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Abstract of Thesis 
 

Background: Many elements currently hinder the accessibility to spasticity assessments, such as 

living rurally or limited mobility. Without access to appropriate care for the assessment and 

management of spasticity, a patient's quality of life may be compromised. Electromyography 

(sEMG) is a potential technique for objective and virtual evaluations of spasticity because of its 

capacity to extract useful biomechanical information about spasticity. However, there is a need 

to identify a suitable alternative to sEMG because of its electrical interference and other 

obstacles that could affect the signal quality if it is misused in a telehealth setting. 

Acceleromyography (AMG) is a promising alternative sensor due to its ease of use and the 

potential to overcome barriers to virtual spasticity assessments. It remains to be seen whether the 

AMG sensor is similar to the sEMG in terms of the information it can give regarding muscle 

activity for spasticity assessments.  

 

Objectives: The study intends to investigate whether the sEMG and AMG sensors are 

comparable in gathering information on muscle activity to give clinicians information on 

muscular spasticity in a virtual environment in the upper extremities. The purpose of this study is 

to simultaneously compare the biomechanical data that sEMG can acquire regarding muscle 

activity during active and passive motions to that of AMG for those with and without muscle 

spasticity.   

 

Methods: The literature review section of the thesis is covered in the second chapter to 

determine which significant barriers sEMG currently has in telehealth and if these have been 

overcome. The initial search allowed for assessing the obstacles to virtual sEMG discovered thus 
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far and how researchers have come up with solutions to overcome them. Furthermore, the design 

process of the portable device, which is based on Daniel Gillespie's earlier device, the TONE 

device, is described in depth in Chapter 3. The device was designed based on what clinicians 

currently need for spasticity assessments with the goal of providing clinically relevant data. In 

addition, using the portable device designed to compare these two sensors simultaneously, 

chapter 4 used a muscle fatigue and reliability tests on a population of participants without 

spasticity to determine if these gave similar information on the ability to pick up slow and fast 

fibres. Upper extremity patients with spasticity after a stroke were the intended population for 

this study. Once it was concluded that the two sensors were comparable in their ability to pick up 

slow and fast fibres, their signals were compared using the affected and non-affected arms on 

patients with spasticity during active and passive movements to determine if they obtained 

similar characteristics that could be used to assess muscle spasticity.  

 

Results: Due to the large volumes of data that sEMG requires to process and its high bandwidth 

requirement, the most frequently mentioned barrier in the literature review was the unreliability 

of real-time data. Cybersecurity and poor user-friendliness were two further significant barriers. 

Few articles offer ways to improve inadequate real-time data, which suggests that no approaches 

have been effectively used. Prior training before virtual assessments was a common strategy used 

in the studies to address barriers to usability. Using the designed portable device in chapter 3 to 

compare the simultaneous data obtained from sEMG and AMG, it was discovered that AMG's 

ability to identify slow and fast fibres is similar to that of sEMG. Additionally, sEMG and AMG 

were comparable in the way they could identify and distinguish particular spasticity 

characteristics in the affected arm of individuals with spasticity after a stroke. Among these were 
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the low signal-to-noise ratio and the lack of fast fibres in power spectra during active 

movements. 

 

Conclusion: Based on its capacity to provide information on muscle contractions and its lack of 

barriers, the research suggests that AMG is an excellent alternative to sEMG. However, to 

provide healthcare professionals with adequate insight into the severity of spasticity and to 

enable them to establish appropriate treatment and care plans, it is crucial to emphasize the need 

for future research. This research should focus on enabling the development of a new, 

standardized method for conducting these assessments, thereby engaging healthcare 

professionals in the ongoing research process. 
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Chapter 1. Introduction  
1.1 Background on Stroke and Spasticity 

A stroke is an acute or neurological deficit due to vascular injury from an infarction or 

hemorrhage in the central nervous system. Many factors contribute to an increased risk of having 

a stroke, one of which is hypertension (Murphy & Werring, 2020). The vast majority of strokes 

are ischemic, which occurs when there is a blockage in a blood vessel that reduces the supply of 

blood to a part of the brain. Some strokes are also due to intracerebral hemorrhages, which occur 

when a hematoma forms in the brain (Rajashekar & Liang, 2024). Stroke has become a 

considerable health challenge worldwide and is said to be a leading cause of death and physical 

disabilities in adults in middle to high-income countries. In 2019, 12.2 million reported incident 

cases and 101 million reported prevalent stroke cases were reported. Studies have found that 

globally, stroke is the second leading cause of death and accounts for 11.6% of deaths. Stroke 

was also found to be the third leading cause of disability in 2019 (GBD 2019 Stroke 

Collaborators, 2021). Studies have shown that 80% of those who have had a stroke will have 

some motor impairment initially, one of which is spasticity (Sommerfeld et al., 2004). Spasticity 

is a complication that occurs after an individual has had a stroke. It can be classified as a 

neuromuscular physical disability (Milligan et al., 2019). Spasticity is very common among 

stroke survivors, and studies have shown that spasticity has an incidence rate between 17 to 43% 

in stroke survivors who were followed up for 3 to 12 months (Zeng et al., 2020). 

While spasticity is relatively easy to recognize, defining it in the literature has been 

proven difficult. A commonly used definition to define spasticity is one by Lance, who describes 

it as “a motor disorder characterized by a velocity-dependent increase in tonic stretch reflexes 
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with exaggerated tendon jerks, resulting from hyperexcitability of the stretch reflex” (Lance, 

1990; Trompetto et al., 2014). While this definition has been widely used, it has been challenged 

by other scholars. Many have proposed different definitions and descriptions. However, the 

definitions currently proposed in the literature all have the general consensus that spasticity is 

associated with a hyperexcitable spinal reflex (Li & Francisco, 2015). The Upper Motor Neuron 

(UMN) syndrome is the most significant consequence of spasticity. The UMN syndrome is 

divided into "positive" and “negative” UMN signs. "Positive" signs represent an excess in 

muscle tone and stretch reflex. Excess in muscle tone or stretch reflex is defined as the amount of 

tension or resistance to lengthening while the muscle is at rest (Li & Francisco, 2015; van den 

Noort et al., 2009). “Positive” signs also include flexor and extensor spasms, brisk tendon jerks, 

and a catch. A catch is a sudden resistance to rapid movement due to fast movements triggering a 

strong involuntary contraction. On the other hand, there are also "negative" UMN signs, 

including weakness, impaired coordination and motor control (Li & Francisco, 2015; van den 

Noort et al., 2009). 

Data collected in 2020 concluded that 2.1 per 100,000 Albertans were hospitalized with a 

stroke every year, which accounts for a significant portion of our population (Ganesh et al., 

2022). The prevalence of patients with a stroke that will develop spasticity is 42%, with severe 

spasticity being 15.6% of these cases (Harb & Kishner, 2024). Therefore, this is a very prevalent 

portion of the population that requires further investigation.  

1.2 Physiology of Muscle Contractions 
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Many nerves innervate muscle fibres called motoneurons. A motor unit consists of a 

single motoneuron and the muscle fibre in which it innervates. Different muscles with a variety 

of functions will have a different amount of muscle fibre units.  

A contraction in the skeletal muscle occurs in the synapse between the motoneuron and 

muscle fibre, called the neuromuscular junction (Pham & Puckett, 2024). The motoneuron will 

initially receive a propagation of action potentials, which causes its presynaptic membrane to 

depolarize and open voltage-gated calcium (Ca2+ channels). The flow of Ca2+ causes 

acetylcholine (ACh) to be released in the neuromuscular junction. Once the ACh reaches the 

neuromuscular junction, it diffuses towards the postsynaptic membrane at the side of the muscle 

fibre (Pham & Puckett, 2024). ACh binds to specific receptors called nicotine receptors on the 

postsynaptic membrane, which causes a depolarization of the postsynaptic membrane of the 

muscle fibre. Thus, this creates an action potential in the muscle fibre (Pham & Puckett, 2024).  

A mechanism then occurs, called excitation-contraction coupling, to allow the conversion 

of the action potential into a muscle fibre contraction. The action potential in the muscle fibre 

membrane travels into T-tubules found in the muscle fibre membrane called the sarcolemma, 

which allows the propagation of the action potential inside the muscle fibre. When the action 

potential depolarizes T-tubules, their receptors (dihydropyridine receptors) will have a 

conformational change, causing them to mechanically interact with receptors (ryanodine 

receptors) on the sarcoplasmic reticulum (Pham & Puckett, 2024). Consequently, the interaction 

causes Ca2+ to be released from the sarcoplasmic reticulum in the muscle fibre.  

A skeletal muscle is composed of units called myofibrils. Myofibrils are divided 

lengthwise into segments called sarcomeres, and a Z-line separates each sarcomere at either end. 

Sarcomeres contain two different kinds of myofilaments: actin and myosin (Pham & Puckett, 
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2024). Actin myofilaments are thin filaments, and myosin is a thicker myofilament that contains 

troponin and tropomyosin complexes. The release of Ca2+ ions causes it to bind to the troponin. 

Consequently, the binding of Ca2+ causes a conformational change, which displaces the 

tropomyosin complex, allowing actin to bind to the myosin-binding sites (Pham & Puckett, 

2024).  

Thus, the following events allow for a cross-bridge cycle. Once actin can bind to its 

myosin-biding site, the thin and thick filaments can slide past each other and generate a muscle 

contraction by shrinking the entire sarcomere and bringing the Z-lines closer to each other (Pham 

& Puckett, 2024). At the start of this cycle, myosin is bonded to actin, but no adenosine 

triphosphate (ATP) is bonded to myosin. Once the ATP binds to the myosin filament, it allows 

for a conformational change that decreases myosin's affinity for the actin filament. Thus, the two 

filaments unbind (Pham & Puckett, 2024).  

Once the muscle has contracted, muscle relaxation can occur once the Ca2+ is 

accumulated in the sarcoplasmic reticulum by the Ca2+ ATPase pump, causing calcium to unbind 

to troponin (Pham & Puckett, 2024).  

 
1.2.1 Types of Muscle Contractions 

Muscle contractions can be divided into four types. These include isometric, isotonic, 

concentric and eccentric contractions. 

An isometric contraction occurs when muscle tension occurs without a change in muscle 

length. In this case, the joints or limbs do not move, and no motion occurs (Hryvniak et al., 

2021). For example, this contraction can occur when an individual pushes upwards against a 

resistance or immovable object (Padulo et al., 2013).  
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An isotonic contraction occurs when a constant muscle tension is developed while 

shortening or lengthening a muscle. There are two types of isotonic contractions: concentric and 

eccentric. Concentric contraction causes the muscle to shorten, generating a force (Hryvniak et 

al., 2021). On the other hand, in eccentric contractions, the muscle lengthens when there is a 

greater opposing force (Padulo et al., 2013).  

1.2.2 Active and Passive Movements 
 

Two common movements are used to generate a contraction: active and passive. Passive 

movements occur when the limb or body is manipulated without the intentional effort of the 

person being tested. The limb or body can be manipulated by a therapist, researcher, or another 

external person who moves the tested limb or body to generate a contraction (Trinity & 

Richardson, 2019). On the other hand, active movements are when the person being tested 

moves their limb or body independently without assistance (Holzgreve et al., 2020).  

 

1.3 Pathophysiology of Spasticity 
 

Researchers have found that the exaggerated stretch reflex in those with spasticity can be 

due to the excitability or overactivation of muscle spindles. A stroke may cause damage to the 

pyramidal tract, a group of efferent nerve fibres in which a signal is carried from the cerebral 

cortex to the brainstem or spinal cord. Thus, this is believed to cause an exaggerated stretch 

reflex and an abnormal muscle tone (Kuo & Hu, 2018). Hence, when a limb is passively 

stretched, this would cause more activation of spindle afferents. Another reason for the 

exaggerated stretch reflex could be alpha-motoneurons' activation (Kuo & Hu, 2018). These 

motor neurones innervate muscle fibres and are the principal way skeletal muscle contractions 

are generated (Zayia & Tadi, 2024). In summary, researchers have stipulated that spasticity is 
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due to the abnormal activation of spindles, which are processed by the spinal cord (Kuo & Hu, 

2018). 

 In other words, spasticity is caused by damage to upper motor neurones, which prevents 

the brain and spinal cord from communicating with each other, resulting in spinal reflex 

disinhibition (Kuo & Hu, 2018). Spinal reflex disinhibition occurs when there is a failure to 

suppress incoming signals (Marshall et al., 2023). Passive stretching of the muscle causes the 

sensory input of the muscle spindles through afferent fibres to the spinal cord and the alpha-

motoneurons to be even more activated than usual. Also, spinal interneurons may lose their 

influence on the central nervous system (Kuo & Hu, 2018). The disruption of these influences 

could lead to reduced inhibition of the antagonist muscle and increased action potential in 

neurones, leading to increased muscle activation (Kuo & Hu, 2018).  

 Researchers have also explained how spasticity affects a muscle's mechanical properties. 

Spasticity can reduce the number of sarcomeres in a muscle and increase the amount of 

connective tissue (Kuo & Hu, 2018). This change might cause pulling forces to transmit 

impulses to muscle spindles more frequently, increasing the muscle spindles' sensor input and 

consequently increasing spasticity (Kuo & Hu, 2018).  

 

1.4 Current In-Person Spasticity Assessments  

Post-stroke spasticity creates barriers to community participation (Francisco et al., 2021). 

It often leads to joint immobility and many other complications, including interference with daily 

living activities such as hygiene, walking, eating, and toileting (Rivelis et al., 2024).  

For health-related conditions, such as spasticity after a stroke, the Canadian Stroke Best 

Practice advised timely and appropriate assessments for extremity spasticity (Teasell et al., 
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2020). Detecting, assessing and managing post-stroke spasticity earlier can prevent 

complications and improve function, thus increasing independence for these individuals (Kuo & 

Hu, 2018). 

Currently, in-person assessments require gaining a detailed patient history and 

performing a physical examination. Detailed history involves gaining information on the 

duration and severity of spasticity. It also allows one to acquire baseline information regarding 

current medication taken, additional diseases, the muscle groups affected, and pain (Balci, 2018). 

On the other hand, muscle tone and tendon reflexes are observed during the physical 

examination. While evaluating muscle tone, the patient is asked to remain in the supine position 

for the lower and upper extremities to allow the clinician to assess various pathological reflexes, 

muscle strength and passive and active joint range of motion (Balci, 2018). 

1.4.1 Scales to Measure Spasticity 
  

Many clinical scales are currently used in practice to evaluate spasticity. The Modified 

Ashworth Scale (MAS) is the most commonly used and well-known scale in practice (Balci, 

2018). MAS measures increased muscle tone during passive stretch using a 6-point scale, where 

a grade of 4 indicates the affected parts are rigid during flexion and extension (Table 1). The 

preference for MAS by clinicians stems from its ability to be used and applied easily in a clinical 

environment and its ability not to require additional tools when used by the clinician. The 

drawback of this scale is that it cannot measure spasticity factors other than tone disorders (Balci, 

2018).  

Another commonly used scale to evaluate spasticity is the Modified Tardieu Scale 

(MTS), which assesses spasticity during passive motions. In this case, passive stretches are 
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performed at a lower or higher speed when the extremity segment falls with gravity. V1 indicates 

that it is as slow as possible, and V3 indicates it is as fast as possible (Balci, 2018). MTS also 

grades the muscle reaction quality from 0 to 5, where a grade of 5 indicates the joint cannot be 

moved (Table 2).   

Lastly, the Fugl-Meyer Scale (FMS) is occasionally used to evaluate the sense of touch, 

pain, and joint position of the hand, wrist and posture (Balci, 2018). 

Table 1. Summary of the parameters use to evaluate spasticity when using the MAS. 
0 No tone increase 
1 Slight increase in tone and presence of catch-

and-release at the end of a range of motion 
1+ Slight increase in tone and catch-and-release 

which is followed by minimal resistance for 
the remainder of the range of motion  

2 Muscle tone is increased in most of the range 
of motion but joints or affected parts are still 
easily movable  

3 Considerable increase in tone, passive 
movement becomes very difficult 

4 Affected parts are rigid during flexion and 
extension 
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Table 2. Summary of the parameters use to evaluate spasticity when using the MTS. 
Muscle reaction quality   
0- No resistance throughout the passive 

movements 
1- Slight resistance during the passive 

movements with no clear catch at a specific 
angle 

2- Clear catch at a specific angle, which 
interrupts passive movements, with the 
affected part relaxing after 

3- Fatigable and weak clonus for less than 10 
seconds when passive stretch continues at a 
specific angle  

4- Unfatigable and strong clonus that lasts 
longer than 10 seconds when passive stretch 
continues at a specific angle 

5- Immobile joint 
Stretching speed  
V1 As slow as possible or slower than the 

affected limbs natural drop due to gravity  
V2 Normal speed of the limb failing due to 

gravity  
V3 As fast as possible or faster than the affected 

limbs natural drop due to gravity 
 

1.5 The Need for Objective Measurements 
 
Currently, there are no reliable criteria for spasticity assessments, and clinicians often have to 

depend on the perception of the patient or their caregiver's change in muscle tone. This may 

hinder their ability to prescribe adequate treatments as clinicians are relying on the biased 

perception of patients and caregivers (Skalsky, 2017).  

 Clinicians rely on scales, such as the MAS or MTS, to decide a patient's course of 

treatment (i.e., surgical interventions and medications) (Skalsky, 2017). These assessments rely 

on intuition and experience (Puzi et al., 2020). Thus, many researchers have stated that there is a 

problem with using these scales for these assessments due to their lack of objectivity (Skalsky, 

2017). Furthermore, these scales have been found to have poor inter and intra-rater reliability. 
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One of the reasons for the poor inter and intra-rater reliability is that the speed at which the 

clinician stretches the affected limb may change between clinicians. Consequently, this may 

change the grade seen on the scales, as the results depend on the subjectivity of speed (Balci, 

2018; Harb & Kishner, 2024).  

Most of these scales' current criticism comes from the fact that they do not permit 

differentiation between many other factors that can cause an exaggerated stretch reflex and 

increase in muscle tone. The scales, specifically the MAS, can also not differentiate features that 

distinguish spasticity from other tonus disorders (Balci, 2018; Harb & Kishner, 2024). 

Researchers have found that these scales also do not provide sufficient information regarding 

which muscles contribute to spastic movements (Ahmad Puzi et al., 2017). 

Sloot et al. suggested that objective assessments will improve clinical decision-making to 

permit better spasticity management through surgical interventions and medication. Hence, this 

will prevent risks such as unnecessary surgical interventions or medication titration when 

subjective measurement scales are used (Balci, 2018; Harb & Kishner, 2024).   

 

1.6 The Need for Virtual Spasticity Assessments  

The quality of life of a patient who has had a stroke may be hindered without access to 

proper care to assess and manage this spasticity. Telehealth services or virtual assessments for 

spasticity may allow for timely, objective evaluations and improve access to care. Current in-

person assessments are often used to determine a proper course of treatment, one of which is 

receiving botulinum toxin injections, commonly required for patients with spasticity, once every 

3 to 4 months (Levy et al., 2023). Botulinum toxin injections can help improve and reduce a 

patient's muscle tone and facilitate basic limb function. Consequently, these assessments 

determine if these injections are required to improve a patient's quality of life and independence 
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(Shaw et al., 2011). However, a patient may come in for their assessments, which may determine 

that they do not require or are not eligible for botulinum toxin injections at this time (Levy et al., 

2023). Therefore, they may make an unnecessary and challenging trip.  

Patients who have spasticity have been found to have trouble accessing healthcare for 

two main reasons. The first reason is that their limited mobility often requires specialized 

transportation, which requires thoughtful planning and associated costs (Verduzco-Gutierrez et 

al., 2020). Thus, this may require extensive patient preparation to ensure they have the proper 

accommodations to get to their appointments. Before getting to their appointments, they may 

need to ensure they have accessible transportation and have scheduled time for caregiver 

assistance (Valdez et al., 2021). Current public spaces are also challenging for those with limited 

mobility to navigate. Many public spaces are not equipped with power doors or elevators and 

have steep curb cuts, which may make it difficult for patients to access certain parts of these 

spaces to get to and from their appointments (Valdez et al., 2021). Secondly, many patients who 

have spasticity also have other underlying health conditions. Therefore, it is advantageous to 

minimize needless exposure to crowded clinics and hospitals (Verduzco-Gutierrez et al., 2020). 

In addition, those who live in rural areas frequently lack access to in-person healthcare services 

because of the expense of commuting to a clinic or hospital in a city (Valdez et al., 2021). 

A virtual spasticity assessment to determine a patient's spasticity management and 

treatment plan may improve the accessibility of spasticity assessments. Therefore, virtual health 

assessments are becoming increasingly important. There is a need to develop an advanced 

objective spasticity assessment that can be used virtually.  
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1.7 Surface Electromyography for Objective and Virtual Spasticity 
Assessments  
 

Currently, some objective assessments have been researched to assess spasticity through 

biomechanical methods that could be conducted in a telehealth setting. These include isokinetic 

dynamometers or a pendulum test to assess the resistance to change of passive ranges of motion 

at different angles and speeds.  

 However, the most investigated is surface electromyography (sEMG). sEMG is a way of 

monitoring muscle activity by recording the electrical signal produced during a muscle 

contraction (Ladegaard, 2002). It uses electrodes that are applied to the surface of the skin, 

unlike intramuscular EMG, which uses wires or needles placed into the muscle (Merletti & 

Farina, 2009; Mills, 2005).  

sEMG is currently used in several research applications to study the pathophysiology of 

spasticity. Researchers have previously used sEMG to determine the spastic response of certain 

muscle groups during active or passive movements. Using the sensors, clinicians can obtain 

information on motor unit discharges in spasticity patients (Yu et al., 2020).  

Previous studies have also found that in patients with spasticity, there is an increase in the 

amplitude and frequency domains during a stretch reflex. Involuntary muscle contractions from 

spasticity are also represented in sEMG spatial distribution (Xie et al., 2020). Consequently, the 

literature has suggested that sEMG can be a valuable tool for evaluating spasticity by extracting 

its time and frequency domains (Yu et al., 2020).  

Certain researchers have already concluded that using time-domain features, such as root 

mean square, and frequency-domain features, such as mean power frequency, in sEMG has been 

correlated with the MAS (Yu et al., 2020). sEMG researchers have found a positive correlation 



 

 13 

between increased sEMG amplitude in spasticity patients and a high grade on the MAS (Huber et 

al., 2022). 

sEMG's ability to gain valuable biomechanical data regarding spasticity from its time and 

frequency domain makes it a promising tool for objective spasticity assessments. On the other 

hand, sEMG also has the potential to be used in a telehealth setting (Constantinescu et al., 2018). 

In recent years, various EMG assessments have been developed to be conducted virtually (Elbaz 

et al., 2021). 

 1.7.1 Signal Origin 

 When sEMG electrodes are placed on the skin’s surface, they can determine action 

potentials. When a depolarization-repolarization process occurs, the action potential travels to 

the surface of the muscle fibre. The depolarizing of the membrane is propagated down the 

muscle fibre and can be recorded by the electrodes (Turker & Sze, 2013). Once the sEMG 

electrode comes in contact with the action potential, it presents a bipolar signal to the sEMG 

differential amplifiers. This is because these electrodes measure the difference between two 

points during the propagation of the action potential. In summary, since sEMG signals are 

superpositions of several action potentials, they give us a window into the electrical signals 

present in many muscle fibres (Turker & Sze, 2013).  

 EMG signals are said to have an amplitude signal that ranges peak to peak from 0 to 10 

mV and has a frequency range from 0 to 500 Hz (Nazmi et al., 2016). 

 

 1.7.2 Barriers to sEMG  

While sEMG electrodes have been reliably used for post-stroke muscle spasticity 

assessments, many barriers prevent them from being easily used in a telehealth setting.  
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One of the most significant practical barriers to using sEMG in a telehealth setting is that 

it requires skin preparation before the electrode is placed to prevent any artifacts (Turker & Sze, 

2013). The skin must be properly cleaned and dried before the electrode is placed on the skin to 

record muscle activity. This involves using rubbing alcohol, ensuring the skin is not flaky, oily or 

dry, and ensuring any excess body hair is shaved before application. Preparing the skin is done to 

reduce the electrical impedance of the skin-electrode interface preventing noise in the sEMG 

signals (Turker & Sze, 2013).  

Another barrier to sEMG use is that precise electrode placement is required to produce an 

accurate sEMG signal. Two strategies are used to ensure proper electrode placement. The first is 

to ensure proper electrode contact with the skin, and the second is to minimize skin impedance 

(Turker & Sze, 2013). This barrier is especially present if dynamic movements are present during 

sEMG recording. For accurate sEMG measurements to be picked up by the electrode, it is 

essential to ensure the electrode is positioned on the muscle's longitudinal midline, between two 

motor points or between a motor point and a tendon insertion. Furthermore, the electrode's 

longitudinal axis must parallel to the muscle fibre's length (Turker & Sze, 2013).   

