CHARACTERIZATION AND VARIABILITY OF SOILS RECONSTRUCTED AFTER SURFACE MINING IN CENTRAL ALBERTA

Вy

TERRY M. MACYK

Terrain Sciences Department

Alberta Research Council

for

Reclamation Research Technical Advisory Committee
Alberta Land Conservation and Reclamation Council

March 1986

ALBERTA'S RECLAMATION RESEARCH PROGRAM

The regulation of surface distrubances in Alberta is the responsibility of the Land Conservation and Reclamation Council. The Council executive consists of a chairman from the Department of the Environment and two deputy chairmen from the Department of Energy and Natural Resources. Among other functions, the Council oversees programs for reclamation of abandoned disturbances and reclamation research. The reclamation research program established to provide answers to the many practical questions which arise in reclamation. Funds for implementing both the operational and research programs are drawn from Alberta's Heritage Savings Trust Fund.

To assist in technical matters related to the development and administration of the research program the Council appointed the Reclamation Research Technical Advisory Committee (RRTAC). The Committee first met in March, 1978 and consists of eight members representing the Alberta Departments of Agriculture, Energy and Natural Resources, Environment and the Alberta Research Council. The Committee meets regularly to update research priorities, review solicited and unsolicited research proposals, arrange workshops and otherwise act as a referral and coordinating body for Reclamation Research.

Additional information on the Reclamation Research Program may be obtained by contacting:

Dr. P.F. Ziemkiewicz, Chairman Reclamation Research Technical Advisory Committee Alberta Energy and Natural Resources 2nd Floor, 10909 Jasper Avenue EDMONTON, Alberta T5J 3M8 (427-8042)

This Report may be cited as:

Macyk, T.M. 1986.

Characterization and Variability of Soils Reconstructed After Surface Mining in Central Alberta. Alberta Land Conservation and Reclamation Council Report $\#RRTAC\ 86-2$. 146 p.

Additional Copies may be obtained from:

Publication Services Queen's Printer 11510 Kingsway Avenue EDMONTON, Alberta T5G 2Y5

TABLE OF CONTENTS

		Page
LIST OF F	IGURES	iii
LIST OF T	ABLES	vi
PREFACE		vii
ABSTRACT	•••••	x
ACKNOWLED	GEMENTS	хi
1.	INTRODUCTION	1
2.1 2.1 2.2 2.3 2.3.1 2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7 2.4.8 2.5	CHARACTERIZATION OF RECONSTRUCTED SOILS The Study Supplementary Information Reconstructed Soil Characteristics Sample Site Distribution Data Synthesis RC1 Areas RC2 Areas RC3 and RC4 Areas RC5 Areas RC6 Areas RC7 Areas RC7 Areas RC8 Areas RC9 Areas RC9 Areas Summary of Reconstructed Soil Area Characteristics	2 3 4 4 6 7 34 35 36 37 37 37 37
3. 3.1	VARIABILITY OF RECONSTRUCTED SOILS	40 66
4.	REFERENCES CITED	68
5.1	APPENDICES - CHEMICAL AND PHYSICAL PROPERTIES OF RECONSTRUCTED SOILS AT PAINTEARTH MINE (1983)	69 70
5.2	Analytical Data for Reconstructed Soils Sampled in 1983	120

LIST OF FIGURES

		Page
1.	Mean Values for pH at Diplomat Mine	8
2.	Mean Values for pH at Vesta and Highvale Mines	9
3.	Mean Values for SAR at Diplomat Mine	10
4.	Mean Values for SAR at Vesta and Highvale Mines	11
5.	Mean Values for PSAT at Diplomat Mine	12
6.	Mean Values for PSAT at Vesta and Highvale Mines	13
7.	Mean Values for EC at Diplomat Mine	14
8.	Mean Values for EC at Vesta and Highvale Mines	15
9.	Mean Values for Calcium at Diplomat Mine	16
10.	Mean Values for Calcium at Vesta and Highvale Mines	17
11.	Mean Values for Magnesium at Diplomat Mine	18
12.	Mean Values for Magnesium at Vesta and Highvale Mines .	19
13.	Mean Values for Potassium at Diplomat Mine	20
14.	Mean Values for Potassium at Vesta and Highvale Mines .	21
15.	Mean Values for Sodium at Vesta and Highvale Mines	22
16.	Mean Values for Sodium at Diplomat Mine	23
17.	Mean Values for Sulphate at Diplomat Mine	24
18.	Mean Values for Sulphate at Vesta and Highvale Mines	25
19.	Mean Values for Calcium Carbonate Equivalent at Diplomat Mine	26
20.	Mean Values for Calcium Carbonate Equivalent at Vesta and Highvale Mines	27
21.	Mean Values for Sand at Diplomat Mine	28
22.	Mean Values for Sand at Highvale and Vesta Mines	29

LIST OF FIGURES (CONTINUED)

23.	Mean Values for Silt at Diplomat Mine	30
24.	Mean Values for Silt at Highvale and Vesta Mines	31
25.	Mean Values for Clay at Diplomat Mine	32
26.	Mean Values for Clay at Highvale and Vesta Mines	33
27.	Electrical Conductivity Data for Reconstructed Soils at Diplomat Mine	42
28.	Electrical Conductivity Data for Reconstructed Soils at Diplomat Mine	43
29.	Electrical Conductivity Data for Reconstructed Soils at Diplomat Mine	44
30.	Electrical Conductivity Data for Reconstructed Soils at Diplomat Mine	45
31.	Electrical Conductivity Data for Undisturbed Soils at Diplomat Mine	46
32.	Electrical Conductivity Data for Undisturbed Soils at Diplomat Mine	47
33.	SAR Data for Reconstructed Soils at Diplomat Mine	48
34.	SAR Data for Reconstructed Soils at Diplomat Mine	49
35.	SAR Data for Reconstructed Soils at Diplomat Mine	50
36.	SAR Data for Reconstructed Soils at Diplomat Mine	51
37.	SAR Data for Undisturbed Soils at Diplomat Mine	52
38.	SAR Data for Undisturbed Soils at Diplomat Mine	53
39.	PSAT Data for Reconstructed Soils at Diplomat Mine	54
40.	PSAT Data for Reconstructed Soils at Diplomat Mine	55
41.	PSAT Data for Reconstructed Soils at Diplomat Mine	56
42.	PSAT Data for Reconstructed Soils at Diplomat Mine	57
43.	PSAT Data for Undisturbed Soils at Diplomat Mine	58
44.	PSAT Data for Undisturbed Soils at Diplomat Mine	59
45.	pH Data for Reconstructed Soils at Diplomat Mine	60

LIST OF FIGURES (CONCLUDED)

46.	pH Data for Reconstructed Soils at Diplomat Mine	61
47.	pH Data for Reconstructed Soils at Diplomat Mine	62
48.	pH Data for Reconstructed Soils at Diplomat Mine	63
49.	pH Data for Undisturbed Soils at Diplomat Mine	64
50.	pH Data for Undisturbed Soils at Diplomat Mine	65

PREFACE

This is one of a series of reports that presents the findings of the Plains Hydrology and Reclamation Project (PHRP), an interdisciplinary study that focuses primarily on hydrologic aspects of reclamation of surface coal mines in the plains of Alberta. This research has been conducted by the Alberta Research Council as part of the Alberta Government's Reclamation Research Program. The program is managed by the Land Conservation and Reclamation Council and is supported by the Heritage Trust Fund.

The focus of PHRP is to develop a predictive framework that will permit projection of success for reclamation and impact of mining on water resources on a long-term basis. The predictive framework is based on an understanding of processes acting within the landscape so that in the future, mine sites that are not totally analogous to those that have been studied can be evaluated as well.

The project involves a holistic approach to reclamation by integration of studies of geology, hydrogeology, and soils, not only in the proposed mining area but also in the adjoining unmined areas. This approach permits the assessment of impacts and of long-term performance, not only in reclaimed areas but also in the surrounding area.

The research of PHRP has been directed toward the following two major objectives and eight subobjectives:

OBJECTIVE A

To evaluate the potential for reclamation of lands to be surface mined. The focus is on features of the landscape that make it productive in a broad sense not restricted to revegetation.

Subobjective A-1

To assess and evaluate the potential for long-term degradation of reclaimed soils through salt build up.

LIST OF TABLES

		Page
1.	Sample Site Distribution	. 5

Subobjective A-2

To assess and evaluate the effectiveness of topographic modification and selective placement of materials to mitigate deleterious impacts on chemical quality of groundwater.

Subobjective A-3

To assess the availability of water supply in or beneath cast overburden to support post-mining land use, including both quanitity and quality considerations.

Subobjective A-4

To evaluate the productivity potential (capability) of post-mining landscapes and the significance of changes in capability as a result of mining.

Subobjective A-5

To assess and evaluate limitations to post-mining land use posed by physical instability of cast overburden.

OBJECTIVE B

To evaluate the long-term impact of mining and reclamation on water quantity and quality.

Subobjective B-1

To assess and evaluate the long-term alteration of quality of groundwater in cast overburden and surface water fed from mine spoil as a result of the generation of weathering products.

Subobjective B-2

To assess and evaluate infiltration, groundwater recharge and groundwater-surface water interactions within cast overburden.

Subobjective B-3

To characterize the groundwater chemistry generated within cast overburden

Studies directed at these objectives began in 1979 at the Battle River site in east-central Alberta. Work began in 1982 at a second study area at Highvale Mine south of Lake Wabamun. Significant progress had been made on all project objectives by the end of the first phase of study in March of 1984. This present series of reports summarizes the state of our knowledge at the end of this first phase of study. Work is now continuing on the Phase II objectives to gain an even greater understanding of the complex physical and chemical processes in reclaimed landscapes.

This report presents a part of the results of Subobjective A-4, to evaluate the productivity potential (capability) of post-mining landscapes and the significance of changes in capability as a result of mining. The first step in assessing the capability of reconstructed soils is to describe and characterize the physical and chemical properties of the soils. An important part of this characterization is to identify the degree of spatial variability in these properties. The report presents data and conclusions derived from both the Battle River and Highvale study sites.

ABSTRACT

Reconstructed soils representing different materials handling and replacement techniques were characterized and variability in chemical and physical properties was assessed. The data obtained indicate that reconstructed soil properties are determined largely by parent material characteristics and further tempered by materials handling procedures. Mining tends to create a relatively homogeneous soil landscape in contrast to the mixture of diverse soils found before mining. On a landscape scale, reconstructed soils are less variable than unmined soils. On a local scale, reconstructed soils are more variable than natural soils. The data suggest that one hole per sampling site provides adequate representation of pH, sodium adsorption ratio, percent saturation and clay content. An inspection density in the range of one inspection per 1 to 5 ha is appropriate for the "mapping" of reconstructed soils. The proposed sampling intensity for characterization of reconstructed soils is one site per 5 to 10 ha.

ACKNOWLEDGEMENTS

This research was supported by the Alberta Heritage Savings Trust Fund and administered by the Reclamation Research Technical Advisory Committee of the Alberta Land Conservation and Reclamation Council.

Appreciation is expressed to the many landowners, including Manalta Coal Ltd. and Luscar Ltd., for allowing access to their respective properties.

1. INTRODUCTION

During the proposal stage of the Plains Hydrology and Reclamation Project it was felt that the concept of productivity could be utilized in comparing pre- and post-mining situations. The original approach to a meaningful assessment of productivity was to obtain data from local farmers and the mine operators because it is common practice for farmers to manage reclaimed areas through arrangements with the mine operator(s).

Since the key to productivity is management, the control of management inputs and maintenance of records could provide a valid comparison of yield from reconstructed soil areas with that from unmined areas. An advantage of utilizing this approach is that it provides for large-scale testing or field size rather than plot size results.

The above-mentioned approach is feasible but it is perhaps more appropriate to first characterize reconstructed soils and determine their suitabilities and limitations relative to agricultural production. Initially, therefore, emphasis is placed on development of a system for rating reconstructed soil capability as opposed to determining the kind and levels of inputs that may be required to sustain desirable yields.

The intent of this aspect of the project is to develop a rating system to assess the relative capability of reconstructed soils in the reclaimed landscape. The details of the rating system are presented in a separate report. Included in this report are discussions concerning the characterization and variability of reconstructed soils. The data obtained from the characterization process are utilized in the development of the capability rating system.

2. CHARACTERIZATION OF RECONSTRUCTED SOILS

2.1 THE STUDY

In order to determine the agricultural capability of an area prior to disturbance and then be in a position to speculate on the potential capability of the post-mining landscape, one must have good, relatively detailed, soils information. As a result a soil survey at a scale of 1:10 000 was conducted at the Battle River site to provide detailed soils information for land adjacent to areas already mined (Macyk and MacLean 1983). This information provided a basis for assessing the capability of the soils for agricultural production prior to mining and will also be useful for future reference when considering the effects of surface mining on adjacent unmined areas.

The survey was conducted at the Battle River site because the existing soil survey information presented at a scale of 1:190 000 was outdated and not adequate for the types of interpretations that were to be made in this study. Detailed mapping of areas destined to be mined was completed by the individual mine operators (Forestburg Collieries Ltd. 1979; Manalta Coal Ltd. 1979). A detailed soil survey was not conducted at the Highvale site because the generalized reconnaissance information (Lindsay et al. 1968) is relatively recent and more detailed work was done by TransAlta Utilities Ltd. in the area.

In addition to mapping and evaluating the pre-mining soils, the reconstructed soils of the post-mining landscape were "mapped" and characterized. The mapping of reconstructed soils was done on the basis of topography, drainage and materials handling procedures or practices. This was followed by a relatively extensive sampling program to characterize the soils in the areas representing different materials handling/replacement techniques. The major techniques assessed included untouched spoil piles, spoil piles levelled, spoil piles levelled and covered with topsoil, and spoil piles levelled and covered with subsoil and topsoil (topsoil/subsoil/spoil sequence). Although all of the different materials handling procedures were characterized, ranging from no levelling (untouched spoil piles) to

topsoil/subsoil/spoil sequences, emphasis was placed on the more recently adopted procedures which are likely to remain in place for some time in the future.

Sampling sites were selected randomly and total sampling depth ranged from 30 cm to 5.0 m. This range was manifested by the ease of collecting the samples - in the case of sites exemplifying the shallow depths there was some form of hindrance to the coring tube. As the sampling program was conducted over a three-year period, techniques were modified on the basis of the results obtained. For example, in 1983 it was deemed appropriate to sample only the top 1.5 m of material and to have three holes drilled at close proximity for each site selected to provide an indication of the within-site variability as compared with between-site variability. Virtually all sampling was done according to the following depth (cm) intervals: 0 to 15, 15 to 30, 30 to 45, 45 to 60, 60 to 75, 75 to 90, 90 to 120, and 120 to 150 cm, and in 30 cm increments thereafter to depth. A total of 1588 samples was collected. Analyses conducted included pH (water and CaCl₂ methods). % saturation, electrical conductivity, sodium adsorption ratio, extractable sodium, calcium, potassium and magnesium, sulphate, calcium carbonate equivalent, and particle size distribution (% sand, silt, clay).

The data are presented in the appendices and discussion thereof is presented within the text of the report.

2.2 SUPPLEMENTARY INFORMATION

Additional information pertinent to reconstructed soils was made available by the individual mine operators. Luscar Ltd. (1982) provided data for the Diplomat Mine which was obtained through inhouse data collection relative to reconstructed soil characterization as well as management thereof, including yield data. In addition, Luscar Ltd. provided data collected by Alberta Environment at the Diplomat site (personal communication). TransAlta Utilities provided information on the reconstructed soils at the Highvale Mine (personal communication).

The information provided was certainly useful but because different sampling techniques were employed it was not possible to incorporate this data with the data collected in association with this project. Therefore, the supplementary data were not included in summaries and statistical analysis.

2.3 RECONSTRUCTED SOIL CHARACTERISTICS

Minesoils or reconstructed soils are youthful soils whose many characteristics are determined by man-controlled influences rather than by natural processes. On natural landscapes or undisturbed areas, soil boundaries follow geomorphic features like slope position and drainage. On reclaimed land, soil delineations correspond to differences in mining practice and/or soil reconstruction techniques. For the purposes of this study, eight units were defined for mapping and characterization of reconstructed soils and one unit was designated to represent undisturbed soils.

- RC1 Spoil piles essentially untouched (basically retain original configuration)
- RC2 Spoil piles levelled prior to revegetation
- RC3 Spoil piles levelled and topsoiled prior to revegetation
- RC4 Spoil piles levelled, subsoiled and topsoiled prior to revegetation
- RC5 Spoil piles levelled and covered with ash prior to revegetation
- RC6 Levelling of spoil piles completed or in progress
- RC7 Areas where seasonal ponding occurs
- RC8 Areas where the land surface was disturbed and manipulated but actual mining likely did not occur
- RC9 Utilized for undisturbed soils

2.3.1 Sample Site Distribution

Of the areas designated (Table 1), units RC2, RC3 and RC4 are dominant in terms of areal extent. Emphasis relative to number of sampling sites, etc., was placed on units RC3 and RC4, mainly because they are the dominant soil reconstruction procedures presently utilized.

Table 1. Sample site distribution.

Mat Handling	Diplomat	Vesta	Highvale
RC1	5		-
RC2	29	5	-
RC3	43	15	-
RC4	-	42	26
RC5	-	5	-
RC6	-	-	-
RC7	-	-	-
RC8	-	-	-
RC9	19	13	-
	96	80	26

The relative distribution indicated in Table 1 reflects to a large extent the areal distribution of the areas affected by the various materials handling techniques. At the Diplomat Mine the most advanced materials handling technique involves placement of topsoil/spoil, mainly because the spoil is comprised of relatively good quality till material. The most advanced procedure involving placement of topsoil/subsoil/spoil represents the largest number of sites evaluated at Vesta Mine. A relatively large number of samples were obtained in RC3 areas as well. However, at many of the sites in the RC3 areas it was impossible to penetrate much beyond the 50 cm depth because of problems associated with the spoil material.

At Highvale Mine the sample sites were located in areas characterized by the topsoil/subsoil/spoil sequence.

2.4 DATA SYNTHESIS

For purposes of interpretation, data synthesis was conducted on an individual mine basis because the mines are located in different settings and have different pre-mining characteristics.

The Diplomat and Vesta Mines at the Battle River site differ considerably from the Highvale Mine in respect to climate, vegetation, soils and geology. The Diplomat and Vesta Mines, which are essentially adjacent to each other, are somewhat different in terms of soils and surficial materials.

The complete data set is provided in the appendices. Graphs representing mean values for the different materials handling regimes, depths and the various parameters measured are utilized to reduce the volume of data used for interpretation. Graphical presentation of Highvale data is included with the Vesta data because it did not appear necessary to prepare an additional set of graphs, each representing only one curve.

It will be noted that the graphs presented relate to the top 150 to 300 cm of the reconstructed profile. The reason for the 3 m maximum is that, although a number of holes were sampled in excess of 3 m, the number was not large enough to develop statistical inferences. Overall, the number of sites where sampling depth was in excess of 150 cm are somewhat less in number, simply because the 1983 field sampling program did not involve sampling beyond 150 cm. The reason for limiting the sampling depth is that it was felt more useful to obtain samples from the top 1.5 to 2 m at a greater number of sites as opposed to sampling fewer sites to greater depths. A review of the literature pertinent to crop rooting depth and the consideration that the depth to be evaluated for capability classification purposes would not exceed 150 cm also had a bearing on the sampling scheme utilized. Therefore, the mean values on the curves are based on a larger population for the top 150 cm than for depths below that.

The following sections describe the characteristics of the reconstructed soils resulting from the different materials handling procedures with emphasis placed on the Battle River site. Figures 1

to 26 present mean values for the various parameters. A few explanatory notes about the way the graphs are designed and the legend utilized are in order.

- The data point representing the sample acquired in the 0 to 15 cm depth range appears mid-way between the 0 and 15 cm designations on the depth scale. The same is true for all other depth ranges.
- 2. D RC3 = Diplomat Mine, RC3 area (previously defined)
 H RC4 = Highvale Mine, RC4 area
 V RC9 = Vesta Mine, RC9 area

2.4.1 RC1 Areas

RC1 areas include locations where the spoil piles were essentially untouched or basically retained their original configuration. Only a limited number of sites were sampled in the vicinity of Diplomat Mine where this type of landscape still exists. Each site was sampled to a maximum depth of 1 m. At the time of the sampling program the last of the old spoil piles that once existed at Vesta Mine were in the process of being levelled.

The data indicate that the characteristics of the untouched spoil piles, especially the surface materials, are superior to the levelled (RC2) materials. Specifically pH, PSAT, EC, SAR and SO₄ are lower, and in the case of EC and SAR are considerably lower for the RC1 as compared with the RC2 materials.

This indicates that the levelling of spoil piles alone does not alter or, more importantly, does not improve the quality of the reconstructed material. The slopes associated with these areas preclude the use of farm equipment and limit agricultural use to improved pasture at best. However, these RC1 areas do provide excellent sites for recreation and wildlife.

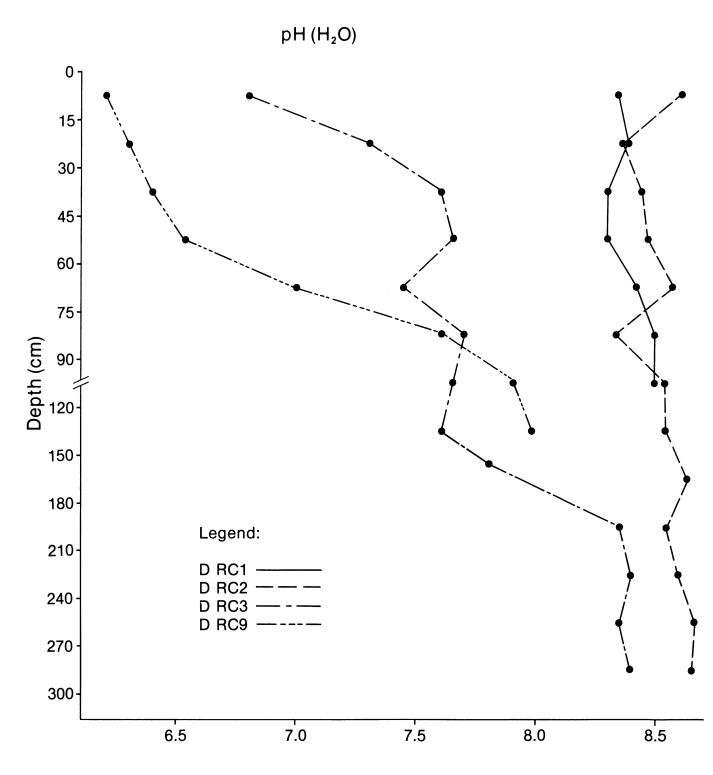


Figure 1. Mean values for pH at Diplomat Mine

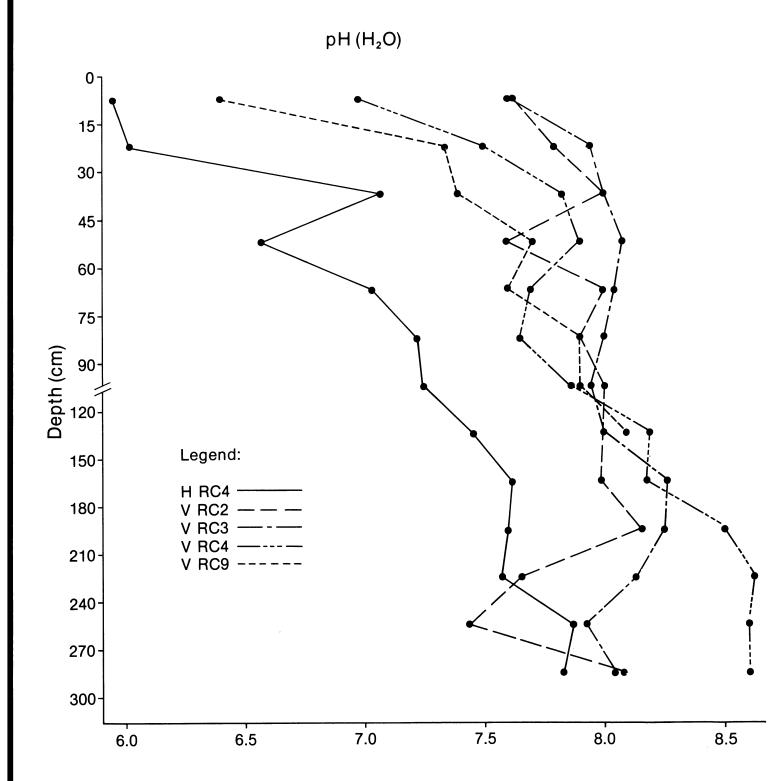


Figure 2. Mean values for pH at Vesta and Highvale Mines

Sodium Adsorption Ratio (SAR)

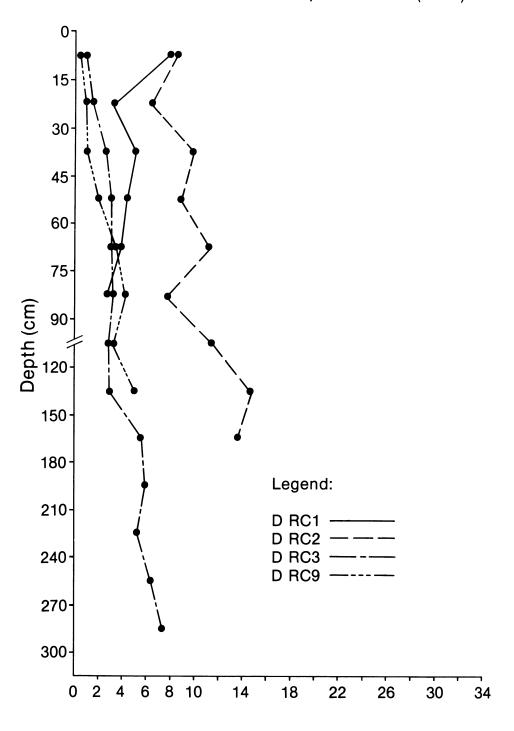


Figure 3. Mean values for SAR at Diplomat Mine

Sodium Adsorption Ratio (SAR)

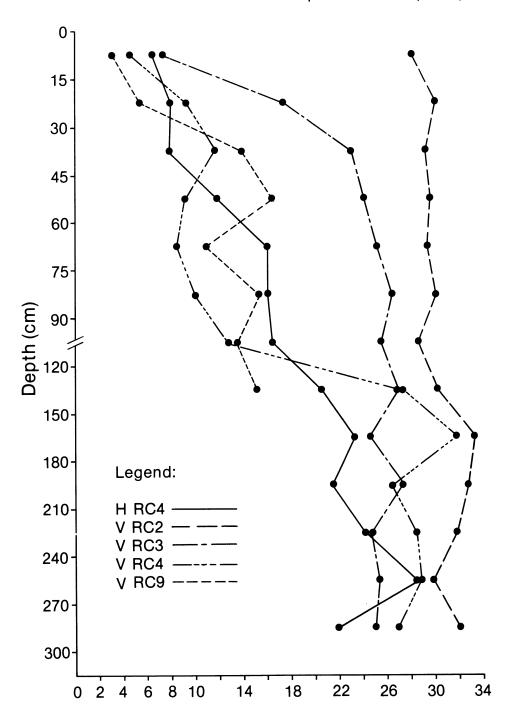


Figure 4. Mean values for SAR at Vesta and Highvale Mines

% Saturation (PSAT)

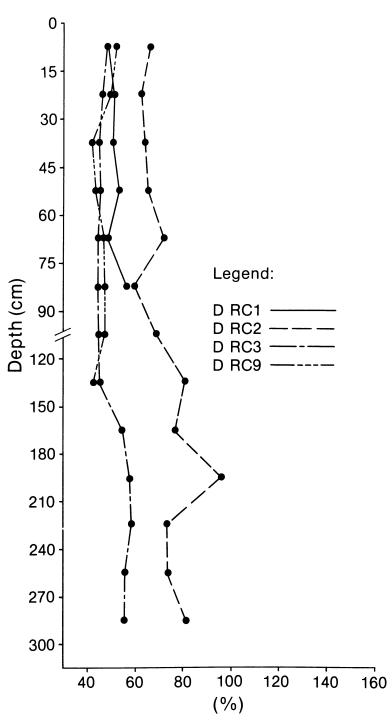


Figure 5. Mean values for PSAT at Diplomat Mine

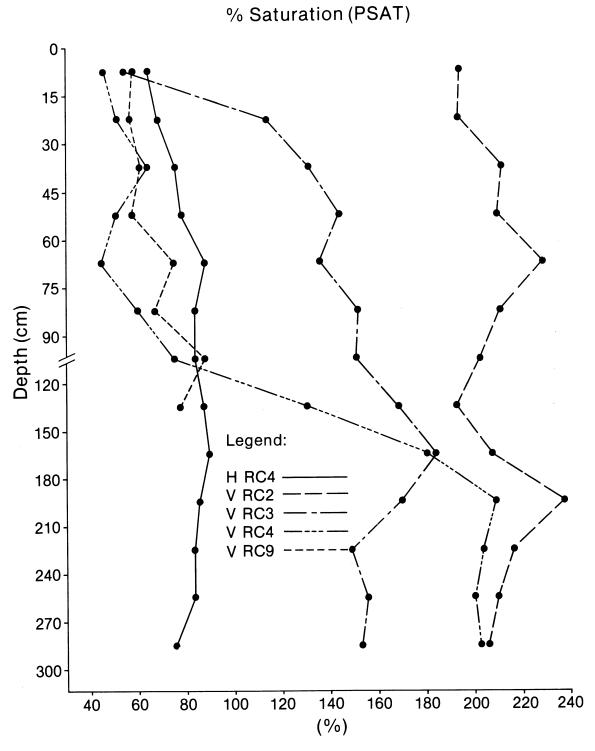


Figure 6. Mean values for PSAT at Vesta and Highvale Mines

Electrical Conductivity (E.C.)

