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Abstract 

The ultimate goal in analysis of communications systems is to predict the performance of real com

munications systems as accurately and efficiently as possible in order to reduce the cost of the sys

tem development. However, there is a trade-off between accuracy and the time and effort required to 

obtain the performance estimate. Accurate performance prediction often requires complex system 

models that are, in general, difficult to analyze. Hence, if the efficiency of the performance eval

uation techniques can be improved, then more complex system models can be analyzed and more 

accurate performance prediction is obtained. Also, for a given system model complexity, more ef

ficient performance evaluation makes the analysis less complicated, and, in turn, such analysis is 

more likely to provide design guidelines, and support synthesis. Therefore, efficient performance 

evaluation techniques are always of high practical importance and interest. 

In this thesis, performance evaluation techniques that improve efficiency of the existing tech

niques are proposed and investigated. The focus is on the efficient evaluation of the bit-error rates 

of wireless communications systems. The thesis can be divided into two parts. In the first part, 

novel performance evaluation techniques are proposed. Sample rejection is studied as a generally 

applicable and easy-to-implement computer simulation technique. Prony approximation is used for 

efficient semi-analytical evaluation of the average error rates of digital modulations over slowly fad

ing channels. Channel models to simplify the analysis of diversity combining schemes over corre

lated fading channels are also investigated. In the second part, the proposed performance evaluation 



techniques are employed to analyze the performance of several communication systems, and, in 

some cases, novel design guidelines are obtained. Particularly, coded MIMO-OFDM systems over 

arbitrary correlated generalized Ricean fading channels are analyzed. Binary Hamming codes are 

constructed recursively, and it is shown that their coding gain is not monotonic in signal-to-noise 

ratio. A class of multidimensional binary repetition codes having variable block length and variable 

minimum Hamming distance is proposed, and the applications are considered. Finally, a hyperge-

ometry of objects in K dimensions is investigated. The results of hypergeometry are then used to 

optimize the signal-to-noise ratio adaptive receivers. 
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Chapter 1 

Introduction 

"Nothing is as practical as a good theory." 

Kurt Lewin 

The Ph.D. research project described in this thesis has been motivated by the following facts. 

• In spite of more than ten years of intensive research and development of the 3rd generation 

(3G) cellular systems, and having skills and knowledge obtained from building the immensely 

successful 2nd generation (2G) cellar network, deployment of the 3G cellular networks expe

rienced serious technical difficulties. 

• Many algorithms and technical solutions have been proposed for the 4th generation (4G) 

cellular systems. However, only a small subset of the proposed algorithms and solutions can 

be included in the 4G standards; their selection requires extensive performance evaluations. 

• Robert Lucky commented in [1] that "...without a grounding of reality supplied by industry, 

academic papers can tend to drift off into imaginary spaces." 

• In the Kailath Lecture and Colloquium [2], Robert Gallager suggested that, "Universities, 

governments, and industries should encourage more Shannon style research. It is focused on 

simplification." 

Each fact has its own merits, however, all four facts have a common focus. In particular, many tech

nical difficulties in deploying the 3G cellular networks could have been prevented if more complex 

system models had been used for prediction of the system performance. Design of the 4G networks 

1 



could be improved if the performance of larger number of system configurations can be evaluated 

and compared. Also, performance evaluation techniques that are sufficiently simple, and, at the 

same time, can accurately predict the performance of communications systems are helpful to bridge 

the gap between academia and industry. Hence, in this thesis, efficient performance evaluation tech

niques that can improve prediction of the performance of communications systems are investigated. 

Noteworthy, the keyword 'efficient' is now frequently appearing in the literature. In general, effi

ciency becomes important whenever the available resources are limited. In this thesis, efficiency 

is related to the difficulty in obtaining a performance estimate of given accuracy. Thus, efficiency 

can be expressed in terms of the time and effort required to obtain the performance estimate of 

given accuracy. Efficient performance evaluation is then developed to complement the research in 

efficient signal processing where efficiency corresponds to the implementation complexity of algo

rithms. Note also that, in this thesis, complexity is used in two contexts. First, it is required that 

the complexity of performance evaluation techniques is reduced, so that the performance analysis 

is simplified and is more easily applicable. Second, it is desirable to consider more complex system 

models in order to model the real systems more accurately. 

Furthermore, in order to clarify "theoretical" and "practical" research, consider Fig. 1.1; this 

figure is inspired by the cover page of book [3]. The top most level of the pyramid in Fig. 1.1 corre

sponds to the most general theory of information transmission [4]. The lowest level of the pyramid 

in Fig. 1.1 represents actual implementation of the communication system in hardware. Hence, 

moving from a general theory towards hardware implementation requires that the communication 

system is described using more specific (i.e., less general) system models of increasing complexity 

having larger number of parameters, and being more difficult to analyze. 

1.1 Background and Research Area Identification 

Rapid development of technology over the past 100 years led our society to information revolution 

in the break of the twenty first century. Acquired knowledge and understanding of diverse natural 

phenomena enabled manufacturing of sophisticated technological systems. Given the complex na

ture of today's technical devices, the system design has become more challenging than ever before. 

The system design requires various levels of abstraction of the system description. Such abstraction 

is referred to as the system model. The system is then described using the system model inputs, 

outputs, and the state space of latent (hidden) variables often referred to as the system model pa-
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Figure 1.1: "Theoretical" versus "practical". 

rameters. Assumptions are considered to be a part of the system model, and they represent the 

system model constraints (limitations). In general, improving the performance of any system ap

pears to be directly related to the system (model) dimensionality; for example, the number of system 

inputs and outputs can be increased to improve the system performance. The systems are then de

scribed using the system models of large dimension and large number of parameters; this, in turn, 

significantly complicates the system design and analysis. Therefore, technological progress must 

be accompanied by advancements of designing methods that are suitable for system models of large 

dimension. 

A general system design process is shown in Fig. 1.2. The design process is usually performed 

in two design cycles. The upper design cycle corresponds to iterative modifications of the initial 

design until the desired performance can be expected. In the lower design cycle, a prototype is 

synthesized, and implemented in hardware. The prototype is then operated in a series of field 

tests to determine its real performance. If the real performance of the prototype does not meet the 

design requirements (i.e., the desired performance), the design process must resume with further 

modifications of the design, and estimation of its performance in the upper design cycle. Note that 

the upper cycle can be used not only to design a system having the desired performance, but also, it 

can be used to optimize the system performance (i.e., to achieve the best possible performance for 
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Figure 1.2: A general process of system design. 

given design constraints). 

The time, effort and cost are the three main resources that are being consumed during the design 

process until a prototype of the desired performance has been obtained. The more cycles in Fig. 1.2 

are enclosed during the design process the more resources have been consumed. Since majority of 

the resources are consumed when the hardware implementation of the prototype has to be modified, 

it is desirable to confine the design process to the upper design cycle as much as possible. Avoid

ing unnecessary lower design cycles makes the design process much more efficient, and thus, less 

resources demanding. Correspondingly, the lower design cycles can be avoided if the performance 

analysis obtained in the upper design cycle is sufficiently accurate, i.e., the predicted performance 

is a good approximation of the real performance. 

The relative error of the performance analysis can be defined as, 

'analysis error' = ('predicted performance' — 'real performance')/'real performance' 
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and the relative accuracy of the performance analysis can be defined as, 

'analysis accuracy' = 1/'analysis error'. 

Thus, more accurate prediction of the real system performance requires smaller number of lower 

design cycles, and less resources are going to be consumed. 

There are three categories of the performance evaluation techniques. 

• mathematical and statistical theoretic analysis 

• computer simulations 

• semi-analytical methods 

The semi-analytical methods are combination of mathematical analysis and computer simulations. 

Selection of the performance evaluation technique depends on the particular system being investi

gated. The following factors have to be considered. 

• required accuracy, e.g., the value of the target probabilities to be estimated 

• required efficiency, e.g., the total time and effort available to evaluate the performance 

• amount of knowledge about the system and its model 

• the system model complexity 

These factors are interrelated by the following rules. 

• there is a trade-off between accuracy and efficiency of the performance analysis, i.e., more 

time and effort is required to obtain more accurate analysis 

• more efficient performance evaluation techniques allow more complex, and thus, more real

istic system models to be investigated 

• more realistic system models improve accuracy of the performance prediction 

For example, realistic modeling of communications systems requires that the system model takes 

into account subsystems interdependence, various sources of interference, non-ideal synchroniza

tion, finite precision numbers representation, non-ergodic observations etc. 
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Analytical tools are usually applicable only when the system model is simplified and some re

alistic assumptions are omitted. In some cases, analytical approach can be useful to obtain initial 

design guidelines. More realistic system models are often mathematically intractable which necessi

tates computer simulation. However, the system model complexity can exceed the computing power 

available, and the simulation run-times become excessive. In this case, more efficient computer sim

ulation techniques must be used. Provided that some parts of the system model can be described 

analytically, semi-analytical methods achieve good trade-off between accuracy and efficiency, since 

significant amount of computations can be avoided to reduce the simulation run-times. 

In general, the performance analysis should have the following properties. 

• be accurate to predict the real performance 

• be efficient to minimize the resources consumed 

• be verifiable, so that it can be reproduced 

• be trustable, so that it has a high level of confidence 

Hence, performance analysis should be as simple as possible, and also, be sufficiently generic in or

der to be applicable to a variety of scenarios and system models. For example, a minor change in the 

assumptions or the parameters should be readily incorporated without major changes in the existing 

performance analysis. Furthermore and importantly, performance analysis that is sufficiently simple 

and generic can often provide design guidelines for system synthesis. On the other hand, compli

cated performance analysis is more likely to be incorrect, and such analysis is also more difficult to 

be verified, and even reproduced for the same system model under the same assumptions. 

The probability of error and the error rate are the two performance measures primarily consid

ered in this thesis. Whether the transmitted bits, symbols or sequences of symbols and the corre

sponding probabilities of bit, symbol and sequence of symbols error, respectively, are investigated 

in the performance analysis of a communication system is application dependent. Provided that 

the observations of bits, symbols or sequences and occurrences of their errors at the receiver are 

ergodic, the probability of a particular error is defined as, 

'probability of error' = E['error'] 
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Figure 1.3: A generic transmission system and the error rate measurement. 

where E[-] denotes expectation, and E['error'] is expectation of a particular error event where 

error = 
1 transmission error occurred 

0 transmission error did not occur. 

The error rate is defined as the ratio, 

'error rate' = 
'number of error occurrences' 

'total number of occurrences' 

Hence, the error rate corresponds to the average probability of error. If the probability of bit error 

and symbol error in the transmitted sequence is independent of a particular location of the bit and 

the symbol in the transmitted sequence, the probability of bit and symbol error is equal to the bit 

error rate (BER) and symbol error rate (SER), respectively. The probability of sequence of symbols 

error is always equal to the sequence error rate, and it is referred to as the frame error rate (FER) or 

the packet error rate (PER). 

A generic transmission system and the measurement of the transmission error rate are shown in 

Fig. 1.3. The transmitted bits, symbols or sequences, x, are transformed by the channel into the 

received bits, symbols or sequences, y. The receiver outputs the decisions, x, on the transmitted 

bits, symbols or sequences. In general, properties of the transmission systems are described using 

three sets of system model parameters. The symbol, Q, is used to denote the set of fixed (time-

invariant) parameters. The channel parameters changing slowly compared to a symbol duration are 

denoted as f2s. The set, Q{, contains the parameters having the rate of change comparable to the 
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symbol duration. Then, the received signal can be written as, 

y = y ( x , 0 , O s , O f ) . 

Note that the transmitted signal, x, is a function of 0, i.e., x(O). The decision, x, is a function of the 

received signal and the receiver, i.e., x = x(y) = x(x, 0, Cls, Of). An error event occurs when the 

receiver decides erroneously about the transmitted bit, symbol or sequence of symbols. Provided 

that the parameters, Os, and, Of, are ergodic and stationary processes, the first-order moment of the 

random error-event is typically considered to be sufficient description of the system error properties. 

Let e(x, x) be an error event that the decision, x, is not equal to x; thus, e(x, x) = e(x, 0, Os, Of), 

and e = 1, if x ^ x, and e = 0, otherwise. Then, the conditional probability of error event, 

conditioned on realization of the transmitted sequence, x, and the parameters, Os, is defined as, 

p6(o|x,os) = I e(x,n,ns,n{)fQ!nf(^,^i)dQi 
Jdow(Qf) 

where dom(-) denotes the domain of its argument, and fn,nf (O, Of) is the joint probability density 

function (PDF) of O and Of. The conditional error rate corresponds to the average conditional 

probability of error event, i.e., 

Pe(0|Os) = J]Pr(x)Pe(0|x,Os) 
X 

where Pr(x) is the probability of transmitting x. Correspondingly, the average probability of the 

error event is, 

P e ( 0 | x ) = / Pe(0|x,O s).fa,n s(0,O s)dO s 
</dom(f2s) 

where futns {&, ^s) is the join PDF of O and Os, and the average error rate is evaluated as, 

Pe(0) = ^ P r ( x ) P e ( 0 | x ) . 
X 

1.2 Thesis Outline 

This thesis consists of nine chapters. Introductory Chapter 1 is followed by seven chapters where 

the main contributions of the thesis are presented. The thesis outcomes and results are summarized 

and suggestions for future work are given in Chapter 9. 
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The seven chapters of the main contributions can be divided into two parts. The first part is 

covered by Chapter 2-Chapter 4, and it introduces novel performance evaluation techniques that 

improve the performance analysis, so that the analysis becomes simpler, and more efficient. Some 

of the proposed efficient performance evaluation techniques are employed in the second part which 

consists of Chapter 5-Chapter 8. Furthermore, in the second part, novel design guidelines and prin

ciples are obtained. In particular, a sample rejection (SR) technique for efficient Monte Carlo (MC) 

computer simulations is proposed in Chapter 2. The SR simulation technique is also used in Chap

ter 7 to estimate the minimum Hamming distance, and to simulate the bit error rate of the proposed 

codes. Prony and polynomial approximations for semi-analytical evaluation of the average error 

rates over slowly fading channels are investigated in Chapter 3. The Prony approximation method 

is then used in chapters 4-7 to evaluate the average error rates. Channel models that can simplify 

the performance analysis of diversity combining receivers having correlated fading branches are 

considered in Chapter 4. In Chapter 5, coded multiple-input multiple-output orthogonal frequency 

division multiplexing (MIMO-OFDM) systems over arbitrary correlated generalized Ricean fading 

channels are analyzed. Binary Hamming codes are studied in Chapter 6. Binary repetition codes 

in multiple dimensions are proposed and analyzed in Chapter 7. Finally, a hypergeometric view on 

diversity combining schemes and the optimum receiver dimension are considered in Chapter 8. 

In general, the problem background and literature survey are provided at the beginning of each 

chapter. The problems are formulated as general as practically possible. Then, the system model 

is presented, and the problem is solved using mathematical theoretic analysis. It is followed by 

numerical examples to illustrate the solution. The main results are summarized and discussed at the 

end of each chapter. 

In the sequel of this subsection, the contents of Chapters 2-8 are outlined. 

Chapter 2 In the first part of this chapter, we reexamine sample rejection (SR) introduced pre

viously as an easy-to-implement efficient simulation technique. Since the decoding operation often 

represents a major part of the required simulation time, SR can be used to avoid decoding of the 

received sequences that are known beforehand to be decoded error-free. Previous work seems to 

indicate that SR may be effective only for simulations having small dimension, less than 10. We 

assume estimation of decoded bit-error probabilities for a general coding scheme of finite block-

length transmitted over an additive white Gaussian noise (AWGN) channel with quantized output 

using binary antipodal signaling and maximum-likelihood sequence decoding (MLSD). We show 
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that knowledge of the minimum Hamming distance of the code and conditioning on the transmitted 

sequence can be exploited to form the rejection regions. In particular, we investigate hypersphere, 

hypercube and hyperquadrant rejection regions. Our analysis shows that SR can be effective for 

some systems with dimension of the order of hundreds with soft-decision decoding, and some sys

tems with dimension more than a thousand with hard-decision decoding if the rejection regions are 

properly chosen. 

In the second part of Chapter 2, we generalize a SR scheme for the simulation of multidimen

sional communication systems. We consider the use of SR for efficient simulation of uncoded 

continuous transmission with periodic trellis-termination over static intersymbol interference (ISI) 

channels and MLSD. The hypersphere, hypercube and hyperquadrant rejection regions proposed in 

the first part of Chapter 2 are applicable only for finite lattices with rectangular or circular symme

tries and moderate dimension. However, these regions are not applicable or are inefficient if the 

dimension is increased for large block-lengths, or if the lattice symmetries are absent because of 

the ISI. Hence, we investigate sliding-window near-MLSD to resolve the dimension problem. In 

particular, we study the truncated Viterbi algorithm (tVA) and feedback decoding (FD). We propose 

several modifications to these two algorithms using SR principles to improve the simulation effi

cacy for the conventional Viterbi algorithm (VA) while achieving near MLSD performance. Finally, 

numerical examples confirm that FD and its modifications can be more efficient for simulations of 

ISI channels and near-MLSD than the VA. 

Chapter 3 We propose a novel remarkably simple semi-analytical method for evaluation of the 

average probability of transmission error for digital communication systems operating over slowly 

fading channels. The proposed method applies a sum of exponentials fit known as the Prony ap

proximation to the conditional probability of error. Hence, knowledge of the moment generating 

function (MGF) of the instantaneous signal-to-noise ratio (SNR) at the detector input can be used 

to compute the average probability of error. Numerical results show that knowledge of the condi

tional probability of error at only a small number of points, and the sum of only two exponentials 

are sufficient to achieve very high accuracy; the relative approximation error of the exact average 

probability of error is less than 6% in most of the cases considered. Furthermore, we investigate a 

piecewise polynomial approximation of the conditional probability of error as an alternative to the 

sum of exponentials fit. In this case, knowledge of the partial moments of the instantaneous SNR 

at the detector input, or equivalently, knowledge of the derivatives of the incomplete MGF can be 
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used to obtain the average probability of error. Numerical results indicate that in order to achieve 

good accuracy, the method based on the polynomial approximation requires that the product of the 

polynomial degree and the number of approximation sub-intervals are much larger than, 10. 

Chapter 4 We investigate the average BER performance of one-stage and two-stage diversity 

combining schemes (DCS's) operating over correlated fading channels. We consider two channel 

models that can significantly simplify the performance analysis of DCS's in correlated fading. In 

particular, a linear correlation channel model having equal branch variances can be decorrelated 

at the receiver, so that the branches become independent. We show that, in general, employing 

diversity combining schemes for decorrelated or orthogonalized branches can recover some of the 

diversity gain lost due to the branch correlations. This is observed, for example, for the case of 

hybrid selection/maximum ratio combining (HS/MRC) operating over decorrelated and orthogo

nalized non-zero mean Gaussian fading channels. Furthermore, we propose a fading amplitude 

channel model assuming vector norm superposition of the impinging plane waves. This channel 

model is well-suited for the performance analysis of MRC and equal gain combining (EGC) diver

sity schemes operating over correlated fading channels. The average BER of DCS's are evaluated 

analytically using the Prony approximation method and using computer simulation. 

Chapter 5 We establish a framework for analyzing the performance of coded MIMO-OFDM 

systems operating over arbitrary correlated generalized Ricean fading channels. We investigate 

orthogonal space-time block codes (STBC's), and transmitter beamforming to maximize SNR at the 

detector. We derive the MGF of the SNR at the input to the channel decoder assuming correlated 

transmitter and receiver antennas and correlated paths in frequency selective channels. We apply 

the MGF method to obtain the probability of outage, the pairwise error probability (PEP), and the 

BER. We also derive diversity gain and coding gain for the systems being considered. Furthermore, 

we prove that the rank and determinant design criteria for space-time-frequency block coding are 

valid for the exact PEP. We assume bit-interleaved and iteratively decoded turbo product codes, 

Gray encoded M-ary quadrature amplitude modulation (QAM), and other parameters of the IEEE 

802.16 Standard to illustrate numerical results. Finally, we confirm that Prony approximation is a 

numerically efficient fading averaging method with excellent accuracy. 

Chapter 6 We show that binary Hamming codes can be constructed recursively. The recursive 

structure is used to efficiently enumerate the input-output weights. Hence, the BER of binary Ham

ming codes with antipodal signaling and hard-decision demodulation used on AWGN channels can 
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be evaluated exactly. Furthermore, the numerically computed coding gain of Hamming codes re

veals a surprising fact that the coding gain is not mono tonic ally increasing with signal-to-noise 

ratio. 

Chapter 7 In the first part of this chapter, we construct a family of linear binary block codes from 

ordinary block repetition codes using cyclic shifts of the input information bits. Such codes have 

variable block length and variable minimum Hamming distance and are referred to as improved 

binary repetition codes (IBRC's). We study the properties of binary cyclic matrices, and then, ex

tend the code construction employing cyclic shifts of binary codewords in multiple dimensions. We 

consider two design criteria for multidimensional IBRC's assuming the code constraint length and 

constraint weight. An efficient algorithm to search for good codes is presented. The construction 

is illustrated using examples of the proposed IBRC's in one, two and three dimensions. Applica

tions of the proposed codes are considered and their BER performance is analyzed using a union 

bound (UB). In particular, we show that the IBRC's are good candidates for adaptive coding, turbo 

product coding, retransmission and multihop routing, and block differential encoding. Also, mul

tidimensional IBRC's are shown to be well-suited as an inner encoding scheme for concatenated 

one-dimensional outer codewords to increase their minimum Hamming distance without increas

ing the transmission bandwidth. A non-recursive block differential encoder is found to arbitrarily 

increase the code rate with the block length while the minimum Hamming distance of the code re

mains constant. Finally, we use a UB on the BER to optimize the transmission energy distribution 

over the codewords to improve the transmission reliability. 

In the second part of Chapter 7, we consider further applications of IBRC's. In particular, we 

investigate a network consisting of an access point and N terminal nodes. We propose a three stage 

network protocol for uplink and downlink packet transmission. The proposed network protocol 

implements coded and cooperative diversity to improve packet transmission reliability and extend 

network coverage. In Stage 1 of the protocol, a cyclic redundancy check (CRC) code is used to 

detect erroneous packets. IBRC's and single parity check (SPC) codes are used in Stage 2 to obtain 

coding gain for forward diversity. Node cooperation in Stage 3 provides additional coding and 

diversity gains, and it is implemented using random SPC's distributed across the nodes. We evaluate 

the PER for specific network realizations assuming coherent and non-coherent binary modulation 

schemes over Gaussian channels with attenuation of the transmitted signals determined by the free-

space path loss. We use a link budget analysis to calculate the receiver SNR for a given distance 

12 



between the transmitter and receiver antennas, and also, to evaluate the network coverage. We then 

optimize the transmitter powers for IBRC's to improve their PER. We also show using numerical 

examples that the network coverage for a target value of the PER is improved in all three protocol 

stages. Finally, we observe that the cooperation gains are strongly dependent on the particular 

network realization and less on the number of cooperating nodes. 

Chapter 8 In general, many practical problems involve K-dimensional entities. Such entities can 

be described using a hypergeometry of objects in K dimensions. Hence, in this chapter, we consider 

a hypergeometry of objects in K dimensions, and then, we use the results of hypergeometry to 

optimize multidimensional receivers. In particular, we study the K-dimensional sphere, poly tope, 

cube, scaled polytope and the scaled cube. We prove that the volume and the surface area of these 

objects reach a maximum for a particular value of dimension, and then, decrease towards zero. We 

obtain the dimension corresponding to the maximum volume and to the maximum surface area as a 

function of the radius. We also show that the p-norm of a vector in K dimensions is monotonically 

increasing in K, and monotonically decreasing in p. The general results of hypergeometry are then 

used to optimize SNR adaptive receivers employing a bank of subchannel detectors and employing a 

K branch diversity combining front-end. We also use the results of hypergeometry to prove that the 

average performance measures of detectors operating over erasure subchannels reach a maximum 

for a particular dimension and SNR partitioning. Theory and numerical examples confirm that the 

average probability of error corresponding to a particular subchannel, the probability of selecting 

a particular subchannel, and the information theoretic average subchannel capacity are maximized 

for a particular value of dimension. Finally, we show that the results of hypergeometry are relevant 

for determining an optimum number of receiver antennas and overall receiver complexity. 

1.3 Thesis Contributions 

In this subsection, thesis contributions are listed chapter by chapter. 

Chapter 2 

• Sample rejection is established as an easy-to-implement computer simulation technique for 

coded systems operating over quantized AWGN channels and ISI channels. 

• Hypersphere, hypercube and hyperquadrant are proposed as the rejection regions well-suited 

for efficient simulations of coded systems over quantized AWGN channels. 
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• Sliding-window FD is modified using SR principles and is shown to be more efficient for 

simulations of ISI channels and near-MLSD than the VA. 

Chapter 3 

• The Prony approximation method is proposed as a remarkably simple semi-analytical tech

nique for evaluation of the average probability of transmission error for digital communication 

systems operating over slowly fading channels. 

• The Prony approximation method is shown to be a generalization of the Chernoff bound and 

the MGF method. 

• A piecewise polynomial approximation of the conditional probability of error is investigated 

as an alternative to Prony approximation. 

Chapter 4 

• It is shown that decorrelation and orthogonalization of branches prior to employing DCS's can 

recover some of the diversity gain lost due to the branch correlations. This is observed, for 

example, for the case of HS/MRC operating over decorrelated and orthogonalized non-zero 

mean Gaussian fading channels. 

• The performance analysis of DCS's operating over correlated fading channels can be greatly 

simplified if a linear correlation channel model having equal branch variances is decorrelated 

prior to employing diversity combining since the branches become independent. 

• A fading amplitude channel model assuming vector norm superposition of the impinging 

plane waves is proposed. Such channel model can greatly simplify the performance analysis 

of DCS's having correlated fading branches. 

Chapter 5 

• The turbo product coded MIMO-OFDM systems operating over arbitrary correlated Ricean 

fading channels are analyzed. Particularly, the probability of outage, the BER, and the the

oretically achievable diversity gain and coding gain are derived for two transmitter diversity 

schemes. 

• It is proved that the rank and determinant design criteria of space-time-frequency block codes 

used over Gaussian channels are also valid for the exact PEP. 
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Chapter 6 

• It is shown that binary Hamming codes can be constructed recursively. 

• The recursive structure is used to efficiently enumerate the input-output weights of binary 

Hamming codes. 

• The exact BER of binary Hamming codes with antipodal signaling and hard-decision demod

ulation used on AWGN channels is evaluated exactly. 

• The coding gain is shown not to be monotonically increasing with SNR. 

Chapter 7 

• A family of IBRC's having variable block length and variable minimum Hamming distance 

is constructed. 

• The construction of IBRC's is extended to multiple dimensions. 

• Two design criteria of multidimensional IBRC's are given assuming the code constraint length 

and the code constraint weight. 

• An efficient algorithm to search for good codes is presented. 

• The IBRC's are shown to be good candidates for adaptive coding, turbo product coding, 

retransmission schemes and multihop routing. 

• A non-recursive block differential encoder of IBRC's is found to arbitrarily increase the code 

rate with the block length while the minimum Hamming distance of the code remains con

stant. 

• Multidimensional IBRC's are shown to be also well-suited as an inner encoding scheme for 

concatenated one-dimensional outer codewords to increase their minimum Hamming distance 

without increasing the transmission bandwidth. 

• The transmission energy distribution over the codewords of IBRC's is optimized to improve 

the BER. 

• A three stage network protocol employing IBRC's and the distributed random SPC codes is 

proposed for the uplink and downlink packet transmission. 
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• The PER is evaluated for all three protocol stages assuming particular network realizations 

and coherent and non-coherent binary modulation schemes. 

• A link budget analysis is used to calculate the receiver SNR. 

• It is found that the cooperation gains in the network are strongly dependent on the particular 

network realization and less on the number of cooperating nodes. 

Chapter 8 

• The K-dimensional sphere, polytope, cube, scaled polytope and the scaled cube are studied. 

• It is proved that the volume and the surface area of these objects reach a maximum for a 

particular value of dimension, and then, decrease towards zero. 

• The dimension corresponding to the maximum volume and to the maximum surface area is 

obtained as a function of the radius. 

• The lp norm of a vector in K dimensions is shown to be monotonically increasing in K, and 

monotonically decreasing in p. 

• The SNR adaptive receivers employing a bank of subchannel detectors and employing a K 

branch diversity combining front-end are investigated. 

• The average performance measures of detectors operating over erasure subchannels are shown 

to reach a maximum for a particular dimension and SNR partitioning. 

• It is shown that there exists optimum receiver dimension. 
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Chapter 2 

Efficient Computer Simulation 

Techniques 

This chapter considers efficient computer simulation techniques. In particular, the SR simulation 

technique is proposed and investigated in Section 2.1 for MLSD and quantized AWGN channels, 

and in Section 2.2 for MLSD and ISI channels. 

2.1 Sample Rejection for Simulations of Binary Coded Schemes and 

MLSD over Quantized AWGN Channels 

2.1.1 Background 

The use of coding to approach channel capacity is a topic of renewed great research interest. How

ever, theoretical performance analysis of sophisticated coding schemes is often mathematically in

tractable, particularly for finite values of SNR. Several techniques have been developed for efficient 

estimation of BER's of communication systems. Among them, a modified MC simulation method 

based on importance sampling (IS) (proposed in [5]) is the most frequently used in practice. A 

discussion of the state-of-the-art of IS used for efficient simulation of communication systems can 

be found in [6]. In general, the application of IS to systems with large dimensionality (sometimes 

referred to as the memory of the system) is rather problematic [7]. Furthermore, the IS technique 

must be often tailored to a specific system under consideration, and the variance reduction of the 

BER estimator is not always guaranteed. For example, the optimum IS biasing scheme for a sys

tem operating over an AWGN channel and using Viterbi decoding depends on the particular coding 
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scheme employed, the received signal quantization, and the SNR [8]. While the dimensionality 

problem for systems over quantized AWGN channels with Viterbi decoding can be relieved using, 

for example, an error-event IS simulation technique proposed in [9], the necessity to customize the 

IS biasing scheme for the system considered remains. Therefore, the main focus of this section is 

to investigate an IS technique which is easy to implement, universally applicable, and sufficiently 

robust regarding the system dimensionality. We will show that these requirements can be fulfilled 

bySR. 

The use of IS may require determining the simultaneous biases of a large number of noise pro

cesses which can be an arduous task, especially for complex systems. Therefore, SR was proposed 

in [10] as a special case of IS to significantly alleviate the implementation requirements. The SR 

technique is based on the following idea. In the course of simulation, decoding of the received 

sequence is almost always the most time consuming operation since the decoder typically searches 

over a large set of possible transmitted sequences to select the best candidate. Hence, the elapsed 

simulation time can be reduced if we avoid decoding of the received sequences which are known 

beforehand to be decoded error-free. The potential simulation time-savings were analyzed in [10] 

for the case of a perfectly quantized (i.e., unquantized) AWGN channel and a hypersphere rejection 

region (i.e., all noise vectors with magnitude less than half the minimum Euclidean distance are 

rejected without decoding). The conclusions in [10], however, seem to indicate that SR may be 

effective only for systems with dimensionality less than 10. The idea of SR was also applied inde

pendently in [11] for a system with intersymbol-interference and Viterbi decoding, in [12] where 

a rejection region was designed for trellis-coded modulation with stack sequential decoding, and 

in [9] as an error-event IS simulation; see also [6, p. 609] and references therein. Nevertheless, 

the use of SR in [9], [11] and [12] is limited for a specific problem at hand whereas the discussion 

in [10] and this section aims at a broader perspective on SR. 

In this section, the SR technique is investigated for binary antipodal signaling over quantized 

AWGN channels and MLSD. The analysis of the SR technique is valid for any coding scheme of 

finite block length. A discrete memoryless channel (DMC) model derived from the AWGN chan

nel with quantized output is introduced in Section 2.1.2. We present the structure of the MLSD 

for different levels of channel quantization and the corresponding probability of a decoded bit er

ror. In Section 2.1.3, we discuss codeword decoding probability (CDP) estimation using IS and SR 

techniques, and define the gain of SR as a reduction of the estimator variance with respect to con

ventional MC simulation. In Section 2.1.4, rejection regions for an AWGN channel with quantized 
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output are compared. In addition to a hypersphere rejection region considered in [10] for perfectly 

quantized decisions, we propose and analyze hypercube and hyperquadrant rejection regions for 

quantized AWGN channels. While hypersphere SR typically gives greater gains than hyperquad

rant and hypercube SR at large SNR, it is shown that the proposed rejection regions can have gains 

as large as several orders of magnitude greater than hypersphere SR when the number of dimensions 

is large and the SNR is finite. In Section 2.1.5, a numerical example is given, and run-time issues 

are considered. Summary is given in Section 2.1.6. 

2.1.2 System Model 

Assume baseband equivalent signals represented as vectors in a n-dimensional signal space. The k 

independent and identically distributed (IID) equally probable information bits are encoded into a 

length n binary codeword x = (x\, x2, • • • , xn), x% £ {0,1}, from a codebook <€. The size of the 

codebook is \€\ — 2k and the code rate is R = k/n. The codebook can be either a binary block 

code or a binary convolutional code with trellis termination or trellis truncation. The dimensionality 

is equal to the number of samples that affects a single symbol decision. For a simulation model 

using one sample per data symbol, the codeword length, n, corresponds to the dimensionality of the 

system. The codeword, x, is mapped onto a modulated signal vector, s, using binary phase-shift 

keying (BPSK), i.e., Sj = (—l)Xi, i = 1,2, •• • , n. This implies that the minimum squared Eu

clidean distance at the output of the modulator is d% = 4dmin where dm;n is the minimum Hamming 

distance of the code (i.e., the squared Euclidean distance is directly proportional to the Hamming 

distance). The transmitted signal vector, s, is corrupted by a zero-mean AWGN vector, w, with 

variance, a^ = No/2, per dimension where iVo is the one-sided noise power spectral density. The 

noise and the transmitted signal are uncorrelated. The energy of the encoded modulated symbols 

is assumed, without loss of generality, to be unity, i.e., E[|s;|2] = 1, i = 1,2, • • • , n. Therefore, 

the energy of an uncoded modulated symbol is Eb = 1/R, and the SNR per uncoded modulated 

symbol is jb = Eb/No = (2Ra^J)~
1. The received signal, y, quantized into Q levels is, 

y = ^ Q ( s + w) (2.1) 

where transformation •SQ(-) quantizes each component of its vector argument, and hence, y G UQ 

where ZQ = {0,1, • • • , Q - 1}. When Q —> oo, the receiver processes perfectly quantized soft-

decisions while Q = 2 corresponds to a hard-decision decoding. The Q quantization intervals that 
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Figure 2.1: The Q-ary quantization of BPSK in AWGN with quantization intervals 2j, an equivalent 
symmetric DMC model with binary input {0,1} and Q-ary output i € {0,1, • • • , Q — 1} and the 
transition probabilities P^. 

partition the real axis are defined as, 

' [ ( 2 - l ) A , o o ] j = 0 

Ij = \ [ ( § - j - l ) A , ( § - j ) A ] j = l,2,..-,(Q-2) (2.2) 

[ [-oo,(l-f)A] j = (Q-l) 

assuming Q is even and A is the width of the quantization intervals except the outermost intervals 

IQ-I and IQ which extend to infinity. Each quantization interval is assigned a value from the set 

ZQ; see Fig. 2.1. Optimum quantization for AWGN channels is well-studied in the literature; see, 

for example, [13] and references therein. Note that a heuristic approach to quantizer design is often 

sufficient and may yield a negligible performance loss [14]. 

It is useful to represent the quantized AWGN channel by an equivalent DMC if Q < oo (cf. 

Fig. 2.1). The DMC input is a binary codeword, x, and the output is a Q-ary received word, y. 

In the case of BPSK signaling, AWGN with zero mean and quantization intervals symmetric about 

the origin (cf. Fig. 2.1), the DMC is symmetric. The transition probabilities of the symmetric 

DMC are given in Table 2.1. Define a binary operator, ©, between two vectors, a and b, such that 

a © b = |a — b | = (|ai — b\\, • • • , \an — bn\) where | • | is the absolute value (i.e., the operator is 

related to the distance between vectors). Then, the DMC model is, 

y = ( Q - l ) x © e (2.3) 
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Table 2.1: Transitions of the symmetric DMC for given values of discrete noise samples. 

noise sample 

0 
1 
2 

Q-l 

transitions 
0 ^ 0 ( Q _ 1 ) _ * ( Q _ 1 ) 

0 - • 1 (Q - 1) - • (Q - 2) 
0 ^ 2 (Q - 1) - • (Q - 3) 

0 - » ( Q - l ) ( Q - l ) - ^ O 

probability 

Po 
Pi 
P 2 

P « - i 

where scalar multiplication of vector, x, by (Q — 1) is introduced for convenience, and e € Z Q 

represents the noise, i.e., forces the transitions of the input coded bits within the DMC. Note that if 

e = (0,0, • • • , 0), no noise is present and the output is equal to the input. Note also that the operator 

© corresponds to modulo 2 summation if Q = 2. One can show that (2.3) is equivalent to, 

e = ( Q - l ) x e y . (2.4) 

Recall that the DMC is symmetric. Therefore, the channel transition probability between the 

channel input, i E {0,1}, and output, j G ZQ, can be designated using a single subscript, i.e., 

Pi, = P ( Q - i ) t e j ; see (2.4), Table 2.1 and Table 2.2 (note that in Table 2.1 the transitions are shown 

for the channel input {0, Q - 1}). If X is a Gaussian random variable with mean m and variance 

a2, the probability Pr(a < X < b) = Q(9^) - Q ( ^ r O where Q(-) denotes the Q-function; see 

(A-2). Therefore, the transition probabilities are computed as, 

P(Q-i)iej = Q\ 
if - {-If r(«) 

Q 
- (-i) a 

On, 

r(0 r(«) where I- and /• is the lower and upper bound of the quantization interval Ij, respectively, and 

Xi is a symbol at the channel input. 

The channel is assumed to be stationary with conditional probability mass function (PMF) 

/ (y |x) = n iLi f(Vi\xi) having the multinomial distribution given by [15], 

/ (y|x) = n\ 
molmil.., mg_i 

pmo prrai p m Q - l 
| r O r l • • • rQ-l 

Q - i , where mi is the number of occurrences of the transitions with probability Pj , Y2j=o mj = n 

and Y^j=o Pj = •*-• ^ follows from (2.4) that the noise vector, e, conditioned on the transmitted 
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Table 2.2: DMC transition probabilities. 

Pr(iK) 
0 

1 

Q / 2 - 1 

g/2 

Q-l 

0 1 

Po > P Q - I 

P I > Pg-2 

P Q / 2 - 1 > PQ/2 

PQ/2 < P Q / 2 - 1 

P Q - I < Po 

codeword, x, also has a multinomial distribution. 

Optimum Detector 

The optimum decoder partitions the space Zg of all possible received sequences, y, in order to 

minimize the probability of making an incorrect sequence decision. Assuming IID equally probable 

input information bits, the codewords, x G ^ , are equally likely and the optimum decoder performs 

ML sequence decoding [16]. The decision (Voronoi) region [17] for transmitted codeword x is 

denoted as ^ (x ) , i.e., Vx ^ x' : ^ (x ) n 9{-xl) = 0 and U x e ^ ( x ) = ZQ\ The Voronoi regions 

are determined as [9], 

0(x) = {y e Z% : m(x,y) = ££ x , e *m(x ' > y)} 

where m(x, y) is the metric to be maximized or minimized over all possible transmitted codewords. 

The specific form of the metric depends on the number of quantization levels, Q. 

For perfectly quantized soft-decisions, Q —> oo, and the detector minimizes the squared Eu

clidean distance [16], 

n 

= m i n £ ; - y i ( - l ) l { (2.5) 
i = l 

where ||-|| is the Euclidean norm of the vector, and (—l)x = ((—l)xi, (—l)2^, • • • , (—l)Xn). 

m(x, y) = min y - ( - ! ) ' 
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For quantized soft-decisions, 2 < Q < oo, the detector maximizes [18], 

n n Q—1 

m(x, y) = maxTT /(yi|xj) = max"Q P e i = max TT P™J' (2.6) 
i=l i = l j = 0 

where e* = (Q — 1)^ © y*. For equally probable codewords, the metric (2.6) is proportional 

to the a posteriori probability (APP) of the transmitted sequence, and hence, the reliability of the 

decision [17]. Owing to quantization (2.2), we have always Pj > P Q „ I _ J for j — 0,1, • • • , Q/2—1 

(cf. Table 2.2), and thus, the metric (2.6) is bounded as, 

( min P.- ) < T T P C - < ( max P~) . 
\p=Q/2,...,Q-i V - A J e i - \j=o,..,Q/2-i V 

Finally, for hard-decisions, Q = 2, and the metric (2.6) can be simplified to minimize the 

Hamming distance, i.e., 

m(x, y) = min V ] x\ © j / * . (2.7) 
i—\ 

Probability of Decoded Bit Error 

The probability of erroneously decoding a bit (the BER) is an important performance measure of a 

communication system. The BER can be evaluated as [9], 

Pr(e) = J-E[e(x,x')] = T J ] £ e(x,x')Pr(x' |x) Pr(x) = ^ Pr(e|x) Pr(x) (2.8) 

where e(x, x') is the number of information bit-errors when the two codewords are interchanged, 

and the BER is a weighted sum of CDP's, Pr(x'|x). Note that owing to one-to-one mapping of 

input information bits onto codewords, the summations in (2.8) can be done equivalently over input 

information vectors. For equally probable codewords, Pr(x) = l/2fc. In general, the conditional 

probabilities Pr(e|x) = \ J]x 'e^ ' e( : x ; 'x /)P r(x ' lx) differ depending which codeword was trans

mitted. For linear codes that are regular, i.e., the distance spectrum is independent of the selected 

codeword [19], the conditional bit-error probabilities are independent of the transmitted codeword, 

and the all-zero sequence can be exclusively considered as the transmitted sequence saving simu

lation efforts. On the other hand, for example, trellis termination of convolutional codes violates 

the code regularity, and the conditional bit-error probabilities are not independent of the transmitted 
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codeword. The CDP's can be expressed as [9], [17], 

P r ( x ' | x ) = £ / ( y | x ) = £ M y ) / ( y | x ) 
ye®(x') yeZ£ 

(2.9) 

where the indicator function IX'(y) = 1 for y € f^(x') and 0, otherwise. 

The double summation over all pairs of codewords in (2.8) may be overwhelming even for 

codes of moderate block length. Another difficulty is that knowledge of the decision region, ^(x7) , 

is often missing, and hence, the CDP (2.9) cannot be evaluated analytically. Therefore, simulation 

is usually used to determine the performance of coded systems. The estimator of the BER (2.8) has 

the form, 

P(e) = IJ2 E e(x,x')P(x7 |x) Pr(x) (2.10) 
xe%f x'e<r 

where P(x7|x) is the estimator of CDP (2.9). The variance of the estimator (2.10) is, 

2 

var *«> = EEEE 
X x ' X" X'" 

Pr(x) 
e(x'|x)e(x7"|x")cov P(x' |x) ,P(x"7|x77) 

EE Pr(x)e(x7 |x) 
var P(x!\x) 4 (2.11) 

since CDP's are conditionally uncorrected (for x = x77 and x7 ^ x777) and other covariances are 

neglected (for x ^ x." and x7 = x777). Assuming further that the variance of the CDP estimator is 

approximately constant for all pairs of codewords, one has a\ w constant x var P(x'|x) 

2.1.3 Estimation of CDP 

Using simulation to estimate Pr(e) may require excessively or prohibitively long computer run

times. In some cases, the IS technique can be employed to reduce the excessive simulation times 

required to estimate CDP (2.9) (and consequently to estimate BER (2.10)). We review IS first, and 

then, proceed to SR as a special form of IS. 
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Importance Sampling 

The computation of CDP (2.9) can be rewritten using another channel transition PMF, /*(y|x), 

as [9], 

Pr(x' |x) = ] T Ix,(y) 
yez% 

/ (y|*) 
/*(y|x) 

w(y|x) 

r ( y | x ) 

where to(y |x) is a weighting function. Then, the unbiased estimator of the CDP for L simulation 

trials is, 
1 L 

P(x' |x) = - J > ( y « | x ) / x , ( y W ) (2.12) 

where the superscript indicates the Z-th simulation trial. For independent errors, the estimator vari

ance is, 

var P(x' |x) I w [ U ; ( y « | x ) / x , ( y ( i ) ; 

l_f ^ / /(y|x) 

^yG^(x') KJ V J | ; 

/*(y|x) - Pr(x' |x) (2.13) 

Observe that if iu(y|x) = 1, eq. (2.12) becomes an ordinary MC estimator. 

Sample Rejection 

The SR method was proposed in [10] as an IS technique for which no weights need to be com

puted. Provided that we can find an arbitrary region, Rx C f^(x), inside the decision region of the 

codeword x, the CDP can be expanded as [10], 

Pr(x' |x) = Pr(x' |x, y e Rx) Pr(y e Rx) + Pr(x' |x, y g Rx) Pr(y £ Rx) (2.14) 

Eq. (2.14) suggests that we may a priori reject the error-free received samples that fall into the 

region Rx. It is important to ensure that the region Rx is fully inside the region S?(x), otherwise, 

the estimator P(x'|x) will be biased. Note that y € Rx ensures that x' = x, i.e., e(x,x') = 0 

in (2.8) and P(x'|x) is unbiased. If Rx is sufficiently large, the probability Pr(y ^ Rx) is small 

and consequently probability Pr(x'|x, y 0 Rx) is large and easier to simulate. It is of interest since 

typically larger Rx can be chosen for higher values of SNR corresponding to lower values of BER 

which are more difficult to simulate. 
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When the samples are being rejected, the channel transition PMF is biased according to, 

[ W y £ R x 
r<y\x) = { x-Pl(Rx) (2.15) 

{ 0 y € Rx 

where the probability mass of region Rx is Pr(Rx) = Pr(y G Rx) = ^ y G R x / (y|x). Strictly 

speaking, rejecting the samples introduces memory into the channel [9]; however, the channel re

mains block-wise memoryless, and the simulation result is unaffected. 

There are two ways to obtain biasing function (2.15). We may generate all the received vectors 

y according to / (y |x) and discard the samples that fall inside the region Rx. This approach may be 

viewed as a fast decoding rule [10]. The second method is to generate the received vectors directly 

according to /*(y|x), i.e., a hole corresponding to the region Rx is carved within / (y |x) [10]. 

However, care must be exercised in removing mass in the n-dimensional event space because if 

mass is removed from regions that are inside the error event volume, the estimator P(x'|x) will be 

biased. The direct method is, in general, difficult to implement, particularly for biasing functions 

that are not circularly symmetric [20]. Moreover, in most practical situations, the time taken to 

generate the samples is insignificant compared to the time taken to execute the decoding. In this 

case, the simulation gains of the two approaches are similar. 

Variance Reduction of SR 

The efficiencies of accelerated simulation methods are usually measured in terms of variance re

duction relative to conventional MC simulation, or equivalently, the reduction in the number of 

simulation trials required to achieve a given estimator variance. In particular, the gain of SR in 

estimation of the CDP P(x'|x) is, 

a2 
/-< mc 
UP(x'|x) - a2 

w sr 

u 
•^mc—J-'sr U 

(2.16) 

where er^c, a
2

v, Lmc and Lsr is the variance of the MC estimator, the variance of the SR estimator 

and the number of simulation trials for MC and SR simulation, respectively. One has from (2.13) 
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that, 
/ 

er„ = var P(x'lx) 
LB 

/ | ,^2 ( l - P r ( R x ) ) Yl / ( y | x ) - P r ( x ' | x ) 
ye^(x') 

(2.17) 

V P<x'|x) / 

since by the definition of error-free region, Rx n f^(x') = 0 , and the summands in (2.13) are 

independent. Similarly, the variance of the MC estimator (2.12) when w(y|x) = 1 is, 

2 

Ln 
Pr(x'lx) -P r fx ' lx ) (2.18) 

It is worth noting that the variance of the CDP estimators (2.17) and (2.18) reach their respective 

maximum for certain (different) values of CDP, Pr(x'|x). We can substitute (2.17) and (2.18) into 

(2.16) to obtain the gain of the SR method, 

G 
Pr(x'|x) 

P(x'|x) l _ p r ( R x ) - P r ( x / | x ) ' 
(2.19) 

The numerator in (2.19) equals the probability of not decoding x' when x was transmitted, and 

the denominator equals this probability reduced by the probability mass of Rx. Intuitively, if the 

decision region is known a priori (for example, it is for the case of perfect codes [18]), Rx = ^ (x ) , 

and the gain Gp/,,-, —» oo. On the contrary, if no rejections are performed, Rx = 0 , and the 

gain Gp,x,,xs = 1. Note that the variances of the MC and SR estimators, and consequently the gain 

(2.19) are functions of the SNR. 

For any value of Pr(x'|x), the gain (2.19) can be lower bounded as Gp,x,,-, > (1 — Pr(R x ) ) _ 1 . 

Assuming 1 - Pr(x'|x) 2> Pr(Rx), this lower bound is tight, and using (2.11) and (2.16), the gain 

of SR over MC method for the BER estimator, P(e), can be well approximated as, 

G P(e) Pr(R* 
(2.20) 

The approximation of the gain Gp,e, in (2.20) is valid provided that Pr(Rx) is constant, independent 

of the specific codeword, x. We may interpret the result as the ratio of space masses that must be 

searched in the course of simulation without or with the implemented rejection rule, respectively. 
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2.1.4 Rejection Regions for Quantized AWGN Channels 

It is clear from the previous discussion that the rejection region Rx must be determined such that 

for any transmitted codeword, x, it is easy to determine whether the received vector y is inside 

this region. In general, the greater the (probability) mass of the rejection region, the higher the 

achievable gain (cf. (2.20)). The influence of the shape of rejection region on the gain achievable by 

SR was briefly considered in [10]; a hypersphere was analyzed for perfectly quantized soft-decision 

decoding while a hypercube was only conjectured (but neither defined nor analyzed) to possibly be 

better for hard-decision decoding. 

We can form rejection regions of different shapes depending on what knowledge about the error-

free region 3)(x) is available. The use of a n-dimensional hypersphere for an AWGN channel is 

motivated by the fact that a hypersphere of radius de/2 centered about the transmitted codeword 

in a signal space cannot contain error events. In problems having rectangular symmetries, it may 

be possible to use a n-dimensional hypercube. If the hypercube contains the hypersphere, the gain 

is improved. If one conditions the shape of a rejection region on the transmitted codeword, it is 

possible to remove probability mass from regions that are not centered on the origin. For example, 

one can reject a block of noise samples if, for each bit in the block, the noise sample is less than 1 

when the transmitted symbol is —1 and greater than —1 when the transmitted symbol is +1 . This 

creates a hyperquadrant conditioned on the transmitted sequence in the n-dimensional noise space. 