1.8 Acoustic (Mechano-) Myography as an Alternative 
  

Due to the electrical interference of sEMG and other barriers that may hinder the signal 

quality if it is misused, there is a need to find a suitable alternative if it is to be used in a 

telehealth setting without the presence of a specialist (Uwamahoro et al., 2021). An alternative to 

sEMG for muscle spasticity assessments virtually could be acoustic (mechano-) myography 

(MMG). MMG records mechanical events during a contraction (Ibitoye et al., 2014; Roberts & 

Gabaldón, 2008). Researchers have found that MMG provides information regarding muscle 
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contraction features and fibre-type composition (Uwamahoro et al., 2021). MMG signals are 

detected when changes in the muscle fibre diameter occur due to motor unit activation (Carr et 

al., 2018). Researchers have stipulated that the signal is generated by the muscle's lateral 

movements during contractions or relaxations when it moves towards or away from the Z line. 

Furthermore, the muscles' resonant frequency may also generate the signal through lateral 

oscillations. Lastly, dimensional changes in the active muscle fibres may also create a signal 

(Beck et al., 2005).  

The sensor may be a suitable alternative to sEMG for virtual spasticity assessments as it 

does not present the same barriers. However, it has not yet been well studied to determine if it 

can convey the same information regarding muscle contractions and spasticity.  

One of the most significant advantages of MMG is that it does not require any skin 

preparation beforehand and is less sensitive to where the sensor is placed on the muscle 

(Woodward et al., 2019). The acoustic signal from the muscle also has a much lower frequency 

range of 0 to 40 Hz when compared to EMG, reducing the bandwidth requirement when real-

time data is transmitted to the remote specialist clinician (Tarata, 2003). Therefore, MMG is 

much more user-friendly when used in a telehealth setting without the knowledge of an expert 

clinician present.   

 

1.8.1 Types of Acoustic (Mechano-) Myography 
 

There are various types of MMG transducers. These include hydrophones, condenser 

microphones, piezoelectric sensors and accelerometers, to name a few. The most commonly used 

MMG transducers are condenser microphones and accelerometers (Beck et al., 2005). 

Microphones pick up sound waves through the skin when the muscle contracts, causing a 
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diaphragm to oscillate, which is then detected electronically. On the other hand, vibration 

propagating through the skin's surface during a muscular contraction generates skin excursion, 

which accelerometers record (AlMohimeed & Ono, 2020; Linderman et al., 2023). 

 
1.8.2 Appropriate Transducer for Virtual Spasticity Assessments 
 

For this research, an accelerometer was chosen. The decision to use an 

acceleromyography sensor (AMG) was made because they are simple to calibrate, inexpensive 

and less susceptible to environmental noise, making an ideal alternative to sEMG for virtual 

spasticity assessments (Campbell et al., 2017). Previous studies have found that accelerometers 

have the most reliable signal acquisition and detection during voluntary muscle contraction. 

Researchers have also found it has a better signal-to-noise ratio than other MMG transducer 

types (Talib et al., 2018). An AMG is a lightweight design with great signal acquisition and is 

readily available, making it an excellent candidate for virtual spasticity assessments and a 

promising alternative to sEMG. 

 

1.9 Research Statement, Questions and Objectives 

It is not yet evident in the literature whether or not the AMG sensor is comparable to the 

sEMG in terms of the data it can collect and the information it can provide to clinicians for 

spasticity assessments. Therefore, the proposed research will examine how sEMG compares 

to AMG in the biomechanical data it can obtain for quantitative information on muscle activity 

during active and passive movements. The research will focus on upper extremity spasticity. The 

reasoning is based on a study by Lundström et al., which determined that spasticity is more 

frequently prominent in the upper limbs. Urban et al. also confirmed this in their research, where 

their findings found more frequent spasticity in the upper extremity muscles (Kuo & Hu, 2018).  
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Thus, the study aims to determine whether or not the sEMG and AMG sensors are 

comparable in collecting data to provide clinicians with information on muscle spasticity in a 

virtual environment in the upper extremities. 

The following research questions will be addressed: 

a) Is AMG comparable to sEMG in the ways it can detect slow and fast fibre changes in the 

frequency domain? 

b) How much does quantitative physiological information collected from sEMG during 

passive and active movements in the upper extremities compare to the AMG sensor?  

c) Are sEMG and AMG comparable in their ability to detect spasticity in the upper 

extremities of post-stroke patients? 

1.10 Relevance of Research  

The proposed research will allow enhanced virtual healthcare protocols for spasticity 

assessments. It will support the selection of the most practical sensors to provide clinicians with 

information on a patient's spasticity. This is crucial to our current health care system, which has a 

significant need for such a protocol as there is a large barrier in how stroke spasticity patients 

access these assessments. Stroke spasticity patients have physical limitations, which may 

significantly affect their mobility. Consequently, accessing in-person appointments is only 

sometimes feasible and sometimes requires a caregiver. For example, travel is expensive, time-

consuming and often hazardous for rural patients. The proposed research will allow for a basis in 

future research to develop a protocol healthcare clinicians can follow for objective virtual stroke 

spasticity assessments. This study is a step toward more accessible assessments and treatments 

for spasticity after stroke, essential to these patients' quality of life and independence. 
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1.11 Structure of the Thesis  
 

The thesis is divided into three chapters. The first chapter consists of the literature 

review. It evaluates current barriers to virtual sEMG found in the literature and how researchers 

have developed strategies to overcome these barriers so that the sensors can be used more 

adequately in a telehealth setting. 

Chapter 2 details the process of adapting a portable device based on a previous device, 

the TONE device, by Daniel Gillespie, a former Ph.D. student in Rehabilitation Sciences at the 

University of Alberta. The goal of this portable device was to record both raw sEMG and AMG 

sensors simultaneously, synchronized with an electrical goniometer to record elbow angle and 

angular velocity, be easy to use, and transmit adequate clinically relevant information to the 

remote clinician.  

Chapter 3 highlights the clinical study done to compare the two different sensors, sEMG 

and AMG, and determine which is the best suited for remote spasticity assessments in stroke 

patients. It demonstrates if the two sensors give comparable information for these assessments. 

Finally, the last chapter of the thesis is an overall discussion of the findings of this research. It 

includes future research suggestions on how clinicians and patients can move forward to make 

virtual spasticity assessments a reality. 

  



 

 19 

Chapter 2. Identifying and Overcoming the Barriers to Virtual 
EMG Assessments: A Scoping Review 

 
2.1 Abstract  
 

Introduction: Electromyography (EMG) assessments have been conducted virtually more 

frequently in recent years, leading researchers to explore the barriers to EMG assessments in a 

telehealth setting and how to overcome them. 

Methods: A scoping review was conducted according to the methodology described by Arksey 

and O’Malley. A comprehensive search using controlled vocabulary and keywords for two 

concepts, EMG and telehealth, was conducted using Medline and EMBASE on February 7, 

2022. Two independent reviewers screened titles, abstracts, and full-text articles. Two reviewers 

also extracted the data and described the findings in a descriptive analysis. 

Results: A total of 248 articles were screened during the abstract and title review, of which 64 

full texts were screened for eligibility. Of these, 15 publications met the inclusion criteria. Most 

articles were published in 2018 or later (66.7%). The most frequently mentioned barrier to 

conducting a virtual EMG assessment was poor data and signal trans- mission (53.3%). Another 

frequently mentioned barrier was poor patient usability (33.3%). Solutions most frequently 

reported related to patient usability (33.3%). These included interactive instructions and video 

chat to monitor and provide the patient with technical support. 

Conclusion: The last 4 years have seen an increase in articles published on EMGs’ use in 

telehealth to monitor or diagnose patients. Further research is required to determine if the 

proposed solutions have improved clinical outcomes for the patient. 
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2.2 Introduction 
 

Electromyography (EMG), which has been introduced into routine clinical practice since 

the 1950s, is a useful method of physiological monitoring of muscle activity (Ladegaard, 2002). 

It is an important diagnostic and monitoring tool in health care due to its crucial role in many 

biomedical and clinical applications. These applications include but are not limited to medical 

research, rehabilitation, and biomechanics (Heaffey et al., 2015). There are several clinical 

assessments that utilize EMG. For example, EMG is useful in clinical practice as it is used to 

diagnose muscle and nerve disorders such as peripheral neuropathy and carpal tunnel syndrome 

(Lee et al., 1999). 

EMG has traditionally been used for in-person clinical assessments. Recently, there has 

been an increased need and demand for virtual health care, in part, brought on by COVID- 19 

and also because of recognized inequities in access to care for patients in rural and remote 

settings. Telemedicine allows the delivery of care through internet-based services, and in the last 

few years, EMG assessments have begun to be conducted virtually (Elbaz et al., 2021). When 

used appropriately, telehealth has the potential to save health care dollars while simultaneously 

saving travel time and out-of-pocket costs for patients (Arksey & O’Malley, 2005). While tele- 

health has provided many advantages in the health care field, the use of EMG in telemedicine is 

recent and has been shown to have some constraints and limited use in practice (Arksey & 

O’Malley, 2005). 

The barriers to using EMG virtually and recommendations for overcoming these have 

been reported in the literature; however, to the best of our knowledge, a scoping review is yet to 

be conducted to assess and summarize these barriers. 

This scoping review aims to determine if there are any clinical or technical barriers to conducting 
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EMG assessments virtually and how they are used in a virtual health context. In addition, this 

review summarizes solutions that have been recommended to address barriers to using EMG as 

part of a virtual care assessment. 

The population of interest for this scoping review includes all patients who underwent 

virtual EMG assessments. 

 
2.3 Methods 

 

This scoping review used the methodology guided by Arksey and O’Malley (Tricco et 

al., 2018). However, in this case, only two data- bases were searched. This article adheres to 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) for scoping 

reviews (Covidence Systematic Review Software, n.d.). 

 
2.3.1 Search Strategy 

 

The search was conducted on February 7, 2022. Two electronic databases were used: 

Medline (1946-present through Ovid) and EMBASE (1946-present through Ovid). The search 

strategy used controlled vocabulary and free text terms to highlight the following concepts and 

objectives mentioned in the research question: (1) electromyography and (2) tele- health. 

Telehealth includes any general term for remote health (e.g., telerehab, telemedicine, m-health). 

Studies were limited to English, and news articles, editorials, and veterinary studies were 

removed from the results. The Medline search strategy can be found in the Appendix. All sources 

were checked to be peer-reviewed to maintain the accuracy of the results. 
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2.3.2 Inclusion and Exclusion Criteria  

 

Articles were included if they discussed the use of EMG assessments in 

telehealth or conducted remotely. This included but was not limited to wearable EMG 

devices and EMG virtual health applications (i.e., migraine, dysphagia, stroke, spinal 

cord injuries, and pain monitoring). Articles were only included if authors or 

investigators discussed the limitations of EMG assessments and/or how to overcome the 

barriers of conducting EMG assessments virtually. This included but was not limited to 

the transmission of the data virtually, the quality of the signal, the usability of the 

device, data storage, safety and patient confidentiality, and user-friendliness. The 

included article types were scientific peer-reviewed articles obtained from the electronic 

database search. All articles published during or after 2006 were included due to the rapid 

advancement of technology and the limited knowledge of telehealth and EMG 

assessments before 2006. Article settings that were included had to consider a virtual or 

remote setting during EMG assessments. Article interventions had to consider an EMG 

application that was used to assess or monitor a patient remotely. Article outcomes had to 

consider barriers or how to overcome barriers of remote EMG. Finally, articles had to 

consider a population that needed to use EMG to measure any sort of muscle activity due 

to neuromuscular disorders.  

Articles were excluded if they were not written in the English language due to 

feasibility. Articles were also excluded if they only included clinical EMG applications 

that did not consider their applications in a virtual setting. Books, newspaper articles, 

theses, dissertations, and conference abstracts were also excluded due to feasibility. 
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Finally, articles were excluded if they only described applications of EMG use virtually 

without considering any barriers to these assessments and/or how to overcome certain 

barriers to the data collection method. 

 
2.3.3 Study/Source of Evidence Selection 

 

All citations were uploaded into Covidence®, and duplicates were removed 

(Covidence Systematic Review Software, n.d.). Title and abstracts were screened and 

assessed by two independent reviewers against the inclusion and exclusion criteria. Next, 

two independent reviewers ordered full-text publications of all relevant titles and abstracts 

and screened against the inclusion and exclusion criteria. Finally, the reasons for 

excluding specific sources during the full-text that did not meet the inclusion and 

exclusion criteria were recorded. If any disagreements occurred between the reviewers 

during any stage of the selection process, these disagreements were resolved through a 

discussion-based meeting. 

 
2.3.4 Data Extraction 
 

One reviewer determined which variables would be extracted and created a data 

extraction form before the literature review. The data extraction process was done using 

Covidence by two independent reviewers who used the same form. Any disagreements that 

occurred between reviewers were resolved through a discussion-based meeting. Extracted data 

included general article information and characteristics (year of publication, the country where 

the study was conducted, the purpose of the study, and the setting). It also included key findings 
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related to the clinical and technical barriers of EMG used virtually and how these were 

overcome. The key findings also included restrictions to the scope of professional practice that 

could affect virtual EMG assessments. 

Results were synthesized by grouping the articles according to the types of barriers they 

presented and the proposed solutions for these barriers (if any). These were then each 

summarized. Finally, details for the evidence obtained in this review were presented through 

tables and graphs and a narrative summary. 

2.4 Results 
 

A total of 249 articles were imported into Covidence for screening in the initial search, 

with 1 duplicate removed. A total of 248 articles were screened for the title and abstract review. 

After the title and abstract screening, 184 articles were excluded, and 64 articles were obtained 

for a full-text review screening. Then, 49 articles were excluded based on the full- text screening 

because the study design (9 publications), setting (4 publications), population (1 publication), 

interventions (16 publications), or outcomes (18 publications) were not relevant to the scoping 

review. One publication was excluded because it had not been peer-reviewed. A total of 15 

articles were deemed relevant and included in the scoping review (Figure 1). 
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Figure 1. Preferred Reporting System for Systematic Reviews and Meta-Analysis diagram 
of the screening process. 

 
2.4.1 Article Characteristics  

 

A total of 15 articles were identified. The number of articles published concerning EMG 

and its virtual application and assessment has significantly increased over time, with a 

significant upward trend starting between the years 2018 and 2022 (Figure 2). 

The articles in the included texts were conducted in 11 different countries, most in 

the United States and Italy (20.0% each). The countries in which the articles were conducted are 

found in Table 3.  
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Most articles investigated the use of a wearable EMG sensor for EMG data monitoring 

and assessments (33.3%) (Berger et al., 2006; Ingvaldsen et al., 2021; Kantarcigil et al., 2020; 

Kishimoto et al., 2009; Sethi et al., 2020; Zhao et al., 2020). Some articles looked at algorithms 

for the compression of EMG signals to improve remote data transmission (20.0%) (Ahamed et 

al., 2013; Constantinescu et al., 2018; Dinashi et al., 2022). Some articles also compared the 

wireless portable EMGs to those typically used clinically to evaluate their strengths and 

weaknesses (20.0%) (Badawi et al., 2020; Palumbo, Ielpo, et al., 2021; Rogante et al., 2010). A 

few articles focused on studying the remote-based EMG sensor placement for the highest signal 

accuracy and comparing it to a research-grade (or clinically used) sensor (13.3%) (Hassan et al., 

2020; Marin-Pardo et al., 2021). Finally, a few articles focused on cloud-based systems for 

remote real-time information and data, unreliable real-time data (13.3%) (Hassan et al., 2020; 

Palumbo, Vizza, et al., 2021). 

Most of the articles were conducted in a laboratory setting (60.0%). Laboratory setting 

studies were done to design a specific device (i.e., wearable) for ease of use in a virtual setting. 

Two studies were done in a remote clinical setting (13.3%). Clinical setting encompassed both 

clinic-to-clinic and clinic-to-home models. The clinic-to-clinic model is when the patient is at 

a remote clinic with a clinical assistant and the specialist is located in a virtual setting. The 

clinic-to- home model is when the patient is at home and the specialist is located in a virtual 

setting. The articles did not mention which model was used. Finally, one study was conducted in 

a laboratory and then described a case study in a remote clinical setting (6.7%). In addition, two 

articles were reviews (13.3%), and one described a system (6.7%). Most studies were 

conducted with healthy participants (7 of 12 articles, 58.3%). The settings and the types of 

participants are presented in Tables 4 and 5, respectively. 
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Table 3. Country in which the study was conducted in the included texts. 
Country  Number of articles Percentage 

United States 3 20.0% 
Italy 3 20.0% 
Malaysia  1 6.7% 
Egypt 1 6.7% 
Brazil 1 6.7% 
Canada 1 6.7% 
Iran 1 6.7% 
Pakistan 1 6.7% 
Norway 1 6.7% 
Japan 1 6.7% 
China 1 6.7% 

 
Table 4. Description of the study setting.  
Description Number of Articles Percentage 
Laboratory 9 60.0% 
Clinical 2 13.3% 
Laboratory and clinical (case study) 1 6.7% 
Neither; reviews (one of which was a scoping 
review) 

2 13.3% 

Neither; description of a system  1 6.7% 
 
Table 5. Types of participants. 
Descriptiona   
Healthy participants 7 58.3% 
Head and neck cancer survivors (vs. healthy 
participants) 

1 8.3% 

1 stroke patient (case study) and healthy 
participants 

1 8.3% 

Stroke patients 1 8.3% 
Amyotrophic lateral sclerosis patients 1 8.3% 
Migraine patients 1 8.3% 

a from 12 articles; 2 articles were reviews, and 1 article was a simulation exercise  
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Figure 2. Number of published articles per year in the included texts. 
 

 
2.4.2 Barriers to Conduction sEMG Assessments Virtually  

 

Several barriers to conducting EMG assessments virtually were identified in the 

included articles. The most common barrier was related to the delayed or unreliable real-

time data of EMG signals in telemedicine due to high bandwidth consumption and the 

large amounts of data to be processed (80%) (Constantinescu et al., 2018; Hassan et al., 

2020; Kishimoto et al., 2009; Marin-Pardo et al., 2021; Palumbo, Ielpo, et al., 2021; 

Palumbo, Vizza, et al., 2021; Zhao et al., 2020). Some articles also mentioned that 

wireless EMG systems have high power consumption and low energy efficiency (13.3%) 

(Palumbo, Ielpo, et al., 2021; Palumbo, Vizza, et al., 2021). Cybersecurity issues to 

ensure data confidentiality were also raised as a concern (13.3%) (Hassan et al., 2020; 

Palumbo, Ielpo, et al., 2021).  

The second most common barrier mentioned in the articles was poor patient 

usability or user-friendliness in the clinic- to-home model (40.0%) (Badawi et al., 2020; 
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Hassan et al., 2020; Kantarcigil et al., 2020; Palumbo, Ielpo, et al., 2021; Sethi et al., 

2020). In this model of virtual EMG use, the patient is expected to apply the electrodes on 

their own. Because of the bulky equipment, the patients found it difficult to attach the 

electrodes to themselves without the clinician’s intervention. One article described that 

the surface EMG electrodes they used were too rigid and lacked flexibility, preventing 

their use as a wearable technology. One article mentioned that EMG electrodes required 

the electrodes to be at the exact anatomical location to obtain accurate recordings. 

Another article mentioned that there was variability in the sensor location across sessions. 

It was also difficult for the patient to pair the EMG sensor system to the application on the 

computer due to technological difficulties. One article mentioned that the system 

required a minimum level of computer knowledge to set up and utilize. Barriers to virtual 

EMG assessments are summarized in Table 6. 
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Table 6. Barriers to virtual EMG assessments. 
Barriers Number of articles Percentage 
Delayed or unreliable real-
time data 

12 80% 

Poor patient usability or 
poor user-friendliness 

6 40.0% 

High power consumption 
and low energy efficiency 
for battery-based systems 

2 13.3% 

Cybersecurity 2 13.3% 
 

2.4.3 Overcoming Barriers to Conducting sEMG Assessments Virtually  
 

The articles described various solutions by which the identified barriers could be 

managed to address the issues related to conducting EMG assessments virtually. 

 

Patient usability and user-friendliness. All articles that identified issues related to poor patient 

usability or user-friendliness proposed a solution for this barrier (33.3%) (Hassan et al., 2020; 

Kantarcigil et al., 2020; Rogante et al., 2010; Sethi et al., 2020; Zhao et al., 2020). Improvements 

in patient usability were recommended through more interactive instructions on how to operate 

the EMG independently. For example, two articles suggested adding tips and techniques 

progressively throughout the sessions (Hassan et al., 2020; Kantarcigil et al., 2020). Another 

article included an options menu for the software, which contained additional options for user 

support (Rogante et al., 2010). In some articles, a regular video chat between the clinician and 

patient would occur to monitor the patient and provide technical support. This ensured that the 

electrodes were placed correctly and that the EMG data were obtained accurately (Hassan et al., 

2020; Rogante et al., 2010). Another solution proposed regarding the bulkiness and rigidity of 

the system was to use an ultrathin wearable EMG electrode (20.0%) (Hassan et al., 2020; 

Kishimoto et al., 2009; Zhao et al., 2020). One article described one such system made of a 
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polyimide film in a honeycomb layout to allow for better flexibility and breathability over 

extended periods of time. It is important to note that usability will vary depending on the 

location. For example, in a clinic-to-clinic model where the EMG data are collected from a 

remote clinic and sent to a specialist in another location, usability may not be as large of an issue 

due to available help from a clinician on site. However, if the patient is being tested from home or 

a clinic-to-home model, it may be more challenging for a clinician to assist the patient in using the 

software or where to place electrodes, for example.  

 

Real-time data. To address the reliability of real-time data, several articles described various 

EMG systems being developed and validated to address this (20%) (Hassan et al., 2020; 

Palumbo, Ielpo, et al., 2021; Palumbo, Vizza, et al., 2021). It is important to consider that the 

EMG system does not contain any significant data above 200 Hz when it is used clinically. 

These data are used for comparing of the muscle or power spectra to identify fast or slow fibers. 

Data transfer latency could be managed through Fog computing architecture (6.7%) 

(Palumbo, Vizza, et al., 2021). Fog computing architecture is when a series of nodes will process 

the data in real-time when they receive it from an IoT device. The nodes will then send 

information to the cloud periodically (Palumbo, Vizza, et al., 2021). Consequently, this will allow 

to distill the results, allowing less data to be transferred, reducing transmission delay. Cloud-based 

systems have been reported to have data transfer delays (latency). Delays increase with an increase 

in the number of sensors used since the cloud server must deal with the data from all the sensors at 

once (Palumbo, Vizza, et al., 2021). Fog-computing architecture has been proposed as an option 

to minimize the delay and improve efficiency. It uses fog devices (nodes) as an extra data 

processing step that groups sensor data and then transfers it to the cloud server. This decreases 
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the amount of individual sensor data transferred to the cloud server (Palumbo, Vizza, et al., 

2021). 

Signal transmission could be improved with new methods of signal compression 

techniques (13.3%) (Ahamed et al., 2013; Constantinescu et al., 2018). For example, using 

discrete wavelet transform or deep convolutional autoencoders could reduce the size of the data 

without losing important information. These methods would be useful for minimizing data 

storage or removing irrelevant information within the data for better and faster data processing 

(Ahamed et al., 2013; Constantinescu et al., 2018). However, it is important to note that signal 

transmission speed will depend on the clinician’s goal and what they are trying to assess. Raw 

data transmission that is postprocessed transfers much larger amounts of data than if edge or fog 

computing is used (i.e., where the amount of data that is transmitted is much lower as it has already 

been processed). Edge or fog computing would allow to reduce the latency of the data being 

transmitted. 

Bandpass filtering, a technique that allows frequencies within a specific range and rejects 

frequencies outside that range, was proposed in three articles (20.0%) (Berger et al., 2006; 

Hassan et al., 2020; Kishimoto et al., 2009). The bandpass filter in one article had a bandwidth of 

20–500 Hz and a notch filter of 60 Hz. However, while the two other articles used bandpass 

filtering, the type of bandpass filter used was not mentioned. 

One article mentioned a dynamic bit allocation scheme which is a process for better utilization of 

the system’s memory space so that the data adjust itself to the available memory capacity (6.7%) 

(Constantinescu et al., 2018). 

 

Power consumption. A wearable system’s most significant power demand is its wireless 
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transmission. One study presented a novel EMG system that provided more power using a 

dual 9-V battery. One review article also suggested the use of dual 9-V batteries, passive 

electrodes with a battery for power supply on the sensor, or rechargeable Li-ion batteries to 

provide more power than the normal amount that needs to be consumed (13.3%) (Palumbo, Ielpo, 

et al., 2021; Palumbo, Vizza, et al., 2021). 

 

Security. While two articles mentioned that cybersecurity was an important consideration in 

telehealth, only one provided ways to ensure data privacy. Enhanced security was proposed 

through monitoring data in real-time, firewalls, anti-distributed denial of service (DDoS), 

Security Enhanced Linux (SELinux), and VPN (6.6%) (Rogante et al., 2010). Anti-DDoS is 

used to prevent malicious attempts to make the system unavailable to users. SELinux is an 

access control program that enforces security on a system. It has mechanisms that separate 

system integrity and data confidentiality (multilevel security). VPN can also be used for 

increased security as it provides privacy and anonymity for online users through encryption  

(Rogante et al., 2010).  

