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Abstract 

Biodiversity loss endangers ecosystem services and is considered as a global change that 

may generate unacceptable environmental consequences on the Earth system. Global 

biodiversity observations are needed to provide a deep understanding of the biodiversity - 

ecosystem services relationship and conserve the Earth’s biodiversity. Traditionally, in 

situ biodiversity monitoring is limited in time and space and is usually a costly and time-

consuming enterprise. Remote sensing can provide data over a large area in a consistent, 

objective manner and has been used to detect plant biodiversity in a range of ecosystems 

based on the varying spectral properties of different species or functional groups. Studies 

estimating biodiversity using remote sensing can be generally categorized into three types: 

estimating biodiversity indirectly with habitat mapping; mapping distribution of 

individuals as a basis for assessing community composition and diversity; and assessing 

species richness directly from patterns of spectral variation to yield α-diversity. However, 

key questions remain: 1) can the diversity-productivity relationship be assessed using 

remote sensing? 2) what drives the variation of optical signal among species or functional 

groups? and 3) what is the appropriate spectral and spatial scale for biodiversity detection 

using remote sensing?   

 

To answer these questions, a series studies were accomplished at Cedar Creek Ecosystem 

Science Reserve, Minnesota, where the biodiversity manipulation of prairie plants 

provided a proper diversity gradient. First, the productivity-biodiversity relationship was 

tested from a remote sensing perspective. Results indicated that NDVI and biodiversity 
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were positively related, and that the NDVI-biodiversity relationship varied slightly across 

the growing season and was affected by other factors including canopy structure, short-

term water stress, and shifting flowering patterns. Second, proximal remote sensing 

revealed rapid information loss with increasing pixel size. The best resolution to detect α 

diversity using spectral diversity at this prairie ecosystem was at a size close to a typical 

herbaceous plant leaf or single canopy. Furthermore, results from a combination of field 

spectral measurements and a modeling framework indicated that both species richness 

and evenness influenced spectral diversity metrics. Species identities also showed 

substantial effects on spectral diversity metrics at the fine scale. Background (e.g., soil) 

effects on spectral diversity varied with metrics: spectral diversity metrics based on 

information theory were sensitive to the background, while background had no effects on 

classification-based indices at this fine scale. Using full range spectra (400 – 2500nm) 

slightly increased the species separability over using visible-NIR wavelength only. 

Additionally, the primary spectral diversity metric, the coefficient of variation of spectral 

reflectance in space, was also tested in a prairie ecosystem in Southern Alberta to detect 

the biodiversity in a natural landscape. Overall, the plant optical signal was influenced by 

both leaf traits and canopy structure, and the ability to use spectral diversity metrics in 

biodiversity estimation depended on the species richness, evenness, composition, 

associated spectral properties, sensor characteristics, and the particular spectral diversity 

metrics selected. This project provides a critical foundation for assessing biodiversity 

using imaging spectrometry and these findings can be used to guide regional studies of 

biodiversity estimation using high spatial and spectral resolution remote sensing.  
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Chapter 1 Introduction 

“The Eremocene, the Age of Loneliness, is basically the age of people, our domesticated 

plants and animals, and our croplands all around the world as far as the eye you can see.” 

Edward O. Wilson: Half Earth: Our Planet's Fight for Life  

 

1.1 Biodiversity  

A widely-cited definition of biological diversity is “the variety and variability among 

living organism and the ecological complexes in which they occur” (US Congress Office 

of Technology 1987). Broadly, biodiversity is the total variability of living organisms on 

Earth, including diversity within species, between species and of ecosystems (Heywood 

1995).  

The question why do different regions on Earth have different numbers and types of 

species has puzzled ecologists and biologists for centuries. Species richness and 

distribution vary with latitude, climate, productivity, and a host of other physical and 

biological variables. The latitudinal diversity gradient exists in almost all taxonomic 

groups (Hillebrand 2004). Dozens of hypotheses including “Null-Model”, and hypotheses 

from ecological, historical, and evolutionary perspectives, have been proposed to explain 

this latitudinal gradient (Mittelbach 2012). An awareness of how species diversity varies 

across space and time provides a foundation from which to explore the mechanisms of 

species interactions and to understand the processes that drive variation in species 

numbers and their distribution (Mittelbach 2012). 

Understanding the processes that drive the variation in number of species and their 

distribution have challenged community ecologists, while an equal challenge exists in 

assessing species diversity at different spatial scales. Biodiversity can be defined at 

different spatial scales (Whittaker 1960, 1972): Alpha (α) diversity is diversity at a 

defined place (habitat); Beta (β) diversity describes the variation among habitats; Gamma 

(γ) diversity is the total diversity of a region or other spatial units (landscape level). α and 

γ diversity measure the number of species or other suitable measures of diversity at local 



2 

 

and regional spatial scales respectively, and β diversity presents the community 

dissimilarity. These three diversity measures are simple in principle but can be 

problematic when applied in the real world. For α diversity, while it seems 

straightforward to define the concept, the boundaries of a habitat or site are often 

subjective, and getting an accurate measure of species richness at a site involves 

important sampling considerations. β diversity measures the difference in species 

composition, or species turnover, among sites. But contentious discussions remain in how 

to define and measure β diversity (Tuomisto 2010a, b, Anderson et al. 2011). Finally, γ 

diversity refers to the total number of species in a landscape or a region. The concept of 

region, however, varies with particular studies or applications (Whittaker et al. 2001).  

 

1.2 Loss of biodiversity 

The advance of ecology has caused scientist to realize, the relative rate of biodiversity 

loss. By the late 1980s, reports stated the loss rate of the world’s biodiversity “is likely to 

increase over the next several decades” (US Congress Office of Technology 1987) and 

the American public “sees biodiversity needs to be protected” (Nash 1989). In the late 

1990s to early this century, biodiversity was related to its effects on ecosystem function, 

and began to be seen as an important global change issue in its own right (Pimm et al. 

1995, Sala et al. 2000). Now, biodiversity loss is treated as a global change with 

consequences that may exceed that of climate change in generating unacceptable 

environmental change to the Earth system (Rockström et al. 2009). 

Extinction has always been a part of the history of life on Earth and would happen 

without human activities. However, the numbers of species, notably the vertebrate 

animals and flowering plants, are being lost at an accelerating rate since the last mass 

extinction (65 Mya) that claimed the lives of dinosaurs (Wake and Vredenburg 2008). 

The estimated current species extinction rate is 100-1000 times faster than the 

background rate of species extinction, which is approx. 0.1-1 species per million species 

per year for marine life and 0.2-0.5 extinctions per million species per year for mammals 

(Rockström et al. 2009). The current extinction has been called the sixth mass extinction 

(Barnosky et al. 2011), and by the mid of the current century, up to half of the Earth’s 
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species may disappear due to habitat modification and destruction, overuse of fertilizers 

and pesticides, global warming and increased climatic variability, overharvesting, 

invasive species, and other effects of human activities (Thomas et al. 2004, Wake and 

Vredenburg 2008).  

Species extinctions are not the only aspect of changing biodiversity. The changing of 

species richness, abundance and community structure, habitat loss and degradation, 

invasive species and shift in the distribution of species and biomes affect the global 

biodiversity distribution (Pereira et al. 2010). In the short term, extinction of some 

species may have limited links to ecosystem services comparing to other metrics, such as 

changes in species abundances and community structure and, at a higher organizational 

level, habitat loss or biome changes (Hooper et al. 2005, Pereira et al. 2010). However, 

extinction might be able to cause a future ecological cost that is called the extinction debt 

(Tilman et al. 1994).  For example, the range of a species can decline shortly after habitat 

change, but that species may not immediately become extinct. However, extinctions 

might occur generations after the habitat loss and the most abundant species can be the 

most vulnerable to the habitat change and can, consequently, lead to insidious effects on 

ecosystem functions (Tilman et al. 1994). 

Biodiversity loss endangers ecosystem services that maintain human wellbeing.  

Conservation of biodiversity is important on account of the distribution and abundance of 

species over space and time and the functional roles each species plays in an ecosystem 

(Hooper et al. 2005). The functional characteristics varies among species and the relative 

abundance of each species alone may not always represent the importance of a species to 

the ecosystem, because relatively rare species (e.g., keystone species (Power et al. 1996)) 

can have strong influences on the energy and material flows within the ecosystem 

(Hooper et al. 2005). Other than the effects of biodiversity on ecosystem functions and 

services, loss of biodiversity can also cause ethical and aesthetic concerns for example, 

each species is unique and represents a particular part of millions of years Earth history, 

and the extinction of a species means its history will be buried forever. It took at least 3.7 

billion years to build the world our species inherited (Ohtomo et al. 2014) and 
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understanding the patterns of biodiversity could serve as a basis for preserving 

biodiversity.    

 

1.3 Biodiversity and ecosystem function 

Community ecologists have long focused on understanding how ecosystem biotic and 

abiotic factors affects biodiversity within it (Hillebrand and Matthiessen 2009). The 

influence of diversity on ecosystem function gained attention following two papers 

published in 1990s (Naeem et al. 1994, Tilman and Downing 1994). Although Tilman’s 

work (Tilman and Downing 1994) was criticized due to the possibly artifacts caused by 

added nitrogen, they paved a new road to investigate the biodiversity-ecosystem 

relationship from a different direction (Hooper et al. 2005, Balvanera et al. 2006, 

Cardinale et al. 2007). Succinctly, biodiversity affects ecosystem function in terms of 

productivity (Tilman et al. 1996, Isbell et al. 2009, 2015), community and ecosystem 

stability (Tilman and Downing 1994, Tilman et al. 2006), nutrient use and nutrient 

retention (Hector and Bagchi 2007, Maestre et al. 2012, Midgley 2012), and invasibility 

(Naeem and Li 1997, Naeem et al. 2000). 

Much of the cutting edge biodiversity-productivity research has developed from 

experiments and models (Thompson 2015). Three large scale experiments, Cedar Creek 

Ecosystem Science Reserve in Minnesota, USA (Tilman 1997, Tilman et al. 2001), 

BIODEPTH in Europe (Hector et al. 1999), and the Jena Biodiversity Experiment in 

Germany (Hector et al. 2011), consistently demonstrated that biodiversity enhanced 

productivity. Two likely hypotheses have been presented to explain this positive 

relationship between biodiversity and productivity: 1) species selection effects, and 2) 

Niche complementarity (Lehman and Tilman 2000, Loreau and Hector 2001). The 

selection effects hypothesis (also called “selection probability effects”) states that adding 

species increases the probability of having a productive species, especially when creating 

a community with high richness within a small size pool of candidate species (Huston 

1997). The complementarity hypothesis suggests that the presence of multiple species 

increases production via more efficient resource capture. 
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Although the productivity-biodiversity relationships are often positive at broad spatial 

scales, a variety of productivity-biodiversity relationships, including positive, negative, 

hump-shaped and U-shaped have been reported at local scales (Adler et al. 2011, Fraser 

et al. 2015). This relationship can be affected by community composition, resource levels 

(e.g., fertilizer or irrigation levels) and nature of disturbance (Waide et al. 1999, 

Mittelbach et al. 2001, Fraser et al. 2015). In some cases, highly productive sites are 

known to be resource rich and species poor. These high productivity and low diversity 

sites are typically highly managed via irrigation or fertilizer application (Fraser et al. 

2015) and often lead to declines in the species richness relationships at high productivity. 

Variation in the relationship between biodiversity and ecosystem function is known to 

depend on resource availability (Reich and Hobbie 2013) and environmental drivers, 

particularly drought stress, have been shown to constrain biomass in prairie systems 

(Tilman and Haddi 1992, Isbell et al. 2015). 

 

1.4 Measuring biodiversity in nature  

Several approaches have been used to measure biodiversity. However, it is difficult to 

define or apply a single metric in biodiversity estimation. Diversity indices may be 

criticized for losing information and may not by themselves be very informative in 

summarizing community characteristics. Considerable information about community 

characteristics can be lost when using a single value to measure biodiversity (Noss 1990). 

Species richness – the number of species at a site - is the oldest, simplest and among the 

most widely used measures of α diversity and has been used to drive many ecological 

models (Gotelli and Colwell 2001). Other than species richness, many diversity metrics 

describe the entire distribution of species abundance (e.g. a rank abundance plot, which 

contains the maximum amount of information about a community’s diversity).  Some 

metrics quantify the richness of the sample or assemblage (e.g. species accumulation 

curves), or provide a statistic that takes account of the evenness of the species 

abundances (the richness and evenness are both taken into consideration by the 

Shannon’s index and Simpson’s Index) (Magurran 2004, 2013, Hamilton 2005). Note 

that ecologists can and do measure other aspects of biodiversity besides numbers of 
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species, like genetic diversity and functional group diversity (Magurran and McGill 

2011). 

Typical methods of measuring biodiversity need experienced researchers working in the 

field. However, field biodiversity sampling is always a downward estimator of the real 

species richness due to the limited sample size, and the impracticality of finding all the 

species, especially when the diversity is high and most species are rare, as is typical of 

tropical rainforests (Gotelli and Colwell 2010). While an explicit survey of all the 

subjects can provide detailed information, it is infeasible to apply this kind of census for 

every case. Therefore, a proper sampling method must be taken to estimate the diversity 

(Bonar et al. 2010). Even so, it generally costs a lot of time and energy to execute the 

sampling work and can be remarkably expensive when sampling over a large area. It has 

been estimated that 0.6 to 4 million Euros per year are needed to accomplish a species 

monitor program in France (Levrel et al. 2010) and as little as 0.5 million USD are 

needed to integrate species-monitoring programs for selected terrestrial vertebrates, 

butterflies, and plants in regions such as sub-Saharan Africa, South America, and East 

Asia (Pereira et al. 2010). However, for most regions, a large amount of government 

investment is needed to support biodiversity monitoring, and new methods/technologies 

are needed to make such monitoring more effective for large areas. 

 

1.5 Remote sensing of biodiversity 

“Remote sensing, a stepchild of the space age, is prying out many of Earth’s innermost 

secrets.” – National Geographic: Eye in the Sky—History of Satellites  

 

Although the early terrestrial observation satellites were launched in the 1970s, the 

potential of using remote sensing to measure, map, monitor, and model spatial patterns 

and trends in biodiversity was largely ignored until 1990s (Stoms and Estes 1993). A 

simple survey of the number of published articles using “Remote Sensing” and 

“Biodiversity” as Topic in Web of Science reveals the increasing interest in remote 

sensing for assessing biodiversity. By 1990, only one publication was found that used 
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satellite remote sensing to track the effects of tropical forest loss on the changes in 

species abundance (Westman et al. 1989). A larger number of studies on this topic started 

to emerge in the 1990s (65 publications in 1990 - 2000) and the numbers increased 

steadily in the first 15 years of this century (173 publications in 2001 – 2005; 450 

publications in 2006 – 2010; 777 publications in 2011 - 2015) (Figure 1.1).  Clearly, 

remote sensing is playing an ever-increasing role in studies of biodiversity. 

 

Figure 1.1 The number of publications on remote sensing of biodiversity in Web of 

Science (1990 - 2016) 

 

The early applications of remote sensing in biodiversity estimation mainly focused on 

mapping landscape or habitat through landcover classification. But little was 

accomplished on detailed verification of the statistical or ecological significance of the 

indices linking the habitat diversity – biodiversity relationship (Stoms and Estes 1993). 

This was due to a limited ecological understanding of the effects of biodiversity on 
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ecosystem function, the limited information provided by the early remote sensing sensors, 

insufficient imaging processing techniques (e.g., simple classification methods with no 

particular indices designed for biodiversity assessment), and lack of understanding of 

how to interpret ecological information contained in the remote sensing products (Stoms 

and Estes 1993). 

Traditionally, our ability to detect biodiversity with remote sensing is restricted by spatial, 

spectral, and temporal resolution of the techniques involved. Imaging spectrometry and 

Light Detection and Ranging (LiDAR) systems have been both used in vegetation remote 

sensing and are relevant to biodiversity assessment in recent years. These new tools are 

expanding the range of detectable plant physiological and structural properties that can 

contribute to an assessment of functional diversity (Ustin and Gamon 2010).  

Studies estimating biodiversity using remote sensing can be generally categorized into 

three types: estimating biodiversity indirectly with habitat mapping; mapping distribution 

of individuals as a basis for assessing community composition and diversity; and 

assessing species richness directly from patterns of spectral variation to yield α-diversity 

(Table 1.1).  

1.5.1 Estimating biodiversity indirectly with habitat mapping 

Landcover mapping is one of the earliest and most widely used applications of optical 

remote sensing. At the beginning of this century, landcover data had been found helpful 

for predicting the distribution of both individual species (Jennings 2000, Saveraid et al. 

2001) and species assemblages (Kerr et al. 2001).  In Europe, the Earth Observation Data 

for Habitat Monitoring (EODHaM) system was launched to provide a framework for 

integrating Earth observation and in situ data to monitor biodiversity and habitat (Lucas 

et al. 2015).  

Estimating biodiversity through habitat mapping applies remote sensing indices to assess 

environmental parameters (e.g., productivity, climate and habitat structure) and either 

relates the heterogeneity of the habitats to biodiversity (Kerr et al. 2001, Bailey 2004) or 

integrates these remote sensed environmental parameters with GIS (Austin et al. 1996, 

Luoto et al. 2002, Foody 2005, Costanza et al. 2011) using national models (e.g., 
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National GAP Analysis Program (GAP) (Jennings 2000) or local models (Parviainen et al. 

2009)) to estimate biodiversity.  

The accuracy of biodiversity mapping or species distribution estimation using habitat 

mapping is highly affected by characteristics of the species involved. Landcover mapping 

might only estimate potential rather than the real species distributions for species that do 

not occupy all suitable habitats (Kerr and Ostrovsky 2003). For example, the estimation 

of distribution of particular butterfly, plant or bird species in Yellowstone National Park 

is possible when their distributions fit a specific habitat requirement, the number of their 

individuals are abundant, or both (Saveraid et al. 2001). It is less practical to assess 

distribution of rare species or species that are not specific to particular habitats even from 

remarkably accurate and detailed land cover data (Kerr and Ostrovsky 2003). 

Habitat mapping using remote sensing techniques is generally done at coarse scales 

(Wulder et al. 2004, Corbane et al. 2015). Global land cover data can be provided by 

using MODIS satellite at 500 m pixel size (Friedl et al. 2010), while regional landcover 

data have been retrieved using moderate resolution satellite products such as Landsat that 

has a 30 m spatial resolution (Tiede et al. 2010). Detailed information on landscape 

complexity is lost when using such relatively low spatial resolution satellite products. 

While higher spatial resolution satellites with sub-meter pixels are available now, mostly 

from commercial satellites, the limited spectral information contained in those products 

limited the accuracy of habitat mapping and their high cost precludes widespread usage.  

Also, the limited spectral bands may further restrict their power to detect diversity. 

1.5.2 Mapping distributions of individuals 

A fundamental premise in mapping the distribution of individuals or particular species 

using remote sensing is a deep understanding of the relationship between the spectral 

response measured by the remote sensing sensor and the parameters of interest (Wulder 

2004, Asner et al. 2008). For example, in order to predict the distribution of invasive 

species, the native and exotic species should be, at least, separable by their spectral 

reflectance.  However, the necessary spectral information has been limited until only very 

recently. 
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The task of species mapping has generally been done by applying airborne imaging 

spectroscopy that can provide high spatial resolution images with detailed spectral 

information at local or regional scales (Roberts et al. 1998, Ustin et al. 2004, Xiao et al. 

2004, Asner et al. 2008). Imaging spectroscopy can now cover the whole range of the 

visible and short-wave infrared reflectance spectrum (400 – 2500 nm) at high spectral 

resolution, and absorption features of leaves in specific tiny bands can be detected (Ustin 

et al. 2004). Airborne spectra have been successfully related to plant leaf chemical 

properties in tropical forests (Asner and Martin 2009, Féret and Asner 2014). Although it 

might be impossible to distinguish every species using remote sensing (Price 1994), it is 

often feasible to differentiate dominant species or community types based on the images 

using spectral differences (Ustin and Gamon 2010). For example, invasive species may 

have unique spectroscopic reflectance properties from that of native species, and plants of 

different functional types, e.g., nitrogen-fixing and non-fixing species, can be separable 

due to their biochemical composition (Asner et al. 2008). Moreover, particular leaf traits 

can affect canopy architecture which can accentuate the leaf spectral properties through 

multiple scattering and contrasting illumination (Ollinger 2011). By integrating imaging 

spectroscopy and LiDAR, both biochemical traits and canopy structure properties can be 

captured. As a consequence, mapping individual species can succeed when there are 

biochemical and/or structural variations between species (Ustin and Gamon 2010) and 

complete a priori knowledge about the optical properties of all the possible present 

species (Price 1994).   

1.5.3 Estimating alpha diversity directly through spectral diversity 

‘Spectral diversity’ (Palmer et al. 2002), sometimes called “optical diversity”  (Ustin and 

Gamon 2010) indicates the variation in spectral patterns detected by remote sensing. 

Instead of mapping species per se, spectral diversity detects functional and structural 

properties, which vary among species or functional groups (“optical types”)  (Ustin and 

Gamon 2010). The spectral diversity hypothesis can be tied to the ‘functional 

convergence’ hypothesis, which considers that the observable properties of plants are 

determined by different evolutionary histories (phylogeny) and the variety of ways in 

which plants respond to resources through different ecophysiological strategies (Field 

1991). Despite phylogenetic differences, resource limitations (e.g., light, water, nutrients) 
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can affect the growth of plants and lead to patterns in leaf traits (carbon and nitrogen 

composition, pigment, water content, dry mass and structural parameters, e.g. lignin), 

canopy structure (leaf area and leaf angle distribution) and phenology. Plants adjust their 

properties, such as leaf life span, allocation to defense, photosynthesis and respiration, to 

adapt to the environment or limitation of resource (Wright et al. 2004). As a result, an 

individual organism’s phenotypic activity or state represents the interaction between its 

genome, the changing environment, and random events (Fusco and Minelli 2010).  

Characteristic plant traits affect plant light absorption and scattering and consequently, 

cause variation in plant optical properties that can be detected with remote sensing  (Ustin 

and Gamon 2010). 

The spectral diversity hypothesis links ecological resource theory to fundamental 

physical principles to provide a rapid and accurate approach to measure variation in 

functional types via optical patterns (Ustin & Gamon, 2010). If optical type is regarded 

not only as an indicator of plant physiological and biochemical properties but a 

fundamental vegetation property, resulting from “ecological rules” driven by resource 

allocation, there should be predictable interrelationships among the plant traits and 

optical properties. If this effect leads to predictable (repeatable) patterns across time and 

space, then the principle of functional convergence enables remote sensing to 

characterize plant functional traits based on objective optical signals. As a consequence, 

variation in these optical properties and their associated traits in time and space might 

enable us to detect biodiversity at different scales. 

Many remote sensing metrics based on spectral patterns have been proposed to assess 

biodiversity (Table 1.1). These metrics can be grouped into two major categories: 1) 

metrics based on information theory (e.g. spectral entropy (Rocchini et al. 2015)) and 2) 

metrics based on classification results (Féret and Asner 2014, Schäfer et al. 2016). The 

information theory based metrics either extract information from the spectral space by 

calculating the variance of vegetation reflectance indices (e.g., NDVI) (Gould 2000, 

Carlson et al. 2007), the coefficient of variation of the reflectance across space (Wang et 

al. 2016a), or the distance from the spectral centroid (Palmer et al. 2002).  Alternatively, 

these metrics can be based on patterns in principal component space that compacts 
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spectral information and removes noise and band collinearity. Examples include the 

distance from the centroid in principal component space (Rocchini 2007). The 

classification based metrics apply a classification, either unsupervised classification 

(Féret and Asner 2014) or object-based classification (Schäfer et al. 2016), to the 

remotely sensed images and relate the metrics calculated based on the resulting “spectral 

species” to actual biodiversity metrics.  

Table 1.1 Examples of alpha diversity assessment using remote sensing, showing types of 

methods, ecosystems, sensors and platforms, specific methods used, and references 

Type of 

methods 

Ecosystem & location  Sensor & 

Platform 

Metrics 

(information/class

ification) 

Reference 

Habitat 

mapping  

    

 Grassland and 

deciduous woodland 

(Scotland) 

Landsat Unsupervised 

classification 

(Austin et al. 

1996) 

 Grassland and 

deciduous woodland 

(Great Britain) 

Landsat Classification (Griffiths 

and Lee 

2000) 

 Greater Yellowstone 

Ecosystem (USA) 

SPOT Classification  (Saveraid et 

al. 2001) 

 Pan Canada  AVHRR 

SPOT 

Classification by 

Canada Centre for 

Remote Sensing 

and Canadian 

Forest Service 

(Kerr et al. 

2001) 

 Boreal agricultural 

landscape (Finland 

Landsat Supervised 

classification 

(Luoto et al. 

2002) 

 Great Basis (USA) Landsat  Maximum and 

heterogeneity of 

productivity 

(Bailey and 

Bailey 2004) 

 Great Britain  AVHRR NDVI, 

temperature 

(Foody 

2005) 

 Pine/aspen forest 

(South Dakota, USA) 

LiDAR  Vegetation index (Clawges et 

al. 2008) 
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IKOMOS 

 Evergreen forest, 

transitional between 

lowland rain forest and 

montane forest 

(Uganda) 

Landsat 

Quickbird 

NDVI, PCA (Stickler and 

Southworth 

2008) 

 Northern boreal forest 

(Finland) 

Landsat  NDVI and local 

greenness models 

(Parviainen 

et al. 2009) 

 Coastal plain (Carolina, 

USA) 

Landsat  

MODIS 

Mean NDVI - 

productivity 

(Costanza et 

al. 2011) 

Species 

distribution 

    

 California Chaparral 

(California, USA) 

AVIRIS End member 

spectral mixture 

analysis 

(classification)  

(Roberts et 

al. 1998) 

 Forest tree species in 

urban area 

AVIRIS Spectral mixture 

analysis 

(Classification)  

(Xiao et al. 

2004) 

 Invasive forest species 

(Hawaii, USA) 

AVIRIS Link reflectance 

to leaf traits using 

PLSR 

(Asner et al. 

2008) 

 Wetland (California, 

USA) 

PROBE Classification  (Zomer et al. 

2009) 

 Invasive species urban 

area (British Columbia, 

Canada) 

CASI Spectral angle 

mapper 

classification 

(Chance et 

al. 2016) 

Alpha 

diversity  

    

 Low-shrub tundra 

(NWT, Canada) 

Landsat Variation in 

NDVI 

(Gould 

2000) 

 Tallgrass prairie 

(Oklahoma, USA) 

Aerial 

photograph 

Spectral diversity (Palmer et al. 

2002) 

 Subtropical vegetation 

communities 

AVHRR Variation in 

NDVI 

(Fairbanks 

and 

McGwire 
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(California, USA) 2004) 

 Tropical forest (Florida, 

USA)  

Landsat Mean and 

standard deviation 

of NDVI 

(Gillespie 

2005) 

 Wetland (Tuscany, 

Italy) 

Quickbird, 

Landsat 

PCA (Rocchini 

2007) 

 Lowland rain forest 

(Hawaii, USA) 

AVIRIS Range of spectral 

values 

(Carlson et 

al. 2007) 

 Evergreen 

Mediterranean plants 

(Mount Hermon, Israel) 

Landsat 

Aster 

Quickbird 

Mean and 

standard deviation 

of NDVI 

(Levin et al. 

2007) 

 Grassland (Inner 

Mongolia, China)  

MODIS MODIS-derived 

GPP and NDSVI 

(John et al. 

2008) 

 Meadows and 

woodland (Mississippi, 

USA) 

HyMap CV of reflectance 

indices 

(Lucas and 

Carter 2008) 

 Dry, moist, and wet 

forest (Panama) 

Landsat 

AIRSAR 

Mean and 

standard deviation 

of NDVI, radar 

backscatter 

(Gillespie et 

al. 2009) 

 Savannah (Central 

Namibia) 

HyMap PCA (Oldeland et 

al. 2010) 

 Meadow (Central Alps, 

Valtellina, Italy) 

Handhold 

spectromete

r (ASD) 

PLSR (Fava et al. 

2010) 

 Vascular plants 

(Switzerland) 

Landsat PCA (Rocchini et 

al. 2011) 

 Mediterranean forests 

and crops (Tuscany, 

Italy) 

Landsat PCA (Rocchini 

and Neteler 

2012) 

 Peruvian Amazon AVIRIS Unsupervised 

classification 

(Féret and 

Asner 2014) 

 Deciduous forest 

(Chile) 

EO1- 

Hyperion 

Use NDVI, 

topological, and 

structural data 

train classification 

(Ceballos et 

al. 2015) 
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LiDAR model 

 Wildland forest – 

agriculture (Michigan, 

USA) 

AVIRIS PCA (Dahlin 

2016) 

 Vascular plants 

(Sweden) 

HySpex PCA (Möckel et 

al. 2016) 

 Ngangao Forest 

(Kenya) 

AisaEagle Image 

segmentation and 

unsupervised 

classification 

(Schäfer et 

al. 2016) 

 

1.6 Bridging the ecological and remote sensing agendas 

The potential for collaborations between remote sensing and ecological communities has 

been proposed for a long time (Stoms and Estes 1993, Kerr and Ostrovsky 2003, Turner 

et al. 2003, de Araujo Barbosa et al. 2015). Yet, these two communities have only 

recently started to coordinate and much work remains to be done (Pettorelli et al. 2014). 

A couple reasons exist for this delayed and rare collaborative between the two 

communities. One issue is the gap between the backgrounds needed for the two subjects. 

Each community has its own knowledge system and language. For example, remote 

sensing scientists may not always have a deep understanding of ecosystem function or 

know the meaning of ecological terminology, while widely used remote sensing terms 

like “imaging spectroscopy” are often not familiar to ecologists. Even the same term can 

have slightly different meanings in the two communities. For example, spatial scale 

usually means grain and extent in ecology but typically refers to the pixel size in remote 

sensing. Therefore, it is often difficult to find an appropriate terminology when 

combining disciplines. Also, there are only limited conferences and journals 

accommodating topics in both disciplines, hampering the direct communication between 

the two communities.   

Another issue relates to data dispersion and accessibility. “Open data” or “open science” 

that not only means that data but also analyses and methods are preserved (Reichman et 

al. 2011) has been proposed for years, but it is still a long way off. In ecology, only a 

small fraction of data is accessible and there is still a lack of standards for collecting and 
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archiving data (Reichman et al. 2011). In remote sensing, data affordability and access 

limited the usage of remote sensing products (Turner et al. 2015). Although institutes like 

United States Geological Survey (USGS), National Aeronautics and Space 

Administration (NASA), Oak Ridge National Laboratory Distributed Active Archive 

Center (ORNL DAAC), and European Space Agency (ESA) provide open access to some 

satellite products e.g., Landsat, MODIS and SENTINEL, commercial satellite products 

are still very expensive. Meanwhile, airborne remote sensing data that can provide 

detailed spectral and spatial information are limited in geographic scope and too 

expensive for most researchers. Furthermore, some remote sensing products are too big 

or complicated for easy usage, in part due to the shortage of accessible data and software 

tools.  There is a need for better sharing tools e.g., sophisticated algorithms, open-source 

software, and public databases for ecologists to obtain and process remote sensing images 

and extract information they want. More cross-community interactions are needed 

between the biodiversity and remote sensing communities to really push biodiversity 

assessment using remote sensing (Turner 2014, Jetz et al. 2016). 