While it is clear that this scheme is "safe" for hard-decision decoding, it is not clear that this scheme 

will not bias the estimator for soft-decision decoding. 

Perfectly Quantized Soft-Decisions 

For perfectly quantized soft-decisions, Q —> oo, and the decoder minimizes the Euclidean distance 

(2.5). For illustration and clarity, we consider the one-dimensional case first which corresponds to 

an uncoded system. Then, the received signal is y\ = s\ + w\ (cf. (2.1)). For BPSK signaling 

with symbols ±1 , no errors occur if the noise sample \wi\ < 1, i.e., the noise samples inside 

R4 = {wi : \wi\ < 1} can be rejected (cf. Fig. 2.1). The probability mass of Ri is Pr(Ri) = 1 — 2p 

where p = Q(i/27b) is the BER of BPSK over an AWGN channel. The rejection region can be 

enlarged if we condition the rejections on the transmitted symbol, s\. Then, the rejection region 

is Ri(si) = {^1 : s\wi > —1}, and since Ri c Ri(si), the probability mass is increased 

to Pr(Ri(si)) = 1 — p and the gain (2.20) is doubled. Importantly, note that, in this case, the 

28 



theoretically computed gain of the one-dimensional SR technique neglects the fact that the time 

to reject the sample is approximately equal to the time to decode the sample. In general, we will 

show in the next subsection that the probability of rejection in the theoretically computed gain of 

SR is scaled by the ratio of times to reject and decode the received sequence. In this subsection, 

it is assumed that the time to reject the received sequence can be neglected. Even though such 

assumption is well justified for longer sequences, for sequences of smaller block length, the time 

to reject the sequence cannot be neglected and the gain of SR will be reduced. Hence, one should 

use the IS simulation for sequences of block length, say, less than 10, and the SR simulation for 

sequences of block length larger than 10. 

To illustrate further, consider a transmission in two dimensions as depicted in Fig. 2.2. The 

rectangle centered in the origin corresponds to an uncoded transmission when the rejection region 

is independent of the transmitted bits. The rectangle illustrates a hypercube in 2D. The circle around 

the rectangle is a 2D hypersphere rejection region for the repetition code with codewords (0,0) and 

(1,1) (modulated si = (1,1) and S2 = (—1, -1 ) , respectively) with dmin = 2, i.e., de = 2\/2. The 

dashed line in Fig. 2.2 corresponds to the decision boundary for codewords si and S2. In this case, 

the hypersphere is defined as R2 = {w\,W2 : | ^ i | 2 + |w2|2 < dl/4}. The circle inside the rectangle 

is a hypersphere for the case when dm;n of the code is unknown; then it is safe to assume dmjn = 1, 

i.e., de — 2. Finally, the lines E\ and Ei enclosing the shaded area are the error boundaries when 

the codeword (1,1) (modulated signal S2 = (—1, —1)) is transmitted. This rejection region is a 

hyperquadrant in 2D. 

The general case of n dimensions applies when coding of codeword length n is used. The rejec

tion region suggested in [10] is a hypersphere of radius \/Xn, Tn — d\j4 = 4dm-m/A — dm[n. The 

hypersphere effectively restricts the energy of the noise which is related to the squared Euclidean 

distance between the transmitted and received codewords (cf. (2.5)). In addition to a hypersphere, 

an equilateral hypercube is readily applicable. For noise samples inside the hypercube, it is ensured 

that the noise does not alter the sign of every transmitted symbol in a block; regardless whether the 

symbol +1 or —1 is transmitted. The hyperquadrant exploits knowledge of the particular transmit

ted block of symbols to increase the volume of the hypercube. In this case, for every symbol in 

a block, the noise sample can be less than 1 if the symbol — 1 is transmitted or greater than — 1 if 

the symbol +1 is transmitted. In the following claim, we prove that all three regions are inside the 

(error-free) decision region £?(x) for any transmitted codeword x. 

Claim 2.1 Consider the hypersphere Rs(dmm) = {wi,i = 1,2, ••• , n : YA-I^ — dmm}> the 
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Figure 2.2: Rejection regions for a repetition code in n = 2 dimensions with decision boundaries 
Ei and E% assuming (1,1) was transmitted which corresponds to signal point S2 = (—1,-1). 

hypercube Rc = {wi,i — 1,2, ••• , n : \wi\ < 1} and the hyperquadrant Rg(x) = {wi,i = 

1,2, ••• ,n : Wi(—l)Xi > —1}. For perfectly quantized soft-decisions, if the noise vector n is 

inside Rs(dmin), Rc or Rg(x), f/ie optimum detector selects the correct transmitted codeword. 

Proof: The optimum detector selects the transmitted codeword minimizing the metric (2.5). 

The coding scheme guarantees that the squared Euclidean distance between any two transmitted 

sequences is at least d% — 4dmjn. Therefore, the detector can tolerate noise energy less than 

(<ie/2)2 = dmiQ which is a definition of the hypersphere. By definition of the hypercube and 

the hyperquadrant, the noise does not change the sign of any symbol in a transmitted block, i.e., 

sign(j/i) = (—l)Xi, i = 1, 2, • • • , n. Since this is also a condition for which the minimum of (2.5) 

is obtained, the detector must select the correct transmitted codeword and no error occurs. • 

The probability mass contained in the hypersphere is [10], 

Pr(Rs(dmin)) = P r ( | | n | | 2 < T n ) = F H s 2 ( T n ) = (2.21) 
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1 - e"R7bdmin Y^ F {dmmRlb)k n is even 
_ fc=o 

where F|jn|,2(Tn) is the cumulative distribution function (CDF) of multivariate chi-square distribu

tion with n degrees of freedom. The probability mass of the hypercube is, 

Pr(Rc) = (1 - 2p)n (2.22) 

and of the hyperquadrant is, 

Pr(Rg(x)) = ( l - p ) n (2.23) 

where p = Q(y/2Rjb) < 1/2 is the probability of bit-error before decoding for BPSK signaling 

over an AWGN channel. One can use eqs. (2.20) - (2.23) to determine the potential gains of SR for 

any coding scheme with binary antipodal signaling and maximum-likelihood sequence detection 

over a quantized AWGN channel. Note that the probability masses (2.21) - (2.23) are constant 

(independent of x), and that Pr(Rc) < Pr(Rg(x)) for any x and n. 

Claim 2.1 ensures that an appropriate hypersphere, hypercube or hyperquadrant can be carved 

from the noise hyperspace. In the absence of any additional knowledge regarding the error event 

volume, one cannot use a hypersphere that has squared radius greater than dm\n = 1 without risk 

of removing mass from the error event region and creating a biased estimator. The hypersphere of 

squared radius dm;n = 1 is always contained inside the corresponding hypercube and hyperquadrant 

(cf. Fig. 2.2). Hence, as shown in Fig. 2.3 using (2.20) - (2.23), the hypercube and hyperquad

rant will provide greater gains than the hypersphere while knowledge of the transmitted codeword 

increases the volume of the hyperquadrant relative to the hypercube. In Fig. 2.3, we assume a hypo

thetical rate 1/2 code. In general, we assume the Singleton bound to lower-bound the block length, 

n, of a hypothetical code of rate, R, and the minimum Hamming distance, dm[n, i.e., 

^ C'min — J-

Note that we can also use other lower-bounds of the block length of the hypothetical code, for 

example, the Plotkin bound [21]. Also, in order to simplify evaluation of the theoretically achievable 

SR gain, we assume that a hypothetical rate 1/2 code can be an odd number if we append, for 
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example, a trailing overall-parity symbol. 

Additional knowledge of dm[n of the code permits using a hypersphere of greater volume than 

the hypercube or the hyperquadrant without biasing the estimator. This is shown in Fig. 2.4 as

suming again a hypothetical rate 1/2 code, and an optimistic lower bound of the block length, 

n > dmin- We observe that the use of the hypersphere is restricted to lower values of dimensional

ity, say, n < 100, while the hypercube and the hyperquadrant can provide value of SR gain at least 

as large as 2 for dimensionality as large as 400 and 900, respectively, when the SNR % = 10 dB. 

Note that the gain is the code rate dependent; for example, the change of the code rate from R = 1/2 

to R = 1/3 reduces equivalent^/ the SNR by 1.76 dB. Observe from Fig. 2.4 that the gain of the 

hypersphere of constant radius decreases much more rapidly with increasing dimensionality than 

the gains of the hypercube and the hyperquadrant. This is explained as follows. 

Fig. 2.5 shows the probability mass contained in the hypersphere of dimension n computed 

using (2.21) for dmjni?7b = {1/2,1,2}. These values are chosen so that (dm-mR'jiJ)
k decreases, 

remains constant, or increases as k increases. Observe that the probability mass in the hypersphere 

is strictly decreasing as n increases for all three cases. There are two reasons for this. First, the 

mode of the multivariate chi-square PMF moves out to larger and larger values of argument as n 

increases (see [21, Fig. 2-1-9]). Second, and perhaps much less known than the former fact, the 

volume of the n-dimensional hypersphere increases with n, attains a maximum at a finite value of 

n, and then decreases to zero as n increases further. This is seen by plotting the volume of the 

n-dimensional hypersphere which can be found in [22] and [23]. Fig. 2.6 presents the volume of 

the n-dimensional hypersphere given by Vn(r) = wn/2+i) w n e r e F(-) is the Gamma function for 

r = 1/2,1 and 2, demonstrating this behavior. 

On the other hand, while the probability mass of the hypercube and the hyperquadrant do de

crease to zero as n increases according to (2.22) and (2.23), the volume of the hyperquadrant, 

and the hypercube when the edge length is greater than one, grows to infinity as n increases. In 

consequence, the gains of hyperquadrant and hypercube SR suffer far less from increase in dimen

sionality than does the gain of the hypersphere. In summary, although the gain of the hypersphere 

can be greater than the gain of the hyperquadrant and the hypercube for small values of n, it will 

always be smaller for sufficiently large values of n. This discussion and the results presented in 

Fig. 2.3 establish that the potential gains of SR for moderate to large values of n are much more 

optimistic than suggested by the results in [10] obtained for hypersphere SR. 

Finally, note that the radius of the hypersphere used in SR is constant if dra;n of the code is 
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constant, independent of the block length, n; this is the case, for example, for convolutional codes 

and some block codes (e.g., Hamming codes). If dmin of the code can grow with the block length 

(e.g., BCH codes), the hypersphere may outperform the other two regions. In any particular case, 

one can use (2.20) - (2.23) to compare the gains of the three rejection regions for the problem at 

hand. 

Quantized Soft-Decisions 

For quantized soft-decisions, 2 < Q < oo, and the rejection regions have to be defined for the 

DMC model (2.3). The detector maximizes the metric (2.6). The notion of distance between the 

received sequences is not well-defined, and thus, a hypersphere is not applicable for the DMC. In 

principle, hypercube SR can be used for the DMC if some of the quantization intervals (2.2) are fully 

contained inside the interval (—1,1). The hyperquadrant for the DMC, Rq(x) (tilde distinguishes 

the hyperquadrant for the DMC from the hyperquadrant for the AWGN channel), conditioned on 

the transmitted codeword, x, can be defined noting the even-symmetry of the quantization intervals 

(2.2). Since the hyperquadrant provides better SR gain, and is more readily applicable for the DMC 

than the hypercube, we prove the following claim for the hyperquadrant. 

Claim 2.2 Consider the hyperquadrant Rg(x) = {e,,i = 1,2, ••• ,n : (—l)Xi(ei — 0^-) < 0} 

for quantized soft-decisions with 2 < Q < oo. If the noise vector e is inside Rg(x), the optimum 

detector always selects the correct transmitted codeword. 

Proof: The optimum detector selects the transmitted codeword in order to maximize the metric 

(2.6). The metric (2.6) is maximized by choosing the larger from a pair of transition probabilities 

for every received symbol. If the noise vector is inside R9(x), then the channel transition for every 

symbol in a block is such that the correct transmitted symbol conditioned on the received symbol 

is more likely than the incorrect one; see Table 2.2. Therefore, the detector must select the correct 

transmitted codeword and no error occurs. • 

It can be shown that Pr(RQ(x) J — Pr(Rq(x)) where in (2.23), we substitute the probability of 

error for a single symbol in a block (before decoding), i.e., p — YljZon ^i ^ F i § - ^-2)-

Hard-Decisions 

For hard-decision decoding, the DMC model (2.3) corresponds to a binary symmetric channel 

(BSC). The decoder minimizes the metric (2.7). The notion of Hamming distance between the 
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received sequences is well-defined. Recognizing that up to t errors are corrected by the decoder 

where t = [ mi^~ j , a hypersphere rejection region for the BSC can be defined as Rs(<imin) = 

{ej, i = 1, 2, • • • , n : Y27=i el ^ *}• The probability mass of the hypersphere for the BSC is, 

I ' ' m i l l - 1 j 

Pr(Ra(dmin)) = J2 ( ^ ^ ( l - p ) " - * (2.24) 
i=0 ^ % ' 

where p = Pi = 1 - P0 = Q(y^7i) . Note that for dmin < 3 (i.e., t = 0), Pr(R s(cUn)) = 

Pr(Rg(x)) (cf. (2.23)). A hypercube for the BSC is not possible, since none of the quantization 

intervals, IQ and I\, is inside the interval (—1,1). Nor is a hyperquadrant for the BSC defined. 

The gain of the hypersphere for the BSC for a hypothetical rate 1/2 code is plotted in Fig. 2.7 

using (2.20) and (2.24) for dmin = 1 (uncoded transmission), dm;n = 5 and dmin = 11. We assume 

an optimistic lower bound on the block length, n > dm[n. Comparing Fig. 2.4 with Fig. 2.7, 

we observe that, for dmin > 1, the dimensionality problem is much less severe for hard-decisions 

than for soft-decision decoding. For example, for SNR % = 8dB and dm;n = 11, a worthwhile 

hypersphere SR gain of 2 is obtained for a block length of 70 for soft-decisions and 1000 for hard-

decision decoding. 

2.1.5 Numerical Examples 

The actual simulation time savings achievable with SR depends mainly on the ratio of the time 

required for generation of a received block of samples, tg, and the time required for decoding such 

a block, td- It is obvious that necessarily tg/td C 1 in order for the time savings due to SR to be 

significant. If tg and t& can be estimated, one can estimate the total simulation time as [10], 

-*mc — ( i g + ^ d j ^ m c 

%T = {tg + (1 - Pr(Rx))td) Lsr 

where Tmc is the time required for the MC simulation and Tsr is the time required for the simulation 

using SR. For the same number of simulation trials, i.e., Lmc = Lar, and assuming tg/td <C 1, time 

savings of the order Tmc/Tsv & 1/(1 - Pr(Rx)) are obtained (cf. (2.20)). 

The practical applicability of SR was evaluated using four "real-life" examples of convolution-

ally coded schemes with hard-decision Viterbi decoding. Schemes /. and II are the protection of 

the most sensitive (class A) bits of the AMR-wideband speech codec in the 3 r d generation systems 
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using a convolutional code of rate 1/3 and 1/2, respectively; see [24, Table 2] and [25, Sec. 4.2.3.1]. 

Schemes III and IV are the convolutionally coded full-rate speech and data channels for the GSM 

Phase 2+ system; see [26, Sec. 3.1] and [26, Sec. 3.3]. The simulation results obtained using 

Matlab and Care summarized in Table 2.3 where k is the number of input information data bits, 

n = (k + K)/R is the length of the codeword including K zero bits to terminate the trellis where 

K is the constraint length of the convolutional code, g.p. are the generator polynomials of the code 

in octal notation, Gp,^ is the SR gain according to (2.20) and (2.24), and R, dmin, 7&, Tmc, Tsr, tg 

and td were defined previously. We observe reductions in simulation run-times by factors from 3.35 

to 52.03 for Matlab and 1.43 to 21.23 for the C implementation. The estimated times, tg and td, 

for the examples in Table 2.3 confirm that the gain of SR depends on the tg/td ratio. The condition 

tg/td <C 1 is well-satisfied for the simulations in Matlab and the gains realized in simulations are in 

good-to-fair agreement with the predicted gains. However, the condition tg/td <^ 1 is not satisfied 

for the simulations in C. In particular, for R — 1/2, the gain achievable in C is approximately half 

of the theoretically predicted gain, but nonetheless valuable. The different gains of the SR simula

tion technique for Matlab and C implementations can be explained as follows. In Matlab, the time 

to decide whether the received sequence will be rejected is much smaller than the time to decode 

this sequence. On the other hand, in C, and especially for smaller sequence length, the time to reject 

the sequence can be comparable to the sequence decoding time. In general, the ratio of times to 

decode and reject the received sequence is increasing with the sequence length for both Matlab and 

C implementations. There are other factors that influence the total required simulation time and 

these are machine and compiler specific, precluding more accurate estimation of the SR gains. 
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Probability Mass of the Hypersphere 

Figure 2.5: The probability mass of the hypersphere versus dimensionality n for perfectly quantized 
soft-decision decoding. 
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Volume of the Hypersphere 
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Figure 2.6: The volume of the n-dimensional hypersphere. 

40 



Gain of SR, Hard-Decisions, Hypersphere Rejection Region 

O 10 b 

Figure 2.7: The gain of SR versus dimensionality n for hard-decision decoding and the hypersphere 
rejection region for a BSC with SNR per uncoded modulated symbol 7^ = 2,8 and 10 dB, minimum 
Hamming distance dm[n = 1,5 and 11 and code rate R = 1/2. 
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2.2 Sample Rejection for Simulations of Binary Coded Schemes and 

near-MLSD over ISI Channels 

2.2.1 Background 

The SR simulation technique biases the channel transitional probability distribution by discard

ing the received sequences that are known beforehand to be decoded error-free. For the case of 

binary block-coded transmission over a quantized AWGN channel and MLSD using the VA, a hy-

persphere, hypercube and hyperquadrant rejection regions were considered in the previous section. 

However, for ISI channels, the lattice observed at the detector input is skewed, and neither hyper

cube nor hyperquadrant are applicable. Furthermore, the minimum Euclidean distance between the 

transmitted sequences in the case of uncoded transmission over an ISI channel is typically small. 

Then, especially for large block-lengths (i.e., large dimensionality), a hypersphere rejection region 

is inefficient. Therefore, we investigate the sliding-window MLSD to resolve the dimensionality 

problem as well as to mitigate the problem of the small Euclidean distance between the transmitted 

sequences. The length of the observation window (i.e., to what extent the channel memory is ig

nored) determines how closely we can approach the MLSD performance. In particular, we study the 

truncated VA (tVA) [21], and FD [21, p. 505], [27] which is a special case of the stack sequential 

decoding [28], [29]. The combination of the VA and FD to decode high-rate convolutional codes 

was proposed in [30]. Sliding-window FD for MIMO detection was considered in [31]. For ISI 

channels, the multiple path sequential stack algorithm is considered in [32], and the Fano sequential 

decoder was studied in [33]. The complexity of the VA for MLSD of ISI channels is reduced by 

periodically inserting zeros in [34]. The SR principles for the Zigangirov-Jelinek sequential decoder 

are independently considered in [12]. An error-event simulation method introduced in [9] can be 

also considered as a form of SR. A general discussion of improving the efficacy of MC estimators 

can be found in [35]. 

In this section, we generalize the idea of SR for efficient simulations of multidimensional com

munication systems. In particular, conditioning the sequence decisions at the receiver on knowledge 

of the transmitted sequence and on knowledge of the finite impulse response (FIR) of the channel 

and the noise realization, we modify the tVA and the FD algorithm to obtain the MLSD solution 

in shorter time than required using the conventional VA. Both the modified tVA (mtVA) and the 

modified FD (mFD) are more robust against error propagation than the tVA and FD which results 

in reduced simulation run-times. However, it is important that the mtVA and the mFD estimators 
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remain unbiased with respect to the tVA and FD. Next, we propose the hypersphere SR for use in 

FD to further improve the simulation efficiency. 

This section is organized as follows. The system model and MLSD are described in Section 

2.2.2. The SR principle is generalized and then applied to MLSD in Section 2.2.3. In Section 2.2.4, 

we discuss FD, the tVA, the modified FD, the modified tVA and the FD/SR algorithm for efficient 

simulation of ISI channels and near MLSD. Finally, numerical examples and discussion are given 

in Section 2.2.5. 

2.2.2 System Model 

Assume that information symbol, dk, is mapped to a M-ary pulse amplitude modulation (PAM) data 

symbol, u^ G {M - 1 - 2c4, dk = 0,1, • • • , M - 1}, at the symbol time interval, k. The PAM sym

bols are continuously transmitted over a static multipath channel with FIR, a = (ao, a\, • • • , ax), 

where K is the channel memory; see Fig. 2.8. The sequence of transmitted data symbols is period

ically terminated after every n symbols. Let the row vector of (n + 2K) data symbols be denoted 

as u = (it-.K') • • • , u - i , UQ, • • • , un-i,un, • • • , un+K-i)- Hence, without loss of generality, let 

ii_# = • • • = ii_i = 1 and un = • • • , un+x-i — 1- The carrier, time and block synchronization 

is assumed to be perfect, and the received signal is sampled once every symbol period at the output 

of an ideal whitening and matched filter. Then, the received (n + K)-dimensional vector, r, can be 

written as, 

r = x + w = uA + w (2.26) 

where the channel matrix, A G ]^{n+2K,n+K)^ ^ 

A 

aK 

a>K~i 

a0 

ax 

ax-i 

a0 

aK 

aK-l 

ao 

The vector, w, represents a zero-mean AWGN, i.e., we assume that the elements of w are un-

correlated, and thus, independent, with variance, a^ = Aro/2, per dimension. The noise and 

the transmitted signal are uncorrelated. Assume symbols, u\., are equiprobable, Efufcii;] = 0 
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Figure 2.8: The FIR channel model with AWGN. 

(1,0,0) 

(1,1,0) 
(0,0,0) 

(1,1,1) 

(0,0,1) 

(0,1,1) 

Figure 2.9: An example of the transmitted and the received lattices. 

for k y£ I, and E[|«fc|2] = Es is the average energy per symbol. The channel FIR is assumed 
n 11 9 

to be normalized so that the squared Euclidean norm, ||a|| = 1. Thus, the SNR per bit is 

76 = ES(N0 log2 M ) - 1 = Es(2a2
w log2 M)" 1 . 

To illustrate the effect of ISI at the output of the channel on the transmitted lattice, assume 

M = 2 where the bits-to-symbol mapping, '0' -» - 1 , and, ' 1 ' -> +1, and a = (0.79,0.62), i.e., 

K = 1. The transformed (n = 3)-dimensional input vectors (corresponding to the vertexes of the 

3D-cube) are indicated by dashed lines in Fig. 2.9. Hence, the ISI may result in a severe distortion 

of the transmitted lattice which significantly complicates the design of rejection regions for use in 

SR. 
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2.2.3 MLSD 

The MLSD detector is optimum in the sense of minimizing the probability of incorrect sequence 

decision. In a zero-mean AWGN channel, MLSD is equivalent to the least-squares problem [36, p. 

187]. In particular, the MLSD detector minimizes the log-likelihood function [21], 

(2.27) 

where u^~K^1 — (ui,Ui+i, • • • ,Uk-K+i), a nd Aj:fc,i is the minimum metric for all sequences 

originating from the state, Sj, at time, i, and terminating at the state, Si at time, k. The channel 

states are defined as s^ e {So, • • • > S M S - I } where Ms — MK, or equivalently, the states, s^ — 

(uk-x, • • • , ufc_i). We denote Co o:fc i = A,/> a nd note that it is assumed, so = (1,1, • • • ,1) = 

^(i,K) = Sn+K- If the block, u, is transmitted, the MLSD finds UML = a rgmini=o,i,--,Ms-i £k,i-

The VA is often used to find the MLSD solution efficiently if the transmitted sequences are de

scribed using a trellis. Note that the complexity of the VA does not decrease with SNR. Hence, the 

complexity of the VA can be reduced if the increased SNR is taken into account. 

2.2.4 Generalization of SR Simulation Technique 

Recall that typically the time, tg, to generate the received sequence, r, is negligible compared to the 

time to decode such a sequence, t^, since the optimum decoder must search over the whole space 

of possible transmitted sequences, u(d). Hence, significant simulation run-time savings can be 

obtained if the decoded sequence at the receiver can be obtained more efficiently, for example, con

ditioned on knowledge of the transmitted sequence, and knowledge of the channel FIR and AWGN 

realizations. It is important that the decisions, d, conditioned on such knowledge do not bias the 

BER estimator. In particular, consider the block diagram for the SR simulation of a generic com

munication system in Fig. 2.10. A block labeled, 'SR', is inserted between the received signal and 

the receiver, 'Rx'. Note that all the simulation random inputs (provided by the random generators, 

'RG') are fed also into the 'SR' block. The BER counter is updated with an estimate of the most 

likely transmitted sequence, d, either from the 'SR' block or from the receiver. 

The efficiency of the SR simulation technique is measured in terms of the variance reduction of 

the BER estimator. Also, the gain of SR, G, is approximately equal to the ratio of the number of 

simulation trials without SR and with SR for a given variance of the BER estimator. Let the MC 
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Figure 2.10: The SR simulation of a generic communication system. 

simulation run-time be, Tmc = (tg + td)N, and the SR simulation run-time be, Tsr — (tg + td(l — 

P r) + tr~Pr)N, where tr is the time required to reject the received sequence and decide on d, P r is 

the probability of rejecting the received sequence, and N is the number of simulation trials. The SR 

gain is, 

G 
Tn (2.28) 
J- sr -L €rr 

where e = ^~*r is implementation dependent, and it is required that tg -C t^ and tr <C t^, i.e., 

the added complexity of the SR block must be minimized. The probability, P r , is a function of the 

SNR, the system dimensionality and the rejection region chosen. 

We can elaborate on the SR simulation technique further. In particular, consider simulation 

of a communication system in Fig. 2.11. Observation, y(t, d, p), at time, t, is a function of data 

symbols, d, and parameters, p. The detector DET decides on the most likely transmitted symbols 

using the ML rule, 

d = argminp(y(i,d,p)|d). 
d 

The SR simulation technique consists of a detector DETi and the rejection rule that is used to 

select either the detector DET or detector DETi for processing the received samples, y. In order to 

maximize the simulation run-time reduction of the SR technique (i.e., the SR gain), it is required 

that the complexity, O(DET), of the detector, and, O(DETi), of the SR detector 1 are such that, 

O(DET) > C(DETi 

and the detector 1 is selected as many times as possible, i.e., with the probability, P r —* 1. Further-
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Figure 2.11: The SR simulation principle. 

more and importantly, it is required that, 

P r ( d ^ d ) = P r i d e d 

so that the SR detector provides an unbiased estimate of the probability of error, Pr (d ^ d ) . Gen

eralization of the SR simulation in Fig. 2.11 to more than two detectors is straightforward. 

SR and MLSD 

We can rewrite the squared Euclidean norm (cf. (2.26)) as, 

Ir - ill2 = ||x - x + w||2 = || Ax* + w||2 (2.29) 

where x is the transmitted sequence at the channel output, x is a candidate solution, and the com

ponents of A x x are conditioned on knowledge of the components of x, i.e., [Axx]j G {2[d! — d) : 

dl = 0,1, • • • , M — 1 and d : XJ = (M — 1 — 2d)}. Hence, the components of A x x are from 

the set of cardinality, M, and minimization of ||AXX + w|| has the same complexity as mini

mization of ||r- — x||2. We can prove that the MLSD solution, XML, minimizing (2.29) results 
11 9 

in an unbiased BER estimator; see Fig. 2.12. Since we have that, argminAxi ||AXX + w|| = 

argminAxi (||AXX||2 + 2AXX • w J < ||w||2 where the dot denotes the inner product, it is neces

sary that the term, ||AXX|| , is minimized. This suggests to search for the MLSD solution among 

sequences in the vicinity of x. Thus, we restrict the search over the set of sequences about x that can 

differ only for L < n consecutive symbols (or equivalently, we search over L consecutive dimen-
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Figure 2.12: Geometric interpretation of the MLSD. 

sions) which leads to the decoding algorithm known as FD. Since typically L <C n, an important 

consequence of FD is the reduction of the effective system dimensionality, from Leg = n + K to 

Leg — L + K, and thus, the potential gains of SR are improved (cf. (2.28)). 

Sliding-Window Decoding 

The transmitted sequence, x, at the channel output can be described using the tree or using the 

trellis (if the same states are merged). The MLSD receiver searches the tree or the trellis to find 

the sequence minimizing the squared Euclidean norm (2.29). For example, the VA searches the 

trellis discarding all but Ms most likely transmitted sequences. The decoding based on a finite-

length observation window is clearly suboptimal; information outside the observation window is 

neglected, however, the decoding delay is reduced as is also the decoding complexity in the case 

of the tree search. The sliding-window decoder of length (L + K) samples makes the decisions, 

Uk, k = 0,1, • • • , n — L + 1, using the received samples, r%+L+K~1, and knowledge of the state, 

Sfc = Sj, at time k. In particular, the decision, -%, is evaluated as, 

uk = argmin Ckjj:k+L+K_iti (2.30) 
J = 0 , 1 , - , M S - 1 

while the decisions on the remaining symbols in the block, uk, k = n—L+2, • • • ,n, are determined, 

for example, using the sequence minimizing the metric (2.30) for k = n — L + l. If M = 2 (binary 
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signaling), the log-likelihood ratio [21], 

min £k,j-.k+L+K-i,l(uk = +1) 

1=0 i m i ) k - l Ck,j:k+L+K-l,l{uk = -1 ) 

provides the reliability of the estimate (2.30). Note that since the metric (2.30) depends on the 

state, Sfc, an incorrect decision of Uk may cause erroneous decisions in the subsequent symbols. 

Hence, error propagation sets the lower limit on the minimum length of the observation window, 

L, [29, Sec. 4.7, Sec. 5.6]. The smaller values of L are possible for larger values of SNR and for 

the smaller block-lengths, n, which reduces the complexity of the decoder. 

The value of L is selected to achieve desired accuracy of the MLSD. Let PML be the unbiased 

BER estimate corresponding to MLSD. Let p be the probability that the sliding-window decoder will 

find the MLSD solution, and the biased BER estimate of the suboptimum sliding-window decoder 

will be in the interval (O.IPML, IOPML)- Then, the average BER of the sliding-window decoder, P, 

is bounded as, 

(0.1 + 0.9p)PML < P < (10 - 9p)PML. (2.31) 

Truncated VA 

The most likely transmitted sequence is searched in the trellis having MK states. For every received 

sample, the MK candidate sequences are extended by one symbol, and the final decision is made 

about the symbol L epochs back in the history using the current estimate of the most likely trans

mitted sequence. Since typically MK < ML, a smaller number of candidate sequences are stored 

using the tVA than using FD. Thus, the tVA requires, in general, a longer observation window; 

error-propagation can be neglected if L w 5(K + 1) [21]. 

FD 

The FD technique was proposed for decoding the convolutional codes in [27]. At every step, FD 

searches the tree of depth, L, symbols, and makes the final decision on the first symbol of the tree 

corresponding to the root. Then, the tree search advances one symbol forward. In general, error-

propagation can be neglected if (K + 1) < L < 2(K + 1) [21, p. 505]. There are ML paths to 

be searched for every received symbol, and thus, the search must be done efficiently. The available 

tree-search strategies are the following. 
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Look-up-table (LUT): For moderate values of M and L, a brute-force search is possible. 

M-algorithm, T-algorithm [28], [37]: These algorithms are preferable if the brute-force search 

becomes inefficient. 

Sphere decoding (SD): The structure of the matrix, A, in (2.26) can be exploited to search for 

the lattice points inside the sphere about the received point, and thus, the usual QR-decomposition 

can be avoided [38]. 

Sample rejection (SR): Conditioned on the transmitted sequence, u, FIR, a, and the noise, w, 

we may directly decide on the sequence minimizing the metric, and thus, completely avoid the 

computationally expensive tree-search. 

Modified tVA and Modified FD 

Error propagation decreases with the length of the observation window, L, however, complexity 

(e.g., the storage requirements) is increased. Assume the search for the closest lattice point, XML, 

is performed using the metric, | |Axx + w||2 (cf. (2.29)). In particular, the decoder makes the 

decisions, 
k+L+K-1 

uk = uk-&xgmm ^ |[AXx]i + Wi\2 

" x i i=k 

where A x x = xi=tfc + _ 1 — (sfc, uk, • • • , Uk+L-i, ®(i,K)) A', s^ is the estimate of the state at time, 

k, 0(i ,K) is m e all-zero vector, and A' is the corresponding channel matrix. Hence, the initial state 

for decoding the symbol, uk, is given as a difference, sk — sk. Therefore, the modified search is 

more robust against error propagation if the estimate of sk is incorrect, and thus, the values of L can 

be reduced. The sliding-window search of the vector, Ax x , minimizing the metric (2.29), will be 

referred to as the modified FD (mFD) and the modified tVA (mtVA). 

The window length, L, could be reduced further if the search is done iteratively. In particular, 

the estimate, uA, is used as the transmitted sequence in the repeated search. Then, the noise vector 

in the second iteration is w' = r — uA', and ||w'|| < ||w|| . However, note that reducing the 

noise energy does not necessarily mean that the Hamming distance, WH(U,UML), is decreased. 

Furthermore, every iteration increases td, the time to decode the received block; this may eliminate 

any benefits of the iterative search. 
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FD and SR 

Let the minimum Euclidean distance between any two transmitted sequences, x and x, be denoted 

de. Then, if ||w|| < d^/A, the MLSD decides XML = x> i-e., if the noise energy is less than 

<ig/4, the received sequence can be rejected avoiding the computationally expensive MLSD. This 

technique is referred to as hypersphere SR [10]. The probability of rejecting the received sequence, 

P r , is evaluated as the probability mass inside the hypersphere of radius, de/2, about the transmitted 

sequence, x. In particular, assume L > K, and the states, Sfc, S^+L+K and s^ are known, and denote 

the matrices, 

A'= 

a-K 0 

ai a-2 aK 

A"--

a0 a\ 

a0 

a-K-x 

a-K-2 

a0 

Let the received signal in the observation window be ^+L+K 1 = (wfc, • • • , Uk+L-i)A + m + 

m + w k+L+K-l 
k is condi-wk+L+K-i w h e r e m = ((gfc _ g f c)A ' ,0 ( l j L ) , s f c + L +^A"). Then, 

tionally noncentral chi-square distributed with (L + K) degrees-of-freedom, and P r is evaluated 

as, 

Pr(«) 
1 v ^ „{(adey 

i=0 

V F m„- (2.32) 

where 

F 
(ade 

(ad^/4 / u \ (n-2)/4 

-{m"+u^In/2-i(2^fimhb)du 

o 9 

is the CDF [21, eq. (2-1-121)], s*. and s^ are assumed independent, mf = ||m|| is the noncentrality 

parameter conditioned on the values of s^, S^+L+K
 a nd Sfc, and a > 1 is a constant. 

For uncoded transmission and given FIR, a, the value of de is typically small, and so is P r(a). 

Therefore, we may consider the iVnb nearest neighbors of the transmitted sequence, x, to increase 

P r(a) ; see Fig. 2.13. It is straightforward to show that always iVnb < L. If a = 1, we can show 

that the SR estimator is unbiased, but P r(l) is typically small and so is the SR gain (2.28). Since at 

large SNR, with a high probability, the transmitted sequence is also the MLSD solution, we propose 
i9 II 112 

the following modification to the hypersphere SR. If 1 < a < 3 and ||r — x|| < ||r — X(j) || for 

V« = 1,2, • • • , iVnb, then, with a high probability, x is the MLSD solution. However, if the received 

signal is, for example, inside the shaded area in Fig. 2.13, and a > 3/2, this procedure incorrectly 
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Figure 2.13: The nearest neighbors of the transmitted sequence, x. 

decides x as the MLSD solution, and the SR estimator will be biased. In general, the larger the 

SNR, the larger a can be (thus, increasing the probability, P r), however, always a < 3. 

2.2.5 Numerical Results and Discussion 

Assume M = 2 (i.e., binary antipodal signaling), and the two static channels with FIR given as the 

average multipath delay profile specified in [39] for outdoor to indoor transmissions and pedestrian 

mobility, respectively, i.e., 

&A = (0.9431,0.3087,0.1034,0.0683) 

aB = (0.6369,0.5742,0.3623,0.2536,0.2595,0.0407). 

The channel A has K = 3, d^ = 4.00, and the i-th nearest neighbor of x is X(j) = (u — 2ii(,))A 

where u^) = (0(1^-1),Ui-i,0(itn+K-i)) for l < i <n, and iVnb = n. The channel B has K — 5, 

d\ = 2.06, and if ui_x ^ uu u^) = (0(1>i_1), Ui-i, uit 0(1>„+^-_ i_1)) for 1 < i < n, and u^) is 

not defined if Mj_i = Ui, and Â nb = n — 1. 

Let p — 0.9 in (2.31), i.e., the sliding-window detector finds the MLSD solution with 90% 

probability. Empirically obtained minimum observation window length for different detectors and 

different values of SNR are summarized in Table 2.4 for n = 500 and n — 50, respectively. We 
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Table 2.4: Minimum length of the observation window for p = 0.90. 

lb [dB] 

channel 
tVA 

mtVA 

FD 

mFD 

channel 
tVA 

mtVA 

FD 

mFD 

0 1 2 3 4 5 6 7 8 9 10 n 

A 
8 8 7 6 6 6 6 6 6 5 5 
6 6 6 6 6 6 6 6 6 6 6 
8 7 7 6 5 5 4 3 2 1 1 
5 5 5 4 4 4 3 2 1 1 1 
8 8 8 8 7 7 7 7 5 5 5 
7 7 7 7 6 5 5 5 5 4 4 
6 6 6 5 5 5 4 3 3 2 2 
4 4 3 3 3 3 2 2 1 1 1 

500 
50 

500 
50 
500 
50 

500 
50 

B 
21 21 21 21 20 20 18 14 13 12 10 
16 15 15 15 14 13 13 12 11 11 10 
21 21 20 20 18 18 15 12 11 8 6 
14 14 13 12 12 11 8 7 6 4 2 
20 19 19 18 17 14 12 11 10 9 8 
11 9 8 8 7 7 7 6 6 5 4 
15 13 13 12 11 9 6 4 3 2 1 
8 6 6 5 5 4 3 2 2 1 1 

500 
50 
500 
50 
500 
50 
500 
50 

observe from Table 2.4 that modification of the tVA and FD significantly reduces the minimum 

required length of the observation window, L. 

The probability of rejection, Pr(a)> computed using (2.32) is depicted in Fig. 2.14. For a > 1, 

P r(a) given in (2.32) is an upper-bound since recall that only the received sequences closest to the 

transmitted sequence, x, are rejected. 

The simulation results are in Table 2.5. The BER values in Table 2.5 are averaged over 5 

simulation runs. There are iVbiocks blocks per simulation run which corresponds to approximately 

100 (50) erroneously decoded blocks at 8 dB (10 dB) using the VA. The asterisk at some values of 

L indicates that the value of L from Table 2.4 must be increased (i.e., the parameter, p, is increased) 

to improve the BER estimator accuracy. The value, Ttotai» is the total simulation run-time, id is the 

average time to decode the received block, and logn F is the complexity exponent [38]. For FD/SR, 

Pr(a) denotes the empirically obtained probability of the received sequence rejection. 

53 



(X 

1 

0.9 

0.8 h 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 
2 

- - . 

i i i i 

- — - \ ^ _ _ 

c 
c 
channel 
channel 

A 
B 

\ ^ ^ ; 8 dB,a=3 

10 dB,a=2 ^ N , < | 0 idB,a=1-

\ ""^>^8dB;a=2 
X •** • 

\ "s. 
X ' **s 

X ' **• X "̂  
X *N 

8 dB,a=l\ 

i i i 

8 10 12 14 16 

Figure 2.14: The theoretical probability of rejection, P r(a), versus effective dimensionality, Leff 
L + K,fora = l,2 and 3, and SNR 8 and 10 dB. 
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Table 2.5: Examples of the simulation results. 

channel 
n 

7b [dB] 
-^blocks 

det. 
BER 

Ttotal [s] 
h [s] 

^gnF 
det. 
L 

BER 

Ttotal [s] 
id [s] 

log**1 

det. 
L 

BER 

Ttotal [s] 
id [s] 

\°gnF 
det. 
L 

BER 

^total [s] 
id [s] 

l o g n F 

det. 
L 

BER 

Ttotal [s] 
td[s] 

iognF 

det. 
L 
a 

Nnh 

Pr(a) 

Pr(«) 
BER 

Ttotal [«] 
id [s] 

l°g„^ 

A 
500 

8 
1500 

10 
50 

8 
2xl04 | lxlO4 

10 
lxlO5 

B 
500 

8 
200 

10 
500 

50 
8 

1000 
10 

3000 

VA 
2.04xl0~4 

176 
0.1392 
1.9800 

3.40xl0~b 

2763 
0.1434 
1.9800 

2.02xl0~4 

122 
0.0117 
2.5698 

4.20xl0~b 

1216 
0.0098 
2.5698 

6.25xlO"J 

53 
0.2680 
2.2606 

5.04x10"* 
157 

0.2065 
2.2606 

6.72X10-3 

20 
0.0227 
3.0227 

5.80X10"4 

118 
0.0183 
3.0227 

tVA 
6 

2.23xl0~4 

365 
0.2550 
1.9822 

5 
3.75xl0-b 

4272 
0.2540 
1.9822 

6 
2.26xl0-4 

215 
0.0268 
2.5733 

6 
6.20xl0-b 

2072 
0.0144 
2.5733 

13 
6.62x10-* 

51 
0.2980 
2.2615 

10 
6.56xl0"4 

102 
0.1975 
2.2613 

11 
6.14x10-* 

22 
0.0215 
3.0237 

14* 
7.87xl0"4 

65 
0.0214 
3.0239 

mtVA 
2 

2.25xl0"4 

867 
0.4110 
2.0156 

1 
4.76xlO-B 

8155 
0.2820 
2.0153 

1 
3.40xl0~4 

599 
0.0769 
2.6246 

1 
5.20xl0~b' 

4063 
0.0596 
2.6246 

11 
6.35xl0-3 

146 
0.7840 
2.2816 

6 
6.40xl0"4 

388 
0.7800 
2.2815 

6 
6.18xl0-3 

56 
0.0471 
3.0544 

6* 
8.00xl0-4 

71 
0.1935 
3.0544 

FD 
5 

1.85xl0~4 

74 
0.0441 
2.0955 

5 
5.10xl0"b 

102 
0.0434 
2.0955 

5 
2.34x10"* 

48 
0.0045 
2.7252 

4 
3.88xl0~b 

457 
0.0043 
2.5301 

10 
6.83xl0~3 

109 
0.5260 
2.7455 

9* 
6.64xl0~4 

104 
0.1965 
2.6246 

8* 
5.86xl0"3 

10 
0.0091 
3.3581 

7* 
7.95xl0"4 

28 
0.0097 
3.1697 

mFD 
3 

1.95xl0"4 

68 
0.0437 
1.8569 

2 
3.60xl0~b 

996 
0.0406 
1.7472 

1 
2.61xl0~4 

38 
0.0036 
2.0372 

1 
6.20xl0~6 

420 
0.0035 
2.0372 

3 
5.98x10-* 

15 
0.0870 
1.9039 

2* 
5.96x10-* 

21 
0.0413 
1.7973 

2 
5.60x10-* 

5 
0.0044 
2.2650 

2* 
7.27x10-* 

14 
0.0045 
2.2650 

FD/SR 
5 
1 
0 

0.7650 

0.7661 
2.00xl0"4 

41 
0.0252 
1.9242 

5 
1 
0 

0.9361 

0.9377 
4.00xl0^b 

771 
0.0312 
1.8253 

5 
1 
0 

0.7650 

0.7615 
2.38X10"4 

34 
0.0034 
2.4675 

4 
1 
0 

0.9526 

0.9532 
4.80xl0- e 

297 
0.0033 
2.1748 

10 
3 
9 

0.9570 

0.8298 
5.18xl0-3 

32 
0.1928 
2.4870 

9* 
2 
8 

0.7084 

0.6762 
5.44xl0"4 

54 
0.1410 
2.4552 

8* 
2 
7 

0.5914 

0.5604 
5.30X10"3 

7 
0.0086 
3.1523 

7* 
2 
6 

0.7369 

0.6811 
8.20xl0"4 

17 
0.0050 
2.9210 

55 



2.3 Summary 

In this chapter, the SR technique was generalized for simulations of multidimensional communi

cation systems. It was shown that the system model can strongly influence the simulation efficacy. 

Particularly, the MLSD detector can be replaced by the SR MLSD detector to significantly reduce 

the simulation run-times. 

The SR method was proposed in [10] for the case of the hypersphere rejection region and AWGN 

channel with perfectly quantized soft decisions. The SR was reported to be applicable only for 

simulations of systems with small dimensionality, less than 10. In this section, the SR method was 

demonstrated to be applicable for simulations of coded schemes with a finite block length, binary 

antipodal signaling and ML sequence decoding over quantized AWGN channels. Our analysis 

indicates that applicability of SR is dependent upon the SNR, the region employed in the particular 

application, and also crucially upon the amount of knowledge about the system. In contrast to the 

results presented in [10], the newly proposed SR regions presented in this section can achieve gain 

at least 2 for dimensionality of the order of hundreds. 

For perfectly quantized soft decisions, three rejection regions, hypersphere, hypercube and hy-

perquadrant, have been compared. The hypercube and hyperquadrant proposed in this section out

perform the hypersphere for all values of dimensionality when there is no information available 

about the minimum Hamming distance of the code. The hyperquadrant exploits additional knowl

edge of the transmitted codeword, and thus, is always superior to the hypercube. The efficiency of 

the hypersphere can be improved significantly with additional knowledge of the minimum Hamming 

distance of the code. Importantly, the hypercube and hyperquadrant regions suffer substantially 

smaller gain degradation with increasing dimensionality than the hypercube which is always poorer 

for large dimensionality (assuming the minimum Hamming distance does not grow with dimension

ality). We explained this behavior of the SR gain by comparing the volumes of the rejection regions 

under consideration over all values of the dimensionality, n. For quantized decisions, in general, 

a hyperquadrant rejection region is the most readily applicable for the DMC, while hypersphere 

rejection region should be used for the BSC. 

The SR method is a special form of IS [10], so that more general IS might provide better simu

lation gains than SR. However, the strong advantage of SR is that it does not require any IS weights 

to be determined regardless of the system complexity. Moreover, SR can be easily combined with 

other techniques for improving simulation efficiency. In general, if the time to generate and decode 

56 



a single block of data can be estimated, one can estimate the expected simulation run-times and the 

gain of SR using eq. (2.20). 

The SR method was also investigated for binary coded transmission over ISI channels. Several 

modifications of FD and VA were proposed to improve their simulation efficacy. The complexity 

of (m)FD is smaller than the complexity of the VA if L < (K + 1). The LUT tree search imple

mentation of FD is more efficient than the VA in all but one example studied. The mtVA simulation 

run-times are worse than the simulation run-times of the tVA because of the associated overhead of 

the mtVA. The modification of FD is effective especially for channel A. In general, the time to per

form the rejection, tr, can be further reduced if the SR implementation is optimized so that tr <C tj 

(e.g., if L = 1, no tree search is necessary). Note also that a simulation run-time reduction of 2 is 

considered valuable (e.g., 2 days simulation reduces to 1 day). Hence, for given simulation param

eters, the FD, mFD and FD/SR simulation techniques appear to reduce the simulation run-times of 

the VA while achieving good, near MLSD accuracy. In particular, we observe from Table 2.4 that 

the mFD has the shortest simulation runtimes for channel B, however, for channel A, the shortest 

simulation run-times are achieved by the FD/SR simulation technique. 
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Chapter 3 

Efficient Semi-Analytical Techniques 

In this chapter, we propose and analyze the Prony and polynomial approximation methods for semi-

analytical evaluation of the average probabilities of error and the average error rates for digital 

modulations in slowly fading channels. 

3.1 Background 

The probability of a detection error is often considered as the most important performance measure 

in the receiver design for the communication system. In this chapter, we consider the probabilities of 

transmission bit, symbol and frame errors and the corresponding BER, SER and FER, respectively. 

Recall also that the probability of error and the error rate are defined for stationary and ergodic chan

nels. On fading (time-varying) channels, the probability of error is a random variable, and its first 

moment is typically assumed to be a sufficient performance measure provided that the observations 

are long enough to consider the channel as ergodic. The first moment (average) of the probability of 

error is obtained by averaging the conditional probability of error over the channel SNR distribution 

at the input to the detector. Numerous methods have been developed to accomplish averaging of 

the conditional probability of error over the SNR distribution. In particular, the MGF method [40], 

and the characteristic function (CHF) [41] method are appealing since the Laplace or Fourier trans

form of the SNR distribution is usually known even for multichannel reception with correlated and 

non-identically distributed branches while, in general, the SNR distribution is often unknown or 

difficult to obtain. The CHF can be also obtained using the statistical moments of the SNR [42]. 

The SNR distribution is estimated from known moments in [43]. The method of residues [44], the 

Gauss-Chebyshev quadrature (GCQ) [45], saddle-point integration [46], and Beaulieu series [47] 
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can be used to invert the CHF and obtain the SNR distribution. Overview and further description of 

these methods can be found, for example, in [46], and in [48]. 

Even though, in many cases, an exact expression for the average probability of error can be 

found, especially for higher-order modulations, the result is often cumbersome to plot and to analyze 

further [48]. When the closed form expression cannot be obtained, we can use numerical methods 

to evaluate the probability of error. However, numerical integration can be impaired by semi-finite 

ranges of integration, possible singularities of the integrand, oscillatory behavior, and convergence 

problems for small values of the integrand. Also, many bounding techniques exist, but usually 

these bounds are not very tight; see, for example, the Chernoff bound [21]. A relationship between 

the saddlepoint integration and the modified Chernoff bound is investigated in [49]. Hence, semi-

analytical (or, semi-numerical) methods appear to be the most appealing providing a good trade-off 

between evaluation complexity and the numerical accuracy. 

We propose a new semi-analytical method to evaluate the average probability of error for a wide 

class of modulations and fading distributions. The proposed method fits a sum of exponentials to the 

conditional probability of error. Fitting a sum of exponentials into the measured data is a difficult, 

frequently occurring, and numerically rather ill-conditioned problem of applied data analysis known 

as the Prony approximation [50-52]. The parameters of the Prony approximation are obtained non-

iteratively in [50]. A uniqueness of the Prony approximation assuming a least squares approximation 

error is investigated in [51]. In our case, once the conditional probability of error is approximated 

by a sum of exponentials, averaging over the fading distribution can be readily obtained using 

knowledge of the MGF of the SNR. Importantly, knowledge of the conditional probability of error 

at only a small number of points is sufficient to obtain the exponential fit. These points can be 

obtained either analytically or using a computer simulation. Hence, using the Prony approximation, 

we have a simple universal and highly accurate semi-analytical tool for evaluations of the average 

probability of error. 

