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Abstract.—Since about 1940, when they were first released in the New York City area, house
finches (Carpodacus mexicanus) have multiplied explosively and colonized much of eastern
North America. We take advantage of the richly detailed documentation of this biological inva-
sion to construct a mathematical model that predicts the rate of population spread on the basis
of readily measurable demographic parameters. We seek to improve on previous models by
predicting a rate of spread that accelerates following an initial period of slower growth, a pattern
of spread followed by house finches as well as a variety of other invading species. We postulate
that an Allee effect—disproportionately lowered fecundity below a critical threshold density of
abundance—is the mechanism leading to a slower rate of spread in the early stages of the
invasion. Our integrodifference equation model also emphasizes the link between long-distance
dispersal and the rate of population spread.

Among the most notorious ecological invasions of North America are several
that stem from the intentional release of birds such as the house sparrow (Passer
domesticus; first introduced in 1853), the European starling (Sturnus vulgaris;
first introduced in 1880), and the house finch (introduced in about 1940) (Long
1981; Hengeveld 1989). Researchers have repeatedly described these invasions
but have attempted only a few quantitative analyses of their dynamics (Okubo
1986; Van den Bosch et al. 1992; Hengeveld 1994). Okubo (1986) used reaction-
diffusion models to describe the spread of these three species but did not attempt
to predict the rate of spread on the basis of individual behavior and demography.
The approach of Van den Bosch et al. (1992) and Hengeveld (1994) was to use
spatial age-structured integral models to incorporate demography and dispersal
behavior in an analysis of the spread rates for European starlings, house spar-
rows, and other species.

The introduction and subsequent spread of the house finch in eastern North
America provides an especially valuable opportunity for modeling by virtue of
its comparatively recent occurrence. The process of population growth and
spread was copiously documented through standardized surveys such as Christ-
mas bird counts (CBC) and breeding bird surveys. Thousands of individuals were
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marked and hundreds recovered by banders, and a number of studies of basic
reproductive biology were conducted within the eastern populations when they
were expanding.

Our objective is to use the unique opportunity provided by the house finch
invasion to construct an improved model for biological invasions that is strictly
based on data for the distinct yearly reproduction and dispersal events. The
mathematical formulation of this model is in terms of an age-structured integrodif-
ference equation that describes discrete reproduction and dispersal events in a
spatial continuum (see Kot 1992; M. Kot, M. A. Lewis, and P. van den Driessche,
unpublished manuscript). The modeling framework also provides a natural way
to incorporate data on significant but infrequent long-range dispersal events. The
test of such a model should be in its ability to predict accurately the observed
pattern of population spread—slow at first and then accelerating. Also important
is the model’s ability to link individual movement behavior (dispersal) realistically
to the rate of population spread.

Central to analyses of spreading populations is an assessment of how individual
movement behavior contributes to population spread. Movement behavior by
birds is difficult to quantify, because birds commonly disperse at a spatial scale
much larger than that encompassed by most study plots. Therefore, many past
estimates of distances dispersed by birds tend to reflect the sampling pattern of
recaptures rather than of the distances actually covered (Moore and Dolbeer
1989). We follow Moore and Dolbeer (1989) and Belthoff and Gauthreaux (1991)
in using continent-wide band-recapture data to estimate dispersal by house
finches. This method is comparatively unbiased, because of the more or less
random spatial distribution of recovery effort. Beyond offering an improved de-
scription of the spread of house finches in eastern North America, we hope to
provide an entirely new modeling approach for analyzing the spread of bird popu-
lations with discrete yearly reproduction and dispersal events and long-distance
dispersal.

A critical component of our model is the incorporation of an Allee effect. This
effect is a disproportionate reduction in reproduction below a threshold popula-
tion density, due to the reduced probability that any individual will find a mate.
It is a common observation that small and isolated populations of birds have low
or even negative growth rates that often lead to extinction. Species of birds that
have been successfully introduced to new areas have generally required repeated
releases of large numbers of individuals (Long 1981). Furthermore, data on the
early colonization by house finches in eastern North America show that observed
breeding lagged behind first arrivals of pioneering individuals by 3-10 yr (see,
e.g., Veit and Petersen 1993). This time lag suggests that early colonizers may
not breed because they fail to find mates. Therefore, we assert that the inclusion
of this effect within our model is reasonable and consistent with available data.