 

Solutions to overcoming barriers to virtual EMG assessments are summarized in Table 7. 
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Table 7. Ways to overcome barriers in virtual EMG assessments. 
Barriers Solutions  Number of 

articles 
Percentage 

Patient usability and user-
friendliness 

More interactive instructions (e.g., 
video chats, progressive tips) 

5 33.3% 

Reliability of real-time data Novel systems being developed 3 20.% 

Bulkiness and rigidity of 
system 

Use of ultra-thin wearable EMG 
electrode 

3 20.0% 

Signal quality  Bandpass filtering 3 20.0% 

High power consumption Use of dual 9-V batteries, passive 
electrodes or rechargeable Li-ion 
batteries for dual power supply 

2 13.3% 

Signal transmission Signal compression: new 
algorithm methods   

2 13.3% 

Bandwidth availability Dynamic bit allocation scheme 1 6.7% 

Cybersecurity Better security through monitoring 
data in real-time, firewalls, anti-
DDoS, SELinux and VPN 

1 6.7% 

Latency in real-time data 
transmission 

Use of Fog computing 
architecture  

1 6.7% 

 
2.5 Discussion 

 

This scoping review identified 15 published articles relevant to the research questions. 

While the scoping review considered articles published since 2006, most were published in the 

last 4 years. Technological advancements in society, in general, may explain this increase in 

articles. Alternatively, it may be due to the pursuit of technology development in more recent 

years to make telehealth a more frequent and feasible application to use. The COVID-19 

pandemic has required physicians and other health care providers to adapt their means to 
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deliver health care quickly through the use of online tools and digital and virtual applications. 

Statistics have shown that in April 2020, almost half of the physicians in the United States 

started to use telehealth, up from 18% in 2018. One could assume that similar data could be seen 

globally (Xu et al., 2021).  

The two countries with the most publications were Italy and the United States. Most of 

the remainder of the publications included in the scoping review was also from developed 

countries (Canada, Norway, and Japan), for a total of 60% of the articles published in 

developed countries (United Nation, 2014). This is consistent with studies that have shown that 

more programs have been attributed to telehealth in more developed countries. In 2019, it was 

estimated that the market for telehealth in the United States reached 43.4 billion dollars, with 

an annual growth rate of 17.7%. However, less effort has been put into telehealth in developing 

countries due to a smaller return on investment, a limited health care budget, and challenges due 

to limited technological infrastructure (Combi et al., 2016). Future research should explore the 

differences in barriers between developed and developing countries and how the availability of 

the technology, research funding, and socioeconomic factors influence the differences between 

the two. 

 
2.5.1 Barriers to Virtual sEMG Assessments  

 

The review revealed that the most common barrier to virtual EMG assessment reported in 

the literature was related to information technological infrastructure. The review characterized 

this as poor reliability of real-time data to remote locations and explained by the substantial 

amount of data collected. This barrier was reported in more than 50% of the studies. A 

significant concern was that poor reliability of real- time data could lead to wrong or delayed 
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diagnosis due to the inaccessibility of the data. When high volumes of data are being processed, 

transmitting data to a remote cloud server can cause high latency and network utilization. 

Consequently, this may mean improper care for the patient and needless patient suffering. 

Most commercial EMG systems use at least a 1000 Hz sampling rate. However, clinical 

data are typically in the range of 10 to 200 Hz range. Higher sampling rates provide an 

advantage to represent the amplitude of the EMG signal accurately. Nyquist theorem requires a 

minimum sampling rate that is at least twice the signal maximum frequency but also suggests 

that higher sampling rates give a better representation of the amplitude of the signal being 

sampled. A higher sampling rate will avoid missing essential data and better represent the 

amplitude envelope of your data. However, as mentioned, this creates high volumes of data 

processed and may cause this delay. It is also important to consider that there are two approaches 

you can use to transmit data. You can transmit data synchronously or asynchronously. Delay in 

asynchronous data is dependent on the duration of the measurement being made. 

Phones, laptops, and tablets were used to measure EMG remotely in the study, all of 

which use different transmission paths. Most mobile and computing systems have the processing 

power necessary to transmit EMG data. Two approaches are widely used for wireless 

communication and were reported in the articles used in the scoping review. One approach is to 

use Bluetooth operating at 2.4 GHz and the other is ZigBee protocol operating at 902 MHz. 

Everyday microcontrollers are capable of communicating with both Bluetooth and ZigBee 

protocols. It is important to note that these different transmission paths may cause variations in 

the reliability of the real-time data being received remotely. 

Some publications included wearable EMG devices as a rehabilitative intervention for 

neurological conditions (i.e., stroke). Wearable devices specifically are said to generate 
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substantial amounts of data. Unfortunately, health care systems may have inefficient databases to 

store or analyze a large capacity of information. Therefore, further technological advancements 

are required to address data collection and storage before these devices can efficiently be adopted 

(Aldekhyyel et al., 2021; Shah & Tomljenovic-Berube, 2021). 

The second most reported barrier was poor patient usability or user-friendliness, reported in 

40% of the articles, and unreliable real-time data, reported in 20% of the studies. The review 

reported that patients had difficulty attaching the EMG sensor to themselves or connecting the 

sensor to an application to self-monitor. Patient independence during the collection of EMG data 

remotely was challenging to achieve. This was primarily due to a lack of training before using 

the equipment. There is the risk that EMG data collection application without the direct 

involvement of the health care practitioner can lead to incorrect or incomplete data collection. 

These findings are consistent with what has previously been found in the literature regarding data 

collection obtained remotely with any medical devices in that usability is also a barrier, 

specifically for patients with any cognitive disability or low dexterity (Aldekhyyel et al., 2021; 

Shah & Tomljenovic-Berube, 2021). Elderly patients may also have difficulty reading the 

instructions to understand how to use the EMG device (Aldekhyyel et al., 2021; Shah & 

Tomljenovic-Berube, 2021). It is important to note that these barriers would only occur when 

data are being collected remotely or from the home to the clinic. In a clinic-to-clinic setting, the 

bandwidth of the clinic to acquire faster real-time data could easily be changed, and direct 

access to a clinician for assistance would improve user-friendliness. 

 
2.5.2 Overcoming the Barriers to Virtual sEMG Assessments  
 

Various solutions to overcome the barriers were proposed in the published articles. Patient 

usability was one of the most frequently mentioned barriers in the studies and, not surprisingly, 
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was the barrier in which most studies suggested ways to overcome this problem. This 

demonstrated that most studies focused on improving EMG virtual assessments centered around 

the patient’s skill requirements. One solution to this barrier was increasing patient confidence 

and independence through prior training before use and technical support through regular 

videoconferencing. Another solution was implementing specific tips and techniques to collect 

EMG data independently, which was added progressively in certain applications for the specific 

concerns that participants brought forward. Some articles even proposed increasing patient 

engagement with their clinician by suggesting that clinicians remotely intervene directly with the 

software collecting EMG data using remote desktop features of the videoconferencing system. 

User-friendliness was also mentioned in the articles, further highlighting that patient needs 

seem to be a priority in ensuring the success of virtual EMG assessments. This finding was 

expected because in telehealth providing exceptional patient usability and user-friendliness are 

essential to effective patient engagement and ensuring a positive patient experience. This aligns 

with the International Organization for Standardization definition of usability as “the extent a 

specific user can use a particular product or device to achieve goals of efficiency and 

satisfaction” (Aldekhyyel et al., 2021). 

Telehealth will only be made possible if patients are willing to participate. Most individuals 

will choose the most convenient option when choosing between in-person or virtual health care. 

Therefore, to improve telehealth and its popularity, most articles tended to focus on improving 

the ease of use for the patient. One option is to design how EMG data are collected (i.e., user-

friendly software and hardware) tailored to individual users’ needs. As such, this could 

significantly improve patient participation and adherence (Aldekhyyel et al., 2021). 
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Poor reliability of real-time data was the most common barrier identified in the articles, yet 

very few articles proposed solutions to overcome this. This demonstrates a knowledge gap in the 

current literature. While studies raised this as a significant barrier that needs to be overcome to 

allow data to be transmitted efficiently without consuming a large amount of bandwidth, 

solutions have not yet been applied successfully. 

Access to real-time data is important in certain clinical situations, such as obtaining a 

rapid result for immediate treatment or trying to synchronize a real-time assessment by 

video. Several articles described various EMG systems being developed and validated to 

address data reliability or to ensure that there is no delay in transmission in real-time. 

However, none suggested a hybrid approach where the preprocessed data would be sent in 

real-time and raw data asynchronously. 

 
2.6 Strengths and Limitations 

 

This scoping review identified articles of interest using two researchers who followed 

appropriate literature screening and study selection techniques. Data were extracted upon 

identifying relevant articles using a data extraction form designed a priori. The findings 

were grouped into similar themes. Disagreements between the reviewers were resolved by 

discussing and reaching a consensus. 

Some limitations of the scoping review are worth noting. To start, the scoping review 

did not appraise the quality of the articles. Even if the goal of this scoping review was to 

identify the barriers and solutions of virtual EMG reported in the literature, and 

assessing the quality is usually not a component of a scoping review, quality 

assessments should be strongly considered before these findings are applied to 
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improving future virtual EMG assessments for patient diagnosis and monitoring. In 

terms of limitations regarding the quality of the scoping review, the search was limited 

to two databases and only articles published in English were included. This may have led 

to missed studies, causing biased results as it narrowed down the search and the 

variety of articles obtained. 

Furthermore, 40% of the articles were from the United States or Italy, with only 

one publication (6.7%) in Canada. This may limit the generalizability of the 

findings to the countries of origin. A study done by Man et al. indicated a publication 

bias where articles were most likely to be published in high-ranking journals 

according to their English proficiency and the amount of funds available for research. 

This may directly impact the number of articles published by developing countries 

(Man et al., 2003). 

Third, a broad search was conducted for any application involving virtual EMG 

assessments. Barriers to conducting EMG assessments may vary according to the 

condition being diagnosed or monitored. In addition, different conditions may have 

different needs and impairments, which would reflect specific barriers. For example, 

patients suffering from low dexterity due to stroke may have a more specific set of 

barriers, such as difficulty placing the electrodes (Agha et al., 2013). However, a broader 

inclusion was used to get a bigger picture of general barriers to virtual EMG assessments 

as there is still not much research on the subject and, therefore, limited search results. 

Furthermore, another limitation involves the increasing popularity of the telehealth 

field, which means that, as technology advances, other barriers may emerge according 

to such advances. It is important to acknowledge that the scoping review may only be 
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relevant for a few years as the technology becomes more sophisticated, the identified 

barriers are removed or mitigated, and others are created. 

In addition, the EMG electrode was not placed in the same area for each study reviewed. 

Multiple layers of muscle affect its ability to detect deeper muscle activity. Using EMG is 

significantly compromised as there is cross talk between different muscles. There can also be 

two or three different muscles that are all firing and contributing to the signal. Therefore, 

muscle bundles can be tricky. Consequently, the quality of the signal does vary according to 

where it is located.  

Finally, it is safe to assume that the time or length of the EMG data collected varied per 

article, although this was not specific. This may have created a considerable difference in 

bandwidth consumption and real-time data per study. Bandwidth consumption may also vary 

dependent on the number of EMG channels used in the articles. Most articles used one EMG 

channel, but some used up to four. This may create a larger bandwidth consumption for 

those that use more channels, creating a large barrier to virtual EMG use. 

 
2.7 Conclusion 

 

In conclusion, as technology progresses, more and more health care practitioners are using 

telehealth as a means to monitor and diagnose patients. 

According to the published articles, the most commonly identified barriers to using virtual 

EMGs were poor patient usability of the device and signal and data transmission issues. This was 

followed by barriers which included high power consumption of battery-based systems and 

issues with cybersecurity. 

Most articles solved the barrier of patient usability by adding very precise and interactive 
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instructions that would make it easier to follow remotely. To have more accurate real-time data, 

many articles proposed to include fog computing architecture to allow the periodic transmission 

of information. Signal compression techniques and bandpass filtering were also proposed. 

Furthermore, the high-power consumption of battery-based systems was overcome by changing 

the battery to dual 9-V or Li-ion batteries. Finally, articles suggested using firewalls, anti-

DDoS, SELinux, and VPN for better cybersecurity. 

Various solutions were proposed; however, further research is required to determine if these 

solutions have resulted in enhanced use of virtual EMGs and improved clinical outcomes for the 

patient. Future studies should also consider how to overcome data security in EMG virtual 

assessments, as there was limited information found during the review. 

The results of the scoping review may be helpful to clinicians wishing to offer virtual EMG 

assessments. It may be used to improve clinical practice by developing best practices for using 

EMG virtually. It may lead to engineering research to improve virtual EMG. With constant 

advances in the technology used for telehealth, it is a question of time before many of the barriers 

to using EMG virtually become issues of the past. 
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Chapter 3. Development of a Portable Device for Virtual 
Spasticity Assessments  

 
3.1 Introduction 

 

Spasticity, which is a commonly seen complication in those suffering from neurological 

conditions such as stroke, spinal cord injuries, multiple sclerosis, cerebral palsy and traumatic 

brain injuries, usually requires a consultation with a specialist (Yee et al., 2023). Timely 

spasticity assessments and management are needed as the lack of proper assessments could result 

in the loss of joint range of motion, preventing or decreasing limb use of the affected limb. Thus, 

this may reduce the quality of life of the affected individual (Chang et al., 2013).  

 

In-person health care assessments for patients who live in rural or remote communities 

are often inaccessible due to the travel costs to a specialist clinic or hospital in a city. They may 

also be inaccessible or challenging for patients due to their physical limitations or the need to be 

accompanied by a caregiver. These are considerable barriers for how patients access their 

treatments, and spasticity assessments need to be more accessible (Haleem et al., 2021). Virtual 

health technologies are an innovative option for offering rehabilitation services. In recent years, 

healthcare professionals have been able to provide specialized care and treatment plans by 

connecting virtually with patients, regardless of their geographical location or any in-person 

restrictions preventing them from easily accessing a clinic (e.g. limited mobility) (Haleem et al., 

2021). 
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One of the many challenges of virtual health assessments for those suffering from 

spasticity is that there needs to be a way to replace information gathered with the current hands-

on assessments clinicians use. 

Current spasticity assessments require a clinician to subjectively "feel" for the “catch” 

and identify the responsible muscles while performing a series of movements to see if the patient 

requires Botulinum toxin injections (Peng et al., 2011). A “catch” in spasticity refers to 

involuntary contraction due to more rapid movement (van den Noort et al., 2009). The way the 

clinician evaluates the “catch” involves the Modified Ashworth Scale (MAS), which is used to 

measure increased muscle tone based on perceived resistance and elbow joint range of resistance 

during a passive stretch on a 6-point scale, where 4 means the affected limb is rigid to passive 

extension or flexion (Harb & Kishner, 2024; Yu et al., 2020). Another commonly used 

assessment is the Modified Tardieu Scale (MTS), which evaluates the velocity of a passive 

stretch graded on a scale from V1, which means it is as slow as possible, or V3, which implies it 

is as fast as possible. It grades the muscle reaction from 0 to 5, where 5 considers the joint 

immobile (Rivelis et al., 2024).   

 

Many researchers have also questioned the validity of these scales as they are subjective. 

There is currently no objective way of measuring spasticity, making it difficult to assess this 

virtually without the presence of specialized clinicians (Skalsky, 2017). Consequently, research 

is needed to develop virtual tools for optimal, efficient, and convenient care.  
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Thus, a portable device using biomechanical data to inform clinicians about spasticity 

could be developed to address the barriers of virtual and objective spasticity assessments. This 

would make these virtual assessments feasible and improve their overall accuracy.  

 

The Rehabilitation Robotics Lab at the University of Alberta developed a portable device 

based on the knowledge of what clinicians require during spasticity assessments. The device was 

based on a previous device built in the Rehabilitation Robotics Lab, the TONE device, by Ph.D. 

student Daniel Gillespie, whose objective was to develop a device that enables clinicians to 

evaluate biomechanical and neurophysiological data that allows them to understand spasticity 

objectively (Gillespie, 2023). The previous TONE device only recorded rectified sEMG data, 

while the device developed for this study recorded sEMG and AMG at the recommended 1000 

Hz sampling rate used for routine assessments. 

 

The device’s intended use would be achievable with a hub-and-spoke clinic-to-clinic 

model. In this case, the patient being assessed in a remote clinic has a staff member or assistant 

with limited knowledge of spasticity to perform the assessment using tools that transmit relevant 

data under the guidance of specialists via videoconferencing. 

 

In this paper, we report further development of TONE by considering whether acoustic 

(mechano-) myography (MMG) could replace the use of surface electromyography (sEMG) 

previously used in the original TONE device to monitor muscle activity when performing either 

the Modified Ashworth or Tardieu protocols. By doing so, MMG's relatively low bandwidth 
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requirements and user-friendliness can be adopted to accommodate real-world rural clinical 

settings. 

This paper will discuss the design approaches and objectives used to create a portable 

device based on the TONE device. It will incorporate both an MMG and sEMG sensor to enable 

synchronous comparison for research purposes.  

 
3.2 Clinical Context 
 
3.2.1 sEMG, Goniometer and Force Sensor to Replace the MAS or MTS 
 

To conduct spasticity assessments, clinicians rely on the MAS or MTS to evaluate muscle 

spasticity by “feeling” for a change in tone and a “catch." Researchers recognize the limitations 

of the MAS or MTS, which relies on the clinician's subjective judgement and does not consider 

spasticity's velocity dependency. To build a device virtually, however, we need to find tools 

suitable for conducting these assessments virtually and giving clinicians information similar to 

their gold-standard test (Yu et al., 2020). 

 

Electromyography. Muscle activity can be physiologically monitored with EMG, as it can record 

the electrical activity in response to a nerve stimulating the muscle during a contraction 

(Ladegaard, 2002). There are currently two methods for measuring EMG: intramuscular EMG 

and surface EMG. Intramuscular EMG employs electrodes made of typically 50-micron diameter 

stainless steel wires placed into a muscle guided by a hallow needle. In contrast, surface EMG is 

a non-invasive method using electrodes applied to the skin (Merletti & Farina, 2009; Mills, 

2005). One benefit is the ability to use sEMG in various telehealth settings, increasing its 

accessibility for patients who require virtual spasticity assessments (Constantinescu et al., 2018). 
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sEMG may also be a helpful tool for evaluating spasticity specifically. sEMG is currently used 

and known for being able to investigate the pathophysiology that composes spasticity. More 

specifically, Yu et al. found that sEMG signals can inform researchers or clinicians about a 

patient suffering from spasticity's motor unit spontaneous discharges. Research has also shown 

that patients with spasticity have an increase in the amplitude of sEMG signals during passive 

stretch (Yu et al., 2020). Therefore, studies have shown that sEMG can allow us to gain 

information about muscle tone and “catch” through objective data. In current clinical 

applications, sEMG is used to assess gait for patients who have experienced a stroke. The 

electrodes can identify which muscles become activated during the gait cycle (Fujita et al., 

2021). Consequently, current research has demonstrated that sEMG could be an excellent 

alternative for spasticity assessments to give clinicians similar hands-on information to the MAS 

or MTS. 

 

Force sensors. Force sensors also help to overcome the lack of “feel” in virtual assessments that 

clinicians use to indicate when a “catch” occurs during a spastic contraction, permitting a more 

objective value to replace the MAS or MTS in a virtual setting. The “catch” in muscle spasticity 

gives clinicians a cue for the presence of increased muscle tone (Rosales et al., 2011).  

 

Goniometers. A goniometer measures joint angles and monitors angular velocity during limb 

extension and flexion. It has been used clinically to assess spasticity, allowing clinicians to 

precisely measure the “catch's” joint angle during passive stretch. Goniometers provide very 

valuable information when conducting spasticity assessments virtually (van den Noort et al., 

2009). 
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In conclusion, combining these tools can potentially improve the access and accuracy of 

spasticity assessments. Based on this research, a portable device that includes muscle activity 

sensors, force sensors, and a goniometer can be a suitable alternative to the MAS or MTS 

currently used in practice as it gives adequate and comparable measurements.   

 
3.2.2 AMG Sensor as an Alternative to sEMG 
 

Although sEMG can give us information about muscle tone and “catch” for spasticity 

assessment, it has several constraints in practice if used virtually. Before using sEMG, the skin 

must be prepared to provide good electrical contact. This entails surface preparation using an 

alcohol swab and often shaving to remove hair. Proper skin contact is necessary to lower the 

skin’s electrical resistance and improve the consistency of the sEMG signal (Türker, 1993). 

sEMG also has a minimum bandwidth requirement of 57.6kB for one EMG channel. If sampling 

rates are lower to accommodate limited available bandwidth, this may result in inaccurate data 

(Türker, 1993).  

On the other hand, acoustic (mechano-) myography (MMG) has the potential to be a more 

user-friendly sensor as no skin preparation is required and bandwidth requirements are much 

lower. The AMG bandwidth requirement is found in the region of 4.8kB. Thus, this makes it 

readily available in most rural communities with internet or cell phone access. MMG can also be 

used without prior skin preparation or minimal skin contact (Ibitoye et al., 2014). MMG, 

therefore, has the potential to be more practical in settings where expert sEMG clinicians are not 

available.  
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Due to research done on the advantages of MMG sensors as opposed to sEMG, which has 

barriers when used in a telehealth setting, the revised version of the TONE system was designed 

to provide synchronous data from both an sEMG and an MMG sensor. Consequently, this would 

allow further research on how these two sensors may be comparable to evaluate muscle 

spasticity.  

MMG transducers convert the vibrations generated by the muscle contraction into a 

signal. The sensors record the vibration of muscle fibres as they slide past each other during a 

contraction. MMG signals can be detected as a sound wave transmitted from the muscle through 

the soft tissues to the sensor or a physical vibration generated at the skin's surface. Thus, MMG 

records the mechanical events that occur during a contraction, whereas EMG monitors the 

electrical events of a contraction (Ibitoye et al., 2014; Roberts & Gabaldón, 2008). Microphones 

and accelerometers are two well-known MMG transducers that convert vibrations into signals. 

Microphones detect sound waves generated when a diaphragm sensor couples with the skin. The 

diaphragm is displaced by the vibrations generated by the sound waves, which produce an 

electrical signal because the minute displacement of the skin is associated with pressure waves 

generated by the contractions. On the other hand, accelerometers can detect this motion 

(AlMohimeed & Ono, 2020). 

For this study, an ADXL 355 accelerometer was chosen as this type of MMG transducer as it 

is readily available, can be easily taped to the skin and is less sensitive to environmental sounds 

that can create artifacts (Campbell et al., 2017). Previous studies have also shown that 

accelerometers have a better signal-to-noise ratio compared to the other MMG transducer types 

(Talib et al., 2018). We used a tri-axial accelerometer on this device but only recorded data from 
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the axis perpendicular to the skin. Consequently, the portable device will compare the sEMG and 

acceleromyography (AMG) sensors. 

 
3.3 Objectives of the Development of the Device 
 

Based on the current clinical needs of spasticity assessments, the revised version of the 

TONE device includes a sEMG sensor, an AMG sensor, a force sensor and a goniometer having 

the following specifications:  

 
3.3.1 Real-Time Data 
 

The device should be able to display the real-time rectified sEMG sensor, force, and 

goniometer signal. Real-time data is a convenient way for the clinician to gain insight into a 

diagnosis and treatments during the assessment without any post-processing of the data required 

and match the signal generated by the sensors with visual observations. This would allow a more 

convenient use of the clinician's time and the opportunity to intervene early if necessary. 

 
3.3.2 Raw Data Storage on an SD card 
 

Second, the data obtained during these assessments should be stored on an SD card to 

enable comparison of the sensors’ spectral signals by post-processing the raw data. Currently, the 

literature states that an sEMG signal's power spectrum allows visualization of the magnitude of 

the frequency components that represent the signal. Its composition relays information about the 

patterns of muscle activity influenced by muscle fibre types (fast and slow twitch), muscle fibre 

fatigue, motor unit firing rates, and the summation of different action potentials at the site where 

the electrode is placed (Fuglsang-Frederiksen & Rønager, 1988).  
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3.3.3 AMG as an Alternative Sensor 

 

Lastly, an AMG sensor was added to find a more practical sensor to use in a telehealth 

setting, especially where bandwidth and clinical expertise are limited.  

 
3.4 Device Development  
 
3.4.1 Hardware Development  
 

The device was built on two printed circuit boards. The first incorporated the AMG, 

wearable force sensor, and goniometer sensors, with the hardware built to send the data 

wirelessly to the Dashboard or store the raw data on the SD card. The second board contained an 

amplifier circuit for the sEMG electrodes (Figure 3).  

The specific components of each sensor were the following: 

 

1. sEMG: The sEMG electrode used was an early version of the Delsys differential sEMG 

active electrode with an integral pre-amplifier and a 500 Hz low pass filter to avoid 

aliasing. The sensing surface of these electrodes is two 10 mm diameter stainless steel 

discs separated by a 20 mm stainless steel bar providing the ground.  