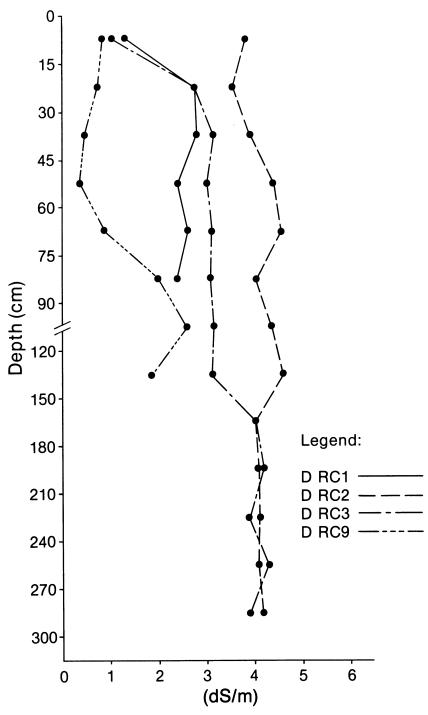


Figure 7. Mean values for E.C. at Diplomat Mine

Electrical Conductivity (E.C.)

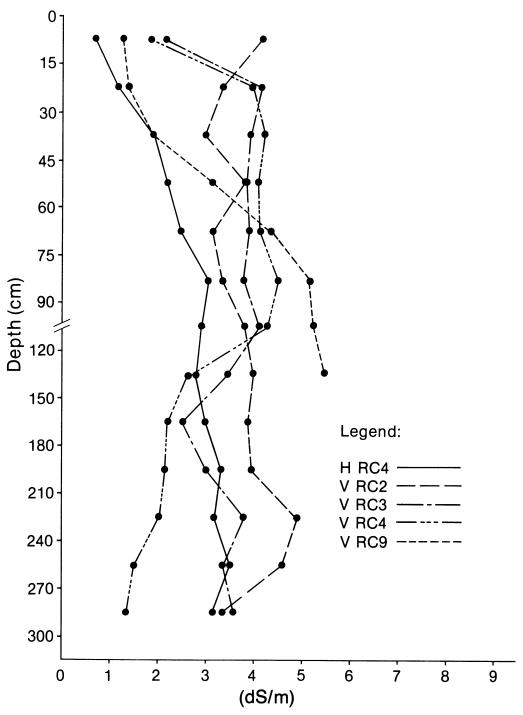


Figure 8. Mean values for E.C. at Vesta and Highvale Mines

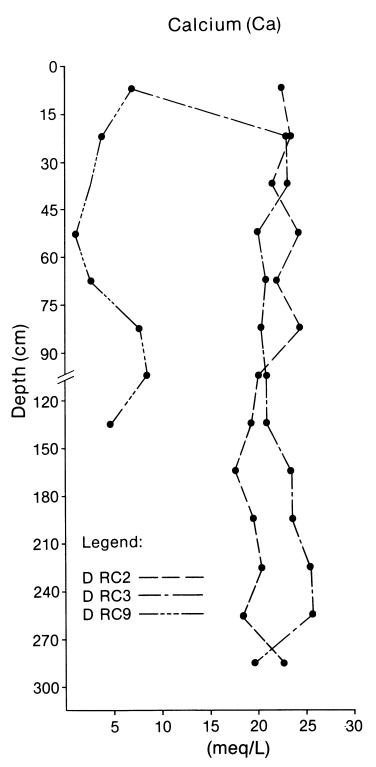


Figure 9. Mean values for Calcium at Diplomat Mine

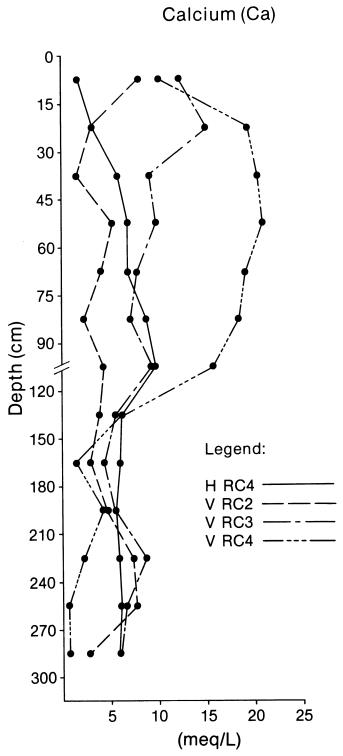


Figure 10. Mean values for Calcium at Vesta and Highvale Mines

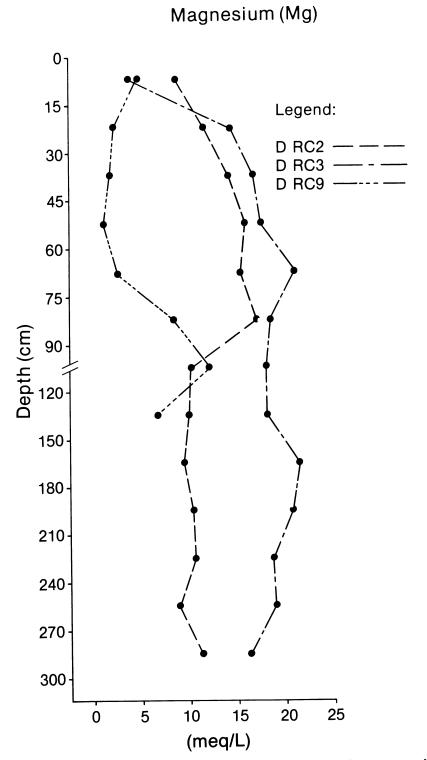


Figure 11. Mean values for Magnesium at Diplomat Mine

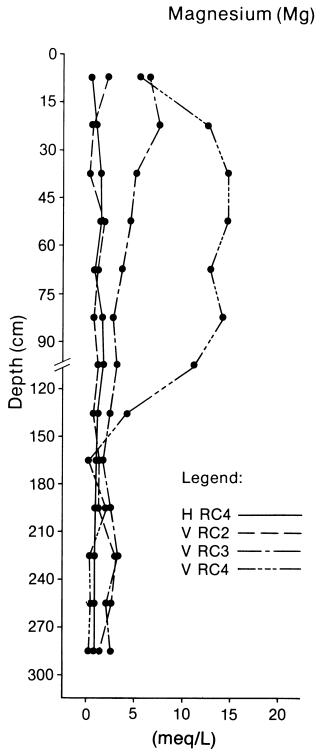


Figure 12. Mean values for Magnesium at Vesta and Highvale Mines

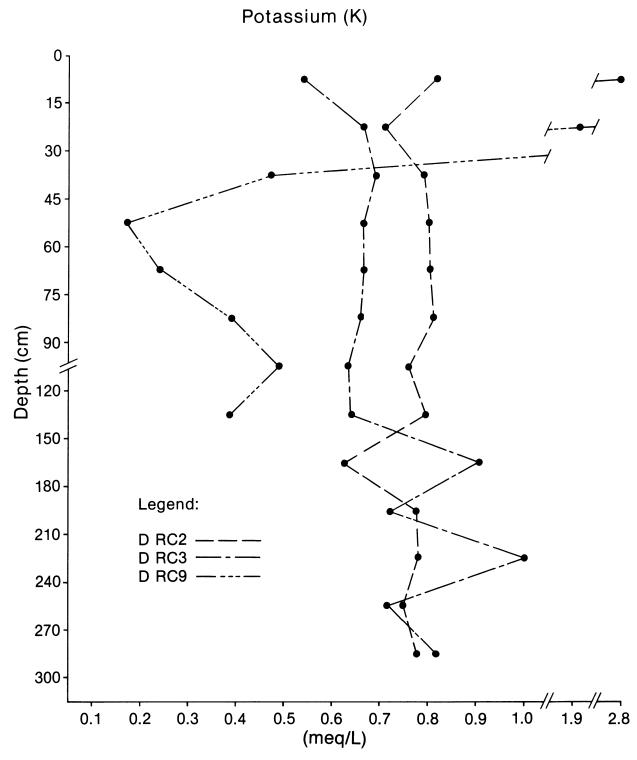


Figure 13. Mean values for Potassium at Diplomat Mine

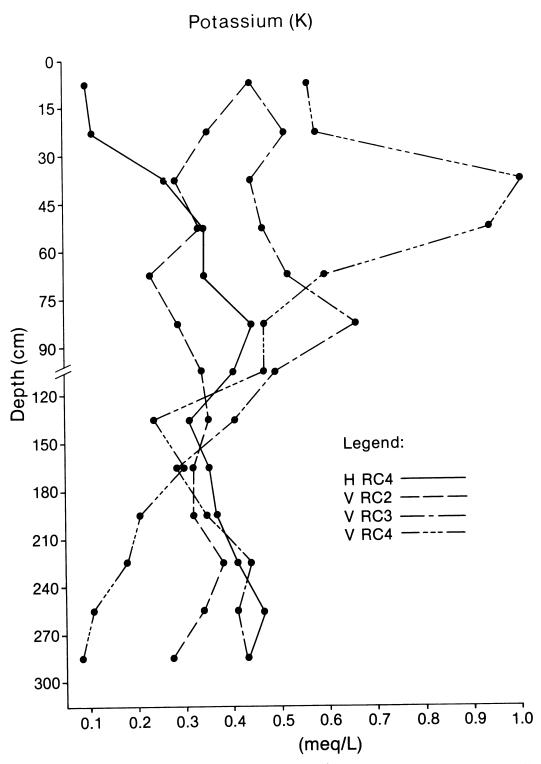


Figure 14. Mean values for Potassium at Vesta and Highvale Mines

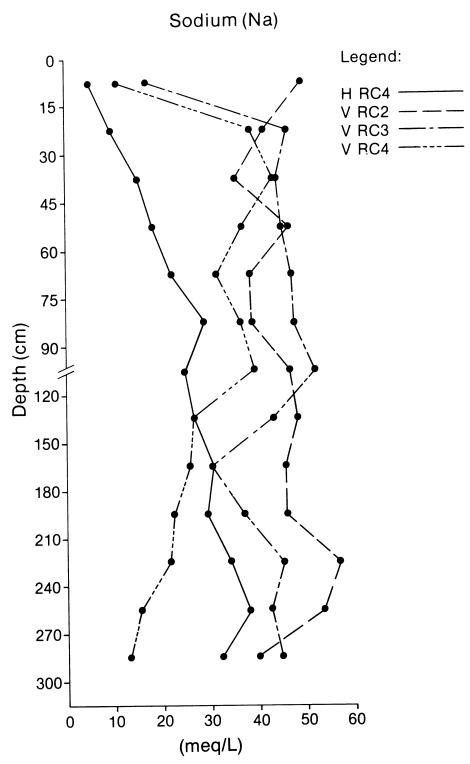


Figure 15. Mean values for Sodium at Vesta and Highvale Mines

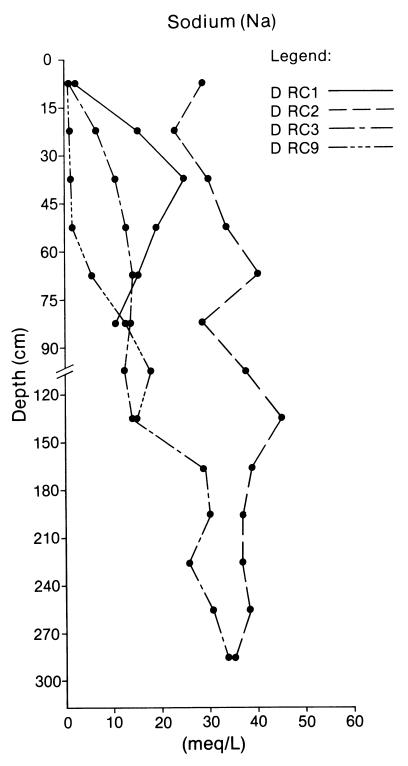


Figure 16. Mean values for Sodium at Diplomat Mine

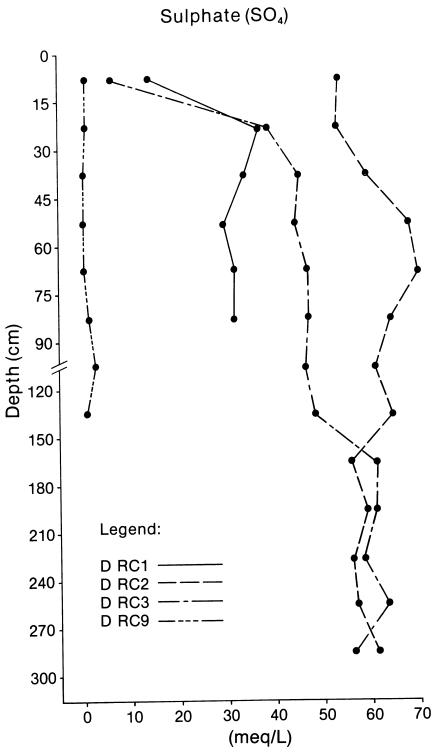


Figure 17. Mean values for Sulphate at Diplomat Mine

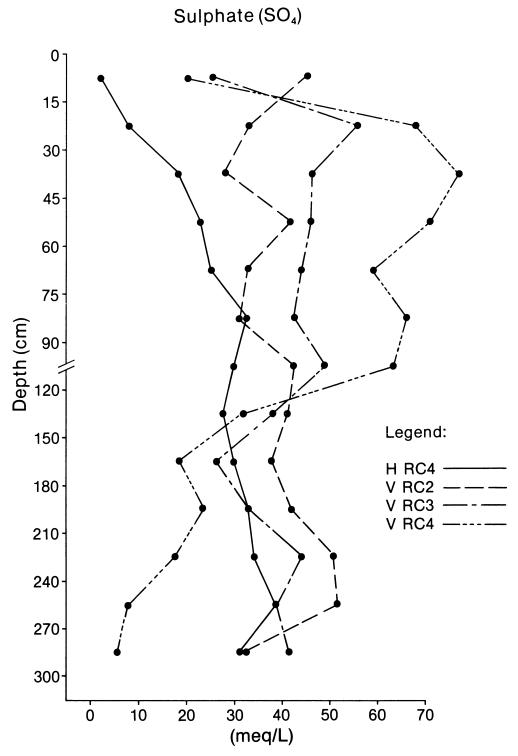


Figure 18. Mean values for Sulphate at Vesta and Highvale Mines

Calcium Carbonate Equivalent

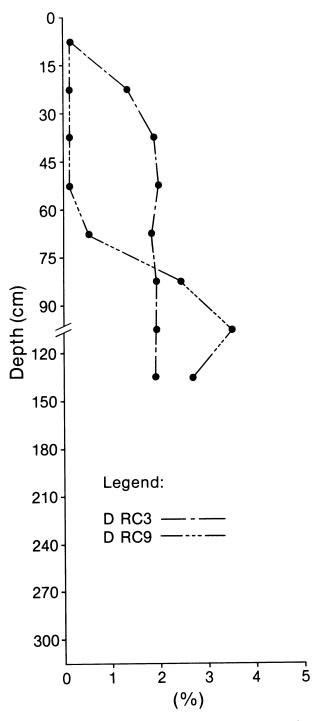


Figure 19. Mean values for Calcium Carbonate Equivalent at Diplomat Mine

Calcium Carbonate Equivalent

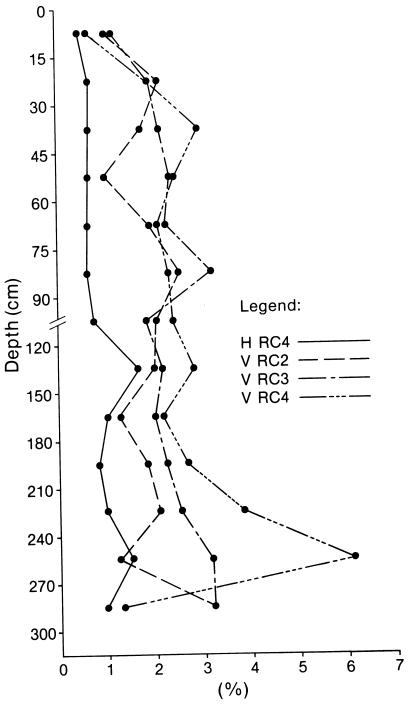


Figure 20. Mean values for Calcium Carbonate Equivalent at Vesta and Highvale Mines

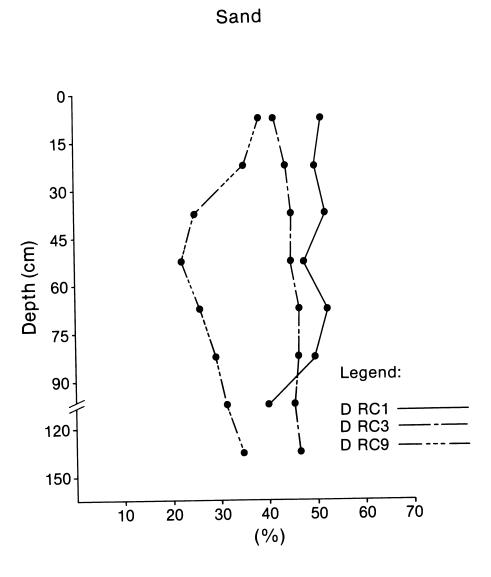


Figure 21. Mean values for Sand at Diplomat Mine

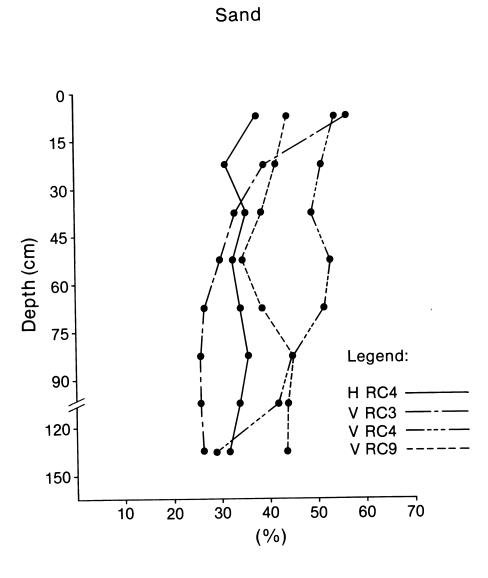


Figure 22. Mean values for Sand at Highvale and Vesta Mines

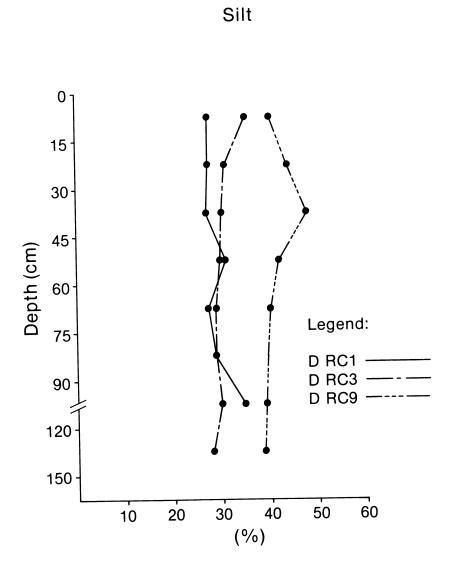


Figure 23. Mean values for Silt at Diplomat Mine

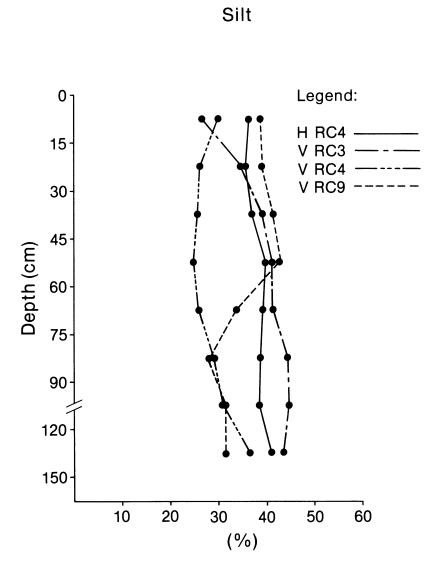


Figure 24. Mean values for Silt at Highvale and Vesta Mines

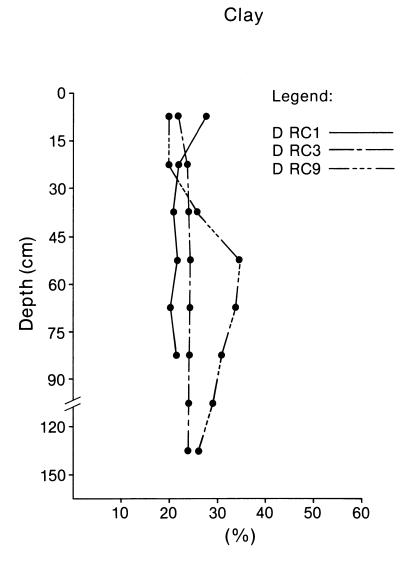


Figure 25. Mean values for Clay at Diplomat Mine

Clay

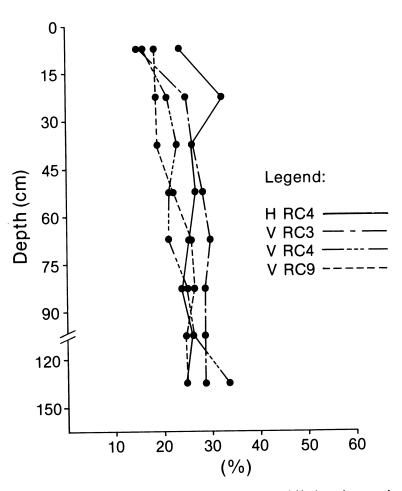


Figure 26. Mean values for Clay at Highvale and Vesta Mines

2.4.2 RC2 Areas

RC2 areas include locations where the spoil piles were levelled prior to revegetation. A relatively large number of sites was sampled at Diplomat (25) as compared with Vesta (5) because of the respective areal distribution of this materials handling procedure. At the time of sampling a significant portion of the spoil materials at Vesta was in the process of being levelled, thereby precluding any extensive sampling activity.

A significant portion of reclaimed land at Diplomat is characterized or mapped as RC2. The extent of levelling varied, resulting in topography ranging from level to gently undulating to rolling.

The data and figures provided suggest that the RC2 areas in general have the least desirable reconstructed soil characteristics of all procedures used at Diplomat Mine. Comparisons with the RC1 materials were provided previously and there appear to be substantial differences between the RC2 and RC3 areas. This is a bit puzzling in the sense that the only real difference between an RC2 and RC3 area is the presence or absence of topsoil. Otherwise, one would expect relatively similar characteristics below the surface layers or horizons. The reason for the difference observed likely relates to the superiority of the pre-mining materials characteristic of the present RC3 areas compared with the pre-mining materials characteristic of the present RC2 areas.

The values for pH are 1.0 to 1.8 units higher for the RC2 as compared with RC3 sites. The largest difference occurs in the surface (0 to 15 cm) horizon or layer which is most critical to plant establishment and growth. Electrical conductivity is about 25% or 1 dS/m higher for the RC2 sites and, again, the largest difference (1 dS/m vs 3.8 dS/m) occurs in the most critical layer - the surface material. Sodium adsorption ratio is also consistently and considerably higher for the RC2 than the RC3 sites. Similarly, PSAT is lower at the RC3 sites than at RC2 sites.

At Vesta Mine, similar relationships are apparent only for PSAT and SAR. Figures 4 and 6 provide interesting examples of how utilization of the subsoil layer improves the chemistry of

reconstructed soils. The pH values are relatively similar to RC3 and RC4 values, whereas EC levels for RC2 sites are lower except for the surface (0 to 15 cm) layers.

Overall, it can be stated that the RC2 sites are not as suitable as RC3 or RC4 sites for revegetation purposes. The obvious reason relates to the presence or absence of the topsoil layer as well as some differences evident in the materials below the topsoil.

2.4.3 RC3 and RC4 Areas

RC3 and RC4 areas include locations where the spoil piles were levelled and topsoiled prior to revegetation (RC3) and areas where a topsoil/subsoil/spoil sequence (RC4) occurs. The largest number of sites sampled at Diplomat was obtained in RC3 areas which represent the most advanced materials handling procedure at that mine. Several comments pertinent to RC3 areas were presented earlier in discussion of other reconstructed soil types; however, additional comments can be made.

At Diplomat Mine, the RC3 areas are characterized by level to undulating topography which implies no or slight limitations due to topography. For Diplomat, the major comparison of RC3 areas is to undisturbed sites. In terms of pH there is a rather substantial difference in the upper 75 cm of material where the undisturbed sites have pH's of 0.5 to 1.2 units lower than RC3 sites. In fact, the pH of the surface material or topsoil of the reconstructed material is better for plant establishment and growth than is the natural soil which tends to be more acid.

In terms of PSAT and SAR there is very little difference between the RC3 sites and the undisturbed soils.

The electrical conductivity of the levels is very similar for the surface (0 to 15 cm) material but differs somewhat beyond that depth. The electrical conductivity for the RC3 materials increases from approximately 1 dS/m in the topsoil layer to approximately 3 dS/m for the remaining depth sequence to 1.5 m (Figure 7). Clay content is very uniform with depth in the RC3 areas and is lower than in the undisturbed soils except for the upper 30 cm. Sand content is also consistent with depth in the RC3 areas and

is higher than sand content of the undisturbed soils. Silt content is consistent with depth in the RC3 areas and is lower than in undisturbed soils.

Sulphate content is consistently higher in the reconstructed (RC3) soils. Carbonate content in the reconstructed material is higher than the undisturbed soils down to 75 cm depth but beyond that depth the reverse is true. This is what one would expect since the parent material is likely to occur at approximately 75 cm or greater in undisturbed soils.

Sodium content is similar in the topsoil of the reconstructed (RC3) and undisturbed soils, and is higher in the reconstructed soil with depth.

Comparisons can be made of the RC3 and RC4 areas and the undisturbed soils at the Vesta Mine. The RC4 areas are characterized by a topsoil/subsoil/spoil sequence of materials. References to the RC3 and RC4 have already been made in discussion pertinent to RC2 areas. The data (Figures 2, 4, and 6) indicate a definite improvement in quality in terms of PSAT and SAR and, to some extent, pH for RC3 and RC4 areas as compared with RC2 areas. Furthermore, the RC4 values are similar to the undisturbed soils values for the above-mentioned parameters. Calcium carbonate and clay content are relatively similar for the various materials handling procedures at Vesta Mine.

As mentioned previously, the data for Highvale Mine are presented in the appendices and some are presented graphically in Figures 1 to 26. Emphasis was placed on sampling RC4 areas, thereby precluding any data comparisons with other areas.

2.4.4 RC5 Areas

RC5 areas include locations where ash was placed over levelled spoil. A very limited number of samples were obtained from RC5 areas simply because this treatment does not involve a significantly large area in total, and trafficability problems affected the sampling program. The comments presented herein relate to observations made at Vesta Mine. Presence of the ash layer resulted in considerably lower values at the 0 to 15 cm depth for EC,

SAR and PSAT in comparison with RC2 areas. Field observations indicated that plant growth was better in the RC5 areas as compared with RC2 areas. This can be attributed to the chemical properties associated with the surface layer and also the fact that moisture availability appeared better in the RC5 areas. Erosion of the ash layer was observed in areas of rolling topography; however, the trafficability problem remains one of the major limitations to agriculture in RC5 areas.

