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ABSTRACT

Equivalent conditions for the generic Fréchet differentiability of a given convex
Lipschitz function § defined on a separable Banach space are established. The
conditions are in terms of a majorization of f by a Cl-smooth function, separability

of the boundazy for f or an approximation of f by Fréchet smooth convex functions.

Approximation by smooth convex functions and questions on the Smooth Varia-
tional Principle for a continuous convex function defined on a WCG space are also
studied.

A class of continuous convex functions defined on a Banach space (not necessarily

properties possessed by the norm of an Asplund space.
We also construct a uniformly smooth norm on a separable Banach space X that
contains an isomorphic copy of #; such that this norm, when extended canonically

to X**, is nowhere differentiable at the points of X.

An extension of norms from a closed subspace of a Banach space to the whole
space that preserves various types of rotundity possessed by the subspace norms is
constructed. We also construct a strictly convex norm such that a prescribed set of

points lies on the unit sphere of this norm.
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Introduction

This dissertation is divided into two main parts. The first part, which consists of
chapters one to three, deals with the analysis of convex functions in Banach spaces.
The second part, chapters four and five, is devoted to the study of extensions of

IIOTIS.

One of the important results in classical analysis is Rademacher’s Theorem. which

almost everywhere. In particular, every convex continuous function defined on R”
is differentiable on a dense set. In the case of infinite dimensional spaces, the
scenario is more complex. For instance, the norm Il - Il of I is nowhere Fréchet
differentiable, whereas every continuous convex function on [y (or any separable
reflexive Banach space) is Fréchet differentiable on a dense Gs set, according to
a result of J. Lindenstrauss. In 1968, E. Asplund discovered more general spaces
in which the Fréchet differentiability conclusion holds. This class of spaces, now
called Asplund spaces ( An Asplund space is a Banach space on which every convex
continuous function is Fréchet differentiable on a dense set), received much attention
in the subsequent decades. It was first found by E. Asplund that if a Banach space
has separable dual, then it must be an Asplund space. In fact the converse is also
valid.

In 1975, I. Namioka and R. R. Phelps discovered that the dual of an Asplund space
has the Radon-Nikodym property, i.e. every bounded set admits weak* slices of
arbitrarily small diameter. The converse was proved by C. Stegall in 1978.

J. E. Jayne and C. A. Rogers characterized an Asplund space X as one which on
the duality mapping of X has a selector that is the pointwise limit of a sequence of
norm to norm continuous mappings from X into X*.

In this dissertation, we generalize the above results. We translate the above classi-
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fications of Asplund spaces into classifications of a certain class of convex functions.
We show that this class of functions, which we call Asplund functions, exhibit similar
behavior as Asplund spaces. For instance, when restricted to a separable subspace,
the image of the subdifferential map of an Asplund function is separable. We also
see that subdifferential map of an Asplund function admits a Jayne-Rogers type of
selector.

In Chapter One, we consider convex Lipschitzian functions on a separable Banach
space. We prove some equivalent conditicns for which the image of the subdiffer-
ential map of a Lipschitzian convex function f is separable. One of the equivalent
conditions is that every conves: function majorized by f can be approximated uni-
formly by a Fréchet differentiabie convex function.

In Chapter Two, we study convex functions on a WCG space, which is more general
than a separable space. We see that it is still possible to approximate every convex
function majorized by an Asplund function by smooth functions. We also show the
existence of smooth points of higher order for a convex function on certain uniformly
smooth spaces.

Chapter Three deals with more general spaces. Smooth approximation is no longer
possible in general, however, some other characterizations still hold for Asplund
functions on a general Banach space.

The second part of this dissertation is devoted to the study of extensions of norms
in a Banach space. In Chapter Four, we study the notion of preserved smooth
points. A point z on the sphere is said to be smooth when the norm is Gateaux
differentiable at z. A smooth point is said to be a preserved smooth point if it is
still a smooth point with respect to the canonical extension of the norm into the
second dual. We give a sufficient condition for a space to admit a smooth norm
with rough canonical extension.

In Chapter Five, we study the extensions of norms that preserve rotundity. K. John

2



and V. Zizler had shown that if Y is a closed subspace of a separable Banach space
X and if Y admits a LUR norm, then this LUR norm on Y can be extended to a
LUR norm on X. Recently, it was shown by M. Fabian that if Y is reflexive, and
if the norms of X and Y possess some kind of rotundity, then the norm on V can
be extended to a norm on X with the same rotundity. We give a construction that
does not require the subspace Y to be reflexive. The extension given in this chapter
seems to preserve most notions of rotundity. We conclude the chapter by looking

at some natural geometrical questions regarding rotund norms.



Chapter One
Fréchet differentiability of convex

functions on separable Banach spaces.

Introduction. It is known that on a given separable Banach space .\ all
continuous ¢hnvex functions are generically Fréchet differentiable if and only
if X* is separable, and if and only if X admits a C!-smooth bump function.

In this case, every equivalent norm in X can be uniformly approximated hy

schitz convex {unction defined on a separable Banach space in terms of the
properties of the function f rather than that of X. In this setting, we cover
some continuous convex functions defined on separable non-Asplund spaces.
For instance if || - || denotes the Hilbertian norm on I, and T is a continuous
linear map of a separable Banach space X into [,, then any Lipschitz convex
function f defined on X such that f(z) < ||T(z)||2 for z € X satisfies the
assumptions in Theorem 1.6 below. At the end of this chapter, we show how
the methods from variational principles can be applied to find a sufficient
condition for the w*—lower semicontinuity of convex functions.

Definition 1.1. Let f be a convex continuous function defined on a Banach
space X. We say that f is Gateaux differentiable at a point z € X if for

every h € Sy,

f(z +th) - f(z)
¢

)(h) = lim

exists. The functional is then called the Gateaux derivative of fatze

Tréchet differentiable at x, and the functional is called the Fréchet derivative



of f at . A convex continuous function is said to he generically Fréchet
differentiable if it is Fréchet differentiable on a dense G5 set.
Definition 1.2. Let f be a continuous convex function defined on a Banach

space X, the subdifferential of f at z € X is the set
Of(z) ={z" € X" : e,y — 2) < fly) = f(z) for all y € X}).

We write 0f(X) = Uzex8f(z).

Definition 1.3. Let (Z,7) be a topological space and g be a real valued
function on Z. We say that g is T-lower semicontinuous if g~( —o00,7] is
T-closed for every r € RR.

Definition 1.4. Let f be as above, the Fenchel dual (or conjugate) of f, is

an extended real valued function on X* defined by
f*(z*) = sup{(z*,2) - f(z): z € X}, forz* € X~*.

It is clear that f* is a w*-lower semicontinuous convex function on X*.
Definition 1.5. Given two continuous convex functions f and g defined on

X, the infimal convolution fog of f and g is defined by

fag(z) =inf{f(y) + g(y — ) : y € X}.

A subset B C 9f(X) is called a boundary for f if B intersects Of(z) for
each z € X (see e.g. [G]). By a selector for f we mean a single-valued
mapping s : X — X* such that s(z) € df(x) for every 2 € X. Unless
stated otherwise, all topological terms in dual Banach spaces refer to the
norm topology of these spaces.

We refer to [Ph] and [D-G-Z] for some unexplained notions and results used
in this chapter.

A main result in this chapter is the following statement.



Theorem 1.6. Let X be q separable Banach space and f be a Lipschitz
convez function defined on X. The following are equivalent.

(1) The set 8f(X) is separable.

(2) There is a selector s for Of such that s(X) = {s(z) : x € X} is separable.
(8) There is a continuously Fréchet differentiable function & such that ¢ > f
on X.

(4) f can be approzimated uniformly on X by Fréchet differentiable convez
functions.

(5) If h is a convez function on X such that h < fonX, thenh is generically

Fréchet differentiable on X.

