59,

237-246.

Matthews, G., Davies, D.R. and Lees, J.L. (1990). Arousal, Extroversion, and

Individual Differences in Resource Availability. Journal of Personality and

Social Psychology, 59(1), 150-168.

Nuechterlein, K., Parasuraman, R. and Jiang, Q. (1983). Visual Vigilance: Image

Degradation Produces Rapid Sensitivity Decrement Over Time. Science, 220,

327-329.

Oglesby, C.H., Parker, H.W., and Howel, G.A. (1989). Productivity Improvement

in Construction. New York, NY: McGraw-Hill.

Oliva, R.A. (1996). Dynamic Theory of Service Delivery Implications for

Managing Service Quality. PhD Dissertation. Sloan School of Management. MIT,

MA, USA.

180

Packer, D.W. (1964). Resource Acquisition in Corporate Growth. MIT Press,

Cambridge, MA, USA.

Park, M., and Peña-Mora, F. (2003). Dynamic Change Management for

Construction: Introducing the Change Cycle into Model-based Project

Management. System Dynamics Review, 19(3), 213-242.

Paulson, B.C. (1987). Interactive Graphics for simulation Construction

Operations. Journal of the Construction Division, 104(1), 69-76.

Pena-Mora, F., Han S., Lee, S., and Park, M. (2008). Strategic-operational

Construction Management: Hybrid System Dynamics and Discrete Event

Approach. Journal of Construction Engineering and Management, ASCE,

Reston, VA, 134(9), 701-710.

Pritsker, A.A., O’Reilly, J.J., and Laval, D.K. (1997). Simulation with Visual

Slam and Awesim. John Wiley & Sons, Inc., New York.

Rabelo, L., Helal, M., Jones, A., and Min, H. (2005). Enterprise Simulation: A

Hybrid System Approach. International Journal of Computer Integrated

Manufacturing, 18(6), 498-508.

Rekapalli, P.V. and Martinez, J.C. (2007). Time Advance Synchronization in

Concurrent Discrete-event Simulation and Animation of Construction Operations.

Proceeding of the Eleventh International Conference on Civil, Structural, and

Environmental Engineering Computing, Civil-Comp Ltd., Stirling, U. K.

181

Rekapalli, P.V., Martínez, J.C., and Kamat, V.R. (2009). Algorithms for Accurate

Three-Dimensional Scene Graph Updates in High Speed Animations of

Simulated Construction Operations. Computer-Aided Civil and Infrastructure

Engineering, 24(3), 186-198.

Richardson, G. and Pugh, A.L. (1981). Introduction to System Dynamics

Modeling with Dynamo. MIT Press, Cambridge, MA.

Ritter, F.E. and Schooler, L.J. (2002). The Learning Curve. International

Encyclopedia of the Social and Behavioral Sciences, Amsterdam, Pergamon,

8602-8605.

Rohmert, W. (1973a). Problems of Determination of Rest allowances. Part 1: Use

of Modern Methods to Evaluate Stress and Strain in Static Muscular Work.

Applied Ergonomics 4(2), 91-95.

Rohmert, W. (1973b). Problems of Determination of Rest Allowances. Part 2:

Determining rest allowances in different human tasks. Applied Ergonomics 4(3)

158-162.

Rosa, R.R., Bonnet, M.H. and Cole, L.L. (1998). Work Schedule and Task

Factors in Upper-Extremity Fatigue. Human Factors, 40(1), March, 150-158.

RSMeans (2010). Metric Construction Cost Data. Reed Construction Data Inc.,

USA.

182

Rus, I., Collofello, J., and Lakey, P. (1999). Software Process Simulation for

Reliability Management. Journal of Systems and Software, 46(2-3), 173-182.

Skibniewski, M.J. and Jang, W.S. (2009), Simulation of Accuracy Performance

for Wireless Sensor-Based Localization in Construction Asset Tracking.

Computer-Aided Civil and Infrastructure Engineering, 24(5), 335-345.

Smit, A.S., Eling, P.A.T.M. and Coenen, A.M.L. (2004). Mental Effort Causes

Vigilance Decrease Due to Resource Depletion. Acta Psychologica, 115, 35-42.

Sterman J. D. (1992). System Dynamics Modeling for Project Management.

Cambridge, MA, Sloan School of Management, MIT.

Sterman, J. D. (2000). Reference: Business Dynamics: System Thinking and

Modeling for a Complex World. New York, NY: McGraw-Hill Higher Education.

The EI Group. (2011) Campus Starter: Apprenticeship Programs in Canada.

apprenticeshipprogramsincanada.com. Accessed January 26, 2011.

Taylor, F.W. (1911). The Principles of Scientific Management. Harper and

Brothers Publishers, New York. Reprinted in 1967 by Norton, New York.

Theil, H. (1966). Applied Economic Forecasting. Chicago, IL, USA: Rand

McNally.

183

Venkateswaran, J., Son, Y., and Jones, A. (2004). Hierarchical production

planning using a hybrid system dynamic-discrete event simulation architecture.

Proceedings of the 2004 Winter Simulation Conference, 1094-1102.

Vidacek, S., Kaliterna, L., Radosevic-Vidacek, B. and Folkard, S. (1986).

Productivity on a weekly rotating shift system: circadian adjustment and sleep

deprivation effects? Ergonomics, 29, 1583-1590.

Wang, J. (2005). A review of operations research applications in workforce

planning and potential modeling of military training. DSTO Systems Sciences

Laboratory, Department of Defence, Australian Government, DSTO-TR-1688.

Zeigler, B.P., Praehofer, H. and Kim, T. (2000). Theory of Modeling and

Simulation: Integrating Discrete Event and Continuous Complex Dynamic

Systems. London, UK: 2nd Ed., Academic Press.

Zeigler, B.P., Cho, H.J., Kim, J.G., Sarjoughian, H.S. and Lee, J.S. (2002).

Quantization-based Filtering in Distributed Discrete Event Simulation. Journal of

Parallel and Distributed Computing, 62, 1629-1647.

184

Appendix A5

Meaningful Level of Change in Hybrid Simulation for Construction Analysis

Amin Alvanchi SangHyun Lee Simaan M. AbouRizk

Dept. of Civil and Dept. of Civil and Dept. of Civil and

5-080, NREF, University of 3-009, NREF, University of 3-014, NREF, University of

Edmonton, AB, T6G 2W2, Edmonton, AB, T6G 2W2, Edmonton, AB, T6G 2W2,

ABSTRACT

Hybrid models of System Dynamics (SD) and Discrete Event Simulation (DES)

in the construction industry aim to provide decision makers with more accurate

analysis. However, there are certain issues that can limit the applicability of SD-

DES hybrid models for real construction job situations. Meaningful Level of

Change (MLC) is a concept that has been proposed to prevent the time advancing

issue in the hybrid models used within the construction domain. It is claimed that

by utilizing the MLC, the running time of hybrid simulation models can be

reduced while only slightly contributing to model inaccuracy. In this paper, we

investigate the effects of utilizing the MLC for SD-DES hybrid models used for

construction systems. First, the theoretical aspects of applying the MLC in hybrid

models are investigated. Second, the effects of using different set values of MLC

in an experimental model of a real construction system are illustrated.

5 This paper was published in the Proceedings of the 2009 Winter Simulation

Conference, Austin, Texas, U.S.A, Dec 2009, pp. 2647-2652.

185

1 Introduction

Hybrid models of System Dynamics (SD) and Discrete Event Simulation (DES)

attempt to capture more parts of reality by combining two different system

modeling tools (i.e., SD and DES) (Lee et al. 2007). However, the difference

between SD and DES modeling tools raises some challenging issues (Alvanchi et

al. 2009a). One of these issues results from the fundamental difference between

the ways that SD and DES advance time. While SD continuously follows the

system behavior over time and selects an even step for its time progress, DES

follows the uneven time steps based on the prescheduled time of system events.

The difference in the time advancement approaches of SD and DES may cause

situations in which the simulation runs are computationally overloaded, which

subsequently drastically increases the simulation time. The Meaningful Level of

Change (MLC) (Alvanchi et al. 2009b) concept has been introduced to address

the computational issue in such situations. The MLC is intended to keep the

accuracy of simulation results at a reasonable level, according to the accepted

level of changes, while significantly decreasing the running time of simulation.

Different values can be set for MLCs of different interacting variables in an SD-

DES hybrid model. However, the effects that different chosen values for the

MLC, or the accepted level of inaccuracy for interacting variables, have on the

final simulation results have not yet been thoroughly considered.

To address this issue, the current paper aims at investigating how selecting

different values for the MLC could affect the prospective results of hybrid

186

simulation. The paper consists of the following 4 sections: (1) the essence of the

MLC concept; (2) the theoretical acting mechanism of the MLC; (3) experiencing

the effects of different values for the MLC in a simplified hybrid model of a real

steel fabrication shop; and (4) brief conclusion.

2 Computational Problem of Time Progress in Hybrid Models

The fundamental difference between the SD and DES simulation time advancing

methods (i.e., the continuous method of time advancing in SD and the discrete

time advancing method in DES) is the source of potential deficiencies during

hybrid simulation runs. SD simulation models are categorized as continuous

simulation models. However, the implementation of SD computer simulation is

not actually continuous, but instead follows evenly set time advancing steps. The

set time advancing step should be small enough to be able to capture all

significant changes within the system, but should not be so small that it only

counts the time and delays the simulation runs without any expected significant

changes in the system. For example, if an SD model keeps track of labor hiring/

firing, a time step of a second will waste time of the simulation runs, as it can

easily be assumed that any factors that affect labor hiring/ firing will not exhibit

critical changes within such a short increment of time.

The time of a DES model is changed based on the prescheduled events that

usually follow uneven steps. The progress method in DES originates from the fact

that we can follow system behavior over time by following the system’s states

over time. Every significant change in the system state is called an event. A DES

187

model of a system can be developed when the deterministic or probabilistic time

distances between occurrences of all possible types of events can be determined

by knowing the occurrence time of a set of initial events. The time advances in a

DES model by changing the current time to the time of the event that has an

occurrence time closest to the current time. After the occurrence of each event, all

related events—which have happenings that can be determined by the occurrence

of the occurred event—are scheduled and listed to occur sequentially in the

future.

The potential computational problem in SD-DES hybrid models is raised when a

variable in an SD modeling part interacts with a variable in the DES part that sets

the duration time between event occurrences. If the time step in the SD modeling

part is significantly (e.g., ten times) less than the duration time of the event

occurrence in the DES part, before an event occurs in the DES part of the model,

the interacting variables will interact with each other multiple times. As a result of

any changes initiated by the SD part, not only are the values of the interact

receiver in the DES part being changed, but the scheduled events that are related

to the interact receiver variable of the DES part should also be found and

withdrawn from the list of the scheduled events, calculated by a new set value of

variables, and finally rescheduled and added to the future event list. This

consequent series of changes will add too many calculations to the hybrid model,

specifically when this process is going to happen numerous times before the

occurrence of next scheduled events.

188

3 Meaningful Level of Change (MLC)

In the literature, two different approaches can be found that try to reduce the

number of interactions and thus decrease the negative effects of the time

advancing issue. One of these approaches considers adapting criteria for SD time

steps, based on the fourth-order Runge-Kutta method, to adjust the length of time

steps according to the chronological rates of change (Fehlberg 1970). Proposed by

Venkateswaran et al. (2004), the other approach limits all required data exchanges

among different SD and DES parts within the SD-DES hybrid models to the set

time intervals.

The adjusted time steps in the first approach are based on the recent trend of the

changes in the SD part, which will reduce the number of null interactions (i.e., the

interactions that send the same value as the previously sent value). However, if

the interacting variables in the SD part are changed at every short time interval,

this approach cannot help in improving the simulation time. On the other hand, by

adjusting the length of time steps based on the chronological rates of change,

there is a possibility that the unexpected fluctuations of the SD variables over a

short period of time will be neglected.

In the second approach, the SD and DES model parts work separately according

to their regular solving methods, and a time step is set for the data exchanges

among the different parts. The set time step in this approach should be big enough

to cause no interruptions to the DES parts due to sent interactions from the SD

parts. On the other hand, the time step should be small enough to be able to

189

capture all significant changes within the SD model parts. While the system

behavior and rate of the changes in different parts of the system may vary during

the system life cycle, by setting a constant time step for hybrid interactions among

different model parts, this approach may not efficiently capture all hybrid

interactions during the system life cycle.

To address the time advancing issue while eliminating the undesired side effects,

a concept called the Meaningful Level of Change (MLC) is utilized in the hybrid

models for construction analysis (Alvanchi et al. 2009b). This concept suggests

setting a meaningful level of change for interacting variables in the SD parts that

may cause the time advancing issue. By setting the MLC for a variable, the

achieved changes for that variable that are less than the set MLC are assumed to

be trivial and are consequently not reported to the interacting parts of the model.

For example, when there is a set MLC of 1% for the skill level variable, as an

interacting variable from an SD part, and the last reported skill level is 80%, the

new skill level is reported if its value crosses 79% or 81%. However, construction

related models, especially in the SD parts, usually deal with many approximately

estimated variables, such as skill level, productivity level, fatigue level and safety

level. Taking this into account, putting a limit on the variable updates (i.e., setting

the MLC) will not have a significant influence on the quality of the provided

analyses.

The MLC concept has the same role as the thresholds in quantization based

filtering in distributed discrete event simulation discussed by Zeigler et al. (2002).

190

However, the quantization approach is used to reduce the number of interactions

within a distributed DES model rather than an SD-DES hybrid model. Zetigler et

al. (2002) have thoroughly discussed the benefits that can be achieved for the

distributed DES models in terms of simulation time by using the thresholds and

quantization based filtering. By applying the MLC concept, it is also expected that

we can enhance hybrid simulation models by reducing their simulation time while

accepting some inaccuracies; to visualize this, a comparison with an unlimitedly

interacting hybrid model, namely the base hybrid model, is conducted.

4 ESTIMATING EFFECTS OF SET MLC on FINAL RESULTS

By setting the MLC for an interacting variable in the SD part, we are accepting a

level of inaccuracy. But what are the main influencing factors that contribute to

lessened accuracy in the final simulation results? The immediate and apparent

influencing factor is that the higher the value set for the MLC, the more

inaccuracy in the final results. This means that by increasing the set MLC value

for an interacting variable, the number of crossings will be reduced and,

consequently, the number of initiated interactions by that variable will be

decreased. An increase of the MLC will also make the interaction receiving parts

blind to the variable changes within a broader range of variable changes, which

will result in the simulation results having a lower level of accuracy.

The effect of the changes at the MLC value is not the same at different interacting

variables, although the significance level of the variable participation in the

hybrid model also plays a main role. Within a hybrid model, the effects of

191

changes in the model variables are captured through different formulas that

represent different aspects of the system behaviors over time. The significance

level of the variable participation can be defined based on: 1) the importance of

the system behaviors that the variable participates in and their related formulas; 2)

the range of values that a variable can have; and 3) the places that the variable

stays at in the formulas (e.g., multiplicand, addend, base or exponent at

exponentiation, and numerator or denominator in a fraction). An example for

estimating the effects of the MLC on the final simulation results is discussed in

the next section.

5 Experimental Case

To test the effects of using the MLC concept on a real hybrid model, a simplified

experimental case of an actual structural steel fabrication shop is used. Through

this case study, we examine the effects of setting different values for the MLCs of

variables, which can result in the time advancing issue, on the final simulation

results.

5.1 Interacting Variables

Variables that come from either the SD or DES model parts may initiate or

receive hybrid interactions. However, the MLC will be set only for some of the

interaction initiator variables in the SD parts which usually have significantly

faster updating rates than the related interaction receiver variables in the DES

part. According to the comparison conducted for the rate of updates, station

productivity was found to be one of the variables that may cause the time

192

advancing issue for the fabrication shop hybrid model. The station productivity

variable is set based on the shop productivity factor and station utilization. The

more utilization of a station, the more fatigue will occur for the station operators,

which results in less station productivity being achieved. The utilization of a

station is equal to the busy portion of the station during the working day and is

actively changed at any set time step. In the model, the set time step is one second

and, correspondingly, the station productivity is changed at every second.

Station productivity, which is set in the SD model part, participates in the

operation duration formula, which is used in the DES model part. Usually,

operation duration within the fabrication shop exceeds several minutes. This

affirms that in the base hybrid model of the fabrication shop, where there is no

MLC concept used for the model, the duration of each single operation will be

changed hundreds of times before the operation is finished. According to the

explanation of the time advancing issue, this will be a potential point for creating

the time advancing issue and a value is set for the MLC of the station productivity

variable.

5.2 Analyzing the Effects of Set MLC for Station Productivity

To obtain an estimation of the expected changes in the final results, according to

the set values for the MLC, an assessment is conducted based on the three steps

introduced in Section

1. Importance of the related system behaviors: Station productivity sets the

operation duration at each station, which defines the main behavior of the

fabrication shop system. No duration for the station operations means that

there is no work to be done and this station b

However, it should be considered that station productivity sets the

productivity at each station, not the entire fabrication shop. Taking the

total number of n stations within the fabrication shop into account, the

importance of each single station falls to the one nth (1/n) for the

fabrication shop.

2. Station productivity is measured based on a percentage. Theoretically, this

variable can be any real number greater than zero. However, in real job

situations, receiving productivity

150% is rare.

3. Role of station productivity in the operation duration formula: operation

duration is related to the two main

the rate of doing the job.

Where:

SOD = Station Operation Duration

VJ = Volume of the Job

RDJ = Rate of Doing the Job

Station productivity contributes in the rate of doing the job. However,

there are different factors that set the rate of doing the job, as presented in

the following formula:

Where:

RDJ= Rate of Doing the Job at Each Station

NRRJN = Normal Rate Related to the Job Nature

ENOS = Effect of Number of Operators at the Station

POTI = Percentage of Over Time Increase

SP = Station Productivity

While station productivity is a mult

duration formula, the created inaccuracy is directly transferred to the

193

there is no work to be done and this station becomes practically closed.

However, it should be considered that station productivity sets the

productivity at each station, not the entire fabrication shop. Taking the

total number of n stations within the fabrication shop into account, the

each single station falls to the one nth (1/n) for the

Station productivity is measured based on a percentage. Theoretically, this

variable can be any real number greater than zero. However, in real job

situations, receiving productivity values less than 50% and greater that

Role of station productivity in the operation duration formula: operation

duration is related to the two main factors: (1) the volume of the job and (2)

the rate of doing the job.

Operation Duration

VJ = Volume of the Job

RDJ = Rate of Doing the Job

Station productivity contributes in the rate of doing the job. However,

there are different factors that set the rate of doing the job, as presented in

the following formula:

RDJ= Rate of Doing the Job at Each Station

NRRJN = Normal Rate Related to the Job Nature

ENOS = Effect of Number of Operators at the Station

POTI = Percentage of Over Time Increase

SP = Station Productivity

While station productivity is a multiplicand factor in the operation

duration formula, the created inaccuracy is directly transferred to the

ecomes practically closed.

However, it should be considered that station productivity sets the

productivity at each station, not the entire fabrication shop. Taking the

total number of n stations within the fabrication shop into account, the

each single station falls to the one nth (1/n) for the

Station productivity is measured based on a percentage. Theoretically, this

variable can be any real number greater than zero. However, in real job

values less than 50% and greater that

Role of station productivity in the operation duration formula: operation

factors: (1) the volume of the job and (2)

Station productivity contributes in the rate of doing the job. However,

there are different factors that set the rate of doing the job, as presented in

iplicand factor in the operation

duration formula, the created inaccuracy is directly transferred to the

194

duration. For example, if the MLC is set at 2%, real station productivity is

98% and last reported productivity is 97%, and the duration will face 1%

of inaccuracy. As a result, for this specific problem, the expected

maximum inaccuracy for the duration of the fabrication shop jobs is equal

to the set MLC value, but considering the existing randomness in the

model, it is also possible that for the limited number of observations, the

final results will also show higher inaccuracy. However, there are usually

several other factors that urge the final inaccuracy to a lower level than the

set MLC.

For example, when the MLC is set at 2%, an approximately 2%

inaccuracy will be achieved only in the cases in which the current

productivity always has a difference of approximately 2% with the last

reported productivity. But in the real model runs, the current productivity

will usually yield different values, in both negative and positive directions,

within the set MLC interval, which will reduce the final inaccuracy.

Additionally, as there are multiple stations in the fabrication shop, there is

a slight probability that all unreported productivity variations (because of

the set MLC) will have the same direction of inaccuracy. However,

inaccuracies pointing in different directions push the system to a more

balanced situation.

5.3 Experiencing the Effects of Set MLC for Station Productivity

To visualize the real effects of MLC changes on the final simulation results,

different modeling scenarios with different MLC values of 1%, 2%, 3%, 5% and

10% were set and run in the hybrid simulation model of a fabrication shop. The

achieved results from different scenarios were compared among themselves and

to the base hybrid model (i.e., the hybrid model in which no MLC is set and all

changes to station productivity are reported regardless of their

significance)unlimitedly interacting hybrid model unlimitedly interacting hybrid

195

model unlimitedly interacting hybrid model unlimitedly interacting hybrid model.

Three months of material feeds (from January 20, 2009 to April 20, 2009) from

the fabrication shop were simulated for each model. During this period, the steel

materials were fed through the steel fabrication shop at the scheduled date to pass

cutting, fitting, welding and painting operations. The simulation runs were

completed after all of the fed materials were fabricated and prepared to be shipped

to the field.

Two types of comparison were conducted for this research. The first test was

performed to compare the total duration for fabricating all the fed materials at the

fabrication shop. The second test was conducted to assess how the MLC concept

affects the simulation time. Figure 1 shows the comparative achieved results for

the duration of the steel fabrication at the specified period of material feeds, while

Figure 2 presents the simulation time of different runs. The presented results for

each class are based on five runs of hybrid model simulation. While obtaining a

more rigorous conclusion for the conducted experiments requires a greater

number of simulation runs, during this experiment, we aim to perform a

preliminary investigation in order to determine visual trends of applying the MLC

to hybrid model outputs.

196

 Figure 1: Comparative results for the fabrication duration of different scenarios

Figure 2: Simulation time of different scenariosIn Figure 1, the achieved results for the

duration time of steel fabrication show that the inaccuracy goes up by increasing

the value of the MLC. All inaccuracies stay within the set MLC; the only

exception is the MLC of 2%, as its difference with the base model goes up to

2.2%. This case can be explained based on the limited number of runs (i.e., five

runs for each scenario). What is significant about the achieved results for the

fabrication durations is that all of the MLC scenarios have shorter duration than

144.8 144.2

141.6
142.8

141.2 140.7

100

110

120

130

140

Base MLC 1% MLC 2% MLC 3% MLC 5% MLC 10%

D
u

ra
ti

o
n
 (
D

a
y

)

281

126
110

96

75 74

0

50

100

150

200

250

300

Base MLC 1% MLC 2% MLC 3% MLC 5% MLC 10%

S
im

u
la

ti
o

n
 T

im
e

(M
in

u
te

)

197

the achieved duration of the base hybrid model. This demonstrates that during the

operation of the stations, the reported productivities have had a higher level than

the real productivities, which has caused shorter durations for each single

operation and consequently for the fabrication shop duration. In other words, the

productivity changes have usually followed the declining direction. The declining

direction for productivity during operation results from operators’ fatigue and the

station experiencing a busy time. However, growth in productivity usually occurs

during the idle time of stations, which does not have any effect on the work

duration (because there is no job to be done at that time).

Figure 2 presents the expected simulation time reduction by using the MLC

concept. The simulation time shows a significant reduction in MLC based models

compared to the base hybrid model. The trend of the results shows that by

increasing the value of the MLC, a shorter simulation time is attained.

The comparisons conducted illustrate two different aspects of the set MLC values.

The lesser the value selected for the MLC, the lesser accepted inaccuracy will be

achieved, but with a greater simulation time. In the developed hybrid model, the

MLC concept has been applied for one interacting variable (i.e., station

productivity) and its inaccuracy is directly transferred to the work duration (see

Section 2.5.2). Consequently, the set value for the MLC will stay at the upper

limit of the expected inaccuracy. In this case, it is suggested that the MLC value

be set to the maximum acceptable inaccuracy level for the output results to get the

shortest possible simulation time while staying within the acceptable level of

198

inaccuracy. For example, if the maximum acceptable inaccuracy is 5%, the

suggested MLC value for station productivity will be 5%.

6 Conclusion

The MLC concept is proposed as a solution for the existing time advancing issue

in SD-DES hybrid models. It is While coming up with more rigorous conclusion

for the conducted experiments requires more number of simulation runs, during

this experiment we aim to visualize effects of using MLC on hybrid model

outputs.It isclaimed that the MLC is capable of considerably reducing the

simulation time with insignificant effects on the accuracy of the final results. This

paper assesses the theoretical and practical aspects of using the MLC in SD-DES

hybrid models by applying the concept to a simplified hybrid model of a real steel

fabrication shop. At this stage of the research, we have focused on investigating

the trends of the achieved results. In future, a rigorous assessment with a greater

number of simulation runs and a more detailed hybrid model will be conducted.

The trend of the results shows that using the MLC can increase the speed of SD-

DES hybrid simulation. The significance of the effects of different set MLCs on

the final results depends on the significance of the effects of their related

variables. Thus, it is recommended that before setting values of MLCs, their

effects first be theoretically estimated at the final simulation results. By

considering the possible effects of any chosen value and by preventing the

occurrence of a high level of inaccuracy, such theoretical investigations can build

the confidence of model developers.

199

References

Alvanchi, A., S. Lee, and S. M. AbouRizk. 2009. Modeling Architecture for

Hybrid System Dynamics and Discrete Event Simulation. Proceedings of the

Construction Research Conference, Seattle, Apr. 2009

Fehlberg, E. 1970. New high-order Runge-Kutta formulas with an arbitrary small

truncation error. Computing. 6, 61-71.

Lee, S., S. Han, and F. Peña-Mora. 2007. Hybrid system dynamics and discrete

event simulation for construction management. ASCE International Workshop on

Computing in Civil Engineering, Pittsburgh, PA.