 

2. AMG: The AMG sensors used are 3D analog accelerometers. Therefore, they are 

sensitive to orientation relative to gravity. The AMG sensor is an ADXL 355 

accelerometer (+-3g range). This range was chosen to avoid the orientation and 

movement of the sensor relative to gravity, causing it to saturate. 
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3. Goniometer. The goniometer is an electrical potentiometer.  

 
4. Force sensor. The force sensor was designed specifically for this system according to the 

specifications provided by clinician colleagues. It can be worn on the hand of the 

clinician to take force measurements while the patient pushes up onto the force resistance 

to pick up the “catch” in patients with spasticity adequately. The force sensor 

incorporated two SEN-10245 force sensors. The signal conditioning circuit used for the 

force sensor was MIKROE-4658 by MicroElelektronika (Belgrade). The sensor was 

made using RTV silicon between two sheets of plexiglass. This allows the creation of a 

soft interface layer to the sensor material (Figure 4, 5).

 

 
 
Figure 3. Overview of the portable device and its component parts. 
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Figure 4. Overview of the inside of the force sensor. The arrows show the two sensors used 
on the board (SEN-10245) and the signal conditioning board (MIKROE-4658 by 
MicroElelektronika (Belgrade). 
 

 

Figure 5. Side view of the force sensors. Two plexiglass sheets, sealed with regular caulking 
silicon, contained the two sensors inside.  

 

The Arduino programming language was utilized to obtain the data from a Feather M0 

microcontroller (Adafruit, NY). 
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The portable device has one microcontroller that transmits data to the Dashboard via an 

XBee S1 802.15.4 module (Digi, Hopkins MN), receives it from a second microcontroller and 

XBee module, and stores the data on the SD card. 

 

Circuit 1 comprised two Feather Adaloggers to allow raw data storage on the SD card. 

The SD card data stores elapsed time, raw sEMG and raw AMG data. The first Adalogger (A) 

allows storing high-frequency sEMG and AMG data on the SD card at a high sampling rate for 

precise data acquisition. On the other hand, the second Adalogger (B) permits transmitting the 

real-time data (i.e., rectified sEMG, force and goniometer data) to a Dashboard found on a laptop 

using the Xbee wireless transmission system. Adalogger B runs an independent program that 

shares the same analog inputs as Adalogger A. Consequently, it can sample more slowly to 

transmit data wirelessly using the Xbee transmitter to the laptop's Dashboard. The Xbee wireless 

transmitter also transmits the sEMG, force, and goniometer angle to the Dashboard (Figure 6). 

 

Circuit 2 incorporated the sEMG electrode connections, the EMG signal processing 

amplifiers, the firmware, which included real-time rectification of the raw EMG signal and an 

XBee wireless transmitter that incorporated the rectified EMG, goniometer and force data. The 

EMG electrodes' pre-amplifier signals were further amplified, and an offset of about 1.6v was 

used to accommodate the bipolar nature of EMG and AMG by setting a trimmer to ensure the 

full sEMG signal was recorded. The inputs in this circuit were for two sEMG sensors and a force 

sensor pad. 
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Both the sEMG and AMG sensors were signal-conditioned through separate amplifiers. 

Once amplified, they input the microcontroller's AD converter channels. For the sEMG, the 

signal was connected to the AD converter channels of the SD card microcontroller and the 

Dashboard microcontroller. For the AMG, the signal was only recorded by the SD card 

microcontroller (Figure 7).  

 

 

 
Figure 6. Summary of the steps in which the wearable device sends data to be received on 
the SD card and the Dashboard wirelessly in circuit 1. The orange boxes indicate the 
receiving and transmitting sequence. The blue boxes indicate the end device for collecting 
and obtaining data.  
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Figure 7. Summary of the steps in which the sEMG and AMG sensor data were 
transmitted to the microcontrollers.  
 

3.4.2 Firmware Development  
 

The device's firmware used the Arduino programming language (Adafruit: Ivrea, Italy). 

The sampling rate used a low-pass filter at 500 Hz and was sampled at a little over 1000 Hz on 

both microcontrollers. The data sent to the Xbees was transmitted at a 57600 baud rate. 

 

Calibrations. The force sensor was calibrated with a force gauge. The force was placed on a flat 

surface, and the force gauge was applied with increased force over 5 data points. The calibration 

curve was plotted in Excel with the output force values (x-axis) against the force gauge values in 

Newton (y-axis). The linear equation from this plot was added to the programming software. 

Also, AMG sensor was calibrated by moving it according to three axes relative to reflect the x, y 

and z axes. The data obtained during the test was then plotted in Excel to ensure all three axes 
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were reflected. Furthermore, goniometer was calibrated to ensure its angle matched the set 

angles of a retractor. It was placed on a flat surface, and the retractor was placed on top of the 

goniometer. The protractor and goniometer were moved at 20-, 40-, 60-, and 80-degree angles 

according to the angle of the retractor. The calibration curve was then plotted in Excel with the 

goniometer values on the x-axis against the values of the retractor on the y-axis. The equation 

from the plot was added to the programming software. 

 
Rectified sEMG. The Arduino programming software was used to rectify the sEMG signal on 

the microcontroller before the data was transmitted to the Dashboard or stored on the SD card. 

Consequently, this reduced the bandwidth requirements for wireless transmission to the 

Dashboard. While designing the device, the smoothing done with the microcontroller intended to 

use a conservative approach to prevent essential features that are needed to quantify spasticity 

from being eliminated. Since this device is designed for research purposes and to determine these 

features, a more conservative approach was taken until the research could confirm the necessary 

parameters.  

 

3.4.3 Dashboard Interface  
 

A dashboard interface was included to enable the signals generated to be transmitted over 

Zoom using screen sharing. The Dashboard allows the integration of all the information needed 

for clinicians to make informative decisions on a patient's spasticity. Furthermore, once data is 

observed in real-time, the information obtained is saved as an Excel sheet. The information 

provided by the Dashboard includes the rectified sEMG signals and the force applied to gain 

information on muscle tone and the “catch” of a patient with spasticity. It also consists of a 
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goniometer to give information on the angular velocity of the “catch” during extension and 

flexion. 

 

The Dashboard was developed in C++ with Visual Studios (Microsoft: Redmond, WA). 

The goal was to read the data transmitted from the sensor system to an Xbee wireless receiver 

plugged into a desktop or laptop computer through a USB port. The serial data is encoded in 

packets by the Feather microcontroller, transmitted by the sensor system, received by an XBee 

receiver and then passed out by the dashboard software to be displayed in real-time on the 

dashboard application on the Windows-based computer. Force, goniometer, and sEMG readings 

were collected each time the loop was executed at 500 Hz. Raw EMG signals were averaged, 

creating an array of 10 values. This array was updated each time the loop was executed. Thus, 

average sEMG data was outputted to a wireless transmitter at about 1/10th of the sampling rate. 

The sampling rate was chosen to ensure that the Dashboard was synchronized with the device 

and that there was no significant visible lag. The sEMG signal transmitted to the Dashboard was 

in rectified form as the bandwidth of the wireless system and the processing time of the simple 

dashboard software did not permit raw sEMG transmission at the sampling rate employed by the 

sensor system's microcontroller, which was four channels at 1.2kHz. The data file saved by the 

Dashboard was post-processed after it had been transmitted to the Dashboard using a 3rd order 

low-pass Butterworth filter with a cut-off frequency of 0.5 Hz. Each parameter was appropriately 

scaled and plotted against time (Figure 8). 
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Figure 8. Representation of the real-time data available and shown by the Dashboard. 

 
3.5 Discussion  
 

The device allows researchers to evaluate whether goniometers, force sensors, and sEMG 

or AMG sensors give adequate information and can substitute for the currently used in-person 

assessment using the MAS or MTS. The intended use of this device is to research the most 

optimal way to conduct spasticity assessments using these tools for those who require them 

remotely.  

 

A next generation device could incorporate many additional things to make it more 

clinically relevant. First, future studies would need to look into how clinicians could capture 

various ranges of motions, such as flexion or extension, to evaluate spasticity. One potential 

solution to this problem is for researchers to look into the incorporation of an Inertial 

Measurement Unit (IMU) sensor and how data could be incorporated in real-time. IMU sensors 

are nine-axis sensors that contain a three-axis accelerometer, gyroscope, and magnetometer. 

Thus, these sensors can measure linear acceleration, angular speeds and magnetic fields. 
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Currently, a standard procedure is used for joint angle measurements by an IMU sensor, as seen 

in studies similar to the one conducted by Seel et al., which proposed a strategy for joint 

measurements during gait analysis using an IMU sensor (Yi et al., 2021). Researchers would 

have to explore if this can be applied to a telehealth setting to give real-time, reliable data. 

 

Currently evaluated using the MTS, joint angles can give clinicians an idea of the angle 

and angular velocity when the “catch” occurs, which can help indicate the severity of a patient's 

spasticity (Fujimura et al., 2022). Some clinicians may be required to evaluate particular joints 

that this device cannot target with the goniometer, such as hand spasticity or smaller extremities 

due to their small size. Measuring the joint angle of smaller joints, such as hands and fingers, 

may require the development of different computer applications or sensors to allow these 

assessments to occur virtually (Matsunaga et al., 2023). Heung et al. and other researchers have 

proposed a device that can estimate finger joint stiffness using a soft actuator, a type of robotic 

glove that is soft, flexible and portable. However, researchers are still determining if stiffness 

estimation is friendly for telehealth since it uses marker-based joint angle measurements 

(Matsunaga et al., 2023). Therefore, this may make the initial setup potentially difficult for these 

assessments. Other researchers have proposed the leap motion controller (LMC) as a 

replacement for this technology, a markerless hand and joint tracking device. Still, its accuracy 

has not been proven adequate for rehabilitation (Matsunaga et al., 2023). Future studies should 

look into a device or sensor that can seamlessly collect accurate information on joint angle and 

stiffness for the hand and finger joint that is user-friendly and easy to use in a virtual setting.  
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Furthermore, while some studies have performed sEMG muscle activity analysis for hand 

muscles or much smaller joints, such as sEMG applications for grasping objects, it is uncertain if 

this sensor could be used for spastic movements and if AMG is a suitable alternative (Jarque-

Bou et al., 2021). The validity of this device for different joints and extremities would need to be 

studied individually to determine an appropriate protocol. 

 
3.6 Conclusion 
 

The portable device is intended to be used for future research to see if it provides the 

information required to facilitate virtual spasticity assessments. The device offers real-time data 

of important measurement tools that could potentially allow clinicians to make informed 

decisions during a patient spasticity assessment. This is an excellent device for research proposes 

to enable researchers to see if it is feasible. For example, future studies that would like to know if 

sEMG and AMG are comparable for virtual spasticity assessments. Consequently, this allows for 

more accessible spasticity assessments where patients are not required to travel to an in-person 

clinic. Furthermore, it allows for more objective, quantifiable ways to measure spasticity. The 

combination of wireless data transmission through a visual dashboard and high-frequency data 

acquisition makes it a valuable tool for physiotherapists, physicians and researchers.   
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Chapter 4. Comparison of EMG and AMG Using a Portable 
Device Designed for Virtual Spasticity Assessments  
 
 

4.1 Introduction 
 

Spasticity is a common condition for those suffering from neurological conditions. This 

condition requires timely assessments and management to prevent the decreased use of the 

affected individual’s limbs (Chang et al., 2013). The Modified Ashworth Scale (MAS) is used to 

conduct these assessments. MAS is a 5-point scale to evaluate muscle tone based on the 

resistance of an individual's affected limb during passive stretch (Harb & Kishner, 2024). 

However, these assessments must be conducted in person. In-person spasticity assessments may 

be challenging for those who live in rural communities due to the associated cost and length of 

travel. It may also be a challenge for those who have physical limitations. Thus, there are 

significant barriers to how patients with spasticity access these essential assessments. 

 

Many researchers have studied how to conduct these assessments virtually efficiently. 

Some have suggested robotic-assisted methods for the autonomous evaluation of spasticity, 

while others have used surface electromyography (sEMG) to determine involuntary muscle 

activity due to spasticity (de-la-Torre et al., 2024; Guo et al., 2022; Xie et al., 2020). Many have 

stated that sEMG is a helpful tool to determine spasticity characteristics as it demonstrates 

muscle fibre characteristics for a spastic muscle through increased amplitude and fibre type 

detection.   



 

 63 

 
4.1.1 Slow and Fast Fiber Types 
 

Observing muscle fibre recruitment is an excellent way to study what occurs during 

muscle contractions. There are three major types of muscle fibres: slow twitch or type I fibres, 

fast twitch/intermediate or type IIa fibres, and fast twitch or type IIb fibres. These fibre types 

have different endurance capacities.  

Slow twitch fibres have a high endurance and a slow contraction speed, which is why 

they are referred to as having an oxidative metabolism. These fibres have a higher concentration 

of myoglobin, consequently allowing them to have an increased ability to transport oxygen 

(Soames, 1993). Thus, they can undergo sustained use during a muscle contraction as they 

produce more energy, but their force production is usually relatively low, making them better for 

aerobic activities.  

On the other hand, fast-twitch type IIb fibres will undergo fatigue at a much faster rate 

but will produce a much larger force (Melhorn, 1999). Therefore, they are well suited for short or 

fast activity bursts that require less oxygen than slow fibres. There are two different types of fast 

fibres. Fast-twitch type IIa fibres have an oxidative metabolism and glycolytic properties; thus, 

they can fatigue less quickly than type IIb fibres and generate a stronger force than slow-twitch 

fibres (Melhorn, 1999). 

 
4.1.2 Muscle Fibre Type Changes in a Spastic Muscle 
 
 For those with spasticity, the histopathology of spastic muscles shows slow fibres are 

predominant, whereas there is a deficiency in fast fibres (Gorgey & Dudley, 2008; Ito et al., 

1996). The reason is that fast fibre types are more vulnerable than slow fibre types to 

microtraumatic damage (Olsson et al., 2006). 
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4.1.3 sEMG Slow and Fast Fibre Detections on Power Spectra 
 

Power spectra allow us to convey information about the patterns of muscle activity. This 

includes motor activity influenced by motor unit potentials, muscle fibre fatigue and motor unit 

firing rates (Fuglsang-Frederiksen & Rønager, 1988; Lievens et al., 2020; Vukova et al., 2008). 

Previous studies have found that lower frequency components of power spectra are 

associated with slow muscle fibres, and higher frequency components represent fast muscle fibre 

activity (Grimby & Hannerz, 1977). Fatigue-induced changes alter the frequency content of 

power spectra for sEMG. In this case, we see an increase in low-frequency content. Researchers 

have found that these differences develop much quicker in fast fibres than in slow fibres 

(Fuglsang-Frederiksen & Rønager, 1988; Vukova et al., 2008). The literature has indicated that 

since sEMG shows the electrical activity of a muscle, it needs to adapt to the loss of fast-fibre 

motor neuron activity during a sustained contract by replacing them with slow-fibre motor 

neurons. Thus, slow and fast fibres are seen in the sEMG power spectrum and can be used to 

evaluate muscle fatigue and, potentially, muscle spasticity by observing the concentration of fast 

fibres (Fuglsang-Frederiksen & Rønager, 1988; Vukova et al., 2008).  

However, it has been found that sEMG has some constraints if used in a telehealth 

setting, making it an unideal candidate for virtual spasticity assessments. The most considerable 

constraint is its ease of use. Since the skin must be cleansed before its use, and sEMG requires 

good skin contact, this may lead to inaccurate data collection if these steps are not followed 

adequately (Türker, 1993). There is also a very high bandwidth requirement when using sEMG. 

Consequently, large amounts of processed data may lead to slow or delayed real-time data, 

which clinicians must access for timely spasticity assessments (Türker, 1993). 
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4.1.4 Acoustic (Mechano-) Myography Sensors as an Alternative to sEMG 

 
Acoustic (mechano-) myography sensors (MMG) have feature extraction capabilities 

similar to sEMG devices, including time and frequency domain feature extractions. However, it 

does not have some of the barriers sEMG presents (Krueger et al., 2014). It can be used without 

skin preparation and with minimal skin contact. It requires a much lower bandwidth requirement. 

Thus, this sensor is more user-friendly and has the potential to be used without an expert 

clinician present, delivering faster, more reliable real-time data (Krueger et al., 2014). 

Researchers have concluded that using MMG frequency domains to generate power 

spectra may give insight into the firing rates of motor units. It has been speculated that MMG 

power spectra also contain information regarding slow and fast fibres. Previous investigators 

have suggested that the high-frequency components between 15 and 60 Hz in an MMG give us 

information on fast twitch motor units. Below 15 Hz, the power spectrum of an MMG could 

provide information about slow-twitch motor units (Beck et al., 2007). However, researchers are 

still determining, due to the nature of MMG and its ability to reflect the mechanical output of the 

muscle instead of its electrical activity, if it is less sensitive to detecting frequency components 

of muscle activity. Thus, further research is required to confirm these speculations (Woodward et 

al., 2019). 

Currently, two commonly used MMG sensors have been studied extensively in the 

literature. The first is microphones, which can detect skin displacements during a contraction. 

The second type of MMG sensor is the accelerometer sensor, which detects skin surface 

displacements when muscles contract and thus can measure the acceleration of the x, y and z 

axes (AlMohimeed & Ono, 2020). These are commonly referred to as acceleromyography 

sensors (AMG). For the purpose of this research, an AMG is the type MMG sensor used due to 



 

 66 

its lightweight design, low signal-to-noise ratio, and reliability in terms of the signal it can pick 

up (Talib et al., 2018). 

 
4.1.5 Purpose and Objectives  
 

This paper aims to explore if the sEMG and AMG sensors are comparable in the way 

they are able to detect features that occur while the muscle contracts. A portable device was 

designed at the Rehabilitation Robotics Lab at the University of Alberta based on the previous 

TONE device designed by Daniel Gillespie, a former PhD Rehabilitation science student. The 

device offers real-time, and stored sEMG and biomechanical data obtained from electronic 

goniometers and force sensors. It also includes the data from an AMG sensor. Daniel Gillespie 

had already compared how the biomechanical data of goniometers, force sensors and sEMG is 

manifested under spastic conditions (Gillespie, 2023). However, it has not yet been determined if 

AMG could be substituted for sEMG as a sensor to evaluate muscle spasticity.   

 

Therefore, the first part of the study involved a muscle fatigue test to determine if similar 

information about muscle fibers can be picked up by the AMG sensor. Hence, this will allow us 

to conclude if slow and fast fibers are recruited on an AMG power spectrum, similar to what is 

observed on an sEMG sensor, by observing if similar shifts to lower frequency are observed 

during muscle fatigue.   

To determine if AMG could pick up slow and fast fibers the following research question 

was addressed: 

Do the trends in the characteristics of the power spectra for sEMG and AMG differ in detecting 

a significant change in slow and fast fibre ratios generated by inducing muscle fatigue?  
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The research question will be answered using the following hypotheses: 

Null hypothesis: There is no significant change in the ratio of slow to fast muscle fibre 

recruitment represented by the frequency peaks in their power spectra with muscle fatigue. 

Alternative hypothesis: There is a significant change in the ratio of slow to fast muscle fibre 

recruitment represented by the frequency peaks in their power spectra with muscle fatigue. 

 

 The second part of the study involved testing the consistency (variance) of sEMG and 

AMG in obtaining the slow-to-fast fibre ratios represented by the peaks in the power spectra 

between participants when conducting an isometric contraction repeatedly. 

 

Since it was established that the AMG and sEMG sensors represented slow and fast fibre 

recruitment, a pilot study was conducted on 3 participants to determine if sEMG and AMG 

sensors could pick up characteristics of muscle spasticity when comparing the affected and the 

non-affected arm during active and passive movements. A passive stretch exercise was used to 

evaluate the passive movement as the literature has already established that sEMG can detect 

spasticity through increased rectified amplitude (Nazmi et al., 2016). Therefore, this exercise 

would allow us to determine if AMG can pick up spasticity characteristics through a rectified 

amplitude change similar to sEMG. Furthermore, the active movement to determine spasticity 

characteristics was chosen as an isometric contraction during this test. Studies have found that 

sEMG signals recorded under isometric conditions are commonly used clinically to classify 

muscle fatigue and neuromuscular diseases. Thus, the third part of the study aimed to see if 

accurate and quantifiable data could be obtained to evaluate and see signs of muscle spasticity, 
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specifically in the time and frequency domain, and if the data was comparable between both 

sensors. 

 

4.2 Methodology 
 
4.2.1 Optimal Sensor Placement Location 

 
A pilot test was conducted to ensure the optimal location for the sEMG and AMG sensors 

on the upper extremities, allowing for the best data and optimal comparison between both 

sensors. 

 

The sensor was placed on the upper bicep, lower bicep, and forearm muscle belly. A 

single participant was asked to perform an isometric contraction by putting their arms under a 

table at 90 degrees and pushing upwards onto the resistance to generate a maximum voluntary 

contraction (MVC). They were asked to hold this contraction for 5 seconds.  

 

The raw data was plotted and rectified using MATLAB. The data was filtered using a 

second-order Butterworth filter. For the sEMG, the filter had a low-pass filter of 5 Hz and a 

high-pass filter of 0.05 Hz. On the other hand, the AMG sensor had a low-pass filter of 2 Hz and 

a high-pass filter of 0.1 Hz. 

 

The results showed that the upper biceps give a more distinct signal for sEMG with an 

amplitude of about 225 mV for the upper bicep, whereas the lower bicep only has an amplitude 

of over 150 mV (Figure 9, Figure 10). On the other hand, the raw AMG signal appears to be less 

sensitive to position. It is important to note that we assumed the contraction strength stayed 
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relatively the same. In conclusion, this test confirmed that an adequate signal is more likely on 

the muscle belly upper bicep and this position was chosen for the measurements taken in this 

study. 

 

 

 
Figure 9. Rectified sEMG and AMG against time during isometric contraction for a MVC 
in the lower bicep.  
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Figure 10. Rectified sEMG and AMG against time during isometric contraction for a MVC 
in the upper bicep.  

 
 
4.2.2 Muscle Fatigue Test 
 

Participant recruitment. The Rehabilitation Robotics Lab at the University of Alberta in 

Edmonton, Alberta, was the study's recruitment, advertising, and data-gathering site. This study 

recruited and included 10 participants. 

 

Inclusion criteria. The study's participants were required to be older than 18 to be included. 

They must comprehend the instructions, which may be achieved by alternative means or by 

using a translation in case language is an obstacle. Participants must have a complete upper limb 

range of motion and show no signs of spasticity or prior diagnosis. 

 

Exclusion criteria. Participants with a history of central nervous system injury or additional 

diagnoses were not eligible to participate in this study.  
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Experimental protocol. The sEMG and AMG sensors were positioned to record data 

simultaneously in the muscular belly of the biceps brachii. Alcohol wipes were used to prepare 

the skin before placing the sEMG sensors. An EMG sensor grounding pad was also placed on the 

elbow. The electrodes on the bicep were held in place, allowing optimal skin contact with pro-

wrap.  

During the data collection, participants were instructed to sit in a chair with their joint 

angles maintained at 90 degrees. They rested their arms on a stool to retain their joint angles at 

this position. 

For data collection, participants were instructed to push upward against a fixed resistance 

without moving their arms, performing an isometric contraction. In this instance, a table in front 

of them served as the resistance by placing their hands under the table when they pushed 

upwards. They were instructed to press as hard as possible against the resistance to execute their 

MVC. Participants were asked to hold their MVC until they felt tired and could no longer hold 

the contraction. While holding their MVC, they were timed for the time it took to feel fatigued.  

 

Data analysis. Using a MATLAB program written for this study, a frequency analysis based on 

Fast Fourier Transforms (FFT) of the data was used to generate a power spectrum for each of 

sEMG and AMG signals. The peaks in the spectrum were associated with those reported in the 

literature for the recruitment of slow and fast fibre of sEMG. The amplitudes and frequencies of 

these peaks were calculated as ratios as muscle fatigue set in. The sEMG and AMG data Excel 

sheet was divided into five equal epochs in the contraction burst, representing the progression of 

muscle fatigue. The greatest fatigue was anticipated to occur at the end of the contraction or the 
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highest epoch number. A linear regression was plotted to determine if the frequency and 

amplitude ratios change as muscle fatigue progresses, and the epoch number grew was used to 

confirm this.  

The MATLAB program was used to generate the power spectra for the five epochs for 

sEMG and AMG, and data was then plotted as a power spectrum. sEMG and AMG were plotted 

at a sampling frequency of 1258 Hz and filtered using a 2nd-order Butterworth filter. The two 

peaks were identified once these were plotted as a power spectrum. The two peaks for sEMG 

represent slow fibres at the lower frequencies and fast fibres at the higher frequencies. The 

amplitude and frequency of both peaks were recorded using MATLAB, which was used to select 

the two peaks and find the maximum values of each peak (Figure 11, Figure 12). Once recorded, 

the slow-to-fast fibre ratio was calculated for the frequency and amplitude.  