The rest of the chapter is organized as follows. In Section 3.2, we present the system model and 

fading statistics. Prony approximation of the conditional probability of error and the correspond

ing optimization problems are introduced in Section 3.3. The Prony approximations are given for 

several frequently used modulation formats. Piecewise polynomial approximation as an alternative 

to the sum of exponentials fit is investigated in Section 3.4. Numerical examples to determine the 

accuracy of the Prony and polynomial approximations for single as well as multichannel receptions 

are given in Section 3.5. The chapter is summarized in Section 3.6. 
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3.2 System Model 

Assume a multichannel reception and postcombining detection of the K diversity branches as shown 

in Fig. 3.1. Linear memoryless modulation is used to transmit independent and IID symbols, x e X, 

where X = {(2i-y/M+l)+i(2j-y/M+i); i, j = 0,1, • • • , A / M - 1 } for the M-ary square QAM 

where j = v
/=rT, X = { e> 2™/M; i = 0,1, • • • , M - 1}, for M-ary phase-shift keying (PSK), and 

m = log2 M is the number of IID information bits per modulation symbol [21]. Using equivalent 

complex-valued representation of the signals in the baseband, the received signals corresponding 

to the transmitted symbol, x, are written as, y; = agi e ^ x + u>;, where a = 1/A/E[ |X|2] sets the 

average energy, Es, per transmitted symbol, x, to unity, i = 1,2, • • • , K, and gi is the i-th channel 

fading amplitude, </>, is the channel fading phase, and Wi is a zero-mean complex AWGN having 

the variance, E[|U;J|2] = 2a^ = No, where | • | denotes the absolute value, and iVo is the one-sided 

noise power spectral density. For an arbitrary joint PDF, fg{gi, • • • , gx)> and assuming coherent 

detection and linear combining of the received branch signals, the decision variable at the detector 

input for MRC, EGC, and SC, respectively, is [16], 

v <MSC) « ( ^ r f ) + «, 
(EGC) / j rK \ , 

V = axyjK^i=l9i) + w 
(SC) / \ 

v = ax \ max q,- + w. 

Note that the average energy per transmitted bit, Eb = Es/m = 1/m, and, a = A / 3 / ( 2 M — 2), 

for M-ary square QAM, and, a = 1, for M-ary PSK. In general, denote the received signal at the 

input to the detector as, y = ax g + w. We define the SNR at the input of the detector as, 7 = g2jb, 

and-/b = Eb/N0 = l/(mN0). 

3.2.1 Fading Statistics 

Let the channel fading amplitudes be the Euclidean norms of Gaussian random vectors having n 

components of equal variance, of, i = 1,2, •• • ,K. Hence, the channel amplitudes, g;, follow 

a generalized Rayleigh or Ricean distribution, respectively, with n degrees of freedom and non-

centrality parameter, s? > 0; see Appendix C. Then, the PDF of squared amplitudes, gf, cor

responds to the central or non-central chi-square distribution, respectively; see Appendix C. For 

Si > 0, we define the Ricean factor, K^ = sf/(naf). Using the infinite series (A-5b), one can 
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Figure 3.1: A generic digital communication system. 

express the CDF of gf ; see Appendix C. Note that the summands in the infinite sum representation 

(A-5b) of the function In(u) diminish quickly for all practical values of n and u. Using (C-la) 

o9it , of the random and (C-lb), one can obtain the MGF's, $fl.(t) = E[e**], and, $g2(t) = E 

variables, gi, and, gf; see Appendix C. 

For simplicity, assume that the channel fading amplitudes are independent, i.e., fs(g\, • • • , gx) = 

IL=i fgi(di)' a nd c?i = a,Vi = 1,2,-•• ,K. We obtain the PDF of the fading amplitude, g, at the 

combiner output. In particular, the MRC output fading amplitude, g = y^2i=1 gf, follows a gen

eralized Ricean fading with nK degrees of freedom, non-centrality parameter, s2 = Xw=i s!> an(^ 

variance, a2, per dimension; see (C-lb). The PDF of the EGC fading amplitude, g = Y,f=i 9%/y/K, 

is obtained by inverting the MGF, i.e., [53], 

_ c+joo K — co K 

- f fl^9At)e-tV^9dt=^- J f l ^ c + Me-^+M^dw (3.1) 
c-joo i = 1 - o o i=1 

. . (EGC) VK 
f^9) = ^rj 

where c is chosen in the region of convergence. The inversion (3.1) can be performed, for example, 

using the GCQ rule [46] obtained in Appendix B. Hence, we can rewrite (3.1) as, 

271" 

K 
, , -. (EGC) VK / -A-. , ( , .cVl^T2 X' \ - c ( 1+j ̂ ^-\y/Kg cdx 

lVi^ 
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and using the GCQ rule, one has that, 

ir " K 

Kc • 

1=1 i = l 

where r; = tan((Z — l/2)ir/v). 

When SC is employed, the combiner output PDF is [53], 

fA^^Ef^flF^) (3.2) 
i=l j= l 

and we substitute (C-lb) and (C-2b) to (3.2). Since 7 = g2-yb, the PDF of the SNR at the input to 

the detector is [53], 

Mi) = (i/Tb)fg2('rhb). 0.3) 

Finally, assuming knowledge of the conditional probability, Pe(7), we evaluate the average 

probability, 
/•oo 

Pe(7b)= / Pe{g2Jb)fgi(g
2)dg2. (3.4) 

Jo 

3.3 Prony Approximation 

We efficiently evaluate the average probability of error (3.4). Consider a random variable, X, and 

let, g(X) = rj(X — x), where rj(-) denotes the unit-step (Heaviside) function; see (A-15). Hence, 

let x be a real positive constant, x > 0. Then, the probability, Pr(X > x) — E[g(X)]. Let, Bi > 0, 

and, bi > 0, are non-negative real constants, i = 1,2, • • • ,p, and let, h(X) — Y^%=\ &% ebi(-x~x\ 

so that h(X) is the increasing function of X. Thus, if XX=i -Bi > 1. then g(X) < h(X). Applying 

the expectation operation, we have that, 

ng(X)}< j^B.e-^xik) 
i=\ 

where <&x(M = E efeiX is the MGF. Note that the case, p = 1, and the case, bi — b Mi, cor

respond to the Chernoff bound of Pr(X > x); cf. [21, Sec. 2-1-5]. Denote the bounding error, 

ep(Bu • • • , Bp, 61, • • • , bp) = ep(B, b) = £ L i B^xik) e''^ - E[5(X)], and assume the fol-
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lowing convex optimization problem having the convex constraints [54, Ch. 4], 

{B,b} = argmin ep(B,b) 

s.t. Bi > 0, h> 0, J2LiBt> I, i = 1,2,-•• ,p. 

Thus, given, x > 0, and, p, the 2p coefficients, Bi, and, bi, are the solution of the problem (3.5), and, 

ep > 0. In general, one can reduce the bounding error, ep(B,b), if the constraint, Yfi=\ Bi > I, 

in (3.5) is relaxed, i.e., XX=i ^* — »̂ an<^ mus> M-^0 is n o longer an upper-bound of g(X). In this 

case, let the bounding error be defined as, 

ep(B,b) = \YiBi<S>x(bi)e-~bii - E[g(X)} \ 
i=l 

so that, 
p 

E[g{X)} = Pr(X > x) « ^ i ; e - 3 '* 

where Aj = Bi§x(h), and, <2j = bj. In general, for non-negative constants, x, and, q, let the 

conditional probability of error, Pe(7) = Pr(X > x), and let, x = j q , and thus, 

p 

P e ( 7 ) « ^ I i e - ^ 5 . (3.6) 

The approximation (3.6) will be referred to as the Prony approximation. Denote the approximation 

error of (3.6) as, 

ep(7) = w(7) ( E ^ ^ ^ - P ^ I (3-7> 

where 10(7) is the weighting function, and q\ > 0 is a real constant. A sensible choice of the 

weighting function is, 10(7) = 1/Pe(7); then, ep(-y) in (3.7) corresponds to the relative approxima

tion error. Importantly, approximation (3.6) is accurate over the interval, 7 € (7min,7max)> and it 

can diverge for 7 < 7min, and, 7 > 7m a x . However, since YA=\ Ai e~ai7? is finite, for 7 ^ 0 , and, 

0, for 7 —> 00, approximation error, ep(7), is always finite. Note also that the fc-th derivative, k > 0, 

in the limit of infinite SNR, lim7^oo -^ YA=I A e'a7 '3 = 0. It is useful to constrain minimization 

of the error, ep{^), to a set of n points, 7min < 71 < 72 < • • • < 7n < 7max, rather than trying to 

minimize the error over a continuous range of 7. Hence, given, p, and, q, the optimization problem 
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to find the coefficients, Ai, and, en, minimizes the error, 

n 

and let the weights, Wj — w(jj). Note that the case, q\ — 2, corresponds to the least-squares curve-

fitting, and, the error, ep = max^i,... >n |ep(7j)|, becomes the min-max curve fitting, for q-± = oo. 

In general, Prony approximation minimizing the error (3.8) corresponds to the sum of exponentials 

interpolation. Thus, knowledge of Pe(7) at n distinct SNR values is sufficient. It is required that 

n > 2p, and we solve an overdetermined system of exponential interpolation equations. The inter

polation points, 7y, can be selected with respect to some decomposition basis of the curve, Pe(7), 

for example, using a sampling theorem. Minimization of (3.8) constitutes a strongly nonlinear op

timization problem and, in general, iterative numerical solution is necessary. Initialization of such 

an iterative procedure is critical for successful convergence to a global optimum. The choice of 

the interpolation points, •jj, determines convergence properties of the sum of exponentials (Prony) 

approximation, i.e., behavior of the approximation error in the limit, lim^oo ep. A test on uniform 

convergence is known as the Weierstrass M-test [55, Sec. 9.6]. According to the Weierstrass test, 

since \Aie~aiiq\ < \Ai\ for a,j > 0 and 7 > 0, provided that the sequence, {Ai}i, has absolute 

convergence (i.e., {|Ai|}; is convergent), then the sum of exponentials has uniform convergence. 

3.3.1 Prony Approximation of the Conditional Bit-Error Probabilities for M-ary 

Modulations 

We employ numerical search to find the parameters, Ai, and, hi, of the Prony approximation (3.6) for 

the conditional bit-error probabilities of M-ary QAM and M-ary PSK over a AWGN channel. We 

assume that the values of P£(7) can be computed either analytically, or using a computer simulation. 

In the first step, we find the initial values for the coefficients, Ai, and, on. In the second step, the 

initial values are iteratively improved until the required accuracy (i.e., the value of the approximation 

error) is reached. In general, we have to solve a set of n > 2p equations, X)?=i ^ e - a i 7 i = Pe(7j)> 

j = 1,2, • • • ,n,of2p unknowns to minimize the error (3.8). Hence, we proceed in the following 

two steps. 

1) Letp > 1, 7min < OdB, 7m a x » OdB, and initially, the n = 2p SNR points are chosen, 

such that, 7j = 7m i n + (7max - 7min)(j - l)/(™ - 1), j = 1, 2, • • • , n (assuming all SNR values 

are in dB). Let the coefficients, A\, and, a^, are randomly chosen from the uniform distribution on 
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the interval (0,1), and dj ^ av, for i ^ i!. The initial set of n = 2p equations is solved numerically 

assuming the objective function (3.8) to improve the estimates of the coefficients, Ai, and, dj. 

2) Let n » 2p, and 7j = 7min + (7max — 7min)(j — l ) / ( n — 1) (assuming all SNR values are in 

dB). We employ a gradient descent algorithm [56] to obtain the final estimates of the coefficients, A\, 

and, dj. In particular, we search the space of feasible solutions, {Ai > 0,dj > 0; i — 1,2, • • • , p}, 

using a sliding-hypercube, {\A{ - A!{\ < AA, |dj - d-| < A a ; i = 1,2, • • • ,p} where A A > 0, 

Aa > 0, {A[, • • • ,A'p,a[,--- , d'p} is the center of the hypercube that corresponds to the minimum 

approximation error found, and {Ax, • • • , Ap, di, • • • , dp} is a point inside the hypercube. If a new 

point having the smaller approximation error is found inside the hypercube, this point becomes the 

new center of the hypercube, and the search is repeated. 

Note that quantization of the coefficients, Ai, and, dj, is used during the search. In general, 

quantization step and the parameters, A^, and, Aa, are initially large in order to slide the hypercube 

to the region of a global minimum faster, and these parameters are gradually decreased to achieve 

the desired approximation accuracy. We now consider several examples to illustrate the numerical 

procedure of finding the coefficients of the Prony approximation. In particular, assume Gray map

ping of m = log2 M information bits to M-ary symbols, and let the SNR per M-ary symbol, 7s, 

be constant for all M, then the probability of bit-error for M-ary square-QAM is [57], 

2 m / 2 _ 2 

where -yb = 75/m is the SNR per bit, and n0 = 1, for M = 4, hi G {3, 2, - 1 } , for M = 16, and 

hi e {7 ,6 , -1 ,0 ,1 ,0 , -1} , for M = 64. Note also that Pe(76) = Q(<f2rfb), for M = 2. The 

probability of bit-error for 8-PSK assuming Gray-mapping of bits to symbols is [58], 

PE(7b) = I ( 1 - Qc( ^ T f t s i n ^ / S ) ) Qc[ V27bsina(37r/8) ) ) (3.9b) 

where Qc(x) = 1 — Q(x). Interestingly, note that sin(7r/2fe) = J \ — \ak, and, sin(37r/2 

\ + |afc — \a\, where ak = y/2 + ak_L, and, aL = - 2 , for k — 1, 2, • • • . 

Consider the Prony approximation of the Q-function, and the following lemma from reference 

[59]. 
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Lemma 3.1 The infinite sum of exponentials representation of the Q-function is, 

1 N 1 

^-^N^r'"x2 (3-10a) 

where a; - \ s in - 2 ( ^ " 1 ^ J. 

Importantly, Lemma 3.1 shows that there exist a sequence of coefficients, Ai, and, a.{, so that the 

Prony approximation of Q(x) becomes exact in the limit. Note that the limit in (3.10a) is from 

above, i.e., Q(x) < -^ Yli=i \ e~aiX , ViV < oo, and, for N = 1, the expression (3.10a) becomes 

the Chernoff bound. In order to reduce the number of terms in (3.10a), the following approximation 

is suggested in [59], 

Q ( x ) R i J _ e - 2 / 2 + l e - 2 z V 3 . ( 3 # 1 0 b ) 

The Prony approximation of Q(-V/T&) obtained for q = 2, qi = 1, n = 21, Wj = l/Q^yfyj), 

i.e., the relative approximation error, ep(7b) = Qiy^) I \TA=\ ^ e~aat> j — 1, 7min = —5dB, 

7max = 15 dB, quantization of the coefficients, Ai, and, en, to 3 fractional digits, and having, p = 2, 

terms is, 

Q(x) « 0.208 e"0-971*2 + 0.147 e"0 '525^ (3.10c) 

and having, p = 3, terms is, 

Q(x) w 0.168 e-°'876x2 +0.144 e-a525a;2 +0.002 e- a 6 0 3 x 2 . (3.10d) 

also that the approximation, [60, eq. 

Q(x)f 

(13)] 

" V v r : 
e - 2 / 2 

3x + V^2 + 8 
(3.10e) 

is more accurate than the approximations (3.10a)-(3.10d); however, the approximation (3.10e) ap

pears to be less useful for algebraic manipulations, and thus, it is not considered in this chapter. 

The approximations (3.10a)—(3. lOd) are compared in Fig. 3.2. We observe from Fig. 3.2 that 

the Prony approximation using only 2 terms has comparable accuracy as the approximation (3.10a) 

shown in Fig. 3.2 for N = 50 terms (the solid upper curve), and also shown with a negative 

sign (the solid lower curve). The relative error of the Prony approximation (3.10c) used in the 

conditional probability of bit-error (3.9a) and (3.9b) is shown in Fig. 3.3. In order to reduce the 
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approximation error, and also, to express the probability of bit-error in a unified way, we can find 

the Prony approximations for (3.9a) and (3.9b) directly. Thus, the Prony approximations of (3.9a) 

and (3.9b) optimized to 3 fractional digits are, 

2-QAM 

4-QAM 

16-QAM 

64-QAM 

8-PSK 

Pe(7fc) « 0.204 e - L 5 0 4 ^+0 .105 e" 1 0 2 4 ^ 

Pe(76) « 0.208 e-°-9 7 1^+0.147 e - 0 5 2 5 ^ 

Pe(7b) « 0.243 e-°-3 8 2^+0.145 e"0-109^ 

Pe(7h) « 0.254 e"0-2 5 1^+0.169 e-°-030^ 

Pe(7b) « 0.239 e"0-442^ +0.112 e-°-156T*. 

(3.11) 

The relative error of the optimized approximations (3.11) is shown in Fig. 3.4. Hence, comparing 

Fig. 3.3 and Fig. 3.4, we observe that the approximation error is reduced for the optimized Prony 

approximations of the higher-order M-ary QAM modulations. 

Finally, note that if X is a zero-mean unit variance Gaussian random variable, then 

<?(*) = ^w^"{x+x)dX 

l „ - * 2 / 2 rex 
2 e JO 

-X2 /2 -Xx ax = \ e~x'' / 2<&!X|( 

where $\x\(x) is the MGF of the one-sided Gaussian random variable, |X|. Note also that we can 

use the exponential functions to find simple approximations of the function, IQ(X). In particular, 

h{x) < exIo(b)/ exp(6), for x > b > 0, [61, eq. (6)]. We suggest the following approximation, 

r / N 1 fU \ 3 

I0{x) « - e x p I — x ] + 

3.3.2 Average Error Rate Evaluation 

It was already observed in [40, eq. (10-8-2)] that if the conditional probability of error has the form, 

Pe(7fe) = Ae~a'rb, A, a > 0, then knowledge of the fading power MGF, $g2(g2), can be used to 

obtain the average probability of error; hence, Pe(7fc) = Af£° e"aff 'ybfg2(g'2)dg'2 = A<& ^(—a^). 

This evaluation of the average probability of error is known as the MGF method [48]. More gen

erally, consider the Prony approximation (3.6), and evaluation of the average probability of error 

(3.4). One has that, 

P,(76) 
poo P P 
/ yjAle-~^~«>fg2{g2)&g2 = YjAi<5>g2{-~aab) (3.12) 
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Figure 3.2: The relative approximation error for approximations (3.10a)-(3.10d) of the function, 
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7fe dB 

Figure 3.3: The relative approximation error of the Prony approximation (3,10c) for M-ary modu
lations over a AWGN channel. 
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lb dB 

Figure 3.4: The relative approximation error of the optimized Prony approximations (3.11) for M-
ary modulations over a AWGN channel. 
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i.e., we can interchange integration and summation. Note that in the limit, when p goes to infinity, 

we require that the convergence of the Prony approximation is uniform in order the term-wise in

tegration in (3.12) to be convergent. Since \Aie~ai9 lb\ < \Ai\, for jbAi > 0, according to the 

Weierstrass test [55, Sec. 9.6], provided that the sequence, A\, has absolute convergence (i.e., \Ai\ is 

convergent), then the Prony approximation, Pe(76) = lim^oo YA=I A-i e~ai9 7 \ has uniform con

vergence, and we can interchange the summation and integration in (3.12), and evaluation of (3.12) 

converges to the expected value (3.4). Hence, for p > 1, the expression (3.12) can be considered as 

an extension of the classical MGF method [48, Sec. 1.1.3]. Furthermore, for p — 1, we can use the 

Chernoff bound [21] to show that there exists, A\, and, a±, such that Pe{lb) < ^i^g2^a-ilb)-

3.4 Polynomial Approximation 

We efficiently evaluate the average probability of error (3.4) using a piecewise polynomial approxi

mation of the conditional probability, Pe(7)- Hence, the domain of 7 in (3.4) must be truncated 

first to the interval, 7 E D = (7min,7max)- The truncated domain, D, is then divided into 

N non-overlapping sub-intervals, D{ = (7i-i,7i), i = 1,2, ••• ,N, where 0 < 70 = 7min> 

7N = 7max < 00, and, 7i-i < T*. In each sub-interval, let Pe(7) be approximated by a poly

nomial, Y^PjLo "ij7J'> °f degree, pi. Hence, the average probability of error (3.4) is evaluated as, 

= Ef=i E^LO ~^ii q:!_Thb{s2)jfA92w. 

Note that using a substitution, 7 = g2^, in (3.13), the approximation interval, (7,-1,7i), of the i-th 

interval, Dit becomes, (7i-i/7b,7i/7b). Note that if on = ia, in the Prony approximation (3.6), 

i.e., Pe(7) ~ YH=I A-i (e~~aiqy = YA=I AiV*, where rj = e~ary9, then the Prony approximation 

(3.6) is equivalent to the polynomial approximation (3.13). Also, note that if 6 < 0, then, r\ > 1, 

and, if a > 0, then, 0 < 77 < 1. 

Denote T92j(7) = foid2)3 fg2{92)dg2 to be the j'-th partial (truncated) general moment of #2, 

and thus, the average probability of error, 

N Pi 

P6(7b) = y^J^0,ijlb<C£92,j<^ihb) ~ ^g^jili-lhb))-
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Using the infinite sum representation of the Bessel function in (C-lb), we obtain the partial general 

moments of the MRC output squared channel amplitude, 

T m(MRQi r^(r(!+j)-r(f+j,7/2<x2)) s = 0 

e-2/2-2 S£o (ffiffiffi (r (f + k + j) - r (f + k + j , 7/2^)) S > 0. 
(3.14) 

Note that the (j = 0)-th partial moment corresponds to the CDF, i.e., Tff20(7) = ^2(7) = 1 -

Qn/zis/ViVj/*7)' where Q„/2(v) is the Marcum Q-function of order n/2, [21]. The partial 

moments of the EGC output squared channel amplitude can be obtained as, 

2TT 

K 

w7) < E s c , ^ / rW^^W*( i + i .y/l-x 2 cdx 
7) 

i=\ 
N / T ^ 2 

where £(a, 7) = a * n(T (1 + n) — T (1 + n, 07)). Applying the GCQ rule, we have the compu

tationally efficient form, 

1=1 i= l 

The partial moments of the SC output squared channel amplitude are computed numerically, i.e., 

using (3.2), one has, 

*v„-(7) (S=C) E ftfVfttf) n ^ 2 ) ̂  
iv^i 

For simplicity, assume that pi =p,Vi. For each approximation interval, Dj, the values of Pe(7)> 

are known at (iVi + 1) equidistant points, j ' i k = 7i-i + (7i-7i-i)(fc/iVi), k = 0,1, • • • , iVi. Hence, 

for each interval, A , we solve the set of (N\ + 1) polynomial equations of (p + 1) unknowns, i.e., 

a'or1 

(Tii)1"1 a'x)0 

( W a ^ r 1 ••• (7k)c 

li(p—l) 

O-iO 

PeW iO) 

P«(% 

Pe(7 iiVi> 

(3.15) 

Importantly, for N\ = p, we can use the matrix inversion to solve (3.15); note, however, that, for 

small values of Pe(7j'fc), the solution is ill-conditioned. If N\ = p = 1, i.e., we have a piecewise 
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linear approximation of Pe(7), the approximation coefficients, 

an 

7» - 7»-i 

Pe(7i) - Pe(7i- l ) 

- 7 i - l P e ( 7 i ) + 7 i P e ( 7 i - l ) 

There are two sources of the approximation error in (3.13). In particular, the truncation error in 

(3.13) can be upper-bounded as, 

^ m i n P e ( < ? 2 7 b ) / 9
2 G ? W < P e ( a ) i ^ ( 7 m i n ) 

IZ,MS2^) fA92W < Pe(7max)(l- JP
1

s 2(7max)) 

where Fgi (7) = fj fgi (g2)d#2 denotes the CDF, 0 < a <C 7min7b, and Pe(a) < \. The truncation 

interval, D, is chosen to make the truncation error negligible. Thus, choice of 7m a x (7min) influences 

the values of the average probability of error at large (small) SNR, and if 7max is too small (or, 7min 

too large), the computed average probability of error will tend to be smaller than the exact value. 

For the i-th interval, Di, we define the approximation error, 

fe=0 
S%-7ifc-Pe(7ifc" 

91 

where q\ > 0, and the weights are chosen, for example, as, w^ = l/P^Tjfc). Note that partitioning 

of D into sub-intervals, Di, is chosen so that the maximum approximation error, maxjePi(z), is 

limited. Our numerical experiments indicate that, in general, shorter intervals, Di, should be chosen 

in the regions of smaller values of Pe(7). 

As an example, we investigate the accuracy of the polynomial approximations for the BER of 

the 2-QAM and 16-QAM modulations over a AWGN channel. In particular, we assume piecewise 

linear (p = 1), quadratic (p = 2), and cubic (p — 3) polynomial approximations (3.13) of the 

conditional BER, Pe(7&), for - 5 d B < 75 < 20 dB; thus, pi = p, and, Ni = p, for all sub-

intervals, i = 1,2, • • • ,N. Recall that, for N\ = p, the polynomial approximation is exact at the 

approximation intervals boundary points, 7,. Thus, the relative approximation error, ep(7b), has 

oscillatory behavior, and the envelope of the relative approximation error, ep(7b), can be defined 

using the maximum values of ep(jb) f°r every approximation interval, Di = ( 7 J_ I , 7 J ) . The en

velopes of the relative error, ep(7b), versus the SNR, 7f„ are shown in Fig. 3.5 and Fig. 3.6, for 

iV = 15,25 and 35 sub-intervals. We observe from Fig. 3.5 and Fig. 3.6 that the values of the 
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Figure 3.5: The envelopes of relative approximation error for the polynomial approximations of 
2-QAM over a AWGN channel. 

approximation error increases to infinity with the SNR. Hence, the order, p, of the approximating 

polynomials, and the number of sub-intervals, TV, are determined for the maximum value, jb, of 

the approximating interval, D. In particular, larger values of p and TV improves the polynomial 

approximation towards the larger values of 7&. Also, for larger values of p (N), we can use smaller 

values of TV (p) to achieve the same approximation error. Furthermore, comparing Fig. 3.5 and Fig. 

3.6, we observe that the polynomial approximations are much more accurate for those conditional 

BER's, Pe(7;,), that decrease less steeply with SNR. Finally, we can conclude that the values of the 

product, pN » 10, should be used for practical evaluations of the average probability of error using 

polynomial approximations. 
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Figure 3.6: The envelopes of relative approximation error for the polynomial approximations of 
16-QAM over a AWGN channel. 
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3.5 Numerical Examples 

We use theoretical analysis and numerical integration to obtain the average probability of bit-error 

(3.4) (corresponding to the BER in all cases considered) for single channel and multi-channel post-

combining receivers. We then employ Prony and polynomial approximations to compute these 

average probabilities, and to evaluate accuracy of the proposed semi-analytical methods. 

3.5.1 Single Channel Reception 

Assume a single channel coherent reception, and let the conditional BER, Pe(7) = Q{^/l), where 

7 — 92lb, and g is generalized Rayleigh or Ricean distributed [21], i.e., g2 is central or non-central 

chi-square distributed with variance, a2, per dimension, n degrees of freedom, and non-centrality 

parameter, s > 0; see (C-lb). We evaluate the average probability of error (3.4). Hence, for s > 0, 

g2 is non-central chi-square distributed, and using the infinite series representation of the In(x) 

function, one has that, 

/o°°Q(v /S57b) e -s 2 / 2 C T V)?- l+* dg2 = 2^+k~la2k+nx 

where Im{-} denotes the imaginary part of a complex number, and (3z(a, b) is the incomplete beta 

function; see (A-7). Hence, the average BER over a generalized Ricean fading, 

x 2^k=0 E im\P-7^H2> 2 K+ 2JJ r(f+fc) ' 

If s = 0, i.e., g2 is central chi-square distributed, we substitute <5(y/7) = \ ~~ YTv Jo ^7^^u 

[62], and eq. (C-lb) into (3.4). Using the definition of the gamma function [62, 8.310], the integral, 

/0°° xu~l e~^x dx = fi~vT (v), fj,, v > 0, [62, 3.381.4], and the definition of the hypergeometric 

function (A-8b), we obtain the average BER over a generalized Rayleigh fading [63], 

1 / ^ 2 r ( = + i ) fn 1 1.3 _ 2 P ^ = 2-V^-I^f2 F lU+2'2 ;2'-^J- (3-1?) 

As an example, consider the average BER for the 2-QAM and 16-QAM modulations over a 

generalized Ricean fading channel. The exact BER can be computed assuming the conditional BER 

(3.9a) and using (3.16). Note that the infinite summation in (3.16) converges quickly (say, k < = 40) 
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Figure 3.7: The relative approximation error of the Prony approximation for 2-QAM and 16-QAM 
modulations over a generalized Ricean fading channel. 

due to the factorial term in the denominator. The average BER is also obtained assuming the Prony 

approximation (3.11) of the conditional BER's for QAM modulations, and substituting the MGF of 

the non-central chi-square variable (C-4b) into (3.12). The exact average BER is used as a reference 

to evaluate the accuracy of the Prony approximation. In particular, the relative approximation error, 

ep(jb), versus the SNR, 7&, for the Ricean factor, KR = - 3 dB and 3 dB, and n = 2 and 4 degrees 

of freedom is shown in Fig. 3.7. Importantly, we observe from Fig. 3.7 that the approximation error 

is finite for all values of SNR considered. Note also that the Prony approximation method is strictly 

a lower bound (i.e., ep(ji,) < 0, V7;,), for n = 2, and strictly an upper bound (i.e., ep(7fc) > 0, V7&), 

for n — 4, of the exact average BER. 

As another example, we employ the polynomial approximation to evaluate the average BER for 
j 

the 2-QAM and 16-QAM modulations over a generalized Ricean fading channel with the parame-
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Figure 3.8: The relative approximation error of the polynomial approximations of 2-QAM and 16-
QAM modulations over a generalized Ricean fading channel, for KR = - 3 dB, and, n — 2. 

ters, K-& = - 3 d B , and, n = 2. We assume the approximation interval, - 5 d B < 7t < 20 dB, and 

N = 15 and 30 approximation sub-intervals. The relative approximation error, ep(7b), versus the 

SNR, 7b, is shown in Fig. 3.8. We observe from Fig. 3.8 that the approximation error is smaller for 

16-QAM than for 2-QAM, as expected; cf. Fig. 3.6. Furthermore, the smallest approximation error 

occurs for the case of linear approximation (i.e., p = 1) and N — 30 approximation sub-intervals. 

Finally, we use the GCQ rule [46] obtained in Appendix B to evaluate the average probability of 

error for the scenarios in Fig. 3.7 and Fig. 3.8. The relative approximation error, ep(%), versus the 

SNR, 76, is shown in Fig. 3.9. The results in Fig. 3.9 have been obtained for c = 0 and v = 5; see 

Appendix B. Thus, provided that the region of convergence of the MGF is known, we can select the 

value of c and v to obtain the average probability of error for single channel reception with smaller 

approximation error than the polynomial approximation method. 
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Figure 3.9: The relative approximation error of the GCQ rule for c = 0 and v = 5, and for 2-QAM 
and 16-QAM modulations over a generalized Ricean fading channel. 
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3.5.2 Multi-Channel Reception 

Consider multi-channel postcombining receivers for K slowly flat fading channels. Assuming 

knowledge of the fading amplitudes and phases at the receiver, the decision variable is the out

put of MRC. When only either amplitudes or phases are known at the receiver, the decision variable 

corresponds to the SC or EGC, respectively. 

Assume K correlated generalized Rayleigh slow fading channels with variance, <x2, per dimen

sion, n degrees of freedom, and MRC receiver. Let the normalized correlation coefficient between 

branches, i, and, j , be defined as, [64] 

E 
PiJ = 

is) 

' (Ek4]~l)(E 

The MGF of the combiner output SNR is, [64, eq. (29), (30)] 

K 

^ ( ^ ^ ^ ^ ( l - t A ) " 1 (3.18) 

t=(a2Afc)~ 

k=li=l 

where 
1 rK™-*) 

and Afc are the K eigenvalues of the correlation matrix with elements, pij. Hence, we can invert 

(3.18) to obtain the PDF of the MRC output SNR, 

k=l i=\ W V k> 

The average BER for QAM modulations over a generalized Rayleigh fading channel can be eval

uated exactly using (3.19) and the expression (3.17), and approximately, using the Prony approxi

mation (3.11) and the MGF (3.18) in (3.12). A numerical example verifying high accuracy of the 

Prony approximation for the average BER evaluation for the 8-PSK modulation over generalized 

Rayleigh fading channels and MRC is given in [63, Fig. 5]. 

For the EGC postcombining receiver, we assume that the K branches are independent. Let the 
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conditional BER, P£(7) = Q(yfy)- Hence, we derive the Laplace transform of the Q-function, 

Jo Q(gVTb)e-t9dg = Yt * w V W (3.20) 

where the region of convergence, Re{t} > 0, and Re{-} denotes the real part of a complex number. 

Using (3.20) and the PDF (3.1), we obtain the exact average BER for the EGC postcombining 

receiver, i.e., 

P,(76) ( E = Q [°° Q(gV%) fg(g)dg 
Jo 

oo 

1 7 n£iii£±M (i e^Q((l±vWI)) „,, (3.21) 

—oo v 

The BER (3.21) can be evaluated using the GCQ rule, i.e., 

and c > 0. We use the Prony approximation (3.6), for q = 1, to evaluate the average BER for EGC. 

In particular, since, 

for a > 0, and, Re{t} > 0, the average BER for EGC is, 

Pe(7fc) ( E £ Q r^Aje-^^f^dg 
3 = 

1 K v^ Aj f / f r ^ . . , \ ^ ^ (c + iuWK\ , 

Using the GCQ rule, one has that, for c > 0, 

2^ V ̂  ^ v"i fe v i i / V v ^ ; 

As an example, we use the Prony approximation (3.11) for the 2-QAM and 16-QAM modulations 

to obtain the relative approximation error of the average BER over K = 2 and 4 independent 

generalized Ricean distributed branches having n = 2, the Ricean factor K R = —3dB, and 3dB, 
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and using EGC; assuming, v = 256, and, c = 0.3, the results are shown in Fig. 3.10. We observe 

from Fig. 3.10 that the approximation error, \ep(-fb)\ < 0.05, for -yb > - 5 dB. 

For SC, we use numerical integration to obtain the average BER (3.4) using the exact conditional 

probability of error (3.9a) and using the Prony approximations (3.11). As an example, assume 

K — 2 and 4 independent generalized Ricean distributed branches having n = 2, the Ricean factor, 

KR = — 3dB, and 3dB, and SC. Fig. 3.11 shows the relative approximation error of the Prony 

approximation for the average BER of the 2-QAM and 16-QAM modulations. We observe from 

Fig. 3.11 that the approximation error, |ep(7b)| < 0.06, for 75 > - 5 d B . 

3.6 Summary 

We proposed a novel semi-analytical technique to evaluate the average probability of error for dig

ital communication systems operating over slowly fading channels. This technique is based on the 

Prony (sum of the exponentials) approximation of the conditional probability of error; thus, knowl

edge of the MGF of the instantaneous SNR is required to obtain the average probability of error. 

We also considered the Chernoff bound to obtain the Prony approximation. Many examples of the 

Prony approximation of the conditional probability of error over a AWGN channel for M-ary QAM 

and 8-PSK modulations were presented. We observed that the sum of only two exponentials can 

approximate the conditional probability of error with a high accuracy; the relative approximation 

error was less than 10% for most cases considered. The overall approximation error of the ex

act average probability of error over fading channels was less than 6% for most cases considered. 

Furthermore, we also investigated a piecewise polynomial approximation of the conditional proba

bility of error as an alternative to the Prony approximation. Knowledge of the partial moments of 

the SNR is required to obtain the average probability of error using the polynomial approximation. 

Our numerical examples indicate that the polynomial approximation requires that the product of the 

polynomial degree and the number of sub-intervals should be much larger than, 10. Since the pa

rameters of the polynomial approximation must be obtained for every sub-interval, and the number 

of sub-intervals can be large, the Prony approximation is, in general, significantly less complex, and 

thus, is preferred to the polynomial approximation. In conclusion, the piecewise semi-numerical 

evaluation of the average probability of error is more complex than the Prony approximation and 

the GCQ methods. However, the piecewise polynomial approximation of the conditional probabil

ity of error is less complex than the ordinary piecewise polynomial integration. The accuracy of the 
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Figure 3.10: The relative approximation error of the Prony approximation for 2-QAM and 16-QAM 
modulations, and EGC over K = 2 and K — 4 IID generalized Ricean fading channels. 

piecewise semi-numerical evaluation method could be improved if the samples of the conditional 

probability of error are not taken uniformly. 
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Figure 3.11: The relative approximation error of the Prony approximation for 2-QAM and 16-QAM 
modulations, and SC over K — 2 and K — 4 IID generalized Ricean fading channels. 
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Chapter 4 

Efficient Channel Modeling 

In this chapter, we simplify the performance analysis of one-stage and two-stage DCS's operating 

over correlated fading channels by considering two efficient channel models. We also consider 

decorrelation and orfhogonalization of the branches prior to employing the diversity combining. 

4.1 Background 

Diversity reception is an important fading countermeasure. Realistic channel models having cor

related branches are, in general, difficult to analyze [65], [66]. Hence, it is desirable to investigate 

channel models having the well-defined branch correlations, and importantly, that allow less com

plex performance analysis. In this chapter, we consider a linear correlations channel model where 

the branch channel coefficients are linear combinations of mutually independent input random pro

cesses. In this model, the channel coefficients are described using several parameters, and therefore, 

a good fit to realistic propagation conditions can be achieved. While we specify the distribution 

of the input independent processes, the distribution of the output processes corresponding to the 

correlated channel coefficients does not have to be specified. This model is useful for analyzing the 

performance of HS/MRC schemes. In particular, we investigate decorrelation [67] and orthogonal-

ization [68] of the diversity branches prior to employing HS/MRC. For a linear correlations channel 

model, if the branches have equal variances, decorrelation transforms the problem of correlated 

order statistics into a much simpler problem of independent order statistics, [53], [69]. Also, we 

propose a fading amplitude channel model assuming vector norm superposition of the plane waves 

envelope amplitudes. This channel model is shown to be useful for analysis of MRC and EGC 

schemes over correlated fading channels. Furthermore, assuming knowledge of the MGF of the 
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HS/MRC diversity output SNR, the Prony approximation method [70] can be used to significantly 

simplify the analysis of HS/MRC diversity schemes, and importantly, to analyze the performance 

for cases that cannot be solved exactly. 

Exact error rates for specific cases of MRC and EGC diversity were obtained in [71]. The SNR 

maximization for a general case of correlated branches is considered in [72, p. 33]. A general frame

work for analysis of SC diversity over correlated fading channels is established in [73]. Optimum 

decorrelation of Gaussian branches and MRC is investigated in [67]. A virtual branch technique 

for performance analysis of HS/MRC was proposed in [74]. The BER of HS/MRC for specific 

branch correlation structures were evaluated, for example, in [75] and [76]. Two-stage DCS's used 

to reduce the complexity of the combining are studied in [77] and [78]. The MGF of the HS/MRC 

diversity output SNR for independent branches was obtained, for example, in [79] and [80], using a 

method of recursive substitutions. 

This chapter is organized as follows. The system and channel models for correlated branches 

are introduced in Section 4.2. Decorrelation and orthogonalization of the diversity branches prior to 

combining is investigated. Performance analysis of one-stage and two-stage DCS's is considered in 

Section 4.3. Numerical examples and verification of analytical results by computer simulation are 

presented in Section 4.4. The chapter is summarized in Section 4.5. 

4.2 Diversity Combining In Correlated Fading 

Consider transmission of uncoded modulation symbols over flat slowly fading correlated channels. 

The signals are represented using equivalent complex envelopes in the baseband and using one 

sample per symbol. Assuming multiple receiver antennas, the received signals are combined in one 

or two stages as shown in Fig. 4.1. Thus, the X)i=i Li received signals are combined in K groups 

of Li antennas to obtain a decision variable at the detector input. In particular, employing EGC or 

SC at the first stage requires knowledge of the channel phases and amplitudes, respectively. At the 

second stage, either channel amplitudes or phases are estimated as required, so that MRC should 

be used to exploit the full channel knowledge. Note that channel estimation at the second stage 

can benefit from the increased SNR after the first combining stage. For one stage combining, we 

consider HS/MRC diversity where L out of K received signals having the largest SNR are selected 

and combined using MRC. If L = K, HS/MRC corresponds to MRC, and, if L = 1, HS/MRC 

corresponds to SC. We also consider one stage EGC diversity. 
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Figure 4.1: A generic two-stage diversity combining scheme. 

The K baseband received signals, y € C , are written as, 

y = h i + w (4.1) 

where h e C^ is a column vector of the channel coefficients, x e C is a transmitted data symbol, 

and w £ CK is a column vector of zero-mean mutually uncorrelated additive noises. Let the i-

th channel coefficient be, hi = gi^6i, where gi is the channel fading amplitude, 9i is the channel 

fading phase, and i = 1,2, • • • , K. The additive noises, w, have the covariance matrix, E [www] — 

crl,I(K), where a2
w is the variance, (-)H is the vector transpose conjugate, and I ^ is the K x K 

identity matrix. The channel coefficients and the additive noises are mutually uncorrelated, i.e., 

E[w(h - E[h])H] = E[whH] = 0 ^ , where 0 ^ is the KxK all-zero matrix. If the transmitted 

symbol, x, is complex-valued, then the variance, a\ = iVo, otherwise, if x e M, then a\ — No/2, 

where iVo denotes the one-sided noise power spectral density. The transmitted symbols, x, are 

normalized, so that the average energy per symbol, Es — E[|:r|2] = 1. For the i-th received signal 

in (4.1), we define the (instantaneous) SNR as, 7J = g?jb, where % — E^/NQ is the SNR per 

transmitted bit, and Ej, — Es/log2M, for M-ary modulation symbols, x. Assuming coherent 

combining, the received signals (4.1) can be equivalently written as, 

y = | h | a ; + w = ga; + w (4.2) 

where |h| = (|/ii|, • • • , \hK\)T, and g = |h| = (51, • • • ,gK)T are the column vectors of the 

channel fading amplitudes, | • | is the absolute value of a complex number, (-)T is the vector transpose, 
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XGC,W GCK, E [ W W # ] = a2
w\K), and E[w(g - E[g])^] = E[wg#] = 0{K). Furthermore, 

we assume perfect channel estimation at the receiver. 

4.2.1 HS/MRC Diversity Combining 

Consider the received signals (4.1). Note that for symbol-by-symbol detection at the receiver to be 

optimal requires that the additive noises are white (i.e., uncorrelated from symbol to symbol). The 

diversity branches are ordered according to their instantaneous SNR's, ji = gf'jb, i = 1,2, • • • ,K. 

The L branches, 1 < L < K, having the largest instantaneous SNR's are combined using MRC. 

Note that knowledge of all K channel amplitudes, <&, is required to select the L branches, and, 

for the selected branches, knowledge of the channel phases, 0j, is required to perform coherent 

combining. Note also that, in fact, ordering of branches is sufficient knowledge for the branch 

selection. In the case of joint estimation of the channel amplitudes and phases, for example, using 

pilot symbol assisted modulation, MRC without any branch selection can be used. Hence, using 

(4.1), the decision variable at the combiner output is, 

y c H A g y = cH Agha; + c f fA gw 

where c = (ci, ci, • • • , CK)T E CK is a vector of linear combining weights. The elements of 

diagonal matrix, A g G {0, l}KxK, are equal to 1 if the corresponding branch is selected, and 0, 

otherwise. The subscript, g, indicates that A g is a function of the fading amplitudes, g; thus, A g 

will be referred to as the selection matrix. Note that, A g = A g , and, A g A g = A g . The combiner 

weights, c, are computed in order to maximize the combiner output instantaneous SNR subject to 

(s.t.) combining exactly L branches, i.e., 

c H A g h h H A g c 
max(c«Ag)eCi E(cJJAgww^Agc] ( 4 3 ) 

s.t. rankA g = L. 

Using the Schwartz inequality [40], one can show that (4.3) is maximized if c = g, for any value 

of L. Then, for c = g, the selection matrix, A g , maximizing (4.3) corresponds to the L branches 

having the largest fading amplitudes, gi. Correspondingly, the signal at the output of HS/MRC is, 

y(HSMRCV A h x + h H A ( 4 . 4 ) 



Assume that the channel coefficients, hj,, are correlated having the covariance matrix, Ch = 

E[hh^] — E[h] E[h] . The selected channel coefficients, A g h, correspond to the order statis

tics of h, and have the covariance matrix, CAgh = E [A g hh^A g ] — E[Agh] E[Agh] . In

tuitively, the selected branches can be decorrelated before employing MRC [67]. Hence, denote 

the singular value decomposition (SVD) of the covariance matrix, CAgh = E [A g hh H A g ] — 

E[Agh] E[Agh] , as, C^gh = U A V ^ , where U and V are unitary matrices and A is a diagonal 

matrix of eigenvalues. We can show that, for regular processes, h, the matrix, CAgh, is Hermi-

tian and positive semi-definite, i.e., U = V, and the eigenvalues are real and non-negative [81]. 

Furthermore, assume that w are mutually uncorrected zero-mean AWGN's of equal variances. We 

can use the matrix, U, to decorrelate the selected branches as follows. Denote a complementary 

diagonal matrix, A g , such that, A g + A g = \K)> i-e-> m e matrix, A g , corresponds to the (K — L) 

branches having the smallest fading amplitudes, #;. Let w' be a complex-valued random vector of 

mutually uncorrelated zero-mean AWGN's having the variances, cr^. The AWGN's, w, and, w', 

are uncorrelated, i.e., E[w'wH] = 0(K)- Then, the auxiliary signals, y' = A g y + Agw', are 

decorrelated using the matrix, XJH, i.e., U ^ y ' = XJHAghx + w = h x + w, where the AWGN's, 

w = U ^ ( A g w + Agw'), have zero-mean, and the covariance matrix, E[ww f f] — E[ww f f] , 

Hence, the decorrelated channel coefficients, h = U ^ A g h , have the covariance matrix, C^ = A. 

It is straightforward to show that, after decorrelation, the HS/MRC output is, y = h^U-^y' = 

hHAgy' = h f f A g y, since A g A g = 0. Thus, decorrelating the selected branches does not change 

the HS/MRC output statistics, for any distribution of h that is uncorrelated with the AWGN's. Note 

that decorrelating the auxiliary signals, y', rather than the received signals, y, is necessary, in order 

that, after decorrelation, the additive noises remain white. 

In general, although the channel coefficients, h, can be decorrelated, they will not become inde

pendent, and thus, their order statistics are difficult to obtain. In order to facilitate the performance 

analysis of the HS/MRC schemes, we have to transform the case of correlated order statistics into 

the case of independent order statistics. Hence, assume that the channel coefficients can be written 

as, 

h = \ / P h U z z + h (4.5) 

where z G Cn is a column vector of mutually independent (i.e., uncorrelated) zero-mean RV's, 

Zj, j = 1, • • • ,n, and E[zz^] = S z is a diagonal matrix of the variances, a\.. The matrix, 

U z e CKxn, is semi-unitary, i.e., U f U z = I ( n ) , and vT5^ = d iag(y / ^" , • • • , y/Fh^) is a 
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diagonal matrix of the branch powers, P^, i = 1, • • • ,K, and h = E[h]. Then, the covariance 

matrix of h is, Ch = \/PhC'Zv /Ph, where C z = U Z £ Z U ^ . Provided that the vector, z, is jointly 

Gaussian, the channel coefficients, h, are jointly Gaussian. Also, if E z — cr2I(n) and U z is unitary, 

then Ch = o^Ph, i-e., the channel coefficients, h, are uncorrelated, but not independent. Note 

that, for any row and column, u, of the unitary matrix, U e CKxK, the vector norm, ||u||2 = 

V K | 2 + --- + M 2 = 1, and, | | (1,-•• ,1)U||2 = | | (1 , - - - ,1)U H | | 2 - VK. Correspondingly, 

provided that the branch powers are equal, i.e., P^ — Ph Vi = 1, • • • , K, we can decorrelate the 

channel coefficients (4.5) using the matrix, U ^ . Hence, the channel coefficients, h = \JHh = 

\fP z + U ^ h , are independent and have the covariance matrix, C h = P E z . 

Furthermore, provided that the fading is fast and cannot be estimated at the receiver, and to 

avoid frequent antenna switching, it is useful to investigate a linear DCS having time-invariant 

(i.e., fixed) combining weights. Hence, using (4.1), the decision variable at the combiner output is, 

y — c f fha; + c^w. The combining weights, c, are computed in order to maximize the average 

SNR at the combiner output, i.e., 

E[c H hh H c l 1 c^ c 
max ——7T jj—r = max —~ TT—TT- Rh 77-77- (4.6) 
CGC^ Eic^ww^cJ cec^ a^ ||c||2 ||c||2 

where the correlation matrix, Rh = E [hh^] . We have the following lemma. 

Lemma 4.1 The time-invariant linear combining weights maximizing the output combiner average 

SNR are the components of the eigenvector corresponding to the largest eigenvalue of the channel 

amplitudes correlation matrix. 

Proof: Optimization of (4.6) is achieved using the SVD, Rh = UAU^. Since U is unitary, 

the row vector, c' = innrU, lies on the sphere of unit radius. Hence, maximization of (4.6) is 

equivalent to, maxc/eCK:nc/ii = 1 c'Ac' . Using the method of Lagrange multipliers, we can show 

that the maximum occurs for the components, |ĉ * | = 1, and, |c£| = 0, i ^ i*, where i* is the index 

of the largest eigenvalue of Rh. Thus, iptr- = c 'U^, and the optimum weights are a column vector 
I l c l l 2 

of the matrix, U, (i.e., the eigenvector) corresponding to the largest eigenvector. • 

Hence, the branches are orthogonalized (decorrelated, if the channel coefficients have zero mean), 

and the one having the largest average SNR is selected. Importantly, Lemma 4.1 can be extended 

to consider the L eigenvectors corresponding to the L largest eigenvalues. The L orthogonalized 

branches are then combined using MRC. Such a DCS has been proposed in [68, Lemma 1] and 

is referred to as principal components combining (PCC). However, note that, while the derivation 
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in [68] assumes a semi-unitary preprocessing matrix, the proof of Lemma 4.1 in this chapter does 

not require any such assumption. 