2.4.5 RC6 Areas

RC6 areas include locations where levelling of spoil piles was very recently completed or still in progress. These areas were not sampled because in some cases it was obvious that topsoiling and/or subsoiling was yet to follow and, furthermore, that these areas are similar to RC2 areas which were sampled to some extent. This unit was recognized primarily to serve a cartographic need.

2.4.6 RC7 Areas

RC7 areas include locations where seasonal ponding occurs. These areas were not sampled because of the limitation to access imposed by wetness.

2.4.7 RC8 Areas

RC8 areas include locations where the land surface was disturbed and manipulated but actual mining did not occur. Sampling of these areas was not undertaken. Field observations indicate that some mixing occurred in the surface layers but that these soil areas would not differ significantly from unmined or natural soils. In most instances the B horizons were unchanged.

2.4.8 RC9 Areas

RC9 areas involve undisturbed soils. Sampling of a range of undisturbed soils at each of the Vesta and Diplomat sites was undertaken.

- 2.5 SUMMARY OF RECONSTRUCTED SOIL AREA CHARACTERISTICS

 Based on the aforementioned observations and conclusions
 some summary statements can be presented which are pertinent
 primarily to the Battle River site.
 - 1. RC1 areas were evaluated only at the Diplomat site and, furthermore, to a very limited extent. It is apparent that "quality" of the materials in these areas is similar to and, in some instances, superior to the materials found in the RC2 or levelled areas. The major concerns associated with these areas relate to landscape features and associated processes. The absence of a topsoil layer is a concern but the slope characteristics are even more of a concern relative to erosion.
 - 2. RC2 areas were investigated most intensively at the Diplomat site. In general, the data indicate that reconstructed soils within the RC2 areas are inferior to the other reconstructed soil areas when one considers parameters such as PSAT, EC, SAR and pH. One of the obvious differences relates to the presence or absence of the replaced topsoil layer. The RC2 areas do not have replaced topsoil layers; however, field observations indicate that cropping (primarily forage crops) is resulting in improved surface material characteristics.
 - 3. The data for RC3 areas at Diplomat Mine suggest that the quality of the reconstructed soils is relatively comparable to adjacent undisturbed soils. An obvious conclusion is that the chemical properties of the Ah or topsoil materials are not degraded by mining. In fact, a positive result is indicated in that the topsoil of reconstructed soils is less acid or nearer to neutral than undisturbed soils. Below the topsoil layer some differences occur in various parameters. There is very little difference between the RC3 reconstructed soils and undisturbed soils in critical parameters such as

- PSAT and SAR. However, EC is definitely higher below the topsoil layer in reconstructed soils.
- 4. At Vesta Mine, the importance of materials management is demonstrated whereby subsoiling is required to reestablish soil properties similar to the undisturbed soils. This is a reflection of the surficial materials indigenous to the area. As was evident at Diplomat, there is very little difference between the RC4 reconstructed soils and undisturbed soils in terms of PSAT and SAR. It should be noted further that there is a substantial difference in PSAT and SAR between the subsoiled and not subsoiled areas.
- 5. The placement of ash on the levelled spoil surface (RC5 areas) at Vesta has positive effects on plant establishment, etc. The major problem associated with the procedure is the resultant difficulty with trafficability or utilization of agricultural equipment.

3. VARIABILITY OF RECONSTRUCTED SOILS

It can be suggested that climate, organisms and relief have had too little time to significantly influence soil development or soil properties in reclaimed areas. Therefore, reconstructed soil properties are determined largely by parent material characteristics and are further tempered by materials handling procedures. Regardless of the degree or extent of materials handling involved, the operation tends to intimately mix materials within the various parts of the "overburden column". For example, when topsoil is removed mixing occurs some lateral distance. If it is stockpiled rather than directly replaced there is the potential for even more mixing to occur. Similarly, in the subsoiling process, mixing of the solum vertically (from immediately below topsoil layer and above parent material) as well as horizontally across the landscape occurs. The end result is essentially a random mixture of what initially was or would have been identified or mapped as a number of specific soil units. Each of these units (series or associations) would have had a defined range of properties. One can therefore conclude or suggest that locally, reconstructed soils are more variable than natural soils (i.e., one soil series or association as compared to the random mixture of a number of series or associations).

Conversely, over large distances reconstructed soils are less variable than natural soils. In essence, one is comparing the random mixture which characterizes the reconstructed soils to a number of individual or different soil units that have specific defined ranges of properties. For example, prior to mining, an area may be characterized by a diverse range of soil types (i.e., Chernozemic and Solonetzic). If these soils are salvaged randomly and replaced, then one would expect some level of "average" values in the resulting reconstructed soil. Schafer (1982) suggests that mining tends to create a very homogeneous soil landscape in contrast to the mixture of diverse soils found before mining. He also described differences in the pattern of soil variability between mined and unmined landscapes (Schafer 1979).

The concern about the variability of reconstructed soils relates to the needs associated with assessing properties adequately

so that pertinent capability interpretations can be made and that responsible use and management decisions can be effected.

During the initial stages of the sampling program undertaken to characterize reconstructed soils, one hole per site was sampled. This raised the concern about how representative one hole is of the immediate (1 to 10 m) surrounding area. In other words, would sampling a metre or two distant result in largely different characteristics. To address this concern, three holes per site or three holes along a transect ranging in length from 3 to 5 m were sampled to provide an indication of the within-site variability as compared with between-site variability.

Figures 27 to 50 graphically illustrate some of the results for electrical conductivity, sodium adsorption ratio, % saturation and pH pertinent to four reconstructed sites (1, 3, 9, and 10) and two undisturbed sites (15 and 16) at Diplomat Mine. Sites 1 and 3 are located approximately 0.5 km distant, as are sites 9 and 10. Furthermore, Sites 1 and 3 are approximately 2 km distant from Sites 9 and 10. Sites 15 and 16 are separated by a distance of approximately 1.5 km.

Similar trends in the data appear relative to EC, SAR and pH. For each parameter it is apparent that values are relatively similar at Sites 1 and 3 and Sites 9 and 10, respectively. The variability between sites 0.5 km distant is less than the variability that occurs between sites 2.0 km distant. Furthermore, the variability between individual digs at a particular site is greater for reconstructed than undisturbed soils.

It is also apparent that the variability with depth for a given parameter is greater in undisturbed than in reconstructed soils. Excellent examples of this are the values shown for pH and PSAT.

The trends for PSAT described above do not necessarily apply. The overall variability in reconstructed soils, regardless of distance involved, is small. It is also apparent that the level of variability between digs at a particular site is similar for reconstructed and undisturbed soils.

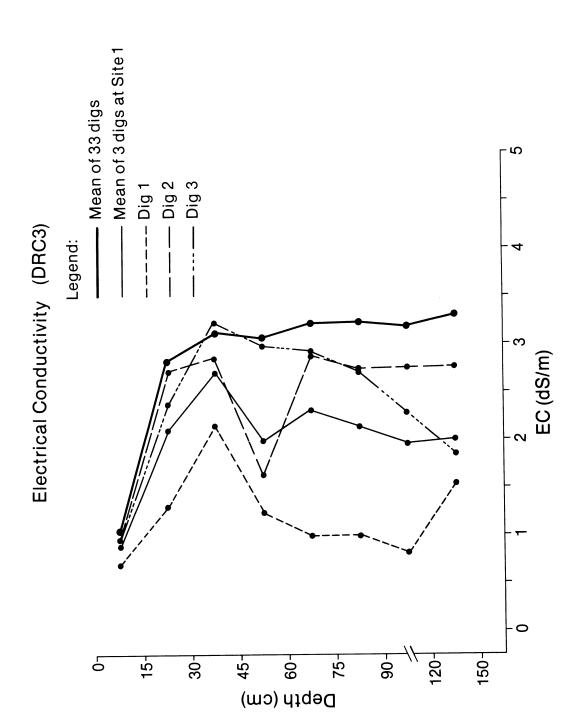


Figure 27. Electrical Conductivity Data for Reconstructed Soils at Diplomat Mine

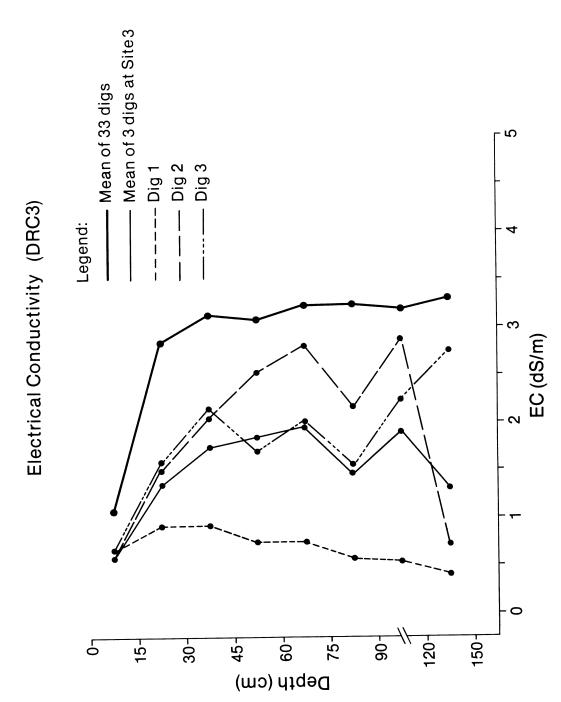


Figure 28. Electrical Conductivity Data for Reconstructed Soils at Diplomat Mines

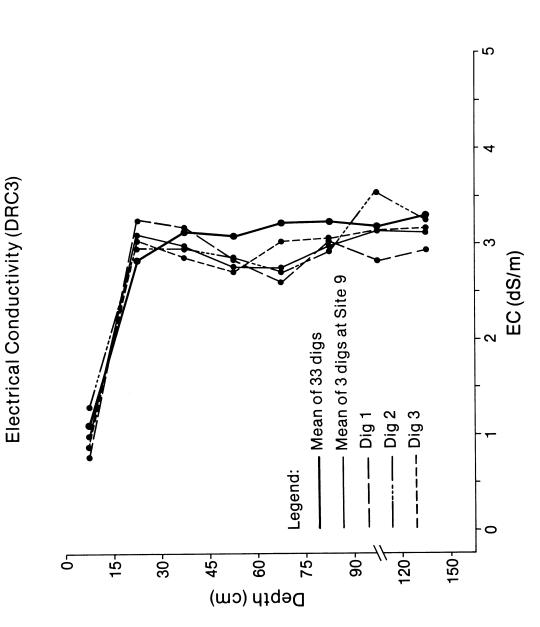


Figure 29. Electrical Conductivity Data for Reconstructed Soils at Diplomat Mines

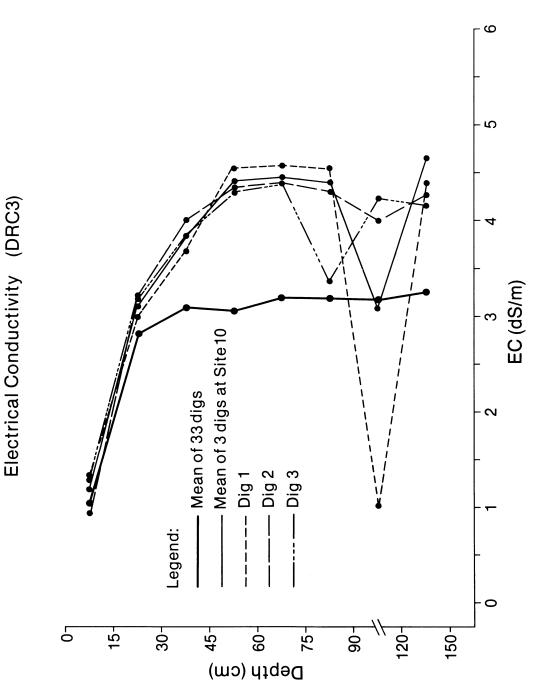


Figure 30. Electrical Conductivity Data for Reconstructed Soils at Diplomat Mines

