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Abstract

This thesis concerns with a common practical problem in the area of sampled-data control

systems where the plant is described by nonlinear dynamics and input and output signals

are sampled at different rates. We first follow the continuous-time (emulation) approach

to propose a general stabilization framework for multirate nonlinear systems in presence of

disturbances. This provides a multirate H∞ synthesis scheme which can be used to tackle

the intrinsic difficulty of unknown exact discrete-time model in nonlinear sampled-data

control systems. Moreover, an alternative performance criterion is introduced based on

the L2 incremental gain as a stronger form of the usual L2 gain that quantifies whether

or not small changes in exogenous inputs such as disturbances or noise will result in small

changes at the output.

The second part of the thesis investigates the discrete-time approach based on model

approximation to the problem of multirate nonlinear sampled-data systems. First, we es-

tablish prescriptive design principles for single-rate sampled-data nonlinear observer that

is input-to-state stable in the presence of unknown exact discrete-time model as well as

disturbance inputs. Our results are then applied to the so-called one-sided Lipschitz non-

linearities to develop constructive design techniques via tractable (linear matrix inequal-

ities) LMIs. Taking the idea of input-to-state stable observer into account, we propose a

general framework for multirate observer design that exploits a single-rate observer work-

ing at the base sampling period of the system together with modified sample and hold

devices to reconstruct the missing intersample signals.

Finally, in order to verify the advantages of multirate sampling we extend our results

to the area of networked-control systems (NCSs). A general output-feedback structure is

developed which utilizes the same idea as that of our multirate observer to predict the

missing outputs between measured samples. The proposed multirate network-based con-



troller is shown to be capable of preserving the dissipation inequality slightly deteriorated

by some additive terms, in spite of network-induced uncertainties and disturbance inputs.

By this means a stable NCS can be obtained under much lower data rate and a significant

saving in the required bandwidth.
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Notation

R, Z The sets of real and integer numbers

R+, Z+ The sets of nonnegative real and integer numbers

Rn The set of real n-dimensional vector

Rn×m The set of real n×m matrices

Lp Function space with well-defined p-norm

Lp,T Extended Lp space of truncated signals

∃ Existential quantifier

∀ Universal quantifier

x ∈ X x is an element of set X

X ⊂ Y X is a subset of Y

Aᵀ or A′ Transpose of matrix or vector A

A−1 Inverse of matrix A

A⊥ Orthogonal complement of a matrix A, i.e., A⊥
ᵀ
A = 0

I Identity matrix of appropriate dimension

‖ · ‖ or | · | Euclidean norm of a vector or matrix

〈·, ·〉 Natural inner product, i.e., 〈x, y〉 = xᵀy

b·c Floor of a real number

d·e Ceiling of a real number

B(r) Open ball of radius r around origin

a ◦ b Composition operation of a and b



Abbreviations

A/D Analog to Digital

D/A Digital to Analog

CTD Continuous-Time Design

DTD Discrete-Time Design

MSD Multirate Sampled-Data

ISS Input-to-State Stability

LMI Linear Matrix Inequality

NMI Nonlinear Matrix Inequality

NCS Networked-Control System

SER Signal-to-Error Ratio

R-SER Relative Signal-to-Error Ratio
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Chapter 1

Introduction

This thesis explores controller and observer design for nonlinear sampled-data systems

under multirate sampling. While it is a common practical problem in the area of sampled-

data control systems that the input and output signals are constrained to be sampled

at different rates, the analysis and design tools for nonlinear multirate systems are still

limited. The purpose of this research is to cover a range of several open issues by providing

different analysis and design techniques for multirate nonlinear sampled-data systems. The

thesis also presents various applications of the theoretical results through simulation based

studies.

In this chapter the preliminary background, the thesis objectives, the thesis contribu-

tions, and a short overview of the literature will be given.

1.1 Nonlinear Sampled-Data Systems

The significance of digitally implemented controllers in today’s industry together with

the fact that most systems of reasonable complexity are often described by nonlinear

dynamics, motivate the area of nonlinear sampled-data control systems. A sampled-data

system involves both continuous-time system and digital controller which is implemented

by the computer. Although a linear approximation around a prescribed operating point

may be used to analyze some nonlinear plants, in many situations the nonlinearities can not

be neglected. This become more critical considering the fact that most practical systems

and processes are nonlinear in nature. There is a wide area of applications for sampled-
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data control systems, where nonlinear phenomena cannot be avoided. These applications

range from the manoeuvre control of an aircraft, such as a VTOL aircraft systems, ship or

submarine vehicle control, position control for robotic systems in a precision manufacturing

process, autonomous vehicle systems, biochemical reactors, power plants and many others.

A general configuration of a sampled-data feedback system is shown in Figure 1.1. A

continuous-time plant (process) is connected to a digital controller via analog-to-digital

(A/D) and digital-to-analog (D/A) converters that are often referred to as sample and hold

devices, respectively. The A/D converter samples the plant output y(t) at the sampling

instants tk and sends it to a control algorithm. The controller processes the measured

output y(tk) and produces a suitable sequence of control inputs u(tk). This sequence is

then converted through the D/A converter into a piecewise continuous control signal u(t)

that is applied to the plant. This is usually done by holding the value of the control

signal constant during the sampling intervals (zero-order-hold). In a single-rate setup, the

sampling instants tk are equidistant, i.e., tk = kT , k = 0, 1, 2, . . ., where T > 0 is the

sampling period.

Figure 1.1: Sampled-data control system

In general, we can indetify three main approaches for designing the digital controller

in Figure 1.1 (see e.g., [1]):

1. The continuous-time design (CTD) method: Design based on a continuous-time

model of the plant and then controller discretization (this method is often referred

to as the controller emulation design).

2. The discrete-time design (DTD) method: Design based on a discrete-time model of

the plant

3. The sampled-data design (SDD) method: Design based on the sampled-data model

of the plant which also takes into account the inter-sample behaviour in the design

procedure.
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While the SDD method has been successfully developed for linear systems, only the

first two approaches, namely CTD and DTD methods, have brought about rigorous results

for nonlinear systems (see [2,3] for a survey on some recent results). This is mainly due to

mathematical complexities of nonlinear equations. Sampled-data design method uses exact

sampled-data model of the system and controller is designed using this model. However,

the major difficulty arising when designing a controller for a sampled-data nonlinear plant

is that, the exact discrete-time/sampled-data model of the plant cannot be found [4]. This

is in contrast to linear systems where the exact model is usually available. The absence

of such a model has lead to several schemes that use different types of discrete-time

approximate models for this purpose. We now overview some of the results on single-rate

nonlinear sampled-data control systems.

1.1.1 Controller Emulation

This method consists of the following steps:

continuous-time plant ⇒ continuous-time controller ⇒ discretize controller ⇒ implement

the controller

Clearly, in this case controller design is the topic of the area of continuous-time nonlinear

control. Therefore, the CTD method is well-established since a wide range of continuous-

time strategies can be directly used for design of digital controllers. The main question in

this method is whether the desired properties of the continuous-time closed-loop system

will be preserved, and if so, in what sense for the closed-loop sampled-data system obtained

by emulation.

As a starting point, we are interested in the stability of the sampled-data nonlin-

ear system. Asymptotic stability and input-to-sate stability within the emulation design

framework have been addressed in [5]- [6] and [7], respectively. However, other important

theoretic properties such as passivity or Lp stability may be also center of attention in

some applications. In [8] Nesic and Teel propose a rather general notion of dissipativity

which covers most of these properties. Precisely, two different forms of dissipation inequal-

ities, called the “weak” and the “strong” forms, are introduced and it is shown that the

exact discrete-time model of the closed-loop sampled-data system preserves the dissipation

inequalities under emulation in a semiglobal practical sense [9]. The cases of static and

3



dynamic state feedback controllers are studied in [8] and [10], respectively. It should be

noted that each of the forgoing dissipation inequalities is useful in certain situations.

There are some advantages of emulation design. First, there are many tools for con-

troller design in continuous-time domain. Second, the sampling is taken into account at

the implementation stage. Therefore, the controller design problem is separated from the

problem of choosing a sampling period. However, some disadvantages may arise during the

application of this method. Since the performance of the continuous-time controller can

only be recovered under very fast sampling condition, because of hardware restrictions it

may be impossible to reduce sampling period to a sufficiently small value to ensure desired

performance. Therefore, in these cases direct discrete-time design is a better alternative

which is based on discrete-time model of the plant.

1.1.2 Direct Discrete-Time Design

The design procedure of the DTD method is as follows:

continuous-time plant ⇒ discretize plant model ⇒ discrete-time controller ⇒ implement

the controller

In this method, one first derives a discrete-time model of the plant, then designs a digital

controller for the discretized plant and finally implements the designed controller using a

sampler and hold device. Despite the difficulties encountered in the DTD approach for

nonlinear systems, there is a strong motivation for pursuing this method since it deals with

the sampling directly and effectively. Besides, as illustrated by [11] it may yield better

results than the corresponding emulation design.

As mentioned earlier, the exact discrete-time model of a nonlinear plant is inaccessible

in most cases. Moreover, the exact discrete-time model of a linear system is linear while the

exact discrete-time model for a sampled-data nonlinear system does not usually preserve

important structures of the underlying continuous-time plant, like control affine structure.

Consequently, whenever we refer to the DTD method, it is always reasonable to assume

that only an approximate discrete-time model is available for the controller design. The

key question in the approximate DTD scheme is whether or not the properties of the

closed-loop system containing the exact discrete-time model and the digital controller will

be similar to those of the closed-loop system containing the approximate discrete-time

4



plant model and the digital controller. Several research has been done in the literature to

answer this question [12,13].

One may come to believe that to obtain a stabilizing controller via the DTD method,

it is sufficient to design a stabilizer for an approximate discrete-time plant model with

adequately small sampling time T > 0. However, this reasoning is wrong as can be seen

by the following counterexample.

Example 1.1. [2] Consider the sampled-data control of the triple integrator

ẋ1 = x2, ẋ2 = x3, ẋ3 = u

Although the exact discrete-time model of this system can be computed, we base our control

design on the its Euler approximate model

x1(k + 1) = x1(k) + Tx2(k), x2(k + 1) = x2(k) + Tx3(k), x3(k + 1) = x3(k) + Tu(k)

a minimum-time dead-beat controller for the Euler approximation is given by

u(k) = −x1(k)

T 3
− 3x2(k)

T 2
− 3x3(k)

T

The closed-loop system consisting of the Euler model and the dead-beat controller is asymp-

totically stable for all T > 0. On the other hand, the closed-loop system consisting of the

exact discrete-time model of the triple integrator and the dead-beat controller has a pole at

≈ −2.644 and, hence, is unstable for all T > 0!

Therefore, no matter how small the sampling period is, we may always find a controller

that stabilizes the approximate model but destabilizes the exact model for the same sam-

pling period. Extra conditions are needed. These conditions have been characterized by [4]

using the notion of consistency, which is a criteria for closeness of the solutions within

the numerical approximation analysis. Then, the stabilization conditions for the static

state feedback controller under the DTD method is investigated. The dynamic feedback

case is also treated in [12]. Indeed, these results provide a unified framework for sampled-

data stabilization of nonlinear plants based on the approximate discrete-time models (see

also [13]).

In general, there are some advantages of the direct discrete-time design. First, the

sampling is considered from the beginning of the design process. Therefore, better perfor-

mance can be achieved by the controller obtained by direct discrete-time design comparing

5



to emulation controller. Second, larger sampling periods may be applied to the controller

designed by direct discrete-time design. However, there also exist some disadvantages of

this method. Since the continuous-time model is discretized at the beginning of the design

process, the discretization may destroy some important properties of the continuous-time

model such as feedback linearizability and minimum phase properties. Therefore, analysis

and design using this method are usually harder. This disadvantage can be overcome by

careful design and the choice of sampling period.

1.2 Multirate Sampled-Data Systems

The sampling period is an important design parameter in the design of digital controllers.

Usually, increasing the sampling frequency enhances the performance of a sampled-data

control system. However, the computer costs will also increase because less time is avail-

able to process the controller equations. Furthermore, faster sampling rates require faster

A/D converters which may also increase system overall costs. Apart from costs, the se-

lection of the sampling rates depends on many factors such as hardware restriction.

The literature overviewed in the previous section are restricted to single-rate systems

where the A/D and D/A converters are applied at the same sampling rate. However,

in some practical cases hardware restrictions on input and measurement sampling rate

can be essentially different. For example, the D/A converters are generally faster than

A/D converters, thus the measurements are often sampled at slower rates compared to

the control input. This situation where the system has several sample and hold devices

operating at different rates is called mulrirate sampled-data (MSD) system (see e.g., [1]

and [14]). Figure 1.2 displays a general MSD system. Such cases can be seen in systems

with special data transmission links or special sensors and actuators and are useful for

improving the system performance. Networked control systems (NCS) is a good example

for this type of systems. Also, use of multirate sampling is natural in multiprocessor

applications.

Indeed, since the pioneering work of Kranc [15], multirate sampled-data (MSD) systems

has been a topic of constant research with multiple applications, including estimation

and control [16–23], fault detection and isolation [24, 25], communications and sensor
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Figure 1.2: General multirate sampled-data system

networks [26,27], and digital signal processing [28–30] (see also [31,32] and the references

therein for some earlier applications). Multirate systems arise when signals comprising

the system are sampled at different rates, a situation that often occurs when there exist

different dynamics and hardware restrictions associated with different input and output

channels.

Handling the MSD system necessitates a certain type of controllers called multirate

controllers. Indeed, if we want to control the output not only at the sampling instants

but also between the sampling instants, then a multirate controller would be helpful. As

classified by [33], three common approaches can be distinguished:

1. Single slow-rate method: downsample the multirate measurements to a lower sam-

pling rate, i.e., representing the MSD system by an equivalent single-rate model

whose sampling period is the least common multiple of all sampling periods in the

systems. The main drawback of this method is that it doesn’t use all the available

information!

2. Single fast-rate method: the sampling period is the greatest common divisor of all

the sampling periods of the multirate plant. Note that, this technique is applicable

if all the signals are available at a faster rate than that in the original multirate

system.

3. Lifting method: stacking of fast-rate measurements of a signal during one repetition

period from a slow-rate signal (see e.g., [1]). This method which is the most popular

approach in this context, uses all the available information in the multirate data.

Roughly speaking, it involves converting the multirate system into a single-rate

system (with slower sampling rate and higher dimension) using the lifting operators.
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Extensive research on development and analysis of linear multirate control systems has

been carried out (see e.g., [1,34,35] and the references therein). For instance, Longhi [36]

analyzes some structural properties such as reachability, controllability and stabilizability

of linear MSD plants. Linear multirate controllers for a given MSD are parameterized

in [37]. After pioneering works developed by Chen and Qiu [34] on multirate H2/H∞

control, many researchers try to solve this problem using various methodologies, e.g., [35]

and [38]. A performance comparison of the linear single-rate and multirate sampled-data

systems was accomplished in [33].

Nonlinear multirate systems, however, have received comparatively much less atten-

tion and a general theory of multirate (controller and observer) design of nonlinear plants

does not exist. This is mainly due to intrinsic complexity accompanied with nonlinear

equations. One specific situation treated in the literature is the “low measurement rate”

constraint where D/A convertors are much faster than A/D convertors. In particular,

nonlinear MSD stabilization is addressed by [17–21], when the output is measured at a

slower rate compared to the control input. Their main idea is to employ an inferential

control setup which uses a fast-rate numerical integration scheme to reconstruct the in-

tersample state trajectories and then supply them to a fast-rate digital controller. More

explicitly, [17] studies practical asymptotic stability of the multirate setup in the presence

of measurement delay for both the controller emulation and DTD strategies. This ref-

erence ignores the effect of disturbances which can have a destabilizing effect given that

actual measurements are substituted with model predictions. The authors in [18] and [19]

consider input-to-state stability (ISS) of the multirate system driven by disturbance in-

puts. These references show that the proposed inferential setup is capable of input-to-state

stabilizing the nonlinear sampled-data plant in both the CTD and DTD methods, respec-

tively, in a practical sense. In [20], we investigate the dissipativity of multirate nonlinear

plants using “emulation” with emphasis on the design of L2 gain nonlinear controllers for

MSD plants.

The aforementioned work consider the full-information case where all state-variables

are available for feedback, a situation that may be unrealistic in many practical cases. To

overcome this difficulty, [21] considers dual-rate output feedback stabilization low mea-

surement rate. Reference [22] employs a discrete-time high-gain observer and proposes a
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multirate observer-based controller for a class of nonlinear systems where, unlike [17–21],

the measurement sampling rate is faster than the control update rate. Another interesting

work on the subject is [23] which presents a recursive multirate approach to decrease the

computational load on the classical nonlinear mode-based predictive controllers.

1.3 Research Motivation and Objectives

The purpose of this section is to briefly introduce and highlight the main contributions

of this thesis. More in-debth arguments can be found in the related chapters. Although

significant achievements have been obtained for multirate nonlinear systems, there still

remain many unanswered questions. For instant, most of the existing results are confined

to the analysis problem and less efforts have been paid to the design problem for nonlin-

ear MSD plants. In particular, there is no systematic algorithm for multirate nonlinear

observer design and most of the literature on this topic assume a full information state

feedback that is unrealistic in practical situations. Moreover, stabilization has been stud-

ied only under either the “low measurement rate” constraint or the dual-rate case, hence

development a theory for general multirate systems is necessary. This work is aimed at

addressing some of these problems. Our main focus is on the design problem, meanwhile,

we will provide some extensions and modifications to the analysis results. In general, the

results in this thesis can be categorized into the emulation-based and direct discrete-time

design methods. The continuos-time design is the center of attention in Chapters 3-4 and

the discrete-time design based on approximation models will be pursued in Chapters 5-7.

1.3.1 Emulation-Based Results

Our disability to exactly compute the discrete-time model of nonlinear plants is the ma-

jor obstacle in controlling nonlinear sampled-data systems. Nonlinear MSD plants will

naturally inherent this problem with more complexities due to the existence of different

sampling rates. The open-loop estimators used in [17–19, 21] to reconstruct the inter-

sample state trajectories are model-based. Therefore, the robustness properties of their

proposed schemes needs further investigations. These facts motivate us to develop an H∞

strategy, that is the first choice to deal with the uncertainties and unknown plant model

(see e.g., [39])., to stabilize multirate nonlinear systems. Since the continuous-time results
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reported by several researchers (e.g., [40] and references quoted therien), successful results

have been obtained regarding the nonlinear H∞ control problem for discrete-time [41] as

well as single-rate sampled-data systems [42,43]. The problem of nonlinear H∞ control is

entirely based on the notion of differential games and the theory of dissipativity.

Dissipativity is a general property (see Chapter 2 for fundamental definitions) that

covers several system theoretic properties including stability, input-to-state stability, pas-

sivity, Lp-stability, etc. [44]. In Chapter 3, using the idea of inferential setup utilized

in [18] and the theory of dissipativity, we propose a general framework for stabilization of

nonlinear MSD plants under the emulation method. Our result is applicable for both the

static and dynamic state feedback case. As a special case with practical importance, it

is shown that an approach to the problem of multirate H∞ control is obtained from the

proposed framework.

As mentioned before, the design procedure of the emulation method is basically per-

formed in the continuous-time domain ignoring the effect of sampling. Hence, the main

effort should be devoted to presenting a continuous-time controller with great capabilities.

Following this objective, in Chapter 4 we introduce an alternative approach to nonlinear

H∞ control based on the L2 incremental gain with promising results. System gain is a

concept that has played a crucial role in control theory. System gains were formally intro-

duced in the control literature by Zames [45] and Sandberg [46] (see also [47], [48], [49]),

and are the central tool in the input-output theory of systems that has been a cornerstone

of major advances in control theory over the past three decades, including the development

of the H∞ and L1 optimal control theories and all of the robustness results that rely on

the use of small gain theorems. Also proposed in those papers is the notion of incremental

gain. For an operator Γ : w 7→ z(L2,T → L2,T ), the induced and incremental L2 gains

from the input w ∈ L2,T to the output z ∈ L2,T are respectively defined as follows

‖Γ‖i,2 = sup
w∈L2,T ,w 6=0

‖(Γw)T ‖
‖wT ‖

‖Γ‖∆,2 = sup
w,w̃∈L2,T ,w 6=w̃

‖(Γw)T − (Γw̃)T ‖
‖wT − w̃T ‖

where the extended space L2,T contains all truncated signals with bounded 2-norm. Roughly

speaking, the incremental gain is a stronger form of system gain that measures continuity

of the input-output map and has important properties that can be of interest in con-
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trol problems. In particular, incremental gains quantify whether or not small changes in

exogenous inputs such as disturbances or noise will result in small changes at the out-

put. Moreover, incremental forms of the small gain theorem ensure not only closed loop

stability but also existence and uniqueness of the solution of the system equations (see

e.g., [47]).

Despite these important features, incremental gains have received comparatively less

attention than regular gains in the control literature. Several reasons probably contribute

to this. First and foremost, when restricted to linear systems, both standard and in-

cremental gains are identical and can be computed using the so-called operator norm or

induced norm of the system. Thus, for linear systems the popular H∞ and L1 theories

enjoy all of the properties associated with the incremental gain mentioned above. When

dealing with nonlinear systems, however, these similarities disappear and great care must

be exercised when extending familiar concepts and theories from linear systems to the

nonlinear case. The H∞ theory, originally proposed in [50] for linear-time invariant sys-

tems, in particular, has been extended to the nonlinear case based on the fact that the

concept of “induced norm” carries over to the nonlinear case without changes. The ex-

tension has lead to a comprehensive body of literature of unquestionable value, but does

not carry the same properties encountered in the linear case. In particular, the notion of

continuity, attenuation of disturbance changes and existence and uniqueness of the system

of equations in feedback systems, are all lost.

More than 20 years after [45,46], Georgiou [51] employs the incremental gain to measure

the distance between nonlinear dynamical systems applicable in robust control and to

introduce the notion of differential stability (see [52–54] for recent results). Incremental

gains have also been employed in the input-output analysis of linear feedback loops with

saturation [55–58]. In [55] the authors examine the regularity properties of this type

of systems, while [56] considers the characterization and approximate computation of

the incremental gain via matrix inequalities. A comparison of the induced norm and

incremental gain for low-order saturating systems is presented in [57], and an approach

for estimating the L2 incremental gain of piecewise linear systems with application to the

anti-windup problem is provided in [58].

Motivated by the specifications discussed above, in this thesis we first synthesis a state
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feedback incremental H∞ controller for Lipschitz nonlinear plants. Then, considering a

more general class of nonlinearities, namely one-sided Lipschitz, we tackle the problem

of H∞ output feedback control design using the incremental gain. The details are given

in Chapter 4. These continuous-time techniques are cast into tractable LMIs and can be

readily applied in the general multirate framework developed in Chapter 3.

One-sided Lipschitz systems were inspired by recent advances in the mathematical

literature on numerical analysis and can be viewed as a generalization of the popular

Lipschitz condition that has received much attention in the control literature for the

past 4 decades. The one-side Lipschitz condition reduces the intrinsic conservatism in

the Lipschitz approach and relaxes the assumption of linear dominance associated with

classical Lipschitz based results. Explicit mathematical definition is given in Chapter

2. [59, 60] present a complete analysis of the observer convergence problem for one-sided

Lipschitz systems. Existence conditions are discussed in [61] and the stabilization problem

is formulated in [62]. See also [63–65] for some other recent works. In this thesis, the

one-sided Lipschitz condition will be exploited to examine our general frameworks by

constructing systematic design methods (Chapters 4 and 5).

1.3.2 Discrete-Time Approximation-Based Results

Direct discrete-time approach to the problem of nonlinear sampled-data systems is fol-

lowed in Chapters 5 and 6 to establish single-rate and mulitrate nonlinear observers,

respectively. Precisely, in Chapter 5 we study sampled-data nonlinear observers, under-

stood as observers for continuous-time systems implemented using a digital computer via

sample and hold devices. Observers, or state estimators, are well accepted as one of the

fundamental building blocks in system theory and extensive research has been done con-

cerning continuos-time and discrete-time nonlinear observers (see, for example, [66] and

the references therein). Discrete-time observers are of particular importance because, in

practice, most observers are implemented using a digital computer. Most of the literature

dealing with discrete-time observers assumes the existence of a discrete-time model of the

plant and proceed with the design in discrete-time. An alternative is to first design a

continuous-time observer and then proceed to discretize the resulting observer using one

of several discretization techniques (this is the so-called emulation approach). As men-
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tioned earlier, the discrete-time design is usually preferred to the emulation approach as

it can typically render similar performance at lower sample rates. The main difficulty en-

countered in the discrete-time design, however, is that finding the discrete-time model of

a nonlinear plant requires solving the system’s differential equation between two samples.

Most nonlinear differential equations of interest do not have a closed-form solution and

therefore the designer is forced to rely on approximate models.

Despite advances in nonlinear sampled-data control, sampled-data observers have re-

ceived much less attention and there remain several challenging open issues. Significant

results in this context include the Newton observers proposed by [67], which assumes that

only sampled measurements are available, [68] that resolves the problem of unknown exact

discrete-time models in [67], [69] that studies discretized high-gain observers, and [70] that

proposes a general framework for sampled-data observer design along the lines in [2,4,13].

One important element not discussed in the existent literature on sampled-data ob-

servers is the effect of disturbances on the estimation error. Incorporating disturbance

action in observers is nontrivial given that in the presence of external disturbances the

reconstructed observer cannot converge to that of the true plant and therefore the notion

of state convergence and analysis based on Lyapunov theory cannot be employed. One

way to tackle this problem is to consider the mapping from disturbance to observer error

and employ the notion of input-to-state stability to characterize the error. This analysis

provides a measure of the deviation from the origin of the error dynamics that is directly

proportional to the norm of the disturbance action. We mention in passing that the effect

of disturbance action has typically been studied in the context of state estimation or fil-

tering, where the primary focus is on disturbance or noise attenuation either in statistical

sense (such as in Kalman filtering) or in terms or operator norms (such as in the H∞

problem). Our primary interest is in observer convergence in the ISS sense, which can

also be viewed as an L∞ bound on the estimation error, in some sense. The use of ISS in

the observer context is not new and has been applied to observer design of continuous-time

plants with slop-restricted nonlinearities [71] and Lipschitz systems [72].

In Chapter 5 we present two general estimation procedures for general nonlinear sys-

tems based on (i) discrete-time design (DTD), and (ii) continuos-time design (CTD) or

emulation. We show that, given a continuous-time nonlinear plant model, then under some
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standard assumptions and Lyapunov-ISS conditions, the proposed observers converge to

the true plant state at each sampling instant in an input-to-state stable, semiglobal prac-

tical sense. Then we confine our attention to one-sided Lipschitz condition to obtain

constructive algorithms for a special class of systems. We present two DTD and CTD

(emulation)-based schemes that ensure input-to-error stability in terms of LMIs. Both

of the proposed observers introduce refined Euler models by incorporating an integra-

tion parameter together with the sampling period to approximate the exact discrete-time

models.

Inspired by the single-rate input-to-error stable observer introduced in Chapter 5,

in Chapter 6 we tackle the observer design problem for nonlinear MSD systems under

the effect of disturbance inputs. Our main purpose is to layout a general framework

for multirate observer synthesis. The main idea is to introduce a fast-rate sampler that

reconstructs the inter-sample outputs between measured samples using an approximate

discrete-time model of the plant together with the system output function and a modified

hold device that assigns each control input to its previous measured value during the

corresponding sampling interval. The outputs of the modified sample and hold devices

are then fed to a single-rate observer working at the base sampling period of the plant.

Taking the disturbances as the input and the estimation error as the state, the notion of

input-to-state stability (ISS) is adopted to analyze the convergence of the estimation error.

We show that if the single-rate observer is input-to-stable stable, under some standard

assumptions and Lyapunov-ISS conditions, the proposed multirate observer is input-to-

state stable in the semiglobal practical sense.

Our approach deals explicitly with (i) the model mismatch introduced by the discrete-

time approximation (discussed in [70] for single-rate sampled-data observers), and (ii)

the effect of disturbances and consequent deviations of the model estimates from true

plant outputs. Our proposed sampled-data scheme is not restricted to either the high

gain observers used in [22] or to the dual-rate case studied by [21] and covers the “low

measurement rate” case addressed in [17–21] as a special case.

Finally, in Chapter 6 we will study a practical application of multirate sampling by

proposing a general output feedback framework for nonlinear networked-control systems

(NCSs) based on discrete-time approximation. Unlike the emulation results of Chapter 3,
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in this chapter all of the state variables are not necessarily available for measurement that

is a more realistic assumption.

Feedback control loops in which system components (sensors, controller, actuators,

etc.) are exchanging data over a wired or wireless communication network constitutes

an attractive and challenging research area in control theory that is called Networked

Control Systems (NCSs) (see Figure 1.3). The main motivation behind the recent in-

creasing interest in NCSs is to offer great advantages, such as low cost, simple diagnosis

and maintenance, high reliability and flexibility compared with the conventional control

systems [73]. Moreover, capabilities of NCSs have been demonstrated in numerous appli-

cations including mobile sensor networks [74], automated highway systems [75], unmanned

aerial vehicles [76], and multi-agent systems [77]. However, the insertion of a network in

the control loop is accompanied with different kind of imperfections and uncertainties

such as quantization, packet dropout, communication delay, and limited data rate, etc.,

which are potential resources of performance degradation and/or instability. Therefore,

in order to exploit the benefits of the network-based control systems by preserving the

closed-loop stability (and performance) in the face of these constraints imposed by net-

works, several specific control techniques have be reported in the literature. The current

status and overview of available NCS structures can be found in special issues [78,79] and

many survey papers, e.g., [80, 81].

Figure 1.3: The standard setup of an NCS

The efforts on NCSs are mostly devoted to the modelling, stability analysis and con-

troller synthesis of linear NCSs (see e.g., [81] and the references cited therein). Significant

results have also been presented for the nonlinear counterpart problem, however, with rel-

atively less expansion. Among others, continuous-time approach toward NCS by consider-
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ing networked-induced effects is pursued in [82,83] to stabilize a certain class of nonlinear

systems based on Lyapunov-Krasovskii functions, in [84] to develop model predictive con-

trol strategy, in [85,86] to address the output feedback problem using Riccati inequalities,

and in [87–89] to analyze stability within general frameworks which make use of con-

troller discretization (emulation). On the other hand, there exist only a limited number of

works on discrete-time approach for nonlinear NCSs. Inspired by the theory of nonlinear

sampled-data systems (see e.g., [4, 13]) based on discrete-time approximation, [90] pro-

poses a model-based communication protocol to deal with time varying delays and packet

losses in nonlinear NCSs. Very recently, [91] extends the same theory to the case of time

varying and uncertain sampling intervals and delays (that are not enforced to be multiple

of the sampling interval like what assumed in [90]), to derive sufficient conditions for the

global exponential stability of the nonlinear discrete-time NCSs. It is worth noting that

discrete-time design usually preferred to emulation-based controllers due to direct incor-

poration of the sampling period and providing better performance. Besides, it is shown

by [92] that in the case of linear NCSs, discrete-time approach may reduce conservatism.

In practice, since there exist different dynamics and hardware restrictions associated

with different input and output channels, it is often unrealistic to sample all the signals

comprising the system uniformly at one single rate. Therefore, multirate systems, in which

different sampling rates coexist, has found prominent importance in control applications.

Aside from the physical limitations, multirate sampling brings specific advantages to NCSs:

• It can often decrease the required storage space or computational complexity for

signal processing,

• Not only it does not violate the finite bandwidth constraint in NCSs, but also can

increase overall efficiency by effective usage of the available data rates,

• Multirate controllers are generally time varying, hence they can achieve what single-

rate systems cannot [1].

The objective of the model-based NCSs recently presented by e.g., [90, 93, 94] is also to

reduce the communication bandwidth requirement by creating more dependence on the

plant model rather than the actual measurements. However, the restrictive assumption

of single-rate sampling rates was always made in these works. Inclusion of multirate
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operations in NCSs can be seen in [95], where a subband coding scheme is proposed

to efficiently use the limited bit rates and to account for message losses. The problem

of model predictive control for networked-based multirate systems is studied in [96] via

a switched Lyapunov function approach. The ideas of channel resource allocation and

topological entropy of the plant are adapted in [97] to obtain necessary and sufficient

condition for stabilization of linear continuous-time system NCSs with imperfect multirate

input channels, in pursuit of [98] which focuses on discrete-time systems with imperfect

single-rate input channels. To the best of the author’s knowledge, nothing has been

reported on the nonlinear multirate NCSs and usually full information state feedback is

assumed in the existing linear multirate NCSs.

In Chapter 6, we employ the theory of dissipativity to stabilize multirate nonlin-

ear NCSs in the face of network-induced constraints and disturbance inputs. A general

sampled-data framework is proposed which utilizes a numerical prediction scheme together

with an output feedback controller to preserve a certain dissipation inequality. This work

generalizes the results of Chapter 3 to output feedback stabilization of multirate nonlin-

ear sampled-data systems via discrete-time design and in presence of a communication

network. Then, as special cases with practical importance explicit conditions in terms

of different sampling rates and network uncertainties are derived to guarantee, respec-

tively, the input-to-state stability and exponential stability of the disturbance driven and

disturbance free multirate NCS.

1.4 Thesis Outline

The organization of this research can be summarized as below:

Chapter 2: In this chapter, technical preliminaries are provided. Common notation and

definitions which will be used throughout the thesis are also presented.

Chapter 3: This chapter deals with a common practical problem where the output of a

nonlinear sampled-data system is constrained to be measured at a relatively lower sampling

rate. Designing a continuous-time controller that satisfies a specific dissipation inequality,

it is shown that the closed-loop sampled-data system obtained by digitally implementation

of the emulated controller in a multirate scheme preserves similar dissipation inequality

in a semiglobal practical sense. Moreover, we address multirate nonlinear H∞ control via
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emulation method as an important application.

Chapter 4: The L2 incremental gain is proposed as an alternative to the usual gain for

designing nonlinear H∞ controllers. Considering a class of plants with Lipschitz nonlin-

earities and using LMIs, a state feedback controller is designed such that the closed-loop

system is exponentially stable in the absence of disturbance inputs and has L2 incremental

gain less than or equal to a minimized number in the presence of disturbances as well as

model uncertainties. Moreover, a norm-wise robustness analysis of the proposed technique

against nonlinear uncertainties has been accomplished. Our result is verified through sta-

bilization of both certain and uncertain systems in an incremental sense and also input

tracking of a chaotic plant.

In the second part, an H∞ output feedback controller is presented for one-sided Lips-

chitz systems, which consists of a state feedback control together with a nonlinear observer.

By proposing the L2 incremental gain as an alternative H∞ performance measure to the

usual gain, we develop a design technique that guarantees an asymptotically stable closed-

loop system in the absence of disturbance inputs and further minimizes the incremental

gain from disturbances to the controlled output. This method is based on the Lyapunov

function parametrization and is formulated in terms of LMIs. Our result is then vali-

dated via numerical example of a discontinuous plant exposed to disturbance inputs with

numerous variations.

Chapter 5: In this chapter the design of sampled-data state observer for nonlinear plants

is investigated under the effect of system and measurement disturbance signals. We es-

tablish general design principles using the standard approaches of (i) direct discrete-time

design via approximation and (ii) discretization of a continuous-time observer (emulation).

By interpreting the disturbances as exogenous inputs affecting the error dynamics, suf-

ficient conditions are derived which ensure input-to-state stability (ISS) of the proposed

sampled-data observers with respect to the estimation error in a semiglobal practical sense,

in the presence of unknown exact discrete-time model as well as disturbance inputs. Our

results are then applied to the so-called one-sided Lipschitz nonlinearities to develop con-

structive design techniques via tractable LMIs. Simulations of an academic example and a

chaotic attractor validate the effectiveness of the proposed sampled-data estimators based

on the approximation and emulation methods.
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Chapter 6: This chapter is devoted to the problem of nonlinear state estimation under

multirate sampling in presence of disturbance inputs. Considering a general description

of a nonlinear sampled-data system, we establish a prescriptive framework for multirate

observer design via an approximate discrete-time model of the plant. This framework

is shown to be input-to-state stable in a semiglobal practical sense with respect to the

estimation error for the unknown exact discrete-time model. A numerical example of an

aerospace vehicle with input and output channels of various sampling rates demonstrates

how the multirate observer can drastically improve performance compared with the single-

rate observer.

Chapter 7: This chapter studies the problem of output feedback stabilization of non-

linear networked control systems (NCSs) with multirate sampling. Modeling the network

induced constraints as multiplicative or relative uncertainties to the input and output

channels a general framework for the multirate nonlinear NCS design is established that

exploits a dynamic sampled-data output feedback together with a numerical integration

scheme based on discrete-time approximate models to predict the missing intersample mea-

surements. The behavioral analysis is performed in the context of dissipativity theory. We

show that given an output feedback control satisfying a certain dissipation inequality for

the single-rate NCS, under standard continuity and consistency assumptions the proposed

multirate network-based structure is also dissipative with respect to similar supply rate

slightly deteriorated by some additive terms, in spite of channels uncertainties and distur-

bance inputs. These terms are closely related to the sampling rates and the integration

period and can be modified elaborately to preserve the input-to-state stability (ISS) in a

semiglobal practical sense. Moreover, sufficient conditions are provided which guarantee

the exponential stability of the uncertain multirate NCS in the absence of disturbances.

A simple simulation example exhibits some important features of the design approach by

rendering a stable closed-loop system under low rate of data transmission.

Chapter 8: The concluding remarks and future work related to the research are discussed

in this chapter.
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Chapter 2

Mathematical Background

This chapter provides technical preliminaries and definitions and fixes some standard

notation that will be used throughout the thesis.

2.1 Notation and Fundamental Tools

For a given function d : R+ → Rq, d(k) indicates the value of d(·) sampled at t = kT ,

k ∈ Z+ and d̄ = d[k] := {d(t) : t ∈ [kT, (k + 1)T ], k ∈ Z+} with the norm ||d[k]||∞ =

ess supτ∈[kT,(k+1)T ] |d(τ)|.
The classes of functions defined below play an important role in characterizing stability

of nonlinear systems.

Definition 2.1. A continuous-time function α : [0, a)→ [0,∞) is said to belong to class

K if it is strictly increasing and α(0) = 0. It is of class K∞ if, in addition, a = ∞ and

limt→∞ α(t) =∞. Functions of class K∞ are invertible.

Definition 2.2. A continuous-time function β : [0, a)× [0,∞)→ [0,∞) is said to belong

to class KL if for each fixed t, β(·, t) is of class K with respect to t and for each fixed s,

β(s, ·) is decreasing with respect to s and limt→∞ β(s, t) = 0.

Two basic mathematical theorems that are useful in this thesis are provided below.

Theorem 2.1. (Mean Value Theorem) Assume that f : Rn → R is continuously

differentiable at each point x of an open set S ⊂ Rn. Let x and y be two points of S such
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that the line segment L(x, y) ⊂ S. Then there exists a point z ∈ L(x, y) such that

f(y)− f(x) =
∂f

∂x

∣∣∣
x=z

(y − x) (2.1)

The line segment L(x, y) joining two distinct points x and y in Rn is

L(x, y) = {z|z = θx+ (1− θ)y, 0 < θ < 1} (2.2)

Theorem 2.2. (Gronwall-Bellman Inequality) Let λ : [a, b] → R be continuous and

µ : [a, b] → R be continuous and nonnegative. If a continuous function y : [a, b] → R

satisfies

y(t) ≤ λ(t) +

∫ t

a
µ(s)y(s)ds (2.3)

for all a ≤ t ≤ b, then on the same interval

y(t) ≤ λ(t) +

∫ t

a
λ(s)µ(s)e

∫ t
aµ(τ)dτds (2.4)

In particular, if λ(t) = λ is a constant, then

y(t) ≤ λe
∫ t
aµ(τ)dτ (2.5)

if, in addition, µ(t) = µ ≥ 0 is a constant, then

y(t) ≤ λeµ(t−a) (2.6)

2.2 Basic Definitions

2.2.1 Dissipativity

The notion of dissipativity is a broad system theoretic property which allows us to study

connections between input-output stability and classical Lyapunov stability of state space

realizations. Roughly speaking, it indicates there can be no “internal creation” of energy.

