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Abstract. This report overviews the Mass Spectrometry Data Classification and
Feature Extraction problem. After reviewing previous research new classifica-
tion and feature extraction techniques are presented and empirically evaluated on
three data sets. One of the key points made in this work, is that feature extraction
techniques are composed of dimensionality reduction and feature selection meth-
ods. However, the two notions are quite different. The need for dimensionality
reduction stems from the fact that classification algorithms cannot cope with the
large number of input variables. On the other hand, feature selection techniques
attempt to remove irrelevant and/or redundant features. Often classification algo-
rithms cannot handle both a large number of variables and irrelevant variables
that are not needed or even worse are misleading. In order to evaluate the dimen-
sionality reduction and feature selection techniques, we use a simple classifier
to evaluate performance. This makes the approach tractable. The experiments in-
dicate that feature selection algorithms tend to both reduce data dimensionality
and increase classification accuracy, while the studied dimensionality reduction
technique sacrifices performance as a result of lowering the number of features a
learning algorithm needs to deal with.
Keywords: BioInformatics, Mass Spectrometry, Proteomic Pattern Recognition,
Classification, Feature Extraction, Multi-Resolution.
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1 Introduction

Early detection of diseases, such as cancer, is critical for improving patient sur-
vival rates and medical care. Modern diagnosis systems are still unreliable, slow,
or nonexistent for numerous diseases. To satisfy the ever growing need for ef-
fective screening and diagnostic tests, medical practitioners have turned their
attention to mass spectrometry based methods?. While other proteomic meth-
ods exist, such as PAGE??, mass spectrometry (MS) based approaches provide
very high throughput, can be widely applicable, and have the potential to be
highly accurate. This study examines pattern recognition inproteomic applica-
tions. A good review of proteomic techniques can be found in [24]. The term
proteomics will be restricted to mean the study of protein spectra, acquired by
mass spectrometry techniques, to classify disease and identify potentially useful
protein biomarkers. Abiomarker is an identified protein(s) whose abundance
is correlated with the state of a particular disease or condition. Currently, sin-
gle biomarkers, for example PSA used to detect Prostate cancer, are relied on
for disease screening and diagnosis. The identification of each biomarker, tai-
lored for a specific disease, is a time consuming, costly and tedious process. In
addition, for many diseases it is suspected that no single biomarker exists, that
can produce a reliable diagnoses. The need for pattern recognition is further
motivated by the fact that

the ability to distinguish sera from an unaffected individual or an in-
dividual with [for example] ovarian cancer based upon a single serum
proteomic m/z feature alone isnot possibleacross the entire serum study
set. Accurate histological distinction is only possible when the key m/z
features and their intensities are considered en masse. A limitation of in-
dividual cancer biomarkers is the lack of sensitivity and specificity when
applied to large heterogeneous populations. [4]

The fact that there may not even beany biomarkers that can provide reliable
screening and diagnosis has prompted research into proteomic pattern recogni-
tion(see Figure 17). This research reviews the current literature on proteomic
pattern recognition with emphasis on data resolution characteristics, feature ex-
traction and pattern analysis tools. More specifically, the high dimensionality of
the MS data requires aggressive feature extraction techniques in order to make
machine learning algorithms feasible. This study compares several simple yet
effective techniques for feature extraction that produce results competitive with
those found in the reviewed litterature on three data sets acquired for this study
(described in the appendix). The rest of the paper is organized as follows. First,
we motivate the need for feature extraction by a section on related research.

? See appendix for details and definitions.
?? PAGE- polyacrylamide gel electrophoresis. Also known as 2DE for 2 dimensional polyacry-

lamide gel electrophoresis. More details can be found in [24].
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Figure 1. Disease diagnostics using proteomic patterns. 

Fig. 1. Conceptual view of proteomic pattern recognition for disease diagnosis.A sample
drawn from the patient is applied to a protein chip which is made up of a specific chromatographic
surface. After several washing steps and the application of an energy-absorbing molecule, the
species that are retained on the surface of the chip are analyzed via mass spectrometry. The
surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS)
is used to acquire the proteomic patterns. The species bound to the array surface can be ionized
by matrix-assisted laser desorption/ionization (MALDI) and their mass-to-charge (m/z) ratios
measured by TOF MS. The result is a mass spectrum of the species that bound to and subsequently
desorbed from the array surface. The pattern of peaks within the spectrum is analyzed using
pattern recognition software to diagnose the biological sample. [4]

Next, we outline the feature extraction algorithms which are compared in the
subsequent section on experimental results. The paper is concluded with a dis-
cussion of results and future research.

2 Related Research

We start the review by briefly examining a study evaluating two different mass
spectrometry techniques. Motivated by the need for greater recall and preci-
sion? ? ?, in [4] the standard TOF MS technique was compared to the SELDI
TOF MS approach. The goal was to determine whether sensitivity and PPV

? ? ? see appendix for definitions of precision and recall.
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(i.e., recall and precision) scores would improve by using a higher resolution
spectra provided by the SELDI TOF MS technique (Figure 2 depicts a spec-
trum at two different resolutions). Keeping all other parameters constant, in-
cluding the machine learning algorithm, classification based on high resolution
data achieved100% specificity and PPV scores on the ovarian cancer data set
using the SELDI based MS technique†. In contrast, none of the models‡ based
on the low resolution mass spectra could achieve perfect precision and recall
scores. The researchers concluded that the high resolution technique, which in-
creased resolution 60 fold, improves the performance of the pattern recognition
technique used. In a field where the outcome of a test can mean the difference
between life and death and whose goal is to improve the quality of life, send-
ing healthy patients for unnecessary surgery or letting misdiagnosed patients die
is extremely undesirable. Therefore, pattern recognition techniques need highly
relevant information in order to make the most accurate and reliable predic-
tions. According to [13], due to the low prevalence of (ovarian) cancer a screen
test would require a 99.6% specificity to achieve a clinical acceptable positive
predictive value of 10%. As a result, high resolution MS techniques have been
adopted to increase the recall and precision of the provided diagnosis. Unfor-
tunately, increasing the data resolution proliferates ”the curse of dimensional-
ity”, making a large number of modern day ML (Machine Learning) techniques
intractable. As a result,feature extraction is needed to extract/select salient
features in order to make pattern recognition techniques feasible. In addition to
making ML algorithms feasible, feature extraction can help identify the set(s) of
proteins (i.e., features) that can be used as potential biomarkers. In turn, key pro-
tein identification could shed light on the nature of the disease and help develop
clinical diagnostic tests and treatments.

The rest of this section surveys previous research on proteomic pattern
recognition with the emphasis on feature extraction and classification tech-
niques.

