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ABSTRACT

The primary goal of this investigation was to establish a method for describing
the continuous surfaces of the articular condyles of the knee joint from a finite sct of
tliree dimersional data points. The repeatability of the digitizer used to obtain the data
was investigated, and its resolution was superior to that used in previous studies. A
method for positioning the digitizer to within its resolution was developed. A specimen
holding device that did not apply any clamping forces or residual stresses to the specimen
was also designed and built. The effect of the amount of input data was investigated, and
methods for fitting surfaces through these data were compared.

It was found that smoothing spline fitting of the data was significantly more
accurate than least squares fitting, and other methods that have been used previously.
The effect of the quantified errors in surface point estimation and slope estimation on the
location of the tibio-femoral contact point was also estimated. Using smoothing splines
to describe articular joint surfaces, the contact point between two bones can be located

to an uncertainty of generally less than Imm.
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NOMENCLATURE

Medial,medio- Denoting a position towards the midline or middle.

Lateral, latero- Denoting a position away from the midline or middle.

Anterior,antero- Denoting a position towards the front, or in the front
part of.

Posterior, postero- Denoting a position towards the rear, or in the back
part of.

Tibiofemoral Relating to both the tibia and the femur.

Patellofemoral Relating to both the patella (knee cap) and the femur.

Condyle A rounded projection on a bone.

Intercondylar A location between condyles.

Fossa General term for a hollow or depressed area, a trench, or
a canal.

Z=1(X,Y) Polynomial function in the parameters x and y,

Z(X,Y) describing a three dimensional surface.

€ Epsilon, a parameter denoting the amount of error.

G Coefficient of a least squares polynomial fit of data.

Ao 4 Knot locations of a polynomial spline in directions x

and y respectively.
k,? Degrees of polynomial spline in x and y respectively.

g,h Number of interior knots in a polynomial spline in
directions x and y respectively.

SX,Y) Polynomial spline fit of surface in parameters x and y
to three dimensional data.

S,(X,Y) Polynomial smoothing spline fit of surface in parameters
x and y to three dimensional data.

G Polynomial (or smoothing) spline coefficients.
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ij

M(X),N(Y)

ai,q?bj,r

mlsm2

8(c)

7{c)

T(X,Y)

Average Z error

Average D error

Any subrectangle domain within i=0-g, j=0-h.

Normalized B-siines (Bezier splines) in directions x
and y respectively.

Parameters measuring discontinuity in derivatives in x
and y directions.

Tabulated gxr bivariate data.

Number of grid lines or data points in directions x
and y respectively.

Parameter quantifving closeness of a spline fit to
tabulated data.

Parameter quantifying cumulative discontinuity in
derivatives.

Outward normal vectors to two contacting surfaces at the
point of contact.

Tangent plane to a surface at some point.

Error parameter quantifying closeness of fit,including
both the error in z values and error in derivatives.

The absolute value of the difference between the actual
and fitted (either by least squares or splines) Z
coordinate at point (X,Y), averaged over many points.

The absolute value of the difference between the gradient
of a polynomial (VZ(X,Y)) and the gradient of a spline
(VS(X,Y)) evaluated at point (X,Y), averaged over many
points.



Chapter One

1.0 Introduction

Increasing human longevity has increased the occurrence of such degenerative
conditions as arthritis in the knee joint. Additionally, growing involvement in individual
and team sports has caused an increase in the number of knee injuries requiring treatment
by orthopaedic surgeons.  Sound treatment of these occurrences demands a
comprehensive understanding of joint function at both macro and microscopic levels.
The function of each individual structure and the interaction between the structures must
be understood. Determination of factors which influence the knee’s operation most
significantly, must necessarily be the first step towards the overall goal of a knee model
to predict degenerative conditions, or assist in the assessment and repair of damaged
structures.

Early work in this area began in the late 60’s with investigation of the forces
transmitt>d across the knee joint. Photoelastic studies [6][22] have been conducted to
determine stresses encountered by the bony surfaces. More significantly, with the
proliferation of computers and increasing ease of their use in the 1980’s, mathematical,
numerical, and finite element models of the joint have been attempted.

In general, tensile forces are transmitted across the joint by soft tissues, and
compressive forces by the cartilage covered bony surfaces of the tibia, femur, and the
patella. The kinematics of the joint are influenced by both the soft tissues (ligaments),
and the hard tissues (articular joint surfaces). Ligaments are known to have nonlincar

viscoelastic force-extension relations. Frank and Shrive [13] suggest that mechanical
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properties vary not only from ligament to ligament, but along the length of the ligament
as well. Such information is vital for accurate determination of forces within the joint,
but must be combined with an accurate description of joint geometry to be useful.

The menisci in the knee joint have recently become the focus of increasing
interest. The menisci are two wedge shaped semi-circular pieces of cartilage that cover
a significant area of the lateral and medial condyles of the tibia. As shown in Figure 1,
their only attachment points to the tibia are at the anterior and posterior meniscal horns;
the rest of the structures can slide smoothly over the condyles. The function of the
menisci is to help distribute the compressive load transmitted across the joint. Under
compressive loading the menisci deform to match the contours of tl.e femur and tibia,
as seen in Figure 2. As the joint flexes, the menisci slide over the tibial condyles, and
continue deforming and matching the surfaces as shown in Figure 3. The menisci are
no longer casually excised by orthopaedic surgeons as they once were, if found to have
been torn or otherwise injured. Total removal of the menisci in the past has been shown
to increase the occurrence of arthritis, since contact stresses between the femur and tibia
are increased without these structures. Efforts are currently under way to characterize
the material properties of the menisci so that it can accurately be included in a
mathematical model of the knee joint. With such deformable structures, it is essential
that the condylar surfaces are accurately described, since they are the major physical
constraints to the locations and shapes of the menisci.

The scope of this thesis involves developing a method for describing the three

dimensional geometry of the articular surfaces of the human knee joint. This method
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will be used to locate the contact point between articular surfaces. Further, accurate
description of the articular surfaces may be used as physical constraints to the menisci,
allowing for an investigation of their load carrying and sharing capabilities. The method
may also be used for describing other joint surfaces (temporomandibular joint for

example).

1.1 Literature Survey

Tremendous advances in the past two decades have occurred in understanding and
characterizing the structures of the knee joint, their function, and degenerative conditions
which they may experience. The scopes of most previous studies have been very
specific, to the point of oversimplifying or neglecting itipeitant structures like the
menisci or ligaments.

The goal of Maquet’s [22] two dimensional pliotoelastic study was to investigate
tibio-femoral contact stresses, and thus ignored all structures other than the articular joint
surfaces. Accurate geometry of the test specimens was crucial for valid results, but the
focus was on reporting stress levels due to loading and specimen geometry, not detailed
description of the articular surfaces. Chand et al.’s [6] photoelastic three dimensional
stress distribution investigation included a 3.175mm (1/8 inch) thick layer of foam rubber
between the surfaces to simulate the load sharing of the menisci. Similarly, Chand et al.
were concerned with levels of stress in the joint, not with an analytical method of

describing the jcint surfaces.

