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Abstract—Generally, fuzzy models, especially rule-based models, are designed in a monolithic manner, meaning that all data are used en bloc 

to design the model. At the same time, there is a visible need to cope with the ever-increasing volumes of data (both in terms of the number of 

data and their dimensionality) as well as being faced with distributed data located at various locations. The objective of this study is to develop 

a concept and provide a design framework as well as assess its performance for constructing a collection of rule-based models on a basis of a 

randomly sampled repository of data and then realize their aggregation. More specifically, for the sampled data, the design of each model is 

carried out in a standard way as commonly encountered in the case of Takagi-Sugeno (TS) rule-based models and next augmented by gradient 

boosting. The aggregation is realized by optimizing a weighting scheme applied to the results of the individual models. Our intent is also to 

carefully demonstrate the performance offered by the mechanisms of machine learning applied in the setting of rule-based models, which is an 

original task completed before. A number of high-dimensional data are used in the experimental studies to complete a thorough assessment. A 

comparative performance analysis is reported with respect to the monolithically developed TS models. 

 
Index Terms—distributed rule-based model, gradient boosting, aggregation, data dimensionality, curse of dimensionality 

I. INTRODUCTION 

Since their inception, TS fuzzy rule-based models [1] have attracted much attention. There have been numerous studies devoted 

to their analysis and design for solving various classification and prediction tasks. The design methodology has been applied to a 

spectrum of practical problems encountered in diagnosis [2]–[5], decision-making, risk assessment [6]–[8], prediction [9]–[13], 

and control [14]. For instance, in [14], a new relaxed resilient fuzzy stabilization of discrete time TS system based on the switching-

type gain-scheduling control law is proposed. Rule-based models are inherently nonlinear and this helps capture the characteristics 

of the data (resulting in nonlinear input-output mappings) by changing the number of rules, and by selecting types of membership 

functions and types of local functions that form the conclusions of the rules. The issues associated with the high dimensionality of 

data (referred to as the curse of dimensionality) have begun to negatively affect the performance of the resulting models. To 

alleviate this problem, various well-known methods of dimensionality reduction have been involved in the design of the rules, such 

as autoencoders [15]–[19], nonnegative matrix factorization [20]–[23], Principal Component Analysis (PCA) [24]–[26], among 

others. The drawback is the reduced interpretability. Some optimization of the existing methods or porting them to different 

computing platforms to cope with the increasing data size have been explored [27]–[29]. However, these approaches concern the 

volumes of data in terms of the number of data as typically witnessed in big data. 

The main objective of the study is to develop a comprehensive design of an ensemble of rule-based models producing a 

distributed architecture to cope with high-dimensional data. This architecture is tractable; the underlying design process is 

established by engaging ensemble learning. The basic model we used is generic rule-based model, it is refined by forming rules 

based on the residuals. A suite of experimental studies is covered; with the proposed architecture, a certain level of originality 

arises. First, the concept of a distributed model is introduced and analyzed: the structure of the rule-based model regarded as a base 

model in the proposed architecture is used in the distributed structure to cope with subsets of data, thus avoiding the curse of 

dimensionality. Second, an overall design process is established: a standard construction is augmented by gradient boosting and 

then an aggregation of the individual models in the ensemble (weighting scheme) is developed. 

This study is structured into seven sections. First, the related studies are reviewed briefly in Section II. The architecture of the 

distributed model based on the randomized individual models is covered in Section III. Subsequently, we focus on the detailed 

development process in Section IV. In Section V, a detailed experimental study is reported. In Section VI, a number of experiments 

involving high-dimensional data are discussed. The comparative studies are also included to help identify limitations implied by 

the aspect of high data dimensionality. Conclusions are covered in Section VII. 

II. LITERATURE REVIEW  

In the context of rule-based models, we have seen a great deal of progress in terms of analysis, design, and deployment of models 

in specific application domains. In what follows, we elaborate on the main design strategies vis-à-vis the growing modeling 

challenges encountered with the ongoing demands to cope with the growing dimensionality and complexity of data, as well as the 

interpretability of the resulting models, among others. The need to collect, store and process large amounts of data is omnipresent 
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[30]. In light of this situation, machine learning along with its numerous augmentations has become a promising contributor to the 

algorithmic augmentations of the existing design and analysis practices. 