Proof. Clearly (1) == (2). We shall show (2) = (1) using Simons’
lemma ([S]). Put B = s(X) and let v = f{f*(y*) : y* € B}. Clearly,
Y < oo as B is nonempty. We show that C := dom f* C eonvB. If this is
not so, pick y; € C\ convB. By separation theorem, there exist z z € X**
and &, 3 € IR such that 2(y?) > > a > z(y*) for each y* € B. By scaling
the functional z, we may assume that %" > f*(y) —~. For every z € X,

define a function he € Zm(B) by
he(e®) = (2°,2) ~ f*(a*).

Let E={z € X : ||z < ||, z(ys) > B}. Since B is separable, there exists
as quence {z,} in E such that Ty converges to z in the topology of pointwise
convergence on B. Define a sequence h, € [%(C) by hp(z*) = h, . (z*) for
z* € C. Note that for any z = Z Arzk, where A\ > 0 and i Ak =1, we

b=1 k=1

have s(z) € B and
D Mehr(s(2)) = ha(s(z)) = f(z) = sup{(a*,2) — f*(z) : o* € c}

= sup{(z‘,ZAéxk) - f*(z*):z* e C} = sup{Z Arhi(z*) : 2* € CY).
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Since z(y*) < a, we have limsuph,(y*) < a — f*(y*) for all y* ¢ B.
Consequently sup{lim sup hn(y ) 1 y* € B} { o — 7. By Simons’ lemma

there is g € conv{h,}, g = Z prhe, pr > 0, Z pr =1 such that

k=1
* * =y 7 . oy + [ J
sup{g(z*):z* € C} < ,9,5 o
N
On the other hand, g(y}) = Z prhi(yy) = (v2, 3 prz — ) > B -
= -
B=qa

fr(y;) and thus B—f*(y7) < 224, Therefmé;? < Y-

This contradiction shows that (2) implies (1).

(3) => (1) We follow the idea in [F). Let z € X, q € 0f(z) and € > 0 be
given. The function ¢ — g is a bounded below continuous function on X. By
Ekeland’s variational principle, there is a z, such that for each h € X and
t>0,

(¢ = 9)(zq +th) 2 (6 — g)(zq) — €||ht.
Hence,

6'(zq) = all* < .

Therefore 8f(X) C {¢/(z) :z € X}. Since ¢’ is continuous and X is sepa-
rable, the set {¢/(z) : € X} and thus also df(X) are separable.

(1) == (5) By using the above argument for the functions k and f, we see
that 8h(X) C 8(X). Therefore Oh(X) is also separable and the statement
follows immediately from the proof of Theorem 1 in [Pr-Z] (see also [Ph,
Theorem 2.11]).

(5) == (1) Since 8f(X) C domf*, it suffices to show that dom f* is
separable. We split dom f* into w* ~compact sets C, and show that all C,
are norm separable. We put Cp, = {z* € X* : f*(2*) < n}, and note that
domf* = U2, C,.



Assume for some n € IV , the set C, is not norm separable. Since C, is
compact and metrizable in the w*—topology, we find a w*-compact subset
A C Cn and € > 0 such that every w*—slice has diameter greater than e > (
(see the proof of [Ph, Theorem 2.19]). Define h(z) =sup(A,z) — N,z € X.
Then h(z) < sup{(z*,x) —f*(z*) : z* € Cn}, and the function & is nowhere

we obtain a contradiction.

(1) = (4) Let Y = 5pan{df(z) : z € X}. Since Y is norm separable,
there is an equivalent norm ||- || on X such that its dual norm [-]]* on X* is
locally uniformly rotund at points of dom f*. In other words, if y € domf*,
yr € X*, and lim(”y"".2+"y".2 — | ¥552)*2) = 0, then lim ||y — y||* =0 (see
e.g. the proof of [D-G-Z, Prop.IV.5.2)).

Now, define a sequence of functions {ha} on X* by hn(z*) = f*(z* ) +
(h n(y)

malle*|™®. Clearly domhy, = domf*. Note that for any n € N, 1

hngyk) -—hn(y -;yk )) = 0, implies lim ||yz —y||* = 0 . Define gn = fEn‘i”é”'g,
the infimal convolution of f and n?||-||2. Note that the function gn is a convex
continuous function on X for all n and gn* = h,.

Givenn € N,z € X and y € 0gn(z), note that h, is rotund at y with

respect to z in the sense of [A-R], i.e., for every € > 0, there exists § > 0

such that
{v : hn(y +v) — An(y) — (z,v) < 6} C eBx..

Indeed, if this is not so, there exists an ¢ > 0 such that for all k € IV, there

is a v, with |Jug|| > € and

1 1 Uk 1
3y +00) — That) - (2, %) < 1



Since h, = g,*, we have z € Ohq(y), and thus

(7, 5) S ha(y + %) = ha(y)

Putting these two inequalities together, we obtain for every k € IV,

hﬂ(y) + hﬁ(y S},Euf)
D)

, vk
Qhﬂ(y"k ?) < -

From the local uniform convexity of h,, we have lim |lvk]l = 0, a contra-

diction. By [A-R, Proposition 4], g, is Fréchet differentiable at z with the

derivative y. By the proof of Lemma 2.4 in [ MFVZ], one can show that

lim g, = f uniformly on X.

(4) == (3). By (4), there exists a Fréchet differentiable convex function
¥ such that [(z) - f(z)| <
function.

I [t

for every z € X. Then 1 + 1 is the desired

This completes the proof of Theorem 1.6. [J

Note that in Theorem 1.6, the implications (3) =— (1) == (5) are still
valid without requiring f to be Lipschitz. The assumption of separability of
X in the statement of Theorem 1.6 cannot be dropped in general. Indeed,
Haydon constructed a nonseparable space X where all convex continuous
functions are generically Fréchet differentiable and yet no equivalent norm
can be approximated uniformly on bounded sets by Fréchet differentiable
convex functions ( see e.g. [D-G-Z)).

Note also that in Theorem 1.6, it is crucial that the function f be defined

on the open ball by constant functions.
The following statement shows how Ekeland’s variational principle can be

used in questions on w*-lower-continuity of convex functions.



Theorem 1.7. Let X be a Banach space and f be a w*-lower semicontin-
uous Fréchet differentiable function on X*. Then every norm-lower sem:-
conlinuous convez function g on X* such that g < f on X* is w*-lower

semicontinuous on X*.

Proof. We first note that f'(X*) := U{f'(y) : y € X*} ¢ X. Indeed, for
any y € X*, f'(y) is w*-lower semicontinuous on B X+, as it is a uniform
limit of w*-lower semicontinuous functions on B x+. Since f'(y) is linear,
f'(y) is w*-continuous on Byx-. By Banach-Dieudonné Theorem, f' (y) is
w*-continuous on X*. Hence f'(y) € X for any y € X*.

We claim that domg* C X. Indeed, for any h ¢ domg*, we have sup{h(z*)—
g(z*) : * € X*} < co. This implies that f = h is bounded below. As in the
proof of (3) = (1), we can show h € f/(X*). Therefore h € X.

Since g is norm-lower semicontinuous, we have g = g** tx-- However, g** =
(9*)" = (9" tdomg*)* = (9*1x)*. Hence g is a dual to a function defined on

X, therefore g is w*-lower semicontinuous. [J
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Chapter Two

Sets of differentials

and smoothness of convex functions.