We carefully gathered data on house finches from a variety of sources to avoid
the circularity of testing our model against the data that we used to construct the
model in the first place. We estimated parameters for survivorship and fecundity
from the literature and for dispersal from band recovery data. Since our model
predicts the rate of spatial spread of the population, we compared the predictions
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of our model to population data extracted from Christmas bird counts. Thus, the
data that we used to formulate the model were entirely distinct from those used
to test it.

METHODS

House finches were introduced to Long Island, New York, in about 1940 (Elliot
and Arbib 1953). Captive birds were apparently illegally released following a ban
on their importation for the pet trade. It is not known exactly how many were
initially released, but thousands were imported to the eastern United States from
California in the 1930s and 1940s, and their New York City area population in
1951 was estimated at 280 individuals (Elliott and Arbib 1953). House finches
proliferate in habitats modified by humans. They nest in ornamental plants in
suburban backyards and forage in weedy fields and at bird feeders. They feed
mainly (>90%) on weed seeds (Hill 1993). Between the time of their introduction
and about 1960, their population grew, and their range spread to New Jersey
and Connecticut. Beginning in about 1960, the rate of expansion of their range
accelerated abruptly (figs. 1, 2A). The relationship between ‘‘range radius’ (=
the radius of a semicircle having the same area as the range encompassed by the
house finch population) and time was linear from 1960 to 1970, slower during
the 1970s, and then linear again from 1980 to 1990 (figs. 1, 2A). This pattern of
spread corresponds to that of population growth within the core of the range
(fig. 2B).

MODEL FOR BIRD DISPERSAL

Here we develop a model for bird reproductive dynamics, based on first princi-
ples and experimentally measurable parameters. Initially ignoring the dispersal
process, we analyze the qualitative behavior of a population subject to these
dynamics. We then include dispersal in adult and juvenile classes and derive a
full integrodifference equation for the density of birds.

Bird Reproductive Dynamics

In modeling the dynamics for bird reproduction, our key assumption is density-
dependent regulation of the population through competition for breeding sites.
We also assume a 1:1 sex ratio and that males and females locate each other
randomly and form pairs.

Our approach to modeling bird reproduction dynamics is as follows: First we
determine the density of potential breeders in a given year ¢ and location x. Next
we use our model to determine the fraction of those potential breeders that actu-
ally form pairs. Finally, we determine what fraction of the potential breeding
pairs produce offspring.

We denote J,(x) (juvenile density) as the density of birds that are 9-12 mo old
in the spring of year ¢ and A,(x) (adult density) as the density of birds that are
more than 1 yr old in the spring of year ¢. The density of potential breeders in
year ¢ is thus N,(x) = A,(x) + J,(x).
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FiG. 2.—A, Spread of the house finch in North America. The range radius is calculated
as the radius of a semicircle covering the area invaded from the Eastern seaboard. B, Mean
number of house finches on five Christmas bird counts within the core area of their range.
Number per square kilometer was estimated by dividing the total number counted by the
area of a 15-mi-diameter circle.

Although the largest possible density of breeding pairs is N,(x)/2, it is possible,
and indeed likely, that not all potential breeders will form pairs. Random search-
ing of males (M) and females (F) to form pairs (P) at a rate o is modeled by

M+F5P. (1)
Given a 1:1 sex ratio and applying the law of mass action, we have

dn o,

.= 55 nO) =N, 2)
and

dapP 1 dn

7= ~370 PO=0, (3)
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where n(t) = M(7) + F(1), with the solution
N;

Given a fixed length of time, say, T, in which pair formation can occur, we have
the density of pairs formed as
NZ

P(N) = )

t
r+2N,’
where r = 4/(aT) can be used to calculate the density of potential breeders that
have not found mates as

3 rN,
" r+ 2N,

n(T) (6)
Note that as T — «, r — 0, the density of potential breeders that have not found
mates approaches zero (eq. [6]), and the density of pairs formed approaches
N,/2 (eq. [5]).

Given a density P(N,) of potential breeding pairs, we assume that only a frac-
tion G(P) of them nest and breed successfully. With a finite density of nesting
sites, the density of breeding pairs H(P) = PG(P) must be bounded. Typical
forms for density-dependent population regulation will have H(P) as an increasing
convex function of P, so that H(P) = P, H'(P) > 0, and H"(P) < 0. Note that
these constraints coupled with equation (4) imply that H is an increasing function
of N, with a slope that is initially zero and an inflection point, which guarantees
that H(N,) < N, for small N,.