Therefore, the stored energy in a dissipative system at time t = t1 is, at most, equal to

the energy initially stored at time t = t0, plus the total energy externally supplied during

the interval [t0, t1].

21



Consider a dynamical system given by the following state space realization

Σ :


ẋ(t) = f(x, u), u ∈ U , x ∈ X

y(t) = h(x, u), y ∈ Y
(2.7)

where X ⊂ Rn, U ⊂ Rm, Y ⊂ Rp are, respectively, the state, input and output spaces.

Associated with (2.7) we define a function w(t) = w(u(t), y(t)) : U ×Y → R, called supply

rate (dissipation rate), that is a locally integrable function of the input u and output y of

the system Σ.

Definition 2.3. [49] A dynamical system Σ is said to be dissipative with respect to the

supply rate w(t) if there exists a function φ : X → R+, called the storage function, such

that for all x0 ∈ X , all t1 ≥ t0, and all inputs u ∈ U

φ(x(t1)) ≤ φ(x(t0)) +

∫ t1

t0

w(u(t), y(t))dt (2.8)

where x(t0) = x0 and x(t1) is the state of Σ at time t1 resulting from initial condition x0

and input function u(·).

The inequality (2.8) is called the dissipation inequality. In general, the storage function

φ need not be differentiable. However, the most widely used form of (2.8) upon which

several important results can be obtained, is the differential dissipation inequality which

further assumes a continuously differentiable storage function. More explicit definition

is given in Chapter 3. Also, the discrete-time form of dissipativity will be reviewed and

applied in Chapter 7.

There are several interesting candidates for the supply rate w(t) each of which impli-

cates a certain property such as input-to-state stability, passivity, small gain, Lp stability,

etc. One common type known as QSR-dissipativity in the literature is obtained by consid-

ering w(t) = yᵀ(t)Qy(t)+2yᵀ(t)Su(t)+uᵀ(t)Ru(t), that covers different kinds of passivity

as well as the finite-gain stability as special cases of interest for specific choices of the

parameters Q, S, and R. The interested reader is referred to [40,49,99] for more details.

2.2.2 Input-to-State Stability

The concept of input-to-state stability (ISS) was firstly introduced by [100] as a natural

generalization of asymptotic stability to fill the gap between stability in the sense of
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Lyapunov on one hand and input-to-output stability on the other hand of the spectrum.

ISS is basically utilized to analyze stability of systems described by state space realization

with variable input functions by investigating whether or not bounded inputs results in

bounded states. Although for linear time-invariant (LTI) systems where all notions stability

coincide, input-to-state stability is equivalent to asymptotic stability of the unforced plant,

the nonlinear case is a lot more subtle. One can easily find simple counterexamples showing

that, in general, these implications fail for nonlinear systems.

Consider a nonlinear system with input

ẋ(t) = f(x(t), u(t)) (2.9)

where f : D ×Du → Rn is continuously differentiable in x and u, and the sets D and Du

is defined by D = {x ∈ Rn : ‖x‖ < r}, Du = {u ∈ Rm : ess supt≥0 ‖u(t)‖ = ‖u‖∞ < ru}.
Note that these assumptions guarantee the local existence and uniqueness of the solutions

of the differential equation (2.9). The input-to-state stability is defined as follows.

Definition 2.4. The system (2.9) is said to be locally input-to-state stable (ISS) if there

exists a class KL function β(·, ·) and a class K function γ(·) such that

|x(t)| ≤ β(|x0|, t) + γ(‖u‖∞) (2.10)

for all x0 ∈ D, u ∈ Du, and t ≥ 0. It is said to be input-to-state stable, or globally ISS if

D = Rn and Du = Rm.

Remark 2.1. The input vector u of the system may have two different interpretations;

first, it can be a control, which is free to be designed to satisfy specific performance criteria

of the system and second, it can be an internal or external perturbation of the model like

exogenous disturbances. This case is considered Chapters 5-7

Remark 2.2. For the unforced system ẋ = f(x, 0), ISS implies that the origin is uniformly

asymptotically stable.

Remark 2.3. An alternative way to Definition 2.4 is to replace (2.10) by

|x(t)| ≤ max{2β(|x0|, t), 2γ(‖u‖∞)} (2.11)

The equivalence comes from the fact that given β > 0 and γ > 0, max{β, γ} ≤ β + γ ≤
max{2β, 2γ}.
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Lyapunov-like conditions can be stated to characterize the input-to-state stability.

Definition 2.5. A continuous and differentiable function V : Rn → R is called an ISS

Lyapunov function for the system (2.9) if there exists class K∞ functions α1, α2, α3 and

σ such that the following conditions are satisfied:

α1(|x|) ≤ V (x) ≤ α2(|x|) (2.12)

∂V (x)

∂x
f(x, u) ≤ −α3(|x|) + σ(|u|) (2.13)

for all x0 ∈ Rn, u ∈ Rm.

Theorem 2.3 gives necessary and sufficient conditions for ISS.

Theorem 2.3. The nonlinear system (2.9) is input-to-state stable if and only if there

exists an ISS Lyapunov function for the system.

We mention that input-to-state stability is a special case of dissipativity. Moreover,

the discrete-time form of ISS that is the central analysis tool in Chapters 5-7 will be

introduced later.

2.2.3 Consistency of Discrete-Time Approximate Models

Throughout this thesis the discrepancy between the exact and approximate discrete-time

models is measured via the concepts one-step and multi-step consistency. Consider again

the continuous time nonlinear system (2.9) with the control input u that is realized through

a zero-order hold device, i.e., u(t) = u(kT ) := u(k),∀t ∈ [kT, (k + 1)T ), k ∈ Z+, where T

is the sampling period. The difference equation corresponding to the exact discrete-time

model of (2.9) and is approximate model are, respectively, represented by

x(k + 1) = x(k) +

∫ (k+1)T

kT
f(x(τ), u(k))dτ := F eT (x(k), u(k)) (2.14)

x(k + 1) = F aT (x(k), u(k)) (2.15)

As mentioned earlier in Chapter 1, F eT is not usually available for nonlinear systems and

hence, the approximation F aT will be used in our analysis and design. We employ two

notions adopted from the numerical analysis literature to measure the closeness of solutions

of (2.14) and (2.15). The first type of closeness guarantees that the error between solutions

starting from the same initial condition is small over one step, relative to the size of the

step.
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Definition 2.6. (One-Step Consistency) [13] The family F aT (x, u) is said to be one-

step consistent with the exact discrete-time model F eT (x, u) if, for each compact set Ω ⊂
Rn × Rm, there exist a class-K function ρ(·) and a constant T ∗ > 0 such that for for all

(x, u) ∈ Ω and T ∈ (0, T ∗] we have

|F eT (x, u)− F aT (x, u)| ≤ Tρ(T ) (2.16)

A sufficient condition for one-step consistency is the following whose proof is given

in [4, 9].

Lemma 2.1. If

1. F aT is one-step consistent with FEulerT where FEulerT = x+ Tf(x, u),

2. given any strictly positive real numbers (δx, δu), there exists ρ1 ∈ K∞, M > 0, T ∗ > 0

such that for all T ∈ (0, T ∗) and |x1| ≤ δx, |u| ≤ δu

• max|x|≤δx,|u|≤δu |f(x, u)| ≤M

• |f(x1, u)− f(x2, u)| ≤ ρ1(|x1 − x2|)

then, F aT is one-step consistent with F eT .

By Lemma 2.1, it can be shown that the Euler approximate model is one-step consistent

with the exact model. The second type of closeness guarantees that the error between

solutions starting from the same initial condition is small over multi steps, relative to the

size of the step.

Definition 2.7. (Multi-Step Consistency) [4] The family F aT (x, u) is said to be multi-

step consistent with the exact discrete-time model F eT (x, u) if, for each L > 0, µ > 0 and

each compact set Ω ⊂ Rn × Rm, there exist a function α : R+ × R+ → R+ ∪ {∞} and

T ∗ > 0 such that for all T ∈ (0, T ∗], we have

{(x1, u) ∈ Ω, (x2, u) ∈ Ω, |x1 − x2| ≤ δ} ⇒ |F eT (x1, u)− F aT,h(x2, u)| ≤ α(δ, T ) (2.17)

and

k ≤ L/T ⇒ αk(0, T ) :=

k︷ ︸︸ ︷
α(. . . α(α(0, h), h) . . . , h) ≤ η (2.18)
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A sufficient condition for multi-step consistency is the following whose proof is given

in [4].

Lemma 2.2. If for each compact set Ω ⊂ Rn×Rm there exist K > 0, ρ ∈ K∞ and T ∗ > 0

such that for all T ∈ (0, T ∗] and all (x1, u) ∈ Ω, (x2, u) ∈ Ω we have

|F eT (x1, u)− F aT (x2, u)| ≤ (1 +KT )|x1 − x2|+ Tρ(T ), (2.19)

then F aT is multi-step consistent with F eT .

Remark 2.4. In can be inferred that the condition of Lemma 2.2 is guaranteed by one-step

consistency plus a Lipschitz condition on either F eT or the family F aT .

In general, one-step and multi-step consistency do not imply each other. This issue is

clarified by means of the following example [4, Remark 3, Example 2].

Example 2.1. Consider the linear system

ẋ1 = x1 + u1

ẋ2 = u2

(2.20)

with the exact discretization

ẋ1(k + 1) = eTx1(k) + [eT − 1]u1(k)

ẋ2(k + 1) = x2(k) + Tu2(k)
(2.21)

and the Euler approximate model

ẋ1(k + 1) = [1 + T ]x1(k) + Tu1(k)

ẋ2(k + 1) = x2(k) + Tu2(k)
(2.22)

which is controlled by

u(x) =


[−2x1 0]ᵀ if 0 < 0.1x1 < x2 < 10x1

[−2x1 − x2]ᵀ otherwise

(2.23)

It follows from Lemma 2.1 that (uT , F
a
T ) is one-step consistent with (uT , F

e
T ). However,

(uT , F
a
T ) is not multi-step consistent with (uT , F

e
T ). Indeed, consider the initial condition

(ξ1, ξ2) = (1, 0.1). It is easy to see that, in this case, (xa1(k, ξ), xa2(k, ξ)) = (1−T )k(1, 0.1),

i.e., the positive ray x2 = 0.1x1 > 0 is forward invariant for all T ∈ (0, 1). On the other
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hand, (xe1(1, ξ), xe2(1, ξ)) = ((2 − eT )1, (1 − T )0.1), i.e., for all small T > 0, xe2(1, ξ) <

10xe1(1, ξ) and xe2(1, ξ) > 0.1xe1(1, ξ) since eT > 1 + T . It follows that, for k ≥ 1, x(k, ξ)

will take values on the horizontal line given by x2 = (1− T )0.1 moving in the direction of

decreasing x1 until it crosses the positive ray x2 = 10x1. Let k̄ denote the number of steps

required to cross the positive ray x2 = 10x1. It is easy to put an upper and lower bound

on k̄T that is independent of T . Then since, for all k ≤ k̄, we have xe2(k, ξ) = (1− T )0.1

while xa2(k, ξ) = (1−T )k0.1 ≤ e−kT 0.1, it is clear that the conclusion of Lemma 2.2 is not

satisfied. Hence, (uT , F
a
T ) cannot be multi-step consistent with (uT , F

e
T ).

The fact that one-step consistency may not hold when multi-step consistency does hold

can be seen from the plant ẋ = x + u with Euler approximation x(k + 1) = x(k) +

T (x(k) + u(k)) = F aT (x(k), u(k)) and controller uT (x) = −( 1
T + 1)x. The exact discrete-

time model is x(k + 1) = eTx(k) + (eT − 1)u(k) and we have F aT (x, uT (x)) = 0 and

F eT (x, uT (x)) =
(
1− eT−1

T

)
x. Since, for x in a compact set, F eT (x, uT (x)) is of order T we

do not have one-step consistency. On the other hand, it follows from F aT (x, uT (x)) = 0 and

the fact that F eT (x, uT (x)) is of order T that we do have multi-step consistency. Indeed,

for each compact set X ∈ R and each η > 0 there exist strictly positive numbers K,T ∗

such that, for all x, z ∈ X , T ∈ (0, T ∗), k ≥ 0,

|F eT (x, uT (x))− F aT (z, uT (z))| = |F eT (x, uT (x))| ≤ KT := α(δ, T ) = αk(0, T ) ≤ η

Since in this thesis we will consider the effect of disturbance inputs as well and we deal

with multirate systems, more general definitions of consistency properties are needed.

Assume that the nonlinear system (2.9) is affected by exogenous disturbances d(t) as

ẋ = f(x, u, d). Then, consistent with the literature on nonlinear sampled-data control

systems we denote the exact discrete-time plant model by F eT (x(k), u(k), d[k]) and its

approximate model by F aT,h(x(k), u(k), d[k]). Note that the discrete-time approximate

model is here parametrized by the integration period h of the numerical method upon

which it is generated. The following definition of one-step consistency, that appears to be

much more reasonable for multirate systems, will be widely used throughout the thesis.

The analogous multi-step consistency condition is given in Definition 7.1.

Definition 2.8. The approximate model F aT,h is said to be one step consistent with F eT if

there exist a class-K function ρ(·) and T ∗ > 0 such that given any strictly positive numbers
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(δ1, δ2, δ3) and each fixed T ∈ (0, T ∗], there exists h∗ ∈ (0, T ] such that

|F eT (x, u, d̄)− F aT,h(x, u, d̄)| ≤ Tρ(h) (2.24)

for all x ∈ B(δ1), u ∈ B(δ2), ‖d‖∞ ≤ δ3 and h ∈ (0, h∗).

2.2.4 One-Sided Lipschitz Condition

As mentioned in Chapter 1, the one-sided Lipschitz systems is known as a broad family

of nonlinear plants with practical significance (e.g., stiff dynamical systems [63]) which

generalizes the classical Lipschitz systems as an special case. In this thesis, particularly

Chapters 4 and 5, we examined our general frameworks on this important class of nonlin-

earities to illustrate the effectiveness of the results and to obtain some systematic design

approaches.

Definition 2.9. [63] The nonlinear function Φ(x, u) is said to be Lipschitz with respect

to x in a region X around the origin if there exists a constant λ > 0 such that ∀x1, x2 ∈ X

‖Φ(x1, u
∗)− Φ(x2, u

∗)‖ ≤ λ‖x1 − x2‖ (2.25)

where u∗ is any admissible control signal. This nonlinearity is called one-sided Lipschitz

if there exists ρ ∈ R such that ∀x1, x2 ∈ X

〈Φ(x1, u
∗)− Φ(x2, u

∗), x1 − x2〉 ≤ µ‖x1 − x2‖2 (2.26)

the smallest λ > 0 and µ satisfying (2.25) and (2.26) are known as the Lipschitz and the

one-sided Lipschitz constants, respectively.

The properties of Definition 2.9 might be local or global. Note that unlike the Lipschitz

constant, the one sided Lipschitz constant is not necessarily positive. This is a significant

feature of the one-sided Lipschitz nonlinearities which removes the need to rely on the

dominance of the linear terms in the classical Lipschitz approach. It is well known that

every Lipschitz function is continuous, one-sided Lipschitz functions on the other hand

may be discontinuous.

For any Lipschitz function Φ(x, u), we have

|〈Φ(x1, u
∗)− Φ(x2, u

∗), x1 − x2〉| ≤ ‖Φ(x1, u)− Φ(x2, u)‖‖x1 − x2‖ ≤ λ‖x1 − x2‖2
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Thus, any Lipschitz function is also one-sided Lipschitz. The converse, however, is not

true. For continuously differentiable nonlinear functions it is well-known that the smallest

possible constant satisfying (2.25) (i.e., the Lipschitz constant) is the supremum of the

norm of Jacobian of the function over region X , that is

λ = lim sup
(
‖∂Φ

∂x
‖
)
, ∀x ∈ X (2.27)

Alternatively, the one-sided Lipschitz constant is associated with the logarithmic matrix

norm (matrix measure) of the Jacobian. The logarithmic matrix norm of a matrix A is

defined as [48]

µ(A) = lim
ε→0

‖I + εA‖ − 1

ε
, (2.28)

where the symbol ‖ · ‖ represents any matrix norm. Then, we have [101]

µ = lim sup
[
µ
(∂Φ

∂x

)]
, ∀x ∈ X (2.29)

If the norm used in (2.28) is indeed the induced 2-norm (the spectral norm) then it can

be shown that µ(A) = λmax(A+Aᵀ

2 ) [48]. One the other hand, from the Fan’s theorem we

know that for any matrix, λmax(A+Aᵀ

2 ) ≤ σmax(A) = ‖A‖. Therefore, µ ≤ λ. Usually one-

sided Lipschiz constant can be found to be much smaller that the Lipschitz constant [101].

It is well-known in numerical analysis that for stiff ODE systems, µ << λ.

Remark 2.5. There is an alternative definition for one-sided Lipschitz condition as fol-

lows

〈PΦ(x1, u
∗)− PΦ(x2, u

∗), x1 − x2〉 ≤ µ1‖x1 − x2‖2 (2.30)

for some symmetric positive definite matrix P . This definition has been already considered

by several authors to study one-sided Lipschitz systems (see e.g., [59–62]). However, the

main drawback with (2.30) is that it adds additional constraint to the controller or observer

synthesis and affects the value of the one-sided Lipschitz constant.

In this thesis the original definition of one-sided Lipschitz condition governed by (2.26)

is employed without any scaling matrix like (2.30).
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Chapter 3

Multirate Nonlinear Control via

Emulation Method

The primary interest of this chapter1 is the study of dissipativity preservation under

multirate sampling. The theory of dissipativity was initiated by [44] and has become a

fundamental tool in control systems analysis and design. See for example [40, 49, 99]. We

will concentrate on controller emulation when the output is measured at a slower rate

compared to the control input. Assuming that the closed-loop system with disturbances

satisfies certain form of dissipation inequality, we study the dissipativity of a closed-loop

MSD system implemented by emulating the continuous-time controller. We make use

of the inferential control setup proposed by [18] and show that under mild assumptions

the dissipation inequality is preserved for the nonlinear multirate plant in a semiglobal

practical sense.

Essentially, this chapter is a multirate version of the work of [9]- [8], and guarantees

the preservation of dissipation inequalities for a closed-loop sampled-data system when

the input and output sampling rates are different. Our results are applicable to static and

dynamic state feedback controllers and can be used to cover a wide range of important sys-

tem theoretic properties, including stability, input-to-state stability, passivity, Lp-stability,

etc that are special cases of dissipativity. Hence, in the present work we provide a rather

general and unified framework for MSD design via CTD method that can be regarded as

1The results of this chapter have been published in the article: H. Beikzadeh and H. J. Marquez,
“Dissipativity of nonlinear multirate sampled-data systems under emulation design,” Automatica, vol. 49,
no. 1, pp. 308-312, 2013.
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a generalization of the papers by [17] and [18]. Moreover, it is shown how this framework

captures the important case of multirate nonlinear H∞ control (see e.g., [39] on nonlinear

H∞ control problem) as a special case.

The chapter is organized as follows. In Section 3.1, the multirate controller setup

together with the relevant notations and definitions are introduced. Section 3.2 states

and proves the main results for both the static and dynamic state feedbacks. We employ

an appropriate example to illustrate our results in Section 3.3. It can be seen that if we

design a continuous-time nonlinear H∞ controller, then similar H∞ performance criterion

is preserved for the MSD control system under emulation. Furthermore, simulations reveal

that the multirate case outperforms the corresponding single rate case using a prominent

slower output sampling rate. Finally, Section 3.4 concludes and summarizes the chaper.

3.1 Preliminaries and Controller Setup

Consider the general nonlinear plant governed by

G :


ẋ(t) = f(x(t), u(t), d(t))

z(t) = g(x(t), u(t), d(t))

(3.1)

initiated by x(0) = x0, where x ∈ Rn is the state, u ∈ Rm the control input, d ∈ Rq

the exogenous disturbance to the system, and finally z ∈ Rl the penalty output (tracking

errors, cost variables, etc). Also, it is assumed that f is locally Lipschitz in all of its

arguments, g is continuous and f(0, 0, 0) = 0. The state feedback controller will be studied

and therefore, all the states are available for measurement. Representing the measured

output by y, we will often write y = x.

The continuous-time plant (3.1) is connected to a digital controller Kd via sample and

hold devices with different sampling rates Ss and Hf , respectively, as shown in Figure 3.1.

In this setup, the input sampling period defined by the fast hold Hf is denoted by Ti = T

and the measurement sampling period determined by the slow sampler Ss is Tm = lT for

some integer l ≥ 1. This assumption was made before in the literature on multirate plants

(see e.g., [17]). Note that T is the basic sampling period of the system and can be assigned

arbitrarily.

As a starting point in the emulation design, it is assumed that the state feedback
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Figure 3.1: Standard multirate sampled-data control configuration

controller has been designed to stabilize or to fulfill certain property of the closed-loop

continuous-time system. Differential dissipation defined below is such a broad property

that is the centre of attention in this work (see [44]- [99] for more general definitions). We

focus on the static controller u(t) = u(x) while the dynamic feedback case may be also

handled in a similar fashion in Section 3-2-2.

Definition 3.1. The continuous-time system (3.1) with the control input u = u(x) is said

to be dissipative with respect to a continuous function w, called supply rate, if there exists

a continuously differentiable function V , called storage function, such that for all x ∈ Rn,

u ∈ Rm, d ∈ Rq, z ∈ Rl

V̇ (t) =
∂V

∂x
f(x(t), u(t), d(t)) ≤ w(d(t), z(t)) (3.2)

Remark 3.1. It should be noted that the dissipation rate w is usually expressed as a

function of the input and output signals [40], i.e., w(u, d, y, z) for the general represen-

tation (3.1). However, since we have considered a state feedback case in a closed-loop

configuration, it can be simplified as in (3.2).

Let

x(k + 1) = x(k) +

∫ (k+1)T

kT
f(x(τ), u(k), d(τ))dτ := F eT (x(k), u(k), d[k]) (3.3)

represent the exact discrete-time model of the plant (3.1) with the sampling period T > 0.

Finding F eT requires solving the differential equation in (3.1) which in most practical cases

cannot be done analytically. Consistent with the literature on sampled-data systems, F eT

will be assumed to be unknown and instead, a family of approximate discrete-time models
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of the plant will be used

x(k + 1) = F aT,h(x(k), u(k), d[k]) (3.4)

where h is the period of the numerical integration used to generate the approximate model

and may be different from the sampling period T (see [18] for an informative discussion

on choosing h different from T ). The approximate models can be obtained using any of

several well known numerical integration methods.

With these prerequisites, we are able use the sampled-data inferential control setup

proposed by [18] with zero disturbance, shown in Figure 3.2, to stabilize the multirate non-

linear plant in Figure 3.1. Indeed, the control algorithm Kd is described by the following

periodic switch

xc(k + 1) =


y(k + 1), if ∃ i ∈ Z+ : k + 1 = il

F aT,h(xc(k), u(k), 0), otherwise, with initialization xc(il) = x(il)

(3.5)

along with the discretized emulated controller u(k) = u(xc(k)). The basic idea is to

compensate for the missing states by means of the switch output which is fed to the fast

rate controller.

Figure 3.2: The sampled-data inferential control system

Thus, the discrete-time model of the closed-loop sampled-data system consists of the

exact discrete-time model of the plant and the multirate controller is given by

x(k + 1) = F eT (x(k), u(k), d[k])

u(k) = u(xc(k))

z(k) = g(x(k), u(k), d(k))

(3.6)

To shorten our notation we write x := x(k), xc := xc(k), u := u(k), d := d(k), and

f := f(x(k), u(k), d(k)) in the sequel. For completeness the following definition and lemma

are introduced.
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Definition 3.2. (Uniform Lipschitz) F aT,h is said to be uniform locally Lipschitz if given

any strictly positive numbers (δ1, δ2, δ3) there exist L1 > 0 and T1 > 0 such that for each

fixed T ∈ (0, T1], there exists h1 ∈ (0, T ] such that

|F aT,h(x1, u, d̄)− F aT,h(x2, u, d̄)| ≤ L1|x1 − x2| (3.7)

for all x1, x2 ∈ B(δ1), u ∈ B(δ2), ||d||∞ ≤ δ3 and h ∈ (0, h1).

Lemma 3.1. Suppose that F aT,h is constructed by a recursive routine on the Euler model

as below

fh(i, x, u, d) := x+ hf1(x, u, d1) +

∫ kT+(i+1)h

kT+ih
f2(x, u, d2(τ))dτ (3.8)

f i+1
h (x, u, d) := fh(i+ 1, f ih, u, d) (3.9)

where f(x, u, d) = f1(x, u, d1) + f2(x, u, d2) with the sampled disturbance d1 and the non-

sampled disturbance d2. Then, F aT,h(x(k), u(k), d[k]) := fNh (x, u, d), in which N = T/h, is

one-step consistent with F eT .

Remark 3.2. In the single-rate case, a sufficient condition for one-step consistency is

established via the Euler approximate model [4, Lemma 1]. Lemma 3.1 provides a similar

condition for the multirate case. The proof is immediate from [4, Lemma 1 and Remark

2] together with [13, Corollary 4 and Remark 14].

3.2 Preservation of Dissipativity in Mutilate Setup

3.2.1 Static Feedback Case

The central question is whether the desired property of the closed-loop continuous-time

system described in terms of the dissipation inequality (3.2) will be preserved and, if so,

in what sense for the closed-loop MSD system (3.6). This section endeavours to answer

this question.

Assumption 3.1. The close-loop continuous time system (3.1) with the control input

u = u(x) is dissipative as stated by Definition 3.1.

Assumption 3.2. F aT,h is one-step consistent with F eT according to Definition 2.8 and is

uniform locally Lipschitz based on Definition 3.2.
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Theorem 3.1. Under Assumptions 3.1-3.2, given positive real numbers (δx, δd, ν) there

exists T ∗ > 0 such that for any fixed T ∈ (0, T ∗], all |x(0)| ≤ δx and Lipschitz disturbances

that satisfy ||d||∞ ≤ δd, there exists h∗ ∈ (0, T ] such that the exact discrete-time model of

the closed-loop MSD system (3.6) satisfies the following dissipation inequality

∆V

T
:=

V (x(k + 1))− V (x(k))

T
≤ w(d(k), z(k)) + ν (3.10)

for each h ∈ (0, h∗].

Proof: First the results provided in [18, Lemma 1] imply that under Assumption

3.2, given positive real numbers (δx, δd, ε) there exists T2 > 0 such that for any fixed

T ∈ (0, T2], there exists h2 ∈ (0, T ] such that for each |x(0)| ≤ δx, ||d||∞ ≤ δd and

h ∈ (0, h2] the following satisfies: If maxi∈{0,1,...,k} |x(i)| ≤ δx for some k ∈ Z+ then

|x(k)− xc(k)| ≤ ε (3.11)

with xc(·) as the output of the periodic switch (3.5). Define δ = δx + 1. Let L be the

Lipschitz constant of f , and b > 0 be a number that satisfies max{|∂V/∂x|, |f(x, u, d)|} ≤ b
on the sets |x| ≤ δ and ||d||∞ ≤ δd. It is easy to see that such b > 0 always exists because

of the continuous differentiability of V , the local Lipschitz property of f and the fact that

they are in a closed set.

Let T2 > 0 and h2 > 0 as generated above for some ε < 1, and choose a positive number

T3 such that T3Lb(b + Ld) ≤ ν/2, where Ld is the Lipschitz constant of the disturbance

input defined as

|d(t1)− d(t2)| ≤ Ld|t1 − t2|, ∀t1, t2 ∈ R+ (3.12)

Moreover, by the continuity of ∂V/∂x, it follows that given any θ > 0 there exists Tθ > 0,

such that |(∂V/∂x)x1 − (∂V/∂x)x| ≤ θ for any T ∈ (0, Tθ], |x1 − x| ≤ Tb. Take θ = ν/2b

and denote T4 := Tθ such that for all T ∈ (0, T4], |x| ≤ δ and ||d||∞ ≤ δd the following

holds: ∣∣∣∂V
∂x |x1

− ∂V

∂x |x

∣∣∣ ≤ ν

2b
(3.13)

Finally, take T ∗ = min{T1, T2, T3, T4, 1/2b} and for any T ∈ (0, T ∗] we define h∗ =

min{h1, h2, T}. To shorten the notation we symbolize x := x(k), xc := xc(k), u := u(k),

35



d := d(k) and fk := f(x(k), u(k), d(k)) in the sequel. Now consider

V (x(k + 1))− V (x(k))

T
=
∂V

∂x |x
f︸ ︷︷ ︸

1

+
1

T
{V (x(k + 1))− V (x+ Tfk)}︸ ︷︷ ︸

2

+
1

T

{
V (x+ Tfk)− V (x)− ∂V

∂x |x
f
}

︸ ︷︷ ︸
3

(3.14)

in which T ∈ (0, T ∗] and x + Tfk is the Euler approximate model of the state equation

in (3.1). We proceed by imposing some bounds on each term on the right hand side of

(3.14).

Term 1: By Assumption 3.1, it follows that

∂V

∂x |x
f ≤ w(d, z) (3.15)

Term 2: Using the mean value theorem, we get

1

T
{V (x(k + 1))− V (x+ Tfk)} ≤

1

T

∂V

∂x |x2
|x(k + 1)− x− Tfk| (3.16)

where x2 = x + Tfk + θ1{x(k + 1) − x − Tfk}, θ1 ∈ (0, 1). Regarding the term |x(k +

1) − x − Tfk| two situations may occur. If {x(k + 1) − x − Tfk} ≤ 0, then by our

choice of T ∗, in particular T ∗ ≤ 1/2b we obtain |x2| ≤ |x + Tfk| ≤ δx + 1/2 ≤ δ.

Otherwise, we have |x2| ≤ |x(k + 1)|, and noting that here x(t) is the solution of initial

value problem ẋ = f(x(t), u, d(t)), ∀t ∈ [kT, (k+1)T ] with the initial value x(k), it implies

|x2| ≤ |x(k + 1)| ≤ δx + 1 = δ. Consequently, in both cases x2 belongs to our region of

interest. Furthermore, by virtue of (3.11), it follows that |xc| ≤ δx + ε ≤ δ which indicates

that the switch output also remains inside the region defined by δ. Since |x2| ≤ δ, it

yields that
∣∣(∂V/∂x)x2

∣∣ ≤ b. Using the mean value theorem, triangle inequality and local

Lipschitz property of f and also d, i.e., inequality (3.12), it can be concluded

|x(k + 1)− x− Tfk| ≤ T |f
(
x(kT + θ2T ), u, d(kT + θ2T )

)
− f(x, u, d)|

≤ T |f
(
x(kT + θ2T ), u, d(kT + θ2T )

)
− f

(
x, u, d(kT + θ2T )

)
|

+ T |f
(
x, u, d(kT + θ2T )

)
− f(x, u, d)|

≤ TL{|x(kT + θ2T )− x| − |d(kT + θ2T )− d|}

≤ θ2LT
2|f
(
x(kT + αθ2T ), u, d(kT + αθ2T )

)
|+ LdLT

2

≤ LT 2b+ LdLT
2 (3.17)
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with θ2, α ∈ (0, 1). Hence, we can write

term 2 ≤ TLb(b+ Ld) (3.18)

By the choice of T3 and h∗, it yields

1

T
{V (x(k + 1))− V (x+ Tfk)} ≤

ν

2
(3.19)

Term 3: Let x3 = x+ θ3Tf with θ3 ∈ (0, 1), using the mean value theorem we get

1

T

{
V (x+ Tfk)− V (x)− ∂V

∂x |x
f
}
≤ ∂V

∂x |x3
f − ∂V

∂x |x
f ≤ b

∣∣∣∂V
∂x |x3

− ∂V

∂x |x

∣∣∣ ≤ ν

2
(3.20)

for |x3 − x| ≤ Tb. Combining the bounds obtained in (3.15), (3.19)-(3.20) the dissipation

inequality (3.10) can be verified. This completes the proof. �

The importance of Theorem 3.1 is that, it shows how specifications of a continuous-

time controller design based on dissipation inequalities can be preserved in a multirate

sampled-data setup (special cases are practical asymptotic stability in [17] and semiglobal

ISS stability [18]). As an application, we may obtain a multirate H∞ design derived from

the emulation method (see next section).

Remark 3.3. For simplicity, Theorem 3.1 was proved for the case of “dual” rate, i.e.,

when all the components xi of the state x are sampled at the same slow rate. Picking the

largest output sampling as Tm, it can be shown that the theorem is still valid when each

state xi is sampled at a different rate liT (li ≥ 1).

Remark 3.4. This theorem is analogous to the weak form of dissipation inequalities con-

sidered in [8] for the single-rate emulation design. A multirate version of the strong form

of dissipation in that paper may be also developed in a similar way.

Remark 3.5. The Lipschitz continuity condition imposed on the disturbance input is

common in the literature (see e.g., [9, Theorem 3.1]). However, it can be shown that this

condition can be eliminated by considering a stronger form of dissipation inequality.

Remark 3.6. Assumption 3.2 is made to guarantee the practical ISS stability of the

closed-loop system and the boundedness of the periodic switch output xc but is otherwise

unnecessary in the proof of Theorem 3.1. Conversely, this assumption plays a crucial role

in preservation of dissipation inequality for the dynamic feedback structure.
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3.2.2 Dynamic Feedback Case

This section extends our result to the case of dynamic state feedback. Assume that the

system (3.1) is controlled by

v̇(t) = s(x(t), v(t))

u(t) = u(x(t), v(t))
(3.21)

where v ∈ Rr is the state of the controller and s, u are continuous, locally Lipschitz

functions and zero at zero. Similar to (3.4), an approximate discrete-time model of the

dynamic controller (3.21) will be applied

v(k + 1) = SaT,h(x(k), v(k))

u(k) = u(x(k), v(k))
(3.22)

corresponding to the exact model SeT . For the sake of brevity, set v := v(k), s :=

s(x(k), v(k)) and x̃ = [xᵀ vᵀ]ᵀ.

Clearly, for the dynamic controller (3.21) the dissipation inequality in Definition 3.1

has the following form

V̇ (t) =
∂V

∂x
f(x, u, d) +

∂V

∂v
s(x, v) ≤ w(d(t), z(t)). (3.23)

Assumption 3.3. The approximation SaT,h is one-step consistent with SeT .

Theorem 3.2. Under Assumptions 3.1-3.3 with u(x,v) and the dissipation inequality

(3.23), given positive real numbers (δx, δd, ν) there exists T ∗ > 0 such that for any fixed

T ∈ (0, T ∗], all |x̃(0)| ≤ δx and Lipschitz disturbances that satisfy ||d||∞ ≤ δd, there exists

h∗ ∈ (0, T ] such that for each h ∈ (0, h∗] the exact discrete-time model of the closed-loop

MSD system containing (3.1), (3.5) and (3.22) fulfills the following dissipation inequality

∆V

T
:=

V (x̃(k + 1))− V (x̃)

T
≤ w(d(k), z(k)) + ν (3.24)

provided that for some k ∈ Z+ maxi∈{0,1,...,k} |x̃(i)| ≤ δx.

Proof. Define δ = δx + 1. Let Lf , Ls > 0 be the Lipschitz constant of f and s respec-

tively, and b > 0 be a number that satisfies max{|∂V/∂x|, |∂V/∂v|, |f(x, u, d)|, |s(x, v)|} ≤
b on the sets where |x| ≤ δ, |v| ≤ δ and ||d||∞ ≤ δd. It is easy to see that such b > 0 always

exists because of the continuous differentiability of V , the local Lipschitz properties of f

and s, and the fact that they are in a closed set. Let T2, h2 > 0 be generated as above for
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some ε = min{1, δ/8bLs}, and T3, h3 > 0 and ρ̃(·) ∈ K be obtained from Assumption 3.3.

Moreover, take positive numbers T4, h4 and h5 such that T4b
2(Lf +Ls) +T4bLfLd ≤ ν/4,

T3ρ̃(h4) ≤ 1/2 and bρ̃(h5) ≤ ν/4, where Ld is the Lipschitz constant of the disturbance

input. By the continuity of ∂V/∂x, it follows that given ν/4b there exists T5 > 0, such

that for any T ∈ (0, T5], |x1 − x| ≤ Tb, |v1 − v| ≤ Tb and all |x̃| ≤ δ, ||d||∞ ≤ δd∣∣∣∂V
∂x |(x1,v1)

− ∂V

∂x |(x,v)

∣∣∣ ≤ ν

4b
. (3.25)

Likewise, choose T6 > 0 such that for all T ∈ (0, T6], |x̃| ≤ δ and ||d||∞ ≤ δd∣∣∣∂V
∂x |(x2,v2)

− ∂V

∂x |(x,v)

∣∣∣ ≤ ν

8b
. (3.26)

Finally, take T ∗ = min{T2, T3, T4, T5, T6, 1/2b} and for any T ∈ (0, T ∗] we define h∗ =

min{h2, h3, h4, h5, T}. Now consider

V (x̃(k + 1))− V (x̃(k))

T
=
∂V

∂x |x̃
f +

∂V

∂v |x̃
s︸ ︷︷ ︸

1

+
1

T
{V (x̃(k + 1))− V (x+ Tf, v + Ts(xc, v))}︸ ︷︷ ︸

2

(3.27)

+
1

T
{V (x+ Tf, v + Ts(xc, v))− V (x̃)− ∂V

∂x |x̃
f − ∂V

∂v |x̃
s}︸ ︷︷ ︸

3

Term 1: By Assumption 3.1, this term is bounded by (3.23).