In general, let Z be a unitary matrix, and w be a vector of mutually uncorrected zero-mean 

AWGN's having equal variances. Then, for any vector, h, we have that, ||Zh.11^ = (Zh)^(Zh) = 

h f fh = ||h||2, and Zw is a vector of mutually uncorrelated zero-mean AWGN's having the covari

ance matrix, E[(Zw)(Zw)H] = E[ww f l ] . Hence, for L = K, the MRC outputs for the received 

signals, y = hx + w, and, y = Z^y, are identical. Provided that Z = TJH, where the SVD, 

Ch = U A U H , the signals, y, are uncorrelated. Furthermore, if the signals, y, are jointly Gaussian, 

i.e., the vectors, h, and, w, are jointly Gaussian and mutually uncorrelated (thus, independent), the 

signals, y, are independent [67]. However, in general, if L < K, the selected branches are not 

Gaussian. On the other hand, it is well-known that the branch correlations decrease the available 

diversity order [66]. Hence, one can expect that decorrelation and orthogonalization of the diversity 

branches prior to branch selection and combining (i.e., prior to HS/MRC) can be used to restore 

some of the diversity lost due to the correlations between branches. Hence, we have the following 

four HS/MRC DCS's for correlated diversity branches. In traditional HS/MRC, the L branches 

having the largest SNR are selected and combined using MRC, i.e., the combiner output signal is, 

.(HS/MRC, = ( h H A g ) A g y 

= h "A ,h x + h^ AEw. 

Using the SVD, Ch = U A U ^ , the received signals can be decorrelated, and then combined using 

HS/MRC. In this case, the combiner output signal is, 

„(HS/MRC, = ( h » U A B ) A B U H y ^ 

= h ^ U A g U ^ h x + h ^ U A g U ^ w . 

Motivated by Lemma 4.1, the received signals can also be orthogonalized, and then combined using 

HS/MRC. Thus, the combiner output signal is, 

r M R C ) = ( h - U A g ) A g U - y ( 4 9 ) 

= h ^ U A g U ^ h x + h H U A g U F w 

where the orthogonalization matrix, XJH, corresponds to the SVD, Rh = U A U H = Ch + 

E[h] E [ h H ] . Finally, the received signals can be combined using PCC. Thus, the received sig-

91 



nals are orthogonalized and combined using HS/MRC having the time-invariant selection matrix, 

A g = A, of L non-zero diagonal elements. The corresponding combiner output signal is, 

(HS/MRC) = ( h H v ) 

4 V ; (4.10) 
= h f f V h x + h F V w 

where the time-invariant matrix, V = U A U ^ . We can show that the matrix, V, is Hermitian and 

positive semi-definite, and VV = V. Finally, note that, if L = K (i.e., no branch selection is 

employed), then, for any realization of the vectors, h, and, w, the combiner output signals (4.7)-

(4.10) are identical. 

4.2.2 MRC and EGC Diversity Combining 

In order to facilitate the performance analysis of MRC and EGC DCS's over correlated fading 

channels, we adopt a fading amplitude model based on the plane waves vector norm superposition. 

We assume that there are n plane waves arriving at the receiver antennas; see Fig. 4.2. Denote by Gj 

the instantaneous envelope amplitude of the j'-th plane wave, Gj > 0, and j = 1,2, • • • , n. Recall 

the vector norm (A-10), and let the channel fading coefficient corresponding to the i-th receiver 

antenna be, 

hi = Ui\\a^^gi^
ei (4.11) 

where gi is the channel fading amplitude, and 6i is the channel fading phase. For example, provided 

that the envelope amplitudes, Gj, are independent and one-sided Gaussian distributed, i.e., having 

the PDF, fG-(Gj) = —,—, N /—» » where a is the variance and m,- is the mean value of the 
J J Qym j ja)\l1-na1 J 

underlying Gaussian distribution, then the channel fading amplitudes, <̂ , are generalized Ricean 

distributed. 

Similarly to (4.5), in eq. (4.11), we assume that the vector, gj = (dnGi, (LaGii' • • > dinGn), 

where the coefficients, dij > 0, are related to the angles-of-arrival of impinging plane waves, and 

thus, they influence correlations between the branch fading amplitudes, gi. In this chapter, we 

consider the plane waves vector norm amplitude and squared-amplitude (i.e., power) superpositions 

corresponding to a = 1 and a = 2, respectively. Thus, for i = 1,2, • • • ,K,wc have that, 

gi ( a = 1 } diiGi + di2G2 + • • • + dinGn (4.12a) 

gl ( Q = 2 ) dlG\ + dlGl + --- + d2
inGl (4.12b) 
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Gie^i 

h = g i ^ 

hK = 8K^6K 

Figure 4.2: Amplitudes, Gj, and phases, <fii, of n plane waves arriving at the K receiver antennas. 

where we assume that the plane waves envelope amplitudes, Gj, are mutually independent. Denote 

the matrix, D, having the rows, dj = (dn, • • • ,din), the matrix, D2 , having the rows, d2 = 

(d2
l7 • • • , d

2
n), and the column vectors, G = (Gx, • • • , Gn)

T, and, G2 = {G\, ••• , G 2)T . Then, 

g = DG, and, g2 = D 2G 2 , and the correlation coefficients of the fading amplitudes and squared 

amplitudes, respectively, are, p9{i,i') = E ^ / ] - E[pj]E[gj/] = d ; C G d ^ , and, pg2(i,i') = 

E[gfg2] — E[g2] E[g2] = d2 CG2 d2 . Since the envelope amplitudes, Gj, are assumed to be 

independent (thus, uncorrelated), the covariance matrices, C G of G, and, CG2 of G2, are diagonal. 

Hence, the covariance matrices of the channel amplitudes and squared amplitudes, respectively, are, 

C g 2 

(4.12a) 

(4.12b) 

C g
 v'="*' E[ggT] - E[g] E[g]T = D C G D T 

= ' E g2g2T ' E[g2]E[g 2 l T D C G 2 D T . 

If the envelope amplitudes, Gj, are generalized Ricean distributed [21] having uncorrelated 

underlying Gaussian distributed components, then, the envelope amplitudes, Gj, are independent. 

Then, for d2. = d2, i — 1, • • • , K, and j = 1, • • • , n, the squared fading amplitudes, gf, are non-

central chi-square distributed having the Rice factor, KR = s2/(na2), where the non-centrality 

parameter, s2 = 2~^=im j- The correlation coefficient, pgi(i,i') = pd2d2 where p = 2na4 + 

Aa2s2 [21, (2-1-125)], and the covariance matrix, Cg2 = E g 2g 2 T - E [ g 2 ] E g 
2? 

P d
2d2 T , 

where the column vector, d2 — (d2, • • • , d2
K)T. In general, assuming that g is generalized Ricean 
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distributed, and thus, g2 is non-central chi-square distributed, the expressions for the PDF, fg(g), 

and, fg2{g2), the CDF, Fg(g), and, Fg2(g2), the MGF, $9(i) = E[efl*], and, $ga(t) = E ^H 

where a dummy variable, t = c + ]u>, and c, a; <E M, and the upper incomplete MGF, 4>g{t,u) — 

J^° e9tfg(g)dg, and, <f>g2(t,u) — j^° e9 tfg2(g2)dg2, are summarized in Appendix C. 

To illustrate further, consider the fading model (4.12a), and assume that the number of impinging 

plane waves, n, is equal to the number of receiver antennas, K, and that the matrix, D, is invertible. 

Then, the joint PDF of the channel amplitudes, g, is, [53] 

/g(g) = | d e t ( D - 1 ) | / G ( D - 1 g ) (4.13) 

where / G ( G ) is the joint PDF of the envelope amplitudes, G, the operator, det(-), denotes the 

matrix determinant, and (-) - 1 is the matrix inverse. 

Finally, recall that the EGC output fading amplitude, g — -j= Ylf=i 9^ U^]. Assuming the 

fading model (4.12a), we have that, g = dG — X)j=i djGj, where d = (di, • • • ,dn), and the 

components, dj — -T= Y2i=i ^y • Similarly, the MRC squared output fading amplitude is, g2 = 

HiLi9i- Assuming the fading model (4.12b), we have that, g2 = d 2G 2 = X!j=idjGj> where 

d2 = (d2, • • • ,d2
l), and the components, d2 = Y^i=i ^%- Correspondingly, the combiners output 

signals are written as, 

y(EGC) = [SrdjG]}x + w (4.14) 

y(MRC) 

A 
Y,d]G2 ] x + w (4.15) 

where dj > 0, and the envelope amplitudes, Gj, are mutually independent. Hence, using channel 

models (4.12a) and (4.12b) for MRC and EGC schemes, we convert the branch correlations into a 

sum of unbalanced and independent RV's. This, in turn, greatly simplifies the performance analysis 

of MRC and EGC schemes over correlated fading branches. 

4.2.3 MGF of Sum of Order Statistics 

The analysis in the sequel requires the MGF of a sum of the L largest out of K RV's. In general, 

denote the ordered RV's, 
(i) > x(2) > • • • > X(K)- Define the vector of the RV's, x = 

(xi, X2, • • • , XK), and denote by Xj the i-th component of the vector, x. Let n ^ ^ x ) denote all 
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possible permutations of the RV's, xit divided into three subsets of (L—l), 1, and (K—L) unordered 

RV's. Thus, the cardinality, | I IX,L(X) K\ In order to simplify the indices, we (L-1)!1!(JY-L)!-

assume that, for Vx e I1X,L(X), the RV's, x; > X£, i = 1, • • • , L — 1, are unordered, and the RV's, 

Xj < XL, z = L + 1, • • • , K, are also unordered. Then, the PDF of the (L)-th order statistic, £(L), 

can be written as [53], 

nK,L(X) W / W+i / 
(4.16) 

Correspondingly, using the result in [79] and [80], we have that the MGF of an auxiliary RV, z — 

XIiLt0
 _ 1 x(i)> c a n t>e computed as, 

* . ( * ) 

2^nK,i,(x) J-oo /xi+z, w x 

x ( n f = i ^ ( t , n ) ) ( n £ ^ 2 ^ ( t i ) ) d u 

for zo = 1, and, 1 < L < K 

n o e u % » d « 
for 1 < i0 < K, and, L = 1 

(4.17) 

n L **«(*) 
for IQ = 1, and, L = K. 

Furthermore, if the branches are IID, then the MGF expression (4.17) can be simplified giving [79], 

[80], 

** (* ) = 
K\ 

L\(K-L-1)]J_JX^L 

for io = 1, and, 1 < L < K. 

fx1+L{u)ft>Xi{t,u)LFXi{u) K-L-l du 

4.3 Performance Analysis 

We evaluate the average BER for one-stage and two-stage DCS's operating over correlated fading 

branches. We assume that the additive noises are zero-mean, white and Gaussian and have equal 

variances. Thus, denote the decision variable as, y = g x + w, where g is the channel fading am

plitude at the combiner output, w is a zero-mean additive noise, and the SNR, 7 = g2^b- Assuming 

knowledge of the MGF of the squared fading amplitude, g2, the average BER is efficiently evaluated 

using the Prony approximation method [70]. Let Pe(7) be the conditional BER corresponding to 
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the uncoded transmission over an AWGN channel (i.e., for g = 1). Denote the Prony approxima

tion of Pe(7) as, Pe(7) « XX=i Ai e~aa, where the coefficients, Ai,ai > 0 Vi, are modulation 

and bits-to-symbol mapping dependent. If the MGF, 3>g2(£), of g2 is known, the average BER is 

evaluated as [70], 

POO 

Pe(76) = / Pe{g2lb) / 9 * ( s W 
Jo 

poo 1 

q 

= ^ i i $ f l a ( - O i 7 6 ) . (4.18a) 

On the other hand, if the MGF, $ g (t), of g is known, then the MGF, <&92 (£), of g2 can be obtained 

using a single integration as shown in Appendix D. In this case, the average BER is evaluated as, 

POO 

Pe(7b) = / Mdhb) f9(g)dg 
Jo 

poo 1 

= V ^ T / $ g(2v^7bt)e tQ(v^t) d t- (4-18b) 

The integral in (4.18b) can be evaluated using, for example, the GCQ rule as detailed in Appendix 

B. We assume the following branch correlation models, i.e., 

p(i,i') = r\~hi (4.19a) 

p(M') = r j r j l (4.19b) 

where the Kronecker delta, 6ij = 1, if i = j , and 0, otherwise, and 0 < ro < 1. The model (4.19a) 

corresponds to equi-correlated branches. For ro = e~ r i, where r\ > 0 is the normalized antenna 

separation, the model (4.19b) corresponds to exponentially correlated branches. 

In general, using the law of total probability and the method of Lagrange multipliers, we can 

show that the average BER can be upper bounded as, 

Pe(76) = ^ P r ( A ) P e ( 7 b | A ) < maxP e(7 b |A) 
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where the probability of selecting the branches, A, can be computed as, Pr(A) = Pr(ai, • • • , ai) — 

X^i=i Pr(oi|ai_i, • • • , ai), and en, i = 1, • • • ,L, are the indices of the selected branches. Hence, 

the average BER is dominated by selection of the worst L branch channels combination. Note that, 

if the branches are identically distributed and equi-correlated, i.e., the normalized covariance ma

trix, Ch, has the elements given by eq. (4.19a), then, the probability, Pr(A) = ^ ^ >'. Such 

a case is referred to as exchangeable branches in [75], and the average BER is then independent 

of the particular branch selection, A, i.e., Pe(7b) = P£(7&|A). Furthermore, if the branches are 

exchangeable, then the sum over all combinations, YIK,L{*), in (4.17) is eliminated. 

4.3.1 HS/MRC Diversity Combining 

Recall that we have four HS/MRC output signals (4.7)-(4.10). Although, in some cases, the average 

BER of HS/MRC can be evaluated exactly (see, e.g., [75]), the Prony approximation method [70] 

can be used to significantly simplify the analysis in these cases, as well as to treat cases that cannot 

be solved exactly. In particular, for the case of independent branches, the HS/MRC output signal is 

given by eq. (4.7), and we can use the MGF (4.17) and the Prony approximation method (4.18a). If 

the channel coefficients, h, are Gaussian, or, if the channel coefficients (4.5) have equal variances, 

then, for an arbitrary covariance matrix, C^, the decorrelated branches become independent. In 

this case, the average BER can be evaluated using the MGF (4.17) and the Prony approximation 

method (4.18a). Hence, consider the HS/MRC output signal (4.8), and let the decorrelated received 

signals be written as, y = TJ-^y = h x + w, where the SVD, C h = U A U H . The decorrelated 

channel coefficients, h = U ^ h, where E h = U^E[h], have a diagonal covariance matrix, i.e., 

h h ^ - E h E h ^ = A, and the additive noises, w = U ^ w . Thus, decorrelation 

translates the branch correlations into unbalanced branch powers [67]. For example, assume that 

the normalized covariance matrix, Ch, is equi-correlated, i.e., its elements are given by eq. (4.19a). 

The eigenvalues of an equi-correlated matrix can be obtained by solving the matrix characteristic 

function [81]; then, the eigenvalues, Ai = 1 + ro(K — 1), and A; = 1 - TQ, for i = 2, • • • , K, are 

equal if and only if the branches are uncorrected, i.e., ro = 0. For PCC and the HS/MRC output 

signal (4.10), it is straightforward to show that the SNR at the combiner output is, 7 = h ^ VI17;,. 

If the channel coefficients, h, are Gaussian and have an arbitrary covariance matrix, Ch, then the 

MGF of g2 = h H V h is [82, eq. (15)], 

E[h*]V(I-tChV)-iE[h] 

M O = E[exp(h»Vht)] = d e t ( I _ t C h V ) 
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and the average BER can be evaluated using the Prony approximation method (4.18a). 

Finally, consider the fading model (4.5) for Ph = I, i.e., the channel coefficients, h = U zz + h, 

and the components of z are assumed to be independent. Then, the decorrelated received sig

nals, y = U ^ y = (z + U^h) x + U ^ w = h x + w, are independent provided that w are 

AWGN's. Hence, for the fading model (4.5) and any PDF, /z(z) = n£=i /*<(*). of the vector, 

z = (zi, • • • , zn)
T, the average BER of HS/MRC that decorrelates the branches prior to selection 

and MRC can be evaluated using the MGF (4.17) and the Prony approximation method (4.18a). 

4.3.2 MRC, EGC and SC Diversity Combining 

We evaluate the average BER of MRC, EGC and SC diversity schemes assuming the fading ampli

tude channel models (4.12a) and (4.12b). In particular, for MRC, the decision variable is given by 

eq. (4.15), i.e., g2 = £™=1 d
2G2, and the MGF of g2 is, $fl2(i) = TT?=i $G2(d21). The average 

BER of MRC is then computed using the Prony approximation (4.18a). 

For EGC, the decision variable is given by eq. (4.14), i.e., g = Y^j=i djGj. Thus, the MGF of 

g is, $fl(i) = rj"=i $Gj (dj t), where $Gj (t) is the MGF of Gj, and dj > 0. The average BER of 

EGC is then computed using the Prony approximation method (4.18b). 

For SC, the decision variable, y = (maxi=it... tx gi) x + w. Assume that K = n, D 2 is invert-

ible, and denote z = maxj=ir.. ^ g2. The MGF of z can be obtained for the case of exponentially 

distributed squared envelope amplitudes, G2, i.e., the envelope amplitudes, Gj, are Rayleigh dis-

G) - 9^2 2ot Using tributed [69]. Hence, the PDF of G) is, fG2{G2) = ^e~GV2ah where E 

(4.13), one has that, /g 2(g2) = ^ \[f=l £, e " ^ H where dj = E * i df_1]y, and df_1]y 

are the elements of the inverse matrix, (D2)~x. The CDF of z is, Fz(z) = Fg2(z, • • • ,z), and 

taking the derivative, the PDF of z becomes, [53] 

d'~z d'-z 

AM = 37*M = i H ^ £ T S r I I 

3 

1 - e K _ - ^ ? K 1 „-£? 

| d e t D 2 | ^ 2a2 J--L d\ ' 

For a specific value of K, we can obtain a closed-form expression for the MGF, <&z (t) = E [ ez *] 

For example, let K = n = 2. Then, the MGF of z = max(gf, g2) is, 

o2 " ^ 
^ W U2 J 2 J1 J2 I / o+~2,,2 , JI „2 , JI Jl\ n+J2 , J / + \d2

nd
2

2 - d2
2d?2l\ {-2to\ol + ^o-^ + <f2a

2) V-2i<72 + di - 2 to 2 + d'2 
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where d'j = d?^- + d2_^2-, d
2^ are the elements of the matrix, D2 , and j = 1,2. Realizing that 

g2 = z, the average BER of SC is computed using the Prony approximation method (4.18a). 

4.3.3 Two-Stage EGC-MRC and SC-MRC Diversity Combining 

We evaluate the average BER for two-stage EGC-MRC and SC-MRC DCS's. The two-stage DCS's 

can sometimes be used to reduce the complexity of the combining schemes for a large number 

of diversity branches. The received signals, yij — hijX + uiij, are divided into K groups of 

Li signals per group where i = 1, • • • , K, and j = 1, • • • , L;; see Fig. 4.1. Denote by gi the 

channel fading amplitudes after the first combining stage, so that, gi = —3= YljLi 9ij> f°r EGC, 

and, gi = m a x j ^ . . . ^ gij, for SC. Since after the first combining stage, the channel amplitudes, 

gi, are known, the K signals, y; = gi x + Wi, are combined using MRC, and the decision variable 

is written as, y = {\JYA=I 9?) x + w. 

Assume that there are n plane waves arriving at the receiver antennas. We can show that the 

EGC-MRC combiner output can be written as, y = (y GT(^2i=1 d^dj)G) x + w, where dj — 

(dji, • • • , din), and the output channel amplitude of the i-th. EGC combiner is, gi = Yll=i dijGj-

On the other hand, assuming that the groups of antennas are sufficiently separated, then the channels 

are correlated within the groups of antennas and independent between the groups. In this case, the 

MGF of the MRC output squared channel amplitude, g2, is, 3>fl2(i) = Y\f=i^g^{t), where the 

MGF's, $„?(*), for EGC and SC diversity combining were obtained in the previous subsections. 

Again, the average BER is computed using the Prony approximation method (4.18a). 

4.4 Numerical Examples 

Without loss of generality, we assume BPSK modulation having the conditional BER, Pe(7) = 

Q{^/72q) « 0.204e-1-504^ + 0.105e"1024^. For higher order modulations, the conditional BER 

can be also expressed with a high accuracy using a sum of only two exponentials [70]. 

Consider the four HS/MRC schemes corresponding to the output signals (4.7)-(4.10). The 

branches can be decorrelated (DEC) or orthogonalized (ORT) prior to the SNR selection (SEL) 

or fixed (pre-determined) selection (FSEL), and the selected branches then combined using MRC. 

We assume the channel model (4.5), i.e., h = i /PhU z z + h, and let z be a Gaussian random 

vector. Then, the branch average SNR is, Eft] = E[g2) j b , where E[fi>2] = Phi{TJj=i x^) + 

h2. The normalized covariance matrix of the vector, Uzz, is, C z = U Z S Z U ^ , where S z = 
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diag(AZl, • • • , XZn), and the eigenvalues, XZj, correspond to the variances of the components of 

the vector, z. We also assume that K = n, and that the branches are equi-correlated; see (4.19a). 

Note also that, ]Cj=i ^j — K< a nd m e channel powers are normalized, so that Yli=i Phi — 1-

The average BER's of four HS/MRC schemes (4.7)-(4.10) are compared in Fig. 4.3-Fig. 4.7. We 

assume K = 8 receiver antennas, L = 1 and 4 selected branches, the Rice factor, K^ = — 3 dB and 

+3dB, the correlation coefficient in (4.19a), r$ = 0.1 and 0.6, and the branch powers are either 

uniformly distributed, i.e., i \ = 1/K, or unbalanced, e.g., let Phi/Phi+1 = 2. The average BER 

for MRC in Fig. 4.3-Fig. 4.7 is shown as a reference. Although, in some cases, the average BER 

can be computed analytically, we use computer simulations to obtain the performance of HS/MRC 

schemes; thus, the same received signal is processed by all four HS/MRC schemes. We have the 

following observations from Fig. 4.3-Fig. 4.7. For a given value of the average BER, the SNR 

differences decrease with the number of selected branches, L. For L = K, we can show that the 

average BER of all four HS/MRC schemes is identical. In general, orthogonalization of the branches 

prior to HS/MRC outperforms decorrelation, especially for small values of L, large values of K R , 

and for less correlated branches. Orthogonalization and decorrelation of the received signals always 

outperform the traditional HS/MRC scheme; as shown in Fig. 4.3, the SNR improvement can be as 

large as 2 dB, if L = 1. Also, orthogonalization and the fixed branch selection can outperform the 

traditional HS/MRC scheme, for small to medium values of SNR, larger values of KR, and L = 1. 

Consider the fading amplitude models (4.12a) and (4.12b), and let the plane waves envelope 

amplitudes, Gj, be mutually independent and generalized Ricean distributed having n\ degrees-of-

freedom, non-centrality parameter, s2, and variance, a2, per degree-of-freedom. Hence, let n\ = 2, 

<T2 = 1, KR = - 3 dB and +3 dB, and the number of plane waves, n — 2 and 1. The average BER 

is evaluated analytically using (4.18a), in the case of MRC, and (4.18b), in the case of EGC; see 

Fig. 4.8 and Fig. 4.9. The markers in Fig. 4.8 and Fig. 4.9 are the average BER values obtained 

using computer simulations. We observe that the average BER is minimized, if the correlation 

coefficients, dj are all equal; this can be shown using the method of Lagrange multipliers. 

Finally, consider two-stage EGC-MRC and SC-MRC DCS's. We assume the complex valued 

Gaussian distributed branches (4.5) having equal powers. Then, the decorrelated branches become 

independent, and the channel amplitudes, \hij\, are generalized Ricean distributed where n = 2, 

a2 = 1, KR = 3dB, and K = 4 and 8 receiver antennas. For EGC-MRC, the MGF is evaluated 

using the GCQ rule, for c = 0.1 and v = 256; see Appendix B. We use the notation, MRC K, 

and EGC K, for one-stage combining schemes, and EGC-MRC L x K, for two-stage combining 
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schemes. The circles in Fig. 4.10 are the simulation results corresponding to 2 x 2 and 4x2 EGC-

MRC diversity. The average BER's are also compared in Fig. 4.11 for (l/L)xK SC-MRC schemes 

and L/K HS/MRC schemes; the circles are the simulation results corresponding to (1/4) x 2 and 

(1/2) x 4 SC-MRC diversity. As expected, HS/MRC outperforms SC-MRC, however, the SNR 

difference is less than 0.5 dB for all schemes considered. 

4.5 Summary 

One-stage and two-stage DCS's over correlated fading channels were studied. For a linear correla

tion channel model, decorrelation and orthogonalization of the branches prior to employing diversity 

combining was investigated. In particular, decorrelation of branches having equal variances makes 

the branches independent, and, in turn, facilitates the performance analysis. For time-invariant 

combining weights, orthogonalization of the branches maximizes the average SNR. Furthermore, 

a fading amplitude channel model was proposed assuming vector norm superposition of the plane 

waves envelope amplitudes. Such a channel model can significantly simplify the performance anal

ysis of MRC and EGC schemes operating over correlated fading channels. Finally, the average BER 

of several DCS's was analyzed. It was found that decorrelation and orthogonalization of the corre

lated non-zero mean Gaussian branches improves the performance of HS/MRC schemes, especially 

when there is a strong line-of-sight component, and for small numbers of selected branches. This 

can be explained by the fact that decorrelation and orthogonalization of the Gaussian branches prior 

to employing diversity combining restores some of the diversity lost due to the branch correlations. 
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Figure 4.3: The average BER of four HS/MRC diversity schemes for BPSK with unbalanced branch 
powers, KR = +3 dB, and r0 = 0.1. 
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Figure 4.4: The average BER of four HS/MRC diversity schemes for BPSK with unbalanced branch 
powers, KR = +3 dB, and r^ — 0.6. 
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c-

ifL, 

Figure 4.5: The average BER of four HS/MRC diversity schemes for BPSK with unbalanced branch 
powers, .KR = —3dB, and ro = 0.1. 
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Figure 4.6: The average BER of four HS/MRC diversity schemes for BPSK with unbalanced branch 
powers, K R = —3 dB, and TQ = 0.6. 
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Figure 4.7: The average BER of four HS/MRC diversity schemes for BPSK with uniform branch 
powers, Kn = —3 dB, and ro = 0.1. 
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7fe[dB] 

Figure 4.8: The average BER of MRC diversity scheme for BPSK and KR, = —3dB (curves 
'a \ 'c \ 'e ' ) and +3dB (curves ' b ' /d ' / f ) , n = 2 (curves 'a','b','c','d') and 1 (curves ' e \ T ) , dj e 
{0.5,0.5} (curves 'a\ 'b'), dj G {0.8,0.2} (curves V.'d'), and dx = l (curves 'e'.'f'). 
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Figure 4.9: The average BER of EGC diversity scheme for BPSK and KR — — 3dB (curves 
'a'.'c'.'e') and +3dB (curves 'b ' /d ' /f ' ) , n = 2 (curves 'a','b','c','d') and 1 (curves 'e'.'f'), 
dj € {\/y/2,lly/2} (curves 'a','b'), dj G {2/\/5,1/^/5} (curves 'c'.'d'), and dx = 1 (curves 
'e'.'f'). 
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Figure 4.10: The average BER of MRC, EGC and two-stage EGC-MRC diversity schemes with 
BPSK over decorrelated Ricean branches. 
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lb [dB] 

Figure 4.11: The average BER of MRC, SC-MRC and HS/MRC diversity schemes with BPSK over 
decorrelated Ricean branches. 
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Chapter 5 

Performance Analysis of Coded 

MIMO-OFDM Systems Over Arbitrary 

Correlated Generalized Ricean Channels 

Efficient performance evaluation techniques developed in Chapters 2-4 are used in Chapters 5-8 

to either analyze more realistic system models, or to obtain novel design guidelines. In Chapter 

5, coded MIMO-OFDM systems over arbitrary correlated generalized Ricean fading channels are 

analyzed. The results for correlated Rayleigh fading channels can be then obtained as a special case 

when the mean values of the fading processes are set to zero. In particular, we evaluate a UB of the 

BER and the probability of outage, and we also derive the maximum achievable diversity gain and 

coding gain. 

5.1 Background 

Combination of MIMO and OFDM and forward error correction coding (FEC) to extract spatial, 

frequency and temporal diversity creates multi-fold trade-offs between performance and complex

ity [83]- [88]. The MIMO-OFDM systems are well-suited for broadband fixed wireless access [89]. 

Furthermore, a recent approval of the IEEE 802.16 Standard [89] limits possibilities for further 

amendments, and thus, performance analysis of the approved standard in various propagation envi

ronments is now important. The IEEE 802.16 Standard employs bit-interleaved coded modulation 

(BICM) [90] and transmitter diversity OFDM techniques [85]. Interestingly, no spreading is spec-
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ified in [89] in order to improve spectral efficiency and reduce multiple access interference in the 

system. 

Literature on space-time-frequency coded systems in correlated Rayleigh and Ricean fading 

channels is plentiful. For example, references [91] and [84]- [88] apply the Chernoff bound of the 

PEP, and then use the MGF to obtain design rules for maximum achievable diversity and coding 

gain. The exact PEP for STBC's in Rayleigh and Ricean fading channels was obtained in refer

ences [82], [83] and [92]. The exact symbol-error probability of orthogonal STBC's is derived 

in [93]. However, literature on combined FEC and space-time-frequency coded MIMO-OFDM sys

tems in correlated Ricean fading channels is scarce. For example, BICM for MIMO-OFDM system 

is investigated in [94] using an expurgated union bound and assuming ideal interleaving and sym

metry of the bit-subchannels [90], [95]. Simulation results for turbo product coded MIMO-OFDM 

systems are presented in [96]. The performance of BICM for coded MIMO-OFDM systems over 

independent Rayleigh fading channels is analyzed in [97] and [98]. 

In this chapter, we establish a framework to analyze the performance of turbo product coded 

MIMO-OFDM system over arbitrary correlated generalized Ricean fading channels. We assume 

correlated transmitter and receiver antennas as well as correlated multipath frequency selective 

channels. We derive the MGF of the SNR at the input of the channel decoder for orthogonal space-

time coding and SNR maximizing beamforming transmitter diversity OFDM schemes. The MGF 

is used to compute the probability of outage, the PEP, the BER and diversity and coding gains of 

MIMO-OFDM systems. We also prove that exactly the same rank and determinant design crite

ria [91] for space-time-frequency coding as obtained for the Chernoff bound of the PEP can be also 

obtained for the exact PEP. 

This chapter is organized as follows. An equivalent system model in the frequency domain 

for OFDM systems using orthogonal STBC's and using transmitter beamforming to maximize the 

SNR at a receiver antenna is developed in Section 5.2. Bit-interleaved and iteratively decoded turbo 

product code and Gray encoded M-ary QAM are studied. In Section 5.3, the MGF is derived and the 

probability of outage, the PEP, the BER and the diversity order and coding gain of MIMO-OFDM 

systems are analyzed. Numerical results are presented in Section 5.4. The chapter is summarized in 

Section 5.5. 
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5.2 System Model 

Consider a coded MIMO-OFDM system where the users in the uplink and downlink are separated 

using OFDM multiple access (OFDMA) [89]. These systems typically operate in line-of-sight to 

non-line-of-sight channels for fixed broadband wireless access. Thus, multipath channel models 

having Ricean distributed fading envelopes best describe the propagation conditions of these broad

band wireless systems [86], Note that the L propagation paths are, in general, correlated [99] 

violating the widely employed assumption of uncorrected scattering [100], Furthermore, the paths 

can have different Ricean factors and Doppler spreads [101]; however, the path delays are usually 

equal for all transmitter-receiver antenna pairs [86]. Lack of scatterers in the vicinity of high po

sitioned antennas causes the signals departing from the Nt transmitter antennas and arriving at the 

Nr receiver antennas to be correlated [86]. Note that the base station (BS) usually has more an

tennas than the subscriber station (SS) to minimize the number of radio frequency interfaces in the 

network. In general, we assume perfect time and frequency synchronization and perfect channel 

estimation (knowledge of amplitudes and phases) at the receiver. The intercarrier-interference (ICI) 

of OFDM systems due to Doppler spread can be neglected in low mobility (fixed access) networks, 

or, for a large number of subcarriers, the ICI can be approximated as a equivalent AWGN [102]. 

5.2.1 Generalized Ricean Fading 

Assume a discrete time complex baseband multipath channel model between the i-th transmitter 

and the j-th receiver [84], [100], 

L-l 
JTTt hij(o,r) = Y2hij(°,l)ST 

l=o 

where i = 1,2, • • • , Nt, j = 1,2, • • • , Nr, the symbol o denotes the discrete time, and r and 

TO = 0 < T\ < • • • < TL_I are the discrete delay times obtained using a sampling period, Ts, 

5TTl = 1, if r = TI, and 0, if r ^ TI, notation hy is used to denote the i-th row and the j -

th column element of the matrix, h, and the complex valued matrix, h(o, r) G CNrXNt. The 

magnitude of hjj(o, I) is assumed to be generalized Ricean distributed with 2m degrees of freedom 

and noncentrality parameter, s?-. Then, one has that [100, eq. (2-1-143)], 

IM°»0I = N 
2m 

^2zij(o,u,l)2 Vi,j,o,l 
u = l 
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where s?- = E«=i E K/(° ; u > 02]> a n d z(°.u> 0 € R ^ * ^ ' , for Vo, tt, I, are real-valued jointly 

Gaussian matrices independent in the dimension variable, u; see Fig. 5.1. Thus, the correla

tions, E[z(oi,ui,li)z(o2,U2,h)T] = 0(ArrXiVr.), and, E[z(oi,ui,Zi)Tz(o2,H2,Z2)] = 0(NtxNt)> 

for «i ^ «2, where 0 denotes the all-zero matrix, and (•)T is the matrix transpose. Let the time 

o = 0,1,- ••, Su-1, and define, 

V2 / „, n„V2 R R x Z o ( / W ) R T x z( 0 , U , i )=v^iy ^ 7 : ' ^ ; : T x n + i (oa* 
where zo(o, tt, Z) G R^xATt are zero-mean real-valued jointly Gaussian matrices having uncorre

cted elements of equal variance, o\, E[z(o, u, I)} = z(Z)<5„i, R R X R R X = R R X and R^ x Rx x = 

RTX are the transmitter and receiver antenna correlation matrices (assuming that they can be sep

arated [86]), respectively, ||-|| is the Frobenius norm of the matrix, the operator, ®, denotes the 

Kronecker matrix product [81], and G(l) is the power of the Z-th path. Then, the correlations are 

given as, 

E[z; l j l(oi,ui,Zi)zi2i2(o2,U2,^)] = - ^ f V G ^ G ^ x 

where we assume that, Rt\(Ao,Zi, Z2) = -Rt(Ao,Zi)i?t(Ao,Z2)-Ri(Zi, Z2), and i?t(Ao,Z) is the wide-

sense stationary (WSS) time correlation function of the Z-th path, and R\(h,l2) is the correlation 

function between path Zi and I2, and the correlation between the transmitter and receiver antenna 

pairs, (ix,ji), and, (*2, J2), is, 

row ( < x ) .row ( < x ) "col ( < x ) "col ( R £ ) 

| | R R X ® R T X | | 

In (5.1), col( A\ and row( A) denote the i-th column and the j-th row of the matrix, A, respectively. 

The correlation functions are normalized, so that the diagonal elements of R R X and R T X are unity, 

and i?ti(0,1, l) = 1, for VZ. The total power, P(l), of the Z-th path is, 

p w = E E E N ° ' ! ) 2 ] = GW(^^ + iiz(on2) 

where rx = E i l \ £ f = i # X ( M , J, J)- L e t CTz = lAx, then G(Z) = P(Z)/(1 + tfr(Z)) where 

Kr(Z) = ||z(Z)||2 is the Ricean factor of the Z-th path, and thus, let z„(Z) = ^Kr{l)/(NtNr) 

(cf. [101]). 
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dim#2m z(0,2m,0) 

dim#l 

z(0,2m,L-l) 

z(0,l,0) z(0 , l ,L- l ) 

time 

,-1 

path#0 path#(L-l) 
0 

Figure 5.1: The underlying Gaussian matrices in the time domain. 

5.2.2 Equivalent System Model 

It is useful to obtain an equivalent system model of MIMO-OFDM systems in the frequency domain. 

Define the discrete Fourier transform of the matrices, z(o, u, I), as, 

Zij(o,u, n 
1=0 

where iVgt is the number of subcarriers, h{n) is the mapping from the logical channel, n, to the 

subcarrier, n, where n = 0,1, • • • ,NU — 1, and usually, Nu <C i%t. Then, the subcarrier spacing, 

A / = l/(TsNfn). The elements, Zjj(o, u, n), are complex-valued non-zero mean jointly Gaussian 

random variables having even symmetry in the magnitude and odd symmetry in the phase in the 

frequency variable, n. The magnitude of the channel in the frequency domain, i.e., 

lHij(°>n)l = 

1m 

(5.2) 

is exactly generalized Ricean distributed. Note that we do not specify the phase of the complex chan

nel coefficients, Hy(o, n). The frequency correlation function of Zy(oi,u, n\) and Zij(o2,tt,n2) 
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can be written as, 

Ez(Ao,n 1 ;n 2) = E ^ o E f c o ^G(h)G(k)x 

xRtl(Ao,h,l2)e -»m 
(5 3) 

•]wt(f>-{ni)Th-h(n2)rl2) 

where Ao = o\ - o2. The power correlation function in the frequency domain can be obtained 

using the result derived in Appendix E, i.e., 

^Hiii2jij2(°l _ 02,«l,"-2) = 

= E[ |H i m ( 0 l ,n 1 ) | 2 |H i 2 i 2 (o 2 ,n 2 ) | 2 ] = 4 m | M n | 2 (5.4) 

^ + |Vi|2)(2m42 +AVlV2*Mll + (2m a* + \V^){2ma\ + \V2\
2) 

where 

(5.5) 

Vi — E[Zi i : )1 (01,^1,721)] = Z j ^ ^ n i ) ^ ! 

a\ = EflZ^j^oi.ui.ni)!2] - lEtZi^-^oi .wi.ni)]!2 

= 2^^x(«i , i i , i i , i i )cBz(0,ni ,ni ) 

M11 = E[Zilj1(o1,ui,n1)Zi2J2(o2,U2,n2)*} 

-E[Zilj1(oi,ui,ni)]E[Zi2j2(o2,U2,n2)*} 

= ^«2 2^#x(n,Z2,j l ,J2)-Bz(oi - o 2 , n i , n 2 ) 

and (•)* denotes the complex conjugate. 

5.2.3 Diversity Techniques 

We consider two transmit diversity techniques for MIMO-OFDM system depicted in Fig. 5.2, [85], 

[89]. In particular, System I assumes orthogonal STBC, so that the space-time codeword, X, has the 

property, X X ^ = ||X|| I, where (-)H denotes the matrix transpose conjugate, and I is the identity 

matrix. Thus, the channel coefficient of System I at time, o, and subcarrier, n, after space-time 

combining at the receiver, is written as, 

U\o,n) = 1 
Nt Nr 

5 ^ 1 1 ^ ( 0 , n)|2. (5.6) 

System II assumes perfect knowledge of the channel phases at the transmitter and one receiver 

antenna. Then, transmitter beamforming is used to maximize the SNR at the receiver antenna 

(equivalently, one can assume one transmitter antenna and equal gain combining at the receiver). 
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Figure 5.2: Bit-interleaved coded modulation system with (a) space-time coding, (b) beamforrning, 
and (c) the subcarrier combining and iterative decoding at the receiver. 

For Nr — 1, the channel coefficient of System II at time, o, and subcarrier, n, is written as, 

Nt 

HII(0,n) = 5]|Hii(o,n)|. (5.7) 
i=\ 

In general, the distribution or the MGF of the sum of correlated generalized Ricean distributed 

variables is not known. Therefore and importantly, in order to simplify the analysis of System II, 

we rewrite (5.7) as, 

Nt Nt 

U^n)2 = H\o,n)2 + J2 E V\^nl(o,n)\2\ni2l(o,n^ 

= H\o,n)2 + ri(o,n). (5.8) 

Recall the Jensen inequality, i.e., for any random variable, Z > 0, inequality, E yfZ < A /E[Z] , 

holds. Assuming small Doppler spread in low mobility scenarios, we approximate the sum in (5.8) 

by an upper-bound of its mean-value, i.e., 

Nt Nt 

E[77(o,n)] < v{n) = ^ E Vn\^ii(o,^\Hi2l(o,n)\^}. 
i i = l 12=1 

Then, we can write that, 

Hu{o,nf faHl(o,n)2 + fj(n) (5.9) 
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and we substitute the power correlation values from (5.4) into fj(n). Comparing eqs. (5.6) and (5.9), 

we observe that the performance of System II can be analyzed assuming the channel coefficients 

(5.9); then, letting, fj(n) = 0, one obtains the performance analysis for System I. For example, the 

amount of fading for System II is computed as [103], 

AF(n) 
E[Hn(o,n)4] - E [ H n ( o , n ) 2 ] 2 

E[Hn (o,n)2] 
-Nt ^Nt 1^2 SixLlSiaLllHiifrllCO^rc) - (rxBz(0,n,n) + ||Z(n) 

( r x 5 z (0 ,n ,n ) + ||Z(n)||2 + f?(n))2 

where we again substitute the power correlation values from (5.4). The amount of fading for System 

I is obtained by substituting, 77(77.) = 0. The Ricean factor for System II is computed as [48], 

K{n) 

and we substitute, 77(71) = 0, for System I. 

|Z (n ) | | ' + f?(n) 

rxBz(0,n,n) 

5.2.4 Encoding and Decoding 

In general, denote by C — (n, k, dm[n) a binary block code of block length, n, dimension, k, and 

minimum Hamming distance, dm;n. The transmitter employs BICM described in [89]. Hence, the 

Kc = kxky input information bits, u e {0, l}kx xky, are encoded using a binary block turbo product 

code, C — Cx x Cy = (nx,kx,dx) x (ny,ky,dy) = (Nc,KCtdmin), having minimum Hamming 

distance, cimin = dx dy, block length, Nc = nxny, and code rate, Rc = Kc/Nc. Assuming (M = 

2m)-ary modulation, the codewords, c, are bit-interleaved, and the interleaved codewords, 7r(c) 6 

{0, i } m x ^ / m
? a r e mapped to the codewords, X, of (Nc/m) M-ary modulation symbols. In this 

chapter we assume Gray bits-to-symbol mapping and M-ary square-QAM constellation symbols, 

( 2 i + l - v / M ) + j ( 2 j ' + l - v / M ) , where j = v ^ is the imaginary unit, and i,j = 0,1, - - - ,(VM-

1). Gray mapping from the interleaved coded bits, TT(C), to QAM symbols can be written as, 

X 

r 1 
b 

[ j b J 

T / 

V 

r _. 
a 0 

0 a 
7T(c) + 

r -, 
a 

a 
-(b+jb) (5.10) 

where b = (2™/2"1, • • • , 21, 2°)T, the square matrix, a € {0, l}m/2xm/2^ h a s m e e i e m e n t S ; ^ = 

1 if j < i and 0, otherwise, a == (1,0,1,0, • • • ) T G {0, l } ^ / 2 * ^ I = 2™/2, and (-)2 denotes the 
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modulo 2 operation. The M-ary codewords, cX, are mapped to Nu subcarriers over Su consecutive 

OFDMA symbols where Nc/m = SUNU. The scaling constant, c = v/3/(2™+1 - 2), sets the 

average energy per M-ary modulated symbol to unity, and the constant, c = (2(m+1)/2 — 21'2)"1, 

preserves the constant peak power of QAM symbols, for all fa. The received symbol at time, o, and 

subcarrier, n, before decoding can be written as, 

Y(o,n) = H(o,n) cX(o,n) + W(o,n) (5.11) 

where X(o,n) e X, and Y(o,n) e Y where Y is the received M-ary codeword. The channel 

coefficients are given as, 

{ H^o, n) for System I 

H n (o ,n) for System II. 

The zero-mean AWGN samples, W(o,n), have variance, erjy = E[|W(o,n)|2] = No/2, per 

real dimension where NQ denotes the one-sided noise power spectral density. Denote by Eb the 

energy per uncoded bit per subcarrier per transmitter antenna, so that the total transmitter energy is, 

Etot = NtNurhEb. Then, the SNR is defined as, ~/b = Eb/NQ. 

We employ iterative soft-input bit decoding of the received M-ary codewords, Y; see Fig. 5.2. 

Such decoding well approximates the ML decoding at larger values of SNR when error propagation 

in decoding iterations can be neglected [97]. Particularly, the QAM demodulator produces the 

channel LLR values for all bits in the received M-ary sequence. After deinterleaving, the channel 

LLR values are used as soft-inputs to decode the channel code. Importantly, note that, although the 

iterative channel decoder produces soft-output values, these values are not fed back to the QAM 

demodulator as a priori values of bits in the received QAM symbols. In general, it is shown in 

[90] that Gray mapping of bits to modulation symbols in BICM is asymptotically optimum, and 

the feedback of the channel decoder output values to the QAM demodulator provides negligible 

performance improvement. On the other hand, for other bits-to-symbol mappings, the feedback 

from the channel decoder to the QAM demodulator can increase the coding gain of BICM [95]; 

however, this case is not considered in this chapter. 

Hence, assuming perfect knowledge of the channel coefficients, H(o,n), at the receiver, the 
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channel LLR values at the output of the QAM demodulator are given as [104], 

r (c IYV iorp(Y|Ctj = 1) 

where c^ is the (i,j)-th transmitted bit of the codeword, c, for i = 1,2, ••• ,nx, and, j = 

1,2, • • • ,ny, where the a posteriori PDF is, 

p ( Y M = V _ ! (r-|y(».~)-H(;,n)K(.,n)|'y 

For high rate codes, the extrinsic information, Le, is efficiently computed using the dual codes, C. 

and, C^-, respectively, i.e., [105, eq. (89)], 

Liq+1\Cij-x) = l o g — ^ ^ ( n ^ ^ / ^ w 

r ( < j + l ) / x , E c e CJ-(nfc=i,fc^i/fcj (3/) 

_L 

Ec,GCjL((-i)[c" l fcn^i,Mi4?)(y) 

where 

/ $ ( * ) = tanh((Lc(ckj\Y) + L^(ckj;y))/2))^ 

fif(y) = tanh((Lc(cfci|Y) + L^(cfej-;x))/2))tc»]* 

and [c]^ is the fc-fh bit of the codeword, c, and q — 1,2, • • • , gmax, is the iteration number. The final 

decision of the bit, Cjj, is given by the sign of the LLR, 

Lc(cy|Y) + L[q+1\c Liq)(cij]y). 

5.3 Performance Analysis 

The performance analysis of System I and System II can be obtained at the symbol level [97], [98], 

or at the bit level [90], [95]. Particularly, the list of codewords for computing a union bound of the 

BER is different for the symbol level analysis from the bit level analysis. However, in general, the 

symbol level analysis is mathematically less complex, and thus, is preferred in this chapter. Recall 

also that we do not consider iterative updating of the channel LLR values, and thus, the iterative 
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decoding approaches the ML decoding at large values of SNR [97]. 

Let X and X be two distinct codewords, and denote, A(o, n) = c(~X.(o, n) — X(o, n)). Perfor

mance analysis of System I requires knowledge of the MGF of the random variable, 

2m 

U I | X , X } = Y, E HV,n) 2 |A(o ,n ) | 2 = ; £ { a X , X } 
o=0 n = 0 u=l 

conditioned on codewords, X, and, X. The random variables, 

Su-lNu-l Nt Nr 

{£i|X,X}= ST J2 E S l A ^ n j Z ^ o . u . n ) ! 2 

o=0 n = 0 %=\ j=l 

for u = 1, • • • , 2m, are independent. Note that, conditioned on channel realization, H1, the variable, 

{^jX, X, H1}, corresponds to the squared Euclidean distance between the codewords, X, and, X, 

at the receiver. Correspondingly, the MGF of {£T|X, X} can be written as, 

2m 

% 1 x,x } ( - ) = E [ e ^ I t x ^ ] = n % l | x , x } ( ^ 
u = l 

where ${ e | X ) X }(s) = E e*tfilx,X}' We obtain the MGF, &,£ , x X | ( s ) , using the statistics of 

the underlying, NtNrSuNu, correlated jointly Gaussian random variables, Z;J(O,U, n). Hence, 

define the (NtNrSuNu x 1) jointly Gaussian column random vector, Zu , having the elements, 

A(o,n) 7iij{p,u,ri). Denote the mean vector, m„ = E 

E [Zu - mu)(Z„ - mu)
H . Then, {&|X,X} = Zu 

, and the covariance matrix, M u 

= Z^ZU , and note that, mu = 0, for 

u — 2,- • • , 2m, Using the derivation in Appendix F, the MGF of {C^X, X} is given as, 

exp(s m f (I - 2sMi)" 1mi) 
$ «T|X,X} (s) = 

r2m n^ 1 det( I -2sM u ) 
(5.12) 

where det(-) denotes the matrix determinant, and (•) 1 is the matrix inverse. The covariance matrix, 

M u , and the mean vector, mu, can be expressed as, 

M, (B 0 dd T ) <g> (Roc/^m) 

m u = (d <g> l(jvtjvr,i)) © (zo ® l(Su,i)) 

where the operator, 0 , denotes the Hadamard matrix product [81]. The (SUNU x SUNU) ma-
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trix, B, has the elements, 5z(|Ao|,ni,ri2)> the {NtNr x NtNr) matrix, Rx , has the elements, 

Rx(h,3\i *2i J2)) the (3UNU x 1) column vector, d, has the components, A(o, n), the (NtNrNu, 1) 

column vector, Zo, has the components, Zjj(n), and 1 is the all-one vector; see eq. (5.5). Fur

thermore, provided that, 5z(|Ao|,ni,ri2) — B z ( |Ao| ,n 2 ,n i ) , the matrix, M„, is Hermitian, and 

one has that the SVD of the matrix, M u , is, Mu = TJU'EUU^, where Uu is a unitary matrix, 

S u = diag(Aui, \U2, • • • , Auru, 0, • • • , 0) is the diagonal matrix of ru non-zero eigenvalues, and ru 

denotes the rank of M„, and ru < NtNrSuNu. Then, the MGF (5.12) can be written as, 

m = i n ; = i ( i - 2 S A u g ) 

where rh\q is the g-th component of the vector, m ^ U i . 

For System II, we have the random variable, 

{£ n |X,X} = {^IX.Xj + ^ ^ ^ A ^ n ) 2 

o n 

= {CI|X,X} + {77|X,X}. 