Ensemble learning - The underlying idea is to realize modeling through a series of multiple independent models. The idea was 

first proposed by Dasarathy and Sheela [31]. Different from traditional machine learning, the ensemble algorithm focuses on the 

integration of the results obtained by the independent models. The ideas of bagging form a visible tendency in this area. In the 

realm of fuzzy rules, ensemble learning was applied to assessing a driving style; the fusion of fuzzy rule models led to an increase 

in the accuracy of the evaluation to 94% [32]. Dieu [33] proposed a tree ensemble algorithm based on a fuzzy rule-based model to 

predict flash floods. Hu designed the bagging and boosting mechanisms for assembling fuzzy rule-based models and demonstrated 

that the performance of the ensemble model was superior to the traditional single model for most datasets [34]. The distributed 

way and hierarchically driven way of rule development was discussed in [35]. Some augmentations of the resulting models with 

the aid of information granules were investigated [36], [37]. 

Gradient boosting - Introduced in [38] and originally focusing on the construction of decision trees, gradient boosting is aimed 

at the successive refinements of some initial models by forming successive models to compensate for errors associated with the 

initially developed models. Each refinement is realized by considering a model constructed on a basis of input-error pairs of data. 

The process is repeated and starting from a simple model consisting of a few rules, one can arrive at a large number of rules that 

as an ensemble can achieve high accuracy. There are active developments in this area with examples of applications, e.g., in 

problems of prediction solar radiation [39] with the improvement of 40% reported in comparison with random forests. Likewise, 

improved prediction results were reported in [40]. Chang proposed a model based on a gradient boosting algorithm for risk 

assessment of financial institutions and improved the accuracy rate from 77% to 90% of traditional algorithms [41]. Wu used a 

gradient boosting algorithm for solar radiation prediction, effectively reducing the prediction error by 39% [42]. 

Adaptive boosting (Adaboost) - First proposed in [43], adaptive boosting uses an adaptive way of focusing the attention on 

incorrectly classified data by associating them with heavier weighting so that the designed model (classifier) is made more focused 

on such data. The approach is iterative, and the way of re-weighting data is repeated until some stopping criteria have been satisfied. 

This design strategy is applied in conjunction with various models including decision tree [44], SVM [45], naïve Bayes [46], K-

means [47], etc. 

In sum, in spite of the intensive body of knowledge established in the area of fuzzy rule-based models, there are several aspects 

of coping with high-dimensional data and a thorough exploration of mechanisms of machine learning focused on ensemble models 

that have not been fully explored and yet they deserve attention. 

III. AN ARCHITECTURE OF THE MODEL AND ITS UNDERLYING PROCESSING  

The structure of the overall model is composed of a collection of rule-based models that are built on a basis of randomly selected 

subsets of data. 

 
Fig. 1. Overall structure of the model and its functioning. 

The main steps of processing completed by each module as outlined in Fig. 1 are carried out as follows: 

(i) training of the rule-based models is completed on a basis of randomly selected data 𝑫𝑗 , 𝑗 = 1,2, … , 𝑝. A subset of training 

data is composed of randomly selected data and randomly selected features. The selection is realized by sampling with replacement 

so that the same probability of being drawn is ensured for all data instances and features. The feature selection is more important 

since the selected features compose low-dimensional data which can avoid the concentration effect [48]. 

(ii) for each subset of data formed above, the standard design process of the TS rule-based model 𝑀𝑗 is completed. First, the 

data are clustered which leads to the condition parts of the rules. Next, the local linear functions forming the conclusions of the 

rules are optimized by minimizing the sum of squared errors. 

(iii) the above design process is augmented by enhancing the performance of the models by engaging its gradient boosting. 

(iv) finally, the results of the constructed models are aggregated by the aggregation module; here a linear weighted aggregation 

scheme is usually considered. 
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IV. THE DESIGN OF MAIN MODULES OF THE MODEL 

In what follows, we proceed in detail in accordance with the architecture in Fig.1. As usual, in the overall design process, the 

available data 𝑫 is split into the training 𝑫𝑡𝑟𝑎𝑖𝑛 and testing 𝑫𝑡𝑒𝑠𝑡. 