Introduction. It is known that a weakly compactly generated (WCG)
Banach space admits an equivalent Fréchet differentiable norm if it admits
a Fréchet differentiable bump function (cf. e.g. [J-Z]). However, there are
nonseparable spaces that admit Fréchet differentiable bump functions but
admit no equivalent Fréchet differentiable norm (cf. e.g. [D-G-Z, Chapter
VII}). If the space X admits an equivalent norm with modulus of smoothness
of power type 2, then every convex continuous function on X has points of
Lipschitz smoothness (cf. e.g. [D-G-Z, Chapter IV]). The purpose of this
chapter is to localize these results. We prove that any convex Lipschitz
function f that is defined on a WCG Banach space X can be uniformly
approximated by Fréchet differentiable convex functions if f is majorized on
X by a Fréchet smooth convex function. ¥, moreover, spanlll{g f(z):z €
X} is a subspace of X* that admits a norm with modulus of rotundity of
power type 2, then there is a convex function ¢ with ¢’ Lipschitz on X such
that ¥ > f on X and ¢(z) = f(z) for some z € X. Thus in particular, f
has points of Lipschitz smoothness.

Definition 2.1. A Banach space X is said to be weakly compactly generated
(WCG) if there exists a weakly compact set W of X that spans a dense linear
subspace in X

Definition 2.2. Let X be a Banach space. We denote by i the smallest
ordinal such that its cardinality |u| = dens(X). A projectional resolution of
. identity (PRI) on X is a collection {P, : wy < o < p} of projections of X

onto X that satisfies, for every a, wy < a < u, the following conditions.

12



() IPe]l = 1.
(i) PaPg = Py ifwp < @ B < pu.

(iii) dens(Pa(X)) < |al.
(iv) U{Ps4+1(X) : B < a} is norm dense in P, (X).

(v) P, = Idx.

It is well known that every WCG space admits a PRI (see e.g. [D-G-Z,

Chapter VI]). A main result of this chapter is the following theorem.

Theorem 2.3. Let f be a convez Lipschitz function defined on ¢ WCG
Banach space X. Then the following are equivalent.

(1) The function f can be uniformly approzimated on X by a Fréchet dif-
ferentiable convez function.

(2) There ezists a Fréchet differentiable convex function ¢ defined on X such

that ¢ > f on X.

Proof. Clearly (1) =% (2). The proof (2) = (1) is divided into a few

steps.

Proposition 2.4. Let X be ¢ WCG Banach space, ¢ be a Fréchet differ-
entiable convez function defined on X and let Y := span'l{$'(z): z € X}.
Then there ezists a projectional resolution of identity (PRI) {Py:wo < a <
u} on X such that

(1) Py =1, ||P:|| =1 for all .

(i3) PoPg = P3Py = P%in(@,ﬁ)*
(1) PyY C Y for all a.

(v) dens(PLY) < |a| for all o < M.

(v) P5Y =3panll s, Ps. Y for all & < p.

Proof. Using standard techniques for constructing projectional resclutions

of identity (see e.g. [D-Z-G, Chapter VI]), we only need to show PY cY

13



and PJY = spanll Upca ? Pg .Y for all o. The proof of this js contained in

Lemmas 2.5 to 2.7.

Lemma 2.5. In the notation as above, we can construct a PR] {Py:wp <

a < u} so that F39'(y) = &'(y) for all yePX.
Proof. See Lemma 5 in [J-Z]. O

Lemma 2.6. With the notation as above, PIY = spanil{¢'(z) : «
P, X}.

Proof. To see P*Y > Eﬁ"'"{qﬁ’(z) 2z € Po X}, welet z € FP,X, and
show that ¢'(z) € P!Y. Since ¢ is C'-smooth, given ¢ > 0, there exists
an zg € Fpy1 X for some B < a, such that l6'(z) — &' (zp)|| < e By
Lemma 2.5, ¢/(z4) = Pg119'(zp). Therefore ¢’ (zg) € P \Y CPYY. As
PRY is closed, ¢'(z) € P3Y. For the converse inclusion, we follow the
idea in [F]. Let ¢'(z) € Y. Clearly g(-) = ¢(-) — #'(z)(-) is a continuous
bounded below function on X. Hence its restriction g;p, x is also continuous
and bounded below. By Ekeland’s variational principle, given € > 0, there
exists £, € PoX such that for every w € Bp,x, t > 0, we have 9(zq +
tw) > g(z4) — et, thus, #'(z)(w) < (¢(za +tw) ~ ¢(z4))/t + €. Hence, by
taking limits, we have ¢'(z)(w) — ¢ (za)(w) < €. Therefore sup{|¢'(z)(v) —

' (za)(v)| : v € Bp,x} < e. Given any h € Bx, we have (h, Pré'(z) —
#(2a)) = (b, Pi¢(z) ~ P2¢(2a)) = (Pah, #(z) ~ #(sa)) < ¢. Therefore
IPad'(z) — ¢'(zq)]|| < e Finally, since Y is the closed linear span of the

derivatives of ¢ and P, is bounded, the assertion follows, O
Lemma 2.7, PlY = spanl Uﬂ{n E+1Y for every a < .

Proof. Clearly P*Y - spanll Up<a P341Y. The converse inclusion follows

from Lemma 2.6 and the continuity of ¢/, [

14



Proof of Theorem 2.8. Since f < ¢. using Ekeland’s variational principle
as in Lemma 2.6 we show that dom f* C Y. Using Proposition 2.4, and
the classical Troyanski-Zizler construction (see e.g. [D-G-Z, Chapter VII])
we obtain a dual norm || - ||* in X* such that its restriction on Y is locally
uniformly rotund (LUR). Define a sequence of functions {h,} on X* hy
ha(z*) = f*(z*) + tLsllz*[*%. Clearly, dom h, =dom f*. Define g, :=
fan|| - |2, where 0 denotes the infimal convolutior. Note that g, is convex
and continuous on X and g* = h, for all n. Given n € N, r € X and
Yy € 9gn(z), note that h, is rotund at Y with respect to z in the sense of
[A-R], i.e., for every € > 0, there exist § > 0 such that {v : hp(y + v) —
ha(y) — (z,v) < 8} C eBx. (cf. Chapter 1). By [A-R, Proposition 4], gn
is Fréchet differentiable at z with the derivative Y. One can also show that

limg, = f uniformly on X (see e.g. [M-P-V-Z, Lemma 2.4)). O

Since the function f can be quite "flat” in Theorem 2.3, there is a difficulty
in applying the techniques of Smooth Variational Principles (ef. [D-G-Z,
Chapter I]) in this situation. However, under more restrictive assumptions
we can use the Stegall-Fabian variational principle and obtain our variational
result by duality. We will say that z € X is a point of Lipschitz smoothness
of a convex function f if f(z + R) + f(z — h) - 2f(z) = O(J|A)|?). Given a
bounded set 4 C X*, the indicator function 84(-) is a convex function on

X* that takes value zero in A and oo elsewhere.

Lemma 2.8. Let f be a convez continuous function on a Banach Space X
and g be its dual function, Suppose there ezists a constant C such that for

any z € X, y € 8f(z), and for any € > 0, we have

{v:9(y+v) ~ g(y) = (z,v) < Ce’} C eBx..
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Then f is Fréchet differentiable and f' is Lipschitz on X.

Proof. By taking polars, we have € 'Bx C {v:gy+v)— 9(y) — (z,v) <
Ce?}°. According to Proposition 3 of [A-R], {v:9(y +v) - g(y) - (a, v) <
CeY Cc C~le2u: f(z + u) — f(z) — (y,u) < Ce?}. Therefore, eCBx C
{u: flz+u) = f(z) - (v,u) < Ce?},ie. forany u € €CBx, f(z+u) + f(z —
u) — 2f(z) < %(eC)?. Thus f' exists at z and we have that f’ is Lipschitz

on X (cf. e.g. [D-G-Z, Lemma, V.3.5]). O

Theorem 2.9. Let f be Lipschitz convez function on a Banach space X
and ' Y = 'sW"'"{@f(x) : 2 € X}. Suppose that Y admits an equivalent
norm with modulus of convezity of power type 2. Then f can be majorized
by a convez function i that has Lipschitz derivative and Y(z) = f(z) for

some x € X. In particular, f has points of Lipschitz smoothness.

