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ABSTRACT 
 

Essay 1: Optimal Seller Strategy in Overlapping Auctions 

Overlapping auctions for identical products are commonly observed on auction websites. 

Such an online setting for competitive auctions changes the consumers’ bidding behaviors. 

Bidders are able to forward-look, cross-bid and learn during the bidding process. The change in 

the bidding behaviors has important implications for sellers’ revenue. We adopt a game-

theoretical modeling method, aiming to understand—in a single-seller auctions website where 

the seller is able to decide auction design and bidders are able to forward-look, cross-bid, and 

learn—the existence of auctions’ overlapping. We also determine its value, pinpoint the factors 

influencing the degree of overlap, and solve the optimal degree of overlap under different 

conditions. We find that the degree of overlap depends on the trade-offs among four factors: 

bidders’ forward-looking, bidders’ learning, time discounting and varied demand. Hence, the 

combination of the impacts from these factors decides the optimal overlapping strategy of a 

revenue maximizing seller.  

Keywords: overlapping auctions; cross-bidding; learning; bid shading; forward-looking  

Essay 2: Product Positioning Strategy of the Firms without a Competitive Advantage 

This essay examines the optimal product positioning strategy of asymmetric firms.  Much 

of the theoretical discussion on firm strategies, such as technical investments and advertising, 

focuses on symmetric firms. Less attention is given to weak firms when they face strong 

companies such as IBM, Sony, GE, Apply and Wal-Mart. We find that weak firms position their 

products on areas which they are at advantages relative to their competitors. More importantly, 
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they have an incentive to avoid close competition with strong firms by randomizing their product 

positions in the market if the advantage gap is still small, and to focus on the extreme edges of the 

market if the advantage gap is large. However, strong firms act in the opposite way: locating on 

mass market when the advantage gap is small, and randomizing their market positions and expand 

to on the edges of the market when the advantage gap is larger.  Moreover, the strong firms make 

less on radical investment than on incremental on product’s features. These findings show the 

fundamentally different product positioning strategies under asymmetric competition than under 

symmetric one.  

Keywords:  product positioning, location model, Hotelling model, Colonel Blotto game, 

asymmetric firms, marketing strategy 
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CHAPTER 1: INTRODUCTION 

This thesis discusses the seller’s positioning strategy in competitive markets with 

demand uncertainty and is composed of two essays. The first essay focuses on auctioneers 

in the environment of multiple competitive online auctions. We use analytical modeling to 

study the seller’s decision on the degree of overlap among competitive online auctions and 

the determining factors. Research on concurrent online auctions is a new and important area 

of study.  Our exploration of the overlapping strategy for a seller contributes to the current 

literature theoretically, adding new knowledge to our understanding of sellers’ and bidders’ 

behaviors in concurrent online auctions.  This study also provides managerial 

recommendations to auction sellers for a better arrangement of their auctions. 

The second essay focuses on asymmetric sellers where one firm has a competitive 

advantage over the other in the context of product positioning for multiple products. We 

develop a game-theoretical model and show that, due to their  heterogeneous abilities, the 

firms perform substantially differently from when they are symmetric, which is the case in 

most marketing studies. Weaker firms may deviate from their strong areas when they meet 

with stronger competitors. They have incentive to invest in the areas where consumers’ 

preferences are more diverse. By doing so, weaker firms increase the vulnerability of stronger 

firms, thus attracting consumers without directly combating with strong firms. This study  

leads to an interesting insight to the reason why the marketing strategy of weaker firms 

differ from that of stronger firms, and provides an operational guide in positioning for 

multiple products in asymmetric firms.    

1.1 Essay 1: Optimal Seller Strategy in Overlapping Auctions  
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A substantial number of retailers and catalogue firms, as well as individuals, are 

taking advantage of the boom of online auction websites, such as eBay, WebStore, and 

OnlineAuction, to buy or sell products. This growing use of online auctions and their 

spectacular commercial success have motivated many academic studies (Bapna, Goes and 

Gupta 2000, 2003; Roth and Ockenfels 2002; Wilcox 2000; Greenleaf et al. 2002; Ariely 

and Simonson 2003; Zeithammer 2006; Yao and Mela 2008; Haruvy et al. 2008).   

Researchers note that, compared with the traditional (offline) auctions, online 

auctions differ in many aspects. One key difference is the existence of overlapping auctions 

for similar products on the same websites. That is due to several reasons. First, it is difficult 

for bidders to stay in multiple traditional auction houses at the same time. But such spatial 

constraints disappear in the online auction. Current internet technologies enable bidders to 

access multiple online auctions simultaneously. And more new bidders arrive from a larger 

variety of places, bidding in multiple auctions simultaneously. Second, sellers are able to 

list multiple auctions overlapped to different degrees, because bidders can participate in 

multiple auctions simultaneously and demands are not divided among auctions. If bidders 

do not win in a certain auction, they generally have the opportunity to move to a competing 

auction. Overlapping auctions are frequently observed in auction websites, such as 

SamsClub, MegaClub, and eBay. However, most auctions studies regard each auction 

separately, and the theoretical and empirical studies on different degrees of overlap among 

auctions are still limited in number.   

The second difference is the existence of cross-bids among competing auctions. 

When auctions are overlapped, some bidders cross bid, switching to an auction with the 

2 

 



 

lowest “standing” bid (Anwar, et al. 2006; Andersson, et al. 2012). When auctions overlap 

more, bidders switch more often. Therefore, the bidding history of a single auction is less 

likely to reveal bidders’ true valuation distribution, providing bidders with less accurate 

information concerning the value of other bidders. Therefore, overlapping may influence 

the precision of information released from previous auctions and the greater the degree of 

overlap, the lower the precision of the bidders’ valuation distribution. Thus, varying the 

degree of overlap can work as a tool for a seller to control the precision of the information 

released.   

Third, online websites post bidding histories of competitive auctions so that bidders 

can learn the values of uncertain products.  Bidders thus can learn from 1) their bidding 

interactions with others on currently competing auctions, and 2) complete bidding 

information from previous auctions. These two types of learning have different impacts on 

the dynamics of individual bidding behaviors. Information about bids from interactions 

(type 1) may prompt bidders to cross-bid, chasing the lowest bid among currently 

competing auctions; information about bids from previous auctions (type 2) helps reduce 

the uncertainty in their product valuation, causing more aggressive bidding in later auctions.  

In type 1 learning, bidders learn through the observation of bids (behavior). Such 

learning belongs to observational learning. Studies about learning in single or sequential 

auctions, such as common value models (Milgrom and Weber 1982; Board 2009; 

Neugebauer and Selten 2006; Dufwenberg and Gneezy 2002) and independent value 

models in which a seller releases information (Ganuza and Zuasti 2004; Vagstad 2001), 

have been widely conducted.  However, the analyses of observational learning in the 
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environment of overlapping auctions are still new.  

The first essay of this thesis considers the above differences, analyzing the seller’s 

optimal overlapping strategy and bidders’ learning behaviors in online competitive auctions 

in an attempt to identify the following: the impact of the degree of overlap on the highest 

bids in competitive auctions; the optimal overlapping strategy for seller to sell experienced 

products, whose values are difficult to determine for buyers; the chance and the way for 

bidders to learn during the bidding when bidding information is available on competitive 

auctions. 

Overlapping auctions can provide a situation in which multiple sellers compete with 

each other to sell a single item, or a single seller arranges periods of overlapping time to 

sell multiple identical products. The first essay focuses on the latter. When selling multiple 

identical items, the seller needs to determine the optimal degree of overlap for his auctions. 

In this type of overlapping auctions, we consider bidders’ three important behaviors and 

one factor (time discounting).  

1) Forward looking. When a bidder participates in an early auction, she may know 

that if she wins, she will lose the opportunity to win in future auctions with a lower price. 

Therefore, she usually reduces her highest bid in the current auction (Engelbrecht-Wiggans 

1994; Jofre-Bonet and Pesendorfer 2003; Zeithammer 2006). Such a practice is called bid 

shading.  

2) Cross-bidding. When auctions are overlapped, bidders are able to cross bid to an 

auction with the lowest “standing” bid. Such actions cause more bids, which may damage 
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the quality of information about bidders’ valuation.   

3) Learning. When a bidder stays in later auctions, she is exposed to the complete 

bidding histories and the highest bids of early auctions. Hence, she may change her belief 

(the expected valuation and confidence interval about product value) if her prior belief is 

uncertain.  

4) Time Discounting. The seller and bidders need to make decisions over time. Our 

study considers that they are both sensitive to the duration of the auctions. When all the 

other conditions remain unchanged, they prefer their outcomes realized earlier. 

Our study finds that different degrees of overlap influence the seller’s revenue 

through forward-looking, cross-bidding, learning, and time discounting. For example, the 

seller prefers to increase the degree of overlap so that his revenue can be realized earlier. 

However, when the degree of overlap is larger the bidder reduces her bid, and in 

equilibrium this amount of bid-shading   increases with the degree of overlap, and thus 

decreases the seller’s revenue. Moreover, when the degree of overlap is larger, the 

information about the bidders’ valuations released from previous auctions more likely will 

be marred by frequent cross-bids. Consequently, bidders learn less and their degree of 

uncertainty is only reduced little, resulting in less aggressive bidding in later auctions. The 

less aggressively the bidders bid, the lower the seller’s revenue is. The trade-off of these 

four elements decides the optimal overlapping strategy of a revenue maximizing seller. 

Compared with current literature, this study differs mainly in two aspects. First, 

previous literature on overlapping auctions studied the consumers’ bidding strategies in 
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concurrent auctions when the degree of overlap was given. By contrast, in our study, the 

degree of overlap is dynamic, and is the seller’s optimal strategy made after considering 

time discounting and bidder behaviors of forward-looking, cross-bidding and learning. 

Second, although previous theoretical literature predicted that overlapping auction design 

would reduce the seller’s revenue due to the bidders’ forward-looking behavior (Huang et 

al. 2007; Zeithammer 2006), empirical observation showed the growth in the number of 

overlapping auctions with different degrees of overlap (Bapna et al. 2009). We provide a 

theoretical explanation for such popularity. Our findings also provide managerial 

recommendations applicable to the real practice in online auctions. 

1.2 Essay 2: Product Positioning Strategy of Firms without a Competitive Advantage 

Weak firms need different product positioning strategies due to the former lacking 

competitive advantage.  In this essay, we answer the following questions: when weak firms 

carry out their marketing strategy, such as the investment on product quality, shall they 

choose to invest on their strong points, or on their weak edges to compensate? How much 

effort shall they allocate on different features of a product?  Does the relative level of 

advantage between firms influence their product positioning strategies in the market place?  

Those questions fall into the product positioning category in the 4P marketing 

strategy (i.e., PRODUCT, PRICE, PLACE, and PROMOTION).  Much of the analytical 

discussion on firm strategies for investments and advertisement focuses on symmetric firms. 

Less attention has been given to the strategies of weak firms when they face strong ones such 

as IBM, Sony, GE, Apply and Wal-Mart. This is the area still lacking theoretical 

understandings and suggestions on the operational level.   
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We develop a game-theoretical model in which two asymmetric companies, different 

in their competitive ability to attract consumers, make product location decisions when the 

consumers’ tastes are uncertain.  In our one-dimensional model, firms need to choose the 

ideal locations to maximize their profits under a same setting as Hotelling location model. 

In our multi-dimensional model, we apply the Colonel Blotto game as firms need to 

consider simultaneously their product positions in multi-dimensions. This model shows that 

due to their heterogeneous abilities, the firms perform substantially differently from when 

they are symmetric, the latter being the case in most marketing studies. Weak firms may 

deviate from their strong areas when they meet with strong competitors. They have incentive 

to invest the areas where consumers’ preferences are more diverse. By doing so, the weak 

firms increase the vulnerability of strong firms, thus attracting consumers without directly 

combating with strong firms. Secondly, weak firm’s level of differentiating is negatively 

related with the advantage gap. When the competitive advantage of his rival is small, if 

staying at the market niche with randomization, the weak firm can be easily knocked out by 

his rival, once the strong firm moves to his market location. Instead he shall differentiate his 

market positions, including the mass market which is the core market of his rival. By doing 

so, the weak firm generates a threat in the mass market so that the strong firm has to focus 

resources to defend, and thus leaving large shares in the market niches to the weak firm. 

When the competitive advantage of his rive is larger, the weak firm’s strategy is less 

differentiated than the strong one does, totally giving up center positions and focused on the 

extreme points.  His location strategy turns from “randomization” to “focus”, and from 

“deviating competition” to “fighting for survival”.   

Our model applies to  markets where firms want to decrease direct competition, they 
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avoid the “competing-on-price-only” syndrome, such as in many oligopoly markets for 

telecommunication and network, airlines, steel and oil business (Porter 1980, Levitt 1991); 

when brains as well as muscle are important for success, such as in competitive sports and 

team games; when firms need to set up store locations before providing services or products 

to consumers, especially when prices are dynamic and can be easily adjusted.  

The game is played in two stages: First, firms simultaneously choose their product 

positions. Second, consumers purchase a product from one of the firms which gives them 

the higher utility. We solve the location strategies of both firms for subgame-perfect Nash 

equilibrium. We start with the simplest possible model in which the firms consider the 

product positioning on one dimension, in order to highlight how asymmetric advantage 

impacts on firms’ competition. Then we extend it to a multi-dimensional position model. 

Our paper fills the gap by providing theoretical explanations to many observations, 

for example, why weak firm differentiate their product positioning as a way to mitigate 

competition. It also explains why firms when they introduce new products, usually position 

products away from the main market, looking for a niche market. Why strong firms 

(incumbents) would like to build upon their existing set of capabilities and bring in 

incremental technologies to market, instead of developing radical ones. Why McDonald’s 

likes to locate near Burger King, but Burger King does not.  Most importantly, 

understanding how to compete in this world is crucial. We are the first analytical paper in 

the marketing literature attempting to provide , although in a simple manner (consumer 

homogenous weight on features),  a resource allocation /product positioning plan on 

different features of a product (in Proposition 4 and 5).  
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CHAPTER 2: OPTIMAL SELLER STRATEGY IN OVERLAPPING AUCTIONS 

2.1 Introduction 

In recent decades, auctions have captured a significant share of online purchases. 

This has resulted in many retailers using auctions as an alternative channel of distribution, 

selling products in online auctions over time. Multiple auctions, which are conducted to sell 

identical or substitute items on the same website with time overlapping, are referred as 

overlapping auctions.  

Overlapping auctions can be run by multiple sellers, such as those in eBay, CQout, 

bid4assets and so on. For example, when we typed in “Apple iPod 4th …” on eBay, over 

sixty auctions popped out, selling identical Apple iPods. On such multiple-seller auction 

websites, overlapping is unavoidable because sellers are unable to predict the occurrence of 

their rivals’ auctions. However, surprisingly on single-seller’s online auction websites, such 

as Shopgoodwill (a pure online seller), Samsclub (a both online and offline seller), and 

Policeauctions (a government online site), overlapping auctions are still commonly 

observed.  For example (see Figure 2-1), on Samsclub four auctions were selling 55’ Vizio 

LCD 1080p 120Hz HDTVs, each lasting 4 hours and 18 minutes with 3 hours and 36 

minutes overlapped; the degree of overlap is 77%. Two auctions were selling a set of 

Circulon Bakewares, each lasting 7 hours with 1 hour overlapped; the degree of overlap is 

14%. The above observations generate following questions: 1) why does SamsClub arrange 

overlapping auctions?  and 2) why does the seller set a different degree of overlap among 

products?   
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Figure 2-1. Examples of overlapping auctions in Samsclub.com 

     In simultaneous auctions (full overlap) bidders can cross-bid. That is, they may 

switch between auctions, bidding in the auction listing the lowest price1. In sequential 

1 Research on simultaneous auctions can be traced to McAfee (1993)’s model, focusing on 

bidder’s cross-bidding behaviours. One group of studies has found that the proportion of 

cross-bids is large (Peters and Severinov 1997, 2006; Anwar et al. 2006), whereas the other 
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auctions (zero overlap) bidders in early auctions can forward-look; that is, they anticipate 

the occurrence and prices of future auctions. Moreover, bidders in later auctions can learn. 

That is, they observe the bidding history of earlier auctions, so the uncertainty in bidder’s 

valuation (i.e. the assessment on the product value) is reduced. These two behaviors 

influence the bidding outcomes differently. Forward-looking behavior results in less 

aggressive bidding (and lower prices), because, foreseeing the forthcoming of future 

auctions, bidders are able to trade off the chance to win at the present time for the chance to 

win in the future (Engelbrecht-Wiggans 1994; Jofre-Bonet and Pesendorfer 2003; 

Zeithammer 2006, 2007a). However, the bidders’ reduced uncertainty through learning will 

result in more aggressive bidding (and higher prices) in later auctions (Kagel and Levin 

1986; Kim and Che 2004; De Silva, Dunne, Kankanamge and Kosmopoulou 2005).  

Overlapping auctions are associated with more bidding behaviors than simultaneous 

and sequential auctions. In overlapping auctions (except the above two extreme cases), 

facing complex information during the bidding process, bidders can forward-look the price 

of the future auction, while cross-bidding in the middle of two auctions—due to 

overlapping. Finally, they can learn more about the product value when the first auction 

ends.   

In this study, we set up a decision context in first-price ascending auctions. Prior to 

the first auction, bidders forward-look the second auction. Moreover, bidders are uncertain 

about the product value, but have prior beliefs (Compte and Jehiel 2004; Bergemann and 

group has found limited cross-bidding (Haruvy and Popkowski Leszczyc 2010).  
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Pesendorfer, 2007; Eso and Szentes 2007; Hossain 2008). Therefore, when the first auction 

completes, the winner leaves with the item and the remaining bidders continue to 

participate in the second auction.2 They learn from signals (e.g., the bidding history of the 

completed auction) and update their beliefs. However, the quality of the signals is marred 

by cross-bids which happen when two auctions overlap.  

We start with a benchmark model in which bidders are forward-looking but do not 

learn. Our analysis reveals that it is optimal for the seller to run the two auctions completely 

overlapped (i.e. run simultaneously). In this simple model, two factors are discussed: 

forward-looking and time discounting. 1) Forward-looking. Forward-looking makes 

bidders see an option to win in the second auction at a potentially lower price, as the winner 

of the first auction leaves; seeing such an option results in bidders’ bid-shading (i.e. bidding 

less) in the first auction.  Such bid shading stops when two auctions run simultaneously, 

therefore, for this consideration the seller prefers full overlap.  2) Time-discounting. The 

seller’s discounting of future payoffs makes him favor a shorter duration of auctions, i.e. a 

greater degree of overlap. As a result, the seller’s profit under full overlap is always optimal.  

Next, we consider the combined effect from the four factors under different degrees 

of overlap: bidders’ forward-looking, bidders’ learning, time-discounting and the varied 

demand. Forward-looking and time-discounting have been discussed in the previous 

paragraph; therefore we only discuss the other two factors here.  3) Learning. We find that 

2  In our extension in §2.5.1, we modify this assumption by incorporating the random arrival 

of bidders, that is, the number of bidders varies between the two auctions. 
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learning influences the final bids of two auctions in the following ways. First, when bidders 

are uncertain about the value of a product, learning helps them reduce the uncertainty in 

their assessments. This reduced uncertainty results in bidders’ more aggressive biddings 

(and a higher final bid) in the second auction. Second, bidders can also predict this higher 

final bid in the future auction, which reduces their chances of winning there. Hence they 

bid more aggressively (and bid higher) in the first auction.  The above two impacts of 

learning make the seller more profitable; and the seller thus would reduce the degree of 

overlap (i.e. the longer duration) to increase the time of learning.  Although researchers 

have suggested that the price in the first of two overlapping auctions provided a focal point 

for bidders to bid in the subsequent auction (Haruvy, et al. 2014), not many papers have 

explicitly modeled bidders’ learning in overlapping auctions.  4) Varied demand. The 

shorter degree of overlap (i.e. the longer duration) increases the demand of both overlapped 

auctions when bidders are allowed to entry randomly during the bidding process, and thus 

may increase the final bids of two auctions. Combining all those four factors, we find that 

the optimal overlapping strategy is the trade-off among these four factors: bidders’ forward-

looking, bidders’ learning, time discounting, and the varied demand. We also pinpoint the 

conditions that partial overlapping auctions are optimal:  (1) bidders’ uncertainty about 

product value is in a middle-range and (2) the time discounting effect is not strong.  

The remainder of the chapter is organized as follows. Section 2.2 discusses the 

existing literature. Section 2.3 sets up the framework of the analytical model, followed by 

the analysis of a forward-looking case as a benchmark and a full model in Section 2.4 and 

several model extensions in Section 2.5. Finally, Section 2.6 contains the concluding 

remarks.  
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2.2 Literature review 

2.2.1 Auction type 

Auctions can be classified according to various criteria. For example, based on 

whether the bids are openly observed, there are open and sealed-bid auctions. Based on 

whether bids are rising or falling during the auctions, we can distinguish between ascending 

and descending auctions. We can also differentiate Auctions into Independent Private 

Value (IPV) and Common Value (CV) auctions according to whether bidders’ valuations 

for the object are independent of other bidders.  

2.2.1.1 Independent Private Value (IPV) model 

The basic auction environment is as follows: a single object is sold to n bidders. 

Each bidder knows her valuation 𝑣𝑖𝑖 (her type). Their valuations are independent. Two 

features make the Independent Private Value (IPV) model different from the later auctions 

to be discussed: (1) individual valuations are independent of other bidders’; (2) their 

valuations are independent of the information received from other bidders during the 

auctions. That is, bidders’ valuations are private.  IPV models may not include the case 

where bidder behavior depends on one’s expectation about others’ valuations and bids, but 

it enables us to derive several important insights. 

There are four main types of auctions, for a single item being sold (and many 

variants of these types): English and Dutch auctions (open auctions), and First- and second 

price sealed-bid auctions.   
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English auction is an open ascending price auction, the most common form of 

auction used today, such as for selling commodities, antiques and artwork, used products, 

and real estates. During the auction, bidders bid against one another and bids rise 

sequentially. The auction ends when no participant is willing to bid further, and the last 

bidder pays the level of her bid. If there is a “reserve” price set for the item and the final bid 

does not reach that level, the item remains unsold.  

Dutch auction is an open descending price auction, commonly used for selling 

perishable commodities such as flowers, fish, and tobacco. The Dutch tulip auction is a 

typical example. The auction, start at a high price, which is reduced continuously until a 

bidder is willing to accept the bid or until the seller’s reserve price is met.   

First-price sealed-bid auction is a type of sealed-bid auction, commonly used for 

B2B procurements, hosted by companies, organizations, and the government. In the auction, 

all bidders simultaneously submit sealed bids and the highest bidder wins and pays the 

level of her bid. Distinct from the previous auctions, bidders do not know others’ bids and 

they can bid only once.  

Second-price sealed-bid auction (also known as a Vickrey auction) is another type 

of sealed auctions, commonly conducted in online environment, such as sponsored search 

auctions, but rarely used in other contexts. In the auction, bidders simultaneously submit 

sealed bids and the highest bidder wins and pays an amount equal to the second-highest bid 

rather than her own bid.  
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The most important theorem connecting the above auction mechanisms is Revenue 

Equivalence Theorem. According to Myerson (1981), Riley and Samuelson (1981) and 

Harris and Raviv (1981), Revenue Equivalence Theorem states that if bidders have values 

identically and independently distributed with a common distribution, then in equilibrium 

all auction mechanisms always award the object to the bidder with the highest value. 

Furthermore, given that a bidder with the lowest valuation receives zero in profits, all 

auction mechanisms generate the same revenue in expectation. 

Two approaches to solving for symmetric equilibrium bidding strategies are the 

“First Order Conditions” approach and the “Envelope Theorem” approach. 

“First Order Conditions” approach. Bidder i’s expected utility is a function of her 

bid  𝑏𝑖𝑖  and her valuation 𝑣𝑖𝑖 ; that is,  

𝑢𝑖𝑖 = 𝑚𝑎𝑥𝑏𝑖𝑖(𝑣𝑖𝑖 −  𝑏𝑖𝑖). Pr� 𝑏(𝑣𝑗) <  𝑏𝑖𝑖 ,∀𝑗 ≠ 𝑖� = 𝑚𝑎𝑥𝑏𝑖𝑖(𝑣𝑖𝑖 −  𝑏𝑖𝑖)𝐹𝑛−1(𝑏−1(𝑏𝑖𝑖)), 

where we assume that the bidders’ valuation distributions follow 𝐹(. ).  The first order 

condition is 

(𝑣𝑖𝑖 −  𝑏𝑖𝑖)(𝑛 − 1)𝐹𝑛−2(𝑏−1(𝑏𝑖𝑖))𝑓(𝑏−1(𝑏𝑖𝑖))
1

𝑏−1′(𝑏𝑖𝑖)
− 𝐹𝑛−1(𝑏−1(𝑏𝑖𝑖)) = 0. 

Then 

𝑏−1′(𝑏𝑖𝑖)) = (𝑣𝑖𝑖 −  𝑏𝑖𝑖)(𝑛 − 1) 𝑓�𝑏
−1(𝑏𝑖𝑖)�

𝐹(𝑏−1(𝑏𝑖𝑖)). 

In the symmetric equilibrium, 𝑏𝑖𝑖(𝑣) = 𝑏(𝑣), for all i.  and 𝑏(𝑣𝑚𝑖𝑖𝑛) = 𝑣𝑚𝑖𝑖𝑛. Then 

we can derive  
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𝑏(𝑣) = 𝑣 −
∫ 𝐹𝑛−1(𝑡)𝑑𝑡𝑣
𝑣𝑚𝑖𝑖𝑛

𝐹𝑛−1(𝑣)  

The “Envelope Theorem” approach.  Applying the envelope theorem (Milgrom 

and Segal 2002) on the expected utility equation of a bidder, we have 

𝑑(𝑢)
𝑑𝑣

|𝑣=𝑣𝑖𝑖=𝐹
𝑛−1 �𝑏−1�𝑏𝑖𝑖(𝑣𝑖𝑖)�� = 𝐹𝑛−1(𝑣𝑖𝑖). 

𝑢(𝑣𝑖𝑖) =  𝑢(𝑣𝑚𝑖𝑖𝑛) + ∫ 𝐹𝑛−1(𝑡)𝑑𝑡𝑣𝑖𝑖
𝑣𝑚𝑖𝑖𝑛

.  As the bidder with the lowest valuation will never 

win, 𝑢(𝑣𝑚𝑖𝑖𝑛) = 0. Combining with the last two equations, we can derive the same bidding 

equation as in “First order conditions” approach.  

2.2.1.2 Common Value (CV) model 

Common value auctions consider a situation where information about the value of 

the object for sale is dispersed among bidders. There are several different ways of modeling. 

One is to describe auctions in which the value of the goods is the same for all bidders but 

this value is not known at the time when auction starts, such as selling the rights of 

exploration of some natural resource.  (Some call this auction a pure common value 

auction.)  The other is to describe auctions in which (1) bidders have different information, 

(2) learning one bidder’s information could cause others to re-assess her estimation about 

the item’s value, and (3) the information of bidders are not independent. When bidder i’s 

estimation is high, bidder j’s is also likely to be high (Milgrom and Weber 1982).  Some 

call it an interdependent values model, or affiliated value model (Menezes and Monteiro 

2005). 
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In common value models, Revenue Equivalence may not hold. Common value 

auctions are usually associated with a feature, called “winner’s curse” (Thaler 1988), 

because the winner tends to be the one who estimates the value higher than the other 

bidders, which signals that she overestimated the product value. Therefore, to avoid the 

winner’s curse, a strategic bidder will bid a smaller fraction of her signal as the number of 

bidders increases (Thaler 1988; Ioannidis 2008).  The explanation is as follows. Suppose 

each bidder doesn’t know the true value of the item, but receives a signal, which is about 

the true value; that is,  

𝑠𝑖𝑖 = 𝑣 + 𝑒𝑖𝑖, 

where 𝑠𝑖𝑖 is the signal,  𝑣 is the true value of the product, and 𝑒𝑖𝑖 is the error term and 

𝐸[𝑒𝑖𝑖] = 0 for bidder 𝑖.   