A Generic rule-based model 

The rules come in the standard format 

If 𝒙 is 𝐴𝑖 , then 𝐿𝑖(𝒙; 𝑎0𝑖 , 𝒂𝑖) = 𝑎0𝑖 + 𝒂𝑖
𝑇𝒙, 𝑖 = 1,2, … , 𝑐 (1.) 

where 𝐴𝑖 is an information granule (fuzzy set) defined in the space of randomly selected datapoints and features. 𝐿𝑖(𝒙; 𝑎0𝑖 , 𝒂𝑖) is 

a linear function forming the conclusion part while 𝑎0𝑖 and 𝑎𝑖 are the parameters of the linear function. The parameter c stands for 

the number of rules. 𝐴𝑖 is produced by the FCM clustering. The 𝑗-th output of rule-based model is computed on a collection of c 

rules. 

𝑦𝑗 =  ∑ 𝐴𝑖(𝒙𝑗)𝐿𝑖(𝒙𝑗; 𝑎0𝑖 , 𝒂𝑖)

𝑐

𝑖=1

(2.) 

where 𝑗 = 1,2, … , 𝑁∗. The number of rules c varies across the models as it is determined by minimizing the sum of squared errors 

shown below. Different data in distributed models result in different values of the optimal number of clusters. In addition, the 

parameters of the local functions are also determined by the minimization of the sum of squared errors 

𝑒𝑟𝑟𝑜𝑟 =
1

𝑁∗
∑(𝑡𝑎𝑟𝑔𝑒𝑡𝑗 − 𝑦𝑗)

2
𝑁∗

𝑗=1

(3.) 

where the sum is taken over the corresponding 𝑁∗ randomly selected data. 

In total, we consider p rule-based models, an interesting question arises as to the usage of all features in 𝑫𝑡𝑟𝑎𝑖𝑛 across the subsets 

of training data  𝑫𝑡𝑟𝑎𝑖𝑛,𝑗, 𝑗 = 1, 2, … , 𝑝. Note that along with the data, we also randomly pick up a certain proportion (𝑟) of features. 

Thus, it is of interest to assess how many models (p) have to be constructed to involve all features in the construction of the 

aggregated model. The probability prob of this event (stating that each variable being chosen) is expressed as [49] 

𝑝𝑟𝑜𝑏 = 𝑟 + (1 − 𝑟)𝑟 + ⋯ + (1 − 𝑟)𝑝𝑟 = 𝑟 (
1 − (1 − 𝑟)𝑝

1 − (1 − 𝑟)
) (4.) 

If we require a certain level of probability (prob) to be achieved, for a given value of 𝑟, the above relationship helps determine 

how many models 𝑝 has to be built. 

From the practical perspective, we may request that the value of 𝑟 should not be too low. If so, each rule-based model cannot 

capture the input-output dependencies. On the other hand, the excessively high dimensionality 𝑟 may lead to the deterioration of 

the rules because of the concentration effect (and this has a detrimental impact on the clustering results). Therefore, a model built 

for a smaller number of input variables (viz. 2-3) translates into the corresponding value of 𝑟. The plot of probability that all the 

variables have been selected displayed as a function of p for the selected values of 𝑟 is shown in Fig. 2. This relationship helps 

determine the number of models once the value of 𝑟 has been specified and the required minimal probability 𝑝 has been fixed. 

 
Fig. 2. Probability prob versus p for selected values of r. 

From Fig. 2, we see that when 10% of the original features are selected each time, it becomes necessary to construct 90 models 

with randomly selected features to use all of them.  If the probability prob has been set up as 0.7, we require 12 models with 𝑟 =
0.1 while 2 models in case of 𝑟 = 0.5. 

Gradient boosting of the rule-based model. Each rule-based model is further refined by applying gradient boosting. The objective 

here is to improve the performance of the initially constructed models. Here we follow a well-known scheme of updates for the 

output of the model, guided by the error values [50]. 

Consider the 𝑗𝑡ℎ  model 𝑀𝑗  is constructed on the basis of 𝑫𝑡𝑟𝑎𝑖𝑛,𝑗 . One determines the corresponding errors 𝑒𝑘 , 𝑘 =

1,2, … , 𝑐𝑎𝑟𝑑(𝑫𝑡𝑟𝑎𝑖𝑛,𝑗) produced by this model and constructs an auxiliary model 𝑀𝑗
~ on the basis of input-output pairs in the 

format (𝒙𝑘, 𝑒𝑘), and then aggregates the result of the model and the auxiliary construct in the additive form 𝑀𝑗(𝒙𝑘) + 𝜆𝑀𝑗
~(𝒙𝑘) 

such that the sum of errors between the data and the aggregate above is minimized by choosing a suitable value of 𝜆 from 0 to 1. 