A specific example is found by choosing H as the Beverton-Holt stock recruit-
ment function (Clark 1990) normalized so that H(P) < P for P = 0:

P

H=1Trn

(7

Here 3 denotes the finite density of nesting sites available.
Finally, using equations (5)—(7), we find that the number of offspring born in
year ¢t and surviving to the end of their first summer is
N;

C
H(PIN,]) = ————— = fIN], 8
cH(P[N,]) "+ 2N, + No fIN,] ®)

where ¢ denotes the average number of offspring born to a breeding pair that
survive the summer. This reproduction function exhibits critical depensation, or
an Allee effect; low densities of potential breeders (NN,) result in a reduced per
capita reproductive rate. The optimum population level for maximizing the per
capita reproductive success, found by calculating the maximum of H(P[N,])/N,,
isN, = Vs and yields
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1
21 + Vr/d

successfully breeding pairs per potential breeder.

Ignoring dispersal for the time being and denoting s to be the probability that
a juvenile or adult in year ¢ will surve to year t + 1, we have the following
equation:

)

N, =sN,+—CN_'2_.__.._’ (10)
r+ 2N, + N?/3
with steady-state solutions N,,; = N, = N* given by N* = 0 and
f2= % ([e/(1 = 5) = 218 = {[c/(1 — s5) — 2]%8% — 481}12) (11
if
>(1-1y). (12)

4
20+ Vr/d

In other words, the maximum per capita breeding rate must exceed the density-
independent mortality rate for adults to have a positive steady-state solution (see
eq. [9]). Linear stability analyses indicate that N* = Nf is unstable and N* =
0 and N* = N7 are stable, and it can be shown using standard graphic methods
that N* = 0 attracts solutions starting below N}, while N* = N¥ attracts solu-
tions starting above N§. The steady-state N{ is thus the threshold below which
the population will go extinct, and the steady-state N5 is the carrying capacity
for the population at the end of the summer and before dispersal.

Including Dispersal

At the end of the first summer, some proportion p; of the surviving offspring
disperse, as does some proportion of the adult population p ,. Denoting the proba-
bility density function for the dispersal distance z of any given juvenile (a bird
fledged during that year) as k;(z), we describe the distribution of juveniles after
dispersal by

5 = (= p)fINGT +ps [ wsllx = yDAINGNy,  (13)

where x is the location of the bird after dispersal and y is the location of the bird
before dispersal. In general, p; may depend on N,, so that the proportion of
juveniles dispersing may be density dependent. Denoting the probability density
function for the dispersal distance z of any given adult (a bird fledged in any year
preceding the current one) as k,(z), we describe the distribution of adults after
dispersal by

A0 =51 = pINW + spa [ kallx = yDNOy, (14)
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where s is the probabilitty that an adult will survive a year. In general, p , may
also depend on N, so that the proportion of adults dispersing can be density
dependent. Also, because each kernal k(z) is a probability density function, we
have

j: k(z)dz = 1.

The exact shape of each kernel can be determined either empirically from the
distribution of distances dispersed as measured from banding-recapture data as
we do, or by construction based on explicit assumptions about bird movement
(Neubert et al. 1995).

In the case of the house finch, release from Long Island meant that useful
dispersal could not proceed in an easterly direction into the Atlantic Ocean.
Under the assumption that during the dispersal stage there is no flux of dispersers
to the east of Long Island, the dispersal kernel k(|x — y|) can be modified to the
semi-infinite domain (x = 0, y = 0):

k(x,y) = k(jx — y]) + x(|x + y]). (15)

Alternatively, use of this dispersal kernel on a semi-infinite domain is equivalent
to use of the simpler dispersal kernel x(J]x — y|) on an infinite domain with
reflection symmetry imposed about x = 0. We use this latter approach in our
numerical simulations.

Equations (13) and (14) can be added to yield a single equation,

N, 1(x) = s(1 — pp)N,(x) + (1 — py)) fIN,(x)]
w - (16
+ f_m k(|x = yDspaN,(y)dy + f_x k(|x = yDp; fIN(dy .

This equation predicts the total density of adults and juveniles before the spring
breeding (N, [x]), based on the total density of adults and juveniles before the
previous spring breeding (N,[x]). Thus, N,(x) and N, (x) are effectively the ex-
pected density of birds at a Christmas bird count in successive years.