Term 2: Using the mean value theorem, we get

1

T
{V (x(k + 1), v(k + 1))− V (x+ Tf, v + Ts(xc, v))}

≤ 1

T

∂V

∂x |(x3,v(k+1))
|x(k + 1)− x− Tf |

+
1

T

∂V

∂v |(x+Tf,v3)
|v(k + 1)− v − Ts(xc, v)| (3.28)

where x3 = x+Tf+θ1{x(k+1)−x−Tf} and v3 = v+Ts(xc, v)+θ2{v(k+1)−v−Ts(xc, v)},
θ1, θ2 ∈ (0, 1). Regarding the first term on the right-hand side of (3.28) two situations may

occur. If {x(k + 1)− x− Tfk} ≤ 0, then by our choice of T ∗, in particular T ∗ ≤ 1/2b, we

obtain |x3| ≤ |x+ Tfk| ≤ δx + 1/2 ≤ δ. Otherwise, we have |x3| ≤ |x(k + 1)|, and noting

that here x(t) is the solution of initial value problem ẋ = f(x(t), u, d(t)),∀t ∈ [kT, (k+1)T ]

with the initial value x(k), it implies |x3| ≤ |x(k + 1)| ≤ δx + 1 = δ. Furthermore, by
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virtue of (3.11) |xc| ≤ δx+ ε ≤ δ and hence, it follows from Assumption 3.3, the triangular

inequality as well as the choice of h4: |v(k+ 1)| = |SaT,h(xc, v)| ≤ |SeT (x̄c, v)|+ |SeT (x̄c, v)−
SaT,h(xc, v)| ≤ δx + 1/2 + T ρ̃(h) ≤ δ. Since |x3| ≤ δ and |v(k + 1)| ≤ δ, it yields that

|(∂V/∂x)(x3,v(k+1))| ≤ b. Using the mean value theorem, the triangle inequality and the

local Lipschitz property of f and d, we conclude

|x(k + 1)− x− Tf | ≤ T |f(x(kT + θ3T ), u, d(kT + θ3T ))− f(x, u, d)|

≤ T |f(x(kT + θ3T ), u, d(kT + θ3T ))− f(x, u, d(kT + θ3T ))|

+ T |f(x, u, d(kT + θ3T ))− f(x, u, d)|

≤ TLf{|x(kT + θ3T )− x| − |d(kT + θ3T )− d|}

≤ θ3T
2Lf |f(x(kT + αθ3T ), u, d(kT + αθ3T ))|+ θ3T

2LfLd

≤ T 2Lfb+ T 2LfLd (3.29)

with θ3, α ∈ (0, 1). In exactly the same way, max{|v + Ts(xc, v)|, |v(k + 1)|} ≤ δ yields

|v3| ≤ δ, which together with |x + Tf | ≤ δ implies |(∂V ∂v)|(x+Tf,v3)| ≤ b. Applying the

triangle inequality, Assumption 3.3 and finally the mean value theorem, we have

|v(k + 1)− v − Ts(xc, v)| ≤ |SaT,h(xc, v)− SeT (x̄c, v)|+ |SeT (x̄c, v)− v − Ts(xc, v)|

≤ T ρ̃(h) + |SeT (x̄c, v)− v − Ts(xc, v)|

≤ T ρ̃(h) + T |s(xc, v(kT + θ4T ))− s(xc, v)|

≤ T ρ̃(h) + TLs|v(kT + θ4T )− v|

≤ T ρ̃(h) + ηT 2Ls|s(xc, v(kT + ηθ4T ))|

≤ T ρ̃(h) + T 2Lsb (3.30)

where θ4, η ∈ (0, 1) and we used the local Lipschitz property of s, again the mean value

theorem and the bound of s in the last three inequalities, respectively. Thus, based on

(3.29)-(3.30) and by our choice of T4 and h5 we can write

Term 2 ≤ Tb2(Lf + Ls) + TbLfLd + bρ̃(h) ≤ ν

2
. (3.31)

Term 3: Let x4 = x+θ5Tf and v4 = v+θ6Ts(xc, v) with θ5, θ6 ∈ (0, 1). Since |x4−x| ≤ Tb
and |v4−v| ≤ Tb, from the choice of T5 and T6, it follows that (x4, v+Ts(xc, v)) and (x, v4)

satisfy (3.25) and (3.26), respectively. By adding and subtracting V (x, v+ Ts(xc, v)) and
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then using the mean value theorem we have

1

T
{V (x+ Tf, v + Ts(xc, v))− V (x̃)− ∂V

∂x |x̃
f − ∂V

∂v |x̃
s}

≤ ∂V

∂x |(x4,v+Ts(xc,v))
f +

∂V

∂v |(x,v4)
s(xc, v)− ∂V

∂x |(x,v)
f − ∂V

∂v |(x,v)
s

≤ b
∣∣∣∂V
∂x |(x4,v+Ts(xc,v))

− ∂V

∂x |(x,v)

∣∣∣+
∂V

∂v |(x,v4)
s(xc, v)− ∂V

∂v |(x,v)
s

≤ ν

4
+
∂V

∂v |(x,v4)
s(xc, v)− ∂V

∂v |(x,v)
s (3.32)

where we used the bounds of f and (3.25). Hence, It can be seen that

Term 3 ≤ ν

4
+
∂V

∂v |(x,v4)
s(xc, v)− ∂V

∂v |(x,v)
s(xc, v)︸ ︷︷ ︸

3a

+
∂V

∂v |(x,v)
s(xc, v)− ∂V

∂v |(x,v)
s(x, v)︸ ︷︷ ︸

3b

≤ ν

4
+
ν

8
+
ν

8
=
ν

2
. (3.33)

Note that in (3.33) Term 3a is bounded by ν/8 due to (3.26). Moreover, from (3.11)

and the local Lipschitz property of s, for Term 3b it yields that (∂V/∂v)|(x,v)s(xc, v) −
(∂V/∂v)|(x,v)s(x, v) ≤ bLsε ≤ ν/8. Combining the bounds obtained for terms 1-3, the

dissipation inequality (3.24) can be readily verified. This completes the proof. �

3.3 Application: Multirate Nonlinear H∞ Control

The theory of dissipative systems provides a general framework to analyze several system

theoretic properties and also to design controllers with certain specifications. Particularly,

the discrete-time dissipation inequality demonstrated in Theorems 3.1-3.2 is an effective

tool that can be used to show that the trajectories of the multirate sampled-data system

with an emulated controller have a specific property.

In this section, we illustrate the importance of preserving dissipativity under multirate

sampling by applying our results to a nonlinear H∞ control problem. This problem that

is entirely based on the notions of dissipativity of nonlinear systems and differential games

( [102]- [41]) can be expressed as follows.

Definition 3.3. [39] We say that G in (3.1) has L2-gain ≤ γ provided that∫ t

0
|z(τ)|2dτ ≤ γ2

∫ t

0
|d(τ)|2dτ (3.34)
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for all measurable input functions d and t ≥ 0 with output z(·) corresponding to the input

d(·) from initial state x0 ∈ Rn.

The discrete-time counterpart of Definition 3.3 can be found in [41]. For a given

prescribed disturbance attenuation level γ > 0, the H∞ control problem consists of finding

a controller Kd such that, in the closed-loop configuration of Figure 3.1, the L2-gain

from exogenous inputs d to the cost variable z is less than or equal to γ. Definitions of

dissipativity and finite L2-gain declares that the system G has L2-gain ≤ γ if and only if it

is dissipative with respect to the supply rate w(d, z) = 1
2γ

2|d(t)|2− 1
2 |z(t)|2. Consequently,

designing an H∞ controller u = u(x) for the continuous-time plant (3.1) renders to finding

a suitable storage function V such that the closed-loop system is dissipative with respect

to 1
2γ

2|d(t)|2 − 1
2 |z(t)|2. Then based on the results in the previous section, the proposed

multirate structure will preserve similar H∞ performance in a semiglobal practical sense.

The next corollary demonstrates that applying the emulated H∞ controller in the

inferential strategy (3.5) yields a framework for multirate H∞ synthesis. We remark that

although the practical preservation of the H∞ performance can be granted by Theorem

3.1, Corollary 3.1 shows how the additive term ν is cancelled for multirate H∞ control

via emulation. It should be mentioned that in this section, the state feedback controller

is static.

Corollary 3.1. Suppose that an H∞ controller u(x) is designed for system (3.1) with

γ > 0, and storage function V with a locally Lipschitz gradient ∂V/∂x and (∂V/∂x)(0) = 0.

Then under Assumption 3.2, given any pair of positive real numbers (δx, δd) there exists

T ∗ > 0 such that for any fixed T ∈ (0, T ∗], there exists h∗ ∈ (0, T ] such that for each

|x(0)| ≤ δx, Lipschitz disturbances with ||d||∞ ≤ δd and h ∈ (0, h∗], the closed-loop MSD

system controlled by u(k) = u(xc(k)) ensures the following H∞ performance criterion

N∑
k=0

|z(k)|2 ≤ γ2
N∑
k=0

|d(k)|2 (3.35)

for all N ∈ Z+and all d(k) ∈ `2({0, . . . , N},Rq) with the output z(k) resulting by d(k)

from initial state x0.

Sketch of the Proof: First by modifying the proof of Theorem 3.1 based on the

arguments carried out in the proof of [9, Proposition 3.4] we get

∆V

T
≤ 1

2
γ2|d|2 − 1

2
|z|2 + T (K1|d|2 +K2|z|2) (3.36)
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for all T ∈ (0, T ∗1 ] and some positive real constants K1, K2. Using the quadratic and

positive definiteness properties of the different terms in (3.36), it can be easily deduced

that there exists T ∗ ≤ T ∗1 such that ∀T ∈ (0, T ∗] the closed-loop MSD system is also

dissipative with respect to the same supply rate as the closed-loop continuous-time system,

i.e., (1/2)γ2|d(k)|2 − (1/2)|z(k)|2. The remainder of the proof follows directly from the

bounded real lemma in [41, Proposition 1].

Example 3.1. Consider the following control affine nonlinear plant [40, ch. 7]

ẋ = (1 + x2)u+ d

z =

x
u

 (3.37)

with z as the penalty variable and y = x. Following the procedure presented in the same

reference, we end up with the Hamilton-Jacobi inequality(dP
dx

(x)
)2(

(1 + x2)2 − 1

γ2

)
≥ x2 (3.38)

which has a nonnegative solution for γ > 1, e.g.,

P (x) =
1

2
ln
(

1 + x2 +

√
(1 + x2)2 − 1

γ2

)
(3.39)

leading to the H∞ feedback law

u = −(1 + x2)
(

(1 + x2)2 − 1

γ2

)− 1
2

(3.40)

that stabilizes the system about x = 0 with L2-gain≤ γ. Figure 3.3 depicts the performance

of the closed-loop continuous-time plant controlled by (3.40) in the presence of a sinusoidal

disturbance of amplitude 0.1 and frequency 1 rad/s. The initial condition is set to x0 = 1

and the attenuation level is chosen to be γ = 1.1.

We now study the sampled-data implementation of the continuous-time controller (3.40)

under two different assumptions via the emulation method. First a single-rate case is

treated. Originating from the same initial condition, our simulations show that the single-

rate sampled-data controller stabilizes the system only when the sampling period Ti ≤
0.45 sec. Second a more practical situation (multirate case) is considered in which the

measurements are constrained to be sampled at a lower sampling rate Tm = 2 sec. In

order to apply the inferential control setup introduced in (3.5), we need an approximation
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methodology. For this purpose, similar numerical integration scheme as that of [19] is

utilized (Euler model integration)

fh(i, x, u, d) := x+ h(1 + x2)u+
∫ kT+(i+1)h
kT+ih d(τ)dτ

f i+1
h (x, u, d) := fh(i+ 1, f ih, u, d)

(3.41)

where fh = f1
h(x, u, d) := x + h(1 + x2)u +

∫ kT+h
kT d(τ)dτ represents the first step of

the numerical integration routine on the sampling interval [kT, (k + 1)T ) and finally,

F aT,h(x(k), u(k), d[k]) := fNh (x, u, d) is chosen to be our approximate discrete-time model.

In addition, h denotes the integration period, T is the sampling period and N = T/h.

Lemma 3.1 implies the one-step consistency of F aT,h constructed above with the exact

discrete-time model F eT . Therefore, the conditions of Corollary 3.1 are verified readily.

The simulation results for both of the foregoing sampled-data systems are shown in Figure

3.4. Here, we choose the input sampling period Ti = 0.4 sec and the integration step

h = 0.001 sec.

From [8] and using the same discussions carried out in this section, it can be inferred

that if the sampling rate is fast enough, then the single-rate emulated controller also pre-

serves the H∞ performance index. However, a large sampling period, here Ti = 0.4 sec,

will bring about large oscillations and the performance of the single-rate sampled-data sys-

tem may deviate from that of the continuous-time system. This situation can be seen by

dashed lines in Figure 3.4 compared with the solid lines in Figure 3.3. On the other hand,

the MSD control system (3.5) stabilizes the system more successfully than the fast single-

rate scheme with a guaranteed H∞ performance criterion. For the same input sampling

employed in the single-rate case, the stability is maintained with better performance using

much lower measurement sampling rate. Our tests reveal that for the selected value of

Ti, if l ∈ {2, 3, ..10} then this maintenance will be still valid but obviously with different

performances.

3.4 Summary

In this chapter the dissipativity of nonlinear sampled-data control systems under multirate

sampling and “low rate measurement” constraint based on the CTD method is investi-

gated. We show that if a closed-loop continuous-time system satisfies a certain dissipation
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Figure 3.3: The performance of the continuous-time H∞ controller with sinusoidal distur-
bance
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Figure 3.4: The performance of multirate and single-rate H∞ controller under emulation
with sinusoidal disturbance for Ti = 0.4 sec and Tm = 2 sec

inequality via a continuous-time controller, then similar dissipation inequality is preserved

in a practical sense for the closed-loop multirate plant that is digitally implemented us-

ing the emulated controller and multirate sampler and hold devices. Moreover, a general

framework for designing multirate nonlinear H∞ control in presence of disturbance inputs

is offered. The significance of this framework as a perspective result is illustrated through

a simulation example where the multirate setup achieves the H∞ performance criterion

and outperforms the fast single-rate scheme using a prominent slower output sampling

rate.

45



Chapter 4

Nonlinear H∞ Control Using

Incremental Gain

Motivated by the important properties of the incremental gain mentioned in Chapter 1,

in this chapter1 we consider an incremental L2-type performance criterion to design H∞

controllers for nonlinear plants. The first part of the chapter is dedicated to the full

information state feedback problem for the Lipschitz nonlinear plants while the second

part studies the output feedback problem for more general nonlinearities satisfying the

one-sided Lipschitz condition where only some states are measurable.

More precisely, in the first part we propose a stabilizing control law such that the

closed loop trajectories converge exponentially with a prespecified decay rate, and also

the incremental gain from disturbance to controlled output is less than a prespecified

value. Since this problem in its general form brings about partial differential inequalities

(PDIs) that are difficult to solve, we restrict our attention to nonlinear systems that

satisfy a Lipschitz continuity condition. With these assumptions, the synthesis of the

control law can be cast using linear matrix inequalities (LMIs) that can be easily solved

using commercial software packages. We also show that our technique can be extended to

uncertain nonlinear plants with optimal disturbance rejection and can be also modified to

capture the tracking problem with optimal disturbance rejection in an incremental sense.

These control schemes are novel, computationally simple, easy to design and implement

1The results of this chapter have been accepted for publication in the article: H. Beikzadeh and H.
J. Marquez, “Robust nonlinear H∞ control based on the L2 incremental gain,” International Journal of
Robust and Nonlinear Control, Accepted on Nov. 2013.
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and flexible due to utilization of LMIs. Moreover, robustness of the proposed strategy

against Lipschitz nonlinear uncertainties and time varying uncertainties is guaranteed.

In the second part we directly consider the one-sided Lipschitz systems without any

scaling or quadratically inner bounded assumption to address the problem of output feed-

back design, where all the state variables are not available for measurement. Our approach

consists of a nonlinear observer together with a state feedback gain and is based on the

Lyapunov candidate parametrization proposed by [103]. Moreover, since the effect of dis-

turbance inputs has been ignored in the articles on the one-side Lipschitz context, we

enrich our contribution by attenuating disturbances through an H∞ performance index

based on the L2 incremental gain. More precisely, we design a stabilizing state feedback

gain as well as a stable nonlinear observer such that the closed loop trajectories converge

asymptotically, and also the incremental gain from disturbances to the controlled output

is less than a prescribed value. By assuming a mild geometric condition, our synthesis

can be cast into a tractable LMI framework. It should be emphasized that our work is

basically different from the observer-based result provided by Arcak and Kokotović [104]

which studied different functions called nondecreasing nonlinearities with rather different

approach and objectives.

The remainder of this chapter is organized as follows. Section 4.1 contains some back-

ground material and formulates the state feedback problem. Then, the design procedure

of the incremental H∞ controller for Lipschitz nonlinear systems without uncertainties

is presented in terms of some matrix inequalities. Our result is extended to a class of

uncertain nonlinear plants to obtain a robust controller. In Section 4.2, we establish an

incremental H∞ output feedback synthesis for one-sided Lipschitz systems. Our result

is demonstrated via appropriate simulation examples in Section 4.3. Finally, Section 4.4

closes the chapter and draws some conclusions.
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4.1 State Feedback Control for Lipschitz Systems

4.1.1 Preliminaries and System Description

Consider now an operator Γ : w 7→ z(L2,T → L2,T ). The induced and incremental L2

gains from the input w ∈ L2,T to the output z ∈ L2,T are respectively defined as follows

‖Γ‖i,2 = sup
w∈L2,T ,w 6=0

‖(Γw)T ‖
‖wT ‖

‖Γ‖∆,2 = sup
w,w̃∈L2,T ,w 6=w̃

‖(Γw)T − (Γw̃)T ‖
‖wT − w̃T ‖

The following example emphasizes the difference between induced (usual) and incremental

gains.

Example 4.1. The symbol of a glow tube and its approximate i−v characteristic are shown

in Figure 4.1a. As can be seen in this figure, the glow tube is a memoryless nonlinear resis-

tor whose voltage is a “single-valued” function of the current, called a current-controlled

resistor [105]. Taking i as the input and v as the output, we can view the glow tube as an

operator with system of equations

v =


2i if 0 ≤ i ≤ 10

−3i+ 50 if 10 ≤ i ≤ 15

2
3 i− 5 if i ≥ 15

It can be readily verified that the L2 incremental gain of the glow tube is determined by

the maximum slop of a secant line to the graph (which occurs for 10 ≤ i ≤ 15), while the

usual gain is given by the maximum slop of a tangent line to the graph crossing the origin

(think of v as a function of i in Figure 4.1a). The resulting values for the usual gain and

incremental gain of the glow tube are thus ‖Γ‖i,2 = 2 and ‖Γ‖∆,2 = 3, respectively.

This circuit element is connected to a one-port network designated by N in Figure

4.1b. The series connection of the independent current source and the glow tube can be

regarded as a nonlinear load for the rest of the circuit. Obviously, the incremental gain

analysis states that the variations of the regulated voltage vR can be as much as 3 times the

variations of the source i. By contrast, the usual gain result fails to recognize incremental

changes in the input and only measures input amplification with respect to the zero input.
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(a)

(b)

Figure 4.1: (a) glow tube characteristic, (b) A one-port N driven by an independent
current source in series with a glow tube.

In general the incremental gain provides additional detail in the relationship between inputs

and outputs.

The operators to be studied in this section are generated by the nonlinear state space

realization

Σ :

{
ẋ(t) = f(x(t), u(t), w(t)) (4.1)

z(t) = h(x(t), u(t)) (4.2)

where x ∈ Rn, u ∈ Rm, z ∈ Rl, and w ∈ Rq indicate the state, control input, regulated out-

put (penalty variable), and unknown exogenous disturbance, respectively. We assume that

w is piecewise continuous and that the functions f and h are continuously differentiable.

Finally, x = 0 is an equilibrium point of the unforced system, i.e., f(0, 0, 0) = 0.

Definition 4.1. We say that the relaxed system (4.1)-(4.2), i.e., zero initial conditions,

has L2 incremental gain ≤ γ from the disturbance input w to the output z, if there exists

a locally integrable control input u(t) ∈ Rm such that∫ T

0
||zT (τ)− z̃T (τ)||2 dτ ≤ γ2

∫ T

0
||wT (τ)− w̃T (τ)||2 dτ (4.3)

for all w, w̃ ∈ L2,T w 6= w̃ and all T ≥ 0, where z(·), z̃(·) ∈ Rl are output trajectories

corresponding to the disturbances w(·), w̃(·), respectively.

Remark 4.1. The incremental gain of the non-relaxed systems can be studied by adding

a finite function β(x0, x̃0) ≥ 0 to the right hand side of (4.3), where x0, x̃0 ∈ Rn and
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β(0, 0) = 0 [56]. It can be shown that no matter which definition is used, the results

obtained thereafter can be translated from one to the other.

Remark 4.2. The usual L2 gain is a special case of (4.3) with z̃ = 0, w̃ = 0.

Our main objective is to design a stabilizing state feedback control law u = u(x(t))

such that the inequality (4.3) is satisfied. It is well-known that the concept of Lp gains is

closely related to the theory of dissipative dynamical systems introduced by Willems [44].

A practical form of dissipativity called the differential dissipation inequality is given in

the following definition.

Definition 4.2. The continuous-time system Σ is said to be dissipative with respect to the

supply rate r if there exist a control input u(t) ∈ Rm and a positive definite continuously

differentiable function V , called storage function, such that

∂V

∂x
f(x, u, w) ≤ r(w, z) (4.4)

for all x ∈ Rn and w ∈ Rq, with z = h(x, u).

Associated with the system Σ : w 7→ z (4.1)-(4.2), we can define an auxiliary system

Σ̂ : ŵ 7→ ẑ as below

Σ̂ :


˙̂x(t) = f̂(x̂, û, ŵ) (4.5)

ẑ(t) = ĥ(x̂, û) (4.6)

where

x̂ =

x
x̃

 , û =

u
ũ

 , ŵ =

w
w̃

 , ẑ =

z
z̃


and

f̂ =

f(x, u, w)

f(x̃, ũ, w̃)

 , ĥ =

h(x, u)

h(x̃, ũ)


Now we can state the following lemma concerning the L2 incremental gain of Definition

4.1.

Lemma 4.1. The nonlinear system Σ has L2 incremental gain ≤ γ if and only if the

auxiliary system Σ̂ is L2 dissipative with respect to the supply rate

r(ŵ, ẑ) = γ2||w − w̃||2 − ||z − z̃||2 (4.7)

50



i.e., there exist a pair of control inputs u, ũ ∈ Rm and a C1 function V : Rn 7→ R+ with

V (0) = 0 such that for all x, x̃ ∈ Rn, w, w̃ ∈ Rq

∂V

∂x

∣∣∣
x−x̃
· [f(x, u, w)− f(x̃, ũ, w̃)]− γ2||w − w̃||2 + ||h(x, u)− h(x̃, ũ)||2 ≤ 0 (4.8)

Proof: The proof follows directly from the dissipativity theory and Definitions 4.1-4.2

(see Theorem 3 in [58], for sufficiency and Lemma 3.2 in [56] for necessity). �

As can be seen in (4.8), finding an stabilizing controller u = u(x(t)) that guarantees

that the closed-loop system has an L2 incremental gain ≤ γ requires satisfying a partial

differential inequality that is difficult to study for the general form of (4.1)-(4.2). In-

deed, even by considering a control affine structure for which successful results have been

obtained based on the usual L2 gain (see [40] and the references cited therein), we can

not easily find an explicit control law using the L2 incremental gain. Therefore, we will

concentrate on the following known structure

ẋ(t) = Ax+Bu+ Φ(x, u) +Dw (4.9)

z(t) = h(x, u) (4.10)

which enables us to use the powerful LMI optimization tool to design the controller u(x(t)).

Note that A, B and D are constant matrices of appropriate dimensions, and the nonlin-

earities Φ and h are assumed to be locally Lipschitz with respect to both arguments in

regions Dx and Du containing the origin, i.e., for instance for Φ(·, ·) we have

||Φ(x1, u
∗)− Φ(x2, u

∗)|| ≤ λΦx||x1 − x2|| (4.11)

||Φ(x∗, u1)− Φ(x∗, u2)|| ≤ λΦu||u1 − u2|| (4.12)

∀x1, x2 ∈ Dx, ∀u1, u2 ∈ Du and any admissible signals x∗ and u∗. Similar equations can

be written for h(·, ·) with the corresponding Lipschitz constants λhx and λhu. It is worth

noting that if the nonlinear functions Φ and h satisfy the Lipschitz continuity condition

globally in Rn and Rm, then all the results in the ensuing sections will be valid globally.

Lemma 4.2. If the function Φ is locally Lipschitz in both arguments, then we get

||Φ(x1, u1)− Φ(x2, u2)|| ≤ λΦ(||x1 − x2||+ ||u1 − u2||) (4.13)
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∀x1, x2 ∈ Dx and ∀u1, u2 ∈ Du, where λΦ = max{λΦx, λΦu} is called the Lipschitz constant

of Φ.

Proof: Adding and subtracting Φ(x1, u2) to the argument of the norm operator on the

left hand side of (4.13), it yields by virtue of (4.11)-(4.12)

||Φ(x1, u1)− Φ(x1, u2) + Φ(x1, u2)− Φ(x2, u2)||

≤ ||Φ(x1, u2)− Φ(x2, u2)||+ ||Φ(x1, u1)− Φ(x1, u2)||

≤ λΦx||x1 − x2||+ λΦu||u1 − u2|| (4.14)

setting λΦ = max{λΦx, λΦu}, (4.13) is obtained immediately. �

Similarly, the Lipschitz constant of h is set to be λh = max{λhx, λhu}.

Remark 4.3. Note that we combine λΦx and λΦu in (4.14) only to simplify the formu-

lations. One may consider different Lipschitz constants associated with the state and the

control signal to put different emphasises on each of them. Fortunately, the results in the

next section can be generalized for this case.

Remark 4.4. There are several works on stabilizing Lipschitz nonlinear systems (see,

e.g., [106], [107], [108]). However, most of them assume the nonlinear part to be a function

of x only, i.e., Φ(x). In this section, aside from satisfying a new performance index, the

nonlinearity is assumed to be a function of both x and u, which is more general and

challenging. Moreover, the penalty variable is assumed to be a nonlinear combination of

the state and the control signal.

4.1.2 Incremental H∞ Controller Synthesis

In this section the problem of disturbance attenuation with internal stability is addressed.

More explicitly, we tackle the problem of finding an admissible controller that, in the

absence of external inputs yields an exponentially stable closed-loop system with conver-

gence rate α > 0, i.e., ||x|| ≤ η||x0||e−αt (see [48] or [49] for a more formal definition of

exponential stability) and in the presence of disturbances satisfies an L2 incremental gain

less than or equal to a minimized number γ. The state feedback controller is assumed

to be u(t) = −Kx(t), where K ∈ Rm×n, and we first focus on the system (4.9)-(4.10)

without uncertainties.
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Definition 4.3. Suppose that the system (4.9)-(4.10) together with u(t) = −Kx(t) has

the following properties

1. With w(t) = 0, the closed-loop system is locally exponentially stable with guaranteed

decay rate α > 0, i.e. ∃α, η ∈ R: given x0 in a sufficiently small neighbourhood of

x = 0, ||x|| ≤ η||x0||e−αt, ∀t ≥ 0.

2. the signal z(t) satisfies∫ ∞
0
||z(τ)− z̃(τ)||2 dτ ≤ γ2

∫ ∞
0
||w(τ)− w̃(τ)||2 dτ (4.15)

for a constant γ > 0. Under this condition, the control law u(t) is said to be an incre-

mental H∞ controller for the system (4.9)-(4.10) with convergence rate α and disturbance

attenuation level γ.

Strict NMI solution

The design procedure is stated in Theorem 4.1 which brings about a nonlinear matrix

inequality (NMI) optimization. We need the following two preparatory lemmas used in

the proof of our results.

Lemma 4.3. ( [109]) Let U , V and F be real matrices of appropriate dimensions and F

satisfying F ᵀF ≤ I. Then for any scalar ε > 0 and vectors x, y ∈ Rn, we have

2xᵀUFV y ≤ ε−1xᵀUUᵀx+ εyᵀV ᵀV y (4.16)

Lemma 4.4. (Schur’s complement formula, [110]) For a given matrix S =

S11 S12

∗ S22


with S11 = Sᵀ11, S22 = Sᵀ22, then the following statements are equivalent:

1. S < 0,

2. S11 − S12S
−1
22 S

ᵀ
12 < 0, S22 < 0.

Theorem 4.1. Consider the Lipschitz nonlinear system (4.9)-(4.10) with the Lipschitz

constants λΦ, λh together with the controller u(t) = −Kx(t). Suppose that for fixed scalars

α, ε1, ε2 > 0 and matrices P = P ᵀ > 0 and G, the following NMI optimization is feasible

for a minimum scalar γ > 0:
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min(γ) s.t.−Q+ ε−1
1 I

√
ε1λΦ(||P ||+ ||G||κ(P ))I

∗ −I

 < 0 (4.17)


−Q− 2αP + ε−1

2 I
√
ε2λ2

Φ + λ2
h(||P ||+ ||G||κ(P ))I D

∗ −I 0

∗ ∗ −γI

 < 0 (4.18)

where

Q = −(AP + PAᵀ −BG−GᵀBᵀ + 2αP ) (4.19)

Once the problem is solved

K = GP−1 (4.20)

γ∗ , min(γ) (4.21)

then the closed-loop system with the feedback gain (4.20) is (globally) exponentially stable

with decay rate α and minimum incremental disturbance attenuation γ∗ of (4.21) according

to Definition 4.3.

Note that Theorem 4.1 is a feasibility problem for the minimum value of γ which fulfills

matrix inequalities (4.17)-(4.18). Indeed, for a desired decay rate α the parameters ε1,

ε2 and matrices P , G are chosen such that the proposed NMI holds a feasible solution

for a minimum incremental gain γ. Alternatively, one may seek to maximize the decay

rate for a prescribed incremental gain. In that case it is sufficient to solve (4.17)-(4.18) to

maximize α.

Proof of Theorem 4.1: Take the Lyapunov function candidate as

V (x(t)) = xᵀP̄ x (4.22)

where P̄ = P−1. The time derivative of V along the trajectories of (4.9) is given by

V̇ (t) = ẋᵀ(t)P̄ x(t) + xᵀ(t)P̄ ẋ(t)

= [Ax+Bu+ Φ(x, u) +Dw]ᵀP̄ x+ xᵀP̄ [Ax+Bu+ Φ(x, u) +Dw] (4.23)

Part I (Exponential stability): Applying u = −Kx, we get for the disturbance free plant,

i.e., w = 0

54



V̇ (t) = xᵀ
[
(A−BK)ᵀP̄ + P̄ (A−BK)

]
x+ 2xᵀP̄Φ(x, u) (4.24)

To have exponential stability with guaranteed decay rate, it suffices V̇ (x(t)) ≤ −2αV (x(t))

[48] which yields ||x(t)|| ≤
√
λmax(P )/λmin(P )||x(0)||exp(−αt). Therefore, it is needed

V̇ (t) ≤ −xᵀQ̂x+ 2xᵀP̄Φ(x, u) < 0 (4.25)

in which

(A−BK)ᵀP̄ + P̄ (A−BK) + 2αP̄ = −Q̂ (4.26)

The above can be written as

AᵀP̄ + P̄A−KᵀBᵀP̄ − P̄BK + 2αP̄ = −Q̂ (4.27)

that is bilinear with respect to the variables K and P̄ and cannot be treated using the

existing tractable LMI procedures. This problem will be overcome by pre- and post-

multiplying (4.27) by P later on. Using Lemma 4.3, the controller u = −Kx and the

Lipschitz property of Φ , we get

2xᵀP̄Φ(x, u) ≤ ε−1
1 xᵀP̄ 2x+ ε1ΦᵀΦ ≤ ε−1

1 xᵀP̄ 2x+ ε1λ
2
Φ(1 + ||K||)2xᵀx (4.28)

Substituting (4.28) into (4.25), a sufficient condition for exponential stability when w = 0

can be obtained as

V̇ (t) ≤ xᵀ[−Q̂+ ε−1
1 P̄ 2 + ε1λ

2
Φ(1 + ||K||)2I]x

≤ xᵀ[−Q̂+ ε−1
1 P̄ 2 + ε1λ

2
Φ(1 + ||G||||P̄ ||)2I]x < 0 (4.29)

which is equivalent to the following matrix inequality by means of Lemma 4.4−Q̂+ ε−1
1 P̄ 2 √

ε1λΦ(1 + ||G||||P̄ ||)I
∗ −I

 < 0 (4.30)

Pre- and post-multiplying (4.30) by diag(P, I) and then considering P ≤ λmax(P )I =

||P ||I and the matrix Q defined by

Q = PQ̂P = −(AP + PAᵀ −BG−GᵀBᵀ + 2αP ) (4.31)

we arrive at the matrix inequality (4.17). Note that κ(P ) = ||P |||P̄ || denotes the condition

number of the matrix P .
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Part II (Disturbance attenuation): Now consider the disturbance driven system (4.9)-(4.10).

According to Lemma 4.1 the system (4.9)-(4.10) has L2 incremental gain ≤ γ if

J , 2(x− x̃)ᵀP̄ [(A−BK)(x− x̃) + Φ(x, u)− Φ(x̃, ũ) +D(w − w̃)]

−γ2||w − w̃||2 + ||h(x, u)− h(x̃, ũ)||2 ≤ 0
(4.32)

where the Lyapunov function of (4.22) is picked as the storage function V in (4.8). Using

Lemma 4.3, u = −Kx, ũ = −Kx̃ and the Lipschitz property of Φ and h, the following

inequalities are derived

2(x− x̃)ᵀP̄
[
Φ(x, u)− Φ(x̃, ũ)

]
≤ ε−1

2 (x− x̃)ᵀP̄ 2(x− x̃) + ε2(Φ− Φ̃)ᵀ(Φ− Φ̃)

≤ ε−1
2 (x− x̃)ᵀP̄ 2(x− x̃) + ε2λ

2
Φ(‖x− x̃‖+ ‖u− ũ‖)2

≤ ε−1
2 (x− x̃)ᵀP̄ 2(x− x̃) + ε2λ

2
Φ(1 + ||K||)2(x− x̃)ᵀ(x− x̃) (4.33)

‖h(x, u)− h(x̃, ũ)‖2 ≤ λ2
h(‖x− x̃‖+ ‖u− ũ‖)2

≤ λ2
h(1 + ||K||)2(x− x̃)ᵀ(x− x̃) (4.34)

Based on (4.33)-(4.34) and the definition of Q̂ in (4.27), the performance criterion J in

(4.31) can be bounded as below

J ≤ (x− x̃)ᵀ[−Q̂− 2αP̄ + ε−1
2 P̄ 2 + (ε2λ

2
Φ + λ2

h)(1 + ||K||)2](x− x̃) + 2(x− x̃)ᵀP̄

D(w − w̃)− γ2(w − w̃)ᵀ(w − w̃) (4.35)

Hence, it can be deduced from (4.35) and Schur’s complement that a sufficient condition

for J ≤ 0 is given as
−Q̂− 2αP̄ + ε−1

2 P̄ 2
√
ε2λ2

Φ + λ2
h(1 + ||G||||P̄ ||)I P̄D

∗ −I 0

∗ ∗ −γI

 < 0 (4.36)

In analogy with Part I, pre- and post-multiplying the inequality (4.36) by diag(P, I, I)

together with P ≤ ||P ||I and Q = PQ̂P in (4.31) leads to the matrix inequality (4.18).

Finally, since the dissipativity of the closed loop system is ensured, Lemma 4.1 implies

that ∫ ∞
0

(
(z − z̃)ᵀ(z − z̃)− γ2(w − w̃)ᵀ(w − w̃)

)
dτ ≤ 0

⇒ ||z − z̃|| ≤ γ||w − w̃|| (4.37)

This concludes the proof. �
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Converting NMI to LMI

Due to presence of norm operators in (4.17)-(4.18), the design method provided by The-

orem 4.1 is in the form of a nonlinear matrix inequality (NMI). Unfortunately, unlike

the case of linear matrix inequalities (LMIs) there is currently no efficient solution in the

numerical analysis literature capable of solving NMIs. In order to take advantage of the

existent efficient numerical LMI solvers such as Matlab LMI solver, we now show how to

convert the NMIs (4.17)-(4.18) into the LMI framework. For this purpose, we need the

following assumption.

Assumption 4.1. Suppose that the nonlinear functions Φ and h are locally Lipschitz with

respect to the whole vector [x u]ᵀ, i.e.,

||Φ(x1, u1)− Φ(x2, u2)|| ≤ λΦ

∣∣∣∣∣∣
x1

u1

−
x2

u2

 ∣∣∣∣∣∣ (4.38)

||h(x1, u1)− h(x2, u2)|| ≤ λh
∣∣∣∣∣∣
x1

u1

−
x2

u2

 ∣∣∣∣∣∣ (4.39)

for all x1, x2 ∈ Dx and u1, u2 ∈ Du.

Remark 4.5. It can be shown that if the function Φ(·, ·) satisfies the inequality (4.38),

then the Lipschitz continuity condition (4.13) holds readily. However, the reverse is not

true in general. A similar statement can be made about the function h(·, ·).

Corollary 4.1. Consider the Lipschitz nonlinear system (4.9)-(4.10) satisfying Assump-

tion 4.1 together with the controller u(t) = −Kx(t). Suppose that there exist fixed scalars

α, ε1, ε2 > 0 and a scalar γ > 0, matrices P = P ᵀ > 0 and G, such that the following LMI

optimization is feasible:

min(γ) s.t.
−Q+ ε−1

1 I
√
ε1λΦP

√
ε1λΦG

ᵀ

∗ −I 0

∗ ∗ −I

 < 0 (4.40)


−Q− 2αP + ε−1

2 I
√
ε2λ2

Φ + λ2
hP

√
ε2λ2

Φ + λ2
hG
ᵀ D

∗ −I 0 0

∗ ∗ −I 0

∗ ∗ ∗ −γI

 < 0 (4.41)
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where Q is given by (4.19). Then u(t) with the feedback gain K = GP−1 is an incremental

H∞ controller with exponential decay rate α and minimum disturbance attenuation γ∗ =

min(γ).

Proof: By making use of Assumption 4.1 and Lemma 4.3 we get the critical inequalities

shown below

2(x− x̃)ᵀP̄
[
Φ(x, u)− Φ(x̃, ũ)

]
≤ ε−1

1 (x− x̃)ᵀP̄ 2(x− x̃) + ε1(Φ− Φ̃)ᵀ(Φ− Φ̃)

≤ ε−1
1 (x− x̃)ᵀP̄ 2(x− x̃) + ε1λ

2
Φ(||x− x̃||2 + ||u− ũ||2)

≤ ε−1
1 (x− x̃)ᵀP̄ 2(x− x̃) + ε1λ

2
Φ(x− x̃)ᵀ(I +KᵀK)(x− x̃) (4.42)

||h(x, u)− h(x̃, ũ)||2 ≤ λ2
h

∣∣∣∣∣∣
x− x̃
u− ũ

 ∣∣∣∣∣∣2 ≤ λ2
h(||x− x̃||2 + ||u− ũ||2)

≤ λ2
h(x− x̃)ᵀ(I +KᵀK)(x− x̃) (4.43)

instead of (4.33)-(4.34) which enable us to convert the NMIs of Theorem 4.1 to the LMIs

of Corollary 4.1. The remainder of the proof is analogous to that of Theorem 4.1, and is

omitted. �

Remark 4.6. An alternative way of converting the NMIs in Theorem 4.1 into an LMI

framework is to impose a bound on the feedback gain norm in (4.29) and (4.35) as ‖K‖ ≤
‖G‖‖P−1‖ ≤ σ1σ2 and then adding the following two matrix inequalities to our LMIsI 1

σ1
Gᵀ

∗ I

 > 0

I σ2P
ᵀ

∗ I

 > 0

where σ1, σ2 > 0 are prescribed scalars.

4.1.3 Uncertain Nonlinear Plants

This section develops the H∞ controller design via incremental gain for a class of nonlinear

uncertain systems. Moreover, a norm-wise robustness analysis has been carried out to

obtain explicit bounds on the nonlinear uncertainty.
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4.1.4 Robust Controller Design

Suppose that the nonlinear plant (4.1)-(4.2) can be written into in the following uncertain

form

ẋ(t) = (A+ ∆A(t))x(t) + (B + ∆B(t))u(t) + Φ(x(t), u(t)) + (D + ∆D(t))w(t) (4.44)

z(t) = h(x(t), u(t)) (4.45)

where ∆A(t), ∆B(t), and ∆C(t) are unknown matrices representing time-varying uncer-

tainties, and are assumed to have the structure

∆A(t) = MaF (t)Na ∆B(t) = MbF (t)Nb

∆D(t) = MdF (t)Nd

(4.46)

in which Ma, Na, Mb, Nb, Mc, and Nc are known real constant matrices of appropriate

dimensions and F (t) is an unknown real-valued time-varying matrix satisfying

F ᵀ(t)F (t) ≤ I ∀t ∈ [0,∞) (4.47)

It is worth pointing out that the structure of uncertainties in (4.44)-(4.45) has been widely

used in the problems of robust control and robust filtering for both continuous-time and

discrete-time systems and can capture the uncertainty in a number of practical situations

(see, e.g., [108,111,112]). The following theorem extends the design procedure of Corollary

4.1 to the uncertain case introduced above.