The above boosting process is repeated 𝐾  times by forming successive refinements of the augmented models to obtain the 

optimized model result 𝑀𝑜𝑝𝑡,𝑗.  
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Aggregation of partial results. The results produced for the already gradient boosted p models 𝑀𝑜𝑝𝑡,1, 𝑀𝑜𝑝𝑡,2, … , 𝑀𝑜𝑝𝑡,𝑝 are 

aggregated by taking a weighted average in the form 

�̂� = 𝑤1𝑀𝑜𝑝𝑡,1(𝒙) + 𝑤2𝑀𝑜𝑝𝑡,2(𝒙) + ⋯ + 𝑤𝑝𝑀𝑜𝑝𝑡,𝑝(𝒙) (5.)  

where 𝒘 = [𝑤1, 𝑤2, … , 𝑤𝑝]
𝑇

 is a vector of adjustable weights used in the aggregation process; the weights are subject to 

optimization. In this optimization, the performance index is expressed as a sum of squared errors with the sum taken over all data 

𝑫𝑡𝑟𝑎𝑖𝑛. As the above optimization problem concerns a standard objective function, there is an analytical solution to the optimal 

weights 𝒘𝑜𝑝𝑡. The objective is to minimize the distance (sum of squared errors) between the training target target and the output 

of the model. With the aid of the LSE (Least square error) minimization algorithm, the optimal weight is: 

𝒘 = (𝑀𝑇𝑀)−1𝑀𝑇𝒕𝒂𝒓𝒈𝒆𝒕 (6.) 

where M is an 𝑁 × 𝑝 dimensional matrix 

𝑀 = [

𝑀𝑜𝑝𝑡,1(𝒙1) 𝑀𝑜𝑝𝑡,2(𝒙1) … 𝑀𝑜𝑝𝑡,𝑝(𝒙1)

⋮ ⋮
𝑀𝑜𝑝𝑡,1(𝒙𝑁) 𝑀𝑜𝑝𝑡,2(𝒙𝑁)

⋱ ⋮
… 𝑀𝑜𝑝𝑡,𝑝(𝒙𝑁)

] (7.) 

where 𝑁 is the number of data. 

The 𝑅𝑀𝑆𝐸 performance index evaluates the quality of the aggregation of rule-based models: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ [𝑡𝑎𝑟𝑔𝑒𝑡𝑘 − �̂�𝑘]2𝑁

𝑘=1 (8.)  

Computing complexity. The computing complexity analysis encounters two main procedures: fuzzy clustering and matrix 

inversion. We investigate two models, namely the standard TS model and the distributed model with selected features. The 

complexity for fuzzy clustering is 𝑂(𝑐2𝑁𝑛𝐼), where 𝑛 is the number of data features and 𝐼 is the number of iterations in the fuzzy 

clustering (in the case of standard TS model). In terms of matrix inversion, the time complexity is 𝑂(𝑝3) (in the case of distributed 

model). 

Statistical tests. To do the comparisons of two models, there are some statistical tests being considered [51]. One is the Wilcoxon 

signed-ranks test. It is a nonparametric test, ranking the difference in performances of two models for each data set. Let 𝑑𝑖 be the 

difference between the performance indexes of two models on the i-th of 𝐵 datasets. Then the differences will be ranked based on 

their absolute values. The sum of differences ranking is presented as follows 

𝑅+ = ∑ 𝑟𝑎𝑛𝑘(𝑑𝑖)

𝑑𝑖>0

+
1

2
∑ 𝑟𝑎𝑛𝑘(𝑑𝑖)

𝑑𝑖=0

(9.) 

and 

𝑅− = ∑ 𝑟𝑎𝑛𝑘(𝑑𝑖)

𝑑𝑖<0

+
1

2
∑ 𝑟𝑎𝑛𝑘(𝑑𝑖)

𝑑𝑖=0

(10.) 

Then we take the smaller value of the sums, i.e., 𝑇 = min (𝑅+, 𝑅−). The table of Wilcoxon’s test indicates that in terms of the 

confidence level 𝛼 = 0.05 and 𝐵 = 10 datasets, the difference between two models is significant if 𝑇 is equal to or less than 8. 