Although the expectation of the error term is zero, but the bidder with the highest 

valuation is the one who receives the highest error larger than 𝐸[𝑒𝑖𝑖]. As a result, she bids 

above the product value.  

Cremer, et al. (2007) model a case in which bidders are uncertain about the product 

value, so they must pay admission fee to obtain their valuations. In their model, the 

duration of auction consists of discrete periods. They are able to set different reservation 

prices and the admission fee each period, by which they can let bidders truthfully reveal 

their valuations and extract fully of their surpluses. They find that the admission fees of the 

bidders increase if the bidders are given information simultaneously and decrease if they 

are given information sequentially at the beginning of each period. 
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2.2.2 Competing auctions 

Researchers have noted that bidding behavior in competing auctions differs from 

that in a single auction. Bidders consider future chances of winning in later auctions; they 

may learn from early auctions and hence update their valuations in the later auctions; they 

may bid across competing auctions available. Those bidding behaviors switch the demand 

and ensure that online competitive auctions do not act independently of one another.  Since 

1990s, a rapid growth in analytical and empirical literature about competitive online 

auctions has occurred (see the summarized list in Table 2-1). The studies can be classified 

into three categories according to the degree of overlap: studies on simultaneous, sequential 

and partially overlapping auctions. Ockenfels et al. (2006) also provide an excellent review 

of the earlier studies on online auctions. 

2.2.2.1 Simultaneous auctions 

Simultaneous auctions are one special case of overlapping auctions, in which there 

is total overlap. The analysis of sellers selling identical products in simultaneous auctions 

can be traced to McAfee (1993)’s theoretical model.  For our purposes, it is important to 

note that several studies consider cross-bidding an important bidding behavior in 

competitive auctions. They not only provide a theoretical proof those bidders always cross-

bid to chase the lowest prices among auctions, but also empirically verify that the 

proportion of cross bids is large. Unlike those in our study, however, the overlapping 

auctions in their papers are run by multiple sellers. Moreover, in the simultaneous auctions, 

there is no need to consider learning and forward looking.    
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McAfee (1993) finds that in equilibrium auctions are set with efficient reserve 

prices and sellers post the efficient reserve price equal to their value of the product. His 

model is extended by Peters and Severinov (1997) to consider two conditions in which 

buyers know and do not know their own valuations before they choose the auction. Later, 

Peters and Severinov (2006) model the bidding behaviors and demonstrate the existence of 

a perfect Bayesian equilibrium at which the bidders search for the auctions with the lowest 

bid, always bid on an auction with the lowest “standing” bid, and bid with the minimum 

increment. The learning behavior of bidders (e.g., the value of the products, the number of 

bidders) is not discussed in their models.  

Anwar et al. (2006) provide strong empirical support for the bidders’ strategy 

prescribed by Peters and Severinov (2006) using data from eBay. In auctions with three 

different endings (at the same day, within an hour, within a minute of each other), they find 

that a significant proportion of agents bid across competing auctions (19 percent in the 

daily, 31 percent in the hourly and 32 percent in the minute sample). The number of bids 

submitted in the auction with the lowest standing bid is high (62 percent in the daily, 72 

percent in the hourly and 76 percent in the minute sample). The ratio of the average price 

paid by cross-bidders to that by non-cross-bidders is approximately 0.93. Andersson et al. 

(2012) investigate simultaneous online auctions for identical tickets and show that 69.9% of 

the bids are cross-bids.  

2.2.2.2 Sequential auctions 

Sequential auctions are another special case of overlapping auctions in which there 

is no overlap. Studies on sequential auctions date back to the 1980s. Ashenfelter (1989) 

23 

 



 

observes that the prices of wines decrease over time when identical lots of items auctioned 

sequentially. Such a price decline is observed in many empirical studies with different 

explanations as follows. McAfee and Vincent (1992) regard risk premium crucial to this 

decline; that is, the risk-adverse bidders bid less in the prior auction due to the 

consideration of the risks involved in the future price in subsequent auctions. Engelbrecht-

Wiggans and Kahn (1999) argue that the size of demand plays a key role. Using data from 

cattle auctions, they show that the price declines in sequential auctions as demand reduces.  

Zeithammer (2006) considers buyers’ forward-looking behaviors. The bidders bid less 

concurrently because they expect the chance in future auctions for a lower price. Arora, et 

al. (2003) studies the optimal bidding strategies of a rational and risk-neutral bidder in 

sequential online auctions and how the volatility in the number of bidders in the second 

period impacts the first period bid.  

In our model, we posit that prices fall in overlapping auctions due to bidders’ 

forward-looking behaviors. But we further incorporate bidders’ cross-bidding and learning 

in overlapping auctions, and consider that those behaviors also play important roles in 

bidders’ bidding strategies.   

2.2.2.3 Partially overlapping auctions 

Auctions can be overlapped partially. Current studies focus on the impact of 

overlapping auctions after the level of overlap is given, but not on the overlapping strategy 

itself; that is, they compare the seller’s revenue, the efficiency of auctions, or bidding prices 

between non-overlapped auctions with ones, which are to a certain extent overlapped. 

Stryszowska (2006) compares the pricing and efficiency between simultaneous and 
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overlapping online auctions under the independent private value framework. In the 

overlapping condition, she sets two auctions running for three periods with one period 

overlapped. Overlapping auctions are more efficient than simultaneous auctions, because in 

overlapping auctions, even if the coordination starts late, bidders always have time to safely 

reallocate without engaging in risky sniping. Hung et al. (2007) construct a model of 

overlapping English auctions, one half of which are overlapped with an early auction and 

the other half overlapped with a later auction; that is, at any point, bidders always observe 

two auctions running. In equilibrium, the bidders, on all auctions except the last one, 

forward look and thus bid less than their valuations. Second, a buyer never cross-bids and 

participates only in one auction which ends earlier. 

Hoppe (2008) designs an experiment to test bidders’ behavior and auction 

efficiency in second-price English auctions. In the experiments, four bidders participate in 

three overlapping auctions. There are two treatments of the degree of overlap: 5/6 and 1/6 

overlaps. He finds that the seller’s revenue is significantly higher in overlapping auctions 

than in simultaneous auctions, but the degree of overlap has no impact on the seller’s 

revenue.  

Bapna et al. (2009) collect data from Mega Club, an online auction website,  and 

examine the impact of many market-level factors, such as the price information of prior 

auctions, the degree of overlap, the auction format, and the overall market supply, on  

auctions' final bids. They find that overlapping has a significant negative influence on 

prices, and the magnitude of such negative impact increases with the degree of overlap. 

They separate the impact of overlap into two components: that from the preceding overlap 
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and that from the following overlap.  Information from preceding overlapping auctions 

gives signals about prior prices and demand (e.g. the number of bidders) that is not 

available in simultaneous auctions. This strongly influences the price of the focal auction. 

Information from subsequent overlapping auctions provides  information about the supply 

(e.g. the number of products offered), which  causes bidders to bid less than their true 

valuation because of the positive opportunity cost to bid in the future auction.  The impact 

of this information is similar to forward-looking and learning behavior discussed in our 

model. 

Haruvy et al. (2014) were first to use click-stream data to study bidders’ search 

behavior among concurrent running auctions by manipulating three factors of product 

description, the number of competing auctions, and the degree of overlap. They found that 

the higher degree of auction overlap increased bidders’ price sensitivity.  It is more likely 

that they switch to the auction with the lower listing bid. However, they found no 

significant evidence of the mediating effect of bidders’ search behavior on this relationship. 

To summarize, the study of partially overlapping auctions is relatively new both 

empirically and analytically. We posit that two important behaviors of bidders are likely to 

influence the final bids in overlapping auctions: forward-looking and learning. Our paper 

differs from the literature in three aspects. First, we are the first to build a theoretical model 

to incorporate bidders’ forward looking and learning behavior to investigate the optimum 

overlapping strategy. Second, in our model, the seller is able to vary the degree of overlap 

to sell multiple products, a condition more typical of the real auction environment (Bapna 

et al. 2009). Third, previous theoretical literature predicts that overlapping auction design 

always reduces a seller’s revenue, as it reduces the highest bids in auctions (Huang et al. 
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2007, Zeithammer 2006). In contrast, empirical observations show the growth of 

overlapping auctions with different degrees of overlap (Bapna et al. 2009). Therefore, by 

considering both forward looking and learning, we provide a theoretical explanation of 

such phenomenon. Predictions from our analytical studies are then expected to provide 

managerial recommendations more applicable to the real practice in online auctions.  

Table 2-1   Summary of research on competing auctions 

Paper Type Design Overlap Research focus Results 

McAfee 
(1993) 

Analytical Different 
sellers 

Total Reserve price There exists am equilibrium where 
sellers post an efficient reserve price 
equal to the sellers’ value of the 
product and an auction with efficient 
reserve is an optimal mechanism. 

Peters and 
Severinov 
(1997) 

Analytical Different 
sellers 

Total Reserve price, 
Information 
uncertainty 

The authors expand McAfee (1993) 
model to consider two conditions in 
which buyers know and do not know 
their own valuations before they 
choose the auction.   

Arora, et al. 
(2003) 

Analytical 
and 

Empirical 

One seller Zero The impact of 
the uncertainty 
of future 
bidders  

The uncertainty on the number of 
bidders in the second period lowers the 
first period bid.  

Peters and 
Severinov  
 (2006) 

Analytical Different 
sellers 

Total Cross-bid There exists a perfect Bayesian 
equilibrium with bidders cross bid and 
always bid on the auction with the 
lowest “standing” bid and bid with the 
minimum increment.  

Anwar et al. 
(2006) 

Empirical Different 
sellers 

Total Cross-bid The authors provide an empirical 
support to the bidders’ strategy 
prescribed by Peters and Severinov 
(2006) using data from eBay.  

Andersson, 
et al. (2012) 

Empirical Different 
sellers 

Total Cross-bid The authors provide empirical support 
for the bidders’ strategy prescribed by 
Peters and Severinov (2006). On 
tickets online auctions, they observe 
that 69.9% of the bids are cross-bids 
even though a majority of the bidders 
are never cross-bidders.  
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Ashenfelter 
(1989) 

Empirical Different 
sellers 

None Prices decline Prices of wine decrease over time 
when identical lots of item auctioned 
sequentially 

McAfee and 
Vincent 
(1992) 

Empirical Different 
sellers 

None Prices fall, risk 
premium 

Prices fall in sequential auctions due to 
the risk premium. Risk adverse bidders 
bid less in the prior auction, due to a 
risk premium considering prices in 
subsequent auctions.   

Engelbrecht-
Wiggans and 
Kahn (1999) 

Analytical Different 
sellers 

None Prices fall The authors use data from dairy cattle 
auctions plus independent appraisals of 
the cattle sold to verify the existence 
of the “declining price anomaly” in 
sequential auctions. 

Zeithammer 
(2006) 

Analytical 
and 

Empirical 

One seller None Prices fall, 
Forward-
looking 

Buyers bid less due to forward-looking 
strategies in sequential auctions. 

Stryszowska 
(2006) 

Analytical One seller 1/3 Auction 
efficiency 

Overlapping auctions are more 
efficient than simultaneous auctions.  
On the other hand, the seller may 
prefer simultaneous auctions.  

Ockenfels, et 
al.(2006) 

Survey  Not 
mention

ed 

 A comprehensive survey on 
theoretical, empirical, and 
experimental research on bidder and 
seller strategies in online auctions, 
including online auction design. 

Hung, et al. 
(2007) 

Analytical One seller 1/2 Forward 
looking,  cross-
bid 

In equilibrium, bidders forward look, 
therefore, bid their last bid less than 
their valuations, except for the last 
auction. The expected equilibrium 
prices are identical among all auctions, 
except for the last. Secondly, the 
buyers never cross-bid. 

Hoppe 
(2008) 

Experimen
tal 

One seller 1/6 and 
5/6 

Seller’s revenue Seller’s revenue is significantly higher 
in overlapping multiple auctions than 
in simultaneous auctions and the 
degree of overlap does not impact 
seller revenue. 

Bapna, et al. 
(2009) 

Empirical One seller Data-
based 

Information 
impact 

Overlap of an auction with other 
competing auctions has a significant 
negative influence on bids, and the 
impact from information about 
following auctions is stronger than that 
from information about prior closing 
auctions. 
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Haruvy, et 
al. (2014) 

Experimen
tal 

One seller Full and 
1/2 

Bidders’ search 
and choice  

Using click-stream data, the authors 
designed experiments and found that 
the bidders’ search and choice of 
auctions effected by information 
transparency, the number of 
simultaneous auctions and the degree 
of overlap.  

 

This paper contributes to the literature in several ways. First, it adds to the growing 

online auction literature. Online auctions do not constrain bidders from participating at 

multiple auctions simultaneously as the traditional auctions. With the growth and the 

popularity of online auction, multiple competing auctions for identical products become 

common phenomena. However, most of the literature focused on simultaneous or 

sequential auctions, and only a few studies considered overlapping online auctions (see 

Haruvy et al. 2008 for a review). Those, which did study overlapping online auctions, 

analyzed bidders’ cross-bidding (Hung et al. 2007) and bidders’ forward-looking strategies 

(Zeithammer 2006, 2007a). Hung et al. (2007) found that forward-looking bidders bid less 

than their valuations in all auctions but the last one and bidders never cross-bid during the 

bidding process. Hoppe (2008) in his laboratory experiments found that the seller’s revenue 

was significantly higher in overlapping auctions than in simultaneous ones because the 

bidder with the second highest valuation had a chance to win in the other auction through 

cross-bidding when she was outbid in one auction. However, Hoppe did not find the impact 

of the changes in the degree of overlap on the seller’s revenue. In a series of studies of 

forward-looking, Zeithammer (2006) modeled identical sequential eBay auctions and found 

that bidders took information about competing auctions into account, and thus reduced their 

bids when they knew about the future availability of products.  Zeithammer (2007a, b) also 
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showed in his analytical model that sellers could influence bidders’ bid-shades by the time 

he announced the opening of future auctions:  at the start of the auction or after the end of 

the earlier auction. His analysis showed that commitment reduced bid shading, while 

waiting reduced demand uncertainty.  Bapna et al. (2009) empirically studied the impact of 

information flow on final bids. On one hand, they found that information from preceding 

auctions provided signals about prior prices and demand, which might influence the price 

of the current auction; on the other hand, they found that information about following 

auctions provided the number of products offered, which caused bidders to shade their bid. 

Such impacts of information are analogous to the notion of bidder learning and forward-

looking in our model. However, our paper takes a different approach. We study the seller’s 

decision on the degree of overlap between auctions, and the factors that influence this 

decision. We also provide the theoretical explanation for the popularity of overlapping 

online auctions.  

Second, this paper contributes to the existing literature on information release. The 

benefits to sellers of offering information are well documented in the literature. It is 

generally considered that it is optimal for sellers to fully disclose information (Ganuza 2003; 

Bergemann and Pesendorfer 2007; Eso and Szentes, 2007). The overlapping strategy can be 

viewed as one  type of information release, where before auctions starts a seller posts the 

number of overlapping auctions and also selects the degree of overlap to influence the 

precision of the information on the bidders’ valuations (about the product value).  

 Concerning bidders’ learning, the literature essentially focused on exogenous 

signals. For example, Hossain (2008) considered a model of when to bid, in which one 
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bidder was informed and the other was uninformed about the product value. The 

uninformed bidder received a random signal and learned whether her valuation was above 

or below the current price. He found that in equilibrium the informed bidder bid early if her 

valuation was low and bid late otherwise, while the uninformed bidder bid at any time 

during the course of the auction. Compte and Jehiel (2004) modelled the bidding strategy in 

the context where bidders learned their valuations at a random time. The learned value can 

be positive (larger than average) or negative (equal to average); therefore, he found that 

waiting was always a weakly dominating strategy in equilibrium.  In the above papers, the 

learned value is not related to the bidding context, but is exogenously given by nature. Our 

study extends the scope of the literature on learning to include endogenous signals. In our 

paper, the information a bidder learns is influenced by the overlapping conditions. 

Furthermore, we model bidders’ learning in three possible types: 1) bidders learn at the end 

of the first auction about other bidders’ valuations; 2) bidders learn at the end of the first 

auction about the ending price of the first auction, and 3) bidders learn about the drop-out 

bids of other bidders during the bidding process.   

We find that the seller’s optimal strategy differs in these three types of learning. 

When bidders learn at the end of the first auction about the other bidders’ valuations (type 

1), there exist some conditions in which partial overlapping strategies are optimal, 

regardless whether demand is fixed or varies during the auctions. In the other two types of 

learning, there exist some conditions in which partial overlapping strategies are optimal 

when demand varies. Otherwise the seller’s optimal strategy is to run almost simultaneous 

auctions (i.e. a small time gap is needed between two auctions).   
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2.3 Model setup 

We consider a context where a seller sells two homogeneous products to n  bidders 

in two ascending bid auctions. The two auctions overlap to a  degree, where [0,1]a∈  (see 

Figure 2-2). When 0=a , the seller holds sequential auctions; when 1=a , he holds 

simultaneous auctions; when 1>a>0, he holds partially overlapping auctions. For 

simplicity, the duration of each auction is set equal to 1, and thus the total duration is 2− a .   

 

 

 

Figure 2-2. Overlapping auctions, where a is the degree of overlap 

The number of bidders is assumed to be greater than 3 to avoid strategic interactions 

among bidders.3  Bidders are assumed to be risk averse, and want at most one product. 

Bidders are uncertain about the product value, which is assumed to fall within a range. 

After the start of the auction and new information about product value becomes available, 

bidders will update their valuations. We denote the prior belief about the product valuation 

for bidder i as vi, which is randomly drawn from a common distribution  ( )F v . Hence we 

3When there are two bidders, each will win an auction and pay the minimum bid increment. 

When there are three bidders, the bidders with the first and second highest valuation will 

each win an auction, each paying an amount equal to the value of the third highest bidder. 

Hence at least 4 bidders are needed. 

Auction 2 

a 

Auction 1 

2 - a 
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assume valuations to be affiliated (Milgrom and Weber 2002).  ( )F v  is assumed to follow a 

uniform distribution in the range from [0, 1]. Let [.]E  denote the expected value of bidders’ 

valuations and let the superscript denote the ranking (of valuation) of  n  bidders, then [ ] ( )kv n  

represents the kth highest valuation among n bidders and [ ][ ( )]kE v n  represents the expected 

value of the kth highest valuation among n bidders.   

Both the seller and bidders are assumed to discount future revenues or rewards. 

Discount rates may vary between bidders and the seller, and may also differ across product 

categories (e.g. discount rates tend to be higher for high-tech or seasonable products). For 

simplicity, we assume discount rates (denoted as β ) to be the same for bidders and the 

seller, ranging within [0, 1].  

Forward-looking bidders. Forward-looking bidders anticipate the prices of future 

auctions and take that into account when placing a bid. In particular, anticipating an 

opportunity to win an identical item in a future auction at a lower price, a forward-looking 

bidder reduces her final bid in the current auction (Jofre-Bonet and Pesendorfer 2003; 

Zeithammer 2006, 2007a). This reduction is called bid-shading. The amount of bid-shading 

at a degree of overlap is denoted as ( )∆ a . 

Bidders’ learning. Learning reduces bidders’ uncertainty and is modeled in two 

ways: 1) bidders only learn at the end of the first auction and update their valuations based 

on the information released (i.e., the valuation distribution of other bidders), or 2) they 

learn during the bidding process and update their valuations based on the final bids of other 

bidders. The first type of learning tends to be more applicable when bidders’ valuations are 
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not readily observable during the auction (e.g., due to a significant amount of snipe 

bidding).4  We adopt the first way of learning in the full model and leave the second type 

for the extension.  

The sequence of the game. We model the game in four stages: 1. The seller decides 

the degree of overlap a between the two auctions; 2. All bidders participate in the first 

auction, and after time period1− a , the second auction starts. After this time, bidders are 

allowed to cross-bid between auctions. When the first auction ends, the winner pays the 

amount of her bid and leaves with the item; 3. The remaining bidders update their 

valuations; 4. The remaining bidders participate in the second auction. At the conclusion of 

the second auction, the winner pays the amount of her bid.  

The sequence of the game and bidders’ prior value distribution are assumed to be 

common knowledge. We are looking for the subgame perfect equilibrium of the game.  

2.4 Analysis and results    

We start with a benchmark model, in which bidders are certain about the product 

value (i.e. no learning), and next consider the full model, in which uncertain bidders learn 

about product value.   

2.4.1 Benchmark model: bidders forward-look only 

4 Over one-third of bids arrive in the last few minutes and many bidders reveal their maximum 
willingness to pay until the closure of the auction (Roth and Ockenfels 2002; Bajari and Hortascu 
2003). 
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The benchmark model is a private value model, where bidders know their own 

valuation with certainty and thus do not learn. However, bidders are forward-looking and 

consider potential prices in future auctions when 0 1≤ <a (i.e. two auctions are partially 

overlapped).5  

       The model is solved through backward induction. We start at the last stage, where 

1−n bidders bid in the second auction. Since no further auctions follow, this is a standard 

ascending bid auction, in which the bidder with the highest valuation wins the item and 

pays the value she bids. Therefore, the expected highest bid in the second auction, denoted 

as 2b , is equal to the expected second-highest valuation among the 1−n  remaining bidders 

(see Step 2 of Appendix 2-B for technical details), hence:  

[2]
2 [ ( 1)]= −b E v n .                                                             (2-1) 

Given that bidders are forward-looking, the bidder with the highest valuation can 

select to win either in the first or in the second auction.  If she wins the second auction, her 

expected utility is: [1] [1] [2]
2 [ ( )] [ ( 1)]= − −u E v n E v n ,where [1]

2u  denotes the expected utility for 

winning in the second auction and is equal to the expected valuation minus the expected 

highest bid in the second auction. Using [2] [3][ ( 1)] [ ( )]− =E v n E v n
6, [1]

2u  can be further expressed as:  

5 We consider the case where the degree of overlap is smaller than 1, such that the ending 

times of two auctions are sufficiently different, that bidders who lose in the first auction, 

can still bid in the second one. 

6As bidders do not learn, valuations remain unchanged, and the expected second-highest 
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[1] [1] [3]
2 [ ( )] [ ( )]= −u E v n E v n  .                                                     (2-2) 

Since there is no bidder learning, we skip the third stage and consider the second 

stage, in which n  bidders bid in the first auction. The high value bidder places her 

maximum bid ( 1b ) up to the level which makes her indifferent as to winning in the first or 

the second auction.  

  [1] 1 [1]
1 2[ ( )] β −− = aE v n b u ,                                                  (2-3) 

where the left side of Equation (2-3) is the expected utility of winning in the first auction, 

and the right side is the expected time-discounted utility of winning in the second auction. 

Substituting Equation (2-2) into (2-3), we obtain her expected highest bid in the first 

auction as follows: 

[1] 1 [1] [3]
1 [ ( )] [ ( ) ( )]β −= − −ab E v n E v n v n .                                (2-4) 

Now we calculate bid-shading ( )a∆ . Without forward-looking, the winner needs to 

pay [2][ ( )]E v n  (see Step 2 of Appendix 2-B for details); with forward-looking, the winner 

needs to pay 
1b  (see Equation 2-4). ( )a∆ is the difference between the above two values, i.e.,  

[1] [2] 1 [1] [3]( ) [ ( ) ( )] [ ( ) ( )]aa E v n v n E v n v nβ −∆ = − − + − , and is simplified as (see Appendix 2-B for the 

proof):   

valuation among 1−n bidders in the second auction equals to the expected third highest 

valuation among n bidders in the first auction.  
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1( ) (2 1) / ( 1)β −∆ = − +aa n ,
                                                         

(2-5) 

where the time-discount rate shall satisfy the condition that 1 1 / 2β − ≥a . Equation (2-5) 

implies the following: 1) ( ) / 0∂∆ ∂ >a a .The amount of bid-shading increases, as the degree 

of overlap becomes larger. Therefore, forward-looking behavior benefits bidders but 

leaves the seller worse off; 2) ( ) / 0∂∆ ∂ <a n . The amount of bid-shading decreases, as the 

number of bidders increases. This suggests that as competition among bidders intensifies, 

the chance to win in the second auction decreases, and as such, bidders shade their bids 

less in the first auction.  

      We last look at the first stage, in which the seller decides the degree of auction overlap. 

The seller’s revenue is the sum of the highest bids in two auctions. Based on (2-1) and (2-

4), the seller is expected to gain [1] 1 [1] [3][ ( )] [ ( ) 2 ( )]β −= − −aR E v n E v n v n , which is further 

simplified as: 

1 4( )
1 1

β − −
= −

+ +
an nR

n n
. 

      When 1=a  ( i.e. two auctions run simultaneously), bidders cannot forward-look, 

resulting in seller’s expected revenue being two times the third-highest bidders’ expected 

valuations: 32 [ ( )]E v n . (Because the two simultaneous auctions act as a single auction selling 

two identical products, where bidding stops when only two bidders remain.) This can be 

further simplified as 2( 1) / ( 1)− +n n  (see Appendix 2-A for technical details). Then the 

seller`s revenue and bid-shading are: 
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1 4( ) 0 1
1 1

2( 1) 1
1

β − − + ≤ < + +=  − =
 +

an n a
n nR

n a
n   .                                      (2-6)

  

12 1 0 1( ) 1
0 1

β − −
≤ <∆ = +

 =

a

aa n
a  .

                                             (2-7) 

      Forward-looking results in bid-shading in the first auction (by the winning bidder), and 

thus reduces the seller’s profit. Equation (2-7) shows the trajectory of the amount of bid 

shade as the degree of overlap changes. As the degree of overlap a becomes larger, the 

amount of bid-shading gradually increases, because the total auction duration decreases, 

resulting in less discounting of future pay-offs. In simultaneous auctions (a = 1), bidders 

cannot forward-look and hence do not reduce their bid. We summarize our finding in 

Proposition 2-1.  

       PROPOSITION 2-1.  When bidders are certain about product value, the seller’s 

optimal selling strategy is to run auctions simultaneously ( * 1=a ).  

       It is straightforward to show that, given a certain number of bidders, the revenue 

with total overlap is larger than that with any partial overlap (see Figure 2-3). Hence, it is 

optimal for a seller to adopt simultaneous auctions, since this strategy eliminates the loss 

due to forward-looking and time-discounting. This result is consistent with the finding in 

Zeithammer (2006).   
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Figure 2-3. Seller’s revenue for different degree of overlap (for 0.6β =  ) 

2.4.2 Full model: bidders forward-look and learning   

Next we add bidder learning about the product value from the bids in the first 

auction.  

2.4.2.1 Bidder’s learning   

Bidders’ valuations. Bidders are uncertain about product value.  Bidder i’s 

valuation, denoted as iv ,  has the form:                                           

i i vv w ε= + ,                                                             (2-8) 

where  iw  is the bidder i’s expected valuation, and vε  is the error term,  assumed to follow 

a uniform distribution (.)b  with mean 0 and variance 2
vσ   in support of [ , ]λ λ−  and with  

CDF (.)B .  Bidder i’s valuation iv  falls in the range from [ , ]i iw wλ λ− + . When 0λ =  (i.e., 

bidders have certain valuations), then the model reduces to our benchmark model. 