2.1 Lung Cancer Studies

In September 2002, the First Annual Conference on Proteomics Data mining
presented two challenges. The first, was to cluster a set of MS samples into
two groups with the labels (diseased or healthy) of the patients unknown. The
second challenge was essentially the same but included the labels. The two chal-
lenges exemplify the conceptual division of machine learning into unsupervised
and supervised techniques.The project concentrates on supervised techniques
for classification but addresses unsupervised methods for the task of feature ex-

† Unfortunately, these results are not cross validated. I.e., only a single test set was used to
evaluate performance

‡ For each technique a total of 108 models were created using the approach in [10], which used
SOM’s and genetic algorithms to learn the models.
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Figure 4. Comparison of mass spectra acquired using a SELDI-TOF MS and a QqTOF MS equipped with a SELDI source.

Fig. 2. TOP Standard TOF MS spectra .BOTTOM Sixty fold increase in resolution as a result
of using SELDI TOF MS. The spectra represents an abundance histogram (y-axis in parts-per-
million) of ionized proteins with specific mass-to-charge (m/z) ratios (x-axis). An increase in
resolution basically increases the number of histogram bins or buckets as depicted in this figure.
[4]

traction. In both challenges, presented by the Departments of Radiology and
Biostatistics at Duke University, the spectra of 41 patients (24 healthy and 17
individuals with lung cancer) was given to the participants. The extremely small
sample size is yet another constraint within the proteomics field that makes the
pattern analysis that much harder.

In [31] the researches used local linear regression to adaptively smooth the
spectra and reduce noise. Peaks were then hand-extracted and normalized us-
ing theL1-norm. Using top 13 intensity peaks as input into an SVM module,
the procedure achieved an error rate of 2% in a leave-one-out cross-validation
(LOOCV ) manner. While the researchers were able to achieve excellent perfor-
mance, the high level of human intervention detracts from the goal of automated
pattern recognition.

Good performance on the supervised lung cancer set was achieved in [2].
Through visual inspection, the researchers removed sinusoidal noise, performed
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baseline subtraction, and normalized the spectra usingL1 metric. Interest-
ingly, the fractionation process§ was reversed much like in [31] and the spec-
tra smoothed. The process effectively created a blurred version of the original
high resolution spectra acquired by the MALDI TOF MS technique. Next, max
filtering was used to select peaks and further reduce the dimensionality of the
data. After several more processing steps that reduced the size of each data vec-
tor from 60,831 to 506, a genetic algorithm (GA) was used to find informative
peaks that discriminate between healthy and cancer stricken individuals. Finally,
Fisher’s linear discriminant analysis was performed on the selected peaks. The
procedure was repeated in a leave-one-out cross-validation (LOOCV ) manner.
The best model misclassified 3 out of 41 samples giving an error rate of7.3%.

In [34] wavelets were used to reduce the dimensionality of the data and R-
trees (similar to decision trees) were used to classify the data. In a LOOCV
test 6 out of 41 samples were misclassified, producing an error of14.5%. (Ten
fold CV produced an error of20%.) A similar approach was used in [18] where
wavelets were also used for dimensionality reduction. Then partial least squares
coupled with discriminant analysis achieved a classification error of15%. The
researchers indicate that neural networks and SVM’s achieved a higher accu-
racy but did not report cross validated results using these techniques. A similar
approach using partial least squares together with logistic regression was used
in [27] and achieved perfect accuracy using a LOOCV setup. However, even the
authors state that there was ”considerable effort involved in the preprocessing
of the data” [27].

In [12], an information theoretic approach was taken in order to extract rel-
evant features. After, once again merging fractions into reliable peaks, the re-
searchers used entropy to select relevant peaks from the blurred spectra. Once
relevant peaks were identified a boolean mask was created to indicate whether
a feature was relevant. The researchers hypothesized that the presence of a rel-
evant peak was more important than its intensity, therefore all subsequent work
used the binary mask as the input vector. The training phase used unsupervised
clustering and fuzzy logic applied sequentially in a feedback loop. The precess
recursed until stable clusters were found. Prototypical vectors (centroids) were
then created, corresponding to individual clusters. The nearest-neighbor method
is then used to classify a new sample based on the distance to class prototypes.
The distance metric seems to be also leaned from the training data using a k-
means like neural network. Results, however, are considerably poorer than those
of previous works.

In [7] the data set was normalized by combining adjacent mass spectra to-
gether and there by reducing the input dimensionality from the original 60,831
features to just 1,676. Next, baseline subtraction was performed and absolute
peak heights were converted into relative peak heights. The data was then buck-

§ The fractionation process is discussed in the appendix
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eted using an entropy measure. The number of bins was derived by means of an
MDL technique. Feature selection was done via two techniques, Relief-F and
InfoGain. InfoGain, like other statistical techniques considers the relevance of
each feature independently and is based on the entropy measure mentioned pre-
viously. In contrast Relief-F [17] uses a nearest-neighbor like approach and is
more context sensitive. In conjunction with the two feature extraction (FE) tech-
niques, the researchers used six machine learning (ML) algorithms, namely: a
multi-layer perceptron, an artificial neural network, a Naive Bays algorithm, a
nearest-neighbor algorithm, two decision tree algorithms and a set cover rule
learner; in order to determine the best (FE,ML) pair. Over a 10-fold cross val-
idation the best result of 2.4% error was achieved using the Relief-F together
with the multi-layer perceptron algorithm.

The rest of the entries used techniques that yielded ever decreasing perfor-
mance results. In [21], the CART algorithm was used after the data was buck-
eted into 13 bins. No statistically significant results were given, however, on the
test set the approach achieved a 10% error. In [22], the researchers manually
selected peaks and ran a number of statistical algorithms such as logistic regres-
sion, linear discriminant analysis and decision trees. Since no cross-validation
was not performed, deciphering a clear winner is difficult is this particular set-
ting. Finally, in [29], the researchers concentrated solely on the unsupervised
clustering problem and used order statistics as a distance metric on pre-ranked
peaks. The distance metric was used by PCA algorithm to cluster the unlabelled
data. This technique seems to be closely related to multi-dimensional scaling
(MDS) algorithm commonly used to factor distance matrices.

It is interesting to note that a number of researchers (for example in [2, 18,
31, 12, 7]) chose to reduce the dimensionality of the data by merging neigh-
boring features together. This effectively reduces the resolution of the data and
contradicts the claim made in [4] that higher resolution spectra leads to better
classification accuracy. Therefore an interesting line of research is use a rigor-
ous empirical study in order to validate the conjecture that higher resolution data
indeed produces better classification performance.