Venkateswaran, J., Y. Son, and A. Jones. 2004. Hierarchical production planning

using a hybrid system dynamic-discrete event simulation architecture.

Proceedings of the 2004 Winter Simulation Conference, eds. R. G. Ingalls, M. D.

Rossetti, J. S. Smith, and B. A. Peters, 1094-1102. Piscataway, New Jersey:

Institute of Electrical and Electronics Engineers, Inc.

Zeigler, B. P., H. J. Cho, J. G. Kim, H. S. Sarjoughian, and J. S. Lee. 2002.

Quantization-based filtering in distributed discrete event simulation. Journal of

Parallel and Distributed Computing, 62, 1629-1647.

200

Appendix B

Programming Details of the Simulation Model Used for Hybrid

Framework and Architecture Test

Model design, Visual Basic codes and data-tables used for developing the

simulation model of the experimental case of structural steel construction hybrid

model development in Section 2.5 of Chapter 2 are presented in this appendix.

B.1. Model Design

Development of an extensive hybrid model with a variety of building components

requires a punctual design to be used in the implementation phase of the model

development. As a result Unified Modeling Language (UML) (Rumbaugh et al.

1999) for object oriented design and programming was followed in the entire

design and programming phases of the model development. At the first step,

different structural steel construction operations and their interactions were

summarized in a form of flowchart (Figure B.1). Then different objects within

structural steel construction were recognized and their relationship (Figure B.2)

and their hierarchical structure (Figure B.3) were extracted.

201

B.1. Structural steel construction operations summarized in a flowchart

Start

New Contract is signed

Receiving the product drawings

Generating production Drawings

Work Volum is estimated

Material is sent to the shop base on

the schedule

Every component is cut

Cut components are sent to the

mid-storage

Fitted pieces are welded

Welded pieces are inspected

Welded pieces are painted/

Sandblasted if required

Pieces are shipped to the field

Division gets progressed while

pieces are getting completed

Division production is scheduled

Delivery date is setMateria l availability is checked

202

B.2. Structural steel construction conceptual objects’ relationship diagram

B.3. Structural steel construction objects’ hierarchical relation

203

Since at this stage of the model development structural steel fabrication process is

modeled, a detailed object model relationship for fabrication shop was developed

to be used for coding the object classes in the programming phase (Figure B.4).

Figure B.4. Object model relationship for the structural steel fabrication shop

Interactions among four initial federates required for developing fabrication shop

federation (including DES model of the shop, SD model of the shop organization,

calendar and data management) were summarized in a form of data flow diagram

(Figure B.5). These interactions were used, at the next step, for drawing the

Federation Object Model (FOM) (Table 2-2 in Chapter 2).

Project Contract1*

Job

1*

Division

Piece

1*

1

*

Material

-Built from

*

-Used for

*

PieceDrawing

-Mapped *

-Shows *
Shop

Station

1

*

Equipment

1

*

-Manupulated

*

-Manupulate

*

-Fabricated

*

-Fabricate

*

Sperintendent

ShopManager

Labor

Schedule

-Operate

*

-Operated

*

-JobAssign*

-Assigned*

1

*

-Create

*

-IsCreated

*

-Read

*

-IsRead

*

Delivery

1 1

-IsOrdered

*

-Order

*

-Meet

*

-IsMet

*

1

*

-Read

*

-IsRead

*

-Read

*

-IsRead

*

Storage

-Store

*

-Maintain

*

-Store

*
-Maintain

*

-SendReceiveMat
*

-SendReceiveMat
*

Crane

-Move
*

-Carried
*

-Move
*

-Carried
*

-Operate

*
-Operated

*

204

Figure B.5. Initial federates and their data flow

At the final stage of the model design and prior to the implementation phase,

Simple flowcharts were developed for identifying different programming steps to

be taken within every federate (Figures B.6, B.7 and B.8). The flowchart diagram

of the SD model was not developed since the major portion of its programming

parts include difference equations (or recursive functions) which are well

established and easy to implement with general programming languages.

Figure B.6.Calendar federate procedure

DES

SD

Data

Management

Calendar

Generated Entities

(Pieces)

Completed Entities

(Pieces)

Production Rate

Delay

Productivity

Labor Changes

Date

Date

Date

Stations Utilization

Start

Set the Parameter

Time Advance Request

Time Advance Granted

205

Figure B.7.Data management federate procedure

Start

Read the data from the data base

based on the Interval

Fill the Divisions of the interval

Fill the Pieces of the interval

Form the schedule

Send the scheduled

entities on the Date

Set the Date

Duration

Duration Passed?

& All Sent Entities
Received?

Receive New Date from Calendar Receive the completed entities

Update the progress

Update the schedule delay

Report the final schedule delay

No

No

Set the Date

Send Termination Request to all

other Federates

Yes

Yes

Finish

206

Figure B.8.DES federate procedure

Looking into the flowcharts presented in Figures B.6, B.7 and B.8, two main

differences from regular flowcharts are noticeable. First, there is just one finish

point in all three flowcharts which shows the termination of the entire federation

happens at that point. Second, there are dashed arrows linking two flowchart task-

boxes which represent broken relations between tasks. This means these tasks are

Start

Set the Parameters:

-No of Stations
- Station Parameters

-Current Ongoing Jobs

Receive PieceEntities

Schedule Finish Time of the

Assigned Jobs

Time Advence Request to the first

Schedule Event

Time Advance Granted

Set the Performance Information

on the Related PieceEntity

Is Related PieceEntity
Completed?

No

Send Piece Entity to the Next Step Update PieceEntity Data in the

Federation

Dequeue the First PieceEntity

from the Waiting List

Yes

Time Advence Request to the first

Schedule Event

207

logically after each other, but time gaps might happen between them and program

can get followed in other parts for a while before moving from first task to the

second one.

 B.2. Visual Basic Codes

The Visual Basic package of Visual Studio.NET 2008 has been used as the

programming tool for developing different federates. In addition to the standard

classes embedded in the Visual Basic, set of HLA related classes provided by

COSYE framework (irc.construction.ualberta.ca/cosye/) also have been imported

and used in the program. Set of general purpose discrete event simulation classes,

provided by Simphony 3.5 (irc.construction.ualberta.ca/simphony35/) also have

been imported for developing the DES federate. In following, the main body of

the Visual Basic codes used for developing different federates of the structural

steel federation in Section 2.5 of Chapter 2 are presented.

1) Work Calendar Federate

Imports Cosye.Hla.Rti
Public Class CalendarFederate
 Dim Holidays As New Collection
 Dim MyCalendar As Cosye.Steel.Steel_Calendar
 Dim WeekDayHours(6, 3) As Single
 Dim ShifInterval(3) As ShiftType
 Dim CurrentShiftID As Integer = 1
 Dim CurrentDayLeftHours As Double = 24

 Private Sub ReadWeekDayHours()
 Try
 WeekDayHours(0, 1) = CSng(TxtSunWork.Text)
 WeekDayHours(0, 2) = CSng(TxtSunOver.Text)
 WeekDayHours(0, 3) = Math.Max(0, 24 - WeekDayHours(0, 1) - WeekDayHours(0, 2))
 Catch ex As Exception
 MessageBox.Show("Enter a valid Number for Sunday Hours!")
 End Try
 Try
 WeekDayHours(1, 1) = CSng(TxtMonWork.Text)
 WeekDayHours(1, 2) = CSng(TxtMonOver.Text)
 WeekDayHours(1, 3) = Math.Max(0, 24 - WeekDayHours(1, 1) - WeekDayHours(1, 2))
 Catch ex As Exception

208

 MessageBox.Show("Enter a valid Number for Monday Hours!")
 End Try
 Try
 WeekDayHours(2, 1) = CSng(TxtTueWork.Text)
 WeekDayHours(2, 2) = CSng(TxtTueOver.Text)
 WeekDayHours(2, 3) = Math.Max(0, 24 - WeekDayHours(2, 1) - WeekDayHours(2, 2))
 Catch ex As Exception
 MessageBox.Show("Enter a valid Number for Tuesday Hours!")
 End Try
 Try
 WeekDayHours(3, 1) = CSng(TxtWedWork.Text)
 WeekDayHours(3, 2) = CSng(TxtWedOver.Text)
 WeekDayHours(3, 3) = Math.Max(0, 24 - WeekDayHours(3, 1) - WeekDayHours(3, 2))
 Catch ex As Exception
 MessageBox.Show("Enter a valid Number for Wednesday Hours!")
 End Try
 Try
 WeekDayHours(4, 1) = CSng(TxtThuWork.Text)
 WeekDayHours(4, 2) = CSng(TxtThuOver.Text)
 WeekDayHours(4, 3) = Math.Max(0, 24 - WeekDayHours(4, 1) - WeekDayHours(4, 2))
 Catch ex As Exception
 MessageBox.Show("Enter a valid Number for Thursday Hours!")
 End Try
 Try
 WeekDayHours(5, 1) = CSng(TxtFriWork.Text)
 WeekDayHours(5, 2) = CSng(TxtFriOver.Text)
 WeekDayHours(5, 3) = Math.Max(0, 24 - WeekDayHours(5, 1) - WeekDayHours(5, 2))
 Catch ex As Exception
 MessageBox.Show("Enter a valid Number for Friday Hours!")
 End Try
 Try
 WeekDayHours(6, 1) = CSng(TxtSatWork.Text)
 WeekDayHours(6, 2) = CSng(TxtSatOver.Text)
 WeekDayHours(6, 3) = Math.Max(0, 24 - WeekDayHours(6, 1) - WeekDayHours(6, 2))
 Catch ex As Exception
 MessageBox.Show("Enter a valid Number for Saturday Hours!")
 End Try
 End Sub

 Private Sub ReadShiftInterval()
 ShifInterval(1) = ShiftType.DayShift
 Select Case CmbShift2.Text
 Case "Shift2"
 ShifInterval(2) = ShiftType.Shift2
 Case "MaxOverTime"
 ShifInterval(2) = ShiftType.OverTime
 Case "Close"
 ShifInterval(2) = ShiftType.Close
 End Select
 Select Case CmbShift3.Text
 Case "Shift3"
 ShifInterval(3) = ShiftType.Shift3
 Case "Close"
 ShifInterval(3) = ShiftType.Close
 End Select
 End Sub

 Private Sub BtnDelete_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles BtnDelete.Click
 If LstHoliday.SelectedItems.Count > 0 Then
 Dim ToBeDeletedDate As New Date
 For i As Integer = LstHoliday.SelectedItems.Count - 1 To 0
 Holidays.Remove(CInt(LstHoliday.SelectedItems.Item(i)))
 LstHoliday.Items.Remove(LstHoliday.SelectedItems.Item(i))
 Next
 End If
 End Sub

 Private Sub BtnAdd_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles BtnAdd.Click
 'Check If the picked hodliday has not been added yet
 If Not Holidays.Contains(LstPickHoliday.SelectionStart.ToShortDateString) Then

209

 Holidays.Add(LstPickHoliday.SelectionStart.Date, LstPickHoliday.SelectionStart.ToShortDateString)
 If LstHoliday.Items.Count = 0 Then 'No need for sorting
 LstHoliday.Items.Add(LstPickHoliday.SelectionStart.ToShortDateString)
 Else 'Item should be sorted
 Dim AddedToList As Boolean = False
 For i As Integer = 0 To LstHoliday.Items.Count - 1
 If Convert.ToDateTime(LstHoliday.Items(i)).Date > LstPickHoliday.SelectionStart.Date Then
 LstHoliday.Items.Insert(i, LstPickHoliday.SelectionStart.ToShortDateString)
 AddedToList = True
 Exit For
 End If
 Next
 'Add to the list as the last item
 If Not AddedToList Then
 LstHoliday.Items.Add(LstPickHoliday.SelectionStart.ToShortDateString)
 End If
 End If
 End If
 End Sub

 Dim LastWorkingDate As Date = Nothing
 Private Sub ChangeTheShift()
 MyCalendar.CurrentShiftHours = 0
 While MyCalendar.CurrentShiftHours = 0
 If MyCalendar.CurrentShiftType = ShiftType.Close Or _
 MyCalendar.CurrentShiftType = ShiftType.Shift3 Then 'Next shift is in tomorrow
 MyCalendar.CurrentDate = DateAdd(DateInterval.Day, 1, MyCalendar.CurrentDate)
 'Check if tomorrow is holiday
 If Holidays.Contains(MyCalendar.CurrentDate.ToShortDateString) Then 'Set all day as Close
 MyCalendar.CurrentShiftType = ShiftType.Close
 MyCalendar.CurrentShiftHours = 24
 CurrentDayLeftHours = 0
 Else 'Start from first shift of the day
 ReadWeekDayHours()
 Dim DayInWeek As Integer = MyCalendar.CurrentDate.DayOfWeek
 CurrentShiftID = 1
 MyCalendar.CurrentShiftHours = WeekDayHours(DayInWeek, CurrentShiftID)
 MyCalendar.CurrentShiftType = ShifInterval(CurrentShiftID)
 CurrentDayLeftHours = 24 - MyCalendar.CurrentShiftHours
 End If
 Else 'Next shift is in today
 Dim DayInWeek As Integer = MyCalendar.CurrentDate.DayOfWeek
 CurrentShiftID = CurrentShiftID + 1
 MyCalendar.CurrentShiftType = ShifInterval(CurrentShiftID)
 'Set the over time base on the desired overtime and max overtime
 If MyCalendar.CurrentShiftType = ShiftType.OverTime Then
 Try
 MyCalendar.CurrentShiftHours = Math.Min(MyCalendar.DesireOverTime, WeekDayHours(DayInWeek,
CurrentShiftID))
 Catch ex As Exception
 MyCalendar.CurrentShiftHours = 0
 End Try
 ElseIf MyCalendar.CurrentShiftType = ShiftType.Close Then
 MyCalendar.CurrentShiftHours = Math.Max(CurrentDayLeftHours, WeekDayHours(DayInWeek,
CurrentShiftID))
 Else
 MyCalendar.CurrentShiftHours = WeekDayHours(DayInWeek, CurrentShiftID)
 End If
 CurrentDayLeftHours = CurrentDayLeftHours - MyCalendar.CurrentShiftHours
 End If
 End While
 'Check if the working days have been counted
 If Not (MyCalendar.CurrentShiftType = ShiftType.Close Or LastWorkingDate = MyCalendar.CurrentDate) Then
 MyCalendar.DayNo = MyCalendar.DayNo + 1
 End If

 End Sub

 Private Sub MyCalendarFactory_ReflectAttributeValues(ByVal sender As System.Object, ByVal e As
Cosye.Hla.Rti.ReflectAttributeValuesEventArgs) Handles MyCalendarFactory.ReflectAttributeValues

210

 'Sets the Parameters
 ReadWeekDayHours()
 ReadShiftInterval()
 'Determine the Max possible OverTime
 Dim MaxOvertime As Double = 0
 For i As Integer = 1 To 7
 If WeekDayHours(i - 1, 2) > MaxOvertime Then
 MaxOvertime = WeekDayHours(i, 2)
 End If
 Next
 'Handle the update attributes
 MyCalendar = MyCalendarFactory(e.theObject)
 'Get the CurrentDate attribute handle
 Dim CurDateHandle As AttributeHandle = MyCalendarFactory.GetAttributeHandle("CurrentDate")
 'Just do it for the first time when Current time is defined
 If e.theValues.Contains(CurDateHandle) Then
 MyCalendar.AttributeOwnershipAcquisition("CurrentDate", "CurrentShiftHours", "CurrentShiftType", "DayNo",
"MaxOverTime", "SetOverTimeForDay")
 MyCalendar.DayNo = 0
 CurrentShiftID = 0
 MyCalendar.MaxOverTime = MaxOvertime
 If Holidays.Contains(MyCalendar.CurrentDate.ToShortDateString) Then
 MyCalendar.CurrentShiftType = ShiftType.Close
 MyCalendar.CurrentShiftHours = 24
 CurrentDayLeftHours = 0
 Else
 Dim DayInWeek As Integer = MyCalendar.CurrentDate.DayOfWeek
 MyCalendar.CurrentShiftHours = 0
 'Change the shift until ShiftHours becomes > 0
 CurrentDayLeftHours = 24
 While MyCalendar.CurrentShiftHours = 0
 CurrentShiftID = CurrentShiftID + 1
 MyCalendar.CurrentShiftType = ShifInterval(CurrentShiftID)
 If MyCalendar.CurrentShiftType = ShiftType.OverTime Then
 Try
 MyCalendar.CurrentShiftHours = Math.Min(MyCalendar.DesireOverTime, WeekDayHours(DayInWeek,
CurrentShiftID))
 Catch ex As Exception
 MyCalendar.CurrentShiftHours = 0
 End Try
 ElseIf MyCalendar.CurrentShiftType = ShiftType.Close Then
 MyCalendar.CurrentShiftHours = Math.Max(CurrentDayLeftHours, WeekDayHours(DayInWeek,
CurrentShiftID))
 Else
 MyCalendar.CurrentShiftHours = WeekDayHours(DayInWeek, CurrentShiftID)
 End If
 End While
 CurrentDayLeftHours = CurrentDayLeftHours - MyCalendar.CurrentShiftHours
 End If
 MyCalendar.UpdateAttributeValues()
 End If
 'Handle the update attributes
 Dim DesireOvertimeHandle As AttributeHandle = MyCalendarFactory.GetAttributeHandle("DesireOverTime")
 'Get the DesireOvertime attribute handle
 If e.theValues.Contains(DesireOvertimeHandle) Then
 If MyCalendar.DesireOverTime > 0 Then
 MyCalendar.SetOverTimeForDay = Math.Min(MyCalendar.DesireOverTime,
WeekDayHours(MyCalendar.CurrentDate.DayOfWeek, 2))
 Else
 MyCalendar.SetOverTimeForDay = 0
 End If
 'Just for resolving possible the ownership
 Dim GainedOwnership As Boolean = False
 'Loop until ownership is granted
 While Not GainedOwnership
 Try
 MyCalendar.UpdateAttributeValues()
 GainedOwnership = True
 Catch ex As Exception

211

 End Try
 End While
 End If
 'Update the Interface
 Try
 TxtCurDate.Text = MyCalendar.CurrentDate.ToShortDateString
 TxtShift.Text = [Enum].GetName(GetType(Cosye.Steel.ShiftType), MyCalendar.CurrentShiftType)
 Catch ex As Exception
 'No need for interface update at this time
 End Try
 End Sub

 Private Sub fedAmb_TimeAdvanceGrant(ByVal sender As System.Object, ByVal e As
Cosye.Hla.Rti.TimeAdvanceGrantEventArgs) Handles fedAmb.TimeAdvanceGrant
 'Update the Interface
 TxtCurDate.Text = MyCalendar.CurrentDate.ToShortDateString
 TxtShift.Text = [Enum].GetName(GetType(Cosye.Steel.ShiftType), MyCalendar.CurrentShiftType)
 'Store the current shift's Hours
 Dim CurrentShiftHours As Double = MyCalendar.CurrentShiftHours
 'Prepare the parameters of the next shift
 ChangeTheShift()
 'Update the next shift when current shift gets over
 MyCalendar.UpdateAttributeValues(e.theTime + CurrentShiftHours * 3600)
 'Time Advance Request when current shift gets over
 rtiAmb.TimeAdvanceRequest(e.theTime + CurrentShiftHours * 3600)
 End Sub
End Class

2) Data Management Federate

Imports Simphony.Mathematics
Imports Cosye.Hla.Rti

Public Class DataManagement
 'Dim PieceEntityItem As PieceEntity
 Dim Cutting, Fitting, FitInspection, Welding, WeldInspection, Painting As Activity
 Dim NoPieceReceived As Integer = 0
 Dim MyShopProductivity As Steel_ShopProductivity
 Dim SimulationStartTime As New Date
 Dim MyDataEnvironment As New DataEnvironment
 Dim DivisionsProgressList As New Dictionary(Of String, String)
 Dim InShopPieceSent As Boolean = False

 Public Sub SetParameters()
 '''''Date Related Parameters
 Try
 MyDataEnvironment.DataImportDuration = Val(TxtDuration.Text)
 Catch ex As Exception
 MessageBox.Show("Enter a valid Number for Simulation Duration!")
 End Try
 ''''''Activity Related Parameters
 Try
 Cutting.ActivityMod = Convert.ToDouble(TxtCutMod.Text)
 Cutting.ActivityMin = Convert.ToDouble(TxtCutMin.Text)
 Cutting.ActivityMax = Convert.ToDouble(TxtCutMax.Text)
 Catch ex As Exception
 MessageBox.Show("Enter a valid Number For Cutting!")
 End Try
 Try
 Fitting.ActivityMod = Convert.ToDouble(TxtFitMod.Text)
 Fitting.ActivityMin = Convert.ToDouble(TxtFitMin.Text)
 Fitting.ActivityMax = Convert.ToDouble(TxtFitMax.Text)
 Catch ex As Exception
 MessageBox.Show("Enter a valid Number For Fitting!")
 End Try
 Try
 Welding.ActivityMod = Convert.ToDouble(TxtWeldMod.Text)

212

 Welding.ActivityMin = Convert.ToDouble(TxtWeldMin.Text)
 Welding.ActivityMax = Convert.ToDouble(TxtWeldMax.Text)
 Catch ex As Exception
 MessageBox.Show("Enter a valid Number For Welding!")
 End Try
 Try
 FitInspection.ActivityMod = Val(TxtInspectMod.Text) / 2
 FitInspection.ActivityMin = Val(TxtInspectMin.Text) / 2
 FitInspection.ActivityMax = Val(TxtInspectMax.Text) / 2
 Catch ex As Exception
 MessageBox.Show("Enter a valid Number For Inspection!")
 End Try
 Try
 WeldInspection.ActivityMod = Val(TxtInspectMod.Text) / 2
 WeldInspection.ActivityMin = Val(TxtInspectMin.Text) / 2
 WeldInspection.ActivityMax = Val(TxtInspectMax.Text) / 2
 Catch ex As Exception
 MessageBox.Show("Enter a valid Number For Inspection!")
 End Try
 Try
 Painting.ActivityMod = Convert.ToDouble(TxtPaintMod.Text)
 Painting.ActivityMin = Convert.ToDouble(TxtPaintMin.Text)
 Painting.ActivityMax = Convert.ToDouble(TxtPaintMax.Text)
 Catch ex As Exception
 MessageBox.Show("Enter a valid Number For Painting!")
 End Try
 'Set the Simulation Start Time
 LblSimStart.Text = Date.Now.TimeOfDay.ToString
 SimulationStartTime = Date.Now
 End Sub
 '' ''''''''''''''''''''''Sends Entities
 Private Sub SendEntities(ByVal SendDate As Date, ByVal SendingTime As Double)
 'Import the Data for the Date
 MyDataEnvironment.ImportData(SendDate)
 Dim DivisionItem As Division
 'Send the imported pieces for today
 For Each PieceItem As Piece In MyDataEnvironment.TodayPieceList.Values
 DivisionItem = New Division
 DivisionItem = MyDataEnvironment.DivisionList(PieceItem.DivisionID)
 Dim PaintingRequirePortion As Double = 1
 Dim PiecePaintingActivityDurationPortion As Double = 1 'Is set to calculate Painting Portion
 If Not DivisionItem.PaintRequire Then
 PaintingRequirePortion = 100 / (100 - Painting.ActivityMod)
 PiecePaintingActivityDurationPortion = 0
 End If
 Dim PieceActivityDuration As Double = Math.Min(Math.Max(DivisionItem.FabManHour * PieceItem.Weight,
200), 5 * 3600)
 PiecePaintingActivityDurationPortion = PiecePaintingActivityDurationPortion * PieceActivityDuration
 Dim RFIDTagCount As Integer = 0
 If MyDataEnvironment.InShopPieceList.Keys.Contains(PieceItem.PieceID) Then
 RFIDTagCount = PieceItem.RFIDList.Count
 End If
 For j As Integer = 1 To PieceItem.Quantity - RFIDTagCount
 Dim NewPieceEntity As Steel_PieceEntity = MyPieceEntityFactory.RegisterObjectInstance()
 NewPieceEntity.PieceID = PieceItem.PieceID
 NewPieceEntity.StartDate = SendDate.Date
 NewPieceEntity.Weight = PieceItem.Weight
 NewPieceEntity.DimentionLevel = Convert.ToInt32(PieceItem.Weight)
 NewPieceEntity.CuttingFinish = Nothing
 NewPieceEntity.CuttingManHour = PieceActivityDuration * Cutting.DurationPortion * PaintingRequirePortion
 NewPieceEntity.WeldingManHour = PieceActivityDuration * Welding.DurationPortion *
PaintingRequirePortion
 NewPieceEntity.FittingManHour = PieceActivityDuration * Fitting.DurationPortion * PaintingRequirePortion
 NewPieceEntity.FitInspectionManHour = PieceActivityDuration * FitInspection.DurationPortion *
PaintingRequirePortion
 NewPieceEntity.WeldInspectionManHour = PieceActivityDuration * WeldInspection.DurationPortion *
PaintingRequirePortion
 NewPieceEntity.PaintingManHour = PiecePaintingActivityDurationPortion * Painting.DurationPortion *
PaintingRequirePortion
 If SendingTime > 0 Then

213

 NewPieceEntity.UpdateAttributeValues(SendingTime)
 NewPieceEntity.UnconditionalAttributeOwnershipDivestiture("CuttingManHour", "FittingManHour",
"WeldingManHour", "FitInspectionManHour", "WeldInspectionManHour", "PaintingManHour", _
 "CuttingFinish", "FittingFinish", "WeldingFinish", "FitInspectionFinish", "WeldInspectionFinish",
"PaintingFinish", _
 "CuttingStart", "FittingStart", "WeldingStart", "FitInspectionStart", "WeldInspectionStart", "PaintingStart")
 Else
 NewPieceEntity.UpdateAttributeValues()
 NewPieceEntity.UnconditionalAttributeOwnershipDivestiture("CuttingManHour", "FittingManHour",
"WeldingManHour", "FitInspectionManHour", "WeldInspectionManHour", "PaintingManHour", _
 "CuttingFinish", "FittingFinish", "WeldingFinish", "FitInspectionFinish", "WeldInspectionFinish",
"PaintingFinish", _
 "CuttingStart", "FittingStart", "WeldingStart", "FitInspectionStart", "WeldInspectionStart", "PaintingStart")
 End If
 Next
 Next
 End Sub