Proof. Let || - || be an equivalent norm on X* such that its restriction on ¥
has modulus of convexity of power type 2 (cf. e.g. [D-G-Z, Lemma I1.8.1}).
We note that YV is w*-closed. Indeed, since Y is reflexive, By is compact
in the weak topology of X* and thus By is w*-compact in X*. By the
Banach-Dieudonné theorem, Y is w*-closed. Assume that f(0) = 0, and
thus we have f* > 0 on X*. Let

h(z) = { gzl - im2ifz ey

oo otherwise,
where m = Lip(f). Since Y is w*-closed, h is w*-lower semicontinuous and
h = (hix)*. We show that h satisfies the condition on the function g given
in Lemma 2.8 Indeed, by the modulus of rotundity of || - ||, there exists

L > 0 such that for any Y1,¥2 €Y, we have
1 v+
5 Ul + llyall®} = 122212 > Ljjy, — g2 (*)

(cf. e.g. [B, Lemma 5.1.4]). Assume that for every k € IN there exist ez > 0,

Tk € X, yr € Oh}x(zi) and vg € X*, llve]l > ek, such that R{yx~+vr)—h(yx)—
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vi(zr) < rer?. Then 1yx +ve]2 - 3Ilvel® = (2. vx) < Lex? for all k. From

the definition of a subdifferential, we have —(zr,vr) > ||lyx]|2 — lyr + 2=,

2 i12 . .
Therefore, 12l Hlvetoel® g o %1° < $ex? < Lllwi]?, which contradicts

(*). Now, for each z* € dom f* C mByx-., we have h(z*) < 0 < f*(z*).
Therefore f* — h is a lower semicontinuous convex function on dom f* that
is bounded below. Note that f* —h > ||-|| —m. By the Stegall-Fabian result
(cf. e.g. [Ph, Corollary 5.22]), there exists # € ¥* such that f* — h — &
attains its minimum in dom f*, i.e. there is a z* € dom f* such that
fH(z*) —h(z*) —2(z*) = « < f*(y*) - h(y*) ~ &(y*) for all y* € dom f*.
Therefore we have h(-)+2(-)+a < f*(-) on dom f* and the equality holds at
z*. Since Y is reflexive, there exists z € X such that y*(z) = Z(y*) for each
y* €Y. Let k: X* — IR be a function defined by k(-) = A(-)+z(-)+a. Then
k is a convex function such that k < f* and k(z*) = f*(z*). Put I = kry.
The function [ is continuous and convex on Y. Let § € dl(z*) C Y*. As
Y is reflexive, there exists y € X such that §(y*) = y*(y) for each y* € Y.
We claim that y € Ok(z*). Indeed, let z* € X*. If z* € Y, y(z* —z%) =
§(2* —z*) S k(z*) ~ k(z*). If z* ¢ Y, then y(z* — 2*) < k(z*) - k(z*) =
oo. Hence y € 0k(z*). Since k(z*) = f*(z*), we have y € 8f*(z*). Thus
B*(y) + k(z*) = (2*,y) = f*(c") + f(3). Therefore f(y) = k*(y). Since
f* =2 k, we have k* > f. Put ¢ = kfx. The function ¢ has Lipschitz
derivative and is our required function. Indeed, k* = (h(-) + z(-) + a)* =
(b +2)* —a = h*(-)0é:(-) — a = h*(- — ) — a (where §, is the indicator
function of the singleton {z}) and A* has the desired differentiability by
Lemma 2.8. Finally, since f(y) = k*(y) = ¥(y) and f < ¢ on X, we have
Fy+v)+ fly —v) = 2f(y) < Py +v)+ ¥y —v) - 2¢(y) < C|[v]j?, for some
constant C. Therefore the function f is Fréchet differentiable at y and f'is

Lipschitz at y. O
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Similarly, using Troyanski’s result that reflexive spaces admit equivalent
LUR norms (see e.g. [D-G-Z, Chapter VII]), we can show the following

result.

Corollary 2.10. Let f be a Lipschitz convez function on @ Banach space X
and Y = s—pTz?z’“’”{af(.r) 1z € X}, IfY is reflezive, then f can be majorized
on X by a convez function ¢ that is Fréchet differentiable and 3(z) = f(x)

for some r € X.

Under the assumptions in Theorem 2.9, techniques in Theorem 2.3 may be

applied to obtain approximation by functions with Lipschitz derivatives.

Theorem 2.11. Let X,Y and f be as in Theorem 2.9. Then f can be
uniformly approzimated on X by convez functions that have Lipschitz deriv-

ative.

Proof. As in the proof of Theorem 2.9, let || - || be an equivalent norm of X*
such that its restriction on Y is LUR. Let h = 21112 and g := A+ f* on X*.
The function g is w*-lower semicontinuous on X*. Let k be a convex function
on X such that &* = g. We claim that there exists a constant C such that for
any € >0,z € X and y € 0k(z), we have {v : 9(v+y)—g(y)—(z,v) < Ce?} C
€Bx-. Since g(u) = co whenever u ¢ Y, we only need to consider points in

Y. Let v € Y, then 2ultgluds) _ 5 2utvy 5 hu)thiyty) _ h(2E2) for any

y € Y. Using (*), we have 2(—")+—’2’(ﬂﬂ — g(32) > L||v]|? for any v € Y and
for any y € Y. Following the same idea as in the proof of Theorem 2.7, we
complete the proof of the claim. By Lemma 2.8, k is Fréchet differentiable
and %’ is Lipschitz. For each n € IV define gn = f*+ 2—71;;h and k, such that
ky = g. By the above argument, the function ky is Fréchet differentiable
and k;, is Lipschitz for each n € IN. By [M-P-V-Z, Lemma 2.1}, limg,, = f

uniformly on X. O

18



References

[A-R} Asplund, E, and Rockafellar, R. T., Gradients of convez functions,

Trans. Amer. Math. Soc. 139 (1969), 443-467.

[B] Beauzamy, B., Introduction to Banach spaces and their geometry, North

Holland Math. Studies 68 (1985).

[D-G-Z] Deville, R., Godefroy, G. and Zizler. V . Smoothness and renorm-

ings in Banach spaces, Pitman Monograph and Survey in Pure and Applied

Mathematics 64 (1993).

[F] Fabian, M., On Projectional resolution of identity on the duals of certain

Banach spaces, Bull. Austral. Math Soc. 35 (1987), 363-371.

[J-Z] John, K. and Zizler, V. Smoothness and its equivalents in weakly com-

pactly generated Banach spaces, J. Funct. Anal. 15 (1974), 161-166.

[L-T1] Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces Vol. T,

Springer -Verlag, Ergebnisse der Mathematik und ihrer Grenzgebiete 92.

[L-T2] Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces Vol. II ,

Springer -Verlag, Ergebnisse der Mathematik und ihrer Grenzgebiete 97,

[M-P-V-Z] McLaughlin, D., Poliquin, R. A., Vanderwerff, J. D. and Zizler, V.

E., Second order Géteauz differentiable bump functions and approzimations
P, Pp

in Banach spaces, Can. J. Math 45 (1993), 612-625.

[Ph] Phelps, R. R., Convez Functions, Monotone Operators and Differentia-

bility, Lect. Notes in Math., Springer-Verlag 1364(1993) (Second Edition).

19



Chapter Three
Asplund Functions

Introduction. It is known that a Banach space X is an Asplund space if
only if its dual X* has the RNP, and if and only if every separable subspace
the existence of a Jayne-Rogers selector for the duality map of a norm on X.
As in the preceding two chapters, we study an analogue of these equivalent
conditions in the sense of subdifferentials in a certain class of functions which
may be defined on a non-Asplund space.

We recall that given a bounded set 4 C X*, the indicator function §4( -} of
A is a convex function that takes value zero in 4 and oo elsewhere. The
function d4(-) is w*-lower semicontinuous if and only if A is w*-closed.
Definition 3.1. Let X be a Banach space and A be a convex subset of X.