2.2 Ovarian and Breast Cancer Studies

In [19] the researchers aimed at identifying breast cancer from MS spectra. In
total 169 samples were used in this study, with 103 patients having been diag-
nosed with breast cancer. The initial data was log-normalized to reduce sample
variance. Using a specialized version of structural risk minimization algorithm¶,
the features were ranked according to the amount each contributed towards max-
imal sample separability. Multi-variate logistic regression was then used to build
a classifier that discriminated between healthy and unhealthy individuals. In a
20-fold cross-validation study, using a 70/30% train/test set ratio, the approach

¶ The exact algorithm was Unified Maximum Separability Analysis (UMSA) by ProPeak
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achieved an average sensitivity of 93% and a specificity of 91%, for an average
accuracy of 92%.

In [10], genetic algorithms together with self-organizing maps were used
to distinguish between healthy women and those afflicted with ovarian cancer.
Although cross-validation studies were not conducted, the approach was able to
correctly classify all cancer stricken patients and 95% of healthy women, on a
single test set. To improve the overall predictive accuracy the researchers turned
to a higher resolution MS technique in [4]. As previously discussed this change
in MS technique yielded a number of perfect predictive models when compared
to the low resolution technique. Unfortunately, cross-validation studies were not
presented.

In [20], the researchers used the PCA for dimensionality reduction and LDA
for classification. The data set(s) was the same as in [10, 4] obtained from [8].
The researchers conducted a detailed study using various train/test set sizes.
For each train/test data split 1000 cross-validation runs (with re-sampling) were
conducted. When training sets were larger than 75% of the total sample size,
perfect (100%) accuracy was achieved. Using only 50% of data for training,
the performance only dropped by only 0.01%. This results represents the most
significant and statistically valid performance for the ovarian cancer set and over
all related research literature. We can also conclude that PCA appears to be an
effective way to reduce data dimensionality.

In [32], researchers compared two feature extraction algorithms together
with several classification approaches. The T-statistic was used to rank features
in terms of relevance. Then 2 feature subsets were greedily selected (respec-
tively having 15 and 25 features each). Then, support vector machines, ran-
dom forests, Linear Discriminant Analysis, Quadratic Discriminant Analysis,
k-nearest neighbors, and bagged/boosted decision trees, were used to classify
the data. In addition, random forest were also used to select relevant features
with previously mentioned algorithms used for classification. Again 15 and
25 feature sets were selected and classification algorithms applied. When the
T-statistic was used as a feature extraction technique, SVM, LDA and Ran-
dom Forests classifiers obtained the top 3 results (accuracy is unclear from the
graphs, but appears to be about 85%. On the other hand classification improved
to approximately 92% when random forests are used as both feature extractors
and classifiers (1-nearest-neighbor also had a similar performance).

2.3 Prostate Cancer Studies

In [1] the researchers used a decision tree algorithm to differentiate between
healthy individuals and those having prostate cancer. This study, used the SELDI
TOF to acquire the mass spectra. ROC curves were used to identify informative
peaks which were subsequently used by the decision tree classification algo-
rithm. The researchers chose not to perform cross-validation, but on a single
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Comparison of three reports for prostate cancer diagnosis based on SELDI-TOF technology.
Adam et al. (1) Petricoin et al. (12) Qu et al. (29)

Diagnostic sensitivity and
specificity

83%; 97% 95%; 78–83% 97–100%; 97–100%

SELDI-TOF chip type IMAC-Cu Hydrophobic C-16 IMAC-Cu
Distinguishing peaks, m/za 4475, 5074, 5382, 7024,

7820, 8141, 9149,
9507, 9656

2092, 2367, 2582, 3080,
4819, 5439, 18220

Noncancer vs cancer: 3963, 4080,
6542, 6797, 6949, 6991, 7024,
7885, 8067, 8356, 9656, 9720

Healthy individuals vs BPH:b 3486,
4071, 4580, 5298, 6099, 7054,
7820, 7844, 8943

Bioinformatic analysis            Decision tree algorithm Proprietary; based on genetic
algorithms and cluster analysis

Boosted decision tree algorithm

a m/z ratios were rounded to whole numbers for simplicity. m/z ratios in bold font represent those identified by Adam et al. (10) and Qu et al. (12) for differentiating
cancer from noncancer patients. The underlined m/z ratio represents a peak identified by Adam et al. (10) for differentiating cancer from noncancer patients and by
Qu et al. (12) for differentiating healthy individuals from patients with benign prostatic hyperplasia.

b BPH, benign prostatic hyperplasia.

Fig. 3. Comparison of classification techniques for prostate cancer diagnosis. From [6]. Respec-
tively, the accuracies for [1, 11, 28] are 89%, 83%, 98%. This comparison demonstrates the wide
classification variance due to different MS techniques and ML approaches.

test set the classifier had 81% sensitivity and 97% specificity, yielding an accu-
racy of 89%.

In [28] improved performance from [1] by using ROC curves together with
AdaBoost and its variant Boosted Decision Stump Feature Selection (BDSFS).
AdaBoost achieved perfect accuracy on the single test set for the prostate cancer
data set. However, a 10-fold cross validation performance had an average sen-
sitivity of 98.5% and a specificity of 97.9%, for an overall performance 98%.
For the BDSFS, the results were considerably worse, with a sensitivity of 91.1%
and a specificity of 94.3%. The researchers informally report that other classi-
fiers had similar accuracies but were more difficult to interpret.

In [20], the researchers used Principal Component Analysis for dimension-
ality reduction and LDA for classification. The data set was obtained from the
authors of [1]. In exact same fashion as for the ovarian cancer set, the researchers
conducted a detailed study using various train/test set sizes. For each train/test
data split 1000 cross-validation runs (with re-sampling) were conducted. When
training sets were larger than 75% of the total sample size perfect average accu-
racy of 88% was achieved. Using only 50% of data for training, the performance
only dropped to 86%. In comparison to ovarian cancer sets the lower accuracy
suggests that this data set is much more difficult to classify correctly.

In [11, 33] researchers used Genetic Algorithms for feature extraction and
Self Organizing Maps for classification of prostate cancer. This approach
achieved a 95% specificity and a 71% sensitivity, for an average accuracy of
83%. Although cross validation was done, the details were not presented.

In [6], the aforementioned studies on prostate cancer raised an interesting
line of questions. Why do the features and classification performance vary so
drastically across the different studies. The results, summarized in Figure 3 in-
dicate that different SELDI-TOF approaches combined with different machine
learning techniques for pattern recognition produce highly variable results. This
further motivates the need for comparative studies done on a regular bases using
several MS techniques in conjunction with a number of ML approaches.
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3 Feature Extraction and Classification Methods

Clearly, feature extraction is central to the fields of machine learning, pattern
recognition and data mining. The focus of this research is on statistical and
multi-resolution feature extraction approaches. The next subsection introduces
general feature extraction concepts, followed by a description of algorithms
used in this study.