0 5 10 15 20 25
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2.0

The number of bidders (n)  

Seller’s expected revenue(R
) 

a=1.0 
a=0.8 
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Additionally, bidders’ expected valuations are heterogeneous, and bidder i’s expected 

valuation  equals:   

[ ]i ww E w ε= + ,                                                           (2-9) 

where [ ]E w  is the mean value across all bidders and wε  is the error tem, which is assumed 

to follow distribution, (.)f   with mean 0  and variance 2σ w   and with corresponding CDF 

(.)F .   

Figure 2-4 provides a graphical illustration, where f(w) depicts the aggregate 

distribution of valuation across bidders, and the three small curves (b(.)), superimposed on 

f(w), show the variation in individual bidders’ valuations. 

 

Figure 2-4. The distributions of bidders’ valuations  

       Highest bid. All bidders in an ascending bid auction, except for the winner, bid up 

to their maximum willingness to pay (MWTP).  When bidders’ valuations are certain, the 

MWTP is equal to their valuations. When valuations are uncertain, risk-averse bidders will 

bid up to their expected valuation minus a risk premium ( 2 / 2σ vr ).  Mathematically,  

2 / 2i i vMWTP w rσ= − ,                                                (2-10) 

iw

Frequency 

Bidders’ expected valuations 

 Individual valuation 

  E[w1 ]  E[w2 ]      E[w3]
 

w2
 

w3
 

w1
 

f(w)
 

w1
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where r is the risk coefficient. It is positive to guarantee that bidders are risk averse. This 

mean-variance formulation has been widely used in finance studies (Pulley 1983; Aivazian, 

et al. 1983), where it has been demonstrated to be a valid approximation of the Von 

Neumann- Morgenstern utility function. These existing studies have also shown that 

decision makers can effectively maximize expected utility when knowing only the mean 

and the variance of their valuation distributions. A higher level of uncertainty will result in 

a lower MWTP. 

       Updating valuations. The first type of learning we consider occurs at the end of the 

first auction.  At the end of the first auction, bidders receive a signal s on the product value, 

and then update their valuations. Their posterior beliefs can be expressed as a weighted 

average of the prior mean and the signal in the form of a linear approximation, following 

Erbenova and Vagstad (1999) and Vagstad (2007): [ | ] (1 )i i i iE v s s wτ τ= + − ,7  where 

7  This simple learning equation retains general properties of Bayesian updating. If we use 

Bayesian updating, the posterior distribution of valuation can be expressed as: 𝑏(𝑣𝑖𝑖) =

𝑓(𝑣𝑖𝑖|𝑆𝑖𝑖) = 𝑓(𝑣𝑖𝑖)  𝑝(𝑆𝑖𝑖)

∫ 𝑓(𝑣)  𝑝(𝑆𝑖𝑖)𝑑𝑣
1
0

. First, we show that the martingale property of the learning is 

remained, i.e., 

𝐸(𝑣𝑖𝑖|𝑆𝑖𝑖) = ∫ 𝑓(𝑣𝑖𝑖)  𝑝(𝑆𝑖𝑖)

∫ 𝑓(𝑣)  𝑝(𝑆𝑖𝑖)𝑑𝑣
1
0

𝑔(𝑆𝑖𝑖)𝑑𝑆𝑖𝑖
1
0 =𝑓(𝑣𝑖𝑖)

  ∫ 𝑝(𝑆𝑖𝑖)𝑔(𝑆𝑖𝑖)𝑑𝑆𝑖𝑖
1
0

∫ 𝑓(𝑣)  𝑝(𝑆𝑖𝑖)𝑑𝑣
1
0

= 𝑓(𝑣𝑖𝑖)
  𝑝(𝑆𝑖𝑖)∫ 𝑔(𝑆𝑖𝑖)𝑑𝑆𝑖𝑖

1
0

𝑝(𝑆𝑖𝑖)∫ 𝑓(𝑣)  𝑑𝑣1
0

= 𝑓(𝑣𝑖𝑖). 

Second, if both the signal and the bidders’ initial valuation follow normal distributions, the 

result is the same; that is, 𝐸(𝑣𝑖𝑖|𝑆𝑖𝑖) =
(1/𝜎𝑝𝑟𝑖𝑖𝑜𝑟

2 )𝐸(𝑣𝑖𝑖)+(1/𝜎𝑠𝑖𝑖𝑔𝑛𝑎𝑙
2 )𝐸(𝑆𝑖𝑖)

(1/𝜎𝑝𝑟𝑖𝑖𝑜𝑟
2 )+(1/𝜎𝑠𝑖𝑖𝑔𝑛𝑎𝑙

2 )
= (1 − 𝜏)𝐸(𝑣𝑖𝑖) +
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[0,1]τ ∈ denotes the precision of the signal.  Let the distribution of bidder i’s posterior 

belief be ( )iBB v with mean '
iw  and variance 2

'σ v  in the range of [ ' ', ' ']i iw wλ λ− + , then 

 
{ : [ | ] } { : ( (1 ) )/ }

(1 )( ) ( ) ( ) ( )
τ τ

τ
τ< < − −

− −
= = =∫ ∫

i i i i

i i
i s E v s x s s x w

x wBB x b s ds b s ds B ,            
  
 (2-11) 

       Using (2-11), we obtain the mean and variance of bidder i’s posterior belief as: 

' =i iw w ,                                                                    (2-12) 

2 2 2
' (1 )σ τ σ= −v v .                                                             (2-13) 

       Given the distribution of prior beliefs ( ) ~ [ , ]λ λ− +B v U w w  and the above results for 

the posterior belief, we obtain 2 2 / 3σ λ=v  and 2 2 2
' (1 ) / 3σ τ λ= −v , respectively.  

       After bidders update, the expected value remains the same. However, the range of 

the expected value distribution shrinks, so bidders are more certain about their valuations. 

When the signal is more accurate (i.e. a larger value of τ ), the bidders place less weight on 

their prior beliefs.  Both the updating and the accuracy of signals decrease bidders’ 

uncertainty, resulting in more aggressive bidding in the second auction.  

Degree of overlap. The degree of overlap may also influence the precision of the 

released signal. In sequential auctions bidders bid up to their MWTP in the first auction, but 

in overlapping auctions they may switch to the second auction before they bid up to their 

MWTPs in the first auction. Therefore, the greater the degree of overlap, the less precise 

𝜏𝐸(𝑆𝑖𝑖)= (1 − 𝜏)𝑤𝑖𝑖 + 𝜏𝑠𝑖𝑖, where we let 𝜏 =
1/𝜎𝑠𝑖𝑖𝑔𝑛𝑎𝑙

2

(1/𝜎𝑝𝑟𝑖𝑖𝑜𝑟
2 )+(1/𝜎𝑠𝑖𝑖𝑔𝑛𝑎𝑙

2 )
, and 𝑠𝑖𝑖 = 𝐸(𝑆𝑖𝑖).  
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the signal received from the first auction. Mathematically, / 0τ <d da .  Hence by varying 

the degree of overlap, the seller is able to influence the precision of the released 

information.   

      In the extreme case of simultaneous auctions ( 1=a ), no new information is 

revealed and hence bidders do not update, so let (1) 0τ = . In the other extreme case of 

sequential auctions (a=0), the maximum amount of information is released, so we let 

(0) 1τ = . To show the relationship between updating and the degree of overlap analytically, 

we specify 1 κτ = − a . This functional form ensures / 0τ <d da , and it also provides sufficient 

flexibility to capture possible negative relationships between τ and a. Parameter κ > 0, 

measures the ease of learning, given a fixed amount of information. For example, if κ is 

large, it is more difficult to reduce uncertainty due to the nature of the product (e.g. art 

work). 

2.4.2.2 Seller’s optimal overlapping strategy 

The game is modelled through four stages as specified in Section 2.2 and solved 

through backward induction. The solution considers cases of 1=a and 1≠a . When , 

two auctions run simultaneously and bidders cannot forward-look, and (1) 0∆ =  and (1) 0τ = . 

Based on the MWTP function (10) in Section 2.3.2.1, the seller’s expected revenue is 

[2] [3] 2[ ( )] [ ( )] ( )σ+ − vE v n E v n r  , which can be simplified as 22( 1) / ( 1) / 3λ− + −n n r . When 1≠a , 

bidders are forward-looking and learn. The optimal overlapping strategy is summarized as 

follows (see Appendix 2-C for the proof). 

       PROPOSITION 2-2. When bidders are uncertain about their valuations,  

1=a
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1. The amount of bid shading is 
1 2

2 12 1 [(1 ) 1] 0 1( ) 1 6
0 1

β λτ β
−

− −
+ − − ≤ <∆ = +

 =

a
a r aa n

a , 

 and the 

seller’s revenue is 

2 2
1

2

4 (1 )( ) 0 1
1 1 3

2( 1) 1
1 3

τ λβ

λ

− − −
+ − ≤ < + += 

− − = +

an n r a
n nR

n r a
n

.

  

2. There exists a unique degree of overlap * [0,1]a ∈  which maximizes the seller’s expected 

revenue in two auctions selling identical products. In particular, the optimal degree of 

overlap is as follows:    

• When 1β ≠  (time discounting), 

1) If 
2

3( 4) ( ln ) 1 lnmax( 1) , )
( 1) 2 2

β βκ
λ

− − +
> −

+
n a

n r
, then * =a a . 

 2) If 
2

3( 4) ( ln ) 1 lnmin( 1) , )
( 1) 2 2

β βκ
λ

− − +
≤ −

+
n a

n r
, then if β β>  , * 0=a ; else * 1=a . 

 3) If 
2 2

3( 4) ( ln ) 1 ln 3( 4) ( ln ) 1 lnmin( 1) , ) max( 1) , )
( 1) 2 2 ( 1) 2 2

β β β βκ
λ λ

− − + − − +
− < < −

+ +
 n a n a

n r n r
, 

then 

      a) If  


2

3( 4) ( ln ) 1 ln( 1)
2 2( 1)
β β

λ
− − +

− >
+
n a

n r
,then * 1=a . 

       b) If  

2

3( 4) ( ln ) 1 ln( 1)
2 2( 1)
β β

λ
− − +

− <
+
n a

n r
,then if ,

 
 and otherwise, . 

• When 1β = (no time discounting), if 2 6 / ( 1)λ > +r n , then ;  else * 1=a .  

where a satisfies  

2 2 1

2

3( 4)( ) ln 2
( 1)

κ κ
β κ

λ
−−

− =
+
na a

n r
   and 

22 ( 1)
4 3( 4)

λβ − +
= −

− −


n r n
n n

. 

       Proposition 2-2 shows the optimal degree of overlap under different market 

conditions: the extent of valuation uncertainty (or the perceived risk due to valuation 

β β>  * 0=a * 1=a

* 0=a
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uncertainty ( 2 / 2λr )), the discount rate ( β ), and the ease of learning ( κ ). As illustrated in 

Figure 5, the seller’s revenue increases and then decreases as the degree of overlap 

becomes larger. The maximum revenue (1.2451) is reached at 0.8285 degree of overlap. 

 

Figure 2-5. Seller’s revenue for different degrees of overlap 

 ( 0.25,  7,  5,  0.5,  and 0.95n rλ κ β= = = = = ). 

       Graphic illustration. Figure 2-6 helps us visualize the optimal overlapping 

strategies via three graphs. The x-axis denotes the time-discount rate  and the y-axis the 

ease of learning κ . From left to right, bidders’ valuation uncertainty ( ) (when 1β ≠ ) 

increases from low to high.   

         In each graph, the strategy space is divided by three lines, named c1, c2 and c3, into 

three regions, where either simultaneous, sequential or partial overlapping strategies are 

optimal (see Step 2 of Appendix 2-C for technical details). We find that the partial 

overlapping strategy tends to be more profitable than simultaneous and sequential selling 

strategies when (1) bidders’ uncertainty about product value is at a mid-range, (2) bidders’ 

valuation uncertainty is easy to reduce via learning (a high level of κ ), and (3) the effect 
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of time-discounting is not strong. Changing model parameters affects the locations of these 

three lines, but the relative configuration remains the same.  

κ                                                         κ                                                         κ  

 

  

Figure 2-6.  A graphical presentation of the findings in Proposition 2-2 

       Time-discounting. Taking the derivative of the optimal degree of overlap with 

respect to the time-discounting, we obtain a negative relationship between time-discounting 

and the degree of overlap when the time-discounting rate is sufficient large (i.e., there is 

limited time-discounting).  There exists a unique value for β  such that * / 0β∂ ∂ <a  when β β>

, and * / 0a β∂ ∂ =  otherwise.  This is because time-discounting reduces seller’s profit, thus it 

is optimum to shorten the duration (i.e. to increase *a ). For a numeral illustration, solving 

the optimal degree of overlap, we apply the same parameter values used in the example for 

Figure 5 except for β .  We find that  0.7554β = , and when [0,0.7754]β ∈ , ; when 

[0.7754,1]β ∈ , *a  decreases as β  increases. As a comparison in the example from Figure 2-

5, when 0.95β = , * 0.8285a = .  

       When there is no discounting ( 1β = ), it is optimal for a seller to run sequential 

* 1=a

               (a)  Low valuation uncertainty             (b) Medium valuation uncertainty       (c) High valuation uncertainty 
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auctions when the valuation uncertainty satisfies 2 6 / ( 1)λ > +r n , and run simultaneous auction 

otherwise. Without accounting for time-discounting, the seller is better off to let bidders’ 

learn by running sequential auctions when bidders’ valuation uncertainty is high, however, 

when uncertainty is low it is better to run simultaneous auctions, to stop bidders from 

forward-looking.  

       Valuation uncertainty. This is measured by 2
vσ , where 2 2 / 3vσ λ= . From Figure 6 

we see that as valuation uncertainty increases (from left to right), the region where 

sequential auctions are optimal increases, while the regions for simultaneous and partial 

overlapping auctions decreases.  From Proposition 2-2, we also derive * 2/ 0a λ∂ ∂ < , 

suggesting that high bidders’ valuation uncertainty prompts a seller to reduce the degree of 

overlap to facilitate learning.  

       When bidder’s valuation uncertainty is low, benefits from learning are limited. (In 

the extreme when 2 0vσ = , i.e. the benchmark model, the optimal overlapping strategy is 

1=a .) Thus the seller increases the degree of overlap to eliminate time-discounting. When 

uncertainty is high, benefits from learning are considerable. First, bidders in the second 

auction will bid more aggressively due to the reduced uncertainty. Second, this first 

consequence makes the bidders in the first auction also bid more aggressively by foreseeing 

the more intense future competition. Thus it is optimum for the seller to decrease the degree 

of overlap to enhance learning.  

2.5 Extensions  

We next consider two extensions. In Section 2.5.1, we allow random entry of 
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bidders in auctions, while in Section 2.5.2, bidders learn from the bids of other bidders 

during the bidding process.  

2.5.1 Random arrival of bidders  

Following Shmueli, Russo and Jank (2007), we assume that bidders arrive randomly 

during the bidding process according to a Poisson distribution. Thus, the total number of 

bidders is determined by the average arrival rate η and auction duration. Bidders who arrive 

during the first auction are named “initial” bidders and those who arrive after “new” 

bidders.  Given durations of  1 and 2-a for the first and second auctions,  the expected 

number of “initial” bidders is: 
1

0 !

ηη η
−∞

=

= =∑
n

n

eN
n

, and the expected number of “new” bidders 

is: 
(1 )

2
0

( (1 )) (1 )
!

n a

n

a eN a
n

ηη η
− −∞

=

−
= = −∑ . The two types of bidders have different distributions for 

their valuations, as “initial” bidders’ valuations are updated at the end of the first auction, 

while “new” bidders’ are not.  

       We rank bidders based on their expected valuations and denote [ ]iInitial  as the ith 

highest MWTP among “initial” bidders, and [ ]iNew  as the ith highest MWTP among “new” 

ones. When 0 1≤ <a , we have three cases to consider:   

      1) If [3] [1]Initial New> , then a “initial” bidder wins and pays [3]Initial ;   

      2) If [2] [1] [3]Initial New Initial> > , then an “initial” bidder wins and pays [1]New ; and  
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      3) If [1] [2]New Initial> , then a “new” bidder wins and pays [2]Initial . 8   

       In the first case, the expected highest valuation of “new” bidders is low enough (less 

than [3]Initial ) that the “new” bidders’ entry does not influence the final price of the second 

auction.  Then the results remain the same as in the full model. In the other two cases, the 

arrival of “new” bidders increases the final price of the second auction; in particular, when 

[1] [3]New Initial>  , which is a common term satisfying the conditions of both Case 2 and 3. 

As a result, the expected final bid is [1]New  or [2]Initial , which is higher than [3]Initial , the 

expected final bid without entry.   

       PROPOSITION 2-3.  Extending the main model to allow for bidders’ random 

entry during the bidding process, 1) there exists a unique optimal degree of overlap 

, and 2) this optimal degree of overlap is no less than in the main model, ceteris 

paribus (see Appendix D for the proof).   

       This result extends the finding in Proposition 2-2, allowing for new bidders to enter 

during the bidding process, and finds that partial overlapping auctions are optimal under 

similar conditions as in Proposition 2-2. So it shows the robustness of our results.   

       Entry of new bidders tends to favor the seller, as higher demand increases the 

likelihood of new bidders with higher valuations. Therefore, the seller’s expected revenue 

will increase.   

8 The case [2] [2]New Initial> never happens, as simple calculation shows that the 2nd-highest MWTP 
among the “initial” bidders is always larger than that among the “new” bidders.    

* [0,1]a ∈
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       The result shows that the optimal degree of overlap is no less than in the full model. 

This is the case, since “new” bidders do not learn, reducing the benefit of longer auctions, 

and hence, a seller has an incentive to increase the degree of overlap. And this effect is 

greater than the benefits from increased demand due to reduced overlap. 

2.5.2 Bidder learning during the bidding process 

While in the main model we assumed that bidders do not learn until the first auction 

is completed (e.g. due to a large extent of snipe bidding), we now develop a model in which 

bidders learn and update their valuations during the bidding process based on the bids by 

other bidders. Following previous research, we assume that updates are based on the drop-

out points of other bidders (Milgrom and Weber 1982; Levin, Kagel, and Richard 1996; 

Hong and Shum 2013). This will be more applicable in cases where there is less snipe 

bidding (e.g. high stake auctions, or B2B auctions) where bidders are more likely to bid up 

to their value during the auction. We consider models both with and without bidders’ entry. 

2.5.2.1 without bidder entry 

As noted in Equation 2-8, bidder i’s initial valuation is i i vv w ε= + , where iw is the  

initial expected valuation, following distribution f(.). Since f(.) is common knowledge, 

bidders are able to infer [1] [2] [ ], ,..., ,...kw w w , where [ ]kw is  the kth  highest expected valuation 

among all bidders.   

       Updating valuations. During the course of the auctions, the bidder with the lowest 

valuation drops out first, then the one with the second lowest valuation and so on. The kth  
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drop-out value, denoted as [ ]n ks − (the reversed order of bidders’ valuations  is because the 

bidder with the lowest valuation drops out first), can be expressed as:  

[ ] [ ]n k n ks v ε− −= + ,                                                                (2-14) 

where ε  follows a distribution with mean 0 and variance 2
εσ  and reflects the distance 

between the bidder’s drop-out value and her valuation. 9    

       By Equation (2-8) and (2-14), we have [ ] [ ]k k
vs w ε ε= + + . Drop-out value [ ]ks  can be 

either the same, higher or lower than the expected value [ ]kw . The discrepancy between [ ]ks  

and [ ]kw  triggers remaining bidders to update, identical to the procedure in Equation (2-11). 

As verified in (2-12) and (2-13), the posterior distributions have the Martingale property; 

that is, the means of the updated valuations are unchanged, but the variance distributions 

shrinks by τ− 2(1 )k  at the kth update, where kτ  is the weight the bidders put on the signal for 

the kth update.  To illustrate, assume that vε (Equation 2-8) and ε (Equation 2-14) are 

normally distributed10.   

       In Round 1, knowing the distributions of vε  and ε , the weight the bidders put on 

the signal is: 

9 This distribution can be any symmetric distribution, such as normal or uniform.  

10 Results hold for other symmetric distributions because the precision of the signal during updating 

is decided by two exogenous variables—the variance of the signal and the variance of the initial 

valuation distribution—not by the degree of the overlap.    
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2 2 2
1 / ( )τ σ σ σ= +v v s  .                                                           (2-15)   

Then, using Equation (2-15), we obtain the updated variance:  2 2 2 2 2 2
,1 / ( )v v s v sσ σ σ σ σ= + . 

       In Round 2 after observing the value of the second drop-out [2]s , the posterior 

distributions of Round 1 become the priors of this round, and the 2−n  remaining bidders 

update their valuations: 2 2 2
2 ,1 ,1/ ( )v v sτ σ σ σ= + , 2 2 2 2 2 2

,2 ,1 ,1/ ( )v v s v sσ σ σ σ σ= + . In Round k, we obtain: 

2 2 2
, 1 , 1/ ( )τ σ σ σ− −= +k v k v k s , 2 2 2 2 2 2

, , 1 , 1/ ( )σ σ σ σ σ− −= +v k v k s v k s . We have a recursive system, where the value 

of the kth drop-out is decided by the k-1th updated valuation distributions; the k-1th updated 

distributions are derived based on the value of the k-1th drop-out; the value of the k-1th 

drop-out is decided by the k-2th updated valuation distributions and so on. Updates repeat n-

1 rounds until the next-to-last bidder drops out.  

       As the number of updates increases, the variance in the bidders’ valuation 

distributions and the weights the bidders put on the signals decrease, i.e. 2 2 2
,1 ,2 ,... ...v v v kσ σ σ> > > >

and 1 2 ... ...τ τ τ> > > >k . As bidders gradually become more knowledgeable and thus learn less.  

       The seller’s optimal overlapping strategy. In the first auction, the bidder with the 

highest valuation bids up to a level which makes her indifferent between winning the first 

or the second auction. Thus, [1] (1 ) [1]
1 2[ ( )] aE V n b uβ −− = . Rearranging this equation yields 

[1] (1 ) [1]
1 2[ ( )] ab E V n uβ −= − . This shows that although the last bidder learns, her last bid is decided 

by bid-shading due to her forward-looking, and not due to the reduced uncertainty after 

learning. In the second auction, the last bidder updates −1n  times; hence, her final bid is 

related to the number of bidders and not to the degree of overlap. In sum, the degree of 
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overlap does not affect bidders’ learning.     

       Seller’s revenue is the discounted sum of the two final bids (see Appendix 2-E for 

the proof): 

1
2 2

1 1

2

(1 )4( ) 0 1
1 1 3

2( 1) 1
1 3

n

ia i
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n r a
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λ τ
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                                    (2-16) 

      The revenue under total overlap is larger than under partial overlap, for any a in the 

region of [0, 1). Therefore, the optimal degree of overlap is * 1=a .This is because the degree 

of overlap does not affect bidders’ learning, so the seller will let the auctions overlap totally 

to eliminate time-discounting and bid-shading.  

2.5.2.2 with bidder entry 

As in the previous section, bidders learn their valuations during the bidding process. 

Also they arrive randomly during the auction according to a Poisson process, as specified in 

Section 2.5.1.  

       Again the ending price in the first auction is dependent on forward-looking and not 

on learning. However, in the second auction, the degree of overlap influences learning, 

which impacts the ending price. With bidder entry, the degree of overlap impacts the 

demand (i.e. the number of bidders), which influences (1) learning (the number of times the 

final bidder updates her valuations), and (2) the likelihood of entry by a bidder with a 

higher expected valuation. Reducing the degree of overlap (i.e. a longer duration) increases 

the above two chances. As a result, the seller needs to trade this off against the opposing 
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effects due to time-discounting and forward-looking, resulting in conditions where partial 

overlapping is optimal. Based on the same argument as in Proposition 2-3, we find that the 

optimal degree of overlap is no less than without bidders’ entry. We summarize this finding 

in Proposition 5, together with the model without bidders’ entry. 

PROPOSITION 5.  Extending the main model to allow for bidder learning during 

the auction from the drop-out point of other bidders, 1) if the number of bidders is fixed, 

then the optimal degree of overlap is * 1=a ;  2) if bidders arrive randomly during the 

bidding process according to a Poisson process, there exists a unique solution * [0,1)∈a .  

2.6 Discussion and conclusion  

As more and more sellers use online auctions as an alternative or main channel of 

distribution, the question of how to best sell these products over time has become 

important. Our study determines the optimal way to sell multiple identical product auctions 

over time (i.e., simultaneously, sequentially or partially overlapping), and the factors that 

influence this.  

       This essay contributes to auction theory by providing a theoretical explanation for 

the popularity of overlapping auctions in the real online auction environment. Most studies 

have focused on simultaneous or sequential auctions, and only a few considered 

overlapping auctions. Those that have analyzed such auctions have taken the degree of 

overlap as an exogenous variable.   

       Different from previous research, we focus on the joint impact of four different 

factors (bidders’ forward-looking, learning, time discounting and varied demand) that 
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influence the optimal selling strategy (degree of overlap). Our findings are summarized in 

Table 2-1.  

Table 2-1   The optimal selling strategy of different models 

            Models 
 
 

Factor 

No Learning  Type 1 Learning  Type 2 Learning  
Benchmark model               Full model Extension 1 Extension 2 Extension 3 

M1 
without entry 

M2 
without entry 

M3 
with entry 

M4 
without entry 

M5 
with entry 

Forward-
looking  + + + +  +  

Time-
discounting  + + + +  +  

Varied-demand NA NA - NA - 

Learning  NA -  - 0 - 

Optimal 
Strategy Total overlap  Partial overlapping 

exists. 
Partial overlapping 

exists. Total overlap Partial overlapping 
exists. 

Note: “+” (“-”): It is optimal for a seller is to increase (decrease) the degree of overlap due to the specific 

factor. 

       We find that forward-looking bidders foresee an option to win in the second 

auction at a potentially lower price, resulting in bid-shading in the first auction. Therefore, 

a seller should increase the degree of overlap to reduce bid-shading.   Seller’s time-

discounting of future payoffs also has a positive effect on the degree of overlap. As a 

result, with forward-looking and time-discounting (the benchmark model), the seller’s 

profit under full overlap is always optimal.  

       The degree of overlap directly influences demand (the number of bidders). 

Therefore it is optimal for the seller to reduce the degree of overlap (i.e., a longer total 

duration), such that more bidders can enter the auction. Learning plays an important role in 

our model. When bidders are uncertain about the product value, learning helps to reduce 

their uncertainty. Therefore, learning results in more aggressive bidding and a higher price 
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in the second auction.  Additionally, forward-looking bidders, who are able to predict this 

higher future price, due to learning, will bid more aggressive in the first auction, resulting 

in a higher selling price.  

       The relationship between learning and the degree of overlap depends on the type of 

learning. 1) Bidders learn at the end of the first auction about other bidders’ valuation, 

which is related to the degree of overlap (see models M2 and M3); therefore, it is optimal 

for the seller to reduce the degree of overlap, since the longer duration will enhance 

bidders’ learning.  2) If bidders learn during the bidding process – which is unrelated to the 

degree of overlap in the model without bidder entry (model M4), since bidders update 

based on the highest bid by other bidders regardless of the degree of overlap.  Therefore, 

learning increases the seller’s profit, but the degree of overlap has no impact on learning.  

The optimal degree of overlap is identical to that in the benchmark model without learning 

(i.e., total overlap). However, with bidder entry (model M5), less overlap will lead to more 

bidders, and increased learning resulting in higher prices. Therefore, the seller will want to 

reduce the degree of overlap. 