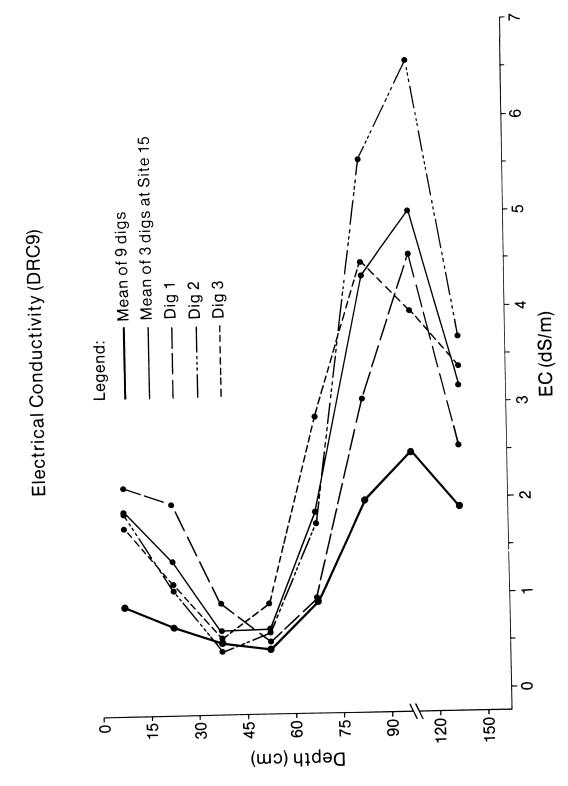


Figure 31. Electrical Conductivity Data for Undisturbed Soils at Diplomat Mines

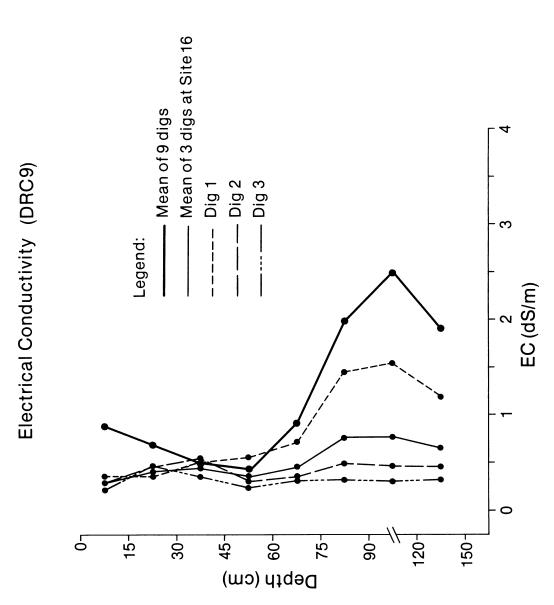


Figure 32. Electrical Conductivity Data for Undisturbed Soils at Diplomat Mines

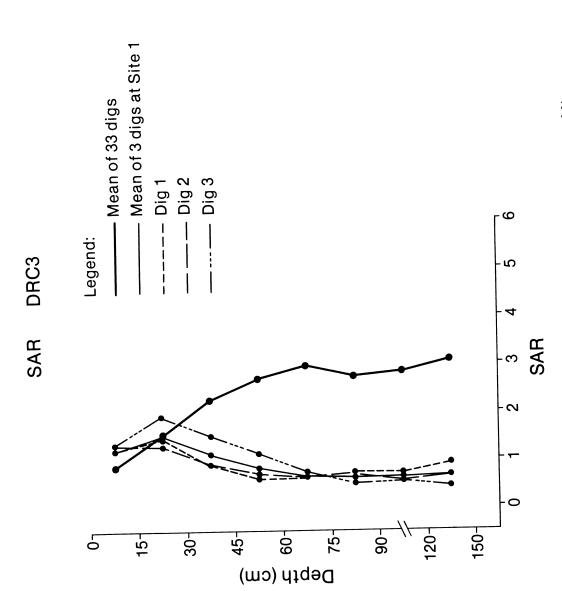


Figure 33. SAR Data for Reconstructed Soils at Diplomat Mine

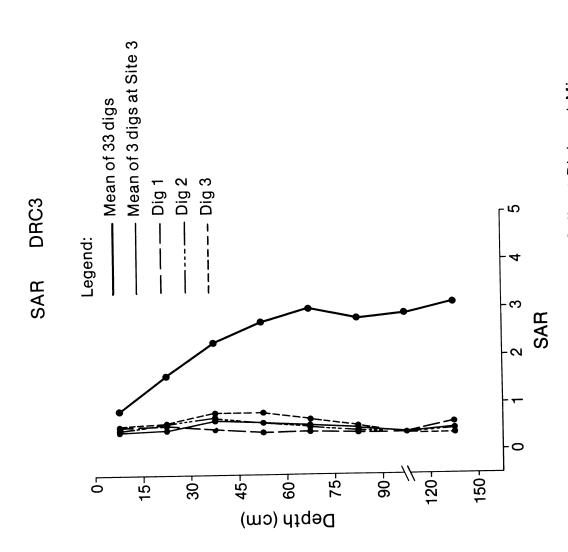


Figure 34. SAR Data for Reconstructed Soils at Diplomat Mine

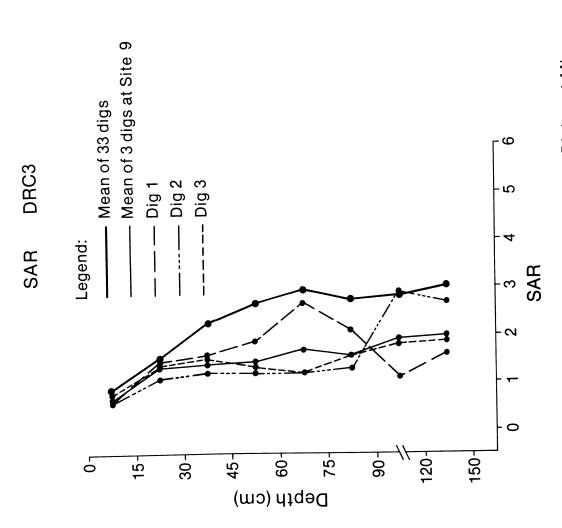


Figure 35. SAR Data for Reconstructed Soils at Diplomat Mine

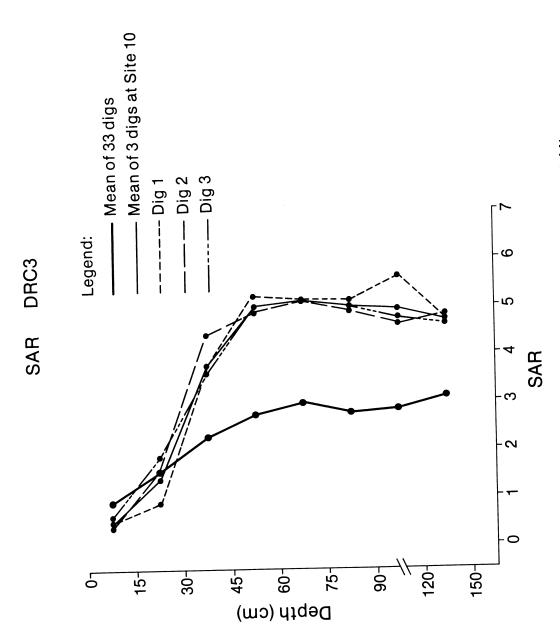


Figure 36. SAR Data for Reconstructed Soils at Diplomat Mine

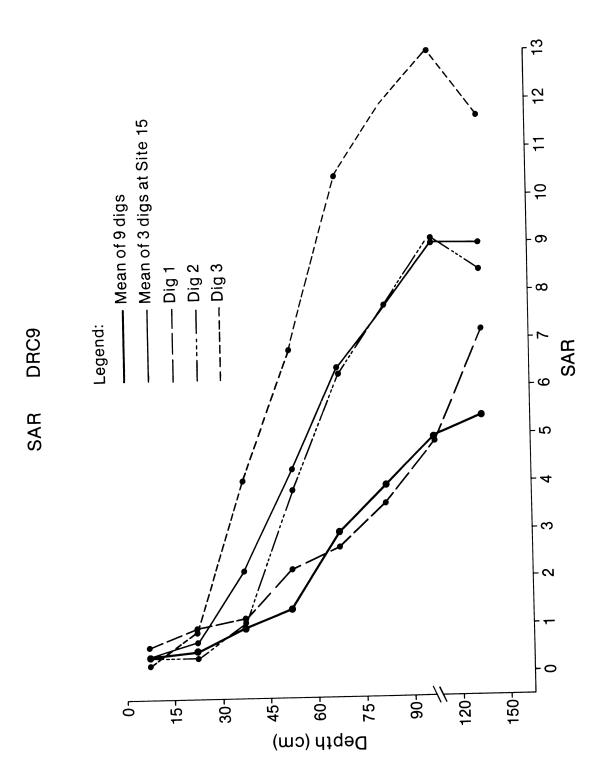


Figure 37. SAR Data for Undisturbed Soils at Diplomat Mine

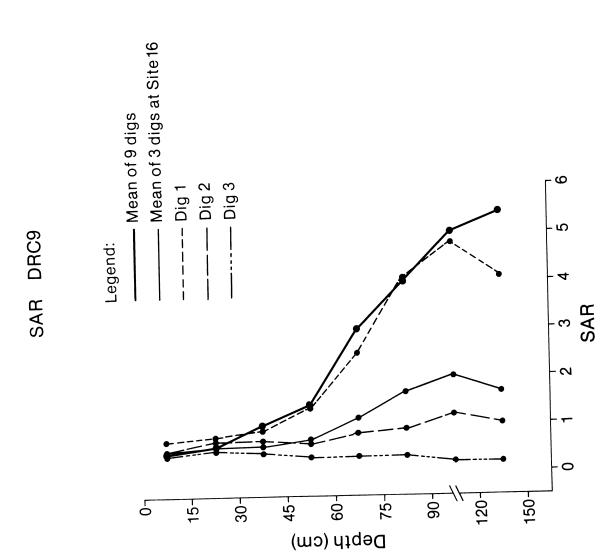


Figure 38. SAR Data for Undisturbed Soils at Diplomat Mine

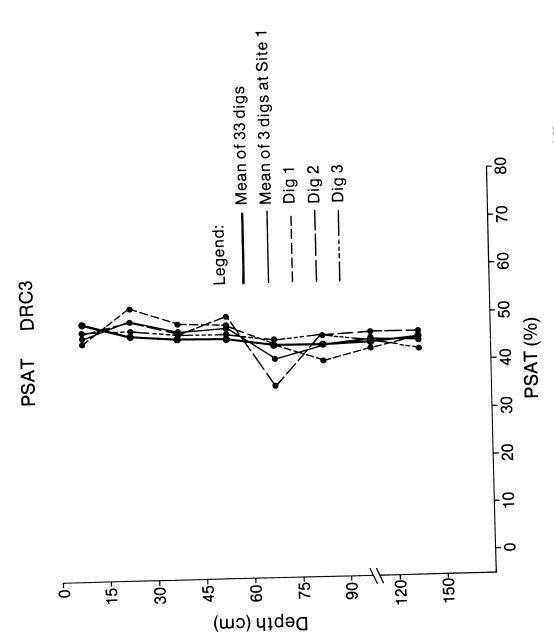


Figure 39. PSAT Data for Reconstructed Soils at Diplomat Mine

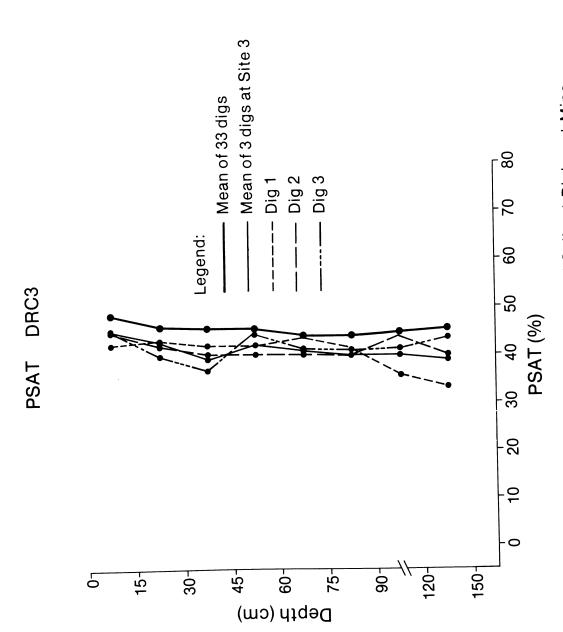


Figure 40. PSAT Data for Reconstructed Soils at Diplomat Mine

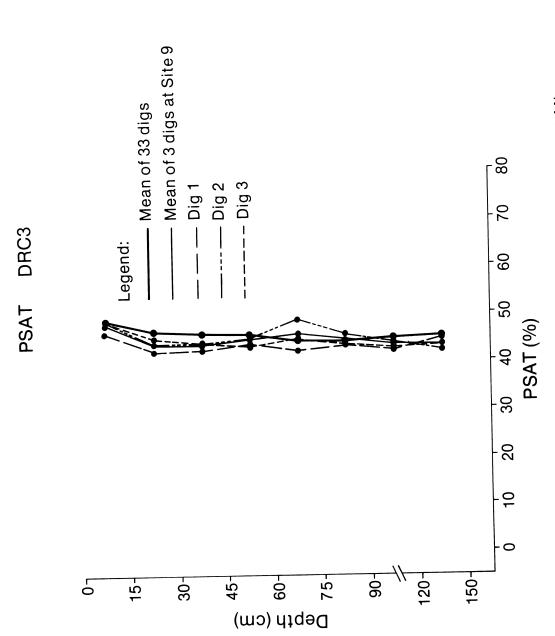


Figure 41. PSAT Data for Reconstructed Soils at Diplomat Mine

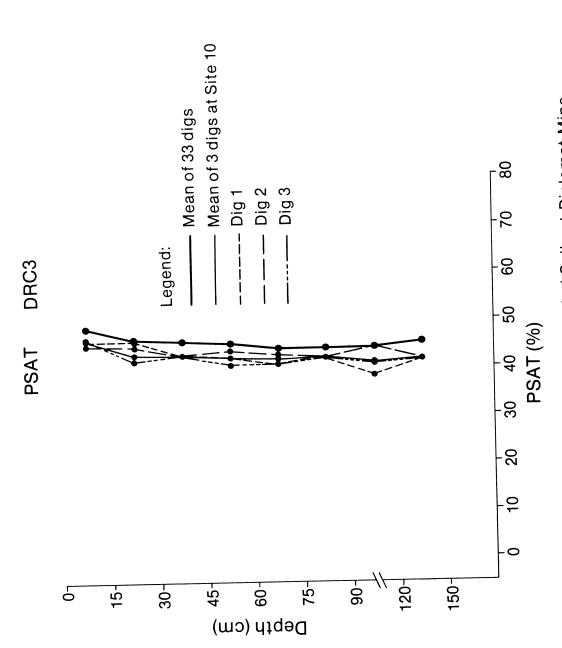


Figure 42. PSAT Data for Reconstructed Soils at Diplomat Mine

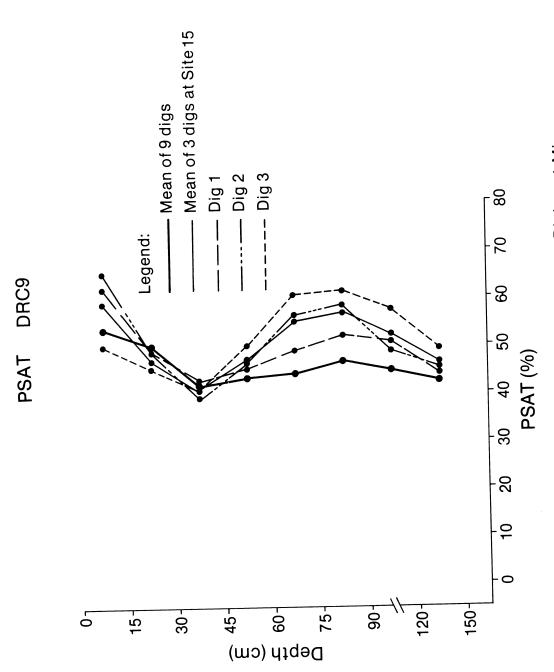


Figure 43. PSAT Data for Undisturbed Soils at Diplomat Mine

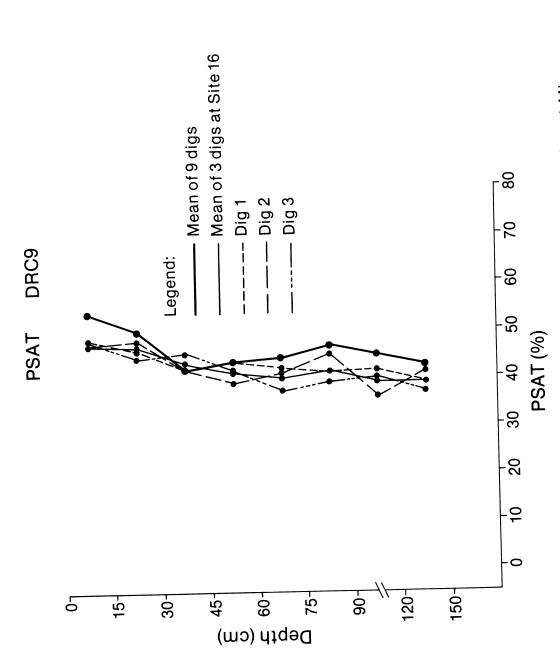


Figure 44. PSAT Data for Undisturbed Soils at Diplomat Mine

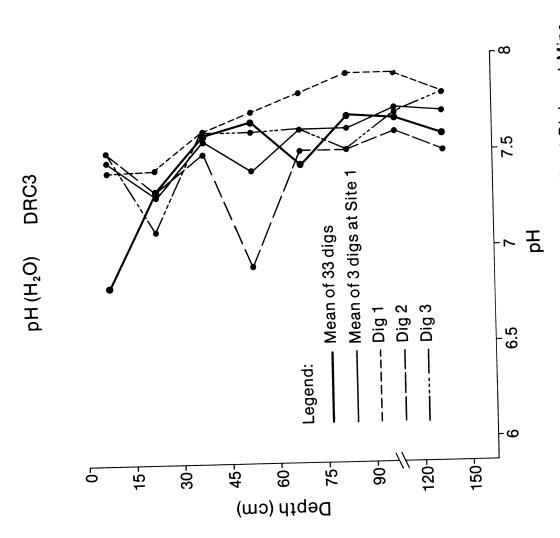


Figure 45. pH Data for Reconstructed Soils at Diplomat Mine

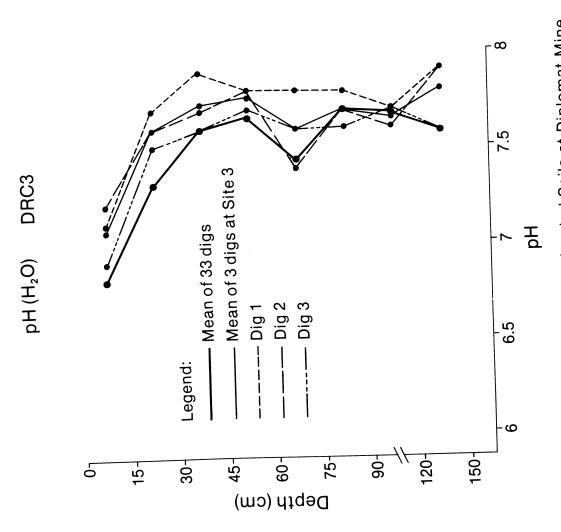


Figure 46. pH Data for Reconstructed Soils at Diplomat Mine

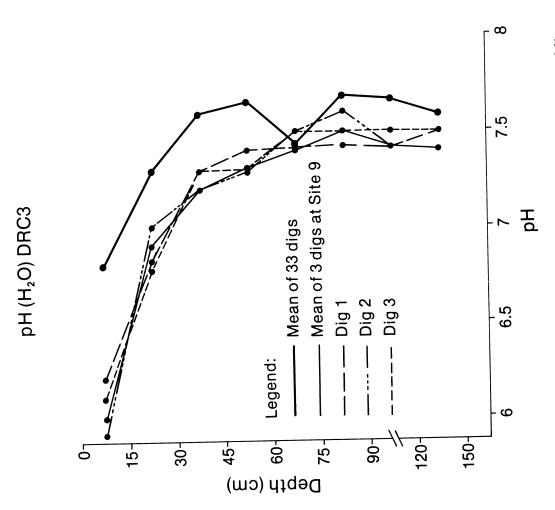


Figure 47. pH Data for Reconstructed Soils at Diplomat Mine

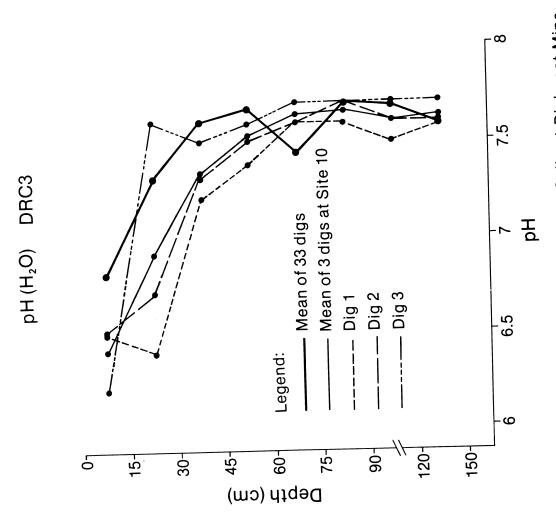


Figure 48. pH Data for Reconstructed Soils at Diplomat Mine

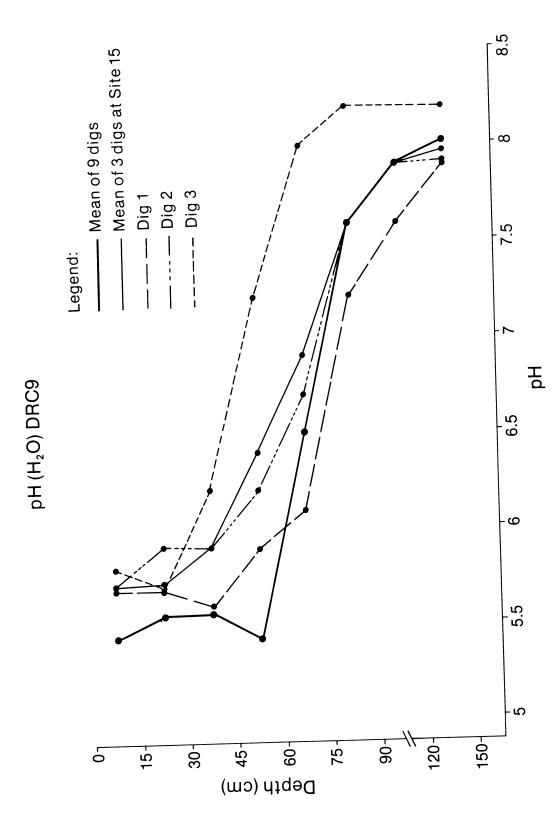


Figure 49. pH Data for Undisturbed Soils at Diplomat Mine

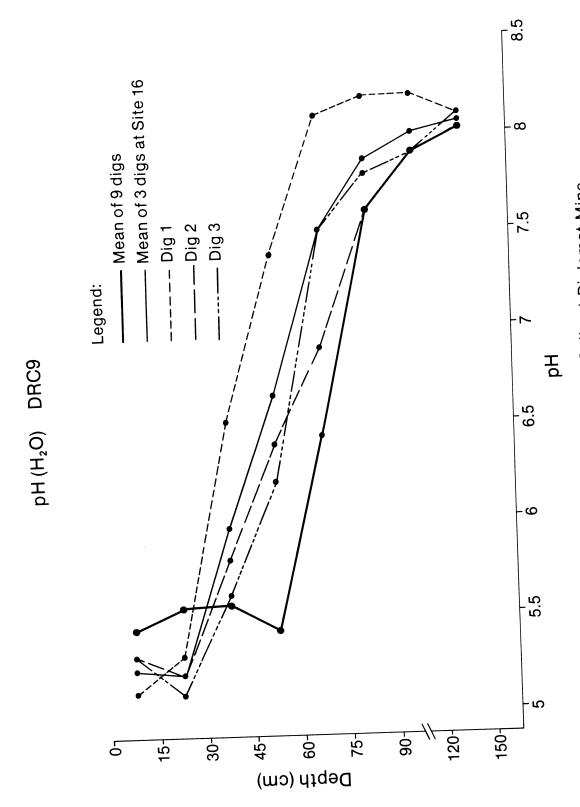


Figure 50. pH Data for Undisturbed Soils at Diplomat Mine

Trends similar to those described above are also evident at Vesta Mine. Within site variability at Highvale cannot be assessed because only one dig per site was completed. The data obtained do not tend to support the conclusion that variability increases with increased distance between sites.

3.1 INSPECTION AND SAMPLING DENSITY

The results presented raise some points about sampling techniques that might be employed in "mapping" of or characterization of reclaimed land. It appears that in order to assess parameters such as pH, SAR, PSAT and clay content one hole per site provides adequate representation or characterization. The next question relates to the number of sample sites that should be considered in order to assess a given parcel of reconstructed soils. It is reasonable to suggest that the variability of reconstructed soils will be directly related to the variability of the pre-mining soils. Therefore, some judgement or subjectivity is involved in determining the appropriate number of inspection and sampling sites required to adequately map a reconstructed soil area.

Inspection sites will provide information about the presence or absence of topsoil and depth thereof, stoniness, and some information about "subsoil" characteristics, rooting depth and pattern if crops are present. Inspection sites are more pertinent when one is separating areas where different materials handling procedures were employed. However, in mapping areas characterized by a specific materials handling type, one is likely to make separations on features such as topography and drainage. Experience gained from this project suggests that topsoil depths for RC3 and RC4 areas, as an example, were relatively uniform and did not result in separable units.

The scale of mapping presently utilized for mapping premining soils is $1:10\ 000$ and it is suggested that the same scale be used for mapping reconstructed soils. This implies an inspection density in the range of 1 to 5 ha/inspection.

In the sampling of reconstructed soils one is concerned with knowing what can be expected from knowing the properties of the

material removed from a drill or sample site in terms of describing the remainder of a given area. The data provided in this report provided some insight into the matter.

It is appropriate to recommend a range of sample density requirements for reconstructed soils because pre-mining characteristics will show differences in variability at different locations. The proposed sampling density for characterization of reconstructed soils is 5 to 10 ha/sample site. For this study the average sampling density was 8 ha/sample site which appeared adequate to characterize the areas involved. This sampling density is recommended for initial characterization and assessment of capability following reconstruction. Future sampling to reassess capability may not require the type of density suggested.

Samples collected at each site should reflect the depth (cm) sequence 0 to 15, 15 to 30, 30 to 45, 45 to 60, 60 to 75, 75 to 90, 90 to 120, and 120 to 150, or a reasonable facsimile thereof. Sampling the range indicated provides a clear evaluation of the parameters with depth. For purposes of determining capability for agriculture it has been suggested that the physical and chemical properties of the upper 1 metre be assessed in order that ratings can be developed. However, it is very useful to have information about the additional 50 cm suggested by the depth sequence proposed.

4. REFERENCES CITED

- Brocke, L.K. 1979. Detailed soil survey and interpretations for reclamation of the Paintearth mine area. Prepared for Forestburg Collieries Ltd., Western Soil and Environmental Services.
- Lindsay, J.D., W. Odynsky, T.W. Peters and W.E. Bowser. 1968. Soil survey of the Buck Lake and Wabamun Lake Areas. Alberta Soil Survey Report No. 24.
- Luscar Ltd. 1982. Diplomat Mine annual reclamation reports for 1979, 1980, 1981 and 1982. Prepared by Luscar Ltd.
- Macyk, T.M. and A.H. Maclean. 1983. Soil survey of the Plains Hydrology and Reclamation Program: Battle River Project Area. Soils Department, Alberta Research Council.
- Manalta Coal Ltd. 1979. Soil and till inventory and reclamation suitability assessment, Vesta Mine, Halkirk, Alberta. Prepared by Techman Ltd.
- Schafer, W.M. 1979. Variability of minesoils and natural soils in southeastern Montana. Soil Science Society of America Journal, p. 1207-1212.
- Schafer, W.M. 1982. Changes in land capability class resulting from mining in the northern Great Plains. <u>In Symposium on Surface Coal Mining and Reclamation in the Northern Great Plains</u>, March, 1982.

5. APPENDICES - CHEMICAL AND PHYSICAL PROPERTIES OF RECONSTRUCTED SOILS AT PAINTEARTH MINE (1983)

The following is an explanation of terminology used in Appendices 5.1 and 5.2:

SITE = Site location

DIG = Dig number at each site

SDTH = Sample Depth

D15 represents sample obtained from 0 to 15 cm depth D30 represents sample obtained from 15 to 30 cm depth

pHH = pH (water solution)

 $pHC = pH (CaCl_2 solution)$

PSAT = Percent Saturation

EC = Electrical Conductivity (dS/m)

SAR = Sodium Adsorption Ratio

Na = Sodium (meq/1)

K = Potassium (meq/1)

CA = Calcium (meq/1)

MG = Magnesium (meq/1)

 SO_4 = Sulphate (meq/1)

CARB = Calcium Carbonate Equivalent (%)

SND = Sand (%)

SI = Silt (%)

CL = Clay (%)

PMOI = % Moisture

BD = Bulk density

ND = No data

MINE D = Diplomat Mine

MINE H = Highvale Mine

MINE V = Vesta Mine

5.1 Analytical Data For Reconstructed Soils Sampled in 1982.

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

MINE D MAT RC1 SITE 34

	CL	20	5 3 3 2 3 4	24		CL	24 24 23 23	27	24 25		CL	21	26 23	ND 23
	SI	27	70 30	34		SI	32 33 31 39	27	35 35		SI	26 28	27 32	30 30
	SND	53	. 4 8 8 8	42 35		SND	44 43 46 36	46	0		SND	53 48	47 45	4 4 VD
	CARB	0 0 0 0 0	<u>N</u> N	O O		CARB	ON ON ON ON	2 2	Q N		CARB	QN QN	22	2 2
	504	40, 19 75, 56	98.94 79.50	54.56		504	. 97 34. 13 ND ND	2 2	Q		504	9 Q	9 9 9	39.38
	MG	11.88	32.71 22.50 17.26	· ·	:	M (3)	1.49 11.98 ND ND	2 2	Q N		MG	223	2 2 2	9.87
i	CA	30.30			5	40	4.20 27.10 ND ND	2	0	i	CA	2 2 2	2 9 9	29.80
2	¥	. 56	.67	. 56	X		61 75 ND ND	Q S	2	2	¥ !	S S S	28	. 79
Š		73.30			Z Z	1 1	3.60 ND ND	2 2	2	Ž	42	2 2 <u>2</u>		2.10
SAR		7.9 14.0			SAR		8 ON ON O	2 2)	SAR		2 2 2	2 5 r	Ü.
EC	- 1	5.20			EC	60	2 . 60 ND ND	2 2		E	ON	2 2	ر N N R R R	•
PSAT	1 80	53.3	400	,	PSAT	50.0	50.0 ND ND	2 2		PSAT	GN	22	0 N U	
PHC		7 7 8 7 9 6			PHC		7.77.7.8			PHC	7.7	7.6	7.5	
PHH		∞ ∞ α π ω ∠			Ħ		8 8 8 8 6 8 5 7 8 8 6			HHd		8 8 8 - 3 6		
N SDTH		D30 D45			SDTH	D 15	D30 D45 D60 D75	D120		SDTH	D 15	D30 D45 D60	D75 D90	
FSN		395 396 397			FSN		401 402 403 404 405	406		FSN	407	408 409 410	411	
NS T	821070	82 107 2 82 107 2 82 107 3	821074 821075	MINE D MAT RC1 SITE 35	L SN	821076	821077 821078 821079 821080 821081	821082	MINE D MAT RC1 SITE 36	T SN	821083	821084 821085 821086	821087 821088	

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

CL	28	20 23 16 19	CL	8 9	8 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	CL	2 5	
IS	QN S	26 ND 34 30 25	IS	25	23 20 18 20 20	18	2	2 2 2 2 2 2 2 2 2 2
QNS	Q	54 ND 43 54 56	S ONS	57	59 68 67 64	SND	QN .	Q Q Q Q
CARB	Q	ON O	CARB	Q.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CARB	QN	<u> </u>
504		ND 2.25 2.25 3.56 4.38	504	1, 17	1.84 1.88 7.75 26.88 32.19	\$04	QN	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M G	CN	ND 1.46 1.37 1.58	Θ	1	2 67 2 67 3 13 10.03	9 ∑	CN	
CA	NIC	3. 30 0. 3. 30 0. 3. 40 0. 3. 80 0. 3. 90	CA	1	4 20 4 90 6 50 21 30 22 50	4		
¥		NN ND ND 448 55 65	¥		67 59 63 1.21	7	2 1 4	
⋖ 2	1	N N O O O O O O O O O O O O O O O O O O	Ž		50 90 70 90	;	AN I	
0 0		ON ON O. +	0 4		<u> </u>	!	SAR	O
(ו ו ו נ ו נ	ND ND .55 .65	(ו ו נ ו ש ו	. 55 . 60 . 80 . 90 2 . 12 2 . 15		EC	9 9 9 9 9 9 9 9 9 9
	PSAT	ZZ		PSAT	50.0 50.0 42.0 42.7 40.0		PSAT	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	PHC	7.8 7.7 7.6 7.7		PHC	7 . 6 4 . 7 . 6 4 . 7 . 7 5 . 7		PHC	7.9 7.6 8.1 7.8 7.4
	표	വയവവവ		HHd	8 3 7 6 8 5 8 5 8 5 5 8 5		HH	
	SN SDT	413 D15 414 D30 415 D45 416 D60 417 D75 418 D90		SNS	419 D15 420 D30 421 D45 422 D60 423 D75 424 D90		S Z	
MINE D MAT RC1 SITE 37	LSN	821089 4 821090 4 821091 4 821092 4 821093 821093	MINE D MAT RC1 SITE 38	L SN	821095 821096 821097 821098 821099 821100	MINE D MAT RC2 SITE 3	LSN	82704 82705 82706 82706 82708 82708

J 1 8 8 8 9 9 9

1 2 2 2 2 2 2

999999 22222 6 9 28 30 x | 22222 A I B B B B B B DATA FOR RECONSTRUCTED SOILS SAMPLED IN 22222 7.3 8.2 8.5 7.8 7.9 6.9 7.8 8.7 7.8 8.7 7.9 7.9 8.7 8.0 8.0 1 2 4 8 7 9 7 ΗH α σ α α α α D15 D30 D45 D60 D75 D90 D 15 D 15 D 45 D 60 D 75 D 120 D 150 D 180 D 240 D 240 D 270 D 270 D 330 D 330 D 330 D 330 34 35 36 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 50 50 50 50 ANALYTICAL 82710 82711 82712 82713 82714 D RC2 4 LSN MINE D MAT RC2 SITE 5 82716 82717 82719 82719 82720 82721 82722 82723 82725 82726 82726 82730 82730 LSN MINE MAT SITE

CL 26 24 ND ND ND ND ND ND ND 21 21 32

21 34 28 ND ND ND ND ND ND ND ND 34 34 36 36 36 17 4 rū 3 75 18 24 52 RECONSTRUCTED SOILS SAMPLED - w ω 44 70. HC 8003-1008 8874700--06 980-06697-D15 D30 D45 D60 D75 D90 D120 D150 D150 D150 D150 D210 D210 D15 D30 D45 D60 D75 D120 D150 D150 D180 DATA FOR 777 78 779 80 81 82 83 84 85 86 86 87 89 50 60 60 63 63 63 65 65 66 66 67 68 82753 82754 82755 82756 82757 82759 82759 82760 82761 82762 82763 LSN D RC2 7 MINE MAT SITE MINE MAT SITE

25 ND ND ND 63 88 88 000 ND ND ND ND ND ND 504 ND 63 63 ND ND ND 75 50 50 75 50 75 75 60 31 41 75 40. 25. 0 11 3 24 6 6 60. 39. 44. 53. 40. SAR 14.4 19.4 20.6 ND ND 12.5 14.1 10.8 ND DATA FOR RECONSTRUCTED SOILS SAMPLED IN 4 0 0 0 0 0 0 0 123.9 ND ND ND ND 90.0 101.5 681.3 681.3 79.4 ND 102.1 ND 102.3 66.3 ND 93.8 1114.8 ND ND 66.7 73.3 63.3 68.8 000845504777 015 045 060 075 075 0150 0180 0210 0240 0270 0330 0330 D 15 D 30 D 45 D 75 D 120 D 150 D 180 D 210 D 220 D 270 91 93 94 95 96 98 99 100 101 102 103 ANALYTICAL D RC2 8 LSN 82767 82770 82771 82772 82774 82775 82775 82776 82776 82778 82778 82778 LSN 82784 82785 82786 82788 82789 82790 82791 82792 82793 82795 D RC2 9 MINE MAT SITE

7 9 9 9 9 9 9 9 9 9

2222222 504 69 00 75 75 75 50 50 75 75 75 00 ND 88 81 81 ND 58 25 25 46 46 46 49 83 83 91 77 72 73 73 MG 10 10 07 07 74 78 78 78 78 78 MG 7 78 80 7 79 80 80 43 58 66 66 ro − − − 0 € 4 CA 10 10 10 10 00 30 80 ND CA 30 20 80 80 80 50 50 50 50 50 30 30 30 30 30 ε ε = 4 10 8 22 12 14 17 17 17 17 17 17 86 42 ND 56 65 ND ND K 81 48 94 76 54 65 67 77 77 54 29 43 38 36 45 46 65 67 59 64 57 39 SAR 17.1 20.5 ND 16.0 14.1 11.6 SAR 17.0 19.7 16.4 18.6 18.6 18.5 12.6 12.2 DATA FOR RECONSTRUCTED SOILS SAMPLED IN EC 95 95 95 30 30 40 40 40 40 400 2350505050 68.0 61.4 ND 73.3 80.0 ND PHC 8.1 8.1 7.6 7.7 7.7 7.9 8.0 1877777817 B . 6 B . 6 B . 4 B . 6 B . 7 B . 8 B . 8 0849697449 D150 D150 D150 D150 D150 D180 D15 D45 D60 D75 D120 D150 D180 D210 D240 121 123 123 126 127 128 129 131 133 134 135 137 139 139 140 82799 82802 82803 82804 82805 82806 D RC2 10 LSN MINE D MAT RC2 SITE 11 L S N 82807 82809 82810 82811 82813 82814 82815 82815 82816

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

	FSN SDTH	HH	PHC	PSAT	EC	SAR	NA	X	CA	MG	504	CARB
1 7		0.6	0.8	111.3	5.00	18.2	59.10	.65	15.50	5.51	71.25	2
- 6			7.8	QN		2	Q	Q	Q	Q N		<u>Q</u>
, ,	147 075		00	126.7	5.50	20.1	66.10	. 78	15.00	09.9	85.00	Q
4 6			0 00	Q				QN	QN	Q	2	Q
, מ			. 4	2		Q	QN	Q	Q	QN		Q
02020			7 4	118.0	09.9	(,)	82.60	1.46		09.9	96.25	Q
na			· сс	146.7		w		1.33				<u>Q</u>
ח מ			6.7	110.4		26.1	73.90	1.41	11.30	4.80		Q
) α			6 7	98.7		U)		. 73				Q
) CX			7.9	93.3		w		8 1				2
) C			7.3	56.7		0		1.06				2
) C		•	8	83.3		19.1		. 42				9
) CX			7.9	76.3		18.3		.68				2
82836	160 D450	8.4	9.7	17.1		17.6		. 79				2
SITE 13												
LSN	FSN SDTH	Ŧ	PHC	PSAT	EC	SAR		¥	CA	Ø ₩	S04	CARB
10000	464 045		7 8	1	- CN	2		- Q	- QN	QN	QN .	QN
0200			5 7	132.5		19.7	Ξ.	. 54				Q
02030			0.7	123.5		ന		. 56				2
82833			7.4	108.1		ന		.67				Q
82842			6 7	129.3		~		41				Q
82843			0.8	110.0		เก		.34		1.28		2
82844			8.2	150.8		◂		. 18				2
82845			0.8	105.3	-	_		. 25			-	2
82846			9.7	84.9		an		.64				2
82847	171 0240	8.3	7.9	101.0	4.90	21.9	00.09	.58	12.00	3.08	63.75	2 9
82848			0.8	99.3		\sim		. 42				2
)												

15 - 9 9 9 9 9 9

222222 25 00 00 00 00 69 25 75 71 80 85 80 80 54 81 7 9 7 9 8 8 CA 50 30 30 60 60 60 80 80 22 19 21 17 10 24 23 K 886 78 74 74 62 65 556 335 442 443 441 77 77 77 77 77 77 49 62 66 66 66 67 67 84704-60 SAR 13.99 14.66 14.66 10.00 10 17 17 17 19 19 15 DATA FOR RECONSTRUCTED SOILS SAMPLED IN 6 2 4 2 2 2 4 7 2 9 8 0 5 75. 80. 94. 124. 79. 79. 57. 51. 47. 90 124 116 122 99 76 PHC 8.3 8.1 8.3 8.7 7.9 7.8 7.8 7.7 7.7 7.7 1 7 7 9 8 8 8 6 7 9 9 7 7 5 4 015 045 045 060 070 070 0120 0120 0210 0210 0220 0230 0330 190 191 194 196 196 198 174 174 177 177 177 180 180 181 183 185 185 185 186 187 187 188 MINE D MAT RC2 SITE 15 82850 82850 82854 82854 82856 82856 82857 82857 82859 82859 82860 82860 82864 82863 82866 82867 82869 82870 82872 82873

7 9999999999 199999999999 9999999999 50 50 50 50 50 50 50 50 50 75 25 25 504 72 86 86 90 86 87 885 885 886 886 48 62 63 63 47 46 46 13 14 14 14 14 14 17 17 17 18 18 19 17 20 23 31 27 27 27 27 14 15 15 30 229 228 227 227 227 227 78595957 SAR 9 6 6 12 9 6 6 14 2 4 14 3 1 4 16 6 6 17 1 6 17 1 6 17 1 6 17 1 7 50.40800807 ++6000++ σ 9294480009008769 9770808088 688 444 522 447 448 40 55 LLLLLL 8 L L 8 L L L L PHH 8.2 7.7 7.9 8.2 8.0 8.0 7.8 7.8 8.1 8.8 8 - 8 8 0 2 2 9 7 2 1 D15 D30 D45 D60 D120 D120 D180 D210 D240 D300 D360 D360 D15 D30 D45 D60 D75 D90 D120 D150 D180 216 217 218 219 220 221 222 223 223 82875 82877 82877 82878 828879 82881 82881 82884 82885 82885 82886 82886 82886 82886 LSN MINE D MAT RC2 SITE 17 82892 82893 82894 82895 82896 82897 82898 82899 82900

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

0	RC2	18
MINE	MAT	SITE

CL	- QN	QN	Q	2	Q	2	2	2	S	2	2	2	Q		CL	Q	QN	2	Q	Q	2	2	2	Q
51	QN.	Q	QN	2	Q	2	2	Q	2	2	2	2	QN		SI	2	Q	2	Q	2	Q	2	QN	Q
SND	ON.	QN	QN	QN	QN	Q	QN	QN	QN	QN	QN	ON	9		SND	QN.	QN	2	QN	QN	Q	QN	Q	QN
CARB	Q Q	QN	QN	QN	QN	QN	ON.	Q	2	QN	QN	Q	Q		CARB	QN	Q	QN	Q	Q	Q	Q	Q	Q
804	1.59					44.69						54.06			504	46.25	69.63	76.25	73.75	58.13	68.75	QN	QN	58.44
WC	1.85					13.32						10.86	QN		MG	13.49	19.74					9	Q	13.57
CA	5.40					29.80						26.80	QN		CA	33.80					26.30		2	27.50
X	.51	.39	1.01	1.08	. 56	1.24	1.22	1.36	1.28	1.05	Q	1.17	Q		X		. 95	. 72	. 55	. 30	. 45	QN	QN	.78
AZ :	07.					5.90						21.10	QN N		Z Z	5.50					26.10		<u>Q</u>	25.00
SAR	4.	۲.	4.	9.	17.8	1.3	1 .3	1.6	2.0	6.4	2	6.4	Q N		SAR	1.1	3.7	7.2	7.0	6.4	5.3	<u>Q</u>	Q	5.5
E E C	. 75					3.05							QN		EC	ω.			•		4.50		9	4.05
PSAT	48.7	46.7	54.7	26.0	0.06	60.7	62.7	62.3	63.3	66.7		70.4	Q		PSAT	9	53.3	L)	-	o	$^{\circ}$	Q	Q	70.0
PHC	7.9	-													PHC	7.4							7.9	
HH	8.6							•							Ħ	8.8	•	•				•	8.7	
FSN SDTH	226 D15					231 D90									FSN SDTH	239 D15								
LSN	82902	82903	82904	82905	82906	82907	82908	82909	82910	82911	82912	82913	82914	MINE D MAT RC2 SITE 19	L SN	82915	82916	82917	82918	82919	82920	82921	82922	82923