 

1.7 Research objectives  

Given the projected decline in biodiversity in the Anthropocene (Crutzen 2002) and the 

importance of biodiversity to human societies and economies, better methods of assessing 

biodiversity over large areas are needed. This study aims to provide a solid theoretical 

foundation for the spectral diversity hypothesis and a deeper understanding of the spectral 

diversity-biodiversity relationship at local scales relevant to alpha diversity. If operational 

remote sensing methods can be developed for wider application, we could more readily 

apply spectral diversity to detect biodiversity (species richness and functional diversity) 

of ecosystems though remote sensing. To accomplish this, hyperspectral reflectance data 

were collected using both ground based and airborne platforms at different scales (Figure 

1.2).  

This project was accomplished at Cedar Creek Ecosystem Science Reserve, Minnesota, 

USA (45.41° N, 93.20° W) and Mattheis Research Ranch, Alberta, Canada (50.90° N, 

111.88° W). The biodiversity manipulation of prairie plants in Cedar Creek BioDIV 
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experiment provided an ideal diversity gradient for testing the spectral diversity 

hypothesis, while Mattheis Research Ranch served as a proper site for examining how the 

experiment-scale findings performed in a natural landscape. Meanwhile, both sites have a 

history of biodiversity research by ecologists so that working in these sites enhances links 

between remote sensing and ecology.  

 

 

 

Figure 1.2 Different sampling platforms and scales, from ground sampling to airborne 

remote sensing. (a): Hand-held non-imaging spectrometer sampling; (b): Fine scale 

imaging spectrometer sampling; (c): Airborne sampling. 
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The biodiversity-productivity relationship is an important example of the link between 

biodiversity and ecosystem function. Species richness generally promotes ecosystem 

productivity, although the shape of the relationship varies and remains the subject of 

debate.  Chapter 2 and 3 examine the diversity-productivity relationship in two prairie 

ecosystems from a remote sensing perspective. Chapter 2 tests the species richness–

productivity relationship using a common vegetation index, Normalized Difference 

Vegetation Index (NDVI), as a measure of productivity in experimental prairie grassland 

plots (Cedar Creek). The study spanned a growing season (May to October 2014) to 

evaluate dynamic changes in the NDVI–species richness relationship through time and in 

relation to environmental variables and phenology.  

Chapter 3 illustrates a study using flux data and field optical data to help calibrate 

airborne imagery and map ecosystem productivity in a grazed prairie ecosystem in 

southern Alberta, Canada. Airborne NDVI measurements were calibrated against CO2 

flux measurements and above-ground biomass to estimate landscape productivity. 

Combining three metrics of biodiversity (airborne data, vegetation map and field 

sampling) to evaluate broad relationships between diversity and productivity across the 

landscape provided a unique test of the diversity-productivity hypothesis over a large area 

(10 km2) of this managed prairie ecosystem. 

Remote sensing has been used to detect plant biodiversity in a range of ecosystems based 

on the varying spectral properties of different species or functional groups. However, the 

most appropriate spatial resolution and spectral bands necessary to detect diversity 

remain unclear. At low resolution, differences among spectral patterns may be too weak 

to detect. Alternatively, at high resolution, redundant information may be introduced. To 

explore the effect of spatial resolution, Chapter 4 presents a study of the scale-

dependence of spectral diversity in a prairie ecosystem experiment at Cedar Creek 

Ecosystem Science Reserve, Minnesota, USA. This study involved a scaling exercise 

comparing spectral diversity from pixels sampled at different spatial scales to standard 

metrics of alpha diversity within manipulated diversity treatments.  The study also 

considered the effect of different spectral regions on biodiversity estimation using remote 
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sensing. To accomplish these goals, hyperspectral data were collected using several 

instruments from both ground and airborne platforms.  

From current publications in this field, and from Chapters 2 and 3 in this thesis, we know 

that remote sensing of biodiversity works in the Cedar Creek experiments and in natural 

landscapes. But we need to know the mechanisms behind this relationship rather than 

simply calculating a biodiversity index using airborne or satellite images and relating it to 

the ground sampling results for a single instance. Chapter 5 explores this need by 

applying a theoretical test using simulated plot data to understand how species 

composition, richness, and evenness affect spectral diversity. Leaf and canopy reflectance 

measurements collected from the Cedar Creek BioDIV experimental prairie plots were 

used to simulate synthetic plots with different community structures (species richness, 

evenness, and composition). Two types of spectral diversity metrics, CV and metrics 

calculated based on a Partial Least Squares Discriminant Analysis (PLSDA) 

classification method, were used to compare to the conventional diversity metrics.  This 

study also explored contributions of leaf- vs. canopy-level information to spectral 

diversity and compared effects of spectral bands on spectral diversity indices. 

Following the data chapters, conclusions and recommendations for future work are 

provided in a final summary chapter. 
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Chapter 2 Seasonal Variation in the NDVI–Species Richness 

Relationship in a Prairie Grassland Experiment (Cedar Creek) 

 

Abstract 

Species richness generally promotes ecosystem productivity, although the shape of the 

relationship varies and remains the subject of debate. One reason for this uncertainty lies 

in the multitude of methodological approaches to sampling biodiversity and productivity, 

some of which can be subjective. Remote sensing offers new, objective ways of assessing 

productivity and biodiversity. In this study, we tested the species richness–productivity 

relationship using a common remote sensing index, the Normalized Difference 

Vegetation Index (NDVI), as a measure of productivity in experimental prairie grassland 

plots (Cedar Creek). Our study spanned a growing season (May to October, 2014) to 

evaluate dynamic changes in the NDVI–species richness relationship through time and in 

relation to environmental variables and phenology. We show that NDVI, which is 

strongly associated with vegetation percent cover and biomass, is related to biodiversity 

for this prairie site, but it is also strongly influenced by other factors, including canopy 

growth stage, short-term water stress and shifting flowering patterns. Remarkably, the 

NDVI-biodiversity correlation peaked at mid-season, a period of warm, dry conditions 

and anthesis, when NDVI reached a local minimum. These findings confirm a positive, but 

dynamic, productivity–diversity relationship and highlight the benefit of optical remote 

sensing as an objective and non-invasive tool for assessing diversity–productivity 

relationships. 

2.1 Introduction 

The species richness–productivity relationship has long been of interest in ecology. Much 

of the recent Biodiversity-Ecosystem Function (BEF) research has developed from a 

series of landmark experiments at Cedar Creek that consistently demonstrated that 

biodiversity enhances productivity in experimental grassland systems (Tilman et al. 1996, 

2001, Tilman 1997). Two hypotheses have been proposed to explain the positive 

relationship between biodiversity and productivity: 1) selection effects, and 2) 
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complementarity (Lehman and Tilman 2000, Loreau and Hector 2001). The selection 

effects hypothesis (also called “selection probability effects”) states that adding species 

increases the probability of having a productive species, especially when creating a 

community with high richness within a small size pool of candidate species (Huston 

1997). The complementarity hypothesis suggests that the presence of multiple species in 

a high richness community can increase production via more efficient resource capture. 

In reviews of the BEF literature, a variety of biodiversity–productivity relationships have 

been reported (Adler et al. 2011, Fraser et al. 2015). Both unimodal and positive 

relationships are commonly reported between productivity and richness, and this 

relationship can be affected by community composition, resource levels (e.g., fertilizer or 

irrigation levels) and nature of disturbance (Waide et al. 1999, Mittelbach et al. 2001, 

Fraser et al. 2015). In some cases, highly productive sites are known to be resource rich 

and species poor. These high productivity and low diversity sites are typically highly 

managed via irrigation or fertilizer application (Fraser et al. 2015) and often lead to 

declines in the species richness relationships at high productivity. Indeed, variation in the 

relationship between biodiversity and ecosystem function is known to depend on resource 

availability (Reich and Hobbie 2013) and environmental drivers, particularly drought 

stress, has been shown to constrain biomass in prairie systems (Tilman and Haddi 1992, 

Isbell et al. 2015). 

One goal of BEF research is to understand the underlying ecological mechanisms behind 

the biodiversity–productivity relationship. However, the assessment of the relationship 

itself and changes in the relationship through time pose additional challenges. 

Determining the nature of these relationships is of increasing importance in natural 

systems, given that unmanipulated grasslands show a range of productivity–diversity 

relationships, depending on site conditions and composition (Adler et al. 2011). Prairie 

productivity is often estimated through biomass harvests that are time-consuming due to 

the effort in harvesting, sorting and weighing live vegetation in the sampling region 

(Bork et al. 1999, Booth and Tueller 2003, Piñeiro et al. 2006). There are also limits to 

the number of samples that can be taken in a single season without altering the 

experiment. Moreover, the traditional methods of estimating biomass - and their 
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repeatability—can be subjective due to the dependence on the knowledge and skill of 

those conducting sampling (Booth and Tueller 2003). This estimation is further affected 

by sample size and method (Clark et al. 2001). Due to these constraints, only a small area 

can typically be harvested to obtain the biomass and richness. As a consequence, it has 

been difficult to observe changes in biomass in response to external drivers through time 

and the seasonal dynamics of the diversity–productivity relationship. 

Remote sensing provides a useful tool to estimate vegetation productivity over large areas 

and has been used to estimate prairie production. A large number of studies have led to 

well-established methods that estimate the percent cover, biomass, and productivity of 

grasslands using remote sensing (Gamon et al. 1993, 1995, Bork et al. 1999, Booth and 

Tueller 2003). These studies have shown that the Normalized Difference Vegetation 

Index (NDVI) (Tucker 1979) is highly correlated with green biomass, green leaf area 

index, and radiation absorption (APAR) by green canopy material in grasslands (Gamon 

et al. 1995, Piñeiro et al. 2006). Remote sensing also provides an objective method that 

can assess productivity rapidly, repeatedly and following consistent methods, without 

damaging or altering the target vegetation. 

The Cedar Creek Ecosystem Science Reserve (CCESR; Minnesota, USA) has a long, rich 

history of biodiversity studies. The ongoing BioDIV experiment has been maintained for 

more than 20 years to investigate the effects of species and functional biodiversity on 

community and ecosystem function, and has included assessment of productivity, 

stability and nutrient dynamics (Tilman 1997, Tilman et al. 2006). Previous studies at this 

site have reported a significant, positive relationship between diversity (either species 

richness or functional diversity) and biomass (e.g., (Tilman 1997)). 

In this study, we revisited the species richness–productivity relationship for these 

experimental prairie grassland plots covering a range of biodiversity levels (nominal 

species richness ranging from 1 to 16 plant species per plot) using NDVI, a common 

remote sensing metric of ecosystem productivity and green vegetation biomass. Our 

study spanned a summer growing season (May to October, 2014), allowing us to evaluate 

dynamic changes in the NDVI–species richness relationship through time and in relation 

to environmental variables, including temperature, precipitation and soil moisture. We 
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tested the hypotheses that (1) remote estimates of productivity would be positively 

associated with species richness, as reported by previous studies based on traditional field 

sampling methods (Tilman et al. 1996, Tilman 1997); and (2) the relationship would 

change dynamically throughout the growing season in response to the progression of 

plants through shifting phenological stages and according to environmental fluctuations 

(e.g., as a consequence of summer drought). 

2.2 Methods 

2.2.1 Field Site and Experimental Design 

This study was conducted at the Cedar Creek Ecosystem Science Reserve, Minnesota, US 

(45.4086° N, 93.2008° W). The BioDIV experiment has maintained 168 prairie plots (9 

m × 9 m) with nominal plant species richness ranging from 1 to 16 since 1994 

(Mittelbach 2012). The species planted in each plot were originally randomly selected 

from a pool of 18 grassland perennial species, including C3 and C4 grasses, legumes, 

forbs and trees. Of the original 168 plots, 35 plots with species richness ranging from 1 to 

16 were selected for our study. These 35 plots included 11 monoculture plots and six 

replicates of every other richness level (2, 4, 8, and 16) but with differing species 

combinations. Weeding was done 3 to 4 times each year for all the plots to maintain the 

species richness. A more complete accounting of the methods and history of the BioDIV 

experiment can be found in the published literature on this site (e.g., (Tilman et al. 2001, 

Reich et al. 2012)). 

2.2.2 Reflectance Sampling 

In the 35 study plots, canopy spectral reflectance was measured every two weeks over 

most of the 2014 growing season (late May to late August) and once a month during 

senescence (September to October) with a hand-held, dual channel spectrometer (Unispec 

DC, PP Systems, Amesbury, MA, USA) (Figure 2.1a). With this instrument, both 

upwelling radiance and downwelling irradiance were collected simultaneously, and these 

measurements were cross-calibrated using a white reference calibration panel (Spectralon, 

Labsphere, North Sutton, NH, USA), allowing us to correct for the atmospheric variation 

(Gamon et al. 2006). The detectors measured irradiance and radiance from 350 to 1130 

nm with a nominal bandwidth (band-to-band spacing) of approximately 3 nm, and actual 



34 

 

bandwidth (FWHM) of 10 nm. The upward-looking channel included a fibre optic and a 

cosine head to record the solar irradiance. The downward-looking channel included a 

fibre optic and a field-of-view restrictor that limited the field of view (FOV) to a nominal 

value of 20 degrees, although empirical tests indicated the actual FOV was closer to 15 

degrees (not shown). In this application, the spatial resolution on the ground (IFOV) was 

approximately 0.5 m2. The reflectance at each wavelength was calculated as: 

ρλ =  
(Ltarget,λ/Etarget,λ)

(Lpanel,λ/Epanel,λ)
 (2.1) 

where Ltarget,λ indicates the radiance measured at each wavelength (λ , in nm) by a 

downward-pointed detector sampling the surface (“target”), and Etarget,λ indicates the 

irradiance measured simultaneously by an upward-looking detector sampling the 

downwelling radiation. Lpanel,λ indicates the radiance measured by a downward-pointed 

detector sampling the calibration panel, and Epanel,λ indicates the irradiance measured 

simultaneously by an upward-pointed detector sampling the downwelling radiation. 

A linear interpolation was applied to the reflectance spectra to obtain reflectance values 

at 680 and 800 nm and calculate NDVI: 

NDVI =  
𝜌800 − 𝜌680

𝜌800 + 𝜌680
 (2.2) 

where ρ680 and ρ800 indicate the reflectance at 680 and 800 nm respectively. To determine 

seasonal NDVI patterns, 17 reflectance measurements were taken along the northern-

most row on each sampling date (Figure 2.1a) in each of the 35 plots, providing a 

consistent subsample of each plot over the growing season. To estimate the NDVI values 

on August 1 (the day that vegetation percent cover was measured) a linear interpolation 

was applied to NDVl measurements made on July 18 and August 4. 
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Figure 2.1 Sampling spectral reflectance using (a) the handheld method, applied biweekly 

to obtain reflectance phenology over the season; and (b) the tram cart on track (Gamon et 

al. 2006) used to sample entire plots once near midsummer peak biomass. For the first 

method, only the northern-most row of each plot was sampled for reflectance phenology 

over the growing season. The second method is further illustrated in Figure 2.2. 
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Figure 2.2 Design of whole-plot reflectance sampling (a) and example of synthetic image 

(plot 168, richness = 16) (b); and resulting reflectance spectra (c). Colored lines indicate 

mean (black), standard deviation (blue) and min/max (red) reflectance values. 

Reflectance spectra were used to calculate NDVI through time for comparison with 

nominal species richness (1–16). 

 

2.2.3 Whole-Plot Reflectance Sampling 

Once at peak season (July 23 to August 3), we sampled canopy reflectance of 33 entire 

plots using a tram system (Gamon et al. 2006) (Figure 2.1b). The tram consisted of a 

mobile cart on a movable track supported by scaffolding (Figure 2.1b), allowing a 

systematic measurement of each 1-m2 portion of each plot (Figure 2.2a). This resulted in a 

total of 81 measurements (9 × 9 m) for each plot with approximately 1 m2 spatial 

resolution, creating a synthetic image (Figure 2.2b) that provided a full sample of each of 

the 33 plots, comparable to what could be obtained with airborne imaging spectrometry. 

The speed of the tram cart was 0.167 m/s. It took approx. 10 minutes (including time to 
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move the scaffolding) to cover a plot (9 × 9 m). During the (whole-plot) sampling period, 

data were collected from 10 am to 4 pm every day until all 33 plots were completely 

sampled. We skipped midday (12:30 pm to 1 pm) to avoid possible self-shadow effects of 

the fiber when measuring the white reference. While some data reported were collected 

under clear skies, clouds were unavoidable, and their influence on NDVI calculations 

were largely reduced through the cross-calibration procedure described above. A 

quantum sensor (LI-190SB, LI-COR, Lincoln, NE, USA) was used to track the sky 

condition when running the tram cart. To avoid possible edge effects, 49 (7 × 7 m) of the 

81 measurements in the center were used to calculate the average reflectance of each plot 

(Figure 2.2c). NDVI from each reflectance spectrum was calculated using Equation (2.2) 

and the average NDVI was determined for each plot. 

2.2.4 Biomass and Vegetation Percent Cover 

Above-ground living plant biomass of the selected 35 plots was measured on 4 August 

2014. Plots were sampled by clipping, drying and weighing four parallel and evenly 

spaced 0.1 m × 6 m strips per plot. The biomass of each strip was sorted to species, but 

presented here as total plot biomass. Ground vegetation percent cover measurements 

were taken on June 19 and August 1 in 2014. Percent cover was determined by visual 

inspection within nine 0.5 m × 0.5 m quadrats, placed every meter, starting 50 cm from 

the north facing edge of the plot for a total of nine subsamples per plot. Percent cover was 

estimated for each individual species as the nearest 10 percent that each species occupied 

of the total quadrat area, and then summed. Vegetation coverage did not necessarily sum 

to 100% if bare ground was exposed, or if species overlapped. To avoid affecting 

seasonal NDVI patterns, biomass measurements in each plot were sampled in a separate 

area from the reflectance sampling locations, both of which were assumed to be 

representative of the whole plot. For mid-season NDVI assessment of entire plots, the 

biomass sampling was conducted a few days after the optical sampling to avoid affecting 

the NDVI. 

2.2.5 Height 

We monitored height of focal species at each NDVI census as an independent measure of 

canopy growth. We measured the height of three randomly selected individuals of each 
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species present in each plot unless there were less than three individuals, in which case 

we measured all individuals. Individuals were not marked, so different individuals may 

have been measured at different census intervals. To calculate average height of 

vegetation in each plot we used percent cover data collected in June and August to create 

an abundance-weighted plot vegetation height. Plot vegetation height was calculated as 

the sum of the abundance weighted height of each species in the plot, where abundance 

was quantified as percent cover and height was measured in centimeters. For all but 

Lupinus perennis, percent cover did not differ between the two percent cover census 

dates and so we used average cover. For Lupinus perennis, we used percent cover from 

June for all census dates in June and July then used August percent cover data for August, 

September and October census dates. 

2.2.6 Flowering Phenology 

We monitored flowering phenology of all focal species at each NDVI census. We used 

USA-NPN protocols for monitoring (www.usanpn.org/natures_notebook). Here we focus 

on flowering phenophases due to their potential to influence spectra. Briefly, each species 

in each plot was scored for whether they had flowers and whether any flowers were open. 

For each of these phenophases we also scored abundance. For flowers, we scored the 

number of flowers in the following categories: <3, 3–10, 11–100, >101). For open 

flowers, we scored the percentage of flowers that were open in the following categories: 

Less than 5%; 5%–24%; 25%–49%; 50%–74%; 75%–94%; 95% or more. 

For data analysis, we took the mid-point of each category, except >101 for which we 

arbitrarily set as 110. For each species, plot and census we multiplied the number of 

flowers by the decimal percent of those flowers that were open to get an abundance-

weighted number of open flowers per species. These were then summed for each plot 

giving a total number of open flowers per plot. 

2.2.7 Environmental Conditions 

Meteorological conditions (temperature, rainfall) and soil moisture were tracked during 

the experimental period. Temperature and precipitation records were collected from 

Cedar Creek weather station (approximately 0.76 km away from the BioDIV 

experimental plots), while time domain reflectometry (TDR) was used to measure soil 

http://www.usanpn.org/natures_notebook
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moisture at four different depths in a subset of 38 BioDIV experimental plots across all 

diversity treatment levels. These were not necessarily the same plots as those used for 

subsampling NDVI but are a representative subset of the ambient conditions in the 

BioDIV experiment and site. We used the moisture sensor (Trime FM, IMKO GmbH, 

Ettlingen, Germany), with a 17 cm long probe inserted vertically into the soil inside a 2 m 

long PVC tube at 4 depths: 3–20 cm, 20–37 cm, 80–97 cm, and 140–157 cm. The sensor 

was calibrated at two endpoints using the same setup with dry and wet glass beads in a 

large volume (19L) following manufacturers instructions. 

2.2.8 Statistical Analysis 

Species richness–biomass, species richness–vegetation percent cover and species 

richness–NDVI relationships were fitted using linear regression model within R software 

(Team 2015).  

A multiple linear regression model within R software (Team 2015) was applied to fit the 

NDVI with species richness and vegetation percent cover measurements. We analyzed 

height data using a two-way ANOVA with species and census as main effects. We used 

Tukey’s HSD to test pairwise contrasts. Phenological data were not normally distributed 

and transformation did not result in normally distributed data. We therefore used a non-

parametric Kruskall-Wallis test to examine the effect of date on the total number of open 

flowers and then used the Steel-Dwass (non-parametric equivalent to Tukey’s HSD) to 

test pairwise contrasts. These analyses were conducted in JMP® Pro 11.0 (SAS Institute 

Inc., Cary, NC, USA, 27513). 

2.3 Results 

Consistent with previous studies at this site (Tilman 1997), high species richness plots 

tended to have higher biomass and percent cover, but biomass was more strongly related 

to species richness than was percent cover (Figure 2.3). Both biomass and vegetation 

percent cover showed logarithmic relationships with species richness (Figure 2.3), similar 

to previous patterns observed at BioDIV (Tilman 1997). Although the mean vegetation 

percent cover increased with increasing species richness, the variation of percent cover 

among low species richness plots was higher than the variation of biomass, with some of 

the low richness plots having a very high vegetation percent cover, causing a weak (but 
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significant) relationship between species richness and cover (Figure 2.3b). Species 

composition clearly affected the species richness—percent cover relationship, as 

evidenced by the high scatter in percent cover for the monoculture plots. For example, 

one monoculture plot (Amorpha canescens, plot 20 in Table S2.1 in Appendices), had the 

highest vegetation percent cover (95%), but the biomass of this plot was 200 g/m2, which 

was only 51.3% of the most productive polyculture, whose richness was 16 (plot 169 in 

Table S2.1 in Appendices). On the other hand, the Liatris aspera monoculture plot (plot 

129 in Table S2.1 in Appendices) has a biomass of 159.97 g/m2 (41% of the most 

productive polyculture) while the vegetation percent cover of this plot was only 15%. 

NDVI showed a linear relationship with biomass (Figure 2.4a) but a log relationship with 

vegetation percent cover (Figure 2.4b). The NDVI-percent cover relationships had 

stronger correlations than the NDVI-species richness relationship on both sampling dates 

(Table 2.1), illustrating the strong dependence of NDVI on canopy structure. Adding 

species richness as a variable improved the performance of the NDVI-percent cover 

relationships on both sampling dates (Table 2.1), demonstrating that the NDVI was 

affected by species composition in addition to canopy structure. These results suggest a 

potentially confounding effect of vegetation structure (e.g., percent cover) on the NDVI-

species richness relationships reported above. NDVI was particularly sensitive to 

vegetation percent cover in sparse canopies (below 60% cover) and showed less 

sensitivity to vegetation percent cover in dense canopies (above 60% cover) (Figure 2.4b), 

as has been shown by the tendency of NDVI to “saturate” with increasing quantities of 

vegetation (whether biomass, percent cover or LAI) in previous studies (Gamon et al. 

1995). The NDVI–cover relationship also varied with season, with NDVI values 

declining between mid-June and early August (Figure 2.4b). The NDVI and percent 

cover values were higher earlier in the growing season (June 19) than later (August 1) 

(Figures 2.3 and 2.4), when senescence reduced NDVI (Figure 2.5). 
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Figure 2.3 Species richness versus biomass (a) and vegetation percent cover (b). Biomass 

was measured on 4 August and percent cover was measured on 19 June and 1 August 

2014. 
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Figure 2.4 NDVI versus biomass (a) and vegetation percent cover (b). Biomass was 

measured on 4 August and percent cover was measured on 19 June and 1 August 2014. 

 

Table 2.1 Dependence of NDVI on species richness and vegetation percent cover. Values 

shown are multiple linear regression parameters, including intercept, coefficients for 

log(species richness) and log(percent cover), R2 and F values. Regressions have degree of 

freedom = 32. Significant codes: NS, 0.05 < p, *, 0.01 < p < 0.05, **, 0.001 < p < 0.01 

and ***, P < 0.001. 0619 and 0801 represent the sampling dates (19 June and 1 August 

2014).  
Date & Model 

Inputs 

Regression Parameters Overall 

R2 

Overall 

F Value Intercept log (Species Richness) log (Percent Cover) 

0619-Percent cover −0.21415 ** 0 0.24357 *** 0.8238 *** 154.3 *** 

0619-Richness 0.53337 *** 0.10391 *** 0 0.3129 15.03 *** 

0619-Both −0.17454 * 0.03296 * 0.22154 *** 0.8486 *** 89.67 *** 

0801-Percent cover −0.14260 * 0 0.18095 *** 0.7387 *** 93.28 *** 

0801-Richness 0.37723 *** 0.09317 *** 0 0.4766 *** 30.05 *** 

0801-Both −0.08934NS 0.04280 ** 0.15750 *** 0.835 *** 80.98 *** 
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Reflectance measurements revealed clear NDVI dynamics and subtle changes in the  

NDVI–diversity relationship that were affected by trends in weather conditions and 

flowering over the growing season (Figure 2.5). NDVI showed early-season increases in 

May and June (Figure 2.5d), a period of canopy growth and development, as indicated by 

increases in plant height (Figure 2.5b). Plants in 16-species plots were significantly taller 

than those in 8-species plots and both were significantly taller than 4, 2 and 1 species 

plots (Tukey’s HSD, p < 0.05). The latter three did not differ from each other (Tukey’s 

HSD, p > 0.05). 

By August 1, NDVI showed a deep decline accompanied by a coincident decline in 

surface soil moisture following a period of high temperatures and lack of precipitation, 

but then recovered briefly during a subsequent period of lower temperature and high 

precipitation in mid to late August (Figure 2.5). After this second, smaller August rise, 

NDVI continued to decline gradually as plants senesced into the fall. 

NDVI also appeared to be affected by flowering, with the mid-season NDVI dip 

coincident with the period of anthesis (flower opening) for many of the dominant species 

(Figure 2.5c). The total number of open flowers varied significantly with date (χ8
2 = 65.7, 

p < 0.001). Pairwise comparisons (Steel-Dwass method) revealed that there were 

significantly more flowers at the 6 August 2014 census (close to the NDVI dip) than five 

of the eight other census times. All but May 29, July 21 and September 4 had 

significantly lower numbers of flowers. 

Over most of the season, NDVI was higher for high-species-richness plots, and the 

NDVI–species richness relationship shifted over the growing season (Figure 2.5d). This 

difference in NDVI for plots with different species richness largely disappeared by 

October, when plants had largely senesced, at a time of advanced canopy growth (Figure 

2.5b). 

The seasonal change in the NDVI–species richness relationship is shown in more detail 

in Figure 2.6, further demonstrating that plots with high richness tended to have a higher 

mean NDVI and lower variation in NDVI than plots with low species richness (Figures 

2.6 and 2.7). The variation of NDVI among the high richness plots became visibly 
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smaller as the growing season progressed (Figure 2.6). NDVI showed the strongest 

relationship with species richness at peak season (Figures 2.6 and 2.8 and Table 2.2). 

Similarly, whole-plot measurements (Figure 2.7) based on full-plot sampling (49 

measurements) in the middle of the summer showed a clearer trend than any of the 

individual monthly measurements (Figure 2.6, Table 2.2) that were based on smaller 

sample sizes (17 vs. 49 measurements). 
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Figure 2.5. Time series of air temperature (maximum temperature of the day), 

precipitation, soil moisture expressed as volumetric water content (a); weighted average 

plot height (b); weighted mean number of open flowers per plot (c) and NDVI plotted by 

species richness (d) over the growing season in 2014. In Figure 2.5c, the approximate 

flower color is indicated by the colored circles, and the species names are indicated by 5-

letter abbreviations (see Table S2.2 in Appendices for full species names). 
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Figure 2.6. Representative examples of NDVI versus species richness at four time points 

(plots a–d) in the 2014 growing season. These figures were derived from plot subsamples 

(17 measurements along the north most row of each plot) for 35 plots. Species richness 

represents the planted number of species per plot. Each richness treatment had a sample 

size of 6, except monoculture plots, which had a sample size of 11. In this figure, box 

plots were overlaid on actual data points (dots) that represent the average values for each 

plot. The regression statistics are provided in Table 2.1. 
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Figure 2.7 Mid-season whole-plot NDVI versus species richness (collected over several 

dates spanning 23 July to 3 August 2014). For this figure, 49 (7 m × 7 m) of the 81 

measurements in the center of each plot were used to calculate the average reflectance 

and NDVI, yielding a more representative sampling than shown in Figure 2.6. Species 

richness represents the planted number of species per plot. Each richness treatment had a 

sample size of 6, except monoculture plots, which had a sample size of 9. In this figure, 

box plots were overlaid on actual data points (dots) that represent the average values for 

each plot. The regression statistics are provided in Table 2.2. 

 

Table 2.2 Species richness–NDVI relationships for various dates in 2014 compared to the 

whole plot results obtained at mid-summer (23 July–2 August 2014). 
Sampling Regression Equation R2 p Value 

May-23 y = 0.0132x + 0.2821 0.2587 0.001 

June-08 y = 0.0211x + 0.4841 0.3312 0.0003 

June-20 y = 0.0199x + 0.548 0.3137 0.0005 

July-06 y = 0.0193x + 0.5651 0.3325 0.0003 

July-18 y = 0.0207x + 0.5022 0.374 9.51 x 10-5 

August-04 y = 0.0178x + 0.3909 0.4728 5.04 x 10-6 

August-21 y = 0.0157x + 0.4725 0.3789 0.0001 

September-05 y = 0.0119x + 0.4957 0.2737 0.001 

October-11 y = 0.0034x + 0.3854 0.05 0.209 

Whole-plot Sampling y = 0.0177x + 0.4114 0.5136 6.07x 10-7 

 

A more complete summary of the effects of sample date and size on the NDVI-species 

richness relationship is provided in Table 2.2, clearly illustrating that the strongest 

relationships were obtained towards mid-summer when plants were fully mature and 

before the onset of senescence, and that larger sample sizes based on whole-plot data 
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improved the relationships. The seasonal pattern in the NDVI-species richness 

relationship (expressed as R2 values) can be compared to the NDVI time trend, showing a 

peak in the correlation during the mid-season dip in NDVI, a time of warm, dry 

conditions and peak anthesis (Figures 2.5 & 2.8). 

 
 

Figure 2.8 Time series of NDVI (black line) and R2 of the NDVI-species richness 

regression (red line) over the growing season in 2014. NDVI was the average value 

(±SEM) of all the plots on each sampling date. 

 

2.4 Discussion 

2.4.1 Biomass–NDVI Relationship 

In this study, the significant relationship between biomass and NDVI (Figure 2.4) agrees 

with previous research, and has been discussed in multiple systems from both theoretical 

(Sellers 1987) and empirical approaches (Gamon et al. 1995). NDVI provides a rapid and 

non-destructive method of estimating biomass and percent cover, providing an empirical 

relationship between spectral information and biomass and percent cover (Gitelson et al. 