3.1 Feature selection

Optimal‖ feature set selection has, in general, been found to be an intractable
problem [16]. However, numerous feature selection and extraction methods
have been shown to perform well in practice. Traditionally, feature selection
approaches have been partitioned into three categories: (i) Filter methods, (ii)
Wrapper Methods, and (iii) Weighting Methods.

Filter Methods Filter based approaches attempt to select features based on
simple auxiliary criteria, such as feature correlation, in order to remove redun-
dant features. Such approaches inevitably decouple the selection process from
the performance component, in order to be tractable, but may ultimately select
irrelevant features as a result. An example of a filter approach is Principal Com-
ponent Analysis [14], which reduces the dimensionality of the input by select-
ing principal components that capture a significant portion of variance within
the data.

Wrapper Methods In contrast, wrapper approaches attempt to evaluate fea-
ture relevance within the context of a given task and avoid intractability by us-
ing greedy search methods. In other words, the number of possible subsets is
restricted by the greedy selection procedure, and each candidate feature subset
is evaluated using the performance element. Thus far a variety of greedy algo-
rithms have been proposed to sequentially select feature sets. Sequential For-
ward (resp. Backward) selection (SFS and SBS) methods start from an empty
(resp. full) set of features and at each step add (resp. remove) a single feature
which produces the greatest increase in performance. One of the most effective
algorithms is the Sequential Floating Forward/Backward Selection (SFFS and
SFBS) algorithms [26]. This algorithm in essence combines SFS and SBS. Af-
ter adding a single feature to the active set of features via SFS, the algorithm
repeatedly invokes SBS to remove features from an active set. If after remov-
ing a feature from an active set performance increases, that feature can never be

‖ In this context optimality is evaluated with respect to classification accuracy. I.e., an optimal
feature subset produces the highest classification accuracy possible given the full set of fea-
tures. In the worst case all2f feature subsets, wheref is the number of features, may need to
be examined in order to find the subset yielding maximal classification accuracy.
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added back into the active set again. The SBS process continues until there is
no improvment in performance as a result of removing a feature from the active
set. Once SBS has terminated, SFS resumes its search for a single feature that
produces the greatest improvement in performance as a result of being added to
the active set.

Run Time Analysis of SFS and SFFSClearly, if a feature is permanently re-
moved from the active set, optimality has been sacrificed for a polynomial run
time. To see why the algorithm is polynomial observe that worst run time of SFS
occurs when the whole feature set must be added to the active feature set. Let the
total number of features bef . In the worst case SFS examinesf features in the
first pass,f−1 features in the second, and so on until examining just one feature
in the last iteration and adding it to the active set that contains every other fea-
ture. Hence the number of calls to the chosen classifier will be

∑f
i i = f(f−1)

2
or more convenientlyO(f2). So the worst time complexity of SFS is quadratic
in the number of calls to a given classifier and the total cost isO(f2)O(Cf ),
whereO(Cf ) is the worst-time complexity of the classification algorithm on
f features. This is a very crucial point, that makes wrapper-methods based on
SFS and SBS very costly. For the exposition of this point, consider using a least
means square (LMS) algorithm as a classifier. In general LMS requires the so-
lution of the linear systemAx = b, which usually costsO(f3) additions and
multiplications. Hence feature extraction via SFS coupled with LMS will have
a worst case running time ofO(f6). Now consider the fact that a typical spectra
acquired via Mass Spectrometry may contain between 5000 and 200,000 fea-
tures, depending on the type of MS. Thus using SFS+LMS can easily become
intractable. The same reasoning applies to sequential backward selection, which
exhibits worst case behavior when all but one of the features need to be deleted
from the active set (which contains all features at the beginning of the SBS pro-
cedure). This inevitably brings us to the SFFS algorithm which uses both SFS
and SBS. The worst case happens when all features are added by SFS but in the
very last iteration the SBS procedure deletes all but the last added feature. In
that case SFFS isO(n4) in the number of calls to the base classifier. This is per-
haps the key reason why wrapper methods can be impractical for large feature
sets. In practice, however, this worst case behavior rarely happens.

Weighting Methods The weighting approach, simply assigns relevance
weights to all possible features based on the accuracy of a simple machine learn-
ing algorithm trained on each feature individually. Examples of such approaches
include weighted nearest neighbors [15] and AdaBoost [30] techniques.

Composite Methods More recently researchers have tried to combine several
algorithms together on order to boost the overall performance. For example
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in [3], RELIEF[17] was used to remove irrelevant features. Correlation based
clustering was subsequently applied to eliminate redundant features. Finally
SFF(B)S algorithms were used to greedily select the required number of fea-
tures from the remaining set.

In a similar fashion, we note the similarity of the wrapper and weighting ap-
proaches, and propose to combine their strengths into meta-wrappers. The major
problem with wrapper approaches is the need to invoke the performance element
which can be costly. Given the fact that Mass Spectrometry data is composed of
thousands of features, a complex and costly performance element simply makes
wrapper methods intractable. In order to make sequential selection algorithms
practical an efficient classifier is needed whose run-time cost scales linearly with
the number of features. Such an algorithm is presented in the next subsection.

3.2 Centroid Classification Method

A fast and simple algorithm for classification is the centroid method [23]. This
algorithm assumes that the target classes correspond to individual (single) clus-
ters and uses the cluster means (or centroids) to determine the class of a new
sample point. A prototype pattern for classC1 is defined as the arithmetic mean:

PC1 =
1
n

n∑
i=1

xi (∀xi ∈ C1) (1)

wherexi’s are the training samples labeled as classC1. Recall that the training
sample is a MS spectra represented as a multi-dimensional vector. In a similar
fashion we can obtain a prototypical vector (PCj ) for all the other classesCj .
Classification on an unknown samplex is determined by :

C(x) = arg min
Cj

d(PCj , x) (2)

whered(x, y) is some distance function or

C(x) = arg max
Cj

s(PCj , x) (3)

wheres(x, y) is a similarity function.
This simple classifier will form the basis of our studies. Clearly it works

with any number of features and its run-time complexity is proportional to the
number of features and the complexity of the distance or similarity metric used.
This study will use simple metrics such asL1 andAngle distances defined by:

L1(x, P ) = ‖x − p‖1 (4)

with ‖y‖1 =
∑f

i |y(i)| andy(i) being the value of theith feature. Similarly we
define the angle similarity metric as
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Angle(x, P ) =
‖x · P‖
‖x‖ · ‖P‖

(5)

the valueAngle(x, P ) is actually the Cosine of the angle, but that does not
matter for our purposes. Clearly both metrics have linear costs in the number
of features. In this study data sets contain either 2 or 4 classes and hence the
number of calls to a metric is either 2 or 4. Thus the centroid classifier is linear
in the number of features as classification time. During training either 2 or 4
prototypes are computed the cost of computing each prototype isO(fn), where
f is the number of features andn is the number of training samples which
belong to a given class. Note thatn only varies from data set to data set and not
during training or feature selection process. Hence we can viewn as a constant
and declare that the centroid classifier hasO(f) cost in the training phase.