 '' ''''''''''''''''''''''Sends In-Shop Entities
 Private Sub SendInShopEntities(ByVal SendDate As Date)
 'Import the Data for the Date
 MyDataEnvironment.ImportInShopPieces(SendDate)
 Dim DivisionItem As Division
 Dim MaxNumberOfRFIDUpdate As Integer = 3
 'Send the imported pieces for today
 For Each PieceItem As Piece In MyDataEnvironment.InShopPieceList.Values
 DivisionItem = New Division
 DivisionItem = MyDataEnvironment.DivisionList(PieceItem.DivisionID)
 Dim PaintingRequirePortion As Double = 1
 Dim PiecePaintingActivityDurationPortion As Double = 1 'Is set to calculate Painting Portion
 If Not DivisionItem.PaintRequire Then
 PaintingRequirePortion = 100 / (100 - Painting.ActivityMod)
 PiecePaintingActivityDurationPortion = 0
 Else
 MaxNumberOfRFIDUpdate = 1 + MaxNumberOfRFIDUpdate
 End If
 Dim PieceActivityDuration As Double = DivisionItem.FabManHour * PieceItem.Portion
 PiecePaintingActivityDurationPortion = PiecePaintingActivityDurationPortion * PieceActivityDuration
 For j As Integer = 0 To PieceItem.RFIDList.Count - 1
 Dim RFIDItem As New RFID
 RFIDItem = PieceItem.RFIDList(PieceItem.RFIDList.Keys(j))
 If MaxNumberOfRFIDUpdate > RFIDItem.RFIDCount Then
 Dim NewPieceEntity As Steel_PieceEntity = MyPieceEntityFactory.RegisterObjectInstance()
 NewPieceEntity.PieceID = PieceItem.PieceID
 NewPieceEntity.StartDate = SendDate.Date
 NewPieceEntity.Weight = PieceItem.Weight
 NewPieceEntity.DimentionLevel = Convert.ToInt32(PieceItem.Weight)
 NewPieceEntity.CuttingManHour = PieceActivityDuration * Cutting.DurationPortion *
PaintingRequirePortion
 NewPieceEntity.WeldingManHour = PieceActivityDuration * Welding.DurationPortion *
PaintingRequirePortion
 NewPieceEntity.FittingManHour = PieceActivityDuration * Fitting.DurationPortion * PaintingRequirePortion
 NewPieceEntity.FitInspectionManHour = PieceActivityDuration * FitInspection.DurationPortion *
PaintingRequirePortion
 NewPieceEntity.WeldInspectionManHour = PieceActivityDuration * WeldInspection.DurationPortion *
PaintingRequirePortion
 NewPieceEntity.PaintingManHour = PiecePaintingActivityDurationPortion * Painting.DurationPortion *
PaintingRequirePortion
 'Reset the values of the activity start and finish
 NewPieceEntity.CuttingFinish = Nothing
 NewPieceEntity.FittingFinish = Nothing
 NewPieceEntity.FitInspectionFinish = Nothing
 NewPieceEntity.WeldingFinish = Nothing
 NewPieceEntity.WeldInspectionFinish = Nothing
 NewPieceEntity.PaintingFinish = Nothing
 NewPieceEntity.CuttingStart = Nothing
 NewPieceEntity.FittingStart = Nothing
 NewPieceEntity.FitInspectionStart = Nothing
 NewPieceEntity.WeldingStart = Nothing
 NewPieceEntity.WeldInspectionStart = Nothing

214

 NewPieceEntity.PaintingStart = Nothing

 Select Case RFIDItem.RFIDCount
 Case 1
 NewPieceEntity.CuttingFinish = RFIDItem.MinDate
 Case 2
 NewPieceEntity.CuttingFinish = RFIDItem.MinDate
 NewPieceEntity.FittingFinish = RFIDItem.MaxDate
 NewPieceEntity.FitInspectionFinish = RFIDItem.MaxDate
 Case 3
 NewPieceEntity.CuttingFinish = RFIDItem.MinDate
 NewPieceEntity.FittingFinish = RFIDItem.MinDate
 NewPieceEntity.FitInspectionFinish = RFIDItem.MinDate
 NewPieceEntity.WeldingStart = RFIDItem.MaxDate
 Case 4
 NewPieceEntity.CuttingFinish = RFIDItem.MinDate
 NewPieceEntity.FittingFinish = RFIDItem.MinDate
 NewPieceEntity.FitInspectionFinish = RFIDItem.MinDate
 NewPieceEntity.WeldingFinish = RFIDItem.MaxDate
 NewPieceEntity.WeldInspectionFinish = RFIDItem.MaxDate
 Case 5
 NewPieceEntity.CuttingFinish = RFIDItem.MinDate
 NewPieceEntity.FittingFinish = RFIDItem.MinDate
 NewPieceEntity.FitInspectionFinish = RFIDItem.MinDate
 NewPieceEntity.WeldingFinish = RFIDItem.MaxDate
 NewPieceEntity.WeldInspectionFinish = RFIDItem.MaxDate
 NewPieceEntity.PaintingStart = RFIDItem.MaxDate
 End Select
 NewPieceEntity.UpdateAttributeValues()
 NewPieceEntity.UnconditionalAttributeOwnershipDivestiture("CuttingManHour", "FittingManHour",
"WeldingManHour", "FitInspectionManHour", "WeldInspectionManHour", "PaintingManHour", _
 "CuttingFinish", "FittingFinish", "WeldingFinish", "FitInspectionFinish", "WeldInspectionFinish",
"PaintingFinish", _
 "CuttingStart", "FittingStart", "WeldingStart", "FitInspectionStart", "WeldInspectionStart", "PaintingStart")
 Else 'MaxNumberOfRFIDUpdate < =RFIDItem.RFIDCount
 ''Current piece progress
 PieceItem.CompletedPieces = 1 + PieceItem.CompletedPieces
 End If
 Next
 Next
 End Sub

 Private Sub MyPieceEntityFactory_ReflectAttributeValues(ByVal sender As System.Object, ByVal e As
Cosye.Hla.Rti.ReflectAttributeValuesEventArgs) Handles MyPieceEntityFactory.ReflectAttributeValues
 Dim CompletedPieceEntity As Steel_PieceEntity = MyPieceEntityFactory(e.theObject)
 'Check if the Piece Exists'''Sometimes the piece will be igonred if its weight is Zero
 If MyDataEnvironment.PieceList.Keys.Contains(CompletedPieceEntity.PieceID) Then
 Dim RelatedPiece As Piece = MyDataEnvironment.PieceList(CompletedPieceEntity.PieceID)
 Dim RelatedDivision As Division = MyDataEnvironment.DivisionList(RelatedPiece.DivisionID)
 'Calculate and send piece CPI at piece level
 ''Current piece progress
 RelatedPiece.CompletedPieces = 1 + RelatedPiece.CompletedPieces
 Dim PieceProgress As Double = RelatedPiece.CompletedPieces / RelatedPiece.Quantity
 ''Piece CPI
 Dim PieceSpentHour As Double = (CompletedPieceEntity.CuttingManHour + _
 CompletedPieceEntity.FittingManHour + _
 CompletedPieceEntity.WeldingManHour + _
 CompletedPieceEntity.FitInspectionManHour + _
 CompletedPieceEntity.WeldInspectionManHour + _
 CompletedPieceEntity.PaintingManHour) ' In Second
 RelatedPiece.TotalSpentHours = PieceSpentHour + RelatedPiece.TotalSpentHours
 RelatedDivision.TotalSpentHours = PieceSpentHour + RelatedDivision.TotalSpentHours
 Dim PieceEarnedHour As Double = RelatedPiece.CompletedPieces * RelatedDivision.FabManHour _
 * RelatedPiece.Portion 'In second
 Dim PieceCPI = PieceEarnedHour / RelatedPiece.TotalSpentHours
 'Check the Division CPI and Both piece and division SPI
 ''Check the start date
 If RelatedDivision.Progress = 0 Then
 If Not (CompletedPieceEntity.CuttingStart = Nothing) Then
 RelatedDivision.Start = CompletedPieceEntity.CuttingStart

215

 Else
 RelatedDivision.Start = MyDataEnvironment.CurrentDate
 End If
 End If
 'Update No of Pieces
 NoPieceReceived = NoPieceReceived + 1
 RelatedDivision.CompletedPieces = RelatedDivision.CompletedPieces + 1
 'Update the Piece ListBox
 LblCompPiece.Text = NoPieceReceived.ToString
 ''Update the current earned progress at the division level
 RelatedDivision.Progress = Math.Min(1, RelatedDivision.Progress + RelatedPiece.Portion)
 '' Calculate Division CPI
 Dim DivisionCPI As Double = 1
 If RelatedDivision.TotalSpentHours > 0 Then
 Dim DivisionEarnedManhour As Double = RelatedDivision.Progress * RelatedDivision.FabManHour
 DivisionCPI = DivisionEarnedManhour / RelatedDivision.TotalSpentHours
 End If
 'Calculate Scheduled Progress
 Dim SchPassedDays As Double
 If RelatedDivision.Start < MyDataEnvironment.CurrentDate Then
 SchPassedDays = Math.Max(0, DateDiff(DateInterval.Day, RelatedDivision.Start,
MyDataEnvironment.CurrentDate))
 Else
 SchPassedDays = 0
 End If
 Dim SchTotalDays As Double = Math.Max(1, DateDiff(DateInterval.Day, RelatedDivision.Start,
RelatedDivision.Required))
 Dim SchProgress As Double = Math.Min(1, SchPassedDays / SchTotalDays)
 'Calculate SPI
 Dim DivisionPieceSPI As Double
 If SchProgress = 0 Then
 DivisionPieceSPI = 1
 Else
 DivisionPieceSPI = RelatedDivision.Progress / SchProgress
 End If
 'Reflec latest CPI and SPI to the related Division
 RelatedDivision.CPI = DivisionCPI
 RelatedDivision.SPI = DivisionPieceSPI
 'Update VPiece
 Dim MyVpiece As Steel_VPiece = MyVPieceFactory.RegisterObjectInstance()
 MyVpiece.DivisionID = RelatedDivision.DivisionID
 MyVpiece.PieceKey = RelatedPiece.PieceKey
 MyVpiece.CPI = PieceCPI
 MyVpiece.SPI = DivisionPieceSPI
 MyVpiece.Progress = PieceProgress
 MyVpiece.UpdateAttributeValues()
 ''Report the latest achieved progress
 Dim DivPreviousProgress As String
 If DivisionsProgressList.Keys.Contains(RelatedDivision.DivisionID) Then
 'Remove the previous progress and add the new one
 DivPreviousProgress = DivisionsProgressList(RelatedDivision.DivisionID)
 DivisionsProgressList.Remove(RelatedDivision.DivisionID)
 LstCompDivision.Items.Remove(DivPreviousProgress)
 DivisionsProgressList.Add(RelatedDivision.DivisionID, RelatedDivision.ToString)
 LstCompDivision.Items.Add(RelatedDivision.ToString)
 Else 'Just add the new progress
 DivisionsProgressList.Add(RelatedDivision.DivisionID, RelatedDivision.ToString)
 LstCompDivision.Items.Add(RelatedDivision.ToString)
 End If
 Me.Refresh()
 '' Add number of completed divisions if division completed
 If Math.Round(RelatedDivision.Progress, 3) >= 1 And Not
MyDataEnvironment.CompletedDivisions.Contains(RelatedDivision.DivisionID) Then
 MyDataEnvironment.CompletedDivisions.Add(RelatedDivision.DivisionID)
 End If
 End If 'Piece Exists
 'Delete the Piece from the RTI
 MyPieceEntityFactory.DeleteObjectInstance(CompletedPieceEntity)
 End Sub

216

 Private Sub MyCalendarFactory_ReflectAttributeValues(ByVal sender As System.Object, ByVal e As
Cosye.Hla.Rti.ReflectAttributeValuesEventArgs) Handles MyCalendarFactory.ReflectAttributeValues
 Dim DateHandle As Cosye.Hla.Rti.AttributeHandle = MyCalendarFactory.GetAttributeHandle("CurrentDate")
 Dim NewDay As Steel_Calendar = MyCalendarFactory(e.theObject)
 'Move the day ahead and check the scheduled pieces
 MyDataEnvironment.CurrentDate = NewDay.CurrentDate
 MyDataEnvironment.WorkingDays = NewDay.DayNo
 'Check if the day no has been changed/ New day has been started
 If e.theValues.Contains(DateHandle) And NewDay.CurrentDate <= MyDataEnvironment.FinishDate Then
 'Send the Scheduled pieces for this day if any existed
 SendEntities(MyDataEnvironment.CurrentDate, e.theTime + 1)
 'Calculate the Delay
 CalculateCurrentDelay()
 'Update the Delay
 MyShopProductivity.TotalDelay = MyDataEnvironment.MySchedule.TotalDelay
 MyShopProductivity.DelayRate = MyDataEnvironment.DelayRate
 MyShopProductivity.UpdateAttributeValues()
 'Set the Values on screen
 SetInterface()
 End If
 End Sub
 '' '''''''''''''''''''''''Calculate and set delays
 Private Sub CalculateCurrentDelay()
 Dim CurrentTotalDelay As New Delay
 'Calculate curretn total delay
 For Each DivisionItem As Division In MyDataEnvironment.DivisionList.Values
 If DivisionItem.Progress < 1 And DivisionItem.Required < MyDataEnvironment.CurrentDate And Not
DivisionItem.Required = Nothing Then
 DivisionItem.Delay = Math.Min(0, DateDiff(DateInterval.Day, MyDataEnvironment.CurrentDate,
DivisionItem.Required))
 End If
 CurrentTotalDelay.Delays = CurrentTotalDelay.Delays + DivisionItem.Delay
 CurrentTotalDelay.WeightedDelays = CurrentTotalDelay.WeightedDelays + DivisionItem.WeightedDelay
 Next
 'Assign the caculated delay
 MyDataEnvironment.SetDelay(CurrentTotalDelay)
 End Sub

 Private Sub MyCalendarFactory_InitializeInitialInstances(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyCalendarFactory.InitializeInitialInstances
 'Sets the Entered Paramers
 SetParameters()
 'Reads the start date and sets it for My Data Environment
 MyDataEnvironment.StartDate = (CmbStart.Value.Date)
 Dim DataImportDuration As Double = Val(TxtDuration.Text)
 MyDataEnvironment.FinishDate = DateAdd(DateInterval.Month, DataImportDuration,
MyDataEnvironment.StartDate)
 MyDataEnvironment.FinishDate = DateAdd(DateInterval.Day, (DataImportDuration Mod 1) * 30,
MyDataEnvironment.FinishDate)
 MyDataEnvironment.CurrentDate = MyDataEnvironment.StartDate
 'Set the entered date as the first day of Federation
 Dim StartDay As Steel_Calendar = MyCalendarFactory.RegisterObjectInstance()
 StartDay.StartDate = MyDataEnvironment.StartDate
 StartDay.CurrentDate = MyDataEnvironment.CurrentDate
 StartDay.SetOverTimeForDay = 0
 StartDay.UpdateAttributeValues()
 'Divest the ownership of the calendar attribute
 StartDay.UnconditionalAttributeOwnershipDivestiture("CurrentShiftType", "CurrentShiftHours", "CurrentDate",
"SetOverTimeForDay")
 ''Send in shop entities
 If Not InShopPieceSent Then
 SendInShopEntities(MyDataEnvironment.CurrentDate)
 InShopPieceSent = True
 End If
 ''Send initial piece entities
 SendEntities(MyDataEnvironment.CurrentDate, 0)
 ''Set Interface
 SetInterface()
 End Sub

217

 Private Sub fedAmb_TimeAdvanceGrant(ByVal sender As System.Object, ByVal e As
Cosye.Hla.Rti.TimeAdvanceGrantEventArgs) Handles fedAmb.TimeAdvanceGrant
 'Federation Termination Condition
 If e.theTime > 0 And MyDataEnvironment.CompletedDivisions.Count >= MyDataEnvironment.DivisionList.Count _
 And MyDataEnvironment.CurrentDate > MyDataEnvironment.FinishDate Then
 'Set the Simulation Finish Time
 LblSimFinish.Text = Date.Now.TimeOfDay.ToString
 LblSimDuration.Text = (-DateDiff(DateInterval.Second, Date.Now, SimulationStartTime) / 60).ToString
 MyDataEnvironment.MySchedule.SimDuration = (DateDiff(DateInterval.Second, Date.Now, SimulationStartTime)
/ 60)
 'Report total Results
 MyDataEnvironment.ReportSchedule()
 rtiAmb.ReadyToTerminate()
 Else
 rtiAmb.NextMessageRequest(e.theTime + 24 * 3600)
 End If
 End Sub

 Private Sub MyShopProductivityFactory_RegisterInitialInstances(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyShopProductivityFactory.RegisterInitialInstances
 MyShopProductivity = MyShopProductivityFactory.RegisterObjectInstance
 'Calculate initial Delay
 CalculateCurrentDelay()
 'Update the Delay
 MyShopProductivity.TotalDelay = MyDataEnvironment.MySchedule.TotalDelay
 MyShopProductivity.DelayRate = MyDataEnvironment.DelayRate
 MyShopProductivity.UpdateAttributeValues()
 End Sub

 ' Set Interface
 Private Sub SetInterface()
 LblCurDate.Text = MyDataEnvironment.CurrentDate.Date.ToString
 LblTotalDelay.Text = MyDataEnvironment.MySchedule.TotalDelay.ToString
 LblTotalWDelay.Text = MyDataEnvironment.MySchedule.TotalWeightedDelay.ToString
 LblDelayRate.Text = MyDataEnvironment.DelayRate.ToString
 LblWDelayRate.Text = MyDataEnvironment.WeightedDelayRate.ToString
 LblWorkingDay.Text = MyDataEnvironment.WorkingDays.ToString.ToString
 End Sub

End Class

3) Discrete Event Simulation Federate

Imports Cosye.Hla.Rti
Imports Simphony.Simulation

Public Class FrmFabDES
 Dim Shop As New ShopFloor
 Dim Stations As Dictionary(Of String, Station) = Shop.StationList
 Dim Midbuffers As Dictionary(Of String, MidBuffer) = Shop.MidBufferList
 Dim Movers As Dictionary(Of String, Mover) = Shop.MoverList
 Dim FabShopControl(7) As List(Of Control)
 Dim FabShopListBox As List(Of ListBox)
 Dim NoPieceCompleted As Integer = 0
 Dim ReScheduleNum As Integer = 0
 Dim TotalHybridInteractionsFromSD As Integer = 0
 Dim TotalHybridInteractionsFromDES As Integer = 0
 Dim MyCalendar As Steel_Calendar
 Dim MLC As Double = 99
 Dim NextUtilizationSet As Long = 0

 '' ''''''''''''''''''''' '' Initialize the stations
 Private Sub SetInterface()
 Dim MyDataShop As New DataShop
 '' '''''''''''''''''''Initialize Main form control
 CmbCut.Text = MyDataShop.FillMainFormControl("CmbCut")
 CmbInspect.Text = MyDataShop.FillMainFormControl("CmbInspect")

218

 CmbPaint.Text = MyDataShop.FillMainFormControl("CmbPaint")
 CmbShop.Text = MyDataShop.FillMainFormControl("CmbShop")
 TxtMidBufferNum.Text = MyDataShop.FillMainFormControl("TxtMidBufferNum")
 TxtMoverNum.Text = MyDataShop.FillMainFormControl("TxtMoverNum")

 '' '''''''''''''''''''Initialize the Buttons
 'Form Cutting Collection
 FabShopControl(1) = New List(Of Control)
 FabShopControl(1).Add(Me.BtnCut1)
 FabShopControl(1).Add(Me.BtnCut2)
 FabShopControl(1).Add(Me.BtnCut3)
 FabShopControl(1).Add(Me.BtnCut4)
 FabShopControl(1).Add(Me.BtnCut5)
 FabShopControl(1).Add(Me.BtnCut6)
 FabShopControl(1).Add(Me.BtnCut7)
 FabShopControl(1).Add(Me.BtnCut8)
 SetVisibilityControl(Convert.ToInt32(CmbCut.Text), FabShopControl(1))
 'Form Fitting Collection
 FabShopControl(2) = New List(Of Control)
 FabShopControl(2).Add(Me.BtnFit1)
 FabShopControl(2).Add(Me.BtnFit2)
 FabShopControl(2).Add(Me.BtnFit3)
 FabShopControl(2).Add(Me.BtnFit4)
 FabShopControl(2).Add(Me.BtnFit5)
 FabShopControl(2).Add(Me.BtnFit6)
 FabShopControl(2).Add(Me.BtnFit7)
 FabShopControl(2).Add(Me.BtnFit8)
 SetVisibilityControl(Convert.ToInt32(CmbShop.Text), FabShopControl(2))
 'Form Welding Collection
 FabShopControl(3) = New List(Of Control)
 FabShopControl(3).Add(Me.BtnWeld1)
 FabShopControl(3).Add(Me.BtnWeld2)
 FabShopControl(3).Add(Me.BtnWeld3)
 FabShopControl(3).Add(Me.BtnWeld4)
 FabShopControl(3).Add(Me.BtnWeld5)
 FabShopControl(3).Add(Me.BtnWeld6)
 FabShopControl(3).Add(Me.BtnWeld7)
 FabShopControl(3).Add(Me.BtnWeld8)
 SetVisibilityControl(Convert.ToInt32(CmbShop.Text), FabShopControl(3))
 'Form Inspection Collection
 FabShopControl(4) = New List(Of Control)
 FabShopControl(4).Add(Me.BtnInspect1)
 FabShopControl(4).Add(Me.BtnInspect2)
 FabShopControl(4).Add(Me.BtnInspect3)
 FabShopControl(4).Add(Me.BtnInspect4)
 FabShopControl(4).Add(Me.BtnInspect5)
 FabShopControl(4).Add(Me.BtnInspect6)
 FabShopControl(4).Add(Me.BtnInspect7)
 FabShopControl(4).Add(Me.BtnInspect8)
 SetVisibilityControl(Convert.ToInt32(CmbInspect.Text), FabShopControl(4))
 'Form Painting Collection
 FabShopControl(5) = New List(Of Control)
 FabShopControl(5).Add(Me.BtnPaint1)
 FabShopControl(5).Add(Me.BtnPaint2)
 FabShopControl(5).Add(Me.BtnPaint3)
 FabShopControl(5).Add(Me.BtnPaint4)
 FabShopControl(5).Add(Me.BtnPaint5)
 FabShopControl(5).Add(Me.BtnPaint6)
 FabShopControl(5).Add(Me.BtnPaint7)
 FabShopControl(5).Add(Me.BtnPaint8)
 SetVisibilityControl(Convert.ToInt32(CmbPaint.Text), FabShopControl(5))
 ''Form Mover Collection
 'FabShopControl(6) = New List(Of Control)
 'FabShopControl(6).Add(Me.BtnMover50)
 'FabShopControl(6).Add(Me.BtnMover51)
 'FabShopControl(6).Add(Me.BtnMover52)
 'FabShopControl(6).Add(Me.BtnMover53)
 'FabShopControl(6).Add(Me.BtnMover54)
 'FabShopControl(6).Add(Me.BtnMover55)
 'FabShopControl(6).Add(Me.BtnMover56)

219

 'FabShopControl(6).Add(Me.BtnMover57)
 Dim MoverNum As Integer = Convert.ToInt32((Math.Min(Val(TxtMoverNum.Text), 8)))
 'SetVisibilityControl(MoverNum, FabShopControl(6))
 Dim MidBufNum As Integer = Convert.ToInt32(Math.Min(Val(TxtMidBufferNum.Text) + 1, 12))
 'Form MidBuffer Lable Collection
 FabShopControl(7) = New List(Of Control)
 FabShopControl(7).Add(Me.LblMidBuf70)
 FabShopControl(7).Add(Me.LblMidBuf71)
 FabShopControl(7).Add(Me.LblMidBuf72)
 FabShopControl(7).Add(Me.LblMidBuf73)
 FabShopControl(7).Add(Me.LblMidBuf74)
 FabShopControl(7).Add(Me.LblMidBuf75)
 FabShopControl(7).Add(Me.LblMidBuf76)
 FabShopControl(7).Add(Me.LblMidBuf77)
 FabShopControl(7).Add(Me.LblMidBuf78)
 FabShopControl(7).Add(Me.LblMidBuf79)
 FabShopControl(7).Add(Me.LblMidBuf80)
 FabShopControl(7).Add(Me.LblMidBuf81)
 SetVisibilityControl(MidBufNum, FabShopControl(7))
 'Form MidBuffer Collection
 FabShopListBox = New List(Of ListBox)
 FabShopListBox.Add(Me.LstMidbuf70)
 FabShopListBox.Add(Me.LstMidbuf71)
 FabShopListBox.Add(Me.LstMidbuf72)
 FabShopListBox.Add(Me.LstMidbuf73)
 FabShopListBox.Add(Me.LstMidbuf74)
 FabShopListBox.Add(Me.LstMidbuf75)
 FabShopListBox.Add(Me.LstMidbuf76)
 FabShopListBox.Add(Me.LstMidbuf77)
 FabShopListBox.Add(Me.LstMidbuf78)
 FabShopListBox.Add(Me.LstMidbuf79)
 FabShopListBox.Add(Me.LstMidbuf80)
 FabShopListBox.Add(Me.LstMidbuf81)
 SetVisibilityListBox(MidBufNum, FabShopListBox)
 '' ''''''''''''''''Initialize values of the Stations
 Dim StationItem As Station
 For i As Integer = 0 To 5
 For j As Integer = 1 To 8
 StationItem = New Station
 StationItem.ID = i * 10 + j
 Stations.Add(StationItem.ID.ToString, StationItem)
 Next
 Next
 '' ''''''''''''''''Initialize values of the MidBuffers
 Dim MidBufferItem As MidBuffer
 For i As Integer = 70 To 89
 MidBufferItem = New MidBuffer
 MidBufferItem.ID = i
 Midbuffers.Add(MidBufferItem.ID.ToString, MidBufferItem)
 Next
 '' ''''''''''''''''Initialize values of the Movers
 Dim MoverItem As Mover
 For i As Integer = 50 To 69
 MoverItem = New Mover
 MoverItem.ID = i
 Movers.Add(MoverItem.ID.ToString, MoverItem)
 Next
 End Sub