A slice of A is a set of the form
S5(A,z*,0) ={z € A: z*(z) > supz*(A) — a},
for some z* € X* and o € R.
Definition 3.2. Let X and A be as above, we say that A is dentable if

given any € > 0, there is a slice of A of diameter less than e. We say that A

of X*. A w*-slice of A is a set of the form
S(4,2*,0) = {z € A:2"(z) > supz*(4) — a},

for some z* € X and a € IR. We say that A is w*-dentable if A admits
arbitrarily small w*-slice, and we say that A is subset w*-dentable if every

closed bounded subset of A is w*-dentable.
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Definition 3.4. Let Z be a topological space and p a metric on Z that is
not necessarily related to the topology of Z. For ¢ > 0, the space Z is said
to be fragmented down to € when each non-empty subset of Z contains a
non-emptiy open subset of p-diameter less than e. The space Z 1s said to be
fragmentable if it is fragmented down to e for each ¢ > 0. The space Z is
said to be o-fragmentable if, for each € > 0, Z can be written as a countable
union of sets {Z;} with each Z; fragmented down to e.

Definition 3.5. A Banach space X is called an Asplund space if every
continuous convex function on X is generically Fréchet differentiable.

It is well known that a Banach space X is an Asplund space if and only if
X* is w*-subset dentable, and equivalently, the topological space (Bx+,w*)
is fragmentable by the dual norm (cf. [D-G-Zj).

The main result in this chapter is the following:

Theorem 3.6. Let f be a continuous convez function defined on a Banach
space X. The following are equivalent.

(1) If h is a continuous convez function on X such that h < fonX, thenh
is generically Fréchet differentiable on X.

(2) For each positive integer n, the set Cy := {z* € X* f*(z*) < n}is
subset w*-dentable.

(8) For each separable subspace Y of X, the set Afiy (Y) is separable.

(4) For each Baire space Y and each minimal upper semi-continuous set-
valued map ® on Y, taking non-empty compact values in (B_jfTX?)?"!",w*)
(usco), there is a dense Gg-subset D of Y such that & is single valued at
each point of D and ®, when regarded as a map fromY to é—ﬁfﬁi)llgll with
the norm topology, is upper semi-continuous as each point of D.

i fragmentable by the norm,

(5) Bvery w*-compact subset of df(X)
If moreover, f is a Lipschitz function, then the above conditions are also
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equivalent to:

(6) For each separable subspace Y of X, there is a selector s for Ofy such
that s(Y) = {s(y) : y € Y} is separable.

Proof. (1) == (2). Indeed, for otherwise, there exists a bounded w*-closed
subset A of C,, that is not dentable. The function ((64( -)+n)*)1x is nowhere
differentiable and is less than f.

(2) == (8). Let Y be a separable subspace of X. Let R : X* — V*
be the restriction map. The map R is w* to w* continuous, and by the
Hahn-Banach theorem, we have RAf(y) = 8fy(y), for all y € Y . For each

positive integer n, we define the sets CY and H, as follows:
Cy ={y*" €Y": fiy(y*) <n}, and
H, =dfiy(Y)nCY.
We note that

Hy = |J@fiv(¥)nCY) = 05w (v) n (| €¥)

1 n=1 n=l1

s

n

We claim that for each n, H, C R(C,). Indeed, let y* € H,. Then y* €
Afty(y) for some y € Y. Let §* € 0f(y) such that R(§*) = y*. We have
@) = @)~ F®) = (4", 8)~ fry(¥) = Fiy (4") < n. Therefore §* € C.
Hence y* = R(§*) € R(C,,).

From the claim and the observation above we have 8fy(Y) € U2, R(Ch).
Suppose dfy(Y') is not separable, then there exists an integer N such that
R(CN) is not separable. Therefore there exist ¥ € IV such that R(Cny N
kBx-) is not separable. For simplicity, denote Cy = Cy N kBxe-.

Note that R(C}y) is a w*-compact subset of Y*. By employing the technique

in [Ph, 2.19], we obtain a w*-compact set A ¢ R(C}) and e > 0 such that

22



any non-empty w*-open subset of A contains two distinct points z* and y*
such that ||z* — y*|| > e.

Now we follow the arguments in [Ph, 5.4], let A; C C) be a minimal w*-
compact set such that R(A;) = A. fU is a non-empty relatively w*-open
subset of Ay, then A; \ U is compact and 4, = R(A; \ U) is a proper
compact subset of A (since A, is minimal). Thus A \ Az is a non-empty
w*-open subset of A and it contains two distinct points with distance at
least € apart. Therefore there exist z* and y* in U such that ||z* — y*|| > e,
contradicting the assumption that Cy is subset w*-dentable.

(3) => (1). According to [Pr-Z|, fy is generically differentiable for each
separable subspace Y C X. By the separable reduction theorem in [Pr], f
is generically differentiable.

(2) = (4). We first recall that 8f(X) C domf* C EfTﬁ"!", We also note
that domf* = Upn k Cnok. where Cp 1 = kBx. N Cp. Foreachnandk ¢
IN, the set Cp i is w*-compact and subset w*-dentable, and thus a w*-
compact norm fragmentable subset. Therefore éfg(}ﬁ"!“ is the closure of a
countable union of compact norm fragmentable subsets, hence Eﬁjf_)"" is
o-fragmentable by the norm (cf. [J-N-R, Lemma 2.3]). By [J-N-R, Theorem
3.2], given any uscomap & : Y — 287 (X" from a Baire space Y, there is a
dense Gs-subset D of Y that satisfies our requirements.

(4) = (1). Let h be a convex function bounded above by f. Theﬁ the
subdifferentiable map Ok is a usco map on X, taking set values in Oh(X) C
WX)"‘". Let & be a minimal usco map such that ® C O8h. Then by
assumption, ¢ (and also dh) has a selector which is single valued and norm
to norm continuous on a dense G4 set D of X. Therefore h is Fréchet

differentiable on D (cf. eg. [Ph, 2.8]).

(4) => (5). This follows from (b) = (d) of [J-N-R, Theorem 3.1].
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(8) = (4). Asin the procfof (2) = (4),3 f(X) "'is the closure of a count-
able union of compact subsets Cy, ;. By the hypothesis, Cp, ;. is fragmentable
by the norm for each n and k. Again by [J-N-R, Lemma 2.3], %"'" is
c-fragmentable by the norm and (4) follows from [J-N-R, Theorem 3.2].

Finally, suppose f is a Lipschitz convex function, then (3) <= (6) follows

from Theorem 1.6. OO

Definition 3.7. Let f be a convex function on a Banach space X, we say

Remarks.

1. Note that suppose the Asplund function f is a norm on a Banach space
X, then Bx+(=Cy =domf* = Egﬁﬁ"'") is fragmentable by the dual norm,
as Bx. is w*-compact. Consequently, X is an Asplund space (cf. eg. [D-G-
is separable. Therefore, the above theorem yields a notion that is more
general than that of Asplund spaces, it also summarizes several important
developments in the theory of Asplund spaces.

2. We note that a convex function f is Lipschitzian if and only if 3f(X) (and

the techniques in the proof of Theorem 1.6 (2) = ( 1) cannot be used to
show (6) == (3).

The following proposition is immediate.

Proposition 3.8. Every continuous convez function defined on an Asplund

space is an Asplund function.
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Chapter Four

Preserved Smoothness
Introduction. Let X be a Banach space equipped with a norm || - ||. We
say that || - || is Gateaux differentiable at z if for every h € Sx(|| - ),

i 2 + 23]~ [
t—0 t

(*)

exists. We say that the norm ||- || is Gateaux differentiable if Il 1| is Gateaux
differentiable at all z € Sx(|| - ||). Suppose the limit in (*) exists uniformly
inz € Sx(||-||) for every h € Sx(||||), we say that i -]] is uniformly Gateaux
differentiable (UG for short). A point z € S x (]| - |I) is said to be a smooth
point if the norm || - || is Gateaux differentiable at z. A smooth point z
is said to be a preserved smooth point if the bidual norm is also Gateaux
differentiable at z. The norm || - || is said to be octahedral if there exists a
u € X** \ {0} such that ||z + u|| = ||z|| + ||u|| for all z € X.