3.3 Greedy and SFS Feature Selection

Using the aforementioned centroid classifier as the base classifier we can se-
lect features using the SFS technique or via the Greedy approach. The greedy
approach simply ranks features according to the performance of the base clas-
sifier using each feature independently of all others. Once ranked and sorted,
the greedy selection approach incrementally adds the topmost ranked feature to
the active set. In totalf feature subsets are tried, wheres1 contains a single top
ranked feature,s2 contains the 2 top ranked features, etc. In contrast to the SFS
procedure, the Greedy approach is linear in the number of calls to the base clas-
sifier since at each stage only the topmost ranked feature is added to the data set
and there are onlyf data sets. Unlike the SFS algorithm the Greedy approach
will not stop until all f sets have been tried. The final stage of the algorithm
simply selects the feature set producing the best classification accuracy.

3.4 Statistical tests

An alternative to ranking features by invoking the base classifier, is to use a
filter based ranking method, such as statistical test procedures. In general, sta-
tistical tests analyze each feature independently of others just like the weighting
approach of the previous section. The student-t (T) test and the Kolmogorov-
Smirnov (KS) [25] tests, are no exception. Both tests compare feature values
for samples belonging to classi to feature values from samples belonging to
classj. The goal is to determine if the feature values for classi come from a
different distribution than those for classj. The key difference between the two
tests are the assumptions they make. The T-test assumes that both distributions
have identical variance, and makes no assumptions as to whether the two distri-
butions are discrete or continuous. On the other hand, the KS-test assumes that
the two distributions are continuous, but makes no other assumptions.
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In the case of the T-test the null hypothesis is thatµA = µB, meaning
that the mean of feature value for class A is the same as the mean of the fea-
ture values for class B. In the case of the KS-test the null hypothesis is that
cdf(A) = cdf(B), meaning that feature values from both classes have an iden-
tical cumulative distribution function. Both tests ask if observed differences are
statistically significant and return a significance score representing the probabil-
ity that the null hypothesis is true. Thus, features can be ranked using either of
these statistics according to the significance score of each feature. In addition,
the two tests can be combined together into a composite statistic. While many
possible composition strategies exist, we limit ourselves to a simple multiplica-
tive composition, whereby the T-test significance score is multiplied together
with the KS-test significance score.

Both the benefits and drawbacks of these statistical tests result from the
assumption that features are independent. On one hand the independence as-
sumption makes these approaches very fast. On the other hand the independence
assumption clearly may not hold for all data sets. More technical details on sta-
tistical tests can be found in [25].

Recall that in [32] the t-statistic test and random forest were used for fea-
ture extraction together with a number of classifiers. The researchers used the
T-statistic to rank each feature but chose to test classification algorithms with
15 and 25 top-ranked features. No justification was provided for selecting this
specific number of features. Their line of research appears more focused on
comparing classifiers rather than the two feature extractors (T-test and random
forests) used in the study. In contrast, we show that feature ranking coupled
with greedy selection canautomatically find a feature subset of arbitrary size
that improves performance (with respect to using either a single best feature or
using the all features).

3.5 Dimensionality Reduction

While feature selection algorithms attempt to select relevant features, or con-
versely remove redundant or irrelevant ones, the goal in dimensionality reduc-
tion techniques is to literally reduce the number of features while preserving
the information content. In proteomic pattern recognition by far the most com-
mon technique is down sampling. This technique actually filters the spectra and
sub-samples it to reduce the dimensionality. The most common approach is to
convolve the spectrum with a uniform filter at regular intervals (windows). In
order to test the conjecture made in [4], that higher resolution data tends to im-
prove classification performance, we will use this approach to test the merit of
dimensionality reduction via down sampling.



16

4 Experimental Results

The experimental results section is split into several parts. First preliminary ex-
periments are conducted to establish the difficulty each data set, provide a com-
parison of different normalization schemes, and establish which similarity met-
ric is most appropriate for the centroid classification algorithm. The next section
focuses on the dimensionality reduction by way of down sampling. The next set
of experiments use statistical tests to rank each feature, then extract relevant
features from the MS spectra using the Greedy selection procedure outlined in
the previous section. Performance is once again reported based on the centroid
classifier. After that attention is devoted to wrapper-approaches using Greedy
and SFS algorithms. The final subsection provides a comparative analysis of
techniques used in this and previous research endeavors.

For all experiments, each data set was split into 3 equal subsets. Each test
fold used one of the three subsects with the remaining two subsets used for
training and validation. Unless otherwise noted, the reported accuracy was the
average classification accuracy over the three test folds and the error bars repre-
sent one standard deviation with respect to this average performance. Accuracy
is taken as the arithmetic average of sensitivity and specificity.

4.1 Preliminary Experiments

The purpose of the preliminary experiments is to compare different normal-
ization schemes, and similarity metrics. Furthermore these initial experiments
enable the different data sets to be ranked in terms of classification difficulty.