Theorem 4.2. Consider the Lipschitz nonlinear uncertain system (4.44)-(4.45) satisfying

Assumption 4.1 together with the controller u(t) = −Kx(t). Suppose that for fixed scalars

α, ε1, ε2 > 0 and matrices P = P ᵀ > 0 and G, the following LMI optimization is feasible

for a minimum scalar γ > 0

min(γ) s.t. 
R+ ε−1

1 I PSᵀ1 GᵀNb

∗ −I 0

∗ ∗ −I

 < 0 (4.48)


R− 2αP + ε−1

2 I PSᵀ2 GᵀS3 D

∗ −I 0 0

∗ ∗ −I 0

∗ ∗ ∗ −γ2I +NᵀdNd

 < 0 (4.49)
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where

R = −Q+MaM
ᵀ
a +MbM

ᵀ
b +McM

ᵀ
c (4.50)

S1 = (ε1λ
2
Φ +NᵀaNa)

1
2 (4.51)

S2 = (ε2λ
2
Φ + λ2

h +NᵀaNa)
1
2 (4.52)

S3 = (ε2λ
2
Φ + λ2

h +NᵀbNb)
1
2 (4.53)

and Q is defined by (4.19). Then the controller u with the feedback gain K = GP−1 is

a robust incremental stabilizer with exponential decay rate α and minimum disturbance

attenuation γ∗ = min γ.

Sketch of the Proof: The approach is similar to the proof of Theorem 4.1. In addition

to the inequalities used in the proof of Corollary 4.1, we need the following inequalities

that are all derived from Lemma 4.3

2xᵀMaF (t)NaPx ≤ xᵀMaM
ᵀ
ax+ xᵀPNᵀaNaPx

2xᵀMbF (t)NbGx ≤ xᵀMbM
ᵀ
b x+ xᵀGNᵀbNbPx

2xᵀMdF (t)Ndw ≤ xᵀMdM
ᵀ
dx+ wᵀNᵀdNdw

inserting these inequalities into V̇ and J gives rise to the LMIs (4.48)-(4.49). It should be

mentioned that in this case, when w = 0, a sufficient condition for exponential stability

with guaranteed decay rate α is

R+ (1 + ε−1
1 )I + PSᵀ1S1P +GᵀNaN

ᵀ
aG < 0

that is already included in (4.48) by means of Schur complements. Moreover, since the

matrices ε1λ
2
Φ + NᵀaNa, ε2λ

2
Φ + λ2

h + NᵀaNa, and ε2λ
2
Φ + λ2

h + NᵀbNb are positive definite,

they have always have a square root. �

Remark 4.7. We observe that in some cases the optimization problems of Corollary 4.1

and Theorem 4.2 can result in very large or small entries in the gain matrix K. This issue

can be resolved by solving the feasibility problem of (4.40)-(4.41) and (4.48)-(4.49) with a

prescribed attenuation level γ (see e.g., [106, 107], [110]).

Remark 4.8. By choosing λ = max{λΦ, λh, } as the overall Lipschitz constant of the

system (4.9)-(4.10), the LMIs (4.40)-(4.41) and (4.48)-(4.49) become linear in both λ and
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γ. In this case, the optimizations can be formulated to maximize the admissible Lipschitz

constant [108], [111]. As we will see in the next subsection, this maximization adds an extra

significant feature to our controller which makes it robust against nonlinear uncertainties.

4.1.5 Robustness Analysis

As mentioned in Remark 4.7, if the overall Lipschitz constant λ is picked as the opti-

mization variable in Theorem 4.2, then maximization of λ makes the proposed controller

robust against some Lipschitz nonlinear uncertainty. This feature is studied here through

a norm-wise analysis. We find an upper bound on the Lipschitz constant of the nonlinear

uncertainty and the norm of the Jacobian matrix of the corresponding nonlinear function.

Assume nonlinear uncertainty as follows

Φ∆(x, u) = Φ(x, u) + ∆Φ(x, u) (4.54)

where ∆Φ is Lipschitz continuous with the Lipschitz constant ∆λΦ. Inserting (4.54) into

(4.44) leads to

ẋ(t) = (A+ ∆A(t))x(t) + (B + ∆B(t))u(t) + Φ(x, u) + ∆Φ(x, u) + (D + ∆D)w(t)

(4.55)

Let λ = max{λΦ, λh} and ∆λ = ∆λΦ.

Proposition 4.1. Suppose that the actual Lipschitz constant of the system is λ and The-

orem 4.2 is rewritten in the form of maximizing the Lipschitz constant with maximum

admissible value of λ∗. Then the controller derived from Theorem 4.2 can tolerate any ad-

ditive Lipschitz nonlinear uncertainty with Lipschitz constant less than or equal to λ∗−λ.

Proof: Without loss of generality, we can assume that λ = λΦ. Based on the Schwartz

inequality and Assumption 4.1, we get

||Φ∆(x1, u1)− Φ∆(x2, u2)|| ≤ ||Φ∆(x1, u1)− Φ∆(x2, u2)||+ ||∆Φ(x1, u1)−∆Φ(x2, u2)||

≤ λ
∣∣∣∣∣∣
x1 − x2

u1 − u2

 ∣∣∣∣∣∣+ ∆λ
∣∣∣∣∣∣
x1 − x2

u1 − u2

 ∣∣∣∣∣∣
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Accordingly, Φ∆(·, ·) can be any Lipschitz nonlinearity with Lipschitz constant less than

or equal to λ∗,

||Φ∆(x1, u1)− Φ∆(x2, u2)|| ≤ λ∗
∣∣∣∣∣∣
x1 − x2

u1 − u2

 ∣∣∣∣∣∣
therefore, there must be λ+ ∆λ ≤ λ∗ → ∆λ ≤ λ∗ − λ. �

In addition, we know that for any continuously differentiable function ∆Φ

||∆Φ(x1, u
∗)−∆Φ(x2, u

∗)|| ≤ ||∂∆Φ

∂x
(x1 − x2)||

where u∗ is any admissible control signal and ∂∆Φ
∂x is the Jacobian matrix. So ∆Φ(x, u)

can be any additive uncertainty with ||∂∆Φ
∂x || ≤ λ∗ − λ.

4.2 Observer-Based Control for One-Sided Lipschitz Sys-

tems

4.2.1 System Model

Now consider the continuous-time nonlinear dynamical system expressed by
ẋ(t) = Ax(t) +Bu(t) + Φ(x, u) +D1w(t)

y(t) = Cx(t) + h(x, u) +D2w(t)

z(t) = g(x, u)

(4.56)

where x ∈ Rn is the state, u ∈ Rm control input, w ∈ Rq exogenous disturbance, also

y ∈ Rp and z ∈ Rl stands for the measurement and the regulated output (cost variable),

respectively. It is assumed that A, B, C,D1 and D2 are constant matrices of appropriate

dimensions, and the nonlinear functions Φ, h and g fulfill certain Lipschitz or one-sided

Lipschitz conditions, as specified later, based on Definitions 2.9.

The properties of Definition 2.9 might be local or global. We refer the interested

readers to [63] for a comprehensive study. Here is an example of a nonlinearity which

satisfies the one-sided Lipschitz continuity but not the Lipschitz continuity.

Example 4.2. Consider the discontinuous nonlinear function f(x) = 1√
x

. Clearly, this

function is not Lipschitz on any interval like [0, c]. Conversely, for any x1, x2 ∈ [0, c] we
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get

〈f(x1)− f(x2), x1 − x2〉 = ( 1√
x1
− 1√

x2
)(x1 − x2)

= − (x1−x2)2

(
√
x1+
√
x2)(
√
x1x2) ≤ − 1

2c
√
c
(x1 − x2)2

thus, it is locally one-sided Lipschitz with the one-sided Lipschitz constant −1/(2c
√
c).

Remark 4.9. The one-sided Lipschitz condition is different from the nondecreasing non-

linearities addressed by [104]. For instance, the nonlinear function in Example 4.2 satisfies

(x2 − x1)[f(x2) − f(x1)] < 0 with 0 < x1 < x2 and so f is not nondecreasing or slope-

restricted.

4.2.2 Observer-based Controller Design

In this section we tackle the problem of designing an H∞ stabilizing control law together

with a stable observer when only the input u and the output y are available.

Given the dynamical system (4.56), the state feedback controller is assumed to be

u(t) = −Kx̂(t), where K ∈ Rm×n and x̂ is the estimated state obtained from a nonlinear

observer of the following structure

˙̂x(t) = Ax̂+Bu+ Φ(x̂, u) + L[y − Cx̂− h(x̂, u)] (4.57)

with L ∈ Rn×p. Our purpose is to find the controller gain K and the observer gain L to

satisfy our main expectations:

• With w = 0, the closed-loop system and the observer (4.57) are asymptotically

stable, i.e., x̂→ x and x→ 0.

• In the presence of disturbances, the closed-loop system satisfies the H∞ performance

index given by the incremental gain condition of (4.3) for a minimized value γ > 0.

Before stating the main result, we make some important assumptions to the system

model (4.56) as below.

Assumption 4.2. The nonlinear function Φ is one-sided Lipschitz ∀x ∈ XΦ with the

one-sided Lipschitz constant ρ according to Definition 2.9, and also locally Lipschitz with

respect to u, i.e.,

‖Φ(x∗, u1)− Φ(x∗, u2)‖ ≤ λu‖u1 − u2‖ ∀u1, u2 ∈ UΦ (4.58)

for any admissible state x∗.
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Assumption 4.3. The nonlinearity Φ can be written as

Φ(x, u) = EΨ(x, u) (4.59)

where the full-column rank matrix E ∈ Rn×s is the corresponding distribution of Ψ(x, u)

onto the nonlinear function Φ(x, u)

Assumption 4.4. The nonlinear functions h and g are locally Lipschitz with respect to

both arguments in the regions Xh, Xg and Uh, Ug with the Lipschitz constants λh and λg,

respectively.

Remark 4.10. It is worth mentioning that the Lipschitz continuity in (4.58) is indeed a

mild, yet practical assumption. This can be verified by the fact that, most of the results

on nonlinear H∞ design are based on the well-known control affine structure Φ(x, u) =

a(x) + b(x)u that is obviously Lipschitz with respect to u.

Remark 4.11. Assumption 4.3 places a geometric condition on the one-sided Lipschitz

function Φ. Note that this condition doesn’t affect neither the value of the one-sided

Lipschitz constant nor the Lyapunov matrix in our synthesis (see Theorem 4.3).

Theorem 4.3 sums up our main result by proposing an LMI-based technique for optimal

output feedback design that satisfies the incremental H∞ performance criterion.

Theorem 4.3. Suppose that the nonlinear one-sided Lipschitz system (4.56) satisfies As-

sumptions 4.2-4.4. The state feedback controller u = −Kx̂ along with the observer (4.57)

asymptotically stabilizes the closed-loop system with minimum L2 incremental gain γ∗, if

there exists constants σ1, σ2 > 0, scalars µ, ε1, ε2 > 0 and matrices X1 = Xᵀ1 , X2 = Xᵀ2 ,

R > 0, G1 and G2 such that the following LMI optimization is feasible
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min(µ) s.t.

(E⊥X1E
⊥ᵀ + ε1I)B = BR (4.60)I 1

σ1
Gᵀ1

∗ I

 > 0 (4.61)

I σ2R
ᵀ

∗ I

 > 0 (4.62)


−Q1 + 2ε1ρI BG1 0

∗ −Q2 + (2ε2ρ+ λ2
h)I G2

∗ ∗ −I

 < 0 (4.63)


Σ1 −Ω1 Ω1 Ω2

∗ Σ2 Ω3 Ω4

∗ ∗ Σ2 −Ω4

∗ ∗ ∗ −µI

 < 0 (4.64)

where E⊥X1E
⊥ᵀ + ε1I > 0, E⊥X2E

⊥ᵀ + ε2I > 0 and

Q1 = −(AᵀE⊥X1E
⊥ᵀ + E⊥X1E

⊥ᵀA+ ε1A
ᵀ + ε1A

−Gᵀ1Bᵀ −BG1) (4.65)

Q2 = −(AᵀE⊥X2E
⊥ᵀ + E⊥X2E

⊥ᵀA+ ε2A
ᵀ + ε2A

− CᵀGᵀ2 −G2C) (4.66)

Σ1 =
[
−Q1+ε1(2ρ+3λuσ1σ2)I λg(1+σ1σ2)

∗ −I

]
(4.67)

Σ2 =
[
−Q2+(4ε2ρ+2ε1λuσ1σ2+2λ2h)I G2

∗ −I

]
(4.68)

Ω1 =
[
BG1 0

0 0

]
, Ω2 =

[
(E⊥X1E⊥

ᵀ
+ε1I)D1

0

]
(4.69)

Ω3 =
[
Q2 0
0 0

]
, Ω4 =

[
(E⊥X2E⊥

ᵀ
+ε2I)D1−G2D2

0

]
(4.70)

Once the problem is solved

K = G1R
−1 (4.71)

L = (E⊥X2E
⊥ᵀ + ε2I)−1G2 (4.72)

γ∗ ,
√

min(µ) (4.73)
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In order to prove this theorem, we need two preparatory lemmas.

Lemma 4.5. [113] For any vectors x, y ∈ Rn and any positive definite matrix P ∈ Rn×n,

we have

2xᵀy ≤ xᵀPx+ yᵀP−1y (4.74)

Lemma 4.6. For any symmetric matrix P ∈ Rn×n and nonzero matrix M ∈ Rn×m, there

exists a symmetric matrix X ∈ Rm×m and a positive scalar ε > 0 such that P can be

parameterized in the form P = MXMᵀ + εIn.

Proof: It is based on the proof of [103, Lemma 4.1], thus omitted. �

Proof of Theorem 4.3: From (4.56) and (4.57), the error dynamics is

ė(t) = (A− LC)e+ Φ(x, u)− Φ(x̂, u) + L[h(x, u)− h(x̂, u)] + (D1 − LD2)w (4.75)

where e = x− x̂ is the state estimation error. Let X = XΦ∩Xh∩Xg and U = UΦ∩Uh∩Ug.
Now, Choose the following Lyapunov function candidate for x ∈ X , u ∈ U

V (x, e) = Xᵀ

P1 0

0 P2

X = V1 + V2 (4.76)

where X =
[
xᵀ eᵀ

]ᵀ
is the augmented state, P1 and P2 are symmetric positive definite

matrices, and V1 = xᵀP1x, V2 = eᵀP2e.

Part I (Asymptotic stability): Taking the derivative of V1 along the trajectories of (4.56)

yields

V̇1(t) = ẋᵀ(t)P1x(t) + xᵀ(t)P1ẋ(t)

= [Ax+Bu+ Φ(x, u) +D1w]ᵀP1x+ xᵀP1[Ax+Bu+ Φ(x, u) +D1w] (4.77)

Applying the control law u = −Kx̂ and considering x̂ = x+ e along with Assumption 4.3,

we get

V̇1(t) = xᵀ[(A−BK)ᵀP1 + P1(A−BK)]x

+ 2xᵀP1EΨ(x, u) + 2xᵀP1D1w − 2xᵀP1BKe (4.78)

Let

(A−BK)ᵀP1 + P1(A−BK) = AᵀP1 + P1A−KᵀBᵀP1 − P1BK = −Q1 (4.79)
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that is bilinear with respect to the variables K and P1. As it will be seen, the equal-

ity constraint (4.60) enables us to convert this BMI into an semidefinite programming

(SDP) problem. By virtue of Lemma 4.6, assume that the Lyapunov matrix P1 can be

parameterized as

P1 = E⊥X1E
⊥ᵀ + ε1In (4.80)

where X1 is an arbitrary weighting matrix, ε1 > 0 and E⊥ is the orthogonal complement of

E, i.e., E⊥
ᵀ
E = 0. Now using (4.80) and the one-sided Lipschitz condition in Assumption

4.2, it follows that xᵀP1EΨ(x, u) = ε1〈EΨ(x, u)− 0, x− 0〉 ≤ ε1ρxᵀx and hence

V̇1(t) ≤ −xᵀQ1x+ 2ε1ρx
ᵀx+ 2xᵀP1D1w − 2xᵀP1BKe (4.81)

Similarly, the time derivative of V2 along (4.75) is given by

V̇2(t) = ėᵀ(t)P1e(t) + eᵀ(t)P1ė(t)

= eᵀ[(A− LC)ᵀP2 + P2(A− LC)]e+ 2eᵀP2[Φ(x, u)− Φ(x̂, u)]

+ 2eᵀP2(D1 − LD2)w + 2eᵀP2L[h(x, u)− h(x̂, u)] (4.82)

Define

(A− LC)ᵀP2 + P2(A− LC) = AᵀP2 + P2A− CᵀLᵀP2 − P2LC = −Q2 (4.83)

which can be written as

AᵀP2 + P2A− CᵀGᵀ2 −G2C = −Q2 (4.84)

with G2 , P2L. Assume that P2 can be also parameterized as P2 = E⊥X2E
⊥ᵀ + ε2In.

Now, using the one-sided Lipchitz property of Φ we have

eᵀP2[Φ(x, u)− Φ(x̂, u)] = 〈P2EΨ(x, u)− P2EΨ(x̂, u), x− x̂〉

= ε2〈EΨ(x, u)− EΨ(x̂, u), x− x̂〉 ≤ ε2ρeᵀe (4.85)

and the Lipschitz continuity of h together with Lemma 4.5 leads to

2eᵀP2L[h(x, u)− h(x̂, u)] ≤ eᵀG2G
ᵀ
2e+ ‖h(x, u)− h(x̂, u)‖2

≤ eᵀG2G
ᵀ
2e+ λ2

he
ᵀe (4.86)
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Substituting (4.84)-(4.86) into (4.82) we obtain

V̇2(t) ≤ −eᵀQ2e+ 2ε2ρe
ᵀe+ eᵀG2G

ᵀ
2e+ λ2

he
ᵀe+ 2eᵀP2(D1 − LD2)w (4.87)

Then, considering inequalities (4.81) and (4.87), the time derivative of V (x, e) is bounded

via

V̇ (t) ≤ xᵀ[−Q1 + 2ε1ρI]x+ eᵀ[−Q2 + (2ε2ρ+ λ2
h)I +G2G

ᵀ
2]e

− 2xᵀP1BKe+ 2xᵀP1D1w + 2eᵀP2(D1 − LD2)w (4.88)

Therefore, a sufficient condition for asymptotic stability (V̇ < 0) when w = 0 is given by

the matrix inequality
−Q1 + 2ε1ρI P1BK 0

KᵀBᵀP1 −Q2 + (2ε2ρ+ λ2
h)I G2

0 Gᵀ2 −I

 < 0 (4.89)

that is obtained by means of the Schur complement [110]. Using (4.60) and the change

of variables G1 = RK we have P1BK = BRK , BG1. Having G1 and inserting the

geometric parametrization of P1 and P2 into (4.89), we arrive at the LMI (4.63). Note

that the positiveness of R ensures the nonsingularity of R, and hence, the existence of a

unique solution for K.

Part II (Performance criterion): According to Lemma 4.1, the closed-loop system (4.56)

with the observer (4.57) and the controller u = −Kx̂ has L2 incremental gain ≤ γ if

J ,
dV

dX

∣∣∣
X−X̃

· [F (X,u,w)−F (X̃, ũ, w̃)]− γ2‖w− w̃‖2 + ‖g(x, u)− g(x̃, ũ)‖2 ≤ 0 (4.90)

in which, the storage function V is chosen the same as the Lyapunov function (4.76),

X =
[
xᵀ eᵀ

]ᵀ
and F =

[
F ᵀ

1 F ᵀ
2

]ᵀ
with

F1 = (A−BK)x+ Φ(x, u) +D1w

F2 = (A− LC)e+ Φ(x, u)− Φ(x̂, u) + L[y − Cx̂− h(x̂, u)] + (D1 − LD2)w
(4.91)

For simplicity denote ẽ = x̃− ˜̂x, Φ̄(x, x̂, u) , Φ(x, u)− Φ(x̂, u), and h̄(x, x̂, u) , h(x, u)−

68



h(x̂, u). With these notations, calculating (4.90) yields

J =
∂V1

∂x

∣∣∣
X−X̃

· [F1(x, u, w)−F1(x̃, ũ, w̃)] +
∂V2

∂e

∣∣∣
X−X̃

· [F2(x, x̂, u, w)−F2(x̃, ˜̂x, ũ, w̃)]

− γ2‖w − w̃‖2 + ‖g(x, u)− g(x̃, ũ)‖2

= 2(x− x̃)ᵀP1[(A−BK)(x− x̃)−BK(e− ẽ) + Φ(x, u)− Φ(x̃, ũ) +D1(w − w̃)]

+ 2(e− ẽ)ᵀP2[(A− LC)(e− ẽ) + Φ̄(x, x̂, u)− Φ̄(x̃, ˜̂x, ũ)

+ Lh̄(x, x̂, u)− Lh̄(x̃, ˜̂x, ũ) + (D1 − LD2)(w − w̃)]

− γ2‖w − w̃‖2 + ‖g(x, u)− g(x̃, ũ)‖2 ≤ 0 (4.92)

From the geometric parametrizations of P1 and P2 and Assumption 4.3, we get PiΦ =

PiEΨ = εiΦ for i = 1, 2. Now using Assumptions 4.2-4.4 together with Lemma 4.5, the

triangle and Cauchy-Schwarz inequalities, the followings can be derived

2(x− x̃)ᵀP1[Φ(x, u)− Φ(x̃, ũ)] = 2ε1〈Φ(x, u)− Φ(x̃, ũ), x− x̃〉

= 2ε1[〈Φ(x, u)− Φ(x̃, u), x− x̃〉+ 〈Φ(x̃, u)− Φ(x̃, ũ), x− x̃〉]

≤ 2ε1ρ‖x− x̃‖2 + 2ε1‖x− x̃‖‖Φ(x̃, u)− Φ(x̃, ũ)‖

≤ 2ε1ρ‖x− x̃‖2 + 2ε1‖x− x̃‖λu‖K‖‖x̂− ˜̂x‖

≤ 2ε1(ρ+ λu‖K‖)‖x− x̃‖2 + 2ε1λu‖K‖‖x− x̃‖‖e− ẽ‖

≤ ε1(2ρ+ 3λu‖K‖)‖x− x̃‖2 + ε1λu‖K‖‖e− ẽ‖2

≤ ε1(2ρ+ 3λu‖K‖)‖x− x̃‖2 + 2ε1λu‖K‖(‖e‖2 + ‖ẽ‖2) (4.93)

2(e− ẽ)ᵀP2[Φ̄(x, x̂, u)− Φ̄(x̃, ˜̂x, ũ)] = 2ε2〈Φ̄(x, x̂, u)− Φ̄(x̃, ˜̂x, ũ), e− ẽ〉

= 2ε2[〈Φ(x, u)− Φ(x̂, u), e〉+ 〈Φ(x̃, ũ)− Φ(˜̂x, ũ), ẽ〉

− 〈Φ(x, u)− Φ(x̂, u), ẽ〉 − 〈Φ(x̃, ũ)− Φ(˜̂x, ũ), e〉]

≤ 2ε2ρ(‖e‖2 + ‖ẽ‖2 + 2‖e‖‖ẽ‖)

≤ 4ε2ρ(‖e‖2 + ‖ẽ‖2) (4.94)

2(e− ẽ)ᵀP2L[h̄(x, x̂, u)− h̄(x̃, ˜̂x, ũ)] ≤ (e− ẽ)ᵀG2G
ᵀ
2(e− ẽ)

+ ‖h(x, u)− h(x̂, u)− (h(x̃, ũ)− h(˜̂x, ũ))‖2

≤ (e− ẽ)ᵀG2G
ᵀ
2(e− ẽ) + λ2

h(‖e‖2 + ‖ẽ‖2 + 2‖e‖‖ẽ‖)

≤ (e− ẽ)ᵀG2G
ᵀ
2(e− ẽ) + 2λ2

h(‖e‖2 + ‖ẽ‖2) (4.95)
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‖g(x, u)− g(x̃, ũ)‖2 ≤ λ2
g(1 + ‖K‖)2‖x− x̃‖2 (4.96)

According to LMIs (4.61)-(4.62), we have

Gᵀ1G1 < σ2
1I → ‖G1‖ < σ1 (4.97)

σ2
2R
ᵀR− I > 0→ R−TR−1 < σ2

2I → ‖R−1‖ < σ2 (4.98)

thus, ‖K‖ ≤ ‖G1‖‖R−1‖ ≤ σ1σ2. Now, considering (4.93)-(4.96) a sufficient condition for

(4.92) is given by

J ≤ (x− x̃)ᵀ[−Q1 + ε1(2ρ+ 3λuσ1σ2)I + λ2
g(1 + σ1σ2)2I](x− x̃)

+ eᵀ[−Q2 + (4ε2ρ+ 2ε1λuσ1σ2 + 2λ2
h)I +G2G

ᵀ
2]e

+ ẽᵀ[−Q2 + (4ε2ρ+ 2ε1λuσ1σ2 + 2λ2
h)I +G2G

ᵀ
2]ẽ

− 2(x− x̃)ᵀP1BKe+ 2(x− x̃)ᵀP1BKẽ+ 2eᵀQ2ẽ

+ 2(x− x̃)ᵀP1D1(w − w̃) + 2eᵀP2(D1 − LD2)(w − w̃)

− 2ẽᵀP2(D1 − LD2)(w − w̃)− µ(w − w̃)ᵀ(w − w̃) ≤ 0 (4.99)

with µ = γ2. It can be verified that using P1BK = BG1, the definitions of Σ1, Σ2, Ω1,

Ω2, Ω3, Ω4 and the Schur’s complements, (4.99) is equivalent to (4.64). Note that based

on the definitions of G1 and G2, the optimal controller and observer gains are given by

(4.71) and (4.72), respectively. This completes the proof. �

Remark 4.12. Since inequalities (4.71)-(4.72) put some bound on the feedback gain norm

‖K‖, the values of σ1 and σ2 can be predetermined based on the system saturation level.

4.3 Simulation Results

In order to illustrate the effectiveness of the proposed control techniques, four numerical

examples are presented in this section. The first example investigates stabilizing of a

certain nonlinear system while the second one deals with robust controller design for

an uncertain Van der Pol oscillator. In the third example we design a tracking control

scheme for a chaotic plant. The last example is serve to show the efficiency of the proposed

observer-based control law in Section 4.2.
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Example 4.3. The system dynamics which has the form of (4.9)-(4.10) is given by
ẋ1(t) = x2 + 0.3 sin(x1 + u) + u+ θ(w)

ẋ2(t) = x1 − x2 + sat(x1 + x2) + w

z = [x1 x2 u]ᵀ

(4.100)

where sat(·) is the standard saturation and θ(w) is a static piecewise linear function shown

below

Figure 4.2: Disturbance nonlinearity

Clearly, the L2-gain of θ(·) is 1 while its incremental gain is equal to 4. The disturbance

input is described by

w(t) =

{
0.1 sin 2t 0 ≤ t ≤ 10

1.1 + 0.1 sin 2t 10 < t

It can be easily verified that the unforced plant, i.e. u = 0 and w = 0, is unstable. For the

nonlinear system (4.100) we have

∣∣∣∣∣∣
0.3

(
sin(x1 + u)− sin(x̃1 + ũ)

)
sat(x1 + x2)− sat(x̃1 + x̃2)

 ∣∣∣∣∣∣2 ≤ 0.09(x1 + u− x̃1 − ũ)2 + (x1 + x2 − x̃1 − x̃2)2

≤ X̃ᵀ


1.09 1 0.09

1 1 0

0.09 0 0.09


︸ ︷︷ ︸

G

X̃ ≤ λmax(G)||X̃||2

where X̃ᵀ =
[
x1 − x̃1 x2 − x̃2 u− ũ

]
and λmax(G) = 2.0482. Thus, Assumption 4.1 is

satisfied globally with λΦ =
√

2.0482. It was seen that achieving the minimum incremen-

tal disturbance attenuation of Corollary 4.1 results in undesirable large elements in the

feedback gain. Hence, we set γ = 1.3 in our LMIs. By choosing α = 0.4, ε1 = 0.01, and
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ε2 = 0.1 and solving the LMIs the controller gain is obtained as K =
[
10.668 6.483

]
.

Figures 4.3-4.4 compare the incremental H∞ controller designed by Corollary 4.1 with an

H∞ controller obtained based on the usual gain for the same attenuation level. It can be

seen that the incremental control law forces the unstable states to converge to the origin in

the presence of disturbance input. Moreover, it outperforms the usual H∞ control law in

the sense that reduces the amplification of the oscillations (output variations). This feature

is still valid even when the operation region of the disturbances changes at t = 10 sec.
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Figure 4.3: States responses in presence of the disturbance input with variable operation
region
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Figure 4.4: Norm of the penalty output

Example 4.4. Consider an uncertain model of the Van der Pol oscillator as follows
ẋ1(t) = (1 + δ1(t))x2 + w

ẋ2(t) = ρ(1 + 2δ2(t)− x2
1)x2 + x1 + u+ w

(4.101)

where ρ > 0 is a real number and −1/2 < δ1(t) < 1/2 and −1 < δ2(t) < 1 are unknown
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time varying parameters. Assume that the disturbance signal w(t) follows a uniform ran-

dom distribution. Clearly, (4.101) can be written into (4.44) via

A =

 0 1

−1 ρ

 , B =

0

1

 , D =

1

1

 ,

∆A(t) =

0 δ1(t)

0 2ρδ2(t)

 , Φ =

 0

−ρx2
1x2


and

F (t) =

δ1(t)

δ2(t)

 , Ma =

1 0

0 2ρ

 , Na =
[
0 1

]
Note that the variation intervals of δ1(t) and δ2(t) imply F ᵀ(t)F (t) < I. Moreover, using

Poincare-Bendixson theorem it can be concluded that the unforced system exhibits a limit

cycle that is stable whenever δ2(t) > −1/2 and unstable for δ2(t) < −1/2, δ1(t) > −1. The

system is locally Lipschitz on any compact subset of R2 but its Lipschitz constant depends

on the compact region and can computed as λΦ = max ||∂Φ
∂x || = max(ρ|x1|

√
4x2

2 + x2
1).

Setting ρ = 1 and considering the operating region of the system we get λΦ = 31.58.

Our purpose is to stabilize the system in the incremental sense for all admissible un-

certainties. If we pick α = 0.3, ε1 = 0.0001, and ε2 = 0.001 and z =
[
x1 x2 u

]ᵀ
as the

penalty variable the minimization of Theorem 4.2 yields

γ∗ = 1.673, K =
[
4.342 2.85

]
Figure 4.5 shows the states responses with the initial condition x0 =

[
0.5− 0.5

]ᵀ
. The

control law is applied at t = 25 sec. It is clear that the states converge rapidly to the origin

in presence of disturbance input as well as model uncertainties. The phase portrait of the

controlled system is depicted in Figure 4-5.

Example 4.5. The proposed incremental-based controller can be modified appropriately

such that it handles an input tracking problem. Consider again the system (4.9)-(4.10) ac-

companied by the measurement y = Cx. The nonlinearity Φ is assumed to be independent

of the control input u and our tracking strategy is as below

u = −Kx+ ur (4.102)
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Figure 4.5: Time responses of the system states using the proposed robust incremental
controller
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Figure 4.6: Phase portrait of the controlled Oscilator

with

ur = Kxr −B−1Axr −B−1Φ(xr) +B−1ẋr,

xr = C−1r, ẋr = C−1ṙ
(4.103)

where xr and r are the reference state and desired output, respectively. The feedback gain

K in (4.102) is obtained via an LMI optimization similar to that of Corollary 4.1.

Since chaos control has received substantial interest of research community, our result

is applied on a chaotic physical system. The dynamics of a given Lorenz system with
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control input u(t) =
[
u1 u2 u3

]ᵀ
and external disturbance w(t) is expressed as

ẋ1(t) = a(x2 − x1) + u1 + u3

ẋ2(t) = rx1 − x2 − x1x3 + u1 + w

ẋ2(t) = −bx3 + x1x2 + u2

(4.104)

where a and r are the so-called Prandtl and Rayleigh numbers, respectively and the pa-

rameter b depends on a geometric factor. It is well-known that the unforced plant be-

haves chaotically for a = 10, b = 8/3 and r = 28. The initial condition is taken as

x0 =
[
10 10 10

]ᵀ
.

This system is locally Lipschitz and its Lipschitz constant is given by max(
√

2x2
1 + x2

2 + x2
3)

on any compact region around the origin. Using LMI optimization the following value of

K is obtained for γ = 0.5

K =


3.28e− 8 134.9 1.08e− 9

3.35 −0.33 136.54

129.2 −97.23 3.26


The simulation results are plotted in Figures 4.7-4.8. The reference signal r =

[
r1 r2 r3

]ᵀ
is defined by 

r1 = 5 sin 3t

r2 = 2 cos 3t

r3 = −4 sin t

(4.105)

and the control input is applied at t = 20 sec. Note that here the whole state is assumed to

be available in the output, i.e. y = x. It can be seen that the reference tracking objective is

successfully achieved in Figure 4.7 and hence the proposed controller performs as expected.

Trajectories of the controlled Lorenz system is shown in Figure 4.8.

Example 4.6. Consider a discontinuous system in the form of (4.56) with

A =


−1 1 −1

0 −2 1

0 0 3

 , B =


0

0

1

 , C =


0

1

−1


ᵀ

, D1 =
[
−0.5 0.5 −1.5

]ᵀ
, D2 = 0.5
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Figure 4.7: Reference tracking using the incremental H∞ controller in presence of distur-
bance input
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Figure 4.8: Phase portrait of the controlled Lorenz system

Φ =
[
− sgn (x1)

√
|x1|u 0 −x1/3

3

]ᵀ
h = sin(x2 − x3), g = [xᵀu]ᵀ

where sgn (·) denotes the sign (signum) function. Clearly, the unforced plant, i.e., when

u = 0 and w = 0, is unstable, and none of the state variables is available in the measure-

ment. By similar arguments as that of [61, Example 4.2], it is easy to confirm that Φ(x, u)
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is not Lipschitz. However, we have

〈− sgn (x1)
√
|x1|u∗ + sgn (x̂1)

√
|x̂1|u∗, x1 − x̂1〉

≤ − ‖u∗‖√
|x1|+

√
|x̂1|

(x1 − x̂1)2

〈−x1/3
3 + x̂

1/3
3 , x3 − x̂3〉 ≤ −ξ−2/3(x3 − x̂3)2 ≤ 0

where ‖u∗‖ is chosen to be the infinity norm of any admissible control input u∗ and ξ ∈
(min{x3, x̂3},max{x3, x̂3}) is obtained from the mean value theorem. Consequently, Φ

obeys the one-sided Lipschitz condition (2.9) with ρ = −‖u∗‖/
(
2
√
c
)

for x1 ∈ [−c, c].
Moreover, it is Lipschitz with respect to u and can be written as Φ = EΨ with

E =

1 0 0

0 0 1

ᵀ , Ψ(x, u) =

− sgn (x1)
√
|x1|u

−x1/3
3


The functions h and g are also Lipschitz. Therefore, Assumptions 4.2-4.4 hold and

Theorem 4.3 can be used to design a stabilizing control law. Using σ1 = 5, σ2 = 2,

E⊥ = [0 1 0]ᵀ, ‖u∗‖ ≤ 10 and the operating region of x1 as [−5, 5], we get ρ = −0.22

and

γ∗ = 0.3, K =
[
−0.2304 −2.4799 7.1347

]
,

L =
[
1.009 −0.436 −7.729

]ᵀ
Figure 4.9 shows the simulation results of the H∞ output feedback control with the initial

conditions x(0) =
[
0 −1 1

]ᵀ
and x̂(0) =

[
0.5 0 − 0.5

]ᵀ
. Note that we assume a uni-

formly distributed random disturbance whose amplitude increases slowly within the time

interval (5, 15). The control law that is applied at t = 0.3 sec forces the unstable states

to converge to the origin asymptotically. It can be seen that our incremental gain-based

controller performs satisfactory even in the presence of disturbances with many variations.

Furthermore, the estimated states track the actual ones while the estimation error vanishes

gradually.

4.4 Summary

In this chapter the L2 incremental gain is examined as a new performance measure to

design a nonlinear H∞ controller. Our result is expressed via a feasibility problem of some

77



0 5 10 15
−4

−3

−2

−1

0

1

x
1
,
x̂
1

Time(s)

 

 

0 5 10 15
−1

−0.5

0

0.5

1

x
2
,
x̂
2

Time(s)

 

 

0 5 10 15
−1

0

1

2

3

x
3
,
x̂
3

Time(s)
0 5 10 15

0

0.5

1

1.5

2

Time(s)

||
e
||

 

 

norm of the estimation error

real state

estimated state

Figure 4.9: The simulation results for incremental observer-based H∞ controller

linear matrix inequalities (LMIs) for a class of Lipschitz nonlinear plants and guarantees

exponential stability with minimized incremental gain against model uncertainties and

disturbance inputs.

Moreover, as an extensive class of nonlinear plants, the one-sided Lipschitz systems

is investigated for H∞ output feedback design in presence of disturbance inputs. We

minimize the effect of disturbances through an incremental H∞ performance criterion in

an observer-based control scheme to obtain a stable closed-loop system. The simulation

results make the proposed strategies practically viable.
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Chapter 5

Input-to-Error Sampled-Data

Nonlinear Observer

Throughout this chapter1 we study sampled-data nonlinear observers, understood as ob-

servers for continuous-time systems implemented using a digital computer via sample and

hold devices. We present two general estimation procedures for general nonlinear sys-

tems based on (i) discrete-time design (DTD), and (ii) continuos-time design (CTD) or

emulation (see e.g., [3, 4] for more details). We show that, given a continuous-time non-

linear plant model, then under some standard assumptions and Lyapunov-ISS conditions,

the proposed observers converge to the true plant state at each sampling instant in an

input-to-state stable, semiglobal practical sense.

The second half of the chapter is dedicated to one specific type of nonlinearities,

namely one-sided Lipschitz, in order to obtain constructive algorithms for a special class

of systems. One-sided Lipschitz systems were inspired by recent advances in the math-

ematical literature in numerical analysis and can be viewed as a generalization of the

popular Lipschitz condition that has received much attention in the control literature for

the past 4 decades. All of the existing works focus on observer stability and make use

of a modified one-sided Lipschitz condition in which the nonlinearity is scaled via a fixed

symmetric matrix. This modification makes the design problem tractable, but affects the

value of one-sided Lipschitz constant and brings additional constraints on the Lyapunov

1The results of this chapter have been submitted for publication in the article: H. Beikzadeh and H.
J. Marquez, “Input-to-Error Stable Observer for Nonlinear Sampled-Data Systems with Application to
One-Sided Lipschitz Systems,” Submitted to Automatica, Sept. 2013.
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function. Observer design for the original one-sided Lipschitz condition remains relatively

unexplored. Very recently, the authors in [63] introduced an alternative approach which

eliminates the need for scaling at the expense of an additional condition on the nonlinear-

ity, known as quadratically inner bounded . This approach was further developed in [64]

to obtain less conservative results and in [65] to address the discrete-time problem. In

this chapter, we consider the the problem of sampled-data observer design for one-sided

Lipschitz systems in the presence of disturbance inputs. We present two DTD and CTD

(emulation)-based schemes that ensure input-to-error stability in terms of linear matrix

inequalities (LMIs). Both of the proposed observers introduce refined Euler models by

incorporating an integration parameter together with the sampling period to approximate

the exact discrete-time models. We show that while the DTD observer necessitates the

quadratically inner-bounded condition, the CTD observer does not. Instead, we employ

a mild geometric condition on the plant nonlinearity and formulate the design procedure

using a parameterization of the Lyapunov function [103].