Another one is Paired t-test, it checks whether the average difference of the two models is different from zero. The calculation 

process is presented as follows: 𝑑𝑖 is also the difference between two models as mentioned before, the statistics is computed as 

�̅� 𝜎�̅�⁄ , where �̅� is the average value of all differences and 𝜎�̅� is the standard error of the differences. The difference between two 

models is significant if the t statistics is smaller than the one required in the t-distribution table (note the confidence level 𝛼 =
0.05). 

V. EXPERIMENTAL STUDIES 

In this section, we report on the results obtained for the rule-based model designed as discussed in the previous sections and the 

standard TS model [1] with gradient boosting optimization (namely, standard gradient boost TS model). Since we apply the 

gradient boosting algorithm as a part of the proposed method, the gradient boosting is also fused in generic TS model to demonstrate 

the comparison performance in an objective manner. The experiments were carried out on a PC with AMD Ryzen Threadripper 

2990WX 4.1GHz CPU and 64GB RAM running the MATLAB R2022b in the same environment. The performance of the model 

is reported in terms of its average RMSE with 10-fold cross-validation. The data are linearly normalized to [0,1]. In the slew of 

experiments, we set up the following values of the parameters: 

FCM: 𝑚 = 2, the number of iterations = 100. The number of clusters c varied from 2 to 10. We optimized the performance of 

the overall model by choosing the optimal number of clusters for each model. We also tried more values of c positioned in the 

range 2–20; no visible improvement has been reached for the values over 10. Subsequently, the range 2–10 has been selected. 

Randomization: the values of r were selected as 0.1, 0.2, 0.3, 0.4, and 0.5. With the assumed probability, 𝑝𝑟𝑜𝑏 = 0.999, the 

results coming from the theoretical analysis in (4) are p = 84, 40, 25, 18, and 13 models, respectively. The random selection of 

data was governed by a uniform probability distribution. In the experiment, in order to ensure data integrity, we set p = 100 for all 

percentage values of r. 
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The experiments were completed for the UCI machine learning dataset Superconductivity 

(https://archive.ics.uci.edu/ml/datasets/superconductivty+data), consisting of 21,263 80-dimensional data. Then we separate the 

data into training and testing sets.  

Following the overall design process, we randomly select some data and use them to train the individual fuzzy rule-based model. 

Then, the models are refined with the use of gradient boosting, see Fig. 3. These plots are reported for the selected percentage r 

being 0.5 and the number of model p is 100. It is apparent that for successive values of K, the performance index RMSE decreases; 

however, the decline is reported for some initial values of K, say 5–10 and then the values of the index stabilize. It is noticeable 

that the averaging of the outputs of the models leads to some improvement. Then we also aggregate these results with optimal 

weights following (6). In Fig. 3, the circle is the average aggregated result and the star stands for the weighted aggregation result. 

It is evident that the weighted aggregation leads to the better performance. 

 

 
Fig. 3. Performance index RMSE obtained for each distributed model and the aggregation results (𝑟 = 0.5). 

 
Fig. 4. Optimal values of the weights used in the weighted aggregation of the models. 

 

Fig. 5. Optimal numbers of the rules (clusters) in the distributed models. 

By inspecting Fig. 4, we conclude that only a handful of models contribute to the aggregation process while most of them exhibit 

a very limited impact as the values of the corresponding weights are close to zero. In Fig. 5, it is evident that the optimal number 

of rules (clusters) for most distributed models vary; in most cases, these values are 2,3,4 or 10. In Fig. 6(a), we show the values of 

the performance index (RMSE) for several selected values of r. 

 
 (a)  (b)  
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(c) 

Fig. 6. Experimental results obtained for Super conductivity data set. 

(a) performance index - distributed model; (b) performance index - TS model; (c) TS model -prototypes. 

For comparative analysis, we consider a standard gradient boosted TS rule-based model as a reference construct, whose structure 

is the same as in (1). As before, FCM was run for 100 iterations, m was set to be 2 and the number of clusters is optimized in the 

range 2-10; the results are shown in Fig. 6(b). The distributed rule-based model led to the improvement over the TS model; on 

average (across all experiments) the improvement was around 12.8%. Considering the computational time in Figs. 6(a) and (b), 

the performance of the proposed model shows an improvement of 54.2%. In Fig. 6(c), we depict the prototypes in the form of radar 

plot for the TS model when c is 2 (left) and 10 (right). The prototypes are in the range [0, 1] since the data are normalized. It is 

difficult to distinguish the lines, which means that the prototypes are close to each other. This shows that the TS model cannot 

effectively cluster the data, thus affecting the performance of the model. 