Frankel et al.’s work in 1971 [14] was concerned with diagnosing internal
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derangement of the knee through non-invasive methods. Gait analysis was performed in
hopes of finding macroscopic motion changes due to internal damage. Specifically,
changes in the path of the femoral instantaneous center of rotation through the gait cycle
was investigated as being symptomatic of tissue damage. Articular surface gecmetry as
such was not considered, but motions of specific points on the femur were tracked using
serial x-rays to locate the femoral instantaneous center of rotation. Placement of the joint
with respect to the x-ray plate and the x-ray source influences the size, clarity, and the
actual shape of the resulting image [19]. Subjective decisions were made in locating the
relevant points and determining the location of the perpendicular bisector of the segment
connecting the points. The prime consideration was detecting "abnormal" motion of the
instantaneous center of rotaticn in an abnormal joint.

Similarly in Reilly and Marten’s [32] investigation of quadriceps muscle forces
anc patellofemoral joint reaction forces, photographs were analyzed subjectively to
determine overall joint geometry. Also worthy of note is that this is not a three
dimensional model of the joint, but a sag::tal one.

Matthews et al. [24] were inte: :sted in load bearing in the patellofemoral joint,
and also used x-ray technigues. Ir s cadaveric study, thin radiopacque metal markers
were secured to ligament insirticvi points for better contrast in the x-rays. Directions
were determined visually ari! xraphically from the x-rays as well. Dyes were used to
determine the bounds of the contact region, and the mechanical function of the patella
was idealized as a frictionless pulley.

Andriacchi et al. [2] addressed nonlinear material characteristics and deformations
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in a finite element model. Of six potential regions of contact, this model chooses the
"appropriate" one through the correct assumption that contact regions are only capable
of resisting forces perpendicular to the surface. This assumption is valid as Radin and
Paul [30] showed the coefficient of friction in the joint, lubricated with synovial fluid to
be extremely low. The implication of this low coefficient is that the shear force
generated between the two surfaces is negligible, hence all force must be normal to the
surface. Twelve hydrostatic elements which could only resist forces perpendicular to
their surfaces represented the contact surfaces, and were arranged in two rows on the
medial and lateral condyles. Each “hydrostatic element" was a three dimension:i eight
node brick element, with four nodes attached to the tibia, and four o the femur. The
criterion of nearest common perpendiculars of surface normals between the tibia and
femur was used to determine at which element in each row contact occurred. Results of
the study indicated the importance of the joint surface geometries and particulariy the
menisci, without which it was claimed the joint could not be stabilized against antero-
posterior and medio-lateral deflections, or against buckling under loads of more than
10% of body weight.

Knee prosthesis design focuses on replacement of diseased, worn, or damaged
articular surfaces with minimal disruption of ligamentation and inusculature. Goodfellow
and O'Connor [16) addressed the dilemma of design rationale. Allowing the contact
components to distribute the load over large contact areas reduces contact stresses, but
at the expense of limiting natural physiological motion. Spheres in spherical sockets

would fit one another in all positions of the joint, and thus provide large areas of contact.
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However if the knee joint was replaced on both medial and lateral sides by such devices,
it would be restricted from six degree of freedom motion to only one: rotation about the
flexion-extension axis. Such a solution wouid eliminate the need for load sharing
structures like ligaments since motion would be completely controlled by the sockets.
Not only does this restrict the joint’s range of motion, but it causes a drastic change in
the way it is loaded. Whereas the articular surfaces, menisci, and ligamerts share the
load in a heaithy knee, the entire load is transmitted through the sockets with this type
of replacement. This may cause loosening and failure of the prosthesis within as little
as S years [27]. Conversely designs which allow rolling, translation, and distraction of
the joint surfaces will typically have smaller contact areas and thus higher stresses, which
puts greater demands on construction materials from a wear and fatigue point of view.
Clearly, the more anatomically correct the prosthesis, the more advantageous from both
points of view. Accurate knowledge of the physical size and shape of the articular
surfaces is therefore crucial to the design of knee replacement prostheses.

An attempt at describing the overall dimensions of the femoral condyles relevant
to implant design was presented by Wyss et al. [36]. A pantograph method was used to
record the shape of the femoral condyles. The necessity for three dimensional
representation of the femur was foreseen, and pantograph recordings were made at
various levels (between 5 and 10 mm increments) on the condyles to achieve this.
Moisture sensitivity of the cartilage was recognised, and the cadaveric specimens were
sufficiently soaked in Ringer solution to allow swelling of the.cartilage to original size.

Typical recording graphs contain unexpected discontinuities. Only gross dimensions
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were determined from the graphs; no equations were fitted through the data.

Wismans et al.’s [24] three dimensional mathematical model of the knee joint
required accurate three dimensional representation of the tibial and femoral surfaces for
its solution technique. In this study 50 to 100 three dimensional data points were
recorded on each condylc using a dial gauge apparatus. The radius of the dial gauge end
was corrected for, and the deformations of the cartilage layer were ignored due to their
small (<0.1mm) magnitude. Bivariate least squares polynomials of orders 3 and 4 were
calculated for the condyles of the tibia and femur respectively, and a standard deviation
was stated as 0.5mm. Evaluation and differentiation of the polynomial expressions to
determine tangent planes and surface normals were implemented to determine the contact
locations on the tibia and femur. This insightful approach also used non-linear force
extension relations for the ligaments, and solved for joint reactions as a function of
external loading and flexion angle.

Unfortunately the accuracy of this model is suspect since its representation of the
articular surfaces has been smoothed to such a degree (0.5 mm standard deviation). It
was not explicitly stated what this standard deviation referred to: coordinate
measurements, or fitting of the surface with bivariate polynomial functions. Such
significant crrors in the estimation of the surface profiles may lead to large errors in the
computed direction of the surface normal, incorrect joint geometry, and erroneous muscle
and reaction forces. The menisci were neglected, thus their load sharing capacity was
mmmmmw.ﬂmm&mMMﬂmﬁwmeWmmnwmm&bmmﬂwmmmmﬁ

accuracy.
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Dial gauges attached to a probe indicated the coordinate valtues of surface points
in Wismans’ study. An algorithm was also used to correct for the radius of the probe
tip. Certainly though, there must have been a subjective decision made as to when
"contact" occurred between the probe and articular surface. This judgement of “contact”
may not have been consistent for all the data points recorded. As well, error may have
been introduced in the recorded values since interpreting readings between graduations
on a dial gauge is subjective.