       We also pinpoint the conditions when partial overlapping auctions are optimal: a) 

bidders’ uncertainty about product value is at a mid-range, b) it is easy to reduce value 

uncertainty through learning, and c) the effect of time-discounting is not strong.  However, 

without uncertainty, it is optimum to run simultaneous auctions, and without time 

discounting it is optimal for a seller to run sequential auctions when the valuation 

uncertainty satisfies 2 6 / ( 1)λ > +r n , and run simultaneous auction otherwise.  
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       Our model of overlapping can be extended in different directions and integrated 

with other research. For example, the present research can be extended by relaxing the 

assumption of symmetry in bidders’ responses to informative signals. Bidders may face 

either positive or negative signals (e.g., a selling price that is lower than expected) when 

updating their valuations. We may expect that a bidder’s response (update) to a negative 

signal may be stronger than to a positive signal (e.g., Kahneman and Tversky 1979). Future 

research may also integrate overlapping strategies for auctions selling complementary 

products with bundling across auctions (Popkowski Leszczyc and Häubl 2010).  
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Appendices  

Appendix 2-A 

The reason of assuming that the number of bidders is no less than 4 is to avoid 

strategic interaction among bidders. When the number of bidders is low enough, bidders 

can identify each other’s moves during the bidding, and thus perform strategically.  For 

example, when n=2, there are two bidders (e.g. A and B).  Each bidder wants to bid first in 

the first auction due to the time-discounting effect. Then if A is able to bid first, B chooses 

to win in the second auction.  (We assume that the loss due to time-discounting is less than 

a minimal-incremental-amount.)  Therefore, each bidder bids at a minimal-incremental-

amount. The same result holds if B is able to bid first.  

  When n=3, there are three bidders (e.g. A, B and C). Suppose that Bidder A’s 

valuation is the highest, B’s is the second-highest, and C’s is the lowest. As a result, C 

drops out first in the first auction. If A’s bid is currently the highest there, then B goes for 

the second auction, in which B and C compete and B wins when the bid is up to C’s 

expected valuation and C drops out. As a results, both A and B pay the bid which equals 

C’s expected valuation. The same result holds if B’s bid is currently highest in the first 

auction when C drops out.  

In sum, at least four bidders are needed to avoid bidders’ strategic interactions.  

Appendix 2-B:  Derivation of the Seller’s Revenue in Case 1 when 𝒂 = 𝟏 in 

benchmark model 

The derivation proceeds in two steps.  
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Step 1: Deriving the kth -highest expected valuation. Bidders’ private valuations 

are drawn independently from a known distribution (.)F . Let us denote [ ] ( )kv n as the kth -

highest valuation among n bidders, and [ ] (.)kg  and [ ] (.)kG be its corresponding PDF and CDF.  

Then [1] ( , )G v n , the CDF of the 1st-highest valuation, is the probability that all bidders’ 

valuations are no higher than v, mathematically, [1] ( , ) ( )nG v n F v= . As a result, we are able to 

derive its density [1] 1( , ) ( ) ( )ng v n nF v f v−= .  Similarly, we derive, 

[ 2] 2( , ) ( 1) ( ) (1 ( )) ( )ng v n n nF v F v f v−= − −  and [ 2] 1( , ) ( ) ( ) (1 ( ))n nG v n F v nF v F v−= + − . Therefore we 

obtain their expected valuations:  

[1] [1] 1

0 0
[ ( )] ( , ) ( ) ( )

v v nE v n vg v n vnF v f v dv−= =∫ ∫  and [2] [2] 1

0 0
[ ( )] ( , ) ( ( ) ( ) (1 ( )) ( )

v v n nE v n vg v n v F v nF v F v f v dv−= = + −∫ ∫ .  

Step 2: Deriving the seller’s revenue. In the single auction, the proof follows the 

way in Menesez and Monteiro’s book (2005).  For example, bidder 1 needs to determine 

her best final bid, given that she knows only her valuation and the distribution of others’ 

valuations. Bidder 1’s profit will only be positive when her bid is the largest among all 

others’ bids. Therefore, her expected payoff by bidding 1b b=   is  

1 1 1 2 1 1 2 1 1 1 2 1( ) ( ) Pr( max{ ( ),... ( )}) ( ) ( ( ),..., ( ) ( ) ( ( ))... ( ( ))n n nb v b b b v b v v b Pr b b v b b v v b Pr b b v Pr b b vπ = − > = − > > = − > >
. 

Because bidders do not bid above their own valuations (i.e., ( )i i ib b v v= ≤ ), Bidder 

1’s expected payoff becomes  1
1 1 1 1 1 1 1( ) ( ) Pr( )...Pr( ) ( ) ( )n

nb v b b v b v v b F bπ −= − > > = − . In a 

symmetric equilibrium, it further becomes 1( ) ( ) ( )nb v b F bπ −= − . Taking the first order 

64 

 



 

condition and letting '( ) 0bπ = , we obtain 
2

0
1

( 1) ( ) ( )
*

( )

v n

n

n xf x F x dx
b

F v

−

−

−
= ∫     for 0v > . 

Next we calculate the expected revenue for the seller:  

1 1[max{ *( ),..., *( )}] [max{ *( ,..., )}]n nR E b v b v E b v v= = . 

The probably that all valuations are below a given value v is ( )nF v  and thus its 

density is 1( ) ( )nnF v f v− . As a result, 1

0
*( ) ( ) ( )

v nR nb v F v f v dv−= ∫ . Substituting the best bid *b  

obtained earlier into the above revenue function, we have  

1

0

2
10

10

2

0 0

*( ) ( ) ( )

( 1) ( ) ( )
( ) ( )

( )

( ( 1) ( ) ( ) ) ( )

v n

v n
v n

n

v x n

R nb v F v f v dv

n xf x F x dx
n F v f v dv

F v

n n yF y f y dy f x dx

−

−

−
−

−

=

−
=

= −

∫
∫

∫

∫ ∫

 . 

Changing the order of integration in the last integral (given that 0 y x< < , and 

0 x v< < ) ,  we obtain ( ) 1 ( )
v

y
f x dx F y= −∫ ), and the expected revenue becomes 

2

0
( 1) (1 ( )) ( ) ( )

v nR n n y F y F y f y dy−= − −∫ . 

Checking the expected 2nd-highest valuation in Step 1, we obtain [2][ ( )]R E v n= . The 

understanding is that in the single auction, the next-to-last bidder drops out when the bid 

goes up to her valuation, and the last bidder stops at that price; therefore [2][ ( )]R E v n= . 

Similarly, in two simultaneous auctions the last two bidders stop bidding when the bid is up 
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to the third-to-last bidder’s valuation; therefore the seller’s expected revenue is [3]2 [ ( )]E v n . 

Assuming ( ) ~ [0,1]F v , we obtain 1[1] ( 1)

0
[ ( )] ( ) ( ) / ( 1)nE v n vnF v f v dv n n−= = +∫ , [1][ ( 1)] ( 1) /E v n n n− = − ,

1[2] ( 2) ( 1)

0
[ ( )] ( 1)[ ( ) ( )] ( ) ( 1) / ( 1)n nE v n vn n F v F v f v dv n n− −= − − = − +∫ , [2][ ( 1)] ( 2) /E v n n n− = − , and 

[3][ ( )] ( 2) / ( 1)E v n n n= − + . Then, the seller’s expected revenue equals 2( 1) / ( 1)− +n n . 

Appendix 2-C: Derivation of Equation 2-5 

If the bidder does not forward-look, her highest bid in the first auction is expected to 

be [2][ ( )]E v n ; if she forward-looks, [1] 1 [1] [3]
1 [ ( )] [ ( ) ( )]ab E v n E v n v nβ −= − −  (Equation 2-4). The 

level of bid shading is the difference between the highest bids with and without forward-

looking. Therefore, bid shading [1] [2] 1 [1] [3]( ) [ ( ) ( )] [ ( ) ( )]β −∆ = − − + −aa E v n v n E v n v n , given ( ) ~ [0,1]F v U ,  

1( ) (2 1) / ( 1)aa nβ −∆ = − + , and , 1 1 / 2β − ≥a , which is the condition that ensures that the level of bid 

shading is positive. 

Appendix 2-D: Proof of Proposition 2-2 

The proof proceeds in two steps.  

Step 1: deriving the seller’s revenue, solving for both cases; for and .  

When , bidders neither forward-look nor learn;  and . By the bidding 

function (10), the seller’s expected revenue is [2] [3] 2 2[ ( )] [ ( )] ( ) 2( 1) / ( 1) / 3σ λ+ − = − + −vE v n E v n r n n r . 

When , the game is played in four stages (see section 2.3). By backward 

induction, we first look at the last stage — 1−n  bidders bid in the 2nd auction. The one with 

the 2nd highest valuation wins, because the bidder with the highest valuation has won and 

1=a 1≠a

1=a (1) 0∆ = (1) 0τ =

1≠a
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left after the first auction. Then the expected highest bid is:  

[3] 2
2 [ ( )] / 2vb E V n rσ= − ,                                                (A1) 

where 2σ v
and 2

'σ v
 are the variances of prior and posterior distributions of valuations, 

respectively.  

In the third stage, the first auction ends, and bidders update their beliefs and form 

the posterior distributions ( , )BB v a , as specified in Eq. (2-11). 

In the second stage, the bidder with the highest valuation wins in the first auction. 

She bids up to the level which makes her indifferent as to whether she wins in the first 

auction or in the second. That is, [1] 1 [1] [3] 2
1 '[ ( )] [ ( ) ( ) / 2]a

vE v n b E v n v n rβ σ−− = − + , where LHS is 

the expected utility if she wins in the 1st auction and RHS is the utility if she wins in the 2nd 

auction, therefore,  

[1] 1 [1] [3] 2
1 '[ ( )] [ ( ) ( ) / 2]a

vb E v n E v n v n rβ σ−= − − + .                                 (A2) 

We also derive [2] [1] 2 1 [1] [3] 2
'( ) [ ( ) ( ) / 2] [ ( ) ( ) / 2]a

v va E v n v n r E v n v n rσ β σ−∆ = − − + − + .  

Given ( ) ~ [0,1]F v U , 
1 2

2 12 1( ) [(1 ) 1]
1 6

β λτ β
−

−−
∆ = + − −

+

a
a ra

n
. 
 
 

In the first stage, the seller decides the optimal degree of overlap to maximize his 

expected revenue, i.e. 1
1 2

aR b bβ −= + . By (A1) and (A2), 

[1] 1 [1] [3] 2 1 [3] 2
' '[ ( )] ( [ ( )] [ ( )] / 2) ( [ ( )] / 2)β σ β σ− −= − − + + −a a

v vR E v n E v n E v n r E v n r .  Given ( ) ~ [0,1]F v U  

and ( ) ~ [ , ]λ λ− +B v U w w , 2 2 / 3σ λ=v , and 2 2 2
' (1 ) / 3σ τ λ= −v . Substituting these 
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variances into the revenue equation, we obtain 
2 2

1 4 (1 )( )
1 1 3

τ λβ − − −
= + −

+ +
an n rR

n n
 .   

In summary, we derive the amount of bid shading as 

1 2
2 12 1 [(1 ) 1] 0 1( ) 1 6

0 1

β λτ β
−

− −
+ − − ≤ <∆ = +

 =

a
a r aa n

a .                          
     

(A3)

 

The seller’s expected revenue is:  

2 2
1

2

4 (1 )( ) 0 1
1 1 3

2( 1) 1
1 3

τ λβ

λ

− − −
+ − ≤ < + += 

− − = +

an n r a
n nR

n r a
n .

                              
(A4)

 

Step 2: deriving the seller’s optimal overlapping strategy. When 0 1≤ <a , 

substituting 1 aκτ = −  into (A4) and taking the first order condition on a , we obtain 

2 2 2 1 2
1 14 2ln ( ) 0

1 3 3
a aR n ra ra

a n

κ κλ κ λβ β β
−

− −∂ −
= − − − =

∂ +
 
.
  

 

From this we obtain the equality 

2 2 1
2

3( 4) ln ln 2
( 1)

n a a
n r

κ κβ β κ
λ

−−
− + =

+ .
                    

            (A5) 

Note that Line c1 in Figure 2-6 is drawn by the above function. Further arrangement of (A5) 

derives *

2

3( 4) ln( 1)
( 1) 2

κ
β

λ
− −

= −
+
n

n r
, where *k  is the minimum value of κ  to ensure that the 

solution of a* is in [0, 1]; otherwise a* exists only on either of the corners (either, 0 or 1).  

Taking the second order derivative of a , we obtain 
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2 2 1 2
1

* *2

2| [ ln (2 1)] |
3

a
a a

R ra a b
a

κκ λβ β
−

−∂
= − −

∂
. 

When *
2 2/ | 0∂ ∂ <

a
R a , we obtain the inequality  

(1 *ln ) / 2aκ β> + .                                                     (A6) 

Note that Line c2 in Figure 2-6 is drawn by the function 

** (1 ln ) / 2κ β= + a , where **k is the 

minimum value of κ  to ensure that the solution of a*  is a maximum point,  at which the 

seller’s revenue is optimal; otherwise a* exists only on one of the corners (either 0 or 1).  

Equation (A5) is the first order condition to solve *a . Equation (A6) is the second 

order condition in which the solution from (A5) is a maximum.  

The seller’s optimal overlapping strategy is summarized in Lemma 2D1 and 2D2.  

Lemma 2D1 : when 1β = . 

1)  if 2 6 / ( 1)λ > +r n , then * 0=a and * (2 4) / ( 1)= − +R n n ;  

2)  if 2 6 / ( 1)λ ≤ +r n , then * 1=a and 2* 2( 1) / ( 1) / 3λ= − + −R n n r .  

Proof:  First, we substitute 1β =  and 1 aκτ = −   into (A4). We then take derivative of 

the revenue function (under 0 1≤ <a ), and  obtain / 0∂ ∂ <R a . This result shows that under 

the conditions of 1β = and 0 1≤ <a , the optimal degree of overlap is * 0=a . We also derive 

the corresponding revenue ( 0) (2 4) / ( 1)= = − +R a n n .  

The revenue function (A4) is discontinuous at 1=a , where ( 1) 2( 1) / ( 1)= = − +R a n n .  

We then compare these two revenues 
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2 22 4 2( 1) 2( 0) ( 1)
1 1 3 1 3

λ λ− − −
= − = = − + = +

+ + +
n n r rR a R a
n n n

.This equation is positive if 

2 6 / ( 1)λ > +r n . Therefore, we conclude that if 2 6 / ( 1)λ > +r n , the optimal degree of overlap

* 0=a ; otherwise, * 1=a  and its corresponding revenue is 2* 2( 1) / ( 1) / 3λ= − + −R n n r .  

Lemma 2D2: when .  

1) If
2

3( 4) ( ln ) 1 lnmax( 1) , )
( 1) 2 2

β βκ
λ

− − +
> −

+
n a

n r
, then . 

2) If 
2

3( 4) ( ln ) 1 lnmin( 1) , )
( 1) 2 2

β βκ
λ

− − +
≤ −

+
n a

n r
, then  

    a ) if  , then ;  

    b) if  , then . 

 3) If  
2 2

3( 4) ( ln ) 1 ln 3( 4) ( ln ) 1 lnmin( 1) , ) max( 1) , )
( 1) 2 2 ( 1) 2 2

β β β βκ
λ λ

− − + − − +
− < < −

+ +
 n a n a

n r n r
, then 

     a) If  ,
 

. 

    b) If  ,then when ,
 

and when , , 

where satisfies  

2 2 1

2

3( 4)( ) ln 2
( 1)

κ κ
β κ

λ
−−

− =
+
na a

n r
and 22 ( 1)

4 3( 4)
λβ − +

= −
− −



n r n
n n

. 

 Proof:  We discuss three cases as follows. 

 Case 1. The optimal overlapping strategy is obtained within [0, 1] under two 

conditions: 

1β ≠

* =a a

β β>  * 0=a

β β≤  * 1=a



2

3( 4) ( ln ) 1 ln( 1)
2 2( 1)
β β

λ
− − +

− >
+
n a

n r
* 1=a



2

3( 4) ( ln ) 1 ln( 1)
2 2( 1)
β β

λ
− − +

− <
+
n a

n r
β β>  * 0=a β β≤  * 1=a

a
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1) First Order Condition (FOC): a* satisfies Equation (A5).We plot the LHS and RHS 

functions of Equation (A5) in Figure A1. These two lines intersect in (0, 1) when

2

3( 4) ln( 1)( )
2( 1)

nk
n r

β
λ

− −
> −

+
.  Thus, FOC is equivalent to 

2

3( 4) ln( 1)( )
2( 1)

nk
n r

β
λ

− −
> −

+
.  

2) Second Order Condition (SOC):   a* satisfies (1 *ln ) / 2κ β> + a  in Equation (A6). 

Combining the above two conditions, we conclude that if 

2

3( 4) ( ln ) 1 lnmax( 1) , )
( 1) 2 2

β βκ
λ

− − +
> −

+
n a

n r
 , there exists a unique solution , where satisfies 

 

2 2 1

2

3( 4)( ) ln 2
( 1)

κ κ
β κ

λ
−−

− =
+
na a

n r
. 

 

Figure A1: LHS and RHS of Equation (A5) 

 Case 2.  Based on Equation (A6), we know that when 

2

3( 4) ( ln ) 1 lnmin( 1) , )
( 1) 2 2

β βκ
λ

− − +
≤ −

+
n a

n r
, there is no *a  found within (0,1). Therefore, the solution 

exists only at one of the corners (boundaries) of the region of a.    

We thus calculate the revenues at these two corners to check which corner provides 

the highest revenue. Based on the revenue equation (A4), we obtain 2

1
2( 1)|

1 3
λ

=
−

= −
+a

n rR
n

 and 

* =a a a

           a 

2

3( 4) ln
( 1)

β
λ

−
−

+
n

n r
 

2
2

3( 4)(ln ) ln
( 1)

β β
λ

−
−

+
b na

n r
 

2 12 κκ −a 

*a
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0
4|

1 1
β=

−
= +

+ +a
n nR

n n
. The difference 

2 2

0 1
4 2( 1) 4 2| |

1 1 1 3 1 1 3
λ λβ β= =

− − − −
− = + − + = − +

+ + + + +a a
n n n r n n rR R

n n n n n .
Letting 22 ( 1)

4 3( 4)
λβ − +

= −
− −



n r n
n n

, we 

conclude that if β β>  , then * 0=a ; if β β≤  , then * 1=a .   

Case 3. When 
2 2

3( 4) ( ln ) 1 ln 3( 4) ( ln ) 1 lnmin( 1) , ) max( 1) , )
( 1) 2 2 ( 1) 2 2

β β β βκ
λ λ

− − + − − +
− < < −

+ +
 n a n a

n r n r
,  

based on (A5), we know that no *a  exists within (0,1). So the solution exists only at one of 

the corners.  As in Case 2, we conclude that when β β>  , * 0=a  and when β β≤  , * 1=a , where 

22 ( 1)
4 3( 4)

λβ − +
= −

− −


n r n
n n

.  

Note that Line c3 in Figure 2-6 is drawn by 22 ( 1)
4 3( 4)

λβ − +
= −

− −


n r n
n n

.    

Appendix 2-E: Proof of Proposition 2-3 

The proof follows two steps.  

Step1: deriving the seller’s optimal overlapping strategy. When 1=a , bidders 

neither forward-look nor learn; so (1) 0∆ =  and (1) 0τ = . The seller’s revenue is

[2] [3] 2 2
1 1[ ( )] [ ( )] 2( 1) / (( 1) / 3σ η η λ+ − = − + −vE v N E v N r r , the same result as in Proposition 2-2.  

When  , using backward induction, we first look at the last stage.  There are 

two groups of bidders in the second auction:  “initial” bidders from the first auction, 

and “new” bidders. Because “initial” bidders, unlike “new” bidders, learn 

information from previous experiences, the two groups’ valuations are distributed 

differently. The expected highest bid in the second auction thus depends on the highest 

0 1≤ <a

1η −

(1 )η − a
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MWTPs in these two groups. Let us denote [ ]iInitial  as the ith highest MWTP among “initial” 

bidders, and [ ]iNew  as the ith highest MWTP among “new” bidders.  Given ( ) ~ [0,1]F v U , 

we derive: 

[1] [1] 2 2
' '[ ( ) / 2] / 2

1v vInitial E v r rηη σ σ
η

= − = −
+

 

[2] [2] 2 2
' '

1[ ( ) / 2] / 2
1v vInitial E v r rηη σ σ

η
−

= − = −
+

 

[3] [3] 2 2
' '

2[ ( ) / 2] / 2
1v vInitial E v r rηη σ σ

η
−

= − = −
+

 

[1] [1] 2 2
' '

(1 )[ ( (1 )) / 2] / 2
(1 ) 1v v

aNew E v a r r
a

ηη σ σ
η

−
= − − = −

− +
 

[2] [2] 2 2
' '

(1 ) 1[ ( (1 )) / 2] / 2
(1 ) 1v v

aNew E v a r r
a

ηη σ σ
η

− −
= − − = −

− +  
. 

Lemma 2D3.  The highest bid in the second auction is  

2 2
'

2
2
'

2 (1 )max{ ( ) / 2, ( ) / 2} if an "initial" bidder wins
1 (1 ) 1

1 ( ) / 2 if a "new" bidder wins
1

v v

v

n n ar r
n n ab

n r
n

σ σ

σ

− − − − + − += 
− − + .  

 

Proof: Two cases are discussed.  

1) If an “initial” bidder wins, that is, [2] [1]Initial New≥  and  

2 2
'

1 (1 )( ) / 2 ( ) / 2
1 (1 ) 1

η ησ σ
η η
− −

− > −
+ − +v v

ar r
a

, then the expected highest bid is [3] [1]max{ , }Initial New , that is, 

2 2
2 '

2 (1 )max{ ( ) / 2, ( ) / 2}
1 (1 ) 1v v

n n ab r r
n n a

σ σ− −
= − −

+ − +
. 

2) If a “new” bidder wins, that is, [1] [2]New Initial≥   and   2 2
'

1 (1 )( ) / 2 ( ) / 2
1 (1 ) 1

η ησ σ
η η
− −

− < −
+ − +v v

ar r
a

, 
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then the expected highest bid is [2]Initial , that is, 2
2 '

1 ( ) / 2
1 v

nb r
n

σ−
= −

+
. 

The expected highest bid is [2]Initial , because [2] [2]Initial New> , given that the “initial” 

bidders’ uncertainties have reduced.  Merging the results from the above cases, we obtain 

the equation in Lemma 2D3. 

In the third stage, the first auction ends, and bidders update their beliefs and form 

the posterior distributions ( , )BB v a .  

In the second stage, η  bidders bid in the first auction. The bidder with the highest 

valuation wins the auction and bids her price at 1b , which make her indifferent as to 

whether she wins in the first or second auction; that is, [1] 1 [1]
1 2[ ( )] aE v b uη β −− = .  We derive  

[1] 1 [1]
1 2[ ( )] ab E v uη β −= − .                                                  (A7) 

We next consider the level of bid shading. This is the amount that makes the bidder 

with the highest valuations indifferent as to whether she wins now or postpones her 

winning. If she postpones her winning, her expected value is  

[1]
2 21

u bη
η

= −
+  .                                                        (A8) 

So submitting Equation (A8) to Equation (A7), and comparing the difference between the 

bid with and without forward-looking, we derive [2] 2 [1] 1 [1]
2( ) [ ( )] ( ) / 2) [ ( )]η σ η β −∆ = − − + a

va E v r E v u . 

In the first stage, the seller’s expected revenue is 
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1
1 2
[1] 1 [1] 1

2 2
1 [1] 1

2

1 1
2

[ ( )] ( [ ( )] )

(1 )( [ ( )] 2

(1 )( ) 2
1

a

a a

a a
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2b  takes different values under conditions (see Lemma 2D3), so we discuss the 

seller’s revenue as follows.    

1) If an “initial” bidder wins and bids up to the expected 3rd highest valuation 

among “initial” bidders, [3]
2b Initial= , then the seller’s revenue 

2 2
1 1 2 (1 )(1 ) 2 [ ]

1 1 6
τ λβ β− − − −

= − + −
+ +

a an n rR
n n

.   

This happens when the order of MWTPs follows [2] [3] [1]Initial Initial New> > .  

2) If an “initial” bidder wins and bids up to the expected highest valuation among 

“new” bidders, [1]
2b New= , then the seller’s revenue 2

1 1 (1 )(1 ) 2 [ ]
1 (1 ) 1 6

λβ β− − −
= − + −

+ − +
a an n a rR

n n a
.  

 This happens when the order of MWTPs follows [2] [1] [3]Initial New Initial> > .  

[1] [3]New Initial>  is equivalent to (1 ) 2
(1 ) 1 1
η η

η η
− −

>
− + +

a
a

, and that means 2( 1) / 3η η< +a . 

3) If a “new” bidder wins and bids up to the expected 2nd highest valuation among 

η  “initial” bidders, [1] [2]
2b Initial= , then the seller’s revenue 

2 2
1 1 1 (1 )(1 ) 2 [ ]

1 1 6
τ λβ β− − − −

= − + −
+ +

a an n rR
n n

.   

 This happens when the order of MWTPs follows [1] [2] [3]New Initial Initial> > . 
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[1] [2]New Initial>  is equivalent to (1 ) 1
(1 ) 1 1
η η

η η
− −

>
− + +

a
a

, and that means ( 1) / 2η η< +a . 

In Case 1, the result remains the same as that in the full model, because the MWTPs 

of all “new” bidders are lower than the 3rd highest MWTP of the “initial” bidders; therefore, 

these “new” bidders have no chance to win in the second auction, and thus have no impact 

on the seller’s revenue.  

Next, based on the revenue functions in each condition and following a process 

similar to that in step 2 of Proposition 2-2, we derive the seller’s optimal overlapping 

strategy.  

Step 2: comparing with the optimal overlap strategies. The rank of the highest 

valuations among the “initial” and “new” bidders plays a critical role in the final price in 

the second auction. In cases except for Case 1, the seller’s revenues increase. When the new 

arrivals have a higher highest valuation, that is, [1] [3]New Initial> , the winner in the second 

auction bids higher. In addition, the winner in the first auction anticipates this and then 

reduces the level of bid shading. Hence the final bids on both auctions are higher.   

[1] [3]New Initial>  means that 
2 2 2(1 ) 2

(1 ) 1 6 1 6
η λ η λ

η η
− −

− > −
− + +

ba r a r
a

. Let 

2
22 3 2( ) : (1 )

( 1)(1 ) ( 1) 6
η η λ

η η η
− +

= − −
+ − + +

ba rLL a a
a

. We notice that ( )LL a  decreases on a and when 

a=1, it is negative.  Let a  be the solution of ( )LL a , satisfying [1] [3]New Initial=  .  This 

threshold a  is unique if it exists. The arrival of “new” bidders affects the final outcome in 

the second auction if <a a , and does not otherwise.   
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Below we provide two examples. First, we solve the problem for a same example in 

Proposition 2-2, i.e. 0.25, 7, 5, 0.5, 0.95rλ η κ β= = = = = . We obtain =0.7568, * 0.83a = , 

and * 1.2451R = .  This is the case for * >a a , in which “new” bidders have no impact on the 

ending price of the second auction and the optimal strategy and its corresponding revenue 

are the same as in the full model.  

Second, we solve the problem for the different values of the parameters, i.e. 

0.8, 7, 2, 0.5, 0.95rλ η κ β= = = = = . We obtain =0.4227, * 0.4212a =  and * 1.4784R = . 

We also calculate the solution in the full model for n η=  and keeping all the remaining 

parameter values equal, then we obtain * 0.3554, * 1.1828a R= = . This is the case for 

*<a a ,  in which “new” bidders have an impact on the ending price of the second auction. 

 

Appendix 2-F: Derivation of Equation 2-14 

We solve the model in 2.5.2.2 for both cases when and .  When , 

bidders are not forward-looking and do not learn,  and . Using the bidding 

function (2-10), the seller’s expected revenue is

[2] [3] 2 2[ ( )] [ ( )] ( ) 2( 1) / ( 1) / 3σ λ+ − = − + −vE v n E v n r n n r . 