2002). Both vegetation percent cover and biomass have been broadly used as surrogates 

of vegetation productivity (Mittelbach et al. 2001), especially in grasslands (Scurlock et 

al. 2002). Using NDVI, remote sensing can assess continuous dynamics of biomass 

productivity over the growing season at a large scale. 
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The correlation between NDVI and biomass in our study, while significant, was lower 

than is often reported (Gamon et al. 1995). One reason for this scatter is that we did not 

harvest the biomass from the same plot location as NDVI sampling, but assumed that the 

plots were homogeneous in order to get continuous phenology NDVI measurements in 

the whole growing season. The NDVI–biomass relationship (Figure 2.4) could have been 

improved by matching the exact locations of NDVI and biomass sampling (Gamon et al. 

1995) but this would have precluded time-series analysis of NDVI phenology. Variation 

in the NDVI–biomass relationship can also be caused by variation in canopy structure, 

with different canopy architectures having slightly different NDVI–biomass relationships. 

Another reason for the scatter may be that NDVI is more closely related to fPARgreen, a 

measure of light absorption by green canopy material and hence potential production 

(Gamon et al. 1995, Gitelson and Gamon 2015), than biomass per se. Like biomass 

harvesting, fPARgreen measurement is also destructive and was not measured in our study 

(but can be inferred from NDVI). 

2.4.2 Productivity–Richness Relationship 

The productivity-biodiversity relationship is a much-discussed topic in the ecological  

literature (Huston 1997, Tilman 1997, Wardle 1999, Adler et al. 2011, Fraser et al. 2015), 

and undoubtedly is influenced by many factors. Biodiversity can affect the production of 

ecosystems due to the complementary roles played by different species (Tilman et al. 1996). 

For example, adding species within a community can enhance the ability of vegetation to 

capture resources (Cardinale et al. 2007). Similar to what has been previously reported 

with the biomass–species richness relationships (Tilman 1997), the NDVI-species 

richness relationship tended to approach saturation at the high richness end (8 to 16 

species). This may be because when all functional groups are present, the addition of 

species with redundant function has little effect on ecosystem properties (Waide et al. 

1999). 

Selection effects result from the increased probability of adding a productive species in 

higher diversity polycultures and can also contribute to the explanation of high biomass 

in polycultures. In the Cedar Creek BioDIV experiment, both selection effects and 

complementarity of species have been shown to affect the community productivity 
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(Fargione et al. 2007, Reich et al. 2012). Our goal in this study was not to further analyze 

the respective contributions of selection and complementarity effects (Loreau and Hector 

2001), but rather to use a remotely sensed measure of vegetation to examine the 

dynamics of the biodiversity–productivity relationship through time. We note that most 

of the productive monocultures may have equivalent or even higher biomass than some 

of the polycultures (shown as higher NDVI in some of the monoculture in our study), that 

species express different growth and phenological stages at any given point in time 

(Figure 2.5), and that the most productive species can change though time within one 

growing season (data not shown). Moreover, it is unlikely that a monoculture can be 

more productive than a diverse community when considering a long time span (Cardinale 

et al. 2007). When a long time period (>10 years) is considered, accumulation of 

complementarity effects can dominate the productivity–richness relationship and lead to a 

more positive relationship (Fargione et al. 2007, Reich et al. 2012). 

At present, remote sensing does not necessarily inform the mechanisms underlying the 

biodiversity–productivity relationship. However, the non-destructive nature of remote 

assessment assists our understanding of the dynamics of the richness–productivity 

relationship through time and in relationship to environmental constraints by permitting 

repeated landscape-level assessments beyond the scope of typical field plots. In our study, 

only a small number of species was considered at a local scale, but these methods can 

also be readily applied to larger regions. In a parallel study of prairie grassland in 

southern Alberta, Wang et al. (Wang et al. 2016a) found a similar, positive relationship 

between productivity and biodiversity over a large landscape using airborne imaging 

spectrometry coupled with field sampling. Understanding the mechanisms underlying the 

richness–productivity relationship, while beyond the scope of this particular study, can 

help maintain and conserve biodiversity (Mittelbach et al. 2001). 

2.4.3 Richness-Percent Cover and Effects 

In this study, NDVI was affected by both species richness and vegetation percent cover, 

and vegetation percent cover had a stronger effect than species richness (Table 2.1). The 

Cedar Creek BioDIV prairie ecosystem experiment is maintained at nominal species 

richness via burning and weeding every year. Fecundity and dispersal feedbacks over 



51 

 

time have resulted in patchiness and low percent cover of some of the low richness plots 

(Naeem et al. 2000). As a result, the low richness plots may have increased exposed soil 

and moss-covered patches. This factor, in addition to vegetation composition effects on 

NDVI, may have contributed to the reduced NDVI in low richness plots. Further studies 

could focus on plots with different species richness but similar vegetation percent cover, 

or on manipulating different species composition at same richness level to control for 

plant density, to better understand how species richness, cover and composition affect the 

optical diversity signal separately. The potential to apply remote sensing to address these 

questions over larger regions and natural landscapes is high (Wang et al. 2016a) and 

critical to understanding these relationships in natural systems, and ultimately to 

managing ecosystems for resiliency in the face of rapid global change. 

2.4.4 Seasonal NDVI Variation 

Many factors, including changing canopy display, leaf pigmentation, and flowering, can 

all influence NDVI. In our study, the drop of NDVI in early August was coincident with 

the high temperature and lack of precipitation in late July (Figure 2.5). In the short term, 

water stress can affect NDVI by causing vegetation wilting and leaf rolling. These 

changes in canopy structure tend to decrease vegetation visibility and increase soil 

visibility to the sensor, decreasing NIR reflectance and increasing visible reflectance, and 

thus reducing NDVI. This temporary effect of water stress can be reversed by 

precipitation, allowing vegetation to recover to some extent, and this helps explain the 

early August NDVI dip and subsequent increase (Figure 2.5). Similarly, the mid-season 

NDVI drop was coincident with anthesis, the time of maximum flower opening, which 

has also been shown to reduce NDVI depending upon flower color and its influence on 

the reflectance spectrum (Joel et al. 1997, Naeem et al. 2000, Shen et al. 2010). 

2.4.5 Sample Size 

Sample size also affects the NDVI-richness relationship. In our study, the mid-season 

whole plot results that had a higher sample size (n = 49) showed a stronger NDVI-

richness relationship than any of the repeated monthly measurements in a similar subset 

of plots with a smaller sample size (n = 17) (Figures 2.6 & 2.7, Table 2.2). Most likely, 

the whole-plot measurements were more representative of the Cedar Creek BioDIV study 
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than the time-series results that only included a subsample of the full plot areas. Similarly, 

previous studies (Magurran 2004) and models (Pavlick et al. 2013) showed increasing 

accuracy with increasing number of sampling strategies. Considering that remote sensing 

can readily obtain large regions while providing a systematic view of the Earth at regular 

time intervals, it holds the promise of becoming a feasible, convenient and cost-effective 

way to conduct biodiversity research (Nagendra 2001). 

2.4.6 Seasonality of the NDVI-Species Richness Relationship 

Compared to the spatial patterns of biodiversity, less attention has been paid to the 

seasonal patterns of biodiversity (Magurran 2008) or the effect of phenology on the 

ability to assess biodiversity with remote sensing. In our study, the NDVI-richness 

relationship was dynamic and the best regression between NDVI and species richness 

occurred near peak season, although the exact reasons for this deserve further study. This 

dynamic relationship was most likely affected by canopy development, as well as by 

prevailing conditions (mid-season warm, dry conditions) and flowering phenology 

(timing of anthesis). While both short-term drought and mid-season anthesis clearly 

reduced NDVI, their effect on the NDVI-biodiversity patterns was less clear, and could 

have even enhanced this relationship, as illustrated by the enhanced NDVI-biodiversity 

correlations at mid-season (Figures 2.6–2.8, Table 2.2), or at least not interfered with it. 

Multi-year data may be helpful to separate the confounding effects of short term drought 

and anthesis on NDVI–biodiversity relationship because the seasonal meteorology can 

vary year to year. The exact impact of these multiple factors on the timing of the NDVI–

biodiversity relationship, while beyond the scope of this study, might yield additional 

insights into the mechanisms driving the productivity–biodiversity relationship. 

2.5. Conclusions 

Remote sensing provides an efficient and inexpensive way to assess biomass and 

biodiversity. This study further confirms earlier studies at this site, and illustrates the 

potential of remote sensing to assess the diversity–productivity relationship. The Cedar 

Creek experiments provide a convenient test of this relationship in a human-maintained 

prairie ecosystem. Considering the two hypotheses proposed in the introduction, this 

study shows that NDVI can be related to species richness, but it is also strongly affected 
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by other factors, including canopy structure (cover or biomass) and short-term water 

stress and shifting flowering patterns that can confound the NDVI-richness relationship. 

Interestingly, the strongest NDVI–biodiversity relationship occurred in mid-summer, 

when NDVI showed a temporary decline associated with warm, dry conditions and 

anthesis. 

While remote sensing has the potential to be used in biodiversity assessment, it also adds 

additional capabilities and complexity by being able to assess this diversity at multiple 

scales. Further work should address the optical-biodiversity relationship in more detail, in 

part by addressing the scale-dependence. As well, future studies should take advantage of 

the full spectral power of imaging spectrometry to evaluate the diversity–productivity 

relationship for a larger variety of ecosystems. 
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Chapter 3 Integrated Analysis of Productivity and Biodiversity in a 

Southern Alberta Prairie  

 

Abstract:  

Grasslands play important roles in ecosystem production and support a large farming and 

grazing industry. An accurate and efficient way is needed to estimate grassland health 

and production for monitoring and adjusting management to get sustainable products and 

other ecosystem services. Previous studies of grasslands have shown varying 

relationships between productivity and biodiversity, with most showing either a positive 

or a hump-shaped relationship where productivity peaks at intermediate diversity. In this 

study, we used airborne imaging spectrometry combined with ground sampling and eddy 

covariance measurements to estimate the spatial pattern of production and biodiversity 

for two sites of contrasting productivity in a southern Alberta prairie ecosystem. 

Resulting patterns revealed that more diverse sites generally had greater productivity, 

supporting the hypothesis of a positive relationship between production and biodiversity 

for this site. We showed that the addition of evenness to richness (using the Shannon 

Index of dominant species instead of the number of dominant species alone) improved 

the correlation with optical diversity, an optically derived metric of biodiversity based on 

the coefficient of variation in spectral reflectance across space.  Similarly, the Shannon 

Index was better correlated with productivity (estimated via NDVI (Normalized 

Difference Vegetation Index)) than the number of dominant species alone. Optical 

diversity provided a potent proxy for other more traditional biodiversity metrics (richness 

and Shannon index). Coupling field measurements and imaging spectrometry provides a 

method for assessing grassland productivity and biodiversity at a larger scale than can be 

sampled from the ground, and allows the integrated analysis of the productivity–

biodiversity relationship over large areas. 

3.1 Introduction 

Grasslands occur on all continents except Antarctica and occupy nearly 25% of the land 

surface of the Earth (Sala et al. 1996). In North America, the Great Plains is the broad 
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expanse of flat land located east of the Rocky Mountains and west of the Mississippi 

River in the United States and Canada. This land is mainly covered in steppe and 

grassland, and is often referred to as “prairie.” In the United States, prairie area is 1.62 × 

106 km2, or 21 percent of the total area of the country (Hunt et al. 2003). In Canada, 

prairie area is 5× 105 km2, 5 percent of the total area of the country (Sims and Risser 

2000). In Alberta, approximately 7% of the area is covered by dry mixed grass prairie 

(Adams et al. 2013), most of which is found in southern Alberta and is contiguous with 

the Great Plains. 

In North America, prairie is an important biome for agriculture and grazing (rangeland). 

Prairies typically are less productive than croplands but play important roles in carbon 

sequestration and food supplement for animals. Healthy prairies also sustain soil quality, 

maintain biodiversity, and provide clean water (Hunt et al. 2003). Among all the 

ecosystem services provided by prairies, biomass yield is typically the factor that most 

interests humans due to the direct relationship with the prairie’s major products, food and 

fiber (Bernhardt-Römermann et al. 2011). Prairie management typically focuses on 

maintaining or improving the output of consumable products along with other ecosystem 

services (Adams et al. 2013). 

Prairie productivity is often estimated through biomass harvesting, which is expensive 

and time consuming (Bork et al. 1999, Booth and Tueller 2003, Piñeiro et al. 2006). 

Traditional methods of estimating prairie biomass can be subjective because they depend 

on the experience and skill of the field staff (Booth and Tueller 2003). The estimation is 

also affected by the sample size and sampling method (Clark et al. 2001). Accurate and 

fast methods of prairie production estimation that quickly acquire information over large 

areas are needed for range managers to evaluate the condition of prairies and adjust their 

management regimes (Booth and Tueller 2003). 

The classic Light Use Efficiency (LUE) model, which originated with Monteith’s work 

(Monteith 1972, Monteith and Moss 1977), is often used to address the spatial and 

temporal dynamics of production from remote sensing (Yuan et al. 2007). The LUE 

model considers that primary production largely depends on the absorbed 

http://en.wikipedia.org/wiki/Mississippi_River
http://en.wikipedia.org/wiki/Mississippi_River
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photosynthetically active radiation (APAR) captured by plants and the efficiency with 

which the absorbed energy is converted to fixed carbon. APAR is affected by the solar 

irradiance, leaf pigment concentration and canopy structure (e.g., leaf area index and leaf 

angle distribution). The efficiency term is affected by the light energy distribution within 

the leaf, and is often influenced by pigment composition and activity (Gitelson and 

Gamon 2015). The LUE model parameterized by remote sensing measurements generally 

works well for grasslands, where the APAR term dominates and the efficiency term can 

often be treated as a constant, particularly for short periods (Gamon et al. 1993, Flanagan 

et al. 2015). While some challenges remain in scaling, this provides a simple route to 

determining grassland productivity for comparison with diversity. 

There is a long history of using remote sensing to estimate vegetation properties from 

satellite or airborne platforms (Tucker et al. 1985, DeFries and Townshend 1994, Hill 

2013). A number of studies have used remote sensing to estimate the percent cover, 

production and biophysical properties of grasslands (Gamon et al. 1995, Bork et al. 1999, 

Booth and Tueller 2003). Many of these studies have shown that the Normalized 

Difference Vegetation Index (NDVI) is highly correlated with green biomass, leaf area 

index, and radiation absorption by green vegetation (APARgreen) in grasslands (Gamon et 

al. 1995, Piñeiro et al. 2006), consistent with the simple LUE model approach, and 

allowing ready production estimates over large grassland areas. However, a major 

limitation in the application of satellite remote sensing in prairie management is the 

mismatch between the information that range managers need and the spatial scale of most 

satellite remote sensing. Due to the coarse pixel size (often several tens of meters to 

kilometers) (Booth and Tueller 2003) and broad bands of most satellite images, satellite 

remote sensing can best provide land cover or production estimates over large 

landscapes, or over regional or continental scales (Hunt et al. 2003), but satellite data 

often have trouble providing detailed species distribution and prairie health information 

at the scale of small management units. 

The high spatial and spectral resolution of airborne imaging spectrometry can reflect fine-

scale features by detecting physical and biochemical properties of plants in specific 

narrow bands at small (sub-meter) image pixel sizes. Consequently, airborne imaging 
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spectrometry provides an effective tool to map prairie patterns related to photosynthetic 

function (Gamon et al. 1993) and species distribution patterns in grassland ecosystems 

(Pottier et al. 2014). One way to derive detailed spatial and temporal patterns of 

productivity from such imagery is to calibrate the image data against ground 

measurements using eddy covariance and field spectral measurements (Gamon et al. 

1993). Airborne remote sensing, with its high spatial resolution, provides an ideal tool to 

address these issues of scale when addressing productivity and diversity. 

There is now a large body of literature indicating that biodiversity affects ecosystem 

production (Tilman et al. 1996) and stability (Isbell et al. 2009, de Mazancourt et al. 

2013). Particularly in the face of disturbance, the relationship between diversity and 

productivity, typically measured as biomass, has been controversial for grassland 

ecosystems. Some studies report a positive relationship between biomass and 

biodiversity, whereas others indicate a “hump-shaped” relationship, with biodiversity 

peaking at intermediate biomass levels (Fraser et al. 2015). This relationship can be 

affected by resource levels (e.g., fertilizer or irrigation levels) and the degree and nature 

of disturbance. High productivity and low diversity sites are often highly managed via 

irrigation or fertilizer application (Fraser et al. 2015). For rangelands, grazing levels can 

confound this relationship, and highest species richness often occurs at light to moderate 

grazing levels, which is consistent with the “intermediate disturbance hypothesis” (Grime 

1973, Connell 1978). Heavy to very heavy grazing can cause a decline in species 

richness, often due to the invasion of exotic species that lead to a decrease in species 

diversity while maintaining high levels of productivity (Adams et al. 2013). 

Airborne remote sensing provides an efficient and inexpensive way to assess biodiversity. 

Traditionally, three basic methods have been used to estimate biodiversity with remote 

sensing: (1) mapping habitat for key species; (2) mapping species distribution (Roberts et 

al. 1998, Xiao et al. 2004, Clark et al. 2005, Clark and Roberts 2012) or community 

composition (Lucas et al. 2008); and (3) assessing species richness (Palmer et al. 2002, 

Rocchini et al. 2004, Rocchini 2007), α-diversity (Rocchini 2007) or β-diversity 

(Oldeland et al. 2010) through spatial variation in vegetation optical properties (optical 

diversity in space), sometimes referred to as “spectral heterogeneity” (Rocchini et al. 



62 

 

2010). Using this latter approach, which we call “optical diversity,” a variety of methods 

have been used to capture optical variation as a way to estimate biodiversity. For 

example, Féret and Asner (Féret and Asner 2014) defined “spectral species” by applying 

a clustering model to high spatial resolution airborne imagery to map α-diversity and β-

diversity in tropical forests. 

The spectral species approach assumes that there are unique, definable spectral types 

(“species”) that can be distinguished in image processing, allowing an estimate of 

biodiversity. A similar concept can be applied in a more abstract level of image 

information content, without resorting to identifying particular spectral types. We 

propose that the information content of the imagery itself, which can be expressed as 

optical diversity, relates to the spatial variation in the spectral data (Palmer et al. 2002, 

Rocchini et al. 2004) and provides an indicator of relative diversity. The advantage of this 

approach is that it provides an objective method that can conceivably be applied to any 

image or ecosystem, without having to define categorical species or spectral types, which 

are likely to change seasonally or spatially. 

In this study, we used flux data and field optical data to help calibrate airborne imagery 

and map ecosystem productivity in a grazed prairie ecosystem in southern Alberta, 

Canada. Airborne NDVI measurements were calibrated against CO2 flux measurements 

and above-ground biomass to estimate landscape productivity, with particular attention to 

potential errors associated with spatial scale due to various flux footprint assumptions. 

We also sampled relative levels of biodiversity using optical diversity and field 

measurements, and by combining airborne data with a vegetation distribution map. 

Combining three metrics of biodiversity (airborne data, vegetation map and field 

sampling) to evaluate broad relationships between diversity and productivity across the 

landscape provided a unique test of the diversity-productivity hypothesis (Tilman et al. 

1996) over a large area (10 km2) of this managed prairie ecosystem. 

3.2 Methods 

3.2.1 Study Site 

The Mattheis Research Ranch is located 150 km east of Calgary, Alberta, Canada (Centre 

Latitude: 50.90° N, Centre Longitude: 111.88° W) (Figure 3.1). It covers approximately 
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5000 hectares, 4/5 of which is native prairie. The vegetation distribution map and code 

for major vegetation communities (based on dominant vegetation type) in the Mattheis 

Research Ranch are provided in Appendices (Figure S3.1 and Table S3.1). The landscape 

included two calibration sites, designated “E3” and “E5” (Figure 3.1), where eddy 

covariance, vegetation biomass, species composition, and field optical measurements 

(APAR and spectral reflectance) were made. 

 
 

Figure 3.1 Location of Mattheis Research Ranch (50.9038 N, 111.8799 W) and airborne 

true-color image with 50 randomly selected 200-meter-radius circles in the flight line 

used for evaluating the productivity-diversity relationship. E5 and E3 labels showed the 

two flux towers within this area used for calibrating the productivity map, and inset 

photographs illustrate the flux tower and phenology station for each site. The Canada 

map was provided by the Statistics Canada. 

 

The landscape in this region is covered mainly by dry mixed grass prairie (Becker 2013). 

The study area consisted primarily of grazed prairie, with some nearby wetlands and 
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cultivated areas (largely out of the immediate study area). The grazing regime is a 

rotational system with relatively short grazing periods of 7–12 days, followed by long 

recovery periods (6–8 weeks) between grazing periods at moderate stocking. In 2012, 

grazing commenced in early May–late November, and cattle were outside the direct study 

area during the overflight. The grazing effects on species composition and structure are 

not visible from the historical aerial photos, indicating a history of a light grazing regime 

for this site (Becker 2013). 

3.2.2 Optical Phenology and Flux Measurements 

Two flux towers were established within the ranch at two calibration sites labeled “E3” 

(50.8672 N, 111.9045 W) and “E5” (50.9056 N, 111.8823 W), located approximately 4.5 

km apart. A phenology station was set within 10 m of the flux tower at each site. The 

optical phenology stations measured reflectance of broadband solar radiation and PAR 

every fifteen minutes. Each optical station had a data logger (H21-001, Onset Computer 

Corporation, Bourne, Massachusetts, USA) and two-band radiometer. One band had two 

PAR sensors (S-LIA, Onset Computer Corporation, Bourne, Massachusetts, USA) and 

the other band consisted of two PYR (pyranometer) sensors (S-LIB, Onset Computer 

Corporation, Bourne, Massachusetts, USA). Both the upward and downward sensors 

have cosine foreoptics, providing a relatively large optical footprint (approximately 100 

m2) around the flux tower. These data were used to calculate a proxy NDVI (Huemmrich 

et al. 1999, Gamon et al. 2010): 

NDVI proxy = (ρPYR − ρPAR)/(ρPYR + ρPAR) (3.3) 

where ρPYR is the reflectance of the PYR band (solar radiation), calculated as the ratio of 

the reflected solar radiation to the incoming solar radiation across a spectral range from 

300 to 1100 nm and ρPAR is the reflectance of the PAR band that is the ratio between the 

reflected PAR and the incoming PAR within 400–700 nm. The proxy NDVI values 

were subsequently used to derive APAR for the LUE model, as described below (Figure 

3.2). 
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Figure 3.2 Experimental design and data used in this study. The linear relationship 

between NDVI, biomass and NEE (Net Ecosystem Exchange) allowed us to use NDVI 

(Normalized Difference Vegetation Index) as a proxy for productivity (*) that was then 

compared to several metrics of biodiversity indicated by asterisks (*).  

 

Eddy covariance data were collected at both sites using an open-path infrared gas 

analyzer (IRGA; LI-7500, LI-COR, Lincoln NE, USA) and a three-dimensional sonic 

anemometer (CSAT3; Campbell Scientific, Logan UT, USA), at 2.9 m (E3 site) and 3.0 

m (E5 site) above ground. The raw flux data recorded at 10 Hz was aggregated at thirty-

minute time intervals as a measure of net ecosystem productivity (NEP = −Net 

Ecosystem Exchange, NEE) using the EddyPro (LI-COR, v. 5.1) software package. In 

our study, we used the sign convention of positive NEP fluxes indicating a net uptake of 

CO2 by the biosphere and negative NEP fluxes signifying a net release of CO2 to the 

atmosphere, with the reverse convention used for NEE. 

Flux and optical data from the E3 site was used to create the APAR-NEE model, instead 

of data from E5, which had an extensive flux data gap in the growing season. The flux 

data at E3 site was collected continuously from 16 May to 19 October 2012. At the E3 
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site, there were three major data gaps in the growing season: May (10 days), June (16 

days) and August (8 days). 

The peak flux in the summer was used to separate the season into green-up and 

senescence phases in order to avoid possible effects of hysteresis (Flanagan et al. 2015). 

Considering the date of the airplane flight (17 August 2012), a model of proxy NDVI–

NEP in the second half of the growing season was used. 

3.2.3 Biomass Harvest 

To calibrate productivity estimates, standing biomass was measured monthly at both 

calibration sites (E3 and E5) during the growing season in 2012 (11 measurements for 

each site from May to August, 44 measurements in total). A 30 cm diameter metal 

sampling ring was placed around the vegetation to be harvested. All above-ground 

vegetation was cut to a height of <1 cm above the ground. Forb and graminoid 

components were separately collected and taken back to the lab for further processing. 

The biomass was sorted, oven-dried, and weighed (g/m2) as separate categories (green 

and brown). A “green fraction” factor was calculated based on the biomass ratio between 

green and total (green and brown) dry mass, and this was subsequently used in APAR 

calculation. 

3.2.4 APAR Determination 

Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) measurements were 

taken at the same time as the biomass harvest in the field using a light bar (Accupar, 

Decagon Inc.), and were calibrated against proxy NDVI measurements (above) to 

parameterize the fAPAR term of the light-use efficiency model. These fAPAR 

measurements were multiplied by the green fraction obtained from biomass harvests and 

calibrated against the proxy NDVI values to derive a continuous fAPARgreen. This NDVI-

derived fAPARgreen was subsequently multiplied by the Photosynthetic Photon Flux 

Density (PPFD) from the phenology stations to estimate radiation absorbed by green 

canopy material (APARgreen). 

APARgreen = (fAPAR × green fraction) × PPFD (3.4) 
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3.2.5 Ground NDVI 

Spectral reflectance was measured with a dual channel spectrometer (Unispec DC, PP 

Systems, Amesbury, Massachusetts, USA) at biomass and proxy NDVI sampling sites 

(Figure 3.2). The detectors collected irradiance and radiance from 350 to 1130 nm with 

an approximate spectral resolution (FWHM) of 10 nm. The upward-looking channel 

included a fiber optic and a cosine head to record the solar irradiance. The downward-

looking channel included a fiber optic and a field-of-view restrictor that limited the field 

of view to approximately 15 degrees. In this application, the spatial resolution of each 

sample on the ground was approximately 0.5 m2. 

Both upwelling radiance and downwelling irradiance were measured over the vegetation 

target and a white reference calibration panel (Spectralon, Labsphere, North Sutton, NH, 

USA), and used to correct for the atmosphere variation and calculate surface reflectance 

(Gamon et al. 2006). The reflectance (ρ) at wavelength (λ) was calculated as 

ρ𝜆 =  
(Ltarget,λ/Etarget,λ)

(Lpanel,λ/Epanel,λ)
 (3.5) 

In this equation, Ltarget,λ indicates the radiance measured at each wavelength (λ, in nm) by 

a downward-pointed detector sampling the surface (“target”), while Etarget,λ indicates the 

irradiance measured simultaneously by an upward-looking detector sampling the 

downwelling radiation. Lpanel,λ indicates the radiance measured by a downward-pointed 

detector sampling the calibration panel, and Epanel,λ indicates the irradiance measured 

simultaneously by an upward-pointed detector sampling the downwelling radiation. 

Ground NDVI was calculated from spectrometer measurements using Equation (3.4). 

NDVI680,800 =  
𝜌800 − 𝜌680

𝜌800 + 𝜌680
 (3.6) 

where ρ800 and ρ680 represent the reflectance at 800 and 680 nm, respectively. Ground 

spectral reflectance measurements were taken at the same time and over the same 1-ha 

landscape region as the biomass harvest and proxy NDVI. A linear model between time-

series ground NDVI and green biomass was created and later applied to the airborne data 

for subsequent determination of biomass and APARgreen from airborne data (Figure 3.2). 



68 

 

3.2.6 Airborne Data 

An imaging spectrometer (Headwall A Series, Headwall Photonics Inc., Fitchburg, MA, 

USA) was used to collect airborne data on 17 August 2012. The instrument was mounted 

on a fixed-wing aircraft (Piper Navajo, Piper Aircraft, Vero Beach Florida) from a height 

of 1220 m and a speed of 213–222 km/h. The pixel size on the ground was approximately 

1.1 m. The imaging spectrometer provided 400~1000 nm hyperspectral images with 3 nm 

spectral resolution (Full width at half maximum, FWHM). 

Several steps were taken to process the raw digital numbers to reflectance spectra. (1) A 

flat field correction was done to remove patterns inherent in the detector array; (2) A 

spectral adjustment was taken using the 760 nm oxygen Fraunhofer line as a reference 

band to correct for wavelength shifts; (3) Three 9 × 9 meter calibration targets (white, 

charcoal, and black) made from polyester fabric (Odyssey, J. Ennis, Edmonton, Alberta, 

Canada) were used in the surface reflectance correction. These targets were placed on the 

ground during the airplane overflight to calculate coefficients for calculating surface 

reflectance using the empirical line correction (Conel et al. 1987). Finally, reflectance 

spectra were degraded to a spectral resolution of 10 nm for better data quality using 

Equation (3.5). 

𝜌�̂�,𝐹𝑊𝐻𝑀𝑑 = ∫ 𝜌�̂�,𝐹𝑊𝐻𝑀𝑜𝐾𝜆−�̂�𝑑�̂�
∞

−∞

 

 

𝐾𝜆−�̂� =
2√2 ln 2

√2𝜋√𝐹𝑊𝐻𝑀𝑑
2 − 𝐹𝑊𝐻𝑀𝑜

2
𝑒𝑥𝑝 [−

4(ln 2)�̂�2

𝐹𝑊𝐻𝑀𝑑
2 − 𝐹𝑊𝐻𝑀𝑜

2
]

= 2√2 ln 2 
1

√2𝜋√𝐹𝑊𝐻𝑀𝑑
2 − 𝐹𝑊𝐻𝑀𝑜

2
exp [−

1

2

(2√2 ln 2 �̂�)
2

𝐹𝑊𝐻𝑀𝑑
2 − 𝐹𝑊𝐻𝑀𝑜

2
]   

 

(3.7) 

FWHMo and  𝜌�̂�,𝐹𝑊𝐻𝑀𝑜were the spectral resolution and reflectance of the original spectra, 

FWHMd and 𝜌�̂�,𝐹𝑊𝐻𝑀𝑑 were the spectral resolution and reflectance of the target spectra, 

𝐾𝜆−�̂� was a Gaussian kernel function while ∫ 𝐾𝜆−�̂�𝑑�̂�
∞

−∞
= 1 (Damm et al. 2011). 

Position and rotational attributes (pitch, roll, and yaw) of the airplane during the flight 

were recorded by an inflight GPS and inertial measurement unit (IMU). This information 
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was used to apply the geo-referencing correction. The images were resampled to 1 meter2 

spatial resolution when applying the geo-referencing correction. Airborne narrow-band 

NDVI was calculated using Equation (3.4). 

We used a north-south flight line (10 km long × 1.3 km wide) that covered both flux 

tower sites to estimate the productivity in this region (Figure 3.1). We applied a “space-

for-time substitution” strategy by applying an NDVI-green biomass calibration and LUE 

model (calibrated by data collected from the E3 and E5 calibration sites during the 

second half of the growing season) to airborne NDVI data (spatially distributed over the 

landscape) to map the green biomass and NEE distribution in this prairie ecosystem. The 

airborne NDVI was calibrated using the narrow-band NDVI-green biomass relationship 

obtained with a ground spectrometer at 11 ground calibration sites located in a 1 ha area 

at both E3 and E5 sites. The airborne NDVI was calibrated against proxy NDVI to 

generate the APAR-NEE relationship, which assumed a fixed efficiency (ε) for this 

prairie ecosystem in the LUE model. Because this NDVI was linearly correlated to both 

green biomass from harvests (R2 = 0.82) and Net Ecosystem Exchange (NEE) from flux 

measurements (R2 = 0.77) it provided a proxy metric of productivity for this grassland 

ecosystem (Table 3.1). 