Rehder [31] used a more systematic approach in his morphometric study of the
femoral condyles. He successfully described surface sections as involutes of a circle,
Archimedean, and logarithmic spirals. Curvature of the surfaces was calculated to the
claimed accuracy of measurement of 0.2mm. Slices through the femur 4mm thick were
procured, and X,Y-coordinates of the cartilage surface were obtained using a
semiautomatic image analyzing system (Kontron) and a H.P. 9815 computer. While the
accuracy of this method is better than that of Wismans’, it fails to address the three
dimensional nature of the condyles in a manner advantageous to anything other than a
planar model of the joint. It is unlikely that this method can be adapted to a Wismans’
type model because it uses finite width slices, and thus cannot provide continuity of
derivatives across these slices.

Accuracy of measurement of articular surface point coordinates is fundamental
to an accurate and anatomically correct mathematical description of these surfaces.
Rehder’s claimed measurement accuracy using an image analysis method is 0.2mm.

Again this is based on 4.0mm thick sagittal slices through the femur, and thus the three
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dimensional data obtained is not for an infinitely thin plane, but averaged over the
4.0mm.

Studying contro} of rolling and sliding at natural joints, Wongchaisuwat et al. [35]
modeled the surface of the femur as an ellipse, and the surface of the tibia as a flat plate.
This study is primarily concerned with muscular control of motion of the joint, for which
accuracy of joint geometry was not a primary concern.

The model proposed by Mikosz et al. {25] drew on the work of Iseki and Tomatsu
[18] for determination of the tibio-femoral contact points. Iseki and Tomatsu determined
contact regions between the tibia and femur for discrete flexion angles through a method
where silicon rubber was injected into cadaveric knees with soft tissues intact. Contact
points were determined for six discrete flexion angles (-8,5 ,15,30,60,90 degrees). For
any angle other than these, the real contact point was approximated by the nearest of the
six angles; the contact point does not move continuously with continuous flexion as seen
physically, it moves in a stepwise fashion. Mikosz et al. imposed further constraints
such as maximum physiological muscle force on the model. Muscle forces were chosen
on a random basis subject to physiological constraints, and the solution considered valid
when both the constraints and equilibriun equations were satisfied.

Zoghi et al. [37] recognise that little work had been done in describing the
geometric variation in three dimensions of the knee joint. Their paper used a generalized
reduced gradient optimization method for describing the medio-lateral shape variation of
sagittal sections through the formalin preserved human distal femurs. Surface topography

of slices taken 3.175mm (1/8 inch) apart was measured using a six degree of freedom
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commercial measuring device. Lateral and medial condyle slices were reconstructed
using two and three circular arcs respectively, and the intercondylar fossa by two circular
arcs connected by a line segment. They concluded that the condyles and intercondylar
fossa could be described by sections of spheres, cylinders, oblique cylinders, and cones,
to an uncertainty of Imm. Though this may be a simple way to describe the condylar
surfaces, an accuracy of 1mm is not acceptable.

As a result of the number of mechanisms which act across human joints (several
ligaments and several muscles), equilibrium equations are generally statically
indeterminate.  Several optimization techniques based on value judgements and
assumptions have been used to solve these problems. Baragar & Osborne [3] and
Osborne & Baragar [28] attempted to minimize joint loading, and optimized bite force
for assumed muscle loading in their mandibular studies. An et al. [1] have also used a
method focused on minimizing the upper bound of muscle stress to obtain unique
solutions for loading of the elbow. Hence using physiologically based assumptions to
determine valid optimization criteria, the apparently indeterminate problem can be

rendered tractable.

1.2 Relevant Surface Geometry Parameters

The objective of this investigation is to provide a method for describing the three
dimensional geometry of (various) articular joint surfaces, specifically that of the knee,

to a high degree of accuracy. At the very least, it must be possible to locate any three
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dimensional point on the surface of a concdyle. A representation was attempted in
Wismans® model by using bivariate least squares polynomials calculated from a finite
number of digitized data points. The least squares method is not acceptable for this
application because it smooths the data too much, yielding a surface that is not
anatomically correct. In this thesis a method has been developed to describe the articular
inint surfaces continuously, and to a high degree of precision.

Several authors have correctly recognised that due to the extremely efficient
lubrication of the joint, the articular surfaces cannot support shear forces. Consequently
coniact forces must be normal to both surfaces in contact. The direction of the normal
to the surface at any point can be calculated as the vector cross product of two surface
tangents at the same point. Collinearity of surface normals was a constraint used by
Wismans to locate the tibio-femoral contact point, and the method developed in this
investigation is capable of determining surface tangents in two orthogonal directions at

any point within the domain.
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Chapter Two

2.0 Data Acquisition and Processing Equipment

The digitizer used in this investigation is shown in Figure 4, complete with a
mounted specimen. The digitizer employs a probe load cell which triggers the
acquisition of three dimensional data, thus eliminating subjectivity from the process.
Elaborate data processing equipment was not required; a personal computer and
networked Sun 3/60 workstation were used, and the emphasis was on evaluation of
appropriate software to process 3-D data points into the desired representation of the
surfaces. Software was developed to define points on the articular joint surfaces, and
evaluate two orthogonal derivatives at arbitrarily chosen points. This software could be

used by itself, or could be modified and incorporated into a comprehensive knee model.

2.1 Brown & Sharp Microval Digitizer

A Brown & Sharp Microval digitizer was used in this investigation to obtain the
necessary three dimensional data. This machine is primarily used for precise
measurement of industrial machine components and verification of their specifications.
Physically the digitizer is quite massive at .75m X .75m X 1.3m, and 150kg, and its
rigidity is sufficient to enable deflections due to probe or positioning forces to be
neglected.

The digitizer employs a right-handed Cartesian coordinate system, with an X-Y
plane defined by its granite worktable surface. The measuring range is 356mm X

406mm X 305mm in the X,Y, and Z directions respectively, with a measurement
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resolution of 0.002mm along each axis. Linear motion along each axis is permitted with

air bearings, each of which has an independent shut-off valve. Thus motion along only
a single axis can be achieved by shutting off the air supply to the remaining axes’
bearings. Position measurement is achieved through the use of an "opto-electrical”
procedure which reads incremental scale divisions along glass scales firmly mounted in
recesses in each of the axis rails.

Factory supplied probes consist of a slender shaft of approximately 2mm
diameter and 40mm length. A 4mm sphere is mounted on the tip, and the probe base
is threaded to fit into a load cell that measures probe tip forces. The load cell measures
force in the X-Y plane as well as in the -Z direction. The load cell automatically triggers
acquisition of X,Y, and Z coordinates of the point of contact on the sphere when the
probe tip force exceeds a preset value (5g-50g sic.). An internal algorithm monitors load
cell output at the instant of acquisition, and can thus determine the location on the surface
of the sphere that made contact. Hence the displayed coordinates are those of the actual
point of contact, not of the center of the probe tip.