When , the game is played in four stages (see Section 2.3). Let us denote the 

variance of the prior belief, the posterior belief at the end of the first auction, and the 

posterior belief at the end of the second auction as 2 2 2
' ", ,σ σ σv v v

 respectively. Through 

backward induction, we first look at the last stage — 1−n  bidders bid in the second auction. 

a

a

1=a 1≠a 1=a

(1) 0∆ = (1) 0τ =

1≠a
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The last bidder updates −1n  times, which is the number of bidders without counting herself.  

Therefore, her final bid is related to the number of bidders, not to the degree of overlap. 

The degree of overlap does not affect bidders’ learning.  The highest bid is expected to be   

[3] 2
2 ''[ ( )] / 2vb E v n rσ= − .                                             (A9) 

 The third stage is omitted as learning is considered during the bidding process.   

  In the second stage, the bidder with the highest valuation wins in the first auction. 

As in section 2.4.1, she bids up to the level, which makes her indifferent as to whether she 

wins in the first auction or in the second; that is, [1] 1 [1] [3] 2
1 ''[ ( )] [ ( ) ( ) / 2]a

vE v n b E v n v n rβ σ−− = − + , 

where LHS is the expected utility if she wins in the first auction and RHS is the utility if 

she wins in the second auction. Therefore,  

[1] 1 [1] [3] 2
1 ''[ ( )] [ ( ) ( ) / 2]a

vb E v n E v n v n rβ σ−= − − + .                                (A10) 

The equation shows that although the last bidder learns during the bidding process, 

her last bid is decided by the amount of bid-shading from the expected valuation due to her 

forward-looking behavior, not due to learning. 

At the first stage, the seller decides the optimal degree of overlap to maximize his 

expected revenue — β −= + 1
1 2

aR b b . By (A9) and (A10), 

[1] 1 [1] [3] 2 1 [3] 2
'' ''[ ( )] ( [ ( )] [ ( )] / 2) [ ( )] / 2β σ β σ− −= − − + + −a a

v vR E v n E v n E v n r E v n r .  Given ( ) ~ [0,1]F v U  and 

( ) ~ [ , ]λ λ− +B v U w w , 2 2 / 3σ λ=v  and 
1

2 2 2
" 1

(1 ) / 3
n

v ii
σ τ λ

−

=
= Π − . Substituting these variances 

into the revenue equation, we obtain  α
λ τ

β

−

− =
∏ −−

= + −
+ +

1
2 2

1 1
(1 )4( )

1 1 3

n

i
i

rn nR
n n

. 
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In summary, the seller’s expected revenue is 
               

α
λ τ

β α

λ

−

− =

 ∏ −−
+ − ≤ < + += 

 −
− =

+

1
2 2

1 1

2

(1 )4( ) 0 1
1 1 3

2( 1) 1
1 3

n

i
i

rn n
n nR

n r a
n

  . 

The revenue under total overlap is larger than under partial overlap for any a in the 

region of [0, 1). Therefore, we conclude that the optimal overlapping strategy is total 

overlap.  
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CHAPTER 3: PRODUCT POSITIONING STRATEGY OF FIRMS WITHOUT A 

COMPETITIVE ADVANTAGE 

3.1 Introduction 

What type of product positioning strategies should small and medium firms use? 

Should they carry out the best practices of large firms? The notion that small companies 

adopt similar strategies as big ones, which many case studies have focused on, may be 

wrong. Directly copying big firms’ operations may not help small firms break through the 

market clutter, especially for those firms with disadvantaged positions. Instead, they need to 

use different strategies than the large firms.  

To elaborate, take the product positioning strategy of Pepsi in India as an example. 

Pepsi entered the Indian market in the 80s, unavoidably met its strong competitor, Coca-Cola, 

which set up two brands there: Coca-Cola and Sprite. Coca-Cola was the company’s core 

brand, focusing on the general market, and Sprite played the role of a cover brand and later 

became a core brand. Coca-Cola’s advertising was targeted to the mass market.11  

In the Indian Cola war, Pepsi is surely a weaker player compared to Coca-Cola. Coca-

Cola is widely viewed as the origin of the cola drink. In 2012, Coca-Cola’s share was up to 

61%, but Pepsi was only 36% in the Indian market.12 Instead of directly fighting with Coca-

11 Brands are categorized into three types: the core brand (acting as the flagship brand), the 

cover brand (acts as a cushion to the core brand to soak up competition), and the stand-

alone brand neither (acting independently from core nor cover brands).   

12 http://www.euromonitor.com/soft-drinks-in-india/report. 
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Cola, Pepsi marketed itself as the “Choice of a New Generation” with three brands—Pepsi, 

7UP, and Mountain Dew—aiming for young adults. Among them, Pepsi was a core brand; 

Mountain Dew and 7 UP were stand-alone brands (See Figure 3-1). Besides, Pepsi constantly 

responded to threats from Coca-Cola by changing its advertising strategy.  

Figure 3-1: Product Positioning of Pepsi and Coca-Cola in Indian Market (Gupta et al. 

2010).13 

The rule under which such big businesses as IBM, Amazon, and Coca-Cola operate is 

not applicable to small firms. Large enterprises, regardless of industry, have an advantage due 

to many factors: incumbency, better name recognition, greater advertising funds, etc. So, if 

other firms sell a commodity similar to the best ones, it’s impossible for them to win 

consumers. Notice here that Pepsi adopted a different product positioning strategy, 

differentiating itself from Coca-Cola, offering in the youth market, which Coca-Cola didn’t 

offer.   

Qualitative approaches used to study positioning strategies have been numerous. 

13 http://tejas.iimb.ac.in/articles/58.php, Image Advertising: the Advertising Strategies of 

Pepsi and Coca Cola in India, Seema Gupta, K Naganand and Avneesh Singh Narang, 2010, 

August. 
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Their approaches include focus groups, role-play, association techniques, depth interviews, 

and so on (Calder 1994; Hooley, Piercy and Nicoulaud 2013). These researches try to use 

projective techniques and/or a number of stimuli to uncover how the firm’s product is 

positioned in the mind of consumers. Different from these, this paper adopts an analytical 

approach to the positioning research. Using a game-theoretical modelling approach, not only 

do we explain the niche marketing strategies by SMEs, but we also provide a suitable 

positioning strategy for smaller firms based on their competitive strength in the marketplace. 

In the model, two firms are asymmetric in their competitive advantages. The model shows 

that under heterogeneous abilities, firms perform substantially different from when they are 

symmetric: small firms may deviate from their strong areas when they meet with stronger 

competitors; they tend to invest the areas where consumers’ preferences are more diverse; 

they may not totally give up the mass markets when the relative strength is small. By doing 

so, they increase the vulnerability of stronger firms in those areas, thus attracting those 

consumers without directly combating with strong firms.  

Except for having a general concept of a product positioning strategy, we lack a 

theoretical (quantitative) understanding and operational guide on how to position products 

for weaker firms when facing stronger competitors. The result—that stronger firms focus 

more on the mass market and weaker firms differentiate—has been manifested in many 

contexts such as firms’ choice on the number of versions of a product (the length of product 

line). For example, Apple only provides two basic series of laptops: Apple Macbook Air (11” 

and 13”) and Macbook Pro (13” with or without retina display), and in total only offer four 

types of laptops on its websites. Lenovo has T Series, X Series, ThinkPad Yoga, E Series, 

ThinkPad Helix, L Series, W Series, Y Series, Z Series, Flex Series, U Series, Yoga Series, 
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and G series, offering over thirty versions of laptops.  

The implications of this result are actually more general than simply an investigation 

of a firm’s product positioning strategy. It also sheds light on areas such as political election, 

university positions and sports. In the empirical study of the public candidate elections, many 

scholars found that the weaker candidates would move away from its political center (left 

wing or right wing), and the advantaged ones would do the opposite, and that challengers 

tend to adopt more extreme positions than incumbents (E.E Schattschneider 1960; Fiorina 

1973; James M. Snyder, Jr. and Groseclose 2001). Aragones (2002, p.132) effectively says  

“Candidates diverge, and this divergence occurs in predicable ways. Candidates 

with charisma end up reinforcing their advantage by adopting relatively more centrist 

platforms on average, while the ugly, clumsy, and inarticulate flounder on the periphery of 

the policy space.” 

When competitors in the markets differ in their capacities and reputations (leading to 

both real and perceived differences in their advantages), we naturally think that weak ones 

will evade the competition of big firms, seeking the niches. It is like falling in love: it seems 

natural and predictable, but the underneath transient hormone changes are complex, such as 

the change of Cortisol, FSH, and testosterone in our bodies (Marazziti and Canale 2004). 

Similarly, this seemingly trivial strategy of weak firms is never simple when we ask the 

following questions: 

• Product positioning of disadvantaged firms 

 Do they always choose a niche strategy to differentiate themselves from the strong 

one?   

 If not always, under what conditions do they or don’t they? 
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 Does the relative strength between firms matter in this decision? 

• Resource allocation 

 Under what conditions shall a firm invest on its strong aspects? 

 Under what conditions shall a firm invest on its weak aspects? 

 How shall its efforts/resources be allocated among different product features?  

• Which type of firms contributes more to innovative R&Ds?   

 The strong firm or the weak one? Why? 

 In many cases, we may need to consider pricing together with the positioning 

decision. This non-pricing strategy fits many situations as well. For example,  

• When firms want to decrease direct competition, they avoid the “competing-price-

only” syndrome, such as in many oligopoly markets of telecommunication and 

network, airlines, steel, and oil businesses (Porter 1980; Levitt 1991).  

• Many situations exist when brains as well as muscle are important for success, such 

as in competitive sports and team games.  

• In political platforms, the location needs to be decided without price competition.   

• Due to certain legal or technical reasons in some markets, the scope of price 

competition is limited. The prices of air tickets in the United States before 

deregulation were determined exogenously by the prices of gas and mileage.  

• In some cases firms need to set up store locations before providing services or 

products to consumers, especially when the price is very dynamic and easily 

changed later. 

• In some markets the products’ demand, such as agriculture products, is very 

inelastic. The price of the product is not determined by a single firm, but by the 
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interaction of all consumers and sellers. Nichols (1951) studied the cigarette 

industry and showed that since the 1920s, cigarette manufacturers competed 

through advertising and brand proliferation rather than through price cuts.  

• Competition in advertising, a non-negligible industry including television, radio, 

newspapers, magazines, and direct mail, is a typical non-price competition.  

Hotelling (1929) and Tirole (1988, pp 287) provided an analytical one-dimensional 

model of symmetric firms competing for locations with fixed prices, besides their standard 

models.   

3.2 Literature Review 

Based on market feature, the organizational target, and resources, the firm 

(re)positions its products by changing its specifications. Whan et al. (1986) suggested six 

stages: 1) identify competitors, 2) determine how competitors are perceived and evaluated, 

3) determine competitors’ positions, 4) analyze customers, 5) select position, and 6) 

monitor the position.  

Physical location choice is one of the most important elements in the positioning 

decision in many industries. It has been broadly studied both empirically and theoretically. 

Empirical work generally adopts the discrete choice model to estimate the determining 

factors in firms’ physical location choices (Berry 1992; Mazzeo 2002; Seim 2006; Watson 

2009). The following three empirical papers provide empirical support for this essay.  

Thomadsen (2007) examined the product positioning strategies of McDonald’s and 

Burger King outlets (McDonald’s is stronger than Burger King). He observed that 

McDonald’s more aggressively located his outlets close to Burger King’s if Burger King’s 

outlets were located in ideal market places, especially in small markets. On the contrary, 
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Burger King’s outlets always moved away to avoid direct competition. Thomas and 

Weigelt (2000) used the data from the U.S. automobile industry to test the relationship 

between firms’ heterogeneous capabilities and their product differentiation. By checking 

where managers locate new car models in physical attribute spaces, they found that that 

strong firms (i.e., large market share firms, incumbents, and domestic firms) were more 

likely than weak firms (i.e., smaller share firms, entrants, and foreign firms) to locate new 

car models near existing ones and away from those of rivals. Netz and Taylor (2002) tested 

the location theory using empirical data of the gasoline stations in the Los Angeles area. 

They found that gasoline stations showed more differentiation in physical space and the 

space of product attributes (e.g., repair services, a convenience store, a car wash, and so on) 

to mitigate price competition. Both papers mentioned that price was an important factor in 

the firms’ decision, but they did not include it in their positioning decisions due to varied 

reasons. In Thomadsen’s (2007) model, price is not included because he assumed that 

franchisees set prices at their outlets the same due to a static Bertrand game (pp 793).14  He 

said, “Bertrand competition is a reasonable assumption in this industry because firms offer 

to sell as many meals as demanded at posted prices, and because the firms can change their 

14 The features of the static Bertrand game are as follows: 1) two firms have same marginal 

cost of production; 2) they face a downward sloping demand curve 𝑞 = 𝐷(𝑝); 3) firms can 

set any price; and 4) the unique equilibrium is that both firms set price equal to the 

marginal cost of production. Consumers can be very price sensitive, but whether a firm 

responds to the consumer’s price sensitivity depends on his pricing strategy, which 

considers other factors such as marketing objective, cost analysis, and competitors.   
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prices quickly and easily.” In Thomas and Weigelt’s (2000) paper, the pricing decision was 

not included in their positioning stage for a different reason. They modeled the entry 

decision as the functions of sales, fixed costs, models, number of firms, and year. 

Additionally, they modeled the firm’s pricing decision as a function of the firm’s product 

features and the entry of competitors (pp 901). Such a separate model setup made the entry 

decision uncorrelated with its own and competitors’ pricing decisions directly. Netz and 

Taylor (2002) did not include pricing of the competitors into their models, probably 

because of similar gasoline prices across the stations.  

Theoretical work adopts the pioneer work of Hotelling (1929). In the Hotelling 

model, where market is fixed in the line of [0, 1] and the customers are evenly distributed 

along the market, two sellers would choose to locate at the median point and split the 

market into halves. Another standard model of spatial differentiation is the number of 

consumers locating uniformly in a circular city. Two conflicting forces decide the location 

in the models: 1) firms like to differentiate due to competition (strategic effect); and 2) 

firms like to be located close to where the demand is, such as the center of the linear market 

(demand effect). Those models are related to the horizontal differentiation model, and the 

result shows the Principle of Minimum Differentiation. That is, the demand effect is 

stronger than the strategic effect. At equal prices, competing firms choose the same product 

location—at the center of the market—when products are allowed to be differentiated on a 

single horizontal dimension. Tirole (1988) provides a summary about how product 

differentiation along a single dimension (horizontal, vertical, or informational) softens price 

competition. However, the differentiation at the multidimensional level was still 

unexplored. 
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Some researchers extended the one-dimensional market competition model to multi-

dimensional ones by adding variations in product characteristics. The usual variation is to 

consider product quality and feature variety, typically named as product horizontal and 

vertical differentiations. Economides (1986) considered a model in which the firms made 

decisions first about quality and then about product variety, solving each decision 

sequentially as if doubling Hotelling markets. He found that firms tended to maximize 

variety differentiation but minimized quality differentiation. de Palma et al. (1985) applied 

a Logit model to capture the consumer’s heterogeneity towards product features and 

incorporated it into their analytical model, because simultaneously solving multiple 

decisions analytically is technically difficult. Gabszewicz and Thisse (1986) found that 

more stability in price and product competition was to be expected under vertical rather 

than under horizontal product differentiation. Vandenbosh and Weinberg (1995) considered 

a sequential game in which the firm first chose two product characteristics simultaneously 

and then chose their prices. To solve the decisions of product features simultaneously, they 

introduced the method of angle-competition and used the angle to show the relative 

strength of two firms on two product features (e.g., 45 degree refers to the case when firms 

are equal in advantages on two product dimensions; any other degree refers to the cases in 

which one firm is stronger than the others on one dimension). They found that firms tended 

to choose positions to maximize one dimension but minimize the other—a MaxMin 

product differentiation. Our work relates to this school of literature, but we also consider 

asymmetric firms: one is stronger than the other due to various factors, such as 

incumbency, reputation, or size. As such, this asymmetric advantage may lead to different 

results.  
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Wernerfelt and Karnani (1987) provide suggestions to firms when they need to 

make decisions—when to invest and whether to focus or be flexible in the resource 

allocation on projects—under uncertainty. They said that “a weaker competitor shall go for 

a small chance of a big profit rather than for a big chance of a very small profit, and a small 

firm should try to find a niche rather than competing head-on against a big firm in the 

major market segment.” However, they did not provide any rigorous testing or analytical 

explanations. Most analytical models of asymmetric firms are entry models, in which an 

incumbent is usually considered stronger than an entrant. Hauser and Shugan (1983) 

discussed the product positioning strategy for the incumbent: how it adjusted its pricing 

(increase or decrease), the quality of product attributes (on the attribute attacked or the one 

not attacked), and the budget on the awareness advertisement and the distribution when 

facing a competitive new product. However, their model focused on the incumbent’s 

positioning strategies only, by assuming that everything related to the entrant such as price 

and the locations of the attributes was exogenously given. Later, Moorthy (1988) also 

discussed asymmetric firms (incumbent and entrant) and showed that if one firm could 

enter the market first, it could gain a first-mover advantage and defend itself from later 

entrants, for it was given the chance to pre-empt the most desirable product position. Hoch, 

Raju, and Seyman (2002) considered a model where a retailer introduces a Store Brand 

(SB) when he already sells two National Brands (NB). Via game-theoretical modeling, they 

analyzed the positioning of SB; that is, the appropriate perceptual market location: either 

close to the leading brand (NB1), a second brand (NB2), or in the middle. They found that 

when two NBs were symmetric, targeting one of the NBs would be better; when two NBs 

were asymmetric, targeting NB1 would lead to higher profits. However, the result from Du, 
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Lee, and Staelin (2005) differed: it is better to position the store brand close to the weak or 

medium national brands instead of the strong one. Tyagi (2000) examined the product 

positioning of the first- and second-movers. He found that if the first-mover predicted that 

the cost of the second-mover was lower, the first-mover should leave the most attractive 

location in the market and move to a market niche. The larger the second-mover’s cost 

advantage, the farther the first-mover should locate. Budd, Harris et al. (1993) analyzed the 

evolution of market structure between strong and weak firms. A stochastic model was 

adopted to capture the dynamic change in the gap of strengths between the strong and the 

weak firms due to their different annual input of efforts. They found an asymptotic 

expansion between strong and weak firms and identified certain conditions in which the 

weak firm put in more effort.  

Most empirical work on asymmetric firms’ product positioning is also related with 

entry. For example, Carpenter and Nakamoto (1990) studied the optimal positioning, 

advertising, and pricing strategies for an entrant when the market has already been 

dominant by a strong incumbent. Due to consumers’ asymmetric preferences, they found 

that “me-too” strategies should not be adopted as entry strategies.  

Our multi-dimensional model, especially its solving method, belongs to the theme 

of the Colonel Blotto game. This is a two-person zero-sum game in which two players are 

tasked to simultaneously send their troops over several battlefields, and the player with 

more troops in a battlefield wins that field, and the payoff is equal to the number of fields 

won. (See the appendix for a detailed description of the Colonel Blotto game). This game is 

used to solve resource allocation problems with multi-dimensional conflicts and has been 

applied in many areas, such as wars, electoral competitions, tournaments (Groserclose 
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2001;  James M. Snyder, Jr.and Groseclose 2001; Krasa and Polborn 2010; Dragu and Fan 

2010), and auctions.  For example, Bayes, Kovenock, and Viries (1996) described a first-

price all-pay auction, in which bidders simultaneously submitted bids for an item and all 

players forfeited their bids. Szentes and Rosenthal (2003) constructed a Colonel Blotto 

model to find symmetric equilibria for a specific sealed-bid auction, where two bidders bid 

for three identical objects and the objects’ marginal valuations decrease. The first paper 

applying this game-theoretic model in marketing is Friedman (1958). In his model, two 

firms competed and made their advertisement allocations on multiple areas with budget 

constraints. He showed that both the stronger and weaker firms allocated the amount of 

investment chosen randomly from a uniform distribution in the same interval, but the 

weaker firm advertised to each consumer only at a certain probability (e.g., the ratio of 

strength). This model did not include the niche marketing strategies adopted by SMEs.  

The technical difficulty in solving this problem has restricted its wide application. 

For centuries, economists were dedicated to seeking efficient solutions. In their various 

versions and extensions, the first solution is provided by Borel and Ville (1938). Later by 

using the properties of regular n-gons, Grosee and Wagner (1950) generalized Borel’s two 

solutions to the case of two players with symmetric forces.  Recently, Roberson (2006) 

provided a feasible method for constructing a mixed equilibrium of n-variate distributions.  

Table 3-1: Summary of research on product location models 

Author Research Focus Firms’ 
Strength 

Dimension 

Empirical 

Berry (1992) Market entry of airlines  NA Mult. 

Mazzero Product choice on quality in motel markets Asym. Mult. 
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(2002) 
Seim (2006] Location choices in the video retail industry  NA. Mult. 

Watson 
(2009) 

Product variety and competition for eyeglasses 
retail market 

NA. Mult. 

Thomadsen 
(2007) 

Market locations of McDonald’s and Burger 
King’s outlet market locations  

Asym Mult. 

Thomas and 
Weigelt 
(2000) 

Location of new car models in physical attribute 
space 

Asym. Mult. 

Carpenter and 
Nakamoto 
(1990) 

Optimal positioning, advertising and pricing 
strategies for entries  

Asym. Mult. 

Netz and 
Taylor (2002) 

Gasoline stations showed more differentiation in 
product positioning in two dimensions: in 
physical space and the space of product 
attributes to mitigate price competition  

NA Mult. 

Analytical 
Hotelling 
(1929) 

Competing firms choose the same product 
location 

Sym. One 

d’Aspremont, 
et al. (1979) 

Competing firms choose the most differentiated 
locations 

Sym. One 

Tirole (1988) Product differentiation in one dimension 
(horizontal, vertical, or info.) 

Sym. One 

Economides 
(1986)  

Product differentiation in two dimensions Sym. Two 

de Palma, et 
al. (1985)   

Minimum differentiation holds under sufficient 
heterogeneity 

Sym. Two 

Gabszewicz 
and Thisse 
(1986) 

The more stability in price and product 
competition was to be expected under vertical 
rather than horizontal product differentiation 

Asym. Two 

Vandenbosh, 
Weinberg 
(1995) 

MaxMin product differentiation in a vertical 
differentiation model  

Sym. Two 

Hauser and 
Shugan 
(1983) 

Positioning for the incumbent on pricing, 
attributes, ad., and distribution 

Asym. One 
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Moorthy 
(1988); Tyagi 
(2000) 

Incumbent and entrant and the first-move 
advantage 

Asym. One 

Hoch, et al. 
(2002); Du, 
et. al (2005) 

Positioning of a Store Brand among two 
National Brands 

Asym. One 

Friedman 
(1958) 

Firms’ advertisement allocations on multiple 
areas with budget constraint 

Asym. Mult. 

Budd, Harris 
et al. (1993) 

The evolution of the gap between strong and 
weak firms  

Asym. NA 

Methodology 
Bayes, et.al 
(1996)  

Asymmetric equilibria for a first-price all-pay 
auction 

Asym. Mult. 

Szentes and 
Rosenthal 
(2003) 

Symmetric equilibria for a specific sealed-bid 
auction 

Asym. Mult. 

Roberson 
(2006) 

Mixed equilibrium of n-variant distributions Asym. Mult. 

 

In this essay we explain why weaker firms differentiate their locations and how they 

allocate their limited budgets to different areas, both in a one-dimensional model as 

Hotelling’s and in a multi-dimensional model as Colonel Blotto’s. Despite the numerous 

empirical analyses on how weak firms position their products in the market, most theoretical 

models focus on the competition among symmetric firms. A rigorous theoretical analysis on 

small or weaker firms’ marketing strategies is still missing.  

Second, the study on the marketing strategy of weaker firms is much too important to 

ignore. In the United States in 2010, small businesses made up 99.7% of U.S. employer 

firms, generating 64% of net new private-sector jobs and 49.2% of private-sector 

employment. Furthermore, not only do small firms spend almost twice as much of their 

R&D budget on fundamental research as do large firms, but also small companies are 
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roughly thirteen times more innovative per employee than large firms.15 The National 

Science Foundation estimates that 98% of “radical” product developments result from 

research done in the labs of small companies. Therefore, research on product positioning 

strategy holds a number of valuable benefits not only for small businesses but also for 

national economic growth and human welfare.  

This essay is organized as follows: In Sections 3.3 to 3.4, we describe the model 

setup and provide the analysis of the subgame perfect equilibria of the game, and include 

the main result of the paper in both one-dimensional and multiple-dimensional models. In 

Sections 3.5 and 3.6, we discuss our results and provide further research, concluding the 

result in Section 3.7.  

3.3 One-dimensional location decision 

We start by analyzing a one-dimensional location model, to highlight the impact of 

the asymmetric advantage between firms on their product locations. 

Firms. Consider two asymmetric firms, indexed by 𝑗, where  𝑗 = {𝐴,𝐵𝐵}, selling 

homogenous products. We allow for the asymmetry in the firms’ capability of attracting 

consumers: Firm A has an advantage over Firm B, allowing generation of greater sales. 

There can be many factors such as better distribution network, consumer services, or 

reputation. We assume firms’ product prices to be the same, and their marginal costs of 

production to be constant and equal to zero. Firms need to choose ideal market locations, 

(𝑥𝐴, 𝑥𝐵), to maximize their profits.   

15 Source: www.sba.gov/advocacy/7540/42371, “Small Business GDP: Update 2002-2010.” 

94 

 

                                                           

http://www.sba.gov/advocacy/7540/42371


 

Consumers. The market is comprised of m consumers, each requiring at most one 

unit of the product. They are uniformly located along a linear market of [0, 1]. So, the 

market has 𝑚 mutually exclusive locations of {0, 1
𝑚−1

, 2
𝑚−1

, … ,𝑚−2
𝑚−1

, 1 }, with one consumer 

at each location.  

Consumer 𝑖′𝑠 utility is 𝑢𝑖𝑖 = 𝑃𝑃 + 𝑎 − 𝑡(𝑥𝑖𝑖 − 𝑥𝐴)2 − 𝑝𝐴 if she buys from Firm A, and  

𝑢𝑖𝑖 = 𝑃𝑃 − 𝑡(𝑥𝑖𝑖 − 𝑥𝐵)2 − 𝑝𝐵  if she buys from Firm B, where 𝑥𝑖𝑖 is consumer 𝑖′𝑠 location. 

The consumer’s travel cost is measured by Euclidean distance between her and the firm’s 

location. Another interpretation of travel cost is the disutility caused by a mismatch 

between consumers’ tastes and product features. 𝑡 is the unit transportation cost and we 

normalize it by letting 𝑡=1. 𝑎 is the advantage gap between the strong and the weak firm 

and is positive. 𝑃𝑃 is the reservation price for the consumer. Finally, we assume 𝑝𝐴 = 𝑝𝐵. 

Consumers have the option not to buy: when u is low enough such that when u reaches U 

the consumer will stop buying. Currently, we assume that r is high enough that the 

consumer always chooses to buy.  

The sequence of the game is as follows: In Stage 1, firms simultaneously choose 

their locations (𝑥𝐴, 𝑥𝐵)  in the linear market of [0, 1]. In Stage 2, consumers choose from 

which firm to buy. We solve for the subgame-perfect Nash equilibrium of the game; that is, 

the location strategies chosen by both firms. We look for the symmetric location 

distribution in the equilibrium because firms’ profits remain unchanged after both flip their 

locations along the central point of the market.  