Table 3.1 Equations derived from field calibration and subsequently used to map green 

biomass and NEE using airborne NDVI. P values < 0.01 for both relationships. 
 R2 

NEE = −0.0226 × proxy NDVI + 1.3899 0.7701 

Green biomass = 409.82 × NDVI − 80.57 0.8246 

3.2.7 Sensitivity Analysis of Footprint 

To help understand the area sampled for CO2 exchange and its influence on the LUE 

model, flux footprints were calculated for each valid 30 minute period using a 

parameterization of a Lagrangian stochastic model as described in (Kljun et al. 2004). We 

ran the footprint model using a fixed boundary layer depth of 1000 m and roughness 

length and displacement height values derived from canopy height estimates. The cross-

wind integrated footprints were summed up into a time-integrated footprint matrix 

according to wind direction. Aggregation was done in two ways: on a monthly basis at 5 
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h midday intervals (11:00–16:00) and intervals comprising the entire daytime period 

(6:00–21:00). 

To help design an effective data integration scheme, a sensitivity analysis of the footprint 

was conducted with the airborne image. We resampled the footprint to the same size (1 × 

1 meter) of the airborne image pixel and calculated NDVIweighted according to the footprint 

using the following equation. 

𝑁𝐷𝑉𝐼𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = ∑ 𝑁𝐷𝑉𝐼𝑖 ∗ 𝑤𝑖
𝑁
𝑖=1   (3.8) 

N was the total pixel number, wi was the decimal percent concentration of each grid cell 

to the cumulative footprint function values that summed up to 1. 

To evaluate the sensitivity of the study results to footprint assumptions when comparing 

optical to flux data, four weighted NDVI results were calculated according to different 

footprint configurations: (1) midday average footprint calculated using the sampling area 

calculated from the footprint model; (2) daytime average footprint calculated using the 

sampling area calculated from the footprint model; (3) 200-m radius circles centered at 

flux towers; and (4) a 300 × 300 m squares centered on each flux tower; and (5) the 100 × 

100 m (1-ha) ground sampling region. The latter three footprints allowed us to consider 

the possible error associated with arbitrary assumptions of footprint shape on upscaling in 

the absence of an explicit flux footprint model. The radius (200 m) was calculated based 

on the assumption of a 100:1 fetch-to-height ratio in flux footprint analysis for simple 

calculation (Garratt 1990, Leclerc and Thurtell 1990), and the 300 × 300 meter 

represented a square approximation of the same region, whereas the modeled footprints 

represented a more realistic sampling footprint depictions based on actual flux data 

(Figure 3.3). 
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Figure 3.3 Footprints for two flux tower calibration sites (E3 and E5) at Mattheis Ranch 

in August, 2012 (see “Methods” for details on footprint calculations). Left: Midday 

(upper) and daytime (lower) flux footprints (black lines) at E3. Right: Midday (upper) 
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and daytime (lower) flux footprints (black lines) at E5. Also shown for comparison are a 

square (100 × 100 m) field sampling region used for field biomass and reflectance 

calibration, and two alternate footprint assumptions: a circular area (200 m radius), and a 

300 × 300m square. Sampling methods were overlaid on a false color image from the 

airborne imaging spectrometer. 

 

3.2.8 Vegetation Map Analysis 

The vegetation map analysis used a dominant vegetation cover map (1:15,000) at 

Mattheis Research ranch (Becker 2013). This map was derived from a combination of 

aerial photos and field sampling begun in 2010 (Becker 2013). For validation of this 

dominant vegetation cover map, 134 5 × 5 meter plots were selected in the ranch, 66 of 

which were inventoried by species and percent cover of each species, while only species 

richness was counted for the other 68 plots (Becker 2013). An inherent assumption of our 

analysis was that dominant vegetation cover was stable over this study period.  

3.2.9 Biodiversity Estimation 

Biodiversity was evaluated three ways: (1) via optical diversity expressed in the airborne 

imagery; (2) using the vegetation map depicting vegetation types by dominant species 

(the vegetation types are shown in Figure S3.1 and Table S3.1 in Appendices); and (3) by 

independent field measurements of species composition for a subset of two of the 

calibration sites (E3 and E5) (Figure 3.2). For the first two methods, we used 50 

randomly placed circular sampling areas, each having a 200 meters radius, along the 

flight line (Figure 3.1). Mean reflectance, standard deviation and coefficient of variation 

of all wavelengths and pixels for each circle were calculated. To provide a metric of 

optical diversity, we used the average coefficient of variation (CV), calculated as the 

average CV for all wavelengths from 400 nm to 800 nm (Equation 3.7). 

CV𝑐𝑖𝑟𝑐𝑙𝑒 =  
∑ (

𝑠𝑡𝑑(𝜌𝜆)
𝑚𝑒𝑎𝑛(𝜌λ)

)800
λ=400

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑛𝑑𝑠
 (3.9) 

In Equation (3.7), ρλ is the reflectance at wavelength λ, std(ρλ) and mean (ρλ) are the 

standard deviation and mean value of reflectance at wavelength λ across all the pixels in 

one circle, respectively. This metric of optical diversity was applied to each of the 50 
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randomly distributed sampling circles to compare to productivity estimated from the LUE 

model, as well as to the entire flight line, using a “moving-window” method, to develop 

an optical diversity map of the entire region. For the moving-window method, we applied 

a 10-m lag and calculated the CV for both a circular sampling window (200 m radius) 

and a square sampling window (1 ha), to illustrate the effect of sampling scale on the 

resulting optical diversity image. 

We calculated the number of  vegetation types (richness) and Shannon Index of 

vegetation types (Shannon Index) (Shannon 1948) within each of 50 sampling circles as 

two metrics of diversity from the vegetation map. Shannon index, which combines the 

effect of richness and evenness, a commonly used measure of species diversity in ecology, 

was calculated as: 

H = −∑pi × ln(pi) 
(3.10

) 

where pi is the proportion of the number ith species. Because this map listed vegetation 

types according to dominant species (and not all species per se), this provided a metric of 

relative plant species richness by broad community association for each pixel, instead of 

a full accounting of every species present, which was impractical over such a large region. 

To confirm that this method correlated with a more complete count of species richness, 

we also compared the results obtained from the vegetation maps to actual species counts 

obtained at the two calibration sites in 2015 (assuming a relatively stable species 

composition between years). Actual species counts were obtained with a subsample of 13 

30-cm diameter plots, chosen from a grid covering 1 ha per site. 

3.3 Results 

3.3.1 Model Results 

In our study, narrow-band NDVI yielded a high correlation with green biomass and NEE 

(Table 3.1), confirming that NDVI provided a useful metric of productivity for this prairie 

ecosystem. NDVI correlated better with green biomass than with total biomass (data not 

shown) due to the presence of the prior year’s dead or non-green canopy materials, which 

intercepted solar radiation but contributed little to NDVI. 
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The relationship between proxy NDVI and net CO2 flux showed an optimal fit using a 5-

h aggregation period around solar noon (data not shown), so this aggregation period was 

used to develop the NEE model applied here (Table 3.1). The NDVI-flux relationship 

from the first half season data (greening phase, before peak biomass) was different from 

the second half season (July–September senescence phase, after peak biomass) (data not 

shown). Considering the airborne data was collected in mid-August, which was located 

around the middle of the July–September senescence phase, data from this second half 

were used to calibrate the linear model, which yielded an R2 value of 0.7701 (Table 3.1). 

The linear shape of this equation supports the assumption of a constant LUE applied over 

this time frame for this prairie ecosystem (Gamon et al. 1995, Flanagan et al. 2015) and 

allowed us to use NDVI as an index of productivity. 

3.3.2 Sensitivity Analysis of Footprint 

The footprint analysis (Figure 3.3) revealed subtle differences between footprint 

assumptions that had a relatively small effect on the productivity model. In most cases, 

the primary source areas for flux measurements were concentrated on wind directions 

from north–northwest and south for E3 and northwest and southeast for E5. The 

estimated footprint lengths peaked most frequently between 15 m and 60 m and did 

generally not exceed 125 m in the along-wind direction. 

The footprint sensitivity analysis showed that NDVIweighted was less sensitive to the month 

of footprint (data not shown) than to the differences between the two sites. On the other 

hand, assumptions about footprint size and shape (commonly used in multi-scale analyses) 

had a slightly larger effect on the calculated NDVI than the temporal variation in flux 

footprint (Table 3.2). For example, the 1 hectare measurements matching the calibration 

site areas overestimated the result compared to the modeled footprint analysis by 4% at 

the E3 site. Two alternative methods of estimating the footprint (200 radius circles and 

300 × 300 m squares) overestimated the weighted NDVI calculated using the actual 

percentages of the isopleths at the E5 site (by 2% and 1.7% respectively), but the 

difference was small at the E3 site (0.6% and −0.9%) (Table 3.2). Regardless of the 

method, E3 had a higher NDVI than E5, showing this site to be more productive. 
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Table 3.2 Estimated NDVIweighted according to different footprint assumptions. Footprint 

areas are illustrated in Figure 3.3. 

 E3 E5 

1 hectare square 0.4931 0.3715 

200 meter circle 0.4746 0.3823 

300 m × 300 m Square 0.4668 0.3812 

Midday (5 h) 0.4714 0.3745 

Monthly 0.4732 0.3771 

3.3.3 Diversity Estimation at Calibration Sites 

To evaluate optical diversity, we calculated the coefficient of variation (CV) using 

spectral data from both calibration sites, E3 and E5 (Figure 3.4). Site E3 revealed a 

higher overall CV than E5, indicating a higher optical diversity for this site. Similarly, we 

calculated the CV spectra for each 200-m radius sampling circle indicated in Figure 3.1, 

and representative values of high and low optical diversity (CV) are shown from this 

analysis (Figure 3.4). For subsequent analyses, CV values for each spectrum were 

averaged across all wavelengths to obtain a single metric of optical diversity for each 

sampling area. 

 
 

Figure 3.4 Sample coefficient of variation (CV) spectra along the flight line. E3 and E5 

indicate the CV spectra of the 200-m radius circle around the two calibration sites. High 
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and low richness spectra indicate the site with highest and lowest CV values of all the 50 

200-m radius circles along the flight line (Figure 3.1). The positions of low and high 

richness sites are shown in Figure 3.5. The average CV (averaged across wavelengths) 

provided a metric of optical diversity for subsequent comparison with other metrics of 

diversity and productivity (Figures 3.6 and 3.7). 

 

 
 

Figure 3.5 Airborne image of NDVI (a) and optical diversity (b and c) along the flight 

line. The letters “H” and “L” in the flight line (a) indicate the position of high and low 

diversity sites illustrated in Figure 3.4. Calibration sites E3 and E5 are also shown. Since 

NDVI was linearly related to biomass and NEE, the NDVI maps also indicate relative 

productivity according to those metrics (Table 3.1). Two different sampling scales, a 1-ha 

square (b) and a 200m circle (c), were selected for calculating CV as a metric of optical 

diversity using a sampling lag of 10 meters. 



77 

 

 
 

Figure 3.6 Optical diversity (coefficient of variation) versus richness (a) and Shannon 

index (b) calculated with the vegetation cover map. Richness represents number of 

dominant vegetation types indicated on the vegetation cover map (the vegetation types 

are shown in Figure S3.1 and Table S3.1 in Appendices) rather than a full field count of 

all species. Each data point represents a 200-m radius circular sampling area (Figure 3.1). 
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Figure 3.7 Optical diversity (coefficient of variation) versus NDVI (a), Mean NDVI 

versus relative richness (b) and Shannon Index (c). Both linear and logarithmic fits are 

shown for panel (a). Each data point represents a 200-m radius circular sampling area 

(Figure 3.1) 

 

The vegetation diversity analysis revealed differences between the two sites. Tables 3.2 

and 3.3 showed the NDVI, vegetation community richness, Shannon index, and field 
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sampling species richness at the two calibration sites (E3 and E5). Species counts from a 

subset of plots at the two primary calibration sites (E3 and E5) supported this 

interpretation of biodiversity based on vegetation types; the relative relationship for 

species richness between the two sites obtained with field sampling matched that of the 

vegetation map, with higher species richness occurring at the E3 site (Table 3.3). 

Similarly, both the mean NDVI and standard deviation of NDVI were higher at the E3 

site than at the E5 site, indicating higher productivity and variability in biomass. 

Table 3.3 Biodiversity metrics within a 200-m radius from the flux towers. Richness 

refers to the number of dominant vegetation types sampled within this 200-m radius 

based on the vegetation map, and the Shannon Index considered both number and 

evenness of these vegetation types. Field sampling species richness is based on an actual 

plant species count of a subset of locations (thirteen 30-cm diameter plots) within a 1-ha 

area surrounding the flux towers, as shown in Figure 3. 
Site Richness  

(Vegetation Map) 

Shannon Index  

(Vegetation Map) 

Species Richness  

(Field Sampling) 

E3 9 0.9060 26 

E5 3 0.1547 20 

3.3.4 Extrapolating to a Larger Region 

Using data from a larger region (10 km2) of the flight line allowed us to extend the 

analysis and explore the diversity-productivity relationship over a much larger area. Over 

the whole flight line, places with higher optical diversity (higher coefficient of variation) 

tended to have higher mean NDVI, indicating higher green biomass and productivity 

(Figure 3.5). The clarity of the diversity images varied with sampling scale, with smaller 

sampling areas (1-ha square, panel b) providing a sharper image than coarser sampling 

areas (200-m radius circle, panel c), but both showed similar spatial patterns of optical 

diversity. 

From the analysis of the entire flight line, diversity metrics calculated using the 200-m 

radius sampling circles (Figure 3.1) applied to the vegetation cover map showed that 

places with higher richness or Shannon index had higher optical diversity, expressed as 

coefficient of variation (Figure 3.6), and higher NDVI (Figure 3.7). The Shannon index 

showed a stronger correlation with both coefficient of variation and NDVI than with 
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richness in our study (Figures 3.6 and 3.7), suggesting an important influence of evenness 

on these relationships. The fit of the regression for the NDVI-optical diversity 

relationship can be improved (R2 increased from 0.46 to 0.58) by applying a logarithmic 

transformation to the optical diversity data (Figure 3.7a). In all cases, the relationships 

between diversity metrics (coefficient of variation, relative richness, or Shannon index) 

and productivity (NDVI) were highly significant (p < 0.001), supporting a positive 

relationship between productivity and biodiversity for this prairie landscape. 

3.4 Discussion 

3.4.1 Green Biomass and NDVI 

Like other studies of grasslands (Gamon et al. 1995, Flanagan et al. 2015) we found 

significant correlations between NDVI and biomass. In our study, green biomass showed 

a clear linear, not exponential, relationship with NDVI, which at first glance seems to 

contradict results from other grassland studies that have often reported non-linear 

relationships (Gamon et al. 1995, Wehlage 2012). However, this difference was most 

likely due to the relatively low green biomass values found in our study. The highest 

green biomass measured in our study was 135.75 g/m2, which was a small fraction (2%) 

of the reported biomass from one study spanning several vegetation types (Gamon et al. 

1995) and 1/3 of the maximum green biomass of another study from Alberta prairie that 

included a relatively wet year (Wehlage 2012). The lower green biomass measurement in 

our study only captured the lower part of the exponential relationship between NDVI and 

green biomass, which may have appeared linear by missing the rapidly increasing part of 

what has been described as an exponential function (Gamon et al. 1995). Presumably, if 

our study spanned many sites and years having higher productivity, a similar non-linear 

relationship would have emerged between green biomass and NDVI. 

3.4.2 Sensitivity Analysis of Footprint 

The actual flux footprint varied temporally with wind speed and direction, in agreement 

with previous studies (Schmid 2002). The exact position of the flux tower or other 

ground sampling is not an issue when the surface is homogeneous (Schmid 2002). In our 

study, the footprint area was larger than 1 ha and there was little difference in aggregated 

NDVI between the circular and square footprint estimates (200 m radius and 300 × 300 
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m2) that were insensitive to atmospheric conditions and the aggregated half hourly 

footprint model predictions. The footprint analysis allowed us to evaluate potential 

upscaling errors, and confirmed that, in this case, other approximations of the footprint 

(e.g., circular or square areas surrounding the flux tower) provide reasonably accurate 

approximations of the actual flux footprint over a relatively flat and uniform landscape 

such as the grassland at our site. By contrast, the difference in NDVI values between sites 

were closer to 20% (Table 3.2) suggesting that our upscaling method can accurately 

depict relative differences in productivity across this landscape. These results indicate 

that, depending upon the degree of landscape heterogeneity, the highly dynamic footprint 

of eddy covariance measurements (Schmid 2002) can add uncertainty to the calibration, 

but that any resulting error would have been small for this relatively homogenous site. 

3.4.3 Biodiversity—Ecosystem Function 

Productivity represents one of the most important ecosystem metrics, and the species 

richness-productivity relationship has long been of interest in ecology (Tilman et al. 1996, 

Tilman 1997). Although productivity cannot assess biodiversity directly, it integrates 

other major drivers of biodiversity that can include land use, climate, nitrogen 

decomposition, biotic change and increasing atmospheric CO2 (Sala et al. 2000). Other 

prairie studies from the US have shown that high biodiversity plots tend to have higher 

biomass (Isbell et al. 2011), and our results are consistent with this finding. On the other 

hand, a recent study of 30 grassland sites around the world (19 countries and 6 continents, 

including samples from this landscape) suggests that the global diversity-productivity 

relationship may be more “hump-shaped”, particularly when intensively managed 

ecosystems are included (Fraser et al. 2015). This decline in diversity at high productivity 

was not seen in our study, and may reflect the greater input of water or nutrients and 

other management practices associated with many highly managed ecosystems. 

Compared to many other grassland sites, our study site was a low-productivity grassland. 

The airborne data offered a means of evaluating the productivity–diversity relationships 

over a much larger area of this natural prairie ecosystem than would be feasible from the 

ground, and provided an objective means to address the biodiversity–productivity 

relationship over large landscapes. 
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The NDVI–diversity relationship can change through time and be affected by 

environmental variables and phenology. Cool-season grasses usually dominate the 

productivity in the early season. Both cool-season and warm-season grasses affect the 

productivity in the peak season (August) but can be easily influenced by precipitation in 

summer (Bork and Irving 2015). In our study, NDVI was strongly associated with green 

biomass, which related to diversity, but it can be influenced by other factors, e.g., canopy 

growth stage, water stress and flowering patterns. A full evaluation of the seasonal effects 

on the NDVI-diversity relationship was beyond the scope of this study. However, in a 

parallel study of a manipulated prairie ecosystem, Wang et al. (Wang et al. 2016b) 

explored the dynamics of the NDVI–diversity relationship over a full growing season and 

found that the optimal NDVI–productivity relationship occurred in early August, similar 

to the time of the overflight in this study. 

“Optical diversity”, which indicates the variation in optical signals detected by remote 

sensing, has been proposed to relate to more conventional metrics of biodiversity (Gamon 

2008). Instead of mapping species per se, optical diversity presumably detects different 

functional and structural properties, which vary with species or functional groups 

(“optical types”) (Gamon 2008, Ustin and Gamon 2010). This spectral heterogeneity has 

been related to variation of species or optical types of forests (Rocchini et al. 2010, Féret 

and Asner 2014). In our study, the coefficient of variation was applied as a metric of 

optical diversity based on information content present in the reflectance spectra 

themselves, and expressed as the coefficient of variation of reflectance calculated over 

many pixels. This optical diversity metric showed significant correlations with 

conventional species diversity indices (richness and Shannon index) (Figure 3.6), 

suggesting that optical diversity metrics from airborne remote sensing can provide useful 

diversity metrics over large regions. This method, based on a statistical assessment of 

spectral variability, does not directly identify the cause of the strong links with 

productivity and other diversity metrics. However, it does provide an objective method 

that can be readily applied to remotely sensed imagery. 

The surrogacy hypothesis is sometimes invoked to relate species richness in one taxon, or 

diversity at one level, to diversity at another level (Magurran 2004). For example, high 
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genetic richness is related to high species richness and environmental heterogeneity is 

related to species richness. Similarly, in this study, we used the number of vegetation 

types by dominant species as a surrogate for species richness by assuming species 

richness will be higher in places with more vegetation types. Our current working 

hypothesis is that optical diversity is influenced by both leaf traits and canopy structure, 

as further influenced by the seasonal expression of these leaf and canopy features (Ustin 

and Gamon 2010). Because leaf traits and canopy structure vary between species, optical 

diversity can provide a surrogate (or proxy metric) for traditional metrics based on 

species richness and evenness. Both optical diversity and species diversity can be 

influenced by environmental heterogeneity, such as soil texture and microtopographic 

variability. In our study, subtle gradients in soil and microtopography could have affected 

the pattern of diversity across the landscape. Fully understanding the mechanisms 

underlying the optical diversity–biodiversity relationship should be an objective of future 

work. 

The positive NDVI–diversity relationship (Figure 3.7) is consistent with another recent 

study using ground NDVI measurement assessing the biodiversity–productivity 

relationship with a manipulated prairie ecosystem (Cedar Creek Ecosystem Science 

Reserve, Minnesota, US) (Wang et al. 2016b). Together, these findings support the 

positive diversity–productivity hypothesis for these two prairie ecosystems, and are 

consistent with previous studies of prairies using more traditional field sampling methods 

(Tilman 1997, Isbell et al. 2011). 

More work is needed on the scale-dependence of this method, as sampling scale clearly 

influences the resulting optical diversity patterns (Figure 3.5). The coefficient of variation 

is influenced by the spatial scale (“grain” or sampling size) that relates to the actual 

vegetation distribution. In our study, we used different sampling scales both in our 

footprint analysis (Figure 3.3) and in our depiction of optical diversity (Figure 3.5). The 

results at two different scales showed a similar pattern of CV along the flight line (Figure 

3.5). However, it is not yet clear how to decide the “best” scale that balances a large 

sampling region with the need for fine spatial detail. Multi-scale analysis is needed to 
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investigate the correlation between optical diversity and biodiversity, and remote sensing 

provides one tool for such an investigation. 

Both species richness and evenness influence ecosystem services and the optical diversity 

metrics measured here. Recent studies have shown that both species richness and 

evenness have positive effects on the diversity–productivity relationship in ecosystems 

(Nijs and Roy 2000, Wilsey and Potvin 2000, Kirwan et al. 2007). In accordance with 

another recent study (Oldeland et al. 2010), our measure of optical diversity showed a 

better correlation with the Shannon index than richness per se, suggesting that vegetation 

evenness (or heterogeneity) influences both optical diversity and the productivity patterns 

detected by NDVI. Adding evenness can add additional information on community 

structure, which can apparently affect the variance of the optical signal beyond the effects 

of species richness alone. Further work is needed to explore the exact impact of richness 

and evenness on the optical signals detected by spectral reflectance. Similarly, more 

study is needed to understand the relative importance of factors influencing optical 

diversity that may include canopy structure, leaf traits, and phenology (Ustin and Gamon 

2010). 

This study demonstrates a method for integrated analysis of productivity and diversity 

using a combination of airborne, field sampling and flux measurements. Integrating flux 

measurements and remote sensing with the LUE model provides a method for assessing 

ecosystem health and productivity in continuous temporal and spatial dimensions. This 

can also be a useful approach for evaluating both biodiversity and carbon uptake together, 

and thus for assessing overall ecosystem health via the provision of goods and services. 

Airborne campaigns can acquire surface reflectance measurements over large areas 

without disrupting the flux footprint and can assess ecosystem status over large areas at 

high spatial resolution. Additionally, airborne imagery can provide help in selecting the 

ideal position of the flux station to best represent the target ecosystem. However, 

obtaining high frequency time series of airborne data is still a challenge, largely due to 

the high cost of airborne acquisition (which can easily run $20–$30K per field campaign). 

However, these high costs are largely due to the fixed costs of maintaining an aircraft, 

pilot and flight team over a period of several days. Such costs could be greatly lowered to 
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end users through subsidizing flight costs or through “volume pricing” if groups of users 

could share the cost of data acquisition, much in the way that satellite imagery can be 

provided for “free” or at low cost by volume pricing or via government or corporate 

support. The Google model of providing “free” global imagery to all via Google Earth, 

and NASA’s provision of satellite data through the Earth Observing System (EOS) are 

both examples of cost-effective business models for remote sensing. 

3.5 Conclusions 

Remote sensing provides an efficient approach to estimating prairie production and 

biodiversity over large regions. Differences of biomass and ecosystem production across 

a 10-km prairie transect were shown clearly with airborne images. Regardless of the 

diversity method used, higher biodiversity areas tended to have higher production, in this 

grassland ecosystem. These relationships were sensitive to both richness and evenness, 

and the addition of evenness improved the relationship with remotely sensed optical 

diversity, assessed as the coefficient of variation of reflectance. We propose that optical 

diversity provides a potent proxy for other more traditional biodiversity metrics (richness 

and Shannon index). Further work is needed to further understand the proximal drivers 

and scale-dependence (spectrally, spatially and temporally) of the biodiversity–optical 

diversity relationships. 

This study demonstrates the benefit of coupling traditional field sampling, eddy 

covariance footprint analysis and airborne remote sensing to estimate rangeland 

productivity and biodiversity. The CV provides a simple, objective metric of optical 

diversity that is significantly correlated with other traditional diversity metrics. However, 

like other commonly used indices in remote sensing of biodiversity studies, we currently 

lack a full mechanistic understanding of the optical diversity–biodiversity relationship. 

Future work could also include more extensive airborne campaigns coupled with 

continuous satellite observation, along with more detailed field studies to detect changing 

prairie ecosystem function and composition over larger areas and longer time series. At 

the same time, experimental approaches employing remote sensing methods at multiple 

spatial, spectral and temporal scales, and across additional ecosystems, are also needed to 

test the general applicability of the findings reported here. Such experiments are key to 
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developing a defensible operational approach for wide application in prairies for the 

purpose of assessing rangeland health, production, biodiversity and carbon sequestration. 
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Chapter 4 The spatial sensitivity of the spectral diversity-biodiversity 

relationship: an experimental test in a prairie grassland  

 

Abstract  

Remote sensing has been used to detect plant biodiversity in a range of ecosystems based 

on the varying spectral properties of different species or functional groups. However, the 

most appropriate spatial resolution necessary to detect diversity remains unclear. At 

coarse resolution, differences among spectral patterns may be too weak to detect. In 

contrast, at fine resolution, redundant information may be introduced. To explore the 

effect of spatial resolution, we studied the scale-dependence of spectral diversity in a 

prairie ecosystem experiment at Cedar Creek Ecosystem Science Reserve, Minnesota, 

USA. Our study involved a scaling exercise comparing synthetic pixels resampled from 

high-resolution images within manipulated diversity treatments. Hyperspectral data were 

collected using several instruments on both ground and airborne platforms. We used the 

coefficient of variation (CV) of spectral reflectance in space as the indicator of spectral 

diversity and then compared CV at different scales ranging from 1mm2 to 1m2 to 

conventional biodiversity metrics, including species richness, Shannon’s Index, 

Simpson’s Index, phylogenetic species variation, and phylogenetic species evenness. In 

this study, high species richness plots generally had higher CV. CV showed higher 

correlations with Shannon’s index and Simpson’s index than species richness alone, 

indicating evenness contributed to the spectral diversity. Correlations with species 

richness and Simpson’s index were generally higher than with phylogenetic species 

variation and evenness measured at comparable spatial scales, indicating weaker 

relationships between spectral diversity and phylogenetic diversity metrics than with 

species diversity metrics. High resolution imaging spectrometer data (1mm2 pixels) 

showed the highest sensitivity to diversity level. With decreasing spatial resolution, the 

difference in CV between diversity levels decreased and greatly reduced the optical 

detectability of biodiversity. The optimal pixel size for distinguishing α diversity in these 

prairie plots appeared to be around 1mm to 10cm, a spatial scale similar to the size of an 

individual herbaceous plant. These results indicate a strong scale-dependence of the 
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spectral diversity-biodiversity relationships, with spectral diversity best able to detect a 

combination of species richness and evenness, and more weakly detecting phylogenetic 

diversity. These findings can be used to guide airborne studies of biodiversity and 

develop more effective large-scale biodiversity sampling methods. 

 

4.1 Introduction  

Biodiversity loss, one of the most crucial challenges of our time, endangers ecosystem 

services that maintain human wellbeing (Magurran and Dornelas 2010). “Essential 

biodiversity variables” have been proposed by ecologists to monitor the variation of 

biodiversity globally (Pereira et al. 2013). Traditional methods of measuring biodiversity 

require extensive and costly field sampling by biologists with considerable experience in 

species identification, and the results may vary with sampling effort (Gotelli and Colwell 

2001, Bonar et al. 2010). It is impossible to acquire sufficient information about changing 

species distributions through time from field campaigns alone (Heywood 1995). Remote 

sensing has the potential to detect plant biodiversity and can provide efficient and cost-

effective means to determine plant and ecosystem diversity over large areas (Nagendra, 

2001). Consistent and repeatable remote sensing measurement is critical to long term 

global biodiversity assessment (Turner, 2014).  

Diversity can be defined by a large range of indices according to the scale of observation 

(Whittaker 1960, 1972).  Alpha (α) diversity is diversity within a defined place or a 

habitat at a local scale, typically within a single circumscribed community or field plot; 

Beta (β) diversity describes the variation among habitats or communities; Gamma (γ) 

diversity is the total diversity of a large region (landscape, ecoregion or biome).  Local-

scale (α) diversity can be measured several ways (Gotelli and Colwell 2001, Magurran 

2004). Species richness – number of species at a site - is the oldest and among the most 

widely used measure of α diversity. Unlike species richness, heterogeneity indices 

measure “evenness,” or the apparent number of species taking abundance into account 

rather than simply the absolute number of species in a given area (Peet 1974). Some 

metrics (e.g. Simpson or Shannon Indices) combine elements of species richness and 

evenness into a single metric of α diversity (Peet 1974).  
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Remote sensing of biodiversity  

Recent technological advances in remote sensing, including imaging spectroscopy and 

LiDAR, can provide detailed spectral and structural information to characterize diversity 

(Asner 2013). An increasing number of studies applying airborne or satellite remote 

sensing in biodiversity assessment in different ecosystems, e.g. tropical rainforest (Asner 

et al. 2008, Sanchez-Azofeifa et al. 2009, Asner and Martin 2009, Féret and Asner 2014), 

prairie grassland (John et al. 2008, Wang et al. 2016a), island vascular plants (Lucas and 

Carter 2008), and arctic regions (Gould 2000). But there is still no single, universally 

accepted scale or method for remotely sensing biodiversity, and a wide variety of 

approaches to biodiversity assessment are used, along with multiple definitions of 

biodiversity (Rocchini 2007, Féret and Asner 2014, Dahlin 2016). 

Spectral diversity hypothesis 

‘Spectral diversity’, sometimes called ‘optical diversity’ (Ustin and Gamon 2010),  refers 

to variation in remote sensing measurements, typically spectral reflectance, across sets of 

pixels and has been proposed to relate to conventional metrics of biodiversity. Instead of 

mapping species per se, spectral diversity presumably detects functional and structural 

properties, which vary among species or functional groups (“optical types”) (Gamon 

2008, Ustin & Gamon 2010). According to the spectral diversity hypothesis, varying 

plant leaf traits, canopy structure and phenology can cause wavelength-dependent 

variations in optical signals (Ustin & Gamon 2010). Since leaf traits (Wright et al. 2004) 

and canopy structure (Field 1991, Díaz et al. 2015) reflect different evolutionary 

solutions to resource limitations, spectral diversity can detect different environmental 

adaptations or resource use strategies.  If optical type is regarded as a fundamental 

vegetation property, resulting from “ecological rules” driven by resource allocation (Field 

1991), there should be predictable relationships among plant traits and plant spectral 

properties.  