 'Show selected number of FabShop Control
 Private Sub SetVisibilityControl(ByVal VisNo As Integer, ByRef ShopControl As List(Of Control))
 Dim ShopCntrl As New Control
 For i As Integer = 0 To VisNo - 1
 ShopCntrl = ShopControl.Item(i)
 ShopCntrl.Visible = True
 Next
 For i As Integer = VisNo To ShopControl.Count - 1
 ShopCntrl = ShopControl.Item(i)
 ShopCntrl.Visible = False
 Next

220

 End Sub

 'Show selected number of FabShop ListBox
 Private Sub SetVisibilityListBox(ByVal VisNo As Integer, ByRef ShopControl As List(Of ListBox))
 Dim ShopCntrl As New Control
 For i As Integer = 0 To VisNo - 1
 ShopCntrl = ShopControl.Item(i)
 ShopCntrl.Visible = True
 Next
 For i As Integer = VisNo To ShopControl.Count - 1
 ShopCntrl = ShopControl.Item(i)
 ShopCntrl.Visible = False
 Next
 End Sub

 'Set text on the FabShop Controls
 Private Sub SetControlsText()
 Dim ShopCntrl As Control
 Dim PieceID As String = ""
 'Set the Station related controls
 Dim StationItem As Station
 Dim StationID As Integer
 For i As Integer = 0 To 4
 For j As Integer = 0 To 7
 'Check if station ID exists
 StationID = i * 10 + j + 1
 If Stations.Keys.Contains(StationID.ToString) Then
 'Read the control
 ShopCntrl = New Control
 ShopCntrl = FabShopControl(i + 1)(j)
 'Read the station
 StationItem = New Station
 StationItem = Stations(StationID.ToString)
 PieceID = Shop.PieceIDofHandle(StationItem.CurrentPieceHandle)
 'Check if any Piece is on the station
 If PieceID.Length > 0 Then
 ShopCntrl.Text = Microsoft.VisualBasic.Right(PieceID, 7)
 ShopCntrl.BackColor = Color.LightPink
 ElseIf StationItem.State = ToolState.Suspend Then 'Suspended
 ShopCntrl.Text = ""
 ShopCntrl.BackColor = Color.LightBlue
 Else 'Idle
 ShopCntrl.Text = ""
 ShopCntrl.BackColor = Color.LightGreen
 End If
 End If
 Next
 Next
 'Set the Controls related to the Mover
 Dim MoverItem As Mover
 Dim MoverID As Integer
 Dim BusyMover As Integer = 0
 Dim TotalMover As Integer = CType(TxtMoverNum.Text, Integer)
 For j As Integer = 0 To TotalMover - 1
 'Check if station ID exists
 MoverID = 50 + j
 If Movers.Keys.Contains(MoverID.ToString) Then
 'Read the control
 'ShopCntrl = New Control
 'ShopCntrl = FabShopControl(6)(j)
 'Read the station
 MoverItem = New Mover
 MoverItem = Movers(MoverID.ToString)
 PieceID = Shop.PieceIDofHandle(MoverItem.PieceOnMover.PieceHandle)
 'Check if any Piece is on the Mover
 If PieceID.Length > 0 Then
 BusyMover = BusyMover + 1
 'ShopCntrl.Text = MoverItem.NoOfAssignedJob.ToString & "_" & Microsoft.VisualBasic.Right(PieceID, 7)
 'ShopCntrl.BackColor = Color.LightPink
 Else 'No Piece

221

 'ShopCntrl.Text = ""
 'ShopCntrl.BackColor = Color.LightGreen
 End If
 End If
 Next
 LblCraneBusy.Text = BusyMover.ToString
 LblCraneIdle.Text = (TotalMover - BusyMover).ToString
 'Set the Controls related to the Midbuffer
 Dim MidBufferItem As MidBuffer
 Dim MidBufferID As Integer
 Dim MidBufferList As ListBox
 Dim Count As Integer
 For j As Integer = 0 To 11
 'Check if station ID exists
 MidBufferID = 70 + j
 If Midbuffers.Keys.Contains(MidBufferID.ToString) Then
 'Read the control
 MidBufferList = New ListBox
 MidBufferList = FabShopListBox(j)
 'Read the midbuffer
 MidBufferItem = New MidBuffer
 MidBufferItem = Midbuffers(MidBufferID.ToString)
 'Read count from mid buffer
 For Each Count In MidBufferList.Items
 Next
 If MidBufferItem.PieceHandleList.Count > 0 Then
 If Not Count = MidBufferItem.PieceHandleList.Count Then
 MidBufferList.BackColor = Color.LightPink
 MidBufferList.Items.Clear()
 MidBufferList.Items.Add(MidBufferItem.PieceHandleList.Count)
 End If
 Else
 MidBufferList.Items.Clear()
 MidBufferList.BackColor = Color.LightGreen
 End If
 End If
 Next
 'Set the Hour Label
 LblHour.Text = (Convert.ToInt64(Shop.CurTime / 36) / 100).ToString
 'Set Piece Completed Lable
 LblPieceCompleted.Text = NoPieceCompleted.ToString
 'Referesh
 Me.Refresh()
 End Sub

 'Set the controls Unable
 Private Sub SetTheControlsUnable()
 'Text boxes
 TxtMidBufferNum.Enabled = False
 TxtMoverNum.Enabled = False
 'Combo boxes
 CmbCut.Enabled = False
 CmbInspect.Enabled = False
 CmbPaint.Enabled = False
 CmbShop.Enabled = False
 End Sub

 'Set the final entered Values for the shop Object
 Private Sub SetFinalValuesForTheShopObject()
 'Set Stations
 Dim StationItemID As Integer
 Dim FabShopControlItm As Control
 Dim i As Integer
 For i = 0 To 4
 For j As Integer = 0 To 7
 FabShopControlItm = New Control
 'Retrive the related button to the station
 FabShopControlItm = FabShopControl(i + 1).Item(j)
 If FabShopControlItm.Visible = False Then
 StationItemID = i * 10 + j + 1

222

 Stations.Remove(StationItemID.ToString)
 End If
 Next
 Next
 'Set Movers
 For i = (50 + Convert.ToInt32((TxtMoverNum.Text))) To 69
 Movers.Remove(i.ToString)
 Next
 'Set MidBuffers
 For i = (71 + Convert.ToInt32((TxtMidBufferNum.Text))) To 89
 Midbuffers.Remove(i.ToString)
 Next
 End Sub
 Private Sub DES_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load
 'Set interface
 SetInterface()
 Dim MyDataShop As New DataShop
 'Fill Stations
 'Dim StationForm As New StationInfo
 MyDataShop.FillStationList(Stations)
 'Fill MidBuffers
 'Dim MidBufForm As New MidBufferInfo
 MyDataShop.FillMidBuferList(Midbuffers)
 'Fill Mover
 'Dim MoverForm As New MoverInfo
 MyDataShop.FillmovererList(Movers)
 End Sub
 Private Sub CmbCut_TextChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
CmbCut.TextChanged
 'Check if all controls have been loaded
 If (Not FabShopControl(1) Is Nothing) Then
 If FabShopControl(1).Count = 8 Then
 SetVisibilityControl(Convert.ToInt32(CmbCut.Text), FabShopControl(1))
 End If
 End If
 End Sub

 Private Sub CmbShop_TextChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
CmbShop.TextChanged
 'Check if all controls have been loaded
 If (Not FabShopControl(2) Is Nothing) And (Not FabShopControl(3) Is Nothing) Then
 If FabShopControl(2).Count = 8 And FabShopControl(3).Count = 8 Then
 SetVisibilityControl(Convert.ToInt32(CmbShop.Text), FabShopControl(2))
 SetVisibilityControl(Convert.ToInt32(CmbShop.Text), FabShopControl(3))
 End If
 End If
 End Sub

 Private Sub CmbInspect_SelectedIndexChanged(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles CmbInspect.SelectedIndexChanged
 'Check if all controls have been loaded
 If (Not FabShopControl(4) Is Nothing) Then
 If FabShopControl(4).Count = 8 Then
 SetVisibilityControl(Convert.ToInt32(CmbInspect.Text), FabShopControl(4))
 End If
 End If
 End Sub

 Private Sub CmbPaint_SelectedIndexChanged(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles CmbPaint.SelectedIndexChanged
 'Check if all controls have been loaded
 If (Not FabShopControl(5) Is Nothing) Then
 If FabShopControl(5).Count = 8 Then
 SetVisibilityControl(Convert.ToInt32(CmbPaint.Text), FabShopControl(5))
 End If
 End If
 End Sub

 Private Sub TxtMoverNum_TextChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
TxtMoverNum.TextChanged

223

 End Sub

 Private Sub TxtMidBufferNum_TextChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
TxtMidBufferNum.TextChanged
 'Check if all controls have been loaded
 If (Not FabShopListBox Is Nothing) Then
 If FabShopListBox.Count = 12 Then
 Dim MidBufNum As Integer = Math.Min(Convert.ToInt32(TxtMidBufferNum.Text) + 1, 5)
 SetVisibilityListBox(MidBufNum, FabShopListBox)
 SetVisibilityControl(MidBufNum, FabShopControl(7))
 End If
 End If
 End Sub

 'Load the station form
 Private Sub BtnStationInfo_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
BtnStationInfo.Click
 Dim StationForm As New StationInfo
 StationForm.LinkedStations = Stations
 StationForm.FillListsCombos(Convert.ToInt32(CmbCut.Text), Convert.ToInt32(CmbShop.Text),
Convert.ToInt32(CmbInspect.Text), Convert.ToInt32(CmbPaint.Text))
 If Shop.CurTime > 0 Then
 StationForm.ShouldSaveTheChanges = False
 End If
 StationForm.Initialize()
 StationForm.ShowDialog()
 End Sub

 'Load the Midbuffer form
 Private Sub BtnMidBuf_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
BtnMidBuf.Click
 Dim MidBufForm As New MidBufferInfo
 MidBufForm.LinkedMidbuffers = Midbuffers
 Dim MidBufNum As Integer = Math.Min(Convert.ToInt32(TxtMidBufferNum.Text) + 1, 12)
 SetVisibilityListBox(MidBufNum, FabShopListBox)
 SetVisibilityControl(MidBufNum, FabShopControl(7))
 MidBufForm.FillListsCombos(MidBufNum - 1, Convert.ToInt32(CmbCut.Text), Convert.ToInt32(CmbShop.Text),
Convert.ToInt32(CmbInspect.Text), Convert.ToInt32(CmbPaint.Text))
 If Shop.CurTime > 0 Then
 MidBufForm.ShouldSaveTheChanges = False
 End If
 MidBufForm.Initialize()
 MidBufForm.ShowDialog()
 End Sub

 'Load the Mover form
 Private Sub BtnMover_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles BtnMover.Click
 Dim MoverForm As New MoverInfo
 MoverForm.LinkedMovers = Movers
 MoverForm.LinkedMidbuffers = Midbuffers
 MoverForm.LinkedStations = Stations
 Dim MoverNum As Integer = Math.Min(Convert.ToInt32(TxtMoverNum.Text), 20)
 MoverForm.FillListsCombos(MoverNum)
 If Shop.CurTime > 0 Then
 MoverForm.ShouldSaveTheChanges = False
 End If
 MoverForm.Initialize()
 MoverForm.ShowDialog()
 End Sub

 Private Sub MyCalendarFactory_ReflectAttributeValues(ByVal sender As System.Object, ByVal e As
Cosye.Hla.Rti.ReflectAttributeValuesEventArgs) Handles MyCalendarFactory.ReflectAttributeValues
 Dim ShiftTypeHanle As Cosye.Hla.Rti.AttributeHandle =
MyCalendarFactory.GetAttributeHandle("CurrentShiftType")
 'Check if the Current ShiftType has been changed
 If e.theValues.Contains(ShiftTypeHanle) Then
 MyCalendar = MyCalendarFactory(e.theObject)
 Shop.CurDate = MyCalendar.CurrentDate
 If Shop.CurrentShiftType = ShiftType.Close And e.theTime > 0 Then 'Set the total close time
 Shop.TotalCloseTime = Shop.TotalCloseTime + e.theTime - Shop.LastCloseTimeStarted

224

 Shop.LastCloseTimeStarted = 0
 End If
 If MyCalendar.CurrentShiftType = ShiftType.Close Then 'Set the start of close time
 If e.theTime < Double.MaxValue Then
 Shop.LastCloseTimeStarted = e.theTime
 Shop.CloseTimeWillBeFinished = e.theTime + MyCalendar.CurrentShiftHours * 3600
 Else
 Shop.LastCloseTimeStarted = 0
 Shop.CloseTimeWillBeFinished = MyCalendar.CurrentShiftHours * 3600
 End If
 End If
 Shop.CurrentShiftType = MyCalendar.CurrentShiftType
 LblCurDate.Text = MyCalendar.CurrentDate.ToString
 Try
 LblWorkDay.Text = MyCalendar.DayNo.ToString
 Catch ex As Exception
 'DayNo Has not been published yet
 End Try
 End If
 End Sub
 'Register Station Productivities
 Private Sub RegisterStationsProductivities()
 Dim MyStationProductivity As Steel_StationProductivity
 For Each stationItem As Station In Stations.Values
 MyStationProductivity = MyStationProductivityFactory.RegisterObjectInstance
 MyStationProductivity.ID = stationItem.ID
 MyStationProductivity.MaxOperator = stationItem.MaxReqOperators
 MyStationProductivity.MinOperator = stationItem.MinReqOperators
 MyStationProductivity.CurOperator = stationItem.AssignedOperatorNo
 MyStationProductivity.SFunction = stationItem.SFunction
 MyStationProductivity.UpdateAttributeValues()
 TotalHybridInteractionsFromDES = TotalHybridInteractionsFromDES + 1
 TxtHybridFromDES.Text = TotalHybridInteractionsFromDES.ToString
 MyStationProductivity.UnconditionalAttributeOwnershipDivestiture("CurOperator")
 Next
 End Sub

 Dim PreviouShiftOfUpdateStationState As ShiftType = ShiftType.Close
 'Update Station State
 Public Sub UpdateStationsStates(ByVal MyShift As ShiftType)
 Dim StationItem As Station
 If MyShift = ShiftType.Close Then
 If PreviouShiftOfUpdateStationState <> ShiftType.Close Then 'Report all stations as idle
 PreviouShiftOfUpdateStationState = ShiftType.Close
 For Each MyStationProductivity As Steel_StationProductivity In MyStationProductivityFactory
 StationItem = New Station
 StationItem = Stations(MyStationProductivity.ID.ToString)
 If StationItem.State <> ToolState.Idle Then
 MyStationProductivity.State = ToolState.Idle
 MyStationProductivity.UpdateAttributeValues()
 StationItem.ReportedState = ToolState.Idle
 TotalHybridInteractionsFromDES = TotalHybridInteractionsFromDES + 1
 TxtHybridFromDES.Text = TotalHybridInteractionsFromDES.ToString
 End If
 Next
 End If
 ElseIf PreviouShiftOfUpdateStationState <> ShiftType.Close Then 'Report busy station by end of close shift
 PreviouShiftOfUpdateStationState = ShiftType.DayShift
 For Each MyStationProductivity As Steel_StationProductivity In MyStationProductivityFactory
 StationItem = New Station
 StationItem = Stations(MyStationProductivity.ID.ToString)
 If StationItem.State = ToolState.Busy Then
 MyStationProductivity.State = ToolState.Busy
 MyStationProductivity.UpdateAttributeValues()
 StationItem.ReportedState = ToolState.Busy
 TotalHybridInteractionsFromDES = TotalHybridInteractionsFromDES + 1
 TxtHybridFromDES.Text = TotalHybridInteractionsFromDES.ToString
 End If
 Next
 Else

225

 For Each MyStationProductivity As Steel_StationProductivity In MyStationProductivityFactory
 StationItem = New Station
 StationItem = Stations(MyStationProductivity.ID.ToString)
 If StationItem.State <> StationItem.ReportedState Then
 MyStationProductivity.State = StationItem.State
 MyStationProductivity.UpdateAttributeValues()
 StationItem.ReportedState = StationItem.State
 TotalHybridInteractionsFromDES = TotalHybridInteractionsFromDES + 1
 TxtHybridFromDES.Text = TotalHybridInteractionsFromDES.ToString
 End If
 Next
 End If
 End Sub

 Dim ItIsFirstReceivedPiece As Boolean = True
 Private Sub MyPieceEntityFactory_ReflectAttributeValues(ByVal sender As System.Object, ByVal e As
Cosye.Hla.Rti.ReflectAttributeValuesEventArgs) Handles MyPieceEntityFactory.ReflectAttributeValues
 Dim NewPieceEntity As New PieceEntityHandle
 NewPieceEntity.Piece = MyPieceEntityFactory(e.theObject)
 NewPieceEntity.PieceHandle = e.theObject
 NewPieceEntity.Piece.AttributeOwnershipAcquisition("CuttingStart", "CuttingManHour", "CuttingFinish",
"FittingStart", "FittingManHour", "FittingFinish", _
 "WeldingStart", "WeldingManHour", "WeldingFinish", "FitInspectionStart", "FitInspectionManHour",
"FitInspectionFinish", "WeldInspectionStart", "WeldInspectionManHour", "WeldInspectionFinish", "PaintingStart",
"PaintingManHour", "PaintingFinish")
 ''should be done only on firt time received updated
 If ItIsFirstReceivedPiece Then
 ItIsFirstReceivedPiece = False
 'Set the controls unEnable
 SetTheControlsUnable()
 'Set the final entered Values for the shop Object
 SetFinalValuesForTheShopObject()
 'Register and update the StationProductivity objects
 RegisterStationsProductivities()
 End If
 If NewPieceEntity.Piece.CuttingFinish = Nothing Then 'Piece is not in shop
 'Handle New arrived piece
 Shop.HandleNewPieceArrived(NewPieceEntity)
 Else 'Piece is in shop (Initial Condition of the piece)
 Dim LocationID As Integer
 Dim LocationType As AssociatedTool
 Dim NumOperationDone As Integer = 0
 Shop.HandlePieceInShopArrived(NewPieceEntity, LocationID, LocationType, NumOperationDone)
 If NumOperationDone = 1 Then
 LstCutFinish.Items.Add(NewPieceEntity.Piece.PieceID)
 ElseIf NumOperationDone = 2 Or NumOperationDone = 3 Then
 LstFitFinish.Items.Add(NewPieceEntity.Piece.PieceID)
 ElseIf NumOperationDone = 4 Or NumOperationDone = 5 Then
 LstWeldFinish.Items.Add(NewPieceEntity.Piece.PieceID)
 End If
 End If

 'Update the controls
 '' '''
 End Sub

 Dim NoEventScheduledTimeStep As Integer = 1
 Private Sub fedAmb_TimeAdvanceGrant(ByVal sender As System.Object, ByVal e As
Cosye.Hla.Rti.TimeAdvanceGrantEventArgs) Handles fedAmb.TimeAdvanceGrant
 'Check if shop is close or open
 If Shop.CurrentShiftType = ShiftType.Close Then
 rtiAmb.NextMessageRequest(Shop.CloseTimeWillBeFinished)
 Else
 'Set the current time of the shop
 Shop.CurTime = e.theTime - Shop.TotalCloseTime
 'Process any internal events that should occur at the current time.
 Shop.MyEngine.Simulate(Shop.CurTime)
 If Shop.MyEngine.ScheduledEventCount = 0 Then 'Create a fake event
 'Schedule an Empty Event
 Dim EmptyEventParameters As New EventParameters

226

 Shop.MyEngine.ScheduleEvent(EmptyEventParameters, Shop.EmptyEvent, NoEventScheduledTimeStep)
 'Set the time advancement step
 NoEventScheduledTimeStep = 1
 Dim InitialMidBuffer As MidBuffer = Shop.MidBufferList("70")
 If InitialMidBuffer.PieceHandleList.Count = 0 Then
 NoEventScheduledTimeStep = 1000
 End If
 End If
 ' Update the controls on the form
 SetControlsText()
 'Update all completed pieces
 If Not Shop.CompletedPieceList Is Nothing Then
 Dim CompletedPiece As PieceEntityHandle
 Dim CompletedPieceEntity As Steel_PieceEntity
 While Shop.CompletedPieceList.Count > 0
 NoPieceCompleted = NoPieceCompleted + 1
 CompletedPiece = New PieceEntityHandle
 CompletedPiece = Shop.CompletedPieceList(0)
 Shop.CompletedPieceList.RemoveAt(0)
 'Updated the attributes
 CompletedPieceEntity = MyPieceEntityFactory(CompletedPiece.PieceHandle)
 CompletedPieceEntity.CuttingStart = CompletedPiece.Piece.CuttingStart
 CompletedPieceEntity.CuttingManHour = CompletedPiece.Piece.CuttingManHour
 CompletedPieceEntity.CuttingFinish = CompletedPiece.Piece.CuttingFinish
 CompletedPieceEntity.FittingStart = CompletedPiece.Piece.FittingStart
 CompletedPieceEntity.FittingManHour = CompletedPiece.Piece.FittingManHour
 CompletedPieceEntity.FittingFinish = CompletedPiece.Piece.FittingFinish
 CompletedPieceEntity.WeldingStart = CompletedPiece.Piece.WeldingStart
 CompletedPieceEntity.WeldingManHour = CompletedPiece.Piece.WeldingManHour
 CompletedPieceEntity.WeldingFinish = CompletedPiece.Piece.WeldingFinish
 CompletedPieceEntity.FitInspectionStart = CompletedPiece.Piece.FitInspectionStart
 CompletedPieceEntity.FitInspectionManHour = CompletedPiece.Piece.FitInspectionManHour
 CompletedPieceEntity.FitInspectionFinish = CompletedPiece.Piece.FitInspectionFinish
 CompletedPieceEntity.WeldInspectionStart = CompletedPiece.Piece.WeldInspectionStart
 CompletedPieceEntity.WeldInspectionManHour = CompletedPiece.Piece.WeldInspectionManHour
 CompletedPieceEntity.WeldInspectionFinish = CompletedPiece.Piece.WeldInspectionFinish
 Try
 CompletedPieceEntity.PaintingStart = CompletedPiece.Piece.PaintingStart
 CompletedPieceEntity.PaintingManHour = CompletedPiece.Piece.PaintingManHour
 CompletedPieceEntity.PaintingFinish = CompletedPiece.Piece.PaintingFinish
 Catch ex As Exception
 'No Painting is required
 End Try
 CompletedPieceEntity.UpdateAttributeValues()
 End While
 End If
 'Request Next Message consider the Engine Accuracy
 Dim NextMessageTime As Double
 If (Shop.MyEngine.TimeNext - Shop.CurTime) >= fedAmb.Lookahead Then
 NextMessageTime = Shop.MyEngine.TimeNext + Shop.TotalCloseTime
 Else
 NextMessageTime = (Shop.CurTime + fedAmb.Lookahead + Shop.TotalCloseTime)
 End If
 rtiAmb.NextMessageRequest(NextMessageTime)
 End If
 'Update the station state if it has changed
 UpdateStationsStates(Shop.CurrentShiftType)
 End Sub

 Private Sub MyStationProductivityFactory_ReflectAttributeValues(ByVal sender As System.Object, ByVal e As
Cosye.Hla.Rti.ReflectAttributeValuesEventArgs) Handles MyStationProductivityFactory.ReflectAttributeValues
 Dim MyStationProd As Steel_StationProductivity = MyStationProductivityFactory(e.theObject)
 Dim MyProductivityHandle As AttributeHandle = MyStationProductivityFactory.GetAttributeHandle("Productivity")
 Dim MyCurOperatorHandle As AttributeHandle = MyStationProductivityFactory.GetAttributeHandle("CurOperator")
 Dim MyStation As Station = Stations(MyStationProd.ID.ToString)
 Dim EventKey As String = MyStation.ID.ToString & "_" & MyStation.CurrentPieceHandle.ToString
 'Count the interactions
 TotalHybridInteractionsFromSD = TotalHybridInteractionsFromSD + 1
 TxtHybridFromSD.Text = TotalHybridInteractionsFromSD.ToString
 'Remove Extra Engine Supplementaries