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

MINE D

MAT RC2 SITE 20															
LSN	FSN SDTH	HH	PHC	PSAT	EC	SAR	N A	¥	CA	W G	804	CARB	SND	SI	CL
82924	248 D15	80	7.8	73.3	2.75	1.6	06.9	1.04	26.50	10.36	39.69	QN		Q	2
82925		ω,	8.1	66.7	3.10	2.2		. 97			45.63	QN	Q	Q	2
82926		80		56.7	3.00	2.8		.82			49.06	QN	QN	Q	2
82927	251 D60	8.4	7.4	56.2	3.55	3.7	17.20	. 82		12.09	50.00	Q	QN	2	2
82928		80		56.7	3.55	4.2		94	-		49.06	QN	QN	Q	2
82929		80		Q	2	2		Q.			QN	QN	QN	QN	2
82930		80		2	3.95	5.3		. 8 1			55.63	Q	Q	Ç	2
82931		80		2	4 . 10	5.7		. 56			66.25	Q	QN	2	2
82932		80		62.0	4.20	5.3	25.90	94.	28.00		65.00	Q	Q N	2	2
82933		80		ω	3.95	4.8		88		-	63.75	Q	2	Q	2
82934	258 D270			Q	Q	Q		Q			QN	QN	Q N	2	2
(A				66.7	4.10	5.0	24.80	. 78	30.30		65.00	QN	Q	2	2
82936	260 0330			α		5.3		.87		15.46	62.50	Q	Q	Q	Q
MINE															
LSN	FSN SDTH	H H	PHC	PSAT	EC	SAR	Z A	¥	CA	MG	804	CARB	SND	SI	CL
82937	,	œ		54.0	3.30	2.4		. 82	1 .	1 .	52.50	- QV	40	32	28
82938		œ		52.0		5.4		. 73			68.75	2	47	26	27
82939		80		48.0		6.3	30.40	16	27,30		71,25	Q	51	28	21
82940		œ		47.3	•	8.1		.67			71.25	Q	49	26	25
82941		∞.		54.0		8.5		. 73			75.00	Q	56	27	17
82942	266 D90	9 · 8	7.8	2.99	4.65	8.3		. 79		15.71	72.50	2	49	31	50
82943		∞	•	Q		Q		QN			Q	S	47	3.5	2.5
										!))	:	,	- J

S1 32 33 33 33 36

CL 233 259 259 30 29

SI ---48 48 27 27 33 36

5ND 44 23 48 41 34 CL 22 22 22 26 ND ND

SI 36 32 32 84 80 80

SND 42 46 50 ND 50

1 2 2 2 2 2 2 2 \$04 88 50 50 00 38 31 88 ... 881 ... S04 4 . 19 27 . 19 53 . 13 60 . 00 76 . 25 51 72 70 59 60 60 46 57 60 57 58 58 MG 18 18 62 90 66 MG 133 144 185 185 14 14 23 23 24 22 22 25 31 CA 10 30 30 30 30 30 30 30 CA 000 000 550 000 800 CA 000 30 30 80 80 24 24 28 28 28 29 27 26 27 27 23 32 33 28 28 28 7 1 92 03 03 03 03 03 03 82 82 A 33 33 50 50 95 78 78 01 - 6 9 5 24 24 23 20 4 60000 SAR 1.0 ND 2.5 1.9 1.9 SAR 2.6 5.5 6.3 ND ND 5.5 5.7 z EC 885 05 25 75 75 50 EC 20 20 90 90 50 40 40 DATA FOR RECONSTRUCTED SOILS SAMPLED in nonn 1 0004 PSAT 57.3 ND 53.3 66.7 68.0 PSAT 50.0 50.0 53.3 53.3 PSAT 51.3 66.7 53.3 ND 52.7 50.7 PHC 7.6 7.7 7.9 7.9 7.6 PHC 7.5 PHC 7.3 7.5 7.5 7.6 7.6 PHH 8.3 8.3 8.8 8.6 8.6 8.6 PHH 8.3 8.0 7.9 8.6 8.5 PHH 8.1 7.9 8.2 7.8 7.7 D 15 D 30 D 45 D 60 D 75 D 90 D 15 D 30 D 45 D 60 D 75 SDTH D15 D30 D45 D60 D75 D90 D120 FSN 268 269 270 271 272 273 273 FSN 281 282 283 283 284 285 LSN 82957 82958 82959 82960 82961 L SN 82944 82945 82946 82947 82947 82948 LSN 82951 82952 82953 82954 82955 82955 D RC2 23 D RC2 24 D RC2 22 MINE DAT F MINE I MAT I SITE ; MINE I

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

0	RC2	25
MINE	MAT	SITE

כר	24 24 20 ND 17	כר	22 22 22 23 23 17	CL	26 26 25 25 20 20
SI	33 29 20 ND 24 18	SI	30 30 30 32 32 32 32	18	28 25 25 31
SND	43 47 58 ND 59	SND	8 4 4 4 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9	SND	7 4 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CARB		CARB		CARB	
804	46.88 65.00 ND ND 68.75 72.50	\$04	45 00 66.25 71.25 78.75 80.00	\$04	81.88 83.75 83.75 82.50 87.50 88.75
MG	10.69 16.28 ND ND 11.27	MG	13. ND 27.55 26.73 29.19 25.90	MG	11.92 17.68 18.09 17.68 22.62 21.79
CA	29.80 27.50 ND 25.30 26.50	CA	31.50 27.00 26.50 27.30 25.50	∀ O	30.30 25.80 25.50 25.50 26.80 27.00
¥	7.1 7.2 ND ND 83	¥	ND 159 191 188 188 178	¥	.69 .71 .97 .100 .96
NA	10.40 26.70 ND ND 43.50	A A	2.50 15.00 22.80 31.70 35.40	Q V	14.30 46.10 53.00 47.80 49.60 51.30
SAR	2.3 ND ND 10.2 10.8	SAR	ND 2.9	SAR	1.00 1.00 1.00 1.00 1.00 1.00 1.00
	3.10 4.25 ND ND 4.85 5.30	EC	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ш	604406-
PSAT	50.0 51.1 ND ND 59.7	PSAT	53 .3 63 .0 65 .2 64 .2 66 .7	PSAT	50.7 52.0 63.3 51.6 56.7 57.3
PHC	7.6	PHC	7.577.9	PHC	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
PHH	8888857 7.8888857 7.8888	HH	88 8 8 8 7	표	8 8 8 9 7 8 8 9 7 8 9 9 9 9 9 9 9 9 9 9
FSN SDTH	286 D15 287 D30 288 D45 290 D75 291 D90 292 D120	FSN SDTH	293 D15 294 D30 295 D45 296 D60 297 D75 298 D90 299 D120	FSN SDTH	70 D15 71 D30 72 D45 73 D60 74 D75 75 D90
L SN	82962 82963 82964 82966 82966 82967	ר טאַס	82969 82970 82971 82971 82972 82973 82974	MINE D MAT RC2 SITE 61 LSN	827 827 827 827 827 827

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

1 D15 8.5 7.9 ND								
D15 8.5 7.9 ND D30 8.0 7.6 ND D45 8.4 8.1 ND D60 8.5 7.8 ND D150 8.6 7.7 ND D150 8.6 7.7 ND D210 8.6 7.3 ND D240 8.8 8.0 ND D240 8.8 8.0 ND D330 8.5 7.8 ND D330 8.5 7.8 ND D340 8.8 8.0 ND D350 8.5 7.0 ND D350 8.5 7.0 ND D360 7.2 6.7 ND D45 8.0 7.2 ND D45 8.0 7.2 ND D45 8.0 7.2 ND D45 8.0 7.4 ND D45 8.5 7.4 ND D120 8.5 7.8 ND	EC SAR	A N	K	MG	504	CARB	SND	51
D30 8.0 7.6 ND D45 8.4 8.1 ND D60 8.5 7.8 ND D120 8.6 7.7 ND D150 8.5 7.6 ND D150 8.5 7.6 ND D210 8.6 7.2 ND D210 8.6 7.2 ND D210 8.6 7.2 ND D300 8.5 7.8 ND D300 8.5 7.8 ND D300 8.5 7.0 ND D300 8.5 7.0 ND D300 8.3 7.8 ND D30 8.3 7.8 ND D45 8.0 7.2 6.7 ND D45 8.0 7.2 ND D45 8.0 7.2 ND D45 8.0 7.4 ND D120 8.5 7.4 ND D120 8.5 7.8 ND D120 8.5 7.8 ND D150 8.5 7.8 ND D150 8.5 7.8 ND D150 8.5 7.7 ND	QN			O _N	QN	40	Q	2
D45 8.4 8.1 ND D60 8.5 7.8 ND D150 8.6 7.7 ND D180 8.6 7.7 ND D210 8.7 7.6 ND D240 8.8 8.0 ND D240 8.8 8.0 ND D300 8.5 7.8 ND D300 8.5 7.8 ND D300 8.3 7.8 ND D300 8.3 7.8 ND D300 8.3 7.8 ND D300 7.9 7.0 ND D45 8.0 7.2 6.7 ND D45 8.0 7.2 ND D45 8.0 7.2 ND D45 8.0 7.4 ND D120 8.5 7.4 ND D120 8.5 7.8 ND				2	Q	2.09	Q	<u>Q</u>
D60 8.5 7.8 ND D95 8.6 7.7 ND D150 8.6 7.7 ND D150 8.6 7.2 ND D210 8.6 7.2 ND D240 8.8 8.0 ND D270 8.6 8.1 ND D300 8.5 7.8 ND D330 8.7 7.8 ND D390 8.3 7.8 ND D390 8.3 7.8 ND D45 7.2 6.7 ND D45 8.0 7.2 ND D60 7.9 7.4 ND D45 8.5 7.4 ND D150 8.5 7.4 ND D150 8.5 7.7 ND D150 8.5 7.7 ND D150 8.5 7.7 ND D180 8.5 7.7 ND				Q	CN	.63	Q	Q
D75 8.6 7.7 ND D90 8.6 7.7 ND D120 8.7 7.6 ND D150 8.5 7.6 ND D210 8.6 7.2 ND D240 8.8 8.0 ND D270 8.6 8.1 ND D300 8.5 7.8 ND D300 8.3 7.8 ND D300 8.3 7.8 ND D300 8.3 7.8 ND D30 7.6 8.1 ND D45 8.0 7.2 ND D60 7.9 7.4 ND D50 8.3 7.4 ND D120 8.5 7.8 ND D150 8.5 7.8 ND D150 8.5 7.7 ND D150 8.5 7.7 ND D150 8.5 7.7 ND				2	QN	2.43	Q	Q Z
D90 8.6 7.7 ND D120 8.7 7.6 ND D180 8.6 7.7 ND D180 8.6 7.2 ND D240 8.8 8.0 ND D270 8.6 8.1 ND D300 8.5 7.8 ND D300 8.5 7.8 ND D300 8.3 7.8 ND D350 7.9 ND D350 7.2 6.7 ND D45 7.2 6.7 ND D45 8.0 7.2 ND D60 7.9 7.4 ND D120 8.5 7.4 ND D120 8.5 7.8 ND D150 8.5 7.7 ND D150 8.5 7.7 ND D150 8.5 7.7 ND				Q	QN	1.25	Q	9
D120 8.7 7.6 ND D150 8.5 7.6 ND D180 8.6 7.3 ND D240 8.8 8.0 ND D270 8.6 8.1 ND D330 8.7 7.9 ND D330 8.7 7.9 ND D350 8.3 7.8 ND D350 8.3 7.8 ND D45 7.2 6.7 ND D45 7.2 6.7 ND D45 8.0 7.2 ND D60 7.9 7.4 ND D150 8.5 7.8 ND D150 8.5 7.8 ND D150 8.5 7.8 ND D150 8.5 7.8 ND D150 8.5 7.7 ND				Q	QN	2.31	Q	2
D150 8.5 7.6 ND D180 8.6 7.3 ND D210 8.6 7.2 ND D240 8.8 8.0 ND D300 8.5 7.8 ND D330 8.7 7.9 ND D390 8.3 7.8 ND D390 8.3 7.8 ND D45 8.0 7.2 6.7 ND D45 8.0 7.2 ND D45 8.0 7.2 ND D45 8.5 7.4 ND D120 8.5 7.4 ND D120 8.5 7.7 ND D150 8.5 7.7 ND D150 8.5 7.7 ND D150 8.5 7.7 ND D150 8.5 7.7 ND				Q	2	1.48	Q	Q
D180 8.6 7.3 ND D210 8.6 7.2 ND D240 8.8 8.0 ND D300 8.5 7.8 ND D360 7.9 7.0 ND D390 8.3 7.8 ND D390 8.3 7.8 ND D45 7.2 6.7 ND D45 8.0 7.2 ND D45 8.0 7.4 ND D50 8.5 7.4 ND D120 8.5 7.8 ND D120 8.5 7.7 ND D150 8.5 7.7 ND D150 8.5 7.7 ND D150 8.5 7.7 ND D150 8.5 7.7 ND				2	QN	2.72	QN	Q
D210 8.6 7.2 ND D240 8.8 8.0 ND D240 8.8 8.0 ND D300 8.5 7.8 ND D360 7.9 7.0 ND D390 8.3 7.8 ND D390 8.3 7.8 ND D45 7.2 6.7 ND D45 8.0 7.2 ND D50 8.5 7.4 ND D120 8.5 7.8 ND D150 8.5 7.7 ND D150 8.5 7.7 ND D150 8.5 7.7 ND D150 8.5 7.7 ND				Q	Q	1.79	0 N	QN
D240 8.8 8.0 ND D270 8.6 8.1 ND D300 8.5 7.8 ND D330 8.7 7.9 ND D390 8.3 7.8 ND D15 7.2 6.7 ND D45 8.0 7.2 ND D60 7.9 7.4 ND D10 8.5 7.4 ND D120 8.5 7.8 ND D150 8.5 7.7 ND D180 8.5 7.7 ND				2	2	1 60	QN	Q
D270 8.6 8.1 ND D300 8.5 7.8 ND D330 8.7 7.9 ND D390 8.3 7.8 ND D390 8.3 7.8 ND D15 7.2 6.7 ND D45 8.0 7.2 ND D60 7.9 7.4 ND D90 8.5 7.4 ND D120 8.5 7.8 ND D150 8.6 7.6 ND D150 8.5 7.7 ND D150 8.5 7.7 ND				Q	Q	2 12	Q	Q
D330 8.5 7.8 ND D330 8.7 7.9 ND D390 8.3 7.8 ND D390 8.3 7.8 ND D15 7.2 6.7 ND D45 8.0 7.2 ND D60 7.9 7.4 ND D50 8.5 7.4 ND D150 8.5 7.4 ND D150 8.5 7.7 ND D180 8.5 7.7 ND				Q	QN	2.20	Q	2
D330 8.7 7.9 ND D360 7.9 7.0 ND D390 8.3 7.8 ND D15 7.2 6.7 ND D45 8.0 7.2 ND D60 7.9 7.4 ND D50 8.5 7.4 ND D120 8.5 7.8 ND D150 8.5 7.8 ND D150 8.5 7.7 ND D180 8.5 7.7 ND				Q	QN	Q	QN	Q
D390 8.3 7.8 ND D390 8.3 7.8 ND D390 8.3 7.8 ND D15 7.2 6.7 ND D30 7.6 8.1 ND D45 8.0 7.2 ND D50 7.9 7.4 ND D120 8.5 7.4 ND D120 8.5 7.8 ND D150 8.5 7.8 ND D150 8.5 7.7 ND				Q	QN	Q	QN.	Q
SDTH PHH PHC PSAT D15 7.2 6.7 ND D30 7.6 8.1 ND D45 8.0 7.2 ND D60 7.9 7.4 ND D75 8.5 7.4 ND D90 8.5 7.4 ND D120 8.5 7.7 ND D180 8.5 7.7 ND				2	QN	Q	QN	Q
SDTH PHH PHC PSAT D15 7.2 6.7 ND D30 7.6 8.1 ND D60 7.9 7.4 ND D75 8.5 7.4 ND D90 8.5 7.4 ND D120 8.5 7.8 ND D150 8.5 7.7 ND				QN	Q	2	Q N	2
SDTH PHH PHC PSAT D15 7.2 6.7 ND D45 8.0 7.2 ND D60 7.9 7.4 ND D90 8.3 7.4 ND D120 8.5 7.8 ND D150 8.5 7.8 ND D150 8.5 7.7 ND								
SDTH PHH PHC PSAT D15 7.2 6.7 ND D45 8.0 7.2 ND D60 7.9 7.4 ND D75 8.5 7.4 ND D90 8.5 7.4 ND D120 8.5 7.8 ND D150 8.6 7.6 ND D180 8.5 7.7 ND								
D15 7.2 6.7 ND D30 7.6 8.1 ND D45 8.0 7.2 ND D60 7.9 7.4 ND D75 8.5 7.4 ND D90 8.5 7.4 ND D150 8.5 7.8 ND D150 8.5 7.7 ND								
D15 7.2 6.7 ND D30 7.2 8.1 ND D60 7.9 7.4 ND D90 8.3 7.4 ND D120 8.5 7.8 ND D150 8.6 7.6 ND D180 8.5 7.7 ND	EC SAR	NA	K CA	MG	804	CARB	SND	SI
D30 7.6 8.1 ND D45 8.0 7.2 ND D60 7.9 7.4 ND D75 8.5 7.4 ND D90 8.3 7.4 ND D150 8.6 7.6 ND D180 8.5 7.7 ND	QN QN			QN	S S	- Q	- Q	2
D45 8.0 7.2 ND D60 7.9 7.4 ND D75 8.5 7.4 ND D120 8.3 7.4 ND D150 8.6 7.6 ND D180 8.5 7.7 ND				a	Q	Q	Q	Q
D60 7.9 7.4 ND D75 8.5 7.4 ND D90 8.3 7.4 ND D120 8.5 7.8 ND D150 8.6 7.6 ND D180 8.5 7.7 ND				Q	QN	Q	Q	2
075 8.5 7.4 ND 090 8.3 7.4 ND 0120 8.5 7.8 ND 0150 8.6 7.6 ND 0180 8.5 7.7 ND				Q	Q	2	Q	Q
D90 8.3 7.4 ND D120 8.5 7.8 ND D150 8.6 7.6 ND D180 8.5 7.7 ND				Q	QN	QN	Q	9
D12O 8.5 7.8 ND D15O 8.6 7.6 ND D18O 8.5 7.7 ND				2	Q	Q	2	Q
D150 8.6 7.6 ND D180 8.5 7.7 ND				Q	Q	Q	Q N	Q
D180 8.5 7.7 ND				Q	QN	Q	<u>Q</u>	2
				Q	QN	Q	Q	Q
D210 8.5 7.6 ND				QN	Q	Q	Q	2
D240 8.6 7.3 ND				Q	Q	Q	QN	QN

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

D	RC3	27
$\overline{}$	MAT	\vdash

CL	25	50	8 C	27	20	19	24	<u>Q</u>	22	22	2	17	19	Q		CL	- Q	26	18	25	24	Q	18	18	21	21	23
IS	38	8 F	- C	30	30	28	29	Q	23	31	<u>Q</u>	22	19	Q		SI	2	28	26	28	29	Q	24	26	25	26	33
SND	37	42	. 9 46	. 1	50	53	47	Q	52	47	Q	61	62	Q		SND	on on	46	56	47	47	Q	58	26	54	53	4
CARB	2	2 2	2 2	2	Q	Q	Q	Q	Q	9	2	Q	Q	S		CARB	2	2	Q	Q	<u>Q</u>	2	Q	Q	2	Q.	Q
\$04	8 69													QN		804						77.50			Q	Q	Q
₩ .	3.95													Q		MG						32.48			Q	2	Q
CA	7.10													Q		CA						29.30	٠		Q	Q	Q N
¥	36	7.0	96.	46	. 54	. 41	.41	.92	. 55	. 79	1.00	.51	30	2		¥	1.06	1.03	1.03	1.09	1.27	1.22	1.08	1.03	2	2	9
A N	4.50													2		AN	7.70								2	2	2
SAR	1.9	7 - 4 R		4.7	9.	5	. 7	2.7	ĸ.	۲.	1.7	Φ.	4	9		SAR	3.8	3.1	3.8	4.0	5.1	4.5	7.0	3.5	2	2	2
EC	1.05						.85		1.70		. 78	. 82	. 55	2		EC						4.35			Q	Q	<u>Q</u>
SI	57.0	- <	t C	9	9	0	3	9	3	9	6	0	0	Q		PSAT	68.3	50.0	53.3	54.7	52.7	50.0	52.7	55.6	2	S	2
PHC	7.4						•			٠		٠				PHC	7.3					7.9					
PH	8 6								٠	٠		•				F	•	•	•	•	•	8 .5	•	•			•
FSN SDTH	300 D15															FSN SDTH	315 D15										
LSN	82976	0.000 g	82979	82980	82981	82982	82983	82984	82985	82986	82987	82988	82989	82990	MINE D MAT RC3 SITE 28	LSN	82	82992	82993	82994	82995	82996	85338	82999	821000	821001	821002

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

MINE D MAT RC3 SITE 29

SND SI CL	36	ac	000	36	36 27	36 27 26	36 27 28 28	23 23 23	20 20 20 20 20 20 20	2 2 3 8 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	2 2 2 8 8 2 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6	36 22 22 32 34 4	200 200 200 200 200 200 200 200 200 200	200 200 200 200 200 200 200 200 200 200	2 2 3 3 4 4 5 6 7 6 6 7 6 6 7 6 6 7 6 6 7 7 8 8 8 8 7 7 8 8 6 7 8 6 7 8 8 8 9 7 8 9 8 9 9 9 9 9 9 9 9 9 9 9	51 27 22 24 25 26 26 24 25 26 26 26 27 17 22 21 27 22 48 31 21 21 21 25 24 26 26 24 23 13 24 26 26 26 26 26 25 20
CARB SN																
504	3.44	25.63	43.44	0	15.00	59.38	50.3- 59.38 56.25	59.38 59.38 56.25 68.75	60.31 59.38 56.25 68.75 62.50	59.38 56.25 68.75 62.50		59.38 56.33 56.33 68.75 65.50 65.00 700 86.38	590.31 560.33 560.33 68.25 68.50 650.00 ND 29.38 55.31	590.33 56.338 56.25 68.75 65.00 65.00 ND 29.38 55.31 63.75	590.35 560.38 68.75 62.50 65.00 29.38 55.31 63.73 67.50	590.35 560.38 68.75 62.50 65.00 29.38 55.31 63.75 68.75
W.																20 .56 18 .91 24 .67 17 .68 20 .56 11 .35 13 .33 23 .44 22 .62
CA																29 30 28 80 31 50 27 30 31 30 31 30 20 30 24 30 27 50 27 50
X !	88	1.41	1.82	1.56		1.36	1.36 1.08	1.36 1.08 1.23	1,36 1,08 1,23 ,88	1,36 1,08 1,23 1,24	1.36 1.08 1.23 1.24 ND	1.36 1.23 1.24 1.24 1.24 1.87	1 36 1 1 08 1 23 1 24 1 24 1 88 1 24 1 80 1 90	1 36 1 2 3 3 6 1 2 4 4 7 7 8 8 8 7 7 8 8 8 8 7 7 8 8 8 8 7 7 8 8 8 8 7 7 8 8 8 7 8	1.36 1.23 1.24 1.24 1.24 1.09 1.09	1,36 1,08 1,08 1,09 1,09 1,06
4 Z																15.90 19.80 22.60 22.60 22.60 24.30 25.20 27.90 27.90 27.90
SAR	1.0	1.6	3.1	3.3		3.2	8 2.2 6.2	3.2 2.9 3.7	3.00 2.00 6.00 8.00	8.2 8.4 8.2 8.2	8 2	3.2 2.9 3.7 4.8 8.4 0N 0N	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 2 6 4 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
EC	. 75	2.10	2.85	3.60		3.60	3.60	3.60 3.40 3.65	3.60 3.40 3.65	3.60 3.40 3.65 4.00 3.75	3.60 3.40 3.65 4.00 3.75 ND	3.60 3.40 3.65 4.00 3.75 ND	3 3 9 8 6 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
PSAT	72.0	64.7	0.09	53.3		50.0	50.0 58.8	50.0 58.8 50.0	50.0 58.8 50.0	50.0 58.8 50.0 56.7	50.0 58.8 50.0 56.7 50.0	50.0 58.8 50.0 56.7 50.0 ND	50.0 58.8 50.0 56.7 50.0 ND	50.0 50.0 50.0 50.0 50.0 50.0 50.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
PHC	7.4	6.9	6.7	7.6		7.8	7.8	7.8	7.87.7.8	7.8877.8877.88	7.8877.8877.88	7 7 7 7 7 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9	8 8 8 7 7 7 7 7 7 8 8 8 8 9 9 9 9	8 8 8 8 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	でででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででででで	6 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
H H	8.0	7.5	7.3	9.8		4.	4.8	88.0	8 8 8 8 7 . 4 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6	8 . 0 . 8 . 0 . 8 . 3 . 7	8 8 8 8 8 8 7 7 5 7 5 7 5 7 5 7 5 7 5 7	8 8 8 8 8 7 7 . 8 8 8 8 8 8 9 7 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9	88 88 88 88 80 7	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
FSN SDTH	327 D15															331 D75 332 D90 333 D120 334 D150 335 D180 335 D210 337 D240 338 D270 339 D300 341 D360
L SN	R21003	821004	821005	821006		821007	821007 821008	821007 821008 821008	821007 821008 821009	821007 821008 821009 821010	821007 821008 821009 821010 821011	821007 821008 821009 821010 821011 821013	821007 821008 821009 821010 821011 821012 821013	821007 821008 821009 821010 821011 821013 821013	821007 821008 821009 821010 821011 821013 821014 821014	821007 821008 821009 821010 821011 821013 821014 821015

6.255.885.885.135.111.1.135.105.105. 35 62 62 62 66 66 66 66 53 53 7 1 18 1 18 1 18 1 18 1 18 1 18 1 19 7 118 117 22 23 33 33 33 33 14 10 10 000400--4400N DATA FOR RECONSTRUCTED SOILS SAMPLED - 24 9 9 8 6 6 7 7 7 7 7 52. 53. 53. 70. 72. 91. 73. 68. 69. PHC 77.9 7.9 7.9 88.0 7.8 88.0 7.7 88.0 7.7 88.0 7.7 88.0 7.7 88.0 7.7 88.0 7.7 88.0 7.9 88.0 7.0 88.0 8967897944 018-8817-67-07-5 015 030 045 060 075 075 090 0120 0210 0210 0220 0220 015 015 045 060 075 090 0120 0150 0150 0210 0210 02300 343 344 345 346 347 348 348 350 351 352 353 356 357 358 359 360 361 362 365 365 369 370 82 1019 82 1020 82 1021 82 1022 82 1023 82 1025 82 1025 82 1026 82 1029 82 1029 82 1039 82 1039 D RC3 30 1033 1034 1035 1035 1036 1037 1040 1041 1042 1042 1043 1044 1045 D RC3 31 LSN

504 63 63 70 63 70 50 63 80 80 80 80 28883 3883 1380 1380 1881 1881 30 47 47 56 52 19 37 40 41 40 38 12 20 30 27 23 23 23 15 15 16 16 16 2007 2007 300 300 300 300 27 30 30 29 28 29 24 28 27 27 29 29 40444 24 SAR 0 . 1 1 . 1 0 . 9 0 . 9 0 . 0 0 . DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982 EC ---- 40 40 10 95 85 55 60 ND ND ND ND 00000 3.2 PSAT 559.3 550.7 550.7 48.7 ND S50.0 S52.0 ND ND ND ND PHC 7.7 7.7 7.6 7.8 7.7 7.8 7.7 7.8 7.8 D15 D30 D45 D60 D90 D120 D120 D180 D210 D240 D15 D30 D45 D60 D75 D150 D150 D180 D210 D210 D270 D300 F SN 383 384 385 386 386 389 391 392 393 FSN 371 371 372 374 375 377 378 378 378 380 380 382 382 LSN 821047 821048 821049 821050 821055 821055 821055 821055 821056 821056 LSN 1059 1060 1061 1064 1065 1067 1069 1963