Recent attempts to assess leaf and canopy functional properties through remote sensing 

illustrate the promise of optical approaches to biodiversity assessment. Airborne spectra 

have been successfully related to plant leaf chemical properties in tropical forests (Asner 
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and Martin 2009, Féret and Asner 2014). Moreover, particular leaf traits can affect 

canopy level architecture which can accentuate the leaf spectral properties through 

multiple scattering and contrasting illumination (Ollinger 2011). As a consequence, 

variation in leaf- and canopy-scale optical properties and their associated traits in time 

and space might enable us to detect functional diversity and also biodiversity at different 

scales.  

Scale in ecology and remote sensing 

Changing scale alters the perceived patterns of reality, thus changing our understanding 

of the dynamics of an environmental system (Marceau and Hay 1999).  Here, we confine 

our discussion of scale to the spatial domain, and briefly recognize that other domains are 

also relevant. In ecology, the concept of scale defines the grain size and spatial extent at 

which a variety of ecological processes may occur in a landscape (Turner, Dale, & 

Gardner 1989). Scaling up (sampling at coarser scales) changes the level of observed 

organization and leads to information loss (O’Neill and King 1998). In remote sensing, 

spatial scale refers to the terms “resolution” (pixel size, determined by sensor technology 

and flight characteristics) and “spatial extent” (the total area measured). Scale can also 

relate to spectral scale, the wavelengths (spacing, bandwidth, and spectral range) of 

spectral bands as measured by a sensor (Marceau and Hay 1999, Rocchini 2007). In 

addition, temporal scale (frequency and timespan of observation) is important in both 

ecology and remote sensing, affecting our ability to detect the important processes at the 

appropriate times. 

Meaningful scaling studies in remote sensing are challenging because most campaigns 

collect data at a single resolution and extent determined by the instrument and sampling 

platform. Similarly, most ecological sampling methods and the associated definitions are 

restricted to a particular spatial scale, usually determined by what is possible to sample in 

a field campaign.  Although studies have evaluated sampling effects at large scales 

(several meters to hundreds meters) (Rocchini 2007, Oldeland et al. 2010), few, if any, 

experimental studies have been done to systematically explore the scale dependence of 

the spectral diversity-biodiversity relationship. Consequently we do not know the 

“correct” or “ideal” spatial scale for detecting a specific type of diversity (e.g. α or β 
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diversity, species richness or heterogeneity indices). In remote sensing, practical 

limitations (tradeoffs between sampling resolution and signal-to-noise) result in 

operational decisions that are largely based on engineering choices in the design of 

sensors, and these rarely consider the “optimal” design for a biological objective such as 

assessing biodiversity. The application of current (Turner et al. 2015) or future (Jetz et al. 

2016) satellite data to global biodiversity conservation has been proposed, yet these 

studies lack a clear discussion of the appropriate or optimal spatial scales for this task. A 

meaningful evaluation and definition of scale is essential to implementing a biodiversity 

assessment campaign using remote sensing. 

To address these issues, we studied the scale-dependence of spectral diversity in a prairie 

ecosystem experiment at Cedar Creek Ecosystem Science Reserve (CCESR), Minnesota, 

USA. We conducted a scaling experiment comparing airborne imagery with ground-

based data collected along transects within manipulated plant diversity treatments. 

Hyperspectral data were collected using several instruments on both ground and airborne 

platforms, and ground-based images were resampled at several spatial scales to simulate 

progressively coarse pixel sizes. We used the coefficient of variation (CV) of spectral 

reflectance in space, which in this case means CV calculated across all pixels in a plot, as 

the indicator of spectral diversity. We then compared the spectral diversity measured at 

different scales (pixels) ranging from 1 mm2 to 1 m2 to various standard metrics of α 

diversity to investigate how those conventional diversity metrics relate to remote sensing 

and to explore the scale dependence of spectral diversity. 

4.2 Methods 

4.2.1 Field site and study design 

This study was conducted within the BioDIV experiment at the Cedar Creek Ecosystem 

Science Reserve, Minnesota, US (45.4086° N, 93.2008° W). The BioDIV experiment has 

maintained 168 planted prairie plots (9 m × 9 m) since 1994 with species richness of 

vascular plants ranging from 1 to 16 (Tilman et al 1996, Mittelbach 2012). The species 

planted in each plot were originally randomly selected from a pool of 18 species typical 

of Midwestern prairie, including C3 and C4 grasses, legumes, forbs and trees. Of the 

original 168 plots, 33 plots with species richness ranging from 1 to 16 were selected for 
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this study. These 33 plots included nine monocultures and six replicates of every other 

richness level (2, 4, 8, and 16) but with differing species combinations (see section 4.1 in 

Appendices).   

4.2.2 Imaging spectrometry at fine scale 

In the 33 selected plots, an imaging spectrometer (Headwall E Series, Headwall 

Photonics Inc., Fitchburg, Massachusetts, USA) was mounted on a tram system (Gamon 

et al. 2006) to collect fine-scale images of the northern-most row of each sampling plot at 

peak season, both in 2014 (14 plots were sampled from July 23 to July 31) and 2015 (19 

plots were sampled from July 17 to July 26) (Figure 4.1 a). A speed control circuit was 

added to the tram cart to maintain a slow and constant moving speed, creating high-

fidelity images. The cart speed (0.0256 m/s) allowed us to build clear, high signal-to-

noise ratio (SNR) hyperspectral images under low wind-speed conditions. Typically, 

wind can affect the field reflectance measurements, especially in canopies with a high 

vertical structure (Lord et al. 1985). Excessive plant sway caused by strong wind can blur 

the image, which will degrade the spatial resolution in subsequent analysis. To reduce 

wind artifacts on windy days, a wind screen consisting of black cloth was placed on 2-3 

sides of the sampling plot, at least 1 meter from the sampling area. Data were manually 

evaluated to further remove any windy (blurred) images.  

The imaging spectrometer provided hyperspectral images with a 3 nm spectral resolution 

(Full Width at Half Maximum, FWHM) and a 0.65 nm spectral sampling interval over 

the 400 ~ 1000 nm range. The focal length of the lens was 17 mm with a field of view 

(FOV) of ~34°. The spectrometer was mounted 3 meters above ground surface, obtaining 

a ground pixel size of approximately 1 mm2 (Figure 4.1 a). The dimension of the raw 

image was 1600 x 1000 pixels (Figure 4.1 b). Subsequent image processing avoided 1 m 

from either end of the plot, and removed 600 pixels from the north side to minimize edge 

effects, yielding a final image size of 1 x 1 m (Figure 4.1 b).  Reflectance spectra (Figure 

4.1 c) were then extracted from each 1 x 1m image and used for spectral diversity 

calculations. 

A dark file (DNdark,λ) was obtained before each measurement by covering the lens of the 

spectrometer with a black lens cap. Scans of a white reference calibration panel 
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(Spectralon, Labsphere, North Sutton, NH, USA) were taken before and after ground 

target measurements to calculate surface reflectance. The relative reflectance (ρ) at each 

wavelength (λ) was calculated as: 

𝜌𝜆 =  
(𝐷𝑁𝑡𝑎𝑟𝑔𝑒𝑡,𝜆 − 𝐷𝑁𝑑𝑎𝑟𝑘,𝜆)

(𝐷𝑁𝑝𝑎𝑛𝑒𝑙,𝜆 − 𝐷𝑁𝑑𝑎𝑟𝑘,𝜆)
 

(4.1)  

In this equation, DNtarget,λ and DNpanel,λ indicate the digital number measured at each 

wavelength (λ, in nm) over the ground target and white reference panel, respectively. All 

the images were collected under sunny conditions, and reference panel data were 

collected under similar sky conditions as the target data.   

 

Figure 4.1. (a) Headwall imaging spectrometer on the tram. Cart motion along the Y axis 

produced an image cube. (b) Sample image cube from Plot 11, richness = 1 (Achillea 

millefolium). (c) Sample spectra.  For each image, 600 pixels of each scan line to the left 

of the dashed line (b) were removed from the original image, leaving a 1000x1000mm 

square image cube for further analysis. Three yellow squares (A, B, and C) in panel b 

indicated the positions of the different sunlit targets (leaves, white flowers, and soil) in 

panel c.  Approximately 100 pixels were used to generate each spectrum in panel c. 



99 

 

  

4.2.3 Image resampling 

To simulate different spatial scales, a resampling strategy was used to increase the 1x1 

mm pixels to successively larger spatial scales: 1x1 cm, 10x10 cm, 25x25 cm, 50x50 cm 

and 1x1m by averaging all the small pixel reflectance values in each “large” pixel. This 

method assumes an idealized square-wave response on the part of the sensor, ignoring 

effects from neighboring pixels (Woodcock and Strahler 1987). This scaling up process 

can also smooth the data, which increases the signal to noise ratio (SNR) of the image, 

but this effect was ultimately found to be small compared to the treatment effects driven 

by different diversity levels (see section 4.2 in Appendices). To validate this approach, 

we also compared these simulated data to independent samples collected both from the 

ground and from aircraft at larger (1x1m) spatial scales. 

4.2.4 Whole plot canopy reflectance sampling 

To sample entire plots, we measured canopy reflectance of the 33 plots using a non-

imaging spectrometer (Unispec DC, PP Systems, Amesbury, Massachusetts, USA) on a 

tram system (Gamon et al. 2006) at peak season (July 23 to August 3) 2014. This system 

allowed a systematic measurement of each 1 m2 portion of each plot (Wang et al. 2016b). 

This resulted in a total of 81 measurements (9x9 m) for each plot with approximately 1 

m2 spatial resolution, creating a synthetic image that provided a full sample of each of the 

31 plots, and providing one set of independent samples for comparison with the data from 

the imaging spectrometer on the tram. Edge pixels were discarded to avoid possible edge 

effects, resulting in a final analysis based on a 7x7 m pixel array. All measurements were 

made 2 hours of solar noon to reduce the effects of sun position. 

In this whole-plot sampling, both upwelling radiance and down-welling irradiance were 

measured over the vegetation target and a white reference calibration panel (Spectralon, 

Labsphere, North Sutton, NH, USA) that was used to correct for the atmospheric 

variation and calculate surface reflectance. The relative reflectance (ρ) at wavelength (λ) 

was calculated as: 
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𝜌𝜆 =  
(𝐿𝑡𝑎𝑟𝑔𝑒𝑡,𝜆/𝐸𝑡𝑎𝑟𝑔𝑒𝑡,𝜆)

(𝐿𝑝𝑎𝑛𝑒𝑙,𝜆/𝐸𝑝𝑎𝑛𝑒𝑙,𝜆)
 

(4.2)  

In this equation, Ltarget,λ indicates the radiance measured at each wavelength (λ , in nm) by 

a downward-pointed detector sampling the surface (“target”), while Etarget, λ indicates the 

irradiance measured simultaneously by an upward-looking detector sampling the 

downwelling radiation. Lpanel, λ indicates the radiance measured by a downward-pointed 

detector sampling the calibration panel (Spectralon, Labsphere, North Sutton, NH, USA), 

and Epanel, λ indicates the irradiance measured simultaneously by an upward-pointed 

detector sampling the downwelling radiation. 

4.2.5 Airborne reflectance sampling 

Airborne data for the Cedar Creek region were collected on August 2, 2014 using an 

imaging spectrometer (AISA Eagle, Specim, Oulu, Finland) mounted on a fixed-wing 

aircraft (Piper Saratoga, Piper Aircraft, Vero Beach, Florida, USA) operated by the 

University of Nebraska Center for Advanced Land Management Information 

Technologies (CALMIT) Hyperspectral Airborne Monitoring Program (CHAMP). 

Images were collected from a height of 1540 m and a speed of 196 km/h. The ground 

pixel size was approximately 1 m2. The imaging spectrometer provided 400 ~ 970 nm 

hyperspectral images with 3.3 nm spectral resolution (FWHM). Spectral binning 

(approximately 10nm) was used to increase signal-to-noise ratio (SNR) of the data. 

Imagery acquired with this band configuration has 63 bands across the 400~970 nm 

continuum. Airborne data covered 125 prairie plots in the BioDIV experiment and data 

for the 33 ground sampling plots were extracted. This method yielded an image from 

each plot comparable in scale to the whole-plot canopy reflectance sampling described 

above. 

To extract reflectance from airborne data, lab-measured calibration coefficients were 

used to radiometrically convert DN to radiance (Wm-2Sr-1 nm-1). Geometric correction 

utilized the position and rotational attributes (pitch, roll, and yaw) of the airplane 

collected by an inflight GPS and inertial measurement unit (IMU) (C-Migits III, Systron 

Donner Inertial, Concord, California, USA) during the flight. Fast Line-of-sight 
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Atmospheric Analysis of Hypercubes (FLAASH) embedded in ENVI version 4.8 (Exelis 

Visual Information Solutions, Boulder, Colorado) was used for atmospheric correction to 

convert radiance to reflectance. To obtain a corrected surface reflectance, we used field 

spectrometer (ASD Field Spec, Analytical Spectral Devices, Inc., Boulder, Colorado, 

USA) measurements from three 9x9 meter calibration targets (white, charcoal, and black) 

made from polyester fabric (Odyssey, J. Ennis, Edmonton, Alberta, Canada) located in 

the scene to compute coefficients and apply an empirical line correction (Conel et al 

1987) to remove remaining errors in the atmospheric correction.  

4.2.6 Comparisons of spectral range  

To evaluate the effect of spectral range on the assessment of spectral diversity, we also 

made measurements with a full-range spectrometer (PSR 3500, Spectral Evolution, 

Lawrence, MA, USA).  Since these tests found no added benefit of a full-range 

spectrometer to the method described here, and since they covered a different spectral 

range from all other instruments, the results of these full-range tests are briefly 

summarized in section 4.3 in Appendices.   

4.2.7 Spectral diversity  

As an indicator of spectral diversity of each plot, we used the average coefficient of 

variation (CV) (Wang et al. 2016a), calculated as the average CV for each wavelength 

from 430 nm to 925 nm (758 bands in total).  

 

CV𝑖𝑚𝑎𝑔𝑒 =  
∑ (

𝜎(𝜌𝜆)
µ(𝜌𝜆)

)925
𝜆=430

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑛𝑑𝑠
 (4.3)  

 

where ρλ denotes the reflectance at wavelength λ, and 𝜎(ρλ) and µ(ρλ) indicate the 

standard deviation and mean value of reflectance at wavelength λ across all the pixels in 

one plot, respectively. We calculated CV for all reflectance data, including the tram 

images, synthetic images, ground canopy reflectance and airborne images. In this case, 

CV expresses the spectral heterogeneity among pixels with one single value per plot. 

Sample CV spectra and the spectral averaging method are illustrated in Figure 4.2 for two 
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plots of contrasting diversity.  [Note that for spectral range tests, CV was calculated over 

different spectral ranges, as described in results and section 4.3 in Appendices]. 

 

Figure 4.2. Sample coefficient of variation (CV) spectra of plots with different species 

richness levels (1 and 16).  As a summary metric, an average CV was calculated over 

430-925 nm as indicated in Equation 4.3 and the Figure above.  Data were derived from 

the Headwall E Series imaging spectrometer sampling at 1 mm pixels for plots 11 and 34 

(See section 4.1 in Appendices for detailed descriptions of sampling plots).  

 

4.2.8 Conventional diversity metrics  

To calculate diversity metrics based on richness and evenness, biomass data were 

collected from all plots. Above-ground living plant biomass of the selected 33 plots was 

measured in late July to early August (August 4, 2014 and July 27 to August 3, 2015). 

Plots were sampled by clipping, drying and weighing four parallel and evenly spaced 0.1 

m × 6 m strips per plot. The biomass of each strip was sorted to species. Planted species 

richness was the number of species originally planted and maintained in each plot, 

providing a nominal metric of biodiversity. In most cases the observed species number 
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and richness derived from harvested vegetation varied from the planted due to missing 

species or other species present in the plot besides the ones maintained. As a result of the 

periodic weeding, the abundance of these non-maintained species was typically much less 

than the maintained species, allowing us to assume that the planted plant species richness 

provided a reasonable approximation of the observed species richness.  

Previous results (Wang et al. 2016) have suggested that spectral diversity may be affected 

by evenness as well as species richness.  Consequently, we also calculated three indices 

that weighted species abundance by proportional biomass, thus accounting for the effects 

of rare or common occurrences:  Shannon’s index (Shannon 1948), reciprocal of 

Simpson’s index (Simpson 1949, Williams 1964), and species evenness (Pielou, 1966) 

(Table 4.1) and related these metrics to spectral diversity (CV) at different scales. 

Shannon’s Index expresses the equitability of all the species while Simpson’s Index 

focuses on a few dominant species (Whittaker 1972). 

Phylogenetic diversity is recognized as representing an integrated measure of functional 

differences among species and often helps explain ecological variation among species 

beyond what can be explained by richness alone (Cadotte et al. 2008, 2009, Cavender-

Bares et al. 2009, Srivastava et al. 2012). However, metrics of phylogenetic diversity that 

rely on total evolutionary distances among species in an assemblage are strongly 

associated with species richness. We intentionally chose metrics of phylogenetic diversity 

independent of species richness to separate variation associated with species richness and 

that associated with evolutionary distinctiveness of species in assemblages. Phylogenetic 

data was based on the phylogeny from Zanne et al. (2014) and pruned to include only the 

species observed in BioDIV. To study the influence of phylogenic diversity on spectral 

diversity, two indices independent of species richness, phylogenetic species variability 

(PSV) and phylogenetic species evenness (PSE) (Helmus et al. 2007), were calculated 

with the picante R package (Kembel et al. 2010). PSV quantifies how phylogenetic 

relatedness decreases the variance of a hypothetical neutral trait shared by all species in a 

community. PSV is directly related to mean phylogenetic distance and ranges from 0 

(low) to 1 (high) and compares observed phylogenetic distinctness to null communities. 

PSE is PSV modified to incorporate relative species abundance. The maximum attainable 
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value of PSE (i.e., 1) occurs when each species has the same abundance and evolves 

independently from a common starting point (Helmus et al. 2007). In this case, PSE was 

weighted by biomass at the plot level. 

Table 4.1 Summary of diversity metrics used in this study 

Diversity Metric Description / Equation 

Planted species richness (S0) Number of species originally planted and subsequently 

maintained in each plot 

Observed species richness (S) Number of harvested species in each plot (includes rare 

species) 

Shannon’s Index (H’) 𝐻′ = − ∑ 𝑝𝑖 ∗ ln (𝑝𝑖) 

Simpson’s Index (D) 𝐷 = 1 ∑ 𝑝𝑖
2⁄  

Evenness (J’) 𝐽′ = 𝐻′ ln (𝑆)⁄  

Phylogenetic species 

variability (PSV) 

PSV varies between 0 and 1. Values close to 1 have 

higher phylogenetic diversity.  

Phylogenetic species evenness 

(PSE) 

PSE varies between 0 and 1. Values closer to 1 have 

higher phylogenetic diversity and evenness. 

where pi is biomass proportion of the number ith species. 

 

4.3 Results 

4.3.1 Effect of spatial scale  

The mean reflectance of each image was the same across spatial scales, but the variation 

around this mean (expressed as SD and max/min in Figure 4.3, and as the CV in 

subsequent figures) decreased with increasing pixel size, revealing the sensitivity of the 

spectral diversity - species richness (SR) relationship to pixel size.  
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Figure 4.3. Sample images and reflectance spectra at different sampling pixel sizes (1 

mm to 50 cm diameter, as indicated in the spectral plots). The image shown here was the 

second meter from the west of Plot 11 (planted species richness = 1) (See section 4.1 in 

Appendices for detailed descriptions of sampling plots).  The dimension of the original 

image in the top panel was 1000 x 1000mm pixels (approx. 1 x 1 m), which was 
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successively degraded by resampling to progressively larger sizes (up to 50 x 50 cm in 

the bottom panel). Colored lines indicate mean (black), standard deviation (blue) and 

min/max (red) reflectance. The images on the left were stretched to maintain contrast and 

the plots on the right showed the true contrast. 

 

Spectral diversity (measured by CV) increased with planted species richness. Increasing 

pixel size reduced the sensitivity of spectral diversity to planted species richness (Figure 

4.4 a). By 10x10 cm and above, the linear relationship between CV and planted species 

richness started to disappear, and the relationships were no longer significant at p = 0.05 

for pixel sizes above 10x10 cm. By applying an analysis of covariance (ANCOVA) test 

to see whether the regression slopes varied with scales, there was no significant 

difference between slopes of regression at 1 mm and 1 cm scales. But the difference of 

slopes between 1 cm and 10 cm was significant (p = 0.009). 

There was no significant relationship found between observed species richness and 

spectral diversity (Figure 4.4 b). The relationship between CV and Shannon’s index 

(Figure 4.4 c) was similar to the CV-planted species richness relationship (Figure 4.4 a). 

Simpson’s index (Figure 4.4 d) showed stronger relationships with spectral diversity than 

species richness and Shannon’s index. The relationships between CV and Shannon’s 

index and Simpson’s index also weakened with increasing pixel size. The CV-Simpson’s 

index relationship was still maintained even at coarse spatial scales (at least better than 

the other comparisons with observed species richness, planted species richness and 

Shannon’s index). For both Shannon’s index and Simpson’s index, the difference 

between regression slopes at 1 mm and 1 cm scales were not significant. There were 

significant differences between slopes at larger scales (p < 0.001).  

Evenness (Figure 4.4 e) showed similar but slightly weaker relationship with spectral 

diversity than Shannon’s index. A linear relationship was found between phylogenetic 

evenness (Figure 4.4 f) and spectral diversity at fine scales (1 mm). The relationship was 

not as strong as the species evenness – spectral diversity relationship but still significant 

at smaller spatial scales. Similar to the CV-plant species richness relationships, 
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ANCOVA tests suggested no significant difference between 1 mm and 1 cm regression 

slopes for CV-species evenness and CV-phylogenetic evenness relationships.  

Key results from figures 4.4 were summarized in Table 4.2. For all diversity metrics, the 

difference in CV between diversity levels tended to decrease with increasing pixel size. 

For most biodiversity metrics, at a resolution of 10x10 cm or higher, much of the power 

to assess biodiversity was lost. At 1 m resolution, there was very little power to 

distinguish diversity levels for most metrics of biodiversity. Only CV-Simpson’s Index 

maintained significant relationships at all spatial scales (Table 4.2). 
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Figure 4.4 Spectral diversity (coefficient of variation) versus conventional biodiversity 

metrics ((a)planted species richness, (b) observed species richness, (c) Shannon’s index, 

(d) Simpson’s index, (e) species evenness, (f) phylogenetic species evenness) for varying 

pixel sizes (diameters).  The definitions of conventional biodiversity metrics are in Table 

4.1. Fit lines are not shown for p > 0.05. 
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Table 4.2 Slopes (and coefficient of determination, R2) of regressions between coefficient 

of variation (CV) and conventional diversity metrics (see table1) at different scales (pixel 

diameter values). PSV and PSE indicate the phylogenetic species variability and 

phylogenetic species evenness, respectively. Significant codes: NS, 0.05 < p, *, 0.01 < p 

< 0.05, **, 0.001 < p < 0.01 and ***, p < 0.001. Slopes were shown only for significant 

relationships (p < 0.05).  

Pixel 

diam. 

Planted 

richness 

Observed 

richness 

Shannon’s 

index 

Simpson’s 

index 

Evenness PSV PSE 

1 mm 0.017 

(0.467***) 

- 

(0.036NS) 

0.158 

(0.427***) 

0.067 

(0.583***) 

0.435 

(0.421***) 

- 

(6e-4NS) 

0.629 

(0.273**) 

1 cm  0.013 

(0.44***) 

- 

(0.027NS) 

0.116 

(0.378***) 

0.052 

(0.571***) 

0.317 

(0.364***) 

- 

(8e-5NS) 

0.459 

(0.237**) 

10 cm 0.005 

(0.21***) 

- 

(0.003NS) 

0.040 

(0.131*) 

0.024 

(0.357***) 

- 

(0.127NS) 

- 

(0.082NS) 

- 

(0.056NS) 

25 cm - 

(0.11NS) 

- 

(0.046NS) 

- 

(0.041NS) 

0.013 

(0.185*) 

- 

(0.045NS) 

-8.64e-5 

(0.176*) 

- 

(0.126NS) 

50 cm - 

(0.123NS) 

- 

(0.055NS) 

- 

(0.035NS) 

0.011 

(0.174*) 

- 

(0.041NS) 

-6.34e-5 

(0.134*) 

- 

(0.017NS) 

1 m - 

(0.086NS) 

- 

(9e-4NS) 

- 

(0.048NS) 

0.013 

(0.239**) 

- 

(0.054NS) 

- 

(0.078NS) 

- 

(0.016NS) 

 

4.3.2 Effect of Wavelength Regions  

To investigate spectral scale, we examined the CV from different spectral regions.  The 

relative contribution to CV varied by wavelength region. CV spectra at different pixel 

sizes showed that at a fine scale (pixel size < 25 cm), high richness plots had a higher 

average CV than low richness plots. This pattern was apparent for all wavelengths but 

was especially strong for the visible region (Figure 4.5). By contrast, the relative 

importance of the NIR increased as spatial scale increased. At scales of 10 and 25 cm, it 

was hard to distinguish richness levels from the visible spectra but the NIR region was 

still distinguishable.  At coarser scales (pixel size > 25 cm), all the CV spectra overlapped, 
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except for the highest richness level (richness = 16), illustrating the declining power to 

distinguish richness at coarser spatial scales. 

 

Figure 4.5 Coefficient of variation spectra at different pixel sizes resampled from ground-

sampled image cubes (imaging spectrometer on the tram) for pixel sizes 1 mm to 1 m. 

Line color indicates different planted species richness levels.  

 

To provide further insight into the spectral regions contributing to spectral diversity 

information (Figure 4.5), we compared the CV calculated over different spectral ranges 

(430-900 nm), and compared these results to the Simpson’s Index, which displayed the 

strongest correlation with CV (Table 4.2). We also conducted independent tests over a 

larger spectral range using a full-range spectrometer. The full range spectrometer did not 

indicate improved results over the VIS-NIR range (section 4.3 in Appendices). 
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Consequently, in this study, we confined our primary analyses to the VIS-NIR range (the 

range covered by our imaging spectrometer).   

At a fine scale (<=25 cm diam.), the CV values in visible wavelengths (430-700 nm, 

CVvisible) were larger than the CV of visible+NIR (430-900 nm, CVVN) and the CV of 

NIR (700-900 nm, CVNIR) (Figure 4.6 and Table 4.3). Similarly, the R2 of CVvisible-

Simpson’s index was similar to the CVVN-Simpson index and larger than CVNIR-

Simpson’s index at fine scales. These relationships changed at larger pixel sizes. With 

increasing pixel size, R2 of all three regressions decreased, but the R2 of the CVNIR-

Simpson’s index relationship decreased with resolution less than the other two. 

Consequently, at the 25 cm and 50 cm pixel sizes, R2 of the CVNIR-Simpson’s index 

became the largest among the three CV formulations derived from different spectral 

ranges, and still retained significant correlations (p<0.01). The ANCOVA test indicated 

significant difference between slopes of CV-Simpson’s Index relationships at different 

scales (p < 0.01 for all of the three spectral regions). 

Table 4.3 Spectral diversity (coefficient of variation) of different wavelength versus 

Simpson’s Index. Significant codes: NS, 0.05 < p, *, 0.01 < p < 0.05, **, 0.001 < p < 

0.01 and ***, p < 0.001. 

Pixel size CVVN CVvisible CVNIR 

Slope R2 Slope R2 Slope R2 

1 mm 0.067 0.583***  0.091 0.567*** 0.037 0.437*** 

1 cm 0.052 0.571*** 0.067 0.567*** 0.034 0.434*** 

10 cm 0.024 0.356*** 0.027 0.310*** 0.020 0.343*** 

25 cm 0.013 0.185* 0.013 0.129* 0.013 0.229** 

50 cm 0.011 0.173* 0.010 0.107NS 0.012 0.244** 

1 m 0.013 0.239** 0.018 0.180* 0.007 0.109NS 
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Figure 4.6 Spectral diversity (coefficient of variation) versus Simpson’s Index for 

different wavelength regions (a: 430 – 900 nm; b: 430 – 700 nm; c: 700 – 900 nm) and 

different pixel sizes (1x1 mm to 1x1 m). Slopes and R2 of the regressions were listed in 

Table 4.2. 
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4.3.3 Comparison of Instruments  

A comparison of different methods yielded good agreement between instruments and 

sampling methods. The CV-planted species richness relationship in the synthetic images 

(1m2 pixels) fit the trend found in the resampled images (spanning 1mm2 to 1m2 pixels) 

(Figure 4.7). CV values for the different diversity levels were slightly more variable 

when calculated from the imaging spectrometer on the ground than when calculated from 

the non-imaging spectrometer or the airborne spectrometer (Figure 4.7 a).  Airborne CV 

values were slightly smaller than synthetic and ground measurements at all planted 

species richness levels. Regardless of method, by 1x1m there was very little power to 

distinguish planted richness levels (except at the most extreme levels of 1 vs. 16). 

 

Figure 4.7 (a) Coefficient of variation as a function of pixel size for the resampled 

Headwall images and AISA Eagle airborne data for 125 plots. (b) Comparison of 

coefficient of variation-planted species richness relationship at different scales obtained 

from different instruments (Headwall (H), UnispecDC (Unispec), and AISA Eagle 

(AISA)) and platforms (tram and aircraft).   
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4.4 Discussion  

4.4.1 Scale dependence of spectral diversity 

Applying the imaging spectrometer using the tram system on the experimental 

biodiversity plots allowed us to collect very high resolution (1 mm2 pixel size) images 

and test the scale dependence of the spectral diversity-biodiversity relationship. Instead of 

enumerating plant species, CV is an abstract expression that represents the information 

content (variability) of the reflectance spectra among pixels. Using this method, the 

detectability of biodiversity with remote sensing declined dramatically when scaling up 

from 1 mm2 to 1 m2 in this plot level experiment. The slightly smaller CV value 

calculated from the airborne image compared to synthetic images (created from the 

Unispec spectrometer) may be due to a blurring result caused by the point spread function 

of the airborne imaging spectrometer, which reduced the variation between neighboring 

pixels. The overall consistency of the patterns across spatial scale for the different 

methods indicated a strong effect of spatial scale on the ability to detect alpha 

biodiversity with optical remote sensing methods.  

4.4.2 OD-Richness-Evenness 

The stronger relationship between spectral diversity and Simpson’s index than between 

spectral diversity and observed species richness agrees with recent studies (Oldeland et al. 

2010, Wang et al. 2016a) that measures of evenness can improve the correlation between 

spectral diversity and conventional diversity metrics. Integrating species evenness adds 

additional information on community structure beyond species richness per se. These 

findings suggest that spectral diversity relates to the heterogeneity within a small region 

that is determined by a combination of species composition, richness and evenness.    

Both Shannon’s index and Simpson’s index are commonly used metrics in quantifying 

biodiversity, but the two metrics show variable responses to different combinations of 

richness and evenness (Nagendra, 2002). In our study, spectral diversity showed a 

stronger relationship with Simpson’s index than Shannon’s index, which agrees with 

findings from a study in tropical forests (Schäfer et al. 2016). This may be because 

Simpson’s index is more sensitive to dominant or common species than Shannon’s index, 

which assumes all species are present and randomly sampled (Peet 1974). This BioDIV 
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experiment is a highly manipulated experimental landscape, weeded in summer to 

maintain species richness so that the percentage of rare species is small and the evenness 

of low richness plots tends to be low. It is also reasonable that planted species richness, 

which implicitly includes a degree of evenness by ignoring “rare,” unintended species 

(which likely do not contribute much or at all to the optical signals measured here), leads 

to a better correlation to spectral diversity than observed species richness (which includes 

more “rare” species that are not an intended part of the experiment).  