Thus, the MGF of {£n |X, X} can be computed using knowledge of the MGF of {£J|X, X}, i.e., 

* f t n | X l *}W = E [ e ' « n l x ^ > ] = e '« l x *> % I | X > X }( S ) - (5-14) 

In the sequel, we evaluate the probability of outage, the PEP, the BER, and the achievable 

diversity order and coding gain of MIMO-OFDM systems I and II using the MGF's, $rtiiX x>(s)' 

and, 3>r£iiiX X \ (s), respectively. 

5.3.1 Probability of Outage 

We define the probability of outage, Pout. as the probability that the total instantaneous received 

power is below a given threshold [48]. Hence, denote by //{:h the threshold for System I, so that the 

probability of outage is, 

'out = P r n T H ^ n ) 2 ^ ) 
\o,n / 

1 r + j 0 ° %i|i,o}(f)e-^» 
2TTJ Jv_ioo s 
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where Pr(-) denotes the probability, and v € R is chosen in the region of convergence. The integral 

(5.15) can be efficiently computed using the Gauss-Chebyshev quadrature rule [82]. 

For System II, we substitute, ^ifUj^ojX5)' ar>d> lAh = /-4h + ^u J2n ??(n)> in ecl- (5.15). 

5.3.2 Pairwise Error Probability 

The PEP for the M-ary codewords, X, and, X, is evaluated as [82, eq. (12)], 

P(X i-> X) = E Q U/Tb^lX.X} (5.16) 

For System II, we substitute, {£ n |X ,X}, in eq. (5.16). Several methods have been proposed to 

compute the PEP in (5.16). In particular, one has that, 

Q(y/S) = - T exp(-—^-)d6 (5.17a) 
' 7r JQ V 2 s i r 0) 

QWx) < ^ (5.17b) 

v 
Q{yfx) « J ^ A e " * * * (5.17c) 

i=i 

where eq. (5.17a) is Craig's formula [48], eq. (5.17b) is the Chernoff upper-bound [83], and eq. 

(5.17c) is the Prony approximation proposed in [70] where p > 1; thus, with a high accuracy, 

Q{y/x) « 0.208 e-°-gnx +0.147e-°-5253:. Then, substituting expressions (5.17a)-(5.17c) into 

(5.16), and recognizing a definition of the MGF, the PEP can be evaluated as, 

P ( X M X ) = I ^ / 2 * f t I | x A ( - ^ _ ) d S (5.1*0 

P ( X « X ) < ^ * K . | x , * } ( - | ) (5-lSb) 
P 

P ( X ^ X ) « l ] ^ * { s i | x , x } ( - « ^ ) - (5.18c) 
i=\ 

For System II, we substitute the MGF (5.14) into expressions (5.18a)-(5.18c). 

5.3.3 Bit Error Rate 

In general, the BER is computed as, P& = E H x -̂  e(X, X.)/Kc , where e(X, X) is the number of 

information bit errors between the transmitted codeword, X, and the decoded codeword, X. Then, 
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the MC estimator for J simulation trials is, 

r>MC 1 J e(XW,XW) 

i = i 
K. 

(5.19) 

and this estimator is unbiased. However, we can use a biased and more efficient semi-analytical 

BER estimator based on the union bound, i.e., [100], 

P P = \Y^ Y. e(x^),x)p(x^x) (5.20) 

i = 1 xe£ x W 

where £ x y) denotes the list of M-ary codewords corresponding to the randomly generated trans

mitted codeword, X.^. In general, the list of codewords should consist of the most likely pairwise 

error events, so that, £ x W ) = {X : P(X^) i-» X) > ePj}, where Pj = max x P(XW ^ X), and 

the constant, 0 < e < 1, controls the size of the list. Hence, the list is constructed for a particu

lar interleaving, bits-to-symbol mapping, and mapping of symbols to subcarriers and antennas. In 

this chapter, we assume that the list consists of the most likely pairwise codewords in the smallest 

Euclidean distance from the transmitted codeword, X^), i.e., let £ x o) = U0 i n£xy) (o, n), where 

£X(j)(o, n) = {X : e(X(-7')(oi,ni),X(oi,ni)) > 0, if and only if, o\ = o,n\ = n}. Such a list 

construction is in agreement with the design guidelines suggested in [98], i.e., consecutive coded 

bits should be mapped to different symbols on different subcarriers and different antennas. Impor

tantly, note also that, in this chapter, the list is constructed for the symbol level analysis, i.e., for the 

pairwise error events, X i-> X. On the other hand, for the bit level analysis, the list is constructed for 

the pairwise error events, c i—> c, of binary codewords, c, and, c, and assuming the corresponding 

PEP's, P(c H+ c); see [98]. 

Furthermore, note that interleaving and Gray mapping (5.10) of codewords, c, to M-ary code

words, X, violates the uniform error property [48], and thus, the BER should be averaged over all 

possible transmitted codewords. On the other hand, since, (01+02)2 = \c\ — c^\, for c\, c<i € {0,1}, 

we can use the bound, 

|A(o,n)| < 2c 
b 

j b 

a 0 

0 a 
7r(c + CJ (5.21) 

to compute the PEP (5.16) assuming that the all-zero codeword, c = 0, was transmitted. However, 
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the bound (5.21) will bias the estimators (5.19) and (5.20). 

5.3.4 Diversity Order and Coding Gain 

Assuming eq. (5.17a), one can obtain an infinite sum representation of the Q-function, i.e., [59], 

Q(V5)=lim i f V i s i - 2 ( ^ ) . 
i = l 

Note that, in this case, it is required that, ) ) » 1 , say, p — 50, while a high accuracy is achieved 

by Prony approximation (5.17c) even for p = 2. Hence, let A; = ^-, and a.% = \ s in - 2 f ^~_X 

Then, substituting the MGF (5.13) into eq. (5.18c), one has that the exact PEP is, 

-r-m / a. 76 ML 
v _ n q = i e x p ( - 1 + 2 a < 7 f c A ; 

P(X i-> X) = lim V i , - ^ ^ '—. (5.22) 

Asymptotically, for large values of SNR, 75, the PEP (5.22) can be rewritten as, 

p 2m / . \ —Dm; 

P(X ^ X) « lim V i - 7 b
 E u = i r " = (A -1/141"" 

p—>oo •*—' » 
;=1 

nax 

where -Dmax = X)u=i r« ^s m e maximum achievable diversity order of MIMO-OFDM systems 

operating over correlated generalized Ricean fading channels, and the constants, 

K = A. 
T i r ^ i e x p ( - ^ 

n«=i rigii ^^"9 

A = lim y ^ i -
7}—>00 ' J p—>oo • 

1 = 1 

are independent of 7;,. Thus, MIMO-OFDM systems achieve the coding gain, ^-V-^ax 

Importantly, note that the design criteria for mapping of symbols to antennas and subcarriers 

(sometimes referred to as the space-time-frequency coding) to minimize the PEP are usually ob

tained using the Chernoff upper-bound (5.17b). In particular, the rank criterion maximizes the 

diversity gain, and the determinant criterion maximizes the coding gain [91]. However, we can 

prove that exactly the same design criteria (formulated without assumption of asymptotically large 

SNR) as obtained for the Chernoff upper-bound of the PEP [91] can be also obtained for the exact 

PEP. Hence, we have the following lemma. 
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Lemma 5.1 The rank and determinant criteria to maximize the diversity gain and the coding gain, 

respectively, of the space-time-frequency codes for MIMO-OFDM systems operating over corre

lated generalized Ricean fading channels are valid for the exact PEP, P(X i-> X), of the codewords, 

X, and, X. 

Proof: Using (5.22), the exact PEP is computed as, P(X i—> X) = lim^oo XX=i P J ( X *-> 

X). The rank and determinant criteria of [91] are obtained by minimizing the particular PEP, 

Pj(X i—> X). Since such rank and determinant criteria are independent of i, they also minimize 

the exact PEP, P (X i-+ X). • 

Recall that the rank, ru, in each dimension, u, is constrained by the number of antennas, iVt, 

and, Nr, and the number of M-ary symbols, SUNU, in one codeword. The maximum diversity order 

of a single-input single-output frequency selective channel is equal to the number of multipath, L, 

provided that the paths are independent and Nu > L [97], [98]. In this chapter, the paths are 

correlated, and thus, ru < NtNrSuL; in low mobility scenarios, the diversity order in the time 

domain, Su, is reduced further. Also, assuming the PEP, P(c i—> c), of the binary codewords, c, 

and, c, it can be shown that the BICM employing M-ary modulation can increase the achievable 

diversity order to MDmax> and it is required that the minimum Hamming distance of the channel 

code, dmin > SUL, [98]. 

5.4 Numerical Results 

We study the performance of an OFDMA system with transmitter diversity described in [89, 8.4.8]. 

In the downlink, we have iVfjt = 2048, subcarriers having the frequency spacing, A / = 11.161 kHz. 

The transmitter has Nt — A antennas, and the receiver has JVr = 1 antenna. The Kc = 128 informa

tion bits are encoded using the single parity code, Cx = (6, 5, 2), and the shortened Hamming code, 

Cy = (32, 26, 4), so that the overall code rate, Rc = 2/3, [89, 8.4.9.2.2]. The Nc = 192 encoded 

bits are block-interleaved [89, 8.4.9.3], and row-by-row Gray mapped to 16-QAM symbols [89, Fig. 

263]. The codewords, X, are periodically mapped to Su = 3 consecutive OFDMA symbols and 

Nu = 16 subcarriers. We assume the subcarrier mapping (permutation), n(n) = n0ffSet + n • ^step, 

where noffset = n s t ep = 128. 

The Stanford University Interim (SUI) channel models have been approved for evaluation of 

fixed broadband wireless access systems having tens of MHz bandwidth, and operating in frequency 

bands between 1 and 4 GHz [101]. As an example, we consider the SUI-5 channel model for 30° 
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antenna radiation pattern and 50% cell coverage (i.e., guaranteed Ricean factor). The 3 taps have 

delays 0, 4 and 10 jis, power levels 0, —5 and —10 dB, and Doppler spreads 2, 1.5 and 2.5 Hz, 

respectively. The first path has non-zero Ricean factor, Kr(l) — 8.45 dB. A guard interval of Ng = 

256 samples is used to completely cancel the interference from the multipara propagation. The RMS 

delay spread of 1.276 [is corresponds to a coherence bandwidth of about 70 subcarriers (note that 

Nst/70 = 29). The coherence time of thousands of OFDMA symbols makes the channel virtually 

constant over the transmission of one codeword and does not provide any time diversity. Hence, 

interleaving provides gain in spatial and frequency domains only. We assume constant correlations 

between transmitter antennas having the correlation factor, 0.9, and constant correlations between 

the paths having the correlation factor, 0.1. The fading autocorrelation given in [101, p. 9] is well 

approximated for small Doppler spreads by a constant correlation model having the correlation 

factor, 0.5837. In the simulation, we use filtering to obtain the desired correlations [101, p. 29]; 

the filters are normalized using lemma (L5) in Appendix G. Assuming that the number of degrees 

of freedom, m = 2, the amount of fading and Ricean factor is —15 and 11.6 dB, for System I, and 

-27 and 17.8 dB for System II. 

Fig. 5.3 and Fig. 5.4 compare the probability of outage (5.15) for System I and System II, 

respectively. The simulation results are in excellent agreement with the analytical expression for 

System I; however, approximation (5.9) underestimates the probability of outage of System II by 

almost 2 dB. The Monte Carlo and union bound BER estimators (5.19) and (5.20) are compared 

in Fig. 5.5 and Fig. 5.6 assuming gmax = 10 iterations. We observe that assuming the all-zero 

codeword was transmitted biases the BER estimator as expected. The truncated union bound (5.20) 

can predict well the decoded BER for larger values of SNR for System I; however, it underestimates 

the BER performance of System II by 2 dB for larger values of SNR. Importantly, note that while the 

Chernoff bound is loose for both systems and all values of SNR considered, the Prony approximation 

is in excellent agreement with the exact PEP computed using (5.18a) for all SNR values considered. 

In general, the Chernoff upper bound is often used to assess the performances of communication 

systems. Although performance analysis using the Chernoff bound is simple, and can provide some 

limited design guidelines, such analysis is often inaccurate and can be biased as shown in Fig. 

5.5 and Fig. 5.6. On the other hand, it is seen that the Prony approximation, which being a sum of 

exponentials approximation requires no more information than the Chernoff bound, is also simple to 

use, but has excellent accuracy. Since the MGF is often known even for cases of correlated channels, 

the Prony approximation method is very useful for obtaining a highly accurate performance analysis, 
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and in turn, design guidelines for communication systems operating over correlated fading channels 

with AWGN. 

5.5 Summary 

In this chapter, a framework to study the performance of bit-interleaved turbo product coded M-ary 

QAM MIMO-OFDM systems over arbitrary correlated generalized Ricean fading channels was in

vestigated. A frequency domain equivalent system model assuming correlations between the trans

mitter and receiver antennas and between the paths of a frequency selective channel was developed. 

Orthogonal STBC and transmitter beamforming to maximize the SNR at a receiver antenna for 

OFDM signaling were considered. The MGF of the SNR at the input of the channel decoder was 

derived. The MGF was used to obtain the probability of outage, the PEP, and the BER for the two 

transmitter diversity OFDM schemes. Diversity gain and coding gain of MIMO-OFDM systems 

were derived. It was proved that the rank and determinant design criteria for space-time-frequency 

block coding are valid not only for the Chernoff bound of the PEP, but also for the exact PEP. Numer

ical examples indicate that approximate analysis of the system with transmitter beamforming using 

(5.9) underestimates the performance by 2 dB. Also, the assumption that the all-zero codeword was 

transmitted overestimates the performance by more than 1 dB. Finally, the computationally efficient 

Prony approximation method was found to be in excellent agreement with the exact PEP values for 

all values of SNR considered. 
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Figure 5.3: Probability of outage versus threshold, fi\h for System I. 
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5 6 

Figure 5.4: Probability of outage versus threshold, /ij:^ for System II. 
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OH 

Figure 5.5: The BER union bounds and simulation results for System I. 
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Figure 5.6: The BER union bounds and simulation results for System II. 

132 



Chapter 6 

BER Analysis of Binary Hamming 

Codes 

In this chapter, we show that binary Hamming codes can be constructed recursively. The recursive 

structure is then used to enumerate the input-output weights, and to compute the exact BER. 

6.1 Background 

Binary Hamming codes are the first known error correcting codes [106]. Nowadays, Hamming 

codes are used, for example, as forward-error correcting codes in the Bluetooth standard [107], and 

to protect data stored in semiconductor memories [108]. Hamming codes are well-suited for low-

cost, low-power applications [109], and when used as component codes of a turbo product code 

and decoded iteratively, they can approach the capacity of an AWGN channel [110]. The Hamming 

codes are termed perfect codes (the equal-radius spheres around the codewords perfectly fill the 

entire vector space), and they meet the Hamming bound [111, p. 76]. 

We make an important observation that binary Hamming codes can be constructed recursively 

from binary block repetition codes with a parity bit. The recursive construction can be exploited to 

compute the input-output weight enumerator (IOWE) for any block-length whereas brute-force enu

meration can only be used for short block-lengths. Although the IOWE function has been obtained 

recently in [112], the recursive evaluation of the IOWE presented in this chapter appears to be more 

computationally efficient. The IOWE can be used to implement encoding and decoding, and to 

evaluate the exact probability of decoded bit error for binary antipodal signaling and hard-decision 

demodulation over an AWGN channel. The numerically computed coding gain of the hard-decision 

133 



ML word-decoder (i.e., the decoder that maximizes the likelihood of the hard-decoded codewords) 

is shown not to be monotonic in the probability of bit error, but rather exhibits a minimum for a 

particular small value of the SNR. This contradicts statements found in the literature. Importantly, 

note that the probability of bit error curve of binary Hamming codes is monotonically increasing 

with SNR, and thus, there is a one-to-one mapping between the probability of bit error and SNR. 

Hence, monotonicity of the coding gain can be equivalently expressed in terms of SNR. 

This chapter is organized as follows. In Section 6.2, we present a recursive construction of 

binary Hamming codes. The IOWE of binary Hamming codes is obtained in Section 6.3, and in 

Section 6.4, we use the IOWE to evaluate the exact BER. Extended binary Hamming codes are 

discussed in Section 6.5. The chapter is summarized in Section 6.6. 

6.2 Code Construction 

The binary Hamming code is denoted as J^n = (n,k, dm[n) where n = 2m — 1 is the codeword 

length, k — 2m—1—m is the code dimensionality (length of input information vector), m = n—k > 2 

is the number of parity bits, and dmjn = 3 is the minimum Hamming distance between any two 

codewords [18]. In a systematic form, Gm = [I^y.P ^^] e ZJj is the generator matrix where 
(k ra] (k k) 

1>2 = {0; 1}» P(fc,m) e ^ 2 ' *s t n e P^ty matrix, I/fc) e Z^ is the identity matrix, and the 

corresponding parity check matrix is H m — [Pjk myI^]T e l}^ . The Hamming codes are 

single-error correcting and two-errors detecting perfect codes. Hence, the parity check matrix is 

composed of all non-zero m-tuples and can be readily rearranged into a systematic form. Denote 

the all-ones matrix as 1, and ^m = (ni, k±, 3), then J^m+i = ("-2, &2,3) has the generator matrix, 

G m+l-

1(fci) 

'(rn,ki) 

0(kltm) 0(fc!,fci) 

l(m) 

0(fcl,fcl) °(fci,m) 

L(H) 

0 (m,k\) 

I 
(fcl) 

0(fci,l) P ^ . m ) 

l ( m , l ) I (m) 

i ^ l . l ) P ( fc i ,m) 

(fc2,m+l) 

and the parity check matrix, 

H m + l -

-
°(l,fcl) 

P T 

. (fcl.m) 

l ( l ,m) 

I(m) 

r(k2,m+l) 

1( l , fcl) 

P T 

(fci.m) 
0 

u ( l , m ) 

(m,l) ! (m) 

T 

1(m+l) 
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where 

n2 = 2m + 2fci + 1 = 2 m + 1 - 1 

k2 = 2 m + 1 - m - 2 = m + fci. 

Based on the structure of the generator matrix, G m + i , we can show that the codewords of the J4?m+i 

code can be constructed as a modulo 2 sum of the zero-padded codewords of the Jt?m code, and the 

block repetition code of rate 1/2, S%\ = (Zjjj, Z|) = (2fc, fc, 2) (i.e., the block of fc information bits 

and its copy are concatenated), and appending a parity bit. This is proved in the following theorem. 

Theorem 6.1 The Hamming code J^m+i = (Jifm o7L\ \n) — {(x o y,7r(y)),x e J%n,y € 
/ 2 m —1*1 

Z2 } w/iere ?/ie operator, o, combines the codewords as, 

x o y = (xQ,xi,--- , i n i _i )o (yo,yi,--- ,ynx-i) 

= (yo,--- ,ym-i,a;o + yo,--- .^m-i +ynx-i) 

= (y,x + y) 

and n\ = 2m — 1, 7r(y) = ^ ^ 1 ^ " yj w the even-parity bit, and all additions are modulo 2. 

Proof: Let the input information vector, u, of the J ^ + i code having dimensionality, dim(u) = 

h,2, be partitioned as u = (m, 112,113) where dim(ui) = dim(u3) = k\ and dim(u2) = m. Then, 

the codeword u G m + i = (ui + u3 + u3, u2, u3 :7r(u2) + 7r(u3), uiP ( f c l ) m ) + u2 + u3P ( f e l ) m )). 

Hence, x = (ui + u3 ,u1P( f c l i m ) + u3P ( fc l )m)) is a codeword of the J^m code, and (y,y) = 

(u3, u2, u3, U2) is the block repetition code £%V^ with the parity bit TT = 7r(y) = 7r(u3) + 7r(u2). 

Finally, applying the operator, o, concludes the proof. • 

The construction using the operator, o, was introduced in [113, p. 447], and later used independently 

in [114, p. 717], and generalized in [115]. Similar to the construction of Theorem 6.1, Vasil'ev 

[116, p. 77] applies a strictly nonlinear mapping as the parity bit to construct perfect single-error 

correcting codes which are not equivalent to any linear code. However, the Vasil'ev construction 

using a linear mapping to generate binary Hamming codes is not considered in [116, p. 77]. The 

construction of Theorem 6.1 can be used for the encoding and decoding of Hamming codes as 

follows. 

Proposition 6.2 The Hamming code J4?m+i can be encoded (decoded) using the encoder (decoder) 

for the code J^n-

Proof: Encoding proceeds directly according to Theorem 6.1. Assume a binary symmetric 

channel. We will show that one bit error in a Jtfm+i codeword can be corrected using the decoder for 
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the 3€m code. Let (x, y, ir) be the transmitted binary codeword of the J%n+i code. In a systematic 

form, according to Theorem 6.1, let dim(x) = dim(y) = 2m — 1 and dim(7r) — 1. Then, let 

(x', y', TT') be the corresponding received vector. If an error is within (x', ir') bits, the even-parity of 

(x', 7r') is 1, and the nonzero syndrome (x; + y')HTO corresponds to the position of the error within 

x'. Otherwise, the zero syndrome (x' + y ' )H m indicates TT' is in error. If an error is within y', the 

even-parity of (x',7r') is zero, and the syndrome (x' + y ' )H m corresponds to the position of the 

error within y'. • 

Therefore, the encoding (decoding) of the Hamming code J C + i can be done using the less complex 

encoder (decoder) for the Hamming code J4?m. 

6.3 Input-Output Weight Enumerator 

For convenience, we represent the IOWE [17, p. 513] of the code (n, k, dmin) as the matrix A(iowe) 

having the o-th row and w-th column element, [A(iowe)]0it„, equal to the number of codewords 

of input information vector weight o and the total (output) weight w where o = 0,1, • • • ,k and 

w = 0,1, • • • , n. Note that [A(owe)]^ = [l(ljfc+1\ A^iowe)]w is the output weight enumerator which 

is well-known [18, p. 81]. The IOWE can be related to the input-redundancy weight enumerator 

(IRWE) [117] as [A(irwe)]0iP = [A(iowe)]0)0+p where p = (w - o) G 0,1, • • • ,m is the weight of 

parity check bits. Note also that contrary to the output weight enumerator, in general, even for a 

systematic representation, the code IOWE is not unique but depends on the form of the generator 

matrix. However, in the particular case of Hamming codes, the IOWE is unique. 

The IOWE of the binary Hamming code Jfm can be obtained by a brute-force method, say, 

for m < 5. For larger values of m (i.e., m > 5), recursive evaluation of the IOWE exploiting 

the recursive structure of binary Hamming codes is computationally efficient. The derivation is 

performed in the Appendix H using the following claims. 

Claim 6.3 The IOWE matrix of serially concatenated codes tfi and ^2 having the IOWE matrices 

Aiowe) an^ AioweV respectively, is given by 2-dimensional (2D) convolution, i.e., 

^iowe) ^lowej ~iowe) 

Proof: Let x G ̂ 1 have input and output weights o\ and w\, respectively. Similarly, y G ^2 

has weights 02 and u>2- The serially concatenated codeword (x, y) G (^1,^2) has weights o = 
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o\ + 02 and w = w\ + w% For every pair o and 10, we sum over all permissible codewords x and 

y, i.e., 

L^(iowe) W iowe) 'u'v t^iowe) '°~u>w~v' 

Claim 6.4 If the all-ones vector is a codeword of a linear binary block code, then the IOWE matrix 

of the code is symmetric, i.e., [A(iowe)]0>u, = [A^iowe)]k-0,n-w 

Proof: The code is linear, and hence, for every codeword, c € ^ , there exists exactly one 

complementary codeword, c £ ^ . • 

Corollary 6.5 [A(iowe)]0,o = [A(iowe)]fc,n = 1. 

Hence, the IOWE matrix, A , / ^ 1 , of the ^ n + i = («2>^2,3) code is constructed from the 

IOWE matrix, Ar^ e ) , of the J C , = (ni, h, 3) code as, 

• ^ i o w e ) 

1 for u> = 0, o = 0 and w =n%o=k<2 

o,w,I\,A$Z^)+ ' u 7 ' - ' l ' / i(iowe)^ 

+ ^ ( 0 ^ - 1 , / - , ^ ) ) 

u; = 3,4, •• • ,n\ 
for 

= < 
0,U) 

o = max(l,to — m— 1), 

t^iowe) 

for 

k2—o,n,2—w 

w = ni + 1,- • • , n2 - 3 

o = 0 , l , . - . ,fc2 

0 otherwise 

,tu (6.1) 

where 

nin(ii;,2A;i,c») m i n i us )&r\j± }(-» I ,. 

= E {(x%)(^xKl"+(o )2 f c l-1I2+ 

max(w-2m, o —m,0) 

ni—3 min(i;,fci—1) yri , -. 
i V1 V^ f i * 1 ou-1 (ki-u\f m-v+u w u -u w I 

v=3 

max(l,t> —m) 
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I[ = ^0_x_H=iE mod2(x + 1) x 

x (<WuOzO mod2(o + 1) + Smod4{x_2) mod2(o)J 

I" = So_x_iv-£mod2{x + l) x 

x (^mod4(x) mod2(o) + 5mod4(a._2) mod2(o + 1 

li — mod2(—x — 1 + k\) mod2(u> — n\ — 1) x 

X Ox—ki Ow—x—m 

I3 = mod2(—x — 1 + u) mod2(it> — v — 1). 

Definitions of 5a, modfe(a), and (£) are given by (A-11)-(A-13), respectively, in Appendix A. 

6.4 Probability of Decoded Bit-Error and Coding Gain 

Assume binary antipodal signaling, an AWGN channel, hard-decision demodulation and complete 

(standard array) decoding. Then, for equally probable codewords, assuming the all-zeros codeword 

was transmitted (i.e., the code is linear), the average probability of decoded bit error is [116, p. 

20], [17, p. 513], [111, p. 244], [3, p. 804], 

n 

Pb(e) = - J2 5iPrC?) (6-2) 

where Bj = Yli=o * [A>°we)l i,j is t n e total weight of information bits in all codewords of weight 

j , and Pr(j) is the probability of decoding the codeword of Hamming weight j . The expression 

(6.2) implicitly assumes that the probability of decoding a particular codeword depends only on 

its Hamming weight. Thus, the expression (6.2) is also valid for binary antipodal signaling and 

perfectly quantized soft-decisions (the Euclidean distance is directly proportional to the Hamming 

distance). Note that ^j=dmin Bj = k2k~1. In general, the expression (6.2) is difficult to evaluate. 

However, for the class of perfect codes, Pr(j) equals the probability that the codeword of weight 

j is the closest to the received word. In particular, Pr(j') = X^=(Tn_ ^d w n e r e Prf is t n e 

probability that the received word is at Hamming distance d from a codeword of weight j . Assuming 

i out of j-ones bits and (d — i) out of (n — j)-zeros bits are inverted giving the word at Hamming 
d • • • • 

distance d from the original weight j word, then PJ
d = Yl p>+d-2lqn~i+2z~d(•?) (^Zf) where p = 

i=0 

Q I J 2^7?, J is the probability of a bit error, q — 1 — p, and 75 is the SNR per uncoded antipodal 
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symbol [111, p. 244], [118]. For cyclic codes, the coefficients, Bj, can be also computed from the 

output weights using [119, eq. (13)] which can be used to obtain the exact probability of decoded 

bit-error [118], [120]. A tight upper-bound for the probability of decoded bit-error for binary perfect 

codes is given in [121]. 

The coding gain is defined as the decrease in the required average energy per transmitted bit for 

the coded systems to maintain a given average probability of decoded bit error as compared to an 

uncoded modulation scheme having the same data rate [17, p. 456], [111, p. 11]. The coding gains 

of selected Hamming codes are shown in Fig. 6.2 and Fig. 6.4. We observe that the coding gain 

attains a minimum at a particular small value of SNR for m > 5, and that the minimum coding 

gain is always negative. Interestingly, if Rm denotes the rate of the Hamming code 3^m, then the 

asymptotic coding gain at low SNR is approximately computed as 50 = Rm-i f° r rn > 3. The 

asymptotic coding gain at large values of SNR is known to be [17, eq. (10.89)], 

/ n In 2 \ 
g-y = Rm ( dmin 1 for 7 > 0. 

It is commonly believed (or perhaps loosely stated) that coding gain monotonically increases with 

the probability of bit error. For example, Jacobs [122] expects the coding gain to increase with SNR 

(in the context of positive values of coding gain). Benedetto and Biglieri [17, p. 457] state explicitly 

that: 

The coding gain increases with the signal-to-noise ratio, and tends 

(for SNR^ 0 and hence for P&(e) —>• 0) to an asymptotic value, 

Jovanovic [123] conjectured that the coding gain might not be monotonic in SNR, however, only 

a trivial example of repetition coding is given where the coding gain monotonically decreases with 

increasing SNR. Fig. 6.4 provides counterexamples proving that coding gain is not necessarily a 

monotonically increasing function of the probability of bit error, although the gain is monotonically 

increasing with the probability of bit error in regions of positive coding gain. Note that Jovanovic 

[123] also plots the coding gain versus SNR for Hamming codes J£§ and J%±, but for these codes 

and the SNR region chosen the minima cannot be observed. 

6.5 Extended Hamming Codes 

The extended Hamming code, J^ = (2 m _ 1 , 2 m ~ 1 — m, 4), is created from the Hamming code, 

J%n-i, by appending an overall parity bit. Thus, the minimum Hamming distance, dm\n — 4, is 
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achieved if all columns of the parity check matrix are different and non-zero, and as well modulo 

2 sums of all the parity check matrix column pairs and triplets are non-zero [111]. The extended 

Hamming codes are no longer perfect; for example, we can use the standard array [18] to show that 

some but not all double errors can be corrected. Therefore, the probabilities, Pr(j), are not easy to 

obtain, and thus, computation of the exact probability, Pt(e), using (6.2) is cumbersome. We prove 

the following theorem. 

Theorem 6.6 Extended binary Hamming codes attain the Hamming bound. 

Proof: Let A(n, dmin) be the maximum number of codewords in a binary linear or nonlinear 

code for given length n and minimum distance <imin- According to [124, Theorem 1], A(n — 1,28 — 

1) = A(n, 25), and hence, the Hamming bound from [111, p. 76] [18, p. 83] can be restated as 

A(n, dmin) < 
2nV2-

1(n,t) d m i n - o d d 

2 n _ 1 y2
_1 (n - 1, t) dmin - even 

where V^n, £) = X î=o (") *s volume of the n-dimensional hypersphere of radius, t = [d |" i |~1j . 

Thus, for extended binary Hamming codes, A(n, dmin) = 2n~1 Vr
2
_1(n — 1, t) = 2k where k is the 

length of input information vector. • 

The 10WE matrix, A1**™, m > 3, of extended Hamming code, Jf^ = (n, k, 4), can be com

puted conditioned on knowledge of the IOWE matrix of the corresponding Hamming code, Jffm-i, 

i.e., 

, ^ 2#> 

+ o,max(0,iu—1) 
(1 - $modn(w)) 

J o,min(u>,n—1) 

for w = 0,2,4, • • • , n, and o = 0,1,2, • • • ,k. This can be rearranged into a more computationally 

efficient form, 

,̂ C 

1 for w = 0, o = 0 and w = n,o = k 

L Jo,to — 1 L io,w 

«; = 4,6,.•• , f 
for 

o= 1,2, ••• , f c - l 

for 

J k—o,n—w 

2±?. . . . , n - 4 «; = 2 ' ' ' 

o = 1,2,--- , f e - l 

0 for otherwise. 
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6.6 Summary 

The IOWE of binary Hamming codes was shown to be efficiently obtained using their recursive 

structure, and the fact that the IOWE of serially concatenated codes is given by 2D-convolution. 

Knowledge of the IOWE can be used to compute the exact probability of decoded bit error of 

binary Hamming codes over AWGN channels using hard-decision demodulation. The numerically 

computed coding gains of Hamming codes using the hard-decisions and the ML word-decoder 

revealed a surprising fact that the coding gain is minimum for a particular value of the probability of 

bit error corresponding to a small value of SNR, and the minimum coding gain is always negative. 

Whether the coding gain is not monotonic in SNR for other types of decoders (e.g., the soft-decision 

decoding, and the ML bit-decoding) remains an open problem. Finally, it was proved that extended 

binary Hamming codes attain the Hamming bound. 
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Figure 6.1: Coding gain of Hamming codes versus the probability of bit error, P&(e) 
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Chapter 7 

Improved Binary Repetition Codes 

Improved binary repetition codes (IBRC's) are proposed in this chapter as an example of how the 

performance analysis can be used to obtain design guidelines. In particular, it was shown in Chapter 

6 that binary Hamming codes can be constructed recursively. Furthermore, assuming the generator 

matrix, G = [I|P], of a systematic binary Hamming code, we can show that the parity matrix, P , 

can be rearranged, so that its columns are the cyclic shifts of the generating column vector. Hence, 

in general, one can construct binary block codes assuming recursive (modulo 2) additions of the 

cyclic shifts of the input information vector. 

In the first part of this chapter, we introduce a family of multidimensional binary block codes 

referred to as IBRC's. We study their properties, and consider some of their applications. In the 

second part of this chapter, we investigate a coded protocol employing IBRC's and SPC codes for 

uplink and downlink transmission in a network of cooperating nodes. 

7.1 Multidimensional Improved Binary Repetition Codes, Properties 

and Applications 

7.1.1 Background 

Symbol repetitions are used when the cost and complexity of the encoding and decoding is a pri

mary concern. Repetition coding is robust against impulsive noise [125], and is well suited for 

error control over fading channels [126]. The Hamming distance [126], [17] is well known to be a 

good design criterion for achieving diversity in fading channels. For BPSK signaling, the Euclidean 

distance is proportional to the Hamming distance, and we can expect good performance in fading 
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channels as well as AWGN channels [17, p. 720]. The minimum Hamming distance of block repe

tition codes can be increased using cyclic shifts of the input information vectors [127]. Such codes 

are sometimes referred to as IBRC's [128]. The generator matrix of these codes has a circulant 

structure. Binary cyclic matrices have many useful properties, and thus, they have been used to de

sign forward error correction codes since the 60's. In particular, quasi-cyclic block codes maximize 

the minimum Hamming distance for a given block length [129], [116]. The tail-biting convolutional 

codes (CC's) avoid the rate loss of trellis termination by forcing the initial and ending states to be 

equal [130]. Computer search is usually employed to design quasi-cyclic and tail-biting codes ex

ploiting their trellis structure [131], [132]. The tail-biting CC's for the product codes are considered 

in [133]. Low density parity check codes (LDPC's) based on circulant matrices were proposed 

in [134]- [136]. The quasi-cyclic LDPC codes and the repeat accumulate codes [137], [138] are de

signed to optimize iterative soft-decision decoding and to approach channel capacity. On the other 

hand, the IBRC's trade-off complexity of the encoding and decoding with the desired minimum 

Hamming distance using sequences of cyclic shifts of the variable-length input information vec

tors. Also, product codes in multiple dimensions [139] are used to increase the minimum Hamming 

distance at the cost of bandwidth expansion. The transmission bandwidth is not increased if one 

exploits multidimensional set partitioning and multilevel modulation schemes [140]. On the other 

hand, the multidimensional IBRC's preserve bandwidth while increasing the minimum Hamming 

distance by employing cyclic shifts in multiple dimensions. 

In this section, we extend the IBRC's introduced in [128] to multiple dimensions, and then, 

investigate applications of such multidimensional IBRC's. We introduce two optimization criteria 

to design IBRC's in multiple dimensions. We show that the description of IBRC's using the cyclic 

shifts of the input information vectors simplifies searching for good codes. We present an efficient 

algorithm to design one (ID), two (2D) and three (3D) dimensional IBRC's. The proposed IBRC's 

are shown to support numerous applications. In particular, we employ the ID IBRC's for adaptive 

coding, turbo product coding, retransmission schemes and multihop routing, and block differential 

encoding. We also apply the 2D and 3D IBRC's as the inner codes to concatenate the ID code

words improving the overall minimum Hamming distance, and importantly, without increasing the 

transmission bandwidth. Finally, we use a truncated union bound of the BER after decoding to 

optimize distribution of the transmission energy over the codewords to improve the BER of IBRC's 

over AWGN as well as fading channels. 

This section is organized as follows. Properties of binary cyclic matrices are discussed in Sec-
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tion 7.1.2. Binary repetition codes in multiple dimensions are denned in Section 7.1.3. Examples 

of IBRC's are presented in Section 7.1.4. Applications of IBRC's are considered in Section 7.1.5. 

The transmission energy optimization is investigated in Section 7.1.6. 

7.1.2 Binary Cyclic Matrices 

We investigate the properties of binary cyclic matrices. All operations are assumed over a binary 

Galois field, GF(2). Hence, define the (k x k) permutation matrix, 

J(fe) 
°fl,fc-i) X(*-i) 

1 °(i,fc-i) 

e Z f cx fc 

where 1Q = {0,1, • • • , Q - 1}, 0(1)fc_1) G Z ^ " ^ is the all-zero row vector, I(fc_1) G l^k is 

the identity matrix, and 3jk,J^ = 3^3Tk, = 1^ where T denotes the vector transpose. Then, 

the a-th cyclic shift, a = 0,1,2, • • •, of the vector, u = (uo,ui,--- , Uk-i), can be written as the 

product, uJfo = (uk_modl£a),--- ^ fc .^ t to , - - ' ,nfc_modfc(a)__1), where modfc (a) = a - f k, and 

[•J is the floor function. We have the following definition. 

Definition 7.1 The k x k binary cyclic matrix, A G Z2
X , generated by the vector of cyclic shifts, 

a = (ao, • • • , a^-i), where 0 < ao < «i < • • • < CLK-\,
 can be written as, A = X ĵ=o ^ 

Note that the cyclic shifts, <2j, are considered modulo k. Thus, the generating vector, a, can be 

normalized, so that, ao = 0. For example, let the generating vector, a' = (a + ao, a + a\, • • • ,a + 

CLK-I), a > 0, correspond to the cyclic matrix, A' = J?„ ^i^1 JfL = Jf^-A.; then the value, 

a = k — ao, normalizes the vector, a'. Note also that the permutation matrix, J(fc), is cyclic having 

the generating vector, a = (1), and the identity matrix I(fc), is cyclic having the generating vector, 

a = 0),i .e,I ( f c ) = J*fc). 

Let u G TL\ and v G Z^ be binary row vectors. Let A] G Z ^ * and A2 G %\xk be binary cyclic 

matrices. In general, we denote by u; the i-th component of a vector, u, and we omit the dimension 

index, k, in denoting the matrices, I(fc), and, J ^ . We have the following properties. 

Property 7.2 The product, v = uA, corresponds to a cyclic convolution, v; = V ~0
 u i tA lo, ,modk(i-j)> 

of the polynomials, u(Z) = Y^i=o uiZ%< and> A(Z) = Y^i=o Zai> where Z is a dummy variable. 

Hence, the vector, v, is a sum of K vectors, u, cyclically shifted by a, bits, i.e., v = X)i=o u^ a i-
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Property 7.3 The sum, A = Ai © A2, and the product, A = Ai A2, are cyclic matrices. Also, if 

A = Ai © A2, or A. = Ai A2, and A and A\ are cyclic, then A2 is cyclic. 

Property 7.3 can be obtained using the cyclic convolution Property 7.2. 

Property 7.4 If there exists a matrix, A', such that AT A = AA' = I, and A is cyclic, then A' is 

cyclic. 

Property 7.4 follows using Property 7.3 and the fact that I is a cyclic matrix. Consequently, A2 = 

Aj A is a cyclic deconvolution of A = Ai A2. 

Property 7.5 If the determinant, det(A) ^ 0, and thus, (algebraic) matrix inverse, A - 1 , exists, 

then, in some cases, At can be efficiently computed as, AT = mod2([A 1det(A)]), where [•] 

denotes the rounding function. 

Note that, if mod2([A_1det(A)~|) = 1 (the all-ones matrix), then it indicates that the inversion 

using Property 7.5 has failed. It is not known whether the inversion, mod2(|_A_1det(A)]), fails 

for every matrix, A, that is not invertible over Z2 . 

Property 7.6 If A^ exists, then v = uA is a one-to-one mapping referred to as the permutation. 

Finally, the following three parameters are useful for characterizing cyclic matrices. 

Definition 7.7 Let the cyclic matrix, A £ Zj , be generated by the vector, a = (ao, • • • , a-K-i), 

of length, K, where 0 < ao < • • • < a-K-i < k, i-e-, &i = modfc(ai). Then, we can define the following 

three parameters to describe the cyclic matrix, A, i.e., 

constraint weight: Ka = K 

constraint length: ua — ax-i — ^o 

span: /xa = va + l. 

The parameters given in Definition 7.7 are directly related to the complexity of encoding and de

coding, provided that the matrix, A, or, equivalently, the vector of the cyclic shifts, a, are used to 

generate the codewords. The properties of binary cyclic matrices are used to define multidimen

sional IBRC's and their properties. 
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7.1.3 Multidimensional IBRC 's 

We define IBRC's in multiple dimensions and their design criteria. Let C = (n, fc,dm;n) denote 

a linear binary block code of dimension, k, block length, n, code rate, R = k/n, and minimum 

Hamming distance, dm;n. Let u e Z ' denote the input information vector, and let c e Z£ be the 

corresponding codeword. We consider D-dimensional linear codes defined over a D-dimensional 

binary Galois field, GF(2). In particular, let the D-dimensional matrix of the input information 

bits be written as, u = (ui ,u2 , - -- , U M ) , where u* e i^*k^-*kD; i = 1,2-• • ,M, M > 1, 

and thus, the overall code dimension is, k = M ] ] i = 1 h. The codewords of the D-dimensional 

code, 'TO^ — (n,fe,dmin), are written as, c = (ci,C2,--- , CL+I) , where Cj e j^1*™2*'"™0, 

i = 1,2, • • • , (L + 1), L > 1, and the overall code block length is, n = (L + 1) rii=i n i- The 

D-dimensional mapping, ^D"> : u H-» C, from input information bits to codewords is assumed to be 

linear, and is given by a set of D mappings, %, corresponding to D dimensions, d — 1,2, • • • , D, 

i.e., #<D> = # ! o • • • o #£,. Hence, the mappings, •%, are linear binary codes, for all dimensions, d. 

Correspondingly, we define the D-dimensional codes considered in this chapter as follows. 

Definition 7.8 Let ^D> be a linear D-dimensional code, such that, ^ ^ = ^ o • • • o ^-Q, where 

^ l = ((L + l)ni , M ki, dmini) is a linear binary code of rate, R\ = (M/(L + l))k\/ni, 

corresponding to dimension, d = 1, and ^ = (rz ,̂ fc^, <̂ mind) are linear binary codes of rate, 

Rd = kd/rid, corresponding to dimensions, d > 2. Then, ^D^ is a linear D-dimensional product 

code of rate, R^D\ and the minimum Hamming distance, di-'L, given as [139], 

{D) _ _M_yikd 
D 

D 
J.D) _ jr A 
"min ~~ J_J_«mmd-

d=\ 

Multidimensional IBRC's are then defined assuming Definition 7.8 and the following constraints. 

Definition 7.9 A multidimensional IBRC, <*f(D)-IBRC, is constructed using a ID IBRC, < '̂1
IBRC = 

((L + l)k, Mk, dm-mi), of rate, R\ = M/(L + 1), and using (D — 2) permutations, 'rfd = (k, k, 1), 

for dimensions, d > 2. The code, <tf(D)~IBRC
) has rate, R(D)-IBKC

> and the minimum Hamming 

distance, dm^ , given as, 

M 
R(D)-IBKC = JJ Rd = R 

L+l 
d=l 
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D 
A s- j ( 0 ) - I B R C ^ T T , 
"mini S « m i n S]_]_«mind ' 

d=\ 

Importantly, comparing Definition 7.8 and Definition 7.9, we observe that the D-dimensional prod

uct codes achieve a large minimum Hamming distance at the cost of bandwidth expansion. On 

the other hand, we can show that, for sufficiently large dimensions, k^, d = 1, • • • , D, the D-

dimensional IBRC's can achieve the same minimum Hamming distance as the D-dimensional bi

nary product codes, however, the bandwidth of the D-dimensional IBRC's depends only on the 

rate of the coding scheme employed in the first dimension, i.e., for d = 1. Hence, although the 

D-dimensional IBRC's can be used to obtain the same minimum Hamming distance as the product 

codes, i.e., d^l = Y\d=1 dm[n<j,, and without bandwidth expansion, it is often sufficient to design 

D-dimensional IBRC's having the minimum Hamming distance, such that, dmini <C dmi^~IBRC, 

and i D ' - ' B R C <r d{D) 
ana> "min < ° W 

The generator matrix of the code, c^'lBKC, in the first dimension, i.e., for d = 1, is constructed 

using several cyclic matrices [128]. On the other hand, the generator matrices of the codes, %, 

for dimensions, d > 2, are cyclic matrices. Thus, after the first encoding in dimension, d = 1, the 

encoded bits are only permuted across dimensions, d = 2, • • • , D, in order to increase the minimum 

Hamming distance of the code. Furthermore, since permutation of bits across dimensions, d = 

2, • • • , D, does not produce any additional parity bits, the bandwidth of the code is not increased 

by encoding, %, in dimensions, d > 2; see Property 7.6. Also, we can show that the minimum 

Hamming distance of the D-dimensional IBRC's is upper-bounded as, 

D 

<4i„<i + I I ^ 

where K<i are the constraint weights of the binary cyclic matrices, A^, that are used for encoding 

and permutation of bits across dimensions, d. More generally, the code, ^ i , corresponding to the 

first dimension, i.e., for d = 1, can be any ID binary block code. Then, we have the following 

important application of Definition 7.9. 

Definition 7.10 The set ofY\j-2 ^d ID codewords of equal block length, n\, generated by a code, 

9\ — (m, k\, dmini), can be compounded using permutations of these codewords across dimen

sions, d = 2, • • • , D. 
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Note that the construction of the D-dimensional block code given in Definition 7.10 increases the 

overall minimum Hamming distance of compounded ID codewords without increasing the trans

mission bandwidth. Hence, assuming the properties of binary cyclic matrices and using Definition 

7.1-Defmition 7.10, we can define the design criteria of multidimensional IBRC's. 

Design Criteria for Multidimensional IBRC's 

In general, the codes based on circulant matrices can be formally described using a regular trellis, 

or using a quasi-cyclic parity check matrix. Design criteria of these codes are chosen for a specific 

application at hand. Hence, we extend definitions of the parameters in Definition 7.7, for the case 

of D-dimensional IBRC's, so that, 

constraint weight: # (0 ) - IBRC = Y,d=iKd 

constraint length: U(D)-IBRC = Yld=iud 

span: ^(D)-mnc = ^ = 1 /id = V(D)-IBBC + K 

Provided that more than one cyclic matrix is used for permutation of bits in a particular dimension, 

d, then the constraint weight, Kd is given by a maximum constraint weight used in dimension, d. 

Similarly, the constraint length, vj, in dimension, d, is given by a maximum value of constraint 

length employed in dimension, d. 

Consider a cyclic matrix, A, generated by the vector, a = (ao = 0,ai, • • • , a#_i) . Such a 

matrix has the constraint length, v = CLK-I- Since multiplication of a cyclic matrix and a vector 

corresponds to cyclic convolution, we can use a trellis having 2V states to describe encoding and 

decoding of D-dimensional IBRC's. Note that the last ax-i rows of the matrix, A, correspond 

to the input information bits that return the encoder either to its initial state (cf. the tail-biting 

codes [130]), or to the all-zero state (cf. trellis termination). Correspondingly, for D-dimensional 

IBRC's, the complexity of the encoding and optimum (maximum-likelihood sequence) decoding 

using the trellis representation is given by the total constraint length, i.e., yiD)-lBKC — J2d=1 vj,. In 

this case, the design criterion of D-dimensional IBRC's is written as, 

i(D)— IBRC 
max d ^ 
{Ad}rf 

s t d{D)~mRC > d* • 
».i. u m m ^ u m i n n.i) 

(D)-IBRC < 
f j ; "max 

k e nk. 
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Hence, the minimum Hamming distance, dmil
 IBRC, is maximized over the set of cyclic matrices, 

Ad e ZzdXkd, that are used to generate the codewords of a D-dimensional IBRC subject to (s.t.) the 

lower-bound on the desired minimum Hamming distance, d^in, the upper-bound on the constraint 

length, vmax (corresponding to the maximum complexity of the encoding and decoding), and the 

vector of input dimensions, k = (k\, • • • , kp), to be in the set of feasible dimensions, fi^, so 

that c4iin IBRC — ^min *s achievable. We can approximate the set, fik> using the component-wise 

inequalities, i.e., let £ \ — {k : k > ko} = {k : k\ > fcoi)^2 > fco2>--' > &D > ^OD}- Note 

that, for a suboptimum multistage decoding (i.e., the independent decoding of all dimensions), the 

optimization (7.1) is subject to a complexity constraint, max^ vd < vmax. 

Also, one can consider multidimensional IBRC's to be modulo 2 sums of the cyclically shifted 

input information vectors. In this case, the complexity of the encoding and decoding is given by the 

constraint weight, ^(£>)-IBRC = J2d=i K-d, a nd the design criterion is, 

j (D)-IBRC 

{Ad}d 

s t d ( -°)- I B R C > d*. 
S A - u m i n — " m i n ( 7 . 2 ) 

K ( D ) - I B R C < K m a x 

k e Ok-

Hence, the minimum Hamming distance, dy
mi^ , is maximized subject to the upper-bound on 

the constraint weight, Kmax. Again, for a suboptimum multistage decoding, optimization (7.2) is 

subject to the complexity constraint, maxdKd < Kmax. Importantly, since typically, Kd <S ud, 

the design of multidimensional IBRC's using optimization (7.2) leads to less complex cyclic shifts 

based encoding and decoding than when using optimization (7.1) and the trellis based encoding 

and decoding; hence, in this chapter, we consider the design (7.2). Furthermore, optimization (7.2) 
{ T~\\ TRRO 

trades-off dy
mi^ with the complexity of the encoding and decoding. 

It is useful to consider a universal design for obtaining the desired minimum Hamming distance, 
dmhT IBRC> by lengthening and shortening of the generating vectors, ad = (ad0,adi ,••• , ad(ii-d-i)), 

corresponding to the cyclic matrices, A^. In particular, while lengthening of the vector, a^, ap

pends a component, adKd > ad(Kd-i)>
t0 a<i> shortening of the vector, ad, removes the component, 

ad{Kd-i)i fr°m a<i- In general, lengthening of the vector, a^, increases dy
mi^ , and shortening 

of the vector, ad, decreases dy
mi^ , and also, the complexity of the encoding and decoding. It 

is desirable that lengthening and shortening of the vectors, ad, is mutually independent between 

151 



dimensions, d. We can use the following procedure to obtain the generating vectors, ay. 