227

 Shop.RemoveExtraEngineSupplementaries()
 'Check if Productivity has been updated
 If e.theValues.Contains(MyProductivityHandle) Then
 'Check if rescheduling is required
 If Shop.EngineEntities.Keys.Contains(EventKey) Then
 Dim ScheduledTime As Double = Shop.EngineTimes(EventKey)
 If ScheduledTime > Shop.CurTime Then
 'Count num of reschedules
 ReScheduleNum = ReScheduleNum + 1
 TxtReschedules.Text = ReScheduleNum.ToString
 'Calculate New Time
 Dim NewTime As Double = (ScheduledTime - Shop.CurTime) * _
 MyStation.Productivity / MyStationProd.Productivity
 'Retrieve the Event information
 Dim ChangedEventParameters As New EventParameters
 ChangedEventParameters = Shop.EngineEntities(EventKey)
 'Cancel Currently Scheduled Information
 Shop.MyEngine.CancelEvent(ChangedEventParameters)
 Shop.EngineEntities.Remove(EventKey)
 Shop.EngineTimes.Remove(EventKey)
 'Schedule New Event
 Shop.MyEngine.ScheduleEvent(ChangedEventParameters, Shop.StationSrviceFinished, NewTime)
 Shop.EngineTimes.Add(EventKey, NewTime + Shop.CurTime)
 Shop.EngineEntities.Add(EventKey, ChangedEventParameters)
 End If
 End If
 'Set the new Productivity
 MyStation.Productivity = MyStationProd.Productivity
 End If
 'Check if Current Operator has been updated
 If e.theValues.Contains(MyCurOperatorHandle) Then
 If Shop.EngineEntities.Keys.Contains(EventKey) Then
 Dim ScheduledTime As Double = Shop.EngineTimes(EventKey)
 If ScheduledTime > Shop.CurTime Then
 'Retrieve the Event information
 Dim ChangedEventParameters As New EventParameters
 ChangedEventParameters = Shop.EngineEntities(EventKey)
 'Sample a duration for new and old operator #
 Dim NewOprNo As Integer = MyStationProd.CurOperator
 Dim OldOprNo As Integer = MyStation.AssignedOperatorNo
 Dim NewOprDistribution As Distribution = MyStation.DurationStructure(NewOprNo.ToString)
 Dim OldOprDistribution As Distribution = MyStation.DurationStructure(OldOprNo.ToString)
 Dim NewOprDuration As Double = NewOprDistribution.DurationFactor
 Dim OldOprDuration As Double = OldOprDistribution.DurationFactor
 'Count num of reschedules
 ReScheduleNum = ReScheduleNum + 1
 TxtReschedules.Text = ReScheduleNum.ToString
 'Calculate New Time
 Dim NewTime As Double = (ScheduledTime - Shop.CurTime) * NewOprDuration / OldOprDuration
 'Cancel Currently Scheduled Information
 Shop.MyEngine.CancelEvent(ChangedEventParameters)
 Shop.EngineEntities.Remove(EventKey)
 Shop.EngineTimes.Remove(EventKey)
 'Schedule New Event
 Shop.MyEngine.ScheduleEvent(ChangedEventParameters, Shop.StationSrviceFinished, NewTime)
 Shop.EngineTimes.Add(EventKey, NewTime + Shop.CurTime)
 Shop.EngineEntities.Add(EventKey, ChangedEventParameters)
 End If
 End If
 'Set the Current Operator #
 MyStation.AssignedOperatorNo = MyStationProd.CurOperator
 End If
 End Sub

 Private Sub fedAmb_EndExecution(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
fedAmb.EndExecution
 'Define the Data shop and its related methods
 Dim MyDataShop As New DataShop
 'Update the statios tables mainly for the utilization purposes
 MyDataShop.UpdateStationTables(Stations, "StationsReport")

228

 'Update Mainform Controls
 MyDataShop.UpdateMainFormTables("CmbCut", CmbCut.Text)
 MyDataShop.UpdateMainFormTables("CmbInspect", CmbInspect.Text)
 MyDataShop.UpdateMainFormTables("CmbPaint", CmbPaint.Text)
 MyDataShop.UpdateMainFormTables("CmbShop", CmbShop.Text)
 MyDataShop.UpdateMainFormTables("TxtMidBufferNum", TxtMidBufferNum.Text)
 MyDataShop.UpdateMainFormTables("TxtMoverNum", TxtMoverNum.Text)
 'Update MLC Table
 MyDataShop.ReportMLCResult(MLC, MyCalendar.StartDate, MyCalendar.CurrentDate, NoPieceCompleted,
SimulationStartTime, TotalHybridInteractionsFromSD, TotalHybridInteractionsFromDES, ReScheduleNum)
 End Sub

 Private Sub fedAmb_BeginExecution(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
fedAmb.BeginExecution
 SimulationStartTime = DateTime.Now
 End Sub

 Private Sub BtnSaveLayout_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
BtnSaveLayout.Click
 ''Update the set value in data base
 Dim MyDataShop As New DataShop
 MyDataShop.UpdateMainFormTables("CmbShop", CmbShop.Text)
 MyDataShop.UpdateMainFormTables("CmbCut", CmbCut.Text)
 MyDataShop.UpdateMainFormTables("CmbInspect", CmbInspect.Text)
 MyDataShop.UpdateMainFormTables("CmbPaint", CmbPaint.Text)
 MyDataShop.UpdateMainFormTables("TxtMoverNum", TxtMoverNum.Text)
 MyDataShop.UpdateMainFormTables("TxtMidBufferNum", TxtMidBufferNum.Text)
 End Sub

 Private Sub MyShopProductivityFactory_ReflectAttributeValues(ByVal sender As System.Object, ByVal e As
Cosye.Hla.Rti.ReflectAttributeValuesEventArgs) Handles MyShopProductivityFactory.ReflectAttributeValues
 Dim MyShopProductivity As Steel_ShopProductivity = MyShopProductivityFactory(e.theObject)
 MLC = MyShopProductivity.MLC
 End Sub

 Dim SimulationStartTime As New DateTime

 Private Sub fedAmb_AnnounceSynchronizationPoint(ByVal sender As System.Object, ByVal e As
Cosye.Hla.Rti.AnnounceSynchronizationPointEventArgs) Handles fedAmb.AnnounceSynchronizationPoint
 'Initialize the simulation engine
 Shop.MyEngine.InitializeEngine()
 Shop.MyEngine.InitializeScenario()
 End Sub

End Class

4) System Dynamics Federate

Imports Cosye.Hla.Rti
Imports Simphony.Mathematics

Public Class FrmFabSD
 Dim MyShopProductivity As Steel_ShopProductivity
 Dim MySDShop As New SDShop
 Dim StationsProductivities As Dictionary(Of String, SDStation) = MySDShop.StationsProductivity
 Dim MyCalendar As Steel_Calendar
 Dim TotalHybridInteractions As Integer = 0

 Private Sub Initialize()
 'Initialize Shop Parameters
 '' Over Time Effect Delay
 MySDShop.SetOverTime.Duration = 7
 MySDShop.SetOverTime.Interval = Intervals.D
 '' New operator hirring Delay
 MySDShop.Requstedoperator.Duration = 3
 MySDShop.Requstedoperator.Interval = Intervals.D
 '' Operator under trainning Delay

229

 MySDShop.OperatorUnderTrainning.Duration = 60
 MySDShop.OperatorUnderTrainning.Interval = Intervals.D
 '' SD Loop Constant Parameters
 MySDShop.ChanceOfLeaving = Val(TxtLeavingChance.Text)
 MySDShop.ChanceOfUnskilledOperator = Val(TxtUnSkillChance.Text)
 MySDShop.DesireUtilizationLevel = Val(TxtDesireUtil.Text)
 '' Update the Top Level SD Loop For the first time
 UpdateSDTopLevel()
 End Sub

 'Updating Top Level SD Loop Interface
 Public Sub UpdateSDTopLevel()
 TxtDesireOverTime.Text = MyCalendar.DesireOverTime.ToString
 TxtDesireUtil.Text = MySDShop.DesireUtilizationLevel.ToString
 TxtMaxUtil.Text = MySDShop.MaxUtilization.ToString
 TxtDelay.Text = MyShopProductivity.DelayRate.ToString
 TxtSetOverTime.Text = MySDShop.SetOverTime.Value(True).ToString
 TxtShopProd.Text = MySDShop.ShopProductivity.ToString
 TxtSkilled.Text = MySDShop.CurSkilledOperators.ToString
 TxtUnSkilled.Text = MySDShop.CurUnSkilledOperators.ToString
 TxtMaxOverTime.Text = MySDShop.MaxOverTime.ToString
 TxtStationShopProd.Text = TxtShopProd.Text
 End Sub

 Private Sub MyShopProductivityFactory_ReflectAttributeValues(ByVal sender As System.Object, ByVal e As
Cosye.Hla.Rti.ReflectAttributeValuesEventArgs) Handles MyShopProductivityFactory.ReflectAttributeValues
 MyShopProductivity = MyShopProductivityFactory(e.theObject)
 TotalHybridInteractions = TotalHybridInteractions + 1
 TxtHybrid.Text = TotalHybridInteractions.ToString
 End Sub

 Private Sub UpdateTopLevelSDLoop(ByRef TotalNewOperator As Integer, ByRef TotalLeavingOperators As Integer)
 ''Test
 If (MySDShop.CurTime > 1030000) And (Not MySDShop.SetOverTime.CurDate > #1/1/2000# Or _
 Not MySDShop.Requstedoperator.CurDate > #1/1/2000# Or _
 Not MySDShop.OperatorUnderTrainning.CurDate > #1/1/2000#) Then
 Dim test As Integer = 1
 End If
 ''Test

 'Reset All local interface Varables in the SD top level loop
 TxtHiringReq.Text = "0"
 TxtOverTimeReq.Text = "0"
 'Set the first attributes of the loops which get effect from Fabshop
 'Check schedule Delay
 If MyShopProductivity.DelayRate < 0 And MySDShop.MaxUtilization > MySDShop.DesireUtilizationLevel Then
 'Check the Current OverTime Status for choosing between change in over Time or Operator
 If MySDShop.SetOverTime.Value(True) > 20 And MyCalendar.DesireOverTime = MySDShop.MaxOverTime
Then
 'Check if operator emplyment is not currentyl under process
 If MySDShop.Requstedoperator.Value(True) = 0 Then
 'Determine number of operator that can be added
 MySDShop.Requstedoperator.AddValue(MySDShop.RequiredOperators)
 TxtHiringReq.Text = MySDShop.RequiredOperators.ToString
 End If
 ElseIf MyCalendar.DesireOverTime < MySDShop.MaxOverTime Then
 MyCalendar.DesireOverTime = MyCalendar.DesireOverTime + 1
 TxtOverTimeReq.Text = "1"
 End If
 'Check the if Utilization is not greater that not desire
 ElseIf MySDShop.MaxUtilization < MySDShop.DesireUtilizationLevel And MyCalendar.DesireOverTime > 0 Then
 'Check if there is still room for reducinig overtime
 If MyCalendar.DesireOverTime > 0 Then
 MyCalendar.DesireOverTime = MyCalendar.DesireOverTime - 1
 TxtOverTimeReq.Text = "-1"
 End If
 End If
 'Calculate the Operator loop variables
 '' New Operators
 TotalNewOperator = Convert.ToInt32(MySDShop.Requstedoperator.Value(False))

230

 Dim NewUnSkilledOperator As Integer = Convert.ToInt32(TotalNewOperator * _
 Triangular.Sample(0, 1, MySDShop.ChanceOfUnskilledOperator))
 Dim NewSkilledOperator As Integer = TotalNewOperator - NewUnSkilledOperator
 '' Leaving Operators
 Dim UnSkilledOperatorToLeave As Integer = 0
 If Uniform.Sample(0, 1) > _
 ((1 - MySDShop.ChanceOfLeaving) ^ MySDShop.CurUnSkilledOperators) Then
 UnSkilledOperatorToLeave = 1
 End If
 Dim SkilledOperatorToLeave As Integer = 0
 If Uniform.Sample(0, 1) > _
 ((1 - MySDShop.ChanceOfLeaving) ^ MySDShop.CurSkilledOperators) And _
 MySDShop.CurSkilledOperators > 50 Then
 SkilledOperatorToLeave = 1
 End If
 TotalLeavingOperators = SkilledOperatorToLeave + UnSkilledOperatorToLeave
 Dim TrainedOperators As Integer = Convert.ToInt32(MySDShop.OperatorUnderTrainning.Value(False))
 ''Stock Variables ---- Skilled and unskilled Operators
 MySDShop.CurSkilledOperators = MySDShop.CurSkilledOperators + NewSkilledOperator _
 - SkilledOperatorToLeave + TrainedOperators
 MySDShop.CurUnSkilledOperators = MySDShop.CurUnSkilledOperators + NewUnSkilledOperator _
 - UnSkilledOperatorToLeave - TrainedOperators
 Dim OperatorsSkillLevel As Double = (MySDShop.CurSkilledOperators + MySDShop.CurUnSkilledOperators / 2) _
 / (MySDShop.CurSkilledOperators + MySDShop.CurUnSkilledOperators)
 'Calculate the OverTime loop variables
 Dim FatigueLevel As Double = 0
 Select Case MySDShop.SetOverTime.Value(True)
 Case Is < 20
 FatigueLevel = 0.8 + (20 - MySDShop.SetOverTime.Value(True)) / 20 * 0.2
 Case 20 To 40
 FatigueLevel = 0.4 + (40 - MySDShop.SetOverTime.Value(True)) / 20 * 0.4
 Case Else
 FatigueLevel = Math.Max(0.01, (140 - MySDShop.SetOverTime.Value(True)) / 100 * 0.4)
 End Select
 'Calculate Shop Productivity
 MySDShop.ShopProductivity = FatigueLevel * OperatorsSkillLevel
 'Update Local defined Variables for the interface
 End Sub

 Private Sub MyStationProductivityFactory_ReflectAttributeValues(ByVal sender As System.Object, ByVal e As
Cosye.Hla.Rti.ReflectAttributeValuesEventArgs) Handles MyStationProductivityFactory.ReflectAttributeValues
 Dim MyStationProductivity As Cosye.Steel.Steel_StationProductivity = MyStationProductivityFactory(e.theObject)
 Dim MyIDHandle As AttributeHandle = MyStationProductivityFactory.GetAttributeHandle("ID")
 Dim MyUtilizationHandle As AttributeHandle = MyStationProductivityFactory.GetAttributeHandle("Utilization")
 Dim MyStateHandle As AttributeHandle = MyStationProductivityFactory.GetAttributeHandle("State")
 'Calculate the interactions
 TotalHybridInteractions = TotalHybridInteractions + 1
 TxtHybrid.Text = TotalHybridInteractions.ToString

 'If the ID has been Updated, i.e. for the first time for each station when the station object just has been created
 If e.theValues.Contains(MyIDHandle) Then
 MyStationProductivity.AttributeOwnershipAcquisition("Productivity", "CurOperator")
 'Update the Station in the SD shop
 Dim StationProdItem As New SDStation
 StationProdItem.ID = MyStationProductivity.ID
 StationProdItem.Handle = e.theObject
 StationProdItem.CurOperator = MyStationProductivity.CurOperator
 StationProdItem.MaxOperator = MyStationProductivity.MaxOperator
 StationProdItem.MinOperator = MyStationProductivity.MinOperator
 StationProdItem.SFunction = MyStationProductivity.SFunction
 StationsProductivities.Add(StationProdItem.ID.ToString, StationProdItem)
 'Add the station's current operators to the shop's operaorts
 MySDShop.CurSkilledOperators = MySDShop.CurSkilledOperators + MyStationProductivity.CurOperator
 'Add the Stations' ID to the Combo Item
 CmbStationID.Items.Add(StationProdItem.ID)
 End If
 'If the State has been updated
 If e.theValues.Contains(MyStateHandle) Then
 Dim StationProdItem As New SDStation

231

 StationProdItem = StationsProductivities(MyStationProductivity.ID.ToString)
 StationProdItem.State = MyStationProductivity.State
 End If
 End Sub

 Private Sub fedAmb_TimeAdvanceGrant(ByVal sender As System.Object, ByVal e As
Cosye.Hla.Rti.TimeAdvanceGrantEventArgs) Handles fedAmb.TimeAdvanceGrant
 'Set the Current Time for the SDDelay Type Variables
 MySDShop.UpdateShopTime(e.theTime)
 MySDShop.SetOverTime.CurDate = MyCalendar.CurrentDate
 MySDShop.Requstedoperator.CurDate = MyCalendar.CurrentDate
 MySDShop.OperatorUnderTrainning.CurDate = MyCalendar.CurrentDate

 ''Test
 If (MySDShop.CurTime > 1030000) And (Not MySDShop.SetOverTime.CurDate > #1/1/2000# Or _
 Not MySDShop.Requstedoperator.CurDate > #1/1/2000# Or _
 Not MySDShop.OperatorUnderTrainning.CurDate > #1/1/2000#) Then
 Dim test As Integer = 1
 End If
 ''Test

 If e.theTime > 0 Then
 MySDShop.SetOverTime.AddValue(MyCalendar.SetOverTimeForDay)
 Else
 MySDShop.SetOverTime.AddValue(0)
 End If
 'Set the Hour Label
 LblHour.Text = (Convert.ToInt64(e.theTime / 36) / 100).ToString
 'Check updates for the Top Level SD Loops
 If MySDShop.TopLevelSDNextTime <= e.theTime Then
 ' Update the loop
 Dim TotalNewOperators, TotalLeavingOperators As Integer
 UpdateTopLevelSDLoop(TotalNewOperators, TotalLeavingOperators)
 'Update the Required Values for the federation
 Dim OperatorChangedStations As New Dictionary(Of String, Integer)
 Dim StationItem As SDStation
 Dim MyStationProductivity As Steel_StationProductivity
 MySDShop.AccomodateOperators(TotalNewOperators, TotalLeavingOperators, OperatorChangedStations)
 'Update the Required Values for the federation
 For Each StationID As Integer In OperatorChangedStations.Values
 StationItem = New SDStation
 StationItem = StationsProductivities(StationID.ToString)
 MyStationProductivity = MyStationProductivityFactory(StationItem.Handle)
 MyStationProductivity.CurOperator = StationItem.CurOperator
 MyStationProductivity.UpdateAttributeValues()
 Next
 'Update Desire Overtime for the Calendar
 MyCalendar.UpdateAttributeValues()
 'Set the next time of update
 MySDShop.TopLevelSDNextTime = e.theTime + MySDShop.TopLevelSDStep
 'Update the Top Level SD Loop Interface
 UpdateSDTopLevel()
 End If 'Top Level
 'Check updates for the Operator Exchange Loops
 If MySDShop.OperatorExchangeLoopNextTime <= e.theTime Then
 ' Update the loop
 Dim OperatorChangedStations As New Collection
 Dim StationItem As SDStation
 Dim MyStationProductivity As Steel_StationProductivity
 MySDShop.OperatorBalance(OperatorChangedStations)
 'Update the Required Values for the federation
 For Each StationID As Integer In OperatorChangedStations
 StationItem = New SDStation
 StationItem = StationsProductivities(StationID.ToString)
 MyStationProductivity = MyStationProductivityFactory(StationItem.Handle)
 MyStationProductivity.CurOperator = StationItem.CurOperator
 MyStationProductivity.UpdateAttributeValues()
 Next
 'Set the interface
 SetCurrentStationFunction()

232

 'Set the next time of update
 MySDShop.OperatorExchangeLoopNextTime = e.theTime + MySDShop.OperatorExchangeLoopStep
 End If 'Operator Exchange

 'Check updates for the Continuous Work Loops
 If MySDShop.OperatorContinuouWorkNextTime <= e.theTime Then
 ' Update the loop
 For Each StationProdItem As SDStation In StationsProductivities.Values
 ' Calculate the current Utilization of the station
 StationProdItem.CurUtilization = StationProdItem.Utilization(ToolState.Busy, 0)

 Dim MyStationProductivity As Steel_StationProductivity
 'Check if Productivity should be updated
 StationProdItem.CurProductivity = MySDShop.ShopProductivity / _
 (Math.Max(MySDShop.EasyUtilizationLevel, StationProdItem.CurUtilization) /
MySDShop.EasyUtilizationLevel)
 'Check if productivity update is required
 If StationProdItem.ProductivityLag > MySDShop.MLC Then
 StationProdItem.SetProductivity = StationProdItem.CurProductivity
 MyStationProductivity = MyStationProductivityFactory(StationProdItem.Handle)
 MyStationProductivity.Productivity = StationProdItem.SetProductivity
 MyStationProductivity.UpdateAttributeValues()
 'Update the Utilization loop Interface/replied update
 LblStationUtilRepliedUpdate.Text = (Val(LblStationUtilRepliedUpdate.Text) + 1).ToString
 End If
 'Update the Utilization loop Interface
 SetCurrentStationIDInterface()
 LblStationUtilTotalUpdate.Text = (Val(LblStationUtilTotalUpdate.Text) + 1).ToString
 Next
 'Set the next time
 MySDShop.OperatorContinuouWorkNextTime = e.theTime + MySDShop.OperatorContinuouWorkLoopStep
 End If 'Continuous work
 'Calculate next time
 Dim NextTime As Double = Math.Min(Math.Max(e.theTime + 1, MySDShop.OperatorExchangeLoopNextTime), _
 Math.Min(Math.Max(e.theTime + 1, MySDShop.TopLevelSDNextTime),
Math.Max(e.theTime + 1, MySDShop.OperatorContinuouWorkNextTime)))
 rtiAmb.TimeAdvanceRequest(NextTime)
 End Sub

 Private Sub MyCalendarFactory_DiscoverObjectInstance(ByVal sender As System.Object, ByVal e As
Cosye.Hla.Rti.DiscoverObjectInstanceEventArgs) Handles MyCalendarFactory.DiscoverObjectInstance
 MyCalendar = MyCalendarFactory(e.theObject)
 MyCalendar.AttributeOwnershipAcquisition("DesireOverTime")
 MyCalendar.DesireOverTime = 0
 MyCalendar.UpdateAttributeValues()
 End Sub

 Private Sub MyCalendarFactory_ReflectAttributeValues(ByVal sender As System.Object, ByVal e As
Cosye.Hla.Rti.ReflectAttributeValuesEventArgs) Handles MyCalendarFactory.ReflectAttributeValues
 MyCalendar = MyCalendarFactory(e.theObject)
 LblCurDate.Text = MyCalendar.CurrentDate.ToString
 'Check if MaxOverTime has been Updated
 Dim MaxOverTimeHandle As AttributeHandle = MyCalendarFactory.GetAttributeHandle("MaxOverTime")
 If e.theValues.Contains(MaxOverTimeHandle) Then
 MySDShop.CurDate = MyCalendar.CurrentDate
 End If
 End Sub

 'Initialize
 Private Sub fedAmb_BeginExecution(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
fedAmb.BeginExecution
 Initialize()
 UpdateSDTopLevel()
 End Sub
 'Changing the Operator Balance Combo current staion function
 Private Sub CmbSFunction_TextChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
CmbSFunction.TextChanged
 If CmbSFunction.Items.Count >= 5 Then
 SetCurrentStationFunction()
 End If

233

 End Sub

 'Setting the current staion function for the function Combo Box
 Private Sub SetCurrentStationFunction()
 Dim SFunctionKey As Integer
 Select Case CmbSFunction.Text
 Case "Cutting"
 SFunctionKey = StationFunction.Cutting
 Case "Fitting"
 SFunctionKey = StationFunction.Fitting
 Case "Welding"
 SFunctionKey = StationFunction.Welding
 Case "FitInspection"
 SFunctionKey = StationFunction.FitInspection
 Case "WeldInspection"
 SFunctionKey = StationFunction.WeldInspection
 Case "Painting"
 SFunctionKey = StationFunction.Painting
 End Select
 'Set the interface based on the achieved result
 Dim BalanceResult As New OperatorBalanceResult
 If MySDShop.OperatorBalanceResultList.Keys.Contains(SFunctionKey.ToString) Then
 BalanceResult = MySDShop.OperatorBalanceResultList(SFunctionKey.ToString)
 End If
 UpdateOperatorBalnceInterce(BalanceResult)
 End Sub

 'Update operator balance result in iterface
 Private Sub UpdateOperatorBalnceInterce(ByVal Result As OperatorBalanceResult)
 TxtDesireStationUtil.Text = TxtDesireUtil.Text
 TxtMaxID.Text = Result.MaxID.ToString
 TxtMinID.Text = Result.MinID.ToString
 TxtMaxStationUtil.Text = Result.MaxUtil.ToString
 TxtMinStationUtil.Text = Result.MinUtil.ToString
 TxtOprMaxExchange.Text = Result.MaxOperatorChange.ToString
 TxtOprMinExchange.Text = Result.MinOperatorChange.ToString
 End Sub

 'Action based on the change in the station ID combo in the utilization loop
 Private Sub CmbStationID_TextChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
CmbStationID.TextChanged
 If CmbStationID.Items.Count > 1 Then
 SetCurrentStationIDInterface()
 End If
 End Sub

 'Set the utilization loop interface
 Private Sub SetCurrentStationIDInterface()
 Dim StationUtil As SDStation = StationsProductivities(CmbStationID.Text)
 TxtStationCurProd.Text = StationUtil.CurProductivity.ToString
 TxtStationSetProd.Text = StationUtil.SetProductivity.ToString
 TxtStationUtil.Text = StationUtil.CurUtilization.ToString
 End Sub

 Private Sub MyShopProductivityFactory_DiscoverObjectInstance(ByVal sender As System.Object, ByVal e As
Cosye.Hla.Rti.DiscoverObjectInstanceEventArgs) Handles MyShopProductivityFactory.DiscoverObjectInstance
 MyShopProductivity = MyShopProductivityFactory(e.theObject)
 MyShopProductivity.AttributeOwnershipAcquisition("MLC")
 '' Set MLC
 MySDShop.MLC = Val(TxtProdMargine.Text)
 MyShopProductivity.MLC = MySDShop.MLC
 MyShopProductivity.UpdateAttributeValues()
 End Sub
End Class

5) Visualization Federate

234

Imports Cosye.Hla.Rti

Public Class VisualizationFederate
 Dim MyTekla As New Tekla
 Dim MyVisualData As New DataVisual
 Dim MyCalendar As Steel_Calendar
 Dim NewDivisionRequest As Boolean = False
 Dim RequestedDivision As New DivisionItem
 Dim PieceProgressList As New Dictionary(Of String, VisualPiece)
 Dim PauseTheFederation As Boolean = False
 Dim ShowTekla As Boolean = False
 Dim ActiveShowTeklaMode As Boolean = False