Once slow-to-fast fibre ratios (low-frequency peak 1 to high-frequency peak 2) were 

calculated, both the amplitude and frequency ratios for each epoch per participant were 

transferred to SPSS for analysis. A repeated measures ANOVA was conducted for both sensors 

for the amplitude and the frequency ratios of the different epochs for the sample of 10 

participants. 
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Figure 11. Demonstration of how the frequency and amplitude values were recorded using 
MATLAB for the sEMG power spectrum. 
 

 
 

 
Figure 12. Demonstration of how the frequency and amplitude values were recorded using 
MATLAB for the AMG power spectrum. 

 
4.2.3 Reliability Test 
 

Participant recruitment. The study data collection location, recruitment, and advertising 

occurred at the Rehabilitation Robotics Lab at the University of Alberta in Edmonton, Alberta. 
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Ten participants were recruited and included in this study. 

 

Inclusion criteria. The participants in this study had to be over 18 years old. They were also 

required to understand the instructions through a translator if language was a barrier or through 

other means. Participants were required to have a full range of motion in the upper limbs with no 

previous diagnosis or indication of spasticity. 

 

Exclusion criteria. Participants were excluded from the study if they had an additional diagnosis 

or previous injury to the central nervous system. 

 

Experimental protocol. The sEMG and AMG sensors were placed on the muscle belly of the 

biceps brachii EMG to record data simultaneously. Before applying the sEMG sensors, the skin 

was prepped using alcohol wipes. A grounding pad for the EMG sensor was also placed on the 

elbow. Pro-wrap was used to hold the electrodes on the bicep and allow for good skin contact.  

During data collection, participants were asked to sit on a chair and maintain their joint angle at 

90 degrees with the help of a stool placed beside them.  

Participants were first asked to perform an isometric contraction for data collection by 

pushing upwards onto a stable resistance without moving the arm. In this case, the resistance was 

underneath a table in front of them. They were asked to perform their MVC by pushing as hard 

as they could on the resistance. The participant was asked to hold this contraction for 5 seconds. 

Participants repeated this isometric contraction five times at MVC.  

 

Data analysis. The slow-to-fast fibre ratio for sEMG amplitude and frequency and AMG 
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amplitude and frequency were collected for all 10 participants. This was done through their 

power spectra generated on MATLAB, using the same methodology as the muscle fatigue test in 

chapter 4.2.2. The mean and standard deviation between subjects were calculated for both 

sensors using the ratios.  

Consequently, this allowed us to see how reliable the two sensors were in detecting the 

slow and fast fibres by calculating the percentage of the coefficient of variation using the 

following formula: 

standard deviation
mean

×100 

 

4.2.4 Test on Patients With Post-stroke Spasticity  
 

Participant recruitment. The study data collection location, recruitment, and advertising 

occurred at the Glenrose Rehabilitation Hospital in Edmonton, Alberta. Three post-stroke 

spasticity participants were recruited and included in this study. The sample size was chosen as a 

proof-of-concept study to get a baseline idea of how sEMG and AMG would be used to evaluate 

spasticity in stroke patients and determine a suitable protocol for future studies.  

 

Inclusion criteria. The participant must be over 18. Participants would be included if they had a 

hemorrhage or ischemic stroke producing an upper motor syndrome resulting in documented 

problems of spasticity in the upper limbs. Also, the participant had to communicate effectively, 

with the help of a third person, completing answers on their behalf when required. 

 

Exclusion criteria. Participants were excluded if they had causes of spasticity other than stroke 
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(e.g. multiple sclerosis, spinal cord injury, etc.). Participants were also excluded if they presented 

with dementia, confusion, delirium or significant cognitive impairment. Furthermore, those with 

generalized disorders of muscle activity (e.g. myasthenia gravis, Lambert-Eaton syndrome, 

amyotrophic lateral sclerosis) or any other significant peripheral neuromuscular dysfunction 

were excluded. 

 

Experimental protocol.  Similarly to the other two studies, the sEMG and AMG sensors were 

placed on the muscle belly of the biceps brachii to record data simultaneously. The same skin 

preparation measures were taken to ensure good skin contact and limited skin impedance of the 

sEMG sensor.  

Participants were asked to sit down while a research assistant helped maintain their joint 

angle at 90 degrees.  

Participants were first asked to perform a series of movements using their non-affected 

arm. They were first asked to push upwards onto the research assistant's hand, which acted as a 

resistance to generate an isometric contraction at MVC. They repeated this exercise 5 times. 

Participants were then asked to relax their arms, and with the help of the research assistant, their 

arm was passively extended five times.  

Participants were asked to repeat these two sets of movements one more time using their affected 

arm with the help of the research assistant.  

 

Data analysis. Data was analyzed using MATLAB for a single trial. Power spectra for the 

isometric contractions of the affected and non-affected arms for sEMG and AMG were generated 

on MATLAB using the same methods and parameters as the muscle fatigue test in chapter 
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4.2.2.5. MATLAB was also used to generate a signal-to-noise ratio for sEMG and AMG. This 

was done by taking the root mean square of the sensor at baseline and then the root mean square 

of the contraction.  

The root mean square formula is the following: 

 √1
n

Σx2 

Where n is the number of measurements and x represents each value. 

Then, the signal-to-noise ratio was calculated by dividing the root mean square of the 

contraction by the root mean square of the baseline to the signal-to-noise ratio.  

To calculate the signal-to-noise ratio in decibels (dB), the following formula was used: 

20×log10 (
root mean square of contraction

root mean square of baseline
) 

 

 

 

For the passive stretch movement, data for the sEMG and AMG of the affected and non-

affected arms was rectified using MATLAB. The data was plotted at a sampling frequency of 

1258 Hz and filtered using a 2nd-order Butterworth.  

 

 

 

4.3 Results 
 
4.3.1 Muscle Fatigue Test  
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 The study included 10 participants, four males and six females, with an average age of 

25±5. Slow and fast fibre ratios for the amplitude and frequency of the sEMG and AMG were 

calculated per epoch per participant.  

 

Mean amplitude and frequency plot. The mean amplitude and frequency ratios for both sEMG 

and AMG for each epoch were plotted against participant number. The results demonstrated that 

mean sEMG and AMG frequency and amplitude ratios tend to increase as the epoch number 

increases when observed between participants (Figure 13, Figure 14, Figure 15, Figure 16). 

 

Linear regression. A linear regression was plotted to represent the frequency and amplitude ratio 

changes as the epoch number increased for both sensors. The results indicated that the linear 

regression of the frequency ratio with change in epoch number appeared to indicate a moderate 

correlation for sEMG and a strong correlation for AMG based on Chan et al. interpretation of 

Pearson’s correlation coefficient (Akoglu, 2018). In this case, sEMG has an R2 value of 0.5 or an 

R-value of 0.7, and AMG has an R2 value of 0.6 and an R-value of 0.8 (Figure 17). Chan et al. 

have indicated that a correlation coefficient of 0.7 indicates a moderate correction, and 0.8 is a 

very strong correlation (Akoglu, 2018). For the results regarding the linear regression of the 

amplitude ratio with a change in epoch number, the correlation coefficient for sEMG remained 

the same. In contrast, the AMG correlation coefficient appeared weaker than those for frequency 

ratios. sEMG had an R2 value of 0.4 and an R-value of 0.7. Meanwhile, AMG had an R2 value of 

0.5 and an R-value of 0.7 (Figure 18). Thus, both sEMG and AMG had a moderate correlation of 

the amplitude ratio change with epoch number. 
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Repeated measures ANOVA. A repeated measures ANOVA was conducted on SPSS to address 

the following hypotheses: 

Null hypothesis: There is no significant change in the ratio of slow to fast muscle fibre 

recruitment represented by the frequency peaks in their power spectra with muscle fatigue. 

Alternative hypothesis: There is a significant change in the ratio of slow to fast muscle fibre 

recruitment represented by the frequency peaks in their power spectra with muscle fatigue. 

 

The repeated measures ANOVA was done as four separate tests, which are listed as follows: 

• sEMG amplitude ratios for each epoch 

• sEMG frequency ratios for each epoch 

• AMG amplitude ratios for each epoch 

• AMG frequency ratios for each epoch 

 

All epoch ratios for each of the four tests were tested to ensure they were normality 

distributed using the Kolmogorov-Smirnov and Shapiro-Wilk tests. It was also confirmed that 

no outliers existed in the dataset for each epoch ratio for the different tests. Lastly, if sphericity 

was found in the dataset, the Wilks' Lambda test was used to determine significance. Sphericity 

was found in all tests except for the AMG amplitude ratios test, in which the Greenhouse-

Geisser correction was used to assess significance. An alpha or significance level of 0.05 (95% 

confidence level) was used. The results of each test are summarized in Table 8. 

Based on the results obtained during the repeated measures ANOVA, we can conclude 

that since the p<0.05 in all cases, we have statistically significant effects between the slow and 

fast fibre ratios for either the amplitude or frequency of both sensors during various epochs 
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between participants. Therefore, we reject the null hypothesis for all tests. Consequently, we can 

conclude that we observe a significant difference between slow and fast fibre frequency and 

amplitude ratios for both sensors through muscle fatigue. 

 
Table 8. Summary of the significance values for each different test of the repeated 
measures ANOVA. 

Test type Significance value  
sEMG amplitude ratios 0.004* 
sEMG frequency ratios 0.001* 
AMG amplitude ratios <0.001* 
AMG frequency ratios 0.004* 

*Indicates a significant result at a confidence level of 95% 
 

 
Figure 13. Mean sEMG amplitude ratios over five epochs while the muscle is being fatigued 
in a sample of 10 participants. The contraction was divided into five equal epochs. 
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Figure 14. Mean sEMG frequency ratios over five epochs while the muscle is being fatigued 
in a sample of 10 participants. The contraction was divided into five equal epochs. 
 

 
Figure 15. Mean AMG amplitude ratios over five epochs while the muscle is being fatigued 
in a sample of 10 participants. The contraction was divided into five equal epochs. 
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Figure 16. Mean AMG frequency ratios over five epochs while the muscle is being fatigued 
in a sample of 10 participants. The contraction was divided into five equal epochs. 
 

 
Figure 17. Side-by-side comparison of the linear regression for the frequency ratio change 
per epoch for the sample of all 10 participants for both the sEMG and AMG sensors. 
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Figure 18. Side-by-side comparison of the linear regression for the amplitude ratio change 
per epoch for the sample of all 10 participants for both the sEMG and AMG sensors. 
 
4.3.2 Reliability Test  

The study included 10 participants, five males and five females. The average age of the 

studied participants was on average 25±5 years. 

 The raw data showed that the sEMG slow fibre frequency ranged from 28.3 to 71.8 Hz, 

and the fast fibre frequency ranged from 45.0 to 95.3 Hz. On the other hand, the AMG slow fibre 

frequency ranged from 5.0 to 10.1 Hz, and the fast fibre frequency ranged from 8.8 to 18.3 Hz.  

A reliability test was done to test the coefficient of variation for both sensors' slow-to-fast 

fibre ratio amplitudes and frequencies for all five trials between participants. Consequently, this 

would evaluate the dispersion of the data around the mean. Thus, this would allow us to 

determine if one sensor has less variability or a lower coefficient of variation and is, therefore, 

more reliable than the other. It was seen that the coefficient of variation for sEMG and AMG 

amplitude ratios are relatively the same. The sEMG coefficient of variation was 28.1%, and the 

AMG coefficient of variation was 27.3% (Table 9). 
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However, the coefficient of variation for the sEMG frequency ratios is a bit smaller, at 

17.7%, whereas the AMG coefficient of variation is 20.2.% This indicates that there may be less 

variability in how sEMG detects slow and fast fibre frequency ratios compared to AMG (Table 

9).  

 

Table 9. Summary of the coefficient of variation for each different test.  
Test type Coefficient of variation (%) 

sEMG amplitude ratios 28.1 
sEMG frequency ratios 17.7 
AMG amplitude ratios 27.3 
AMG frequency ratios 20.2 

 

4.3.3 Test on Patients With Post-stroke Spasticity 

Three people with upper extremity post-stroke spasticity participated in the study. It 

consists of one male and two females with a mean age of 68.3 ± 2.9 years, with a mean time 

since stroke diagnosis of 10.6 ± 8.4 years (Table 10). It is important to note that some 

participants received Botulinum toxin injections to help decrease joint and muscle stiffness.  

 

Active movement test. A series of active movements were first used to evaluate spasticity 

characteristics. Results for the isometric movement showed that both sEMG and AMG did not 

have fast fibres in their arm affected by spasticity for all participants in the study. However, the 

slow fibre frequency remained present for sEMG and AMG in both the affected and non-affected 

arms. Mostly, the affected arm in sEMG seemed to have lower slow fibre frequency ratios than 

the non-affected arm. In contrast, the AMG slow fibre frequency ratio seems consistent for all 

participants (Table 11, Table 12). Furthermore, the signal-to-noise ratio was used to evaluate a 
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signal amplitude change. In this case, we saw that for both sEMG and AMG, the signal-to-noise 

ratio and the signal-to-noise ratio in dB were lower for the affected arm than the non-affected 

arm across all participants (Table 13, Table 14). 

 

Passive movement test. Second, a passive movement was used to determine spasticity 

characteristics. The participants were also asked to perform a passive stretch movement, in 

which the recited signal was plotted against time in seconds. For the rectified data, in Participant 

1, we saw an increase in the amplitude of sEMG data for the affected arm of about 50 mV 

compared to the non-affected arm, which had an amplitude of around just above 0 mV (Figure 

19, Figure 20). Similarly, for the AMG data, there was an increase in the amplitude of the 

rectified AMG signal for the affected arm with an amplitude of around 10 mV. In contrast, the 

non-affected arm amplitude remained just above 0 mV (Figure 19, Figure 20). In Participant 2, 

the sEMG rectified amplitude did not appear to increase for the affected arm, and it seemed as 

though it remained relatively the same as that of the non-affected arm at around 50 mV (Figure 

21, Figure 22). However, the AMG rectified amplitude increased from around 0 mV in the non-

affected arm to 10 mV in the affected arm. Lastly, for Participant 3, the sEMG rectified 

amplitude appeared to increase for the affected arm at around 100 mV from around 0 mV in the 

non-affected arm. Similarly, for AMG, there seemed to be an increase in amplitude for the 

affected arm to about 15 mV, compared to the non-affected arm, which remained at around 2 mV 

(Figure 23, Figure 24). 
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Table 10. Summary of participant characteristics. 
PARTICIPANT 
NUMBER 

SEX 
(MALE 
OR 
FEMALE) 

AGE 
(YEARS) 

AFFECTED 
SIDE 
(LEFT OR 
RIGHT) 

TIME SINCE 
STROKE 
DIAGNOSIS 

SEVERITY OF 
SPASTICITY 
(MILD, 
MODERATE 
OR SEVERE) 

1 Male 70 Left 11 months  Moderate 

2 Female 70 Right 15 years Severe 

3 Female 65 Right 16 years Moderate 

 
Table 11. Summary of the slow and fast fiber frequency of sEMG for the affected and non-
affected arm of each participant.  
 AFFECTED ARM NON-AFFECTED ARM 
PARTICIPANT 
NUMBER  

Slow fiber 
frequency (Hz) 

Fast fiber 
frequency 
(Hz)  

Slow fiber 
frequency 
(Hz) 

Fast fiber 
frequency (Hz)  

1 28.38 Absent 37.5 54.1 
2 21.7 Absent 29.2 49.5 
3 12.5 Absent 29.8 35.0 

 
 
 
Table 12. Summary of the slow and fast fiber frequency of AMG for the affected and non-
affected arm of each participant.  
 AFFECTED ARM NON-AFFECTED ARM 
PARTICIPANT 
NUMBER  

Slow fiber 
frequency (Hz)   

Fast fiber 
frequency 
(Hz)   

Slow fiber 
frequency 
(Hz)  

Fast fiber 
frequency (Hz)  

1 9.74 Absent 10.9 15.8 
2 11.5 Absent 8.0 13.0 
3 8.6 Absent 8.8 12.8 
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Table 13. Summary of the signal to noise ratios of sEMG for the affected and non-affected 
arm of each participant.  
 AFFECTED ARM NON-AFFECTED ARM 
PARTICIPANT 
NUMBER  

Signal to noise 
ratio   

Signal to noise 
ratio (DB) 

Signal to noise 
ratio   

Signal to noise 
ratio (DB) 

1 1.1 0.5 1.5 3.8 
2 1.1 0.8 3.9 11.9 
3 1.1 0.5 1.3 3.5 

 
 
Table 14. Summary of the signal to noise ratios of AMG for the affected and non-affected 
arm of each participant.  
 
 AFFECTED ARM NON-AFFECTED ARM 
PARTICIPANT 
NUMBER  

Signal to noise 
ratio   

Signal to noise 
ratio (DB) 

Signal to noise 
ratio   

Signal to noise 
ratio (DB) 

1 1.1 1.1 1.3 2.5 
2 1.1 1.2 1.3 2.5 
3 1.3 2.9 1.5 3.1 

 
 
 

 

 
Figure 19. Rectified amplitude of the affected arm of the first participant. The top graph 
represents the sEMG signal and bottom graph represents the AMG signal.  
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Figure 20. Rectified amplitude of the non-affected arm of the first participant. The top 
graph represents the sEMG signal and bottom graph represents the AMG signal.  
 
 
 

 

 
Figure 21. Rectified amplitude of the affected arm of the second participant. The top graph 
represents the sEMG signal and bottom graph represents the AMG signal.  
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Figure 22. Rectified amplitude of the non-affected arm of the second participant. The top 
graph represents the sEMG signal and bottom graph represents the AMG signal.  
 

 

 
 
Figure 23. Rectified amplitude of the affected arm of the third participant. The top graph 
represents the sEMG signal and bottom graph represents the AMG signal.  
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Figure 24. Rectified amplitude of the non-affected arm of the third participant. The top 
graph represents the sEMG signal and bottom graph represents the AMG signal.  
 

4.4 Discussion 
 
4.4.1 Muscle Fatigue Test  
 
 

The muscle fatigue test was used to compare sEMG and AMG to see if, similarly to 

sEMG, AMG can pick slow and fast muscle fibres, which can be detected on power spectrums to 

evaluate the physiology of muscle contractions. Power spectra may be an excellent way to assess 

muscle spasticity as they allow clinicians to gain information on motor unit recruitment and 

muscle fibre types for active and passive contractions in sEMG (Fuglsang-Frederiksen & 

Rønager, 1988). 

 Muscle fatigue would allow us to confirm if AMG can detect differences in slow and fast 

muscle fibre spectral peaks by determining if a similar pattern to sEMG is observed, where the 

fast fibre frequency content decreases as muscle fatigue progresses. The muscle fatigue 

contraction burst was divided into five epochs, where the last five epochs would indicate the 
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most fatigue state. For the purpose of this study, the slow-to-fast fibre frequency and amplitude 

ratios were used. As fatigue progresses, we expect frequency ratios to be closer to 1 since the fast 

fibre frequency is shifting to lower frequencies and getting closer to the slow fibre frequencies. 

In this case, the results showed that sEMG and AMG demonstrated similar trends in which both 

their mean frequency ratios increased as fatigue (or epoch number) increased for all participants 

(Figure 13, Figure 14).  

A linear regression test was also conducted to determine if there is a correlation between 

the amplitude or frequency ratio and an increase in epoch value in the sample of 10 participants 

for both sensors. Based on the interpretation of Chan et al., results demonstrated that sEMG had 

a moderate correlation between the epoch number and frequency ratio (R=0.8). In contrast, AMG 

had a strong correlation (R=0.8) across all participants. For the correlation between the 

amplitude ratios and epoch number, sEMG (R=0.7) and AMG (R=0.7) had moderate correlations 

across all participants (Akoglu, 2018). This indicates a good indication of a strong or moderate 

relationship between sEMG and AMG sensors as epoch number or fatigue increases from both 

amplitude and frequency ratios. Therefore, this further allows us to conclude that there is a 

relationship between muscle fatigue and changes or increases in frequency and amplitude ratios. 

Furthermore, during the repeated measures ANOVA test, it was determined that the frequency 

ratios for both tests indicated a significant difference between epochs numbers and ratio for the 

entire sample of 10 participants for both sensors, with a p<0.05 (Table 8). Thus, we can reject the 

null hypothesis and confirm a change in the frequency ratio of slow to fast muscle fibre spectral 

peaks with muscle fatigue. This demonstrates a shift to lower frequencies of fast fibres for both 

sensors during muscle fatigue. This has been established in the literature for sEMG, where 

researchers have found that fatigue shifts the frequency content of power spectrums to low-
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frequency content for fast fibres (Fuglsang-Frederiksen & Rønager, 1988). 

Similarly, for the amplitude ratios of sEMG and AMG, we would also expect the slow-to-

fast fibre ratio to increase and get to a value closer to 1 as fatigue progresses. The reasoning 

behind this is that previous studies have found that fast fibre muscles will generate higher power 

over a short period of time (Lievens et al., 2020). Also, slow-fiber motor units have fewer fibres 

in the muscle, whereas fast-fiber motor units have more fibres present (Gollapudi et al., 2014). 

Thus, we expect fast fibre to have a higher amplitude than slow fibre types under non-fatigued 

conditions as they generate more power. However, as the muscle fatigues, the amplitude of fast 

fibres on the power spectrum is expected to decrease as fewer fibres will be recruited (Gollapudi 

et al., 2014). On the graphs plotted, we saw a trend where the mean ratio amplitudes for each 

epoch in the population tended to increase to a higher ratio, closer to 1, as fatigue progressed 

(Figure 14, Figure 15). In addition, the repeated measures ANOVA showed that the difference 

between the epoch number and amplitude ratios for both the sEMG and AMG sensors was 

significant (p<0.05) (Table 8.) Hence, we can reject the null hypothesis and conclude that there is 

a change in slow-to-fast fibre amplitude ratios. Consequently, this would mean that the fast fibre 

amplitudes are generating less power and are generating power closer than what you would 

typically expect in a slow fibre muscle type. Thus, both sEMG and AMG are comparable in that 

they show a similar trend to what you would expect based on the muscle's physiology. 

In summary, AMG demonstrates the same trends in its ability to recruit slow and fast 

muscle fibres detected in a power spectrum based on our ability to visually see both peaks and 

the same trends we expect in the literature for sEMG when the muscle fatigues. This indicates 

the peaks display characteristics of slow and fast fibres. Hence, this allows us to confirm that 

AMG is comparable to sEMG in the way it can accurately pick up slow and fast fibres when the 
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muscle contracts. 

4.4.2 Reliability Test  

Based on the data obtained in the reliability test, we can confirm what previous 

researchers have suggested about the frequency components of MMG. Researchers have 

previously speculated that the high-frequency components of MMG, found between 15 to 60 Hz, 

give information about fast fibres. Whereas its low-frequency components, below 15 Hz, give 

information about slow fibres (Beck et al., 2007). The raw data showed that the AMG slow fibre 

range was below 15 Hz, ranging from 5 to 10 Hz in this study. Furthermore, the fast fibre range 

was found around the researcher's speculated range, but it was much lower than anticipated, 

ranging from 8.8 to 18.3 Hz. On the other hand, for sEMG, the literature has stated that its 

frequency components would be found between 0 to 40 Hz for slow fibres and from 60 to 260 

Hz for fast fibres (Hegedus et al., 2020). The raw data showed that the sEMG slow fibre range 

was from 28.3 to 71.8 Hz, and its fast fibre range was from 45 to 95.3 Hz. Both the fast fibre and 

slow fibre ranges for sEMG did not correspond to the ranges found in the literature, with a very 

large range presented in the slow and fast fibre frequencies. These differences observed in the 

sEMG and AMG sensors could have been because of the type of contraction, muscle type and 

contraction force. Researchers have found that for sEMG specifically, the power spectrum 

frequency increases with the force of the contraction due to the fibre type content (Bilodeau et 

al., 1990). Humans also have different fibre types in their different muscles. Consequently, this 

leads to the different muscles' force-generating capabilities to vary (Von Tscharner & Nigg, 

2008). A study by Bartuzi et al. also confirmed that the frequency on a power spectrum differs 

based on the muscle type, which influences the percentage of fast and slow fibres. The 

researchers found that the frequency and power spectrum shape changes between muscle types 
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(Bartuzi et al., 2007). Due to the wide range of factors that influence an sEMG power spectrum 

content, further tests would need to be conducted to determine if this is the adequate fast fibre 

frequency range for AMG based on various contraction types and muscles used. 