For all experiments presented in this subsection the centroid classification
method was used. For each data set, the following three different normalization
schemes were tested: (i) L1-norm, (ii) infinity-norm, and (iii) identity (i.e., no
normalization). For each norm the following three similarity metrics were se-
lected: (a) correlation, (b) negative L1 distance, and (c) angular distance (see
[?] for details). Figures 4-7 show the results. From the results we can see that
the Ovarian cancer set appears to be the easiest, followed by the Heart/Kidney
data set. Finally the two versions of the Prostate cancer data set appear to be
the most difficult sets. The reason the prostate data is split is that the set con-
tains four groups of samples: (i) Patients with normal PSA (biomarker) levels,
(ii) Patients with benign growth and slightly elevated PSA levels. The last two
groups , (iii) and (iv), represent patients with prostate cancer and differing PSA
levels. Clearly, the normal and benign classes can be merged into one class and
similarly both cancer groups can be merged into one class. We applied the cen-
troid algorithm to both the four class split and the two class split. The two class
split produced significantly better results than the four class split. In general
detecting prostate cancer appears to be a very difficult task. In contrast to the
Heart/Kidney data set that has a total of164, 168 features, both the prostate
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and ovarian cancer data were acquired using a low resolution MS technique
that produced only15, 154 features. From the preliminary experiments we can
see that the L1 normalization together with angular similarity metric produce
the best results on the Heart/Kidney and Ovarian Cancer data sets (resp. 81.3%
and 86.2% accuracy). For the prostate data in the 2-class case L1 normaliza-
tion together with the negative L1 distance metric produced the best accuracy
of 73.0%. For the 4-class case the infinity norm together with the angular dis-
tance produced the best accuracy of 64.8%. To simplify the rest of the exper-
iments, we selected the L1 normalization procedure together with the angular
distance in all subsequent experiments (unless stated otherwise). In addition, to
reduce and standardize performance comparison only the 2-class prostate can-
cer problem will be considered in subsequent experiments. Before moving on,
we note that for any given normalization procedure the results arenot statisti-
cally significant across the similarity metrics used. The motivation for choosing
the aforementioned parameter settings is the observation that for Heart/Kidney
and Ovarian cancer data sets they produced the highest accuracy along with the
lowest standard deviation.
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Fig. 4. Performance Graphs on the Heart/Kidney data. Each graph represents a different nor-
malization approach, and each bar within a graph represents a different similarity metric. Best
performance of 81.3% (±0.47%) was achieved using L1-norm with angle distance.
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Fig. 5. Performance Graphs on the Ovarian Cancer data. Each graph represents a different nor-
malization approach, and each bar within a graph represents a different similarity metric. Best
performance of 86.2% (±1.7%) was achieved using L1-norm with angle distance.
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Fig. 6. Performance Graphs on the Prostate Cancer data split into 2 classes (Normal/Benign
and Cancer1/Cancer2) . Each graph represents a different normalization approach, and each bar
within a graph represents a different similarity metric. Best performance of 73.2% (±13.0%) was
achieved using L1-norm with negative L1 distance.
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Fig. 7.Performance Graphs on the Prostate Cancer data split into 4 classes (Normal, Benign, Can-
cer1, Cancer2) . Each graph represents a different normalization approach, and each bar within a
graph represents a different similarity metric. Best performance of 64.8% (±21.4%) was achieved
using infinity-norm with angular distance.
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4.2 Down Sampling Performance

To verify the conjecture made in [4] that higher resolution data produces better
classification, we progressively down-sampled the spectra by averaging it out as
previous studies have done. This effectively produced lower resolution data and
at the same time reduced the data dimensionality. The results, presented in Fig-
ure 8 show that performance decrease as a factor of down-sampling. However,
the decrease in clearly non-monotonic, and in essence noisy. This noise can be
attributed to either the filtering or the sub-sampling stages of down-sampling.
To see which of the two components produces the oscillations in classification
accuracy a new experiment was needed.

In the second experiment we performed frequency based data filtering. The
procedure first transformed each spectra into the frequency domain, via the
Fast Fourier Transform (FFT). Then a low pass filter was applied to the fre-
quency coefficients in order to remove high frequency components. The final
stage transformed the filtered data back to spacial domain. The experiment var-
ied the number of frequency coefficients used in reconstructing the MS spectra.
In essence, this experiment considered feature selection in the frequency do-
main. Clearly the loss in accuracy, shown in Figure 9, is much more monotonic
in comparison with the down-sampling method. This indicates that the majority
of oscillations result form the sub-sampling step rather than the blurring step.
However, the performance does decrease as a result of frequency filtering as in
the case of down-sampling. This leads us to conclude that down sampling is in
general detrimental to performance. To further validate this conclusion, we ran
the centroid classifier on each individual feature for the down sampled spectra
and found that performance again decreased when compared to performance
using a single best feature from the non-down-sampled spectra. This further
solidifies the claim that down sampling appears detrimental to classification ac-
curacy. The conclusions drawn are in line with those in [4] where changes in
resolution created by different MS techniques produced similar results. Recall
that the MS spectra is really a histogram describing the ion concentrations based
on the mass-to-charge ratios. The low resolution techniques effectively average
together distinct ion concentrations into a single bin. Hence, down-sampling
weather due to low-resolution MS hardware or or deliberately done in software
appears to have the same effect of lowering performance.
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Fig. 8. Performance on progressively down-sampled data.Top: Heart/Kidney data set.Middle:
Ovarian cancer data set.Bottom: Prostate Cancer data set. While all data sets exhibit oscillations,
the performance nevertheless gradually declines as the dimensionality of the data is reduced
(indicted by the increasing down-sample factor on the x-axis).
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Fig. 9. Performance on frequency filtered data.Top: Heart/Kidney data set.Middle: Ovarian
cancer data set.Bottom: Prostate Cancer data set. While all data sets exhibit oscillations, the
performance nevertheless gradually declines as the lower and lower frequency components are
deleted (indicted by the increasing filter size on the x-axis).
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4.3 Statistical Tests with Greedy Feature Selection

As mentioned in section 3.4 on p. 14, we used the T-test, KS-test and the T*KS
composite test to perform sequential forward selection (SFS) in order to es-
tablish which feature sets perform well on a given data set. In addition, each
statistical technique is compared against each other. For all experiments the fea-
tures were ranked using each algorithm, then the SFS procedure was used to
select feature sets of increasing size and applying the centroid classification al-
gorithm on the selected features. As usual 3-fold cross validation was performed
for every feature set. The SFS procedure was stated with one top ranked feature
and was run until 15,000 top ranked features were selected. After repeating the
experiment for every statistical test on a given data set, we compared the best
performances across different feature extraction techniques.

The experimental results, shown in Figures 10-12, demonstrate the signifi-
cant improvement even using these simple statistical techniques. Unfortunately,
they also indicate that there is no clearly superior statistical test for all data sets
considered. On each data set the best feature extraction technique oscillates. The
composite technique appears to be inferior to the two base procedures. On the
positive side, for all data sets feature selection improved classification accuracy
by over10%. In addition, the number of features was reduced several orders of
magnitude.



26

0 5000 10000 15000
0.75

0.8

0.85

0.9

0.95

Number of Features

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Statistical Feature Extraction for the Heart/Kidney Set

T-test
KS-test
T*KS-test

Fig. 10. Performance on the Heart/Kidney data using statistical tests for feature extraction and
ranking. Sequential Forward Selection was then used on ranked features.
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Fig. 11.Performance on the Ovarian data using statistical tests for feature extraction and ranking.
Sequential Forward Selection was then used on ranked features.
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Fig. 12.Performance on the Prostate data using statistical tests for feature extraction and ranking.
Sequential Forward Selection was then used on ranked features.
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4.4 Greedy and SFS Feature Selection

To see the exact relevance of individual features, the centroid classifier was ran
on individual features. Histogram plots for each data set are shown in figure 13.
Each plot represents the distribution of features with respect to classification ac-
curacy and shows that a very large number of features are essentially irrelevant
and redundant especially with the Ovarian and Prostate Cancer data sets that are
skewed towards lower classification accuracies. This leads us to further question
the down sampling approach which in essence aggregates individual features
together. Such an approach would inevitably merge relevant and irrelevant (or
redundant) features together and decrease the overall performance as evidenced
by experimental results of the previous section. Interestingly, there are a number
of features, within each data set that actually produce classification accuracies
below 50%. These features can be definitively labeled as misleading and appear
to be noise.