 Private Sub MyVPieceFactory_ReflectAttributeValues(ByVal sender As System.Object, ByVal e As
Cosye.Hla.Rti.ReflectAttributeValuesEventArgs) Handles MyVPieceFactory.ReflectAttributeValues
 Dim NewVPiece As Steel_VPiece
 Dim NewVisualPiece As New VisualPiece
 NewVPiece = MyVPieceFactory(e.theObject)
 NewVisualPiece.PieceKey = NewVPiece.PieceKey
 NewVisualPiece.DivisionID = NewVPiece.DivisionID
 NewVisualPiece.CPI = NewVPiece.CPI
 NewVisualPiece.SPI = NewVPiece.SPI
 NewVisualPiece.Progress = NewVPiece.Progress
 'Update the model color if current show tekla mode is true
 If ActiveShowTeklaMode Then
 MyTekla.UpdateColors(NewVisualPiece)
 End If
 'Update the data base and return true if related division is new
 If MyVisualData.UpdateCompletedPiecesTable(NewVisualPiece) Then
 Dim MyDivisionItem As New DivisionItem
 MyDivisionItem.DivisionID = NewVPiece.DivisionID
 MyVisualData.ReadDivisionFile(MyDivisionItem.DivisionID, MyDivisionItem.DivisionFile)
 LstDivision.Items.Add(MyDivisionItem)
 End If
 'Updating the piece progress list
 If MyTekla.CurrentDivision = NewVisualPiece.DivisionID Then
 If PieceProgressList.Keys.Contains(NewVisualPiece.PieceKey) Then
 Dim OldVisualPiece As VisualPiece = PieceProgressList(NewVisualPiece.PieceKey)
 LstPieceProgress.Items.Remove(OldVisualPiece.ToString)
 LstPieceProgress.Items.Add(NewVisualPiece.ToString)
 PieceProgressList.Remove(NewVisualPiece.PieceKey)
 PieceProgressList.Add(NewVisualPiece.PieceKey, NewVisualPiece)
 Else
 LstPieceProgress.Items.Add(NewVisualPiece.ToString)
 PieceProgressList.Add(NewVisualPiece.PieceKey, NewVisualPiece)
 End If
 End If
 'Go to the last item in the list
 If LstPieceProgress.Items.Count > 0 Then
 LstPieceProgress.SetSelected((LstPieceProgress.Items.Count - 1), True)
 End If

 Me.Refresh()
 End Sub

 Private Sub BtnChangeDivision_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
BtnChangeDivision.Click
 RequestedDivision = CType(LstDivision.SelectedItem, DivisionItem)
 'Change the current division
 If Not RequestedDivision.DivisionID = MyTekla.CurrentDivision _
 Or (MyTekla.RelatedTeklaFileIsOpen And Not ShowTekla And ActiveShowTeklaMode) Then
 LblRequestedDivision.Text = RequestedDivision.ToString
 MyTekla.RelatedTeklaFileIsOpen = False
 NewDivisionRequest = True
 ElseIf (Not MyTekla.RelatedTeklaFileIsOpen And ShowTekla) Or _
 (Not ActiveShowTeklaMode = ShowTekla) Then
 LblRequestedDivision.Text = RequestedDivision.ToString
 NewDivisionRequest = True
 Else
 RequestedDivision = New DivisionItem

235

 End If
 End Sub

 Private Sub MyCalendarFactory_ReflectAttributeValues(ByVal sender As System.Object, ByVal e As
Cosye.Hla.Rti.ReflectAttributeValuesEventArgs) Handles MyCalendarFactory.ReflectAttributeValues
 MyCalendar = MyCalendarFactory(e.theObject)
 'Check if DayNo has been Updated to commit the changes
 If MyTekla.CurrentDivision.Length > 0 Then
 Dim DayNoHandle As AttributeHandle = MyCalendarFactory.GetAttributeHandle("DayNo")
 If e.theValues.Contains(DayNoHandle) Then
 MyTekla.CommitChanges()
 End If
 End If
 LblDate.Text = MyCalendar.CurrentDate.ToString
 Me.Refresh()
 End Sub

 Private Sub fedAmb_BeginExecution(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
fedAmb.BeginExecution
 MyVisualData.InitializeTables()
 If RdBShowTekla.Checked Then
 MyTekla.OpenApplicaion()
 End If
 End Sub

 Private Sub fedAmb_EndExecution(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
fedAmb.EndExecution
 MyTekla.CloseApplicaion()
 End Sub

 Private Sub fedAmb_TimeAdvanceGrant(ByVal sender As System.Object, ByVal e As
Cosye.Hla.Rti.TimeAdvanceGrantEventArgs) Handles fedAmb.TimeAdvanceGrant
 If NewDivisionRequest Then
 LblRelatedTeklaFileOpen.ForeColor = Color.Red
 LblRelatedTeklaFileOpen.Text = "No 3D Model Linked!"
 ActiveShowTeklaMode = False
 If MyTekla.SetNewDivision(RequestedDivision.DivisionID, PieceProgressList, ShowTekla) Then ' returns true if
the file successfully gets open
 LblRelatedTeklaFileOpen.ForeColor = Color.Green
 LblRelatedTeklaFileOpen.Text = "See the Linked 3D Model!"
 ActiveShowTeklaMode = True
 End If
 LblCurrentDivision.Text = RequestedDivision.ToString
 LblRequestedDivision.Text = ""
 ' Set the Piece Progress List Box
 LstPieceProgress.Items.Clear()
 For Each VisualPieceItem As VisualPiece In PieceProgressList.Values
 LstPieceProgress.Items.Add(VisualPieceItem.ToString)
 Next
 If LstPieceProgress.Items.Count > 0 Then
 LstPieceProgress.SetSelected((LstPieceProgress.Items.Count - 1), True)
 End If
 MyTekla.CurrentDivision = RequestedDivision.DivisionID
 NewDivisionRequest = False
 ElseIf MyTekla.RelatedTeklaFileIsOpen Then
 MyTekla.CommitChanges()
 End If
 'Check if user wants to pause the Simulation
 Dim Result As DialogResult
 While PauseTheFederation
 Result = MessageBox.Show("Do you want to continue?", "Continue", MessageBoxButtons.YesNo)
 If Result = Windows.Forms.DialogResult.Yes Then
 PauseTheFederation = False
 LblFedPause.Text = ""
 End If
 End While
 Dim NextDay As Double = (e.theTime + 60 * 60)
 rtiAmb.TimeAdvanceRequest(NextDay)
 End Sub

236

 Private Sub BtnPauseFederation_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
BtnPauseFederation.Click
 PauseTheFederation = True
 LblFedPause.Text = "Federation Pause Request"
 End Sub

 Private Sub RdBDontShowTekla_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
RdBDontShowTekla.Click
 RdBShowTekla.Checked = False
 ShowTekla = False
 MyTekla.RelatedTeklaFileIsOpen = False
 End Sub

 Private Sub RdBShowTekla_CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles RdBShowTekla.CheckedChanged
 RdBDontShowTekla.Checked = False
 ShowTekla = True
 End Sub
End Class

Visualization Classes

Imports System.Data.OleDb
Imports System.Diagnostics
Imports Tekla.Structures.Model
Imports Tekla.Structures
Imports System.Threading

Public Class PieceIdentifiers 'For relating pieces to the current division
 Public ListofIdentifiers As New Dictionary(Of String, Identifier)
 Public PieceKey As String = ""
 Public CPI As Double = 0
 Public SPI As Double = 0
End Class

Public Class DivisionItem
 Public DivisionID As String = ""
 Public DivisionFile As String = ""
 Public Overrides Function ToString() As String
 Return DivisionID & " | " & DivisionFile
 End Function
End Class

Public Class VisualPiece
 Public PieceKey As String
 Public DivisionID As String
 Public CPI As Double
 Public SPI As Double
 Public Progress As Double
 Public Overrides Function ToString() As String
 Return PieceKey & " (CPI=" & Math.Round(CPI, 2).ToString & ") (SPI=" & Math.Round(SPI, 2).ToString & ") (%"
& Math.Round(Progress * 100, 1).ToString & ")"
 End Function
End Class

Public Class Tekla
 Public CurrentDivision As String = "" 'Shows the current loaded DivisionID in the Tekla
 Public ListofPieceIdentifiers As New Dictionary(Of String, PieceIdentifiers)
 Public MyModel As Model
 Public RelatedTeklaFileIsOpen As Boolean = False

 'Open Tekla Software if is closed
 Public Function OpenApplicaion() As Boolean
 'Check if Tekla is already open
 Dim P_Check As Process() = Process.GetProcessesByName("TeklaStructures")
 Dim TeklaIsOpen As Boolean = True
 'Try to open Tekla if it was not open
 If P_Check.Count = 0 Then

237

 Dim P_Open As New Process
 P_Open.StartInfo.FileName = "C:\Documents and Settings\All Users\Start Menu\Programs\Tekla Structures
14.0\Tekla Structures 14.0 US Metric"
 TeklaIsOpen = P_Open.Start()
 End If
 'Act base on that Tekla is Open or Close
 If TeklaIsOpen Then
 Return True
 Else
 Return False
 End If
 End Function

 'Close Tekla Software if is Open
 Public Sub CloseApplicaion()
 'Retrieve Tekla process if Tekla is open
 Dim P As Process() = Process.GetProcessesByName("TeklaStructures")
 'Close Tekla process if Tekla is open
 If P.Count > 0 Then
 P(0).Kill()
 P(0).Close()
 End If
 End Sub

 'Load new division in the Tekla window
 Public Function SetNewDivision(ByVal MyDivision As String, ByRef PieceProgressList As Dictionary(Of String,
VisualPiece), ByVal ShowTekla As Boolean) As Boolean
 Dim MyDataVisual As New DataVisual ' For reading the data
 Dim DivisionFileName As String = ""
 Dim MyVPieceList As New Dictionary(Of String, VisualPiece)
 'Find the file name of the Division from local data base
 MyDataVisual.ReadDivisionFile(MyDivision, DivisionFileName)
 'Read completed pieces from the data base
 MyDataVisual.ReadVPieces(MyDivision, MyVPieceList)
 If Not DivisionFileName = "No Tekla File" And ShowTekla Then 'No Tekla File or no request for tekla
 'Do the entire procedure if Tekla is open or could be open and division is new
 If OpenApplicaion() And ((Not CurrentDivision = MyDivision) _
 Or (Not RelatedTeklaFileIsOpen)) Then
 Dim MyVPiece As New VisualPiece
 Dim ClassColor As String = ""
 Dim MyPieceKey As String = ""
 Dim MyPieceIdentifier As PieceIdentifiers
 Try 'If there is any prolem with openning the file
 ''Save latest changes to the current open file
 If CurrentDivision.Length > 0 Then
 CommitChanges()
 End If
 ''Open the division file in Tekla
 MyModel = New Model
 MyModel.Open("C:\TeklaVisualization\" & DivisionFileName)
 Dim Result As DialogResult
 ''First the model should get completely open
 Result = MessageBox.Show("Push Yes button when the model is completely open!", "File Opening
Completed", MessageBoxButtons.YesNo)
 If Result = DialogResult.Yes Then
 'Read all pieces (BEAM type) from the model and check their color
 Dim MyBeamEnum As ModelObjectEnumerator =
MyModel.GetModelObjectSelector.GetAllObjectsWithType(ModelObject.ModelObjectEnum.BEAM)
 Dim MyBeam As Beam
 'Reset the ListofPieceIdentifiers
 ListofPieceIdentifiers.Clear()
 While MyBeamEnum.MoveNext
 'Retrieve the model's Piece (Beams) in order
 MyBeam = CType(MyModel.SelectModelObject(MyBeamEnum.Current.Identifier), Beam)
 'Read the piece key (ASSEMBLY_POSITION) of the current Piece (Beam)
 MyBeam.GetReportProperty("ASSEMBLY_POS", MyPieceKey)
 'Eliminate extra characters from read piece key (ASSEMBLY_POSITION)
 MyPieceKey = Replace(MyPieceKey, "(?)0", "")
 MyPieceKey = Replace(MyPieceKey, "(?)", "")
 ClassColor = "1" 'Gray color which shows incompleted pieces

238

 'Check if current Piece (Beam) already has been completed and retrived its related color
 Dim CPI As Double = 0
 Dim SPI As Double = 0
 If MyVPieceList.Keys.Contains(MyPieceKey) Then
 MyVPiece = New VisualPiece
 MyVPiece = MyVPieceList(MyPieceKey)
 ClassColor = RelatedColor(MyVPiece.CPI, MyVPiece.SPI)
 CPI = MyVPiece.CPI
 SPI = MyVPiece.SPI
 End If
 'Set the related color of the piece
 If Not (MyBeam.Class = ClassColor) Then
 MyBeam.Class = ClassColor
 MyBeam.Modify()
 End If
 'Retrive related PieceIdentifier
 If ListofPieceIdentifiers.Keys.Contains(MyPieceKey) Then
 'Retrieve the stored PieceIdentifier
 MyPieceIdentifier = ListofPieceIdentifiers(MyPieceKey)
 'Add current identifier to the retrieved PieceIdentifier
 MyPieceIdentifier.ListofIdentifiers.Add(MyBeam.Identifier.ToString, MyBeam.Identifier)
 Else 'The piece has not been stored yet; create a new one
 MyPieceIdentifier = New PieceIdentifiers
 MyPieceIdentifier.PieceKey = MyPieceKey
 MyPieceIdentifier.CPI = CPI
 MyPieceIdentifier.SPI = SPI
 'Add current identifier to the retrieved PieceIdentifier
 MyPieceIdentifier.ListofIdentifiers.Add(MyBeam.Identifier.ToString, MyBeam.Identifier)
 'Add Piece identifier to the retrieved List of PieceIdentifiers
 ListofPieceIdentifiers.Add(MyPieceKey, MyPieceIdentifier)
 End If
 End While

 'Read all pieces (Plate type) from the model and check their color
 Dim MyPlateEnum As ModelObjectEnumerator =
MyModel.GetModelObjectSelector.GetAllObjectsWithType(ModelObject.ModelObjectEnum.CONTOURPLATE)
 Dim MyPlate As ContourPlate
 While MyPlateEnum.MoveNext
 'Retrieve the model's Piece (Plates) in order
 MyPlate = CType(MyModel.SelectModelObject(MyPlateEnum.Current.Identifier), ContourPlate)
 'Read the piece key (ASSEMBLY_POSITION) of the current Piece (Plate)
 MyPlate.GetReportProperty("ASSEMBLY_POS", MyPieceKey)
 'Eliminate extra characters from read piece key (ASSEMBLY_POSITION)
 MyPieceKey = Replace(MyPieceKey, "(?)0", "")
 MyPieceKey = Replace(MyPieceKey, "(?)", "")
 ClassColor = "1" 'Gray color which shows incompleted pieces
 'Check if current Piece (Plate) already has been completed and retrived its related color
 Dim CPI As Double = 0
 Dim SPI As Double = 0
 If MyVPieceList.Keys.Contains(MyPieceKey) Then
 MyVPiece = New VisualPiece
 MyVPiece = MyVPieceList(MyPieceKey)
 ClassColor = RelatedColor(MyVPiece.CPI, MyVPiece.SPI)
 CPI = MyVPiece.CPI
 SPI = MyVPiece.SPI
 End If
 'Set the related color of the piece
 If Not (MyPlate.Class = ClassColor) Then
 MyPlate.Class = ClassColor
 MyPlate.Modify()
 End If
 'Retrive related PieceIdentifier
 If ListofPieceIdentifiers.Keys.Contains(MyPieceKey) Then
 'Retrieve the stored PieceIdentifier
 MyPieceIdentifier = ListofPieceIdentifiers(MyPieceKey)
 'Add current identifier to the retrieved PieceIdentifier
 MyPieceIdentifier.ListofIdentifiers.Add(MyPlate.Identifier.ToString, MyPlate.Identifier)
 Else 'The piece has not been stored yet; create a new one
 MyPieceIdentifier = New PieceIdentifiers
 MyPieceIdentifier.PieceKey = MyPieceKey

239

 MyPieceIdentifier.CPI = CPI
 MyPieceIdentifier.SPI = SPI
 'Add current identifier to the retrieved PieceIdentifier
 MyPieceIdentifier.ListofIdentifiers.Add(MyPlate.Identifier.ToString, MyPlate.Identifier)
 'Add Piece identifier to the retrieved List of PieceIdentifiers
 ListofPieceIdentifiers.Add(MyPieceKey, MyPieceIdentifier)
 End If
 End While
 'Redraw the drawing
 CommitChanges()
 RelatedTeklaFileIsOpen = True
 Else
 MessageBox.Show("First finish the model opening process and then continue!")
 End If 'Result Yes
 Catch ex As Exception
 MessageBox.Show(ex.Message)
 End Try
 ElseIf Not OpenApplicaion() Then
 MessageBox.Show("First finish the model opening process and then continue!")
 End If 'No Tekla Program or currently working
 Else ' No Tekla File or no tekla show requested
 RelatedTeklaFileIsOpen = False
 End If
 'Set New Piece Progress List
 PieceProgressList = MyVPieceList
 Return RelatedTeklaFileIsOpen
 End Function

 'Updates new received pieces at the Tekla model
 Public Sub UpdateColors(ByVal MyVPiece As VisualPiece)
 'Do the entire procedure if Tekla is open or can be open
 If OpenApplicaion() And (CurrentDivision = MyVPiece.DivisionID) Then
 'Check if piece key exists
 If ListofPieceIdentifiers.Keys.Contains(MyVPiece.PieceKey) Then
 'Find the Piece from the piece list
 Dim MyPieceIdentifier As PieceIdentifiers = ListofPieceIdentifiers(MyVPiece.PieceKey)
 'Set the current SPI and CPI
 MyPieceIdentifier.CPI = MyVPiece.CPI
 MyPieceIdentifier.SPI = MyVPiece.SPI
 'Change the color of all related objects to the piece key
 Dim MyObject As ModelObject
 Dim ClassColor As String = RelatedColor(MyVPiece.CPI, MyVPiece.SPI)
 For Each IdentifierItem As Identifier In MyPieceIdentifier.ListofIdentifiers.Values
 Try
 MyObject = MyModel.SelectModelObject(IdentifierItem)
 'Set the related color of the piece
 ''Check the object Type
 Dim ObjType As String = ""
 MyObject.GetReportProperty("OBJECT_TYPE", ObjType)
 ''Cast the onject in currect type and change the color
 If ObjType = "PLATE" Then
 Dim MyPlate As ContourPlate = CType(MyObject, ContourPlate)
 If Not (MyPlate.Class = ClassColor) Then
 MyPlate.Class = ClassColor
 MyPlate.Modify()
 End If
 ElseIf ObjType = "BEAM" Then
 Dim MyBeam As Beam = CType(MyObject, Beam)
 If Not (MyBeam.Class = ClassColor) Then
 MyBeam.Class = ClassColor
 MyBeam.Modify()
 End If
 ElseIf ObjType = "PART" Then
 Dim MyPart As Part = CType(MyObject, Part)
 If Not (MyPart.Class = ClassColor) Then
 MyPart.Class = ClassColor
 MyPart.Modify()
 End If
 End If
 CommitChanges()

240

 Catch ex As Exception
 'Ignore the error
 End Try
 Next
 End If 'piece key exists
 End If 'open application
 End Sub

 'Commit the changes and redraw previously updated colors
 Public Sub CommitChanges()
 Try
 'Commit the changes
 MyModel.CommitChanges()
 Catch ex As Exception
 'MessageBox.Show(ex.Message)
 End Try
 End Sub

 'Returns the current color based on the SPI and CPI of the piece
 Public Function RelatedColor(ByVal CPI As Double, ByVal SPI As Double) As String
 Dim ColorClass As Integer = 1 'Gray
 Select Case SPI
 Case 0 To 0.9 'SPI
 Select Case CPI
 Case 0 To 0.9
 ColorClass = 9 'Dark Red
 Case 0.9 To 0.99999999999
 ColorClass = 9 'Dark Red
 Case Is >= 1
 ColorClass = 6 'Yellow
 End Select
 Case 0.9 To 0.99999999999 'SPI
 Select Case CPI
 Case 0 To 0.9
 ColorClass = 9 'Dark Red
 Case 0.9 To 0.99999999999
 ColorClass = 4 'Light Blue
 Case Is >= 1
 ColorClass = 6 'Yellow
 End Select
 Case Is >= 1 'SPI
 Select Case CPI
 Case 0 To 0.9
 ColorClass = 13 'Orange
 Case 0.9 To 0.99999999999
 ColorClass = 13 'Orange
 Case Is >= 1
 ColorClass = 10 'Dark Green '''''3 is light green
 End Select
 End Select
 Return ColorClass.ToString

 'Color Codes:
 '1: Gray()
 '2: Light(Red)
 '3: Light(Green)
 '4: Light(Blue)
 '5: Cyan()
 '6: Yellow()
 '7: Purple()
 '8: Dark(Gray)
 '9: Dark(Red)
 '10: Dark(Green)
 '11: Dark(Cyan)
 '12: Dark(Purple)
 '13: Orange()
 '14: Dark(Blue)
 '15: Gray()

 End Function

241

End Class

Public Class DataVisual

 Public DivisionList As New List(Of String) 'List of divisions on hand or completed

 '' '''''''''''''''''''''' Initialize the VisualData Tables
 Public Sub InitializeTables() 'Deletes the previously saved data in CompletedPieces table
 Dim MyDataName As String = "CompletedPieces"
 'Create a connection
 Dim MyAccessConn As OleDbConnection = New OleDbConnection("provider = Microsoft.jet.OLEDB.4.0;" &
"Data Source= ..\..\..\..\VisualData.mdb")
 'Create the Select Command
 Dim CommandText As String = "Select * from " & MyDataName & " ;"
 'Create a data adapter
 Dim DA As OleDbDataAdapter = New OleDbDataAdapter(CommandText, MyAccessConn)
 'Create the Delete Command
 CommandText = "Delete from " & MyDataName & " ;"
 ''Create a data adapter delete command
 DA.DeleteCommand = New OleDbCommand(CommandText, MyAccessConn)
 'Use it when want to apply update command
 Dim builder As OleDbCommandBuilder = New OleDbCommandBuilder(DA)
 'Create a data Set
 Dim DS As DataSet = New DataSet
 Try
 MyAccessConn.Open()
 DA.Fill(DS, MyDataName)
 DA.DeleteCommand.ExecuteNonQuery()
 DS.Tables(MyDataName).Rows.Clear()
 Catch ex As Exception
 'Error
 MessageBox.Show(ex.Message)
 End Try
 MyAccessConn.Close()
 End Sub

 '' '''''''''''''''''''''' Update the VisualData Tables
 Public Function UpdateCompletedPiecesTable(ByVal MyVPiece As VisualPiece) As Boolean
 '' '''''''''''''''''''Update Completed Pieces Table and returns True if division previously has been added to the list
 Dim MyDataName As String = "CompletedPieces"
 'Create a connection
 Dim MyAccessConn As OleDbConnection = New OleDbConnection("provider = Microsoft.jet.OLEDB.4.0;" &
"Data Source= ..\..\..\..\VisualData.mdb")
 'Create the Select Command
 Dim CommandText As String = "Select * from " & MyDataName & " Where ((DivisionID = " & Chr(34) &
MyVPiece.DivisionID & Chr(34) & ") AND (PieceKey = " & Chr(34) & MyVPiece.PieceKey & Chr(34) & ")) ;"
 'Create a data adapter
 Dim DA As New OleDbDataAdapter(CommandText, MyAccessConn)
 '''' Delete the old data of piece
 'Create the Delete Command
 CommandText = "Delete * from " & MyDataName & " Where ((DivisionID = " & Chr(34) & MyVPiece.DivisionID
& Chr(34) & ") AND (PieceKey = " & Chr(34) & MyVPiece.PieceKey & Chr(34) & ")) ;"
 ''Create a data adapter delete command
 DA.DeleteCommand = New OleDbCommand(CommandText, MyAccessConn)
 'Use it when want to apply update command
 Dim Builder As OleDbCommandBuilder = New OleDbCommandBuilder(DA)
 'Create a data Set
 Dim DS As New DataSet
 Try
 'Open the connection
 MyAccessConn.Open()
 ''Fill the Data Set
 DA.Fill(DS, MyDataName)
 'Delete the old data related the piece
 DA.DeleteCommand.ExecuteNonQuery()
 DS.Tables(MyDataName).Rows.Clear()
 Catch ex As Exception
 ' 'Error
 MessageBox.Show(ex.Message)

242

 End Try

 '''' Add updated data of piece
 ''Define a row in the table
 Dim MyRow As DataRow = DS.Tables(MyDataName).NewRow
 MyRow("PieceKey") = MyVPiece.PieceKey
 MyRow("CPI") = MyVPiece.CPI
 MyRow("SPI") = MyVPiece.SPI
 MyRow("Progress") = MyVPiece.Progress
 MyRow("DivisionID") = MyVPiece.DivisionID
 DS.Tables(MyDataName).Rows.Add(MyRow)
 ''Update the Data
 DA.Update(DS, MyDataName)
 MyAccessConn.Close()
 'Add the division to the DivisionList if it has not been added
 If DivisionList.Contains(MyVPiece.DivisionID) Then
 Return False
 Else
 DivisionList.Add(MyVPiece.DivisionID)
 Return True
 End If
 End Function

 '' '''''''''''''''''''''''Reads Data from VisualData
 Public Sub ReadVPieces(ByVal MyDivision As String, ByRef MyVPieceList As Dictionary(Of String, VisualPiece))
 'Read Completed Pieces data from the Data Base
 '' '''''''''''''''''''Set CompletedPieces as the table name
 Dim MyDataName As String = "CompletedPieces"
 'Create a connection
 Dim MyAccessConn As New OleDbConnection("provider = Microsoft.jet.OLEDB.4.0;" & "Data Source=
..\..\..\..\VisualData.mdb")
 'Create the Select Command
 Dim CommandText As String = "Select * from " & MyDataName & " Where DivisionID = " & Chr(34) &
MyDivision & Chr(34) & " ;"
 'Create a data adapter
 Dim DA As New OleDbDataAdapter(CommandText, MyAccessConn)
 'Create a DataSet
 Dim DS As New DataSet
 'Create a DataSet
 Dim MyData As New DataTable
 Try
 MyAccessConn.Open()
 'Fill Data to Data set
 DA.Fill(DS, MyDataName)
 'Fill Data to DataTable
 MyData = DS.Tables(MyDataName)
 MyAccessConn.Close()
 Catch ex As Exception
 ' There is an error
 MessageBox.Show(ex.Message)
 End Try
 Dim MyVPiece As VisualPiece
 'Add the read Pieces to the MyVPieceList
 For Each MyVPieceRow As DataRow In MyData.Rows
 MyVPiece = New VisualPiece
 MyVPiece.PieceKey = MyVPieceRow("PieceKey").ToString
 MyVPiece.CPI = Convert.ToDouble(MyVPieceRow("CPI"))
 MyVPiece.SPI = Convert.ToDouble(MyVPieceRow("SPI"))
 MyVPiece.Progress = Convert.ToDouble(MyVPieceRow("Progress"))
 MyVPiece.DivisionID = MyVPieceRow("DivisionID").ToString
 MyVPieceList.Add(MyVPiece.PieceKey, MyVPiece)
 Next
 End Sub

 Public Sub ReadDivisionFile(ByVal MyDivision As String, ByRef DivisionFile As String)
 'Read DivisionFiles data from the Data Base
 '' '''''''''''''''''''Set CompletedPieces as the table name
 Dim MyDataName As String = "DivisionFile"
 'Create a connection

243

 Dim MyAccessConn As New OleDbConnection("provider = Microsoft.jet.OLEDB.4.0;" & "Data Source=
..\..\..\..\VisualData.mdb")
 'Create the Select Command
 Dim CommandText As String = "Select * from " & MyDataName & " Where DivisionID = " & Chr(34) &
MyDivision & Chr(34) & " ;"
 'Create a data adapter
 Dim DA As New OleDbDataAdapter(CommandText, MyAccessConn)
 'Create a DataSet
 Dim DS As New DataSet
 'Create a DataSet
 Dim MyData As New DataTable
 Try
 MyAccessConn.Open()
 'Fill Data to Data set
 DA.Fill(DS, MyDataName)
 'Fill Data to DataTable
 MyData = DS.Tables(MyDataName)
 MyAccessConn.Close()
 Catch ex As Exception
 ' There is an error
 MessageBox.Show(ex.Message)
 End Try
 'Check see if there is any file available
 If MyData.Rows.Count > 0 Then
 'Pass the read Division information to the parameters
 For Each MyDivisionFile As DataRow In MyData.Rows
 DivisionFile = CStr(MyDivisionFile("FileName"))
 Next
 Else 'No file is stored
 DivisionFile = "No Tekla File"
 End If
 End Sub
End Class

244

B.3. Data-tables

B.3.1. Piece Table

Table B.1 presents Piece data-table used in the developed model as the main

source of data input. The column headings in Table B.1 are the data-fields in the

data-table developed in MS Access. The presented values in Table B.1 show some

sample data used for the model.