A reliability test was conducted to determine whether or not sEMG or AMG appeared to 

be comparable in their consistency to detect slow-to-fast fibre ratio frequencies and amplitudes 

through their coefficient of variance. The coefficient of variance determines the dispersion of the 

data around the mean. If their coefficient of variance differed from each other, this would make 

one sensor more reliable than the other. The reliability test was conducted for each of the five 

isometric contraction trials done for the sample of 10 participants. In this case, the conditions of 

the trials did not vary, but the testing conditions remained the same. The results showed that the 

sEMG and AMG sensors were relatively similar in detecting amplitude, with a coefficient of 

variation of 28.1% for sEMG and 27.3% for AMG. However, there was a difference in the 

sEMG and AMG frequency ratios, where sEMG had a smaller coefficient of variation of 17.7%, 

and the AMG coefficient of variation was 20.2%. Although more precise statistical tests are 

required, when comparing the reliability of the frequency ratios between sEMG and AMG, EMG 

appears to have less dispersion around the mean and may be more reliable in detecting slow and 

fast fibre frequencies. However, future studies are required to compare these sensors' reliability 

and the consistency of their measurements. One way this could be done is through test-retest 

reliability using the intraclass correlation coefficient (ICC) (Weir, 2005). For example, a study 

by Meagher et al. tested the reliability between changes in MMG signals against sEMG signals 

during different levels of forces in a test re-test reliability study (Meagher et al., 2020). A similar 

test could be done to test the reliability of AMG against sEMG during different levels of muscle 

fatigue to confirm which sensor is more reliable in terms of the measurements it provides. 
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4.4.3 Test on Patients With Post-stroke Spasticity 
 

The previous tests established that sEMG and AMG seem to be comparable in terms of 

their ability to pick up slow and fast fibre characteristics in a power spectrum. Although sEMG 

appeared to be a bit more reliable in its ability to detect power spectrum peak frequency ratios, 

more studies are required to confirm what this hypothesis suggests and to determine if there is a 

significant difference between the reliability of sEMG and AMG that would have an effect on 

the data transmitted to clinicians. Overall, AMG seems like a promising tool for use in a 

telehealth setting. Thus, a slow and fast fibre test, signal-to-noise ratio test, and change in 

amplitude test were conducted to see if both sensors could identify and pick up characteristics 

that could be used to evaluate spasticity. The slow and fast fibre test and the signal-to-noise ratio 

test would determine if sEMG and AMG are comparable in detecting spasticity characteristics 

during active movements. On the other hand, the change in amplitude test would determine if 

they were comparable during passive movements. 

 

Slow and fast fibres. A test was conducted to evaluate whether power spectra would indicate 

spasticity in sEMG and AMG sensors. In those with spasticity, there is a predominance of slow 

fibres and a deficiency of fast fibres (Gorgey & Dudley, 2008). Thus, clinicians could use this 

knowledge to determine if a muscle is spastic by observing if these muscle fibres are in a power 

spectrum. The study's results showed that sEMG and AMG did not appear to have fast fibre 

activity based on their power spectra peaks on the arm affected with spasticity. sEMG also 

demonstrated power spectrum peak frequencies associated with slow fibres and lower frequency 

ratios on the affected arm compared to the non-affected arm (Table 11, Table 12). AMG may be 
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an excellent substitution to evaluate muscle spasticity virtually as it can detect slow and fast 

fibres through power spectra and obtain information on the difference that occurs in a spastic 

muscle. A future study must determine if these results are consistent across a large sample of 

participants.  

 

Signal-to-noise ratio. Finding the signal-to-noise ratio could also help evaluate spasticity. A 

higher signal-to-noise ratio would indicate that the baseline (or noise) value differs greatly from 

the signal's amplitude. Thus, this measurement may be used to determine if there is a consistent 

contraction. In spasticity, the muscle constantly contracts, even at rest (Rivelis et al., 2024). 

Hence, we expect to see a low signal-to-noise ratio if a deliberate contraction is attempted if the 

muscle displays spasticity, as the constant contraction does not lead to a large difference between 

the baseline and the amplitude of the force-generated contraction. The results showed that sEMG 

and AMG had lower signal-to-noise ratios in the arms affected by spasticity (Table 13, Table 

14). This is a good indication that a lower signal-to-noise ratio, obtained through RMS values, 

may detect spasticity characteristics. However, a more robust study that evaluates the range in 

which you would expect to see these signal-to-ratios for patients with spasticity needs to be 

conducted. Also, studies would need to determine if the non-affected and affected arm signal-to-

noise ratios are statistically different from each other for both the sEMG and AMG. A large 

sample size would give us a better indication of whether this is an appropriate extraction tool.  

 

Change in amplitude. It has already been established in the literature that sEMG can detect 

spasticity through the rectified data it picks up during a passive stretch movement. Studies have 

demonstrated that in sEMG, the amplitude will increase for post-stroke spasticity patients, 
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indicating an increased stretch reflex response (Xie et al., 2020). Consequently, each participant 

in this study underwent a passive stretch movement to evaluate if, similarly to sEMG, the AMG 

rectified data showed an increase in amplitude in the affected arm. The results demonstrated that 

for Participant 1 and 3, there was an increase in the amplitude of the affected arm for both the 

sEMG and AMG data. However, for Participant 2, only the AMG sensors appeared to have an 

increase in the amplitude of the affected arm. Therefore, there was an inconsistency in the results 

obtained for this test, and sEMG did not always reflect what was stated in the literature. Further 

testing would be required where multiple tests would be compared per participant in a larger 

sample size to determine whether or not there is a trend in the data that can be used to evaluate 

spasticity. 

4.5 Limitations 
  

It is essential to consider that there were a number of limitations in this study that may 

have affected the results obtained.   

The most considerable limitation that may have affected the results is sex differences. 

Studies have found that type I fibres are said to be 19% larger, type IIa fibre types 59% larger 

and type IIb fibre types 66% larger in male rather than female sexes (Haizlip et al., 2015). Also, 

there is a large difference between male and female skeletal muscles, which involve different 

metabolisms and contractile speeds. Males tend to have a higher anaerobic metabolism, allowing 

them to generate high-power outputs (Glenmark et al., 2004). Thus, researchers have found a 

significant difference between both sexes and the spectral properties in sEMG during voluntary 

muscle contractions. It is expected that a larger force or power would be generated in males than 

in females, leading to higher amplitude in male power spectra. Also, during MVC, a female's 

power spectrum tends to shift towards lower frequencies than a male's (Cioni et al., 1994). 
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Lastly, female muscles are more fatigue-resistant than male muscles and may take longer for 

their frequency content to shift to lower frequencies (Glenmark et al., 2004). Thus, the study's 

results may have been affected by differences in sex that were not accounted for, which may 

have caused more variability in the frequency and amplitude ratios for sEMG and AMG.  

Furthermore, researchers have found that both MMG and sEMG signals are affected by 

muscle mass, muscle length and subcutaneous fat (Ibitoye et al., 2014). For subcutaneous tissue 

fat primarily, researchers have determined that this causes a decrease in the amplitude of the 

EMG signal. This may indicate that it is also essential to be prudent while using amplitude 

changes as a measure of spasticity in a patient with higher degrees of subcutaneous fat (Kuiken 

et al., 2003). Thus, the results may have been impacted by these variations between subjects. 

While normalization of the data may have accommodated these differences between participants 

by adjusting the data at a standard scale, some researchers have stated that normalization is 

insufficient to account for these differences (Ibitoye et al., 2014). 

Lastly, data was also not normalized. Typically, data is normalized with sEMG using 

MVC. However, a considerable challenge for someone with spasticity is that their MVC can be 

weak, making it harder to normalize using this method (McGibbon et al., 2013). Researchers 

would have to determine a better way to normalize the data to ensure consistent results and to 

adequately compare the results in patients with spasticity.  

 

 
4.6 Conclusion 
 

In conclusion, AMG appears, based on these initial studies, to be a promising alternative 

to sEMG for virtual spasticity assessments. AMG does not present as many of the barriers as 

sEMG for ease of use. It can also detect similar information about muscle contraction through its 
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ability to detect slow and fast fibres, which may be helpful information during spasticity 

assessments. Furthermore, AMG seems to have around the same measurement reliability as 

sEMG when the coefficient of variation is used. However, more reliable test measurements are 

required to confirm this hypothesis. AMG also seems to detect spasticity characteristics, as seen 

during the ability to detect an absence of fast fibres, lower signal-to-noise ratios and an increase 

in rectified amplitude in spastic limbs compared to non-affect limbs. Thus, although future 

studies are required to confirm these hypotheses, AMG seems like a promising tool for virtual 

spasticity assessments. 
 

 

 

Chapter 5. Thesis Discussion and Conclusion  
5.1 Summary of Findings 
  

The primary goal of this thesis research was to determine if sEMG could be replaced by 

the AMG sensor to make virtual spasticity assessments more feasible. Based on previous 

literature, it has been determined that sEMG may be a useful tool for objective spasticity 

assessments. Researchers have found that sEMG can detect an increase in rectified amplitude 

during passive stretch movements to indicate an increase in the stretch reflex response (Xie et al., 

2020). Many researchers also use sEMG to investigate the pathophysiology of spasticity (Yu et 

al., 2020). sEMG has also been used for various other clinical applications. For example, it is 

used to evaluate temporal changes in gait activity (Fujita et al., 2021). However, sEMG currently 
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presents many barriers to its use and may not be a suitable candidate for use in a telehealth 

setting because it often needs a specialist present.  

An initial literature review was conducted to see how current sEMG barriers impact 

telehealth assessments and the solutions researchers have found to overcome them. The most 

reported barrier in the literature review was the poor reliability of real-time data due to the high 

amounts of data sEMG requires to be processed with its high bandwidth requirement. 

Commercial EMG systems use a 1000 Hz sample rate, but clinical data is found in the 10 to 200 

Hz range. Higher sampling rates are needed to avoid missing essential data, but the high volume 

of processed data could cause delays. Other significant barriers included poor user-friendliness 

and cybersecurity. Few articles proposed solutions to overcome poor real-time data, indicating 

that no solutions have been successfully implemented. The barriers to patient usability were 

often overcome in the studies through prior training before virtual assessments. Although the 

literature does provide some solutions to overcoming barriers to sEMG, AMG does not present 

these barriers, and it was decided that it should be studied as an alternative to sEMG assessments 

to make these assessments more accessible virtually. 

 
A portable device to assess spasticity in a telehealth setting was designed and built at the 

Rehabilitation Robotics Lab at the University of Alberta based on a previous device (TONE 

device) created by Daniel Gillespie, a former Ph.D. student in Rehabilitation Sciences at the 

University of Alberta (Gillespie, 2023). The intention of the device is to be further developed 

into other versions once more research is conducted to find the best portable device to allow 

clinicians to gain information about biomechanical data for more objective and virtual spasticity 

assessments. The device was designed based on three essential factors. The first was real-time 

data to allow clinicians to see a muscle's healthy or excessive tone in real-time through a 
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dashboard interface. The second was storing the raw data on an SD card to allow researchers or 

clinicians to see the muscle contraction's spectral composition, post-processing that data as a 

power spectrum. Power spectra for sEMG sensors relay information on muscle fibre fatigue, 

motor unit firing rates and slow and fast fibre composition (Fuglsang-Frederiksen & Rønager, 

1988). Lastly, an AMG sensor was added to the device to evaluate if there is a more user-

friendly alternative to sEMG. Daniel Gillespie has already evaluated how the biomechanical data 

of force sensors and groomers is affected in spastic muscles. Thus, the device for this thesis 

intended to be used for research proposes to compare sEMG with AMG specifically by 

collecting data simultaneously (Gillespie, 2023). Once it had been determined which sensor was 

the best for virtual assessments, the device was intended to be developed into other versions 

using the information found for clinical ease of use. 

The research in the thesis found that during the muscle fatigue test, AMG demonstrated 

similar trends to sEMG in its ability to detect the recruitment of slow and fast muscle fibres. This 

was determined based on our ability to see both the slow and fast fibre peaks in the power 

spectra and by observing AMG's power spectrum shift to lower frequencies when the muscle 

fatigues, similar to what would be expected to be seen in sEMG based on the literature. The 

repeated measures ANOVA tests confirmed that the slow-to-fast frequency and amplitude ratios 

significantly differed between the epoch numbers for the 10 participants for both sensors. When 

plotting the mean amplitude and frequency ratios per epoch, it indicated that as the epoch 

number increased, the level of fatigue also increased across participants. Through this initial test 

on a population without spasticity, we concluded that AMG is comparable to sEMG because of 

its ability to pick up both slow and fast fibres during muscle contraction. 
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A reliability test was also conducted to determine if sEMG and AMG were comparable in 

terms of their reliability in picking up these slow and fast fibres. The test was evaluated at a 

MVC without the presence of fatigue in a population without spasticity. The reliability test, using 

a coefficient of variation, determined that there is a good indication that sEMG and AMG have 

similar coefficients of variation when detecting amplitude ratios of slow-to-fast fibres. However, 

it was indicative that there seemed to be a difference between the coefficient of variations for 

sEMG and AMG slow-to-fast fibre frequency ratios, where sEMG had a smaller coefficient of 

variation. Although more precise statistical tests are required with a larger sample size, sEMG 

frequency ratios appear to have less dispersion around the mean, and it is hypothesized that this 

may lead to sEMG picking up slow and fast fibre frequencies more reliably. More robust studies 

need to be conducted to confirm the hypothesis in this study. The reliability test also allowed us 

to evaluate what previous researchers had speculated about the frequency components of MMG. 

Although it was not yet determined if MMG could detect slow and fast fibres, research had 

speculations about this due to their knowledge of power spectra and the fact that MMG is 

distributed at lower frequency ranges. Previous researchers suggested that the high-frequency 

components of MMG would be found between 15 to 60 Hz. The low-frequency components of 

MMG were speculated to be found below 15 Hz. Our raw data concluded that the AMG showed 

a slow fibre frequency between 5 to 10 Hz, below the predicted 15 Hz. However, the predicted 

higher frequency component was much lower than anticipated, although still around the expected 

range; it ranged from 8.8 to 18.3 Hz. It was speculated that factors such as the type of muscle 

used, in our case, the biceps brachii, or the contraction force, may have played a factor as 

different human muscles have different fibre types, which leads to different force-generating 

capabilities (Bilodeau et al., 1990; Von Tscharner & Nigg, 2008). Future tests need to be 
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conducted to determine if this is the accurate fast fibre frequency range by studying AMG under 

various contraction types using different muscles. 

Once it was determined that sEMG and AMG seemed to be comparable in how they can 

both pick slow and fast fibre characteristics on a power spectrum, it was concluded that AMG 

seemed like a promising tool for virtual spasticity assessments through the information it can 

provide us about muscle fibres during a contraction. The last test was conducted on post-stroke 

spasticity patients to evaluate if sEMG and AMG were comparable in picking up specific 

characteristics that could be used to assess spasticity and if this differs for passive and active 

movements. A sample of 3 post-stroke spasticity patients underwent isometric and passive 

stretch movements to indicate whether or not specific characteristics were apparent when 

comparing the non-affected arm to the arm affected by spasticity. While observing the slow and 

fast fibre ratios through an active movement, in this case, an isometric contraction, it was 

determined that there was an absence of fast fibres in the arm affected by spasticity for both the 

sEMG and AMG sensors. This aligns with what researchers have found about muscle spasticity, 

in which the pathophysiology indicates a deficiency in fast fibres (Gorgey & Dudley, 2008). 

Hence, sEMG and AMG were comparable in detecting the absence of fast fibres during active 

movements. Furthermore, the signal-to-noise ratio was evaluated as a potential tool for assessing 

spasticity during active movements. It was found that sEMG and AMG had a lower signal-to-

noise ratio in the affected arm compared to the non-affected arm. This fits what was initially 

hypothesized based on the literature, which indicates that the muscle will be in a constant state of 

contraction when spasticity is present. Therefore, the baseline sensor value would not vary much 

from the signal's amplitude during the active contraction. Thus, this indicated that both sEMG 

and AMG signal-to-noise ratios could be a good way to evaluate the presence of muscle 
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spasticity. However, more research is needed to see if the signal-to-noise ratio of the affected 

arm compared to the non-affected arm has a significant difference. Lastly, the literature had 

previously determined that sEMG can detect spasticity during passive ranges of motion by using 

its rectified amplitude. The results for the passive stretch test were inconsistent for sEMG, where 

only two of the three participants showed an increase in amplitude in their arm affected by 

spasticity for both sensors. In this study, AMG appeared to be able to detect the increase in 

amplitude more adequately than sEMG, as it also detected the same trend in all participants. 

Future studies are required to determine if this is an adequate way to detect spasticity for passive 

movements and if the variety of results in this study is due to potential outliers from the small 

sample size. Overall, the tests done on the sample of 3 participants with spasticity seemed to 

indicate that the sEMG and AMG are comparable in their ability to indicate spasticity during 

active movements.    

 
5.2 Implications of Findings 
  
 

 This thesis aims to provide future researchers with knowledge of sEMG compared to 

AMG sensors for more feasible and user-friendly virtual spasticity assessments. Indeed, the 

research intends to serve as a basis for developing protocols and the gold standard for virtual 

spasticity assessments. Upper limb spasticity has been found to cause pain and socioeconomic 

burdens due to the inability to perform activities of daily living. Those with post-stroke spasticity 

must access timely assessments and management (Guo et al., 2022). However, researchers have 

questioned the validity and reliability of the current assessment tools and their ability to be 

accessible for those requiring remote assessments. Given the importance of spasticity 
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assessments for proper management and rehabilitative therapies, there needs to be reliable 

technological solutions to conduct these assessments (Guo et al., 2022).  

By concluding in this research that AMG seems to be a suitable alternative for sEMG, we 

propose a more user-friendly sensors for clinicians to use not only during remote spasticity 

assessments but also to allow objective assessments of spasticity without the need to have 

extensive knowledge on how to use sEMG. Various researchers have suggested objective 

assessments for a long time to promote more valid and reliable spasticity assessments with better 

intra-rater reliability, allowing for an improved quality of care and spasticity management.  

The research done in this thesis serves as the initial stepping stone towards a proposed 

solution with a deeper understanding of using an AMG sensor as an alternative to sEMG for 

virtual spasticity assessments. The developed device, which may include the proposed AMG 

sensor, is a low-cost, portable device with real-time data capabilities. It can give clinicians 

quantitative, reliable information on joint angles, muscle activity, and the ability to detect a catch 

for upper extremity spasticity in stroke patients. The findings in this research may allow for a 

clinically implemented device that is the easiest to use in a telehealth setting when specialists are 

at a remote location. 

Consequently, quantitative data obtained through AMG sensors and the device's 

biomechanical data can help create standardized clinical measurement protocols for spasticity 

assessments, similar to the MAS or MTS, using objective data. Previous researchers have 

determined that these objective assessments will allow a pathway toward better clinical decision-

making and better spasticity management through surgical interventions or medication, 

preventing unnecessary treatment if not required (Balci, 2018; Harb & Kishner, 2024). However, 

more research needs to be done to develop a standardized protocol that can be implemented 



 

 106 

across patients. While AMG seems promising, research still needs to determine how different 

degrees of severity to spasticity, similar to grades on the MAS or MTS scale, vary with different 

quantitative measurements. In other words, we need to ensure it can provide clinicians with 

information they can adequately interpret during these spasticity assessments. Future researchers 

could determine if there is a significant difference in the ability of active or passive movements 

to evaluate spasticity using the quantitative data obtained and if one is more suitable than the 

other. 

The hope is that this research will be adopted into clinical practices. However, as 

previously mentioned, more research is needed to not only develop protocols to which clinicians 

can refer for assessing spasticity, but further education needs to be provided to allow clinicians to 

gain knowledge on how to interpret values from the sensors or other biomechanical data from the 

portable device. Furthermore, patient- and clinician-oriented research must also be considered to 

ensure that the methods used in these assessments meet their needs. 

 

5.3 Conclusion 
  

 In conclusion, this thesis aimed to find the most convenient and feasible way to conduct 

spasticity assessments in telehealth by evaluating if AMG was a suitable alternative to sEMG. 

Previous literature has found many barriers to sEMG use. While some researchers have proposed 

strategies to overcome some barriers, not all seem easy to overcome. A portable device was 

designed not only to evaluate and compare these two sensors for research purposes but also with 

hopes that it may be the basis of a design for a device that can transmit quantitative 

biomechanical data regarding a patient's spasticity. AMG was found to be comparable to sEMG 

in the way it detects slow and fast fibres. sEMG and AMG were also both able to detect and 
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differentiate specific characteristics of spasticity in patients affected by a stroke. These included 

the deficiency of fast fibres in power spectra and the low signal-to-noise ratio in rectified data 

during active movements. Thus, the research concludes that AMG is an excellent alternative to 

sEMG, given its lack of prevalent barriers and its post-processing ability to give information 

about muscle contractions. Future research is required to allow clinicians to develop a new 

standardized protocol to conduct these assessments with insight into the severity of spasticity 

using these measurement tools for proper treatment and management plans.  
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Appendices  
Appendix 1. Ethics Approval 
 

 
 
 

Appendix 2. Search Strategy  
 

# Searches 
1 Electromyography/ 
2 (electromyogra* or EMG).mp. 
3 1 or 2 
4 Telemedicine/ or remote consultation/ or Videoconferencing/ 
5 ((Online or virtual or remote* or video or digital or telephone or phone or tele) adj4 (treatment* 

or intervention* or program* or diagnos* or assessment or evaluation or follow-up or care or 
health or consult* or communicat* or medicine)).mp. 

6 ((remote or online or virtual* or electronic* or digital* or distan*) adj2 deliver*).mp. 
7 (telehealth or tele-health or telemedicine or tele-medicine or telerehab* or tele-rehab* or 

teleconsult* or tele-consult* or mobile-health* or mhealth or m-health or distance health* or 
electronic-health* or ehealth or e-health or virtual health or Remote delivery or electronic-
delivery or digital health or video conferenc* or videoconferenc* or teleconferenc* or tele-
conferen* or video-to-home or video-visit* or video-technology).mp. 

8 4 or 5 or 6 or 7 
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9 3 and 8 
10 limit 9 to english language 
11 limit 10 to (address or autobiography or bibliography or biography or clinical trial, veterinary or 

clinical trials, veterinary as topic or comment or congress or dictionary or editorial or lecture or 
legal case or news or newspaper article or observational study, veterinary) 

12 10 not 11 
 
 
 

Appendix 3. Component Parts of Designed Portable Device 
 
- 2 GND Electrodes  

- 2 Circular EMG 5 pin connectors (EPG.0B.305.HLN)  

- 1 On/Off Switch  

- 1 Powerboost  

- 2 RP-0505D  

- 1 Battery 

- 1 wireless charging pad  

- 4 1k resistors  

- 2 10k resistors   

- 2 Rectifier Diodes  

- 2 Slide Switches  

- 2 OP277  

- 9 Pin VGA connector (for the ribbon cable connection) 

- 2 Feather Adaloggers 

- 1 Xbee Explorer 

- 1 Xbee Series 1 Pro 

- Red, Green, Yellow LEDs 
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Appendix 4. Arduino Firmware Code for Designed Portable Device 
 
 

// PIN          FUNCTION 

/*  1           ENABLE FOR SD FEATHER 

 *  2           EMG 1 From SD Feather board to AD 3 now 

 *  3           NC 

 *  4           NC 

 *  5           NC 

 *  6           EMG 2 From SD Feather board to AD 1 now 

 *  7           NC 

 *  8           NC 

 *  9           NC 

 *  10          NC 

 *  11          NC 

 *  12          AD 3 OLD EMG 1 

 *  13          NC 

 *  14          AD 4  AMG 1 

 *  15          NC 

 *  16          NC 

 *  17          AD 2 GONIOMETER 

 *  18          NC 

 *  19          NC 

 *  20          GND FOR SD FEATHER 

 *   

 *  AD 0        FORCE INTERNAL CONNECTION 

 *  AD 5        MVC POTENTIOMETER INTERNAL 

 *   

 *  AMG 2 needs another AD input 

 *   

 *  DIGITAL I/O 

 *  5 BODY SIDE SWITCH 

 *  6 GREEN LED 

 *  10 BUTTON SWITCH 

 *  12 BUZZER 
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*/ 

//  

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++++ 

//                       INCLUDE THE DEFINITIONS OF LIBRARIES AND VARIABLE DECLARATIONS 

//  

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++++ 

 

/*   

MAKE SURE ALL  LIBRARY FILES ARE SAVED IN THE LIBRARY DIRECTORY OF C:/ PROGRAM FILES (X86) 

ARDUINO ....  

OR IN MAC DOCUMENTS ARDUINO LIBRARY  

 

*/ 

 

#include <SD.h>                         // include the SD library: 

#include <SPI.h>                        // include the SPI library for SD card management 

#include <elapsedMillis.h>              // To estimate the time elapsed since start of test 

#include <math.h> 

#include <Average.h> 

#include <Arduino.h> 

#include <Adafruit_Sensor.h> 

#include <Wire.h> 

#include <XBee.h> 

//#include <MovingAverage.h> 

#define ERROR_NOERROR        (0x00) 

#define cardSelect 4                    // For Logger SD card 

#define SAMPLE_PERIOD_US     (1000 * 10) 

#define VBATPIN A7                      // To monitor as the battery voltage 

#define STATE_IDLE           (0x00) 

#define STATE_ACTIVE         (0x01) 

 

// General public variables declarations ******************* 
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/* NOTE BASIC RULE OF C++ IS THAT THE FOLLOWING VARIABLES ARE DECLARED GLOBAL AND ARE 

"KNOWN" AND CAN BE CHANGED  

     THROUGHOUT THE PROGRAM. TRY TO USE PASS BY REFERENCE FOR VARIABLES THAT ARE 

SPECIFIC TO CERTAIN FUNCTIONS 

     IF A VARIABLE IS DECLARED WITHIN { } IT IS A LOCAL VARIABLE.  THIS INCLUDES WITHING IF OR FOR 

LOOPS.   