Algorithm 7.11 

1. initialize a.<i — ifldo) where a^o > 0, JQ = 1, and dmi^ = 1 

2. for A > 0, select the dimension, d, and find, ajK , such that, (0'tiK-~ad(K—i)) — ̂ ' anc^ 
d d \ d > 

^min *s increased; then letSLJ := (a,-,asKX andK-t := Ks + 1 
d 

3. when no such a^K. exists for a given, A, either use another G^CK—i) °fad> or se^ect another 

dimension, d, or increase the dimensions, k, or increase A 

4. repeat the search in step 2 until the code ofdmil
 IBRC > d^in is found 

Thus, the components are added to the vectors, a^, recursively until the desired minimum Hamming 

distance, d^in, is reached. Note that, for every candidate set of generating sequences, {a<f }<i, we 

have to evaluate the corresponding minimum Hamming distance, dy
mi^ . The efficient evalu-

ation of dy
mi^ enumerates small weights input information vectors [128], [129]. Hence, it is 

useful to systematically generate binary vectors of given weight. In particular, let the input informa

tion vector of dimension, k, and weight, o, corresponding to the l-th ordered combination of o out 

of k elements, for I — 1, • • • , (o), have the " 1 " bits in the positions, b = (6o, b\, • • • , 60-i) £ ^£-

We can show that the combination number, I, can be computed from the " 1 " bits positions, b, as, 

sr^(k-i\ 1
VA fk — l — bo — i\ 

1 = £ „_! + E „_2 ) + -
6 o - 2 - 6 o - 3 - l / ; -, . -\ 

+ £ (k~l~h
l
0-^l)^o-l-K.2. 

On the other hand, the vector of " 1 " bits positions, b, can be obtained from the combination number, 

/, using the following algorithm. 
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Algorithm 7.12 Input: k, o, I Output: b 

\find the l-th combination o out ofk 

s:=0 

fori = 0:{o-2) 

hi := s 

for j = 0: (k — o+i — s — 1) 

ifl>{k7-tij)then 

h ^h + 1 

l^l-C1-'-1-') 
\ O—l — l I 

else 

break 

end if 

endfor 

s:=bi + l 

endfor 

60_i := 60_2 + I 

For example, the simplest algorithm to estimate umil~
mRC of systematic binary block codes enu

merates all codewords corresponding to the input information vectors of weight, o — 1,2, • • • , 0\, 

where 0\ < <4iin IBR°- ^ m e n u mber of such codewords, i.e., Ylo=i (o)> ^s l^g^ then, us

ing Algorithm 7.12, we can generate randomly additional codewords of input information weight, 

o = Oi + 1, • • • , 0 2 , where Ol<02< d^-lBRC. 

Recall that we search for sequences of cyclic shifts of the input information bits. These se

quences are then shortened in order to obtain the desired minimum Hamming distance, d^in, while 

minimizing the constraint weight, K(£>)-IBRC
5 and the complexity of the encoding and decoding; 

see the design (7.2). Note also that, for particular vectors of cyclic shifts, a^, we have to specify 

minimum dimensions, k0 = (fcoi, • • • , ̂ oz?)» that guarantee the minimum Hamming distance, d*nin. 

We have the following theorem. 

Theorem 7.13 For any vectors of cyclic shifts, a^, that are used to generate a D-dimensional IBRC, 

c£>(D)-iBRc _ ^ ^ dmi^ ), there exist minimum dimensions, ko, such that, for all dimensions, 

k > ko, the minimum Hamming distance, d'L^ , is independent o/k. 
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Proof: For a particular dimension, d, we can use Theorem 1 in [128] to prove that there exists 

minimum dimension, UQ^, such that, for V/ê  > fcod> the minimum Hamming distance, d!^^ , 

is independent of k. In turn, we can show that, for sufficiently large dimensions, k, the dimensions 

become independent and can be arbitrarily increased without changing the value of dS J IBRC. • 

Corollary 7.14 If do is the minimum Hamming distance of a D -dimensional IBRC of dimensions, 

k, then the vectors of cyclic shifts, a^, can be arbitrarily shortened to obtain a D-dimensional IBRC 

of dimensions, k, and the minimum Hamming distance, 2 < dmi^ < do-

7.1.4 Examples of IBRC's 

We consider examples of ID, 2D and 3D IBRC's. We assume IBRC's given in Definition 7.9, for 

M = L and M = 1. We investigate non-systematic codes having systematic codes as a special 

case. In general, non-systematic codes have typically much larger minimum Hamming distances 

than systematic codes. Hence, we present sequences of cyclic shifts that can be arbitrarily shortened 

to obtain the desired minimum Hamming distance, dm[n. For particular vectors of cyclic shifts, a^, 

we also provide the values of minimum dimensions, kn, as indicated by Theorem 7.13. 

ID IBRC's 

Let M — L in Definition 7.9. Assume the generator matrix of the rate, L/(L + 1), IBRC, i.e., 

G 

A i A f A u 

AfA 1 L 

(7.3) 

where Ai and A n , • • • , An, are k\ x k\ cyclic matrices having the generating vectors, ai and 

ail) • • • ) a i i , respectively. Using Algorithm 7.11, we obtain the following sequences of cyclic 

shifts for a IBRC of rate R = 4/5, i.e., for L = 4, 

a n =(0,1, 2, 4, 5, 7, 9,12,15, 21, 24, 25, 29, 32, 38, 41, 46, 49, 50, 51, 55, 57, 62, 63) 

ai2 =(0,1,5,8,10,14,16,18, 20, 25,27, 31, 32, 38,42,43, 50, 51, 53, 56,58,61, 64,67) 

aw =(0,2,3,11,13,18,22, 23, 28,31, 33, 34,35,39, 44,47,48, 52, 54, 59, 60,64,68, 69) 

a w =(0,3,5,12,15,19,24, 25,29,33,34,36,37,42,45,49,51, 54,55,61, 63,66, 71,72) 

ai = (0,2,5,7,8,9,10,12,14,15,18,19,22,23,27,29,30,31,34,35,36,37,39,41). 
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Assuming shortening of the sequences, a n , ai2, ai3 and a u to Ku components, and ai to K\ com

ponents, Table 7.1 gives dm[n for dimension, k\, and the maximum achievable dmia for dimension, 

k\ S> 1. We can obtain other ID IBRC's using an arbitrary subset of L sequences, an ,a i2 ,a i3 

and ai4, for L = 1,2 and 3. Note also that, in general, a search for the low rate IBRC's is easier 

than for the high rate IBRC's; thus, codes having the generator matrix (7.3) are rarely reported in 

the literature, for L > 2, [132]. 

Let M = 1 in Definition 7.9. Consider the generator matrix of the rate, R — 1/(L + 1), 

systematic ID IBRC, i.e., 

G = [ I | A n - - - A 1 L ] . 

Assuming L = 4, we obtain the following generating sequences, i.e., 

a n = (0,1, 2,4, 5, 7,9,12,15, 21,24, 25, 29,32, 38,41,46,49, 50, 51, 55,57,62,63) 

ai2 = (0,1, 3,5, 7,10,11,14,16,19, 22,27, 31, 33,34,37, 39,40,42,44,46,48, 52, 53) 

ai3 = (0,1,2,5,6,9,11,12,13,14,16,18,19,22,23,26,27,28,30,32,33,34,35,37) 

a u = (0,1, 3, 5, 7,11,13,14,15,16,17,19, 20, 21,22, 25, 26, 29,31, 33, 34,35, 37, 38). 

Note that we can again use an arbitrary subset of L sequences, a n , ai2, ai3, and a u to obtain 

IBRC's of rate, R = 1/(L + 1), for L = 1,2 and 3. 

2D IBRC's 

We assume two types of 2D IBRC's of rate, 1/2. In particular, the codewords can be written 

as, c = (uAo, A j u A i ) , where the information matrix, u € Z2
2X \ and the cyclic matrices, 

A0 € Z2 lXfcl, Ai € Z2 lXfc\ and, A2 G Z^ 2 ^ 2 , are generated by the vectors, a0, ax, and, a2, 

respectively. Note that A^u corresponds to the vertical parity bits, and uAi corresponds to the 

horizontal parity bits of a binary product code. Furthermore, we propose a class of 2D IBRC's 

of rate, 1/2, having the codewords, c = (uAo, A j u © uAi); note that, in this case, the vertical 

encoding does not increase the transmission bandwidth. Then, using Algorithm 7.11, we obtain the 

following generating sequences, i.e., 

a0 = (0,2,3,6,8) 

ai = (0,1,2,4,5, 7,9,12,13,15,17,20,22,23,25) 

a2 = (1,2,4,6,7). 
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Table 7.2 shows dm;n and the minimum input dimensions, ko, for the 2D IBRC's assuming that the 

generating sequences, ao, ai, and, a2, are shortened to KQ, K\, and Ki components, respectively. 

3D IBRC's 

Assume a 2D IBRC of rate, 1/2, having the codewords, c = (u, A^uAi) , and denote A3 to be 

the cyclic matrix used for permutation of bits across the 2D codewords. Using Algorithm 7.11, we 

obtain the following generating sequences, i.e., 

^ = (0,1,2,4,5,7) 

a2 = (1,2,4,6,7) 

a3 = (0,l,3,5,6). 

Examples of the 3D IBRC's are given in Table 7.3 assuming that the generating sequences, ai, a2, 

and, a3, are shortened to K\, K2, and K^ components, respectively. 

Furthermore, consider the design of 3D IBRC's for concatenation of ID codewords. In particu

lar, Table 7.4 shows dmin and ko of the 3D IBRC's assuming the generating sequences, 

a2 = (1,2,4,6,7) 

03 = (0,1,3,5,6) 

for permutation of bits in dimensions, d = 2, and, d = 3, and shortened to K<2 and K3 components, 

respectively. The ID codes in dimension, d = 1, in Table 7.4 are the Hamming (15,11,3) and 

(7,4,3) codes, the Golay perfect code, (23,12,7), and the SPC code, (12,11,2). 
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Table 7.1: Examples of ID IBRC's of rate R = 4/5. 
dmin(max) 

Ki=l 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

1 

2(2) 

> 1 

X 

6(6) 

8(8) 

10(10) 

>15 

12(12) 

>20 

14(14) 

> 19 

16(16) 

>20 

18(18) 

>34 

20(20) 

>25 

22(22) 

> 4 0 

24(24) 

>31 

26(26) 
> 3 3 

28(28) 
>44 

30(30) 
>50 
32(32) 

> 4 1 

34(34) 
>44 

36(36) 
>56 

38(38) 
>49 

40(40) 
>53 

42(42) 
> 5 6 

44(44) 
>67 

46(46) 
>56 

48(48) 
>71 

4 

5(5) 

>18 

8(8) 

> 17 

9(9) 

>15 

14(14) 

>25 

X 

18(18) 

> 3 1 

20(20) 

>32 

20(20) 

>37 

24(24) 

>41 

26(26) 

>41 

28(30) 

>41 

30(32) 

>45 

32(37) 
>47 

34(38) 
>57 

36(40) 
>57 
38(44) 

>55 

40(47) 
>60 

42(50) 
>56 

44(48) 
>72 

46(50) 
>68 

48(56) 
> 6 7 

50(60) 
>74 

52(57) 
>75 

54(60) 
>80 

8 

9(9) 

>32 

10(12) 

>25 

14(16) 

>32 

16(18) 

>32 

16(16) 

> 3 1 

18(18) 

> 3 1 

20(21) 

>34 

22(24) 

>37 

22(22) 

> 4 3 

24(28) 

>42 

26(35) 

>39 

28(36) 

>39 

30(40) 
>52 

32(40) 
>56 

34(44) 
>56 
36(52) 

>55 

40(50) 
>67 

42(52) 
>73 

44(55) 
>67 

46(56) 
>75 

48(58) 
> 7 2 

50(60) 
>72 

52(62) 
>79 

54(68) 
>76 

12 

13(13) 

>46 

16(16) 

>45 

19(19) 

>43 

X 

24(24) 

>53 

26(26) 

>46 

27(27) 

>53 

30(32) 

> 5 3 

32(33) 

>54 

34(34) 

>65 

^36(40) 

>60 

36(38) 

>74 

38(45) 
>65 

38(44) 
>68 

40(54) 
>67 
44(56) 

>69 

50(57) 
>80 

50(60) 
>79 

52(64) 
>83 

54(62) 
>90 

58(64) 
> 9 3 

60(64) 
>92 

64(71) 
> 102 
64(76) 
>100 

16 

17(17) 

>56 

X 

26(26) 

>63 

28(30) 

>65 

32(32) 

>76 

32(34) 

>65 

33(33) 

>70 

34(38) 

>65 

37(37) 

>74 

38(38) 

>79 

40(49) 

>72 

42(48) 

>75 

44(52) 
>73 

44(48) 
>92 

48(58) 
>88 
50(62) 

>83 

54(66) 
>92 

54(66) 
>87 

58(62) 
>99 

60(70) 
>96 

64(68) 
> 102 

66(74) 
> 113 
66(77) 
> 105 
68(74) 
> 125 

20 

21(21) 

>75 

X 

34(34) 

>80 

X 

X 

36(36) 

>82 

36(40) 

>71 

40(42) 

>75 

42(43) 

>81 

X 

44(44) 

> 100 

X 

56(57) 
> 100 

X 

58(66) 
> 100 
60(68) 

> 105 

62(69) 
> 101 
62(68) 
>109 
64(73) 
>107 
66(70) 
> 117 
66(74) 
> 112 
70(74) 
> 118 
70(72) 
> 135 
72(78) 
>130 

24 

25(25) 

>91 

X 

X 

X 

42(42) 

>95 

42(42) 

>87 

44(46) 

>90 

X 

48(51) 

>91 

X 

50(54) 

>97 

52(58) 

>93 

54(60) 
> 105 
56(64) 
> 101 
58(72) 
> 104 
66(68) 

> 128 

66(68) 
> 115 
66(76) 
> 116 
68(81) 
> 119 
68(80) 
> 128 
71(81) 
> 118 
68(80) 
> 115 
70(87) 
> 125 
80(90) 
> 134 
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Table 7.2: Examples of 2D-IBRC's. 

Ki 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

K2--

" m i n 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

( u A c A ^ 

= 1,^0 = 5 

k > k 0 

(2 ,10,10) 

(2 ,9 ,9 ) 

(2 ,9 ,9 ) 

(2 ,9 ,9) 

(2 ,13,13) 

(2 ,13,13) 

(2 ,15,15) 

(2 ,16,16) 

(2 ,20 ,20) 

(2 ,22,22) 

(3, 25, 25) 

(3 ,25,25) 

(3, 28, 28) 

(3, 30, 30) 

(3 ,32,32) 

u 0 u A i 

^ 2 = 5 

&min 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

,K0 = 1 

k > k o 

(15 ,1 ,1) 

(9 ,2 ,2 ) 

(9 ,3 ,3 ) 

(8 ,5 ,5 ) 

(9 ,6 ,6 ) 

(8 ,8 ,8 ) 

(8,10, io) 

;8 ,13,13) 

(8,14,14) 

^8,16,16) 

(8,18,18) 

(8,22,22) 

(8, 24, 24) 

(8, 24, 24) 

(8, 27, 27) 

K2 = l 

G^min 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

( u A o , . 

,K0 = 5 

k > k 0 

(1,10,10) 

(2,13,13) 

(2,12,12) 

(3,15,15) 

(2,17,17) 

(4,22,22) 

(4,25,25) 

(5,19,19) 

(5,24,24) 

(5 ,25,25) 

(6 ,25,25) 

(6, 28, 28) 

(6, 29, 29) 

(6 ,32,32) 

(6 ,33,33) 

A j u A i ) 

K2 = 

Q-min 

6 

9 

10 

12 

14 

12 

18 

14 

18 

22 

22 

22 

20 

21 

22 

= 5 , ^ 0 = 1 

k > k 0 

(13 ,1 ,1) 

(12,13,13) 

(9 ,6 ,6 ) 

(9 ,8 ,8 ) 

(9 ,10,10) 

(9 ,8 ,8 ) 

(9 ,14,14) 

(9 ,14,14) 

(9 ,14,14) 

(9 ,16,16) 

(9 ,16,16) 

(9 ,16 ,16) 

(9 ,17,17) 

(9 ,17,17) 

(9 ,17,17) 
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Table 7.3: Examples of 3D IBRC's assuming 2D codewords, c = (u, Ag'uAl). 

Kl,2,3 

111 

121 

131 

141 

151 

112 

122 

132 

142 

152 

113 

123 

133 

143 

153 

114 

124 

134 

144 

154 

a i = 

&min 

2 

3 

4 

5 

6 

4 

6 

8 

10 

12 

6 

9 

12 

15 

18 

8 

12 

16 

20 

24 

a2 = 

(0) 

k > k 0 

(1.1.1) 
(1,3,1) 

(1,4,1) 

(1,8,1) 

(1,9,1) 

(1.1.2) 
(1,3,2) 

(1,4,2) 

(1,8,2) 

(1,7,2) 

(1,1,7) 
(1,3,7) 

(1,4,7) 

(1,8,7) 

(1,9,7) 

(1,1,12) 

(1,3,12) 

(1,4,12) 

(1,8,11) 

(1,9,11) 

= (1,2,4,6 

a i 

Kl,2,3 

311 

3 2 1 

331 

341 

3 5 1 

312 

322 

332 

342 

352 

313 

323 

333 

343 

353 

314 

324 

334 

344 

354 

,7) 

= (0, 

&min 

4 

6 

8 

10 

12 

8 

12 

16 

20 

24 

12 

18 

24 

30 

36 

16 

24 

32 

40 

48 

as = (0,1, 3 

1,2) 

k > k 0 

(4,1,5) 

(4,4,1) 

(4,5,10) 

(4,6,7) 

(4,6,6) 

(3,1,2) 

(4,3,2) 

(4,4,2) 

(4,7,2) 

(4,9,2) 

(4,1,7) 

(4,5,7) 

(4,7,7) 

(4,10,8) 

(4,9,9) 

(4,6,9) 

(5,5,10) 

(4,8,8) 

(5,9,9) 

(6,7,3) 

,5,6) 

a i = 

Kl,2,3 

6 1 1 

6 2 1 

6 3 1 

6 4 1 

6 5 1 

612 

622 

632. 

642 

652 

6 1 3 

623 

633 

643 

6 5 3 

614 

624 

634 

644 

654 

= (0,1,2,4,5,7) 

"min 

7 

13 

19 

25 

31 

14 

26 

38 

50 

62 

21 

39 

57 

75 

93 

28 

52 

76 

100 

124 

k > k 0 

(11,1,1) 
(11,5,7) 

(11,7,6) 

(11,8,7) 

(11,12,5) 

(11,7,2) 

(11,8,2) 

(11,8,7) 

(11,10,6) 

(11,12,4) 

(11,7,7) 

(11,9,7) 

(11,7,10) 

(11,8,7) 

(12,7,6) 

(11,7,8) 

(11,8,8) 

(11,9,8) 

(11,9,11) 

(11,10,8) 
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Table 7.4: Examples of 3D IBRC's for concatenated codewords. 

C=(15,ll ,3) 

•^2,3 d m i n ko 

11 3 (1,1) 

12 6 (1,4) 

13 9 (1,7) 

14 12 (1,8) 

21 4 (4,3) 

2 2 8 (4,3) 

2 3 12 (4,4) 

24 16 (4,6) 

31 5 (4,3) 

3 2 10 (4,3) 

3 3 15 (4,4) 

3 4 20 (4,6) 

41 6 (6,2) 

4 2 12 (6,3) 

43 18 (6,4) 

44 24 (6,6) 

a2 = (1,2,4,6,7) 

C=(7 ,4 ,3 ) 

-R"2,3 dmin ko 

11 3 (1,1) 

12 6 (1,5) 

13 9 (1,8) 

14 12 (1,11) 

21 4 (4,2) 

22 8 (4,4) 

2 3 12 (4,7) 

2 4 16 (4,8) 

31 5 (4,2) 

3 2 10 (4,4) 

3 3 15 (4,7) 

3 4 20 (4,8) 

41 6 (6,1) 

4 2 12 (6,3) 

43 18 (6,4) 

44 24 (6,7) 

a3 = (0,1, 3, 5, 6) 

C = (23,12,7) 

^2,3 dmin ko 

11 7 (1,1) 

12 14 (1,4) 

13 21 (1,7) 

14 28 (1,8) 

21 12 (5,5) 

2 2 24 (5,5) 

2 3 36 (5,5) 

2 4 48 (5,8) 

31 13 (5,1) 

3 2 26 (5,3) 

3 3 39 (5,4) 

3 4 52 (5,6) 

41 22 (6,3) 

4 2 44 (6,3) 

43 66 (6,4) 

44 88 (6,8) 

C=(12 , l l , 2 ) 

-K2,3 dmin ko 

11 2 (1,1) 

12 4 (1,4) 

13 6 (1,7) 

14 8 (1,9) 

21 2 (2,1) 

2 2 4 (2,3) 

2 3 6 (2,4) 

2 4 8 (2,8) 

31 2 (4,1) 

32 4 (4,3) 

33 6 (4,4) 

34 8 (4,6) 

41 2 (6,1) 

4 2 4 (6,3) 

43 6 (6,4) 

44 8 (6,6) 
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7.1.5 Applications of IBRC's 

We consider applications of IBRC's and analyze their BER performance. In general, assume map

ping of codewords, c e 1$, to BPSK sequences, x = ( ( - l ) C o , • • • , (- l)0"-1) € { - l , + l } n . The 

sequence, x, is transmitted over an AWGN channel, w, of variance, o\ = iVo/2, per dimension 

where iVo is the one-sided noise power spectral density. Then, the received sequence, y = x + w. 

The energy per coded modulated symbol is, Ej, — 1, and thus, cr̂  = (2i?7(,)-1 where R denotes 

the code rate, and 7^ = E^/NQ is the SNR. 

We consider soft-input soft-output (SISO) decoding of IBRC's. The channel soft-output for the 

j'-th bit (in the log-likelihood domain) is, Lc(j) = 2yi/cr£,, and j = 0,1, • • • , n - 1 [17]. The SISO 

decoder outputs the a posteriori values [141], [142], 

o i|9 2/c — l 

LaU) = l | y ~ X 0 ^ ' - l l y - ^ l l = 1 £ y*(xy i - x0i.) (7.4) 

where XOJ and x y are the codewords at the smallest Euclidean distance from the received vector, y, 

having the j'-th bit 0 and 1, respectively. Then, the extrinsic information, Le(j) = La(j) — Lc(j). 

We adapt the algorithm proposed in [141] to compute a posteriori values (7.4). This algorithm is a 

sphere-decoder in the input information domain over a basis of the most reliable bits given as, 

1. generate the initial estimate of the information vector, uo 

2. search the sphere of radius, d\, about uo to find the codewords, XOJ, and, xi j , for Vj. 

The sphere search enumerates the YALO if) codewords. For each codeword, x, we compute the 

metric, m(x) = yTx/(2er^), and update the table of the largest metrics for all n bits being 0 and 1. 

Then, La(j) = rn(xij) — m(xoj), Vj. We can obtain the initial estimate, un, using hard-decision 

decoding, for example, assuming only the information bits of the systematic code. Note that d\ = k 

corresponds to the optimum maximum a posteriori (MAP) decoding while reference [141] suggests 

that d\ — [dmin/4] for negligible performance loss where [•] is the ceiling function. Although a 

simple enumeration of sequences within a given Hamming distance about the initial estimate can be 

too complex for the real-time implementation of the decoder, this method is well suited for computer 

simulation evaluation of the performance of block coding schemes. 
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In general, a union bound of the BER over an AWGN channel can be written as [17], [100], 

n . 

p?B(76)= E x g ( ^ ^ 0 (7-5) 

where Aw = Yli=o iA(i, w) is the number of information bits encoded in all codewords of weight, 

w, A(i, w) is the number of codewords of input information weight, i, and output weight, w. For 

cyclic codes, we can use Theorem 2 in [119] to efficiently evaluate the coefficients, Aw = R wA(w), 

where A(w) = Y^i=o A(i, w); our numerical results indicate that this expression is a good approxi

mation for systematic ID double circulant codes. Then, we can approximate the union bound of the 

BER as, 
n 

PfcIB(7b)= E -A{w)Q(y/2R^b 

Adaptive Coding 

As indicated by Theorem 7.13, for a given minimum Hamming distance, the dimensions of IBRC's 

can have arbitrary values greater than some minimum dimensions. Also, for given dimensions, the 

minimum Hamming distance of IBRC's can be chosen up to a certain maximum value; see Corollary 

7.14. Correspondingly, IBRC's are well-suited for packet transmission, and particularly, when the 

channel quality between the source and the destination is known at the transmitter. 

As an example, consider the vector of cyclic shifts, 

a = (0,1,2,4,5,7,9,12,15,17,20). 

This vector can be shortened to 1 < K < 11 components to generate a cyclic matrix, A, of 

minimum dimension, ko = 34. Then, a systematic ID IBRC of rate, 1/2, has the generator matrix, 

[I| A], and minimum Hamming distance, a!min — 1 + K. 

Turbo Product Coding 

Consider a turbo product code (TPC), Cp = Cx x Cy = (nx, kx,dx) x (ny, ky,dy) = (np, kp,dp), 

of rate Rp — (kxky)/(nxny), and minimum Hamming distance, dp = dxdy. The weight enumerator 

coefficients of TPC, Acp (w), for w = 0,1, • • • , dxdy + ma,x(dx \dy/2], dy \dx/2]), can be obtained 

using Theorem 1 of [143], i.e., ACp{w) = Yli\w
 Acx(i) Acv{w/i) where ACx{w) and ACy{w) are 

weight enumerators of component codes, and i\w denotes i divides w. We assume that the horizontal 
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encoding, Cx, is a ID IBRC, and the vertical encoding, Cy, is a high rate binary code. For high 

rate codes, the extrinsic information for the j'-th bit of the Cy code, Le(j; Cy), can be efficiently 

computed using the dual code, C^, i.e. [105, eq. (89)], 

Le(j; Cy) = log f-± / 
E c e o x ( ( - l ) ^ r e = i , M i t a n h ( ^ ) ^ ) 

where the a posteriori values are computed as, La(j) = Lc(j) + Le(j; Cx). The extrinsic values, 

LeU't Cx), corresponding to the horizontal code, Cx, are evaluated using (7.4). 

As an example, we evaluate the BER of two TPC's assuming the ID IBRC, (48,24,9), for 

horizontal encoding, and the single parity check code, (8,7,2), and the extended Hamming code, 

(8,4,4), for vertical encoding, respectively. The IBRC, (48, 24,9), is systematic and has the gener

ator matrix, G — [I|A], where the cyclic matrix, A € Z2,4*24, is generated by the vector of cyclic 

shifts, a = (0,1,2,4,5,7,9,12). We assume input sphere decoding of radius, d\ — [9/4] = 3, 

i-e-> YA=Q Ct) = 2325 codewords are evaluated to obtain the extrinsic values, Le(j,Cx), for the 

horizontal IBRC. The initial estimate for the input sphere decoder is given by hard decision of 

the systematic bits. Assuming 5 iterations between the horizontal and vertical decoders, the BER 

approaches the union bound (7.5) as shown in Fig. 7.1. 

163 



10 

10" 

g 10 

10 3h 

10 
- 4 

• N V • •. 

.. . .v-rf 

— uncoded 
- - union bound 

-*-(48,24,9)x(8,7,2), l i t . 
• e - (48,24,9)x(8,7,2), 5 it. 
•e-(48,24,9)x(8,4,4),5it 

-2 -1 0 1 
Eb/N0 dB 

Figure 7.1: The BER of the (48,24,9) x (8,7,2) and (48,24,9) x (8,4,4) TPC's versus the SNR, 
Eb/N0. 
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Table 7.5: Examples of doubly circulant IBRC's for retransmission schemes. 

ai 
0 
0 
0 
0 
0,2 
0,2 
0,1,2 

0,2 
0,1,2 

0 
0,1,2 

0,2 
0,2,5 

0,1,2,4 

0,2,5 

a2 
0,2 
0,1,2 

0,2,5 

0,1,2,4 

0,1,2 

0,2,5 

0,1,2,4 

0,1,2,4 

0,2,5 

0,1,2,4,5 

0,1,2,4,5 

0,1,2,4,5 

0,1,2,4 

0,1,2,4,5 

0,1,2,4,5 

^min 

3 
4 
4 
5 
5 
5 
5 
6 
6 
6 
6 
7 
7 
6 
8 

h 
5 
4 
6 
8 
9 
9 
8 
8 
10 
10 
10 
15 
16 
15 
16 

khb 
4 
4 
5 
8 
8 
8 
8 
8 
9 
9 
9 
13 
13 
10 
14 

Retransmission and Multihop Routing 

Consider a sequence of L cyclic matrices, (Ai, A2, • • • , A L ) , and the input information vector, u. 

During the i-th transmission from source to destination, we transmit the encoded bits, uA,. Hence, 

at the destination, the compounded codeword, c, = (uAi, 11A2, • • • , uAj), corresponds to a IBRC 

of rate, R = 1/i, and the minimum Hamming distance, dmini- This code has generator matrix, 

Gj = [A1IA2I • • • |Ai]. The design criteria for such a compounded IBRC are that dmjni should be 

increasing with the transmission number, i. 

Table 7.5 shows examples of the vectors of cyclic shifts, ai, and &2> u s e d to generate cyclic 

matrices, Ai , and A2, respectively. Assuming IBRC's having the double circulant generator matrix, 

[A1IA2], Table 7.5 provides the values of corresponding minimum Hamming distance, dm-m, and 

minimum dimension, feo, and k^ denotes the Hamming bound for given dm-m and block length, 

2ko, [116]. Note that combination of the received vectors corresponding to different cyclic matrices, 

Ai, and, A2, results in different values of <imin; this is useful for multihop routing protocols. 

Block Differential Encoding 

We consider ID IBRC's compounded with block differential encoding. Hence, assume a rate, 1/2, 

IBRC, (2k, k, dm[n), having the double circulant generator matrix, G = [Ai | A2J. The codewords, 
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P2(j-1) 

(b) 
Figure 7.2: Block differential encoders, (a) recursive, and (b) non-recursive. 

c = (pi,p2), where pi — uAi , P2 = 11A2, and u is the input information vector, are block 

differentially encoded as shown in Fig. 7.2. If the block differential encoding is recursive, then 

the differentially encoded codewords are written as, s$ = Sj_i © Cj, where i is the discrete time 

index; see Fig. 7.2(a). Hence, for L transmitted codewords, ci,i = 1,2, • • • , L, the compounded 

(2k x L) codeword, (si, S2, • • • , s^), has rate, 1/2. On the other hand, we propose to use a non-

recursive differential encoding shown in Fig. 7.2(b) to improve the code rate. In this case, the 

differentially encoded codewords are written as, s; = pi* © P2(i-i)- For L transmitted codewords, 

the non-recursive block differential encoder corresponds to a ((L + l)k,Lk,dmin) code of rate, 

Ri = L/(L + 1). This code has the generator matrix, 

Ai A2 

Ai A2 

Ai A2 

and the corresponding compounded codewords are, (ui, U2, • • • , Ui)GJr/. Denote by ai and a2 

generating vectors of the cyclic matrices, Ai , and, A2 , respectively. Similarly to Theorem 7.13, we 

can formulate the following theorem. 
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Theorem 7.15 For any design, ai, and, a2, of the IBRC, ((L + l)k, Lk, dmin), there exist dimen

sions, ko, and, LQ, such that, for VA; > k$ and VL > LQ, the minimum Hamming distance, dmin, 

does not depend on k nor L. 

Proof: For a particular value of L, if dimension, k, is increased by one, then we insert L 

bits into the input information vector, (ui, • • • , UL). We can use the argument in the proof of 

Theorem 1 in [128] to show that, for sufficiently large k, the inserted bits cannot change dm;n. Also, 

for a particular value of k, if dimension, L, is increased by one, then the matrices, Ai, and, A2, 

are appended to the generator matrix, G^. We can show that, for sufficiently large L, all input 

information vectors, (ui, • • • , U£,), corresponding to codewords of weight, dmjn, contain at least k 

consecutive zeros; thus, increasing dimension, L, by one does not change dm\n. • 

Using Theorem 7.15, we have the following property. 

Property 7.16 Non-recursive block differential encoding in Fig. 7.2(b) of codewords of any doubly 

circulant binary code guarantees that the overall code rate, lim -rj-r — 1, with the number of 

differentially encoded codewords, L, while the minimum Hamming distance, dm\a, is fixed. 

In general, larger values of dimensions, ko, and, LQ, are required for larger values of dm[n. Impor

tantly, note that, for convolutional codes, both rate and minimum Hamming distance are indepen

dent of block length. Note also that, conditioned on knowledge of Uj, the dimension is reduced to 

(L — i)k; thus, the sequence to be decoded is, (u.j+i, • • • , u/,). 

For example, assume non-recursive block differential encoding of systematic ID IBRC's, i.e., 

the generator matrix, G — [I|A], and let LQ — 1. Table 7.6 gives cyclic shifts, a, corresponding to 

the cyclic matrix, A, and the values of <imjn, ko, and the Hamming bound for block length, 2/co-

7.1.6 Transmitter Power Optimization 

Consider the problem of how to distribute the transmission energy over the binary codeword to 

minimize the BER while the average energy per transmitted binary symbol, E^, is kept constant. 

The exact BER is approximated using the union bound. We assume ideal interleaving, and thus, the 

channel fading coefficients are independent for each transmitted binary symbol; this corresponds to 

the fast fading assumption. 

Assume a systematic ID code, (n, k,dmin), of rate, R = k/n, having the codewords, c = 

(u, p), where u is the input information vector of k bits, and p is the vector of (n — k) parity bits. 
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Table 7.6: Examples of IBRC's for non-recursive block differential encoding. 

a 
0 

0,1 
0,1,2 

0 ,1 ,2 ,5 

0 ,1 ,2 ,5 ,6 

0 ,1 ,2 ,5 ,6 ,8 

0 ,1 ,2 ,5 ,6 ,8 ,9 
0 ,1 ,2 ,5 ,6 ,8 ,9 ,11 

0 ,1 ,2 ,5 ,6 ,8 ,9 ,11 ,13 

^min 

2 
3 
4 
5 
6 
7 
8 
9 
10 

k > ko, LQ = 1 
> 1 
> 5 
> 7 
> 12 
> 13 
> 17 
> 19 
> 2 3 
> 30 

fchb 
1 
4 
5 
9 
10 
13 
15 
18 
20 

For simplicity, denote by 0^ the transmission energy for information bits, and by 01 the transmission 

energy for parity bits. Thus, the average transmission energy per binary information symbol, i.e., 

Eb = R0i + (1 - R)Pl 

is assumed to be constant. Correspondingly, given Eb, we can optimize the value of 0^ or 0*; this 

constitutes a ID optimization problem in one variable only. We have that, 0 < 0^ < Eb/R, and, 

0 < 01 < Eb/(1 - R). Thus, if $ > Eb, then 01 < Eb, and vice versa. The case, 0i = 0$ = Eb, 

corresponds to uniform energy distribution over a transmitted codeword. Importantly, note also that, 

if p = u A where A is a cyclic matrix, then all information and parity bits are equally protected. 

In this case, using the constant energy, 0^, for all information bits, and, 0*, for all parity bits, is 

optimum. 

The codewords, c, are interleaved and mapped to BPSK sequences, x € {—1, + l } n . The se

quences, x, are transmitted over a Rayleigh fading channel, and coherently detected at the receiver. 

Hence, the z-th received binary symbol, i = 0 ,1 , • • • , (n — 1), after coherent demodulation can be 

written as, 

Vi = QiPiXi + Wi 

where gi is the Rayleigh distributed channel fading amplitude, j3i = j3u, if the transmitted symbol, 

Xi, corresponds to the information bit, and 0 = 0, if Xj corresponds to the parity bit, and w^ is 

a sample of a zero mean AWGN of variance, a^. The channel fading amplitude is normalized, so 

that, E [gf] = 1, and we let Eb = 1. Then, the SNR is defined as, ^ — gfjb, and, ^b = Eb/N0. 
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The PEP 

In order to evaluate a union bound of the average BER, we have to obtain the PEP; cf. eq. (7.5). 

Hence, consider the PEP that codeword, c, is transmitted, and c' is decoded. Then, conditioned on 

perfect knowledge of the channel coefficients, gi, i = 0,1, • • • , (n — 1), at the receiver, the PEP is 

computed as [21], [82], 

PEP(c^c'\{gi}i) = Q 
„ / fc -1 n - l 

\i ̂  ( E «(<* © o + E /W* © 4) 
\ i=0 i=fc 

where Cj and ĉ  denote the i-th binary symbols of the codewords. We can use a Prony approximation 

of the Q-function to efficiently evaluate the average PEP, i.e., let 

v 
Q{\fx) « y ^ Aj exp(—a,jx) 

i=i 

where, for p = 2, i i = 0.208, A2 = 0-147, 5i = 0.971, and a2 = 0.525, [70]. Then, assuming 

that the all-zero codeword was transmitted, the PEP can be expressed as, 

2 n - l 

PEP(O ^ c ' l tei}*)=E ^ n e~*jfig? (7-6) 

i = l i=0 

where / ; = 1fi\, SC'JNQ, and p? are exponentially distributed. Since J0°° e~(1+S/ifi^dt = (1 + 

aj / j ) _ 1 , and the channel coefficients, gi, are mutually independent (recall the fast fading assump

tion), we obtain the average PEP as, 

n - l * '" x i 

P E P ( O ~ O = £ . 4 , n ^ 
7 = 1 i=0 ^ i:c = 1 

Correspondingly, the union bound of the average BER becomes [21], 

BER « Y " WH(g") PEP(0 .-* C') (7.7) 
c ' e i f ( o m a x ) 

where WH(<4) denotes the Hamming weight of the input information bits in the codeword, c', and 

the list of the codewords, 5£(omax) = {c' : WH(C(J = o, o — 1, • • • , om a x}. For codes of large 

dimension, the list, Jz?(omax), can be approximated by a MC method, and using Algorithm 7.12. 
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Also, for transmission over an AWGN channel, the fading coefficients, gi = 1, and we use the PEP 

(7.6) in the union bound (7.7). 

We illustrate optimization of the transmission energy distribution, (/3^,f3p), using numerical 

examples. In particular, the union bound of the BER versus the transmission energy for the infor

mation bits, 01, for three systematic IBRC's, (36,18,6), (36,24,5), and (36,12,7), generated by 

cyclic shifts, (0,1,2,4,5), (0,1,2,4), and (0,1,2,4,5,7), respectively, the extended Hamming 

code, (16,11,4), and the extended Golay code, (24,12,8), over a AWGN channel, for SNR, 

Eb/No = 2 dB, is shown in Fig. 7.3. Recall also that 0^ — 1 corresponds to the case of uni

form energy distribution over a codeword. We observe from Fig. 7.3 that the BER for higher code 

rates, i.e., R > 1/2, exhibits a minimum of the BER for values of 0^ < 1. On the other hand, for 

code rates, R < 1/2, the BER curves have local maxima. Thus, in general, less energy should be 

allocated for information bits, and more energy for parity check bits. 

Fig. 7.4 shows the union bound of the BER for the codes from Fig. 7.3 over a Rayleigh fading 

channel (assuming fast fading and coherent detection), for SNR, Eb/No = 5 dB. We can observe 

from Fig. 7.4 that the optimum energy, 0^ < 1, for code rates, R » 1/3, while the optimum energy, 

Pl>l, for code rates, R < 1/3. 
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Figure 7.3: The BER union bound versus the energy, 0^, of the information bits over a AWGN 
channel, for SNR, Eb/N0 = 2 dB. 
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Figure 7.4: The BER union bound versus the energy, 0^, of the information bits over a Rayleigh 
fading channel, for SNR, Eb/N0 = 5 dB. 
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7.2 A Cooperative Diversity Protocol With IBRC's and SPC Product 

Codes 

7.2.1 Background 

User cooperation is a promising concept that can improve network reliability, extend network cov

erage, and increase network throughput [144]. In general, the more information the users can share, 

the larger the cooperation gains. In cooperative networks, the nodes can share information using 

amplify-and-forward (AF) and decode-and-forward (DF) relaying techniques described in [144]. 

The usefulness of cooperation is often estimated using the probability of outage [144]. The proba

bility of outage is defined as the probability that the transmission rate exceeds the channel capacity. 

Such probability can be often well approximated by the PER [17]. A protocol to combine channel 

coding and cooperation is proposed, for example, in [145] and [146]; particularly, the codewords 

are interleaved among the nodes to obtain coding and cooperative diversity gains. Cooperative pro

tocols are usually designed for a given number of cooperating nodes and time slots [144]- [147]. 

A random space-time coding that decentralizes the cooperative protocols is proposed in [148]. The 

ML ML demodulation for user cooperation is studied in [149]. 

In this chapter, we consider a packet network where the packets are transmitted in dedicated 

orthogonal channels, and thus, all packets are received interference free. We propose a univer

sal cooperative protocol for an arbitrary number of nodes and time slots to be used in uplink and 

downlink transmissions. The protocol combines three types of packets corresponding to the three 

protocol stages. The cooperating nodes listen to all transmitted packets. The codewords consist 

of all the packets received until the current time slot. A CRC code is used to detect uncorrectable 

transmission errors. The data packets are transmitted in Stage 1 of the protocol. In Stage 2, for

ward diversity and coding gain are achieved when source nodes employ forward error correction 

coding to transmit additional packets of parity bits corresponding to their own data packets. Coded 

and cooperative diversity is realized in Stage 3 of the protocol when the nodes transmit packets of 

parity bits obtained from all available data packets. Provided that the packets of parity bits in Stage 

3 are generated assuming only successfully decoded data packets, the channel code corresponding 

to Stage 3 is random. The decoding of such a random code requires that the destination node has 

knowledge of which packets were successfully decoded in the other nodes in the previous stages. 

Alternatively, all the received data packets can be used to generate the packets of parity bits in Stage 

3 of the protocol regardless whether the received packets were decoded successfully (i.e., the CRC 
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parity agrees) or not. In this case, the resulting code is non-random, and the transmission overhead 

to obtain knowledge of which packets were successfully decoded in Stage 1 and Stage 2 of the 

protocol can be avoided; however, error propagation can deteriorate the performance. 

We assume that each node has one antenna, and that there are no scatterers surrounding the 

nodes. Then, the nodes communicate over a line-of-sight AWGN channel. The free-space path loss 

causes attenuation of the transmitted signals. A link budget analysis can be used to calculate the 

receiver SNR at a given distance from the transmitter antenna. We evaluate the PER improvement 

for the three protocol stages considering the stages as being independent. Also, the probability 

of not decoding a packet and the PER are assumed to be equal. We investigate the usefulness of 

cooperation for uplink and downlink transmissions for a particular number of nodes and network 

realization. We show that the proposed protocol can achieve diversity gain for particular locations 

of the nodes due to cooperation, and coding gain due to the use of forward error correction coding. 

This section is organized as follows. A three stage protocol is described in Section 7.2.2. The 

system model is presented in Section 7.2.3. Performance analysis is carried out in Section 7.2.4. We 

obtain the PEP, and estimate the PER for coherent and non-coherent binary modulation schemes. 

The achievable coverage of the network for each of the protocol stages is investigated in Section 

7.2.5. using numerical examples. The chapter is summarized in Section 7.3. 

7.2.2 A Three Stage Protocol for Coded and Cooperative Diversity 

Consider a network of (N +1) nodes. One node represents an access point (AP), and the remaining 

N nodes are mobile terminals (MT's). We assume that the nodes can be time synchronized, and the 

propagation delays compensated to achieve time division multiple access. There are iV orthogonal 

channels in each time slot corresponding to N MT's. In the uplink, each MT transmits L data 

packets to the AP. In the downlink, the AP transmits L data packets to each of the N MT's. In order 

to increase the network coverage and improve the network reliability, we allocate additional time 

slots to create coded diversity and cooperation. A CRC code is used to detect erroneous packets. In 

each node, a channel code is employed to generate packets of parity bits corresponding to the node 

data packets. Such parity packets are referred to as the horizontal parity, and they are transmitted 

in the forward diversity time slots. The cooperating nodes listen to all the transmitted packets, and 

can attempt to decode the received data packets. Then, using another channel code, the cooperative 

diversity is implemented by transmitting packets of parity bits created from each node's own data 

packets (in the uplink) as well as the other received data packets. These parity packets are referred 
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Figure 7.5: A three stage transmission protocol for N cooperating nodes. 

to as the vertical parity, and they are transmitted in the cooperative diversity time slots. 

Hence, we study a protocol for coded diversity and cooperation having a finite number of trans

mission stages, S > 0. During each stage, all nodes transmit the same type of packets in order 

to reduce the signaling overhead. The protocol considered in this chapter has, 5 — 3, stages, and 

is shown in Fig. 7.5. In Stage 1, the data packets, u(i, I), i = 1, 2, • • • , N, I = 1,2, • • • , L, are 

transmitted over the L consecutive time slots. In Stage 2, one time slot is allocated for the parity 

bits, 7r(i), of the horizontal channel code of rate, L/(L + 1). In Stage 3, another time slot is used to 

implement the cooperation. Particularly, a vertical channel code is used to generate the parity bits, 

q(i). All packets are assumed to have equal length, K, bits. Hence, this protocol has a maximum 

throughput of, KL/(L + 2), information bits per packet; the throughput increases with L and is 

independent of N, Note also that the forward and cooperative diversity can be combined in one 

time slot, however, this case is not considered here. 

Denote by q a generic index for one-dimensional packet indexing. Let I be the set of all, 

(L + 2)N, packets, and J u C 1 be the subset of all data packets; the cardinality, \lu\ = LN. 

Denote also, Xu = U^:1Tui, where Iu j is the subset of data packets corresponding to the destination 

node, i, in the downlink, and the source node, i, in the uplink. The encodings in the three stages of 

the protocol in Fig. 7.5 are denoted as, Cu, s = 1,2,3, and they are described next. 
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Data Packets 

Each data packet consists of, Ka = K—Kcxc, information bits, and, Kcrc, CRC bits. The probability 

of an undetected erroneous packet is of the order, 2~KcIC, and thus, it is neglected [150]. It is 

useful to select the CRC generating polynomial, such that all odd-weight error patterns are detected 

providing an overall parity check. Thus, for the source node, i = 0,1, • • • , N, the CRC codes, 

C[i]i = (K, Ku, dcrc), have rate, Ku/K, the minimum Hamming distance, dclc < Kcrc + 1, and the 

codewords, uq, q G JUi-

The code, C^, can be decoded using Wagner decoding detailed in [151]; on average, we expect 

to correct at most (dCTC — 1) bit errors. Note that the Wagner decoding rule is different from the 

Chase decoding rule [152]. While the Chase decoding selects the most reliable codeword searching 

over all possible combinations of the least reliable bits, the Wagner algorithm flips the least reliable 

bits until it finds the first valid codeword. 

Forward Coded Diversity 

Consider codewords, Cj = (u(i, 1), • • • , u(z, L),ir(i)), of the code, C[2]j, in Stage 2 of the protocol 

corresponding to the node i, for i = 1,2, • • • , N. The code, C^i = (K(L + 1), KL, dmin^2]i), 

is systematic, and has block length, K(L + 1), rate, JRJ2] = L/(L + 1), minimum Hamming 

distance, dmin^2]i, and the generator matrix, G[2]j = [!(£#)|B[2]j], where 1(LK) is the LK x LK 

identity matrix, and B[2]j £ Z2 ' M s the parity check matrix. Thus, the horizontal parity packets, 

ir(i) = (u(i, 1), • • • , u(i, L))B[2]j, are a linear combination of the data packets from a single source 

node. 

The IBRC's [128] of rate, L/(L + 1), are well suited as the Stage 2 codes, C\^. In particular, 

for a given packet length, K > KQ, the minimum Hamming distance of IBRC's can be adapted 

to varying channel conditions to limit the number of unsuccessfully decoded packets. However, 

the complexity and power consumption of the encoding and decoding increases with the minimum 

Hamming distance, and thus, there exists an optimum dmin[2]i [153]. The minimum dimension, KQ, 

increases with the desired minimum Hamming distance [153]. Hence, consider the parity check 

matrix, B[2]j, of a systematic IBRC of rate, L/(L + 1), i.e., 

B[2]i = A T I A T I . . I A T T 
A[2]illA[2]i2l \A[2}iL 

where Ap]u, for I = 1, • • • , L, are K x K binary cyclic matrices generated by the vectors of 
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cyclic shifts, ap];/, and (•) denotes the matrix transpose. For example, the cyclic shifts, k^u — 

(0,1, l+l), I = 1, • • • , L, generate the IBRC of dimension, KQ ^> L, having the minimum Hamming 

distance, dmin[2]; = 4. The IBRC's can be decoded, for example, using the algorithm of [141]. 

Furthermore, if the CRC code in Stage 1 of the protocol provides an overall parity check for each 

data packet, then the single parity check (SPC) product code (SPCPC) [139] is particularly simple 

to implement. In this case, the parity check matrix, Bpji = 1, i.e., the all-ones matrix. However, 

note that, for SPCPC's, the minimum Hamming distance, cimin[2]i = 4, is fixed. The SPCPC can be 

efficiently decoded using an iterative soft decision decoding described in [139]. 

Cooperative Coded Diversity 

In the uplink as well as in the downlink, the MT's listen to all transmitted packets, during Stage 

1 and Stage 2 of the protocol. The MT's then attempt to decode the received data packets using 

knowledge of the CRC code, Cji];, and the parity check matrices, Bpjj, for i — 1, • • • , N. When 

only one time slot is allocated for cooperative diversity, the SPC code is particularly well-suited to 

generate the packets of vertical parity, q(i). In this case, the vertical parity packets, Q € Z2 ' , 

can be written as, 

Q = V [ 3 ] (Uf , - - - ,Ui ; ) T (7.8) 

where V[3] € Z2 ' is the parity check matrix; see Fig. 7.5. The rows of the matrix, V^], 

correspond to the nodes, i — 1, • • • , N. The columns of the matrix, Vp], correspond to the data 

packets, q = 1, • • • , NL. Hence, the encoder of C[3] is distributed among the cooperating nodes. 

Assuming the SPC code, there are two strategies to generate the vertical parity packets. Either 

the parity bits, Q, are generated using all the received data packets, or they are generated using 

only the successfully decoded data packets. The particular form of the matrix, V[3], depends on the 

selected strategy. Consider the case when the parity bits, Q, are generated from all the received data 

packets regardless whether they are decoded successfully or not. Then, we can use hard decisions 

of unsuccessfully decoded packets, however, the error propagation will deteriorate the performance. 