A 19.05mm (3/4 inch) requalification sphere is rigidly attached to the granite
worktable, and is used on start-up of the digitizer to initialize its origin. The r obe tip
must be struck against the requalification sphere a minimum of four times at start-up.
Through processing output from the axes’ linear sensers and the probe load cell for each
strike, the digitizer has been programmed to determine the location of the probe with
respect to the digitizer’s origin, as well as calculating the diameter of the probe tip.

Points may then be measured relative to the digitizer’s origin. An origin on a specimen
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may be defined through a series of strikes on its surface, and then all measurements

made relative to the specimen origin.

2.2 Additional &uigmeg;_gglm_qugi_sm

Several specialized items were required for the specific application of digitizing
articular joint surfaces. With a resolution of 0.002mm, it was necessary ‘o develop a
means to position the probe accurately and repeatably to such small increments. This
was achieved through the use of a pair of Mitutoyo 0-25mm micrometers. The two
micrometers were mounted so as to induce translations of the probe in X and Y
directions independently. The accuracy of the micrometers is not relevant since they
were used simply to move the probe in very small increments. Digital readout from the
digitizer was used to ascertain its position, and when the desired location along an axis
was achieved the appropriate air bearing was turned off to prevent any subsequent
motion. Using this method the probe could be positioned to an accuracy smaller than
that of the readout (<0.001mm).

It was necessary to design a new probe tip for digitizing articular joint surfaces.
Some of the data processing routines required that data points were taken on a
rectangular grid. Using the factory supplied probe with the 4.0mm spherical tip, contact
with a non-level surface would not occur along the probe’s axis of symmetry. Ideally
a sharply pointed tip would totally eliminate this type of error, but it might possibly
pierce the articular cartilage before sufficient force to trigger data acquisition was

generated. By reducing the tip diameter to 0.5mm, the occurrence of non-axial contact
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is virtually eliminated, even with the continuously varying slope of the articular surface.
A 0.5mm glass sphere (from sandblasting stock) was bonded to the tip of a 0.5mm
diameter stainless steel tube as shown in Figure 5, and was sufficiently rigid that
deformations under the expected loads were negligible.

To assure rigid fixation of the specimen during the digitizing process a specimen
holding device was designed and used as shown in Figure 6. A threaded rod was
embedded into a 38.1mm (1-1/2 inch) steel ball, which was mounted between cup shaped
steel disks mounted to a 9.525mm (3/8 inch) aluminum plate. An aluminum specimen
mounting spindle screwed on to the rod at one end, and was tapped for a 6.35mm (1/4
inch) thread at the other end. The aluminum plate was bolted to the granite worktable
using four of the 9.525mm tapped holes in its surface. A 6.35mm bolt was bonded into
the femur/tibia using bone cement, and the bolt then screwed into the specimen spindle.
Since the bone was not clamped, no stresses or resulting time dependent deformations
were induced in it. The specimen could be arbitrarily oriented, and then locked in place
by tightening bolts which squeeze cupped disks together. This gave a large range of
possible orientations, and was observed to be sufficiently stiff to resist probe forces

without detectable deformations.

2.3 Investigation & Verification of Digitizer Capabilities

A stationary rigid surface was required for verification of the digitizer’s
capabilities. Two high quality steel ball bearings, 50.8mm (2 inches) and 25.4mm (1

inch) in diameter respectively, were rigidly bonded to an aluminum plate. The ball
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22

bearings presented similar radii of curvature to some regions on the articular joint
surfaces. The aluminum plate was bolted to the digitizer’s granite worktable in the same
manner as the specimen mounting plate. Repeated measurements were then taken at
various points on the ball bearings, and the results analyzed statistically.

Repeated digitizing of the same point without repositioning in the X-Y plane
revealed that the slope of the surface has an effect on the measurement obtained. Wher:
the bearing surface was nearly level, the standard deviation of the measurement was
approximately 0.0016mm or 1.6 microns. Closer to the waist of the beariﬁg, where the
surface inclination was approximately 60 degrees, standard deviation was on the order
of 6 microns, Measurements appeared insensiﬁ?e to radius of curvature; slope was the
main influence.

Repeated digitizing of the same point including X-Y repositioning for each
measurement indicated that measurements were not sensitive to repositioning of the probe
in the X-Y plane. In this study, a standard deviation of approximately 2 microns to 5
microns was also obseived for similar cases as abcve. Hence it was concluded that X-Y
repositioning had no significant effect on the magnitude of measurement error. The
measurement error was assumed to be normally distributed, and at the .001 level of
significance a maximum error estimate was calculated to be 4 microns. This analysis of
data from these investigations indicates the real accuracy that can be expected in
measuring coordinates from articular joint surfaces by a knowledgeable but not highly

trained user, and is not just a listing of manufacturer specifications.



23

2.4 Data Processing Equipment

The method developed here can be implemented on a personal microcomputer,
elaborate processing equipment is not required. Some work was done on a Sun 3/60
workstation, but could also have been done on a microcomputer. A primary
consideration was ease of input/output. It is assumed that three dimensional da:: »nll be
provided on floppy disk, as it is much too voluminous and tedious to enter manually each

time the program is run. A line printer was also used for obtaining hard copies of

results.

2.4.1 Computer Software & Hardware Considerations

The routines developed in this investigation were written in Microsoft
QuickBASIC 4.5, and standard Fortran 77. QuickBASIC was chosen for its
convenience. Fortran 77 was used because an available software package for surface
fitting with variable smoothing was written in that language, and was simply too large
to bother converting to another language. Fortran has the advantage of being
computationally quicker when compiled, but is less user friendly a- more difficult to
debug. Neither has significant advantages or disadvantages, but converting routines from
one language to the other could be time consuming and tedious.

Necessary hardware is to some extent dependent on the perceived needs of the
user. All routines developed here will run on a IBM compatible microcomputer, but if
Fortran is chosen, it is advisable to use a computer equipped with a 386 microprocessor

and a math coprocessor to reduce processing time. At minimum, a floppy drive for
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program input/output is essential and a hard drive would be more useful. If these
routines are used as a subroutine in a larger program (such as a comprehensive knee

model) it is probable that such hardware requirements will have already been met, and

additional hardware is not required.
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Chapter Three
3.0 Shape Description

The problem faced, is that of describing an infinite number of surface points and
the slope at each point by a finite, manageable number of independent variables derived
from a finite sample of the surfacc noints. This can be achieved by expressing the
surface as a function above a plane such as Z=f(X,Y). The functions describing the
surfaces must be investigated graphically to ensure their anatomical correctness.
Differentiation of the functions with respect to X and Y is not difficult, and will produce
two vectors for which the cross product will be the vector normal to the surface at that
point. The surface coui  ually be defined in cylindri-=:1 or spherical coordinates, but
no advantage is foreseen since the surfaces are not extensively symmetric. Location and
orientation of the coordinate axes can be chosen advantageously in consideration of
anatomical features such as long axes of bones and the flexion axis of the joint. The
resulting functions i.ust be investigated visually and analyzed to ensure that the surfaces

appear anatomically correct and are free from discontinuities.