CL

CL

113 114 114 116 116 110 110 110 110 n - - 0 0 4 0 4 4 · - -9 2 2 NA 330 330 330 330 400 400 400 80 51 601 695 999 888 335 53 23 24 44 44 19 19 19 40 60 60 70 70 70 . r-4000000000 32 21 21 17 17 22 23 34 28 28 29 36 36 DATA FOR RECONSTRUCTED SOILS SAMPLED IN 2226-2-265594 PSAT 2000 0 2200 0 2200 0 163 3 175 i 000mm0m00000 195. 187. 205. 205. 178. 250. 265. 250. 305. 250. 250. 1 - 1 - 0 8 8 4 4 8 9 0 0 5 + + 00---00 030 045 060 075 090 0120 0150 0150 0210 0210 030 045 060 075 075 090 0150 0150 0150 0210 0210 285 286 286 288 288 289 290 293 293 293 97 98 98 99 100 101 103 103 105 106 LSN 82421 82421 82422 82423 82426 82426 82426 82426 82426 82427 82430 82430 82431 LSN 82609 82610 82611 82611 82612 82613 82614 82616 82616 82616 V RC2 10 V RC2 35 MINE MAT SITE

CL CL

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

LSN	- 1	SDTH	PHH	PHC	PSA	EC	SAR	4 Z	¥ !	C.A.	W.	\$04	CARB	SND	IS
2621	1 366	D15	1 8	8.0	225.0	3.65			. 46	2.40	. 65	37.19		1.7	46
2622		930			40				. 23		. 24			56	40
2623		145	8.3	8.	23.		35.7	32.60	. 34		. 37		2.10	20	47
2624		090			85.				19	. 70	. 22			27	40
2625		775			50.				18	. 50	. 13			33	38
2626		060			25.	•			. 30		.33			34	37
2627		120			8				.47		06			30	39
2628		150			8				.34	1.80	.41			20	48
2629		180			00				. 27		31			13	25
2630		2 10			45.				. 18	. 70	. 19			16	52
2631		240			55.				. 18	9.	. 16			-	52
12632		270			55.				-	. 40	10			13	22
82633		300			.09				. 12	20	. 12			21	48
MINE V															
L SN	FSN SI	SDTH	HH H	PHC		EC	SAR	NA	¥	CA	MG	504	CARB	SND	SI
82634		D15	7.6	7.5	210.0	3.70	ი ი	ď	. 36		1, 17	8	97	22	
12635		30			80.	ε.	თ		47		1.81	∞.	. 68	25	44
12636		145			30.	α	œ		.38		1.32	0	. 68	16	46
12637		090			20.	Θ.	کا		. 22		. 74	7	. 59	18	49
12638		375			70.	4	7		. 23		.68	σ,	. 42	13	49
12639		060			50.	8	کا		. 27		97	œ	. 54	13	45
12640	315 D	120	7.9			Τ.			.34	3.50	1.19		1.27	16	51
12641		150			8	∞	Ö		. 46		1.93	с	1 10	1	20
12642		180			30.	9.	O		. 30		. 84	9	.68	23	44
12643		210	•		20.	σ.	4		. 49		1.50	С	9	17	49

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

MINE V MAT RC2 SITE 38

CL	1	ب د د	ر د ا	32	36	35	36	29	43	, ,	- 00	D (55	8 0	33				5	, ,	13	25	5) -			- 0	0	1 0	20	20	23		23
SI		70	ກ (ດ ເ	ဥင္	48	45	44	35	40) C	1 5	V L	4 ր Մ (0° 4	7 7				15	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	25	42	26	30	30		7 0	67	32	33	31	34	34	23
SND	+7		0 L	C .	16	20	20	36	27	30	٠ د) c	7 (25	<u>.</u>				SND		62	33	55	47	47	7.1	, ,	- (1	47	49	43	45	54
CARB	P. P							4.27					5 -	, c					CARB			•												3.99
804													00.09	30.00					504	,	•													19.81
MG		2.38		ני	0 0	. DQ	. 65	. 56	1.32	66				3.4.					MG	1					5.44									.34
CA	٠.	4.50												5.20					CA						8.10									
×	44	. 32	10	90	2 0	0.0	80.	0.04	-	.04	. 16	49	36	. 20					¥	42	V 1	/ 9	. 52	.51	96	.48	.51	.50	, C		10 (0	50 1	. 57	18
NA													61.70						NA		•	•			23.10									
SAR	23.1												21.0						SAR	1.4		? • •	0	9.7	တ် ဆ	8.2	7.9	9.1	6	9 0	2 5	4. 6	0 /	31.7
EC	5.30							•					5.50						EC				•		2.52			•						
PSAT	140.0																		PSAT						99.7									
PHC	7.0	•	•																PHC	7.2					- t									
HH4	7.0	7.7	æ	8 0	8.2	80	~ ~	· c	0) (× 0	6.1	5 0	7.6					PH	7.4					- 1									
FSN SDTH	319 D15	320 D30	321 D45	322 D60	323 075	324 D90	325 D120	326 0150	327 0400	00100 100	328 0210	329 0240	330 D270	331 D300					FSN SDTH	2 015					670 6									
L SN	82644	82645	82646	82647	82648	82649	82550	82651	82652	2020	02033	0,2004	82655	82656		MINE V	MAT RC3		NS T	23	82328	82329	82330	82334	87337	20000	02333	02334	82335	82336	82337	82338	82339	000

CL

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

MINE V MAT RC3 SITE 3														
NS 7	FSN SDTH	HH H	PHC	_	¥	SAR	NA	¥	CA	MG	504	CARB	SND	SI
1 (*	!	1 .	7.3	55.2	3.05	2.7		. 48	28.50	0	-		53	28
) C			7.4		ω.			. 70			7		48	28
) C			7.2		0	0		.35			্ ঘ		40	33
) C			7.5		Ξ.			. 59			64.81	2.00	32	40
) (T)			7.8		_	6		. 42			œ		28	39
ואו			8 -		0	2		. 10		06.	7		30	41
(7)			80		ı.	_		51		. 33	Ö		27	4 1
) (T.			8.2		Τ.	-		00	. 70	. 12			44	31
ויי) ו			8.3		Τ.	о О		00	.40	.08			51	23
) C			8		7	7		. 07	. 30	90.			53	23
) C			0.8		9.	ნ		. 16	.80	. 32			23	46
) (T.			0.		7	6		18	. 80	.33			80	54
82352	27 D300	8.2	8		œ	7		. 23	1, 10	.37			56	43
MAT RC3														
r SN	FSN SDTH	H H	PHC	PSAT	EC	SAR	Ϋ́	¥	CA	MG	504	CARB	SND	SI
1 0	1	1 .		. n	. 2			41.	3.10	66 .		ß	59	27
10				7	Τ.	4		. 55		-	6	Τ.	2.1	47
, 0				7	∞,	_		. 34			7	9	27	46
10				4	r.			. 32			S	7	23	47
10				ιO	J.	_ .		. 36			9	ß	21	48
10				ιΩ	6	کا		. 44			c	9	30	41
ıc		•		ιo.	80	თ		. 37			Ö	9	21	47
C				2	0	80		. 43			'n	ß	30	43
C			•	Ċ	4	9		. 44			თ	N	26	64 6
C				2	2	ω		. 58			m	r.	10	56
10	38 D240	7.7	7.7	157.5	5.45	27.2	73.40	. 54		3.48	67.13	1.52	9 !	53
C		•			9	ю С		. 40			0	9	12	ا ت ا
82365	40 D300			Ċ	σ.	0		.47			S	ហ	16	51

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

>	RC3	5
MINE	MAT	SITE

CL	10	32	31	32	34	35	34	33	27	32	26	24	27		CL	13	2.1	36	39	35	35	36	31
51	24	42	46	47	46	53	59	52	44	50	34	43	49		51	22	31	46	50	49	48	51	61
SND	99	56	23	21	20	12	7	15	29	18	40	33	24		SND	65	48	18	-	16	17	13	c o
CARB	65.										3, 12				CARB	1, 18	94					2.10	
804	3.79														504							61.75	
MG	1.50			09		1.64			35	.39	. 23	.25	. 25		MG							2.59	
CA	4 . 10								06	00 -	. 70	09	. 50		CA							8.40	
¥	8	54	.33	. 20	. 47	. 41	. 67	. 45	. 13	. 16	80.	08			¥	5.1	.68	. 53	.64	.61	91.	. 58	. 49
AN .	06.6														NA							73.90	
SAR	5.9	24.4	29.9	34.3	24 . 1	28.6	22.2	26.1	30.7	31.7	30.2	29.8	30.1		SAR							31.5	
EC	1.18										1.50		٠		EC			•				5.50	•
PSAT	50.0	182.0	193.3	200.0	176.7	172.7	169.3	162.7	172.7	162.0	133.3	145.3	146.7		PSAT	52.0	73.3	150.0	149.3	133.3	133.3	38.0	133.3
PHC	7.1	6.7	8	8 . 1	9.7	7.9	7.6	7.9	8 .0	8. 1	8	0. 80	.		PHC							7.7	
HH	7.3														HH !							7.7	
FSN SDTH	41 015										51 0240				FSN SDTH	54 D15		56 D45				60 D120	
NS 7	82366	82367	85368	82369	82370	82371	82372	82373	82374	82375	82376	82377	82378	MINE V MAT RC3 SITE 6	LSN	82379	82380	82381	82382	82383	82384	82385	82386

CL 21 21 33 31 30 33 35 35 32 28

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

1 (1	39 40 20 47 23 46 27 43 17 50 14 51 16 56	1 1	63 23 24 46 49 49 49 49 49 49 49 49 49 49 49 49 49
CARB	1.51 2.43 2.69 3.94 2.60 2.03 3.19	CARB	1.51 2.27 2.27 1.76 1.34 1.34 1.22 1.22 1.57
S04	27 69 12 44 37 94 37 94 43 31 24 00 96 63 93 50	\$04	48.94 51.69 48.88 25.25 25.25 65.25 65.25 4.69 4.69 6.00
M	1.23 1.99 1.99 2.31 5.35 6.35 6.35	WG	8 12 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CA	3.10 4.60 1.00 5.20 5.70 1.70 18.40	C.A.	22.10 5.90 5.30 1.40 1.40 1.70 1.60 50 50 1.60 1.80
¥		Y	26 13 14 14 14 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17
Z A	10.30 34.40 21.90 45.60 51.60 35.30 92.90	V .	34.00 62.40 60.00 36.20 38.00 80.60 19.30 11.70 11.50 20.90
SAR	7.0 19.1 26.3 23.9 25.8 31.5 24.3 26.6	SAR	31.0 32.0 32.0 38.4 39.6 39.9 30.3 30.3 22.3 22.3 22.3 22.3
EC	1.05 2.82 1.65 3.60 4.05 2.72 6.90 6.70	EC	3.80 4.45 2.68 5.40 2.52 1.62 1.00 1.05 1.05
PSAT		PSAT	46.7 160.0 168.7 200.0 208.0 193.3 236.7 280.0 285.3 266.7 200.0
H Q	7 7 7 8 8 8 7 7 7 7 7 8 8 8 7 7 7 7 9 9 7 7 9 9 9 9	PHC	4 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1	8.0 8.0 7.9 7.9 8.3 6.8	표	7. C C C C C C C C C C C C C C C C C C C
	62 D15 63 D30 64 D45 65 D60 66 D75 67 D90 68 D120	FSN SDTH	70 015 71 030 72 045 73 060 74 075 75 090 76 0120 77 0150 77 0150 78 0180 79 0210 80 0240 81 0270
MINE V MAT RC3 SITE 7	82387 82388 82388 82390 82390 82391 82393 82393	MINE V MAT RC3 SITE 8 LSN	82395 82396 82396 82393 82399 82401 82402 82403 82403 82404 82404 82404

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

MINE V MAT RC3 SITE 9

	33 33 33 33 33 33 33 33 33	ö	28 28 29 34 30 30 31 31
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	SI	36 35 55 57 51 61 61 46 27 27 27
į	60 27 27 27 28 28 28 29 26 26 26	SND	24 13 14 15 16 16 17 17 17 17 17 17
	74 1 49 1 49 1 84 1 84 1 82 2 09 2 09 1 31 1 57 1 00 N	CARB	. 67 1 00 1 00 33 59 ND 76 17 2 15 2 15 1 43
200	23.75 22.19 32.19 23.13 26.56 31.56 83.75 50.31 47.81 50.63 21.56 93.75	804	23.75 11.88 67.50 81.25 101.25 100.00 52.81 29.06 8.13 95.00
Ŭ X	1.33 46 88 77 62 3.25 1.32 1.32 1.27 1.27 1.27	MG	1.77 1.77 2.96 3.95 7.48 7.48 1.69 1.73 6.7 8.63 9.46
CA	4. 10 2. 40 2. 40 2. 40 1. 50 1. 50 1. 50 4. 50 4. 50 4. 10 1. 20 2. 1. 80 5. 20	CA	9. 70 9. 70 9. 80 16. 80 16. 30 1. 80 1. 60 1. 60 19. 50 20. 00
¥	29 32 32 32 32 34 44 44 48 56 57	Y	39 64 64 73 90 88 34 34 72 72
N	31.30 30.70 41.50 33.50 34.80 39.30 87.00 57.40 55.70 56.50 64.30	NA	32.40 20.20 71.30 86.10 95.70 94.80 59.10 38.00 16.50 85.20 93.00
SAR	19.0 31.8 32.4 33.8 33.7 33.7 34.5 34.5 35.0	SAR	18.5 27.9 28.3 32.8 32.8 33.8 15.5 22.7 22.7 24.5
	2 . 75 . 2 . 3 . 40 . 3 . 40 . 3 . 40 . 3 . 40 . 3 . 25 . 50 . 4 . 30 . 4 . 50 . 50 . 50 . 50 . 50 . 50 . 50	EC	2.75 1.70 5.70 6.70 7.50 7.40 9.10 1.38 7.00 7.65
PSAT	66.7 230.0 200.0 220.0 220.0 160.0 200.0 200.0 246.7 246.7	PSAT	74.0 233.3 176.7 133.3 140.0 201.3 200.0 196.7 133.3
PHC	C C C C C C C C C C C C C C C C C C C	PHC	7.2 88.3 7.6 88.0 7.6 7.6
HHA	8	PHH	7 8 8 7 7 7 8 8 8 7 7 7 8 8 8 7 7 7 7 8 8 8 7 7 7 7 9 9 9 9
FSN SDTH	83 D15 84 D30 85 D45 86 D60 87 D75 88 D120 90 D150 91 D180 92 D210 93 D240 94 D270 95 D300	5	108 D15 109 D30 110 D45 111 D50 112 D75 113 D90 114 D120 115 D150 116 D180 118 D240 119 D300
LSN	82408 82409 82410 82411 82412 82414 82415 82416 82417 82417 82419 82419 82419 82419 82420 MINE V MAT RC3	LSN	82433 82435 82435 82435 82437 82438 82440 82441 82442 82442

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

>	RC3	14
-	MAT	-

CL		26	27	24	30	28	24	26	31	38	30	32	24		CL	19	23	30	33	33	29	27	29	32
SI	31	36	39	36	38	40	20	32	40	37	48	46	33		SI	35	34	32	30	46	38	38	42	39
SND	58	38	34	40	32	32	56	42	29	25	22	22	43		SND	46	43	38	37	21	33	35	29	29
CARB	.25	2.81	2.81	1.08	1.74	1.58	1.74	2.49	1.16	3.07	3.90	2.16	5.66		CARB	Q	. 57	1.96	1.11	11	1.02	. 84	. 85	.67
804	1.13	77.50	106.25	87.50	21.88	12.31	18.13	53.44	39.38	22.19	67.50	57.50	102.50		504	49.38	115.00	46.25	9.44	17.19	42.50	5.38	9.94	12.50
W.	. 94	11.43	13.16	6.25	. 27	-	. 23	3.25	1.64	. 55	4.69	3.78	11.51		MG		9.95		80.	. 21	1.17	80	60.	19
CA	1.90			15.50				5.20							CA		23.50		. 40	. 50	3.90	. 40	. 50	.80
¥	1.12	. 48	.51	69	44	. 28	. 28	.64	09	. 44	1.04	.94	1.17		¥	.39	06	. 46	- -	. 20	. 39	-	. 16	.21
AN				73.90											NA		94.80							
SAR	3.1	11.1	18.0	22.4	34.9	27.2	33.0	25.4	29.3	32.0	21.9	22.6	18.5		SAR	11.8	23.2							
EC	. 32			6.10											EC	3.65	7.20							
PSAT	58.7	0.09	78.0	80.0	179.0	170.0	190.0	130.0	165.0	170.0	100.0	110.7	0.09		PSAT	66.7	109.3	217.3	335.0	255.0	164.0	260.0	260.0	225.0
PHC	5.7	7.5	7.8	7.8	8	8.2	8.3	8	8 0	დ ფ	8	0.8	7.8		PHC		6.7							
H	0.9			9.7											PHH	6.7	8 9		•		•	•		
FSN SDTH	142 D15			145 D60				149 D150				153 D270			FSN SDTH	231 D15	232 D30						238 D180	
L SN	82467	82468	82469	82470	82471	82472	82473	82474	82475	82476	82477	82478	82479	MINE V MAT RC3 SITE 30	L SN	82556	82557	82228	82228	82560	82561	82562	82563	82564

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

>	RC3	39
MINE	MAT	SITE

CL	- 61	5 7		2 5	2 :	71	2 (07	Q X	28	6	2			CL		2 (50	30	2	S	22	אַ בּי	2 2	2 2	2 2
18	19	0.0	2 2 2	, ,	- (0 6	7 5	ۍ د د	Q X	42	27	2			SI		2 6	5.4	4	2	QN	67	5 2	2 2	2 2	2 2
SND	62	99	62	309	o a	0 0	0 4	7 1	2 Z	30	54	2			SND		2 1	26	56	2	Q	-	Ž	2 2	2 2	2 0
CARB	- Q	Q	S	2	2 2	2 2	2 2	2 2	2	2	2	Q			CARB	5	2	2 !	Q Z	2	Q	Q	Š	2	2	2
S04			25.63									QN			804	CN CN		# C		2	9	19.06		2	2	2
MG			8.39								. 72	Q			W C	ON ON	-	- ·	25.	O N	Q	. 30	2	S	S	2
CA			13.80									Q Q			CA	ON ON		0 -		2	Q	1.25	QN	2	Q	Q
¥	. 40	. 54	.47	. 59	. 56	47		77	- C	ָ הַ נ	٠ ئ	Q			¥	QN	2.1		N C	2	2	. 23	Q	<u>Q</u>	QN	Q
NA .			10.20									Q			NA	UN ON						26.70	Q	Q	QN	Q
SAR	1.5	Э. .	Э. Т	2.0	2.9	6.3	0	217	· σ) U	0	2			SAR	Q	0	21.0	2	2 :	QN .	30.3	2	2	2	Q
EC	1, 15		2.15								•	Q Z			EC	Q.		3 20		2 :		2.15	2	Q	Q	Q
PSAT	47.3	48.0	51.3	52.6	48.0	59.9	84.7	112.7	9.4	110	0	<u>Q</u>			PSAT	2	65.2	127 5		2 2	Q .	164.9	2	Q.	2	Q
PHC	7.7	7.7	7.6	7.5	7.7	7.6	7.9	- 8	C) (r) (ю ж			PHC	8.2	7.3	0.8	7 9		7.0	8.2	æ 	0. 8	7.8	2
PHH	8.3														HH !	8.6	8.7	8.2	4		ه د ه	8	8.5	8 4	8.7	Q
FSN SDTH	425 D15						431 D120								FSN SDTH	437 D15									446 D210	
L SN	821101	821102	821103	821104	821105	821106	821107	821108	821109	821110	0 0 0 0	821112	MAT RC3		LSN	821113									821122	

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

>	RC3	7
-	MAT	-

CL	14	20	20	28	30	Q	26	<u>Q</u>	28	<u>Q</u>	24	29	28			CL	QN.	20	9	Q	Q	56	Q	<u>Q</u>	<u>Q</u>	Q	Q	Q	Q
IS	18	21	56	40	46	Q	38	Q	42	Q	38	40	40			SI	Q	29	Q	Q	Q	54	Q	Q Q	Ç	Q	Q	Q	Q
SND	68	59	54	32	24	Q	36	Q N	30	<u>Q</u>	38	31	32			SND	Q	51	Q N	Q N	Q	20	Q	Q	2	Q	2	Q	Q
CARB	Q	Q	Q	Q	Q	Q	<u>Q</u>	Q	Q	Q	Q	Q	2			CARB	Q.	Q	Q	Q	Q N	Q	Q	Q	Q	Q	<u>Q</u>	Q	Q N
504	52.81											48.75				504										13.44			
MG	10, 77	4	. 48	7	2.18	9	С	Φ,	18	97	0	2.75	G			MG			19, 74				. 32	.34	. 25	.33	.38	.39	. 28
CA	24.30				6.20				.50			8.30				CA			23.80				. 78	. 68	99	.91	1.20	69	. 54
X :	. 33	09.	. 24	38	. 55	8 1	09	.47	. 15	.34	.64	.53	. 43			¥	.64	. 64	.86	.83	1, 15	81	.27	. 23	. 24	. 29	. 32	. 23	.23
NA	23.00															۷ Z										23.70			
SAR	5.5															SAR										30.1			
EC	3.60											-				EC										1.82			1.10
PSAT	50.0															PSAT										125.0			
PHC	9.7															PHC	7.4									8.4			
PHH	8.4															H H	٠.					٠	٠			9.1			
FSN SDTH	448 D15											459 D270				FSN SDTH			463 D45							471 D240	472 0270	3	***
L SN	821124	21	21	21	21	2 1	2	2 1	21	2	2	821135	2	MINE V	SITE 42	LSN	821	2	3	2	21	2	2	821145	2	21	2	821149	2 1

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

SN SDTH PHH PHC 55 D15 6.6 6.6 56 D30 7.2 7.1 59 D75 7.8 7.7 60 D30 7.8 7.7 61 D120 7.6 7.8 61 D120 7.6 7.8 62 D150 7.9 7.7 63 D180 8.3 8.2 64 D210 8.8 8.6 65 D240 8.7 8.4 66 D270 8.9 8.7												
015 016 017 017 017 017 017 017 017 017	1	EC		AN	¥ ; c	CA	MG	504	CARB	SNU	IS	CL
030 7.2 7 00 00 00 00 00 00 00 00 00 00 00 00 0	90	0 0					•	D (0.7.	9 1	Q !	9 :
D45 7.6 7 D60 7.8 7 D15 7.8 7 D120 7.6 7 D150 7.9 7 D180 8.3 8 D210 8.8 8 D240 8.7 8 D270 8.8 8	34	.85			1.85			3.63	.33	7.4	15	-
D60 7.8 7 D75 7.8 7 D90 7.8 7 D120 7.6 7 D150 7.9 7 D180 8.3 8 D210 8.8 8 D240 8.7 8 D270 8.9 8 D300 8.7 8	33	. 68						3.09	. 25	83	7	9
D75 7.8 7 D90 7.8 7 D120 7.6 7 D150 7.9 7 D150 7.9 7 D210 8.3 8 D210 8.8 8 D240 8.7 8 D270 8.9 8 D300 8.7 8	36	1.15			. 72			9.25	.84	7.8	6	13
D90 7.8 7 D120 7.6 7 D150 7.9 7 D180 8.3 8 D210 8.8 8 D240 8.7 8 D270 8.9 8	7 46.7	1.40	4.7	9.10	.37	4.60	2.84	12.13	.84	74	10	16
D120 7.6 7 D150 7.9 7 D180 8.3 8 D210 8.8 8 D240 8.7 8 D270 8.9 8	43	1.45			. 48			11.63	2.02	73	-	16
0150 7.9 7 0180 8.3 8 0210 8.8 8 0240 8.7 8 0270 8.9 8	44	1.40			.38			9.94		70	15	15
D180 8.3 8 D210 8.8 8 D240 8.7 8 D270 8.9 8	38	1.60	0		. 29			0	. 50	72	12	16
D210 8.8 8 D240 8.7 8 D270 8.9 8 D300 8.7 8	146	2.25	ß		.31		. 26	20.31	. 59	37	36	27
D240 8.7 8 D270 8.9 8 D300 8.7 8	250	1.00			. 23	. 40	00.	2.44		6	55	36
D270 8.9 8 D300 8.7 8	225	1 22	4		2.1	30	.07	4.06	3.86	15	52	33
D300 8.7 8	300	. 78	œ		14	. 20	00	1.59		35	32	33
	240	. 82	6		=	70	.05	1.41	. 50	45	28	27
SN SDTH PHH PHC	C PSAT	EC	SAR	₹ Z	¥	CA	W	804	CARB	SND	18	CL
D30 6.2 5	.9 52.0	.35				(·	.58	1.56	. 25	72	16	12
045 7.5 7	50		3.6		.64	ω		45.00	4.37	68	4	48
9 8'9 090	48		5.7		. 53	٠ ٦		51.25	. 67	65	22	13
D75 7.4 7	40		6.4		. 77			90.65	1.01	68	15	11
7 7.7 7	59		8.5		. 65	٠ ت		71.25	4.03	47	29	24
173 D120 7.6 7.1	6 39.3	5.50	11.1	51.30	. 55	25.00	18.09	90.00	. 59	80	0	9
D150 8.1 8	133		24.8	•	. 67			55.94	4.28	37	34	59
D180 8.6 8	200		31.6		18	. 50	.08	90'8	.92	43	3.1	56