     TO REFERENCE A LOCAL VARIABLE OUT OF A FUNCTION PLACE & IN FRONT OF THE VARIABLE IN THE 

LIST OF VARIABLES  

     PASSED TO THE FUNCTION (THIS IS NOT THE SAME USE OF & AS YOU WOULD USE IT FOR GETTING 

THE ADDRESS OF  

     A VARIABLE WHICH WOULD ONLY HAPPEN IN THE BODY OF THE FUNCTION.*/ 

 

elapsedMillis timeElapsed;              //declare global if you don't want it reset every time loop runs 

uint32_t lastTime;                      // unsigned 32 bit integer measures number of microseconds in loop 

uint32_t currentTime;                   // Current time in micro secs since start of program 

long runTime;                           // elapsed time 

uint32_t startTime;                     // Time at start of loop in microseconds 

uint32_t procTime;                      // time spent saving and processing 

uint32_t currentTimegon = millis();     // Current time in micro secs of the goniometer measurements 

uint32_t runTimegon ;                   // gives a measure of sampling rate in micros 

uint32_t lastTimegon; 

uint32_t buttpresstime;                 // time when button is pressed 

uint32_t buttduration;                  // duration button is being pressed 

uint32_t buttnowtime;                   // Obtaining the time during button press 

 

// COUNTERS 

long i = 0;                              // Large Counter 

long j = 0;                              // Loop counter used for spefic purpose on RMS header 

int r = 0;                              // Return state of file save in Loop 

int k = 0;                              // Counter used to empty the array to sd card 

int contraction=0;                      // Is there a contraction (=1) or not (0) Start assuming there is to avoid blank saves in 

loop 

int ii;                                 // Counter used for goniometer 

// DATA ARRAYS 

char inData[20];                        // Allocate some space for string 

char inChar = -1;                       // Where to store the character read 
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int mvcData[200];                       // An array to put 20s of force readings 

bool on = false;                        // Use for LED p13 monitor 

 

// **************************************** Adjustables ***************************************** 

const long contrnumReadings = 800; 

const int numReadings = 10; 

const int precontrnumReadings = 250;    // Number of readings to put in front and behind the contraction 

float sdthresh = 10;                                // Set the standard deviation threshold to avoid noise triggering a burst 

// ********************************************************************************************** 

 

int val = 0;                            // General purpose variable 

int contrest = 0;                       // The value to trigger sd card reading 

Average<int> ave1(200);                 // Defines the array averaged for Analog Input CH4 

Average<long> avesamp(200);             // Defines the array for runtime to give estimated sampling rate 

static int dataset[contrnumReadings];   // Array for raw data 6000 rows, 1 cols @ 1000Hz = 6s per contraction 

int *pntrdataset = &dataset[0];         // The compiler will only accept max of ~6000 values in this array 

                                        // We therefore have the capacity to store 6K of raw int value 

int readings1[numReadings];             // Sets up an array for the circular array 

int scratch1[numReadings];              // scratch array for smoothed data 

static int contrscratch[precontrnumReadings];  // scratch array for pre-post contraction trace 

int *pntcontrscratch = &contrscratch[0];  // Associated pointer 

static int contrreadings[precontrnumReadings]; // Sets up array for the pre contraction circular array 

int *pntcontrreadings = &contrreadings[precontrnumReadings];    // Associated pointer 

int readIndex = 0;                      // The index of the current reading 

long total1 = 0;                        // The running total 

long total2 = 0;                        // The running total 

int avevalue1 = 1610;                   // Average defining the baseline, start with 1650/1024 which is roughly half ref value 

of Feather 

int averagecom = 20;                    // Average for threshold that defines contraction with baseline removed start 

nominal 

int average1; 

int average2; 

int average3; 

int aboutzerovalue1 = 0;                // The EMG value with baseline removed 

int absvalue1 = 0;                      // Absolute value of EMG signal 

float sdval1;                           // Standard deviation of baseline data 

int maxForce;                           // The maximum force generated during the MVC test 
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int forcethresh; 

int potvalue; 

float sdvalcom; 

 

// LOOP COUNTING 

int loopcount = 0;                      // Loop counter must be an integer for Switch to work properly 

uint32_t looplong = 0;                  // Loop counter to count number of loops for contraction 

int loopforave = 0;                     // Loop counter to determine when to send sampled values to XBee 

 

const uint8_t headerch = 0x7F;          // This is the headercharacter used by the Dashboard to identify start of packet 

const uint8_t headerchend = 0x7E;         // This stops the receiver 

int run;                                // Controls start or stop of loop 

uint8_t errno;                          // error number for sd card 

char filename[25];                      // Sets up a character array to enable filename to be incremented 

float estsamplingRate;                  // Frequency during baseline measurement (runtime for first 200 samples / 200) 

long estsamplingInterval;               // Interval that includes the delay in case 1 

 

float measuredvbat = analogRead(VBATPIN);   // Variable for the battery voltage 

 

float JointAnglemeas=analogRead(2); 

float JointAngle;                          // Measure the voltage from the potentiometer of the goniometer starting with zeros 

int JointAnglePacket;                     // Convert to int so that it can be put in packet 

float JointAngleVelocity; 

float JointAngleArray[30];  

int JointAngleVelocityPacket;             // Convert to int so that it can be put in packet 

 

// *********** Assign pins ********************************* 

 

const int buttonPin = 10;                // Stop and Start data collection ... active low  hardware pin 5 

                                        // Since we are powered from BAT we need a pull up resistor (10k) 

const int greenLED = 6;                 // General purpose green LED normally off 

const int redLED = 13;                  // Red Led used for error status 

const int bodySIDE = 5;                 // Slider switch to indicate left or right measurement 

const int greenBUILTIN=8;                 // Green builtin led next to SD card 

const int buzzer = 12; 

 

String SIDE; 
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// YELLOW LED IS DIRECTLY WIRED TO INDUCTION COIL OUTPUT TO INDICATE CHARGING 

// RED LARGE LED IS DIRECTLY WIRED TO THE POWER SUPPLY OF THE SYSTEM 

 

int runbuttonstatus;                // Stop and Start data collection 

int sidebuttonstatus;               // Left or right arm 

 

// General public variables declarations for ADC XBEE LIMITED BY DASHBOARD ******************* 

 

int value0=0; // Force  AD0 

int value1=0; // EMG1 AD1 Then rectified to create valuetry 

int value2=0; // Goniometer AD2 

int value3=0; // NOT CONNECTED 

int value4=0; // AMG1 Z AXIS 

int value5=0; // MVC POT 

 

int valuetry=0; 

float ZeroForce=0.0; 

    

/* Note the A-REF pin is set to default 3.3 volts on Feather linked to supply which defines range 0 - 3.3V */ 

 

/* Setting up the XBee */ 

 

/* *********************** COMMUNICATION ************************************** */ 

uint8_t payload_1[16]; 

 

XBee xbee_1 = XBee();  

// Set up XBee 1 = Channel 1 DASHBOARD 

XBeeResponse response_1 = XBeeResponse(); 

Rx16Response rx16_1 = Rx16Response(); 

 

// use this to reply to TX  

uint8_t payload_response1[1]; 

 

// create an open request object targeting address 0x8888 on the Rx XBee with the given payload 

Tx16Request tx_response1 = Tx16Request(0x8888, payload_response1, sizeof(payload_response1));   // Channel 1 

DASHBOARD 
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// (overwrite the payload later to modify it) 

//  PAYLOAD SET UP 

 

Tx16Request tx_1 = Tx16Request(0x8888, payload_1, sizeof(payload_1)); // To the Feather that relays to the 

Dashboard Xbee 

 

// state control 

// state control 

uint8_t state = STATE_ACTIVE; 

// If you don't get a reply from the RX XB then the system hangs at this point 

 

void flashLED(uint8_t LED, uint8_t times) { 

    while(times > 0) { 

        digitalWrite(redLED, HIGH); 

        delay(100); 

        digitalWrite(redLED, LOW); 

        delay(100); 

 

        times--; 

    } 

} 

 

//****************************************** CREATE THE SETUP FUNCTION 

********************************************************* 

 

void setup() { 

 

  pinMode(13, OUTPUT);                        // Sets up the Red LED pin next to USB port 

  pinMode(13, LOW); 

  pinMode(8, OUTPUT);                         // Green LED on Feather next to SD Card 

  pinMode(8, LOW); 

  pinMode(6, OUTPUT);                         // GREEN LARGE LED 

  pinMode(12,OUTPUT);  

  pinMode(12, LOW);                           // Buzzer 

  pinMode(10,INPUT_PULLUP); 

  pinMode(5,INPUT_PULLUP);                    // High = Right LOW = Left 
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  i = 0; 

   

  Serial.begin(57600);  

    delay(100); 

     

/*  ONLY USE IF YOU MUST HAVE THE SERIAL PORT CONNECTION FOR THE APPLICATION TO FUNCTION 

 *   OTHERWISE THE PROGRAM WILL HALT WAITING FOR THE SERIAL TO BE CONNECTED 

 */  

  

     { 

#ifndef ESP8266 

  while (!Serial);     // will pause Feather Adafruit Adalogger M0 until Serial Port opens 

#endif 

} 

 

  Serial1.begin(57600);                         // Starts the serial channel for XBee   

   

    

  xbee_1.setSerial(Serial1); 

  delay(100);  

 

{ 

#ifndef ESP8266 

  while (!Serial1);     // will pause Feather Adafruit Adalogger M0 until Xbee opens 

#endif 

} 

Serial.println("XBEE Has responded");  

   

   // Get the battery voltage before changing AD resolution 

    

      measuredvbat = analogRead(VBATPIN); 

     

     // Serial.print("RAW Battery Voltage "); Serial.println(measuredvbat); 

       

      measuredvbat *= 2;  // We divide by 2 in the hardware so multiply back 

      measuredvbat *= 3.3; // Multiply by our reference voltage 
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      measuredvbat /= 1024; // Convert to voltage 

       

   Serial.print("Battery Voltage "); Serial.println(measuredvbat);  

     

   analogReadResolution(16); 

 

digitalWrite(greenLED, HIGH); 

delay(500); 

digitalWrite(greenLED, LOW); 

 

delay(1000); 

   

  /******************************** Set all the loop counters, elapsed time and arrays to zero *************************/ 

 

  readIndex = 0;                          // Just to make sure that the index in smoothing array starts at zero 

  run = 0;                                // Sets the start condition of loop starter 

  total1 = 0; 

  total2 - 0; 

  loopcount = 0; 

  lastTime = micros();                    // record the start time just before the end of "setup" 

 

    loopcount = 0; 

    looplong = 0; 

    loopforave = 0; 

    startTime = micros(); 

    runTime = 0;  

 

    Serial.println("Starting to sample data:");      //  Only on monitor 

    Serial.println("Press Button to Start Sampling:"); 

     

   digitalWrite(greenLED, HIGH);             // Green LED on lid to indicate starting to transmit  

   digitalWrite(redLED, LOW); // We are going into the loop and green is HIGH red comes on when we save raw EMG 

 

/* *************** ZERO FORCE SENSOR ****************** */ 

   

  value0 = analogRead(0); 
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  ZeroForce = 42.67*log(value0) -360.9; // Make sure the force sensor is not loaded 

 

}                                         // END OF SETUP 

 

// ************************************************************ THE LOOP FUNCTION 

******************************************************** 

 

void loop() { 

 

  

// *********** Button Press to Start Loop ************* 

 

// THERE ARE TWO CONDITIONS.  IF THE MVC IS TO BE SET THEN BUTTON MUST BE PRESSED FOR 5s 

// Otherwise if the button is released before 5s the normal data collection process occurs. 

 

while(digitalRead(buttonPin) == HIGH){   

digitalWrite(LED_BUILTIN, HIGH); 

digitalWrite(greenLED, HIGH); 

digitalWrite(greenBUILTIN, HIGH); 

runbuttonstatus = digitalRead(buttonPin); 

 

  delay(300);  // Flashing the LEDs 

  digitalWrite(LED_BUILTIN, LOW); 

digitalWrite(greenLED, LOW); 

digitalWrite(greenBUILTIN, LOW); 

delay(300);  // Flashing the LEDs 

   

} 

 

// Button has been pressed so get the time 

buttpresstime=millis(); 

Serial.print("Button Status:  "); Serial.println(runbuttonstatus); 

Serial.print("Button Press Time:  "); Serial.println(buttpresstime); 

 

//for (;;) { 

while (digitalRead(buttonPin) == LOW){ 
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Serial.print("Button Status in WHILE Loop:  "); Serial.println(runbuttonstatus); 

 

buttnowtime = millis(); 

buttduration = buttnowtime - buttpresstime; 

Serial.print("Button Duration:  "); Serial.println(buttduration); 

delay(200); 

 

if (buttduration >= 5000 && runbuttonstatus == HIGH) { 

  Serial.println("Going to the POT ADJ ROUTINE:  "); 

  setMVCpot();      // Go to the set the pot function 

    } 

                

}   // End of button check WHILE loop 

 

delay(2000);  // Give time to fully let go 

 

/* 

#############################################################################################

############################ */ 

// ############################################ THIS IS THE START OF THE MAIN LOOP 

######################################### 

/* 

#############################################################################################

############################ */ 

 

for(;;){                                            // Infinite loop flashing red LED when button pressed 

     

    runbuttonstatus = digitalRead(buttonPin);                // Stop and Start data collection status digitalRead(10) 

    //Serial.print("Button Status:  "); Serial.println(runbuttonstatus); 

     

// ******************    This stops the acquisition on button press 

        

//if (runbuttonstatus == LOW) {                                  // OLD DEVICE The button to stop run is on pin 10 

  if (runbuttonstatus == LOW) {                                  // The button to stop run is on pin 10 

        //stopsendoutpackets();       // Stops the receiver 
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        Flash_Led();   

        //logfile.println("Button stopped at start of loop");   // Print if the logfile is closed 

        //logfile.close(); 

        digitalWrite(greenLED, LOW); 

        Serial.print("Button stopped at end of loop"); 

       

        for(;;){                                            // Infinite loop flashing red LED when button pressed 

          digitalWrite(redLED, LOW); 

           

          Flash_Led(); 

        } 

            

      } 

       

 // ***************** Now the Acquisition Functions Start 

 

digitalWrite(greenLED, HIGH); 

digitalWrite(greenBUILTIN, HIGH); 

 

  if (loopcount <= 200) { 

    //logfile.println(loopcount); 

    baseline();                               // Collects baseline values as moving average 

  } 

   

  else if (loopcount == 201) { 

    baselineaverage();                      // Calculates the average and sd of baseline 

    //baselinedata();                         // Saves the baseline data to SD card and sets up Header for rest of data   

 

  } 

 

  else if (loopcount > 202) { 

    loopcount = 203;                         // We reset loopcount to a fixed value now to stop it getting too large 

                                             // Setting it above 202 makes sure we don't repeat the baseline next pass 

   

  collect_force_data();                      // collects one sample of FORCE data 

 

  Goniometer();                             // Get joint angle data 
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  collect_emg_data();                       // Collect data from analog channel once every loop 

   

  collect_amg_data();                       // Collect data from analog channel once every loop 

   

  smoothanalogchan();                      // Each time we go around the loop from now on we smoooth the value 

                                             // with the previous (numReadings) reading. This gives us the rectified 

                                             // data array that can be sent out in real time by XBee with IMU data  

 

  sendoutpackets_Xbee1();                         // Send out the payload to XBee receiver and dashboard system 

 

  buzzercheck();                            // Sounds the buzzer if force exceeds 80% MVC 

     

  } 

  contraction=0;                          // If the contraction was saved reset and keep zero if no contraction last time 

 

  loopcount++;                                // This loopcount is just used to determine if we are getting baseline data 

   

  loopforave++;                               // This integer loop counter is to determine when 10 values have been collected 

   

                                            // and their average needs to be sent out on XBee 

                                             

  delay(10);                               // Set sampling rate here to about 100 Hz if possible 

   

  } // End of the Main While Loop 

   

 //logfile.close(); 

  

 digitalWrite(greenLED, LOW); 

 

  

// End of sampling 

} 

 

/* =========================  END OF THE LOOP ================================ */ 
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// 

************************************************************************************************************************************ 

// ****************************************************  FUNCTIONS  

******************************************************************* 

// 

************************************************************************************************************************************ 

 

// *************************************************************** SETMVCPOT() 

********************************************************* 

// *********************************************************** FUNCTION TO SET THE MVC POT 

********************************************* 

// 

************************************************************************************************************************************* 

 

void setMVCpot() { 

Serial.println("Starting the POT ADJUST ROUTINE"); 

 

// APPLY THE MVC FORCE, ADJUST THE POT 

for(i=1; i=100; i++) { 

 value5 = analogRead(5); 

 mvcData[i] = value5; 

// the led flashing delay determines duration of the time to collect force array 

digitalWrite(LED_BUILTIN, HIGH); 

digitalWrite(greenLED, HIGH); 

digitalWrite(greenBUILTIN, HIGH); 

delay(100);  // FAST Flashing the LEDs 

digitalWrite(LED_BUILTIN, LOW); 

digitalWrite(greenLED, LOW); 

digitalWrite(greenBUILTIN, LOW); 

delay(100);  // FAST Flashing the LEDs 

 

// APPLY THE MVC FORCE IN A 20S TIME WINDOW GATHER FORCE VALUES INTO ARRAY 

maxForce= max(maxForce,mvcData[i]); 

return; 

} 
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digitalWrite(LED_BUILTIN, LOW); 

digitalWrite(greenLED, LOW); 

digitalWrite(greenBUILTIN, LOW); 

 

delay(2000);  // Pause before adjusting the pot 

 

for (i=1;i=200;i++) { 

if (value5 >= 0.8*maxForce) { 

  digitalWrite(buzzer, HIGH); 

  delay(1000); // ADJUST THE POT TO TURN IT OFF 

} 

 if (value5 < 0.8*maxForce) {  

  digitalWrite(buzzer, LOW); 

 } 

} 

 

// NOW THE POT IS SET TO 80% MVC 

} 

 

// *************************************************************** BASELINE() 

********************************************************** 

// ***************************************************** FUNCTION TO COLLECT EMG BASELINE 

**********************************************/ 

// 

************************************************************************************************************************************* 

 

void baseline()  { 

  //Serial.println("In baseline measuring RAW EMG"); 

   

  value3 = analogRead(3);                              // Read Channel 3 of Adalogger M0 ADC  Raw EMG 

                                                        

  ave1.push(value3);                                   // Calls the average function from math/h 

                                                       // and the value is assigned to (value3) bucket 

} 

// End of function 
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// ************************************************************  BASELINEAVERAGE() 

***************************************************** 

// *************************************************** FUNCTION TO CALCULATE THE MEAN AND STDEV OF 

BASELINE DATA *********************** 

// 

************************************************************************************************************************************* 

 

void baselineaverage() { 

//Serial.println("In baseline average"); 

 

  avevalue1 = ave1.mean();                           // Calculates baseline value and assigns mean and SD 

   

  sdval1 = ave1.stddev();                           // SD gives us a measure of the resting activity noise level 

    

} 

// End of Function 

 

// ********************************************************* COLLECT_FORCE_DATA() 

******************************************************* 

// ************************************  FUNCTION TO COLLECT FORCE DATA EACH PASS OF THE LOOP  

****************************************** 

// 

************************************************************************************************************************************* 

 

void collect_force_data(){ 

 

// THIS IS THE CALIBRATION APRIL 18 2023 

 

//y = 42.672ln(x) - 360.9  with r^s of 0.98 

 

value0= (analogRead(0)); 

valuetry = 42.67*log(value0) -360.9 - ZeroForce; 

 

//valuetry = (analogRead(0)*0.0018 + 15.216) - ZeroForce;  // Cal in Newtons 
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Serial.print("Force:  "); Serial.print("\t"); Serial.println(value0); 

} // End of function 

 

// ******************************************************* COLLECT_EMG_DATA 

************************************************************ 

// ************************************  FUNCTION TO COLLECT EMG DATA EACH PASS OF THE LOOP  

******************************************* 

// 

************************************************************************************************************************************* 

 

void collect_emg_data() {                                // Function to collect the emg data 

   

  currentTime = millis();                                // Update current time ready for timestamp 

  timeElapsed = currentTime - startTime;                 // Time Stamp in microseconds as global in micros now 

  procTime = currentTime - lastTime;                     // procTime gives a measure of sampling rate in micros 

  lastTime = currentTime; 

  runTime = timeElapsed;                            // Time Stamp in milliseconds 

   

 // Serial.print("Loop Time micros:   "); Serial.println(procTime); // With serial port running this is about 2ms or 500Hz 

 

  value3 = analogRead(3);                                // Read Channel 3 of Adalogger M0 ADC  Raw EMG 

                                                         // NOTE: value3 is used by baseline() to get the average for the first 

                                                         // 200 passes before we get to this function. From here value1 is being read 

                                                         // just to collect the raw EMG from 201 onwards.  This works OK as we don't 

                                                         // go back to baseline() but be aware. value3 is global. 

                                                          

   

  aboutzerovalue1 = value3 - (avevalue1);                 // Remove the offset We are leaving aboutzerovalue1 and 

avevalue1 as 1 not 3 

/* 

// Make the Raw EMG mV about the baseline   

      aboutzerovalue1 *= 3.3; // Multiply by our reference voltage 

      aboutzerovalue1 /= 65536; // Convert to voltage as we set AD converter to 16 bit 

      aboutzerovalue1 *=1000; // To make the value mV 

*/ 

   

  //Serial.print("AD CH 3:  ");  
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  //Serial.println(aboutzerovalue1); // The raw value 

   

} 

// End of function 

 

// ******************************************************* COLLECT_AMG_DATA 

************************************************************ 

// ************************************  FUNCTION TO COLLECT EMG DATA EACH PASS OF THE LOOP  

******************************************* 

// 

************************************************************************************************************************************* 

 

void collect_amg_data() {                                // Function to collect the emg data 

   

  currentTime = micros();                                // Update current time ready for timestamp 

  timeElapsed = currentTime - startTime;                 // Time Stamp in microseconds as global in micros now 

  procTime = currentTime - lastTime;                     // procTime gives a measure of sampling rate in micros 

  lastTime = currentTime; 

  runTime = timeElapsed;                            // Time Stamp in milliseconds 

   

 // Serial.print("Loop Time micros:   "); Serial.println(procTime); // With serial port running this is about 2ms or 500Hz 

 

  value4 = analogRead(4);                                // Read Channel 4 of Adalogger M0 ADC  Raw Z AMG1 

  //value5 = analogRead(5);                                // Read Channel 4 of Adalogger M0 ADC  Raw Z AMG2                  

} 

// End of function 

 

// ********************************************************* SMOOTHANALOGCHAN() 

******************************************************** 

// ************************************************ FUNCTION FOR SMOOTHING IN REAL TIME 

************************************************/ 

// 

************************************************************************************************************************************* 

/* This smoothing function enables us to get a smoothed value to identify and keep running a contraction 

    An alternative approach would be to use the rectified signal and set an amplitude threhold on the rectified signal. 

*/ 
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void smoothanalogchan() {                              

   

  // We are using the milli second elapsed time count 

 

// First we will create a scratch array with (numReadings) of raw EMG with baseline removed (aboutzerovalue1) 

// We also rectify by taking the abs value 

// We nominally set numReadings to 10 which is the data block we are averaging 

// First few times around the loop creates a false average (~10ms) 

 

  i = 0; 

  for (i = 0; i < numReadings - 1; i++) {             // Shift all the readings up the array by 1 

    readings1[i] = scratch1[i + 1];                   // The nth element of scratch is n-1th of readings 

  } 

 

  // Put the new value at the bottom of the readings1 array 

   

  readings1[numReadings - 1] = abs(aboutzerovalue1); // At this point i is equal to 1-numreadings so we are adding 

new readings 

                                                     // to bottom of array readings1[] 

 

  i = 0;                                                // Now reset i 

   

  // Add up all the readings in the scratch array 

  for (i = 0; i < numReadings; i++) { 

    total1 = (total1 + readings1[i]);                  

  } 

   

// total1 is now the sum of readings up to i readings 

   

  average1 = total1 / numReadings; 

  

/* 

// To convert Rectified EMG signal to mV   

      average1 *= 3.3; // Multiply by our reference voltage 

      average1 /= 65536; // Convert to voltage as we set AD converter to 16 bit 

      average1 *=1000; // To make the value mV 
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*/ 

//Serial.print("Rect Values:  "); 

Serial.print("EMG Averaged"); Serial.print("\t");Serial.println(average1); 

 

//logfile.print("Smoothed Rectified EMG values:  ");logfile.print(",");logfile.println(average1);   

   

  total1 = 0;                                         // Reset total1 

  i = 0; 

 

  for (i = 0; i < numReadings; i++) {                 // Set scratch up for next time round loop 

 

    scratch1[i] = readings1[i];                       // The nth element of scratch is now nth of new readings arrays are the 

same now 

  } 

 

//return; 

} 

// End of function 

 

 

// ************************************************ SENDOUTPACKETS() TO DASHBOARD 

****************************************************** 

// *************************************************FUNCTION TO TRANSMIT XBEE DATA 

***************************************************** 

// 

************************************************************************************************************************************* 

 

void sendoutpackets_Xbee1() {         

Serial.println("In sendout packets"); 

digitalWrite(greenLED, HIGH); 

 

// Note the rectified EMG values are averaged but the rest are not 

 

// Make sure your Tx and Rx XBees are in API=1 or dashboard will not work due to spurious characters in header.  
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// NOTE:  There are four special characters used by XBee. They are 7E 7D 0x11 and 0x13.  So when you send for 

example 0x11 the receiving XBee 

// will add a flag (7D) and then XOR the value with 0x20 so what you see transmitted appears to be 7D 31 

// To resolve this when you have received the data you will need code to look for the 7D flag and then OR the byte 

after it to revert the 

// value back to what was transmitted.  So...  0x11 is seen on the Rx side as 7D 31 . When you see the 7D ignore that 

flag and then XR the next 

// byte with 0x20 and you will get back to 0x11 again as the inverse of XOR is XOR.  The operator for XOR is ^ in c 

and in python. 