Once classification accuracy was established for each feature, the Greedy
and SFS procedures were employed to selectrelevantfeature sets. The results
are presented in the next section.
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Fig. 13.Performance using individual featuresTop: Heart/Kidney data set.Middle: Ovarian can-
cer data set.Bottom: Prostate Cancer data set. The histograms show the number of features with a
specific classification accuracy when individual features are used. Unfortunately the angle metric
could not be properly used, instead the negative L1 metric was applied.
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4.5 Performance Comparison

Figure 14 presents best performance for each feature extraction technique on
each data set. In terms of classification accuracy, sequential forward selection
clearly produces the most impressive results. In terms of producing the small-
est feature sets, again the SFS feature selection procedure produced the best
results. Although the graph shown in Figure 14 shows that Greedy selection on
the ovarian cancer set produced set of 3 features at 94.5% accuracy, after look-
ing through the data logs, we found that the 3 feature set selected by the SFS
produced an accuracy of 96.0%. Therefore, we conclude that theSFS algorithm
produced superior resultsin comparison all other algorithms tested (in terms
of both smallest feature sets and highest performance). On the heart/kidney data
set, SFS selected 5 features that enabled the centroid classifier to produce an ac-
curacy of97.5%. On the Ovarian cancer data set the set of 4 features produced
via SFS had the same accuracy of98.0%, tying with a 48 features set produced
by the greedy procedure. Finally, on the Prostate cancer data set the SFS clas-
sifier increased the base classification accuracy from 69.7% to94% using only
11 of 15,154 features.

In comparison with previous research, the SFS algorithm did reasonably
well. Informally, we have been told that using genetic algorithms with self orga-
nizing maps on the Heart/Kidney data set, produced an accuracy of 92% (on a
single test set). In comparison the SFS achieved a 97.5% classification accuracy.
On ovarian cancer data set, PCA coupled with LDA in [20] to our knowledge
produced the only perfect cross-validated (i.e., statistically valid) classification
accuracy. The SFS based approach has an accuracy of 98.0% which is quite
close. On the prostate cancer data set, researchers using PCA coupled with LDA
in [20] produced an accuracy of 88%. In [28] the boosted decision stumps pro-
duced an impressive 98% accuracy on the same data set. Unfortunately, we were
not able to get this set and used the data set from [11], where the accuracy using
GA and SOM’s was 83%. In contrast the SFS algorithm achieved an accuracy of
94% on this data set. Overall we believe that the SFS coupled with the centroid
classifier is competitive with previously tried approaches.

Active Feature SetsTo see the types of features extracted by the SFS we looked
at the active set extracted by this procedure for the prostate cancer set. Table 1
shows a comparison of features extracted by our algorithms and those by algo-
rithms used in previous research. Clearly, very few common features are present.
At hypothesized in [6], it seems that different algorithms extract different rele-
vant features based on their internal workings and biases.

Computational Complexity Analysis In terms of run time, by far the most
efficient algorithm surveyed is PCA coupled with LDA. Principal Component
Analysis has anO(n3) training cost, wheren is the number of samples. Linear
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Table 1.Active feature set extracted from the Prostate Cancer data set by the SFS procedure. Col-
umn 1 shows the order each feature was added into the active set. Column 2 contains the feature
index. Column 3 provides the actual mass-to-charge ratio of each feature. The last three columns
present nearby (±500 Da) features found previously in [1, 28, 11]. Clearly the SFS procedure
found a very different set of features than the other algorithms.

Order 
Added 

Feature 
Index M/Z Adam et al. Qu et al. Petricoin et al.

1 2400 500.8
2 6842 4074.8 4475 3963; 4080; 4071
3 2667 618.6
4 6371 3533.0 3486 3080
5 2005 349.4
6 1182 121.3
7 7604 5033.3 5074 5289 4819; 5439
8 462 18.4
9 659 37.6

10 187 3.0
11 467 18.8

Discriminant Analysis has a training cost ofO(n2f), where f is the number
of features. The total cost in training is thenO(n3 + n2f). The total testing
run-time, per sample, isO(nf) and is dominated by the projection of the test
sample onto the PCA basis. It should be noted that onlyn of f features can be
used since LDA algorithm specifically requires the number of features to be less
than the number of training samples. In fact this is why the PCA algorithm is
used to reduce the dimensionality of the raw data. This in our view is not a major
obstacle since in general ML algorithms will not be able to tune/learn more than
n internal parameters given onlyn testing samples. However, we should remark
that SFS/centroid combination, in contrast, can extract and use a feature set of
arbitrary size independent of the training set size. To make the analysis fair,
we therefore restrict the SFS feature selection algorithm to produce active set
sizes less than or equal ton. With this restriction in place the training cost is
the number of calls to the base classifier times the cost of each training session,
given by

fO(n)+(f−1)O(2n)+ ...+(f−n−2)O(n(n−1))+(f−n−1)O(n2) (6)

=
n∑

i=1

(f − i − 1)O(ni) (7)

.
For n << f , the dominating term is(f − n − 1)O(n2) and thus the cost is
bounded byO(fn3). The testing cost is solely bounded byO(n) since at most
n features can now be extracted due to the artificial restriction placed on the
SFS/centroid algorithm.

At first glance the PCA/LDA combination appears much more efficient in
training, while SFS/centroid method is much more economical in the testing
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phase. Although worst case comparison shows this to be so, we should take a
closer look at actual performance. The PCA/LDA combination has a fixed and
unchanging training cost ofO(n3 + n2f), regardless of data content. However,
on the heart/kidney data set the SFS algorithm stopped just after processing 6
features∗∗. Roughly speaking, the SFS algorithm processed each feature 6 times,
for a total of6 ∗ 164, 168 = 5, 910, 048 calls to the centroid classifier. In turn
the centroid classifier processed 66 training samples each at most 6 features in
length at any point during the SFS process. Hence we have about 400 million
operations needed to extract a relevant feature set. In contrast the PCA/LDA
algorithm would need about663 + 662(164, 168) ≈ 700 million operations.

On the prostate cancer set the PCA/LDA algorithm would need about
843 + 842(15, 154) ≈ 110 million operations. On the other hand SFS/centroid
combination extracted 11 features and made12 ∗ 15, 154 = 181, 848 calls to
the centroid classifier which cost at most12 ∗ 84 operations. So the total cost of
SFS/centoid method is about 183 million operations.

In practice we believe that the costs of both algorithms are comparable for
high dimensionality data sets used in this study.