Alternatively, we can combine the AF and DF relaying. In particular, assume that cBPSK modula

tion is used for transmission, and let a mapping of coded bits, c G Z2, to BPSK symbols, {—1, +1}, 

be, c i—> (—l)c. In general, a modulo 2 sum, c\ © c2, of bits, c\ £ Z2, and, c2 € Z2, corresponds to a 

BPSK symbol, (-l)ci©c2 = (_i)ci+c2 = ( - l ) c i (-1)C2, i.e., modulo 2 summation is equivalent to 

a product of the BPSK symbols. Also, in an AWGN channel, reliability of the bit decision is directly 
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proportional to the received BPSK symbol signal-plus-noise sample [17]. Hence, the parity bits of 

the SPC code can be generated by multiplying the BPSK symbols, { — 1, +1}, corresponding to the 

DF relaying of the successfully decoded data packets, and the received BPSK symbols correspond

ing to the AF relaying of the unsuccessfully decoded data packets. In this case, the destination node 

does not need knowledge of which packets were successfully decoded in the other nodes during 

Stage 1 and Stage 2 of the protocol, and the matrix, V[3], is non-random. However, the error propa

gation can deteriorate the performance, and, in general, analysis of systems with error propagation 

is difficult. 

In this chapter, we investigate the strategy when the parity bits, Q, in (7.8) are generated as

suming only the successfully decoded data packets. Hence, let the code, Cr3i, be a SPC code 

for successfully decoded data packets during Stage 1 and Stage 2 of the protocol. Then, the 

matrix, V[3], in (7.8) is random, and has the elements, [V[3]]jg = 1, if the i-th node can suc

cessfully decode the data packet, q, for q = 1,2, • • • , NL, and, [V[3]]iq = 0, otherwise. The 

code, C[3] = ((NL + 1), A^L,dmin[3]), has the rate, J?[3] = NL/(NL + 1), the codewords, 

(Ui, • • • , U L , Q), and the random minimum Hamming distance, dmin[3] > 1. Importantly, even 

though the matrix, V[3], must be available at the destination node to facilitate decoding of the code, 

C[3], knowledge of the matrix, V[3], provides feedback information about the quality of the channels 

between the nodes; this can be used to select the minimum Hamming distance of the IBRC codes 

in Stage 2 of the protocol. 

7.2.3 System Model 

Assume that the nodes are distributed in a two-dimensional plane. The network topology is shown 

in Fig. 7.6. The node 0 at the origin is an AP. The other N nodes represent the MT's, and they are 

placed regularly on the circle of radius, dmt, and with center at distance, dap, from the origin. Thus, 

the distances, efo,-, from the AP to the MT's, and, dij, between a pair of MT's, i, and, j , are, 

d0j = ^ap ~l~ ^mt ~^~ ^ a p % n t c o s( jyO' - 1 ) J 

dij = d^\ 2 - 2cos( —(i - j) 
(2-K 

Provided that no significant scatterers are present in the area, the channels between any pair of 

nodes are line-of-sight, and they are modeled as Gaussian. Assuming limited mobility of the nodes, 
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Figure 7.6: An example of the 2D network topology. 

the distances between nodes are approximately constant, and so are the channel attenuations due to 

the free-space path loss. However, for short carrier wavelengths, even limited mobility causes ran

dom phase changes in the transmitted signals. Using equivalent complex envelopes in the baseband, 

the received signal in the node, j , corresponding to the packet, q, transmitted from the node, i, is, 

y'qj — \9ij I & QiqiX-qi T ^qj (7.9) 

where i,j = 0,1,2 • • • ,N,i / j , and we assume column vectors by default. The channel atten

uation, \gij\, represents a free-space path loss, ipqij is a random channel phase shift, aqi sets the 

transmitter power for the q-th transmitted packet, x9j, and wqj are the samples of a AWGN. The 

packet and nodes indices, q, i and j will be omitted if not necessary. The channel attenuations are 

modeled as the free-space path loss, i.e., [101], 

\9ij? 
/47rlOO\~Vd 

\ — 
'V 

100 
«ln (7.10) 

where d^ > 100 is the distance from the transmitter antenna (in meters), A — 3 • 10 8 / / c is the 

carrier wavelength, fc is the carrier frequency (in Hertz), and /i is the path loss exponent where, 

1-5 < it, < 4.0, for the typical line-of-sight outdoor channels. A log-normal distributed random 

variable, s\n, models the path loss variations, and we assume that it can be neglected. Note that the 

channel attenuation (7.10) is symmetric in both directions between the nodes, i, and, j . Assuming 

binary modulation, we define the SNR per encoded bit at the receiver to be, 7^ = \gij\2a2Ef,/No, 
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where Eh — E[|xgfc] |2 is the energy of the fc-th binary symbol in the packet, x9, k — 1,2, • • • , K, 

E[-] is expectation, and NQ is the noise power spectral density. The AWGN's, w, in (7.9) have 

independent real and imaginary parts of equal variance, a%, = iVn/2, per dimension. Denote, 

7o = Eb/No, and denote by a\,a^, and a^ the transmitter powers corresponding to the data packets, 

horizontal parity packets, and the vertical parity packets, respectively. The transmitter powers, a\, 

dp, and a?q are assumed to be independent of the channel coefficients, gij. Thus, in order that the 

energy per bit, E^, remain constant, one has that, 

Lal + aj + a2
q = (L + 2)Eh for MT, uplink 

La2
u +

 al = (L + 2)Eb for AP, downlink 

a\ = (L + 2)Eb for MT, downlink. 

Furthermore and importantly, if the network mobility is sufficiently high in the duration of the 

transmission, one can assume random distribution of the nodes; for example, for Gaussian dis

tributed nodes, the distances between nodes are Rayleigh or Ricean distributed. However, for low 

mobility networks, it is useful to evaluate the performance conditioned on the specific network re

alization to indicate locations of the nodes where the network reliability or the network throughput 

become unacceptable. In this case, the fading can be neglected, and the diversity gain is achieved 

by combining the signals transmitted from different nodes. 

Modulation Schemes 

In order to avoid phase tracking problems, and to simplify the receivers, we consider noncoherent 

BPSK (nBPSK) and differentially decoded differential BPSK (DBPSK). We also consider coherent 

BPSK (cBPSK) modulation as a reference. Hence, in general, denote by X the packet indices 

corresponding to the transmitted codeword, x — {U9ejXq}. In the destination node, assuming eq. 

(7.9), denote the received signal as, y = {Uqejyq}, and the corresponding channel coefficients 

as, g = {Uqex9q}, where gq — \gq\^
9, and the transmitted powers as, a = {Uqejaq}. The 

conditional PDF of the received signal, y, can be written as, 

p(y|g,a,x) = JJ p ( y " l^> a 9> x g) 
qei 

= Ur^w^(Jyq~gfqXqf) (7-iD 
ll(7rJVo)* P \ NO J 
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where ||-|| denotes the Euclidean norm of a vector. Then, the MLSD metric (in the log-likelihood 

domain), M.*, is the sum of the partial metrics, Ai^_q, i.e., A^x = SoeJ -^x , - The metric, A^x, 

is maximized over all possible transmitted codewords, x, to obtain a maximum likelihood decision 

[17]. 

Consider cBPSK modulation. Using the PDF (7.11), the LLR's of binary symbols in the packet, 

xq, are, Xq = -^Re{<7*yg}, where (•)* is the complex conjugate. The partial metric is computed 

as, MXq = aq\gg\Re{ e~^"y^yq}. 

Assume that the phases, ipq, are uniformly distributed and constant over the packet duration. In 

order to avoid phase estimation, one can use nBPSK modulation with non-coherent detection. Thus, 

the PDF (7.11) is averaged over the phase, tpq, and we obtain [21], [16], 

QglggHlxgll'+Hygm T (2aM\xgyg\ 
( v r i V o ^ ^ l N0

 l0[ No 
p(y\gq,aq,xq) = — — ^ e x p — J0 . (7.12) 

One can show that the partial metric corresponding to the PDF (7.12) is, M*_q = aq\gq\\x^yq\. If 

the phases, ipq = tp, for all the packets, q e l , then the MLSD metric, M* = | YLqziaq\9q\ xq y?|> 

[21], [16]. However, if the phase shifts, 4>q, q e 1, are changing from one packet to another, the 

partial metric, MXq, derived from (7.12) can only be used for very large packet length, K » l , 

in order to obtain the phase averaging effect over the phases, {Ugej ipq}. In this case, differential 

detection should generally be used. 

Consider DBPSK modulation. We obtain the LLR values for differentially encoded symbols, 
x<jfc> k = 1, 2, • • • , K, where the first symbol, xq\, is a reference. Hence, the PDF of the decision 

variable, £qk, after the differential detection, i.e., ^ = Re j yqky*ik_i\ \, is written as [154], 

p{€qk\aq,\gq\,xqk) = 

e x p ( t e ^ - 7 g ) \Ql{^Wq^KqkXqklN0) £gfca;,fc > 0 ( 7 . 1 3 ) 

No 
1 iqkXqk < 0. 

One can also obtain the CHF, ^ (jw) = E[exp(— ju>£qk)], of the decision variable, £qk, i.e., 

iqk[3UJ>
 1 + (2tqkxgku>\2 eXP\l+i2ZqkXqkLu/Nt 
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Then, the exact LLR of the binary symbol, xqk, is given as, 

A9fc = s i g n ^ V 4 | e , f e | / i V o + l o g g i ( V ^ , y ^ W ) ) (7-14) 

where j q is the SNR of the packet, q, and Qi(-, •) is the Marcum Q-function; see (A-9b). Note 

that, for large j q , the logarithmic term in the LLR (7.14) can be neglected; cf. the LLR expression 

for cBPSK modulation. Alternatively, one can use the received samples, yq(k-iy a s the chan

nel estimates to minimize the squared Euclidean norm, Y^k=2 l̂ ?fc ~ Vq(k-i)xqk\2, [155]. Note 

also that, m i n ^ \yqk - yq(k-i)Xqk\2 °<maxj^ Re|yqfcy*(A._1)| xqk = maxXqk £,qk xqk. The deci

sion variables, £,qk, are, in general, correlated, and we can show that the normalized correlation of, 

£qk, and, £g(fc_i), is equal to, q*,^^ '•> mus> the correlation increases with the SNR. Assuming 

approximation of (7.13) for large values of SNR and differential detection, the partial metric is, 

•M*q = J2k=2^qkXqk, [155]. 

Channel Estimation 

Consider estimation of the variable, hq = a^\gq\
2. The values of hq are used to select the parity 

check matrices, B[2]j, at Stage 2 of the protocol in Fig. 7.5. Also, since the channel attenuation is 

a function of the distance from the transmitter antenna, one can use knowledge of hq to determine 

distances between the nodes. For low mobility nodes, the channel is approximately constant over 

many packets, and thus, the estimator of hq is chosen to be consistent [156], and simple to imple

ment. Hence, for cBPSK modulation, conditioned on the transmitted sequence, x, the ML estimator 

offc,is[21], 

/i„ = - |Re{e-^ 'MLxTy g} 

where $q = arg(x^yq) is the ML estimator of ipq. 

For nBPSK modulation, assume that the moments, E[|yqx|m], rn > 1, are constant for all 

packets and bits. Thus, for m = 2, E [ly^l2] — hq + No, and the moment estimator of hq is [156], 

1 K 

hq = j?Y,\y^2-NQ ( 7-1 5 ) 

k=\ 

where the values, No, are assumed to be known or can be estimated, for a given receiver. Further

more, we can show that the estimator (7.15) has variance, var = (2hqN0+Ng)/K. 
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Stage 1 Stage 2 JtageS 

Figure 7.7: An equivalent channel model for the S transmission stages. 

7.2.4 Performance Analysis 

In general, in stage, s, the destination node decodes the transmitted packet, uq, or an incorrect 

packet, uj * ^ uq. Thus, the transmission of packets, uq, from a source to a destination node can 

be modeled as concatenation of the S discrete channels with memory as shown in Fig. 7.7. Denote 

Ersig to be an error event that the destination node does not decode the packet, ug, in Stage s. Using 

the law of total probability, the PER at the destination node in Stage S can be evaluated as, 

PER [ S ] = - L - £ P r ( u f = 1 E w , ) 
IXu q&Iu 

= ^TEIlPr(E[sk|u^E[r]g) 
qelus=l 

| j - u |
q e j u . = i 

(7.16) 

where Pr(E[s]g) denotes the probability of event E[s]q. Hence, if the data packet, q, is decoded in 

Stage (s — 1) of the protocol, then Pr(E[s]g | U*~J E[r]q) = 0. Inequality (7.16) follows assuming 

that the decoding of the protocol stages is independent. Also, we observe from (7.16) that the 

maximum diversity order of the protocol in Fig. 7.5 is given by the number of transmission stages, 

S. 

We analyze the performance of the protocol stages in Fig. 7.5. Hence, assuming the destination 

node, i, and the channel codes, C[s]j, s = 1,2, and 3 are linear, without loss of generality the all-

zero codeword, 0, can be considered as transmitted. We can upper bound the PER of the code, CM j , 
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using a truncated union bound, i.e., [17], 

PER [ s ] i < £ E g £ J " V ( " H ( C g ) ) PEPM i (0 ~ c) (7.17) 
c e £ j ( e m ) 

where the indicator function, \{x) — 1, if x > 0, and, I(x) = 0, otherwise, P E P ^ O i—> c) denotes 

the PEP that the all-zero codeword, 0, was transmitted, and the codeword, c = {UqCq}, is decoded 

at the destination node, i, and WH(C9) is the Hamming weight of the packet, cq. The list, A(em) = 

{c G C[s]j : c ^ 0, WH(C,) < em,\/q e I u i } , where em is the maximum number of bit errors in 
IT I 

the packet, cq. The size of the list is, \Ci(em)\ = [Ylt=o {K
e))

 — 1 > w n e r e (!i) i s t n e binomial 

coefficient, and |JUj| is the cardinality of JUj. 

Recall that, in Stage 3 of the protocol, a SPC code is employed for successfully decoded data 

packets to generate the packets of vertical parity bits for the cooperative diversity. In the downlink, 

the destination node, i — 1,2, • • • , N, is the MT, and it decodes the data packets, IU j . In the uplink, 

the destination node, i — 0, is the AP, and it decodes the data packets, Iu. Hence, denote PER^]^ 

and PER[2],ji to be the probabilities of not decoding the data packet, q, in the node, i = 0,1, • • • ,N, 

in Stage 1 and Stage 2 of the protocol, respectively. The probabilities, PER^j^j, and, PER[2]9j, are 

functions of the SNR and the codes, C^, and, C^u. Using (7.16) and the law of total probability, 

i.e., conditioned on the successful and unsuccessful decoding of the data packet, q, in the node, i, in 

Stage 1 of the protocol, the probability of not decoding the data packet, q, in Stage 2 of the protocol 

can be upper bounded as, 

p E R j % i < PER [ % i PER [ % i . (7.18) 

Correspondingly, the probability, PERL •, assumes that the decoding in Stage 2 of the protocol 

depends on the success of the decoding in Stage 1. Then, the elements of the matrix, V[3i, are given 

as, 

f 1 w.p. (1 - PERL •) 
WwU ={ [2]qJ (7-19) 

{ 0 w.p. PERj2]^. 

Note that, in the uplink, [V[3]]ig = 1, with probability (w.p.) 1, for the data packets, q G !„», 

corresponding to the i-th source node. Also, if the z-th node does not participate in the cooperation, 

then the i-th row of the matrix, V[3i, has all components equal to 0. 

Denote by PER[3]gi(V[3]) the PER of the random code, C[s\, in Stage 3 of the protocol corre

sponding to the data packet, q, and the destination node, i, conditioned on the parity check matrix, 
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V[3j. Note that the statistics of the random matrix, V[3], are given by the PER's of Stage 1 and 

Stage 2 of the protocol, and also, that the PER, PER[3]qi(V[3i), is function of V[3j. Then, in the 

downlink, the overall PER, PER[3], is the expected value over all realizations of the matrix, V[s\, 

the N destination nodes, and the corresponding L data packets, i.e., 

1 N 1 
P E R[3] = M £ W\ £ £ PER [% ,(V [3 ])Pr(V [3 ]) . (7.20) 

1=1 <?elui V[3] 

In the uplink, the overall PER, PER[3], is the expected value over all realizations of the matrix, V[3j, 

and NL data packets, i.e., 

PER[3] = - L £ J2 PER[3]9o(V[3])Pr(V[3]) . (7.21) 
q£luV[3] 

Importantly, note that evaluation of the PER, PER[3], using (7.20) and (7.21) has dimension 

proportional to, NL ^> 1. In order to reduce the problem dimension and simplify the analysis, 

we define an auxiliary binary random vector, D; G Z^L', for the destination node, i. The g-th 

component, [Dj]9 = 1, if the data packet, q, is not decoded at the destination node, i, and, [D;]g = 0, 

otherwise. Then, the components of Dj are, 

1 w.p. PERL . 
[Di]q={ [2]qi (7.22) 

0 w.p. ( l -PERj 2 ] g i ) . 

Thus, in the downlink, for the i-th destination node, the i-th row of V[3] is a binary complement of 

Dj. Since the all-zero codeword is assumed transmitted, then, in the downlink, one can consider 

only a subset, l'u C I u , of N' < NL data packets that cannot be successfully decoded at the 

destination node, i. The undecoded packets, l'a, correspond to the non-zero components of the 

vector, Dj. The cardinality, |Ty| = N', and thus, the dimension of the analysis is reduced to 

N'. Importantly, note that, for stronger codes, C^jj, and, C[2]i, and larger values of SNR's, the 

probabilities, PERL •, and the values, N', wee smaller. Particularly, for the i-th destination node, 

using eq. (7.22), we can show that the probability mass of N' is given by the generalized binomial 

distribution, i.e., 

Pr(jV = „') = E n ( P E R ! % i ) ' D ' ' , ( ^ P E R ; * ) H D ' 1 , C7.23) 
Di q=l 
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and J2n'=o Pr(-W = n') = 1- The generalized binomial distribution is readily computed in the 

transform domain; see [157, Appendix C] and [158]. Hence and importantly, without loss of gen

erality, (NL — N') columns of the matrix, V[3], corresponding to the successfully decoded packets 

in the destination node, i, (i.e., corresponding to the zero components of the vector, Dj), can be 

removed; the resulting matrix is denoted as, VL^ e Z!> ' '. Furthermore, assume downlink trans

mission, and let T'ni C T'u be the data packets of the i-th destination node. Then, one can condition 

the PER in Stage 3 of the protocol on the matrix, Vjg^, and the PER (7.20) can be efficiently 

evaluated as, 

1 N 1 
PER[3] = ]v E IFT E E P E R [ 3 f c ( V y P r ^ ) . (7.24) 

i=l ' u » l 9 G J , . v , 3 ] . 

In the uplink, we can use the vector, Do, to remove columns of the matrix, V[3j, corresponding to 

the successfully decoded packets in the AP, and obtain the matrix, Vj3,0. Then, assuming a subset, 

J'u0 C Xu, of N' < NL data packets that cannot be successfully decoded in the AP, the PER (7.21) 

can be efficiently evaluated as, 

PER[3] = ^ - T E E P E R[%o(Vf3 ] 0)Pr(v{3 ] 0) . (7.25) 

9t-SiO V[3]0 

Thus, the dimension of the analysis is again reduced to N'. Finally, in this chapter, eqs. (7.24) and 

(7.25) are evaluated using computer simulations. 

Pairwise Error Probabilities 

In general, the PEP conditioned on the channel coefficients, g, and the transmitter powers, a, is 

evaluated as [17], 

PEP(x -» x' |g,a) = Pr(Dx x , < 0|g,a) 

where x = {Uq<=2Xq} is the transmitted sequence corresponding to the codeword, c = {UqezCq}, 

x' = {Uq£jXg} is the decoded sequence (in the pairwise error event sense) corresponding to the 

codeword, c' = {Uqexc'q}, and .Dxx/ = Ylqei L>xx'q = -Mx — M-^i is the difference of the metric, 

• ^ x = E g G l - ^ x g , a n d ' M * = E g e X ^ x ' g -

We consider cBPSK modulation as a reference. In particular, the PEP of cBPSK modulation 
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can be written as [82], 

PEP(x*->x'|g,a) = Q\ 

A 
a%W2 

cT"2iVo gel 

where ||xg — x^|| = 4WH(C, c'), WH(C,C') is the Hamming distance between the codewords, c, 

and, c', and the Q-function, Q(x) = (2ir)-^2 J°° exp{-t2/2)dt, [21]. 

For nBPSK modulation, we assume that the phase shift is constant for all packets, T, i.e., ipq = 

ij), Vg € T. We can follow reference [159] to obtain the PEP of nBPSK modulation. In particular, let 

the MLSD metric of the codeword, x', be, M.^ = | J2qei aq\9q\x'qT (aq\9q\y:q + w<?) I = l^tPxx' + 

w •' I2 

qk\ 
= N0, per \fN~tw' | where w' is the vector of zero-mean AWGN's having variance, E 

dimension, and k — 1, • • • , K. The normalized correlation and the total energy of the useful signal 

are given as, p^> = -^ J2qelaq\9q\2 xgTx<?> and> Nt = K Y^qeial\9q\2> respectively, where 

x'g
Txq = X - 2wH (xq, x^). Thus, the PEP of nBPSK modulation is [21, eq. (5-4-4)], 

PEP(x h-> x' |g,a) = Qx{-, - ) - - exp I - g I0 I — (7.26) 

where the coefficients, a = \ Ntjo(l - J l - />x ,), and, 6 = \ Ntjo(l + A/1 - Pxx/)-

For differentially decoded DBPSK modulation, we have that, Z> xx'5 iXWw «(*-!) + 
y*qkyq{k-i)){xqk — x'qk)- ^n t n i s case> t n e PEP is evaluated using the CHF of Dx x 'g , as shown 

in [155]. We omit the packet index, q, for brevity, and obtain the CHF of Dxx/q. Hence, define the 

2(K - 1) x 2{K - 1) matrix, 

0 A w 
F = 

0 

where Ax x / = diag(x2 — x'2, • • • ,XK — x'K) is the diagonal matrix. Define also a complex-

valued jointly Gaussian vector, z = (yi,••• ,VK-iiVii • • • >VK)T, having the mean, z = E[z] = 

ag (xi, • • • , x^_ i , X2, • • • , XK)T — ag x, and the covariance, 

E [ ( z - z ) ( z - z ) *n Nn 

l{K-l) JJK-1) 

^(K-l) \K-1) 
= iVn£ 
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where the (K — 1) x (K — 1) matrix, 

» ( « • - ! ) = 

0 1 

1 

. . . o 

Then, the CHF, ^DX X / (Jw) = E [exp(—ja>.Dxx/g)], of Acx'? can be written as [155], 

exp (-a2
q\gq\

2\)uxF{l + iiVoJwEF)-1*) 
*£> , (jw) = 

det(I + iVoJfEF 
(7.27) 

Correspondingly, conditioned on the sequences, x, and, x', the values, -DXx'<j> for packets, q € J , 

are independent, and thus, ^DX X / 0 W ) = ilqez ^£>xx/ (j^)- Finally, the PEP is computed using eq. 

(3) from [82], i.e., 

P E P ( x ^ x ' | g , a ) = — / XX'U ; d u . (7.28) 
2 7 r ./c-joo J w 

Note that the residue theorem cannot be used to compute (7.28) due to the essential singularity in 

(7.27); (in contrast, the essential singularity is removed in [155] since z has zero-mean in [155]). 

We evaluate the PEP (7.28) using Gauss-Chebyshev quadrature, i.e., [82], 

PEP(x H* x' |g,a) = ^ £ (Re{*D x x , ( c(l + fa))} + 
z = l (7.29) 

+ r 2 Im{* D x x / (c ( l+ j r 2 ) )}) 

where Z > 1 and c are chosen for numerical convergence, and, r2 = tan((z — 1/2)TT/Z). 

7.2.5 Numerical Examples 

In the uplink, the MT's transmit and receive packets in all three stages while the AP only listens. 

In the downlink, the AP transmits packets in Stage 1 and Stage 2 of the protocol while the MT's 

listen, and in Stage 3, the MT's transmit and listen. Consider the link budget of a typical Wi-Fi 

system. The transmitter powers are 20-35 dBm for the AP, and 10-20 dBm for the MT. The typical 

noise figure for a low cost receiver is, say, 10 dB at the AP, and 13 dB at the MT. Let the minimum 

required SNR for the receiver (e.g., to detect the signal and acquire synchronization) be, 1 dB, for 

the AP, and, 3 dB, for the MT. Typical values of the background thermal noise are -175 dBm/Hz 
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Table 7.7: An example link budget for the AP and the MT. 

transmit power^ 
data rateW 

noise figure^ 
thermal noise^ 

path loss at 100m 
noise level at Rx 

minimum SNR 7femin^ 
receiver sensitivity 
signal level at Rx 

SNR 70 at 0m 
SNR 7b at 100m 

AP MT 
20dBm 

10 Mbps ~ 10 MHz 
10 dB 13 dB 

-165 dBm/Hz 
-86.4 dB 

-85 dBm 
ldB 

-84 dB 

-82 dBm 
3dB 

-79 dB 
-66.4 dBm 

105 dB 
18.6 dB 

102 dB 
15.6 dB 

to —165 dBm/Hz, and we assume a bandwidth of 10 MHz for a 10 Mbps (mega-bits per second) 

raw data rate (i.e., including the parity bits); thus, the spectral efficiency is 1 bit per second per 

Hertz. We can compute the required receiver sensitivity as the sum (in dB) of the background 

noise, the noise figure, and the minimum required SNR. An example of the link budget analysis to 

calculate the receiver SNR at a distance of 100m from the transmitter antenna of the AP and the MT, 

respectively, is given in Table 7.7. In Table 7.7, we assume that the path loss exponent, \i — 2, and 

the wavelength, A = 0.06m, corresponding to the carrier frequency, 5 GHz. An asterisk in the first 

column of Table 7.7 denotes input values; the other values are computed. For example, the noise 

level at the AP receiver is, —165 + (10 log10 107) + 10 = —85 dBm, the AP receiver sensitivity is, 

- 85 + 1 = -84 dB, the signal level at the AP receiver is, 20 - 86.4 = -66.4 dBm, and thus, the 

SNR at the AP receiver is, -66.4 - (-85) = 18.6 dB. 

Assuming the parameters and the link budget analysis given in Table 7.7, and the path loss 

model (7.10), Fig. 7.8 shows the receiver SNR, 7^ = |g|27o, where |g|2 « 2.28 • 10~5 • d~^, versus 

the distance, d, from the transmitter antenna, for \x = 2, 3, and 4. The 3 dB difference between the 

AP and the MT receiver SNR's in Fig. 7.8 corresponds to the difference in the noise figures of the 

AP and the MT receivers. Note that the additional 2 dB difference in the minimum required SNR 

for the AP and the MT receivers results in downlink coverage of 600m, while the uplink coverage is 

only 550m, assuming equal uplink and downlink transmitter powers of 20 dBm. Hence, the receiver 

sensitivity is an important design parameter, and it is directly related to the achievable coverage of 

the network. 
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Figure 7.8: The uplink and downlink receiver SNR, 7^, versus the distance, d. 
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In the sequel, we study the uplink and downlink PER performance versus the distance to evaluate 

the achievable network coverage at the three stages of the protocol in Fig. 7.5. In particular, the 

PER analysis in Stage 1 and Stage 2 of the protocol is considered independently; one can use eq. 

(7.18) to estimate the PER in Stage 2 of the protocol taking into account the possibility of the 

successful decoding already in Stage 1. The PER's, PER^; = PER^j, and, PER[2]i = PER[2], 

are obtained for the particular node, i, employing a truncated union bound (7.17). Also, using 

computer simulations, we estimate the PER for Stage 3 of the protocol at a particular destination 

node, i, assuming that Stage 2 of the protocol is represented by the PER's, PERpjji in this case, 

the decoding in Stage 1 is ignored. In general, we assume the packet length, K = 24, bits, and the 

network topology in Fig. 7.6, for N — 4 and 8 users, the distance, dap = Om and 400m, and for 

varying values of dmt = d. 

PER of Stage 1 

We assume the CRC generating polynomial, z6 + z4 + z3 + 1, where z is a dummy variable 

[150]. Thus, we have, Kcrc = 6, CRC bits, and, Ku — 18 (Ku = 17, for differential encoding), 

information bits. Since the minimum Hamming distance, dcrc = 4, this polynomial can detect all 

error patterns of weight, 1,2,3,5,7,9, • • •. Fig. 7.9 shows the union bound (7.17) of the PER, 

PER[i], for the uplink transmission. We assume, Z = 128, and, c = 1/4, in calculating the 

PEP's (7.29). The simulation results in Fig. 7.9 were obtained for the transmitter power, a% = 1, 

and Wagner decoding flipping the 7 least reliable bits, for cBPSK, nBPSK, differentially decoded 

DBPSK, and noncoherent binary frequency shift keying (nBFSK) modulations; the probability of 

bit-error for uncoded nBFSK modulation is given by [21, eq. (5-4-47)]. We observe from Fig. 

7.9 that the CRC coding and Wagner decoding (with no packet retransmissions) improve the link 

coverage by 200m for cBPSK, and by 100m for nBFSK at PER^ = 10~2. 

PER of Stage 2 

Consider the IBRC's and the SPCPC's for Stage 2 of the protocol in Fig. 7.5. Let the transmission 

powers be, La\ + a^ — (L + l)Eb, so that, a\ < (1 + l/L)Eb, for the data packets, and, a* < 

(1 + L)Eb, for the horizontal parity packets. We assume differentially detected DBPSK and that 

neither the CRC bits nor any decoding in Stage 1 are employed. Fig. 7.10 compares the truncated 

union bound (7.17) for the PER, PER[2], of the IBRC's and the SPCPC's versus the distance, d, for 

^min = 4, and L = 1 and 2 data packets. The parity check matrix of the IBRC's, for dm;n = 4, is 
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given in Section II.B. Note that the data packets employing the SPC coding and DBPSK modulation 

contain, Ku = 22, information bits, while Ku = 23 for information bits in data packets using the 

IBRC's. We observe from Fig. 7.10 that reducing the power, a^, while increasing the power, a^, 

improves the link coverage for the IBRC's, however, the improvement monotonically decreases with 

L. On the other hand, the optimum transmission power distribution for the SPCPC's is uniform, i.e., 

a\ = aj. 

The PER truncated union bounds for the IBRC's of rate, R = 1/2 (i.e., L = 1), and R = 2/3 

(i.e., L = 2), and dm[n = 5 and 7, are shown in Fig. 7.11. The parity check matrix of the 

IBRC's is generated by the cyclic shifts, (0,1,2,4), for L - 1 and dmin = 5, (0,1,2,4,5,7), for 

L = 1 and dmin = 7, (0,1,2,4) and (0,1,5,8), for L = 2 and dmin = 5, and (0,1,2,4,5,7) and 

(0,1,5,8,9,14), for L — 2 and dmin = 7. We observe from Fig. 7.11 that reducing the power, 

a„, while increasing dm;n and L significantly improves the achievable coverage. For example, the 

coverage of 370m for the IBRC of R = 1/2, c?u = 1.0, and dm;n — 5, is increased to 470m for the 

IBRC of R = 2/3, al = 0.5, and dmin = 7, for PER[2] = 10~2. Note also that, in general, the 

power optimized IBRC's outperform the SPCPC's, for the same dmin. 

PER of Stage 3 

Exact analytical evaluation of the performance for Stage 3 of the protocol in Fig. 7.5 is particularly 

difficult. Thus, MC simulation, and the truncated union bound are used to obtain the expected PER 

averaged over the realizations of Vjgu, for a particular destination node, i. As an example, assume 

differentially detected DBPSK modulation, and the IBRC of rate R = 1/2, and dmm — 5 from Fig. 

7.11. The values of PERp] are obtained using interpolation and the curves in Fig. 7.11. For each 

network realization, we generate 1000 matrices, V[3], using (7.19). In turn, using N' and Dj, we 

obtain the matrix, VL^, and generate the N' data packets having equally probable bits, 0, and 1, 

and total Hamming weight at least 1, since the all-zero codeword is transmitted. Furthermore, in 

order to reduce the computer simulation run time, we assume that the data packets have the weight, 

em = 1, and that there are K^ such packets having the same PEP. 

Fig. 7.12 shows an estimate of the PER truncated union bound for the uplink and downlink 

transmissions, for dap = 0m, and 400m, and transmitter power, a^ = 1, and energy per bit, Eb = 1, 

for both the AP and the MT's. In the downlink, we assume that the destination node is at distance, 

<̂ ap + dmt, from the AP. We observe from Fig. 7.12 that the downlink cooperation is more efficient 

than the uplink cooperation for both values of dap. Although the network coverage is improved with 
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d[m] 
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Figure 7.9: The PER of Stage 1 of the protocol using the CRC code, and Wagner decoding. 

the number of cooperating nodes, the improvement is significantly more dependent on the specific 

network realization. We observe from Fig. 7.11 and Fig. 7.12 that cooperation can improve the 

coverage of Stage 2 from 370m to (dap +180) = 580m in the downlink, and (dap +100) = 500m in 

the uplink, for PER[2] = PER[3] = 10 - 2 . Note also that the cooperation gain is increasing towards 

smaller values of the target PER. In particular, for smaller values of PER[2], more information can 

be shared among the nodes, and the larger the coding gain of the product code, C^. Also, the 

overall PER is improved by cooperation in the areas where PERr3i < 1; cf. eq. (7.16). 
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-B-SPC,L=1 
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Figure 7.10: The PER truncated union bound for the IBRC's and the SPCPC's used in Stage 2 of 
the protocol. 
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Figure 7.11: The PER truncated union bound for the IBRC's used in Stage 2 of the protocol. 
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Figure 7.12: An estimate of the PER truncated union bound for a random code, Cp], in Stage 3 of 
the protocol. 

196 



7.3 Summary 

A novel class of multidimensional IBRC's was proposed. Properties of binary cyclic matrices use

ful to the design of IBRC's were discussed. Two optimization problems to design multidimensional 

IBRC's assuming either the constraint length or the constraint weight were presented. The con

straint on the weights was shown to make searching for good codes significantly easier. It was also 

proved that permutation of bits in other dimensions can increase the minimum Hamming distance of 

the code without increasing the transmission bandwidth. This is especially useful for concatenation 

of ID binary codewords. Examples of non-systematic ID, 2D and 3D IBRC's were presented. Ap

plications of IBRC's were considered and their performance was analyzed using a union bound of 

the BER. Particularly, IBRC's were investigated for adaptive coding, turbo product coding, retrans

mission and multihop routing and block differential encoding. It was observed that non-recursive 

block differential encoding of IBRC's increases the overall coding rate with the number of differ

entially encoded blocks while the code minimum Hamming distance remains constant. Finally, the 

transmitter energy distribution over a codeword was optimized in order to improve the BER. 

In the second part, a three stage network protocol that improves network coverage was pro

posed. It was shown that the PER is a product of the PER's corresponding to the protocol stages. 

The PER's were conditioned on the specific network realization assuming that the channel attenu

ations are proportional to the free-space path loss. A realistic link budget was used to estimate the 

achievable network coverage. Noncoherent modulation schemes were considered in order to sim

plify the receivers. Examples of a CRC code for Stage 1, and IBRC's and SPCPC's well-suited for 

Stage 2 of the protocol were investigated. Particularly, minimum Hamming distance of the IBRC's 

can be adapted to channel attenuation. Cooperation among the nodes was implemented using a 

random vertical encoding. It was observed that the cooperation gains are strongly dependent on 

the specific network realization, both in the uplink and in the downlink, and less dependent on the 

number of cooperating nodes. For the parameters considered, the downlink cooperation was found 

to be more efficient than the uplink cooperation. 

The channels between nodes were assumed to be Gaussian, and thus, the performance improve

ment is due to coding gain rather than fading diversity gain. On the other hand, for moderate 

decoding complexity, Stage 2 of the protocol allows exploiting diversity of the fading channel im

proving the reliability and coverage of Stage 1 of the protocol. Stage 3 of the protocol can improve 

the reliability and coverage further, but at the cost of increased decoding complexity and signal-
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ing overhead. Note also that the number of time slots allocated for each of the protocol stages is 

arbitrary (i.e., can be zero), and it is a design parameter for the specific network scenario. 
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Chapter 8 

A Hypergeometric Analysis of Diversity 

Combining Schemes and SNR Adaptive 

Receivers 

In this chapter, we investigate a hypergeometry of objects in K dimensions. The results of hyper-

geometry are then applied to optimize dimension of the SNR adaptive receivers. 

8.1 Background 

Many practical problems in communication and information theory involve entities in K dimen

sions. For example, information transmitted from a source to a destination has to propagate over 

a noisy communication channel. Such channels make the information transmission unreliable, and 

thus, the communication channels are often deliberately formed in K dimensions in order to im

prove the transmission reliability or to increase the channel throughput. The transmission reliability 

is improved provided that the K channel dimensions (or degrees of freedom) are used to create 

transmission diversity in time, in frequency, and in spatial domains [160], [161]. Thus, motivated 

by the K-dimensional problems of information transmission, we investigate the hypergeometry of 

some objects in K dimensions. In particular, we consider the i\"-dimensional sphere, polytope, 

cube, scaled polytope and the scaled cube. We observe that the volume and the surface area of these 

objects is not monotonic in dimension, but reaches a maximum, and then, decrease towards zero. 

This fact appears not to be explicitly stated otherwise. For example, Weisstein [162] comments on 
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the monotonicity of the surface area of the unit radius hypersphere: 

"Strangely enough, the hypersurface area reaches a maximum and then decreases towards 0 as n in

creases. The point of maximal hyper-surface area satisfies ^ ^ = - — " T i 0(,zn" = o, where &Q(X) = 

fy(x) is the digamma function. This cannot be solved analytically for n, but the numerical solution is 

n = 7.25695 (Shane's A074457; Wells 1986, p. 67). As a result, the seven-dimensional hypersphere 

has maximum hyper-surface area (he Lionnais 1983; Wells 1986, p. 60)." see also, [163], [164, p. 58], 

and [165] 

Furthermore, diversity combining schemes (DCS's) are often used to exploit multiple received 

copies of the transmitted signal at a fraction of the complexity cost of forward error correction 

codes. The maximum number of receiver antennas is usually determined by the receiver physical 

constraints and the cost of radio-frequency signal processing units. Hence, one can optimize the 

number of receiver antennas to reduce the implementation cost and complexity and to obtain a 

sufficient diversity gain. In general, a particular DCS is selected for a given channel estimation 

complexity. However, literature on optimum receiver dimensionality is scarce; for example, the 

optimum repetition diversity is investigated in [125]. On the other hand, references on performance 

analysis of DCS's are plentiful. For example, performance analysis of DCS's can be found in [66] 

and references therein. 

This chapter is organized as follows. In Section 8.2, results presented in [166] are recalled and 

generalized to other if-dimensional objects. In particular, we elaborate on an important observa

tion that the dimension corresponding to the maximum volume and to the maximum surface area 

depends on the radius of the object being considered. Thus, we solve the maximization problem 

in the discrete domain, and we obtain a dimension maximizing the volume and the surface area as 

a function of the radius; this is proved in two theorems. We also consider monotonicity of the p-

norm, in general. In Section 8.3, we introduce a system model and assume partitioning of the SNR 

into a finite number of sub-intervals to realize adaptive signal processing using a bank of subchan

nel detectors. We then define several performance measures. In Section 8.4, we describe DCS's 

using a hypergeometry of objects in K dimensions. In particular, we consider MRC, EGC, SC 

and HS/MRC schemes to obtain a K-dimensional sphere, scaled polytope, cube and sphere, respec

tively. In Section 8.5, numerical examples are used to confirm non-monotonicity of the performance 

measures versus dimension as predicted by the hypergeometry. Finally, the chapter is summarized 

in Section 8.6. 
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8.2 Hypergeometry 

Denote a real vector space in K dimensions as 1ZK, for K = 1,2, • • •, and let the vector, g = 

(9i,52, • • • ,9K) G 1ZK. Recall the definition of the lp norm of the vector, g € 1ZK, in (A-10), 

i.e., lp > 0, for p > 0. In general, we assume that the distances in 1ZK correspond to the h, 

norm; for example, radius and edge length are defined using the h, norm. We define the following 

if-dimensional objects, i.e., 

S/c(a) = { g € f t * : | | g | | 2 < a } 

PK(a) = {g € ^ ^ : Hslli < a} 

CK(a) = {g € ft* : HsIL < a} 

where S#(a) is the sphere of radius, a, P#(a) is the polytope of radius, a, and C^-(a) is the cube 

of edge length, 2a. Note that, for K = 2, P2(a) corresponds to the cube, C2(a/\/2), rotated by 7r/4 

radians. Using the Pythagorean theorem, it is straightforward to show that the polytope, P#(a) , 

of radius, a, has edge length, a\[K, and the cube, Cx(a), of edge length, 2a, has radius (i.e., the 

distance between the origin and any of the vertices), aj\/~K. Let P#(a) denote the polytope of edge 

length, a, and C'K(a) to be the cube of radius, a, i.e., 

P'K(a) = { g e ^ r - L n g H ^ o } (8.1a) 

C'K(a) = {geUK :VKU\L<a}. (8.1b) 

In addition, denote the corresponding (K — 1)-dimensional surfaces of the K-dimensional sphere, 

polytope, cube, scaled polytope and the scaled cube, respectively, as, 

S*(a) = { g e f t * : | | g | | 2 = a} 

Px(a) = {g e KK : Hg^ = a} 

CK(a) = {g G ft* : UglL = a} 

Pjf(a) = {g € ft* : - ! = Ugllj = a} 

C'^a) = { g G f t ^ : ^ | | g | | 0 0 = a}. 
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In order to simplify the notation, let OK(CI) represent an object having the surface, OK(O), i.e., 

0K (a) G {S^(a) ,P^(a ) ,C^(a) ,P^(a ) ,C x (a )} 

0K(a) e {SK(a),PK(a),CK(a),PK(a),C'K(a)}. 

Then, lima_>o Ojf(o) = 0 K is an empty object having zero volume, and, linia-joo OK {a) — 1ZK. 

8.2.1 Properties of the lp Norm 

We prove the following theorem on monotonicity of the lp norm and the scaled lp norm. 

Theorem 8.1 Let g = (51,52, • • • ,9K) €= TlK, and p > 0. 77ie lp norm, | |g|L, arcd f/i£ scaled lp 

norm, -4= ||g|L, are monotonically increasing in dimension, K, and monotonically decreasing in 

the norm-order, p . 

Proof: The theorem is proved by induction. Consider first the lp norm. Given the vector, 

g, let the vector, g ' = {g,gK+i). For p < 00, one has that, | |g ' | |p = (J|g||£ + \gK+i\p) , 

and thus, | |g ' | |p > | |g | |p . If p = 00, then m a x f e = i r . ^ \gk\ < m.BX.k=i,-,K+I \9k\, and thus, 

| |g|L < llg'ILi for ^ S £ TlK, ygK+i G TZ, and Vp > 0. Consider now the scaled lp norm. Given 
He'll Hell He'll 

the vector, g, we need to show that, /^A- > —r&- Hence, for p < 00, we have that, /^-£ j- = 

((llg||p)
p+|gK+ilP) ) a n d a f t e r s o m e manipulations, \gK+i\p > ||g||£ ((V1 + 1 / K ) P ~ 1 ) - T h u s ' 

whether the ( K + l)-th component, gK+it increases the lp norm depends on the lp norm, | |g|L, 

and on the sequence, £K(J>) — ( \ / l + 1/K)P — 1. Since, for any p > 0, the sequence, £#(£>), is 

decreasing with dimension, K, the probability that, |(7if+i|p > | |g | |p^K(p). is increasing. Thus, 

the lp norm increases with dimension K in the probability sense. Similarly, for p = 00, we have 

that, 11 g' 11QO > Uglloo y/T+T/K. Since the sequence, y/l + T/K, is decreasing, the probability 

that, gK+i > | |g|L \ A + 1/-K", is increasing, and thus, the Z^ norm is increasing with K in the 

probability sense. 

Finally, we show that the lp norm, | |g|L, is decreasing with p . Thus, taking the derivative of 

|g | | p , one has that, 

l lg | | ( 1- p ) K ( \au\ 
1 11 ll&iip ^—«, 1 m i / \9k\ 

|gHP
= „2 2^\9k\plog\ d P" "P P2 tl V££=lMP 
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Since log a: < 0, for x < 1, we have that, ^ ||g|| < 0, for Vg e KK, and thus, the norm, ||g|| , is 

a decreasing function of p, for p > 0. • 

Furthermore, it is useful to determine the conditions when one K-dimensional object is con

tained inside another K-dimensional object. We can prove the following inequalities for g e 7lK, 

i.e., 

|g|loo < N I 2 ^ Hslli (8-2a) 

Iglli < llglb (8-2b) 
K 

||g||2 < V K | | g | U (8.2c) 

|g|L £ -Lllglli (8.2d) 
v A 

where the operator, ^ , denotes the case when either of the operands can be larger. We observe from 

(8.2a) that, without any scaling, l\ is the largest norm. On the other hand, if l^ is not scaled, and l\ 

is scaled by \j\[K, then la is the largest norm; see (8.2b). Also, if HgH^ < a, then, -^ \\E\\\ < a-

Hence, we can determine the maximum radius of an object to be contained inside another object of 

the given radius; this condition is necessary, but not sufficient for one object to be inside another 

object. Hence, the maximum radius, a*, of the polytope (of the cube) to be contained inside the 

sphere of radius, a, is, 

a* =max| |g | | s.t. ||g|U < a (8.3) 
g p 

where p = 1 (p = oo). Using the method of Lagrange multipliers, and noting the symmetry of (8.3) 

[54], one obtains that the vector, g*, that solves (8.3), is given by all permutations of the components 

of the vector, (a/'\fm, • • • , aj\fm, 0, • • • ,0), where m is the number of non-zero components; 

thus, for m — 1,2,-•• ,K, we have that, ||g*||2 = a, ||g*||x = ay^rn, and Hg*^ = a/^/m. 

Hence, for m = 1 (m = K), the polytope (the cube) has the maximum radius, a* = a (the edge 

length, 2a* = 2aj\fK) in order to be fully contained inside the sphere. Similarly, the sphere 

contained inside the polytope (the cube) of radius, a (the edge length, 2a), has the maximum radius, 

a* = a/y/K, (a* = a). 

8.2.2 Volume and Surface Area 

Denote V[0^(a)] to be the volume, and A OK (a) to be the surface area of the ^-dimensional 

object, OK(CL). We investigate monotonicity of the volume, V[0^(a)], and of the surface area, 
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A Oft-(a) , versus dimension, K. Hence, in general, for p > 0, using spherical coordinates in K 

dimensions, the volume of the object, 0#(a) , is computed as, 

V[0K(a)} dg A OA:(1) tK-ldt = A OJC(1) 

K 
a 
~K 

l|g||p<o 

where A 

(8.4) 

tK~l is the 0^(1) is the surface area of the unit radius object, 0^(1) , and A 0^(1) 

(K-1)-dimensional surface area of the object, A[Oi<-(i)], of radius, t. Correspondingly, the surface 

area of the object, OK (a), is, 

A 0K(a) 
dV[0K(a)} 

da 
= A 6K(1) ,K-1 V[0K(a) 

K 

Hence, knowledge of A 0*(1) is sufficient to evaluate the volume and the surface area of any 

object, OK(CL). Also, given the dimension, K, and the volume, V[0#(a)], or the surface area, 

A OK (a) , one can compute the radius, a, as, 

a = K 
V[0*(a)] 

l/K 

A OK(1)\ 

A 0K{a)\ 
l/(K-l) 

A 

,K 

OK{1)\ 

Note that, if a < 1, the limit, lim^^oo ^ = 0. Furthermore, for any dimension, K, the vol

ume and the surface area are finite provided that the radius is finite; i.e., if 0 < a < oo, then, 

0 < V[0/f (a)] < oo, and, 0 < A 0#(a ) < oo. Hence, given the radius, a, we investigate 

whether there exists dimension, K*, such that, VfO^ (a)] < V[0^ 2 (a)], for K\ < K2 < K*, and, 

V[0^1(a)] > V[0^-2(a)], for K* < K\ < K2\ a similar conjecture can be made for the surface 

area. Furthermore, we conjecture that the volume, V[0#(a)], and the surface area, A OK {a) , 

reach a maximum for dimension, K = K*, and then decrease toward zero as K increases while the 

radius, a, is constant. This observation appears not to be well known in the literature, [167]. Noting 

that the dimension, K*, of the maximum volume and of the maximum surface area depend on the 

radius, a, we prove the following two theorems. 

Theorem 8.2 The volume, V[0^-(a)], of the K-dimensional object, OK{CL), of constant radius, a, 
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reaches a maximum for dimension, K* = K, if UK-\ < a < UK, and, K* G {K,K + 1}, if 

a = UK, where 

VK = < 
A[6K+1(i)] ^ K ) ^ _ I , A 

o # < o 

and importantly, provided that the sequence, UK, is monotonically increasing with K. 

Proof: Recall that, V[0K(a)] = A [ 6 K ( 1 ) 1 *£. If V[0^(a)] > V[Ojf+i(o)], then one has 

that, Y[OK+I(O)] > V[Ox+2(a)], since V[0^(a)] > V[0^+ i (a)] is equivalent to the condition, 

Jo K nil ( T T ^ ) = ^K — a ' anc* ^ [^x+i ( a ) ] > V[Ox+2(a)] is equivalent to the condition, 

A K + 1
 m

:- (J^jlf) = ^ic+i > a, and the first condition implies the second, for any dimension, 

K = 1, 2, • • •. Consequently, by induction, since UK is assumed to be a monotonically increasing 

sequence, the volume, V[C#-(a)], is a monotonically decreasing sequence, for K > K*. Similarly, 

we can show that, if V[0K{a)} > V[0K-i{a)}, then V[0K-i{a)} > V[0K-2{a)], and, a > 

VK-\' Consequently, by induction, and using an assumption that the sequence, UK, is monotonically 

increasing, the volume, V[C#(a)], is a monotonically increasing sequence, for K = 1,2, • • • , K*. 

Hence, V[0^_i(a)] < V[Oif(a)] > V[Ojf+i(a)] is equivalent to VK-\ < a < UK, and V[Ox-(a)] 

is a global maximum, and K* = K. Finally, the global maximum with equality, V[Ox(a)] = 

V[OK+I{O)], occurs when a = uK, and, K* € {K, K + 1}. • 

Theorem 8.3 The surface area, A OK {a) , of the K -dimensional object, OK (a), of constant ra

dius, a, reaches a maximum for dimension, K* = K, if/iK-i < a < UK, and, K* G {K,K + I}, 

if a — HK< where 
r A|6x(D] R _ 1 2 

jlK = VK 
= J A[0K + 1(1)] " J-'"' 

^ + 1 I o K < O 

and importantly, provided that the sequence, PK> is monotonically increasing with K. 

Proof: The proof follows along the same lines as the proof of Theorem 8.2. • 

Importantly, since UK and JJ,K are monotonically increasing sequences, we have the following corol

lary of Theorem 8.2 and Theorem 8.3. 