4.4.3 Species evenness-phylogenetic evenness  

In principle, if phylogenetic diversity reflects functional properties that are detectable 

with remote sensing, spectral diversity should increase with phylogenetic diversity. Two 

indices we used, PSV and PSE. The latter metric incorporates abundance, but both are 

independent of species richness. Both metrics showed significant relationships with CV 

(Table 4.2). Similar to the indices at the species level, the significant relationship between 

CV and PSE at fine spatial scale (1mm) disappeared rapidly at coarser scales (pixel size > 

1cm). These results indicate that species richness measures, particularly when they 

account for abundance, capture more detectable variation than phylogenetic 

distinctiveness measures that are independent of species richness. These findings are 

consistent with recent studies indicating that species richness and evenness are often the 

most critical factors explaining relationships between biodiversity and ecosystem 

function (Zhang et al. 2012). 

4.4.4 Optimal pixel size  

The predictability of a phenomenon is scale-dependent both in ecology (Costanza and 

Maxwell 1994) and remote sensing (Woodcock and Strahler 1987). In ecology, grain size 

is the extent of the elementary sampling units and the minimum size of measure 

(Costanza and Maxwell 1994, Legendre and Legendre 1998). Fine-scale sampling 

provides more information about detailed patterns that will be lost at coarse scales. In this 

study, considerable information on fine-scale variability decreased with increasing pixel 

size, and this result is in accordance with the finding that significant information may be 

lost when the sampling elements are scattered and small compared to the pixel size 

(O’Neill et al. 1986). From a remote sensing perspective, the spatial structure of an image 
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relates to the size of the objects in the scene and the spatial resolution (pixel size). 

Woodcock and Strahler (1987) noted local variance peaked when the size of the object 

equaled (or was close to) the spatial resolution of the image, which may help explain our 

results. In our study, the optimal pixel size for distinguishing diversity levels in these 

prairie plots, particularly for the visible spectral region (sensitive to leaf pigments) 

appears to be in the range of 1mm to 10 cm, a range of spatial scales similar to those of a 

single leaf or herbaceous plant species in this experimental prairie landscape.  

In another study of prairie grassland in southern Alberta, Canada, CV calculated with 

airborne imagery correlated well with biodiversity metrics, e.g., richness and Shannon’s 

index even at 1 m2 scale (Wang et al. 2016a), yet in our study of experimental plots, this 

correlation was largely lost by 1 m2. In experimental plots of constant size with long-term 

maintenance, grain and extent are determined and perhaps maintained artificially but 

these properties may be different or exhibit inconstant temporal behavior in real 

landscapes. The larger extent captured in airborne sampling in a natural landscape can 

introduce higher-level diversity effects (e.g. beta diversity), which may explain 

contrasting results across studies at different spatial scales or settings. As well, the 

discontinuity measured on a real landscape may appear continuous when broken into 

finer grained observations, especially at a small extent (9x9 m) as in this study. When 

considering other applications of airborne and satellite remote sensing in biodiversity 

detection in natural landscapes, spectral diversity may reveal variation between species, 

between dominant species, or even the transition from α diversity to β diversity with 

increasing grain size and spatial extent.  These factors of scale are generally not 

considered explicitly in remote sensing campaigns addressing biodiversity, most of which 

do not use experimental approaches, but are restricted to a single grain size and extent. 

Considering the surrogacy hypothesis (Magurran 2004), high species richness in one 

taxon may be related to high richness in other, particularly at higher trophic levels, as has 

been demonstrated in insect herbivore communities (Siemann et al. 1998, Haddad et al. 

2009). High environmental variation, e.g., temperature or topographical, diversity is 

frequently related to high species richness (environmental surrogacy), such as in the case 

of habitat heterogeneity and butterfly diversity (Kerr et al. 2001). It is possible that the 
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relationship between spectral diversity and species richness at certain scales is fortuitous 

and often remains significant at even coarse spatial scales because we actually see 

something indirectly related to species richness rather than species richness per se. 

Presumably, species richness is also related to functional diversity to some extent (e.g., 

(Petchey and Gaston 2002, Flynn et al. 2011)) despite well-understood complexities 

(Cadotte et al. 2011, Violle et al. 2012). A more diverse ecosystem is thus likely to 

include a greater variety of functional behaviours as indicated by plant traits relate to 

different leaf biochemical content and canopy structure. The variation in plant traits 

among species can affect the optical properties of plants and lead to spectrally detectable 

features (spectral diversity). Our findings suggest that, for pixels much larger than the 

individual plant size, a direct detection of alpha diversity is not feasible, although other 

measures of diversity at larger scales may apply. The results suggest that further 

assessment of the scale dependence of the spectral diversity-biodiversity relationships for 

different vegetation types (e.g. different crown sizes) is warranted, particularly if the goal 

is to develop reliable and repeatable remote methods of assessing biodiversity. We 

recommend that similar scaling studies be conducted in natural landscapes to better 

reveal both the underlying causes and larger significance of the scale-dependent 

relationships reported in this study. Such studies should also address much larger pixel 

sizes, such as are proposed for spaceborne sensors, and should enable fully testing the 

degree to which regional α and β diversity are detectable for grain sizes that are relatively 

coarse when compared to those used in this study. 

The ecological concept of patch size is clearly relevant to the remote sensing of spectral 

diversity. Broadly, a patch can be defined as a relatively homogeneous spatial unit that is 

different from its neighbors in nature or appearance (Wu and Loucks 1995, Bazzaz 1996). 

Variation within a patch is influenced by the minimum size of all of the patches that will 

be mapped as well as which components of the system are ecologically relevant to the 

organism or process of interest. In this study, we used visible to near-infrared waveband 

regions to calculate the coefficient of variation and the optical “patch size” appeared to 

vary slightly with spectral region. The different responses of visible and near-infrared 

spectral regions to pixel size suggested possible changes in the relative contribution to 

spectral diversity from leaf traits to canopy structure with increasing pixel size. Some leaf 
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traits (e.g. pigment levels) are detectable in the visible region (Ollinger 2011, Ustin 2013), 

and the sensitivity of CVvis to planted species richness or Simpson’s Index was quickly 

lost at pixel sizes above that of the individual leaves and plants.  In this case, the relevant 

“patch size” seems close to that of an individual leaf or plant. On the other hand, the NIR 

region is sensitive to canopy structure (Ollinger 2011, Ustin 2013), and the CVNIR-

Simpson’s index retained a significant correlation at relatively large spatial scales (25-50 

cm), suggesting the relevant “patch size” of canopy structure is larger than that of leaf 

traits. 

Spectral resolution and range also affect the spectral diversity-biodiversity relationship. 

When compared to multispectral data, adding spectral information has been shown to 

increase the accuracy of biodiversity estimation (Rocchini 2007). Using full range spectra 

including the shortwave infrared (400-2500 nm) could add information on other 

biochemical properties, e.g. leaf water content, pigment, nitrogen content, and lignin 

(Asner and Martin 2009). While not easily possible in this study due to the limited range 

of our primary instruments, future studies should consider the effects of the full spectral 

range on the scale dependence of the spectral diversity-biodiversity relationship.  In our 

initial tests (section 4.3 in Appendices), sampling the full spectral range did not enhance 

the CV-Simpson’s Index relationships over the VIS-NIR range, but given the wide range 

of vegetation types and possible analytical approaches not considered here, these negative 

findings should not be viewed as conclusive.  We note that many of the promising 

applications of full-range spectroscopy to biodiversity have been developed for tropical 

forests, which are functionally (and spectrally) distinct from the prairie species studied 

here. Full-range spectroscopy can be very useful in assessing leaf and plant traits (Asner 

and Martin 2009), and presumably would be useful in studying other aspects of diversity 

(e.g. functional diversity) not considered here. Consequently, further studies of spectral 

range for biodiversity assessment are needed, and these studies should consider more 

than one biome type, and additional aspects of diversity in addition to the ones 

considered here. 

Finally, hierarchy theory suggests that the scale of measurement limits the scope of what 

can be captured in an observation (Ahl and Allen 1996). The scaling effect of observation 
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relies on the observer’s choice of measurement. Here, we would expect that the “best” 

pixel size may vary among biomes and communities having different dominant species, 

e.g. prairie (with small plant sizes) versus forests (where tree crown size is typically 

several meters in diameter). As well, for natural landscapes, there may be higher-level 

effects at coarser spatial scales that reflect other aspects of diversity besides α diversity, 

e.g. β diversity as driven by environmental gradients or disturbance. 

4.4.5 Confounding effects  

The CV-diversity relationship may depend on the stand structure, including plant density 

and spacing, homogeneity of distribution among the species, and the presence of non-

vegetated cover (e.g. bare soil). In this system, plant density is known to depend on 

diversity, which is maintained by weeding; as a consequence, lower diversity plots are 

less densely vegetated, have more bare ground, and have been shown to be more 

invasible (Naeem et al. 2000). As diversity declines and plant density in the plot 

decreases, spectral diversity is impacted (revealed as increased CV values for low 

diversity plots) and the degree of cover and bare soil affected the ability to detect alpha 

diversity. In a separate modeling analysis (data not shown), adding soil spectra to pure 

plant pixels increased plot-level CV and weakened the spectral diversity-biodiversity 

relationships but the spectral diversity-biodiversity relationships stayed significant. 

Clearly, more work on the effects of stand structure including the influence of bare soil 

and other non-vegetated cover types on the CV-diversity relationship is needed, and this 

is the focus of current studies (in preparation). Forest diversity experiments in which 

plant stem density is held constant while species richness and phylogenetic diversity vary 

are a means to uncouple density and diversity in manipulated experimental systems and 

could be considered in future experimental studies of biodiversity from remote sensing.  

CV shows potential in estimating biodiversity using remote sensing, and is not very 

sensitive to the sample size (section 4.4 in Appendices). But CV condensed the 

information contained in a full spectrum into a single value, which may not fully use the 

entire spectral information available with other methods. Particularly for assessing 

functional diversity tied to plant traits or biochemical composition, full spectral 

information can be critical. Other spectral diversity methods have been proposed to 
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calculate diversity metrics in the principal components (PC) space, e.g. mean distance 

from the centroid of all PCs (Rocchini 2007, Oldeland et al. 2010), or to sum of the 

variance and convex hull volume for the first three PCs (Dahlin 2016). Future studies 

should compare the performance of different spectral diversity metrics across spatial, 

temporal and spectral scales.    

 

4.5 Conclusion  

The scale dependence of processes and patterns are central topics in both ecology and 

remote sensing. Few studies have considered the scale-dependence of spectral diversity 

due to the difficulty of obtaining comparable remote sensing data at different scales. To 

address this challenge, we developed a method to apply imaging spectrometry at multiple 

spatial resolutions using an imaging spectrometer mounted on a ground-based tram 

system in a manipulated experiment and compared these results to other ground sampling 

and airborne methods to investigate how the spectral diversity-biodiversity relationship 

worked at different grain sizes (pixel sizes). Among all the tested conventional 

biodiversity indices, spectral diversity showed the strongest relationship with Simpson’s 

index, likely because Simpson’s Index combined species richness and evenness and was 

sensitive to dominant species. Our fine-scale study also showed rapid information loss 

with increasing pixel size; the best resolution to detect α diversity using spectral diversity 

was the size close to a typical herbaceous plant leaf or single canopy. Although it will 

become more complicated as the dimensionality of number of species, and their identity 

increases, most likely, the “optimal” pixel size for detecting plant biodiversity with this 

method would vary depending upon the size of the individual organisms in question, and 

more work across a variety of ecosystems is needed to test this hypothesis. 

While restricted to ground and airborne sampling, our study provides insights for the 

design and application of future spaceborne and airborne sensors, and suggests that direct 

assessment of α diversity, at least for prairie regions, may require spatial resolution 

higher than most existing satellite sensors.  These findings can be exploited in future 

airborne remote sensing campaigns to determine the most appropriate pixel size for 

spatially extensive assessment of α diversity. It is also critical to understand the scale 
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dependence of the spectral diversity-biodiversity relationship as we transit from 

manipulated experiments to natural landscapes; natural landscapes may differ in their 

spectral patterns due to contrasting patch sizes, as a result of vegetation clumping (e.g., 

due to vegetative reproduction, clonality or dispersal limitation), which influence the 

grain size and spatial extent optimal for detection of biodiversity. Further studies in 

natural landscapes are also needed to explore higher-level (e.g. beta diversity) effects on 

spectral diversity, which may be more amenable to remote sensing. Data from multiple 

ecosystems and vegetation types, e.g. prairie and forest, should be included in future 

studies, with attention to the consequences of canopy and patch size on the scale 

dependence of the biodiversity-spectral diversity relationship.   
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Chapter 5 Investigating the effect of species richness, evenness and 

composition on spectral diversity using simulated hyperspectral images  

 

Abstract 

Biodiversity loss endangers ecosystem services that maintain human wellbeing. Many 

remote sensing metrics have been applied to estimate α biodiversity directly through 

spectral diversity. However, a better understanding of the mechanisms behind the spectral 

diversity-biodiversity relationship is needed, with a particular focus on the relative 

contributions of species composition, richness, and evenness. We studied how these three 

factors (species composition, richness, and evenness), affect the optical signals in a 

prairie ecosystem experiment at Cedar Creek Ecosystem Science Reserve, Minnesota. To 

achieve this, we used hyperspectral reflectance of 16 prairie species (collected using both 

a full-range field spectrometer fitted with a leaf clip, and an imaging spectrometer carried 

by a tram system) to simulate plot-level images with different species composition, 

richness and evenness. The coefficient of variation (CV) of spectral reflectance in space 

and spectral species obtained using a Partial Least Squares Discriminant Analysis 

(PLSDA) classification method were calculated as indicators of spectral diversity. 

Spectral diversity metrics (CV and spectral species indices) scaled with α diversity and 

were affected by species richness and evenness. At fine scales, species composition had a 

substantial influence on both CV and spectral species indices. These findings can be used 

to understand the effects of species richness, evenness, and composition on spectral 

diversity and to guide regional studies of biodiversity estimation using high spatial and 

spectral resolution remote sensing. 

5.1 Introduction 

The use of remote sensing to estimate biodiversity can be dated back to the late 1980s. 

The early applications of remote sensing in biodiversity estimation focused on mapping 

landscape or habitat through landcover classification. At that time little had been 

accomplished to understand or verify the statistical or ecological significance of the 

relationship between remotely sensed indices and biodiversity (Stoms and Estes 1993). 
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This was partly due to the limited understanding of the effects of biodiversity on 

ecosystem function and partly due to the limitation of remote sensing techniques 

(achievable spatial, spectral, and temporal resolution of remote sensing products) at the 

time.  

Imaging spectrometry can now cover the whole range of the visible and short-wave 

infrared reflectance spectrum (400 – 2500 nm) at high spectral resolution (Ustin et al. 

2004). This technology enables us to detect the absorption features of leaves in specific 

tiny bands and has been widely used in vegetation remote sensing in the past decades. 

Imaging spectrometry is expanding the range of detectable plant physiological and 

structural properties that can contribute to an assessment of functional diversity (Ustin 

and Gamon 2010). A key question remains the spatial resolution necessary for effective 

remote detection of biodiversity, which is a particularly complex question given the range 

of definitions, methods, and instruments used. 

‘Spectral diversity’ (Palmer et al. 2002), sometimes called “optical diversity”  (Ustin and 

Gamon 2010), indicates the variation in spectral reflectance detected by remote sensing. 

Vegetation optical properties are affected by both leaf biochemical traits and canopy 

structure  (Ustin and Gamon 2010) that vary with evolutionary history and environment 

conditions. This variation of plant leaf traits and canopy structures across environmental 

gradients can lead to high spectral variability within species (Asner 1998). Therefore, 

instead of mapping species per se, spectral diversity detects functional and structural 

properties, which vary with species or functional groups (“optical types”)  (Ustin and 

Gamon 2010). If optical type is regarded not only as an indicator of plant physiological 

and biochemical properties but also of fundamental vegetation properties resulting from 

“ecological rules” driven by resource allocation, there should be predictable 

interrelationships among the plant traits and optical properties. As a consequence, 

variation in these optical properties and their associated traits in time and space might 

enable us to detect biodiversity through spectral diversity, particularly if appropriate 

spatial, temporal and spectral scales are used.  

Many remote sensing metrics have been applied to assess α diversity using spectral 

diversity. These metrics can be divided into two major categories: 1) metrics based on 



129 

 

information theory (e.g., entropy) and 2) metrics based on classification results (e.g. 

spectral species). The information theory based metrics extract information from the 

spectral space in number of ways, for example by calculating the variance of vegetation 

reflectance indices (e.g., NDVI) (Gould 2000, Carlson et al. 2007), the coefficient of 

variation of the reflectance across space (Wang et al. 2016a), or the distance from the 

spectral centroid (Palmer et al. 2002). Alternatively, information theory metrics can be 

obtained from patterns in principal component space, such as the distance from the 

centroid in principal component space (Rocchini 2007), that compact spectral 

information and removes noise and band collinearity. In contrast to information theory, 

classification based metrics typically apply an unsupervised classification (Féret and 

Asner 2014) or object-based classification (Schäfer et al. 2016), to the remotely sensed 

images and relate the metrics calculated based on the resulting “spectral species” to 

actual biodiversity metrics. In this case, spectral types (optical types) are considered 

proxies for biological species, and spatial variation in these types can be used to infer 

species richness or other similar metrics of α diversity. 

When comparing optical diversity to α diversity, stronger relationships emerge when 

considering both species richness and evenness (e.g., Shannon’s index) (Oldeland et al. 

2010, Wang et al. 2016a). These results indicate that incorporating measures of evenness 

can improve the correlation between spectral diversity and conventional diversity metrics, 

presumably because species evenness adds additional information on stand composition 

beyond species richness per se., and this information is also detected by spectral variation. 

Consequently, spectral diversity relates to the heterogeneity within a small region that is 

determined by a combination of species composition, richness and evenness, and often 

provides a measure of α diversity. However, it is still not clear exactly how or to what 

degree species composition, richness, and evenness, affect the overall optical signals, in 

part because experimental approaches are difficult to apply in remote sensing studies due 

to the large spatial scales involved.   

In this study, we applied a modeling framework to investigate the effect of species 

richness, evenness and composition on spectral diversity using simulated hyperspectral 

images. Leaf reflectance measurements collected from the Cedar Creek BioDIV 
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experimental prairie plots were used to simulated synthetic plot-level images with 

different combinations of species richness, evenness, and composition. In this modeling 

experiment, leaf spectra were collected two ways: 1) using a leaf clip that normalized 

sampling geometry and illumination and 2) using an imaging spectrometer that allowed 

for natural variation in leaf orientation and illumination. Two types of spectral diversity 

metrics, coefficient of variation (CV) and metrics calculated based on a Partial Least 

Squares Discriminant Analysis (PLSDA) classification method, were used to compare to 

the conventional diversity metrics. This simulation approach applied the field reflectance 

as input data and allowed us to investigate the spectral diversity-biodiversity relationship 

by isolating factors contributing to the overall optical signal that was not possible from 

empirical measurements alone. 

5.2 Methods 

5.2.1 Study site 

The field data used in this study were collected at the Cedar Creek Ecosystem Science 

Reserve, Minnesota, US (45.4086° N, 93.2008° W). The BioDIV experiment has 

maintained 168 prairie plots (9 m × 9 m) with nominal plant species richness ranging 

from 1 to 16 since 1994 (Mittelbach 2012). The species planted in each plot were 

originally randomly selected from a pool of 18 species typical of Midwestern prairie, 

including C3 and C4 grasses, legumes, forbs and trees. Weeding is done 3 to 4 times each 

year for all the plots to maintain the planted species richness (Tilman et al. 2001, Reich et 

al. 2012).  

5.2.2 Spectral data 

Leaf-clip derived reflectance 

A full range spectrometer (HR-1024i, Spectral Vista Corporation, Poughkeepsie, NY, 

USA) coupled with a leaf clip with internal light source (LC-RP PRO; Spectra Vista 

Corporation, Poughkeepsie, NY, USA) was used to collect leaf reflectance spectra for 16 

prairie species in Cedar Creek BioDIV plots in the summer, 2015. The spectral range of 

the spectrometer was from 400 to 2400 nm. Scans were referenced to the white 

calibration disc (Spectralon, LabSphere, North Sutton, NH) before the target 
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measurements to calculate surface reflectance. The reflectance at each wavelength was 

calculated as:  

ρλ =  
(DNleaf,λ − DNdark,λ)

(DNwhite reference,λ − DNdark,λ)
 (5.1) 

where DNleaf,λ and DNwhite reference,λ indicate the reflected energy of leaf and white 

reference measured at wavelength (λ, in nm), respectively. DNdark,λ indicates the 

measured energy when the shutter was closed (dark-current and noise). Spectral data 

processing also included correcting artifacts at the sensor overlap regions between the Si 

and first InGaAs sensors (around 1000 nm), and the first InGaAs and second InGaAs 

sensors (around 1890 nm), respectively, interpolating the data to 1 nm spectral resolution. 

Noisy regions at the beginning and end of the spectrum, i.e. wavelengths smaller than 

400 nm and greater than 2400 nm, were excluded from analysis. All processing was done 

using the R package spectrolab (https://github.com/annakat/spectrolab) and all the 

processed spectral data can be found on EcoSIS (http://data.ecosis.org). 

24 9 x 9 m plots were selected to obtain leaf reflectance measurements. Within each plot, 

between 4 and 8 quadrats were sampled based on the expected diversity of the plot. 

Within each quadrat, four individuals were sampled, but some of those individuals could 

be of the same species if there were fewer than four species in the quadrat. For those 

quadrats that had less than 4 species, the choice of which species to 'duplicate' was 

dependent on relative dominance. Consequently, the number of individuals of each 

species measured was dependent on the number of plots in which that species was found, 

the number of other species in those plots, and the relative dominance of that species in 

those plots. Generally, the sample size of one species correlated with commonness of that 

species. A pool of leaf clip-derived spectra of the 16-species (Table 5.1) was created 

using all the measurements and prepared for further analysis. Soil radiance spectra were 

collected using a full range spectrometer (PSR 3500, Spectral Evolution, Lawrence, MA, 

USA) in BigDIV bare ground plots in July 2016. A white reference panel (Spectralon, 

Labsphere, North Sutton, NH, USA) was used to calculate the soil reflectance. 

 

https://github.com/annakat/spectrolab
http://data.ecosis.org/
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Table 5.1 Species, abbreviations, and sample size per species of leaf reflectance spectra 

Species  Abbrev No. of samples 

Achillea millefolium  ACHMI 134 

Amorpha canescens AMOCA 88 

Andropogon gerardii ANDGE 577 

Asclepias tuberosa ASCTU 249 

Koeleria cristata KOECR 44 

Lespedeza capitata LESCA 370 

Liatris aspera LIAAS 195 

Lupinus perennis LUPPE 380 

Monarda fistulosa MONFI 74 

Panicum virgatum PANVI 169 

Petelostemum candidum PETCA 88 

Petalostemum purpureum PETPU 157 

Petalostemum villosum PETVI 137 

Poa pratensis POAPR 49 

Schizachyrium scoparium SCHSC 260 

Solidago rigida SOLRI 173 

 

 

Image-derived reflectance  

A push broom imaging spectrometer (E Series, Headwall Photonics Inc., Fitchburg, MA, 

USA) mounted on a tram system (Gamon et al. 2006) was used to collect fine-scale 

images of the northern-most row of each sampling plot at peak season, 2015 (Figure 5.1a). 

A speed control circuit was added to the tram cart to maintain a slow and constant 

moving speed, creating high-fidelity images. The cart speed (0.0256 m/s) allowed us to 

build clear, high signal-to-noise ratio (SNR) hyperspectral images under low wind-speed 
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conditions. Typically, wind can affect the field reflectance measurements, especially in 

canopies with a high vertical structure (Lord et al. 1985). Excessive plant sway caused by 

strong wind can blur the image, which will alter the vegetation optical properties and 

degrade the spatial resolution in subsequent analysis, possibly affecting the study results. 

Consequently, only low-wind conditions were used in our analyses. To reduce wind 

artifacts on windy days, a wind screen consisting of black cloth was placed on 2-3 sides 

of the sampling plot, at least 1 meter from the sampling area. Data were manually 

evaluated to further remove any windy (blurred) images. 

The imaging spectrometer provided hyperspectral images with a 3-nm spectral resolution 

(Full Width at Half Maximum, FWHM) and a 0.65 nm spectral sampling interval over 

the 400 ~ 1000 nm range. The focal length of the lens was 17 mm with a field of view 

(FOV) of ~34°. The spectrometer was mounted 3 meters above ground surface, obtaining 

a ground pixel size of approximately 1 mm2 (Figure 5.1b). The dimension of the raw 

image was 1600 x 1000 pixels (Figure 5.1b). Subsequent image processing avoided 1 m 

from either end of the plot, and removed 600 x 1000 pixels from the north side to 

minimize edge effects, yielding a final image size of 1 x 1 m (Figure 5.1b).   

A dark file (DNdark,λ) was obtained before each measurement by covering the lens of the 

spectrometer with a black lens cap. Scans of a white reference calibration panel 

(Spectralon, Labsphere, North Sutton, NH, USA) were taken before and after ground 

target measurements to calculate surface reflectance.  

The same 16 species with the SVC field spectrometer measurements were identified from 

the Headwall images and a sample of 1000 leaf pixels of each species was taken to create 

a pool of image-derived reflectance spectra. Unlike the pool of leaf clip-derived 

measurements, where leaf spectra were collected with normalized geometry and 

illumination the pool of image-derived spectra provided a sample of leaves in their 

natural orientation and illumination, collectively comprising a “canopy” spectrum for 

each species. This set of image-derived leaf spectra allowed us to explore the effect of 

including natural variation in leaf reflectance due to illumination and geometry for 

comparison with leaf clip-derived spectra. Soil reflectance spectra were extracted from 

the bare ground images of low richness plots.  
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Figure 5.1. Schematic picture of Headwall imaging spectrometer on the tram (a) and 

sample image (b) showing spatial and spectral dimensions (arrows). Yellow vector in 

panel b indicates direction of cart motion  

 

5.2.3 Spectral variability 

Two metrics were calculated to test the spectral separability among species. First, species 

spectral variation was estimated using the Euclidean distance between each spectrum and 

was tested based on the null hypothesis that the within- and among- species variation are 
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equal with a nonparametric multivariate analysis of variance technique (NPMANOVA), 

which was first developed for use with ecological distance matrices (Anderson 2001). A 

pseudo ratio of F-statistics was calculated as the ratio of among species and within 

species sum of squares (Anderson 2001). The larger the F value, the more likely that the 

null hypothesis (H0, of no difference between species) is false. The Euclidean distance 

between two spectra (S1 and S2), is simply the root mean square difference between them, 

averaged over the whole spectral range: 

𝑑 =  [
1

𝑁
∑[𝑆1(λ𝑖) − 𝑆2(λ𝑖) ]2

𝑁

𝑖=1

]

1/2

 
(5.2) 

where N is the number of wavelength and λ𝑖indicates the ith wavelength. 

 

Second, a Partial Least Squares Discriminant Analysis (PLSDA) classification method 

(Karlsson 2006) was applied to the two spectral pools. PLS has been gaining attention for 

its ability to accommodate high-dimensional classification problems because it can 

handle large dataset and high collinearity among predictors (Nguyen and Rocke 2002, 

Chung and Keles 2010). In this study, the PLSDA classification was calculated with the 

caret R package (Kuhn 2016). Each dataset was randomly split into 2/3 training and 1/3 

testing sets. The training set was used to train and optimize the classification model, 

while the testing set was used to validate the optimized classification model. The 

confusion matrix for the actual and predicted species identities was calculated to assess 

the overall accuracy of the classifier. 

 

5.2.4 Generation of plot-level synthetic images 

The species-abundance relationship was calculated on a vegetation percent cover base 

using plot-level vegetation percent cover data of the 168 prairie plots that had been 

collected in July 2007. In these analyses, percent cover of each species within 2 marked 

quadrats (0.5 x 0.5 m) inside each larger 9 x 9 m plot was recorded, and assumed to 

represent plot-level cover values. We calculated the mean and standard deviation of 
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vegetation cover at each planted species richness level. Linear relationships between 

mean and standard deviation of vegetation percent cover and planted species richness 

were created and applied to parameterize a Gaussian function to simulate plot-level 

vegetation percent cover at each richness levels. These richness-vegetation cover 

relationships were then used to generate the vegetation cover of each simulated plot 

according to its assigned species richness.   

We simulated 1000 plots by following three steps: a) assign a species richness number for 

each plot randomly; b) calculate the vegetation percent cover of each simulated plot 

according to the estimated Gaussian distributed species richness-percent cover 

relationship at each richness level; c) generate the percent cover of each species randomly 

with the total percent cover equal to the percent cover of this plot. Two synthetic images 

were created for each plot: first, using the mean reflectance of each species, which 

ignored the within-species variation and second, using all the sampled reflectance. Both 

leaf clip- and image-derived reflectance were used to generate synthetic images, allowing 

us to explore the effect of within-species spectral variability due to varying leaf 

orientation and illumination. The total pixel number of each synthetic image was 10, 000. 

Soil reflectance spectra were used to fill the rest of each image other than reflectance of 

prairie plants according to the relative vegetation percent cover. The effects of soil 

spectra on the plot-level spectral diversity were tested separately.  

 

5.2.5 Spectral diversity and conventional metrics 

We calculated two categories of spectral diversity metrics for each simulated plot-level 

image: (a) CV that relates to the information content or “complexity” of each plot 

(Rocchini et al. 2010, Wang et al. 2016a). (b) spectral diversity calculated based on the 

classified spectral types using the PLSDA classification. For all the simulated plots, 

spectral species richness, Shannon’s index and Simpson’s index were also calculated 

based on the classification results.  

Three conventional diversity indices that weighted species abundance by relative 

vegetation percentage cover were calculated and related to the spectral diversity metrics: 
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Shannon’s index (Shannon 1948), reciprocal of Simpson’s index (Simpson 1949, 

Williams 1964), and species evenness (Pielou 1966) (Table 5.2). Shannon’s Index 

expresses the equitability of all the species while Simpson’s Index focuses on a few 

dominant species (Whittaker 1972). 

 

Table 5.2 Summary of conventional diversity metrics used in this study 

Diversity Metric Description / Equation 

Species richness (S) Number of species in each simulated plot 

Shannon’s Index (H’) 𝐻′ = − ∑ 𝑝𝑖 ∗ ln (𝑝𝑖) 

Simpson’s Index (D) 𝐷 = 1 ∑ 𝑝𝑖
2⁄  

Evenness (J’) 𝐽′ = 𝐻′ ln (𝑆)⁄  

where pi is percent cover proportion of the number ith species. 

Figure 5.2 summarizes the methods used in this study, CV and PLSDA represent two 

categories of spectral diversity metrics (information-based and classification-based). Leaf 

clip-derived reflectance focused on the spectral variations mainly driven by the physical 

and chemical properties under normalized illumination, while image-derived reflectance 

also considered the illumination conditions and orientations of different leaves. 
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Figure 5.2 Experimental design and data used in this study. The two categories of spectral 

diversity metrics, coefficient of variation (CV) of spectral reflectance in space and 

spectral species obtained using partial least square discriminant analysis (PLSDA) 

classification, were used to relate to the biodiversity metrics, including species richness 

(S), Shannon’s Index (H’), Simpson’s Index (D), and evenness (J’).  