3.1 Methods of Surface Description

Consistent with the above argument, methods for fitting data to bivariate functions
were investigated. A right handed cartesian coordinate system was chosen, which was
also consistent with the digitizer’s coordinate measurement system. Least squares fitting
of third and fourth order bivariate polynomials and fitting with spline functions were

investigated for describing the surfaces. Spline functions are piecewise continuous
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functions valid in subregions of the total domain under consideration. Constraints such
as continuity of derivatives are imposed at the boundaries of the subregions (knots of the
spline) to link the functions. Different types of splines including interpolating,

smoothing, and least squares splines were investigated.

3.1.1 Least Squares Bivariate Polynomial Functions

Least squares fitting of bivariate polynomials is a simple extension of least squares
curve fitting. In the curve fitting problem, it is desired to determine the coefficients C;

of a polynomial function of degree P, namely
Yy = Cq + CyX + Cpx? + = + C xP (1)

which approximates the underlying nature of the data. Fora given number of data points

(x,,y) i=1,2,...,n, the sum of squares error in this approximation can be written as:

n
€ =Y [y - (Cq+ Cyx; + Cpxi + - + Cox7) 1?2 (2)
=

To minimize the error, equation (2) is differentiated with respect to each C; i=0,1,...,p
(p+1 times), and set eiwal to zero. The resulting system of equations can be solved
using a Gaussian elimination technique for the coefficients C;. This method can be used
for fitting a surface “o three dimensional data by replacing equation (1) with a bivariate

polynomial functien of degree 2 (for example) in x and y such as:

Z = Cy+ CX + Coy + Cyxy + CyX? + Cgy? (3)
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A sum of squares expression analogous to equation (2) can be written for equation (3),
and solved in a similar manrer. It should be noted that the analytical expression for the
data is an approximation which minimizes the error; it is not necessarily an accurate
representation of the underlying function. That is to say, the calculated surface function
approximates the data with the minimum error over the domain, but the surface may not
pass through any of the data points. Thus the surface may or may not be : curately

represented by the calculated least squares polynomial function.

3.1.2 Polynomial Splines

In their purest férm, polynomial interpolating splines fit piecewise polynomials
through the data points. This eliminates such smoothing of the data as seen with least
squares fitting where the polynomials may not fit through any of the data at all. This has
the unfortunate drawback of misrepresenting the underlying function if measurement
error is present in the data being fitted. Derivatives of this spline would show
unacceptable deviations from those of the underlying function since fitting through data
with measurement error would make the spline approximation fluctuate above and below
the surface of the underlying function.

Least squares splines fit least squares polynomials to subregions of the domain,
and still impose continuity constraints at the boundaries of the subregions. Since the least
squares method is used, it is again possible that the resulting mathematical surface will
not pass through any of the data points, as with simple least squar.  ling. Conversely,

since numerous subregions are subjected to least squares fitting it reasonable to expect
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better representation of localized surface features than with a simple least squares fit
which fits the entire domain by a single function, smoothing localized features too
greatly. Smoothing splines are a compromise between interpolating and least squares
splines. Correct adjustment of the amount of smoothing permits the user to "filter out"
measurement error or noise in the data without smoothing the data excessively.

A general algorithm for determining the coefficients of a bivariate spline is
presented well by Dierckx [8]. For fitting a surface on a closed rectangular domain

D=[a,b]x[c,d], consider the increasing sequence of real numbers:

a=14g <A << Agy =D,

g+1

C = Mo < By €= < Yy = do (4)

Then a function S(X,Y) is said to be a spline of degree k in x and £ in y, with knots A,
i=1,2,...,gin the x-directiqn and p;, j=1,2,...,h in the y-direction if the two following
conditions are satisfied:

(i) s(x,y) is given by a polynomial at most of degree k in x and at most £ in y on
any subrectangle:

Dy = [N, Naadximg 5410, i=0,1,...g,j=0,1,...h.

(i) Within the domain D all derivatives §"*is(x,y)/dxdy’ subject to 0<i=<k-1 and
0<j=<¢-1 are continuous.

If the additional knots:
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Bog = By == By = C,

d = Bpea = = = Bpa = Bpesar

are introduced, then every such spline has a unique representation of the general form:

s(x,y) = E E Ci.j 1k¢1(x)N5.l+1(y)

ik 3=
where M;;,,(x) and N;,.(y) are B-splines in the variables x with knots located at
NiNis1seeosNiskss, and y with knots located at p,ptieryeeesBisesr.  ThE M;1(x) and
N; ;+1(y) have the property that

Mip+1(X)=0 if XN of X=Xy
and

N1 () =0 if y<p;or y=pjirer,
and are capable of being evaluated in a stable manner. Further, S(X,Y) becomes a single
polynomial in D if the discontinuities of the k-th derivative in x and the ¢-th derivative

in y at the interior knots A, and g, all vanish, that is,

Ek a; €13 =0, a-1,2, »,9, j=-L-&+1, - ,h (5)

E b; .Ci 5 = r=-1,2, -,h, 1=-k,~k+1, - ,9, (6)
j==t

where the coefficients a4 and b;, are given by:

- MM, g+ 0) - MM (A - 0),
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by, = N¥%: (B, + 0) = Njjuy (B, - 0).

Thus, for a given set of values f . at the grid points (x,,y,), for g=1,2,...,m
r=1,2,...,m,, on a rectilinear mesh within the rectangular domain [a,b]x[c,d] it is desired
to determine the spline approximation which satisfies the two following criteria:

(i) the spline approximation fits the given data values closely enough,

(ii) the spline approximation is sufficiently smooth, that is, the discontinuities in
the spline’s derivatives are sufficiently minimized.

These two criteria are expressed mathematically by Dierckx using two separate
parameters. Similar to least squares fitting, a parameter quantifying the closeness of fit

can be defined as:

ml m2
5(z) - Y (£, - z }: Ci 5 My, s (X Ny 1 (V) 12,
q-1 I-1l i--k j--t

A parameter quantifying the cumulative discontinuity of derivatives was derived using

equations (5) and (6) and is of the form:

g h g

n(E)'Ez(E 1q13)2+22 E 3.2€1, 3

q=1 j--t i<k r=1 i=-k =t
Hence the problem is to minimize (C) with the constraint that 8(€) <$ in which S is a
user chosen parameter which controls the amount of smoothing the spline is subjected to.
The solution technique has been adapted for maximal computational efficiency, and the
details of it are beyond the scope of this thesis. Also beyond the scope of this thesis it
can be shown that as S—oo, S,(X,Y) becomes a least squares spline, and as S$-0, S,(X,Y)

becomes an interpolating spline.



31

The algorithm automatically determines the location and number of knots for the
spline, and several comments are warranted here. Additional knots are added at iocations
and in directions where the fit with the data is not sufficiently close. The local addition
of these knots limits increases in computational time, and more importantly, additional
memory requirement.