The rest of the chapter is organized as follows. Section 5.1 introduces the family of

input-to-error stable sample-data observers in presence of disturbances, and gives the rel-

evant background. We provide sufficient conditions which guarantee semiglobal practical

stability of the estimation error for general nonlinear plants using the DTD and CTD

methods in sections 5.2 and 5.3, respectively. Our results is applied to one-sided Lipschitz

systems in Section 5.4 and is verified via two appropriate simulation examples in Section

5.5. Eventually, some concluding remarks are drawn in the last section.

5.1 Definitions and Problem Setting

We consider the following nonlinear system:

G :


ẋ(t) = f(x(t), u(t), d(t))

y(t) = g(x(t), u(t), d(t))

(5.1)

where x ∈ Rn, u ∈ Rm, d ∈ Rq and y ∈ Rp are respectively the state vector, control

input, exogenous disturbance and measured output and the nonlinear functions f and g

are continuously differentiable vanishing at the origin. Assume that the continuous-time

system G is connected to the ideal sampler S and the (zero order) hold device H with the
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sampling period T > 0 in a sampled-data configuration. The exact discrete-time model of

(1) is then given by

x(k + 1) = F eT (x[k], u(k), d[k])

y(k) = g(x(k), u(k), d(k))
(5.2)

where F eT (x, u, d̄) is the solution of the differential equation in (5.1) over sampling interval

[kT, (k+1)T ) with a constant input u. The need for a closed form solution of the differential

equation (5.1) makes it impossible to obtain the model (5.2) in most practical cases.

Therefore, consistent with the literature on nonlinear sampled-data systems, we refer to

F eT as the exact discrete-time model of the system (5.1) and assume that it is unknown.

Instead we employ a family of approximate discrete-time models F aT,h(x(k), u(k), d[k]),

where h is a modelling parameter utilized to refine the approximate model for a given T .

Throughout the chapter the mismatch between the exact and approximate models is

evaluated via the one-step consistency property of Definition 2.8. The one-step consistency

can be checked using verifiable conditions based on the Euler approximation provided

in [4, 13] without knowing the exact model F eT .

Considering the approximation F aT,h, we design a family of sampled-data observers of

the form

x̂(k + 1) = F aT,h(x̂(k), u(k), 0) + `T,h(x̂(k), y(k), u(k)), (5.3)

where x̂(k) denotes the state estimate, F aT,h(x̂(k), u(k), 0) is the approximate model with

zero disturbance and `T,h is zero at zero.

Our main question is under what conditions, and in what sense, an estimator like (5.3)

guarantees convergence to the true plant state when applied to the exact model (5.2).

Note that it is well established that, even in the absence of disturbance, an asymptotic

convergence of an observer design based on the approximate model does not necessarily

guarantee convergence of the true (exact) model (see [70]).

Definition 5.1. The observer (5.3) is said to be input-to-error stable semiglobal in T and

practical in h, if there exist β ∈ KL and γ ∈ K such that for any δ1, δ2 > 0 and compact

sets X ∈ Rn, U ∈ Rm, we can find T1 > 0 such that for any T ∈ (0, T1] and ν ∈ (0, δ1),

there exists h1 ∈ (0, T ] such that ∀h ∈ (0, h1],

|x(0)− x̂(0)| ≤ δ1, ‖d‖∞ ≤ δ2 (5.4)
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and x(k) ∈X , u(k) ∈ U , ∀k ∈ Z+ implies

|x(k)− x̂(k)| ≤ β(|x(0)− x̂(0)|, kT ) + γ(‖d‖∞) + ν (5.5)

This definition is a generalization of the notion of semiglobal practical convergence

introduced by [70] when the plant is exposed to disturbance inputs. Note that for d = 0,

Definition 5.1 reduces to [70, Definition 2(b)] where h is independent of T . The effect

of the sampling period as well as the refining parameter on the residual observer error is

investigated in Section 5.5.

5.2 Observer Design via Approximation and Input-to-State

Stability

In this section, we derive conditions based on the approximate model that guarantee ISS

observer convergence in the sense of Definition 5.1 for the exact model. From (5.2) and

(5.3), the observer error e := x− x̂ satisfies

e(k + 1) = F aT,h(x̂(k), u(k), 0) + `T,h(x̂(k), y(k), u(k))− F eT (x(k), u(k), d[k]) (5.6)

Adding and subtracting the approximate model F aT,h(x(k), u(k), d[k]), (5.6) can be rewrit-

ten as

e(k + 1) = ET,h(e(k), x(k), u(k)) + F aT,h(x(k), u(k), d[k])− F eT (x(k), u(k), d[k]) (5.7)

where

ET,h(e, x, u) := F aT,h(x̂, u, 0) + `T,h(x̂, y, u)− F aT,h(x, u, d̄) (5.8)

indicates the nominal estimation error dynamics for the approximate design, and F aT,h−F eT
is the mismatch between the approximate and exact plant models.

Theorem 5.1. The observer error dynamics (5.6) is input-to-error stable if the following

conditions hold:

(i) F aT,h is one-step consistent with F eT as in Definition 2.8.

(ii) There exists a family of Lyapunov functions VT,h(e), α1(·), α2(·), α3(·) ∈ K∞ and

γ̃(·) ∈ K with the following properties:
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For any positive real numbers (δe, δu, δd), there exists T ∗ > 0 and M > 0 such that for

each fixed T ∈ (0, T ∗] there exists h∗ ∈ (0, T ] such that for all e, e1, e2 ∈ B(δe), u ∈ B(δu),

‖d‖∞ ≤ δd and h ∈ (0, h∗],

|VT,h(e1)− VT,h(e2)| ≤M |e1 − e2| (5.9)

α1(|e|) ≤ VT,h(e) ≤ α2(|e|) (5.10)

∆V

T
:=

VT,h(ET,h(e, x, u))− VT,h(e)

T
≤ −α3(|e|) + γ̃(‖d‖∞) (5.11)

In order to prove our main result, we need the following lemma.

Lemma 5.1. Let α1, α2, α3 ∈ K∞ and strictly positive real numbers (Ce, r, Cd) be such

that ‖d‖∞ ≤ Cd and α1(Ce) ≥ r. Assume that for T1 > 0 and each fixed T ∈ (0, T1] there

exists h1 ∈ (0, T ] such that for any h ∈ (0, h1] there exists a function VT,h : Rn → R+

with the following properties: we have α1(|e|) ≤ VT,h(e) ≤ α2(|e|) for all e ∈ Rn and

max{VT,h(e(k + 1)), VT,h(e(k))} ≥ r for all ‖d‖∞ ≤ Cd, e ∈ Rn with |e| ≤ Ce leads to

VT,h(e(k + 1)) − VT,h(e(k)) ≤ −T
4 α3(|e|). Then, for all |e(0)| ≤ α−1

2 ◦ α1(R), ‖d‖∞ ≤ Cd

we get |e(k)| ≤ Ce ∀k ∈ Z+, and furthermore the estimation error satisfies

|e(k)| ≤ β(|e(0)|, kT ) + α−1
1 (r) (5.12)

Proof. The first part of the proof is analogous to that of [19, Claim 3]. Then, using an

argument similar to the proof of Theorem 2 in [4], it can be concluded that there exists a

class-KL function β1(·, ·) such that VT,h(e(k)) ≤ max{β1(VT,h(e(0)), kT ), r}. Then, (5.12)

is obtained with β(s, τ) = α−1
1 (β1(α2(s), τ)). �

Proof of Theorem 5.1: Let (δe, δd, ν) > 0 be given and T11, h11 come from Definition

2.8. First from (5.7) and (5.11) and using inequality (5.9) together with the consistency

property (2.8), we obtain

VT,h(e(k + 1))− VT,h(e(k)) ≤ −Tα3(|e|) + T γ̃(‖d‖∞) + VT,h(e(k + 1))

− VT,h(ET,h(e(k), x(k), u(k)))

≤ −Tα3(|e|) + T γ̃(‖d‖∞) + TMρ(h) (5.13)
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for T ∈ (0, T11], h ∈ (0, h11]. Define γ̂ ∈ K∞ and positive real numbers (Ce, Cd, ε)

as: γ̂(s) := α2 ◦ α−1
3 (4γ̃(s)), Ce := δe, ε > 0 is such that sups∈[0,δd]{α−1

1 (γ̂(s) + ε) −
α−1

1 (γ̂(s))} ≤ ν, and Ce := max{α−1
1 (γ̂(δd) + ε), α−1

1 ◦ α2(δe)}. These choices implies

that Ce ≥ α−1
1 (γ̂(Cd) + ε) and |e(0)| ≤ α−1

2 ◦ α1(Ce). We now claim that there exists

T ∗ > 0 such that for each T ∈ (0, T ∗] there exists h∗ ∈ (0, T ] such that for all h ∈ (0, h∗],

|e(0)| ≤ α−1
2 ◦ α1(Ce), ‖d‖∞ ≤ Cd and all k ∈ Z+ it can be deduced that

max{VT,h(e(k + 1)), VT,h(e(k))} ≥ γ̂(‖d‖∞) + ε

⇒ VT,h(e(k + 1))− VT,h(e(k)) ≤ −T
4
α3(|e(k)|) (5.14)

Let us define σ1 = 1
2α
−1
2 ( ε2) and σ2 = α−1

2 (1
2α1(σ1)). Choose positive real numbers T12,

h12, T13, h13, T14, h14 such that: T12ρ(h12) ≤ σ1, T13(1
4α3(Ce) + γ̃(‖d‖∞) +Mρ(h13)) ≤ ε

2 ,

T14γ̃(Cd) ≤ 1
2α1(σ1), and Mρ(h14) ≤ 1

2α3(σ2). Take T ∗ = min{T11, T12, T13, T14} and

h∗ = min{h11, h12, h13, h14} and consider any T ∈ (0, T ∗], h ∈ (0, h∗], |e(0)| ≤ α−1
2 ◦

α1(Ce) and ‖d‖∞ ≤ Cd. Now we consider two possible scenarios. First assume that

VT,h(e(k + 1)) ≥ γ̂(‖d‖∞) + ε
2 and rewrite (5.13) as

VT,h(e(k + 1))− VT,h(e(k)) ≤ −T
4
α3(|e(k)|)−T

4
α3(α−1

2 (VT,h(e(k)))) + T γ̃(‖d‖∞)︸ ︷︷ ︸
(a)

−T
2
α3(|e(k)|) + TMρ(h)︸ ︷︷ ︸

(b)

(5.15)

therefore we conclude that VT,h(e(k+1)) ≥ γ̂(‖d‖∞)+ ε
2 implies γ̂(‖d‖∞)+ ε

2 ≤ VT,h(ET,h(e, x, u))−
VT,h(e(k))+|VT,h(e(k+1))−VT,h(ET,h(e, x, u))|+VT,h(e(k)) ≤ −Tα3(|e(k)|)+T γ̃(‖d‖∞)+

MT (3ρ(h)+VT,h(e(k)). By the choice of T13 and h13, we get γ̂(‖d‖∞)+ υ
2 ≤ υ

2 +VT,h(e(k)).

Hence, it follows that

VT,h(e(k + 1)) ≥ γ̂(‖d‖∞) +
ε

2
⇒ VT,h(e(k)) ≥ γ̂(‖d‖∞). (5.16)

Based on the definition of γ̂(·), Term (a) ≤ 0 holds. By supposition VT,h(e(k + 1)) ≥
γ̂(‖d‖∞) + ε

2 , we have e(k + 1) ≥ α−1
2 ( ε2) = 2σ1. Then our choice of T12 and h12 shows

that |ET,h(e, x, u)| ≥ |e(k + 1)| − |e(k + 1)− ET,h(e, x, u)| ≥ 2σ1 − σ1 = σ1. Using (5.11)

and our choice of T14, it yields that

α2(|e(k)|) ≥ VT,h(ET,h(e, x, u))− T γ̃(Cd) ≥ α1(|ET,h(e, x, u)|)− T γ̃(Cd)

≥ α1(σ1)− 1

2
α1(σ1) =

1

2
α1(σ1) (5.17)
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which implies |e(k)| ≥ α−1
2 (1

2α1(σ1)) = σ2. Then, from the choice of h14, we have |e(k)| ≥
σ2 ⇒ Term(b) ≤ 0. Consequently, VT,h(x(k + 1), x̂(k + 1)) ≥ γ̂(‖d‖∞) + υ

2 results in

VT,h(x(k + 1), x̂(k + 1))− VT,h(x(k), x̂(k)) ≤ −T
4 α3(|e(k)|).

Now Suppose that VT,h(e(k+ 1)) ≤ γ̂(‖d‖∞) + ε
2 and VT,h(e(k)) ≤ γ̂(‖d‖∞) + ε. From

our choice of T13 and h13, it follows that: VT,h(e(k + 1)) − VT,h(e(k)) ≤ γ̂(‖d‖∞) + ε
2 −

VT,h(e(k)) + ε
2 − ε

2 ≤ γ̂(‖d‖∞) + ε− VT,h(e(k))− ε
2 ≤ − ε

2 ≤ T
4 α3(|e(k)|). Therefore, (5.14)

is valid under both cases.

With these prerequisites, we can finalize our proof. Taking the definitions of γ̂ ∈ K∞,

(Ce, Cd, ε) into account, assume that (5.14) holds with T ∗ > 0, h∗ > 0. Let r = γ̂(‖d‖∞)+

ε, then we have α1(Ce) ≥ r. With the definition of (Ce, r), all the conditions of Lemma

5.1 are satisfied. Therefore, for all h ∈ (0, h∗], |e(0)| ≤ δe and ‖d‖∞ ≤ δd, we obtain

|e(k)| ≤ β(|e(0)|, kT ) + α−1
1 (γ̂(‖d‖∞) + ε) ≤ β(|e(0)|, kT ) + γ(‖d‖∞) + ν (5.18)

where γ(s) := α−1
1 ◦ γ̂(s). The proof of Theorem 5.1 is complete. �

5.3 Observer Design via Emulation and Input-to-State Sta-

bility

Emulation is known as a common approach for sample-data implementation of controllers

and observers, which consists of continuous-time discretization using approximate meth-

ods. Assume that we have a continuous-time observer described by

˙̂x = s(x̂, y, u) (5.19)

that is implemented with the approximate discrete-time model

x̂(k + 1) = SaT,h(x̂(k), y(k), u(k)) (5.20)

The function s(·, ·, ·) is assumed to be locally Lipschitz in all its arguments. We now

provide a Lyapunov-ISS condition to guarantee the semiglobal practical convergence of

the emulated observer (5.20).

Theorem 5.2. The observer (5.20) is input-to-error stable if the following conditions

hold:
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(i) SaT,h is one-step consistent with SeT according to Definition 2.8, (y, u) as constant

inputs during sampling intervals.

(ii) There exists a C1 Lyapunov function V , α1(·), α2(·), α3(·) ∈ K∞ and γ̃(·) ∈ K such

that for all x, x̂ ∈ Rn and all u ∈ Rm

α1(|e|) ≤ V (e) ≤ α2(|e|) (5.21)

∂V

∂x
f(x, u) +

∂V

∂x̂
s(x̂, y, u) ≤ −α3(|e|) + γ̃(‖d‖∞) (5.22)

with e = x− x̂ as the estimation error.

Proof. The proof is analogous to that of Theorem 5.1 with the Lyapunov function

VT,h replaced by V . The details are hence omitted. �

5.4 Application: One-Sided Lipschitz Systems

In this section we apply the general input-to-state observer conditions of Sections 5.2 and

5.3 to the class of one-sided Lipschitz systems. Section 5.4.1 considers the DTD method

and section 5.4.2 considers the same problem via emulation. We will show that both

techniques are needed given the different challenges presented in the design.

5.4.1 DTD Method:

This section applies the general input-to-state observer convergence conditions of Theo-

rem 5.1 to the problem of sampled-data observer design for one-sided Lipschitz nonlinear

systems. In order to proceed, we need to specify some form of discrete-time model ap-

proximation. For this purpose, we focus on the Euler model because of its simplicity and

also because it preserves the structure of the original nonlinear model.

Throughout the rest of this section we assume that the continuous-time system (5.1)

can be put into the following form

ẋ(t) = Ax(t) + Φ(x(t), u(t)) +D1d(t)

y(t) = Cx(t) +D2d(t)
(5.23)

where A,C,D1, D2 are constant matrices of appropriate dimensions and the nonlinear-

ity Φ(·, ·) satisfies the one-sided Lipschitz assumption defined as follows: Φ is one-sided
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Lipschitz in the region D, i.e., for ∀x, x̂ ∈ D and any admissible control signal u∗

〈Φ(x, u∗)− Φ(x̂, u∗), x− x̂〉 ≤ µ‖x− x̂‖2 (5.24)

where µ ∈ R is the so-called one-sided Lipschitz constant.

Remark 5.1. Note that condition (5.24) is different from the nondecreasing (slope re-

stricted) nonlinearities considered by [71, 104]. Slope restricted nonlinearities were the

focus of much attention in the 1960’s. A scalar function γ(·) is said to satisfy a sector

condition if

α ≤ γ(v)− γ(ω)

v − ω ≤ β ∀v, ω ∈ R, v 6= ω, α, β ∈ R

One-sided Lipschitz functions are vector-valued and therefore generalize the sector condi-

tion in a non-straightforward manner.

We need the following assumption previously made by [63,65].

Assumption 5.1. Φ is quadratically inner-bounded in the region D̃, i.e.,

(Φ(x, u∗)−Φ(x̂, u∗))ᵀ(Φ(x, u∗)−Φ(x̂, u∗)) ≤ η‖x−x̂‖2+θ〈x−x̂,Φ(x, u∗)−Φ(x̂, u∗)〉 (5.25)

for ∀x, x̂ ∈ D̃ and η, θ ∈ R.

It is easy to verify that any Lipschitz function is also one-sided Lipschitz and quadrat-

ically inner bounded with θ = 0 and η > 0. However the converse of these statements is

not true ( [63]). Thus, (5.23) with (5.24) constitutes a broad class of nonlinearities that

include Lipschitz as a special case.

We first construct an approximate discrete-time model F aT,h for the continuos-time

system (5.23) through a refined Euler model as follows
ϕh(i, x, u, d) := x+ h(Ax+ Φ(x, u)) +

∫ kT+(i+1)h
kT+ih d(τ)dτ,

ϕi+1
h (x, u, d) := ϕh(i+ 1, ϕih, u, d),

F aT,h(x(k), u(k), d[k]) := ϕNh (x, u, d)

(5.26)

in which ϕ1
h := x+ h(Ax+ Φ(x, u)) +

∫ kT+h
kT d(τ)dτ and N = T/h.

Proposition 5.1. The approximation (5.26) yields the following closed-form discrete-time

model for (5.23)

x(k + 1) = Ahx(k) + Φh(x(k), u(k)) +D1dh[k]

y(k) = Chx(k) +D2d(k)
(5.27)
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with

Ah = (I + hA)N , Ch = C,

Φh(x, u) =

N−1∑
j=0

h(I + hA)jΦ(x, u), (5.28)

dh[k] =
N−1∑
j=0

(I + hA)N−j−1

∫ kT+(j+1)h

kT+jh
d(τ)dτ

Proof. The proof is straightforward and is thus omitted.

Let H =
∑N−1

j=0 h(I + hA)j , then

〈Φh(x, u∗)− Φh(x̂, u∗), x− x̂〉 = 〈HΦ(x, u∗)−HΦ(x̂, u∗), x− x̂〉 ≤ ‖H‖µ‖x− x̂‖2

which states that Φh is also one-sided Lipschitz with the constant µh = ‖H‖µ.

Remark 5.2. If N → 1, then Ah → (I + AT ), Φh → TΦ and (5.27) represents the

original Euler model. Moreover, as N → ∞, Ah → eAT which is the zero-order hold

equivalent of the linear part in (5.23).

Remark 5.3. It is straightforward that the approximation (5.27) is one-step consistent

with the unknown exact discrete-time model of (5.23).

We now consider the following observer structure:

x̂(k + 1) = F aT,h(x̂(k), u(k), 0) + L[y(k)− Chx̂(k)] (5.29)

where L ∈ Rn×m is the observer gain to be determined.

Theorem 5.3. Under Assumption 5.1, the observer (5.29) using the approximate model

(5.27) is input-to-error stable according to Definition 5.1, if there exist matrices P > 0

and R and scalars ζ1, ζ2 > 0 such that the following LMI is feasible:
−P + (ζ1µh + ζ2ηh)I Q+ ζ2θh−ζ1

2 I
√

3Q

∗ 3P − ζ2I 0

∗ ∗ −P

 < 0, (5.30)

where Q = AᵀhP −C
ᵀ
hR, µh = ‖H‖µ, ηh = ‖H‖2η and θh = ‖H‖2θ. Then, the gain matrix

L is given by L = P−1Rᵀ.
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Proof. To prove the result, let us pick the Lyapunov function candidate as VT,h =

eᵀ(k)Pe(k). From λmin(P )|e|2 ≤ VT,h(e) ≤ λmax(P )|e|2, we have that (5.10) is satisfied.

Besides,

|VT,h(e1)− VT,h(e2)| = |eᵀ1Pe1 − eᵀ2Pe2| = |[e1 − e2]P [e1 + e2]| ≤ λmax(P )|e1 + e2||e1 − e2|
(5.31)

which implies (5.9) using the fact that ∃M ∈ (0,∞) such that λmax|e1 + e2| ≤ M . Con-

sidering (5.27) and (5.29), the observer error dynamics is given by

e(k + 1) := x(k + 1)− x̂(k + 1) = (Ah − LCh)e(k) + ∆Φh(x(k), x̂(k), u(k))

+D1dh[k]− LD2d(k) (5.32)

with ∆Φh := Φh(x(k), u(k)) − Φh(x̂(k), u(k)). By virtue of (5.32), the difference of VT,h

is calculated as

∆V = VT,h(e(k + 1))− VT,h(e(k)) = eᵀ(k + 1)Pe(k + 1)− eᵀ(k)Pe(k)

= eᵀ[(Ah − LCh)ᵀP (Ah − LCh)− P ]e+ ∆ΦᵀhP∆Φᵀh + 2eᵀ(Ah − LCh)ᵀP∆Φh

+ 2eᵀ(Ah − LCh)ᵀPD1dh[k]− 2eᵀ(Ah − LCh)ᵀPLD2d(k) + 2∆ΦᵀhPD1dh[k]

− 2∆ΦᵀhPLD2d(k)− 2dᵀh[k]Dᵀ1PLD2d(k)

+ dᵀh[k]Dᵀ1PD1dk[k] + dᵀ(k)Dᵀ2L
ᵀPLD2d(k) (5.33)

Note that here e(k + 1) is indeed the nominal estimation error ET,h defined by (5.8) and

hence, (5.33) calculates the Lyapunov function difference as used in (5.11). Employing

the well-known matrix inequality

2X ᵀY ≤X ᵀPX + Y ᵀP−1Y (5.34)

for any positive definite matrix P and vectors X ,Y ∈ Rn, we obtain the following in-

equalities

2eᵀ(Ah − LCh)ᵀPD1dh[k] ≤ eᵀÃhe+ dᵀh[k]Dᵀ1PD1dh[k] (5.35)

−2eᵀ(Ah − LCh)ᵀPLD2d(k) ≤ eᵀÃhe+ dᵀ(k)Dᵀ2L
ᵀPLD2d(k) (5.36)

2∆ΦᵀhPD1dh[k] ≤ ∆ΦᵀhP∆Φh + dᵀh[k]Dᵀ1PD1dh[k] (5.37)

−2∆ΦᵀhPLD2d(k) ≤ ∆ΦᵀhP∆Φh + dᵀ(k)Dᵀ2L
ᵀPLD2d(k) (5.38)
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where Ãh = (Ah − LCh)ᵀP (Ah − LCh). Inserting (5.35)-(5.38) into (5.33), we have

∆V ≤ eᵀ[3Ãh − P ]e+ 3∆ΦᵀhP∆Φh + 2eᵀ(Ah − LCh)ᵀP∆Φh + 3dᵀh[k]Dᵀ1PD1dk[k]

+ 3dᵀ(k)Dᵀ2L
ᵀPLD2d(k)− 2dᵀh[k]Dᵀ1PLD2d(k) (5.39)

which can be written as

∆V/T ≤

 e(k)

∆Φh(k)

ᵀ 1

T

3Ãh − P (Ah − LCh)ᵀP

∗ 3P

 e(k)

∆Φh(k)


︸ ︷︷ ︸

(i)

+

dh[k]

d(k)

ᵀ 1

T

3Dᵀ1PD1 −Dᵀ1PLD2

∗ 3Dᵀ2L
ᵀPLD2

dh[k]

d(k)


︸ ︷︷ ︸

(ii)

(5.40)

Equation (5.24) can be rewritten in the form µhe
ᵀ(k)e(k)− eᵀ(k)∆Φh ≥ 0. Therefore, for

any positive scalar ζ1

ζ1

T

 e(k)

∆Φh(k)

ᵀ µhI − I
2

∗ 0

 e(k)

∆Φh(k)

 ≥ 0 (5.41)

Similary, from (5.25), we have

ζ2

T

 e(k)

∆Φh(k)

ᵀ ηhI − θhI
2

∗ −I

 e(k)

∆Φh(k)

 ≥ 0 (5.42)

for a positive scalar ζ2. Then, adding the left-side terms in (5.41) and (5.42) to term (i)

in (5.39) leads to

term (i) ≤

 e(k)

∆Φh(k)

ᵀΠ

 e(k)

∆Φh(k)

 (5.43)

with

Π =
1

T

(3Ãh − P ) + (ζ1µh + ζ2ηh)I (Ah − LCh)ᵀP + θhζ2−ζ1
2 I

∗ 3P − ζ2I


Using the Schur complement and notations R = LᵀP , Q = AᵀhP−C

ᵀ
hR, (5.30) is equivalent

to Π < 0. Therefore, if LMI (5.30) holds a feasible solution, then for all e(k) 6= 0

Term (i) ≤ λmax(Π)(eᵀe+ ∆Φᵀh∆Φh) < −α3(‖e‖) < 0 (5.44)
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where α3(‖e‖) = −λmax(Π)‖e‖2. Regarding the second term of (5.40), it is easy to verify

that 3Dᵀ1PD1 −Dᵀ1PLD2

∗ 3Dᵀ2L
ᵀPLD2

 =

D1

D2

ᵀ 3P −PL
∗ 3LᵀPL

D1

D2

 (5.45)

is positive semi-definite which together with ‖d[k]‖ ≤ ‖d‖∞, ‖d(k)‖ ≤ ‖d‖∞ indicates that

there always exists a function γ̃(·) ∈ K such that Term (ii) ≤ γ̃(‖d‖∞). This inequality

together with (5.44) results in (5.11). Considering Remark 5.3 all the conditions of The-

orem 5.1 hold, and hence the observer (5.26) is input-to-error stable. This completes the

proof. �

Letting η = 0 and θ > 0 in (5.25), the quadratically inner bounded condition reduces

to the “sector constraint” as a special case discussed in [114], that is

(Φ(x, u∗)− Φ(x̂, u∗))ᵀ(Φ(x, u∗)− Φ(x̂, u∗)) ≤ θ〈x− x̂,Φ(x, u∗)− Φ(x̂, u∗)〉 (5.46)

thus, we can derive the following corollary from Theorem 5.3.

Corollary 5.1. Assume the one-sided Lipschitz system (5.23) under the sector constraint

(5.46) with a constant θ > 0. Then the observer (5.29) using the approximate model (5.27)

is input-to-error stable, if there exist P > 0 and scalars ζ1, ζ2, ς > 0 such that the following

LMI is feasibe 
−P + ζ1µhI AᵀhP − σ

2C
ᵀ
hCh + ζ2θh−ζ1

2 I ς
2

√
3CᵀhCh

∗ 3P − ζ2I 0

∗ ∗ −P

 < 0, (5.47)

the resulting matrix gain L is given by L = ς
2P
−1Cᵀ.

Proof. Using the elimination of matrix variables introduced in [110] together with

setting ηh = 0 in (5.30), we can obtain the matrix condition (5.47). Here the detailed

proof is omitted. �

Remark 5.4. If we let µh = 0 in (5.47), i.e., the plant is not necessarily one-sided

Lipschitz, Corollary 5.1 presents a sampled-data design approach for the nonlinear systems

with sector constraint nonlinearity [114].
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5.4.2 Emulation Method:

In this section we apply the general input-to-state observer convergence conditions of The-

orem 5.2 to the problem of sampled-data observer design for one-sided Lipschitz nonlinear

systems via emulation.

Before proceeding with the discussion, we note a significant difference between the

emulation method discussed here and the direct discrete design of the previous section.

In the direct discrete-time design, the quadratically inner bounded condition imposed by

Assumption 5.1 seems to be inevitable. This fact is due to the challenging presence of the

term ∆ΦᵀP∆Φ that appears in the derivation. We will see, however, that this condition

is no longer needed for the emulation based design.

Consider again the one-sided Lipschitz plant (5.23) under the following assumption.

Assumption 5.2. The nonlinearity Φ can be written as

Φ(x, u) = EΨ(x, u) (5.48)

where the full-column rank matrix E ∈ Rn×s is the corresponding distribution of Ψ(x, u)

onto the nonlinear function Φ(x, u)

Remark 5.5. Assumption 5.2 places a geometric condition on the one-sided Lipschitz

function Φ. Note that this condition affects neither the value of the one-sided Lipschitz

constant nor the Lyapunov matrix in our synthesis (see Theorem 5.4).

Throughout the rest of the section we assume that a continuous-time observer of the

form:

˙̂x(t) = Ax̂(t) + Φ(x̂(t), u(t)) + L[y(t)− Cx̂(t)] (5.49)

has already been designed for the continuous-time system (5.23)-(5.24), and construct SaT,h

in (5.20) using a refined Euler approximation similar to (5.26) as follows:

x̂(k+1) =
(
I+h(A−LC)

)N
x̂(k)+

N−1∑
j=0

h
(
I+h(A−LC)

)j(
Φ(x̂(k), u(k))+Ly(k)

)
(5.50)

Theorem 5.4. Under Assumption 5.2, the discretized observer (5.50) obtained from the

continuous-time observer (5.49) is input-to-error stable according to Definition 5.1, if there

exist matrices X = Xᵀ and R and scalar ζ > 0 such that the following LMI feasibility

92



problem has a solution:

Q+Qᵀ + E⊥XE⊥
ᵀ

+ ζ(2µ+ 1)I < 0 (5.51)

E⊥XE⊥
ᵀ

+ ζI > I (5.52)

in which Q = AᵀE⊥XE⊥
ᵀ

+ ζA − RC. If (5.51)-(5.52) has a feasible solution, then the

observer gain is given by L = (E⊥XE⊥
ᵀ

+ ζI)−1R.

The following lemma is needed in the proof of Theorem 5.4.

Lemma 5.2. For any symmetric matrix P ∈ Rn×n and nonzero matrix M ∈ Rn×m, there

exists a symmetric matrix X ∈ Rm×m and a positive scalar ζ > 0 such that P can be

parameterized in the form P = MXMᵀ + ζIn.

Proof: The proof is analogous to that in [103, Lemma 4.1], and is omitted. �

Proof of Theorem 5.4. From (5.23) and (5.49), the error dynamics of the continuous-

time observer is

ė(t) = (A− LC)e(t) + Φ(x(t), u(t))− Φ(x̂(t), u(t)) + (D1 − LD2)d(t) (5.53)

Choose V (e) = eᵀ(t)Pe(t) as the Lyapunov function candidate. Computing the left hand

side of (5.22) yields

∂V

∂x
f(x, u) +

∂V

∂x̂
s(x̂, y, u)

= 2eᵀ(t)P
(
Ax(t) + Φ(x(t), u(t)) +D1d(t)

)
− 2eᵀ(t)P

(
Ax̂(t) + Φ(x̂(t), u(t))

+ L[y(t)− Cx̂(t)]
)

= eᵀ(t)[(A− LC)ᵀP + P (A− LC)]e(t) + 2eᵀ(t)P [Φ(x(t), u(t))− Φ(x̂(t), u(t))]

+ 2eᵀ(t)P (D1 − LD2)d(t) (5.54)

that is indeed the time derivative of V along (5.53). In accordance with Lemma 5.2,

assume that P can be parameterized as P = E⊥XE⊥
ᵀ

+ ζI, where X is an arbitrary

weighting matrix, ζ > 0 and E comes from Assumption 5.2 . Now, using the geometric

condition (5.48) and the one-sided Lipchitz property of Φ we get

eᵀ(t)P [Φ(x(t), u(t))− Φ(x̂(t), u(t))] = 〈PEΨ(x(t), u(t))− PEΨ(x̂(t), u(t)), x(t)− x̂(t)〉

= ζ〈EΨ(x(t), u(t))− EΨ(x̂(t), u(t)), x(t)− x̂(t)〉

≤ ζµeᵀ(t)e(t) (5.55)
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Also, based on the matrix inequality property (5.34) it follows that

2eᵀ(t)P (D1 − LD2)d(t) ≤ eᵀ(t)Pe(t) + dᵀ(t)(D1 − LD2)ᵀ(D1 − LD2)d(t) (5.56)

Inserting (5.55)-(5.56) into (5.54) along with considering the parameterization of P gives

rise to

∂V

∂x
f(x, u) +

∂V

∂x̂
s(x̂, y, u) = eᵀ(t)

[
(A− LC)ᵀ(E⊥XE⊥

ᵀ
+ ζI) + (E⊥XE⊥

ᵀ
+ ζI)(A− LC)

+ (E⊥XE⊥
ᵀ

+ ζI) + 2ζµI
]
e(t) + dᵀ(t)(D1 − LD2)ᵀ(D1 − LD2)d(t) (5.57)

Since dᵀ(t)(D1 − LD2)ᵀ(D1 − LD2)d(t) is always positive semi-definite, (5.57) holds the

form of (5.22) if (A− LC)ᵀ(E⊥XE⊥
ᵀ

+ ζI) + (E⊥XE⊥
ᵀ

+ ζI)(A− LC) + (E⊥XE⊥
ᵀ

+

ζI)+2ζµI < 0. Using the definition of Q and L, we arrive at the linear matrix inequalities

(5.51)-(5.52). Therefore, all the conditions of Theorem 5.2 are satisfied and the observer

dynamics is input-to-error stable. This concludes the proof. �

Remark 5.6. Although the need for the quadratically inner bounded constraint was elimi-

nated in Theorem 5.4, the direct discrete-time design of Theorem 5.3 usually brings better

observer performance. This is mainly due to the fact that unlike the emulation approach,

the DTD method deals with the sampling period directly (see also Example 2).

5.5 Illustrative Examples

In this section we present two numerical examples showing the applicability of theorems

5.3 and 5.4 for sampled-data one-sided Lipschitz systems.

Example 1. [61] Consider the system (5.23), with

A =

−1 −2

1 −1.5

 , C =
[
1 0

]
, D1 =

0.5

−1

 , D2 = 1

Φ(x(t), u(t)) =
[

1
2u(t) sin(x1(t)− x2(t))− x

1
3
2 (t)

]ᵀ
,

u(t) = sin(t), and the disturbance input d(t) follows a uniform random distribution. As

discussed in the same reference, Φ is not a Lipschitz nonlinearity. It is, however, easy to
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see that:

〈Φ(x, u∗)− Φ(x̂, u∗), x− x̂〉 =
(

sin(x1 − x2)− sin(x̂1 − x̂2) + x̂
1
3
2 − x

1
3
2

)
(x2 − x̂2)

=
[
cos(ξ1 − ξ2) − cos(ξ1 − ξ2)

]
(x− x̂)(x2 − x̂2)− 1

3
ξ
− 2

3
0 (x2 − x̂2)

≤ ‖
[
cos(ξ1 − ξ2) − cos(ξ1 − ξ2)

]
‖ · ‖(x− x̂)(x2 − x̂2)‖ ≤

√
2‖x− x̂‖2 (5.58)

with ξ0 ∈ (min(x2, x̂2),max(x2, x̂2)) and ξ = (ξ1, ξ2) ∈ Co(x, x̂) (i.e., open convex set). It

follows that Φ is one-sided Lipschitz with µ =
√

2. Similarly, we have that

〈Φ(x, u∗)− Φ(x̂, u∗),Φ(x, u∗)− Φ(x̂, u∗)〉 =
(

sin(x1 − x2)− sin(x̂1 − x̂2) + x̂
1
3
2 − x

1
3
2

)2
≤
(
| sin(x1 − x2)− sin(x̂1 − x̂2)|+ |x̂

1
3
2 − x

1
3
2 |
)2

≤ (
√

2 +
1

3
ξ
− 2

3
0 )2‖x− x̂‖2. (5.59)

Thus, Φ is quadratically inner bounded with η = (
√

2 + 1
3r
− 2

3 ), and θ = 0.

We now exploit the sampled-data observer (5.29) along with the approximation (5.27)-

(5.28) to estimate system trajectories. Assuming x ∈ D = {x ∈ R2 : ‖x‖ ≤ r}, we have

µ =
√

2, η = (
√

2 + 1
3r
− 2

3 ), θ = 0. Taking T = 0.5, N = 100 and r = 3, and solving the

LMI problem of Theorem 5.3 yields L = [0.7052 0.1236]ᵀ.

Figures 5.1-5.2 display the simulation results, where the initial conditions are set to

x(0) = [0.5 1]ᵀ and x̂(0) = x(0) = [1 0.5]ᵀ. Evidently, the effect of state trajectory

estimation is satisfactory and the estimation error diminishes as the sampling period T is

decreased (see Figure 5.1). We also investigated the effect of refining parameter h for a

fixed value of T on the performance of the sampled-data observer. We can see from Figure

5.2 that the residual error is reduced by increasing N (that is, decreasing h). However,

h cannot be reduced indefinitely and there remains a residual estimation error since the

sampling period T is fixed. This fact coincides with the semi-global practical convergence

guaranteed by Theorem 5.1.

Example 2. Consider the normalized Chua’s circuit with cubic nonlinearity given by

ẋ1(t) = a(x2(t)− x1(t)−N (x1(t)))

ẋ2(t) = x1(t)− x2(t) + x3(t) (5.60)

ẋ3(t) = −bx2(t) + u(t)
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Figure 5.1: Estimated states for different values of T under uniformly random disturbance
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Figure 5.2: Estimated states for a fixed T and different values of h under uniformly random
disturbance

which exhibits a family of chaotic attractors and can be easily implemented in laboratory

as shown in Figure 3 (see e.g., [115] for an in-depth analysis). The state variables x1,

x2 and x3 are the capacitors voltages and the inductor current, respectively, u stands for

the control input, and the parameters a, b > 0 are determined by the circuit components.

Also, N (x1) is a cubic smooth function given as

N (x1) = m0x1(t) +m1x
3
1(t), m0 < 0, m1 > 0 (5.61)

describes the i−v characteristic of the nonlinear resistor NR used instead of the piecewise-

linear characteristic of the canonical Chua’s circuit. It is easy to see that if m0 <

−1, the equilibria of the unforced circuit are given by xe = {[±
√
−(m0 + 1)/d 0 ∓
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Figure 5.3: (a) Schematic of a Chua’s circuit with cubic nonlinearity, (b) A chaotic be-
haviour of the circuit called double-scroll attractor

√
−(m0 + 1)/d]ᵀ, [0 0 0]ᵀ}. For m ≥ −1 the origin is the only equilibrium of the system.