RESULTS

Reproduction and Survival

We estimated demographic parameters for the population dynamics (eq. [10])
from the literature. The mean number of offspring produced per pair equals
1.8-2.9. These values were taken from a study of 39 pairs of house finches breed-
ing on Afio Nuevo Island off central California (Hooge 1990). We were unable to
find directly comparable data from eastern North America; however, Hill’s (1993)
estimates of 1.91 = 2.01 young fledged per clutch in southeastern Michigan fall
within the range of the California values. For the purposes of our numerical
simulations, we assumed approximately two young were fledged per clutch and
that each had a 75% chance of surviving the summer. Hence we chose ¢ = 1.5.
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Fic. 3.—Fraction of unmated birds (n[T]/N,; see eq. [6]) as a function of the fraction of
the carrying capacity (N,/N5; see eq. [11]). Parameter values are ¢ = 1.5, s = 0.67, 8 =
1.5, and r = 0.15.

Here we are using an average value; in the presence of double and even triple
clutches, such as those observed in Michigan by Hill (1993), the value for ¢ would
be substantially higher than ours.

We used Milby and Wright’s (1976) data, based on more than 800 banding
recaptures from Kern County, California, to estimate annual survival of adults
and juveniles. These values were 0.72 and 0.64, respectively. Hill (1993) gives a
maximum Michigan life span of 11 yr, 7 mo, which is at least consistent with a
probability of 0.02 of living 11 yr generated from the California survivorship
values. We thus chose s = 0.67 in our simulations.

In the absence of accurate measurements of the Allee effect, we chose to
assume that the majority of birds find mates, except when densities become very
low. For example, a carrying capacity (N5) of approximately 3.8 individuals per
square kilometer and a weak Allee effect (4% of birds do not find mates at a
density of half the carrying capacity [N3/2]; see eq. [6]; fig. 3) yield parameters
d = 1.5 and r = 0.15 from equation (11). With these parameters, the population
growth function is as given in figure 4.
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Fic. 4.—Growth dynamics given by equation (10). Parameter values are as given in
figure 3.

Dispersal

We obtained from the United States Fish and Wildlife Service Bird Banding
Laboratory all records of house finches banded in Massachusetts that were subse-
quently recaptured. We chose records from Massachusetts because of intensive
efforts conducted in that state to band house finches during the 1960s and 1970s.
Of the more than 8,000 finches banded between 1960 and 1990, there were 45
individuals trapped within their ‘‘hatching year’” (<9 mo old) that were subse-
quently retrapped and 27 recaptures of ‘‘after hatching year’ individuals (>12
mo old). We constructed frequency distributions of the distances dispersed and
then fitted a modified Weibull function to the frequency distributions using maxi-
mum-likelihood estimation with SYSTAT (Hastings and Peacock 1986; Wilkinson
1988). Finally, we scaled the function to yield a probability density function inte-
grating to unity:

__a (2
k@) = S T la) e"p[ (b)]' (17

The values for a and b calculated for the juvenile and adult dispersers were a;
= 0.468, b; = 41.056 km, a, = 0.859, and b, = 76.893 km. The mean dispersal
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Fic. 5.—A, Frequency distribution of dispersal distances for adult house finches from
Massachusetts; B, dispersal distances for young-of-the-year house finches.

distances calculated from the fitted distribution, using M = bI'(2/a)/T'(1/a), were
M; = 329.28 km and M, = 98.29 km. The fitted functions are compared with
the data in figure 5. Of the 72 recaptures that we analyzed, 12/45 (27%) of the
juveniles and 6/27 (22%) of the adults did not disperse at all; that is, they were
recaptured at the same place where they had been originally banded.

These values are comparable to others that have been calculated for eastern
North American house finches. For example, Belthoff and Gauthreaux (1991)
analyzed 333 banding recaptures from throughout eastern North America and
found that 27.8% of males and 20.9% of the females (not segregated by age) were
recaptured where they had been banded. They also reported a mean dispersal
distance of 109.3 km (this value was recalculated from their graph). Stewart (1989)
analyzed 455 recaptures from New York and Pennsylvania and reported propor-
tions of individuals not dispersing ranging from 18.3% to 26.2%. Stewart did not
report mean or median dispersal distances but did list maximum distances dis-
persed of 900 and 1,200 km, both substantially larger than the 700 km from the
Massachusetts data. In sum, there is substantial agreement in distances dispersed
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by house finches among the various sources of data that we were able to extract
from the literature.