This algorithm is particularly well suited to the problem of describing articular
joint surfaces from data that contains digitizing error. The smoothing parameter can be
adjusted to filter out the digitizing error effectively, but not at the expense of smoothing
the data to the extent that it is no longer representative of the articular surface.
Therefore this method provides superior accuracy in calculating both surface point

coordinates, and directional surface derivatives, and thus surface normals.

3.2 Compzrison of Surface Description Methods

The accuracy of surface fitting was compared for a third order, and a fourth order
least squares fit, and smoothing spline fit. Data representing surface coordinates of a
hemisphere with and without simulated digitizing error were generated. These data were
then used as input to the three above stated types of fits, and the accuracy of point and
derivative estimation quantified and compared. The accuracy of approximation was also
investigated for smoothing splines, on the medial and lateral tibial and femoral condyles.

Measurement of surface points from specimens is quite straightforward, but
measuring the slope of the surface in two directions (or even one direction) at a randomly

chosen point is not practically possible at present. Thus it is impossible to use only
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digitized data from a specimen for a comparison of the accuracy of the various surface
fitting methods. To overcome this problem, artificial surfaces were created on which the
derivatives could be analytically evaluated. These surfaces were created by fitting least
squares bivariate polynomials to digitized data from specimens. The surfaces were then
plotted 3-dimensionally to verify their similarity to real specimens. A typical plot is
shown in Figure 7. Approximately 150-200 data points were used over an area of at
least 800 square mm on each condyle in each polynomial fit. The resulting polynomials
allowed evaluation of surface derivatives in two orthogonal directions in a simple
manner. The polynomials were evaluated on a rectangular grid, and random error with
known mean and standard deviation was then added to the Z coordinate to simulate
measurement error. The random error was generated using the Box-Muller [5] method.
This method produces a user-specified number of normally distributed numbers, which
have a user-specified mean and standard deviation. For this investigation the mean was
set to zero and the standard deviation to 5 microns (consistent with results in section
2.3). The required number of random numbers were then generated and added tc the
analytical data. These data were then used as input for the surface fitting programs.
In each surface fitting method, accuracy of the surface point approximation and
of surface gradients was checked. Quantification of the error in point estimation and
surface gradients is essential for two reasons. The accuracy of an overall knee model
is a function of the accuracy of each individual component. More subtly, contact
conditions previously have depended on determining collinear normals (dot product of

the two normals =-1), or perpendicularity of surface normal and tangent plane (dot
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Figure 7. Surface Plot Of Medial Tibia.

product of normal and tangent plane =0). Practically, these conditions cannot be met
as explicitly stated; the dot product will not be exactly 0 or -1. Some tolerance e must
be determined such that:

|1+ (8 -1, | <e (7)

or
|f, ‘£ ]| <e (8)

An analysis of the error in the surface derivatives is fundamental to choosing a realistic
and appropriate estimate for the parameter e. Thus the parameter e is the parameter
which controls the accuracy of determination of the point of contact, and must be

determined by sound methods.
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3.2.1 Accuracy of 3-D Points & Directional Derivatives

The effects of smoothing factor and input grid spacing on the magnitude of error
in surface point and derivative estimation were investigated. The following function
takes into account both errors, and was plotted for various smoothing factors throughout

the range from interpolating to least squares splines.
T(XIY) -IZ(XIY)"S(XIY) I + IVZ(XIY)—VS(XIY) l

The function was averaged over numerous points that comprised the middle 90% of the
grid in each of the two directions. This process was repeated for input grid spacings of
Smm, 3mm, 1lmm, 0.5mm, and 0.25mm. Global minima for the function T(X,Y) were
noted for each condyle and grid spacing. The smoothing factor which produced the
minimum T(X,Y), as shown in Figures 8&9, was deemed the optimum smoothing factor
for that condyle and grid spacing. The parameter T(X,Y) was also investigated for least
squares third and fourth order polynomial fits of the hemisphere data.

Tables 1&2 show the average values of T(X,Y) for the three methods used to
approximate the hemisphere’s surface, for the cases of input data without, and then with
simulated error added. The fitting accuracy of the smoothing splines appears more
sensitive to the addition of simulated error than the least squares fits. Despite this
sensitivity, the average error for the smoothing spline approximation is two to three
orders of magnitude smaller than that of either polynomial fit. The values from Tables
1&2 are average values, and thus indicate "global" reduction in error. Average values
for | Z(X,Y) -S(X,Y) | and | VZ(X,Y) -VS(X,Y) | , the component parts of

T(X,Y), are shown in Tables 3-6, and follow similar trends.
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Table 1. Average T(X,Y) Value for Hemisphere Surface Approximation (no error
added to input data).

Average (X,Y) Value
Grid
Size Smoothing 3-rd Order 4-th Order
Spline Polynimial Polynomial
5 mm 0.00184 0.97131 0.40432
3 mm 0.06024 0.53459 0.13380
1 mm 0.00007 0.65450 0.20795
.5 mm 0.00011 0.€'916 0.21235
.25 mm 0.00019 0.60743 0.19449

Table 2. Average T(X,Y) Value for Hemisphere Surface Approximation (error
added to input data).

Average (X,Y) Value
Grid
Size Smoothing 3-rd Order 4-th Order
Spline Polynimial Polynomial
S mm 0.00625 0.97147 0.40413
3 mm 0.00299 0.53488 0.13378
1 mm 0.00146 0.65458 0.20792
S mm 0.00141 0.61910 0.21291
.25 mm 0.00131 0.60756 0.1944%




Table 3. Average Z Error for Hemisphere Surface Approximation (no error
added to input data).

37

Average Z Error (mm)
Grid
Size Smoothing 3-rd Order 4-th Order
Spline Polynimial Polynomial
5 mm 0.00090 .8597 0.3457
3 mm 0.00003 0.4629 0.1115
} mm 0.00003 0.5726 0.1757
.S mm 0.00003 0.5405 0.1788
.25 mm 0.00003 0.5298 0.1637

Table 4. Average Z Error for Hemisphere Surface Approximation (erro:
added to input data)

Average Z Error (mm)

Grid

Size Smoothing 3-rd Order 4-th Order
Spline Polynimial Polynomial

5 mm 0.00388 0.8599 0.3455

3 mm 0.00203 0.4632 0.1115

1 mm 0.00086 0.5727 0.1757

.5 mm 0.00076 0.5405 0.1793

.25 mm 0.00069 0.5299 0.1637




38

Table 5. Average D Error for Hemisphere Surface Anproximation (no error
added to input data).

Average D Error
Grid
Size Smoothing 3-rd Order 4-th Order
Spline Polynimial Polynomial
5 mm 0.00095 0.1116 0.05867
3 mm 0.00021 0.07166 0.02233
I mm 0.00004 0.08191 0.03225
.5 mm 0.00008 0.07866 0.03353
25 mm 0.00017 0.07763 0.03084

Table 6. Average D Error for Hemisphere Surface Approximation (error
added to input data).