B. V. Godun [Gol] has shown that a separable Banach space is reflexive if
and only if each smooth point is preserved in each equivalent norm. On the
other hand, the dual version of the above result has also been obtained in
another paper of B. V. Godun (cf., [Go2]), which says that a Banach space is
reflexive if and only if for each equivalent norm the extreme points of the unit
ball are preserved. P. Morris [Mo] has shown that a separable Banach space
has a subspace isomorphic to ¢ if and only it admits an equivalent strictly
convex norm in which no element on the sphere is a preserved extreme point.
Some other related results on extreme points are also contained in [Mal].

It is clear that if a Gateaux differentiable norm Il - || is octahedral, then
every point on the sphere Sx(|| - J|) is not a preserved smooth point. It is
unknown whether a separable space that contains l1 necessarily admits a
Gateaux differentiable octahedral norm. However, in this chapter, we show

the following:
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Theorem 4.1. Let X be a separable Banach space containing an 1somorphic
copy of l;. Then X admits a uniformly Gadteauz differentiable LUR norm

such that its bidual norm is nowhere Gateauz differentiable at points of X.

At the end of the chapter, we show by using elementary methods (without
using octahedrality of norms) that /; has also such a property. We refer
the readers to [D-G-Z] for some unexplained notions and results used in this
note. We also refer to [G] for more related results.

Proof of Theorem /.1. Since X contains l1, it admits an octahedral norm
-1l (cf. [G]). Let {zn} be a countable dense set of Sx(|l - I)- Define an
equivalent dual norm | - | on X* by |f| = (A% + p2(F))27?, where p(f) =
2, %}i)l/g. The norm |- | is w*~lower semicontinuous and weak*
uniformly rotund (W*UR). Therefore its predual is uniformly Gateaux dif-
ferentiable (cf. [D-G-Z, I1.6.7)).

Let z € Sx(|-]), f=|-|(z) € Sx+(|-1). By octahedrality of || - || there exists
au € X** such that u has no point of continuity on (|| fl|Bx- (]| - ||), w*) (cf.
[D-G-Z, 1I1.2.4]). Therefore, there exists a sequence {f,} C ||fllBx-(] - ||)
such that f, — f in the w*-topology but u(fa) does not converge to u( £
We note that |fn| — | f]. Indeed, since p is w*-continuous, p(f,) —» p( )
furthermore || fal| — ||f|| as [l - |l is w*—~lower semicontinuous. Hence,
according to the Smulyan’s lemma (cf. [D-G-Z, 1.1.4]), the dual norm of |«
is not Géateaux differentiable at z.

Finally, let |- |; be an equivalent locally uniformly rotund (LUR), uniformly
Gateaux differentiable norm on X. The norm -l =1[l-13+]-1%?% is LUR and
uniformly Géteaux differentiable on X but its bidual is not differentiable at
points of X, O

Example 4.2. Using a different method, we show that /; admits a uni-
formly Géteaux differentiable norm such that its bidual norm is nowhere
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differentiable at points of ;
Proof. We show that the norm in [Ph, p.86] is a required norm. Define
-1 on leo by flyl = (lyliZ + p(y)?)1/? where p(y) = (5 %)3. The norm
| -l is W*UR, thus its predual is uniformly Géteaux differentiable. Let
z€Sp(l|-)and y = || - I'(z) € St (|l - ). We shall construct a sequence
y* such that |ly*|| — |ly||, ¥*(z) — y(z), but y* does not converge to y
weakly. We may write y = (y1, ys, Y3, ...) and consider two cases:
Case I If y, — 0.
Then there exists an integer N such that lyn| < 7 for all n > N. We define
yFfork> N :

[ Y ifn>k
Un = { Yn otherwise,
We note the following:
(1) %, 2) = (v,2) = 22 2nlyn - 7) — (v,2) =1 as k — oo.
(2) PP(4*) = P2(v) ~ T2 (B52L) — p2(y) as k — oo,
3) 1y lloo = llyllco as 1 = ||y|l < 2/ly]lco-
(2) and (3) imply that [ly*|| — ly||.
However, y* does not converge weakly to y, since any convex combination
of {y*} has distance at least 1 from y. Therefore by the Smulyan’s lemma,
Il - I| is not differentiable in I3* at z.
Case II If y, does not converge to zero.

Then there exists ¢ > 0 and a subsequence {ynr} such that |y, .| > 2¢ for
all k. Define y™ as follows:

Yn = Yn otherwise,

m {o ifn >k

As in case I, |ly™| — lyll as m —s oo, but y™ does not coverge to y
weakly.(
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Chapter Five

Extensions and Geometry of Rotund Spheres

Introduction. It is shown in [J-Z;] (see also [D-G-Z, I1.8] and [J-Z,] for
a more general result) that if ¥ is a closed subspace of a separable Banach
space X and if ¥ admits a LUR norm, then this LUR norm on ¥ can be
extended to a LUR norm on X. In [F], it is shown that if ¥ is reflexive, and
if the norms of X and Y possess some kind of rotundity, then the normon Y
can be extended to a norm on X with the same rotundity. It is also shown
in [F] that Fabidn’s extension preserves moduli of convexity of power type.
In section one of this chapter, we give an extension which does not require
the subspace Y to be reflexive. Our construction, although unnatural at
. first sight, turns out to be very useful in various situations. We also show
that our method of extension preserves convexity of power type. However,
the modulus of convexity of this extended norm may be of larger order as
compared to the original moduli.

Section Two of this chapter is devoted to a natural question: given an ar-
bitrary set G in a Banach space X that admits a strictly convex norm, can
we construct a strictly convex norm which unit sphere contains the set G?
A partial solution is given in this section.

Let (X, || - |l) be a real Banach space. We say that || - || is strictly convez
(R) if = y whenever z,y € Sx(|| - ||) and X4 ¢ Sx()| - ). The norm
i - Il is called locally uniformly rotund (LUR) if zn,z € X and if Hizall2 +
zllzl® — | &2 — 0, then [|zn — z|| —> 0. The norm |- | is uniformly
rotund (UR) if given bounded sequences {z,,}, {yn} C X and if Hlzall® +

Hlyall? = | Zat¥n |2 —; 0, then ||z, — Ynl| — 0; if 2, — yn — 0 weakly
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(WUR). The norm || - || is said to be uniformly rotund in every direction
(URED) if given bounded sequences {zn}{yn} C X such that z, —y, €
spanz, for some = € X, and if ||z, )12 + L{lynll> — || 22t )2 — 0, then
lzn ~ ynll = 0. The norm || - || is said to have the Kadeé-Klee property
(KKP) if given z,z, € X such that ||z,| — ||z|| and z,, — weakly,

then ||lzn — z|| — 0. The modulus of convexity of a norm |- 1| is defined as:

. I +1 i
Spn(e) =inf{l — [[Z=Z|| t lzfl = Iyl =1, Iz - y|| > e}.

2

The norm || - || is said to have modulus of convexity of power type r if
d).1(€) = KeT, for some constant K > 0 and for all small € > 0. It is known
that a norm || - || has modulus of convexity of power type r if and ond if

shell™+ Hiyll™ = 125 > L)z - y)|7( of. [B, V.3.2]). This inequality turns

5.1.3.
A set {za; fa}aer C X x X* is a bounded biorthogonal system if fo(zp) =

dap and sup,cr [|za ||| fall < co. A set of functionals {go} C X* is said to

Section One : Extension of Rotund Norms.
A main result of this section is the following theorem.