3.3.1 The advantage gap is small 
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When the advantage gap 𝑎 is zero, two firms are symmetric, and then the model 

reduces to the standard Hotelling model: two symmetric firms locate at the center of the 

market in equilibrium. At the other extreme, when the advantage gap a is very large, the 

stronger firm captures the whole market by staying at the center. Thus it will not respond to 

its rival’s deployment, only to the demand condition. In both cases, the results are trivial. 

However, if the advantage gap is small, the strategic interaction between firms occurs. 

There are many such cases, for example, between Pepsi and Coca-Cola, between United 

Airlines and American Airlines, between McDonald’s and Burger King, etc. In the rest of 

this paper, we investigate those cases where the advantage gap between firms is positive 

but small.    

We start with the case of 𝑎 < ( 1
𝑚−1

)2 , where the competitive advantage between 

firms is noticeable but very small. Specifically, consumers choose the firm that costs them 

less in travel, and only when the travel costs to firms are equal, consumers choose to buy 

from Firm A.   

Proposition 3-1. When the advantage gap between two firms is sufficiently small 

and 𝑚 > 1, a pure strategy equilibrium does not exist.  

Proof.  Suppose the claim in the proposition is wrong. That is, there exists a pure 

strategy of firms’ locations: (𝑥𝐴∗, 𝑥𝐵∗). Then 𝑥𝐴∗ and 𝑥𝐵∗are also fixed points, which can be 

predicted by both firms.  

1. If two points are at the same location, that is,  𝑥𝐴∗ = 𝑥𝐵∗, then Firm A gets all the 

consumers and Firm B gets zero due to Firm A’s competitive advantage. If Firm B moves 
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one location away from the current position, it can obtain positive market share due to the 

smallness in the advantage gap. Thus it has an incentive to deviate and (𝑥𝐴∗, 𝑥𝐵∗) is not 

stable.  

2. If two points are different, that is, 𝑥𝐴∗ ≠ 𝑥𝐵∗, then Firm A has the incentive to move 

to 𝑥𝐵∗ . By doing so, it can capture all consumers and becomes more profitable. So, 

(𝑥𝐴∗, 𝑥𝐵∗) is not stable.  

In either case at least one firm has an incentive to deviate from (𝑥𝐴∗, 𝑥𝐵∗). This is 

contradictory to the statement that (𝑥𝐴∗, 𝑥𝐵∗) is the equilibrium solution.  

The intuition of Proposition 3-1 is that if firms’ locations are fixed and predictable, 

the advantaged firm can copy the strategy of the disadvantaged one and win over all 

consumers for certain. Therefore, the disadvantaged firm must randomize among a set of 

locations, adopting a kind of “Guerrilla-warfare” strategy.  

Let firm 𝑗′s mixed strategies in equilibrium be 𝜎𝑗 = �𝜎1
𝑗 , … ,𝜎𝑚

𝑗 �. Next we derive 

them under the case of a very small advantage gap, i.e.,𝑎 < ( 1
𝑚−1

)2 . Firms’ profits, when 

they choose their location a and b respectively, can be expressed as follows:16  

𝜋𝐴(𝑎, 𝑏) = �
𝑚 − 𝑎 + 1 + [𝑎−𝑏−1

2
] 𝑎 > 𝑏

𝑚 𝑎 = 𝑏
𝑎 + �𝑏−𝑎−1

2
� 𝑏 > 𝑎

  ,                                (3-1) 

16 In the equation, “[x]” denotes the smallest integer larger than or equal to x. For subscripts 

that fall outside the range, the values of those terms are set to 0.   

97 

 

                                                           



 

𝜋𝐵(𝑎, 𝑏) = 𝑚 − 𝜋𝐴(𝑎, 𝑏).                                           (3-2) 

From the above expressions, we notice a natural symmetry in the profits in the 

location-strategy space: firms’ profits remain unchanged after both locations flip along the 

central point of the market. Consequently, we expect the symmetry in the distribution of 

each firm’s mixed strategy in equilibrium. That is, 𝜎1
𝑗 = 𝜎𝑚

𝑗 ,  𝜎2
𝑗 = 𝜎𝑚−1

𝑗 , … ,𝜎
[𝑚2 ]
𝑗 = 𝜎

[𝑚2 ]+1
𝑗  

for 𝑚 > 3.  

3.3.1.1 An example 

 Market demand is exogenously determined. When 𝑚 increases, the market is bigger 

in terms of population. We provide a simple example of 𝑚 = 6, and calculate the mixed 

strategy quilibrium for both firms before deriving the general solution.17 

 

 

 

Figure 3-2: The distribution of consumers in the market when m=6. 

Firms’ profits. Figure 3-2 shows six consumers locating at one of {0, 1/5, 2/5, …, 

1}. Suppose Firm A chose Location 𝑥3, we recall the firms’ profits function in (3-1) and (3-

17 In the example, I chose the even number for m because it is easier to divide the market 

share between two firms. The natural result holds when m is odd. Especially when m is 

greater, the mixed strategies when m is odd and when m is even shall converge to the same. 

x1                 𝑥2                    𝒙𝟑                 𝑥4                    𝑥5               𝑥6 
 
0                     1/5                     2/5                  3/5                    4/5                1 
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2), then Firm A’s profit, given Firm B’s location strategy of 𝜎𝐵 = (𝜎1𝐵, … ,𝜎6𝐵), can be 

written as:  

𝜋𝐴(𝑥3,𝜎𝐵) = 5𝜎1𝐵 + 4𝜎2𝐵 + 6𝜎3𝐵 + 3𝜎4𝐵 + 4𝜎5𝐵 + 4𝜎6𝐵.                    (3-3) 

The first term of (3-3) is its profit if Firm B stays at Location 𝑥1: it surely wins over five 

consumers (i.e., three consumers locate on its right, one consumer between two firms, and 

one consumer on its location); this demand is multiplied by 𝜎1𝐵 , which is the probability 

that Firm B chooses to stay at Location 𝑥1. The second term is its profits if Firm B stays at 

Location 𝑥2: it wins over four consumers (i.e., three consumers on its right, and one 

consumer on its location); this demand is multiplied by 𝜎2𝐵 , which is the probability that 

Firm B chooses to stay at Location 𝑥2. The third term is its profits if Firm B stays at 

Location 𝑥3: it wins over all consumers; this demand is multiplied by 𝜎3𝐵, which is the 

probability that Firm B chooses to stay at Location 𝑥3. The fourth term is its profits if Firm 

B stays at Location 𝑥4: it wins over three consumers on its left; this demand is multiplied 

by 𝜎4𝐵 , which is the probability that Firm B chooses to stay at Location 𝑥4. The fifth term is 

its profits if Firm B stays at Location 𝑥5: it wins over four consumers who locate at its left 

and on its location; this demand is multiplied by 𝜎5𝐵, which is the probability that Firm B 

chooses to stay at Location 𝑥5. The last term is its profit if Firm B stays at 𝑥6:  Firm A wins 

over four consumers who locate at 𝑥1, 𝑥2, 𝑥3 and 𝑥4; this demand is multiplied by 

𝜎6𝐵, which is the probability that Firm B chooses to stay at Location 𝑥6. Similarly, Firm A’s 

profit of choosing other locations, given Firm B’s strategy of  𝜎𝐵, can be written as 

𝜋𝐴(𝑥1,𝜎𝐵) = 6𝜎1𝐵 + 𝜎2𝐵 + 2𝜎3𝐵 + 2𝜎4𝐵 + 3𝜎5𝐵 + 3𝜎6𝐵 , 
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𝜋𝐴(𝑥2,𝜎𝐵) = 5𝜎1𝐵 + 6𝜎2𝐵 + 2𝜎3𝐵 + 3𝜎4𝐵 + 3𝜎5𝐵 + 4𝜎6𝐵.  

Due to the symmetric property in the distribution of the mixed strategy, we only 

need to consider the situations on half locations. 

Mixed strategies. Although there are six locations for firms to choose, they may 

choose fewer locations. That is, the support of the location distribution in the mixed 

strategy Nash equilibrium may be smaller. Let 𝑥𝑘∗
𝑗  be the starting location in the support of 

Firm j ’s strategy. Therefore, profits on locations farther left from 𝑥𝑘∗
𝑗  and farther right from 

𝑥𝑚−𝑘+1∗
𝑗  are zero, and within {𝑥𝑘∗

𝑗 , …, 𝑥𝑚−𝑘+1∗
𝑗  } are equal, which is the important feature 

of any mixed strategy equilibrium that given the strategies chosen by the other players, 

each player is indifferent among all the actions that they select with positive probability. 

If 𝑥𝑘∗𝐴  starts at the first place, then the payoffs of the two farthest adjacent locations, 

𝑥1𝑎𝑛𝑑  𝑥2, shall be equal, i.e., 𝜋𝐴(𝑥2,𝜎𝐵) = 𝜋𝐴(𝑥1,𝜎𝐵). This leads to −5𝜎2𝐵 − 𝜎3𝐵 = 0, 

which is impossible because it further leads to 𝜎2𝐵 = 𝜎3𝐵 =0 and finally leads to  𝜎1𝐵 = ⋯ =

𝜎6𝐵 = 0.  Therefore we know that  𝑥1 is not in the support of Firm A’s strategy. Going 

through a similar procedure, we can exclude 𝑥1  from the support of Firm B’s strategy as 

well. 

Next let 𝜋𝐴(𝑥3,𝜎𝐵) = 𝜋𝐴(𝑥2,𝜎𝐵), and this leads to −𝜎2𝐵 + 4𝜎3𝐵 = 0. Because 

𝜎1𝐵 + 𝜎2𝐵 + 𝜎3𝐵 + 𝜎4𝐵 + 𝜎5𝐵 + 𝜎6𝐵 = 1 and the mixed strategy is symmetric, we obtain the 

mixed strategy of Firm B as (0, 0.4, 0.1, 0.1, 0.4, 0). Similarly, the mixed strategy of Firm 

A is (0, 0.1, 0.4, 0.4, 0.1, 0), and the support of both firms is (𝑥2, 𝑥3, 𝑥4, 𝑥5).  
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Picking any location in the support of strategies, for example, Location 𝑥2, we can 

calculate the profits of both firms as the following:  

𝜋𝐴(𝑥2,𝜎𝐵) = 5𝜎1𝐵 + 6𝜎2𝐵 + 2𝜎3𝐵 + 3𝜎4𝐵 + 3𝜎5𝐵 + 4𝜎6𝐵  = 4.1,  

𝜋𝐵(𝑥2,𝜎𝐴) = 5𝜎1𝐴 + 0𝜎2𝐴 + 2𝜎3𝐴 + 2𝜎4𝐴 + 3σ5A + 3σ6A = 1.9,  

πA + πB = 6. 

  

Figure 3-3: Weaker firm’s “Guerrilla-warfare” strategy  

when the advantage gap is very small 

As illustrated in Figure 3-3, both firms differentiate their locations. The mixed 

strategy equilibrium involves Firm A staying at four locations with corresponding 

probabilities {0.1, 0.4, 0.4, 0.1}, four times more staying on the center. However, Firm B 

stays at four locations with corresponding probabilities {0.1, 0.4, 0.4, 0.1}, four times more 

staying on the edges of the market. Both firms do not choose to stay at 𝑥1 𝑎𝑛𝑑 𝑥6. This kind 

of market structure is caused by the strategic interactions between firms. One firm has a 

competitive advantage over the other. Any consumer will strictly prefer the advantaged 

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6

Firm A
Firm B
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firm if both firms are at the same location. As a result, the weak firm must differentiate. On 

the other hand, because the advantage gap is small, the strong firm ends up reinforcing its 

advantage by adopting a relatively more central market, in a probabilistic sense, because 

the weak firm visits there with positive probability.    

3.3.1.2 General case 

In this section, we present the general form of the firm’s location strategy. Given 

Firm A at 𝑥𝑖𝑖 and Firm B’s strategy, 𝜎𝐵, it can be written as follows: 

𝜋𝐴(𝑥𝑖𝑖,𝜎𝐵) = � (𝑚− 𝑖 + 𝑗 + 1)(𝜎𝑖𝑖−2𝑗−1𝐵 +
[(𝑖𝑖−1)/2]

𝑗=1
𝜎𝑖𝑖−2𝑗𝐵 ) + (𝑚 − 𝑖 + 1) 𝜎𝑖𝑖−1𝐵 + 𝑚𝜎𝑖𝑖𝐵

+ 𝑖𝜎𝑖𝑖+1𝐵 + � (𝑖 + 𝑗)�𝜎𝑖𝑖+2𝑗𝐵 + 𝜎𝑖𝑖+2𝑗+1𝐵 �.
[(𝑚−𝑖𝑖)/2]

𝑗=1
 

Within the support of the mixed strategy equilibrium, firms’ profits at each location 

are equal. Besides, the sum of the probabilities of visiting each location is 1 and the 

distributions of mixed strategies are symmetric. With all those properties, we are able to 

obtain Firm B’s mixed strategy in equilibrium, satisfying 

(𝑘 − 1)𝜎𝑘𝐵 = (𝑛 − 𝑘)𝜎𝐾+1𝐵 + ∑ 𝜎𝑗𝐵        𝑓𝑜𝑃𝑃 𝑘𝐴∗ ≤ 𝑘 < [𝑚
2

].
[𝑚2 ]
𝑗=𝑘+2          (3-4) 

Similarly, we can obtain Firm A’s mixed strategy in equilibrium, satisfying  

(𝑘 − 1)𝜎𝑘𝐴 = (𝑚− 𝑘)𝜎𝑘+1𝐴 + ∑ 𝜎𝑖𝑖𝐴      𝑓𝑜𝑃𝑃 𝑘𝐵∗ ≤ 𝑘 < [𝑚
2

]
[𝑚2 ]
𝑖𝑖=𝑘+2 .           (3-5) 

Lemma 3-1. The starting location in the support of the mixed strategies in 

equilibrium satisfies 𝑘𝐴∗ = 𝑘𝐵∗ > [𝑚
4

 ] . (See the proof in the appendix.) 
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Now we state the main results of this section, which describes the unique mixed 

equilibrium of our game in the following proposition:  

Proposition 3-2. When 0 < 𝑡 < 1
𝑚−1

, and 𝑚 > 3, there exists a unique symmetric 

location strategy for both firms. Mathematically,  

•  for the disadvantaged Firm B, it is ( 𝜎𝑘∗𝐵 ,𝜎𝑘∗+1𝐵 , … ,𝜎𝑚−𝑘∗+1
𝐵 ), which satisfies 

(𝑘 − 1)𝜎𝑘𝐵 = (𝑛 − 𝑘)𝜎𝐾+1𝐵 + ∑ 𝜎𝑗𝐵   𝑓𝑜𝑃𝑃 𝑘𝐴∗ ≤ 𝑘 < [𝑚
2

].
[𝑚2 ]
𝑗=𝑘+2    and  

•  for the advantaged Firm A, it is ( 𝜎𝑘∗𝐴 ,𝜎𝑘∗+1𝐴 , … ,𝜎𝑚−𝑘∗+1
𝐴 ), which satisfies 

(𝑘 − 1)𝜎𝑘𝐴 = (𝑚− 𝑘)𝜎𝑘+1𝐴 + ∑ 𝜎𝑖𝑖𝐴  𝑓𝑜𝑃𝑃 𝑘𝐵∗ ≤ 𝑘 < [𝑚
2

]
[𝑚2 ]
𝑖𝑖=𝑘+2 .            

•  𝑘𝐴∗ = 𝑘𝐵∗ > [𝑚
4

 ].                                   

The equations of the mixed strategy in Proposition 3-2 is comprised of a list of 

�𝑚
2
� − 𝑘𝐵∗ 𝑎𝑛𝑑 [𝑚

2
] − 𝑘𝐴∗ equations for Firm A and B, respectively, solvable recursively 

with the additional conditions that ∑ 𝜎𝑖𝑖𝐴 =  ∑ 𝜎𝑖𝑖𝐵 = 1𝑚
𝑖𝑖=1

𝑚
𝑖𝑖=1  and the symmetric property of 

the strategy distributions, as shown in the example of m=6. 

Next a natural question raised is “what do those mixed strategies of firms look like? 

Do they show the similar pattern as illustrated in Figure 3-3?” Proposition 3-3 states the 

answer.  

Proposition 3-3. In equilibrium, Firm A’s mixed strategy has a reversed u shape 

while Firm B’s has a u shape. Mathematically, they satisfy 

•  Within the support of Firm A’s strategy,𝜎𝐾+1𝐴 ≥ 𝜎𝐾𝐴 for 𝑘 < [𝑚
2

];  𝜎𝐾+1𝐴 ≤ 𝜎𝐾𝐴 for  
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𝑘 > [𝑚
2

] .  

•  Within the support of Firm B’s strategy,𝜎𝐾+1𝐵 ≤ 𝜎𝐾𝐵 for 𝑘 < [𝑚
2

];  𝜎𝐾+1𝐵 ≥ 𝜎𝐾𝐵 for  

𝑘 > [𝑚
2

] . (Please see the proof in the appendix.) 

In the general setting, we verify the U-shaped location strategy of the disadvantaged 

firm and the reversed U-shaped location strategy of the advantaged firm, showing that the 

larger firms tend to focus while the smaller firms tend to randomize, exactly as illustrated in 

Figure 3-3. 

3.3.2 The advantage gap is a little larger 

Mentioned in Section 3.3.1, firms choose locations differently when the advantage 

gap is zero compared to when the gap is very large. In this section, we analyze how a small 

change in the scale of the advantage gap causes firms to react differently in their product 

location strategies. We assume ( 1
𝑚−1

)2 ≤ 𝑎 < 3( 1
𝑚−1

)2, under which the advantage gap is 

still small, but becomes a little bit larger than in Section 3.3.1. Specifically, Firm A not 

only wins over the consumer whose travel costs of visiting two firms are the same, but also 

wins over the consumer whose travel cost of visiting Firm A is no 3( 1
𝑚−1

)2 larger than that 

of visiting Firm B. This time, Firm A may win over consumers even when the cost of 

visiting it is larger than that of visiting the other.  

In the following, we present the result of 𝑚 = 6, and omit the general solution due 

to its complexity in the form. The model setting is the same as the previous case. And six 

consumers locate at one of {0, 1/5,…, 1} as in Figure 3-2. Due to the symmetric property in 
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the distribution of the mixed strategy, we consider only half of the locations. A firm’s profit 

when it chooses one of those locations is as follows, given the other’s location strategy (in 

the same manner to derive 3-3): 

𝜋𝐴(𝑥1,𝜎𝐵) = 6𝜎1𝐵 + 2𝜎2𝐵 + 2𝜎3𝐵 + 3𝜎4𝐵 + 3𝜎5𝐵 + 4𝜎6𝐵, 

𝜋𝐴(𝑥2,𝜎𝐵) = 6𝜎1𝐵 + 6𝜎2𝐵 + 6𝜎3𝐵 + 3𝜎4𝐵 + 4𝜎5𝐵 + 4𝜎6𝐵, 

𝜋𝐴(𝑥3,𝜎𝐵) = 5𝜎1𝐵 + 6𝜎2𝐵 + 6𝜎3𝐵 + 6𝜎4𝐵 + 4𝜎5𝐵 + 5𝜎6𝐵, 

𝜋𝐵(𝑥1,𝜎𝐴) = 0𝜎1𝐵 + 0𝜎2𝐵 + 1𝜎3𝐵 + 1𝜎4𝐵 + 2𝜎5𝐵 + 2𝜎6𝐵, 

𝜋𝐵(𝑥2,𝜎𝐴) = 0𝜎1𝐵 + 0𝜎2𝐵 + 0𝜎3𝐵 + 2𝜎4𝐵 + 2𝜎5𝐵 + 3𝜎6𝐵, 

𝜋𝐵(𝑥3,𝜎𝐴) = 4𝜎1𝐵 + 0𝜎2𝐵 + 0𝜎3𝐵 + 0𝜎4𝐵 + 3𝜎5𝐵 + 3𝜎6𝐵. 

We are looking for the symmetric distribution of the mixed strategies and obtain the 

equilibrium as the following: 

A: (0, 1/3, 1/6, 1/6, 1/3, 0), 

B: (0, ½, 0, 0, ½, 0), 

𝜋𝐴(𝑥2,𝜎𝐵) = 6𝜎1𝐵 + 6𝜎2𝐵 + 6𝜎3𝐵 + 3𝜎4𝐵 + 4𝜎5𝐵 + 4𝜎6𝐵=5,  

𝜋𝐴(𝑥2,𝜎𝐴) = 0𝜎1𝐴 + 0𝜎2𝐴 + 0𝜎3𝐴 + 2𝜎4𝐴 + 2σ5A + 3σ6A=1,  

πA + πB = 6.  
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Figure 3-4: Weaker firm’s “Flee and defend” strategy  

when the advantage gap is a little larger 

We plot the optimal location strategies of the firms in Figure 3-4. Both firms choose 

to randomize in locations. Firm A randomizes on four locations, staying more on the edges 

by putting double weight on the edges rather than on the center. Firm B randomizes only on 

two edges with equal probability. Compared with the previous case, we notice several 

changes as the advantage gap increases: 1) The profits of the weak firm reduces (i.e., from 

the previous 1.9 to 1) while that of the strong firm increases (i.e., from 4.1 to 5). However, 

the weak firm can still earn profits with the correct strategy; 2) The weak firm’s strategy is 

less differentiated while the strong firm’s is more differentiated. There are also some gaps 

in the weak firm’s location strategy, which means that it has totally given up center 

positions and focused on the extreme points.  

3.4 Multi-dimensional location decision 

It is useful to think of a product as a bundle of characteristics: physical attributes, 

quality, location, time, availability, etc., as in many cases, consumers have different tastes 
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and prefer one firm’s product over the others, even if both firms sell the products at the 

same price. As a result, marketing managers regularly face product positioning decisions on 

multiple dimensions (e.g., speed, ease of use, capacity, etc.). Figure 3-5 illustrates eight 

dimensions on which computer companies positioned their laptops in 2013. For example, 

Apple’s laptop stood at the top of four features: ‘Design,’ ‘Keyboard & Touchpad,’ 

‘Display & Audio,’ and ‘Software.’ Lenovo’s laptop stood at the top of two features: ‘Value 

& Selection’ and ‘Innovation.’ More investment usually brings in better quality. Early in 

2013, Intel invested $300 million to do research on the thinness and lightness of a laptop, 

and introduced a new category of laptop: Ultrabook with its thinness less than 20mm/0.8 

inches and its lightness less than 4 pounds.18   

 

18http://techcrunch.com/2011/08/10/intel-capital-launches-300m-ultrabook-fund-to-invest-

invest-in-lightweight-personal-computing-technologies. 
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Figure 3-5: Consumer evaluations on multiple features of laptop in 201319   

3.4.1 Model setup 

In this section, we extend the model to multi-dimensions. In the following, we list 

the differences from the one-dimensional model in the setup.   

Firms. Two asymmetric firms sell a product with multiple features. Firms need to 

simultaneously choose ideal market positions for n features of the product. Let (𝑥𝑖𝑖𝐴,𝑥𝑖𝑖𝐵), 

where  𝑖 = 1, … ,𝑛,  be the choice of location in Feature i.  In the one-dimension model, 

location means the relative physical position of the firm, and product quality remains the 

same if firms move along the linear market of [0,1].  

Here in the multi-dimensional case, we refer to the location in each dimension as 

the relative quality level on that dimension, so quality level increases as firms move from 

zero to one. This setting dramatically eases the computational complexity in solving a 

multi-dimensional problem. This is a simplified assumption, because there exist product 

features where the concept of location extends easily to any choice of a product 

characteristic. For example, firms often “locate” along a single dimension in choosing 

product durability and quality (sudsiness, softness, cleaning power, absorbency, etc.), but 

not always, e.g., color, screen size.   

Firm A is more competent than Firm B. In multi-dimensions, measuring 

competency is difficult. Firms win over consumers due to their combined satisfaction from 

19 http://blog.laptopmag.com/best-worst-notebook-brands-2013/3. 
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several dimensions, and firms, whose products are low quality in several dimensions, may 

still be considered stronger due to their product’s good performance in other dimensions. 

Therefore, we redefine the advantage gap and let it refer to firms’ capabilities, i.e., 𝜂𝐴 >

𝜂𝐵, which is normalized within (0, 1]. This capability determines the efficiency of a firm to 

carry out research and/or marketing plans, and thus a strong firm has a lower cost to obtain 

or stay at high quality in product features. Therefore, a firm’s capability is linked to its 

choice of product positioning in the following way:  

𝑥𝑥1
𝑗…+𝑥𝑥𝑛

𝑗

𝜂𝑗
  = 𝐵𝐵,                                                 (3-6) 

where 𝐵𝐵 is the budget constraint. Equation (3-6) shows a positive relationship between the 

firm’s capability and its total location choices under budget  𝐵𝐵. An advantaged firm is able 

to choose the higher location than the disadvantaged one under similar investment. 

As a result, with a lower capability, a weak firm is usually unable to provide higher quality 

in all dimensions, and has to strategically choose certain dimensions with the consideration 

of the moves of the strong firms.   

Consumers. We assume the total market size to be one and consumers put the same 

weights on their preference for each dimension. (This is the simplest case. There is another 

case in which consumers put more weight on certain features than others in their purchase 

decisions.) In each feature/dimension, consumers prefer the firm that can provide them a 

higher utility. For example, the probability that a consumer prefers Firm 𝐵𝐵 to A in 

Dimension 𝑖, given two firms location of ( 𝑥𝑖𝑖𝐴, 𝑥𝑖𝑖𝐵), is  
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𝑃𝑃𝑃𝑃𝑖𝑖(Consumers prefer Firm 𝐵𝐵 ) = �
0 𝑖𝑓 𝑥𝑖𝑖𝐴 > 𝑥𝑖𝑖𝐵  

1/2 𝑖𝑓 𝑥𝑖𝑖𝐴 = 𝑥𝑖𝑖𝐵

1 𝑖𝑓 𝑥𝑖𝑖𝐴 < 𝑥𝑖𝑖𝐵
.                  (3-7) 20 

3.4.2 Analysis 

The firms’ advantage gap can be measured by 𝜂𝐴𝐴
𝜂𝐵𝐵

.  When 𝜂𝐴𝐴
𝜂𝐵𝐵

= 1, two firms are 

symmetric, and then our model is similar to Vandenbosh and Weinberg’s model (1995), in 

which firms adopt a MaxMin product differentiation strategy. That is, firms tend to 

maximize the differentiation in some dimensions but minimize differentiation in others. In 

this section, we consider the case of  𝜂𝐴𝐴
𝜂𝐵𝐵

> 1, where firms are asymmetric in the competitive 

advantage. Furthermore, this competitive advantage gap is small.  

If a strong firm is highly competitive, it can outperform a weak one in all 

dimensions, thus resulting in a pure strategy that the strong one takes the whole market. 

However, when the advantage gap is small, there exists a mixed strategy, because with 

budget constraints, a strong firm can’t guarantee to win in all dimensions, thus a weak one 

stands a chance of taking a bite occasionally by acting strategically. Let us denote the 

mixed strategies as a vector of n- univariate marginal distributions, i.e., (𝐹𝑖𝑖
𝑗 , … ,𝐹𝑛

𝑗).   

20 There are also other ways to model the probability for a firm to win over a consumer in 

one dimension; for example,  𝑃𝑃𝑃𝑃𝑖𝑖(Consumers prefer Firm 𝐵𝐵) = 𝑥𝑥𝑖𝑖
𝐵𝐵

𝑥𝑥𝑖𝑖
𝐴𝐴+𝑥𝑥𝑖𝑖

𝐵𝐵 .           
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Firms’ profits. In each dimension, consumers prefer the firm that brings them a 

higher value. The overall expected market share can be measured by the summed market 

share in each dimension divided by n, and firms’ profits are proportional to their market 

share across all dimensions. For example,   

Market share𝐵 = ∑  𝑃𝑟𝑖𝑖(Consumers prefer Firm 𝐵)
𝑛

𝑛
𝑖𝑖=1 . 