It is important for the purposes of our model to demonstrate that house finches
disperse individually rather than in flocks. If house finches dispersed in flocks,
then it would be difficult to argue that an Allee effect was important because the
pairs would alreacy be together upon arrival. We ascertained that house finches
disperse individually by searching the literature for the earliest records of occur-
rence in a variety of eastern states. Compilations of records were available for
New Jersey (Leck 1984), Massachusetts (Veit and Petersen 1993), Vermont
(Laughlin and Kibbe 1985), Arkansas (James and Neal 1986), Iowa (Dinsmore et
al. 1988), Illinois (Mumford and Keller 1984), and Indiana (Bohlen 1989). Of 17
records of early colonists found in these states, 15 were of single birds, and the
last two occurred together as a pair. These data show that house finches disperse
individually, at least along the outer fringes of the population. Furthermore, there
was a lag of 3—-10 yr between the first record of occurrence of a house finch in a
state and the first recorded instance of breeding. This pattern strongly suggests
that early colonists do not breed because there are no mates available. This
condition is the essence of the Allee effect.

We assumed that the proportions of juveniles and adults dispersing, py and p 4,
respectively, increased monotonically with the local population density. In the
absence of exact data, we assumed that p; = p, = p, for the following piecewise
linear function:

N, .
— if N,<N*¥
p(N) = N3 (13)

1  otherwise

(fig. 6). The notion that probability of dispersal should be related to increasing
population density in this way is supported by an analysis (R. R. Veit, unpub-
lished manuscript) of long-distance dispersal in the yellow-headed blackbird (Xan-
thocephalus xanthocephalus). In that species, incidence of dispersal to the Atlan-
tic Coast from its western breeding range was found to be significantly related to
estimated breeding success during the same year. That is, following summers
during which large numbers of young were produced, large numbers of young
were found at the Atlantic Coast during fall.

Initial Distribution of Finches

Because the initial release of house finches is presumed to have been by bird
dealers responding to a ban on the sale of house finches in April 1940 (Elliot and
Arbib 1953), there are no data on the number released. For the purposes of our
numerical simulations, we assumed that, immediately after release, the initial
range covered a semicircle with a 10-km radius and a density of 0.5 individuals
per square kilometer. This approach gives the total number released as approxi-
mately 80 finches.
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Fic. 6.—Density-dependent dispersal proportion (see eq. [18])

Model Results

Our model predicts an-abrupt acceleratio of population growth and spread
following an initial period during which these .ates are much lower. This pattern
is shown clearly by the CBC data on house finches from the New York City area,
as well as on more broad-scale analyses (Okubo 1986). With our simulations, we
will show how the inclusion of an Allee effect coupled with density-dependent
dispersal leads to the initial period of slow growth during the years 1940-1960.

Numerical Simulations

The model equations are derived for use on an infinite spatial domain. How-
ever, within our numerical simulations, we used a finite domain but chose a spatial
domain sufficiently large and a temporal domain sufficiently small to prevent the
solutions from exhibiting boundary effects. Rather than solving the full two-
dimensional problem numerically, we solved the equivalent one-dimensional
problem represented by equations (8), (16), and (17) with initial conditions sym-
metric about the point x = 0, on the domain —1,500 km = x = 1,500 km. This
approach is equivalent to solving equations (8), (15), and (16) on the domain 0
km = x = 1,500 km. The switch from a two- to a one-dimensional problem
introduces some error, particularly early in the invasion process when the invad-
ing front is not planar. However, this error would simply tend to deemphasize
the slowness of early spread (Lewis and Kareiva 1993). Thus, slow, early spread
would be even more apparent in the equivalent two-dimensional model, and our
formulation errs on the side of being conservative when explaining the initial slow
and then accelerating spread rates.

A numerical solution of equations (10), (16), (17), and (18) with the parameters
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Fi6. 7.—Numerical solution of the integrodifference equation defined by equations (10),
(16), (17), and (18) with initial conditions as described under Initial Distribution of Finches
and parameter values of ¢ = 1.5, s = 0.67, 8 = 1.5, and r = 0.15.

and initial data as given above is shown in figure 7. The range, specified by the
distance at which the density reaches a threshold of 0.1 bird per square kilometer,
is given in figure 84, and the density of finches at the center of the range (x =
0) is given in figure 8 B. Note the positive correlation between the range and
density at the center of the range. During the last 20 yr (years 30-50), the bird
front moved approximately 800 km, giving a spread rate of approximately 40 km
per year. From the CBC data on house finch abundance in the New York City
area (fig. 2B), it is evident that growth was strongly positive through the 1960s,
then negative in the 1970s, then once again strongly positive in the 1980s. These
fluctuations in population size within the core of the range correspond closely to
the rate of expansion of the population. The rate of increase of the range radius
was slowest during the 1970s, the time when population growth in the center of
the range was negative.