Table B.1. Piece table structure with sample data
div_id piece_id quantity weight fab_mhrs fabdwg_no assembly_pos

~
 ~

13028 386536 1 635 15.41 24 16R24

13028 386524 1 2170 15.41 12 16R12

13028 386588 1 109 15.41 80 16R80

13028 386577 5 876 15.41 68 16R68

13028 386574 2 361 15.41 65 16R65

9772 160533 4 3 20.00 8600 1A38600

9772 160553 1 0 20.00 1 1A31

9772 160568 1 0 20.00 16 1A316

9772 161920 9 6 20.00 8600 1A38600

11808 222038 7 1 60.00 8600 71A8600

11808 222038 7 1 96.25 8600 71A8600

12855 227213 4 48 38.81 90003 3B90003

12855 227213 4 48 60.00 90003 3B90003

12855 227214 1 154 38.81 9008 3B9008

12855 227214 1 154 60.00 9008 3B9008

12857 227245 8 96 38.99 90004 4A90004

12857 227245 8 96 60.00 90004 4A90004

12857 227246 1 154 38.99 9009 4A9009

12857 227246 1 154 60.00 9009 4A9009

11057 227323 1 74 60.00 9039 59B9039

11808 230173 1 65 60.00 5001 71A5001

11808 230173 1 65 96.25 5001 71A5001

11808 230179 1 55 96.25 5000 71A5000

11898 230697 1 33 39.03 1 13C1

11898 230697 1 33 60.00 1 13C1

Brief explanations on the meaning of each data-field are presented in the

following:

div_id: The id of the division which piece is belonged to.

piece_id: The piece id.

245

quantity: The number of identical pieces, with the same piece id, which

should be fabricated.

weight: The weight of the piece

fab_mhrs: The average man-hour required for fabricating every kilogram

of the piece.

fabdwg_no: The number of the drawing which contains the piece’s

drawing. This is used for locating Tekla (Tekla Corporation, Finland,

http://www.tekla.com) drawing file for visualization purposes.

assembly_pos: Determines the position of piece drawing inside the Tekla

file. This is used for visualization purposes.

B.3.2. Division Table

Table B.2 presents Division data-table used in the program as the supplementary

data source to the Piece data-table. The column headings of Table B.2 represent

the data-fields in the data-table implemented in MS Access. The presented values

in Table B.2 show some sample data used in the model.

246

Table B.2. Division table structure with sample data
div_id fab_start_date required_date Weight_sum requires_painting NoOfPieces

~
~

15017 02-Jan-09 27-Jan-09 55304 FALSE 13062

15012 05-Jan-09 06-Jul-09 44720 FALSE 6776

15638 05-Jan-09 18-Dec-08 6003 FALSE 1270

17897 06-Jan-09 08-Jan-09 724 TRUE 2

16092 06-Jan-09 13-Oct-08 17806 FALSE 1009

15616 06-Jan-09 10-Oct-08 144504 TRUE 40572

17019 07-Jan-09 26-Jan-09 6910 FALSE 138

17018 07-Jan-09 26-Jan-09 52971 FALSE 6711

13970 07-Jan-09 17-Jan-09 32961 FALSE 15330

16532 07-Jan-09 01-Jan-09 94549 FALSE 26730

16527 07-Jan-09 13-Jan-09 66636 FALSE 8754

16521 07-Jan-09 09-Jan-09 27524 FALSE 3062

16652 07-Jan-09 11-Feb-09 19003 FALSE 6513

16519 08-Jan-09 14-Nov-08 37701 FALSE 5942

13769 08-Jan-09 08-Aug-08 52098 FALSE 13368

17710 08-Jan-09 28-Jan-09 5203 TRUE 182

16518 12-Jan-09 08-Jan-09 24270 FALSE 5019

14395 12-Jan-09 30-Jan-09 28645 FALSE 8312

17653 12-Jan-09 26-Jan-09 15878 FALSE 978

17017 12-Jan-09 26-Jan-09 15111 TRUE 3354

17016 12-Jan-09 26-Jan-09 42775 FALSE 5388

16687 12-Jan-09 26-Jan-09 68661 FALSE 17162

16340 12-Jan-09 09-Feb-09 4285 FALSE 552

14394 12-Jan-09 30-Jan-09 28645 FALSE 8312

13974 12-Jan-09 18-Jan-09 45166 FALSE 16500

Brief explanations on the meaning of each data-field are presented in the

following:

div_id: The id of the division.

fab_start_date: The scheduled date in which division (i.e., all pieces

within the division) is sent to the shop.

required_date: The date in which fabrication of the division

(i.e.,fabrication of all pieces within the division) is required to be

complete.

weight_sum: Total weight of the pieces within a division.

requires_painting: Determines where pieces within division require

painting (True) or not (False).

NoOfPieces: Total number of pieces within the division.

247

B.3.3. ReportDivision Table

Table B.3 presents ReportDivision data-table used in the program for collecting

the simulation results during the model runs. The collected data in the data-table

were used for testing the model performance as presented in Section 2.5.3 of

Chapter 2.

Table B.3. Sample output reports to the ReportDivision data-table
div_id ReportTime Start Finish Delay WeightedDelay

15452 10-Apr-09 12:09:10AM 20-Jan-09 20-Jan-09 -68 -64464

15767 10-Apr-09 12:12:55AM 21-Jan-09 26-Jan-09 -103 -2265897

15492 10-Apr-09 12:13:06AM 26-Jan-09 27-Jan-09 -50 -84150

15490 10-Apr-09 12:13:08AM 26-Jan-09 27-Jan-09 -50 -584750

15759 10-Apr-09 12:16:27AM 27-Jan-09 04-Feb-09 -128 -5863552

15763 10-Apr-09 12:21:41AM 03-Feb-09 12-Feb-09 -122 -5034574

16400 10-Apr-09 12:24:34AM 12-Feb-09 18-Feb-09 0 0

15391 10-Apr-09 12:27:55AM 17-Feb-09 23-Feb-09 0 0

14914 10-Apr-09 12:30:22AM 23-Feb-09 02-Mar-09 -348 -9961152

17431 10-Apr-09 12:31:09AM 04-Mar-09 04-Mar-09 -107 0

15564 10-Apr-09 12:31:18AM 28-Feb-09 05-Mar-09 -108 -4641732

16401 10-Apr-09 12:31:19AM 04-Mar-09 05-Mar-09 0 0

16409 10-Apr-09 12:33:36AM 04-Mar-09 10-Mar-09 0 0

16165 10-Apr-09 12:34:10AM 09-Mar-09 11-Mar-09 -1 -7034

16878 10-Apr-09 1:01:21 AM 10-Mar-09 08-Apr-09 -12 -1694892

15080 10-Apr-09 1:07:21 AM 07-Apr-09 16-Apr-09 0 0

15081 10-Apr-09 1:28:20 AM 23-Apr-09 05-May-09 0 0

16402 10-Apr-09 1:32:45 AM 15-Apr-09 08-May-09 0 0

15082 10-Apr-09 1:54:16 AM 13-May-09 25-May-09 0 0

16403 10-Apr-09 1:54:23 AM 05-May-09 25-May-09 0 0

16404 10-Apr-09 1:59:42 AM 23-May-09 02-Jun-09 0 0

16002 10-Apr-09 1:59:47 AM 01-Jun-09 02-Jun-09 -15 0

15996 10-Apr-09 2:08:01 AM 01-Jun-09 12-Jun-09 -36 -1692108

18029 10-Apr-09 2:08:03 AM 10-Jun-09 12-Jun-09 -64 -268800

Brief explanations on the meaning of each data-field are presented in the

following:

div_id: The id of the division.

ReportTime: The time and date that the division report is stored in the

database.

Start: The simulated start date of the division.

Finish: The simulated finish date of the division.

Delay: The achieved delay for completing the division in days.

248

WeightedDelay: The achieved delay for completing the division in day-

kilogram.

B.3.4. ReportSchedule Table

Table B.4 presents ReportSchedule data-table used in the model for collecting the

duration of the simulation runs. The collected data in the data-table were used for

testing the simulation model calculation time as presented in Section 2.5.3 of

Chapter 2.

Table B.4. ReportSchdeule data table with Sample output data from the model
ReportTime SimDuration

13-Feb-09 277.52

20-Feb-09 31.13

21-Feb-09 47.33

03-Apr-09 89.00

07-Apr-09 157.95

08-Apr-09 88.12

08-Apr-09 66.88

08-Apr-09 148.30

08-Apr-09 93.02

09-Apr-09 92.47

09-Apr-09 90.78

10-Apr-09 119.00

10-Apr-09 82.57

10-Apr-09 79.72

11-Apr-09 68.33

12-Apr-09 72.52

12-Apr-09 75.60

12-Apr-09 80.93

12-Apr-09 72.18

12-Apr-09 78.73

13-Apr-09 75.37

13-Apr-09 77.28

13-Apr-09 72.53

13-Apr-09 143.57

13-Apr-09 68.32

Brief explanations on the meaning of each data-field are presented in the

following:

ReportTime: The time and date that the division report is stored in the

database.

SimDuration: The duration of the run of simulation in minute.

249

B.3.5. RFIDPieceRelation Table

Table B.5 presents RFIDPieceRelation data-table used in the model for relating

RFID tags to pieces which they are attached to. This data-table added to the

model for testing the expandability of the model, as presented in Section 2.5.4 in

Chapter 2.

Table B.5. RFIDPieceRelation table with sample data
RFID div_id piece_ID

1_2137_16782_19741_394483 16782 394483
1_2137_16782_19741_395342 16782 395342
53_2111_13563_19859_253092 13563 253092
53_2111_13563_19859_280228 13563 280228
53_2396_17875_19656_467591 17875 467591
53_2397_17876_19657_464192 17876 464192
53_2397_17876_19657_467592 17876 467592
130_2352_17144_18642_405453 17144 405453
130_2383_17753_19429_433492 17753 433492
130_2383_17753_19429_433493 17753 433493
131_2360_17439_18994_396803 17439 396803
131_2360_17440_18995_396786 17440 396786
131_2360_17441_18996_396839 17441 396839
151_1898_17581_19176_477740 17581 477740
151_1948_16653_19765_458096 16653 458096
151_1948_16653_19765_458787 16653 458787
151_1948_17394_18942_443855 17394 443855
155_2004_16731_19654_410775 16731 410775
155_2004_16731_19654_410776 16731 410776
160_1911_17870_19643_469920 17870 469920
160_1911_17870_19643_469924 17870 469924
191_2124_13028_13934_386544 13028 386544
191_2124_13028_13934_386545 13028 386545
191_2124_13028_13934_386546 13028 386546
191_2124_13028_13934_386547 13028 386547

Brief explanations on the meaning of each data-field are presented in the

following:

RFID: The id assigned to the RFID tag.

div_id: The id of the division which piece is belonged to.

piece_id: The piece id.

250

B.3.6. RFIDRead Table

Table B.6 presents RFIDRead data-table which contains the date and the time of

every RFID tag read in the shop. This table is updated based on the data sent by

RFID reader. Since each tag record is read at the completion of a fabrication

operation, the model uses these records for locating the location and progress of

the pieces within the fabrication shop.

Table B.6. RFIDRead table with sample data
RFID ReadTime

1_2137_16782_19741_394483 08-Feb-09 7:44:21 PM

191_2124_13028_13934_386513 08-Feb-09 7:55:35 PM

191_2124_13028_13934_386513 08-Feb-09 7:59:02 PM

151_1898_17581_19176_477740 08-Feb-09 7:59:11 PM

130_2352_17144_18642_405453 08-Feb-09 7:59:48 PM

130_2383_17753_19429_433492 08-Feb-09 8:08:47 PM

130_2383_17753_19429_433493 08-Feb-09 8:10:30 PM

131_2360_17439_18994_396803 08-Feb-09 8:53:19 PM

1_2137_16782_19741_394483 08-Feb-09 9:11:11 PM

131_2360_17441_18996_396839 08-Feb-09 10:15:27 PM

151_1898_17581_19176_477740 08-Feb-09 10:23:48 PM

1_2137_16782_19741_394483 08-Feb-09 11:13:03 PM

151_1948_16653_19765_458787 08-Feb-09 11:15:32 PM

151_1948_17394_18942_443855 08-Feb-09 11:43:50 PM

155_2004_16731_19654_410775 08-Feb-09 11:43:58 PM

155_2004_16731_19654_410776 09-Feb-09 12:06:35 AM

160_1911_17870_19643_469920 09-Feb-09 12:06:39 AM

160_1911_17870_19643_469924 13-Feb-09 12:01:22 PM

191_2124_13028_13934_386544 13-Feb-09 12:13:14 PM

151_1898_17581_19176_477740 13-Feb-09 12:14:41 PM

131_2360_17440_18995_396786 13-Feb-09 12:14:58 PM

131_2360_17441_18996_396839 13-Feb-09 12:30:43 PM

191_2124_13028_13934_386513 13-Feb-09 12:50:24 PM

151_1948_16653_19765_458787 13-Feb-09 12:57:59 PM

151_1948_17394_18942_443855 13-Feb-09 1:05:55 PM

Brief explanations on the meaning of each data-field are presented in the

following:

RFID: The id assigned to the RFID tag.

ReadTime: The date and the time that RFID has been read in the shop.

251

Reference

Rumbaugh, J., Jacobson, I. and Booch, G. (1999) The unified modeling language

reference manual. Addison Wesley Longman Inc. One Jacob Way, Reading,

Massachusetts, 01867, USA.

Appendix C

Programming Details of the Simulation Model Used for Working

Hours Dynamics

AnyLogic 6.4 was used for implementing all SD and hybrid SD

developed for testing and analyzing working hour dynamics in Chapter 3. Data

tables in MS Access database were used for providing the required data

the links to the collaborative company’s database for the experimental case.

C.1. AnyLogic Model

The developed AnyLogi

model, supporting classes and simulation setting (Figure C.1).

Figure C.1. Structure of the AnyLogic

Brief explanation on first three parts comes in following. Simulation setting part

of the model is a standard part of every AnyLogic model and is explained in the

AnyLogic user manuals accessible at:

C.1. 1. SD Model
252

Programming Details of the Simulation Model Used for Working

AnyLogic 6.4 was used for implementing all SD and hybrid SD-DES models

nd analyzing working hour dynamics in Chapter 3. Data

tables in MS Access database were used for providing the required data-tables and

the links to the collaborative company’s database for the experimental case.

The developed AnyLogic model consists of four main parts; SD model, DES

model, supporting classes and simulation setting (Figure C.1).

Figure C.1. Structure of the AnyLogic

Brief explanation on first three parts comes in following. Simulation setting part

standard part of every AnyLogic model and is explained in the

AnyLogic user manuals accessible at: www.xjtek.com.

Programming Details of the Simulation Model Used for Working

DES models

nd analyzing working hour dynamics in Chapter 3. Data-

tables and

the links to the collaborative company’s database for the experimental case.

c model consists of four main parts; SD model, DES

Brief explanation on first three parts comes in following. Simulation setting part

standard part of every AnyLogic model and is explained in the

The developed SD model in AnyLogic consists of four main sub

explained in Section 3.2 of Chapter 3, including Physical Energy Dynamics,

Mental Resource Dynamics, Hour in Day Dynamics and Overtime Fatigue

Dynamics (Figure C.2).

Figure C.2. SD model of working hours dynamics

253

The developed SD model in AnyLogic consists of four main sub-models, as

ction 3.2 of Chapter 3, including Physical Energy Dynamics,

Mental Resource Dynamics, Hour in Day Dynamics and Overtime Fatigue

Figure C.2. SD model of working hours dynamics

models, as

ction 3.2 of Chapter 3, including Physical Energy Dynamics,

Mental Resource Dynamics, Hour in Day Dynamics and Overtime Fatigue

254

Equations, explained in Chapter 3, are added to the model using different model

elements. In AnyLogic stock variables are shown in square (), flows are shown

in valve shape (), auxiliary variables are shown in circles () and model

parameters are represented by circle with a black triangle on its top-right side (

). The related variables are linked by arrows. Function elements () were used

in the model when some equation parameters are read from tables or there are

multi-conditional equations linking the model variables (e.g.,

OvertimeWorkingIndexFunction calculates overtime productivity ratio as

explained in Section 3.2.3 of Chapter 3, HourInTheDayReworkFunction captures

reliability changes based on changes in the hour of the day as explained in Section

3.2.3 of Chapter 3, and HourInTheDayProductivityFunction which captures

productivity ratio changes based on the changes in the hour of the day as

explained in Section 3.2.3 of Chapter 3). In addition to that, functions were used

for adding more capabilities to the model. HourOfTheDay and

WorkHourSchedule are two functions which are used respectively for translating

the simulation logical hours to the actual daily hours and determining the status of

the working hour (i.e., working or non-working hours). The codes used inside

these functions (in Java) are as in below:

HourOfTheDay Function:

double HourValue = ((TimeNow/60)%TotalWorkingHoursADay);
double HourInDay=0;
if (HourValue>=0 & HourValue<=2) { HourInDay = HourValue+2.5;}
else if (HourValue>2 & HourValue<=4) { HourInDay = HourValue+2.75;}
else if (HourValue>4 & HourValue<=6) { HourInDay = HourValue+3.25;}
else if (HourValue>6 & HourValue<=8) { HourInDay = HourValue+3.5;}
else if (HourValue>8 & HourValue<=9.25) { HourInDay = HourValue+3.75;}
else if (HourValue>9.25 & HourValue<=11.25) { HourInDay = HourValue+4.25;}
else if (HourValue>11.25 & HourValue<=13.25) { HourInDay = HourValue+4.5;}
else if (HourValue>13.25 & HourValue<=15.25) { HourInDay = HourValue+5;}

255

else if (HourValue>15.25 & HourValue<=17.25) { HourInDay = HourValue+5.25;}
else if (HourValue>17.25 & HourValue<=18) { HourInDay = HourValue+5.5;}
return (HourInDay%24);

WorkHourSchedule Function:

double HourValue = ((TimeNow/60)%TotalWorkingHoursADay);
double HourInDay=0;
if (HourValue>=0 & HourValue<=2) { HourInDay = HourValue+2.5;}
else if (HourValue>2 & HourValue<=4) { HourInDay = HourValue+2.75;}
else if (HourValue>4 & HourValue<=6) { HourInDay = HourValue+3.25;}
else if (HourValue>6 & HourValue<=8) { HourInDay = HourValue+3.5;}
else if (HourValue>8 & HourValue<=9.25) { HourInDay = HourValue+3.75;}
else if (HourValue>9.25 & HourValue<=11.25) { HourInDay = HourValue+4.25;}
else if (HourValue>11.25 & HourValue<=13.25) { HourInDay = HourValue+4.5;}
else if (HourValue>13.25 & HourValue<=15.25) { HourInDay = HourValue+5;}
else if (HourValue>15.25 & HourValue<=17.25) { HourInDay = HourValue+5.25;}
else if (HourValue>17.25 & HourValue<=18) { HourInDay = HourValue+5.5;}

return (HourInDay%24);

Finally, variables inside the dashed rectangle, staying at the right side of Figure

C.2, are interface variables which handle hybrid interactions between SD and

DES models (as explained in Section 3.5 and Figure 3-10 in Chapter 3).

C.1. 2. DES Model

Figure C.3 presents a screen shot of the DES model developed for the structural

steel fabrication shop case study explained in Section 3.6 of Chapter 3. Unlike the

SD model structure, the DES model has a specific structure to the project.

Figure C.3. DES model of the structural steel fabrication shop

The main structure of the DES model has been devel

DES model elements provided by AnyLogic, including entity creator for

generating the pieces(

delays which represent inspection stations (

crews () and conditional branches for direction the flow of pieces base of

different conditions(

other by arrows beside every service element (eight sets of interface variables in

total). One set of variables

different parameters of the working station (represented by service element). The

direction of the arrows shows the direction of data flow (i.e., the variable at the

tail updates the variable at the head

256

Figure C.3. DES model of the structural steel fabrication shop

The main structure of the DES model has been developed by relating different

DES model elements provided by AnyLogic, including entity creator for

), services which represent working stations(

delays which represent inspection stations (), resources which represent

conditional branches for direction the flow of pieces base of

). There are two sets of interface variables linked to each

other by arrows beside every service element (eight sets of interface variables in

total). One set of variables come from SD model and the other sets is linked to

different parameters of the working station (represented by service element). The

direction of the arrows shows the direction of data flow (i.e., the variable at the

tail updates the variable at the head of the arrow).