Average D Error

Grid

Size Smoothing 3-rd Order 4-th Order
Spline Polynimial Polynomial

r S mm 0.00236 0.1116 0.05867

r 3 mm 0.00096 0.07168 0.02233

1 mm 0.00059 0.08192 0.03224

S5 mm 0.00065 0.07865 0.03364

.25 mm 0.00062 0.07766 0.03082

Individual values of T(X,Y) from the smoothing spline without and with simulated error

were plotted over one quarter of the hemisphere cross section (as shown in Figure 10)




in Figures 11-20 to investigate "local" variation in the error. Individual values of

| ZX,Y)-S(X,Y) | and | VZ(X,Y)-VS(X,Y) | for spline fits with simulated error
were similarly plotted to investigate their local error, and are shown in Figures 21-30.
Successive pointwise improvement with finer grid spacing is observed for most points,
and the overall maximum error as well as the average error are reduced. The maximum

error occurs farthest out from the origin of the grid, where the surface’s slope is the

greatest.

/.
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Figure 10. Section Of Quarter Hemisphere For Local Errc: Examination.
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Figure 19. Local T(X,Y) Value On Hemisphere Section Using Smoothing Splines,

0.5mm Input Grid (error added to input data).
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Figure 20. Local T(X,Y) Value On Hemisphere Section Using Smoothing Splines,

0.25mm Input Grid (error added to input data).
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Grid (error added to input data).
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Figure 24. Local Z Error On Hemisphere Section Using Smoothing Splines, 0.5mm Input

Grid (error added to input data).
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Figure 25. Local Z Error On Hemisphere Section Using Smoothing Splines, 0.25mm
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Smoothing splines were then used for fitting data generated from the previously
mentioned artificial surfaces’ polynomiai functions. For the case of the tibia, it ‘vas
observed that a large smoothing factor (a large amount of smoothing) minimized T(X,Y).
Conversely it was observed that a small smoothing factor (very little smoothing)
minimized T(X,Y) for the femur. The difference is probably due to the greater changes
in radius of curvature for the femoral condyles.

Similar to the hemisphere, the accuracy of approximation increased (ie. T(X,Y)
decreased) as input grid spacing became finer. These results for the four condyles and
five grid spacings are summarized in Tables 7&8. The drawback of finer grid spacing
however, is that data base size and program array size quadruple for each halving of
input grid spacing, and may be bound by computer hardware. An input grid spacing of
3mm translates to approximately 150 data points, which can be measured within one
hour. An input grid spacing of 1mm vorresponds to approximately 900 data points, or
an estimated 6 hours of measurement, over which operator fatigue, and specimen
dehydration would be significant factors. Hence only an automated data acquisition
system could be realistically considered for a grid spacing smaller than 3mm.

As previously mentioned, errors in the point estimation and derivative
approximation have implications on location of the contact point and contact force. An
analysis was performed to determine the region within which contact may occur based
on the error in surface coordinate estimation. It was found that the upper limit of the

distance to the region’s boundary occurred when the radius of curvature was maximum



Table 7. Average Error In Smoothing Spline Approximation of Femoral Condyles.

Lateral Femur Medial Femur
Grid
Size Avg. Avg. Avg. Avg. Avg. Avg.
Z D Z D
Error Error TX,Y) Error Error T(X,Y)
(mm) (mm)
5 mm .15462 .07821 .23283 .00400 .00195 .00595
3 mm .00907 .00857 .01764 .00125 .00070 00195
1 mm .00154 .00162 .00316 .00040 .00039 .00078
.5 mm .00068 .00081 .00149 .00037 00031 .00068
.25 mm .00039 .00074 00112 .00027 .00027 .00054

Table 8. Average Error In Smoothing Spline Approximation of Tibial Condyles.

Lateral Tibia Medial Tibia
Grid
Size Avg. Avg. Avg. Avg. Avg. Avg.
Z D Z D
Error Error T(X,Y) Error Error T(X,Y)
(mm) (mm)
5 mm .00203 .00059 .00262 .00220 .00068 00288 |
3 mm .00093 .00035 .00128 .00105 .00030 .00135
1 mm .00039 .00021 .00059 .00047 .00020 .00067
.5 mm .00014 .00006 .00020 .00016 .00007 .00023
.25 mm .00014 .00004 .00018 .00012 .00005 00017
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and the slope minimum. These maxima are summarized in Table 9. These values
suggest that on average, the actual contact point will be within a 1mm of the calculated
contact point (with two exceptions for the lateral femur). Hence when determining the
moment of the contact force about any point, the moment arm can be expected to be
uncertain to less than 1mm due to the fitting method (with the same two exceptions). A
similar calculation was performed using 0.5mm for the allowable deviation in Z
coordinate values (0.5Smm = the "standard deviation" cited previously in the Wismans
model), and yielded possible contact radius of 7.73mm.

The other contact criterion, collinearity of surface normals at the contact point,
must also be considered. Error in the slope of the surface will affect the direction of the
surface normal. Hence opposing tibial and femoral normals may not be collinear at the
contact point due to error in the slope estimation alone. Since error in the slope of the
surfaces was investigated, an upper limit on this non-collinearity can be determined. The
worst case would be the combined maxima of slope errors on opposing condyles. The
arctangent of the average error plus three standard deviations (giving a 99.74%
confidence interval) was calculated, and represents the maximum expected uncertainty
of contact point normais. This calculation was done for both lateral and medial condyles,
for all 5 input grid spacings. The resulting error angles and their cosines are
summarized in Table 19. Thus it is now possible to put realistic limits on e in equations
(7) and (8).

Equation (7) idealizes two opposing, perfectly collinear vectors, the dot product

or which would be -1 exactly. Using the maximum expected errors from Table 10, it
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is clear that the bound to this dot product is cos(180°- error angle), or -0.97894 in the
worst case (lateral contact, Smm input grid). This gives an upper bound of 0.0211 for
¢ in equation (7) if a Smm input grid is used.

Equation (8) idealizes a vector ‘itersecting a plane at a right angle, the dot
product of which would be 0 exactly. Again using maximum expected errors from Table
10 it is clear that the lower bound to this dot produv-t is cos(90°- error angle), or 0.2042
in the worst case (lateral contact, Smm input grid). Hence e of equation (8) has a
maximum value of 0.2042 if the contact criterion is expressed in this manner.

If a 3mm input grid spacing is used, the maximum value of ¢ in equation (7)
becomes 0.00032, and the maximum of ¢ in equation (8) becomes 0.0253. The reduction

in these values is not as significant for increasingly finer input grids.