Assume now that our measurements are the voltage across the resistor R0 and the

current across the inductor L in Figure 5.3a, i.e.,

y(t) =

y1(t)

y2(t)

 =

x1(t)− x2(t)

x3(t)

+ d(t). (5.62)

The disturbance d in (5.62) represents the effect of white noise. We design the DTD and

CTD-based sampled-data observers introduced in Section 5.4 to estimate the inaccessible

states in the presence of disturbance inputs. To this end, first note that the chaotic

equations (5.60) can be written in the form (5.23) with

A =


−a(m0 + 1) a 0

1 −1 1

0 −b 0

 , Φ =


−am1x

3
1(t)

0

u(t)

 , C =

1 −1 0

0 0 1

 .
It can be easily shown that Φ(x, u) is locally Lipschitz with a region based Lipschitz
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constant and is globally one-sided Lipschitz with µ = 0:

〈Φ(x, u∗)− Φ(x̃, u∗), x− x̃〉 = −am1(x3
1 − x̂3

1)(x1 − x̂1)

= −am1(x1 − x̂1)2(x2
1 + x1x̂1 + x̂2

1)

≤ −am1

2
(x1 − x̂1)2(x2

1 + x̂2
1) ≤ 0

The quadratically inner-bounded property of Φ is not global and the constants η, θ in

(5.25) depend on the region of operation of the circuit. Thus, in this example we prefer

the emulation method which does not require the use of the quadratically inner-bounded

assumption.

For the sake of numerical simulations, the parameters of the Chua’s circuit are chosen

as a = 10, b = 16, m0 = −1.5, m1 = 1, and the input voltage is set to u = sin t. We also

take T = 0.1 and h = 100 for the sampling period and the integration period, respectively.

Solving the LMI feasibility problem of Theorem 5.3 with µ = 0 and η = −1, θ = −0.5

results in

P =


2.0205 −1.3626 2.5546

−1.3626 6.2141 0.9220

2.5546 0.9220 5.1111

 ,

Rᵀ =


2.8245 1.9271

−1.6215 1.0771

3.8332 4.5576

 , L =


1.0897 −1.4128

−0.0539 −0.3838

0.2150 1.6671


The function Φ satisfies the geometric condition of Assumption 5.2 with Ψ = −am1x

3
1, E =[

1 0 0
]ᵀ

. Therefore, applying Theorem 5.4 the observer gain is obtained as

E⊥ =

0 0 1

0 1 1

 , X =

−1.9382 1.7036

1.7036 21.8019

 ,

R =


132.4673 −350.3288

376.5884 −281.8653

373.8343 66.6209

 , L =


6.5112 −17.2199

5.9406 −10.7797

5.3696 7.3369


Figure 5.4 compares the behaviour of the DTD and CTD sampled-data observers designed

above under the same values of T and h originated from the initial conditions x(0) =[
0.2 −0.5 0.4

]ᵀ
and x̂(0) =

[
0.1 −0.2 0.1

]ᵀ
. Both observers provide estimates closed
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to the actual state trajectories in spite of the fact that their parameters were not modified

during the operation of disturbances. This is in agreement with the concept of input-to-

error stability in the semiglobal practical sense. Moreover, Figure 5.5 shows that the DTD

observer outperforms the emulated one with a smaller estimation error with faster decay

rate.
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Figure 5.4: Sampled-data state estimation of a chaotic circuit from noisy measurements
using DTD and CTD observers

5.6 Summary

In this chapter the notion of input-to-state stability (ISS) was adopted to design nonlinear

observers for sampled-data systems subject to disturbance inputs and intrinsic discretiza-

tion error due to unknown exact discrete-time model. A general framework was presented

based on the discrete-time approximation (DTD) as well as the emulation (CTD) approach

with guaranteed semiglobal practical ISS from exogenous disturbances to the estimation

error, under some standard assumptions.

The second half of the chapter considers the application of the theoretical framework
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Figure 5.5: Comparison of the estimation error for two sampled-data observers

for sampled-data observers to the important case of one-sided Lipschitz systems. We

show that for this class of systems DTD and CTD present distinct and unique challenges.

Indeed, the DTD presents some structural limitations that require the use of additional

assumptions on the nonlinearities in order to proceed. We resolved these difficulties by

imposing the additional condition of quadratic inner boundedness on the nonlinearity.

Unlike the DTD-based scheme, the CTD-based design does not require this condition but

instead a mild geometric condition.

Simulation results suggest that the DTD method is usually preferable and has the

advantage of having a smaller estimation errors and better intersample behavior compared

with the CTD method.
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Chapter 6

Multirate Observer Design via

Discrete-Time Approximation

In this chapter1 , we tackle the observer design problem for nonlinear MSD systems under

the effect of disturbance inputs. This chapter can be viewed as a multirate version of

the previous chapter. Our main purpose is to layout a general framework for multirate

observer synthesis. The main idea is to introduce a fast-rate sampler that reconstructs

the inter-sample outputs between measured samples using an approximate discrete-time

model of the plant together with the system output function and a modified hold device

that assigns each control input to its previous measured value during the corresponding

sampling interval. The outputs of the modified sample and hold devices are then fed

to a single-rate observer working at the base sampling period of the plant. Taking the

disturbances as the input and the estimation error as the state, the notion of input-to-

state stability (ISS) is adopted to analyze the convergence of the estimation error. We

show that if the single-rate observer is input-to-stable stable, then under some standard

assumptions and Lyapunov-ISS conditions, the proposed multirate observer is input-to-

state stable in the semiglobal practical sense. It is worth noticing that the concept of

input-to-state stability, initially characterized by Sontag [100], was previously applied for

observer design of continuous-time systems with slop-restricted nonlinearities by [104] and

Lipschitz continuity condition in [72].

1The results of this chapter have been accepted for publication in the article: H. Beikzadeh and H. J.
Marquez, “Multirate Observers for Nonlinear Sampled-Data Systems Using Input-to-State Stability and
Discrete-Time Approximation,” IEEE Transactions on Automatic Control, Accepted on Jan. 2014.
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Our approach deals explicitly with (i) the model mismatch induced by the discrete-

time approximation (discussed in [70] for single-rate sampled-data observers), and (ii)

the effect of disturbances and consequent deviations of the model estimates from true

plant outputs. Our proposed sampled-data scheme is not restricted to either the high

gain observers used in [22] or to the dual-rate case studied in [21] and covers the “low

measurement rate” case addressed in [17–21] as a special case. We also emphasize that our

primary goal in this chapter is to study observer convergence properties under multirate

sampling independently of the use of the observer as part of a feedback law. There results

are, of course, applicable in observer-based multirate controller as well as fault detection.

The outline of this chapter is as follows. Section 6.1 provides the general configuration

of a multirate nonlinear plant together with a sample-data observer structure in presence

of disturbances, and gives the relevant definitions and notations. We introduce a multirate

observer scheme and prove our main result in Section 6.2. Section 6.3 verifies the efficiency

of the proposed multirate state estimation through a benchmark model of the planar

vertical takeoff and landing (PVTOL) aircraft. Also, it is compared with the single-rate

observer designed in Chapter refch5 by implemeting on a one-sided Lispchitz system.

Eventually, some concluding remarks are drawn in the last section.

6.1 Multirate System and Preliminaries

Consider the general nonlinear plant represented by

G :


ẋ(t) = f(x(t), u(t), d(t))

y(t) = g(x(t), u(t), d(t))

(6.1)

where x ∈ Rn, u ∈ Rm, d ∈ Rq and y ∈ Rp are respectively the state vector, control input,

exogenous disturbance and measured output, and f and g are continuously differentiable

functions vanishing at the origin. Assume that the continuous-time system G is connected

to an ideal sampler S and a (zero order) hold device H with different sampling rates

in a multirate sampled-data configuration. Precisely, the p channels of y are sampled

periodically at sampling instances aiT, ai ∈ Z+ ∀i = 1, . . . , p, via S and the m channels

of u are kept constant with periods bjT, bj ∈ Z+ ∀j = 1, . . . ,m, via H. Note that the

sample and hold operators are synchronized at t = 0 and T is a real number referred to
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as the base sampling period of the system. Any common factors among ai and bj can be

absorbed into T , and thus we can assume without loss of generality that ai and bj are

relatively prime. This setup has been extensively utilized in the literature for stabilization

of linear multirate plants (see e.g., [34]).

Consider now a single-rate zero-order hold discretization of the system G with sampling

period T . The exact discrete-time model of (6.1) is given by

x(k + 1) = x(k) +

∫ (k+1)T

kT
f(x(τ), u(k), d(τ))dτ := F eT (x[k], u(k), d[k]) (6.2)

y(k) = g(x(k), u(k), d(k)). (6.3)

Finding an explicit solution for (6.2) is impossible in most practical cases, thus consis-

tent with the literature on nonlinear sampled-data systems, F eT will be assumed to be

unknown. It is realistic, however, to use a family of approximate discrete-time models

F aT,h(x(k), u(k), d[k]), where h can be interpreted as the integration period of the numeri-

cal schemes used to generate the approximate model.

Remark 6.1. The approximate model F aT,h can be obtained using different numerical

integration methods such as the classical Euler model with T = h. However, as illustrated

by many authors (see e.g., [13, 18]) it is usually more appropriate to choose h different

from T . We will also employ this scheme that appears to be much more reasonable for

multirate systems.

Throughout the chapter the mismatch of the exact and approximate models is ex-

pressed via consistency property of Definition 2.7, that was extended to multirate case

by [17]. It is worth mentioning that the one-step consistency can be checked using verifi-

able sufficient conditions provided in [4,13] and [20] without knowing the exact model F eT .

In order to propose a multirate observer strategy, we first consider a family of sampled-data

observers governed by

x̂(k + 1) = OT,h(x̂, y, u) := F aT,h(x̂, u, 0) + `T,h(x̂, y, u) (6.4)

where F aT,h(x̂(k), u(k), 0) is the approximate model with zero disturbance and `T,h is zero

at zero.

Definition 6.1. The correction term `T,h of the observer dynamic (6.4) is said to be

uniformly locally Lipschitz if given δ1 > 0 there exist L` > 0 and T1 > 0 such that for each
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fixed T ∈ (0, T1], there exists h1 ∈ (0, T ] such that |`T,h(ξ1)− `T,h(ξ2)| ≤ L`|ξ1− ξ2| for all

ξ1, ξ2,∈ B(δ1) and h ∈ (0, h1], where ξ := (x̂′, y′, u′)′.

Remark 6.2. The local Lipschitz continuity condition of Definition 6.1 constitutes a mild

assumption that is readily satisfied in most practical cases.

The main question is that under what conditions, and in what sense, an estimator like

(6.4) guarantees convergence when applied to the exact model (6.2)-(6.3). In this work

following the lines of [100], we use the following input-to-state stability (ISS) notion to

analyze the convergence of the estimation error.

Definition 6.2. The observer (6.4) is said to be input-to-state stable semiglobal in T and

practical in h, if there exist β ∈ KL and γ ∈ K such that for any δ1, δ2 > 0 and compact

sets X ∈ Rn, U ∈ Rm, we can find T1 > 0 such that for any T ∈ (0, T1] and ν ∈ (0, δ1),

there exists h1 ∈ (0, T ] such that ∀h ∈ (0, h1], |e(0)| ≤ δ1, ‖d‖∞ ≤ δ2 and x(k) ∈ X ,

u(k) ∈ U implies ∀k ∈ Z+

|e(k)| ≤ β(|e(0)|, kT ) + γ(‖d‖∞) + ν (6.5)

This definition is a generalization of the semiglobal practical convergence presented

by [70] when the plant exposed to disturbance inputs. We now present the concept of

Lyapunov-ISS observer which can be used to investigate the stability property of Definition

6.2.

Definition 6.3. The family of observers x̂(k+ 1) = ÕT,h(x̂, y, u) is Lyapunov-ISS for the

difference equation x(k + 1) = F̃T,h(x, u, d̄) if there exists a family of Lyapunov functions

VT,h(x, x̂), α1(·), α2(·), α3(·) ∈ K∞ and γ̃(·) ∈ K with the following properties:

For any positive real numbers (δ1, δ2, δ3), there exist T1 > 0 and M > 0 such that for

each fixed T ∈ (0, T1] there exists h1 ∈ (0, T ] such that for all x, x1, x2 ∈ B(δ1), x̂ ∈ B(δ2),

‖d‖∞ ≤ δ3 and h ∈ (0, h1],

|VT,h(x1, x̂)− VT,h(x2, x̂)| ≤M |x1 − x2| (6.6)

α1(|e|) ≤ VT,h(x, x̂) ≤ α2(|e|) (6.7)

∆V

T
:=

VT,h(F̃T,h(x, u, d̄), ÕT,h(x̂, y, u))− VT,h(x, x̂)

T
≤ −α3(|e|) + γ̃(‖d‖∞) (6.8)
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6.2 Multirate Nonlinear Observer

In this section we formulate a general observer framework for the multirate sampled-data

system introduced in the previous section. We assume that an ISS single-rate observer

is given and design a multirate observer which preserves similar stability features in a

specific sense. The main idea is the following: we exploit a fast rate observer based on

the family (6.4), that uses a periodic switch to reconstruct the missing outputs between

measured samples together with a switch to keep input channels constant during inter-

vals smaller than their corresponding sampling intervals. More precisely, our multirate

nonlinear observer is defined by

x̂(kτo + τo) = F aT,h(x̂(kτo), uc(kτo), 0) + `T,h(x̂(kτo), yc(kτo), uc(kτo)) (6.9)

where τo is the observer sampling time that is here assumed to be equal to T for the sake

of simplicity (see Remark 6.3), and yc = [yc1 . . . ycp]
′ and uc = [uc1 . . . ucm]′ are the

output of appropriate periodic switches as below

yci(k) =


yi(k), if k = liai ∃ li ∈ Z+

gi(F
a
T,h(x̂(k − 1), uc(k − 1), 0), uc, 0), otherwise

(6.10)

ucj(k) =


uj(k), if k = rjbj ∃rj ∈ Z+

ucj(k − 1), otherwise

(6.11)

This sampled-data configuration is depicted in Figure 6.1. It can be seen that the ith

component of the modified output vector yc connects to the actual measurement yi when

it is available, otherwise it uses the output mapping model g, the approximate model F aT,h

and the state estimates to compensate for unmeasured intersample outputs. Likewise, the

jth channel of the modified hold Hf applies the actual input uj at its sampling instances

while keeping it constant during the subintervals.

Remark 6.3. It is usually desired to choose the estimation sampling period τo much

faster than the system sampling times. However, in some applications one may study a

slow-rate observer in which τo is limited by the measurement sampling times, i.e., τo =

inf{a1T, . . . , apT}. For the general case of τo, the observer structure will be obtained by
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Figure 6.1: A schematic of the multirate nonlinear sampled-data observer.

reformulating (6.10)-(6.11) as follows

yci(kτo) =


yi(b kτoaiT

caiT ), if kτo ≥ liaiT & (k − 1)τo < liaiT for li ∈ Z+

gi(F
a
T,h(x̂((k − 1)τo), uc((k − 1)τo), 0), uc(kτo), 0), otherwise

ucj(kτo) =


uj(b kτobjT

cbjT ), if kτo ≥ rjbjT & (k − 1)τo < rjajT for rj ∈ Z+

ucj((k − 1)τo), otherwise

For our analysis we first note that considering (6.2) and (6.11), the exact discrete-time

model of the original multirate plant (6.1) can be expressed as

x(k + 1) = F eT (x(k), uc(k), d[k]) (6.12)

in which the integral is taken over similar time intervals, but u is replaced by uc. It is

clear from (6.11) that although each component of the modified input uc is updated at

different instances the whole vector is constant during sampling intervals [kT, (k + 1)T ).

By virtue of (6.9) and (6.12), the observer error dynamics is given by

e(k + 1) = F aT,h(x̂, uc, 0) + `T,h(x̂, yc, uc)− F eT (x, uc, d̄)

= ET,h(e, x, uc) + F aT,h(x, uc, d̄)− F eT (x, uc, d̄) (6.13)

where

ET,h(e, x, uc) = F aT,h(x̂, uc, 0) + `T,h(x̂, yc, uc)− F aT,h(x, uc, d̄) (6.14)

indicates the nominal error dynamics for the approximate design, and F aT,h − F eT is the

mismatch between the approximate and exact plant models. We now address the stability

of the proposed multirate scheme under the following assumptions.
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Assumption. (i) The single-rate observer (6.4) is Lyapunov-ISS for F aT,h according to

Definition 6.3. (ii) The approximate model F aT,h is one-step consistent with the exact

discrete-time model F eT based on Definition 6.1. (iii) The function `T,h(·, ·, ·) is uniformly

locally Lipschitz based on Definition 6.2 and the control input u is locally Lipschitz and

bounded. (iv) Each input signal is held at a frequency greater than its corresponding

Nyquist frequency, i.e., 1
bjT
≥ 2ωmaxj ∀j = 1, . . . ,m, where ωmaxj is the highest frequency

content present in the jth input channel.

Remark 6.4. Assumption (iv) is made to enforce a bound on the input variations which

appears in our derivation (see the proof of Theorem 1). It simply ensures perfect recon-

struction of each input from the sampled data. Assumption (iv) can, however, be ignored

in the special cases of single-rate input channel, closed-loop systems as well as “low mea-

surement rate”.

Theorem 6.1. Under Assumptions (i)-(iv), the multirate observer (6.9)-(6.11) is ISS sta-

ble for the exact discrete-time model of the multirate system (6.1) in the sense of Definition

6.3.

The following lemmas are needed in the proof of our main result.

Lemma 6.1. Given any ε1 > 0 there exists T1 > 0 such that for all T ∈ (0, T1] the fast

rate control inputs u and uc satisfies |uc(k)− u(k)| ≤ ε1.

Proof. Let T1 > 0 be such that T1Lu
√
b21 + . . .+ b2m < ε1 with Lu as the Lipschitz

constant of u, and suppose T ∈ (0, T1]. Based on (6.11) we get

|uc(k)− u(k)|2 =

m∑
j=1

σkj |uj(k)− uj(rjbj)|2 (6.15)

where σkj ∈ {0, 1} and σkj = 0 whenever the jth channel of uc is sampled at a sampling

instance that is an integer multiple of bjT , otherwise σkj is equal to 1. Note that if

σkj = 1 ∀j = 1, . . . ,m, i.e., the worst case scenario, the right hand side of (6.15) represents

the control input variations between different sampling instances. Using the continuity of

u(·) together with Assumption (iv), it can be easily shown that in this case

|uc(k)− u(k)|2 ≤
m∑
j=1

L2
uT

2((rj + 1)bj − rjbj)2 (6.16)
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with rjbj < k < (rj + 1)bj . Form (6.16) we have |uc(k) − u(k)| ≤ TLu
√
b21 + . . .+ b2m

which by the choice of T proves Lemma 6.1. �

Lemma 6.2. Consider the exact discrete-time model (6.12) and (6.9)-(6.11). Given any

strictly positive real numbers (D1, D3, ε2), there exists T2 > 0 such that for any fixed T ∈
(0, T2] there exists h2 ∈ (0, T ] such that for all h ∈ (0, h2], |x(0)| ≤ D1, |x̂(0)| ≤ D1, and

‖d‖∞ ≤ D3 the following holds: if maxi∈{0,1,...,k} |x(i)| ≤ D1 and maxi∈{0,1,...,k} |x̂(i)| ≤ D1

for some k ∈ Z+, then for some λ > 0 the output of the single-rate plant (6.2)-(6.3) and

the switch output yc satisfies:

|yc(k)− y(k)| ≤ Tε2 + Tλ(‖d‖∞ + |uc − u|+ |u−c − u−|+ |e−|) (6.17)

Proof. Let (D1, D3, ε2) ∈ R+ be given. By Assumption (iii), we know that |u(k)| < Du

for some Du > 0, and hence from Lemma 6.1 |uc(k)| < Du + ε1 = D2. Let Lf , Lg > 0 be

the Lipschitz constants of the functions f and g on the compact sets Ωf and Ωg ⊂ Rn×m×q,

respectively, such that B(D1)×B(D2)×B(D3) ⊂ Ωf∩Ωg. Define D4 = Lg(D1+D2+D3)+

ε2 +1 and assume that T21, h21 > 0 and ρ(·) ∈ K come from Assumption (ii) corresponding

to (δ1, δ2, δ3) = (D1, D2, D3). Denoting amax = max{a1, . . . , ap} choose T22, h22 > 0 such

that Lgρ(h22)(eLf (amax−1)T22 − 1)/(eLfT22 − 1) < ε2. Also, let T23 > 0, λ > 0 be such

that Lge
Lf (amax−1)T ≤ λT for any T ∈ (0, T23]. Finally, we define T2 = min{T21, T22, T23}

and h2 = min{h21, h22}. Suppose T ∈ (0, T2], h ∈ (0, h2], maxi∈{0,1,...,k |x(i)| ≤ D1 and

maxi∈{0,1,...,k |x̂(i)| ≤ D1 for some k ∈ {0, 1, . . .}. First, we claim that the Lipschitz

property of g yields maxi∈{0,1,...,k} |y(i)| ≤ Lg(D1 +D2 +D3) for some k ∈ {0, 1, . . .} and

then |yc(k)| ≤ D4 follows by induction. Now taking (6.3), (6.10) into account, we have

that

|yc(k)− y(k)|2 =

p∑
i=1

µki |gi(F aT,h(x̂−, u−c , 0), uc, 0)− gi(F eT (x−, u−, d[k − 1]), u, d)|2 (6.18)

where µki ∈ {0, 1} depends on the current sampling instant and varies between different

outputs. Indeed, it is equal to 0 when the measurement is available at the ith output

channel otherwise it is equal to 1. Clearly, no matter what the sampling instant kT is, it
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can be inferred that

|yc(k)− y(k)| ≤ |g(F aT,h(x̂−, u−c , 0), uc, 0)− g(F eT (x−, u−, d[k − 1]), u, d)|

≤ Lg|F aT,h(x̂−, u−c , 0)− F eT (x−, u−, d[k − 1])|+ Lg|uc − u|+ Lg‖d‖∞ (6.19)

represents the worst upper bound for (6.18), where we have used the Lipschitz property

of g along with |d(k)| ≤ ‖d‖∞. Let us assign a hypothetical periodic switch to a certain

measurement channel yi as

xic(k) =


x(k), if k = liai ∃ li ∈ Z+

F aT,h(x̂−, u−c , 0), otherwise

(6.20)

Now k can be considered in three different cases. If k = liai for some li ∈ {0, 1, . . . },
then it is obvious that |xic(k) − x(k)| = 0. If k = liai + 1 then using Assumption (ii),

Gronwal-Bellman and triangle inequalities we get |xic(k)−x(k)| = |F aT,h(x̂(liai), uc(liai), 0)

−F eT (x(liai), u(liai), d[liai])| ≤ Tρ(h)+|F eT (x̂(liai), uc(liai), 0)−F eT (x(liai), u(liai), d[liai])| ≤
Tρ(h)+(eLfT −1)(‖d‖∞+ |uc(liai)−u(liai)|+ |e(liai)|). Based on induction and geometric

series formulas, it can be concluded that

|xic(k)− x(k)| ≤ eLfT |xic
− − x−|+ (eLfT − 1)(‖d‖∞ + |u−c − u−|+ e−)

≤ Tρ(h)
e(k−liai)LfT − 1

eLfT − 1
+ (e(k−liai)LfT − 1)(‖d‖∞ + |u−c − u−|+ |e−|) (6.21)

holds for all k ∈ {liai + 2, . . . , (li + 1)ai − 1} as the third case. Inequality (6.21) and the

definition of amax leads to |F aT,h(x̂−, u−c , 0)−F eT (x−, u−, d[k− 1])| ≤ Tρ(h)(eLf (amax−1)T −
1)/(eLfT −1)+(eLf (amax−1)T −1)(‖d‖∞+ |u−c −u−|+ |e−|) for the first term on right hand

side of (6.19). Consequently, from (6.19) and the choice of T and h (6.17) is obtained,

which completes the proof of Lemma 6.2. �

Lemma 6.3. Let α1, α2, α3 ∈ K∞ and strictly positive real numbers (R, r, Cd) be such

that ‖d‖∞ ≤ Cd and α1(R) ≥ r. Assume that for T3 > 0 and each fixed T ∈ (0, T3] there

exists h3 ∈ (0, T ] such that for any h ∈ (0, h3] there exists a function VT,h : R2n → R+

with the following properties: we have α1(|e|) ≤ VT,h(x, x̂) ≤ α2(|e|) for all x, x̂ ∈ Rn

and VT,h(x(k + 1), x̂(k + 1))− VT,h(x, x̂) ≤ −T
4 α3(|e|) holds for all ‖d‖∞ ≤ Cd, x, x̂ ∈ Rn

with |x| ≤ R, |x̂| ≤ R and max{VT,h(x(k + 1), x̂(k + 1)), VT,h(x, x̂)} ≥ r. Then, for all
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|e(0)| ≤ α−1
2 ◦ α1(R), ‖d‖∞ ≤ Cd we get |e(k)| ≤ R ∀k ∈ Z+, and furthermore the

estimation error satisfies

|e(k)| ≤ β(|e(0)|, kT ) + α−1
1 (r) (6.22)

Proof. The definitions of r and R imply |e(0)| ≤ max{α−1
1 ◦VT,h(e(0)), α−1

1 (r)}. So either

VT,h(x(1), x̂(1)) ≥ r which from the conditions of Lemma 3, implies VT,h(x(1), x̂(1)) ≤
VT,h(x(0), x̂(0)) or else VT,h(x(1), x̂(1)) ≤ r. In either case, VT,h(x(1), x̂(1)) ≤
max{VT,h(x(0), x̂(0)), r}. Thus VT,h(x, x̂) ≤ max{VT,h(x(0), x̂(0)), r} follows by induction

and |e(k)| ≤ R holds as well. Using an argument similar to the proof of Theorem 2 in [4]

(see also [70, Theorem 1]), we can conclude that there exists a class-KL function β1(·, ·)
such that VT,h(x, x̂) ≤ max{β1(VT,h(x(0), x̂(0)), kT ), r}. Then, (6.22) is obtained with

β(s, τ) = α−1
1 (β1(α2(s), τ)). �

Lemma 6.4. Consider the exact model (6.12) and the multirate observer (6.9)-(6.11).

There exists γ̂ ∈ K∞ such that for any strictly positive real numbers (Ce, Cd, υ) with

Ce ≥ α−1
1 (γ̂(Cd) + υ), we can find T4 > 0 such that for each T ∈ (0, T4] there exists

h4 ∈ (0, T ] such that for all h ∈ (0, h4], |e(0)| ≤ α−1
2 ◦α1(Ce), ‖d‖∞ ≤ Cd and all k ∈ Z+,

if max{VT,h(x(k + 1), x̂(k + 1)), VT,h(x, x̂)} ≥ γ̂(‖d‖∞) + υ we have

⇒ VT,h(x(k + 1), x̂(k + 1))− VT,h(x, x̂) ≤ −T
4
α3(|e|) (6.23)

Proof. Let positive real numbers (Ce, Cd, υ) be given. Assume that T41 comes from

Lemma 6.1 corresponding to ε1 such that |uc − u| ≤ ε1, |u−c − u−| ≤ ε1, and µ > 0 is

a number such that L` + 2eLf (amax−1)T − 2 ≤ µT for any T ∈ (0, T42]. Let (Ce, Cd, ε2)

generate T43, h43 and λ as in Lemma 6.2. Define ε3 = 1
2α
−1
2 (υ2 ), ε4 = α−1

2 (1
2α1(ε3)).

Also, take ε1, ε2, λ > 0 such that ML`(2λε1 + ε2) ≤ 1
4α3(ε4) where L` is the Lipschitz

constant of `T,h(·) according to Definition 6.2. Let positive real numbers T44, T45, T46, T47

and h44, h45, h46 be such that: T44(3ρ(h44)+L`(ε2+λ‖d‖∞)+(2L`λ+µ)ε1+L`λ|e−|) ≤ ε3,

T45

(
1
4α3(Ce) + γ̃(‖d‖∞) +M(3ρ(h45) + L`(ε2 + λ‖d‖∞) + (2L`λ+ µ)ε1 + L`λ|e−|)

)
≤ υ

2 ,

M(3ρ(h46) + µε1 + T46L`λ|e−|) ≤ 1
4α3(ε4), and T47γ̃(Cd) ≤ 1

2α1(ε3). Define γ̂(s) =

α2 ◦ α−1
3 (4(γ̃(s) + ML`λs)). Taking T4 = min{T41, T42, T43, T44, T45, T46, T47} and h4 =
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min{h43, h44, h45, h46}, we consider any T ∈ (0, T4], h ∈ (0, h4], |e(0)| ≤ α−1
2 ◦ α1(Ce) and

‖d‖∞ ≤ Cd.
By Assumption (i) and Definition 6.3, for the single-rate observer (6.4), a Lyapunov

function VT,h exists which satisfies ∆V = VT,h(F aT,h(x, u, d̄), F aT,h(x̂, u, 0) + `(x̂, y, u)) −
VT,h(x, x̂) ≤ −Tα3(|e|) + T γ̃(‖d‖∞). Therefore, for the multirate setup we have

VT,h(x+, x̂+)− VT,h(x, x̂) ≤ −Tα3(|e|) + T γ̃(‖d‖∞) +M |F eT (x, uc, d̄)− F aT,h(x, u, d̄)|

+M |ET,h(e, x, uc) + F aT,h(x, uc, d̄)− F aT,h(x̂, u, 0)− `(x̂, y, u)| (6.24)

in which ET,h comes from (6.14). Adding and subtracting F eT (x, u, d̄) to the third and

F eT (x̂, uc, 0) + F eT (x̂, u, 0) to the forth term on the right hand side of (6.24) and using the

triangle inequalities, it can be written as

VT,h(x+, x̂+)− VT,h(x, x̂) ≤ −Tα3(|e|) + T γ̃(‖d‖∞)

+M
(
|F eT (x, u, d̄)− F aT,h(x, u, d̄)|+ |F eT (x, uc, d̄)− F eT (x, u, d̄)|

+ |F aT,h(x̂, uc, 0)− F eT (x̂, uc, 0)|+ |F eT (x̂, uc, 0)− F eT (x̂, u, 0)|

+ |F eT (x̂, u, 0)− F aT,h(x̂, u, 0)|+ |`(x̂, yc, uc)− `(x̂, y, u)|
)

(6.25)

Applying assumptions (ii)-(iii), the choice of T41 and T43, h43, and comparison lemma

we see that VT,h(x+, x̂+) − VT,h(x, x̂) ≤ −Tα3(|e|) + T γ̃(‖d‖∞) + M
(
3Tρ(h) + L`T (ε2 +

λ‖d‖∞) + (2L`Tλ + 2eLf (amax−1)T − 2 + L`)ε1 + L`Tλ|e−|
)
. Now our choice of T42 with

the positive number µ results in VT,h(x+, x̂+) − VT,h(x, x̂) ≤ −Tα3(|e|) + T γ̃(‖d‖∞) +

TM
(
3ρ(h) + L`(ε2 + λ‖d‖∞) + (2L`λ + µ)ε1 + L`λ|e−|

)
. Let us consider two possible

scenarios. First assume that VT,h(x+, x̂+) ≥ γ̂(‖d‖∞)+υ
2 and denote π1 := ML`(2λε1+ε2),

π2 := M(3ρ(h) + µε1 + L`λ|e−|), and κ(s) := γ̃(s) +ML`λs, then we have

VT,h(x+, x̂+)− VT,h(x, x̂)

≤ −T
4
α3(|e|)−T

4
α3(α−1

2 (VT,h(x, x̂))) + Tκ(‖d‖∞)︸ ︷︷ ︸
(∗)

−T
4
α3(|e|) + Tπ1︸ ︷︷ ︸

(∗∗)

−T
4
α3(|e|) + Tπ2︸ ︷︷ ︸

(∗∗∗)

(6.26)

It is easy to see that VT,h(x+, x̂+) ≥ γ̂(‖d‖∞)+ υ
2 indicates γ̂(‖d‖∞)+ υ

2 ≤ VT,h(F aT,h(x, u, d̄)

, F aT,h(x̂, u, 0) + `(x̂, y, u)) − VT,h(x, x̂) + |VT,h(x+, x̂+) − VT,h(F aT,h(x, u, d̄), F aT,h(x̂, u, 0) +
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`(x̂, y, u))|+VT,h(x, x̂) ≤ −Tα3(|e|) +T γ̃(‖d‖∞) +MT
(
3ρ(h) +L`(ε2 +λ‖d‖∞) + (2L`λ+

µ)ε1 + L`λ|e−|
)

+ VT,h(x, x̂). From the choice of T45 and h45, we get γ̂(‖d‖∞) + υ
2 ≤

υ
2 + VT,h(x, x̂). Hence, it follows that: VT,h(x+, x̂+) ≥ γ̂(‖d‖∞) + υ

2 ⇒ VT,h(x, x̂) ≥
γ̂(‖d‖∞). Based on the definition of γ̂(·), Term (∗) ≤ 0 holds. Under the same supposition

VT,h(x+, x̂+) ≥ γ̂(‖d‖∞) + υ
2 , we have |x+ − x̂+| ≥ α−1

2 (υ2 ) = 2ε3. Then our choice of T44

and h44 shows that |F aT,h(x, u, d̄) − F aT,h(x̂, u, 0) − `(x̂, y, u)| ≥ |x+ − x̂+| − |(x+ − x̂+) −
(F aT,h(x, u, d̄) − F aT,h(x̂, u, 0) − `(x̂, y, u))| ≥ 2ε3 − ε3 = ε3. Using our choice of T47 and

(6.7), it yields that

α2(|e|) ≥ VT,h(F aT,h(x, u, d̄), F aT,h(x̂, u, 0) + `(x̂, y, u))− T γ̃(Cd)

≥ α1(|F aT,h(x, u, d̄)− F aT,h(x̂, u, 0)− `(x̂, y, u)|)− T γ̃(Cd)

≥ α1(ε3)− 1

2
α1(ε3) =

1

2
α1(ε3) (6.27)

which implies |e| ≥ α−1
2 (1

2α1(ε3)) = ε4 ≥ α−1
3 (4π1) and then Term (∗∗) ≤ 0. Moreover,

from the choice of T45 and h45, we have |e| ≥ ε4 ⇒ −T
4 α3(|e|) + Tπ2 ≤ 0. Conse-

quently, under VT,h(x+, x̂+) ≥ γ̂(‖d‖∞) + υ
2 , it is derived that VT,h(x+, x̂+)− VT,h(x, x̂) ≤

−T
4 α3(|e(k)|). Now Suppose that VT,h(x+, x̂+) ≤ γ̂(‖d‖∞)+ υ

2 and VT,h(x, x̂) ≤ γ̂(‖d‖∞)+

υ. From our choice of T45 and h45, it yields that: VT,h(x+, x̂+)− VT,h(x, x̂) ≤ γ̂(‖d‖∞) +

υ
2 − VT,h(x, x̂) + υ

2 − υ
2 ≤ γ̂(‖d‖∞) + υ − VT,h(x, x̂)− υ

2 ≤ −υ
2 ≤ −T

4 α3(|e|). �

Proof of Theorem 1. With these prerequisites, we can finalize our proof. Let all the

conditions in Theorem 6.1 hold and γ̂ ∈ K∞ come from Lemma 6.4. Choose (Ce, Cd, υ)

as: Cd := δd, ν > 0 is such that sups∈[0,δd][α
−1
1 (γ̂(s) + υ) − α−1

1 (γ̂(s))] ≤ ν, Ce :=

max{α−1
1 (γ̂(δd) + υ), α−1

1 ◦ α2(δe)}. These choices imply that Ce ≥ α−1
1 (γ̂(Cd) + υ) and

|e(0)| ≤ α−1
2 ◦ α1(Ce). Assume that (Ce, Cd, υ) generate T ∗ > 0, h∗ > 0 as in Lemma 6.4

such that (6.23) holds. Define R = Ce and r = γ̂(‖d‖∞) + υ, then we have α1(R) ≥ r.

With the definition of (R, r), all the conditions of Lemma 6.3 are satisfied. Therefore, for

all h ∈ (0, h∗], |e(0)| ≤ δe and ‖d‖∞ ≤ δd, we obtain

|e(k)| ≤ β(|e(0)|, kT ) + α−1
1 (γ̂(‖d‖∞) + υ)

≤ β(|e(0)|, kT ) + γ(‖d‖∞) + ν (6.28)

where γ(s) := α−1
1 ◦ γ̂(s). This concludes the proof of the theorem. �
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6.3 Simulation Examples

6.3.1 PVTOL

To illustrate the features of the multi rate observer, consider the planar vertical takeoff and

landing (PVTOL) aircraft without velocity measurements. This is an interesting example

in the area of visual-based control of autonomous vehicles which usually demands input

and measurement channels with different sampling rates. The simplified continuous-time

model of the PVTOL aircraft is described as [116]

ẋ1 = x2

ẋ2 = −u1
m sin(x5) + εu2m cos(x5) + ds

ẋ3 = x4

ẋ4 = u1
m cos(x5) + εu2m sin(x5)− g + ds

ẋ5 = x6

ẋ6 = u2
J + ds

(6.29)

y =
[
x1 x3 x5

]ᵀ
+ dm (6.30)

where x1, x3, x5 stand for the horizontal and vertical coordinates and roll angle , x2, x4, x6

are the horizontal, vertical and angular velocities of the aircraft, the control variables

u1, u2 correspond to the trust and the rolling moment, respectively. The disturbance

signal ds follows a uniform random distribution and the output y is corrupted by the

additive white noise vector dm. Also, m is the mass, J the moment of inertia, g the

gravitational acceleration and ε represents a small positive coefficient giving the coupling

between the rolling moment and the lateral acceleration of the aircraft. We assume that

the velocities are not available in the measurement and only the coordinates and the roll

angle can be measured.

We construct the approximate discrete-time model F aT,h of (6.29) via a refined Euler

model as follows
fh(i, x, u, d) := x+ hf(x, u, 0) +

∫ kT+(i+1)h
kT+ih ds(τ)dτ,

f i+1
h (x, u, d) := fh(i+ 1, f ih, u, d),

F aT,h(x(k), u(k), d[k]) := fNh (x, u, d)

(6.31)
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in which f1
h := x+hf(x, u, 0)+

∫ kT+h
kT ds(τ)dτ and N = T/h. Note that here d = [ds d

ᵀ
m]ᵀ is

the disturbance vector although the state equation is only affected by ds. The consistency

of our approximate scheme can be simply verified in a way analogous to the arguments of

[20, Lemma 1] and [19, Example]. Inspired by [117], we propose the following Luenberger-

type for the sampled-data observer (6.4)

x̂(k + 1) = F aT,h(x̂(k), u(k), 0)

+


l11 l12 0 0 0 0

0 0 l23 l24 0 0

0 0 0 0 l35 l36


ᵀ 
y1 − x̂1

y2 − x̂3

y3 − x̂5

 (6.32)

Taking VT,h = (x − x̂)ᵀ(x − x̂), it is not difficult to show that (6.32) is a Lyapunov-ISS

observer for F aT,h. Moreover, since it possesses a Luenberger-like structure we can easily

verify the uniformly locally Lipschitz condition in Assumption (iii).

We now assume that the PVTOL is placed in a sampled-data setup with various sam-

pling rates. More precisely, the sampling periods of the input and output channels are set

to {0.2, 0.5} sec and {3, 1.5, 0.3} sec, respectively. The discrete-time observer (6.32) was

put into the multirate configuration of (6.11)-(6.13) and we studied the implementation

of the single-rate observer (6.32) as well as our proposed multirate observer in presence

of disturbance inputs. For numerical simulations, the systems parameters are chosen as

follows: m = 0.5 kg, J = 0.1 Nm2, g = 9.81 m/s2, ε = 0.8 Nm. The initial conditions

are: x(0) = [5 0.2 5 0.2 0.2 0.2]ᵀ, x̂(0) = [3 0 3 0 0.1 0]ᵀ. The input signals are u1 = sin t

and u2 = 0.1 sin 2t, which satisfy Assumption (iv) considering their sampling rates. Also,

the basic sampling period and the numerical integration period are T = 0.1 and h = 0.001,

respectively. Finally, we pick the observer gains l11 = 1, l12 = 0.5, l23 = 1, l24 = 0.25,

l35 = 1, l36 = 0.5 and the observer sampling rate τo = T = 0.1 for both the single-rate

and multirate implementations.