Figure C.3. DES model of the structural steel fabrication shop

oped by relating different

DES model elements provided by AnyLogic, including entity creator for

), services which represent working stations(),

), resources which represent

conditional branches for direction the flow of pieces base of

). There are two sets of interface variables linked to each

other by arrows beside every service element (eight sets of interface variables in

come from SD model and the other sets is linked to

different parameters of the working station (represented by service element). The

direction of the arrows shows the direction of data flow (i.e., the variable at the

257

A stock and flow mechanism, placed beside every station, has been used for

continuously tracking the average level of the productivity in the shop. Finally,

two auxiliary functions have been used in the model; HourOfTheDay and

PieceCount. HourOfTheDay is a duplicate function from SD model. PieceCount

function uses the database functions (presented in MyDataBase supporting class

in Section C.1.3) to get linked to the database and sends the pieces to the shop on

daily basis. The codes used inside this function (in Java) are as in below:

PieceCount:

CountedPiecesOfTheDay=0;
if (!SetCalendar){
CurrentDate.set(2009,0,5);
StartDate.set(2009,0,5);
FinishDate.set(2009,3,5);
SetCalendar=true;
}
MyDataBase myDB = new
MyDataBase(this,CurrentDate.getTime(),StartDate.getTime(),FinishDate.getTime());
if (CurrentDate.before(FinishDate))
{
 myDB.PieceOfTheCurDay(PieceListOfDay,ComponentListOfDay);
}
System.out.println(CurrentDate.getTime() + " " + ActualWork + " " + AvgProductivity+"
 " + TotalPieceSentToFab+" " + TotalPieceFabricated);

//Increase the the day
int DayNumToIncrease=1;
if (CurrentDate.getTime().getDay()==4)
{
 if (SetOvertime ==0)
 {
 DayNumToIncrease=4;
 } else {
 DayNumToIncrease=1;
 }
} else if (CurrentDate.getTime().getDay()==5){
 if (SetOvertime <=1)
 {
 DayNumToIncrease=3;
 } else {
 DayNumToIncrease=1;
 }
} else if (CurrentDate.getTime().getDay()==6){
 DayNumToIncrease=2;
} else {
 DayNumToIncrease=1;
}
//Increase the date and receive any scheduled pieces
CurrentDate.add(Calendar.DAY_OF_MONTH,1);
for (int i=1; i<DayNumToIncrease; i++)
{
 if (CurrentDate.before(FinishDate))
 {
 MyDataBase DayOffDB = new
MyDataBase(this,CurrentDate.getTime(),StartDate.getTime(),FinishDate.getTime());

258

 DayOffDB.PieceOfTheCurDay(PieceListOfDay,ComponentListOfDay);
 CountedPiecesOfTheDay = PieceListOfDay.size();
 }
 CurrentDate.add(Calendar.DAY_OF_MONTH,1);
}
//Calculate Required Overtime Based on the progress just on weekly basis
if (CurrentDate.getTime().getDay()==1){
ScheduledWork=myDB.ScheduledWork();
DaysBehindSchedule=(int)max(((ScheduledWork-
ActualWork)/TotalWorkersAShift/TotalWorkingHoursADay),0);
}
CurDate=format(CurrentDate.getTime());
//Report the finished pieces
//myDB.ReportCompletedPieces(PieceListFinish, ModelName);
//myDB.ReportCompletedPieces(ComponentListOfDay, ModelName);

CountedPiecesOfTheDay = PieceListOfDay.size();
PieceListFinish.clear();
ComponentListOfDay.clear();
return CountedPiecesOfTheDay;

C.1.3. Supporting Classes

Two supporting classes (in Java) are added to the model; MyPiece and

MyDataBase. MyPiece class provides the set of attributes required for the entities

(pieces) and MyDataBase class provides the set of attributes and functions

required for communicating with the collaborative company’s database. Codes

used in every class are as in below:

MyPiece Class:

* MyPiece
 */
public class MyPiece extends Entity{

 /**
 * Default constructor
 */
 public MyPiece(){
 }

 // Project ID
 public String ProjID;

 // Job ID
 public String JobID;

 // Division ID
 public String DivID;

 // Sub Division ID

259

 public String SubID;

 // Piece ID
 public String PieceID;

 // Piece Count
 public int Count;

 // Piece Quantity
 public int Quantity;

 // Piece Weight
 public double PieceWeight;

 // Piece Man Hour per Ton
 public double PieceMhTon;

 // Piece Man Hour per Ton
 public Boolean PaintIsRequired;

 // Piece Cut Duration
 public double PieceCutDur;

 // Piece Fit Duration
 public double PieceFitDur;

 // Piece Fit Inspection Duration
 public double PieceFitInspDur;

 // Piece Welding Duration
 public double PieceWeldDur;

 // Piece Welding Inspection Duration
 public double PieceWeldInspDur;

 // Piece Painting Duration
 public double PiecePaintDur;

 // Division Weight
 public double DivWeight;

 // Fab Finish Date
 public Date FabFinishDate ;

 @Override
 public String toString() {
 return super.toString();
 }

}

MyDataBase Class:

import com.xj.anylogic.engine.connectivity.*;
/**
 * MyDataBase
 */

public class MyDataBase {

 Date CurrentDate ;
 Date StartDate ;
 Date FinishDate ;
 int ComponentsCount=0;
 int PiecesCount=0;
 Presentable Owner;

260

// MyPiece readPiece;
 /**
 * Default constructor
 */
 public MyDataBase(Presentable myOwner, Date CurDate, Date StrDate, Date FnshDate)
 {
 Owner=myOwner;
 CurrentDate=CurDate;
 StartDate=StrDate;
 FinishDate=FnshDate;
 }

 public void PieceOfTheCurDay(List<MyPiece> PiecesOfTheDay, List<MyPiece> ComponentsOfTheDay)
 {
 // Databases
 Database PieceDataBase = new Database(Owner, "PieceDataBase",
"D:\\User\\Amin\\PhdCourse\\03_Project\\RA_DrLeeGroup\\DrLee_Modeling\\17_PilotModel_FatigueInFabS
hop\\Pilot_FatigueInShop.mdb");
 String SelectStatement = "SELECT Piece.proj_id, Piece.job_id, Piece.div_id, Piece.Sub_ID,
Piece.piece_id, Piece.quantity, Piece.WeightofPiece, Piece.fab_mhrs,
[Piece].[fab_mhrs]*[WeightofPiece]/1000*60 AS Piece_Fab_Minute, Division.requires_painting,
Division.WeightSum From Piece INNER JOIN Division ON (Piece.proj_id = Division.proj_id) AND
(Piece.job_id = Division.job_id) AND (Piece.div_id = Division.div_id) AND (Piece.Sub_ID = Division.sub_id)
Where (Piece.weight>0 AND Piece.fab_start_date =#" + (CurrentDate.getMonth()+1)
+"/"+CurrentDate.getDate() +"/"+(CurrentDate.getYear()+1900)+"#)";
 ResultSet rs= PieceDataBase.getResultSet(SelectStatement);
 int PieceOrComponent=1;
 MyPiece CurPiece ;
 int Count ;
 double PaintDurFactor =1;//it is used in other durations than paint as a factor
 int PaintRequired=1;//it is used just in Paint durations as a factor
 while (rs.next()) // this will step through our data row-by-row
 {
 /* the next line will get the first column in our current row's ResultSet
 as a String (getString(columnNumber)) and output it to the screen */

 Count = 0;//Set the count as 0 for the current read piece type
 // Project ID
 String ProjID= rs.getString(1);

 // Job ID
 String JobID= rs.getString(2);

 // Division ID
 String DivID= rs.getString(3);

 // Sub Division ID
 String SubID= rs.getString(4);

 // Piece ID
 String PieceID=rs.getString(5);

 // Piece Quantity
 int Quantity=rs.getInt(6);

 // Piece Weight
 double PieceWeight=rs.getDouble(7);

 // Piece Man Hour per Ton
 double PieceMhTon=rs.getDouble(8);

 // Piece Total Duration in Minutes
 double PieceDur=Math.min(rs.getDouble(9)/2,1000);

 //Paint Required
 Boolean PaintIsRequired = rs.getBoolean(10);

 //Division Weight
 double DivWeight = rs.getDouble(11);

261

 if (PaintIsRequired)//If paint is required: paint duration factor is 1
 {
 PaintDurFactor =1 ;
 PaintRequired=1;
 }
 else
 {
 PaintDurFactor =1.1;
 PaintRequired=0;
 }
 while (Quantity>Count)//Quantity Loop: Loop as long as all piece instances of the same type are
created
 {
 CurPiece = new MyPiece();
 Count++;

 // Project ID
 CurPiece.ProjID= ProjID;

 // Job ID
 CurPiece.JobID= JobID;

 // Division ID
 CurPiece.DivID= DivID;

 // Sub Division ID
 CurPiece.SubID= SubID;

 // Piece ID
 CurPiece.PieceID=PieceID;

 // Piece Count
 CurPiece.Count=Count;

 // Piece Quantity
 CurPiece.Quantity=Quantity;

 // Piece Weight
 CurPiece.PieceWeight=PieceWeight;

 // Piece Man Hour per Ton
 CurPiece.PieceMhTon=PieceMhTon;

 // Piece Man Hour per Ton
 CurPiece.PaintIsRequired=PaintIsRequired;

 if (PieceWeight<=5)//Piece just will be drilled, no fit no weld is required
 {
 PieceOrComponent=2;
 ComponentsCount++;
 CurPiece.PieceCutDur=PieceDur* PaintDurFactor;
 CurPiece.FabFinishDate=CurrentDate;

 }else
 {
 PieceOrComponent=1;
 PiecesCount++;
 // Piece Cut Duration
 CurPiece.PieceCutDur=PieceDur* 0.01 * PaintDurFactor;

 // Piece Fit Duration
 CurPiece.PieceFitDur=PieceDur* 0.4 * PaintDurFactor;

 // Piece Fit Inspection Duration
 CurPiece.PieceFitInspDur=PieceDur* 0.045 * PaintDurFactor;

 // Piece Welding Duration
 CurPiece.PieceWeldDur=PieceDur* 0.4 * PaintDurFactor;

 // Piece Welding Inspection Duration

262

 CurPiece.PieceWeldInspDur=PieceDur* 0.045 * PaintDurFactor;
 }
 // Piece Painting Duration
 CurPiece.PiecePaintDur=PieceDur* 0.1 * PaintRequired;

 //Division Weight
 CurPiece.DivWeight=DivWeight;

 if (PieceOrComponent==1)
 {
 PiecesOfTheDay.add(CurPiece);//Add the read piece to the list
 } else
 {
 ComponentsOfTheDay.add(CurPiece);//Add the read piece to the list
 }

 }//Quantity Loop
 }

 PieceDataBase.destroy();
 }

 public double ScheduledWork()
 {
 // From Databases

 Database PieceDataBase = new Database(Owner, "PieceDataBase",
"D:\\User\\Amin\\PhdCourse\\03_Project\\RA_DrLeeGroup\\DrLee_Modeling\\17_PilotModel_FatigueInFabS
hop\\Pilot_FatigueInShop.mdb");
 String SelectStatement = "SELECT
Sum([Quantity]*[WeightofPiece]/1000*[Piece].[fab_mhrs]) AS TotalScheduledWork FROM Piece INNER
JOIN Division ON (Piece.Sub_ID = Division.sub_id) AND (Piece.div_id = Division.div_id) AND
(Piece.job_id = Division.job_id) AND (Piece.proj_id = Division.proj_id) Where
(((Division.required_date)>=#" + (StartDate.getMonth()+1) +"/"+StartDate.getDate()
+"/"+(StartDate.getYear()+1900)+"#)And ((Division.required_date)<=#"+ (CurrentDate.getMonth()+1)
+"/"+CurrentDate.getDate() +"/"+(CurrentDate.getYear()+1900)+"#)AND ((Piece.fab_start_date)>=#" +
(StartDate.getMonth()+1) +"/"+StartDate.getDate() +"/"+(StartDate.getYear()+1900)+"#) And
((Piece.fab_start_date)<=#"+ (FinishDate.getMonth()+1) +"/"+FinishDate.getDate()
+"/"+(FinishDate.getYear()+1900)+"#)AND Piece.WeightofPiece>1)";
 String SScheduledWorkManHours= PieceDataBase.getValue(SelectStatement);
 double ScheduledWorkManHours= 0;
 if
(SScheduledWorkManHours!=null){ScheduledWorkManHours=Double.parseDouble(SScheduledWorkManHo
urs);}
 PieceDataBase.destroy();
 return ScheduledWorkManHours;
 }

 public void ReportCompletedPieces(List<MyPiece> PiecesFinished, String MdlType)
 {
 // To Databases
 if (!PiecesFinished.isEmpty())
 {
 Database PieceDataBase = new Database(Owner, "PieceDataBase",
"D:\\User\\Amin\\PhdCourse\\03_Project\\RA_DrLeeGroup\\DrLee_Modeling\\17_PilotModel_FatigueInFabS
hop\\Pilot_FatigueInShop.mdb");
 MyPiece FinPiece;
 Calendar Cal= Calendar.getInstance();
 for (int i=0; i<PiecesFinished.size(); i++)
 {
 FinPiece=new MyPiece();
 FinPiece=PiecesFinished.get(i);
 String InsertStatement = "INSERT INTO PieceFinishReport
(ModelType, RunDate, proj_id, job_id, div_id, Sub_ID, piece_id,
fab_Finsh_date,PieceWeight,ManHourPerTon) SELECT '"+ MdlType + "' AS Model, #" +
(Cal.getTime().getMonth()+1) +"/"+Cal.getTime().getDate() +"/"+(Cal.getTime().getYear()+1900)+"# AS
RunDate, " + FinPiece.ProjID + " AS Proj," + FinPiece.JobID + " AS Job," + FinPiece.DivID + " AS Div, " +
FinPiece.SubID + " AS Sub," + FinPiece.PieceID + " AS Piece, #" + (FinPiece.FabFinishDate.getMonth()+1)
+"/"+ FinPiece.FabFinishDate.getDate() +"/"+(FinPiece.FabFinishDate.getYear()+1900)+"# AS Finish, " +
FinPiece.PieceWeight + " As Weight, " + FinPiece.PieceMhTon + " As ManHour";

263

 PieceDataBase.modify(InsertStatement);
 }
 PieceDataBase.destroy();
 }
 }

 public void ReportResult(String MdlType, String RunTime, double ProductivityRate, String Result)
 {
 // To Databases
 Database PieceDataBase = new Database(Owner, "PieceDataBase",
"D:\\User\\Amin\\PhdCourse\\03_Project\\RA_DrLeeGroup\\DrLee_Modeling\\17_PilotModel_FatigueInFabS
hop\\Pilot_FatigueInShop.mdb");
 String InsertStatement = "INSERT INTO ProductivityResult (ModelType,
RunTime, ProductivityRate, Result) SELECT '"+ MdlType + "' AS Model, '" + RunTime+ "' As RunTime, " +
ProductivityRate + " As ProductivityRate, '"+ Result + "' AS Result";
 PieceDataBase.modify(InsertStatement);
 PieceDataBase.destroy();
 }

 @Override
 public String toString() {
 return super.toString();
 }

}

C.2. Data-tables

Two input data-tables in the model are Piece and Division data-tables. These two

tables have similar structure to the Piece and Division tables explained in

Appendix B and we prevent the duplication here. In addition to the input data-

tables, two output data-tables were also used for collecting the model information

during the simulation runs; PieceFinishReport and ProductivityResult (Some

other outputs of the model are arranged to be read from AnyLogic console as

well).

C.2.1. PieceFinishReport Table

Table C.1 presents PieceFinishReport data-table which collects the simulated

fabrication finish time for pieces. Some sample data collected from the model

runs are shown in the table as well.

264

Table C.1. PieceFinishReport table structure with sample data
ModelType RunDate div_id piece_id fab_Finsh_date

~
 ~

FatigueBase 23/06/2010 11627 218662 10/02/2009

FatigueBase 23/06/2010 11627 218662 10/02/2009

FatigueBase 23/06/2010 11627 218663 10/02/2009

FatigueBase 23/06/2010 11627 218769 10/02/2009

FatigueBase 23/06/2010 11783 219603 27/01/2009

FatigueBase 23/06/2010 11783 219604 27/01/2009

FatigueBase 23/06/2010 11783 219604 27/01/2009

FatigueBase 23/06/2010 11783 219604 27/01/2009

FatigueBase 23/06/2010 11783 219604 27/01/2009

FatigueBase 23/06/2010 11783 219604 27/01/2009

FatigueBase 23/06/2010 11783 219604 27/01/2009

FatigueBase 23/06/2010 11783 219604 27/01/2009

FatigueBase 23/06/2010 11783 219607 27/01/2009

FatigueBase 23/06/2010 11783 219607 27/01/2009

FatigueBase 23/06/2010 11783 219607 27/01/2009

FatigueBase 23/06/2010 11783 219607 27/01/2009

FatigueBase 23/06/2010 11783 219607 29/01/2009

FatigueBase 23/06/2010 11783 219608 27/01/2009

FatigueBase 23/06/2010 11627 230058 10/02/2009

FatigueBase 23/06/2010 11627 230059 10/02/2009

FatigueBase 23/06/2010 11627 230060 10/02/2009

FatigueBase 23/06/2010 11627 230061 10/02/2009

FatigueBase 23/06/2010 11627 230062 10/02/2009

FatigueBase 23/06/2010 11627 230063 10/02/2009

FatigueBase 23/06/2010 11627 230064 10/02/2009

Brief explanations on the meaning of each data-field are presented in the

following:

ModelType: The name and the type of working hour alternative captured

in the model.

RunDate: The date in which the model was run.

div_id: The id of the division which piece is belonged to.

piece_id: The piece id.

fab_Finsh_date: The simulated finish date of the piece

C.2.2. ProductivityResult Table

Table C.2 presents ProductivityResult data-table which collects the final results

achieved from different models runs.

265

Table C.2. ProductivityResult table structure with sample data
ModelType Result

1h1
RunTime:Wed Jun 30 08:03:27 MDT 2010 Fabrication Finished on:Tue Apr 07
07:39:07 MDT 2009Tue Apr 07 07:39:07 MDT 2009Current Time is:
58215.56312391517Average Productivity is: 0.8983742190452829

1h2
RunTime:Wed Jun 30 08:36:53 MDT 2010 Fabrication Finished on:Wed Apr 08
08:11:46 MDT 2009Wed Apr 08 08:11:46 MDT 2009Current Time is:
58351.40962998669Average Productivity is: 0.8984339262707333

1h3
RunTime:Wed Jun 30 09:14:09 MDT 2010 Fabrication Finished on:Tue Apr 07
08:49:35 MDT 2009Tue Apr 07 08:49:35 MDT 2009Current Time is:
58310.53125846892Average Productivity is: 0.8944369838542933

1hM1
RunTime:Wed Jun 30 10:19:55 MDT 2010 Fabrication Finished on:Tue Apr 07
09:55:38 MDT 2009Tue Apr 07 09:55:38 MDT 2009Current Time is:
58058.80074378561Average Productivity is: 0.9148512185669766

1hM2
RunTime:Wed Jun 30 11:01:18 MDT 2010 Fabrication Finished on:Tue Apr 07
10:37:02 MDT 2009Tue Apr 07 10:37:02 MDT 2009Current Time is:
58226.14056019378Average Productivity is: 0.9136835914200641

1hM3
RunTime:Wed Jun 30 14:40:48 MDT 2010 Fabrication Finished on:Wed Apr 08
14:15:11 MDT 2009Wed Apr 08 14:15:11 MDT 2009Current Time is:
58480.50315175021Average Productivity is: 0.8938040808996763

1h1
RunTime:Wed Jun 30 08:03:27 MDT 2010 Fabrication Finished on:Tue Apr 07
07:39:07 MDT 2009Tue Apr 07 07:39:07 MDT 2009Current Time is:
58215.56312391517Average Productivity is: 0.8983742190452829

Brief explanations on the meaning of each data-field are presented in the

following:

ModelType: The name and the type of working hour alternative captured

in the model.

Result: Provides aggregative information from the model run including

run time, total fabrication finish time, total logical time spent and average

productivity achieved in the model.

Appendix D

Programming Details of the Simulation

Construction Workers Evolution

Anylogic 6.4 was used for implementing all SD and hybrid SD

developed for testing and analyzing Simulation model of construction workers

evolution dynamics in Chapter 4. Data

for providing the links to the collaborative company’s database for the

experimental case. The developed AnyLogic model consists of four main parts;

SD models, DES model, supporting classes and simulation setting (Figure D.1).

Figure D.1.

Since the experiments run

structural steel fabrication shop, the physical details of the fabrication shop

captured in the DES model and

the link to the company’s database and customizing the

266

Programming Details of the Simulation Model Used for

Construction Workers Evolution

Anylogic 6.4 was used for implementing all SD and hybrid SD-DES models

developed for testing and analyzing Simulation model of construction workers

evolution dynamics in Chapter 4. Data-tables in MS Access database were used

for providing the links to the collaborative company’s database for the

experimental case. The developed AnyLogic model consists of four main parts;

SD models, DES model, supporting classes and simulation setting (Figure D.1).

Figure D.1. Structure of the AnyLogic

run in Chapter 3 and Chapter 4 have been done on the same

structural steel fabrication shop, the physical details of the fabrication shop

captured in the DES model and the supporting classes developed for facilitating

the link to the company’s database and customizing the entity attributes in the

Model Used for

DES models

developed for testing and analyzing Simulation model of construction workers

abase were used

for providing the links to the collaborative company’s database for the

experimental case. The developed AnyLogic model consists of four main parts;

SD models, DES model, supporting classes and simulation setting (Figure D.1).

in Chapter 3 and Chapter 4 have been done on the same

structural steel fabrication shop, the physical details of the fabrication shop

acilitating

attributes in the

267

model are quite similar to the ones used in working hours dynamic model,

presented in Appendix C. Therefore I avoid the duplication here. As well, detailed

specifications of the simulation setting part is referred to the AnyLogic user

manual (accessible at: www.xjtek.com). In addition to that the input data in the

model was received from the same database and data-tables and the output data

was stored in very similar data-tables to what presented in Appendixes B and C.

Therefore in this appendix just two developed SD sub-models are explained.

D.1. SDCore Model

The SDCore sub-model represents the core dynamic model of the workers

evolution presented in Figure 4-8 in Chapter 4 including the workforce skill

evolution and promotion dynamics with workers in six different levels of

experience (Figure D.2).

Figure D.2. SDCore model of workforce evolution dynamics

The related equations to the model are

(including stock variables represented by rectangle

by valve shape , auxiliary variables show by circles

shown with a circle with a small black

) and the link between two variables is shown by arrows. However, more

complex equations are placed in the function elements (

workforce hiring policy function has been added to WHPlcFn funct

below:

268

Figure D.2. SDCore model of workforce evolution dynamics

o the model are mainly captured in the variable relations

(including stock variables represented by rectangle , flow variables represented

, auxiliary variables show by circles and model parameters

shown with a circle with a small black triangle on the top-right side of the circle

) and the link between two variables is shown by arrows. However, more

complex equations are placed in the function elements (). For example the

workforce hiring policy function has been added to WHPlcFn funct

captured in the variable relations

, flow variables represented

and model parameters

right side of the circle

) and the link between two variables is shown by arrows. However, more

). For example the

workforce hiring policy function has been added to WHPlcFn function as in

//Applying Company’s hiring/firing policies
if ((RqWld/40)/TW > HM)
{
 if (time()<1)//First week has no limitation for hiring because of befor project preparations
 {
 return ((RqWld/40)-
 }else
 {
 return min(((RqWld/40)
 }
}else if ((RqWld/40)/TW < FM & TW>3)
{
return ((RqWld/40)-TW)*(WFrac);
}
return 0;

The interface variables elements, surrounded by a

side of the model, send updates to/ receive update from model variable

SDInterface sub-model (Section D.2.). The main input interface variables are the

initial number of workers in every wage and experience level (WageInIn1,

WageInIn2, WageInIn3, WageExIn1, WageExIn2, WageExIn3, WageIn4,

WageIn5, WageIn6) and require

variables are total number of workers (TW), number of workers in different level

of wages (Wage1, Wage2, Wage3, Wage4, Wage5, Wage6), total hiring rate

(THRr), total training rate (TrainRt) and the skill performance

Finally, since the SDCore model has been implemented in a generic manner to be

able to be used for the workers evolution dynamics in different work stations with

different number of workers and level of skills, there is an initializatio

(presented by a lightening sign

variables) has been added to the model to initialize the number of workers in

different levels of skill by reading their related values from interface variables.

269

//Applying Company’s hiring/firing policies

//First week has no limitation for hiring because of befor project preparations

-TW)*(OrgHPlc) ;

min(((RqWld/40)-TW),MaxH)*(OrgHPlc) ;

((RqWld/40)/TW < FM & TW>3)

TW)*(WFrac);

The interface variables elements, surrounded by a dashed rectangle at the right

side of the model, send updates to/ receive update from model variable

model (Section D.2.). The main input interface variables are the

initial number of workers in every wage and experience level (WageInIn1,

WageInIn2, WageInIn3, WageExIn1, WageExIn2, WageExIn3, WageIn4,

WageIn5, WageIn6) and required workload (RqWld), and the main output

variables are total number of workers (TW), number of workers in different level

of wages (Wage1, Wage2, Wage3, Wage4, Wage5, Wage6), total hiring rate

(THRr), total training rate (TrainRt) and the skill performance level (SklPerfLvl).

Finally, since the SDCore model has been implemented in a generic manner to be

able to be used for the workers evolution dynamics in different work stations with

different number of workers and level of skills, there is an initializatio

(presented by a lightening sign in the model standing below the interface

variables) has been added to the model to initialize the number of workers in

different levels of skill by reading their related values from interface variables.

//First week has no limitation for hiring because of befor project preparations

at the right

side of the model, send updates to/ receive update from model variables in the

model (Section D.2.). The main input interface variables are the

initial number of workers in every wage and experience level (WageInIn1,

WageInIn2, WageInIn3, WageExIn1, WageExIn2, WageExIn3, WageIn4,

d workload (RqWld), and the main output

variables are total number of workers (TW), number of workers in different level

of wages (Wage1, Wage2, Wage3, Wage4, Wage5, Wage6), total hiring rate

level (SklPerfLvl).

Finally, since the SDCore model has been implemented in a generic manner to be

able to be used for the workers evolution dynamics in different work stations with

different number of workers and level of skills, there is an initialization event

in the model standing below the interface

variables) has been added to the model to initialize the number of workers in

different levels of skill by reading their related values from interface variables.

D.2. SDInterface Model

The SDInterface sub-model integrates the core SD model (Section D.1) with

overtime policy and dynamic cost data collecting mechanism

interface variables which communicate with the DES part of the model (Figure

D.3).

Figure D.3. Screen shot of SDInterface SD model

The dynamic cost data collecting mechanism is on the bottom

overtime dynamics is on the top

next to these two modeling parts and is treated as a modelin

contact points limited to its interface variables. The relations between different

model variables are created in the model the same as what has been presented in

the dynamic model equations in Chapter 4; the arrows between different model

270

erface Model

model integrates the core SD model (Section D.1) with

overtime policy and dynamic cost data collecting mechanism; it has the set of

interface variables which communicate with the DES part of the model (Figure

ure D.3. Screen shot of SDInterface SD model

The dynamic cost data collecting mechanism is on the bottom-left and the

overtime dynamics is on the top-left of the model. The SDCore model is placed

next to these two modeling parts and is treated as a modeling component with

contact points limited to its interface variables. The relations between different

model variables are created in the model the same as what has been presented in

the dynamic model equations in Chapter 4; the arrows between different model

model integrates the core SD model (Section D.1) with

has the set of

interface variables which communicate with the DES part of the model (Figure

left and the

left of the model. The SDCore model is placed

g component with

contact points limited to its interface variables. The relations between different

model variables are created in the model the same as what has been presented in

the dynamic model equations in Chapter 4; the arrows between different model

271

variables represent these relations. However, AnyLogic does not show the

relations between updating interface variables from a model component (i.e.,

SDCore model in this case) and the model variables in an arrow format. For

example although total number of workers (TW interface variable) is updated in

SDCore model component and is used in different parts of the model, these

relations are not shown by arrows.

Table-function elements ()WkAssgSch and WkCompSch in the model

contain the work assignment schedule and work completion schedule. These table

functions can provide the estimated workloads assignments and the milestones set

for the project over the time. I used these table-functions for analyzing the

capabilities of the developed SD models with no input from/ output to the DES

model of the project (Section 4.2.3 Chapter 4). So, basically in cases that a

project does not contain high operational complexity and the estimated workload

and milestones have an acceptable level of accuracy, the project behaviour can be

modeled by using these function-tables and no DES model is required.

Interface variables in this part of the model are placed at the right side of the

model to communicate with the DES part of the model. The main input interface

variables from the DES part are the initial number of workers in every wage and

experience level (WgInIn1, WgInIn2, WgInIn3, WgExIn1, WgExIn2, WgExIn3,

WgIn4, WgIn5, WgIn6), required workload (RqWld), working hour alternative

name (Name) and the working condition of the shop (Close), and the main output

272

variables to DES part are total number of workers (TWorkers), set overtime for

the week (SetOvtm), and performance level (PerfLevel).