VI. FURTHER EXPERIMENTAL RESULTS WITH SELECTED MACHINE LEARNING DATA 

In this section, we report on experimental results obtained for some machine learning datasets coming from UCI machine 

learning datasets (https://archive.ics.uci.edu/ml/index.php) and Kaggle (https://www.kag-gle.com/). Our intent is to show the 

impact of the main parameters on the performance of the obtained models as well as to contrast the performance vis-à-vis a TS 

model constructed for all data. The details of the data are covered in Table 1; it is worth noting that we selected the data of the 

highest dimensionality of the input space as those are quite challenging in the design of rule-based models. For each dataset, in 

order to facilitate comparison, we focus on showing the results for the gradient boosting distributed rule-based model and the 

reference gradient boosted TS model, and we show the prototypes where c is equal to 2 and 10. 

Table 1. Data sets used in experiments. 

Data (number of data, dimensionality of input space) 

Online news popularity (39,644; 58) 

Year prediction MSD (first 30K data points) (30,000; 90) 

Parkinson’s telemonitoring (5,875; 17) 

Geographical original of music (1,059; 117) 

SML2010 (2764; 24) 

Appliance’s energy prediction (19735; 25) 

Real Time Bidding (first 30K data points) (30,000; 89) 

LightGBM’s regression examples (6301; 29) 

White wine quality (4898; 12) 

The results are displayed in a series of plots shown in Fig. 7. 

 
 (a) i.   (a) ii.  

https://www.kag-gle.com/


 7 

 
(a) iii. 

 
 (b) i.   (b) ii.  

 
(b) iii. 

 
 (c) i.   (c) ii.  

 
(c) iii. 

 
 (d) i.   (d) ii.  
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(d) iii. 

 
 (e) i.   (e) ii.  

 
(e) iii. 

 
 (f) i.   (f) ii.  

 
(f) iii. 

 
 (g) i.   (g) ii.  
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(g) iii. 

 
 (h) i.   (h) ii.  

 
(h) iii. 

 
 (j) i.   (j) ii.  

 
(j) iii. 

Fig. 7. Average results for different datasets: The plots from left to right display: i. performance index - distributed model; ii. 

performance index - TS model; iii. radar plots present prototypes produced by the TS model. 
(a) Online news popularity; (b) Year prediction MSD; (c) Parkinson’s telemonitoring; (d) Geographical original of music. (e) 

SML2010; (f) Application energy prediction; (g) Real Time Bidding; (h) LightGBM’s regression; (j) White wine quality. 

Comparing the runtime depicted in Fig. 7i and ii, our model performs better regarding most datasets. Table 2 summarizes the 

performance improvements of the proposed model obtained for each dataset compared with the TS model with the number of 

clusters set to 10 (for this number of rules, the TS model produces the best results). Compared with the gradient boosted TS model, 

here we present the minimum, maximum and average improvement values of the experimental results to demonstrate the achieved 

improvement of the proposed model. Based on the experimental results for the above 10 datasets, we compute the statistical test 

for our proposed model and the reference TS model. Where the Wilcoxon signed-ranks test result 𝑇 = 1 is less than 8 and the 
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Paired t-test result t statistics is 2.4242 is greater than 𝑡0.05,9 (1.8331). Both statistical tests demonstrate that our new model 

produces significant improvements compared to the standard gradient boosted TS model. 

Table 2. Improvement obtained for each dataset 

Table 3. The performance of random forest model 

Data 
Performance index 

(RMSE) 

Run time 

(s) 

Superconductivity train: 0.065; test: 0.069 2.87 

Online news popularity train: 0.039; test: 0.044 4.65 

Year prediction MSD train: 0.041; test: 0.043 0.5 

Parkinson’s telemonitoring train: 0.191; test: 0.192 0.44 

Geographical Original of Music train: 0.189; test: 0.199 0.19 

SML2010 train: 0.134; test: 0.141 0.26 

Application energy prediction train: 0.082; test: 0.085 1.75 

Real Time Bidding train: 0.045; test: 0.053 5.72 

LightGBM’s regression  train: 0.040; test: 0.045 0.66 

White wine quality train: 0.118; test: 0.120 0.37 

In addition, we also include the comparison between the random forest regression model [52] and the proposed model. The 

random forest regression model is a supervised model which uses an ensemble learning method for regression (continuous data). 