∗∗ The sixth feature did not improve performance so the algorithm terminated and returned the a
feature set containing only 5 features.
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Fig. 14. Performance of Feature Extraction AlgorithmsTop: Heart/Kidney data set.Middle:
Ovarian cancer data set.Bottom: Prostate Cancer data set.
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5 Conclusion

Proteomic Pattern analysis is an emerging field, poised to improve the quality
of medical diagnosis. However, the large dimensionality of the data samples
requires the use of aggressive feature extraction techniques. This project ana-
lyzed statistical, multi-resolution, and wrapper approaches to feature extraction.
Experimental results indicate that down sampling appears detrimental to clas-
sification performance. On the other hand feature selection techniques, such as
sequential forward selection, can greatly reduce the dimensionality of the data
while at the same time improving classification accuracy. Clearly, in the future
this technique can be implemented into a real screening system, poised to revo-
lutionize the field of early medical diagnosis.
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A Mass Spectrometry: A brief Overview

Discovered by Sir J.J. Thomson in the early part of the20th century Mass spec-
trometry (or MS) is a technique for ’weighting’ individual molecules, fragments
of molecules or individual atoms that have been ionized. In a vacuum environ-
ment, a mass spectrometer deflects the previously charged (unknown) particles
in a magnetic or electric field. While different types of MS techniques exist,
all use an ion source that vaporizes and changes the unknown matter. The mass
spectrometer measures the molecular masses along with abundances and masses
of fragments that are produced as a result of molecular breakdown. Prior to mak-
ing the MS measurement a chromatograph may be used to separate the compli-
cated mixture of compounds present in a sample into constituents.

The fundamental measurement unit of the MS is the mass-to-change ratio.
For proteomic applications, Daltons (Da) are used to measure mass, with 1Da
representing the atomic mass of carbon-12. The electric potential of a single
electron is the measurement unit for charge (z). Thus, the mass-to-charge ratio
(m/z) represents Daltons per fundamental unit of charge for each protein and/or
fragment.

Depicted in Figure 15, the sample, which may be a solid, liquid, or vapor,
enters the vacuum chamber through an inlet. The gas phase ions are sorted in the
mass analyzer according to their mass-to-charge (m/z) ratios and then collected
by a detector. In the detector the ion flux is converted to a proportional electrical
current. The data system records the magnitude of these electrical signals as a
function of m/z and converts this information into a mass spectrum. The spec-
trum is a graph of ion intensity as a function of mass-to-charge ratio and is often
depicted as a histogram (see Figure 2).

A.1 Time-of-Flight (TOF)

In time-of-flight (TOF) instruments, positive ions are produced periodically by
bombardment of the sample with brief pulses of electrons, secondary ions, or
laser-generated photons. The ions produced by the laser are then accelerated
by an electric field pulse. The accelerated particles then pass into a field-free
drift tube. All ions entering the tube ideally have the same kinetic energies, their
velocities in the tube must vary inversely with their masses, with lighter particles
arriving at the detector earlier than the heavier ones. The ions therefore drift
through a field-free path and are separated in space and time-of-flight [5]. Figure
16 shows the process. Other types of mass spectrometers include: Magnetic
Sector Instruments, Quadrupole Instruments, Ion Trap, and Fourier Transform
Ion Cyclotron Resonance (FT-ICR) (see [9] for more details).
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Fig. 15.Mass Spectrometry Process. From [9]

Fig. 16.Time-of-flight Ion Detection System. From [5].

A.2 MALDI

The use of the matrix assisted laser desorption/ionization (MALDI) serves sev-
eral purposes. The (bio)molecules are incorporated in a large excess of ma-
trix molecules, strong intermolecular forces are thereby reduced. The matrix
molecules absorb the energy from the laser light and transfer it into excitation
energy of the solid system. The effect is an instantaneous phase transition of
small molecular layers of the sample into a gaseous state. Thus solid (and liq-
uid) material can be easily analyzed by TOF MS.
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A.3 SELDI

This method uses protein chip arrays with different selective surfaces such as
cation or anion exchange surfaces, hydrophobic surfaces and metal binding sur-
faces. Also antibodies, specific proteins and DNA can be bound to chips to study
protein-protein and protein-DNA interactions.Cell lysate, plasma or urineis
applied on the selective surface and, after washing, a subset of proteins is specif-
ically bound. The chip is analyzed in a (MALDI) TOF-MS which generates a
protein spectrum of the different molecular masses present on the protein chip.
This technology is therefore highly suited for research into molecular mecha-
nisms of disease and biomarker identification.

B Acquired Data sets

For this study three data sets were acquired. Each sample in each data set is rep-
resented as a vector of real valued features forming the spectra. Each feature in
turn represents the quantity (ppm††) of ions with a specific m/z ratio. In essence,
each sample spectrum is a histogram describing the composition of the sample
bio-fluid or tissue sample.

The following data are used for this study:

Heart-Kidney This data set consists of mass spectra from heart and kidney
tissue samples acquired using the MALDI‡‡-TOF MS technique. Although
this is assumed to be a relatively easy data, each sample is composed of
164,168 features and therefore provides a challenge to machine learning and
feature extraction algorithm. There are 100 heart and 100 kidney samples in
this set.

Ovarian Cancer This is the latest data set using the WCX2 protein array. A
new set of ovarian samples were used. The sample set included 91 controls
and 162 ovarian cancers. The entire process of preparing the (SELDI) chips
was done using a robotic instrument. Acquired from [8], each data sample
is composed of 15,156 features.

Prostate Cancer The spectra were collected using the (SELDI) H4 protein
chip. The chip was prepared by hand using the recommended protocol. The
spectra were exported with the baseline subtracted. This process creates neg-
ative intensities. There are 322 total samples, acquired from [8]: 190 sam-
ples with benign prostate with PSA levels greater than 4, 63 samples with
no evidence of disease and PSA level less than 1, 26 samples with prostate
cancer with PSA levels 4 through 10, 43 samples with prostate cancer with
PSA levels greater than 10. Each sample is again a histogram composed of
15,156 features.

†† ppm - parts per million
‡‡ MALDI - matrix-assisted laser desorption/ionization
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C Definitions

The following diagnostic definitions are used by the community.

Fig. 17.Diagnostic Definitions

Sensitivity TP
TP+FN Also known as Recall.

Specificity TN
TN+FP

PPV (Positive Predictive Value) TP
TP+FP . Also known as Precision.

NPV (Negative Predictive Value) TN
TP+FP

LR+ (Likelihood Ratio Positive) Sensitivity
1−Specificity =

TP
TP+FN

1− TN
TN+FP

=
TP

TP+FN
FP

TN+FP

.

LR- (Likelihood Ratio Negative) 1−Sensitivity
Specificity =

1− TP
TP+FN
TN

TN+FP

=
FN

TP+FN
TN

TN+FP

.

Accuracy In this report accuracy is defined as the average of sensitivity and

specificity. That is
TP

TP+FN
+ TN

TN+FP

2 .
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