 

//value0 = analogRead(0); // FORCE 

//value1 = analogRead(1); // EMG But we want to send the averaged data not raw 

//value2 = analogRead(2); // Goniometer 

//value3 = analogRead(3); // NOT USED 

//value4 = analogRead(4); // AMG1 

//value5 = analogRead(5); // MVC POT 

 

//Serial.print("FORCE:");Serial.println(value0); 

//Serial.print("EMG1 RAW:");Serial.println(value1); 

//Serial.print("GONIOMETER ANGLE:");Serial.println(value2); 

//Serial.println(average1); // The EMG rectified signal 

//Serial.print("AMG1:");Serial.println(value4); 

//Serial.print("MVC POT:");Serial.println(value5); 

 

                // convert the timestamp (long) 

                 

                payload_1[ 0] = (headerch     ) & 0xff;     // The header character used by Dashboard to identify start of 

packet 

                payload_1[ 1] = (headerch     ) & 0xff; 

                payload_1[ 2] = (runTime >> 24) & 0xff; 

                payload_1[ 3] = (runTime >> 16) & 0xff; 

                payload_1[ 4] = (runTime >>  8) & 0xff; 

                payload_1[ 5] = (runTime      ) & 0xff; 

 

                payload_1[ 6] = (average1 >> 8) & 0xff;     // EMG  (H byte) (would normally be EMG) now in mV 

                payload_1[ 7] = (average1     ) & 0xff;     // EMG  (L byte) 

                payload_1[ 8] = (valuetry >>   8) & 0xff;   // Force Sensor Calibrated Value  (H byte) 
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                payload_1[ 9] = (valuetry       ) & 0xff;   // Force Sensor Calibrated Value (L byte) 

                payload_1[ 10]= (value2 >>   8) & 0xff;   // Elbow Angle (H byte) 

                payload_1[ 11]= (value2       ) & 0xff;   // Elbow Angle (L byte) 

                payload_1[ 12] = (0x0 >>   8) & 0xff;   // blank not sending AMG or MVC pot 

                payload_1[ 13] = (0x0       ) & 0xff;   // blank 

                payload_1[ 14] = (0x0 >>   8) & 0xff;   // blank 

                payload_1[ 15] = (0x0       ) & 0xff;   // blank 

                 

                 

                // send it along 

                xbee_1.send(tx_1); 

                 

       digitalWrite(greenLED, LOW); 

    //return;          

             

 }   // End of Function 

  

 

// 

************************************************************************************************************************************* 

// ******************************** FUNCTION TO READ THE POTENTIOMETER GONIOMETER 

****************************************************** 

// 

************************************************************************************************************************************* 

 

void Goniometer() { 

//Serial.println("In goniometer"); 

 

// Establish Left or Right Arm 

 

sidebuttonstatus=digitalRead(bodySIDE); 

 

// Calibration April 1 2023 

// LEFT: Degrees = -0.0043* Computer Units + 141.62 

 

// RIGHT: Degrees = 0.0038* Computer Units - 124.6 
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if (sidebuttonstatus == LOW) { 

SIDE = "LEFT"; 

JointAngle = ((analogRead(2))*-0.0043 + 141.62);  // The value is sent to XBee 

} 

else 

{ 

SIDE = "RIGHT"; 

JointAngle = ((analogRead(2))*0.0038 - 124.6);  // The value is sent to XBee 

} 

//Serial.print("Which Body Side?  "); Serial.println(SIDE); 

value2= JointAngle;     // Comment out to get the raw values for calibration 

//value2=analogRead(2);    // Use this to get raw values for calibration then comment out 

Serial.print("Joint Angle"); Serial.print("\t"); Serial.println(value2); 

 

// ********************** To measure the joint angle from goniometer ******************************* 

 

  JointAnglemeas =  analogRead(2);                // Measure the voltage from the potentiometer of the goniometer 

   

  // Measure the goniometer voltage and provide value in volts 

       

      JointAnglemeas *= 3.3; // Multiply by our reference volatage  *= and /= is shorthand way to multiply/divide one 

variable by another 

      JointAnglemeas /= 1024; // Convert to voltage 

       

 

 /* OLD CALIBRATION DAN's DEVICE      

  // CHECK THIS CALIBRATION 

  JointAngle =  0.0787*JointAnglemeas*1000 - 52.418;    // Convert volts to degrees  degrees where 0 degrees = 180 

(clinical protocol) 

  JointAnglePacket =  JointAngle;  // Convert to integer to transmit 

  */ 

 

ii++;  // increments each time we go around the main while loop 

 

// ****************** To calculate joint angle velocity ********************************* 

if (ii<30) { 

  JointAngleArray[ii]=JointAngle; 
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} 

 

 else { 

  ii=0;  

  } 

  

if (ii==29) { 

 

  currentTimegon = millis();                   // Current time in millisecs since start of program 

  runTimegon = currentTimegon - lastTimegon;                     // runTime gives a measure of sampling rate in micros 

  lastTimegon = currentTimegon; 

 

  JointAngleVelocity = (abs(JointAngleArray[29] - JointAngleArray[1])/runTimegon)*1000000;    // To convert degrees 

per micor second to per second. NOTE UNSIGNED INTEGER FOR THE ANGLE MEASURES 

  JointAngleVelocityPacket = JointAngleVelocity; 

   

  //Serial.print("Joint Angle Goniometer 1:   "); Serial.print(JointAngleArray[29]);Serial.print("    Joint Angle Goniometer 

2:   "); Serial.print(JointAngleArray[1]);Serial.print("    Joint Angle Packet   "); 

Serial.print(JointAnglePacket);Serial.print("     Joint Angle Velocity Packet Goniometer:   "); 

Serial.print(JointAngleVelocityPacket);Serial.print("    Elapsed Time:   "); Serial.print(runTimegon);Serial.print("    

Counter:   "); Serial.println(ii); 

} 

   

   

  //                              return; 

} 

 

// 

************************************************************************************************************************************* 

// ****************************************  FUNCTION TO SOUND BUZZER IF FORCE EXCEED 80 MVC************* 

****************************** 

// 

************************************************************************************************************************************* 

 

void buzzercheck() { 
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// The pot voltage on A5 is the threshold for the buzzer 

value5 = analogRead(5); // Pot value 

value0 = analogRead(0); // Force value 

forcethresh = k*potvalue; 

// We have cross-calibrated by determining k the force value based on the pot value forcethresh = potvalue*k 

 if (value5>= forcethresh) { 

  digitalWrite(buzzer, HIGH); 

 } 

 

  // The participant should be asked to ease of their applied force is the buzzer sounds and increase 

  // force if it has not sounded.  They can try and hold in an on-off-on condition. 

} 

 

             

// 

************************************************************************************************************************************* 

// ********************************  FUNCTION TO FLASH RED LED TO INDICATE ERROR OR TERMINATION OF 

PROGAM ****************************** 

// 

************************************************************************************************************************************* 

void Flash_Led() { 

  digitalWrite(redLED, HIGH); 

  delay(200); 

  digitalWrite(redLED, LOW); 

  delay(200); 

} 

// End of function 

 

// 

************************************************************************************************************************************* 

// ********************************  SD CARD ERROR STATUS 

****************************************************************************** 

// 

************************************************************************************************************************************* 

 

// blink out an error code for SD card status 
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void error(uint8_t errno) { 

  while (1) { 

    uint8_t i; 

    for (i = 0; i < errno; i++) { 

      digitalWrite(13, HIGH); 

      delay(150); 

      digitalWrite(13, LOW); 

      delay(150); 

    } 

    for (i = errno; i < 10; i++) { 

      delay(100);  

    } 

  } 

}            

// 

*************************************************************************************************************************************        

// ************************************************************* END OF FUNCTIONS SECTION 

********************************************** 

// 

************************************************************************************************************************************* 

 

 

Appendix 5. MATLAB Code for Power Spectra 
 

%%%%%%%%%%%% EMG CALIBRATION" %%%%%%%%%%%% 

 

% ************************************************************************* 

% READING THE DATA AND SETTING UP THE ARRAYS 

% ************************************************************************* 

 

% Clear the Command Window 

clc; 

clearvars; 

 

sampinterval = 1258.1;% this value is taken from the runtime vs sample number plot in micros 
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sampfr = 1000000/1258.1;   

Fnyq = sampfr/2; % The Nyquist frequency is half sampling frequency 

% https://en.wikipedia.org/wiki/Nyquist_frequency 

 

[stroke_input_data,sourcepath] = uigetfile('*.xlsx'); 

stroke_input_data = strcat(sourcepath,stroke_input_data); 

output_dir = sourcepath; % Used for outputting the figures at the end 

 

%Read data into table from Excel 

dataTable = readtable(stroke_input_data,'RANGE','A:D'); 

 

%dataTable = dataTable(1:end,:); % Removing header info  

 

muscle = "Biceps Dominant Arm"; 

 

% We fill a 1 dimensional array for each column 

 

TimeofSampleDEL = dataTable(1:end,4); % Reads the values from dataTable into the Time Stamp vector 

 

valRawEmg = dataTable(1:end,2);  % Reads the values from dataTable into the Delsys EMG vector 

 

TimeofSampleDEL =  table2array(TimeofSampleDEL(1:end,1)); 

TimeofSampleDEL = TimeofSampleDEL(~isnan(TimeofSampleDEL)); 

 

valRawEmgvec =  table2array(valRawEmg); 

valRawEmgvec = valRawEmgvec(~isnan(valRawEmgvec)); 

 

% ************************************************************************* 

% OBTAINING THE RECTIFIED VALUES OF EMG  

% ************************************************************************* 
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absemg = abs(valRawEmgvec-mean(valRawEmgvec)); % we subtract the mean in case it is not perfectly 

at zero 

 

 

valRawEmg = valRawEmgvec-mean(valRawEmgvec); 

 

 

%   We will now apply a low pass Butterworth 2nd order filter  

%   cutoff frequency fco to obtain envelope 

 

fco = 1;  % Edit to setup the cutoff frequency in Hz depending on detail required Change this for AMG 

from 5 to 1 Hz 

% in the envelope trace 

 

% We apply an adjustment factor of 25% to correct for 2nd order Butterworth 

% as the filter is applied twice, forward and backward. 

 

[b,a]=butter(2,fco*1.0/Fnyq); % change the cut off frequency as necessary to produce outline of EMG 

envelope 

zEMG=filtfilt(b,a,absemg);  % so zEMG is an array of the filtered data 

 

 

%% ********************** NOTE ON FUNCTION TO TRIM ZEROS ************************** 

% We created a custom function called trimzeros so that we removed trailing zeros and made the two 

% vectors the same length (time and EMG). 

% You need to have this function called trimzeros.m in the same folder that you are running this code 

from. 

% The is the code for the function: 

 

% function [ varargout ] = trimzeros( varargin ) 

% %TRIMZEROS Removes trailing "zero" datapoints from the input vectors 

% %   At the end of the `emg` array are expected to be a series of 0.0 values which 

% %   cause problems for data analysis. This function will remove those zeros from the 
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% %   input columns. Call this function using either: 

% %   >> [ t, emg ] = trimzeros(t, emg); 

% %   or: 

% %   >> [ t, emg, force ] = trimzeros(t, emg, force); 

%  

%  if (nargin < 2) || (nargin > 3) 

%   error('Please call this function with 2 or 3 arguments in the order: t, emg, force!'); 

%  end 

%  

%  if nargin ~= nargout 

%   error('Please call this function with the same number of outputs as inputs!'); 

%  end 

%  

%  % find the first ending 0 

%  i = length(varargin{2}); 

%  for k = i:-1:1 

%   if varargin{2}(k) ~= 0 

%    i = k; 

%    break; 

%   end 

%  end 

%  

%  % found the first starting 0, it's at index: i + 1 

 

%% **************************************************************************** 

 

% ************************************************************************** 

%% OBTAIN THE FREQUENCY SPECTRUM FOR DELSYS USING FFT ANALYSIS STORE AS JPEG 

% ************************************************************************** 

 

 

 

%% POWER SPECTRUM 
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%%%%%%%%%%%%%%%%%%  POWER SPECTRUM OF SIGNAL 

%%%%%%%%%%%%%%%%%%% 

 

L = length(valRawEmgvec);  

f = sampfr*(0:(L/2))/L; 

Y = fft(valRawEmgvec); 

P2 = abs(Y/L); 

P1 = P2(1:L/2+1); 

P1(2:end-1) = 2*P1(2:end-1); 

P1MoveAve = movmean(P1,25); % Moving mean for a window of 20 points (out of over 4300) 

f=f.';  % Make into vertical vector 

 

maxplotfr = 100;  % We only need 10-100 Hz range for AMG 

 

fmax = f(f<maxplotfr); 

 

maxloc=length(fmax); 

 

% We need to avoid the DC level and so consider eliminating frequencies lower than 

% a frequency of 10Hz  

 

 

fmin = f(f<5);  % Cut off below 5 Hz 

minloc=length(fmin); 

 

figure(1) 

plot(f(minloc:maxloc,1),P1MoveAve(minloc:maxloc,1)) 

title("Single-Sided Amplitude Spectrum of S(t)") 

xlabel("f (Hz)") 

ylabel("|P1(f)|") 

axis ([5 100 0 inf]) 
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% %%%%%%%%%%%%%%%%%% Save figures %%%%%%%%%%%%%%%%%%% 

 

saveas(figure(1), strcat(output_dir,'Power Spectrum DELSYS EMG.jpg')); 

 

 

Appendix 6. MATLAB Code for Rectified Data 
 

%sampfr = 2000; 

sampfr = 1123;  % Obtain this from plotting elapsed time vs number of samples 

Fnyq = sampfr/2; % The Nyquist frequency is half sampling frequency 

fn = Fnyq; 

[passive_stretch_input_data,sourcepath] = uigetfile('*.xlsx'); 

passive_stretch_input_data = strcat(sourcepath,passive_stretch_input_data); 

 

output_dir = sourcepath;  % Need for output tables 

 

%Read data into table from Excel 

dataTable = readtable(passive_stretch_input_data,'RANGE','A:AZ'); 

 

% NOTE: REMOVE ANY TRAILING ZEROS AT END OF XLSX DATA FILE BEFORE PROCESSING 

 

temg = dataTable{50:end,1}; 

valemg =dataTable{50:end,3}; 

valamg1 =dataTable{50:end,4}; 

valamg2 =dataTable{50:end,5}; 

 

temg=temg/1000000;  % Convert time from microseconds to seconds 

 

% Firstly obtain the absolute values of the raw data 

 

absemg = abs(valemg-mean(valemg)); % we subtract the mean in case it is not perfectly at zero 

absamg1 = abs(valamg1-mean(valamg1)); 

absamg2 = abs(valamg2-mean(valamg2)); 
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%   We will now apply a low pass Butterworth 2nd order filter  

%   cutoff frequency fco to obtain envelope 

 

%% Filter Characteristics for EMG 

fc1=5;% cut off frequency 

order = 6; %6th order filter, high pass 

[b1 a1]=butter(order,(fc1/fn),'low'); 

 

fc2=.05;% cut off frequency 

order = 6; %6th order filter, high pass 

[b2 a2]=butter(order,(fc2/fn),'high'); 

 

%filtered EMG data 

zemg=filtfilt(b2,a2,absemg); 

zemg=filtfilt(b1,a1,absemg); 

 

%% Filter Characteristics for AMG 

fc3=2;% cut off frequency 

order = 6; %6th order filter, high pass 

[b3 a3]=butter(order,(fc3/fn),'low'); 

 

fc4=.1;% cut off frequency 

order = 6; %6th order filter, high pass 

[b4 a4]=butter(order,(fc4/fn),'high'); 

 

%filtered AMG data 

zamg1=filtfilt(b4,a4,absamg1); 

zamg1=filtfilt(b3,a3,absamg1); 

 

zamg2=filtfilt(b4,a4,absamg2); 

zamg2=filtfilt(b3,a3,absamg2); 

 

zamgbase1=mean(zamg1); 
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zamgbase2=mean(zamg2); 

 

zemgbase=mean(zemg); 

 

zemg=zemg-zemgbase; 

zamg1=zamg1-zamgbase1; 

zamg2=zamg2-zamgbase2; 

 

figure(1) 

 

subplot(3,1,1) 

hold on 

p=plot(temg,absemg,'-.b'); 

  

title('Raw EMG vs Time:'); 

  

xlabel('Time (s)'); ylabel('EMG (V)'); 

 

subplot(3,1,2) 

hold on 

 

plot(temg,absamg1,'-.g'); 

 

title('Raw AMG1 vs Time:'); 

 

grid on; 

 

xlabel('Time s '); ylabel('Filtered EMG Amplitude') 

axis auto; 

 

subplot(3,1,3) 

hold on 
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plot(temg,absamg2,'-.g'); 

 

title('Raw AMG2 vs Time:'); 

 

grid on; 

 

xlabel('Time s '); ylabel('Filtered EMG2 Amplitude') 

axis auto;  

 

 

hold off 

 

figure (2) 

subplot(3,1,1) 

hold on 

plot(temg,zemg,'-r'); 

 

title('Rectified EMG vs Time s:'); 

 

grid on; 

 

xlabel('Time s'); ylabel('Rectified EMG Amplitude') 

 

subplot(3,1,2) 

 

plot(temg,zamg1,'-.b');  % Filtered High and Low Pass 

 

title('Rectified AMG1'); 

 

grid on; 

 

xlabel('Time s '); ylabel('Rectified AMG1 Amplitude') 

axis auto; 
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subplot(3,1,3) 

 

plot(temg,zamg2,'-.b');  % Filtered High and Low Pass 

 

title('Rectified AMG2 vs Time:'); 

 

grid on; 

 

xlabel('Time s '); ylabel('Rectified AMG2 Amplitude') 

axis auto;  

hold off 

 

saveas(figure(1), strcat(sourcepath,'Raw EMG and AMG1,2 vs Time.jpg')); 

saveas(figure(2), strcat(sourcepath,'Filtered EMG and AMG1,2 vs Time.jpg')); 

 

 

 

Appendix 7. MATLAB Code for Signal-to-noise Ratio 
 

sampinterval = 1330.7 % this value is taken from the runtime vs sample number plot in micros 

sampfr = 1000000/1330.7;   

Fnyq = sampfr/2; % The Nyquist frequency is half sampling frequency 

% https://en.wikipedia.org/wiki/Nyquist_frequency 

 

[stroke_input_data,sourcepath] = uigetfile('*.xlsx'); 

stroke_input_data = strcat(sourcepath,stroke_input_data); 

output_dir = sourcepath; % Used for outputting the figures at the end 

 

%Read data into table from Excel 

dataTable = readtable(stroke_input_data,'RANGE','A:D'); 

 

%dataTable = dataTable(1:end,:); % Removing header info  
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muscle = "Biceps Dominant Arm"; 

 

TimeofSampleDEL = dataTable(1:end,4); % Reads the values from dataTable into the Time Stamp vector 

 

valRawEmg = dataTable(1:end,2);  % Reads the values from dataTable into the Delsys EMG vector 

 

TimeofSampleDEL =  table2array(TimeofSampleDEL(1:end,1)); 

TimeofSampleDEL = TimeofSampleDEL(~isnan(TimeofSampleDEL)); 

 

valRawEmgvec =  table2array(valRawEmg); 

valRawEmgvec = valRawEmgvec(~isnan(valRawEmgvec)); 

 

% ************************************************************************* 

% OBTAINING THE RECTIFIED VALUES OF EMG  

% ************************************************************************* 

 

absemg = abs(valRawEmgvec-mean(valRawEmgvec)); % we subtract the mean in case it is not perfectly 

at zero 

 

 

valRawEmg = valRawEmgvec-mean(valRawEmgvec); 

 

 

%   We will now apply a low pass Butterworth 2nd order filter  

%   cutoff frequency fco to obtain envelope 

 

fco = 5;  % Edit to setup the cutoff frequency in Hz depending on detail required 

% in the envelope trace 

 

% We apply an adjustment factor of 25% to correct for 2nd order Butterworth 

% as the filter is applied twice, forward and backward. 
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[b,a]=butter(2,fco*1.0/Fnyq); % change the cut off frequency as necessary to produce outline of EMG 

envelope 

zEMG=filtfilt(b,a,absemg);  % so zEMG is an array of the filtered data 

 

rms_zEMG_baseline =  rms(zEMG(200:5000,1)); 

rms_zEMG_contraction =  rms(zEMG(5001:end,1)); 

signal_to_noise_ratio = (rms_zEMG_contraction)/(rms_zEMG_baseline);  % Result in dB  

 

signal_to_noise_dB = 20*log10(signal_to_noise_ratio); %power of the signal 

 

 

%% ********************** NOTE ON FUNCTION TO TRIM ZEROS ************************** 

% We created a custom function called trimzeros so that we removed trailing zeros and made the two 

% vectors the same length (time and EMG). 

% You need to have this function called trimzeros.m in the same folder that you are running this code 

from. 

% The is the code for the function: 

 

% function [ varargout ] = trimzeros( varargin ) 

% %TRIMZEROS Removes trailing "zero" datapoints from the input vectors 

% %   At the end of the `emg` array are expected to be a series of 0.0 values which 

% %   cause problems for data analysis. This function will remove those zeros from the 

% %   input columns. Call this function using either: 

% %   >> [ t, emg ] = trimzeros(t, emg); 

% %   or: 

% %   >> [ t, emg, force ] = trimzeros(t, emg, force); 

%  

%  if (nargin < 2) || (nargin > 3) 

%   error('Please call this function with 2 or 3 arguments in the order: t, emg, force!'); 

%  end 

%  

%  if nargin ~= nargout 
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%   error('Please call this function with the same number of outputs as inputs!'); 

%  end 

%  

%  % find the first ending 0 

%  i = length(varargin{2}); 

%  for k = i:-1:1 

%   if varargin{2}(k) ~= 0 

%    i = k; 

%    break; 

%   end 

%  end 

%  

%  % found the first starting 0, it's at index: i + 1 

 

%% **************************************************************************** 

 

% ************************************************************************** 

%% OBTAIN THE FREQUENCY SPECTRUM FOR DELSYS USING FFT ANALYSIS STORE AS JPEG 

% ************************************************************************** 

 

 

 

%% POWER SPECTRUM 

 

%%%%%%%%%%%%%%%%%%  POWER SPECTRUM OF SIGNAL 

%%%%%%%%%%%%%%%%%%% 

 

L = length(valRawEmgvec);  

f = sampfr*(0:(L/2))/L; 

Y = fft(valRawEmgvec); 

P2 = abs(Y/L); 

P1 = P2(1:L/2+1); 

P1(2:end-1) = 2*P1(2:end-1); 
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P1MoveAve = movmean(P1,90); % Moving mean for a window of 100 points (out of over 4300) 

f=f.';  % Make into vertical vector 

 

maxplotfr = Fnyq;  % This is Nyquist beyond likely physiological signal of interest but must be less that 

Nyquist 

 

fmax = f(f<maxplotfr); 

 

maxloc=length(fmax); 

 

% We need to avoid the DC level and so consider frequencies lower than 

% a frequency of 10Hz  

 

 

fmin = f(f<10); 

minloc=length(fmin); 

 

figure(1) 

plot(f(minloc:maxloc,1),P1MoveAve(minloc:maxloc,1)) 

title("Single-Sided Amplitude Spectrum of S(t)") 

xlabel("f (Hz)") 

ylabel("|P1(f)|") 

axis ([0 200 0 inf]) 

 

% %%%%%%%%%%%%%%%%%% Save figures %%%%%%%%%%%%%%%%%%% 

 

saveas(figure(1), strcat(output_dir,'Power Spectrum DELSYS EMG.jpg')); 
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