Figure 6.2 displays the simulation results. As can be seen in the figure, the single-rate

observer fails to track the actual states. On the other hand, the proposed multirate ob-

server performs successfully and presents sampled-data estimates that are almost identical

to the continuous-time states. This fact can also be verified using the norm of the esti-

mation errors depicted in Figure 6.3. Our simulation results were examined for different

values of τo as well as h. Roughly speaking, increasing the value of τo or h has destructive
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effects on the performance of our proposed multirate scheme.

0 2 4 6 8 10
1

2

3

4

5

6

7

8

9

10

Time(s)

x
1
(m

)

 

 

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time(s)

x
2
(m

/s
)

 

 

0 2 4 6 8 10
−500

−400

−300

−200

−100

0

100

Time(s)

x
3
(m

)

0 2 4 6 8 10
−100

−80

−60

−40

−20

0

20

Time(s)

x
4
(m

/s
)

0 2 4 6 8 10
0

20

40

60

80

100

120

Time(s)

x
5
(r

a
d

)

0 2 4 6 8 10
−10

−5

0

5

10

15

20

25

30

Time(s)

x
6
(r

a
d

/s
)

continuous−time

single−rate

multirate

Figure 6.2: Sampled-data state estimation of PVTOL with different sampling rates using
single-rate and multirate observers
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Figure 6.3: Norm of the estimation error for single-rate and multirate observers

6.3.2 A One-Sided Lispchitz System

The purpose of this section is to illustrate the applicability of Theorems 5.3 and 6.1

for single-rate and multirate systems. Consider a nonlinear dynamical system borrowed
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from [61] in the form of (5.23) with

A =


0 100

−48.6 −1.26 48.6 0

0 0 0 10

1.95 0 −1.95 −0.01

 , C =


1 0

0 1

0 0

0 0



ᵀ

,

Φ(x, u) =
[
0 21.6u 0 −x

1
3
4

]ᵀ
,

D1 =
[
0.5 −1 1 0.5

]ᵀ
, D2 =

[
−0.5 0.5

]ᵀ
,

u = sin(t), and the disturbance input d(t) follows a uniform random distribution. As dis-

cussed in [61], Φ is not a Lipschitz nonlinearity, but it holds the one-sided Lipschitz condi-

tion (2.26) with µ = 0. Moreover, using the mean value theorem it is easy to confirm that Φ

is quadratically inner bounded for η = 0, θ ≥ 1
9ξ
−4/3
0 where ξ0 ∈ (min(x4, x̂4),max(x4, x̂4)).

We now study sampled-data observer design under two different scenarios. First a

single-rate case is treated. If we choose T = 0.2, N = 100 and θ = 1, then solving the

feasibility problem of Theorem 5.3 yields

L =

−0.1135 −9.3931 −0.5555 0.0580

0.3362 1.9142 0.3240 0.0262

ᵀ

Figures 6.4-6.5 display the simulation results, where the initial conditions are set to x(0) =

[2 0 2 2]ᵀ and x̂(0) = [0 1 −1 1]ᵀ. Evidently, the effect of state trajectory estimation is

satisfactory and the residual error can be reduced either by decreasing T or increasing N

for a fixed value of T . However, it cannot be reduced arbitrarily and always an estimation

error remains. This fact coincides with the semi-global practical ISS in Definitions 5.1 and

6.2.

Second a more practical situation (multirate case) is considered. The sampling periods

of the input and output channels are chosen as {0.4} and {3, 1.5} seconds, respectively.

Clearly, the sampling rate of the sinusoidal input signal satisfies the conditions of Theorem

6.1. Picking T = 0.1 and h = 100, we implemented both the single-rate observer (5.29),

which incorrectly assumes all the signals have the same sampling rate, and the multirate

observer (6.9)-(6.11). It can be seen in Figure 6.6, while the single-rate observer fails to

track the actual states, the proposed multirate observer performs successfully and presents

sampled-data estimates that are almost identical to the actual continuous-time states.
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Similar to single-rate case, our simulation results were also examined for different values

of T and h. Roughly speaking, increasing the value of T or h has destructive effects on

the performance of the proposed multirate scheme.

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time(sec)

x 4

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

Time(sec)

||
e
||

continous−time

T=0.8

T=0.5

T=0.2

Figure 6.4: Estimate of x4 and norm of the observer error for different values of T under
uniformly random disturbance
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6.4 Summary

In this chapter a general multirate nonlinear observer is developed under the effect of

disturbances and the convergence properties of the error dynamics is analyzed in terms

of input-to-state stability (ISS) theory. The proposed estimation method consists of an

ISS single-rate observer working at a certain sampling time supplied by artificial fast-

rate sample and hold switches which reconstruct the missing outputs and inputs between

sampling instances. We also emphasize that although our primary goal in this chapter is

to study observer convergence properties under multirate sampling independently of the

feedback design task, the proposed approach is, of course, applicable in observer-based

multirate controller and fault detection plans as future works.
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Chapter 7

Multirate Output Feedback NCS

via Discrete-Time Approximation

In this chapter1 we study output feedback sampled-data stabilization of nonlinear mul-

tirate NCSs in the face of disturbance inputs. Inspired by the theory of robust control,

network constraints in both the forward and backward paths are represented via signal-to-

error ratio (SER) and received signal-to-error ratio (R-SER) models employed by [97,98],

which introduce multiplicative uncertainties to the plant. A major benefit of this modelling

is that it captures different unknown transmission errors as well as possible sensors and

actuators inaccuracy. Also, it does not require a priori information about the probability

distributions of network delays. Considering a general description of nonlinear sampled-

data systems, we propose a multirate dynamic output feedback law that is composed of a

periodic switch and a single-rate sampled-data controller. The main idea is to reconstruct

the intersample outputs between measured samples using an approximate discrete-time

model of the plant together with the system output mapping by means of the periodic

switch (fast-rate sampler) and then fed the switch output to the single-rate controller be-

ing updated at the base sampling period of the plant. It is shown that if the nominal NCS

with the single-rate output feedback satisfies a certain discrete-time dissipation inequality

(see [118]), then under some standard assumptions the uncertain multirate NCS with the

proposed controller is also dissipative with respect to similar supply rate deteriorated by

1The results of this chapter have been submitted for publication in the article: H. Beikzadeh and H. J.
Marquez, “Multirate Output Feedback Control of Nonlinear Networked Control Systems,” Submitted to
IEEE Transactions on Automatic Control, Jan. 2014.
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some additive terms, in spite of channels uncertainties and disturbances. The effect of

these terms may be degraded by picking the sampling period or the integration period

of the discrete-time approximation small enough. Preservation of dissipativity using the

state feedback control and emulation method has been investigated for single-rate and

multirate nonlinear plants in [9] and [20], respectively. Therefore, this work generalizes

the results of [20] to obtain a framework for output feedback stabilization of multirate non-

linear sampled-data systems via discrete-time design and in presence of a communication

network.

As a general feature covering a wide range of important system theoretic properties,

including stability, input-to-state stability (ISS), passivity, Lp-stability, etc., dissipativity

and the proposed framework is applied to analyze the stability of the multirate NCS.

First for a disturbance driven system, input-to-state stability of the proposed multirate

NCS is guaranteed, in a simiglobal practical sense. Then, explicit conditions on channels

sampling rates and uncertainties are provided under which the disturbance free system

with the network-based output feedback multirate controller is locally exponentially stable.

Unlike the discrete-time single-rate framework in [91], we do not assume that all the state

variables are measurable. The validity of our results for both the SER and R-SER channel

models along with the potential ability of the R-SER model to handle larger uncertainties

has been pointed out throughout the chapter. Comparing with the literature on multirate

nonlinear sampled-data systems, our approach is not restricted to either the high gain

observers used in [22] or to the dual-rate case studied in [19, 21] and covers the “low

measurement rate” case addressed in [17–21] as a special case.

The outline of this chapter is as follows. In Section 7.1, after presenting a model for

the multirate nonlinear NCS under network constrains and some preliminary backgrounds

the problem is formulated. Section 7.2 contains the main contribution of the chapter by

developing an output feedback multirate sampled-data control scheme and analyzing the

dissipativity of the uncertain NCS. Input-to-state stability (ISS) and exponential stability

of the multirate NCS is ensured using the proposed output feedback structure in Section

7.3. The results are illustrated via simulation examples in Section 7.4. Finally, concluding

remarks are given in Section 7.5.
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7.1 Multirate Nonlinear NCS: Modelling and Problem Set-

ting

Consider the output feedback multirate NCS displayed in Figure 7.1. It consists of a

continuous-time nonlinear plant described by

G :


ẋ(t) = f(x(t), u(t), d(t))

y(t) = g(x(t), d(t))

(7.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm the control input, y(t) ∈ Rp the measured

output, d(t) ∈ Rq the exogenous disturbance, and f and g are locally Lipschitz nonlinear

functions vanishing at the origin. The physical plant is connected to ideal sampler and

(zero-order) hold devices of different sampling rates. Precisely, the p channels of y are

sampled periodically at sampling instances aiT, ai ∈ Z+ ∀i = 1, . . . , p and the m channels

of u are kept constant with periods bjT, bj ∈ Z+ ∀j = 1, . . . ,m, where ai and bj are

relatively prime. Assume that the sample and hold circuits are synchronized at t = 0 and

T > 0 is a real number referred to as the base sampling period of the system. Finally, the

feedback loop is closed via a communication network and a sampled-data output feedback

controller K to be designed.
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a2T

apT

Network
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Plant

Actuators Sensors

K

Controller

d

Network

u1 u2 um y1y2yp

b1T

b2T
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y2

yp

u1

u2

um

Figure 7.1: Structure of the multirate NCS with output feedback controller

We assume that in Figure 7.1 each element of the measured output yi(kaiT ) and

the control signal uj(kbjT ) is separately transmitted through an independent channel of

the network to the controller and actuators, respectively. This corresponds to parallel
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transmission strategy where the sensors and actuators are located separately from each

other and from the controller. All the communications between the controller and the

plant in both the forward and backward paths are subject to network-induced constraints

such as transmission delays, data packet dropout and signal quantization. To model the

effect of these constraints mathematically, we adopt the idea of signal-to-error ratio (SER)

and received signal-to-error ratio (R-SER) proposed by [98] (see Figure 7.2). Basically,

our results are based on the SER model and will be extended to the R-SER case in an

analogous fashion (see also Remark 7.1). Each channel is modelled by an ideal transmission

channel together with an additive norm-bounded uncertainty, as depicted in Figure 7.2a.

The uncertainties ∆uj , ∆yi can be nonlinear, time varying and dynamic systems. Our

only assumption is that for all i = 1, . . . , p and j = 1, . . . ,m ∆yi(0) = 0, ∆uj (0) = 0 and

their `2 induced norm admit some bounds

‖∆uj‖∞ = sup
ūj∈`2

‖euj‖2
‖ūj‖2

≤ δuj , ‖∆yi‖∞ = sup
yi∈`2

‖eyi‖2
‖yi‖2

≤ δyi (7.2)

Δuj 

ujuj

euj
Δyi 

yiyi

eyi

(a) SER

ujuj

euj Δuj 

yiyi

eyi
Δyi 

(b) R-SER

Figure 7.2: Channels model

As elaborated in [97], this channel model, motivated by the logarithmic quantization

of [119], introduces a multiplicative uncertainty to the plant which can be used to capture

unknown transmission errors as well as possible sensors and actuators inaccuracy. More-

over, the inverse norm bounds δ−1
uj , δ−1

yi can be regarded as the worst case signal-to-error

ratios.

Remark 7.1. In the R-SER model shown in Figure 7.2b, each channel is the combination

of an ideal transmission and a feedback norm-bounded uncertainty which introduces a
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relative uncertainty instead of a multiplicative uncertainty. Thus, the two channel models

imply different physical meanings (see [97] for more details).

The following example shows how the effect of packet losses and network delays are

covered by the SER channel model.

Example 7.1. Let the ith plant output at the updating instant tik = kaiT experience a

time-varying bounded delay τ ik passing through the network, i.e., 0 ≤ τ ik ≤ τ̄ i that is a

natural assumption in this context. Also, there exists `ik packet dropout at time tik owing

to link failure. The number of consecutive data losses is assumed to be bounded, i.e.,

0 ≤ `ik ≤ ¯̀i. Combining the effect of communication delay and packet dropout, the ith

input of the output feedback controller can be given as

ȳi(t
i
k) = yi

(
tik − (d τ

i
k

aiT
e+ `ik)aiT

)
= (1 + ∆yi)yi(t

i
k) (7.3)

which holds the form of the SER model. Note that d·e represents the ceiling function

(smallest integer larger than or equal to the argument) and the H∞ norm of the uncertainty

∆yi depends on the values of τ̄ i, ¯̀i

Before proceeding to stabilize the multirate NCS, let us consider the single-rate system

analogous to G in Figure 7.1 connected to the nominal network without uncertainties, i.e.,

ū = u, ȳ = y. Then, the exact discrete-time model is given by

x(k + 1) = x(k) +

∫ (k+1)T

kT
f(x(τ), u(k), d(τ))dτ := F eT (x[k], u(k), d[k]) (7.4)

y(k) = g(x(k), d(k)). (7.5)

in which T is the sampling period and the control input u(k) is transmitted over the

network and kept constant during the interval [kT, (k+1)T ). In general, it is impossible to

compute explicitly the exact discrete-time model (7.4)-(7.5) even for the nominal sampled-

data signals. Instead, we deal with a family of approximate discrete-time plant model

(using a discretization method) of the form x(k + 1) = F aT,h(x(k), u(k), d[k]), where the

refining parameter h can be interpreted as the integration period of the numerical schemes

used to generate the approximate model (see e.g., [13, 18]). In the sequel, we denote d[k]

(whenever needed) as df instead of d̄ to avoid confusion with uncertainties.
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Next, we assume u(k) is obtained via a dynamic output feedback controller expressed

as

ξ(k + 1) = ZT,h(ξ(k), y(k)) (7.6)

u(k) = UT,h(ξ(k), y(k)) (7.7)

where ξ ∈ Rs stands for the controller state, and ZT,h, UT,h are zero at zero. Through-

out the chapter the mismatch of the exact and approximate models is measured via the

consistency properties explained in Chapter 2.

Definition 7.1. The approximate model F aT,h is said to be one step consistent with F eT , if

there exist ρ(·) ∈ K and T ∗ > 0 such that given any strictly positive numbers (σ1, σ2, σ3)

and each fixed T ∈ (0, T ∗], there exists h∗ ∈ (0, T ] such that

|F eT (x, u, df )− F aT,h(x, u, df )| ≤ Tρ(h) (7.8)

for all x ∈ B(σ1), u ∈ B(σ2), ‖d‖∞ ≤ σ3 and h ∈ (0, h∗]. Moreover, F aT,h is said to be

multi-step consistent with F eT if given L, η > 0 there exist α : R+×R+ → R+ and T ∗∗ > 0

such that for each fixed T ∈ (0, T ∗∗], we can find h∗∗ ∈ (0, T ] such that

{x1, x2 ∈ B(σ1), |x1 − x2| ≤ ς} ⇒ |F eT (x1, u, df )− F aT,h(x2, u, df )| ≤ Tα(ς, h) (7.9)

for all u ∈ B(σ2), ‖d‖∞ ≤ σ3 and h ∈ (0, h∗∗], where

k ≤ L/h ⇒ αk(0, h) :=

k︷ ︸︸ ︷
α(. . . α(α(0, h), h) . . . , h) ≤ η (7.10)

It is shown by simple examples in [4] that, in general, one-step and multi-step con-

sistency do not imply each other. While the one-step consistency is a measure of the

closeness of solutions starting from the same initial condition over one step, the multi-step

consistency can be used to evaluate the closeness of solutions staring from different initial

conditions over multiple steps.

Remark 7.2. The notion of one-step consistency can be checked using verifiable sufficient

conditions provided in [4, 13] (the multirate version can be found in [17, 20] based on

the Euler approximation without knowing the exact model F eT . Besides, the multi-step

consistency is guaranteed by one-step consistency plus a type of Lipschitz condition on

either the exact or the approximate discrete-time model (see [4, Lemma 3]).
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The problem addressed in the chapter can now be formulated as follows. Given a non-

linear plant and a single-rate output-feedback controller designed for nominal transmitted

signals, we aim to design a multirate controller using an approximate discrete-time model

such that the resulting sampled-data NCS guarantees certain stability properties in the

face of channels uncertainties and for the unknown exact discrete-time plant model.

7.2 Multirate Networked Output-Feedback Stabilization

7.2.1 Controller Design

In this section, we propose a multirate sampled-data scheme to stabilize the NCS in-

troduced in the previous section. The main idea is to design the single-rate controller

(7.6)-(7.7) holding a certain stability property for nominal network channels and exploit it

in a multirate structure that preserves similar feature in a specific sense for real channels

with unceratinties. Precisely, our mulitrate nonlinear controller (K in Figure 7.1) consists

of a fast-rate output feedback law based on (7.6)-(7.7) as below

ξ(k + 1) = ZT,h(ξ(k), yc(k)) (7.11)

ū(k) = UT,h(ξ(k), yc(k)) (7.12)

where T is chosen as the controller sampling time for the sake of simplicity (see Remark

7.3), ū = [ū1 . . . ūm]
′

is the controller output, and yc = [yc1 . . . ycp ]
′

is the output of a

periodic switch defined by

Sf : yci(k) =


ȳi(k), if k = liai ∃ li ∈ Z+

gi(xc, 0), otherwise

(7.13)

with xc approximated by F aT,h with zero disturbance, i.e.,

xc(k + 1) = F aT,h(xc, ū, 0) (7.14)

Figure 7.3 shows this multirate sampled-data configuration. It can be seen that the ith

component of the modified output vector yc connects to the actual measurement ȳi when

it is available, otherwise it uses the output mapping function g and the approximate model

F aT,h to compensate for unmeasured intersample outputs. The single-rate control signal ū

is transmitted through the multi-channel network to obtain the multirate control input u

that is delivered to various hold devices with different sampling rates in Figure 7.1.
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Figure 7.3: Ouput feedback multirate controller

Remark 7.3. It is a natural supposition to pick T as the sampling period of the controller

(7.11)-(7.12). However, in some applications one may desire a different sampling rate.

Our multirate structure can be easily reformulated to cope with this case.

Remark 7.4. Alternatively, we can generate the multirate control law by putting the hold

devices of Figure 7.1 right after the single-rate signal ū in Figure 7.3. It can be shown

that no matter what structure is used, our results obtained thereafter are always valid.

7.2.2 Dissipativity of the Multirate NCS

Now we investigate stability of the proposed multirate NCS under network constraints.

As spelled out before, the first step is to assume a certain property is ensured by the

single-rate controller (7.6)-(7.7) or equivalently (7.11)-(7.12). For this purpose, we employ

the theory of dissipativity to characterize the properties of the closed-loop sampled-data

system. The following definition is inspired from [118, Definition 2.1] which was presented

for discrete-time dissipative systems.

Definition 7.2. The discrete-time model

x(k + 1) = FT (x, u, df )

y(k) = g(x, d)
(7.15)

with the control input u(k) given by (7.6)-(7.7) is said to be dissipative with respect to the

supply rate w(x(k), ξ(k), d(k)) if there exists VT,h : Rn+s → R+ with VT,h(0, 0) = 0, called

the storage function, such that given any strictly positive numbers (σ1, σ2, σ3) there exists

T ∗ > 0 such that for each fixed T ∈ (0, T ∗] there exists h∗ ∈ (0, T ] such that

VT,h
(
FT (x, UT,h(ξ, y), df ), ZT,h(ξ, y)

)
− VT,h(x, ξ)

T
≤ w(x, ξ, d) (7.16)

for all x ∈ B(σ1), u ∈ B(σ2), ‖d‖∞ ≤ σ3 and h ∈ (0, h∗].
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Remark 7.5. Basically, the supply rate is expressed as a function of input and output (or

a penalty variable in some applications), i.e., w(d, u, y), that for the case of closed-loop

system with state-dependent output can be taken as used in (7.16) (see (V,w)-dissipativity

in [9]).

In the sequel, given a discrete-time model F (exact or approximate), we use a bar,

i.e., F̄ , to distinguish the uncertain model concerning with the network constraints from

the the nominal model F . Also for notational convenience, we denote x̃ := [x
′
ξ
′
]
′
,

χ := [ξ
′
y
′
]
′
. Let us make the following assumptions.

Assumption 7.1. The approximate discrete-time model F aT,h together with the single-rate

controller (7.6)-(7.7) is dissipative according to Definition 7.2.

Assumption 7.2. The associated storage function VT,h is locally Lipschitz, i.e., for all

x̃1, x̃2 ∈ B(σ1), there exist Lv > 0 and T ∗ > 0 such that for each fixed T ∈ (0, T ∗] there

exists h∗ ∈ (0, T ] such that |VT,h(x̃1)− VT,h(x̃2)| ≤ Lv|x̃1 − x̃2| for all h ∈ (0, h∗].

Assumption 7.3. F aT,h is one-step and also multi-step consistent with the exact discrete-

time model F eT based on Definition 7.2.

Assumption 7.4. The controller (7.6)-(7.7) is uniformly locally Lipschitz, i.e., for any

σ1 > 0 there exist Lz, Lu > 0 and T ∗ > 0 such that for each fixed T ∈ (0, T ∗] there exists

h∗ ∈ (0, T ] such that for all χ1, χ2 ∈ B(σ1) and h ∈ (0, h∗], we have |ZT,h(χ1)−ZT,h(χ2)| ≤
Lz|χ1 − χ2|, |UT,h(χ1)− UT,h(χ2)| ≤ Lu|χ1 − χ2|.

Assumption 7.5. Each input signal uj is held at a frequency greater than its corre-

sponding Nyquist frequency, i.e., 1
bjT
≥ 2ωmaxj ∀j = 1, . . . ,m, where ωmaxj is the highest

frequency content present in the jth input channel.

Note that Assumptions 7.1-7.4 are natural extensions of the well-known assumptions

used in the area of nonlinear sampled-data systems (see e.g., [4,9]). Assumption 7.1 implies

that the single-rate output-feedback controller (7.6)-(7.7) is designed such that under the

network channels without uncertainties, i.e., ∆uj = ∆yi = 0 ∀ 0 ≤ j ≤ m, 0 ≤ i ≤ p, the

approximate nominal discrete-time plant model satisfies a dissipation inequality. Assump-

tion 7.3 bounds the difference between the approximate and exact nominal discrete-time
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plant models starting from the same as well as different initial conditions, whereas As-

sumption 7.4 places uniform bounds on the control inputs (see [19, Remark 1]). Finally,

Assumption 7.2 indicates continuity of the storage function.

Remark 7.6. Assumption 7.5 simply ensures perfect reconstruction of each input from

the sampled data. It imposes some bounds on the difference of the single-rate and multirate

input signals which appears in our derivations (see the proof of Theorem 1). Assumption

7.5 can, however, be ignored in the special cases of single-rate input channel and “low

measurement rate” constraint.

In order to perform our analysis, we first need a description for the exact discrete-time

model of the multirate plant (7.1). Associated with the transmitted input vector u which

is held at different sampling rates, we define a ficticious zero-order hold device to create

the single-rate vector uc = [uc1 . . . ucm ]
′

as

Hf : ucj (k) =


uj(k), if k = rjbj ∃ rj ∈ Z+

ucj (k − 1), otherwise

(7.17)

which connects to the actual input uj at its sampling instances and keeps it constant

during the subintervals. Now, considering (7.4) and (7.17) the exact discrete-time model

of multirate NCS under network uncertainties can be written as

x(k + 1) = F̄ eT (x(k), uc(k), d[k]) (7.18)

It is clear from (7.17) that although each component of the modified input uc is updated

at a different time instance the whole vector is constant during sampling intervals [kT, (k+

1)T ).

We now state and prove our main result. Theorem 7.1 derives sufficient conditions

under which the closed-loop uncertain NCS using the proposed mulitrate output feedback

setup (7.11)-(7.14) is also dissipative in a semiglobal practical sense.

Theorem 7.1. Consider the multirare nonlinear NCS shown in Figure 7.1 controlled

by (7.11)-(7.12) with (7.13)-(7.14). Under Assumptions 7.1-7.5 and the channels uncer-

tainties satisfying (7.2), given any positive real numbers (σx̃, σd, ςc, ν, κ1, κ2) there exists

T ∗ > 0 such that for each T ∈ (0, T ∗], all |x̃(0)| ≤ σx̃, ‖d‖∞ ≤ σd, |x(0) − xc(0)| ≤ ςc,
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there exists h∗ ∈ (0, T ] such that for all h ∈ (0, h∗] the uncertain exact discrete-time system

(7.18) fulfills the following dissipation inequality

VT,h(x̃(k + 1))− VT,h(x̃(k))

T
≤ w(x̃, d) + T (κ1|x̃|+ κ2‖d‖∞) + ν (7.19)

Proof. Let us study the evolution of the storage function VT,h along the solutions of the

exact model (7.18) and the controller (7.11)-(7.12):

VT,h(x̃(k + 1))− VT,h(x̃(k)) = VT,h(F̄ eT (x, uc, df ), ZT,h(ξ, yc))− VT,h(x, ξ) (7.20)

Adding and subtracting VT,h(F aT,h(x, U(ξ, y), df ), ZT,h(ξ, y)) and considering Assumptions

7.1-7.2, we get

VT,h(x̃(k + 1))− VT,h(x̃(k))

≤ Tw(x̃, d) + Lv |F̄ eT (x, uc, df )− F aT,h(x, U(ξ, y), df )|︸ ︷︷ ︸
(i)

+Lv |ZT,h(ξ, yc)− ZT,h(ξ, y)|︸ ︷︷ ︸
(ii)

(7.21)

Denoting ∆u = diag{∆u1,∆u2, . . . ,∆um}, the fast rate control input (before being deliv-

ered to the hold devices in Figure 7.1) under network uncertainties is given by

u(k) = (I + ∆u)ū(k) = (I + ∆u)U(ξ(k), yc(k)) (7.22)

Now, by adding and subtracting F̄ eT (x, u, df ) + F eT (x, U(ξ, y), df ) to term (i) of (7.21)

and then using the one-step consistency condition of Assumption 7.3 as well as triangle

inequalities, also by virtue of Assumption 7.4 for term (ii) in (7.21), it is obtained that for

any T ∈ (0, T ∗1 ] and h ∈ (0, h∗1]

VT,h(x̃(k + 1))− VT,h(x̃(k))

≤ Tw(x̃, d) + Lv

(
Tρ(h) + |F̄ eT (x, uc, df )− F̄ eT (x, u, df )|

+ |F̄ eT (x, u, df )− F eT (x, U(ξ, y), df )|
)

+ LvLz|yc − y| (7.23)

where T ∗1 , h
∗
1 > 0 and ρ(·) come from the one-step consistency in Assumption 7.3. Ap-

plication of the Gronwal-Bellman inequality together with the control input expansion in
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(7.22) yield

VT,h(x̃(k + 1))− VT,h(x̃(k))

≤ Tw(x̃, d) + Lv

(
Tρ(h) + (eLfT − 1)(|uc − u|

+ |(I + ∆u)U(ξ, yc)− U(ξ, y)|)
)

+ LvLz|yc − y|

≤ Tw(x̃, d) + Lv

(
Tρ(h) + (eLfT − 1)(|uc − u|+ |∆uU(ξ, yc)|)

+ (Lz + Lu(eLfT − 1))|yc − y|
)

(7.24)

where Lf is the Lipschitz constant of f , and we have used the uniform continuity of

UT,h(·, ·) in Assumption 7.4. The following lemmas address, in turn, the critical terms

|uc − u| and |yc − y|.

Lemma 7.1. Given any ε1 > 0, there exists T1 > 0 such that for any T ∈ (0, T1] there

exists h1 ∈ (0, T ] such that for all h ∈ (0, h1], the fast rate control inputs u and uc satisfies

|uc(k)− u(k)| ≤ ε1.

Proof. Let T1 > 0 be such that T1Lu
√
b21 + . . .+ b2m < ε1, where Lu comes from Assump-

tion 7.4 for (T ∗, h∗) = (T1, h1), and suppose T ∈ (0, T1]. Based on (7.17) we get

|uc(k)− u(k)|2 =
m∑
j=1

ϑkj |uj(k)− uj(rjbj)|2 (7.25)

with ϑkj ∈ {0, 1} and ϑkj = 0 whenever the jth channel of uc is sampled at a sampling

instance that is an integer multiple of bjT , otherwise ϑkj is equal to 1. Note that if

ϑkj = 1 ∀j = 1, . . . ,m at the sampling instance t = kT , i.e., the worst case scenario, the

right hand side of (7.25) represents the control input variations between different sampling

times. Using the continuity of u(·) together with Assumption 7.5, it can be easily shown

that in this case

|uc(k)− u(k)|2 ≤
m∑
j=1

L2
uT

2(k − rjbj)2 ≤
m∑
j=1

L2
uT

2((rj + 1)bj − rjbj)2 (7.26)

for rjbj < k < (rj + 1)bj . Form (7.26) we have |uc(k)−u(k)| ≤ TLu
√
b21 + . . .+ b2m which

by the choice of T proves Lemma 7.1. �

Lemma 7.2. Given any strictly positive real numbers (Cx̃, Cd, Cc, ε2), there exists T2 > 0

such that for any fixed T ∈ (0, T2] there exists h2 ∈ (0, T ] such that for all h ∈ (0, h2],
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|x̃(0)| ≤ Cx̃, ‖d‖∞ ≤ Cd, |x(0)− xc(0)| ≤ Cc the following holds: if maxi∈{0,1,...,k} |x̃(i)| ≤
Cx̃ for some k ∈ Z+ then the difference between the switch output yc in (7.13) and the

output of the analogous single-rate plant (7.6)-(7.7) satisfies:

|yc(k)− y(k)| ≤ T (ε2 + λ1|y(k)|+ λ2‖d‖∞) (7.27)

for some λ1, λ2 > 0.

Proof. Let (Cx̃, Cd, Cc, ε2) ∈ R+ be given. Let Lf , Lg > 0 be the Lipschitz constants of

the functions f and g, respectively, and define Cy = Lg(Cx̃+Cd)+ε2 +1. By Assumption

7.4 and the property that UT,h is zero at zero, we have that for any positive numbers

(Cu, Cy) there exists T21 > 0 and h21 > 0 such that U(ξ, yc) < Cu holds for all χ ∈
B(Cy) and h ∈ (0, h21]. Assume that T22, h22 > 0 and α(·, ·) come from the multi-

step consistency in Assumption 7.3 corresponding to (σ1, σ2, σ3, ς) = (Cx̃, Cd, Cu, Cc).

Denoting amax = max{a1, . . . , ap} and δymax = max{δy1 , . . . , δyp}, choose T23, h23 > 0

such that
√
pLgα(ς, h23)

(
(Lg(e

LfT23 − 1))amax−1 − 1
)
/(Lge

LfT23 − Lg − 1) ≤ ε2. Also,

let T24, T25 > 0, λ1, λ2 > 0 be such that
√
pLuL

amax−1
g (eLfT − 1)amax−1δymax ≤ λ1T

and
√
pLge

LfT
(
(Lg(e

LfT − 1))amax−1 − 1
)
/(Lge

LfT − Lg − 1) ≤ λ2T for any T ∈ (0, T24]

and T ∈ (0, T25], respectively. Finally, we define T2 = min{T21, T22, T23, T24, T25} and

h2 = min{h21, h22, h23}.
Suppose T ∈ (0, T2], h ∈ (0, h2], maxi∈{0,1,...,k} |x̃(i)| ≤ Cx̃ for some k ∈ {0, 1, . . .}.

First, we claim that the Lipschitz property of g yields maxi∈{0,1,...,k} |y(i)| ≤ Cy k ∈
{0, 1, . . .} and then |yc(k)| ≤ Cy follows by induction. Now taking (7.7), (7.13) as well as

the channel model of Figure 7.2a into account, we have that

|yc(k)− y(k)|2 =

p∑
i=1

µki |gi(xc, 0)− gi(x, d)|2 + (1− µki )|∆yiyi|2 (7.28)

where µki ∈ {0, 1} depends on the current sampling instant and varies from one output

channel to another. Indeed, it is equal to 0 when the measurement is available at the

ith output channel otherwise it is equal to 1. In particular, corresponding to the ith

measurement channel, k can be considered in three different cases. If k = liai for some

li ∈ {0, 1, . . . }, then it is obvious that |yci(k) − yi(k)| = |∆yiyi(liai)| ≤ δyi |yi(liai)|. If

k = liai+1, then using the Lipschitz property of g, the fact that |d(k)| ≤ ‖d‖∞, the multi-

step consistency in Assumption 7.3, uniform condition of Assumption 7.4, and triangle
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inequalities we get

|yci(liai + 1)− yi(liai + 1)| ≤ Lg(|F aT,h(xc(liai), ū(liai), 0)− F eT (x(liai), u(liai), d[liai])|)

+ Lg‖d‖∞ ≤ LgTα(ς, h) + Lg|F eT (x(liai), ū(liai), 0)− F eT (x(liai), u(liai), d[liai])|+ Lg‖d‖∞

≤ LgTα(ς, h) + Lg(e
LfT − 1)

[
|U(ξ(liai), yc(liai))− U(ξ(liai), y(liai))|+ ‖d‖∞

]
+ Lg‖d‖∞

≤ LgTα(ς, h) + LgLu(eLfT − 1)δyi |yi(liai)|+ Lge
LfT ‖d‖∞ (7.29)

Note that the Gronwal-Bellman inequality (comparison lemma) has been exploited in the

third inequality of (7.29). Otherwise, it can be concluded by induction and geometric

series formulas that

|yci(k)− yi(k)| ≤ Lg
(
α(ς, h) + (eLfT − 1)(‖d‖∞ + |yci(k − 1)− yi(k − 1)|)

)
+ Lg‖d‖∞

≤ Lg
(
Lg(e

LfT − 1)
)k−liai − 1

Lg(eLfT − 1)− 1
Tα(ς, h) + LuL

k−liai
g (eLfT − 1)k−liaiδyi |yi(liai)|

+ Lge
LfT

(
Lg(e

LfT − 1)
)k−liai − 1

Lg(eLfT − 1)− 1
‖d‖∞ (7.30)

holds for all k ∈ {liai + 2, . . . , (li + 1)ai − 1}, if T 6= 1
Lf

ln(
Lg+1
Lg

) (that can always be

avoided by choosing Lf , Lg appropriately). Inequality (7.30), the definitions of amax,

δymax together with the fact that max1≤i≤p |yi| ≤ |y| lead to

|yc(k)− y(k)| = (

p∑
i=1

|yci(k)− yi(k)|2)
1
2

≤ Φ(T, amax)Tα(ς, h) +∇(T, δymax , amax)|y|+ eLfTΦ(T, amax)‖d‖∞ (7.31)

which implies the worst upper bound for (7.28) with

Φ(T, amax) =
√
pLg

(
(Lg(e

LfT − 1))amax−1 − 1
)
/(Lge

LfT − Lg − 1) (7.32)

∇(T, δymax , amax) =
√
pLuL

amax−1
g (eLfT − 1)amax−1δymax (7.33)

Consequently, inequality (7.27) is obtained from (7.31) and by the choice of T and h. The

proof of Lemma 7.2 is complete. �

With these prerequisites, the proof of Theorem 7.1 can be finalized as follows. Let

T ∗2 , h
∗
2 > 0 come from Lemma 7.1 and (Cx̃, Cd, Cc) = (σx̃, σd, ςc) together with ε2 > 0 gen-

erate T ∗3 , h
∗
3 > 0 according to Lemma 7.2 with λ1, λ2 > 0. Define δumax = max{δu1 , . . . , δum}.
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Also, choose (T ∗4 , h
∗
4, T

∗
5 , T

∗
6 ) ∈ R+ such that

Lv

(
ρ(h∗4) + (eLfT

∗
4 − 1)

(
ε1 + (1 + δumax)Luε2

)
+ Lzε2

)
≤ ν, (7.34)

Lv

(
LgLzλ1 + Lu(eLfT − 1)(δumax + δumaxλ3Lg + λ1Lg)

)
≤ κ1T ∀T ∈ (0, T ∗5 ], (7.35)

Lv

(
Lzλ2 + Lu(eLfT − 1)

(
(1 + δumax)λ2 + Lg(δumaxλ3 + λ1)

))
≤ κ2T ∀T ∈ (0, T ∗6 ].

(7.36)

Assume λ3 > 0 be a number such that λ1T + 1 ≤ λ3T for any T ∈ (0, T ∗7 ]. Finally,

given positive numbers (σx̃, σd, ςc, κ1, κ2), we pick the sampling and integration periods as

T ∗ = min{T ∗1 , T ∗2 , T ∗3 , T ∗4 , T ∗5 , T ∗6 , T ∗7 } and h∗ = min{h∗1, h∗2, h∗3, h∗4}.
First note that form Assumption 7.4 and the fact that |∆u| ≤ δumax , we have

|∆uU(ξ, yc)| ≤ δumaxLu(|ξ|+ |yc|) ≤ δumaxLu(|ξ|+ |y − yc|+ |y|) (7.37)

Suppose T ∈ (0, T ∗] and h ∈ (0, h∗]. Substituting the result of Lemma 7.1, inequalities

(7.27) and (7.37) into (7.24) give rise to

VT,h(x̃(k + 1))− VT,h(x̃(k))

≤ Tw(x̃, d) + LvT
(
ρ(h) + (eLfT − 1)ε1 + (eLfT − 1)δumaxLu(|ξ|+ ε2 + λ3|y|+ λ2‖d‖∞)

+ (Lz + Lu(eLfT − 1))(ε2 + λ1|y|+ λ2‖d‖∞)
)

(7.38)

The Lipschitz condition of the output mapping g indicates that |y| ≤ Lg(|x| + ‖d‖∞).

Therefore, after rearranging the terms in (7.38), it can be rewritten as

VT,h(x̃(k + 1))− VT,h(x̃(k))

≤ Tw(x̃, d) + LvT
(
ρ(h) + (eLfT − 1)(ε1 + (1 + δumax)Luε2) + Lzε2

)
+ LvLgT

(
Lzλ1 + Lu(eLfT − 1)(δumaxλ3 + λ1)

)
|x|+ LvLuT (eLfT − 1)δumax |ξ|

+ LvT
(
Lzλ2 + Lu(eLfT − 1)

(
(1 + δumax)λ2 + Lg(δumaxλ3 + λ1)

))
‖d‖∞ (7.39)

If we divide both sides of (7.39) by T and take into account the conditions (7.34)-(7.36)

on ν, κ1, κ2 and the choice of T ∗ and h∗, then the dissipation inequality (7.19) is verified

readily. This concludes the proof of Theorem 7.1. �

Remark 7.7. The dissipation inequality (7.19) is similar to the strong form of (V,w)-

dissipativity in [9] which is useful for a large class of applications such as input-to-state
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stability, where the disturbance input is only assume to a measurable (not necessarily

Lipschitz) function of time.

Remark 7.8. It can be shown that the result of Theorem 7.1 is also valid for the R-SER

channel model displayed in Figure 7.2b.