Theorem 5.1.1. Let Y be a closed subspace of a Banach space X. Suppose
X and Y both admit UR (LUR, WUR, URED, R or KKP) norms say || - |
and |- |y respectively, then |- |y can be eztended to a UR (respectively LUR,
WUR, URED, R or KKP) norm on X.

We recall a useful fact (cf. [D-G-Z, 11.2.3)):
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Lemma 5.1.2. Ifp is positive convez function on a bounded conves set
CCXandz, yeC, then (1) = (2) = (3), where

(1) 3P*() + 3P°(y) — PP(5£2) < ¢, for some ¢ > 0.

(2) Ip(e) = p(v)| < K1v/E and [p(Z5L) — p(z)| < Kav/e, for some constants
K; and K,.

(3) 1p%(z) + 102 (y) — PA(5F2) < K /e, for some constant L.

Proof. To see that (1) = (2), we note that p( Yy < p(z)\;p“—‘—). Therefore
we have
p()—p(y). 1, 1, 2, LTy
(=== < 3P (0) + 2P (¥) —p*(—=)

4

<e.

Proof of Theorem 5.1.1. First we prove the theorem for the case when -l
and | - |y are both UR, the proofs for the cases of LUR, WUR and R are
similar. Let |- | be any extension of [- ly. Without loss of any generality, we

may assume that || - || < 71—,2] - |. Define a function p(-) on Bx([-|) by
P'(z) = |af* + g() + dist(z, Y)?,

Where ¢(z) = dist(z,Y)2e/*1*. We note that g(z) is a convex function on
Bx (]| - ). To see this, we compute the Hessian of the function f(z,y) =
y2e”, where (z,y) € IR? and observe that the Hessian is positive definite
on (0, -\—}5) x (0, 715), we leave the details to the readers. Therefore pisa
convex symmetric function. Define B = {z € X : p(z) < 1}. The set B is
bounded as p(-) > |-|. On the other hand, p?(z) < (2 +e)|z|2 for all z € B.
Therefore B is an equivalent ball on X. Let Il - If denote the corresponding
norm defined by B.

To see that ||-[| is UR, let 24,3, € Sx(||]|) such that ]l]h'—;'—‘—"m — 1. Therefore

32



we have 3p%(zn) + 1p%(yn) — p*(%2f¥n) —3 0. Then by convexity, we have

+yﬂ

1 2 1 x
3lzal® + + 3 yn[? — |22

ﬂ+yﬂ

—5=* =0, (1.1)

.;,q(-tﬂ) + 3 'J(yn) - q(- ) =0, and (1.2)

= dist(za, Y)? + = dist(yn, V)? — dzst(;ﬁ T vy g (1.3)

Applying Lemma 5.1.2 to (1.3) we have the following:

lim(dist(z,,Y) — dist(y,,Y)) = 0, and (1.4)

lim(dist(“ Y% ¥) — dist(zn, V) = 0. (1.5)

Assume that ||z, ~ y,|| does not converge to zero, then there exists a sub-
sequence of {z, — y,} which we label again as {zn = yn} that is bounded

from zero, i.e., there exists an € > 0 such that

lzn = ynll > € for each n € IV, (1.6)

Now we consider two cases:
Case I: Suppose limdist(zn,Y) = 0. Then by (1.4), there exists two se-
quences {z;.}, {yn} C ¥ such that |z, — 2o, lyn —yn| — 0. Since {z,} and

{yn} are bounded, we have

1,2 1, z +yh .
sleal® + 5lynf? - |2 dnp2

by the uniform rotundity of | - | on Y, we have |z! — y'| — 0 and thus
{Zn — yn| — 0, contradicting (1.6).

Case II: Suppose lim dist(z,, Y) =d > 0. Then there exists a subsequence
{zni} of {z,} such that lim dist(znk,Y) = d, by relabeling the sequence, we
may assume that limdist(z,,Y) = d

Then by (1.2),
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IHI\
o

hm djSt(Iﬁ: )2 ”Iﬂ" + dlst(y Y)g "yﬂ" — dl t(l‘ﬂjyﬂ Y)g "MHE _

which implies

ljm(ggllzﬁ ¥ 4 %E”y“ I _ pll=afea )=0. (1.7)
Hence,
) T + Yn s
> % TGl + Shval* 22Vl o e o 1

Consequently, we have
L.l . 1 5 Zn + n o
lim(5 llzall? + 5 flyall? ~ 122222 )12) = o. (1.9)

The rotundity of || - || together with (1.9) imply that ||z, — yu|| — 0,

contradicting (1.6). Hence proved.

For the case of URED norms, we use the same extension as above. To see

that || - || is URED, let @n,yn,z € Sx(| - ) such that 2= + Zn

Il = 1 and
Tn = Yn = Anz for some A, € IR for each n € IV.

Assume that [A;| = ||z — yn|| does not converge to zero, then there exists a
subsequence of {z, —y,} which we label again as {z, — y, } that is bounded

from zero, i.e., there exists an € > 0 such that

lAﬁl = [|lzn ~ yaﬂl > (1.6')
Again we consider two cases:
Case I: Suppose that lim dist(z,,, Y) = 0. Suppose that dist(z,Y) > 0 then
|An|dist(z,Y) = dist(z, — Yn,Y) < dist(z,,Y) + dist(yn,Y) — 0. Thus
[An] = lzn — ynl] — 0, contradicting (1.6'). Therefore we assume = € Y.
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Since dist(zn,Y) — 0, there exists {zn} C Y such that |z, — 2/ | — 0.
Let y;, = z;, — Apz. Then y/, € ¥ and Zn — Yn = Anz. Furthermore,
lYn — yn| = |z}, — 4] — 0. Since {zx} is bounded, using (1.1) we have
%lzglzﬁ;%ly;@]gél%ﬁlg — 0, as the norm |-| is URED on Y, lzh —yh| — 0
and thus |z, — y,| — 0, contradicting (1.6').

Case II: Suppose im dist(zn,Y) = d > 0. Then we follow the same argument

as in the case of UR norms.

Suppose now |- |y and || - || have KKP, let z € Sx(|| - ||) and z, € X such
that z, — z weakly and ||z, [ — llzll. Therefore we have |z,| — [z],
9(zn) — g(z) and dist(z,, Y) — dist(z,Y), as these functions are weakly
lower-semicontinuous. Suppose dist(z,Y) > 0, then ¢(z,) — q(z) would
imply [lzn|| — ||z||, consequently ||z, — || — 0 by the KKP of || - ||. If
dist(z,Y’) = 0, then we may find zn € Y such that |2/, —z,| — 0. It is clear
that |z}| — |z| and 2!, — z weakly. Therefore we have |z}, = z| — 0
and thus |z, —z| — 0. Hence || - || is a norm with the Kadeé¢-Klee property.

The proof is complete. [J

A quantitative version of Theorem 5.1.1 is as follows:

Theorem 5.1.3. Let Y be a closed subspace o, v Banach space X, Suppose
X and Y both admit norms say -l and |- |y with modulus of convezity of
power type r = 2, then for any r' > r, [y can be extended to a norm on X

with modulus of convezity of power type 4r', .

Proof. Let & > 0 be given and | - | be any extension of |+ |y to the whole
Banach space X. Without any loss of generélity, we maj assume that |- || <
(2=21)2 . |, We define a function p(-) on Bx(|-|) by

p'(z) = [2|" + g(z) + dist(z, V)",



Where ¢(z) = dist(z, V) t2el=I", Ag in Theorem 5.1.1, g(z) can be shown
to be convex and symmetric on B x(|- 1), and the norm || - || defined by the
convex symmetric set B := {z € X : p(z) < 1} is an equivalent norm that
extends |- ly. We show that [| - || has modulus of convexity of power type

4(1 + 2a)r. To this end, let € > 0 be given. Let z,y € Sx(]| - ||) such that

11

z+y,
52l

Therefore we have

+y)

=p"(;z:)+ ?" (y) — (§2= <e.