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

>	RC4	17
MINE	MAT	SITE

D15 G-S G-S <th>FSN SDTH FIRTH FIRE FIRE PART FSA 1</th> <th></th> <th></th> <th></th> <th>2</th> <th>4</th> <th></th> <th>0 4 0</th> <th>V.</th> <th>7</th> <th>Č</th> <th><u>ئ</u></th> <th>504</th> <th>CARR</th> <th>QNS</th> <th>IS</th> <th>CL</th>	FSN SDTH FIRTH FIRE FIRE PART FSA 1				2	4		0 4 0	V.	7	Č	<u>ئ</u>	504	CARR	QNS	IS	CL
176 D15 6.5 6.5 6.5 5.3 1.55 3.9 9.10 7.3 7.90 2.92 15.00 3.4 57 28 178 D65 7.8 7.4 5.07 4.45 0.12 6.26 0.60 2.3 30 15.5 0.2 2.02 56 2.3 178 D65 7.8 7.8 7.6 6.20 14.4 64.20 66 2.3 30 15.87 96 2.5 2.27 62 19 180 D95 7.7 7.5 5.27 4.35 5.8	176 175 6 5 6 5 5 5 5 3 3 1 5 5 3 9 9 10 1 7 3 7 90 2 9 2 15 0 0 3 4 5 7 28	NS.	FSN SDIH	I	7 H	PSAI	י י י י י	3AK	4	2	- 1	- 1) (1	
17	17 1545 71 71 75 50 7 4 45 10 7 11 10 11 12 65 50 2 20 56 23 178	-		9		53.3	1.55			. 73					27	28	15
178 Dec 7.8 7.7 54.0 6.30 14.2 62. 60 60 23.30 15.87 96.25 2.27 62 19 189 Dec 7.8 7.8 46.0 5.25 10.3 14.4 64.30 66. 23.30 16.87 96.25 2.27 62 21 180 Dec 7.5 7.5 52.7 4.30 5.8 24.30 66. 23.50 12.17 63.75 2.35 56 23 181 D120 7.5 7.5 52.7 4.30 5.8 24.30 66. 23.50 12.17 63.75 2.35 56 23 182 D150 7.5 7.5 7.5 52.7 4.30 7.5 25.40 7.5	FSN SDTH PHH PHC PSAT EQ 17 54.0 6.30 14.2 62.60 60 23.30 15.87 96.25 2.27 62 19 180 195 7.7 8.4 6.0 6.20 14.4 64.30 66.23 20.10 16.45 98.75 2.10 61 22 180 190 7.5 7.5 7.5 7.5 7.5 7.5 3.9 7.5 2.10 61 22 19 61 22 19 61 22 19 61 22 19 61 23 37.7 25.40 92 21 70 70 2.10 3.10 80 31.0 98 70 11 20 20 20 2.10 3.10 80 31.0 9.80 31.0 30 1.1 80 31.0 30 1.1 80 31.0 30 1.1 80 31.0 30 31.0 30 30 <td></td> <td></td> <td>7</td> <td></td> <td>50.7</td> <td></td> <td></td> <td></td> <td>.51</td> <td></td> <td></td> <td></td> <td></td> <td>56</td> <td>23</td> <td>21</td>			7		50.7				.51					56	23	21
179 175 178	179 175	4 6		7		54.0				09					62	19	19
180 190 7.7 7.8 46 6 5 5 10.3 45 20 69 24 10 14 72 77 50 3 19 61 21 181 10120 7.5 7.5 52.7 4.30 5.8 24.30 60 23 50 12 17 63 75 2.35 5.9 5.3 182 10120 7.5 7.8 1100 0 2.35 37.7 25 40 22 2.80 11 20 00 2.77 23 43 184 1010 8.4 8.3 2.13 3 1.00 31.0 9.80 .00 .20 .00 1.75 2.10 14 55 185 10240 8.8 8.5 265.3 1.00 31.0 9.80 .00 .20 .00 .20 .20 .20 185 10240 8.8 8.5 265.3 1.00 31.0 9.80 .00 .20 .20 .20 .20 185 10240 8.8 8.5 265.3 1.00 31.0 9.80 .20 .20 .20 .20 .20 185 10240 8.8 8.5 265.3 1.00 31.0 9.80 .20 .20 .20 .20 .20 185 10240 8.8 8.5 265.3 1.00 31.0 9.80 .20 .20 .20 .20 .20 186 1015 7.6 7.4 44.0 2.80 5.6 8.90 .15 3.60 1.50 9.75 1.01 5.4 .20 187 1030 7.4 7.4 44.0 2.80 5.4 16.30 6.3 13.50 9.75 1.01 5.4 .20 188 1045 7.2 7.3 43.3 2.35 41 11.70 9.1 11.0 .20 9.2 .20 9.2 9.2 7.4 11.0 189 1050 8.5 8.3 2.00 0 1.80 2.2 0 9.2 0 0 0 0 0 0 190 1075 7.8 7.7 56.7 5.4 11.5 0 0 0 0 0 0 0 0 0	Heat Dig	3 5		, ,	•	50.05				09					61	22	17
Hard D120 7 5 7 5 5 5 7 4 30 5 8 24 30 60 23 5 5 13 5 5 5 5 5 5 5 5 5	Hart D120 7 5 7 5 5 5 7 4 30 5 8 24 30 60 23 5 5 5 5 5 5 5 5 5	יו סכ		. 7		46.0				69					61	2.1	18
FSN SDTH PHH PHC PSAT EC SAR NA K CA MG S 13 97 50 2 94 38 34 43 18 18 18 18 18 18 18 1	FSN SDTH PHH PHC PSAT EC SAR NA K CARB SO S 13 97 50 2 94 38 34 183 D180 8.3 8 2 190.0 2.35 37.7 25.40 22 80 11 20 00 2 77 23 43 184 D210 8.8 8 2 2190.0 2.35 31.0 9.80 10 2.0 2.18 12 33 43 185 D240 8.8 8.5 265.3 1.00 31.0 9.80 10 2.0 2.0 2.18 12 5.1 5.1 12 5.1 12 5.1 12 5.1 12 5.1 12 5.1 12 5.1 12 5.1 12 5.1 12 5.1 12 5.1 12 5.1 12 5.1 12 5.1 12 5.1 18 5.1 5.1 12 5.1 12 5.1 12 5.1 1	n u		, ,		52.7				09					56	23	21
FSN SDTH PHC PSAT EC SAR NA K CA MG SO SO SO SO SO SO SO S	FSN SDTH PHH PHC PSAT EC SAR NA K CA MG SO4 CARB SND ST ST ST ST ST ST ST S	2 6		7		110 0				16					38	34	28
FSN SDTH PHH PHC PSAT EC SAR NA K CA MG SO4 CARB SND SI 188 D45 D40 8.8 8.5 265.3 1.00 31.0 9.80 00 20 0 11.75 2 10 14 55 18 D240 8.8 8.5 265.3 1.00 31.0 9.80 00 20 20 0 2 63 2 18 12 51 E 5	184 D210 8 4 8 3 213.3 1.80 37.0 18.50 13 50 10 11 55 10 14 55 18 12 51	à		- 00		190.0				. 22	.80	-			23	43	34
FSN SDTH PHH PHC PSAT EC SAR NA K CA MG SO4 CARB SND SI 185 D240 8.8 8.5 265.3 1.00 31.0 9.80 00 20 20 2 63 2.18 12 51 51 51 51 51 51 51 51 51 51 51 51 51	FSN SDTH PHH PHC PSAT EC SAR NA K CA MG SO4 CARB SND SI 18 12 51 18 12 51 18 12 51 18 12 51 18 18 50 240 8 8 8 8 5 265 3 1 0 0 31 0 9 8 0 0 0 2 0 3 2 18 12 51 18 18 18 18 18 18 18 18 18 18 18 18 18	0 0		ο α		213.3				. 13	.50	00			1	52	31
FSN SDTH PHH PHC PSAT EC SAR NA K CA MG SO4 CARB SND SI 186 D15 7.6 7.4 46.0 1.30 5.6 8 90 .15 360 1.50 9.75 1.01 54 29 187 D30 7.4 7.4 46.0 1.30 5.6 8 90 .15 360 1.50 9.75 1.01 54 29 188 D45 7.2 7.3 43.3 2.35 4.1 11.70 91 11.00 5.43 27.19 67 74 11 189 D60 7.7 7.7 40.0 4.10 5.8 24.30 63 22.50 12.09 62.50 92 74 11 189 D75 7.8 7.7 56.7 5.40 11.8 47.00 69 22.00 962 82.50 1.51 64 17 190 D75 7.8 7.7 56.0 1.80 31.2 16.50 0.4 50 0.6 12.50 3.02 4 55 191 D90 8.5 8.2 185.0 1.25 25.7 11.50 0.0 40 0.0 5.81 3.32 10 55 192 D120 8.6 8.3 180.0 1.20 25.3 11.30 0.0 40 0.0 5.88 3.32 10 55 195 D210 8.6 8.3 180.0 1.20 25.3 11.30 0.0 40 0.0 5.88 3.32 10 55 195 D210 8.6 8.3 180.0 1.20 25.3 11.30 0.0 40 0.0 5.88 3.32 10 55 195 D210 8.6 8.3 180.0 1.20 25.3 11.30 0.0 40 0.0 5.88 1.0 55 195 D210 8.6 8.3 180.0 1.20 25.3 11.30 0.0 40 0.0 5.88 1.0 55 195 D210 8.6 8.3 180.0 1.20 25.3 11.30 0.0 40 0.0 5.88 1.0 55	FSN SDTH PHH PHC PSAT EC SAR NA K CA MG SO4 CARB SND SI 186 D15 7.6 7.4 46.0 1.30 5.6 8.90 15 3.60 1.50 9.75 1.01 54 29 188 D45 7.2 7.3 43.3 2.35 4.1 11.70 91 11.00 5.43 27.19 67 74 14 189 D60 7.7 7.7 7.7 40.0 4.10 5.8 24.30 63 22.50 12.09 62.50 9.2 74 11 189 D60 7.7 7.7 7.7 56.7 5.40 11.8 47.00 69 22.00 9.62 82.50 1.51 64 17 190 D75 7.8 7.7 7.7 1.55 7.7 12.40 00 4.0 00 7.19 3.28 4 55 191 D150 8.6 8.3 195.0 1.35 27.7 12.40 00 40 00 5.88 3.32 13 54 193 D150 8.6 8.2 185.0 1.25 25.7 11.50 00 40 00 5.88 3.32 10 55 194 D180 8.5 8.3 173.0 1.32 26.8 12.00 03 40 00 5.06 3.67 ND ND 195 D270 8.6 8.3 158.0 1.28 27.7 12.40 00 40 00 5.06 3.67 ND ND 196 D270 8.6 8.3 158.0 1.28 27.7 12.40 00 63 4.44 6 13 7 55 197 D270 8.6 8.3 158.0 1.28 27.7 12.40 00 63 4.44 6 13 7 55	0		00		265.3	1.00			00	. 20	00 .			12	51	37
FSN SDTH PHH PHC PSAT EC SAR NA K CA MG SO4 CARB SND S1 186 D15 7.6 7.4 46.0 1.30 5.6 8 90 15 3.60 1.50 9.75 1.01 54 29 187 D30 7.4 7.4 44.0 2.86 5.4 16.30 63 13.50 1.50 9.75 1.01 54 29 189 D60 7.7 7 7 40.0 4.10 5.8 24.30 63 22.50 12.09 62.50 9.62 9.7 74 11 189 D60 7.7 7 7 40.0 4.10 5.8 24.30 63 22.50 12.09 62.50 1.51 64 17 190 D75 7.8 7.7 56.7 5.40 11.8 47.00 69 22.00 9.62 82.50 1.51 64 17 191 D90 8.5 8.6 8.3 195.0 1.35 27.7 12.40 00 40 00 5 81 3.28 4 59 193 D150 8.6 8.2 185.0 1.25 25.7 11.50 00 40 00 5 88 3.32 10 55 194 D180 8.5 8.2 183.0 1.30 27.3 12.20 00 40 00 5 88 3.32 10 55 195 D210 8.6 8.3 173.0 1.32 25.3 11.30 00 40 00 5 88 3.32 10 55 195 D240 8.8 8 8.3 173.0 1.32 27.7 12.40 00 40 00 5 88 10 55 195 D240 8.8 8 8.3 173.0 1.32 25.3 11.30 00 40 00 46 3.5 88 10 55	FSN SDTH PHH PHC PSAT EC SAR NA K CA MG SD4 CARB SND S1 186 D15 7.6 7.4 46.0 1.30 5.6 8 90 .15 3.60 9.75 1.01 54 29 187 D30 7.4 7.4 44.0 2.80 5.4 16.30 63 13.50 9.75 1.01 54 14 188 D45 7.7 7.7 7.0 4.10 5.8 24.30 63 22.50 12.09 62.50 .92 74 11 189 D60 7.7 7.7 40.0 4.10 5.8 24.30 63 22.50 12.09 62.50 .92 74 11 190 D75 7.8 7.7 54.0 11.8 47.00 69 22.00 9.62 82.50 13.0 4 55 191 D90 8.5 8.3	_															
FSN SDTH PHC PSAT EC SAR NA K CA MG SD4 CARB SND SI 186 D15 7.6 7.4 46.0 1.30 5.6 8.90 15 3.60 1.50 9.75 1.01 54 29 14 14 18 D45 7.2 7.3 43.3 2.35 4.1 11.70 91 11.00 5.43 27.19 67 74 11 14 11.70 11.00 5.43 27.00 9.62 82.50 12.09 62.50 9.27 74 11 11 11 11 11 11 11 11 11 11 11 11 11	FSN SDTH PHH PHC PSAT EC SAR NA K CA MG SD4 CARB SND SI 186 D15 7.6 7.4 7.4 6.30 6.3 15 3.60 1.50 9.75 1.01 5.4 29 187 D30 7.4 7.4 7.4 16.30 6.3 13.50 4.93 35.00 7.4 14	C4															
FSN SDTH PHH PHC PSAT EC SAR NA K CA MG SO4 CARB SND SI 186 D15 7.6 7.4 46.0 1.30 5.6 8.90 15 3.60 1.50 9.75 1.01 54 29 187 D30 7.4 7.4 44.0 2.80 5.4 16.30 63 13.50 4.93 35.00 92 74 16 14 14	FSN SDTH PHH PHC PSAT EC SAR NA K CA MG SD4 CARB SND SI 186 D15 7.6 7.4 46.0 1.30 5.6 8.90 15 3.60 1.50 9.75 1.01 54 29 187 D30 7.4 7.4 44.0 2.80 5.4 16.30 63 13.50 4.93 35.00 92 7.4 14 188 D45 7.7 7.7 40.0 4.10 5.8 22.50 12.09 62.50 9.27 7.4 11 190 D75 7.8 7.7 40.0 4.10 5.8 22.50 69 22.50 12.09 62.50 1.51 64 17 190 D75 7.8 8.3 195.0 1.35 27.7 12.40 00 40 00 1.51 3.28 4 55 192 D120 8.6	8															
186 D15 7.6 7.4 46.0 1.30 5.6 8.90 15 3.60 1.50 9.75 1.01 54 29 187 D30 7.4 7.4 44.0 2.80 5.4 16.30 63 13.50 4.93 35.00 92 74 14 188 D45 7.2 7.3 43.3 2.35 4.1 11.70 91 11.00 5.43 27.19 67 74 14 180 D45 7.7 40.0 4.10 5.8 24.30 63 22.50 12.09 62.50 9.5 74 11 190 D75 7.7 40.0 4.10 5.8 24.30 69 22.00 9.62 82.50 15 64 17 191 D90 8.5 8.3 195.0 1.80 31.2 16.50 0.4 0.0 17.9 0.0 17.9 0.0 17.9 0.0 17.9 0.	186 D15 7.6 7.4 46.0 1.30 5.6 8.90 15 3.60 1.50 9.75 1.01 54 29 187 D30 7.4 4.4 0.2 80 5.4 16.30 63 13.50 4.93 35.00 92 74 14 188 D45 7.2 7.3 43.3 2.35 4.1 11.70 91 11.00 5.43 27.19 67 74 14 189 D45 7.7 7.7 40.0 4.10 5.8 24.30 63 22.50 12.09 62.50 9.62 96.2 74 11 190 D75 7.8 7.7 40.00 41.00 69 22.00 9.62 82.50 15.1 14 11 191 D30 8.5 8.3 195.0 1.80 31.2 16.50 0.4 50 0.6 12.50 3.2 74 15 4 55	NS			PHC	PSAT	EC	SAR	A A	¥	CA	MG	504	CARB	SND	SI	CL
187 D30 7.4 7.4 44.0 2.80 5.4 16.30 63 13 50 4.93 35.00 92 74 14 14 18 D30 7.4 7.4 44.0 2.80 5.4 16.30 63 22.50 12.09 62.50 9.67 74 11 11 11 11 11 11 11 11 11 11 11 11 11	187 D30 7.4 4.4 0 2.80 5.4 16.30 63 13.50 4.93 35.00 92 74 14 188 D45 7.2 7.3 43.3 2.35 4.1 11.70 91 11.00 5.43 27.19 67 74 11 189 D60 7.7 7.7 40.0 4.10 5.8 24.30 63 22.50 12.09 62.50 74 11 190 D75 7.8 7.7 56.7 5.40 11.8 47.00 69 22.00 9.62 82.50 1.51 64 17 191 D90 8.5 8.3 200.00 1.80 31.2 16.50 0.0 4.0 0.0 4.55 4.55 192 1150 8.6 8.2 185.0 1.25 25.7 11.50 0.0 4.0 0.0 5.88 3.32 10 55 195 12.20	1 +		1	7 4	46.0	1 .		1 .	. 15				10.1	54	29	17
188 D45 7.2 7.3 43.3 2.35 4.1 11.70 91 11.00 5.43 27.19 .67 74 11 189 D60 7.7 7.7 40.0 4.10 5.8 24.30 .63 22.50 12.09 62.50 .92 74 11 190 D75 7.8 7.7 5.40 11.8 47.00 .69 22.00 9.62 82.50 1.51 64 17 191 D30 8.5 8.3 200.0 1.80 31.2 16.50 .04 .50 .06 12.50 3.28 4 55 192 D120 8.6 8.3 195.0 1.25 25.7 11.50 .00 .40 .00 5.88 3.32 10 55 194 D180 8.5 8.2 183.0 1.30 27.3 12.20 .00 .40 .00 5.88 3.32 10 55 195 D210 8.6 8.3 180.0 1.20 25.3 11.30 .00 .40 .00 5.06 3.67 ND 195 D210 8.6 8.3 180.0 1.32 26.8 <td< td=""><td>18 0.45 7.2 7.3 43.3 2.35 4.1 11.70 91 11.00 5.43 27.19 .67 74 11 189 0.60 7.7 7.7 40.0 4.10 5.8 24.30 .63 22.50 12.09 62.50 .92 74 11 190 0.75 7.8 7.7 5.40 11.8 47.00 .69 22.00 9.62 82.50 1.51 64 17 191 0.00 0.7 7.8 7.7 5.40 11.8 47.00 .69 22.00 9.62 82.50 1.51 64 17 191 0.00 8.6 8.3 195.0 1.80 31.2 16.50 .04 .00 7.19 3.28 4 55 192 0.120 8.6 8.2 185.0 1.25 25.7 11.50 .00 .40 .00 5.88 3.32 10 55 194 0.180 8.5 8.2 183.0 1.25 25.7 11.30 .00 .40 .00 5.08 3.32 10 55 195 0.20 1.20 2.5 3 11.30 .20 <</td><td>- c</td><td></td><td></td><td>7 4</td><td>0.07</td><td></td><td></td><td></td><td>. 63</td><td></td><td></td><td>J.</td><td>. 92</td><td>74</td><td>4</td><td>12</td></td<>	18 0.45 7.2 7.3 43.3 2.35 4.1 11.70 91 11.00 5.43 27.19 .67 74 11 189 0.60 7.7 7.7 40.0 4.10 5.8 24.30 .63 22.50 12.09 62.50 .92 74 11 190 0.75 7.8 7.7 5.40 11.8 47.00 .69 22.00 9.62 82.50 1.51 64 17 191 0.00 0.7 7.8 7.7 5.40 11.8 47.00 .69 22.00 9.62 82.50 1.51 64 17 191 0.00 8.6 8.3 195.0 1.80 31.2 16.50 .04 .00 7.19 3.28 4 55 192 0.120 8.6 8.2 185.0 1.25 25.7 11.50 .00 .40 .00 5.88 3.32 10 55 194 0.180 8.5 8.2 183.0 1.25 25.7 11.30 .00 .40 .00 5.08 3.32 10 55 195 0.20 1.20 2.5 3 11.30 .20 <	- c			7 4	0.07				. 63			J.	. 92	74	4	12
189 D60 7.7 7.7 40.0 4.10 5.8 24.30 .63 22.50 12.09 62.50 .92 74 11 190 D75 7.8 7.7 7.0 40.0 69 22.00 9.62 82.50 1.51 64 17 191 D90 8.5 8.3 200.0 1.80 31.2 16.50 .04 .50 .06 12.50 3.02 4 55 192 D120 8.6 8.3 195.0 1.25 27.7 12.40 .00 40 .00 7.19 3.28 4 59 193 D150 8.6 8.2 185.0 1.25 25.7 11.50 .00 .40 .00 5.88 3.32 10 55 194 D180 8.5 8.2 183.0 1.20 25.3 11.30 .00 .40 .00 5.88 3.32 10 55 195 D21	189 D60 7.7 7.7 40.0 4.10 5.8 24.30 63 22.50 12.09 62.50 .92 74 11 190 D75 7.8 7.7 40.0 41.0 5.8 24.30 63 22.50 12.50 3.02 4 55 191 D30 8.5 8.3 200.0 1.80 31.2 16.50 .04 .50 .06 12.50 3.02 4 55 192 D120 8.6 8.3 195.0 1.35 27.7 12.40 .00 40 .00 7 19 3.28 4 55 192 D120 8.6 8.2 185.0 1.25 25.7 11.50 .00 .40 .00 5.88 3.32 10 55 194 D180 8.5 8.2 183.0 1.20 25.3 11.30 .00 .40 .00 5.88 3.32 10 55 <tr< td=""><td>7 0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6</td><td></td><td></td><td>7</td><td>. 67</td><td>7.4</td><td>-</td><td>15</td></tr<>	7 0								6			7	. 67	7.4	-	15
190 D75 7.8 7.7 56.7 5.40 11.8 47.00 69 22.00 9.62 82.50 1.51 64 17 191 D90 8.5 8.3 200.0 1.80 31.2 16.50 .04 .50 .06 12.50 3.02 4 55 192 D120 8.6 8.3 195.0 1.25 27.7 12.40 .00 .40 .00 7.19 3.28 4 59 193 D150 8.6 8.2 185.0 1.25 25.7 11.50 .00 .40 .00 5.81 3.95 13 54 194 D180 8.5 8.2 183.0 1.30 27.3 12.20 .00 .40 .00 5.88 3.32 10 55 195 D210 8.6 8.3 180.0 1.20 25.3 11.30 .00 .40 .00 5.06 3.67 ND <t< td=""><td>190 D75 7.8 7.7 56.7 5.40 11.8 47.00 69 22.00 9.62 82.50 1.51 64 17 191 D90 8.5 8.3 200.0 1.80 31.2 16.50 04 .50 .06 12.50 3.02 4 55 192 D120 8.6 8.3 195.0 1.35 27.7 12.40 .00 40 .00 7 19 3.28 4 59 193 D150 8.6 8.2 185.0 1.25 25.7 11.50 .00 .40 .00 5.81 3.95 13 54 194 D180 8.5 8.2 183.0 1.30 27.3 12.20 .00 .40 .00 5.88 3.32 10 55 196 D240 8.6 8.3 180.0 1.22 25.3 11.30 .00 .40 .00 5.06 3.67 ND ND</td><td>2 7</td><td></td><td></td><td>7.7</td><td>40.0</td><td></td><td></td><td></td><td>.63</td><td></td><td></td><td>2</td><td>. 92</td><td>74</td><td>-</td><td>15</td></t<>	190 D75 7.8 7.7 56.7 5.40 11.8 47.00 69 22.00 9.62 82.50 1.51 64 17 191 D90 8.5 8.3 200.0 1.80 31.2 16.50 04 .50 .06 12.50 3.02 4 55 192 D120 8.6 8.3 195.0 1.35 27.7 12.40 .00 40 .00 7 19 3.28 4 59 193 D150 8.6 8.2 185.0 1.25 25.7 11.50 .00 .40 .00 5.81 3.95 13 54 194 D180 8.5 8.2 183.0 1.30 27.3 12.20 .00 .40 .00 5.88 3.32 10 55 196 D240 8.6 8.3 180.0 1.22 25.3 11.30 .00 .40 .00 5.06 3.67 ND ND	2 7			7.7	40.0				.63			2	. 92	74	-	15
191 D90 8.5 8.3 200.0 1.80 31.2 16.50 .04 .50 .06 12.50 3.02 4 55 192 D120 8.6 8.3 195.0 1.35 27.7 12.40 .00 .40 .00 7 19 3.28 4 59 192 D120 8.6 8.2 185.0 1.25 25.7 11.50 .00 .40 .00 5.81 3.95 13 54 194 D180 8.5 8.2 183.0 1.30 27.3 12.20 .00 .40 .00 5.88 3.32 10 55 195 D210 8.6 8.3 180.0 1.20 25.3 11.30 .00 .40 .00 5.06 .36 .00 .40 .00 .40 .00 .46 .3 .7 .55 195 D240 .00 .40 .00 .40 .00 .46	191 D90 8.5 8.3 200.0 1.80 31.2 16.50 .04 .50 .06 12.50 3.02 4 55 192 D120 8.6 8.3 195.0 1.35 27.7 12.40 .00 .40 .00 7.19 3.28 4 59 192 D120 8.6 8.2 185.0 1.25 25.7 11.50 .00 .40 .00 5.81 3.95 13 54 194 D180 8.5 8.2 183.0 1.30 27.3 12.20 .00 .40 .00 5.88 3.32 10 55 195 D210 8.6 8.3 180.0 1.20 25.3 11.30 .00 .40 .00 5.06 3.67 ND ND 196 D240 8.8 8.3 173.0 1.28 27.77 12.40 .04 .40 .00 4.44 6.13 7 55	T.			7 7	56.7	•			69			7		64	17	19
192 D120 8.6 8.3 195.0 1.35 27.7 12.40 .00 .40 .00 7.19 3.28 4 59 192 D120 8.6 8.2 185.0 1.25 25.7 11.50 .00 .40 .00 5.81 3.95 13 54 194 D180 8.5 8.2 183.0 1.30 27.3 12.20 .00 .40 .00 5.88 3.32 10 55 195 D210 8.6 8.3 180.0 1.20 25.3 11.30 .00 .40 .00 5.06 3.67 ND ND 195 D210 8.6 8.3 173.0 1.32 26.8 12.00 .03 .40 .00 4.63 5.28 10 56	192 D120 8.6 8.3 195.0 1.35 27.7 12.40 .00 .40 .00 7.19 3.28 4 59 193 D150 8.6 8.2 185.0 1.25 25.7 11.50 .00 .40 .00 5.81 3.95 13 54 194 D180 8.5 8.2 183.0 1.20 27.3 12.20 .00 .40 .00 5.88 3.32 10 55 195 D210 8.6 8.3 180.0 1.20 25.3 11.30 .00 .40 .00 5.06 3.67 ND ND 196 D240 8.8 8.3 173.0 1.28 27.7 12.40 .04 .40 .00 4.44 6.13 7 55 197 D270 8.6 8.3 158.0 1.28 27.77 12.40 .04 .40 .00 4.44 6.13 7 56	2 4			α	0000				.04	. 50	90.	7		ব	52	4
193 D150 8.6 8.2 185.0 1.25 25.7 11.50 .00 .40 .00 5.81 3.95 13 54 194 D180 8.5 8.2 183.0 1.30 27.3 12.20 .00 .40 .00 5.88 3.32 10 55 195 D210 8.6 8.3 180.0 1.20 25.3 11.30 .00 .40 .00 5.06 3.67 ND ND 195 D210 8.8 8.3 173.0 1.32 26.8 12.00 .03 .40 .00 4.44 6.13 7 55 196 D240 8.8 8.3 173.0 1.28 27.7 12.40 .04 .40 .00 4.63 5.28 10 56	193 D150 8.6 8.2 185.0 1.25 25.7 11.50 .00 .40 .00 5.81 3.95 13 54 194 D180 8.5 8.2 183.0 1.30 27.3 12.20 .00 .40 .00 5.88 3.32 10 55 19 55 195 D2 10 8.6 8.3 180.0 1.20 25.3 11.30 .00 .40 .00 5.06 3.67 ND ND 195 D2 10 8.6 8.8 173.0 1.32 26.8 12.00 .03 .40 .00 4.44 6.13 7 55 197 D2 70 8.6 8.3 158.0 1.28 27.7 12.40 .04 .40 .00 4.63 5.28 10 56	0 1) c	195				00	. 40	00.			4	59	37
195 D180 8.5 8.2 183.0 1.30 27.3 12.20 .00 .40 .00 5.88 3.32 10 55 194 D180 8.5 8.3 180.0 1.20 25.3 11.30 .00 .40 .00 5.06 3.67 ND ND 195 D210 8.6 8.3 173.0 1.32 26.8 12.00 .03 .40 .00 4.44 6.13 7 55 196 D240 8.8 8.3 173.0 1.28 27.7 12.40 .04 .40 .00 4.63 5.28 10 56	194 D180 8.5 8.2 183.0 1.30 27.3 12.20 .00 .40 .00 5.88 3.32 10 55 194 D180 8.5 8.3 180.0 1.20 25.3 11.30 .00 .40 .00 5.06 3.67 ND ND 195 D210 8.6 8.3 173.0 1.32 26.8 12.00 .03 .40 .00 4.44 6 13 7 55 197 D270 8.6 8.3 158.0 1.28 27.7 12.40 .04 .40 .00 4.63 5.28 10 56	- 0) a	185				00	. 40	00.			13	54	33
195 D210 8.6 8.3 180.0 1.20 25.3 11.30 .00 .40 .00 5.06 3.67 ND ND 195 D240 8.8 8.3 173.0 1.32 26.8 12.00 .03 .40 .00 4.44 6.13 7 55 196 D240 8.8 8.3 173.0 1.38 27.7 12.40 .04 .40 .00 4.63 5.28 10 56	195 D210 8.6 8.3 180.0 1.20 25.3 11.30 .00 .40 .00 5.06 3.67 ND ND 195 D210 8.6 8.3 173.0 1.32 26.8 12.00 .03 .40 .00 4.44 6.13 7 55 197 D270 8.6 8.3 158.0 1.28 27.7 12.40 .04 .40 .00 4.63 5.28 10 56	0 0			. 00	183.0				00	. 40	00.			10	52	32
196 D240 8.8 8.3 173.0 1.32 26.8 12.00 .03 .40 .00 4.44 6.13 7 55	196 D240 8.8 8.3 173.0 1.32 26.8 12.00 .03 .40 .00 4.44 6.13 7 55 197 D270 8.6 8.3 158.0 1.28 27.7 12.40 .04 .40 .00 4.63 5.28 10 56				, cc	180.0				00	. 40	00			Q N	Q	2
107 107 107 107 107 107 107 104 10 00 106 10 56	197 D270 8.6 8.3 158.0 1.28 27.7 12.40 .04 .40 .00 4.63 5.28 10 56	, ,			α α	173.0				.03	01	00.			7	52	38
		- 0			α	0.87				0.4	. 40	00			10	56	34