Theorem 7.1 conveys how the proposed multirate output feedback controller preserves

the closed-loop dissipativity, in a semiglobal practical sense, in spite of network constraints

as well as disturbance inputs. Explicit conditions on the channels uncertainties and sam-

pling rates will be derived in the next section to guarantee the asymptotic stability of the

multirate nonlinear NCS. It can be inferred from (7.19) that, although the supply rate has

been deteriorated slightly by some additive terms, in most applications this deterioration

can be degraded by adjusting the parameters T and h. Moreover, the approach presented

by [9, Corollary 5.3] might be used to cancel ν and T (κ1|x̃| + κ2‖d‖∞) in properties like

passivity or H∞ control [20, Corollary 1].

It should be mentioned that, the dissipation rate w may have various forms, each of

which refers to a specific theoretic property. For instance, nonlinear H∞ control is covered

by taking w(x̃, d) = γ
2 |d(k)|2 − γ

2 |x̃(k)|2 for γ > 0 (see [20]) and input-to-state stability

(ISS) corresponds to w(x̃, d) = −α3(|x̃|) + γ̃(‖d‖∞) for α3 ∈ K∞, γ̃ ∈ K (see next section

for in-depth discussion).

7.3 Stability of the Multirate NCS

This section applies the general dissipativity property supplied by Theorem 7.1 to analyze

the stability of the proposed multirate networked controller in both the disturbance driven

and disturbance (noise) free situations. While the role of the network constraints and

different sampling was encapsulated in terms of κ1, κ2, ν in (7.19), their effect on the

closed-loop behaviour will be made more clear in this section.

7.3.1 Input-to-State Stability

Input-to-state stability (ISS) is an effective tool for stability investigation, when the plant

is exposed to disturbance inputs. Roughly, the difference equation x(k+ 1) = F (x, u, df )

is said to be input-to-state stable if there exist β ∈ KL, γ ∈ K such that |x(k)| ≤
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β(|x(0)|, kT ) + γ(‖d‖∞) (see e.g., [19] for accurate definition). The following corollary

demonstrates ISS preservation for the multirate NCS in a semiglobal practical sense.

Corollary 7.1. In Theorem 7.1, set w(x̃, d) = α3(|x̃|) + γ̃(‖d‖∞) and assume α1(|x̃|) ≤
VT,h ≤ α2(|x̃|) for α1, α2, α3 ∈ K∞, γ̃ ∈ K. Then, under similar assumptions and given

any positive real numbers (σx̃, σd, ςc, υ) there exist β ∈ KL, γ ∈ K and T ∗ > 0 such that for

each T ∈ (0, T ∗], all |x̃(0)| ≤ σx̃, ‖d‖∞ ≤ σd, |x(0) − xc(0)| ≤ ςc, there exists h∗ ∈ (0, T ]

such that for all h ∈ (0, h∗], the solutions of multirate sampled-data NCS controlled by

(7.11)-(7.14) satisfy:

|x̃(k)| ≤ β(|x̃(0)|, kT ) + γ(‖d‖∞) + υ, ∀k ∈ Z+ (7.40)

provided that α̃(|x̃|)− Tκ1|x̃| ∈ K∞, where κ1 comes from (7.35).

Proof. From Theorem 7.1 and inequality (7.19), we get

VT,h(x̃(k + 1))− VT,h(x̃(k))

T
≤ −α̃(|x̃|) + Tκ1|x̃|︸ ︷︷ ︸

(i)

+ γ̃(‖d‖∞) + Tκ2‖d‖∞︸ ︷︷ ︸
(ii)

+ν (7.41)

Obviously, term (ii) is always a class K function but term (i) is of class K∞ only if

α̃(|x̃|)− Tκ1|x̃| > 0. The rest of the proof follows directly the proof of [9, Corollary 5.1],

thus omitted. �

There is no need to emphasize that Corollary 7.1 is also applicable for the R-SER

channel model. Only the description of κ1, κ2 and ν will be changed.

7.3.2 Exponential Stability

Throughout the rest of this section we let the effect of disturbances be negligible, i.e., d = 0,

and exploit the following Lyapunov characterization to formulate stability conditions.

Moreover, for the sake of simplicity the input channels are assumed to be held at a same

sampling period equal to T , i.e., bj = 1 ∀j = 1, . . . ,m. This imposes the “low measurement

rate” constraint that is widely used in the literature on multirate systems [17].

Definition 7.3. The parametrized discrete-time model (7.15) with zero disturbance to-

gether with output feedback control (7.6)-(7.7) is said to be exponentially stable, if there

exists a family of Lyapunov functions VT,h : Rn+s → R+ and T ∗ > 0 such that for each
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fixed T ∈ (0, T ∗] there exists h∗ ∈ (0, T ] such that

c1|x̃|r ≤ VT,h(x̃) ≤ c2|x̃|r (7.42)

VT,h
(
FT (x, UT,h(ξ, y), 0), ZT,h(ξ, y)

)
− VT,h(x, ξ)

T
≤ −c3|x̃|r (7.43)

for some 1 ≤ r <∞ and ∀ x̃ ∈ B(σ1) ⊂ Rn+s, h ∈ (0, h∗]. with ci > 0, i = 1, 2, 3

Note that this definition provides well-know Lyapunov conditions for exponential sta-

bility (see e.g., [48]), which has been recently used in the context of nonlinear networked

control systems by [91]. We now modify in turn Assumptions 7.1-7.3 in the form of

Assumptions 7.6-7.8 to be applicable for the purpose of this section.

Assumption 7.6. The approximate discrete-time model F aT,h together with the single-rate

controller (7.6)-(7.7) is exponentially stable in the sense of Definition 7.3.

Assumption 7.7. The associated Lyapunov function VT,h is locally Lipschitz and satisfies:

sup{∂VT,h/∂x̃} ≤ Lv|x̃|r−1 for Lv > 0, x̃ ∈ B(σ1), and r in accordance with Assumption

7.6.

Assumption 7.8. F aT,h is one-step and also multi-step consistent with the exact discrete-

time model F eT according to Definition 7.1, where inequalities (7.8) and (7.9) are, respec-

tively, replaced by (7.44) and (7.45) defined below

|F eT (x, u, 0)− F aT,h(x, u, 0)| ≤ Tρ(h)(|x|+ |u|) (7.44)

|F eT (x1, u, 0)− F aT,h(x2, u, 0)| ≤ Tα(ς, h)(|u|) (7.45)

Remark 7.9. The stronger form of consistency introduced in Assumption 7.8 in known

to hold for a large class of Runge-Kutta methods (see for instance [120, Theorem 4.6.7]).

Also, integration schemes satisfying (7.44) are available in [121] and have been utilized

by [91] for stabilization of single-rate NCS.

Theorem 7.2. The multirate nonlinear NCS with SER channel model controlled by (7.11)-

(7.14) is locally exponentially stable, if given positive real numbers (σx̃, ςc) there exists

T ∈ (0, T ∗] such that for each T ∈ (0, T ∗], all |x̃(0)| ≤ σx̃, |x(0) − xc(0)| ≤ ςc, there
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exists h∗ ∈ (0, T ] such that for all h ∈ (0, h∗] Assumptions 7.6-7.8 and 7.4 hold, and the

following inequality is satisfied

(n+ s)
r
2

T ∗
Πr−1(Ω1 + Ω2 + Ω3) ≤ (1− θ)c3 (7.46)

for some 0 < θ < 1, where

Π = T ∗ρ(h∗)(LuLg + Lu + 1) + eLfT
∗

+
(
Lz + Lu(eLfT

∗ − 1)
)(
Lg∇∗ + (Lg + 1)(1 + LuT

∗Φ∗α(ςc, h
∗))
)

(7.47)

Ω1 = T ∗ρ(h∗)(LuLg + Lu + 1) (7.48)

Ω2 = Lz
(
Lg∇∗ + (Lg + 1)LuT

∗Φ∗α(ςc, h
∗)
)

(7.49)

Ω3 = Lu(eLfT
∗ − 1)(δumax + 1)

(
Lg∇∗ + (Lg + 1)LuT

∗Φ∗α(ςc, h
∗)
)

+ LuLg(e
LfT

∗ − 1)δumax (7.50)

and Φ∗ = Φ(T ∗, amax), ∇∗ = ∇(T ∗, δymax , amax) defined by (7.32) and (7.33), respectively.

Proof. First by supposition that all the input channels have the same sampling rate, the

application of Hf is redundant here. Therefore, uc = u = (I + ∆u)ū and the uncertain

exact discrete-time model is given by F̄ eT (x, u, 0). Similar to the proof of Theorem 7.1, we

start by evaluation of the Lyapunov function increment along the closed-loop solutions of

the uncertain system:

VT,h(x̃(k + 1))− VT,h(x̃(k)) := VT,h(F̄ eT (x, u, 0), ZT,h(ξ, yc))− VT,h(x, ξ) (7.51)

Adding and subtracting VT,h(F aT,h(x, U(ξ, y), 0), ZT,h(ξ, y)) and then using the mean value

theorem along with Assumption 7.7 gives

VT,h(x̃(k + 1))− VT,h(x̃(k)) ≤ −a3T |x̃|r

+ Lv
(

max{|F̄ eT (x, u, 0)|+ |ZT,h(ξ, yc)|, |F aT,h(x, U(ξ, y), 0)|+ |ZT,h(ξ, y)|}
)r−1

× (|F̄ eT (x, u, 0)− F aT,h(x, U(ξ, y), 0)|+ |ZT,h(ξ, yc)− ZT,h(ξ, y)|) (7.52)

where we used VT,h(x̃1)−VT,h(x̃2) ≤ Lv(max{|x̃1|, |x̃2|})r−1|x̃1−x̃2| and |[x ξ]′| ≤ |x|+|ξ|.
Before proceeding to investigate the second term in (7.52), note that from (7.31)-(7.33) in

Lemma 7.2 and the multi-step strong consistency in Assumption 7.8, we have that

|yc(k)− y(k)| ≤ Φ(T, amax)Tα(ς, h)|U(ξ, y)|+∇(T, δymax , amax)|y|

≤ LuΦ(T, amax)Tα(ς, h)|ξ|+ Lg
(
∇(T, δymax , amax) + LuΦ(T, amax)Tα(ς, h)

)
|x| (7.53)
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in which Assumption 7.4 and the Lipschitz property of g were applied to derive the second

inequality. Now, we upperbound |F̄ eT |, |F aT,h|, |ZT,h(ξ, yc)|, |ZT,h(ξ, y)| as follows. Using

the Gronwall-Bellman inequality, Assumption 7.4 and the SER model, we obtain

|F̄ eT | ≤ |x|+ (eLfT − 1)
(
|x|+ (I + ∆u)U(ζ, yc)

)
≤ eLfT |x|+ Lu(eLfT − 1)(1 + δymax)(|ζ|+ |yc|) (7.54)

Inequality (7.53) and the fact that |yc| ≤ |yc − y|+ |y| yields

|F̄ eT | ≤
(
eLfT + LuLg(e

LfT − 1)(1 + δymax)(1 +∇+ TLuΦα)
)

︸ ︷︷ ︸
πe1

|x|

+ Lu(eLfT − 1)(1 + δymax)(1 + TLuΦα)︸ ︷︷ ︸
πe2

|ξ| (7.55)

where the arguments of ∇,Φ, α are dropped for notational convenience. Hence,

|F̄ eT | ≤ max{πe1 , πe2}(|x|+ |ξ|) ≤ πe|x̃| (7.56)

with πe :=
√
n+ s(πe1 +πe2) =

√
n+ s

(
eLfT +Lu(eLfT−1)(Lg∇+(Lg+1)(1+TLuΦα))

)
.

In exactly the similar way, for the exact discrete-time model without uncertainty, i.e.,

F eT (x, U(ζ, y), 0), it can be written

|F eT | ≤
(
eLfT + LuLg(e

LfT − 1)
)
|x|+ Lu(eLfT − 1)|ξ| (7.57)

Note that (7.57) can be verified by setting δymax = ∇ = Φ = 0 in (7.55). It is clear from

(7.57) and (7.55) that |F eT | ≤ πe|x̃|. Consequently, by the one-step strong consistency

governed by (7.44) and Assumption 7.4, |F aT,h| can be upperbounded as

|F aT,h − F eT | ≤ Tρ(h)(|x|+ |U(ξ, y)|) ≤ Tρ(h)
(
(LuLg + 1)|x|+ Lu|ξ|

)
⇒ |F aT,h| ≤

(
πe + Tρ(h)

√
n+ s(Lu + LuLg + 1)

)
|x̃| = πa|x̃| (7.58)

Again owing to Assumption 7.4 and (7.53), we can upperbound |ZT,h(ξ, yc)|, |ZT,h(ξ, y)|
as

|ZT,h(ξ, y)| ≤ LzLg|x|+ Lz|ξ| (7.59)

|ZT,h(ξ, yc)| ≤ LzLg(1 +∇+ TLuΦα)|x|+ Lz(1 + TLuΦα)|ξ| (7.60)
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Let us define πz =
√
n+ sLz

(
Lg∇ + (Lg + 1)(1 + TLuΦα)

)
. It is straightforward to see

that |ZT,h(ξ, yc)|, |ZT,h(ξ, y)| ≤ πz|x̃|. Finally, combining (7.56), (7.58), the bound on

|ZT,h|, and the fact that max{πe, πa, πz} ≤ πa + πz leads to

(
max{|F̄ eT |+ |ZT,h(ξ, yc)|, |F aT,h|+ |ZT,h(ξ, y)|}

)r−1 ≤ (n+ s)
r−1
2 Πr−1|x̃|r−1 (7.61)

for Π(T, h, δymax , amax) defined in (7.47). Next, we address the term |F̄ eT − F aT,h| +

|ZT,h(ξ, yc) − ZT,h(ξ, y)| in (7.52). Following the same procedure used to bound terms

(i), (ii) in the proof of Theorem 7.1 and employing Assumption 7.8 we get

|F̄ eT − F aT,h|+ |ZT,h(ξ, yc)− ZT,h(ξ, y)| ≤ Tρ(h)(|x|+ U(x, y)|)

+ (eLfT − 1)|∆uU(ξ, yc)|+ (Lz + Lu(eLfT − 1))|yc − y| (7.62)

Direct but lengthy manipulations based on Assumption 7.4 and (7.53) show that

|F̄ eT − F aT,h|+ |ZT,h(ξ, yc)− ZT,h(ξ, y)| ≤
√
n+ s(Ω1 + Ω2 + Ω3)|x̃| (7.63)

with Ω1,Ω2,Ω3 given by (7.48)-(7.50). Putting (7.61), (7.63) and the condition (7.46)

together, the Lyapunov function increment in (7.52) admits

VT,h(x̃(k + 1))− VT,h
T

≤ −c3θ|x̃|r (7.64)

Therefore, the conditions of Definition 7.3 hold under multirate sampling and network

uncertainties, which confirms exponential stability of the uncertain exact discrete-time

model. �

Theorem 7.2 can be interpreted as follows. If the single-rate output feedback controller

exponentially stabilizes the nominal approximate discrete-time model, then under some

standard continuity and closeness assumptions and the satisfaction of condition (7.46),

the proposed multirate NCS is also locally exponentially stable. Note that (7.46) includes

three different terms:

• Ω1, which reflects the effect of discrete-time approximation via the one-step consis-

tency property,

• Ω2, which stands for only the output channels uncertainty,

• and Ω3, which consists of both the input and output channels uncertainty.
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Also, the effect of different sampling rates and the multi-step consistency are reflected by

Lg∇(T ∗, δymax , amax) + (Lg + 1)LuT
∗Φ(T ∗, amax)α(ςc, h

∗), which exists in both terms Ω2

and Ω3. It is worth mentioning that, c3 on the right hand side of (7.46) can be regarded as

a margin of stability of the approximate nominal closed-loop system that should dominate

the effects of Ω1, Ω2, Ω3 introduced above.

Remark 7.10. Similar discussions to those after [91, Theorem 2] can be carried out re-

garding the feasibility of condition (7.46) and the related possible bottlenecks. However,

since the left hand side of (7.46) can always be made arbitrarily small by an appropriate

choice of T ∗, h∗, uncertainties bounds as well as various sampling rates, we can easily

formulate conditions under which (7.46) is guaranteed by choosing these parameters suffi-

ciently small (see [91, Theorem 3] that is intended for similar purpose).

Remark 7.11. Theorem 7.2 can be applied to the same problem with the R-SER channel

model. The only difference is that, in our derivations δymax and δumax should be replaced by

1/(1+δymax) and 1/(1+δumax), respectively. However, as stressed by [97,98], application

of R-SER model is usually preferred to SER model due to introducing a more flexible

optimization problem. It can be shown that the fulfillment of (7.46) under the R-SER

model provides a bigger stability margin compared with the SER case.

7.4 Case Study

This section is serve to illustrate some of the main results in this chapter by output

feedback stabilization of an elementary example in a multirate network-based setup. The

first part is is dedicated to the ISS property and the second part studies the exponential

stability. In order to evaluate the effect of network uncertainties in our simulations, we

will use the total network capacity defined as C =
∑p

i=1
1
aiT

ln δ−1
yi +

∑m
j=1

1
bjT

ln δ−1
uj . This

is taken from [97] for linear multirate NCS, and measures how much information per time

unite can be transmitted through the whole network.

Consider the continuous-time plant [19]

ẋ(t) = x3(t) + u(t) + d(t)

y(t) = x(t) + d(t)
(7.65)
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with the approximate discrete-time model F aT,h generated by
fh(i, x, u, d) := x+ h(x3 + u) +

∫ kT+(i+1)h
kT+ih d(τ)dτ,

f i+1
h (x, u, d) := fh(i+ 1, f ih, u, d),

F aT,h(x, u, df ) := fNh (x, u, d), N = T
h

(7.66)

that is a refined Euler model utilized in several references, e.g., [18–20]. One-step and

multi-step consistency of (7.66) with the exact discrete-time model of (7.65) was already

checked in [19]. Also, by taking VT,h = |x|, α3(|x|) = |x|, and γ̃(‖d‖∞) = ‖d‖∞, it follows

that the digital static controller u(k) = −y(k)− y3(k) (that is here state feedback) makes

the approximate model F aT,h input-to-state stable. Hence, Assumptions 7.1-7.4 can be

easily validated. We now study the “low measurement rate” situation in Figure 7.1 with

b1 = 1, a1 = 4 and under the SER model for input and out channels with bounded δu

and δy. If we pick T = 0.2, that is enough to satisfy Assumption 7.5, simglobal practical

ISS of the dual-rate NCS using the digital controller u(k) = −yc(k) − y3
c (k) with (7.13)-

(7.14) is obtained from Corollary 7.1. The simulation results are shown in Figure 7.4 for a

randomly distributed disturbance input. It can be inferred from Figure 7.4a that although

the ISS property is maintained under different channel uncertainties, increasing δu or δy

(decreasing the network capacity C) has destructive effects and may lead to divergence.

Figure 7.4b reveals the effect of the integration period h on the closed-loop performance

for a given value of C.
We now set the disturbance input d to zero in (7.65) and analyze the exponential

stability using Theorem 7.2 (and in particular condition (7.46)). Similar to the arguments

of [91, Section 4], we can conclude that the controller u(k) = −y(k)3 − y(k) − hy(k)

with the Lyapunov function VT,h = |x| makes the approximate discrete-time model (7.66)

exponentially stable. Besides, it is straightforward to verify Assumptions 7.7-7.8. The

proposed multirate control setup was implemented for different sampling rates as well as

various channel uncertainties. For simulation purposes, we choose T = 0.1, N = 100,

b1 = 1, and the output channel uncertainty is fixed such that δy = 0.2. Figure 7.5 displays

the minimum required input channel capacity Cu (maximum allowable input uncertainty)

to prevent instability versus the measurement sampling frequency 1
a1T

for both the SER

and R-SER models. It can be perceived that for the R-SER model the multirate controller

can tolerate larger uncertainties (see Remark 7.11), and in this case we may expect an
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Figure 7.4: State evolution of the multirate NCS (a) under different network uncertainties
and N = 100 (b) under different values of integration period h = T/N and C = 4.33.

improvement in terms of the required network capacity to preserve stability.
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7.5 Summary

In this chapter we developed a general output feedback stabilization for multirate NCS

within the context of sampled-data systems and using discrete-time approximation. This

framework is the combination of a single-rate output feedback controller previously de-

signed and purposeful periodic switches which reconstruct the missing intersample outputs

between measured sampled data. The network channels are modelled as multiplicative and

relative uncertainties to the plant signals, called SER and R-SER models. These models

can account for different network-induced constraints with different physical meanings. It

is shown that the proposed multirate structure is capable of preserving the dissipation

inequalities, in presence of disturbances and under both channel models, with some addi-

tive terms depending on various sampling rates, channel uncertainties and the integration

period. As special cases of dissipativity with practical importance, we derived explicit suf-

ficient conditions to first guarantee input-to-state stability (ISS) of the disturbance driven

multirate NCS and then exponential stability of the disturbance free multirate networked-

based controller for both the SER and R-SER models. Simulation results validate how

the proposed multirate strategy can stabilize the nonlinear NCS under much lower trans-

mission data rate leading to significance saving in the required bandwidth. Moreover,

in coincide with our theoretical expectations the R-SER model provides more robustness

against channel uncertainties compared with the SER model.
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Chapter 8

Conclusions and Future Works

This thesis studies nonlinear sampled-data systems with input and output channels of

various sampling rates. While the main focus is on the design problem, important issues

on the stability analysis of multirate nonlinear plants are also investigated mainly within

the context of dissipativity. In addition to providing general frameworks for multirate

controller and observer designs, a new performance criterion based on the incremental

gain is proposed, and multirate nonlinear networked control systems (NCSs) are analyzed

as an application with practical significance. The major contributions of this thesis can

be categorized as follows:

1. In chapter 3 we considered a nonlinear plant connected to multirate sample and

hold devices when the output sampling rates are lower than the input sampling

rates. This refers to the “low measurement rate” constraint with several applica-

tions since D/A converters are usually faster than A/D converters. An inferential

state feedback control setup was developed using the emulation (CTD) method and

the theory of dissipative dynamical systems was exploited to analyze the stability of

the closed-loop sampled-data system. We proved that the proposed multirate infer-

ential setup preserves dissipativity in a semiglobal practical sense for both the static

and dynamic feedback cases. Considering this main result, a general approach for

multirate nonlinear H∞ control was then proposed based on an emulated controller

together with an approximate discrete-time model of the plant.

2. In chapter 4 the L2 incremental gain was introduced as a novel performance index
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for designing nonlinear H∞ controllers. The advantages of the new technique com-

paring with the well-known H∞ control design based on the usual L2 gain is that

it quantifies whether or not small changes in exogenous inputs such as disturbances

or noise will result in small changes at the output. Moreover, it ensures not only

closed loop stability but also existence and uniqueness of the solution of the system

equations. We first designed a state feedback incremental H∞ control scheme for a

class of Lipschitz nonlinear plants in terms of linear matrix inequalities (LMIs). The

proposed strategy is exponentially stable in the absence of disturbances and mini-

mizes the L2 incremental gain from the disturbances to the controlled output under

he effect of exogenous inputs. Our results were then extended to a more practical

case where only some (or maybe none) of the state variables are measurable and

also a more general class of nonlinearities called one-sided Lipschitz. Precisely, an

observer-based output feedback controller was presented using tractable linear ma-

trix inequalities (LMIs) that is shown to be asymptotically stable with minimized

incremental gain from the disturbance inputs to the penalty variable.

3. Chapter 5 tackles the problem of sampled-data observer design in presence of system

and measurement disturbance signals which indeed provides a background for the

multirate results of chapter 6. We constructed a family of observers using CTD and

DTD methods and discrete-time approximation, and adopted the notion of input-

to-state stability (ISS) to analyze the convergence of the estimation error. It was

shown that under some standard continuity and consistency assumptions both the

CTD and DTD-based observers are input-to-state stable from disturbances to the

estimation error in a semiglobal practical sense for the unknown exact discrete-time

plant model. Considering the one-sided Lipschitz condition as a broad class of nonlin-

ear systems together with a refined Euler approximate model, systematic approaches

for sampled-data observers were derived that can be cast into feasibility of certain

LMIs. Although the DTD method usually exhibits better performance compared

with the CTD technique, it necessitates a second assumption called quadratically

inner bounded condition. Instead, the CTD-based design requires only a mild geo-

metric condition.

4. Chapter 6 extends the results of chapter 5 to MSD systems. We considered a general
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description of nonlinear plants and established a prescriptive framework for multi-

rate sampled-data observer design in presence of disturbance inputs. The proposed

structure consists of a single-rate observer working at the base sampling period of

the system that is fed by two periodic switches. These switches are, respectively, a

modified sampler to reconstruct the missing intersample outputs using an approxi-

mate discrete-time model together with the output mapping function and a modified

hold device that assigns each control input to its previous measured value during

the corresponding sampling interval. We proved that if the single-rate observer is

designed (using the materials of chapter 5) to be input-to-state stable then under

some standard assumptions and Lyapunov-ISS conditions, the proposed multirate

observer is input-to-state stable in a semiglobal practical sense.

5. Finally, in chapter 7 we addressed an important application of multirate sampling

by developing an output feedback stabilizing scheme for nonlinear networked-control

systems (NCSs) with communication channels of various sampling rates. Two uncer-

tainty based channel models called signal-to-error ratio (SER) and relative signal-to-

error ratio (R-SER) model, respectively, were utilized to capture different network

constraints such as delays, data loss, etc. as well as sensors and actuators inaccu-

racies. Then, we proposed a multirate dynamic NCS which includes a single-rate

discrete-time output feedback controller together with a periodic switch to predict

the intersample outputs using an approximate discrete time plant model and the

output mapping function. It was shown that if the single-rate stabilizer satisfies a

certain dissipation inequality, then under some continuity and consistency assump-

tions the closed-loop multirate NCS will be also dissipative with respect to similar

supply rate impaired by some additive terms, for the unknown exact discrete-time

plant model and in presence of channel uncertainties as well as disturbance inputs.

Our result is valid for both the SER and R-SER channel models. Moreover, the sta-

bility of the disturbance driven and disturbance free multirate NCS was guaranteed

using the notions of input-to-state stability (ISS) and exponential stability, respec-

tively, by deriving explicit conditions on network uncertainties and different sampling

rates. We showed that, no matter which channel model is considered, the proposed

multirate output feedback NCS can lead to significant saving in the required com-

146



munication bandwidth compared with the corresponding single-rate NCS. However,

simulation results verify that R-SER model exhibits more robustness against the

network uncertainties under the same sampling rates pattern.

The followings are some areas that could be pursued in future research.

• Discrete-time incremental H∞ controllers:

We have considered the development of incremental gain-based controllers for con-

tinuous time systems. This result can be only applied in the emulation method for

sampled-data design where a continuous-time controller is discretized. One impor-

tant direction that can be followed in future is to present analogous formulations for

discrete-time systems. This will enable us to take the advantages of incremental gain

in the direct DTD method for nonlinear sampled-data control design as well. Again

Lipschitz and one-sided Lipschitz conditions can be employed to derive constructive

LMI-based solutions.

• Multirate nonlinear sampled-data fault detection and isolation:

Faulty signals can exist in actuators, sensors and process components that can dete-

riorate normal operation or even lead to instability. Therefore, fault detection and

isolation (FDI) has found prominent application in most industrial processes. The

main purpose is take immediate and appropriate actions in order to preserve safe

operation while avoiding the possibly of catastrophic damages. This problem will

be more challenging when input and output signals are sampled at different rates.

There exists a large number articles dealing with multirate FDI for linear systems,

however, there is no similar work in the literature on the nonlinear counterpart that

fully takes the technical bottlenecks of nonlinear sampled-data systems into account.

Also, the multirate FDI has been recently proposed as a technique capable of prompt

fault detection (see e.g., [33]). Considering these facts, Another interesting subject

that can be suggested as a future work is to construct multirate nonlinear FDI. Since

we have already developed a framework for multirate sample-data observer design

in chapter 6 and the observer-based method is one of the well-know techniques for

FDI, this task can be successfully conducted considering our results in this thesis.

• Observer-based multirate nonlinear NCS:
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Although the dynamic output feedback NCS proposed in chapter 7 possesses a close

structure to observer-based control schemes, designing an explicit multirate observer-

based nonlinear NCS can be considered as a challenging future work. The new

output feedback NCS may contain a partially state/output controller that is fed

by a multirate sampled-data observer previously designed using the framework of

chapter 6. The most difficult part is to find a way the separation principle that is no

longer valid for nonlinear systems, by choosing the sampling periods of the observer

and controller appropriately. By this means we will obtain a more general form of

the results presented in [21,22] which is not restricted to dual-rate case or high-gain

observers and is also applicable in the area of networked-control systems.

• Multirate nonlinear teleoperation control systems:

Teleoperation or in particular telerobotics is an important application of networked-

control systems (NCSs) where there is a teleoperator, a human operator, and a

remote environment (communication network). Passivity-based approach has been

recently studied in the literature to stabilize teleoperation systems governed by linear

equations. Since passivity is a special case of dissipativity and in chapter 7 we

have established a general stabilization framework using the theory of dissipativity,

another potential perspective is to apply our results to obtain multirate sampled-data

teleoperation systems in which teleoperator passivity is maintained under certain

sufficient conditions.

• Multirate event-driven sampled-data control systems:

Recently, event-triggered control has received a great deal of attention from research

community as an effective way to reduce unnecessary energy consumption and save

limited network resources. In event-triggered control, the measurement transmission

and the control tasks are executed only when a certain predefined event condition

is violated. This will be an interesting idea to extend the multirate sampled-data

frameworks of this thesis especially the networked-based results to the case of event-

triggered systems where several open and challenging issues exist.
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[8] D. Nesić and D.S. Laila, “On preservation of dissipation inequalities under sam-

pling,” in Proc. 39th IEEE Conf. Dec. Control, Sydney, Australia, 2000, pp. 2472–

2477.
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[21] A. Üstüntürk, “Output feedback stabilization of nonlinear dual-rate sampled-data

systems via an approximate discrete-time model,” Automatica, vol. 48, no. 8, pp.

1796–1802, 2012.

[22] J. H. Ahrens and T. Xiaobo and H. K. Khalil, “Multirate sampled-data output

feedback control with application to smart material actuated systems,” IEEE Trans.

Autom. Control, vol. 54, no. 11, pp. 2518–2529, 2009.

[23] U. Halldorsson and M. Fikar and H. Unbehauen, “Nonlinear predictive control with

multirate optimisation step length,” IEE Proc. Control Theory Appl., vol. 152, no. 3,

pp. 273–284, 2005.

[24] I. Izadi and Q. Zhao and T. Chen, “An optimal scheme for fast rate fault detection

based on multirate sampled data,” J. Process Contr., vol. 15, no. 3, pp. 307–319,

2005.

[25] M. Zhong and Y. Hao and S.X. Ding and G. Wang, “Observer-Based Fast Rate Fault

Detection for a Class of Multirate Sampled-Data Systems,” IEEE Trans. Autom.

Control, vol. 52, no. 3, pp. 520–525, 2007.

[26] Y. Shi and F. Ding and T. Chen, “Multirate crosstalk identification in xDSL sys-

tems,” IEEE Trans. Commun., vol. 54, no. 10, pp. 1878–1886, 2006.

[27] S. C. Kadu and M. Bhushan and R. D. Gudi, “Optimal sensor network design for

multirate systems,” J. Process Contr., vol. 18, no. 6, pp. 594–609, 2008.

151



[28] T. Chen and P.P. Vaidyanathan, “Recent developments in multidimensional multi-

rate systems,” IEEE Trans. Circuits Syst. Video Technol., vol. 3, no. 2, pp. 116–137,

1993.

[29] Y. Yamamoto and H. Fujioka and P.P. Khargonekar, “Signal reconstruction via

sampled-data control with multirate filter banks,” in 36rd IEEE Conf. Dec. Control,

San Diego, CA, 1997, pp. 3395–3400.

[30] J. Ding and Y. Shi and H. Wang and F. Ding, “A modified stochastic gradient based

parameter estimation algorithm for dual-rate sampled-data systems,” Digit. Signal

Process., vol. 20, no. 4, pp. 1238–1247, 2010.

[31] D. Glasson, “Development and applications of multirate digital control,” IEEE Con-

trol Syst. Mag., vol. 3, pp. 2–8, 1983.

[32] H. M. Al-Rahmani and G. F. Franklin, “Techniques in multirate digital control,”

Control and Dynamic System, vol. 70, pp. 1–24, 1995.

[33] I. Izadi, T. Chen and Q. Zhao, “H∞ performance comparison of single-rate and

multirate sampled-data systems,” in Proc. 2006 Amer. Control Conf., Minneapolis,

MN, 2006, pp. 183–187.

[34] T. Chen and L. Qiu, “H∞ design of general multirate sampled-data control systems,”

Automatica, vol. 30, no. 7, pp. 1139–1152, 1994.

[35] M. F. S̊agfors and H. T. Toivonen and B. Lennartson, “H∞ control of multirate

sampled-data systems: A state space approach,” Automatica, vol. 34, no. 4, pp.

415–428, 1998.

[36] S. Longhi, “Structural properties of multirate sampled-data systems,” IEEE Trans.

Autom. Control, vol. 39, pp. 692–696, 1994.

[37] D.G. Meyer, “A parametrization of stabilizing controllers for multirate sampled-data

systems,” IEEE Trans. Autom. Control, vol. 35, pp. 233–236, 1990.

[38] A.M. Azad, T. Hesketh, “H∞-optimal control of multi-rate sampled-data systems,”

in Proc. 2002 Amer. Control Conf., Anchorage, AK, 2002, pp. 459–464.

152



[39] A.J. van der Schaft, “L2-gain Analysis of Nonlinear Systems and Nonlinear State

Feedback H∞ Control,” IEEE Trans. Autom. Control, vol. 37, pp. 770–784, 1992.

[40] ——, “L2-gain and passivity techniques in nonlinear control,” in Communications

and Control Engineering series. London: Springer-Verlag, 2000.

[41] W. Lin and C. I. Byrnes, “H∞-control of discrete-time nonlinear systems,” IEEE

Trans. Autom. Control, vol. 41, pp. 494–510, 1996.

[42] H.D. Tuan and S. Hosoe, “On robust H∞ control for nonlinear discrete and sampled-

data systems,” IEEE Trans. Autom. Control, vol. 43, pp. 715–718, 1998.

[43] S.K. Nguang and P. Shi, “H∞ control of nonlinear sampled-data systems,” in Proc.

1999 Amer. Control Conf., San Diego, CA, 1999, pp. 1289–1293.

[44] J.C. Willems, “Dissipative dynamical systems: part I, part II,” Arch. Ration. Mech.

Anal., vol. 45, pp. 321–393, 1972.

[45] G. Zames, “On the input-output stability of time-varying nonlinear feedback systems

Part I: Conditions derived using concepts of loop gain, conicity, and positivity,”

IEEE Trans. Autom. Control, vol. AC-11, pp. 228–238, 1966.

[46] I.W. Sandberg, “On the L2-boundedness of solutions of nonlinear functional equa-

tions,” Bell Syst. Tech. J., vol. 43, pp. 1581–1599, 1964.

[47] C.A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties. New

York: Academic Press, 1975.

[48] M. Vidyasagar, Nonlinear Systems Analysis. NJ: Prentice-Hall, Englewood Cliffs,

1993.

[49] H.J. Marquez, Nonlinear Control Systems: Analysis and Design. New York: Wiley,

2003.

[50] G. Zames, “Feedback and optimal sensitivity: Model reference transformations, mul-

tiplicative seminorms and approximate inverse,” IEEE Trans. Autom. Control, vol.

AC-26, pp. 301–320, 1981.

153



[51] T.T. Georgiou, “Differential stability and robust control of nonlinear systems,”

Math. Control Signals Systems, vol. 6, pp. 289–306, 1993.

[52] T.T. Georgiou and M.C. Smith, “Robustness analysis of nonlinear feedback systems:

An input-output approach,” IEEE Trans. on Automatic Control, vol. 42, pp. 1200–

1221, 1997.

[53] D. Angeli, “A Lyapunov approach to incremental stability properties,” IEEE Trans.

Autom. Control, vol. 47, pp. 410–421, 2002.

[54] Q-C. Pham, N. Tabareau, and J-J. Slotine, “A contraction theory approach to

stochastic incremental stability,” IEEE Trans. Autom. Control, vol. 54, pp. 816–

820, 2009.

[55] Y. Chitour, W. Liu, and E.D. Sontag, “On the continuity and incremental-gain prop-

erties of certain saturated linear feedback loops,” Int. J. Robust Nonlinear Control,

vol. 5, pp. 413–440, 1995.

[56] B.G. Romanchuk and M.R. James, “Characterization of the incremental Lp gain

for nonlinear systems,” in Proc. of the 36th IEEE Conf. Dec. Control, Kobe, Japan,

1996, pp. 3270–3275.

[57] B.G. Romanchuk, “Analytic comparison of nonlinear H∞ bounding techniques for

low order systems with saturation,” in Proc. of the 34th IEEE Conf. Dec. Control,

New Orleans, LA, 1995, pp. 963–968.

[58] B.G. Romanchuk and M.C. Smith, “Incremental gain analysis of piecewise linear

systems and application to the antiwindup problem,” Automatica, vol. 35, pp. 1275–

1283, 1999.

[59] G.-D. Hu, “Observers for one-sided Lipschitz non-linear systems,” IMA J. Math.

Control Inform., vol. 23, pp. 395–401, 2006.

[60] ——, “A note on observer for one-sided Lipschitz non-linear systems,” IMA J. Math.

Control Inform., vol. 25, no. 3, pp. 297–303, 2008.

[61] Y. Zhao and J. Tao and N.-Z. Shi, “A note on observer design for one-sided Lipschitz

nonlinear systems,” Syst. Control Lett., vol. 59, pp. 66–71, 2010.

154



[62] F. Fu and M. Hou and G. Duan, “Stabilization of quasi-one-sided Lipschitz nonlinear

systems,” IMA J. Math. Control Inform., vol. 30, pp. 169–184, 2013.

[63] M. Abbaszadeh and H. J. Marquez, “Nonlinear observer design for one-sided Lips-

chitz systems,” in 2010 Amer. Control Conf., Baltimore, MD, 2010, pp. 5284–5289.

[64] W. Zhang and H.S. Su and Y. Liang and Z.-Z. Han, “Non-linear observer design for

one-sided Lipschitz systems: An linear matrix inequality approach,” IET Control

Theory Appl., vol. 6, no. 9, pp. 1297–1303, 2012.

[65] M. Benallouch and M. Boutayeb and M. Zasadzinski, “Observer design for one-sided

Lipschitz discrete-time systems,” Syst. Control Lett., vol. 61, pp. 879–886, 2012.

[66] A. Radke and Z. Gao, “A Survey of State and Disturbance Observers for Practi-

tioners,” in 2006 Amer. Control Conf., Minneapolis, MN, 2006, pp. 5183–5188.

[67] P.E. Moraal and J.W. Grizzle, “Observer design for nonlinear systems with discrete-

time measurements,” IEEE Trans. Autom. Control, vol. 40, no. 3, pp. 295–404, 1995.

[68] E. Biyik and M. Arcak, “A hybrid redesign of Newton observers in the absence of

an exact discrete-time model,” Syst. Control Lett., vol. 55, no. 6, pp. 429–436, 2006.

[69] A. M. Dabroom and H. K. Khalil, “Output feedback sampled-data control of non-

linear systems using high-gain observers,” IEEE Trans. Autom. Control, vol. 46,

no. 11, pp. 1712–1725, 2001.
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control systems with communication constraints: tradeoffs between transmission

intervals, delays and performance,” IEEE Trans. Autom. Control, vol. 55, no. 8, pp.

1781–1796, 2010.
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