Substituting Equation (3-7) into the above equation, Firm B’s problem can be expressed as:   

𝜋𝐵 ∝ 𝑚𝑎𝑥(𝐹𝑖𝑖
𝐵𝐵,…,𝐹𝑛𝐵𝐵 ) ∑ ∫ [1

𝑛
1
0

𝑛
𝑖𝑖=1 𝐹𝑖𝑖𝐴(𝑥)]𝑑𝐹𝑖𝑖𝐵,                                    (3-8) 

S.T.:  𝐸[𝑥1𝐵 … + 𝑥𝑛𝐵] = 𝐵𝐵𝜂𝐵 . 

 Therefore, we obtain the Lagrangian form of the firms’ maximization problem as 

follows: 

𝐿((𝐹𝑖𝑖
𝑗, … ,𝐹𝑛

𝑗  ),𝜆𝑗) ∝ 𝑚𝑎𝑥(𝐹𝑖𝑖
𝑗,…,𝐹𝑛

𝑗 ) ∑ ∫ (1
𝑛

∞
0

𝑛
𝑖𝑖=1 𝐹𝑖𝑖

−𝑗(𝑥)]𝑑𝐹𝑖𝑖
𝑗 + 𝜆𝑗(𝐵𝐵𝜂𝑗 − 𝐸[𝑥1

𝑗 … + 𝑥𝑛
𝑗 ]), 

Because 𝜆𝑗𝐵𝐵𝜂𝑗 and 𝜆𝐴𝐵𝐵𝜂𝐴 are constant, the best location strategy for Firm j is 

equivalent to the solution of the following problem (3-9).  

𝐿((𝐹𝑖𝑖
𝑗, … ,𝐹𝑛

𝑗  ),𝜆𝑗) ∝ 𝑚𝑎𝑥(𝐹𝑖𝑖
𝑗,…,𝐹𝑛

𝑗 ) ∑ ∫ [ 1
𝑛𝜆𝑗

∞
0

𝑛
𝑖𝑖=1 𝐹𝑖𝑖

−𝑗(𝑥) − 𝑥]𝑑𝐹𝑖𝑖
𝑗                    (3-9) 

Next we derive properties of equilibrium mixed strategies in Lemma 3-2 to Lemma 

3-5. 

Lemma 3-2. In every dimension and in each firm,  1
𝑛𝜆𝐴𝐴

𝐹𝑖𝑖𝐵(𝑥) − 𝑥 is constant for x 
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in the support of Firm A’s strategy of (0, 𝑠𝑖𝑖];  
1

𝑛𝜆𝐵𝐵
𝐹𝑖𝑖𝐴(𝑥) − 𝑥 is constant for x in the support 

of Firm B’s strategy of [0,  𝑠𝑖𝑖].  

Solving problem (3-9) is the same as solving the bidder’s bidding strategy in the 

simultaneous two-bidder all-pay auctions with complete information in Bay, Kovenock, 

and Vries (1996). Lemma 3-2 is one of their results, so we omit the proof. Note that the 

upper boundaries of both firms are the same in any dimension i.   

Lemma 3-3.  In equilibrium,  𝜆𝐵𝐵
𝜆𝐴𝐴

= 𝜂𝐴𝐴
𝜂𝐵𝐵

 .  (The proof is in the appendix.) 

Lemma 3-4.  In equilibrium, 𝑠𝑖𝑖 = 1
𝑛𝜆𝐵𝐵

.   (The proof is in the appendix.) 

Lemma 3-5.  In equilibrium, 𝜆𝐵 = 1
2𝜂𝐴𝐴𝐵

 . (The proof is in the appendix.) 

Noticing that different scales of advantage gap cause opposite interactions between 

asymmetric firms in the one-dimensional model, here we also separate our discussion under 

two cases: 1) under a small advantage gap of  1 ≤ 𝜂𝐴𝐴
𝜂𝐵𝐵

< 𝑛
2
, and 2) under a little larger 

advantage gap of  𝑛
2
≤ 𝜂𝐴𝐴

𝜂𝐵𝐵
< (𝑛 − 1), to test the robustness of the result found previously.   

3.4.2.1 The advantage gap is small  

We begin with the case of 1 ≤ ηA
ηB

< n
2
, where the competitive advantage between 

firms is very small. Specifically, this condition guarantees that both firms differentiate their 

positions and do not exhaust all resources on one dimension. From the property derived in 

Lemma 3-2, we know that in equilibrium  1
𝑛𝜆𝐴𝐴

𝐹𝑖𝑖𝐵(𝑥) − 𝑥 is constant for 𝑥 = 𝑠𝑖𝑖 and x. That 
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is,    

1
𝑛𝜆𝐴𝐴

𝐹𝑖𝑖𝐵(𝑥) − 𝑥 = 1
𝑛𝜆𝐴𝐴

− 𝑠𝑖𝑖 . 

Simplifying the above equation, we derived:  

𝐹𝑖𝑖𝐵(𝑥) = 1 − 𝑠𝑖𝑖𝑛𝜆𝐴 + 𝑥𝑛𝜆𝐴 . 

Substituting the results from Lemma 3-2 to Lemma 3-4 into the above equation, we 

obtain Firm B’s mixed strategy as the following:  

𝐹𝑖𝑖𝐵(𝑥) = (1 − 𝜂𝐵𝐵
𝜂𝐴𝐴

) + (𝜂𝐵𝐵
𝜂𝐴𝐴

) 𝑥𝑥𝑛
2𝜂𝐴𝐴𝐵

  , 𝑥 ∈ (0, 2
𝑛
𝐵𝐵𝜂𝐴].                    (3-10) 

Similarly, we know from Lemma 2 that in equilibrium  1
𝑛𝜆𝐵𝐵

𝐹𝑖𝑖𝐴(𝑥) − 𝑥 is constant 

for x=0 and x. That is,  

1
𝑛𝜆𝐵𝐵

𝐹𝑖𝑖𝐴(0) − 0 = 1
𝑛𝜆𝐵𝐵

𝐹𝑖𝑖𝐴(𝑥) − 𝑥. 

Simplifying the above equation, we derive:  

𝐹𝑖𝑖𝐴(𝑥) = 𝑥𝑛𝜆𝐵. 

Substituting the result of 𝜆𝐵 = 1
2𝜂𝐴𝐴𝐵

 in Lemma 4 into the above equation, we obtain 

Firm A’s mixed strategy as the following: 

𝐹𝑖𝑖𝐴(𝑥) = 𝑛𝑥𝑥
2𝐵𝜂𝐴𝐴

,  𝑥 ∈ (0, 2
𝑛
𝐵𝐵𝜂𝐴].                                 (3-11) 

We are able to calculate Firm A’s expected evaluation after normalizing product 

price to 1:  
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𝜋𝐴 = 𝑚𝑎𝑥(𝐹𝑖𝑖
𝐴𝐴,…,𝐹𝑛𝐴𝐴 ) ∑ ∫ [1

𝑛
∞
0

𝑛
𝑖𝑖=1 𝐹𝑖𝑖𝐵(𝑥)]𝑑𝐹𝑖𝑖𝐴,  

Substituting Equation (3-10) into the above equation, we obtain the following: 

𝜋𝐴 = ∑ ∫ [
2
𝑛𝐵𝜂𝐴𝐴
0

𝑛
𝑖𝑖=1 (1 − 𝜂𝐵𝐵

𝜂𝐴𝐴
) + (𝜂𝐵𝐵

𝜂𝐴𝐴
) 𝑥𝑥𝑛
2𝜂𝐴𝐴𝐵

  ] 1
2𝐵𝜂𝐴𝐴

𝑑𝑥,  

then we derive: 

𝜋𝐴 = 1 − 𝜂𝐵𝐵
2𝜂𝐴𝐴

 .                                                  (3-12) 

and 

𝜋𝐵 = 1 − 𝜋𝐴 = 𝜂𝐵𝐵
2𝜂𝐴𝐴

.                                            (3-13) 

Firms’ mixed strategies and expected payoffs in equilibrium under a small 

advantage of 1 ≤ 𝜂𝐴𝐴
𝜂𝐵𝐵

< 𝑛
2
 are summarized in Proposition 3-4.  

Proposition 3-4. When 1 ≤ 𝜂𝐴𝐴
𝜂𝐵𝐵

< 𝑛
2

  and 𝑛 ≥ 3, in equilibrium,    

1) the disadvantaged firm’s positioning strategy is 𝐹𝑖𝑖𝐵(𝑥) = �1 − 𝜂𝐵𝐵
𝜂𝐴𝐴
� + �𝜂𝐵𝐵

𝜂𝐴𝐴
� 𝑥𝑥𝑛
2𝜂𝐴𝐴𝐵

  , 𝑥 ∈

�0, 2
𝑛
𝐵𝐵𝜂𝐴�. The expected profit is 𝜂𝐵𝐵

2𝜂𝐴𝐴
.   

2) the advantaged firm’s positioning strategy is 𝐹𝑖𝑖𝐴(𝑥) = 𝑛𝑥𝑥
2𝐵𝜂𝐴𝐴

, 𝑥 ∈ (0, 2
𝑛
𝐵𝐵𝜂𝐴]. The 

expected profit is 1 − 𝜂𝐵𝐵
2𝜂𝐴𝐴

.  

Knowing the distributions of the location model in individual dimensions, we 

calculate the degree of dispersion of their location strategies in equilibrium.  
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𝑣𝑎𝑃𝑃(𝑥𝑖𝑖𝐵) = ∫ 𝑥2𝑑𝐹𝑖𝑖𝐵
2
𝑛𝐵𝜂𝐴𝐴
0 = 2𝐵(𝜂𝐴𝐴−𝜂𝐵𝐵)

𝑛
+ 4𝐵2𝜂𝐴𝐴𝜂𝐵𝐵

3𝑛2
, 

𝑣𝑎𝑃𝑃�𝑥𝑖𝑖𝐴� = ∫ 𝑥2𝑑𝐹𝑖𝑖𝐴
2
𝑛𝐵𝜂𝐴𝐴
0 = 4𝐵2(𝜂𝐴𝐴)2

3𝑛2
. 

Because 𝑛 > 3, 𝑡ℎ𝑒𝑛  4𝐵𝐵𝜂𝐴 = 4𝜂𝐴
𝑥𝑥1𝐴𝐴…+𝑥𝑥𝑛𝐴𝐴

𝜂𝐴𝐴
≤ 4𝑛 < 3𝑛2, therefore  

𝑣𝑎𝑃𝑃(𝑥𝑖𝑖𝐵) > 𝑣𝑎𝑃𝑃�𝑥𝑖𝑖𝐴�. 

Thus, we uncover a remarkable degree of robustness of asymmetric firms’ product 

positioning strategy in the multi-dimensional setting; that is, a strong firm tends to focus, 

while a weak one tends to differentiate. 

3.4.2.2 The advantage gap is a little larger 

Next we check whether firms’ strategies change under different scales of advantage 

gap, and whether the pattern of change is the same as in the one-dimensional model if they 

change. Thus we look at the case of a larger advantage, i.e., 𝑛
2
≤ 𝜂𝐴𝐴

𝜂𝐵𝐵
< 𝑛.   

Proposition 3-5. When   𝑛
2
≤ 𝜂𝐴𝐴

𝜂𝐵𝐵
< 𝑛 and 𝑛 ≥ 3, in equilibrium,    

1)  the disadvantaged firm’s positioning strategy is 𝐹𝑖𝑖𝐵(𝑥) = �1 − 𝑛
2
� + �𝑛

2
� 𝑥𝑥
𝜂𝐵𝐵𝐵

  , 𝑥 ∈

[0,𝐵𝐵𝜂𝐵]. The expected profit is 2
𝑛
− 2

𝑛2
�𝜂𝐴𝐴
𝜂𝐵𝐵
�.    

2) the advantaged firm’s positioning strategy is 𝐹𝑖𝑖𝐴(𝑥) = �
2𝑥𝑥(𝜂𝐵𝐵−

𝜂𝐴𝐴
𝑛 )

𝐵(𝜂𝐵𝐵)2
𝑥 ∈ [0,𝐵𝐵𝜂𝐵)

1 𝑥 ∈ [𝐵𝐵𝜂𝐵 ,𝐵𝐵𝜂𝐴]
. 

 The expected profit is �1 − 2
𝑛
� + 2

𝑛2
�𝜂𝐴𝐴
𝜂𝐵𝐵
�.   
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The proof of Proposition 3-5 is similar to that in Proposition 3-4, and thus is 

omitted. By comparing firms’ mixed strategies under different scales of the advantage gap, 

we find similar patterns: 1)  Firm B’s profit decreases and Firm A’s increases; for example, 

Firm B’s profit of  2
𝑛
− 2

𝑛2
�𝜂𝐴𝐴
𝜂𝐵𝐵
�  is less than 1

𝑛
  under the larger advantage gap of  𝑛

2
≤ 𝜂𝐴𝐴

𝜂𝐵𝐵
<

(𝑛 − 1) while his profit of 𝜂𝐵𝐵
2𝜂𝐴𝐴

  is larger than 1
𝑛
  under the small advantage gap of  1 ≤ 𝜂𝐴𝐴

𝜂𝐵𝐵
<

𝑛
2

  . 2)  Firm B may give up some locations/dimensions, and invest all his resources on one 

or two other dimensions, because his product location x in individual dimension reaches up 

to the capability-adjusted budget 𝐵𝐵𝜂𝐵 under the larger advantage gap, but does not under 

the small advantage gap. His strategy becomes relatively focused. 

Thus we verify that in multi-dimensional location choice game, the strong firm 

tends to focus and the weak firm tends to differentiate when the advantage gap is small and 

vice-versa when the advantage gap is a little larger.   

3.5 Discussion  

The successful competitive strategy of a firm amounts to combining, attacking, and 

defending moves to build a position in the chosen marketplace, using an analogy of military 

warfare and market competition. Those strategies vary depending on the nature of the 

market and the relative strength of firms (Kotler and Singh 1981; Ries and Trout 1986). 

As summarized in Table 3-1, Firm A’s location strategy turns from “focus on core 

competencies” to “expend aggressively to edges” and from “investing on the strength” to 

“compensate on the weakness” after noticing his rival has retreated from the mass market. 

When the relative strength is not very obvious, firms already strong in the market may pursue 
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essentially defensive strategies to enable them to hold and win the current position against 

their potential attackers, especially when their product is mature. If the relative strength is 

obvious, firms may turn from defensive to building strategies; for example, aggressively 

expanding its domestic and/or international markets geographically and taking sales and 

customers from competitors.  
A

dv
an

ta
ge

 g
ap

 Strategy Firm A 
(stronger) 

Firm B  
(weaker) 

A little 
Larger Randomization Focus 

Very 
Small Focus Randomization 

 

Table 3-1: Firms’ location strategies under different levels of advantage gaps 

On the contrary, Firm B’s location strategy turns from “randomization” to “focus,” 

and from “deviating competition” to “fighting for survival.” Weaker firms’ level of 

randomization is negatively related with the advantage gap.  

Simply avoiding the clutter of mass markets to stay in the niches isn't enough. A 

common understanding that “firms need to differentiate and that weak firms should go to the 

market niche to get a larger share of a smaller market rather than compete with a stronger 

firm to get a smaller share of a large market” may not always hold. In this paper, we find that 

such a strategy is inapplicable under certain conditions. When the competitive advantage of 

the rival is small, if staying at the market niches with a fixed strategy, the weaker firm can be 

easily knocked out by its rival, as the stronger firm would choose that location by predicting 

the weaker firm’s move. Instead, the weaker firm shall randomize its positions, including 
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randomly stepping into the mass market, which is the core market of its rivals. By doing so, 

the weaker firm generates a threat in the mass market so that the stronger firm has to focus 

resources to defend, thus leaving large shares in the market niches to the weaker firm. This 

result can be illustrated by the locations of McDonald’s and Burger King outlets in areas of 

Santa Clara by Thomadsen (2007). In his presented map along a stretch of El Camino Real in 

Santa Clara, California, we can find a random pattern on the nearest distances between two 

sellers’ outlets — some were very close and others were very far.   

When the relative strength is large, market niche strategies, focusing on a limited 

sector of the total market, shall be adopted by weaker firms; for example, when major 

automobile manufacturers concentrate their attention on the large-scale segments of the car 

markets in an attempt to keep costs down through the standardization of product parts and 

the economics of scales of assembly lines. Smaller firms can focus on many small markets, 

such as the market for high-quality and hand-crafted cars (Guerzoni 2014). Additionally, 

that provides some insight into why the National Science Foundation reported that small 

firms invested double the budget amount on fundamental research than big firms did, and 

98% of “radical” product developments resulted from research done by small firms. 

When firms carry out their marketing strategy, such as advertisements or quality 

investments, some people may think that strong/large firms contribute more to the 

innovation and radical invention. In this essay, we find the opposite result: small/weak 

firms are the sources of most “radical products.” The strong firms enhance their core 

competency when the competition is fierce, and invest on radical products only when the 

competition is moderate. Such a phenomenon is supported by the flush of radical 
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innovations in Silicon Valley in a highly competitive high-technology industry. Under the 

intensified competition, weak/small firms increase their investment on radical or 

fundamental products for survival, or alter/achieve a new form of competitive advantage.  

3.6 Limitations and future research 

The equilibrium results from both one- and multi-dimensional vertical models 

provide some important insights into the optimal behavior of the weaker firm competing 

with a stronger one. However, the results should be viewed in light of the model’s 

assumptions. For example, the firms may enter the market sequentially, the non-price 

assumption may be limiting, and what about the heterogeneity of competitive strength in 

different dimensions? We discuss limitations and future research in the following pages.   

3.6.1 Continuous consumers’ preferences 

This essay considers the discrete distribution of consumers in the marketplace in the  

Region of [0, 1]. That is, for 𝑚 consumers, there are 𝑚 mutually exclusive locations 

of {0, 1
𝑚−1

, 2
𝑚−1

, … ,𝑚−2
𝑚−1

, 1 }. There are pros and cons of this assumption.    

1) By discretely setting consumers’ locations, we are able to analyze discretely for the 

firms’ location strategy within a different range of advantage gap with an example. 

For this, continuous assumption may not be able to achieve this effect so easily.   

2) When the number of consumer increases, this distribution approximates a 

continuous uniform distribution.   

However, its limitation is also obvious. For each different advantage gap, we need 

to derive different demand equations. Also, the equation becomes very cumbersome as the 
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advantage gap increases. It will make it impossible to solve analytically without turning to 

the simulation when the advantage gap is very large. As a result, here I explore an 

alternative way, in which the consumer’s preference is continuous. The current model is 

simple and used to test the robustness of our findings.  

Let us assume that the total number of consumers is normalized to be 1 and they are 

uniformly distributed on the market place of [0, 1]. As in Proposition 3-1 in Section 3.3.1, 

we first prove the non-existence of pure strategies.  

Proposition 3-6. Pure strategy equilibrium does not exist when the advantage gap 

between firms is sufficiently small. 

Proof.  Suppose the claim in the proposition is wrong. That is, there exists a pure 

strategy of firms’ locations (𝑥𝐴∗, 𝑥𝐵∗).  

We first derive the demands for both firms. Let 𝑥 be the location of a consumer who 

feels indifference to purchasing from Firm A or Firm B, and then her utility function 

satisfies:   

𝑃𝑃 + 𝑎 − (𝑥 − 𝑥𝐴)2 − 𝑝𝐴 = 𝑃𝑃 − (𝑥 − 𝑥𝐵)2 − 𝑝𝐵. 

This gives  𝑥 = 𝑥𝑥𝐵𝐵2+𝑎−𝑥𝑥𝐴𝐴2−(𝑝𝐴𝐴−𝑝𝐵𝐵)
2(𝑥𝑥𝐵𝐵−𝑥𝑥𝐴𝐴)

. 

Let Firm A stay on the left of Firm B, then the demands of both firms are as 

follows:  

𝐷𝐴 = 𝑥,  𝐷𝐵 = 1 − 𝑥. 
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Next we start with the simple case when 𝑝𝐴 = 𝑝𝐵. Also we check the amount of the 

sufficient small advantage gap: 𝑥 shall be less than 1, otherwise, Firm A is too strong to 

drive Firm B out of the market. As such,  

𝑎 < (𝑥𝐵 − 𝑥𝐴)(2− 𝑥𝐵 − 𝑥𝐴). 

Both firms maximize their profits by choosing their locations.  

𝜋𝐴 = 𝑚𝑎𝑥𝑥𝑥𝐴𝐴𝑝𝐴𝐷𝐴, 𝜋𝐵 = 𝑚𝑎𝑥𝑥𝑥𝐵𝐵𝑝𝐵𝐷𝐵.  

Taking the first order of Firm A’s profit function,  𝑑𝜋𝐴𝐴
𝑑𝑥𝑥𝐴𝐴

= 0, we obtain: 

 𝑥𝐵2 + 𝑥𝐴2 = 2𝑥𝐵𝑥𝐴 − 𝑎.                                               (3-14) 

Similarly, taking the first order of Firm B’s profit function,  𝑑𝜋𝐵𝐵
𝑑𝑥𝑥𝐵𝐵

= 0, we obtain: 

  𝑥𝐵2 + 𝑥𝐴2 = 2𝑥𝐵𝑥𝐴 + 𝑎.                                              (3-15) 

Equations (3-14) and (3-15) are contradictory, so a pure strategy equilibrium does 

not exist.  

Next we look for a mixed strategy equilibrium to the game. Let firm 𝑗′s mixed 

strategies in equilibrium be 𝜎𝑗, and the boundaries of strategic equilibrium support be 

[x, x]. Note that the demand functions differ when Firm A stands on the left or right of 

Firm B.  

𝜋𝐴�𝑥𝐴 = 𝑥,𝜎𝐵� = ∫ 𝑥𝑥𝐵𝐵2+𝑎−𝑥𝑥2

2�𝑥𝑥𝐵𝐵−𝑥𝑥�
𝜎𝐵𝑥𝑥

𝑥𝑥 𝑑𝑥𝐵,                            (3-16) 
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𝜋𝐴 �𝑥𝐴 = 1
2

,𝜎𝐵�=∫
𝑥𝑥𝐵𝐵2+𝑎−

1
2
2

2�𝑥𝑥𝐵𝐵−
1
2�
𝜎𝐵

1
2
𝑥𝑥 𝑑𝑥𝐵 + ∫ (1 −

𝑥𝑥𝐵𝐵2+𝑎−
1
2
2

2�𝑥𝑥𝐵𝐵−
1
2�

)𝜎𝐵𝑥𝑥
1
2

𝑑𝑥𝐵,        (3-17)                                              

𝜋𝐵�𝜎𝐴, 𝑥𝐵 = 𝑥�= ∫ �1 − 𝑥𝑥2+𝑎−𝑥𝑥𝐴𝐴2

2�𝑥𝑥−𝑥𝑥𝐴𝐴�
� 𝜎𝐴𝑥𝑥

𝑥𝑥 𝑑𝑥𝐴,                        (3-18) 

𝜋𝐵 �𝜎𝐴, 𝑥𝐵 = 1
2
�= ∫ [1 −

(12)2+𝑎−𝑥𝑥𝐴𝐴2

2�12−𝑥𝑥𝐴𝐴�
]𝜎𝐴

1
2
𝑥𝑥 𝑑𝑥𝐴 + ∫

(12)2+𝑎−𝑥𝑥𝐴𝐴2

2�12−𝑥𝑥𝐴𝐴�
𝜎𝐴𝑥𝑥

1
2

𝑑𝑥𝐴,     (3-19) 

A mixed strategy consists of a pair of probability distributions over the respective 

strategy space with the property that for each player any strategy chosen with positive 

probability must be optimal against the other player’s probability mixture. Then we drive 

∫ 𝑥𝑥𝐵𝐵2+𝑎−𝑥𝑥2

2�𝑥𝑥𝐵𝐵−𝑥𝑥�
𝜎𝐵𝑥𝑥

𝑥𝑥 𝑑𝑥𝐵 = ∫
𝑥𝑥𝐵𝐵2+𝑎−

1
2
2

2�𝑥𝑥𝐵𝐵−
1
2�
𝜎𝐵

1
2
𝑥𝑥 𝑑𝑥𝐵 + ∫ (1 −

𝑥𝑥𝐵𝐵2+𝑎−
1
2
2

2�𝑥𝑥𝐵𝐵−
1
2�

)𝜎𝐵𝑥𝑥
1
2

𝑑𝑥𝐵,           (3-20) 

∫ �1 − 𝑥𝑥2+𝑎−𝑥𝑥𝐴𝐴2

2�𝑥𝑥−𝑥𝑥𝐴𝐴�
� 𝜎𝐴𝑥𝑥

𝑥𝑥 𝑑𝑥𝐴 = ∫ [1 −
(12)2+𝑎−𝑥𝑥𝐴𝐴2

2�12−𝑥𝑥𝐴𝐴�
]𝜎𝐴

1
2
𝑥𝑥 𝑑𝑥𝐴 + ∫

(12)2+𝑎−𝑥𝑥𝐴𝐴2

2�12−𝑥𝑥𝐴𝐴�
𝜎𝐴𝑥𝑥

1
2

𝑑𝑥𝐴,      (3-21) 

𝑥 = 1 − 𝑥.                                                           (3-22) 

The optimal mixed strategy (𝜎𝐴,𝜎𝐵) satisfying the conditions in Equation (3-20) to (3-22).  

The complexity of the equations forbids me from deriving a clean solution. 

However, the mixed strategy exists because the game is compact, Hausdorff, and zero sum 
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(i.e., the game is reciprocally semi-continuous), and payoff secure,21 satisfying the existing 

conditions of mixed strategy (Reny 1999; Ragh and Jofre 2006; Carmona 2009).  

3.6.2 Competitive strength 

Heterogeneity. Competitive strength can be heterogeneity in locations/spaces. 

Some firms are strong in certain areas, such as management, marketing, and operations, but 

weak in others, such as R&D and innovation. This heterogeneity provides rich theological 

scopes for further studies. One way is to view it from firms’ aspects; for example, allowing 

for different investment costs in different product features or providing different capacity 

constraints on different locations. The other is to analyze it from the consumer’s aspect; for 

example, allowing for the difference in the firm’s ability to differentiate or to shrink the 

distance of the product features toward consumers’ ideal points.     

Measure of competitive strength.  In the multi-dimensional model, I measure this 

competency directly in the firm’s side, denoted by 𝜂, i.e. 𝜂𝐴 > 𝜂𝐵. This capability 

determines the efficiency of a firm to carry out research and/or marketing plans, and thus a 

strong firm has a lower cost to obtain or stay at high quality in product features.   

However, in the one-dimension model, one limitation is to specify the strength of 

the firms on the consumers’ utility function. This may lead to confusion, because that added 

21 Reny (1999, pp. 1030) defines it as follows: “A game is payoff secure if for very joint 

strategy, x, each player has a strategy that virtually guarantees the payoff he receives at x, 

even if the others play slightly differently than at x.” 
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parameter (the advantage gap) is equivalent to the measure of the product quality. As such, 

it may not capture the competitive advantage of a firm, because in some cases, weaker 

firms staying in the niche markets may provide products with much higher quality. 

Therefore, further study will focus on finding a better way to model the competitive 

advantage.  

Many directions shall be considered. First, the strength of the firms can be 

expressed by such factors as lower production costs, larger resources (less budget 

constraints), and the size of firms. In this case, it shall be reflected on the firms’ profit 

function.  