The random forest regression is realized in four steps: 1) pick up 10% of data points and features from the training set randomly; 

2) build a decision tree based on the selected data; 3) design a certain number of trees by repeating the above steps; 4) input the 

testing data to all trees and predict the corresponding results, then average all results to obtain the final predicted output. Regarding 

the random forest algorithm, we set the parameters as follows: the size of random forest T (the number of trees) is 100 and the 

maximum depth D of each tree is 50. The experimental results of random forest regression model are shown in Table 3. Compared 

with the random forest model, our model performs better over regarding most datasets (Superconductivity, Year prediction MSD, 

Parkinson’s telemonitoring, Application energy prediction, Real Time Bidding, LightGBM’s regression). Due to the low time 

complexity of random forest, O(TD), our model has no evident advantages in terms of the running time. 

VII. CONCLUSIONS 

In this study, we have introduced a distributed model developed by integrating ensemble learning ideas and the gradient boosting 

algorithm. In this process, we demonstrate how to ensure the integrity of the data by randomly sampling. The distributed model 

obtained through the sampling process and the fuzzy rule-based model are further improved by the gradient boosting algorithm. In 

this way, we avoid the problem of the curse of dimensionality inherently present in large-dimensional data. Compared with the 

traditional TS model, the performance of our model has been significantly improved. 

Although the feasibility of the approach is demonstrated, there are still some directions worth exploring. For example, in the 

random sampling stage, under the premise of ensuring data integrity, we intend to reduce the number of repetitions and find an 

optimal parameter combination. At the same time, one can envision applying the data with similar features to a distributed model 

Data 

Improvement based on TS model (%)  

Train Test 

min max average min max average 

Superconductivity 6.4 16.8 12.9 8.8 17.3 13.5 

Online news popularity 5.3 33.0 18.3 3.9 31.1 16.0 

Year prediction MSD 61.9 65.8 64.4 65.2 69.9 68.0 

Parkinson’s telemonitoring 1.6 11.6 8.2 2.7 14.4 9.1 

Geographical Original of Music 1.8 7.6 4.9 23.8 27.3 25.3 

SML2010 -5.0 6.1 2.0 -2.4 4.8 1.0 

Application energy prediction 4.3 10.2 7.7 5.2 5.9 5.4 

Real Time Bidding -0.6 1.6 0.5 0 3.6 1.6 

LightGBM’s regression  -4.2 -0.3 -1.2 -7.8 2.9 -1.4 

White wine quality 20.5 26.7 24.4 4.8 14.9 9.2 

Average improvement 

(across all data) 
11.5 19. 5 16.1 11.6 20.7 16.6 
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through similarity analysis where each model could be optimized with extreme gradient boosting method. In addition, in the process 

of optimizing the aggregation, we can consider further optimizing the model by incorporating information granularity into the 

parameters of the constructed model. 

VIII. APPENDIX 

The concentration effect states that in a high-dimensional space, the difference in distance between data points tends to become 

smaller as outlined as follows. To make it easy to follow, we elaborate upon an experiment with the data chosen uniformly at 

random from a unit sphere, where the unit sphere in 𝑹𝑛 is defined as follows 

{𝒙 ∈ 𝑹𝑛|‖𝒙‖ < 1} 

In the experiment, we compute the distances between any two data points and the distance between any two clustering centers 

(prototypes) which are obtained by running FCM algorithm, as shown in the following figure. In Fig. 8(a), the x-coordinate is the 

value of distance and y-coordinate shows the number of the data pairs generating the corresponding distance. It is obvious that 

with the increase of the dimensionality, the spread of distances between any two data points decreases and loses the diversity, 

resulting in high data similarity. However, the increase in the number of data instances has no big influence on the distribution of 

the distance between any two data points. In addition, we run FCM based on the chosen data and obtain several centers, then the 

distance between any two centers has been depicted in Fig. 8(b), the x-coordinate is the number of clusters and y-coordinate shows 

the mean value and standard deviation of the distances. With the increase of dimensionality, the distances between prototypes 

become close to each other. 

 
(a) 

 
(b) 

Fig. 8. The distance distribution as a function of the number of data features and data instances. 
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