 

5.3 Results 

5.3.1 Reflectance and spectral variability 

5.3.1.1 Reflectance 

Leaf clip-derived reflectance of the 16 prairie species showed typical properties of 

vegetation spectra (Figure 5.3): absorption of blue and red light by chlorophyll and other 

pigments, high reflectance in the near infrared due to the multiple scattering, weak NIR 

water absorption features near 980 and 1200 nm, and strong water absorption near 1400 

and 1900 nm (Roberts et al. 2004, Ustin et al. 2009). Image-derived reflectance covered 

the visible-NIR region with higher spectral sampling intervals and showed similar 

patterns to the leaf clip-derived measurements in the visible region but had larger 

variations in the NIR region resulting from varying leaf angles and illumination (Figure 

5.3). 
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Figure 5.3 Mean reflectance spectra of prairie species used in this study. a: Leaf clip-

derived reflectance: leaf reflectance obtained with a portable spectrometer (HR-1024i, 

Spectral Vista Corp., Poughkeepsie, NY) (400 – 2400 nm) and leaf clip (LC-RP PRO; 

Spectra Vista Corp., Poughkeepsie, NY); b: Image-derived leaf reflectance: leaf 

reflectance extracted from images measured with an imaging spectrometer mounted on a 

tram (E Series, Headwall Photonics Inc., Fitchburg, MA) (400 – 1000 nm).  
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Considerable variation within each species was found by both reflectance sampling 

methods. The leaf clip-derived measurements (Figure 5.4a) normalized illumination and 

sampling geometry, and were restricted to large and mature leaves since smaller leaves 

could not cover the clip’s fiber probe. The image-derived measurements (Figure 5.4b) 

incorporated canopy structure to some extent by including leaves with different angles 

under different illumination conditions. Therefore, the image-derived measurements led 

to larger reflectance variations that were largely due to the variation in illumination and 

sampling geometry both among different species and among individuals within the same 

species (see Table S5.1 in Appendices for the within-species variations of each species). 

Within-species variation varied between leaf clip-derived and image-derived reflectance 

(Table S5.1 in Appendices). Amorpha canescens had the largest within-species variation 

for the leaf clip-derived data, while Petalostemum villosum had the largest within-species 

distance for the image-derived data. The large within-species variation for Petalostemum 

villosum captured by image-derived reflectance presumably reflected both leaf properties 

and canopy architecture, incorporating complex scattering properties of adjacent plant 

tissues (e.g., branches and flowers). 
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Figure 5.4 The distribution of different species within a principal component space: (a) 

leaf clip-derived reflectance and (b) Image-derived reflectance. Axes are the first and 

second principal components.  

 

5.3.1.2 Spectral distance 

Spectral separability of species can be successful if a high statistical distance exists 

between different species in the feature space and if the within- species variation is less 
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than among- species variation (Clark et al. 2005). In this study, among-species variability 

was greater than within-species variability for both leaf clip-derived and image-derived 

measurements (Table 5.3) when using Euclidean distance as the spectral variability 

metric. A slightly larger F-ratio was achieved when using the full range spectra than 

visible-NIR spectra with leaf clip-derived measurements, indicating that full range 

spectra increased the species spectral separability, presumably by adding additional 

information on leaf structure, water, and biochemical content. The greater separation of 

species with image-derived spectra was presumably due to the standardized illumination 

and geometry of the leaf clip-derived measurements among individuals, which removed 

spectral variation contributed by canopy structure and illumination.  This result indicated 

that including the variations in canopy structure, e.g. LAI, and leaf-angle distributions 

can increase species separability.  

 

5.3.1.3 Classification of prairie species 

Most of the prairie species could be classified with the PLSDA classification and the 

classification accuracy varied with method and spectral range. Generally, a higher 

accuracy was achieved with leaf clip-derived measurements than with image-derived 

measurements (Table 5.3). When all spectra were included, the overall accuracy of 

classification using leaf clip-derived data was 0.77 for using visible and NIR wavelengths 

and 0.80 for using all the bands (400 to 2400 nm). The major classification errors 

occurred with the several graminoid species (Poa pratensis, Andropogon gerardi and 

Panicum virgatum; data not shown). For the leaf clip-derived reflectance, using full range 

spectra increased the classification accuracy, indicating that including information in the 

SWIR wavelengths increased the species separability. When the mean reflectance of each 

species was used instead of all individual spectra to test the PLSDA classifier, the 

classification accuracy of leaf clip-derived measurements declined to 0.69 using either 

visible-NIR wavelengths or full spectra. The overall classification accuracy for image-

derived measurements was 100% (1) when using mean spectra only, and 0.73 when using 

all spectra. When using leaf clip data, all samples improved results over mean spectra 
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alone, but this was not true for the image-derived data, where mean spectra yielded 100% 

classification accuracy.  

Table 5.3 Non-parametric multivariate analysis of variance (NPMANOVA), comparing 

between- and within-species spectral variation using Euclidean distance and overall 

accuracy of PLSDA classification 

Spectral region Bands F ratios PLSDA Accuracy 

Leaf clip-derived Visible-NIR (mean Ref) 601 - 0.69 

Leaf clip-derived Visible-NIR (all samples) 133.06 0.77 

Leaf clip-derived full spectra (mean Ref) 2001 - 0.69 

Leaf clip-derived full spectra (all samples) 188.94 0.80 

Image-derived Visible-NIR (mean Ref) 762 - 1 

Image-derived Visible-NIR (all samples) 694.94 0.73 

 

5.3.2 Plot-level percent cover 

This modeling scheme allowed us to simulate any species richness from 1 to 16 by 

interpolation between the planted richness values (1, 2, 4, 8, and 16) and by simulating 

the field vegetation percent cover measurements. In our study, plots with higher species 

richness levels generally had higher vegetation percent cover (Figure 5.5 a), as has 

previously been noted (Wang et al. 2016b). Species composition had a large effect on the 

vegetation percent cover, especially in the plots of medium richness levels (Figure 5.5 b). 

For example, some species led to a relative high vegetation percent cover when the 

number of individuals was high, e.g., Amorpha canescens and Petalostemum purpureum, 

while some graminoid species, e.g., Asclepias tuberosa, Koeleria cristata, and 

Andropogon gerardii had a low vegetation percent cover (data not shown). 
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Figure 5.5 Measured (a) and simulated (b) vegetation percent cover at different species 

richness levels in the prairie plots. Linear relationships of mean and standard deviation of 

vegetation percent cover and species richness were created with the field measurements 

in 2007 (illustrated in panel a) and applied to parameterize a Gaussian function to 

simulate plot-level vegetation percent cover at each richness levels (illustrated in panel 

b).   

 

5.3.3 Spectral diversity 

5.3.3.1 CV 

In accordance with larger spectral distance captured by image-derived reflectance 

(relative to leaf-clip-derived reflectance), the plot-level CV values calculated with image-

derived reflectance had a larger range than CV calculated with leaf clip-derived 
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reflectance. When the mean reflectance spectrum of each species was used to simulate 

the plots, a weak but significant relationship was found between plot level CV and 

species richness (Table 5.4). The linear relationship between CV and diversity metric was 

improved by including species evenness (Shannon’s Index and Simpson’s Index) rather 

than calculating species richness alone, and CV showed the strongest linear relationship 

with Shannon’s Index (Table 5.4).  

Table 5.4 Slopes (and coefficient of determination, R2) of regressions between coefficient 

of variation (CV) and conventional diversity metrics (species richness (S), Shannon’s 

Index (H’), Simpson’s Index (D), and evenness (J’)) for different sampling methods and 

spectral ranges. Significant codes: NS, 0.05 < p, *, 0.01 < p < 0.05, **, 0.001 < p < 0.01 

and ***, P < 0.001.  Parameters were not shown for non-significant relationships. 

 Mean Reflectance (No Soil) Full Sample (No Soil) Full Sample (with Soil) 

 Leaf clip-

derived 

(visible-

NIR) 

Leaf clip-

derived 

(full 

range) 

Image-

derived 

(Visible- 

NIR) 

Leaf clip-

derived 

(visible-

NIR) 

 Leaf 

clip-

derived 

(full 

range) 

Image-

derived 

Visible- 

NIR) 

Leaf clip-

derived 

(visible-

NIR) 

Leaf clip-

derived 

(full 

range) 

Image-

derived 

(Visible- 

NIR) 

S 0.0041 

(0.27***) 

0.0044 

(0.25***) 

0.0067 

(0.18***) 

0.002 

(0.11***) 

0.0023 

(0.14***) 

0.003 

(0.01***) 

-0.001 

(0.06***) 

0.0039 

(0.25***) 

0.006 

(0.18***) 

H’ 0.031 

(0.52***) 

0.055 

(0.51***) 

0.082 

(0.37***) 

0.022 

(0.23***) 

0.029 

(0.30***) 

0.03 

(0.03***) 

NS 0.025 

(0.15***) 

0.038 

(0.09***) 

D 0.05 

(0.51***) 

0.016 

(0.31***) 

0.024 

(0.22***) 

0.007 

(0.16***) 

0.0094 

(0.21***) 

0.01 

(0.02***) 

NS 0.0057 

(0.05***) 

0.007 

(0.02***) 

J’ 0.11 

(0.37***) 

0.12 

(0.37***) 

0.19 

(0.32***) 

0.05 

(0.18***) 

0.064 

(0.22***) 

0.1 

(0.04***) 

0.009 

(0.01**) 

NS NS 

 

When estimating optical diversity via CV, adding within-species variation by using the 

full set of sample spectra instead of the mean spectrum for each species increased the CV 

values and weakened the relationships between CV and conventional diversity metrics 

(Table 5.4 and Figure 5.6). For the image-derived reflectance, the linear relationships 

between CV and diversity metrics almost disappeared. An analysis of covariance 

(ANCOVA) showed that the shapes of CV-Shannon’s Index relationships were changed 

by including within-species variation (p < 0.001). 
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Leaf clip derived CV showed stronger relationships with diversity metrics than image-

derived CV (Table 5.4). When the full set of sample reflectance were used, using full 

range leaf clip reflectance led to stronger CV-biodiversity relationships than using 

visible-NIR wavelength leaf clip reflectance. The slope of the CV-diversity relationship 

increased with increasing spectral distance captured by different sampling methods and 

spectral ranges (leaf clip derived visible-NIR < leaf clip-derived full range < image-

derived) (Figure 5.6).   

Adding soil spectra in the simulation had substantial effects on the plot level CV (Figure 

5.6), and greatly reduced the correlation with conventional biodiversity metrics (S, H’, D, 

and J’). When using the mean reflectance of each species, including soil in the simulation 

increased the plot level CV dramatically (approx. 500 times) and eliminated all the CV-

biodiversity relationships, indicating a confounding effect of soil on the ability to detect 

alpha diversity. When using the full set of spectral samples rather than the mean spectra 

alone, adding soil increased CV values and weakened the CV-biodiversity relationships 

(although relationships with S, H’ and D were still significant when using full-range leaf 

clip spectra or image-derived spectra). No significant relationships were found between 

Shannon’s index, Simpson’s index and CV calculated using the visible-NIR wavelengths 

of leaf clip-derived reflectance after including soil spectra. Image-derived CV was less 

sensitive to the inclusion of soil than the leaf clip-derived CV (Table 5.4, Figure 5.6). The 

effect of including soil on degrading the CV-biodiversity relationships is clearly visible in 

Figure 5.6. These results revealed that the degree of cover and bare soil also affected the 

information based spectral diversity metrics and their ability to detect alpha diversity. 
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Figure 5.6 Coefficient of variation-Shannon’s index relationships from the simulated 

plots. a: Leaf clip-derived (visible-NIR); b: Leaf clip-derived (full range); c: Image-

derived. The mean reflectance spectra (with soil) CV (Orange points) were drawn on the 

right Y-axis.  
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To test the separate contributions of richness and evenness to CV, we plotted CV as a 

function of both species richness and evenness (Table 5.5 and Figure 5.7). Generally, CV 

scaled with increasing species richness and evenness (Figure 5.7). The shape of the full 

sample CV-richness-evenness surfaces confirmed that both species richness and evenness 

affected the optical signal (Figure 5.7). No statistically significant interaction between 

richness and evenness was found with leaf clip-derived CV. On the other hand, a weak 

interaction between richness and evenness was found with image-derived CV, indicating 

that the effect of species richness on CV varied slightly with evenness. (Table 5.5).  

Leaf clip-derived CV and image-derived CV showed different patterns at the low 

richness but high evenness region (Figure 5.7). For the leaf clip-derived reflectance, CV 

values were lower at low richness than high richness at a given evenness. For the image-

derived reflectance, however, large CV values were often found at the low richness plots 

and the largest CV values occurred at one of the low richness plot (richness = 2). The 

large CV values obtained by the image-derived reflectance indicated that the species 

identities also affected the spectral diversity.   

 

 

 

 

 

 

 

 

 



149 

 

Table 5.5 ANOVA results of CV-richness and evenness relationships. The CV-richness 

and evenness relationships were plotted in Figure 5.7. 

Measurement Diversity Metric Mean Sum of Qquares F Value 

Leaf clip-derived VISNIR 

Mean Reflectance 

Richness 0.372 598.453*** 

Evenness 0.389 626.353*** 

Richness:Evenness 0.00091 1.464NS 

Leaf clip-derived VISNIR 

Full Sample 

Richness 0.0680 146.708*** 

Evenness 0.0833 179.720*** 

Richness:Evenness 0.000371 0.800NS 

Leaf clip-derived Full 

Spec Mean Reflectance 

Richness 0.435 531.219*** 

Evenness 0.48 585.919*** 

Richness:Evenness 0.00042 0.514NS 

Leaf clip-derived Full 

Spec Full Sample 

Richness 0.114 198.089*** 

Evenness 0.145 250.608*** 

Richness:Evenness 0.0018 3.1163NS 

Image-derived Mean 

Reflectance 

Richness 0.976 323.54*** 

Evenness 1.365 452.47*** 

Richness:Evenness 0.0405 13.44*** 

Image-derived Full 

Sample 

Richness 0.143 13.529*** 

Evenness 0.376 35.501*** 

Richness:Evenness 0.0881 8.319** 
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Figure 5.7 CV calculated using full set of sample reflectance spectra as a function of 

species richness and evenness. A Local Polynomial Regression Fitting method was used 

to fit the 3D surface. a: Leaf clip-derived (visible-NIR); b: Leaf clip-derived (full spectral 

range); c: Image-derived. The ANOVA results of CV-richness and evenness relationships 

were summarized in Table 5.5. 
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To understand why low richness plots sometimes had high CV with the image-derived 

measurements, we separated the image-derived CV into two categories (CV larger and 

less than 0.5) presuming that another mechanism besides species richness and evenness 

affected the spectral diversity. There was no clear relationship between CV and 

Shannon’s index when all the image-derived data were used. However, two contrasting 

and significant relationships emerged between CV and Shannon’s index for the two 

categories after the data division (Table 5.6 and Figure 5.8). For most the data, CV 

increased with increasing Shannon’s index, while a small portion of data showed 

decreasing CV with increasing Shannon’s index. Further exploration revealed that 

Petalostemum villosum that has the largest within-species variation among all the species 

was largely responsible for this effect. The deceasing CV-Shannon’s index relationship 

indicated that a high percentage of species with large within-species variation 

(Petalostemum villosum) or a mixture of a couple particular species (e.g., Lupinus 

perennis and Petalostemum villosum) led to high CV; increasing diversity level could 

decrease the CV value for these cases. This result revealed that besides the species 

richness and evenness, species composition and spectral properties of specific species 

identities affect CV values.   

Table 5.6 Dependence of CV on Shannon’s index for different measurements (sampling 

methods and spectral ranges). Values shown are multiple linear regression parameters, 

including intercepts, Slopes, R2, and P values.  

Measurements 
Regression Parameters  

Intercept Slope R2 P value 

Leaf Clip Visible-NIR 0.149 0.022 0.23 2.2e-16 

Leaf Clip Full Range 0.129 0.029 0.30 2.2e-16 

Image-derived (CV<0.5) 0.246 0.047 0.15 2.2e-16 

Image-derived (CV>0.5) 0.837 -0.15 0.58 1.9e-12 
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Figure 5.8 Coefficient of variation-Shannon’s index relationships from the simulated 

plots. a: Leaf clip-derived reflectance; b: Image-derived reflectance. The regression 

parameters were shown in Table 5.6. Only reflectance spectra of prairie plants were used 

to calculate CV. 

 

5.3.3.2 PLSDA classification  

The classification accuracy for simulated plots using mean reflectance depended only on 

the species composition of the plot. When using the mean reflectance of leaf clip-derived 
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reflectance, the classified species richness was equal to or less than the real species 

richness depending on which species was included because only 12 of 16 species could 

be recognized accurately. On the other hand, when using the mean reflectance of image-

derived reflectance, the classified diversity metrics perfectly predicted the conventional 

diversity metrics because all the species could be separated correctly using the mean 

reflectance of each species for the image-derived measurements (Table 5.3).   

When the full sample of reflectance spectra were used, the modeled species richness, 

Shannon’s index and Simpson’s index calculated with classified species overestimated 

the comparative real conventional diversity metrics (Figure 5.9). The larger 

overestimation obtained with image-derived reflectance than leaf clip-derived reflectance 

was due to the lower classification accuracy that presumably was caused by the larger 

within-species variation captured by the image-derived reflectance than leaf clip-derived 

reflectance. Additionally, the overestimation was larger in the low richness end than in 

the high richness end for both leaf clip-derived reflectance and image-derived reflectance.  
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Figure 5.9 Spectral diversity metrics, including richness (a), Shannon’s index (b), and 

Simpson’s index (c), calculated based on the PLSDA classification for the full sample 

reflectance spectra (Y-axis) versus comparative conventional diversity metrics (X-axis) 

for all the simulated plots. The dotted line in each panel represented the 1:1 line.   
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5.4. Discussion  

5.4.1 Advantages of image-derived reflectance 

The reflectance spectra of one species are determined by both biochemical and structural 

properties, and can be affected by many factors, including leaf pigments, water content, 

and structure properties (Pielou 1966, Ustin et al. 2004, Clark et al. 2005, Ustin and 

Gamon 2010, Ollinger 2011). Besides the spectral variation among different species, 

there is also considerable reflectance variation among individuals within the same species 

associated with leaf age and environmental conditions. In addition to internal features, 

leaf surface properties, such as wax and leaf hairs, can have large effects on leaf 

reflectance for leaves under different illumination conditions, especially for leaves with 

large incident or observation angles (Clark et al. 2005).  

Our study revealed that optical sampling methods can have important effects on 

biodiversity detection. Compared to the leaf clip measurements that presumably 

emphasized certain leaf trait differences, the image-derived reflectance obtained from the 

imaging spectrometer on the tram expanded the scope of field leaf reflectance collection 

by providing a large number of reflectance spectra for leaves under different natural 

illumination conditions. Although Unmanned Aerial Vehicle (UAV) have been proposed 

to be useful in obtaining high resolution data, in this case, small and low-cost drones are 

limited by the payload size and stability while the operational costs for large drones (e.g., 

NASA Ikhana) are very expensive (Anderson and Gaston 2013). With this unique dataset, 

we were able to explore the spectral diversity-biodiversity relationship with a leaf 

reflectance sample that covered larger and more realistic variations than possible with the 

leaf clip measurements.  By experimentally varying the pool of leaf reflectance samples, 

we found a large effect of sample variability on the ability to detect alpha diversity with 

remote sensing.   

This finding has implications for studies that “scale up” from leaf to canopy or stand-

scale samples. One way would be to try to replicate these effects using radiative transfer 

models. Instead, we were able to simulate plot scale results by using a realistic set of leaf 

spectra that captured the range of leaf traits and canopy-level effects of geometry and 
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illumination, presumably attaining a more realistic result because of the intrinsic 

limitations of many radiative transfer models (e.g., SAIL model) in dealing with complex 

canopy architecture, such as leaf clumping (Jacquemoud et al. 2009). The spatial 

structure of a remote sensing image relates to the size of the objects in the scene and the 

spatial resolution (pixel size). It has been found that the fine-scales spectral diversity-

biodiversity relationships can be weakened or lost with increasing pixel size (Wang et al. 

in review) presumably due to significant information lost when the sampling elements are 

small compared to the pixel size (O’Neill et al. 1986).   

5.4.2 Spectral diversity indices 

CV  

Previous studies have indicated that spectral diversity (CV) reflects a combination of 

species richness and evenness rather than species richness alone (Wang et al. 2016a), and 

this study supported that conclusion. CV might not be a good indicator for species 

richness only, because when species richness increases but evenness stays low, which 

meant that single species dominates the plot, the plot-level CV also remains low. This 

study also illustrated two different scenarios where the plot-level CV achieved large 

values (Figure 5.8): first, the diversity level of the simulated plot was high (high species 

richness and species evenness); second, the simulated plot had low species richness but 

there were large dissimilarities among simulated plots having different species and, at the 

same time, each species had a similar number of individuals (species evenness of the plot 

was high).  

This first scenario that CV increased with increasing diversity levels (Shannon’s index) 

was straightforward and in accordance with most the spectral diversity studies (Rocchini 

et al. 2010). However, our study revealed that it was possible for low diversity (richness 

or Shannon’s index, because value of Shannon’s index is limited by the species richness 

(0 < H’ < log(S))) plots to have high CV values. In this particular case, if a plot had low 

species richness but was dominated by Petalostemum villosum that has the largest within-

species variation in the image-derived measurements (Table S5.1 and largest ranges when 

plotted in PC space in Figure 5.4), or composed of Lupinus perennis and Petalostemum 

villosum with similar number of individuals, the CV of the plot could be even larger than 
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plots with high diversity levels (Figure 5.4). The large within-species variation of 

Petalostemum villosum captured by image-derived reflectance was presumably due to the 

tiny but dense and multi-layer leaves that led to large variations of illumination within 

canopies and the scattering light from flowers that was totally ignored by the leaf clip-

derived measurements. These results indicated that an idiosyncratic, species-specific 

affect on canopy architecture influenced optical diversity, suggesting that the presence or 

absence of key individual species could alter the CV-biodiversity relationship. In 

situations having this strong-single species effect, increasing diversity levels by adding 

more species to the plot could more likely decrease the plot-level CV.  

Classified species 

The accuracy of assessing spectral diversity metrics using classified species (spectral 

species or optical types) to estimate biodiversity depends on the spectral training sample 

and the accuracy of the classifier. In this study, the larger range of reflectance and lower 

classification accuracy obtained with image-derived measurements reflected the higher 

possibility of including individuals that cannot be identified correctly when generating 

the plots with random sampling strategies than with systematic leaf clip-derived 

reflectance. Some of the graminoid species were too similar to each other to be 

distinguished using their spectral traits. Consequentially, the overall classification 

accuracy for prairie ecosystems might decrease when many graminoid and fewer 

broadleaf species were included in a plot. This decreased accuracy of the classification 

for the simulated plots might lead to incorrectly estimating the true species richness and 

other diversity metrics (e.g., Shannon’s index).  

Background effects 

The scattering and reflectance properties of background (e.g., soil and litter) affect the 

vegetation canopy reflectance (Huete 1988, van Leeuwen and Huete 1996). An 

intermediate level (50%) of background cover has the greatest influence on the overall 

vegetation canopy reflectance and vegetation indices (Huete 1988). Our study indicated 

that the effects of background on detecting biodiversity through spectral diversity varied 

with the selected indices. The classification-based metric (PLSDA) was less sensitive to 
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background (e.g., soil) than the information-based metric (CV in this case) because, at the 

fine scales, the backgrounds, which are usually spectrally unique types, can be mapped 

accurately (Roth et al. 2015). Therefore, the selection of different spectral diversity 

metrics could have different performances under different conditions, depending upon the 

vegetation percent cover, species composition, and the properties of the sensor (spatial 

and spectral scale). 

Information-based indices versus classification-based spectral diversity metrics 

Our results reveal that selecting the right spectral diversity metrics for different situations 

may be critical for accurate biodiversity estimation. It is difficult to have a one-size-fits-

all criterion for assessing spectral diversity because it appears that the results would be 

based on the properties of the available data and the particular goals in mind. Here, we 

discuss some suggestions to consider.  

The effectiveness of information content indices (CV in this case) can be related to 

surrogacy. In biodiversity studies, the surrogacy hypothesis states that high species 

richness in one taxon is related to high richness in others (Magurran 2004). Similarly, 

species richness is also likely to be related to functional biodiversity to some degree. For 

example, a more diverse ecosystem can have a greater variety of functional behaviors as 

shown by plant traits that reflect different biochemical content, leaf structure, and 

physiological function. Therefore, information content indices might work better when 

medium to large pixel-size satellite images were used to estimate species or diversity at 

higher taxonomic levels (metacommunities or β diversity) (Rocchini et al. 2004, Rocchini 

2007). Presumably, information-based indices would be sensitive to the plant percentage 

cover because the optical properties of the background (e.g., soil and litter) also 

contributed to the indices (Figure 5.6).  

Classification metrics might work better under the circumstance that each species has a 

dense distribution and the distance between different species was large enough in spectral 

space to distinguish one from another (Figure 5.4). An example in this study is the 100% 

classification accuracy achieved by using the average spectra of each species from the 

image-derived reflectance (Table 5.3). It has been reported that the use of classification 
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methods to identify optical diversity (and thus biodiversity) becomes possible with high-

resolution imaging spectrometry (Féret and Asner 2014). However, the classification 

methods fail when it is impossible to find end spectral members or pure pixels rather than 

mixed pixels in the image or the species are too similar to be separated (e.g., 69% 

classification accuracy with average species reflectance from leaf clip-derived 

reflectance), and the classification accuracy decreases when scaling up due to  

information loss (Clark et al. 2005).  

Both high within- and among- species variation in reflectance properties influence the 

ability of spectral diversity indices to assess biodiversity. Generally, increasing within-

species variation weakens the ability of detecting biodiversity using information-based 

spectral diversity indices, as indicated in this study by the stronger relationships between 

CV calculated with average reflectance and diversity metrics than between CV calculated 

with full sample of reflectance and diversity metrics (Table 5.4). Having a larger within-

species variation than among-species variation clearly complicates detection of 

biodiversity (Roth et al. 2015) especially at low richness communities (Figure 5.9). 

Meanwhile, it might become less practical for either of these methods to assess 

distribution of rare species even from remarkably accurate and detailed datasets (Kerr 

2003).  

5.4.3 Spectral diversity across space and time  

Phenotypic plasticity means that one single species (or individual genotype) can develop 

different phenotypes under different environmental conditions (Pigliucci et al. 2006). In 

terms of space, this means an individual organism has the ability to change its phenotypic 

state or activity in response to changing environmental conditions (Garland and Kelly 

2006). As a result, an individual organism’s phenotype is the combination of interaction 

between its genome, the environment, and random events (Fusco and Minelli 2010) as 

modified in time. Over time, a single individual’s optical properties will vary with leaf 

and canopy development and this variation of plant leaf traits and canopy structures 

across environmental gradients can lead to high spectral variability among and within 

species (Asner 1998).  
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Understanding temporal changes in the expression of biodiversity is fundamental to 

understanding communities because sampling duration can have a profound influence on 

the perceived shape of distribution so it is hardly possible to have a good understanding 

of the community from one point measurement in time (Magurran 2007). Additionally, 

diversity changes can reflect changing environmental conditions in the short term and 

ecological and evolutionary processes in the long run (Magurran and Dornelas 2010). In 

terms of spectral diversity, including information about vegetation phenology might be 

able to decrease inter-species spectral similarity (Clark and Roberts 2012). Therefore, 

including optical measurements across the whole growing season could increase the 

classification accuracy for species having different phenological properties, such as leaf 

aging, leaf drop, flowering and fruiting (Jiménez and Díaz-Delgado 2015). For example, 

leaf aging could cause variations within individual canopy trees as large as intra- and 

interspecific variations in leaf morphological, biochemical and spectral traits in tropical 

species (Chavana-Bryant et al. 2016). Studies have also showed that the productivity-

biodiversity relationship can vary across the growing season (Wang et al. 2016b). This 

current study focused on the spectral properties of prairie plants in the peak season; in 

future work, more attention will be needed to understand temporal changes of spectral 

diversity.  

5.5 Conclusions 

The images used in this study, which were obtained with an imaging spectrometer 

mounted on a tram system, provided detailed information about spectral properties of 

plant leaves under different illumination conditions. With this technique, we obtained 

hyperspectral field images with among the finest spatial resolution (1 mm pixels) ever 

used in remote sensing. Our simulation framework allowed us to understand the spectral 

diversity-diversity relationship in ways that cannot be easily achieved with traditional 

leaf spectral sampling methods (e.g. leaf clips) alone. Our results revealed that the 

success of assessing biodiversity through spectral diversity can be influenced by species 

richness, evenness, composition, spectral properties of the species, the properties of the 

sensor (spatial and spectral scale) and the selected spectral diversity metrics. 
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This study related two categories of spectral diversity metrics, either based on 

information content (CV) or on classification results (PLSDA classification), to better 

understand how species richness, evenness and composition affect the spectral diversity 

using simulated synthetic hyperspectral images of prairie plants. Our results indicated 

that both species richness and evenness influenced spectral diversity metrics. Species 

identities showed substantial effects on both categories of spectral diversity metrics at 

this fine scale. Meanwhile, background (e.g., soil) effects on spectral diversity varied 

with the metric. Information theory-based spectral diversity metrics were sensitive to the 

background, while background had no effects on classification-based indices at this fine 

scale. Our findings can be used to understand the effects of species richness, evenness 

and composition on spectral diversity and guide the future regional studies of biodiversity 

estimation using remote sensing.  
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Chapter 6 Discussion and Conclusion  

6.1 Summary and Contributions 

This work has attempted to understand the spectral diversity – biodiversity relationship at 

a local scale using both empirical and theoretical methods. First, the biodiversity-

productivity relationship was tested though remote sensing in both experimental and 

natural prairie ecosystems, which indicated that it was feasible to use remote sensing to 

assess biodiversity. Further studies were conducted within the BioDIV experiment at the 

Cedar Creek Ecosystem Science Reserve that provides well maintained prairie plots with 

different diversity levels. In the ground-based experiments, an imaging spectrometer on a 

tram system was applied to obtain high-resolution (pixel size = 1 mm2) images that are 

not typically accessible in remote sensing. These images provided detailed information 

about spectral properties of each plant. Incorporating strategies of image resampling and 

a simulation framework allowed us to investigate the scale dependence of the spectral 

diversity-diversity relationship and how the species richness, evenness and composition 

affected the spectral diversity – biodiversity relationship, which cannot be easily achieved 

with empirical experiments alone. Moreover, the effects of spectral bands on spectral 

diversity were compared, and the influence of soil background was considered. 

The major findings of this study were:  

(1) NDVI, a common remote sensing measure of plant productivity, can be related to 

species richness, but it was also strongly affected by other factors, including 

canopy structure (cover or biomass), short-term water stress, and shifting 

flowering patterns that can confound the NDVI-richness relationship. The 

relationship between NDVI and biodiversity was sensitive to the vegetation 

phenology conditions and the strongest NDVI–biodiversity relationship was 

found in mid-summer, when NDVI showed a temporary decline associated with 

warm, dry conditions and anthesis. 
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(2) Differences of biomass and ecosystem production across a 10-km prairie transect 

in Mattheis Research Ranch, Alberta, Canada were shown clearly with airborne 

images. Regardless of the diversity method used, high biodiversity areas tended to 

have higher production in this grassland ecosystem. The optical diversity (CV) -

biodiversity relationships were sensitive to both richness and evenness, and the 

addition of evenness improved the relationship between optical diversity and 

biodiversity.   

(3) Among all the tested conventional biodiversity indices, spectral diversity showed 

the strongest relationship with species diversity indices combining species 

richness and evenness. The fine-scale study also showed rapid information loss 

with increasing pixel size and the best resolution to detect α diversity using 

spectral diversity at this prairie ecosystem was at a size close to a typical 

herbaceous plant leaf or single canopy.  