3.2.2 Application To_Cadaver Specimens

This method was experimentally tested on a cadaveric specimen. The cadaveric
specimen was obtained in a frozen state, and subsequently thawed in a refrigerator for
48 hours. Excess soft tissue was trimmed off and the joint dis-articulated by an
orthopaedic surgeon who performed the dissection. The ligaments and menisci were
removed at their attachment points. Half inch holes were bored approximately one inch
deep into the ends of the specimens, and threaded studs bonded within these holes using
bone cement. After the bone cement had set, the specimens were mounted and stored
in a refrigerator with a moist cloth over them until digitizing took place. The specimens

were misted lightly with a saline solution about every ten minutes while in the digitizer.



54

The articular joint surfaces showed visual evidence of arthritis in the form of
inflammation and small abraded patches. There was no visually detected deformation of
healthy cartilage under the force applied by the digitizer probe before coordinate
measurement occurred. This was not the case with the abraded patches though; the
probe tip disappeared inside the abraded surface before sufficient force was generated to
cause automatic data acquisition. Thus it is the author’s opinion that cadaveric specimens

showing evidence of arthritis are unsuitable for digitizing in this manner.



Table 9. Maxitnum Distance To Contact Regioit Boundary Fer Various Input Grid

Spacings.
. Maximum Distance To Contact Region Boundary (mm)
S:;g Lat. Tibia Med. Tibia Lat. Femur Med. Femur
5 mm 0.533 0.593 4.30 0.551
3 mm 0.360 0.410 1.04 0.308
1 mm 0.233 0.273 0.430 0.173
.5 mm 0.141 0.160 0.270 0.168
.25 mm 0.138 0.137 0.220 0.142

Table 10. Normal Vector Error Angle.

Lateral Contact Medial Contact
Grid
Size Combined Angle Combined Angle
Error Cosine Error Cosine
Angle(-) Angle(-)
5 mm 11.78 0.97894 0.3881 0.99998
3 mm 1.452 0.99968 0.1874 0.99999
1 mm 0.2946 0.99998 0.1328 0.99999
5 mm 0.1659 0.99999 0.0675 0.99999
.25 mm 0.1328 0.99999 0.0618 0.99999
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Chapter Four

4.0 Conclusions

In this investigation methods for obtaining precise three dimensional coordinates
from cadaveric specimens, and for processing these coordinates in a manner useful to a
comprehensive knee model were determined. Toward this goal, devices for positioning
the digitizer used to within its resolution, and for rigidly securing the specimen during
digitization were developed. The effect of the amount of input data on surface fitting
accuracy was investigated, and it was found that the accuracy and also computational
time required to complete the fitting increased with decreasing input grid spacing (more
input data).

Smoothing spline fitting was found to be an extremely accurate method for fitting
three dimensional surfaces to digitized data. Using this method it was possible to
estimate surface coordinates to less than 1 micron uncertainty, on average. Error in
surface slope, and its effect on the location of the tibio-femoral contact point were also
investigated. These errors were found to produce an uncertainty in the location of the
contact point of (on average) less than Imm. The error in surface slope was also used
to quantify reasonable bounds on non-collinearity of surface normals at the contact point.

Moisture loss from the specimen during the digitization is an important
consideration. Maximizing grid spacing minimizes digitizing time, but at the expense
of fitting accuracy. However, minimizing grid spacing results in more time required for
digitizing, leading to more moisture loss from the specimen, and thus changes in the

surface shape as the articular cartilage dries out. Some literature does exist on moisture
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loss as a function of time, and the specimens were periodically misted with a saline
solution during digitization to minimize moisture loss. Further investigations could be
performed to determine rate of surface deformation with moisture loss, since a highly
precise digitizer is easily accessible. It is also recommended that digitizing be completed
within 24 hours of specimen dissection (post thawing), and that the specimen be stored
in a cool humid environment between dissection and digitization.

To the author’s knowledge no other researchers have conducted a sensitivity
analysis of their models to the method of surface description, or the accuracy of surface
description. Once this method has been incorporated into a complete knee model, the
sensitivity of results to accuracy of surface description should be investigated further.
This would perhaps lend a better insight into consequences of amount of input data on

global results, and thus weight the tradeoff between longer digitizing time and amount

of data required.
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Calcluation for maximum distance to_contact region boundary:

The purpose of this analysis is to determine the region around a given surface
point (point 1) within which contact may occur based on the error in surface coordinate
estimation. Contact implies that two points on opposing condyles physically touch. Thus
it is necessary to determine the distance from the given point for which the change in the
Z coordinate is equai to the uncertai 1ty in estimating that coordinate. The uncertainty
in estimating the coordinate appears in Tables 7&8 as the average Z error, and is
referred to in this analysis as AZ. Hence the problem is to determine the length £ in the
diagram below such that | Z, g1 - Zoim2 | , the difference in elevation between the
two points, is at most AZ. The curve with radius of curvature r represents the surface

of a condyle.

From the diagram it is clear that length £ can be expressed:

{=rsin(a-B) =r[sina cosf - cosa sinf] (1)
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and also tkat the difference AZ can be written as:
T sina - r sinf8 = Az
thus sin = sina - (Az)/r (2a)

and then using a right triangle:

\ sine - AZ
r
it can be shown that:
. Az 2
cosf - \J 1 - (sine - _r_) (2b)

now, using (2a) and (2b) in (1) yields:

f = r sina (\J 1 - (sina - %5)2 - cosa ) + Az cosa

This equation was evaluated through o=5" to 90" using:

a-5°

r=-1x + (Imax_ rmin) (—é‘s_o')

min

to account for variation in the radius of curvature along the condyle, with values for r,;,
and r_,, taken from literature [20]. The maximum value for £ through this range for

each condyle and grid spacing was recorded and appears in Table 9.
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Calculation of error in normal vector:

Tangent vectors in the x and ~ directions can be written:

where m, and m, are the slopes (derivatives) in the x and y directions respectively. The

normal vector is the cross product of the tangents, namely:
i-t Xt
or, rewriting:

=

A--mi-m7+1Kk

for which the error in the normal is:

(007 = (Fe y2 - (He )2

om, "™ om,
- (1) (-1eg,)?
- (e, )2 + (8"»)2

eg = [(g,)% + (g,)%]°° (3)

Equation (3) represents the second term in the error function T(X,Y), namely

| VZ(X,Y) -VS(X,Y) | , which was evaluated and averaged over many points within
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the fitting domain, and is referred to as the average D error in this text.

Least Squares Polynomials:

The following expressions were used for the polynomial fits:
4-th order:
Z(x,Y)= Bo + Bix + By + Bx* + Bay’ + Bsxy + Bex’
+ By’ + Bex’y + Boxy’ + Bix' + Buy' + Buxy’
+ Bux’y? + Bux’y
3-rd order:
z(x,y) = terms (3, through S, of the above expression
These expressions were fitted to the 3-dimensional data for the hemisphere, and condyle

surfaces using the method described by Miller & Freund [26].