Figure 9 shows that our Allee threshold of 0.15, which was interpolated from
the core area CBC data, yields a better prediction of the rate of population spread
than do values of 0.05 or 0.25. Were this effect to approach zero, meaning that
population density could never be so low as to limit reproduction, the depressed
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Fi6. 8.—A, Range of population spread for the numerical solution described in figure 7
with a detection threshold of 0.1. The data shown in figure 2A are superimposed. B, Density
at center of range (x = 0) for the numerical solution described in figure 7. The data shown
in figure 2B are superimposed.

initial rate of spread so characteristic of invasive populations would not be ev-
ident.

DISCUSSION

We have formulated a model that faithfully recounts the spread of the house
finch population in eastern North America, based on independent estimates of
life-history parameters that we thought were most relevant to the invasion pro-
cess. Taking the form of an integrodifference equation, the model incorporates
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Fic. 9.—Range of population spread for the numerical solution described in figure 7 but
with r = 0 (upper dashed line), r = 0.05 (dotted line), r = 0.15 (solid line), and r = 0.25
(lower dashed line).

distinct growth and dispersal phases and includes an Allee effect (critical depensa-
tion) in the growth dynamics. We suggest that the model may have a broad
application to a variety of species, because its parameters relate to general biolog-
ical attributes, and the actual parameter values, such as growth rates and dispersal
distances, can be individually tailored.

Our approach differs from related efforts to model similar data in the kind of
model we use. We assert that the integrodifference equation is fundamentally
suited to modeling bird growth and dispersal because the underlying structure of
both the equation and the biology is of discrete reproductive events interspersed
with large-scale dispersal events. Thus, every component of the model is tied
closely to the related biology. In an attempt to produce as realistic a model as
possible, we have also included factors often left out of previous models. These
are density-dependent dispersal and disproportionately lowered reproductive suc-
cess below some threshold population density (Allee effect). Although analytical
tools can be used to determine invasion rates via traveling wave solutions (Kot
1992; M. Kot, M. A. Lewis, and P. van den Driessche, unpublished manuscript),
our approach to analyzing the model is numerical, primarily because we have
sacrificed simplicity of formulation for biological realism.
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The model explains two key features of the data: an initially slow, then abruptly
accelerating rate of population spread, which eventually reaches an asymptotic
invasion velocity; and a strong correlation between the rate of population spread
and the rate of population growth near the center of the range. Numerical simula-
tions for a variety of parameter values showed that the Allee effect dramatically
slowed the population spread rate, especially the early spread (Lewis and Kareiva
1993; Kot et al. 1995), and that the nonlinear dispersal increased the length of
time taken before the invasion achieved an asymptotic constant spread rate. The
actual rate of spread of the house finch population was underpredicted by our
model for the first 10 yr after release and slightly overpredicted thereafter. Given
the simplifications we have made in the modeling process, we argue that the fit
of the data to our theoretical prediction is as good as one might reasonably expect.

The first feature is hardly unique to house finches. Hengeveld (1989) shows
that an acceleration of the rate of spread after a period of slow initial growth is
characteristic of organisms as diverse as the red deer and Himalayan thar (Hemi-
tragus jemlahicus) in New Zealand, the Japanese beetle (Popillia japonica) and
starling in North America, and the collared dove (Streptopelia decaocto) in Eu-
rope. Perhaps the best evidence in support of the biological plausibility of an
Allee effect is the history of introductions of nonnative birds into North America.
Using data in Long (1981), we counted 74 species of nonindigenous birds that
have been introduced into North America, many of these species repeatedly and
in substantial numbers (more than 1,000 individuals). Of these 74 species, 28 have
persisted long enough that we can be confident that they have been reproducing
in the wild. Of these 28 introduced species that have persisted, only nine species
(mute swan, Cygnus olor, chukar, Alectoris chukar; European partridge, Perdix
perdix; ring-necked pheasant, Phasianus colchicus; rock dove, Columbia livia;
collared turtledove; monk parakeet, Myiopsitta monachus; starling; and house
sparrow) have spread more than 20 mi from the point of introduction. Of the
species that have persisted but not spread, almost all have been continuously
present at very low population densities, mainly in southern California and Flor-
ida. Those species that have persisted in California and Florida have been limited
by something other than ‘“warm’’ climates; their populations have been limited
to tiny subdivisions of each of these states. The species that have spread, on the
other hand (with the possible exception of monk parakeet), have been repeatedly
reintroduced and had achieved large (at least hundreds of individuals) populations
before spreading.