(4) Both species richness and evenness influenced spectral diversity metrics. Species 

identities also showed substantial effects on spectral diversity metrics at the fine 

scale. Meanwhile, background (e.g., soil) effects on spectral diversity varied with 

metrics: spectral diversity metrics based on information theory were sensitive to 

the background, while background had no effects on classification-based indices 

at this fine scale.  

(5) Compared to the leaf clip measurements that presumably emphasized leaf trait 

differences, the image-derived reflectance obtained from imaging spectrometer on 

the tram expanded the scope of field leaf reflectance collection by allowing us to 

obtain a large number of reflectance spectra for leaves under their natural 
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illumination conditions. The results revealed that spectral diversity was influenced 

by both leaf traits and canopy structure and including information on canopy 

structure can increase species separability. This finding has implications for 

studies that “scale up” from leaf to canopy or stand-scale samples. 

(6) Despite the scaling challenges, the airborne study suggested that effective, 

operational remote sensing methods could be developed and applied to detect 

biodiversity, even at the relatively coarse 1-m scale, and that optical diversity 

metrics could be related to other metrics of ecosystem productivity, providing 

exciting opportunities for combined assessment from remote sensing.  

6.2 Limitations and future work 

6.2.1 Expanding the findings to a larger extent 

Most of this study focused on the spectral properties of prairie plants at local scales. The 

Cedar Creek BioDIV experiment is a human maintained biodiversity experiment that 

might lack the full complexity of a natural landscape (Hillebrand and Matthiessen 2009). 

In this system, plant density is known to depend on diversity, which is maintained by 

weeding; therefore, lower diversity plots are less densely vegetated, have more bare 

ground. As diversity declines and plant density in the plot decreases, the degree of cover 

and bare soil affected spectral diversity. Moreover, the maintained species richness and 

biomass of the Cedar Creek plots are low comparing to most natural prairie ecosystems. 

So, the performance of CV at high diversity is unclear. Therefore, a better sampling 

approach that includes different ecosystems or biomes is needed to test the optical 

diversity – biodiversity relationship in the future.  

Calculations biodiversity metrics over large landscapes (e.g., Mattheis ranch) necessarily 

involves a degree of abstraction. At large scales, detailed species counts are not possible 

and the quality of field biodiversity sampling decreases with increasing grain size, so 

other methods (e.g., abstraction to dominant species or vegetation types) are necessary, 
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analogous to the information loss occurring when transitioning from fine- to coarse scales 

in remote sensing analyses.  

The temporal changes of biodiversity have not received as much attention as the spatial 

distribution of biodiversity (Magurran 2008). Satellite remote sensing provides images as 

a snapshot in time. In terms of spectral diversity, additional information about the 

vegetation phenology might be able to improve the performance of spectral diversity 

metrics because changing phenological state, for example due to leaf aging, can lead to 

variations within individual canopy trees as large as intra- and interspecific variations in  

leaf morphological, biochemical and spectral traits in tropical species (Clark and Roberts 

2012, Chavana-Bryant et al. 2016). Understanding the temporal changes of spectral 

diversity is also critical to remote sensing of biodiversity. While this study considered the 

biodiversity-productivity linkage through time, further studies should also explore the 

relative influence of leaf traits and canopy structure on optical diversity through time. 

6.2.2 Concept of surrogacy – where one measure provides a proxy of another 

The classical surrogacy hypothesis has three main aspects: 1)  high species richness in 

one taxon is related to high richness in others (cross-taxon surrogacy), 2) high genetic or 

family richness is related to high species richness (within-taxon surrogacy), and 3) high 

environmental e.g., temperature or topographical, diversity is related to high species 

richness (environmental surrogacy) (Magurran 2004). For example, macrolichens served 

as a good indicator of species richness of mosses, liverworts, and woody plants in the 

Indian Garwhal Himalaya (Negi and Gadgil 2002) and family and genus-level diversity 

metrics were reported to be very good indicators of species diversities (Lee 1997). 

Presumably, species richness is also related to functional biodiversity to some extent. 

Then, a more diverse ecosystem can have a greater variety of functional behaviours as 

shown by plant traits that reflect different biochemical content, leaf structure, and 

physiological function. This variation of plant traits can affect the optical properties of 

plants and lead to spectral detectable features (spectral diversity). This extension of the 

surrogacy concept may be a productive direction for future research in this 

multidisciplinary subject. While this is a goal of the overall project that funded much of 

this thesis research (“Linking remotely sensed optical diversity to genetic, phylogenetic 
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and functional diversity to predict ecosystem processes”), a full analysis of surrogacy 

was beyond the scope of this thesis. Assessment of other aspects of diversity (e.g. below-

ground or phylogenetic diversity), and linking these to remote sensing, remains work in 

progress. 

6.2.3 New remote sensing technologies 

Over the past hundred years, Earth observation techniques have evolved from aerial 

photograph, coarse resolution satellite images to products generated by digital imaging 

spectroscopy, LiDAR and radar systems. Besides of the increasing number of all purpose 

Earth observation satellites, novel ground-level remote sensing platforms have been 

introduced to ecological studies and have transformed ecological research (Kerr and 

Ostrovsky 2003). For example, newly automated sensors, e.g., the two wavelengths 

NDVI and PRI sensors, allow great flexibility to accomplish continuously sampling 

(Gamon et al. 2015). And the remote sensors carried by unmanned aerial vehicles (UAVs) 

can deliver fine spatial scale data at suitable repeat times with reasonable cost (Anderson 

and Gaston 2013). Although there is still a challenge to applying UAVs to obtain 

hyperspectral or LiDAR data due to issues like safety and carrying capacity, these new 

technologies are beginning to provide quantitative and detailed information about our 

Earth and expanding our abilities to detect the changes in Earth properties and processes.  

In this context, drones might be particularly useful in “filling the gap” between airborne 

and proximal studies, i.e. the range of spatial scales where much information on optical 

diversity appears to be lost. 

Deep-learning algorithms, which are branches of machine learning, try to find the 

representative and discriminative features in a hierarchical manner from the data. Deep 

learning algorithms have been widely used in remote sensing data analyses, including 

imaging processing, classification, and pattern recognition (Zhang et al. 2016). The 

development of new algorithms along with increasing computing power might be helpful 

in extracting information from large remote sensing datasets. Comparing to the widely-

used algorithms, e.g., support vector machines (SVM) and artificial neural networks 

(ANN), genetic programming (GP) that is generally defined as a specialization of genetic 

algorithm is quite new in geoscience and remote sensing (Lary et al. 2016). GP has been 
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used to map coffee crops by combining textural and spectral information with SPOT 

images (dos Santos et al. 2010). In terms of biodiversity assessment using remote sensing, 

a clear and solid understanding of the spectral diversity-biodiversity relationship is 

needed when using these new algorithms because the machine learning algorithms are 

highly affected by the training or sampling data and we don’t want to be lost in the “black 

box” (Castelvecchi 2016).   

6.3 Conclusion  

There is little doubt that remote sensing can contribute to biodiversity monitoring, but we 

need to develop effective collaborations between experts in remote sensing and experts in 

biodiversity monitoring and conservation to make full use of this potential (Pettorelli et al. 

2014). Also, a global network to gather biodiversity observations and broader ecosystem-

level observations is needed (Turner 2014, Jetz et al. 2016). In the United States, the 

National Ecological Observatory Network (NEON) has been created. NEON proposes to 

link in situ sampling around the country with airborne and satellite remote sensing and 

provides open source data to understand the impacts of climate change, land use change 

and invasive species on continental-scale ecology (http://www.neonscience.org). The 

international Group on Earth Observations (GEO) partnership, particularly the global 

Biodiversity Observation Network (GEO BON), serves as the first attempt by national 

governments to combine remote sensing biodiversity measurements with genetic-, 

species- and ecosystem-level observations globally (Scholes et al. 2012). By connecting 

local and regional biodiversity observation networks, the international network can 

connect experts in different fields and gather data at multiple scales (e.g., in situ, airborne 

and satellite data) to fill gaps in the current biodiversity observation, provide a deeper 

understanding of the relationship between biodiversity and ecosystem services and 

ultimately, conserve the Earth’s biodiversity.  

A paradigm is the set of background assumptions that a discipline makes and it is the 

worldview that the scientists in one discipline hold. Paradigms mold subject area, 

approaches and models of problems solving (Kuhn 1970). The criteria of observation 

often vary with the paradigm, including the perspectives taken, the processes involved, 

and of the interactions included (Pickett et al. 2007). It might be still early to say that 

http://www.neonscience.org/
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remote sensing has started a new paradigm of biodiversity research, but it does offer a 

novel perspective on global diversity monitoring and conservation. As Stoms & Estes 

demonstrated in an early paper that discussed estimating biodiversity though remote 

sensing (Stoms and Estes 1993): “with remote sensing technology, we may be able to 

make real progress in understanding why more species occur in some places than in 

others and in identifying the most critical places that must be protected to preserve the 

maximum number of species into the 22nd century and beyond.” Optimistically, this 

process might be advanced because the development of new technologies is far beyond 

people imagined decades ago. By enhancing cooperation from multidisciplinary scientists, 

policy makers and others, we can improve global biodiversity estimation and 

conservation.  

To end this discussion, I would like to reverse and modify the famous opening phrases in 

the novel of A tale of two cities:  

It is the worst of time, it is the best of time.  
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Appendices 

Chapter 2 

Table S2.1 Planted species richness and composition of each plot used in this study. Two 

species were not germinated in 1994, so plots were reseeded with different species in the 

same functional groups in 1995. Two woody species (Quercus ellipsoidalis and Quercus 

macrocarpa) occurred infrequently and did not exist in the selected plots in this study. 

The species abbreviations and identities are summarized in Table S2.2. 

Plot #  Species richness Species 

2 1 Lesca 

3 4 Asctu Liaas Monfi Panvi Solri  

5 1 Andge 

6 2 Panvi Schsc 

11 1 Achmi 

12 8 Achmi Koecr Luppe Monfi Petca Petvi Poapr Schsc Solri 

Sornu 

15 8 Agrsm Elyca Monfi Petca Petpu Petvi Poapr Queel Quema 

Solri 

16 1 Asctu 

20 1 Amoca 

30 16 Achmi Agrsm Amoca Andge Asctu Elyca Koecr Liaas 

Luppe Monfi Panvi Poapr Queel Quema Schsc Solri Sornu 

31 1 Schsc 

33 4 Agrsm Andge Liaas Petca Petvi 

34 16 Achmi Agrsm Amoca Andge Asctu Elyca Koecr Luppe 

Monfi Panvi Petpu Poapr Queel Quema Schsc Solri Sornu 

35 16 Agrsm Amoca Andge Asctu Elyca Koecr Lesca Liaas 

Luppe Monfi Panvi Petpu Queel Quema Schsc Solri Sornu 

44 4 Asctu Panvi Petca Petpu Petvi 

45 4 Andge Liaas Petpu Quema 

56 2 Luppe Schsc 
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57 8 Achmi Agrsm Koecr Lesca Monfi Petca Petvi Poapr Schsc 

Solri 

58 4 Andge Monfi Poapr Solri Sornu 

67 8 Agrsm Koecr Luppe Monfi Petca Petvi Queel Quema Solri 

Sornu 

68 16 Achmi Agrsm Asctu Elyca Koecr Lesca Liaas Luppe Monfi 

Panvi Petpu Poapr Queel Quema Schsc Solri Sornu 

92 1 Sornu 

93 4 Agrsm Koecr Luppe Petpu 

117 2 Asctu Luppe 

118 8 Achmi Agrsm Andge Asctu Koecr Monfi Petpu Quema 

Solri 

129* 1 Liaas 

142 1 Koecr 

164 16 Agrsm Amoca Andge Asctu Elyca Koecr Lesca Liaas 

Monfi Panvi Petpu Poapr Queel Quema Schsc Solri Sornu 

165 2 Poapr Sornu 

168 2 Andge Koecr 

169 16 Achmi Agrsm Andge Asctu Elyca Koecr Lesca Liaas Luppe 

Monfi Panvi Petpu Poapr Queel Quema Solri Sornu 

170 8 Achmi Asctu Elyca Koecr Monfi Petca Petpu Petvi Queel 

Solri 

171 2 Koecr Luppe 

205 1 Petpu 

265* 1 Luppe 

* indicates the plot was not included in the whole-plot reflectance sampling campaign.  
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Table S2.2 Species abbreviations and identities in table S2.1. 

Abbreviations Identities 

Achmi Achillea millefolium 

Agrsm Agropyron smithii 

Amoca Amorpha canescens 

Andge Andropogon gerardii 

Asctu Asclepias tuberosa  

Elyca Elymus canadensis  

Koecr Koeleria cristata 

Lesca Lespedeza capitata 

Liaas Liatris aspera 

Luppe Lupinus perennis 

Monfi Monarda fistulosa 

Panvi Panicum virgatum 

Petca Petalostemum candidum 

Petpu Petalostemum purpureum 

Poapr Poa pratensis 

Queel Quercus ellipsoidalis 

Quema Quercus macrocarpa 

Schsc Schizachyrium scoparium 

Solri Solidago rigida 

Sornu Sorghastrum nutans 
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Chapter 3 

 

Figure S3.1 The dominant vegetation cover map (1:15,000) at Mattheis Research ranch 

(Becker 2013), false color (Near Infrared-Red-Green) airborne image and code (Becker 

2013) for dominant species in both phenology sites (E3 and E5). The dominant 

vegetation cover map was derived from a combination of aerial photos and field sampling 

begun in 2010 but published in 2013 (Becker 2013).  

 

Table S3.1 Code (Becker 2013) for dominant species at two phenology and flux sites 

Code Dominant species 

DMGA32 Glycyrrhiza lepidota 

DMGA32-dry Stipa comata, Glycyrrhiza lepidota 

DMGA43 Stipa comata, Carex stenophylla, Calamovilfa 

longifolia 

DMGC5 Rosa woodsii, Stipa comata, Calamovilfa longifolia, 

Carex stenophylla 

DMGA3 Stipa comata, Koeleria macrantha, Bouteloua 
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gracilis 

DMGA46 Stipa comata, Bouteloua gracilis, Agropyron 

cristatum 

DMGA 40 Agropyron smithii, Carex stenophylla 

 

Table S3.2 Percent cover of dominant vegetation types at E3 site 

Species/ 

Community code 

Percent Cover  

(200 m radius) 

Percent Cover  

(500 m radius) 

DMGA32 0.072519 0.084158 

DMGA32-dry 0.03564 0.042891 

DMGA43 0.76665 0.750265 

DMGC5 0.029128 0.055279 

Intermittent alkali 0.003819 0.000849 

Low Prairie 0.078827 0.043499 

Shallow Marsh 0.001032 0.001911 

water 0.003258 0.001809 

Wet Meadow 0.009125 0.010522 

Exposure earth 0 0.001233 

Others 0 0.007584 

Total 1 1 

 

Table S3.3 Percent cover of dominant vegetation types at E5 site 

Species/ 

Community code 

Percent Cover 

(200 m radius) 

Percent Cover  

(500 m radius) 

DMGA3 0.969884 0.843248 

DMGA46 0.019399 0.055221 

Wet Meadow 0.010716 0.007673 

Exposure earth 0 0.005448 

Low Prairie 0 0.007682 

Shallow Marsh 0 0.001349 

water 0 0.000213 

90DMGA3/10DMGA40 0 0.070067 

Others 0 0.0091 

Total 1 1 
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Chapter 4 

 

4.1 Cedar Creek BigBio plots composition 

Table S4.1 Planted species richness and composition of each plot used in this study. Two 

species were not germinated in 1994, so plots were reseeded with different species in the 

same functional groups in 1995. Two woody species (Quercus ellipsoidalis and Quercus 

macrocarpa) occurred infrequently and did not exist in the selected plots in this study. 

The species abbreviations and identities are summarized in Table S4.2.   

Plot #  Species richness Species 

2 1 Lesca 

3 4 Asctu Liaas Monfi Panvi Solri  

5 1 Andge 

6 2 Panvi Schsc 

11 1 Achmi 

12 8 Achmi Koecr Luppe Monfi Petca Petvi Poapr Schsc Solri 

Sornu 

15 8 Agrsm Elyca Monfi Petca Petpu Petvi Poapr Queel Quema 

Solri 

16 1 Asctu 

20 1 Amoca 

30 16 Achmi Agrsm Amoca Andge Asctu Elyca Koecr Liaas 

Luppe Monfi Panvi Poapr Queel Quema Schsc Solri Sornu 

31 1 Schsc 

33 4 Agrsm Andge Liaas Petca Petvi 

34 16 Achmi Agrsm Amoca Andge Asctu Elyca Koecr Luppe 

Monfi Panvi Petpu Poapr Queel Quema Schsc Solri Sornu 

35 16 Agrsm Amoca Andge Asctu Elyca Koecr Lesca Liaas 

Luppe Monfi Panvi Petpu Queel Quema Schsc Solri Sornu 

44 4 Asctu Panvi Petca Petpu Petvi 

45 4 Andge Liaas Petpu Quema 
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56 2 Luppe Schsc 

57 8 Achmi Agrsm Koecr Lesca Monfi Petca Petvi Poapr Schsc 

Solri 

58 4 Andge Monfi Poapr Solri Sornu 

67 8 Agrsm Koecr Luppe Monfi Petca Petvi Queel Quema Solri 

Sornu 

68 16 Achmi Agrsm Asctu Elyca Koecr Lesca Liaas Luppe Monfi 

Panvi Petpu Poapr Queel Quema Schsc Solri Sornu 

92 1 Sornu 

93 4 Agrsm Koecr Luppe Petpu 

117 2 Asctu Luppe 

118 8 Achmi Agrsm Andge Asctu Koecr Monfi Petpu Quema 

Solri 

129* 1 Liaas 

142 1 Koecr 

164 16 Agrsm Amoca Andge Asctu Elyca Koecr Lesca Liaas 

Monfi Panvi Petpu Poapr Queel Quema Schsc Solri Sornu 

165 2 Poapr Sornu 

168 2 Andge Koecr 

169 16 Achmi Agrsm Andge Asctu Elyca Koecr Lesca Liaas Luppe 

Monfi Panvi Petpu Poapr Queel Quema Solri Sornu 

170 8 Achmi Asctu Elyca Koecr Monfi Petca Petpu Petvi Queel 

Solri 

171 2 Koecr Luppe 

205 1 Petpu 

265* 1 Luppe 

* indicates the plot was not included in the whole-plot reflectance sampling campaign.  
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Table S4.2 Species abbreviations and identities in table S4.1. 

Abbreviations Identities 

Achmi Achillea millefolium 

Agrsm Agropyron smithii 

Amoca Amorpha canescens 

Andge Andropogon gerardii 

Asctu Asclepias tuberosa  

Elyca Elymus canadensis  

Koecr Koeleria cristata 

Lesca Lespedeza capitata 

Liaas Liatris aspera 

Luppe Lupinus perennis 

Monfi Monarda fistulosa 

Panvi Panicum virgatum 

Petca Petalostemum candidum 

Petpu Petalostemum purpureum 

Poapr Poa pratensis 

Queel Quercus ellipsoidalis 

Quema Quercus macrocarpa 

Schsc Schizachyrium scoparium 

Solri Solidago rigida 

Sornu Sorghastrum nutans 

 

4.2 Signal noise ratio effects on CV 

In the simulation work, scaling up (aggregating) the 1 mm pixel sizes also smoothed the 

data, reducing instrument noise. This analysis explored how this noise affected the CV.  

The method of this analysis: 

To evaluate noise effects, we a) estimated the signal power of the 1 mm reflectance 

image.  b) generated white Gaussian noise according to the signal power and fixed SNR.  
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c) added the noise back to reflectance at large scales, and d) calculated CV from 

reflectance spectra with and without the added noise. 

The SNR of the image can be affected by the camera settings, environment and the 

properties of the targets. A fixed Signal-to-Noise ratio (SNR) was used to simulate the 

noise, instead of assessing the true noise properties of the instrument. The SNR of the 

instrument was set to 500 in this test.  

SNR =  
Signal Power

Noise Power
                                      (Equation S4.1) 

The signal power for each wavelength was estimated with the 1mm Headwall reflectance 

image.  

SignalPoweri =
∑ ρi

2

Signal Length
                            (Equation S4.2) 

where SignalPoweri and ρi indicate the signal power and reflectance value at wavelength 

i, respectively. Signal length indicates the number of pixels included in the signal power 

estimation. In this analysis, 10, 000 pixels were used to estimate the signal power at each 

wavelength.  

 

Figure S4.1 Noise effects on the scaling CV results.  
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The synthetic images represent an idealized situation, but the added noise had a minor 

effect on the calculated CV (Figure S4.1). Relative to the CV without additional noise, 

adding a SNR of 500 increased the CV at larger scales, but the decreasing CV value was 

mostly dominated by the loss of information when scaling up. From this, we conclude 

that the trend is primarily due to reduced spectral variability (and not reduced SNR) with 

increasing pixel size. 

 

4.3. Spectral range effects on CV 

Our imaging spectrometer covered the visible-NIR range, so cannot address the relative 

benefits of the SWIR for biodiversity detection. This test used a non-imaging full range 

spectrometer to evaluate the effects of spectral range on CV.  A main goal was to see if a 

SWIR detector added additional information (present in the CV) to assist in biodiversity 

detection. 

A full range spectrometer (PSR 3500, Spectral Evolution, Lawrence, MA, USA) was 

used to collect data in 30 BigBio plots (6 replicates at each richness levels) in July 2016, 

which were the same plots used in the primary study reported in the paper. The spectral 

range of the spectrometer covered 350 to 2500 nm. The spectral resolution was less than 

3 nm at 350 to 1000 nm, less than 9 nm at 1500 nm and less than 6.5 nm at 2100nm. A 

white reference panel (Spectralon, Labsphere, North Sutton, NH, USA) was used to 

calculate the reflectance. The spectrometer was carried by a tram system (Gamon 2006) 

to collect data along a transect 2 m from the north edge of each plot. A 6 degree lens (PP 

system, Amesbury, MA, USA) was mounted on the tram cart at a height of 2 meters, 

yielding a ground pixel size (IFOV) of approximately 20 cm. Data were collected every 

20 cm and the first and last half meters at the east and west end of each transect were 

skipped to avoid edge effects, yielding 40 samples for each plot. All the measurements 

were done on clear sunny days and between 10 a.m. and 3 p.m. to minimize shadow 

effects.  For each plot, the CV was calculated for different spectral regions (Table S4.3) 

and compared to independent metrics: planted species richness, Shannon’s Index, and 

Simpson’s Index.   
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Table S4.3 R2 and P value (in parentheses) of the CV-biodiversity metrics relationships 

for different spectral ranges (in nm). The biodiversity metrics were calculated with 

biomass data from 2014 and 2015. The strongest correlations and the associated spectral 

range are shown in bold. 

 400-

1000 

400-700 700-

1000 

400-

1765 

400-

2350 

1000-

1765 

1765-

2350 

Planted 

Richness 

0.09 

(0.12) 

0.02 

(0.40) 

0.21 

(0.01) 

0.10 

(0.10) 

0.11 

(0.08) 

0.10 

(0.10) 

0.12 

(0.06) 

Shannon’s 

Index 

0.04 

(0.16) 

0.04 

(0.28) 

0.20 

(0.01) 

0.08 

(0.12) 

0.10 

(0.09) 

0.11 

(0.08) 

0.11 

(0.09) 

Simpson’s 

Index 

0.10 

(0.09) 

0.02 

(0.45) 

0.23 

(0.007) 

0.11 

(0.08) 

0.11 

(0.07) 

0.1 

(0.09) 

0.12 

(0.07) 

 

In this test, using the full range data didn't appear to add much extra information to CV.  

The strongest R2 arose from 700-1000 (not the full range), and adding data above 1000 

nm didn’t improve CV for diversity estimation (Table S4.3).  This higher correlation 

using the 700-1000 nm range suggests a strong influence of canopy structure (evident in 

the 700-1000 nm range) on optical diversity.  While not a conclusive test, these results 

suggest that a full-range spectrometer may not add much power to this particular method 

of assessing biodiversity based on CV. We note that full-range spectrometers have many 

vegetation absorption features not present in the VIS-NIR range, and these can play an 

important role in some methods of biodiversity assessment (Asner, 1998; Ollinger, 2011; 

Ustin, 2013).  

4.4. Sample size effects on CV 

Since sample size varies with degree of aggregation used for the synthetic image, this 

simple study aims to test how the sample size affects the coefficient of variation.  

Methods 
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Two images with different species richness level were selected. One is from plot 5, SR=1. 

The other is from plot 34, SR=16 (Figure S4.2). 100 pixels were randomly picked from 

each image and used to calculate CVsample. 10000 samples were taken to calculate the 

sampling distribution (Figure S4.2). We then changed the sample size to 64, 81, 400, 900, 

1600, and 2500 and calculated the CV of the two plots with 10000 iterations to evaluate 

sample size effects on CV (Figure S4.2). Because the estimated CV tends to be low when 

applied to a small or moderate sized sample, we calculated the unbiased estimated CV at 

each sample size (Sokal & Rohlf, 1995) as:  

𝑐�̂�∗ =  𝐶�̂�(1 +
1

4𝑛
)                                    (Equation S4.3) 

where n indicated the sample size. 

 

Figure S4.2 Histogram of CV calculated with synthetic images. Sampling iterations = 

10000. CV: CV calculated with the simulated image; Sample mean: average CV of 10000 

samples.  
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Figure S4.3 The sample size effects on CV. a: estimated CV of plot 34 (SR=16); b: 

estimated CV of plot 5 (SR=1). The estimated CV was calculated by averaging 10 000 

iterations at each sample size (mean of the “sampling distribution”). The unbiased 

estimated CV was calculated using Equation S4.3 at each sample size. At a small sized 

sample (64), the estimated CV underestimated the CV by 2%. 

 

We can estimate the CV of the raw image by repeating the sampling process and 

calculating the mean. The more complex the plot is, the higher chance to get extreme CV 
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values when take a sample. Samples from high richness plots have a wide range in the 

frequency plot, visible as a large standard deviation of the normal distribution. 

 

The variation in CV decreased with increasing sample size (from 64 to 2500 (Figure 

S4.3). In this test, the estimated CV from 1000 iterations underestimated the population 

CV by around 2% with the smallest sample size (64). The underestimation can reach 6% 

when a very small sample size is used (sample size = 4). This test indicates that CV is not 

very sensitive to the sample size and the CV-scale trend is mainly driven by the spectral 

variability.  
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Chapter 5 

Table S5.1 Species and mean distance from centroid in the spectral space of each species 

using two sampling methods (image-derived and leaf-clip-derived spectra) and two 

spectral ranges (vis-NIR and full-range)  

Species  Abbrev 

Image-

derived (vis-

NIR) 

Leaf Clip 

(vis-NIR) 

Leaf Clip (full 

range) 

Achillea millefolium  ACHMI 1.256001015 0.813613 1.160409 

Amorpha canescens AMOCA 1.167630003 0.890453 1.37737 

Andropogon gerardii ANDGE 1.240865428 0.561511 0.876769 

Asclepias tuberosa ASCTU 1.920660501 0.780499 1.18425 

Koeleria cristata KOECR 1.934593559 0.677192 1.208055 

Lespedeza capitata LESCA 1.885387576 0.813369 1.23377 

Liatris aspera LIAAS 1.173263778 0.599524 0.885812 

Lupinus perennis LUPPE 1.038683238 0.686042 1.053653 

Monarda fistulosa MONFI 1.03093993 0.591716 0.912182 

Panicum virgatum PANVI 1.058286603 0.518749 0.809089 

Petelostemum candidum PETCA 0.848094812 0.680564 1.017332 

Petalostemum purpureum PETPU 0.875418829 0.689497 0.992343 

Petalostemum villosum PETVI 3.818134861 0.802017 1.272249 

Poa pratensis POAPR 1.634507667 0.795865 1.221838 

Schizachyrium scoparium SCHSC 1.165955337 0.659302 1.056764 

Solidago rigida SOLRI 0.878025491 0.565257 0.837494 

Average - 1.43290304 0.69532 1.06871 
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Plot-level contribution of between- species variation to the total variation 

To estimate the contribution of between-species variation to the total variation, we 

calculated the mean distance to the centroid in the spectral space for each species (Price 

1994, Anderson 2001) : 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 = ∑ 𝑑𝑖
2 ∗ 𝑛𝑖

𝑆

𝑖=0

∑ 𝑑𝑗
2

𝑁

𝑗=0

⁄  
(S5.1) 

where S indicated the species richness and N indicated the total measurements in a 

simulated plot. di indicated the distance from the centroid of each species to the centroid 

of the plot and ni indicated the number of points it represents, which is the number of 

individuals of the ith species.   

The average contribution of between-species variation increased when species richness 

got higher (Figure S5.1). The variation of between species variation was smaller among 

the high richness plots than low richness plots. The plot-level between species variation 

calculated using leaf clip-derived full range spectra was slightly higher than using leaf 

clip-derived visible-NIR wavelengths indicated that using full range spectra added useful 

information to separate different species. The contribution of between species variation 

was larger in the plots created using the image-derived reflectance than leaf clip-derived 

reflectance. For both reflectance measurements, the within-species variation was 

generally larger than the between-species variation at all species richness levels. The 

between-species variation contributed less than 40% of the total variation for most of the 

simulated plots.   
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Figure S5.1 Contribution of between-species variation to the total variation  

a: Leaf clip-derived (visible-NIR); b: Leaf clip-derived (full range); c: Image-derived 

(visible-NIR) 

 



1 

 

Table S5.2 Distance between the mean reflectance of different species in the spectral space (Image-derived reflectance). The species 

abbreviations and identities are summarized in Table S5.1.  

 

ACHMI AMOCA ANDGE ASCTU KOECR LESCA LIAAS LUPPE MONFI PANVI PETCA PETPU PETVI POAPR SCHSC SOLRI 

ACHMI -1.00 0.58 4.31 3.89 1.60 2.52 2.63 5.08 2.56 1.77 2.52 0.74 1.80 0.51 0.38 2.35 

AMOCA 

 

-1.00 4.02 3.59 1.33 2.15 2.35 4.73 2.33 1.70 2.23 0.49 2.15 0.77 0.69 2.10 

ANDGE 

  

-1.00 0.67 2.71 1.99 1.69 1.01 1.87 2.68 1.79 3.65 6.08 4.71 4.13 2.03 

ASCTU 

   

-1.00 2.32 1.48 1.29 1.24 1.39 2.38 1.44 3.21 5.68 4.28 3.76 1.56 

KOECR 

    

-1.00 1.03 1.04 3.49 1.07 0.64 0.92 0.97 3.38 2.01 1.45 0.86 

LESCA 

     

-1.00 0.57 2.60 0.68 1.42 0.62 1.81 4.28 2.86 2.44 0.57 

LIAAS 

      

-1.00 2.47 0.46 1.16 0.19 1.98 4.42 3.04 2.48 0.47 

LUPPE 

       

-1.00 2.62 3.57 2.60 4.39 6.85 5.44 4.94 2.78 

MONFI 

        

-1.00 1.15 0.55 1.91 4.35 2.96 2.44 0.24 

PANVI 

         

-1.00 1.03 1.32 3.51 2.24 1.55 1.03 

PETCA 

          

-1.00 1.87 4.30 2.92 2.35 0.50 

PETPU 

           

-1.00 2.48 1.07 0.77 1.69 

PETVI 

            

-1.00 1.43 1.98 4.14 

POAPR 

             

-1.00 0.82 2.75 

SCHSC 

              

-1.00 2.25 

SOLRI 

               

-1.00 

 

 