Corollary 8.4 Let K* denote the dimension of the maximum volume or the maximum surface area 

corresponding to radius, en, for i = 1 and 2, and a\ < a2, then, K\ < K%. 

Since UK — VKK+\'
 m e monotonically increasing sequence, UK, implies the monotonically 

increasing sequence, \IK- Strictly speaking, the opposite statement does not hold; since ^j^- is the 
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monotonically decreasing sequence, the monotonically increasing sequence, JIK, does not imply 

the monotonically increasing sequence, VK- Also, according to Theorem 8.3, if limx^oo VK = °o, 

then, for any radius, 0 < a < oo, the volume, V[Ojf(a)], reaches the maximum value. Similarly, 

the condition, UIUK^OO \XK — oo, guarantees that, for any radius, a > 0, there exists a maximum 

value of the surface area, A CK(a) . Note also that, if a = VK (a = /J,K), the maximum volume 

(the maximum surface area) occurs at two consecutive values of dimension. 

Particularly, consider the K-dimensional sphere of radius, a. Using spherical coordinates, we 

obtain that, A SA-(1)1 = 2TTK/2/F ( f ) , where T (•) is the gamma function [168]. Hence, the 

volume and the surface area of the sphere, S#(a), are [22], [23], 

2vr^/2 aK 

V[SK(a)} 

A SK(a) 

r(f)* 

r(f) 
K-l 

We have the following lemma. 

Lemma 8.5 Let, Ky, and, K*A, denote the dimension that correspond to the maximum volume, 

V SK* (a) = max^ V[S#(a)], and the maximum surface area, A m*A(a) maxft-A SK(a) 

of the sphere, S^(a), respectively. Then, for a > 1/2, one has that, Ky 

sequences defined in Theorem 8.2 and Theorem 8.3, HK = VK-2-

K*A - 2, and the 

Proof: Note that T ( f ) <K 1)! if K is even, where K\ = K(K - 1) • • • 2 • 1, 

and T ( f ) = ffifrjl," if K is odd, where K\\ = K{K - 2) • • • 5 • 3 • 1. Hence, vK = 

T%+{K/2) (^ = VK ( ^ ) , and we have that, m = uK-2. Consequently, KV = K*A-2.U 

For example, while the unit radius (K = 7)-dimensional sphere has the maximum surface area, 

the unit radius sphere has the maximum volume for dimension, K = 5. We have the following 

corollary of Lemma 8.5. 

Corollary 8.6 For the sphere in K > 3 dimensions (equivalently, having the radius, a > 1/2), the 

dimension of the maximum surface area, K* = K, and of the maximum volume, K* = K — 2, if 

HK-i < a < y-K- Similarly, if a — //#•> then for K > 3, the dimension of the maximum surface 

area, K* € {K, K + 1}, and of the maximum volume, K* G {K — 2,K — 1}, if \±K-\ < a < \IK-

Consider the polytope, P^(a) . The surface area of the unit radius polytope, Pjr(l), can be 

obtained recursively, i.e., A P/f (1) = 2K/(K - 1)!. Thus, the volume and the surface area of the 
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K-dimensional polytope, Px(a), are, 

\?K(aj\ A 

K\ 
,K 

(K-iy. 
,K-\ 

(8.5) 

Note that the polytope volume can be written as, 

K 2a VPKW=n i 
fc=i 

indicating that the polytope can be viewed as a cube having edges of length, j±, k = 1,2,- • • ,K. 

We have the following lemma. 

Lemma 8.7 Let Kv and K*A be the dimensions corresponding to the maximum volume, V VRV (a) 

maXjK' V[P^-(a)], and the maximum surface area, A P#*(a) = max^A P#(a) , of the poly

tope, Pi<r(a), respectively. Then, for a > 1/2, one has that, Kv = KA — 1, and the sequences 

defined in Theorem 8.2 and Theorem 8.3, \XK — VK-\-

Proof: Since, V>K — ^y^> and, P-K — y , we have that, px — VK-\- Consequently, 

Kv = KA-l. m 

For the scaled polytope (8.1a), we substitute the radius, a/y/K, into (8.5). Thus, the surface area of 

the unit radius scaled polytope is, AP'K (1) 2K 

rt<K(K-l) 
, and the volume and the surface area 

of the K-dimensional scaled polytope, P'K(a), are, 

2K 

V[P'K(a)} ,K 

A P'tfto 

\fWK\ 
2K 

,K-l 

VKK~1(K - 1)! 

Using Theorem 8.2 and Theorem 8.3, we can show that the volume and the surface area of the 

scaled polytope, VK(a), reach a maximum value for a particular value of dimensionality. 

The surface area of the cube, QK-(I) , having edge length, 2, is, A 0^(1) 

volume and the surface area of the K-dimensional cube, Cx(a), are, 

= K2K. Hence, the 

Y[CK{a)} = 2Ka K„K 

A CK(a)\ = K2KaK~\ 
(8.6) 
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Chapter 8 

A Hypergeometric Analysis of Diversity 

Combining Schemes and SNR Adaptive 

Receivers 

In this chapter, we investigate a hypergeometry of objects in K dimensions. The results of hyper-

geometry are then applied to optimize dimension of the SNR adaptive receivers. 

8.1 Background 

Many practical problems in communication and information theory involve entities in K dimen

sions. For example, information transmitted from a source to a destination has to propagate over 

a noisy communication channel. Such channels make the information transmission unreliable, and 

thus, the communication channels are often deliberately formed in K dimensions in order to im

prove the transmission reliability or to increase the channel throughput. The transmission reliability 

is improved provided that the K channel dimensions (or degrees of freedom) are used to create 

transmission diversity in time, in frequency, and in spatial domains [160], [161]. Thus, motivated 

by the K-dimensional problems of information transmission, we investigate the hypergeometry of 

some objects in K dimensions. In particular, we consider the i\"-dimensional sphere, polytope, 

cube, scaled polytope and the scaled cube. We observe that the volume and the surface area of these 

objects is not monotonic in dimension, but reaches a maximum, and then, decrease towards zero. 

This fact appears not to be explicitly stated otherwise. For example, Weisstein [162] comments on 
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Figure 8.1: The volume, V[0^(o)], of the sphere, polytope, scaled polytope, and the scaled cube 
versus dimension, K. 
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cube versus dimension, K. 
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the following i^-dimensional objects, i.e., 

Sx(ai ,a2) 

Pic(ai,a2) 

Pif (01,02) 

CK(ai,a2) 

= {g € RX : 01 < ||g||2 < a2} 

= {g € RK : ai < llgjlj < a2} 

= { g e »K 

DA" 

: ai < 
1 

Islll ^ a 2 > 

= {g e WK : ax < Ugll^ < a2} 

where Sx(ai, 02) is a hollow sphere of radii, a\, and, 02, P_K(«I, 02) is a hollow poly tope of radii, 

ai, and, 02, P'^-(ai, 02) is a hollow scaled polytope of radii, a\, and, a2, and C^-(ai, a2) is a hollow 

cube of edge lengths, 2a\, and, 2a2. Denote, a2 = a, and, a\ = na, where 0 < K < 1. The volume 

of hollow K-dimensional objects can be computed using (8.4), i.e., 

V[0K(aK,a)]=A\6K(l) aK{l-KK) 
K 

Thus, if K = 0, the cavity is removed, and, if re = 1, the object has zero volume. For hollow 

K-dimensional objects having K > 0, we can extend Theorem 2 as follows. 

Theorem 8.8 Given a constant radius, a > 0, and, 0 < K < 1, the volume, V[0^(aK, a)], reaches 

a maximum for dimension, K* = K, if ox-i(n) < a < OK{H), and, K* € {K,K + 1}, if 

a — OK(K), where 

OK{K) 

AOx(l)l \(K+l\f 1~KK \ i f _ i 9 
[ o ^ ( I ) ] ) ( T r - ) ( , i Z ^ T T j K-1,2,-

K < 0 

a«<i importantly, provided that the sequence, OK(K), is monotonically increasing with K. 

Proof: Note that, ^ ^ , and, ^~%-+1, are increasing sequences. Hence, equivalently, the 

first-order difference, A 6 * ( i ) A 6 K + I ( 1 ) , must be an increasing sequence in order that 

the sequence, OK(K), be increasing. Note that, V[0^(aK, a)] > V[OK+i(aK,a)], is equivalent to 

the condition, OK(K) > a, and, V[Ox_i(aK,a)] < V[0^(aK, a)], is equivalent to the condition, 

OK-I(K) < a. Thus, provided that OK{K) is a monotonically increasing sequence, and, OK-I(K) < 

a < OK(K), then dimension K corresponds to the maximum volume, and, K* = K. Similarly, we 

can show that, if a = OK{K), then K* e {K, K + 1}. • 

211 



For example, for C#-(a«, a), the sequence, OK(K) = ^ / K+I, SO that, limx_>0Oo^-(K) = g. 

Thus, if a < | , the volume of a hollow cube reaches a maximum value for a particular dimension, 

1 < K* < oo. 

Finally, it is also useful to consider a discrete if-dimensional space, ZQ, where Z Q = {0, • • • , Q— 

1}. We can define a discrete hollow sphere as, 

Sdtffai, 02) = {g € ZQ : ai < u;H (g) < a2} (8.7) 

where the Hamming weight, U>H (g) = X)fc=i0fc- The discrete hollow sphere has the volume, 

V [Sd«-(ai,a2)] = EfeLai ((<9"fc1)K)' w n e r e (&) denotes the binomial coefficient. 

In the following sections, we use a hypergeometry of objects in K dimensions to analyze and 

optimize SNR adaptive receivers for K-dimensional received signals. 

8.3 System Model 

Assume symbol samples of the equivalent complex envelopes in the baseband. Groups of m in

dependent and identically distributed data bits, b, are Gray mapped to uncoded M-ary square 

QAM or M-ary PSK modulation symbols, x, where M — 2m. The modulation constellation, 

X = {(2i - y/M + 1) +j(2j - v /M + l);i,j = 0,1, • • • , y/M - 1}, for M-ary square-QAM, and, 

X - { ei Z™/M. i = 0,1, • • • , M - 1}, for M-ary PSK, where the imaginary unit, j = y/-[, [21]. 

Scaling of the modulation constellation by the factor, y /3/(2M — 2), for M-ary square QAM, and, 

1, for M-ary PSK, sets the average transmitted energy, Es = E [|x|2], of symbols, x, to unity. The 

symbols, x, are transmitted over slowly flat fading channels to the receiver having K antennas; the 

receiver structure is shown in Fig. 8.3. The channel coefficient corresponding to the i-th receiver 

antenna can be written as, hi = gi e"^, where gi is the channel fading amplitude, and fa is the 

channel fading phase, and i = 1,2, • • • , K. Denote, h — g e^, to be the channel coefficient at the 

output of the combiner. Hence, assuming coherent combining, the received signal at the input to the 

detector is, 

y = gx + w (8.8) 

where g — e~^h, and w is the sample of an AWGN having zero-mean and variance, a%, = 

E[|u;|2] = 2No, and Âo denotes the one-sided noise power spectral density. Then, the SNR at 

the detector input is, 7 = \h\2jb = 527fc> where the SNR per bit, 7^ = Eb/No, and Ei = Es/m. 
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Figure 8.3: The system model and structure of a generic diversity combining SNR adaptive receiver. 

Adaptive signal processing in the receiver is realized by a bank of N subchannel detectors; see 

Fig. 8.3. Thus, assuming perfect SNR estimation, the SNR values, 7 6 (0,00), are quantized 

to N intervals in order to select one of the N detectors to process the received signal, y, and to 

provide final decisions, b, on the transmitted bits, b. Hence, we define disjoint SNR intervals, 

ttn - (7n-i,7n). ™ = 1,2,- •• ,N, where 70 = 0 < 71 < • • • < 7^-1 < 7iV = 00. Thus, 

if 7 e Qn, then, g2 € (ln~ihb,lnhb), and g e ^%-i/lb, V^n/lb)- Note that, if N = 1, 

then Qi — (0, oo), and the receiver has one conventional symbol-by-symbol detector. For N > 1, 

the receiver adapts the decision strategy for different values of 7. In particular, the first detector 

corresponding to 7 < 71 can be used to declare an outage when the detected symbol would be 

unreliable. Also, it is required that, 7 > 71, in order the receiver can synchronize, and always, 

7 < 7JV-I , due to physical constraints in the input receiver circuits; thus one has that, iV > 3, in 

order to accurately model any practical receiver. For example, reference [169] reports the dynamic 

range of the path strength to be usually 20-30 dB. Furthermore, if there exists a feedback channel 

from the receiver to the transmitter, then different modulation constellations and the corresponding 

detectors can be used for each SNR interval, Q,n, [170]. For coded systems, less complex detectors 

can often be employed at larger values of SNR. For systems with interference, the detection can be 

adapted according to whether the system is interference limited or noise limited. 

In general, the SNR partitioning creates N erasure subchannels. The received signal corre

sponding to the n-th erasure subchannel of the n-th detector is denoted as, 

y(ftn) = 
y 7 G £ln 

erasure 7 ^ fin. 
(8.9) 
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We investigate symbol-by-symbol detectors operating over erasure subchannels using the following 

performance measures. 

8.3.1 Performance Measures 

Let fg(g), fgi{g2) and /7(7) be the PDF's of g, g2, and 7, respectively. Recall that, 7 = g2"fb, and 

thus [53], 

In general, denote M. (7) to be an instantaneous performance measure. Assuming the n-th erasure 

subchannel, i.e., the SNR, 7 G Cln = (7n-i ,7n). the average performance measure, M (jb'i^ln), 

for the n-th detector is evaluated as, 

M(%;nn) = J j ^ - M (7) Z7(7)d7 

= li%M(^b)fA92)dg2 (8.10) 

Importantly, note that the PDF, /7(7) , corresponding to the n-th erasure subchannel, i.e., for 7 G 

On, is not normalized by the factor, Qn /7(7)d7, and thus, Ja /7(7)d7 ^ 1. Consequently, the 

probability mass contained in the volume corresponding to 7 G Vtn is a function of dimension, K, 

and using Theorem 8.8, we have the following conjecture. 

Conjecture 8.9 The average performance measure, M. (7^; Cln), corresponding to the n-th erasure 

subchannel reaches a maximum for a particular value of dimension. 

In particular, let Pe(7) be the instantaneous BER. The average BER, Pe(7&; fin)» is computed 

using (8.10), and the overall average BER of the receiver is, 

N 

P,(76) = E P ^ ; f i " ) -
7 1 = 1 

The probability of outage, Pout» is defined as the probability that SNR, 7 € fii. Thus, the 

first detector is selected with probability, Pout = Pr(7 <E Q±). This definition can be generalized 

to consider the probability that the n-th detector is selected, i.e., Paet(^n) = Pr(7 G 0,n), and, 

Pout = Pdet(^i)- Hence, in this case, M (7) = 1, and using (8.10), the probability of selecting the 

214 



detector, n, is, 

Pde t (^n ) = ^7(771) - F-yiln-l) 

= Fg* {in /lb ) - Fg2 ( 7n -1 /76 ) 

= Fgix/^n/jb) - F f l(\/7n-l/7b) 

2 

where F7(7) = J^ f^(u)du, F92(#2) = J0
9 fg2(u)du, and ^ ( 5 ) = J0

9 fg{u)du are the CDF's. 

Note also that, £ * = 1 Pdet(0„) = 1. 

The channel capacity of a Gaussian channel having an unconstrained (Gaussian) input, 0(7), 

and having 2-PSK modulation symbols at its input, C2psk(7), respectively, is computed as, [21], 

[171], 

C(7) = log2(l + 7 ) (8.11a) 

C2psk(7) = 1 - f°° fw(w) log2 ( l + e-^
l+wA dw (8.11b) 

where fw(w) = J % e~'yw is the PDF of a zero-mean Gaussian noise. The average channel capac

ity is computed using (8.10). The overall average channel capacity between the transmitter input 

and the receiver output is, 

N 

c(7b) = EC^;°") 
n=l 

N 
C2psk(7fc) = / J C 2 p s k ( 7 f e ; ^ n ) -

n= l 

8.4 A Hypergeometric View of Diversity Combining 

We describe DCS's using a hypergeometry of objects in K dimensions. In general, all DCS's re

quire some knowledge of the channel coefficients. The more knowledge of the channel coefficients 

is available, the better the performance of the DCS's [66]. We assume perfect channel estimation. 

Then, the channel fading amplitude, g, in (8.8) for MRC, EGC, SC and HS/MRC diversity, respec

tively, can be written as, 

(MRC) 
9 

K 

Y,92i (§• 12a) 
i= l 
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(EGC) 

(SC) 

IS/MRC) 

1 K 

2 — 1 

i— 

\ 

m a x Hi 
l,-,K 

L 

E4) 

where L < K is the number of selected branches having the largest fading amplitudes, and g^ de

notes the i-th largest fading amplitude, so that, g^ > g^) > • • • > 9{K)- Thus, the output channel 

fading amplitude, g, and its statistics are a function of the number of diversity branches, K. Note 

also that MRC scheme requires knowledge of the K channel fading amplitudes and phases, EGC 

scheme requires knowledge of K channel fading phases, and the SC scheme requires knowledge 

of K channel fading amplitudes. Hence, we observe that the output channel amplitudes (8.12a)-

(8.12d) for MRC, EGC, SC and HS/MRC diversity are given by the ^, {̂, ko and k norms, respec

tively, of the complex valued channel coefficients vector, h = (hi, h^, • • • ,hx), since \hi\ = gi, 

for i — 1,2, • • • , K. We have the following theorem. 

Theorem 8.10 Assuming an arbitrary joint PDF of the branch channels fading coefficients, h, the 

output channel amplitude of MRC, SC and HS/MRC diversity is always increased by adding more 

receiver antennas. On the other hand, additional receiver antennas for EGC diversity increase the 

output channel amplitude with increasing probability. 

Proof: The proof follows using mathematical induction and Theorem 8.1. • 

Note that no co-phasing is assumed in the conditions of Theorem 8.10. Yet, assuming that 7 = g2^, 

and that 76 is a non-decreasing function of the number of diversity branches, then, for any branch 

channels fading statistics, the output SNR of DCS's is monotonically increasing with the number 

of diversity branches. Assuming a linear DCS and perfect channel estimation, la is the largest 

achievable value of the combiner output channel amplitude [172]; see inequalities (8.2a)-(8.2c). 

On the other hand, whether EGC or SC diversity has larger output channel amplitude depends on 

a specific channel realization; see inequality (8.2d). Note also that, for all DCS's considered, since 

the output channel fading amplitude, g, increases with K, so does its expected value, E[g]. Then, 

provided that the instantaneous performance measure is monotonically improving with g, and using 

Jensen's inequality, an upper (or lower) bound of the expected (average) performance measure is 

monotonically improving with K. 

216 

(8.12b) 

(8.12c) 

(8.12d) 



the following i^-dimensional objects, i.e., 

Sx(ai ,a2) 

Pic(ai,a2) 

Pif (01,02) 

CK(ai,a2) 

= {g € RX : 01 < ||g||2 < a2} 

= {g € RK : ai < llgjlj < a2} 

= { g e »K 

DA" 

: ai < 
1 

Islll ^ a 2 > 

= {g e WK : ax < Ugll^ < a2} 

where Sx(ai, 02) is a hollow sphere of radii, a\, and, 02, P_K(«I, 02) is a hollow poly tope of radii, 

ai, and, 02, P'^-(ai, 02) is a hollow scaled polytope of radii, a\, and, a2, and C^-(ai, a2) is a hollow 

cube of edge lengths, 2a\, and, 2a2. Denote, a2 = a, and, a\ = na, where 0 < K < 1. The volume 

of hollow K-dimensional objects can be computed using (8.4), i.e., 

V[0K(aK,a)]=A\6K(l) aK{l-KK) 
K 

Thus, if K = 0, the cavity is removed, and, if re = 1, the object has zero volume. For hollow 

K-dimensional objects having K > 0, we can extend Theorem 2 as follows. 

Theorem 8.8 Given a constant radius, a > 0, and, 0 < K < 1, the volume, V[0^(aK, a)], reaches 

a maximum for dimension, K* = K, if ox-i(n) < a < OK{H), and, K* € {K,K + 1}, if 

a — OK(K), where 

OK{K) 

AOx(l)l \(K+l\f 1~KK \ i f _ i 9 
[ o ^ ( I ) ] ) ( T r - ) ( , i Z ^ T T j K-1,2,-

K < 0 

a«<i importantly, provided that the sequence, OK(K), is monotonically increasing with K. 

Proof: Note that, ^ ^ , and, ^~%-+1, are increasing sequences. Hence, equivalently, the 

first-order difference, A 6 * ( i ) A 6 K + I ( 1 ) , must be an increasing sequence in order that 

the sequence, OK(K), be increasing. Note that, V[0^(aK, a)] > V[OK+i(aK,a)], is equivalent to 

the condition, OK(K) > a, and, V[Ox_i(aK,a)] < V[0^(aK, a)], is equivalent to the condition, 

OK-I(K) < a. Thus, provided that OK{K) is a monotonically increasing sequence, and, OK-I(K) < 

a < OK(K), then dimension K corresponds to the maximum volume, and, K* = K. Similarly, we 

can show that, if a = OK{K), then K* e {K, K + 1}. • 
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Figure 8.4: The entropy, HK(CL) = log V[S#(a)], of a uniform distribution over a sphere, S#(a), 
versus dimension, K. 

218 



Figure 8.5: The probability of at least a\ and at most a^ errors in a sequence of K bits with crossover 
probability, p. 

corresponds to the discrete hollow sphere (8.7) and is written as, 

0,2 fK\ 
?£(p;a1,a2)=J2{i)P

i(l-P)K~t- (8-13) 
i=ai ^ ' 

The probability (8.13) versus dimension, K, is plotted in Fig. 8.5, for p = 0.05, and p = 0.1. We 

observe from Fig. 8.5 that, for example, the detector with 2-5 errors is an order of magnitude more 

likely to be selected over the detector having 5-8 errors, for dimensions, K > 150. 

In general, the average BER, P€(76; ^n), can be efficiently evaluated using the Prony approx

imation of the conditional BER, i.e., P £ ( T ) = X)j=i A; e~ajl, where Jij and 5j are positive real 

constants, and q > 1, [70]. Assuming that the MGF, $ff(£) of g, or, <&g2(t) of g2, is known, then we 
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can show that the average BER is evaluated as, 

= EJ=i k ££ M*) V(*. w OJdt 

where t = c + jo> is a dummy variable, c , w e l , and the integrals, 

(8.14) 

\/lnhb /•VW76 2 

/fl(t,a;fin) = / e-^dg 
•> \/%-ihb 

/92(t,a;n„) = / e-st-°»dfl2 

In-l/lb 

a + i 
e Tt - e 7f- ' 

and Q(x) = -A= J"̂ ° e - u /2du is the Q-function. The integrals in (8.14) are efficiently computed 

using a Gauss-Chebyshev numerical quadrature [46]. For example, assume K independent Ricean 

distributed branch fading amplitudes [21] having 2 degrees of freedom, unit variance per dimension, 

and the Rice factor, 3dB. Fig. 8.6 shows the average BER for MRC, EGC and SC diversity, and 

2-PSK modulation having the conditional BER, Pe(7) « 0.204 e"1504'*' + 0.105 e_1-024T, and the 

SNR, 7b = - 3 dB. We observe from Fig. 8.6 that, for all DCS's, the average BER is monotonically 

decreasing for 7 e (0,00). However, the BER reaches a maximum value before decreasing towards 

0, if the lower limit of 7 is greater than 0. 

Assuming the parameters of the branch fading channels as in Fig. 8.6, the probability, Pdet(^n)> 

that 7 G Cln, versus the number of receiver antennas, K, is shown in Fig. 8.7. We observe from Fig. 

8.7 that, for shorter intervals, £ln, the maximum of Pdet(^n) becomes more pronounced. 

The average channel capacity is computed as, 

c(wfi„) = ^C^^(t)J9(t,^,nn)d9 

where the integrals, 

J9(t,7b;Qn) = / V ^ C ( W ) e ^ d 5 
V 7 n - l / 7 6 

J92(t,lb;Qn) = p^)ib CC'Wje-Ato2 
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Figure 8.6: The average BER versus the number of receiver antennas, K, for 2-PSK modulation 
with MRC, EGC and SC diversity over generalized Ricean fading channels. 
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Figure 8.7: The probability, Pdet(^n), versus the number of receiver antennas, K, for MRC, EGC 
and SC diversity over generalized Ricean fading channels. 
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and the conditional channel capacity, 0(7), for unconstrained Gaussian input and 2-PSK input, 

respectively, is given by (8.11a) and (8.11b). A closed-form expression for the partial MGF of the 

channel capacity, 0(7), can be obtained for the case of unconstrained Gaussian input, i.e., 

/ 0
b l o g 2 ( l + 5

2 ) e - A k j 2 = 

where F (•, •) is the incomplete gamma function [168]. Assuming again the branch fading statistics 

as in Fig. 8.6 and Fig. 8.7, the average channel capacities, C(7fc;On), and, C2psk(7&;^n), cor

responding to the unconstrained Gaussian input and 2-PSK input, respectively, are shown in Fig. 

8.8 and Fig. 8.9. In Fig. 8.8, the symbols ' 1 ' and '2' correspond to the case of 7 € (20,25) and 

7 E (20,30), respectively. Importantly, we observe from Fig. 8.8 and Fig. 8.9 that the DCS maxi

mizing the average subchannel capacity depends on the number of receiver antennas as well as the 

choice of the SNR interval, fin. 

Consider a MEMO channel having independent and identically distributed channel coefficients. 

Let the number of transmitter antennas be equal to the number of receiver antennas and denoted as 

K. Provided that the channel coefficients are zero-mean and complex Gaussian, then, for 7 G Cln 

and unconstrained Gaussian inputs, the channel capacity is evaluated as [175], 

CKxK(lb;^n) = / log(l + g2
7b) , V l M e ~ 5 dg2. 

Fig. 8.10 shows the capacity of a Gaussian K x K MIMO channel for several choices of the SNR 

interval, fin, and 7& = OdB. We can again observe from Fig. 8.10 that constraining the values of 

SNR creates an optimum in the number of transmitter and receiver antennas, for which the MIMO 

channel capacity is maximized. 

Finally, note also that comparing the average BER in Fig. 8.6 and the average channel capacity 

in Fig. 8.8-Fig. 8.10 illustrate a general trade-off between reliability and throughput of a communi

cation subchannel [161]. In particular, either the subchannel dimension is selected to minimize the 

average BER, or the subchannel dimension maximizes the average channel capacity. 
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Figure 8.8: The average channel capacity, C(7&;f2n), versus the number of receiver antennas, K, 
for MRC, EGC and SC diversity over generalized Ricean fading channels. 
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Figure 8.9: The average channel capacity, C2psk(7&; ̂ n)> versus the number of receiver antennas, 
K, for MRC, EGC and SC diversity over generalized Ricean fading channels. 
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a 

Figure 8.10: The average channel capacity, Cxxxilb', tin), of a Gaussian K x K MIMO channel 
versus the equal number of transmitter and receiver antennas, K. 
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8.6 Summary 

The if-dimensional sphere, polytope, cube, scaled polytope, and the scaled cube were studied. It 

was proved that the lp norm and the scaled Vv norm are monotonically increasing in dimension, K, 

while monotonically decreasing in the norm-order, p. It was also proved that the volume and the 

surface area of objects under consideration reach a maximum value for a particular dimension, and 

then, the volume and the surface area decrease toward zero. The dimension maximizing the vol

ume and the surface area was obtained as a function of the radius. These results provide important 

insights into diverse problems in digital communications such as the error rate estimation of block 

codes using importance sampling [167], and the properties of DCS's. In particular, SNR adaptive 

receivers employing a bank of symbol-by-symbol subchannel detectors and a K branch diversity 

combining front-end operating over erasure subchannels were investigated. Several DCS's were 

described using a hypergeometry of objects in K dimensions. Hence, it was proved that, at least in 

probability, the combiners output channel fading amplitudes are increased by using additional re

ceiver antennas, for any distribution of branch channel fadings. Furthermore, average performance 

measures such as the average BER, the probability of selecting a particular subchannel and the av

erage channel capacity corresponding to erasure subchannels were conjectured to reach a maximum 

for a particular dimension and the subchannel selected. The conjecture was then confirmed using 

numerical examples. The results indicate that the receiver dimension (e.g., the sequence length 

and the number of receiver antennas) and the SNR partitioning have significant impact on the av

erage performance measures corresponding to a particular subchannel, and in turn, on the overall 

complexity of the SNR adaptive receivers. 
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Chapter 9 

Conclusions and Future Work 

In this final chapter, we draw conclusions, summarize the major results of the thesis, and also, 

provide suggestions for future work. 

9.1 Conclusions 

We studied techniques for efficient performance evaluation of wireless communications systems. 

In the first part of the thesis, novel performance evaluation techniques were proposed in order to 

improve efficacy of the performance analysis, so that the analysis becomes simpler, is applicable to 

more complex system models, and also, is easier to be verified. In the second part of the thesis, the 

efficient performance evaluation techniques were used to obtain novel design guidelines. 

As evidenced by numerical examples in this thesis, semi-analytical techniques appear to be the 

most efficient approach to performance analysis of wireless communications systems. In particular, 

provided that some parts of the system model can be described analytically, then these parts do 

not have to be simulated, potentially saving large amount of computations. For example, the SR 

simulation technique can decide on the decoded sequence analytically avoiding running a computa

tionally expensive decoder. The Prony approximation method requires knowledge of the conditional 

probability of error at only a small number of SNR values; such knowledge can be obtained using 

computer simulation, and then, the average probability of error is computed analytically. 

Furthermore, selection of the system model was shown to be critical for obtaining the perfor

mance analysis efficiently. This was illustrated for the case of DCS's over correlated fading channels 

where the channel modeling was used to transform correlated branches into independent branches. 

Importantly, note that the system model for efficient performance analysis and the system model 
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following actual implementation can be very distinct. While precise knowledge of the input, output 

and the latent parameters values is available at any time at any place in the course of simulation, 

such knowledge is often missing or is impossible to be obtained in real implementation. Hence, 

exploiting all the available knowledge in the course of simulation can result in significant reduction 

of simulation run-times; however, one has to make sure that the analysis remains unbiased. 

Two examples of obtaining the design guidelines from the efficient performance analysis were 

illustrated for the case of BRC's and the case of SNR adaptive receivers. In particular, initially, 

the exact BER of binary Hamming codes was evaluated using their recursive structure. Then, the 

recursive structure and the cyclic parity matrix were used to propose a family of multidimensional 

binary block codes referred to as BRC's. Also, theoretical analysis of the SR simulation gain re

vealed that the volume of hypersphere reaches a maximum for a particular value of dimension. This 

observation was used to obtain an optimum dimension of the SNR adaptive receivers. 

In general, the system model and the performance evaluation technique should be chosen for a 

particular system at hand, and the application being considered. The complexity of communications 

systems is constantly increasing. Novel design guidelines are important to sustain the progress of 

technology. Hence, we conjecture that the research area of efficient performance evaluation tech

niques, perhaps underestimated until very recently, will become much more important in near fu

ture. Furthermore, development of efficient performance evaluation techniques should complement 

advancements of efficient signal processing algorithms. 

The main results presented in this thesis can be summarized as follows. 

1. Sample rejection is an easy-to-implement computer simulation technique for binary coded 

systems operating over quantized AWGN channels and ISI channels. 

2. Modified FD can be more efficient for simulations of coded schemes over ISI channels and 

near-MLSD than the VA. 

3. The Prony approximation method is an efficient semi-analytical technique for evaluation of 

the average error rates of digital modulations over slowly fading channels. 

4. Prony approximation is a generalization of the Chernoff bound and the MGF method. 

5. A linear correlation channel model, and a fading amplitude channel model using vector norm 

superposition of the impinging plane waves are well-suited for efficient performance evalua

tion of DCS's having correlated branches. 
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6. Decorrelation and orthogonalization of the diversity branches prior to combining can be used 

to restore some of the diversity gain lost due to the correlations between branches. 

7. The rank and determinant design criteria of space-time-frequency block codes are valid not 

only for the Chernoff bound of the PEP, but also for the exact PEP. 

8. Binary Hamming codes can be constructed recursively, and their coding gain does not in

crease monotonically with SNR. 

9. Extended binary Hamming codes attain the Hamming bound. 

10. Binary repetition codes having variable block length and variable minimum Hamming dis

tance are well-suited for adaptive coding, turbo product coding, retransmission and multihop 

routing and block differential encoding. 

11. Binary repetition codes and block differential encoding can be used to arbitrarily increase the 

coding rate while the minimum Hamming distance remains constant. 

12. Binary repetition codes in multiple dimensions can be used to increase the minimum Ham

ming distance of concatenated ID codes without increasing the transmission bandwidth. 

13. Transmitter energy distribution over the codewords of BRC's can be optimized to improve 

the BER. 

14. Distributed SPC codes can be used to implement coded cooperation among the network nodes 

in the uplink and downlink transmission. 

15. The cooperation gains are strongly dependent on the specific network realization, and are less 

dependent on the number of cooperating nodes. 

16. The volume and the surface area of some if-dimensional objects reach a maximum, and then, 

decrease towards zero. 

17. The average performance measures of SNR adaptive receivers reach a maximum, and then, 

decrease towards zero, i.e., there exists an optimum receiver dimension. 
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9.2 Future Work 

We outline the directions of possible future research. 

1. The SR simulation technique should be considered for non-binary modulation schemes, mul-

tipath fading (time-varying) channels, and iterative decoding schemes. 

2. In some cases, the SR simulation technique can provide design guidelines for the decoding 

schemes. 

3. The Prony approximation method can be considered for evaluation of the average error rates 

for systems with additive interference, e.g., multiuser and intersymbol interference. 

4. Prony approximation should be investigated for use in multiple dimensions, i.e., for cases 

where the error rates have to be averaged over several random processes. 

5. Distributions and parameters of the linear correlation channel model and the vector norm 

plane wave superposition channel model have to be chosen in order to match the performance 

analysis and real measurements of DCS's assuming the existing correlated channel models. 

6. Efficient channel models for systems with correlated co-channel interference should be de

veloped. 

7. Semi-analytical methods should be developed for efficient performance evaluation of vari

ous bits-to-symbol and symbol-to-subcarrier and antenna mappings for coded MIMO-OFDM 

systems. 

8. The SISO decoding techniques suitable for multidimensional BRC's should be investigated. 

9. The performance analysis of coded cooperation schemes using BRC's and SPC codes should 

be extended to fading channels. 

10. The proof that the volume and the surface area of K-dimensional objects reach a maximum 

should be extended to a general case of the Ip-norm where p G Z, and then, p eR,p> 0. 

11. The dimension that minimizes radius for constant volume and constant surface area objects 

in K dimensions should be derived. 

12. Further applications of the results of hypergeometry to wireless communications systems 

should be considered. 
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Appendix A 

Definitions of functions are provided. 

TheMGFofRV,X, [66] 

$x(t)=E[ext] = [ fx(x)extdx (A-la) 
JdoidX) ldoa(X) 

the inverse MGF of RV, X, 

1 rc+iu) 
fx{x) = — $x(t)e-xtdt (A-lb) 

27TJ Jc-jco 

where t = c + ju>, and c , w £ l , and c is chosen in the region of convergence 

the upper incomplete MGF of RV, X, 

poo 
<t>x{t,x)= / fx(x)extdx (A-lc) 

J X 

Q-function [21, (2-1-97)] 

Q{x) = - = / e-*2/2dt (A-2) 

= ^K^) 
and the alternative form [66] 

i r / 2 ( x2 

- I exp —-——o 
IT J0 V 2 sitf 

^ (z ) = r / e xP ( "7TTT7 ) d(^ 

gamma function (Euler's integral form) [62, 8.310], [168, p. 255] 

roo 

T{z)= / tz-le-ldt (A-3) 
Jo 
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where Re{^} > 0, and 

/ n \ I (n/2 — 1)! n is even 

r ^ = \ f f e f nisodd 

w h e r e n ! ! = 2 " / g - i / 2 " n / 2 - i / 2 ) i = n ( n - 2) • • • 5 • 3 • 1 

upper incomplete gamma function [168] 

/•oo 

r (z, x)= t*'1 e_ tdt (A-4a) 

for z 6 M, and 
n — 1 f~ 

T(n,x) = T(n)e-*Y,^ (A"4b) 

fc=0 

for n € Z, n > 0 

n-fh order modified Bessel function of the first kind [21, (2-1-120)], [168] 

ln[z) = - r ezcos^cos(n9)d9 (A-5a) 
7T JO 
oo / x \ n + 2 f c 

= ^ f c ! r ( n + fc + l) ( A ' 5 b ) 

where n € Z, n > 0, and z > 0 

beta function [62, 8.38] 

incomplete beta function [55] 

PJia,b)= I ua-l(l-uf-ldu (A-7) 
Jo 

hypergeometric functions [21, (2-1-134)], [55] 

lF*a>b>x) = gr(a)r(&+V)fei (A '8a) 

>F<f+**H = ^ i v ^ - ^ ~ ( t + l w (A-8b) 
where 6 ^ 0 , —1, —2, • • •, and B(-, •) is the beta function (A-6) 
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n-th order Marcum Q-function [21, (2-1-122)] 

TO—1 / I \ fc TO— i / L\ K 

Qn(a,b)^Q1(a,b)+e^+b2y2Y/(-) h{ab) 
fc=l ^ a ' 

where 

L(a,6)=e-(^2)/2£(f) /fc(a6) 
fc=0 

and 6 > a > 0 

p-th vector norm, ip, of the vector, a = (a\, a,2, • • • ,an 

a 
(Er=iiaiip)1/p o < p < ^ 

max \ai\ p —> oo 
i= l ,2 , - ,n 

Kronecker delta 

?a-b 
1 a = 6 

0 otherwise 

and equivalently, 5ab = Sa}b = c5(a_&)0 = Sa-b, for a, b = • • • , - 1 , 0 , 1 , 

modulo operation 

moda(fe) = b -

for a, 6 = • • • , —1,0,1, • • • 

binomial coefficient 

0-1 r u 
1 a!(6-o)! 

1 o 
b> a> 0 

otherwise 

for a, 6 = • • • , —1,0,1, 

signum function 

sign(x) = < 

1 x>l 

0 x = 0 

- 1 x < 0 

Heaviside (unit-step) function 

(A-9a) 

(A-9b) 

(A-10) 

(A-ll) 

(A-12) 

(A-13) 

(A-14) 

rj(x) = 
1 x > 0 

0 x < 0 
(A-15) 
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Appendix B 

The GCQ rule to invert the MGF, &x (*) = f™ etxfx (x)dx, of the random variable, X, is obtained. 

Hence, let an auxiliary complex-valued variable, t = c + ju>, where c,u> € M.. Then, for u = 

c\J\ — u2/u, one has that [66], 

rc+iw 
fx(*) = 5 - 7 / *x(t)e^dt 

1 r°° 
2vr J . ^ 

- i"1 * / V T ^ ? \ - x ( c + j c ^ i ^ ) c d « 
= T - / $X C + jC-2TT J_! V n I n 2 \ / r w 

1 2 $ x (C(l + JTi)) e—(1+^)c (1 + T{ 
1=1 

where v > 1, 77 = tan((Z — l/2)7r/i/), and c is chosen in the region of convergence, i.e., 

max \T < c < min / i+ , where fi+ and \x~ denote the positive and negative residues of $ x (t) e~xt, 

respectively. 
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Appendix C 

The statistics of the Ricean distributed amplitude, g > 0, and the non-central chi-square distributed 

squared amplitude, g2, are summarized. The PDF's are written as, [21] 

r.n-1 
, (£Z1 e-</72tf2

 s - n 
f9(9) = 2" / 2" 1- r(f) (C-la) 

0-2sn/2~l « J n / 2 -

„2\ 
W ) = £/„(*) S > 0 (C-lb) 

where n denotes the number of degrees-of-freedom, a2 is the variance per dimension, V (•) is the 

gamma function, and In{-) is the n-th order modified Bessel function of the first kind; see Appendix 

A. Using the infinite series representation (A-5b), one can express the CDF's as, 

FM = { 2/ 2
r(n/) , , v * < c-2 a) 

e - s 2 / ^ Er=o fcl2lgW) ( r ( f c + f ) - r ( f c+f > ^ 2 ) ) s > 0 

Fs2(02) = Fg(g) s>0 (C-2b) 

where T (•, •) is the incomplete gamma function; see (A-4a). The upper incomplete MGF's, (j>g(t, x), 

and, cf>g2 (t,x), can be derived as (see Appendix A), 

*aM = E V O f.« e-^^-^du (C-3a) 
fc=0 °" " ' ^ 

M*>*) - o i^( i - 2^t)-^gn/2_1 f - ^ ^ , ^ 1 ^ 0 j (C.3b) 
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where Qn (•, •) is the ra-th order Marcum Q-function; see (A-9a). The MGF's, <&fl (t) = E [ egt], and, 

3y ( i ) = E 

*«(*) = 

M*) 

, can be obtained as [21] (see Appendix A), 

( l - 2 ^ ) - » / 2 e x p ( r ^ ^ . > 0 

s = 0 

(C-4a) 

s > 0 

(C-4b) 

where t is a complex dummy variable, £ = c + \UJ, and c,w e l a r e real numbers, and iJFi(-, •, •) is 

the hypergeometric function; see (A-8a). 
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Appendix D 

The MGF's of two transformed RV's are obtained assuming knowledge of the MGF, $x(t), of 

the RV, X. In particular, the MGF of the RV, Y = aX + b, where a,b e M. are constants, is, 

*y(«) = E -,(ax+b)t = eM$y(5t). 

Consider also the RV, Y = aX2, for 5 > 0. Recall that [53], 

My) 

Correspondingly, 

^y{fx[VyPj+fx 

1 l rc+jw 

A//a ) J a; e 

re > 0 . 

S / c
CX^( f)cosh(tVVfi)dt XGI 

/ y ( y ) = ^ TJ2V»IJc- j W 

1 i / r j r ^ W e ^ v ^ d * z > 0 . 27rj 2^/ya J c - jw 

One has that, for Re{r} < 0, 

noo _rn.11? 2 J0°° e™"' cosh(sw)du = ^ / - ^ e_33 

Jo 
0 0 ~rau* — sUs 

After some manipulations, the MGF, $y (£) = E 

d « = A / z | z e 4 a r Q 

, IS, 

/-2ar 

$y(t) = 
f^r^*x(2V^«)e^d« x e 

l ^ % l C - j J ~ *x (2v^5 t« ) e«2Q(v^t t) d « > 0 

where u = c + jw, u, w € M, Re{£} < 0. 
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Appendix E 

We obtain the correlation coefficient, Pyy-w-> ° ^ t n e ^'^ anc* J"^1 diagonal elements, Wi, and, Wj, 

of the non-central Wishart matrix, W (cf. Appendix F). Assume that all columns of the matrix, G, 

have the same covariance matrix, so that, C G = 2 m C g . Then, for i,j = 1, • • • , K, we evaluate 

the moments, 

E WiWj 

E 

E 

Wi 

Wf 

d2 

dsidsj *w(S) | s = o 

d 
dSi * w ( S ) | s . 0 

d2 

- ^ 2 $ w ( S ) | s = 0 

and substituting into the definition of p^.^., one obtains that, 

PWiWj 

E (Wi-E\Wi ) ( W , - E W,-

E ( W i - E Wi E ( W , - E W,- ) 

[Colij-tCGbi + [MG]i,[CG]3, + [MG]ii[CG]ii 

:cG] i i ([CG] i i + 2[MG]ii)[CG}jj([CG]jj + 2[M G ; JJ-1 

where M Q = G G T , G = E[G], and [-]jj is the matrix element corresponding to the i-th row and 

the j-th column. 
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Appendix F 

We derive the MGF of a non-central Wishart matrix, W e MKxK, [176]. In general, let, W = 

GG T , where G = [gi, g2, • • • , g2m] G RKx2m is the real-valued jointly Gaussian matrix having 

the columns, gj, i = 1, • • • , 2m, and the means, G — E[G] — [gi, g2> • • • > g2m]- The vectors, 

gi, are assumed to be mutually uncorrected, and thus, independent. Then, using lemma (L3) in 

Appendix G, the covariance matrix of G can be written as, 

CG = E[(G - G)(G - G)T] =J2C 
2m 

gi 

i = l 

where C g i = E[(gj - gi)(gi - gi)T] is the covariance matrix of the vector, gj. The PDF of G is 

given as [100], 

2 m 2m ( I t - \T/~i / - N\ 

(n\ T\ l \ TT exP \~V& ~ Si)1 cgi{Si - gi)) 

Correspondingly, using again lemma (L3) in Appendix G, one has that the MGF of W is, 

2 m 

$w(S)=E[etrisw}] =J]E[e*sK 

2 m 
r __ H . . T I 

(F-l) 
i = l 

where S = diag(si, S2, • • • , SK) is a diagonal matrix of dummy variables, s». Substituting the PDF, 

p G (G) , into eq. (F-l), we get, 

E 
1m « 

etr{sw}l = J J / / l ( g . ) / 2 ( g . _ g. )dg. (p.2) 

where /i(gj) = ^(2ir)Kdet^S-1) pgi(gi), and /2(gj) = Pgi(gi + gi)- Thus, eq. (F-2) is a 

product of 2m convolutions of the functions /i(gj) and /2(gi). Since the convolution of two PDF's 
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gives the distribution of a sum of two independent random variables [53], and the sum of two 

independent jointly Gaussian random vectors is a Gaussian random vector with covariance matrix 

given by the sum of individual covariance matrices, one has that, 

$ - S = TT P V& V sJ *lJ. (F-3) 

Furthermore, assuming that all columns of the matrix, G, have the same covariance matrix, 

C g i = C g , for Vi = 1, • • • , 2m, then C Q = 2mCg , and using lemma (LI) in Appendix G, the 

PDF of G can be written as [177, Ch. 38, eq. (46)], 

e t r { 4 C ^ ( G - E [ G ] ) ( G - E [ G ] n 
PG[ } ( 2 ^ ™ d e t ( C G ) m 

Then, the MGF expression (F-3) can be simplified, and we obtain, 

, x e t r { G T ( I - 2 S C G ) " 1 S G } 

* * ( S ) = d e t ( I - 2 S C G r • ( F"4 ) 

Finally, note that there is yet another form of the MGF (F-4) in the literature; particularly, [176, eq. 

(6.3.2)] and [177, Ch. 38, eq. (47)], however, both these expressions can be rearranged into the more 

compact form (F-4) by applying lemma (L4) in Appendix G. Also, for si = s^ — • • • — SK = s, 

and m = 1, one can obtain the MGF of a quadratic form, g^ Ag, where g is the jointly Gaussian 

complex-valued random vector, and the complex-valued matrix, A, must be Hermitian [82, eq. 

(15)], [178]; however, the derivation in this appendix is simpler than the procedure used in [178]. 
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Appendix G 

The matrix lemmas are summarized. In general, consider the real-valued matrices, A e Mm x n , 

and, B € M.mxn. Then, we have the following matrix lemmas, [81]. 

(LI) t r { A B r } — t r JBA^ j where tr{-} denotes the trace of the matrix 

(L2) (Cauchy-Schwartz inequality) tr{ A B r } < |tr{ A A T } | | t r {BB r } | where | • | is the abso

lute value 

(L3) AA = YA=I
 aiai w n e r e a; is the i-th column of A, and A1 A = YllLi al ai where aj is 

the i-th row of A 

(L4) (Woodbury matrix identity) let m = n, and A and B be invertible, then (I + B A ) _ 1 = 

I -CE + CAB)"1)-1 

(L5) E B A B Ti l 2 ' ^ l |A | | 2 E B IBI IB A2 |A | | 2 E B IBI where , and E B 

EB[-] is expectation over the distribution of B, and ||A|| is the Frobenius norm of the matrix, 

A 
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Appendix H 

The IOWE matrix, A j ^ f , of the M>m+1 = (n2, k2,3) code given A^e) of the JTm = (nx, ^ , 3) 

code is derived. Denote the i-th column and the j-th row of the matrix, A, by co^A)^ and row(A) •, 

respectively, and the diagonal matrix with elements given by the vector, a, as diag(a). Let the 

vector, Tj = ((o) > (1) >' • • > Q))» be the 2-th row of the Pascal triangle. Let x be an arbitrary binary 

vector of length n\ bits and weight wx. Given x, ^ ( x ) = { x o y , y e Z^1} is a (2ni, ni, 2) code 

having the IOWE matrix 

col(A(iowe)(«;a:))j.= ^ 

col([T 

iij = wx,wx+2,--- ,2nx-wx 

L°(ni + l,l) otherwise 

for j = 0,1, • • • , 2n\. Depending on parity 7r(y) being even or odd, we can write A^iowe)(wx) 

^iowejK) + ^ iowejK) where 

row (A(iowe)K 
row(A(iowe)(wx)). i - even 

0(i,2m+i) otherwise 

row 
/ ( A __ j row(A { i o w e )K)). i - o d d 
I •^(iowe)^; I. — S 

[ °(l,2ni+i) otherwise 

for i — 0,1, • • • ,k. Let x = (xi, x2) be the codeword of Jifm = (ni, fci, 3) where xi are in

formation bits of weight, wxi, and X2 are the corresponding parity bits of weight, wX2. Using 

Theorem 6.1, the codewords of J^n+i are obtained by concatenation of the two codes, ^ i (xi ) = 

{(xi o y i ) , y i € Z^1}, and, <*?2(x2) = {(x2 o y 2 ) ,y 2 e Z ^ 1 } , and appending the parity bit, 

fl" (y l) + TT (y2) • We can express the corresponding IOWE matrices of the codes ^ i (xi) and ^ 2 (x2) 
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as, 

A i o w e ) K 2 ) = ^ l ) K ) + ^ e ) W -

Then, using Claim 6.3, and summing over all input-output weights of the Hamming code Jifm, the 

IOWE matrix of the J^m-^i code is 

^iowe) ±—i £-^ (iowe) 
u,v 

iowe) v ' ' 
o,w 

for o = 0,1, • • • , A)2, and w = 0,1, • • • ,77-2, where 

4 1,«2,7TJ 
iowe) («,«) = {diag(l(iifcl4^1+i)A«ire)(u)J®A5Sre)(t;-u) 

+ d i ag ( l ( l j f c l + n i + 1 ) A^ e ) ( M ) ) ® ^ } ( W - «)} ® (1,0) 

+ {diag ( 1 ( 1 , ^ ^ + 1 ) ^ ) («)) ® ^ ( t ; - «) 

+ diagf l ( 1 , f c l + n i + 1 ) A^ e ) (u ) 1 ® A ^ j C t , - „)} ® (0,1 

The computationally efficient expression (6.1) can be obtained by further manipulations and using 

Claim 6.4 and Corollary 6.5. 
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