Consequently,

Low b -'rﬂf
lel™ + Slyl" - 15—

59(z) + Sa(y) - Q(T) <¢, and (22)

YIr < ¢, (2.1)

YY)y < (2.3)

%dist(z, Y)" + %dist(y, Y) — dxst(zz

Inequality (2.3) and a variation of Lemma 5.1.2 yield

|dist(z, Y) ~ dist(y, Y)| < C/e and |dist(z, ¥) - djst(z_; Dl<ove (24)

for some constant C := C(r). We consider two cases:
Case I: If dist(z,Y) < €%. Then dist(y,Y) < C’e3. For some constant
C' > 1. Let 2,y € Y such that |z — z'| < 3C’et and |y — Y| < 3C'ed

Therefore we have

1 1 a4y
slal+ sl ~ | ZEYyr

2
ryLpne @ +y r
2Iftf’l W= =5+ Cet
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X m —

for some constant C. By the modulus of convexity of |- | on Y, we have

' / 1 r + 1 2717 Tty r n_ 1
Lz —yl" < 5le|" - +5ll" - '_2; e+ Ced,
for some constant L. Consequently we have
|z —y|" < A E% for some constant R;. (2.5)

Case II: If dist(z,Y) > €%, by (2.2), we have

 dist(z, v)l+eelel’ 1 1 2 > dist(z, V)l — dist(z, V)1 +oel

LoV \|\

dist(z, ’_y")?l-lﬂr‘:lr 1=l +=|d15t(y Y)1+:r vl dst( +y )1+n- [E==4Tk

+§(dist(;z:,}’)1+a dist(y, V) +o)ellvl” (dlst(:z: Y)1+Q‘

LY) el * I < 1 DV < BVE,

— dist( I'z"

for some constants D and E. Consequently we have,

%Euru" + ;Euynf - lEgilélf < Ee'3®,

which is equivalent to

oo

r 1 ke I+y I
- G lall*+ Sl — 1 EE Y < mese,

k=1

By convexity, each term of the series is non-negative, hence we have,

Ee 3, (2.6)

(P

1 1T r I+y r
sllell + Syl - 1 22

Therefore as before, by the modulus of convexity of || - ||,

llz ~y|" < KQEI%BS, for some constant K, (2.7)
Finally, inequalities (2.5) and (2.7) imply that 1 — =R > Kjetr+2a)
for some constant K3 whenever we have lz — yll > e. Now if we are given
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r' > r, we can find an a > 0 such that r(1 4 2a) > r'. Then the norm || - ||

we constructed above with the corresponding « is our required norm. (.

Remarks
1. We are convinced that the extension in Theorem 5.1.1 preserves all types
of convexity.

2. We do not know if there is a similar extension that admits modulus of

3. As noted in [F], we do not know if we could extend smooth norms from

a subspace to the whole space (see also [Z]).
Section Two : Prescribed Extreme Points

In this section, we consider the following problem:

Problem Let X be a Banach space that admits a strictly convex norm and G
be a subset of the unit sphere of an equivalent norm (not necessary strictly
convex), is there an equivalent strictly convex norm | - || such that G C
Sx(I-1) ?

Clearly the answer to the problem would be negative if G contains collinear
points. However, with some restrictions to the set G, we are able to construct

such a norm.
norm ||+ || and G be a subset of the unit sphere of some equivalent norm | |.
Suppose there exists an € > 0 such that

dist(z,G:) > €, forallz € G,

where Gy = tonw!' (G \ {z}), then X admits an equivalent strictly convez
norm || - || such that G C Sx(||- |).
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Proof. Without loss of generality, we may assume that ||- || < |-| and € < 1.

For each r € G, there exists fz € MBx. such that

fe(z)>1>1 sup fz(G:),

Mﬂm

for some M > %, Define a set of convex functions {r;;z € Gl on X b
€ Y
. €2, 12
() = £20) + (51 I

We note that M +1 > r.(z) > 1 and rz(y) < 1, whenever y € G\ {z}.
Let ¢z = ;; . Note that ¢, < 1, for all z € G. Define a set of functions

{Pziz € G} on X by p.(-) = ¢;7,(-). Finally, let
p(-) = sup p(-).
rEG

Clearly, the function p is convex. We note that pz(z) =1for all z € G and
py(z) < 1, whenever y € G\ {z}. Therefore p(z) = 1, for all z € G. We

claim that p is strictly convex on V. Indeed, let u,v € Y such that

u—l—u

ap(u) + —p(v) = p(——) =0.

Let 1 > 0 be given, then there exists z € G such that p=(%*) +n > p(¥E2).
Thus,

%P(ﬂ) + %p(y) -

1 1 . U+ v,
> 5?::( )+§p;(u)-§pf( - 7’)577
62,— e2c u—|—v
> —18;114 ‘ llvll2 zII 12 ~n

Consequently,

1.9, 1 u+—v oM +1
slull? + 3] - | 222 < 2+ Dy
2 2 €
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for any > 0. Therefore

el + 3ol — -2 o,

and thus u = v, as || - || is strictly convex. Define a new norm Il -1 by
I 17 = L5420 The norm - | is strictly convex on X and Izl = 1 for all

ze G O

Theorem 5.2.2. Let X be a Banach space that admits a UR norm ||-|| with
modulus of convezity of power type 2 and G be as in Theorem 5.2.1, then X
admits an equivalent UR norm Il - Il with modulus of convezity of power type
2 such that ||z|| = 1 for each z € G.

Proof. As in the proof of Theorem 5.2.1, we let p(-) = sup,eq e (f2() +
($)2I- 1), where |- || is the uniformly rotund norm. It suffices to show that
the norm 1/p(-) has modulus of convexity of power type 2. Given u,v € X ,
let z € G such that

5B + 38) + Sp(o) ~ o

P50 S el 222 + () ).

Therefore

%p(u) + %p(v) —p(= }f %)

e

Cz 1, 9 1 NV T
5 (el + Sl — |

2 Lju— 1’”23

: utv, .,
> ,
> 1)

for some constant L. Consequently, we have

5900 + 320 o(*E) > Kp(u— ),

for some constant K > 0, O
Suppose a stronger condition is assumed on the set G, we could obtain a
required norm in a simpler manner.,
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Theorem 5.2.3. Let X be a Banach space that admits a strictly convez
(rotund) norm and {zn;n € IN} be a subset of the unit sphere of some

equivalent norm |- |. Suppose there exists an € > 0 such that
dist(z,,¥3) > ¢, for alln € IV,

where Y, = spart H{zim € IV \ {n}}, then X admits an equivalent rotund

norm || - || such that ||z,f| =1 for each n € IN.

Proof. Let n € IN, there exists f, € 1Bx. such that
fa(zn) =1 and fo(Yy,) = {0}.
Let p be a convex function defined by

2 T
:I,‘) -SupZ ff(’ﬂ)( )3

where the supremum is taken over the set of all possible permutations 7 of
IN. Clearly, p(z,) = 1 for all n € IV. It can be verified easily that the
function p is strictly convex on ¥ = span!’ I{In n € IV}. Define a new norm
- Wby If- % = 2(p(-) + | - [?). The norm || - | is strictly convex on ¥ and
lznll = 1foralln € Iv. By Theorem 5.1.1, there exists an equivalent strictly

convex norm on X that coincides with || - [ on Y. O

Corollary 5.2.4. Let {z.,, fn} C SxxX* be a bounded biorthogonal system.
Then there exists an equivalent strictly convez norm -1l such that ||z.|| = 1

for each n € IN.

Corollary 5.2.5. Let X be a Banach space that admits a strictly conves
norm and {zn} C X be a normalized monotone basic sequence with respect
to an equivalent norm |-|. Then there ezists an equivalent strictly convez
norm || - || such that ||z,)| = 1 for alln € IV and {zn} is monotone with

respect to || - ||
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