We cannot prove what mechanism has prevented the spread of these popula-
tions, but a reduced population growth rate at low densities seems an eminently
reasonable hypothesis. Alternative models that we explored that ignored either
an Allee effect or density-dependent disperal did not yield qualitatively correct
behavior over a range of reasonable parameters.

Mundinger and Hope (1982) propose that the population spread of the house
finch involved a combination of long-range ‘‘jump’’ dispersal and short-range
diffusive movement. Maps of the spread of the house finch population show
evidence of such ‘‘jumps’’—isolated patches of house finches seemingly becom-
ing established ahead of the advancing front of the population. This pattern is
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not inconsistent with our model predictions. Since the model disperses birds
according to the frequency distributions of band recoveries, individual house
finches do become isolated by virtue of dispersing hundreds of kilometers farther
than ‘‘average.”” These jumps are included in the tails of the dispersal kernel.
That such patchiness is not evident in the model output is due to the fact that
the model is deterministic, predicting the expected density of birds at a given
distance. (See, e.g., Minogue 1989 for a discussion of stochastic aspects of spatial
spread.) Furthermore, the addition of normal spatial variation in growth rates
would also tend to increase the patchiness of the final predictions.

Our model differs subtly from that formulated by Van den Bosch et al. (1990,
1992) in the way that dispersal is characterized. They use the statistical character-
istics of a Gaussian distribution to quantify the outward spread of a population;
that is, dispersal is portrayed as a bell-shaped curve that collapses as time elapses.
Our approach is more direct in that we have fitted a function to a frequency
distribution of distances taken directly from data. Our model ignores the mecha-
nism by which birds achieve the observed spatial redistributions and does not
assume random motion. Van den Bosch et al. (1992) also assume that individuals
settled permanently following dispersal during their first year of life. Our band
recovery data for house finches show that house finches continue to disperse as
adults, and this finding is consistent with Moore and Dolbeer’s (1989) analysis of
blackbird dispersal. Since dispersal distances by birds have rarely been estimated
using band-recovery data of known-age birds, we suggest that dispersal of birds
older than 1 yr is likely more common than generally believed.

We suspect that part of the reason that a model for bird spread such as the
one we present has not been formulated in the past is that previous estimates of
bird dispersal distances have been too low to account for observed rates of popu-
lation spread. Many ornithologists will be surprised that individual house finches
travel as far as 700 km within a single year, because such large dispersal distances
have in the past been almost impossible to measure. Moore and Dolbeer (1989)
have shown, through an exhaustive analysis of banding recoveries of blackbirds,
that previous estimates of dispersal distances of blackbirds have been too low by
a factor of 10-100. Since our model, which is based on dispersal data collected
in the same fashion as Moore and Dolbeer’s, predicts rates of population spread
that are in accord with observations, we believe that we have captured some of
the biology most pertinent to the analysis of biological invasions.

An important characteristic of the dispersal process is somewhat obscured by
the format of our data presentation. Because of the skewed distribution of dis-
tances dispersed by individual house finches, each year our model will fling out
individual house finches considerable distances (100—300 km) ahead of the main
front of the advancing population. Therefore, a map of all individual house finches
during any given year would reveal isolated individuals distributed outside an
arbitrary contour encompassing most of the population. Since our model results
are shown as expected densities over spatial domain, isolated individuals are not
evident. We emphasize that there is no inconsistency between our simulation
results and the ‘‘real’’ pattern of population spread by birds, which is character-
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ized by the appearance of isolated individuals far beyond what may arbitrarily
be defined as the species range.

As our model makes a prediction of the rate of population spread based on
independently derived estimates of individual dispersal rates, it suggests that it
may have applications to biological invasions in general. The data and numerical
solutions shown in figure 8 indicate the model adequately predicts both the quali-
tative nature and velocity of the spread (approximately 40 km/yr) and the density
of birds near the center of the range as a function of time.
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