Second, the strength of the firms can also refer to higher brand equity, better 

services the consumer received (shorter shipping time), more convenience provided (such 

as a consumer can rent a car in this city and return it at any location worldwide), and so on. 

Then it may be represented by a parameter in the consumer’s utility function.  

Third, the strength of the firms can also be reflected in the market share. For 

example, Hoch, Raju, and Seyman (2002), in their model of the marketplace for a store-

brand product (from a relatively weaker firm) facing two national-brand products (from 

relatively stronger firms), their difference is represented through the demand functions as 

follows (on page 381):  

𝑞1 = 1
𝑎1+𝑎2+𝑎𝑠

[𝑎1 − 𝑝1 + 1
2

{𝜃(𝑝1 − 𝑝2)} + 𝛿1(𝑝𝑠 − 𝑝1)], 

𝑞2 = 1
𝑎1+𝑎2+𝑎𝑠

[𝑎2 − 𝑝2 + 1
2

{𝜃(𝑝1 − 𝑝2)} + 𝛿1(𝑝2 − 𝑝𝑠)], 
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𝑞𝑠 = 1
𝑎1+𝑎2+𝑎𝑠

[𝑎𝑠 − 𝑝𝑠 + 1
2

{𝛿1(𝑝1 − 𝑝𝑠)} + 𝛿2(𝑝2 − 𝑝𝑠)], 

where 𝑞1, 𝑞2 and 𝑞𝑠 are the demands for the firm offering National Brand 1, the firm 

offering National Brand 2, and the store offering its private brand; 𝑝1,𝑝2 𝑎𝑛𝑑 𝑝𝑠 are the 

prices charged by those firms; 𝜃 𝑎𝑛𝑑 𝛿 are the cross-price sensibility representing the 

competition between firms.  They use the base levels of consumers (𝑎1,𝑎2 𝑎𝑛𝑑 𝑎𝑠) to 

represent the market power of firms. For example, 𝑎1 > 𝑎𝑠 and 𝑎2 > 𝑎𝑠.  (National brands 

are stronger than store brands.) 

Another example is Budd, Harris, and Vickers (1993). In analyzing the driving 

effects on competition between duopoly over time, they consider the firm with market share 

over ½ as the leader and the other the follower. 

3.6.3 Sequential versus simultaneous moves  

In real life, the market is dynamic, so the consideration of sequential moves is 

important and seems preferable to a simultaneous location game. Simultaneous entries are 

commonly found in reality. For example, on sealed B2B reverse auctions, the sellers submit 

their bids simultaneously to obtain business from the buyer (e.g., government). Another 

example is the airlines’ entry decisions to serve some new airline routes after the 

deregulation of the airline industry. Before 1978, the Civil Aeronautics Board (CAB) 

severely limited the entry of airlines into interstate trunk, international, or territorial 

scheduled passenger services. Over 25 years have passed since 1978, and a great deal of 
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entry has occurred.22 A natural starting point is to examine what happens when the firms 

are simultaneous Nash competitors. Next we look at sequential moves of the firms.  

When a firm chooses to move first, it enjoys the advantage gained by the initial 

significant occupant of a market segment, gaining control of market locations, larger 

market shares as a monopoly, scale of cost if successful, or pre-empt brand image, all of 

which the followers may not be able to match. Procter & Gamble’s success in introducing 

disposable diapers to China is an example. It launched “Pampers” in China in 1998. Today 

after years of research and experiences, Pampers is the No. 1 selling diaper in China, 

standing at $1.4 billion in 2010—roughly a quarter the size of the U.S. market.23  

Sometimes, the first-mover is not able to capitalize on its advantage, leaving later 

entrants to compete more effectively and efficiently, which is called a second-mover 

advantage; for example, Charles Stack Online Bookstore vs. Amazon. BookStacks 

launched online in 1992, the very first online bookstore known to date. It was set up by 

Bezos; it began advertising on over 28,000 other Internet sites and dominated the business. 

In 1994, Jeff Bezos founded Amazon.com as an online bookstore in 1995. The product 

lines were quickly expanded to computer software, video games, furniture, toys, and many 

others. Now we know Amazon instead of Bookstacks. Similarly, Apple is surely not the 

first company entering the MP3 player market, but now dominates the market. There had 

been over 50 companies selling portable MP3 players in the U.S. before Apple’s entry in 

22 http://www.gao.gov/archive/1996/rc96079.pdf.    

23 http://www.chinadaily.com.cn/bizchina/2009-06/08/content_8259758.htm. 
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November 2001.  

Moorthy (1988) considered that if one firm entered the market first, it could gain a 

first-mover advantage, for it was given the chance to pre-empt the most desirable product 

position. For symmetric firms, after the first firm has located, the profit-maximizing 

decision rule of the second firm is clearly to choose the larger interval and to locate as 

closely as possible to the position of the first firm to capture the trade of consumers in the 

“hinterland” from it to the end of the market. Recognizing this, the first firm can do no 

better than to locate in the market center. Results become complicated for oligopoly firms, 

or for firms with asymmetric strength.  For example, Hoch, Raju, and Seyman (2002) 

considered three firms, a Store Brand (SB) and two National Brands (NB), and suggested 

that the store brand shall be either located close to the leading brand (NB1), a second brand 

(NB2), or in the middle. They found that when two NBs were symmetric, targeting one of 

the NBs would be better; when two NBs were asymmetric, targeting a stronger NB would 

lead to higher profits. On the contrary, Du, Lee, and Staelin (2005) found that the store 

brand should locate close to the weak or medium national brand instead of the strong one.  

Either a stronger or weaker firm can enter first, being a location leader. However, 

the result differs if the moving sequence changes. Tyagi (2000) found that if the weaker 

firm moves first and the product cost of the second-mover was predicted to be lower, it 

would leave the most attractive location in the market and move to a market niche. The 

larger the second-mover’s cost advantage, the farther away the first-mover locates. Hoch, 

Raju, and Seyman (2002), and Du, Lee, and Staelin (2005) found that if the weak firm 

moves later, it chose to close the strong firm.  
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Besides the capability of the firms, whether the market rewards the first-mover or 

the second-mover also depends on other factors: the tastes of consumers change, sources 

outside the industry, such as supporting companies, universities, government, and research 

centers (Kessler et al. 2000), and the market structure (first-cycle, slow-cycle, or standard-

cycle of turnover). Both firms’ internal and external factors decide the success of the first-

mover or second-mover. We will consider this interesting timing issue of market entry, 

analyzing how first-move and second-move impact on the location strategies of asymmetric 

firms. 

3.6.4 Price decision 

In our model, price is taken exogenously. It fits for the following markets; for 

example, in the markets where price competition is so dynamic that the retailers are able to 

make the location decisions if they take prices into consideration, or in the markets where 

prices are less involved. The prices of agriculture products are determined not by a single 

firm but joined by all consumers and sellers. In the communication industry including 

television, radio, newspapers, magazines, direct mail, and advertisements, their positioning 

strategies do not involve price competition. Rust and Donthu (1988) analyzed the 

positioning and repositioning of the cable networks and observed that, given that a 

perceptual space exists in the viewers, all movie channels (HBO, SHOWTIME, and 

CINEMAX) were perceived to be similar and hence were located near each other. ESPN 

and CNN were located in two different and relatively isolated areas due to their unique 

programming contents; LIFETIME, USA, and WTBS programed broadly and did not focus 

on any one type of show, so they were perceived to be at the center and did not own a 
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unique target audience. As such, new cable channels should adopt the locations that were 

highly associated with investigative news reporting programs or action/mystery shows.  

 On the other hand, there are markets in which price is a major consideration. 

Numerous analytical models considered pricing competition when analyzing product 

positioning and they modelled the problem as a two-stage sequential game, in which firms 

decide their product positioning first and then make price decisions. In such games, the firm 

needs to think about the pricing when considering product positioning. In particular they 

should be aware that if they locate closely, they are able to make incursions of their 

competitors’ market; on the other hand, they would not move too close as the competition 

becomes too intense. The necessity of balancing these two opposite strengths helps derive 

equilibrium for optimal product positioning and pricing choices (d’Aspremont, 

Gabszewicz, and Thisse 1986). However, some practical difficulties exist, as outlined 

below.  

1) Pricing equilibrium for any chosen location made in the first stage does not 

always exist. d’Aspremont, Gabszewicz, and Thisse (1979) showed that the pure location 

decision of the Hotelling model did not exist. Anderson (1987 and 1988) showed that the 

existence of pure location equilibrium of the Hotelling model depended on the assumption 

of travel cost and firms’ profit functions. Moreover, a pure equilibrium strategy may not 

exist for the Hotelling model for the two-stage game for different travel cost functions.  

2) Price and some product features are two different dimensions. For the price, the 

lower the better, therefore, as the price increases, the consumers’ preference is 

monotonically decreasing. This difference is traditionally named vertical differentiation, in 
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which all consumers opt for the same variant. However, in the product features, sometimes 

the concept of location cannot be extended easily to any choice of a product characteristic. 

For some product features, such as color and screen size, the consumers’ preferences are 

dispersed. This differentiation is traditionally named horizontal differentiation, which 

means that consumers’ tastes are distributed randomly in any location in the product 

features.   

Integrating these two different distributions of differentiations is interesting but 

adds complicity to the analysis. Current researches are only able to extend the model to 

cover two product features. Even in those researches, Economides (1986) had to treat these 

two types of differentiation (quality and product variety) similarly, solving sequentially as 

if doubling Hotelling markets. de Palma et al. (1985) had to use the Logit model and 

incorporated it into their analytical model. Vandenbosh and Weinberg (1995) introduced a 

complicated method: angle-competition, to show the relative strength of firms on two 

product features.  

3.7 Conclusion 

Understanding how to compete is crucial. This essay provides a theoretical 

explanation for some observations: why weaker firms differentiate their product positioning 

as a way to mitigate competition; why McDonald’s likes to be located near Burger King, 

but Burger King doesn’t; and why stronger firms (incumbents) like to build upon their 

existing set of capabilities and bring in incremental technologies to market, instead of 

developing radical ones. This is a starting point to understand the role of competitive 

strength in shaping firms’ product positioning strategies. Despite numerous empirical 
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analyses, most theoretical models focused on the competition among symmetric firms, 

except for entry models. A rigorous theoretical analysis on product positioning of weaker 

firms is still missing.  

This study suggests an operational guide for marketing managers on product 

positioning/resource allocation issues. As such, the insights gained from the paper 

contribute to the theory of marketing strategy of asymmetric firms, especially small firms. 

The study on the marketing strategy of weaker firms is much too important to ignore. Over 

99.9% of employer firms are SMEs, generating over 50% of employment. Furthermore, not 

only do small firms spend almost twice as much of their R&D budget on fundamental 

research as large firms do, but also are roughly thirteen times more innovative per 

employee than large firms. Therefore, our study holds huge benefits, not only for small 

business, but also for the national economic growth and human welfare.  
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Appendices 

Appendix 3-A: A Colonel Blotto game 

Battlefield. Two generals are to capture 2 locations next day. Colonel Blotto has 4 

regiments of troops. The opposing commander, Colonel Lotso, has 3 regiments. If both 

Colonels play strategically, how should they distribute their troops? 

Payoffs. In the field, the army with more troops in the site wins the site. If one 

sends x troops, and the other sends y, and y<x, then the Colonel who sent x wins and gets 

payout of y + 1: the number of y enemies captured, plus 1 point for securing the site. If each 

sent all of their troops to different sites, although both secure the site, but do not defeat the 

enemy, both payoffs are 0.  

Solution: Colonel Blotto has 5 strategies at his disposal: (4, 0), (0, 4), (3, 1), (1, 3), 

and (2, 2). The set (4, 0) means that he sends all his 4 troops to one of the sites. Colonel 

Lotso has 4 strategies at his disposal: (3, 0), (0, 3), (2, 1), and (1, 2). 

 Lotso 

B
lo

tto
 

Payoff (3,0) (0,3) (2,1) (1,2) 

(4,0) (4,-4) (0,0) (2,-2) (1,-1) 

(0,4) (0,0) (4,-4) (1,-1) (2,-2) 

(3,1) (1,-1) (-1,1) (3,-3) (0,0) 

(1,3) (-1,1) (1,-1) (0,0) (3,-3) 

(2,2) (-2,2) (-2,2) (2,-2) (2,-2) 

 
There is a mixed strategy solved for this game:  

Blotto Strategy (4,0) (0,4) (3,1) (1,3) (2,2) 
 Prob 4/9 4/9 0 0 1/9 
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Lotso Strategy (3,0) (0,3) (2,1) (1,2)  
 

Prob 1/18 1/18 4/9 4/9 
 
 

We write out the 5 x 4 matrix for the set of strategies and calculate the payout for 

each battle. The first number is the payoff of Colonel Blotto, and the second is Colonel 

Lotso’s. For example, (1,-1) is the payoff out of the battle of the strategy (4,0) versus (1,2). 

Blotto wins the first site and loses the second, therefore, his payoff is 1 (defeat one 

troop)+1(secure the first site)-1(lose the second site)=1. Lotso loses in the first site but 

wins in the second, so his total payoff is -1(lose one troop)-1(lose the first site) +1(win the 

second site)=-1. Their total payoffs are zero, a zero-sum game.  

Now we provide the proof for the above strategy. Let us denote the strategy for 

Blotto to choose each row as follows:  p, p, q, q, 1-2p-2q; and the strategy for Lotso to 

choose each column as follows:  r, r, ½-r, ½-r. 

Step 1: Payoff function 

Blotto’s payoff of choosing each row is as follows:  

Row 1:   4r + 0 + 2( 1/2 - r)  + ( ½ - r) = 3/2 + r 

Row 2:  the same due to the symmetry in the payoffs 

Row 3:  r – r + 3 (1/2 – r ) + 0 = 3/2 – 3 r 

Row 4:  the same as above 

Row 5:  -4 r + 4 (1/2 – r ) = 2 – 8 r 

Then  Row 1=Row 3  yields   3/2 + r = 3/2 – 3 r, and then further yields r = 0. Row 

1=Row5  yields 3/2 + r = 2 – 8 r, and then further yields  r=1/18.  Therefore,  r =0, or 

r=1/18. 

Lotso’s payoff of choosing each column is as follows:  
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Column 1:   - 4 p + 0 –q + q + 2(1 – 2 p – 2 q )  = 2 – 8 p – 4 q 

Column 2:  the same as above 

Column 3:  - 2 p – p – 3 q – 0 - 2( 1 – 2 p – 2 q ) = - 2 + p + q 

Column 4:  the same as above 

Column 1= Column 3 yields   2 – 8 p – 4 q = - 2 + p + q, and then further yields 9 p + 5 q 

= 4. 

Step 2:  Equilibrium strategy 

We show that r=0 is not possible. Suppose it is the equilibrium strategy of Blotto, 

then it means that Row 5 can’t be in the support of Blotto’s equilibrium strategy. As such, 

the probability of visiting Row 5 is zero, i.e., 1- 2 p – 2 q = 0. Therefore, with the 

knowledge of 9 p + 5 q = 4, derived previously, we derive that p=3/8 and q=1/8. 

We submit the result of p and q back to Lotso’s payoff function and find that his 

payoff is negative. Therefore, r=0 is impossible.  

            Then we derive r = 1/18. It means the probability of visiting Row 3 and 4 is zero, 

i.e., q=0. Therefore, with the knowledge of 9 p + 5 q = 4 derived previously, we derive 

p=4/9.  

Interpretation. When both play their optimal strategy, Blotto can expect a payout 

of 14/9 due to his one extra regiment. Blotto should concentrate his troops to specific sites 

and occasionally split his troops, just to make sure that Lotso cannot steal a location easily. 

Lotso has many mixed strategies. The shown now is the symmetric one. He is in the weak 

position, not able to win against Blotto in the numbers, so he has to spread his troops out 

and hope to secure an undefended location with 1 regiment. Occasionally Lotso will deploy 

all his troops to one site or the other, just so that Blotto cannot win by spreading his troops 
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evenly all the time. 

  

140 

 



 

Appendix 3-B: Proofs 

Proof of Lemma 3-1 

Lemma 3-1. The range of strategy supports of 𝑘𝐴∗ = 𝑘𝐵∗ > 𝑚
4

  .  

Proof.  Suppose not: when 𝑘 ≤ 𝑚
4

 ,𝜎𝑘𝐴 > 0.   

𝑘 ≤ 𝑚
4

    ⟹ 2𝑘 ≤ 𝑚
2

 

⟹ 𝑘 − 1 ≤
𝑚
2
− 𝑘 − 1 

⟹ (𝑘 − 1)𝜎𝑘𝐴 ≤ �
𝑚
2
− 𝑘 − 1� 𝜎𝑘𝐴 = � 𝜎𝑘𝐴 

𝑚
2

𝑖𝑖=𝑘+2
 

⟹ (𝑘 − 1)𝜎𝑘𝐴 ≤� 𝜎𝑗𝐴 
𝑚
2

𝑖𝑖=𝑘+2
 

In Equation (3-3), the mixed strategy for Firm A is   (𝑘 − 1)𝜎𝑘𝐴 = (𝑚− 𝑘)𝜎𝑘+1𝐴 +

∑ 𝜎𝑖𝑖𝐴
𝑚
2
𝑖𝑖=𝑘+2 .   Compare with LHS and RHS of the mixed strategy for Firm A, we know that 

𝜎𝑘𝐴 = 0  for 𝑘 ≤ 𝑚
4

  .  It is contradictory.  

 In the end, from (3-2) and (3-3), we derive that 𝑘𝐵∗ ≤ 𝑘𝐴∗ and 𝑘𝐴∗ ≤ 𝑘𝐵∗, 

therefore, 𝑘𝐴∗ = 𝑘𝐵∗.   

Proof of Proposition 3-3   

Proposition 3-3.  In equilibrium, Firm A is in the reversed u shape and Firm B in the U 

shape. Mathematically, they satisfy 
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• Within the support of Firm A’s strategy,𝜎𝐾+1𝐴 ≥ 𝜎𝐾𝐴 for 𝑘 < 𝑚
2

;  𝜎𝐾+1𝐴 ≤ 𝜎𝐾𝐴 for  𝑘 > 𝑚
2

 .  

• Within the support of Firm B’s strategy,𝜎𝐾+1𝐵 ≤ 𝜎𝐾𝐵 for 𝑘 < 𝑚
2

;  𝜎𝐾+1𝐵 ≥ 𝜎𝐾𝐵 for  𝑘 > 𝑚
2

 .  

Proof.  𝑘 < 𝑚
2

 means that  𝑘 < 𝑚+1
2

, then we derive 𝑘 − 1 < 𝑚 − 𝑘.  

𝑘 − 1 < 𝑚 − 𝑘 

⟹ (𝑘 − 1)𝜎𝑘𝐵 < (𝑚 − 𝑘)𝜎𝑘𝐵. 

From (3-2) in Proposition 2, we know that (𝑘 − 1)𝜎𝑘𝐵 = (𝑚− 𝑘)𝜎𝑘+1𝐵 +

∑ 𝜎𝑖𝑖𝐵  for  𝑘𝐴∗ ≤ 𝑘 < 𝑚
2

𝑛/2
𝑖𝑖=𝑘+2 , then  

 (𝑘 − 1)𝜎𝑘𝐵 < (𝑚− 𝑘)𝜎𝑘𝐵    ⟹ (𝑚 − 𝑘)𝜎𝑘+1𝐵 + ∑ 𝜎𝑖𝑖𝐵  < (𝑚 − 𝑘)𝜎𝑘𝐵
𝑚/2
𝑖𝑖=𝑘+2 .   

For this inequality to be held,  𝜎𝐾+1𝐵 ≤ 𝜎𝐾𝐵  for  𝑘 < 𝑚
2

 .  

The second part in Proposition can be proved in the same way.  

Proof of Lemma 3-3 

Lemma 3-3.  In equilibrium,  𝜆𝐵𝐵
𝜆𝐴𝐴

= 𝜂𝐴𝐴
𝜂𝐵𝐵

 .  

Proof:  Because each firm uses up all the resources, then  E[𝑥𝑥1
𝑗…+𝑥𝑥𝑛

𝑗

𝜂𝑗
]   = 𝐵𝐵.               

⟹    𝐸[𝑥𝑥1𝐴𝐴…+𝑥𝑥𝑛𝐴𝐴}
𝜂𝐴𝐴

 = 𝐸[𝑥𝑥1𝐵𝐵…+𝑥𝑥𝑛𝐵𝐵]
𝜂𝐵𝐵

, 

⟹     
∑ ∫ 𝑥𝑥𝑑∞

0
𝑛
𝑖𝑖=1 𝐹𝑖𝑖

𝐴𝐴(𝑥𝑥)

𝜂𝐴𝐴
 =

∑ ∫ 𝑥𝑥𝑑∞
0

𝑛
𝑖𝑖=1 𝐹𝑖𝑖

𝐵𝐵(𝑥𝑥)]
𝜂𝐵𝐵

.                               (B-1) 

Lemma 2 show that 1
𝑛𝜆𝐵𝐵

𝐹𝑖𝑖𝐴(𝑥) − 𝑥=constant, which means  
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𝑑𝐹𝑖𝑖
−𝑗(𝑥) = 𝑛𝜆𝑗  𝑑𝑥.                                        (B-2) 

Substituting (3-9) to (3-8), we obtain 

∑ ∫ 𝑥∞
0

𝑛
𝑖𝑖=1 𝑛𝜆𝐵 𝑑𝑥

𝜂𝐴
 =

∑ ∫ 𝑥∞
0

𝑛
𝑖𝑖=1 𝑛𝜆𝐴 𝑑𝑥

𝜂𝐵
 

⟹    𝜆𝐵𝐵
𝜂𝐴𝐴

 = 𝜆𝐴𝐴
𝜂𝐵𝐵

  .   

 

Proof of Lemma 3-4 

Lemma 3-4.  In equilibrium,  𝑠𝑖𝑖 = 1
𝑛𝜆𝐵𝐵

.  

Proof:  Lemma 3-2 show that 1
𝑛𝜆𝐵𝐵

𝐹𝑖𝑖𝐴(𝑥) − 𝑥 is constant for x=0 and x=  𝑠𝑖𝑖. 

1
𝑛𝜆𝐵

𝐹𝑖𝑖𝐴(0) − 0 =
1
𝑛𝜆𝐵

𝐹𝑖𝑖𝐴( 𝑠𝑖𝑖) −  𝑠𝑖𝑖 

⟹  𝑠𝑖𝑖 = 1
𝑛𝜆𝐵𝐵

.  

Proof of Lemma 5 

Lemma 3-5.  In equilibrium, 𝜆𝐵 = 1
2𝜂𝐴𝐴𝐵

.  

Proof:  Firm B’s budget constrain can be expressed as  

∑ ∫ 𝑥𝑑
1

𝑛𝜆𝐵𝐵
 

0
𝑛
𝑖𝑖=1 𝐹𝑖𝑖𝐴(𝑥)=𝜂𝐴𝐵𝐵.                          (B-3) 

Equation (B-2) shows that  

𝑑𝐹𝑖𝑖𝐴(𝑥) = 𝑛𝜆𝐵 𝑑𝑥.                                (B-4) 

Substituting (B-4) to (B-3), we obtain  
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∑ ∫ 𝑥
1

𝑛𝜆𝐵𝐵
0

𝑛
𝑖𝑖=1 𝑛𝜆𝐵 𝑑𝑥 = 𝜂𝐴𝐵𝐵.                       (B-5) 

Solving for 𝜆𝐵, we obtain   𝜆𝐵 = 1
2𝜂𝐴𝐴𝐵

.  
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CHAPTER 4: CONCLUSION 

Product positioning is an important strategic marketing decision. Effective product 

positioning ensures that marketing messages and products are affectively communicated to 

target consumers, avoiding purely price competition. This dissertation uses the knowledge of 

product positioning to explain the overlapping phenomenon in the single seller online 

auctions and niche marketing of the weak firms and integrates them together, although two 

essays sit in two totally different markets:  a seller in the online auction, and the 

disadvantaged sellers in a general market.  

In the first essay, overlapping design is just a special way of product positioning 

among many potential repositioning strategies. A seller needs to best position his auctions 

online overtime, deciding whether to set them simultaneously, partial-overlapping, or 

sequentially, taking into account of bidders’ forward- looking, cross-bidding and learning 

behaviors. In online auctions where bidders, not the seller, decide the final prices of the 

products, the level of overlap can be used to influence the final bids. In the second essay, 

disadvantaged firms need to best position their products in the market, deciding whether to 

fight, defend, or flee, taking into account the relative competitive advantage and the 

dimensions of a product.  

Our findings in the two essays show that product positioning decisions of firms can 

convey valuable information on the demand and the competition conditions in the market.   

To this extent, the first essay addresses the optimal overlapping strategy for a 

retailer selling two identical items in an online auction. Five models, from the benchmark 
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one without learning, to the full model with type 1 learning, to the model with entry and 

type 2 learning, are analyzed and we find that:  

1. The optimal overlapping is the trade-off among four factors: forward-looking, 

learning, time discounting, and the varied demand. Forward-looking makes 

bidders see an option to win in the second auction by a potentially lower price as the 

winner of the first auction will leave, resulting in bidding less in the first auction.  

Such bid shading is not present when two auctions run simultaneously, therefore, 

for this consideration the seller prefers full overlap. Time-discounting makes the 

seller favor a shorter duration of auctions, i.e. a greater degree of overlap. Learning 

helps reduce bidders’ uncertainty in valuation, resulting in bidders’ more aggressive 

biddings in both auctions. It causes the final bid in the second auction higher).  

Additionally, forward-looking bidders, who are able to predict this less lucrative 

future chance due to learning, bid more aggressive in the first auction (i.e. it causes 

the final bid in the first action higher.).  The change of overlap impacts on Demand.  

The shorter degree of overlap (i.e. the longer duration) means higher demand and 

thus higher final bid, and more updates when learning happens during the bidding 

process.  

2. Under different conditions, different overlapping strategies shall be adopted. For 

example, the partial overlapping strategy tends to be more profitable than 

simultaneous and sequential selling strategies when (1) bidders’ uncertainty about 

product value is a mid-range, (2) value uncertainty is easy to reduce through 

learning, and (3) the time-discounting effect is not strong.  
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 Those provide a theoretical explanation for the popularity of overlapping auctions in 

the real online auction environment. The essay contributes to the auction theory literature, 

as most current studies have focused on simultaneous or sequential auctions, and only a few 

have considered overlapping auctions.  

In the second essay, we explore the product positioning strategies for the 

asymmetric firms. Two models, one-dimensional and multi-dimensional, are analyzed via 

game-theoretical modeling.  We find that: 

1. A successful competitive strategy needs to consider an attack or defense based 

on the nature of the market and their relative competitive strength. The weaker 

firm chooses to use a niche strategy; however, simply avoiding the clutter of 

mass markets to stay in the niches isn't enough. They need to randomize to 

attack the core markets of the stronger firms when the differences in strength are 

small. This strategy is similar as Guerrilla tactics, and its effectiveness lies in the 

difficulty for the stronger firms to predict the attacks and defence adequately, so 

that the stronger firms have to strengthen their cores and leave the niche markets 

to the weaker firms.  

2. Among the stronger and weaker firms, small/weak firms are more likely the 

sources of most “radical products”. Successful innovation provides the chance 

for smaller firms to better serve their niche markets, but also breaks the trend of 

“an increasing division emerging between the winners and losers”. 

This research provides a theoretical explanation to many observations: the focus and 

differentiation strategies of asymmetric firms under different levels of advantage gaps and the 
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flush of radical innovations of small firms, and also provide an operational guide to 

marketing managers on the product positioning/resource allocation issues. This essay also 

provides a starting point to understand the role of competitive strength in shaping firms’ 

product positioning strategies.   
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