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

MINE V MAT RC4 SITE 19

CL	13	96	25	26	53	50	26	26	3.0	20	25	9 0	3.0	7		CL	12		CL	13
SI	3.1	- C	32	33	30	32	5 6) E	42	32	46	· •	- 67)		SI	22		SI	25
SND	56	0 4	. 4 . 6	4 1	4	39	45	4 1	26	4.3	4	2.1	6)		SND	99		SND	62
CARB	.43		2.29										2.37			CARB	1.69		CARB	.76
504													11.25	1		504	27 81		S04	31.25
MG	1 -	(n)	21.79								2.71	. 21	00			MG	3.78		MG	6.00
CA			21.50									1.00	. 50			CA	10.30		CA	16.50
¥	1.04	. 59	7.8	.71	.47	.31	. 47	. 54	45	.65	. 50	. 16	.05			¥	. 28		¥	. 55
NA			72.20													A	17.40		NA	10.40
SAR	1.4	11.6	15.5	18.2	13.7	7.2	10.5	11.5	25.4	15.2	21.7	30.7	34.8			SAR	9.9		SAR	3.1
EC	1.25		7.30			'										EC	2.40		EC	2.35
PSAT	55.3	0.07	2 99	72.7	66.7	66.7	56.7	71.3	153.0		150.0					PSAT	48.0		PSAT	44.7
PHC	5.7	7.7	7.8	0. 80	7.7	7.3	7.7	7.7	%	7.9		8	8°.3			PHC	7.5		ЬНС	7.4
Ŧ	5.9	7.8	7.9	O :	7.7	7.3	7.7	7.7	8 0	8	8.2	8.3	8.5			H H	7.7		PH	7.4
FSN SDTH	198 D15		200 D45													FSN SDTH	211 D15		FSN SDTH	212 D15
L SN	82523	82524	82525	82526	82527	82528	82529	82530	82531	82532	82533	82534	82535		MINE V MAT RC4 SITE 20	LSN	82536	MINE V MAT RC4 SITE 21	NS T	82537

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

MINE V MAT RC4 SITE 22									:	•	2	0	0 8 8	C Z	15	CL
L SN	FSN SDTH		HH d	PHC	PSAT	EC	SAR	NA	¥ ;	CA		504	מצאט			
82538	213 D15)15	7.2	7.0	50.7	1.80	6.2	12.60	. 29	6.20	1.97	15.94	. 42	55	<u>.</u>	<u>-</u>
MINE V MAT RC4 SITE 23														9	•	ō
L SN	FSN SDTH	ЭТН	H H	PHC	PSAT	EC	SAR	AN	¥ ;	CA	WG	504	CARB	SNU	15	י ל ני
82539	214	D30	7.4	7.3	33.3	1.92	3.2	8 .90	. 17	11 50	3.74	23. 13	42	98	D	D
MINE V MAT RC4 SITE 24																
LSN	FSN SDTH	ртн	HH	PHC	PSAT	EC	SAR	NA	×	CA	MG	S04	CARB	SND	SI	CL
82540	215	D30	7.6	7.5	33.3	4.05	5.0	21.50	. 26	24.30	12.34	60.31	5	80	12	&
MINE V MAT RC4 SITE 25															,	ć
LSN	FSN SDTH	ртн	HH	PHC	PSAT	EC	SAR	A N	¥ ;	CA	MG	504	CARB	SND	18	CL
82541	216 D30	030	7.6	7.6	52.0	5.00	8.2	35.00	31	21.00	15.54	75.00	2.28	47	88	25
MINE V MAT RC4 SITE 26															;	ō
L SN	FSN SDTH)DTH	HH	PHC	PSAT	EC	SAR	A N	*	CA	MG	804	CARB	QNS	15	ן נו
82542	217 015	D15	6.8	6.4	40.0	1.00	8.4	7.90	90.	1.40	36	5.81	. 42	Q Z	o Z	Z

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

>	RC4	27
MINE	MAT	SITE

ō	15 15 31 31 29 27 26 25	.	ē	CL 10 35	.	į	CL 13 33
1	35 34 34 34 33 32	75	ċ	43	85	i	35 41
	5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	5		47	- n	9	52 26
CARB	93 1.44 51 85 1.02	2	ABR		† †	OADR	.50
504	22.50 102.50 7.63 1.41 1.03	000000000000000000000000000000000000000	504	3.94 62.50) - - -	504	5.06
W	9 5 5 4 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14		MG	1.27 2.88		9 W	1.58
CA	10.50 21.30 .80 .30 .30 .20		CA	3.50		CA	3.70
¥	. 95 1.04 . 39 . 27 . 22 . 21 . 26 . 19		¥	53		¥	. 34
N	16.70 73.00 17.40 10.20 9.10 6.90 17.20		Ą	5.40 55.70 18.50		N A	12.40
SAR	6.0 18.6 24.0 22.3 19.9 18.1 24.3		SAR	3.5 24.1 28.1		SAR	7.6
EC	2.20 6.60 1.55 90 90 75 1.15		EC	. 95 4.70 1.58		EC	1.55
PSAT	53.3 110.0 230.0 265.0 300.0 325.0 278.0		PSAT	48.7 150.0 245.0		PSAT	56.7
PHC	7 . 0 . 8 . 2 . 8 . 4 . 8 . 6 . 8 . 3 . 6 . 8 . 6 . 8 . 9 . 9		PHC	7.27.98.2		РНС	7.0
PHH	7 . 0 8 . 8 . 8 . 8 . 9 . 9 . 9 . 9 . 9 . 7 . 7 . 7 . 7 . 7		HH	7.5 8.0 8.5		PHH	7.0 8.3
FSN SDTH	218 D15 219 D30 220 D45 221 D60 222 D90 223 D120 224 D150 224 D150		FSN SDTH	226 D15 227 D30 228 D45		FSN SDTH	229 D15 230 D45
LSN	82543 82544 82545 82546 82547 82547 82549 82550	MINE V MAT RC4 SITE 28	LSN	82551 82552 82553	MINE V MAT RC4 SITE 29	L SN	82554 82555

CL CL

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

MINE V MAT RC4 SITE 33														
r S	N SD	H H H	Ĭ	PSAT	EC	SAR	A N	X	CA	W.C.	504	CARB	QNS	5.1
82590			9		. 65			.39					46	ব
82591		7				4		68	26.50	13,49		29	45	ë
82592		7				6		99				. 25	47	35
82593		7				ю		44					46	ję
82594		80				e O		. 53					42	.e
82595		7				რ		.64					50	5
82596	271 D120	8.3	- 0	205.0	1.95	38.5	23.70	. 20	09.	91 -	12.19	3.37	* +	4 -
82597		x 0						<u>0</u>	Oc.	-			-	÷
MINE V MAT RC4 SITE 34														
۲S	SDT	HH F	PHC	PSAT	U U	SAR	A	×	CA	M.G	504	CARB	SND	SI
i		7		73.3	٠.		22.20	97.	25.80			89	47	2
82599		7.7	7.7	66.7	6.00		58.30	.64	2	13.82	87.50		43	9
82600		7		66.7				. 65	რ				42	က
82601		7		53.3				09	੍ਹ ਹ				42	m
82602		7		53.3				. 50	œ				46	က
82603	278 090	7		72.0				. 7.1				2.55	44	က
82604		80		73.3				. 92	ю				44	က
82605		œ		220.0				30		44			19	ß
82606		80		250.0				. 13	. 40	.07			28	m
82607		®		300 0				80	30	90.			45	m
MINE V MAT RC5 SITE 1														
NS 7	FSN SDTH	H H	PHC	PSAT	EC	SAR	NA	¥	CA	MG	804	CARB	SND	S
82326	1 015	5 7.3	6.9	0.06	.35		1.20	00.	2.10	. 43	1.27	QN	66	

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

>	RC5	12
MINE	MAT	SITE

CL		7 6	י ל ס כ	2 6) II	n (0 0	86	35	33	31				C	1 (٧ (33	32	30	28	24	. 7		7 (1 (ກ່	87	30
SI	10	. 4	ט טיי	ים מים	ט ט ט	ָ פֿר נ	201	25	/ 4 /	52	33				SI		0 0	53	ى +	45	50	40	. r	טי	ם מ	0 0	5 C	, t	4 8
SND	98	8	. .	5 - 4	σ	n •	0 (2 9	0 1	15	30				SND		•	4	44	25	22	36	4	-	- α	0 0	2 7 6	7 0	7.7
CARB	42			99											CARB	25											20.00		
804				26.88											504	1											0 E		
MG	. 65	8.1	1.42	. 65	99	59.	. o	. 65	7.0	0 :	. 35				MG	57	σ. -	D (ภ ส.	-8	.85	.45	2.22	4.1	38	43	42	000	
CA				1.30	1.10	4 30	40) (C		2	40				CA	1.20	-	3 6			2.00	80	6.50	09	20	70	02	. נו	2
¥	.51	. 78	1.18	.87	.83	82	74	7.3	67) (69.				¥	. 78	63		0	. 85	.86	.67	1.18	.85	. 72	69	89	62	1 2
NA				38.00											NA												18.90)
SAR	6.5	30.0	37.3	38.5	36.6	35.5	31.0	34 1	32.4		78.1				SAR	8.9	20.0	2.80	. 0	37.6	33.2	26.2	28.7	33.1	32.1	31.5	25.3	73.5))
EC	. 95			2.68											EC	.65	1 18	6. 4	0 0	2.90	2.85	1.50	4 . 40	1.65	1.60	1.85	1.45	1 12	
PSAT	91.3	200.0	175.0	180.0	196.0	197.0	200.0	210.0	235.0	0.77	0.417				PSAT	100.0	245.0	218		0.581	1/8.0	184.0	160.0	200.0	215.0	252.0	205.0	237.0)
PHC	7.2	8 0	7.2	8.0	8.2	8.3	8.2	8	8		0 1				PHC	7.1	8.2	· α		ا ب ا -		- xo	6.7	დ	8.2	8.3	- 8	8.2	!
HH.	7.6	8 . 3	7.2	8.2	8.4	8.5	8.2	8.4	9 8	0	0				PHH	7.7	8 3	с С		0 (4.	6.	8.5	8.4	8 4.	8.3	8.5	
	120 D30														FSN SDTH	130 015													
LSN	82445	82446	82447	82448	82449	82450	82451	82452	82453	82454	7	MINE	MAT RC5	SITE 13	LSN	82455	82456	82457	071-0	02430	62409	02460	82461	82462	82463	82464	82465	82466	

CARB 2 - 35 2 - 35 2 - 35 2 - 35 3 - 35 4 - 53 3 - 45 2 - 74 2 - 74 2 - 74 125 NND ND ND 133 133 133 111 111 34 34 34 34 62 -622+ MG ---- 31 --- 3 CA ... 10 887 173 173 173 174 175 177 177 177 SAR 7.0 7.0 7.0 7.0 7.0 221.3 221.3 221.8 221.8 221.5 221.5 220.0 220.0 220.0 20.0 SAR 13.7 228.1 228.1 223.7 395.1 395.1 396.2 397.2 397.3 397.3 397.3 -8---8---0 & 0 0 0 0 0 0 0 0 0 0 000000000000 66. 2240. 2240. 2200. 2200. 225. 2000. 800. 00040044444 D15 D30 D45 D60 D75 D90 D120 D150 D150 D150 D150 D150 D150 FSN 2240 2242 2243 2244 2244 2246 2248 2248 2248 2248 2250 2250 MINE V MAT RC5 SITE 32 MINE V MAT RC5 SITE 31 82565 82566 82567 82563 82569 82570 82571 82572 82573 82573 LSN 82578 82579 82580 82581 82582 82582 82583 82585 82585 82586 82586 82586

ALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982

CL 337 73 333 ND 26 24 28

SI 444 20 20 ND 41 41

SND 19 19 19 ND 33 30

228222 504 97 97 98 98 98 93 94 81 63 13 13 13 69 MG --- 07 00 38 84 884 93 33 33 CA 54 30 85 85 70 50 50 55 25 9 13 8 21 32 04470004846 K --- 09 05 05 78 73 92 87 NA 72 13 13 61 61 09 22 22 22 - 2 0 0 t 1. 7. 7. 7. 333. 337. 336. 228. 222. 128. 128. 99. SAR 1 - 1 - 3 2 - 2 - 3 2 - 4 - 4 3 - 3 5 - 5 5 - 5 6 - 5 7 - 5 8 - 2.266 -64666674--PSAT 64.8 111.2 62.8 62.8 60.8 64.4 65.6 L & R L U B U O O U 4 O O PHC 55.2 56.8 56.8 66.5 PHH 5.1 5.2 7.0 7.0 5.9 6.0 6.6 D15 D30 D45 D60 D75 D90 1 - 2 6 4 5 9 7 8 8 10 0 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 L SN 8201 8202 8203 8204 8205 8205 8206 LSN MINE MAT SITE

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

Ξ	RC4	က
ZIE	MAT	SITE

CL	27	20	28	30	25	28	QN	21		CL	- Q	2	2	Q	33	29	Q	34	Q	Q	Q	43	4 1	2
SI	42	46	22	37	43	46	QN N	37		SI	- Q	Q	QN	QN	45	49	Q	50	Q	QN	QN	39	39	2
SND	31	34	50	33	32	26	Q	42		SND	2	QN	QN	Q	22	22	Q	16	Q	Q	Q	18	20	Q
CARB	QN	Q	Q	Q	Q	. 26	. 26	8.35		CARB	2	.86	.82	QN	17	Q	Q	Q	Q	Q	Q	60	Q	Q
804	.92	7.4	. 73				18.13			804	. 84			00.9										
MG	00.	00.	00.	. 16	2.01	. 79	.07	00		W G	1.50	. 58	. 74	. 25	00	. 21	1.09	00.	.32	1.54	00	00.	00	00
CA	00.	00	00	78			1.83			CA			2.33	1, 18	.93		5.55		2.60		. 48	61.	. 47	. 21
¥	00.	00.	0.01	90 .	. 27	.39	. 28	. 27		¥	. 12	.04	.05	.04	19	. 34	14.	19	. 27	.41	. 16	44.	. 17	Ξ.
NA V			•				23.04			N A		•		6.74		•								
SAR	Q.	2	Q	2.9	9.2	18.0	23.6	27.6		SAR	1.7	2.9	3.6	8.0	24.9	23.7	19.4	29.0	28.4	23.2	32.4	44.5	35.4	49.7
EC	.43	. 33	. 30	. 45	2.40	3.30	2.25	1.95		EC	.91	.62	. 75									1.25		1.55
PSAT	59.6	96.0	47.6	49.6	59.2	78.0	88.4	72.4		PSAT				102.0										
PHC	4.6						7.1			PHC	6.4			5.5										
HHd	5.2						7.5			HH	6.7			5 9										
FSN SDTH	21 D15	7	е	4	D.	ص	7	ഥ മ		FSN SDTH	29 D15			32 D60										42 D330
LSN	22	22	22	22	22	22	8227	22	INE H AT RC4 TE 4	LSN	8229	8230	8231	8232	8233	8234	8235	8236	8237	8238	8239	8240	8241	8242

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

I	RC4	ſ.
MINE	MAT	SITE

CL	N N N N N N N N N N N N N N N N N N N
SI	ND ND 311 42 43 44 44 45 45 45 45 45 45 45 45 45 45 45
SND	ND ND ND 35 29 36 36 30 24 24 24 29 19 ND ND ND ND ND ND ND ND ND ND ND ND ND
CARB	ND 1 034 1 034 1 034 1 034 1 037 1 0
804	1 25 1 25 1 8 1 8 19 37 81 12 13 40 00 30 94 43 75 43 13 34 06
MG	00 00 00 00 00 00 00
CA	2 73 2 73 2 73 5 80 1 80 1 80 1 180 2 70 2 70 2 65
¥	00 00 00 00 00 13 13 13 13 13 13 13 13 13 13 13 13 13
A A	15.87 16.89 17.89 12.39 10.22 10.22 10.22 10.22 10.22 10.22 10.22 10.32 10.33 10
SAR	26 3 4 4 5 6 6 9 7 7 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9
EC	3 3 5 8 8 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
PSAT	64.0 56.7 75.0 70.3 103.4 114.3 134.5 120.0 120.0 120.0 68.0 67.5
PHC	8 9 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
₩	5.7 6.8 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7
FSN SDTH	43 D15 44 D30 45 D45 46 D60 47 D75 48 D120 50 D150 51 D180 52 D210 53 D240 54 D270 55 D300
L SN	8243 8244 8245 8246 8247 8247 8250 8251 8251 8252 8253 8253 8253

338 337 337 445 445 337 337 337 337 337 337 - -00 ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN + 0 + 0 0 0 0 0 4 4 4 D 0 0 0 1 7 7 - 7 0 0 0 0 0 0 8 8 0 0 0 8 8 015 015 045 060 075 075 0150 0150 0210 0220 0330 0330 0330 557 558 660 661 664 667 667 770 770 771 8257 8258 8259 8259 8260 8261 8265 8265 8266 8266 8266 8267 8268 8268 8268 8269 8270 MINE MAT SITE

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

MINE H MAT RC4 SITE 7

5	25 25 26 27 28 23 23 34 36 36 36 36 36 36 37 37 38
15	6 4 6 4 4 4 4 6 6 6 4 4 6 6 6 4 4 6
SND	32 32 33 33 34 35 35 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37
CARB	N N N N N N N N N N N N N N N N N N N
. 504	6 .88 55 .00 55 .00 58 .44 54 .69 56 .88 51 .69 52 .00 52 .00 52 .00 52 .00 53 .11 55 .00 56 .88 68 .88 7 .69 7 .69
W	1.30 6.09 6.09 6.09 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7
CA	1.33 5.05 25.75 22.25.25 27.50 27.50 27.60 11.00 6.45 8.45 8.05 9.90 2.70
¥	21 21 64 64 65 63 63 63 63 63 63 63 63 63 64 64 64 64 64 64 64 65 64 65 64 64 64 64 64 64 64 64 64 64 64 64 64
A A	7 48 15 65 28 91 34 35 32 61 36 30 29 57 25 87 25 80 22 17 25 43 20 65 20 65 10 43
SAR	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
EC	3 . 95 4 . 35 4 . 35 5 . 35 6 . 35 7 . 55 8 . 55
PSAT	76.0 120.0 68.0 68.0 63.2 72.5 67.0 98.0 120.0 120.0 100.0 97.6 107.2 91.6
PHC	44 L 9 0 0 0 0 0 0 L L L L L L L L L L L L
HH	0.00
FSN SDTH	74 D15 75 D30 76 D45 77 D60 78 D75 79 D90 80 D120 81 D150 82 D180 83 D210 84 D240 85 D270 86 D300 87 D330
L SN	8274 8275 8276 8277 8279 8280 8281 8282 8283 8285 8286 8286 8286 8286 8286 8286

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

I	RC4	α
MINE	MAT	SITE

нн ы	PHC	PSAT	EC	SAR	AN	Υ .	CA	W.	804	CARB	SND	SI	CL
80		71.2	. 75	5.1	5.52	60	1.90	.46	4.00	Q	C	Q	Q
	-	58.0	1.30	8.7	10.00	19	2.25	.40	11.00	2	58	9	36
		67.5	2.68	12.4	23.26	.39	5.95	1, 13	25.94	Q	42	35	23
		0.91	4.35	13.4	39.78	69	15.25	2.47	51.25	. 13	26	42	32
	-	73.3	2.75	17.0	25.43	. 42	4.00	. 47	22.50	.04	30	42	28
	w	52.9	3.30	13.8	29.78	. 58	8.00	1.26	30.63	60	46	33	21
	7	0.4	3.38	14.8	30,65	. 47	7.50	1.13	31.25	. 17	33	38	59
	9	4.5	2.52	19.6	24.57	.34	2.85	.30	16.88	30	4.1	39	20
	39	9.0	2.20	28.1	21.30	.35	1.15	00	13.75	1.37	4 1	4 1	4
7.7 66	9	8.	2.25	28.6	22.61	.35	1.25	00	15.00	.38	37	42	21
	7	0.8	2.00	22.2	19.57	. 32	1.55	00	12.50	1.37	30	49	21
	7	0.1	2.82	15.4	26.96	. 46	5.45	.72	24.69	09	35	43	22
	7	0.0	2.50	21.4	25.22	.39	2.65	. 13	18.13	17	31	46	23
	ω	0.0	2.05	26.9	19.78	33	1.08	00	12.31	2.1	25	54	21
	Ψ	9.73	2.10	30.6	21.30	.33	. 97	00.	14.06	.21	50	31	6
	7	8.9	2.35	17.4	22.39	. 32	3.05	. 27	19.69	90	42	32	26

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

I	RC4	σ
MINE	MAT	SITE

	1
CL	0 N O O O O O O O O O O O O O O O O O O
18	ND A A A A A A A A A A A A A A A A A A A
SND	ND 13 13 33 34 41 19 19 19 13 27 27
CARB	N N N N N N N N N N N N N N N N N N N
S04	93 1,144 4,25 8,69 11,75 18,75 13,13 12,00 2,84 13,44 11,69
MG	000 000
CA	2 38 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05
¥	02 01 08 08 08 17 17 17 24 23 24 27 27 28
AN	1.48 1.83 1.96 1.83 1.96 2.65 2.00 2.15 2.00 2.02 2.02 2.03 2.03
SAR	25.1 25.1 25.1 25.1 25.1 25.1 30.3 25.1 27.1 27.1 27.1
EC	2 . 05 2 . 05 3 . 10 2 . 05 2 . 05 2 . 05 2 . 05
PSAT	65 3 4 65 3 3 65 65 8 8 65 8 65 8 8 65 8 8 65 8 8 65 8 8 65 8 8 65 8 8 65 8 8 65 8 8 65 8 8 65 8 8 65 8 8 65 8 8 65 8 8 65 8 8 65 8 8 65 8 8 65 8 8 65 8 8 65 8 65 8 8 65 8 8 65 8 8 65 8 8 65 8 8 65 8 65 8 8 65 8 65 8 8 65 8 65 8 8 65 8 8 65 8 8 65 8
PHC	8. 00 00 00 00 00 00 00 00 00 00 00 00 00
Ŧ	1.00
FSN SDTH	107 D15 108 D30 109 D45 110 D60 111 D75 112 D90 113 D120 114 D150 115 D180 116 D210 117 D240
LSN	82107 82108 82109 82110 82111 82113 82114 82115 82115 82115

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

CL	32 31 24 14 18 18 19 19 17
IS	36 37 32 32 35 35 36 36 36 36
SND	32 32 32 32 32 32 34 44 44 44
CARB	
504	26.56 30.38 36.19 41.38 26.63 41.38 33.88 40.50 23.75 15.13 13.56 18.00
MG	1.56 3.40 3.86 4.81 2.75 4.65 3.93 5.53 1.97 1.20 1.27 3.18
C	2. 60 6. 40 13. 60 21. 00 27. 90 16. 20 27. 40 21. 70 26. 70 14. 90 12. 00 7. 60 7. 60 10. 40
¥	13 15 31 64 64 42 55 59 59 97 91 98 98 98
Ą Z	13.26 228.70 24.40 14.60 10.00 13.40 12.60 14.30 17.00 17.00 17.00 17.00 17.00 17.00 17.00
SAR	04 8 4 8 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9
U U	1.38 2.90 3.85 3.10 3.10 3.25 2.40 3.25 2.88 2.85 1.85 1.85
1420	68.0 96.0 75.0 75.0 78.7 80.0 80.0 74.0 72.5 63.2 73.5 64.5 66.8 60.8
C I	0.77 0.77 0.70 0.77 0.77 0.77 0.77 0.77
3	4 4 7 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 8 7
	119 D15 120 D30 121 D45 122 D60 123 D75 124 D90 125 D120 127 D150 128 D210 129 D210 130 D240 131 D270 132 D300 133 D330
MINE H MAT RC4 SITE 10	82 119 82 120 82 120 82 122 82 123 82 124 82 125 82 127 82 129 82 131 82 133 82 133 82 133

CL 331 332 330 330 229 229 229 44 51 39 30 30 31 33 33 33 37 47 47 47 25 24 22 22 22 30 22 13 30 43 43 43 45 35 35 35 40 51 51 57 57 57 57 59 28 28 28 113 133 14 17 17 85 58 07 63 63 33 39 96 64 51 06 31 31 31 32 38 63 63 63 63 75 75 504 88 87 75 31 34 94 38 63 63 13 13 13 88 288 332 339 339 335 449 644 MG 000 000 36 52 50 50 000 000 MG 999 994 994 15 15 52 550 000 000 552 CA 80 80 80 80 10 10 70 70 70 70 70 73 - 123 000 000 000 000 300 300 400 100 100 13. 13. 3. 3. 3. 5. 13. 70. 18. 11. 12. 15. 17. 17. 18. 255. 255. 257. 257. 257. 0000070008240 PSAT 66.7 75.0 66.7 66.7 60.6 64.6 73.2 88.0 118.8 112.0 PSAT 65.0 63.0 80.0 80.0 79.3 74.7 73.5 68.0 75.5 68.8 PHC 6.8 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 PHH 5.1 5.1 6.9 7.2 7.3 7.3 7.3 7.3 7.3 7.0 8.0 8.0 9.6 D15 D15 D30 D45 D60 D75 D120 D120 D150 D120 D210 D210 D210 D210 FSN 135 136 137 138 139 140 141 141 145 145 145 FSN 148 149 150 151 151 153 154 155 156 156 LSN 82135 82136 82137 82137 82140 82141, 82142 82143 82144 82144 82145 H HC4

Z

SOILS SAMPLED

DATA FOR RECONSTRUCTED

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

MINE H MAT RC4 SITE 13															
LSN	FSN SDTH	HH	PHC	PSAT		SAR	NA	¥	CA	MG	504	CARB	SND	SI	CL
7	1	4	5 A	9 69	70	3.4	2.80	.05		. 26	1.80	Q	QN	Q	Q
N C								.05			ಶ	. 25	27	40	33
V						4		. 12		1.27	ω	. 55	31	38	31
82162			ο σ - υ	104.0		22.7		.32	5.80		43.00		32	39	29
v						0		. 17		. 65	9	3.26	30	37	33
N C			٠ <i>۲</i>			7		.21		1.21	_	91	24	43	33
7 (2 7			വ		.21		1.88	\sim	16	26	43	9
vc			7 7			18.8		117			-	1.36	24	43	33
V			7 4			19.1		.21			7	1.14	37	36	27
v						16.2		-			9	. 38	21	52	27
v			- 7			16.4		18		1.75	\circ	59	56	44	30
82170	171 0270	7 .8	7.6	100.4	4.15	18.1	42.80	49			œ	1.93	22	49	29
1															
MAT RC4															
															i
L SN	FSN SDTH	HHd	PHC	PSAT		SAR	AN	*	CA	MG	\$04	CARB	SND	15	CL
00170	!	7 6			-	7.1		48			2.9	. 84	27	39	34
4 6				84.7	7	ന		4.	16.60	5.59	0.7	1.64	32	36	32
82174	174 045			102.0	2	r)		. 50			7.4	181	8 0 !	59	23
				105.0	Ю.	œ		26		. 24	5	2	8 9	29	2,5
, ,				125.0	9	(7)		.30			7.8	1.1	22	57	17
, ,				100.0	σ.	w		. 62			ب	. 13	24	52	24
, ,				138.0	∞.	ਧ		. 25			ر. ع		40	æ :	7.7
, ,	, C			120.0	7	~		.31			ი ი	2.86	34	4 1	7.7
, ,	· C			75.0	r.	(1		.64			ထ တ	Q :	22	55	23
, ,				85.6	co.	u,	•	. 54			2.6	2	32	143	52
, ,	182 0270		5.0	76.8	4.55	27.0	53.60	. 50	5.90	1.96		Q	25	55	50
82183	183 0300	7.2	7.0	72.0	α.	w		. 43			4 ت	66	24	54	22

CL 13

S1 ----35 37

SND ----52 37

CL 18 18

S1 34 31

SND ----48 37

CL 12 32

S1 15 26

SND 73 42

CL 19 19

S I 44 40

SND 37 38

	MG S04	.00 1.29		MG S04	21 2.05		MG S04			MG S04	90
	CA	.30		CA	1.00		CA	1.90		CA	3.30
	¥	. 20		¥	.01		¥	. 04		¥	. 16
	N	1.40		N	4.40		N A	. 50		N	2.90
	SAR	3.6		SAR	5.7		SAR	3.5		SAR	2.0
	EC	. 42		EC	.55		EC	. 35 . 95		EC	. 74
	PSAT	43.6 55.6		PSAT	69.6 50.4		PSAT	54.8 63.2		PSAT	56.8
	PHC	5.0		PHC	4.9 5.4		PHC	5.5		PHC	6.3
	1	5.4		HHH !	5.5 5.6		HH	5.9		HH	6.7
	FSN SDTH	D15		FSN SDTH			SDTH	D15		FSN SDTH	D15
	FSN			FSN	186 187		FSN	194 195		FSN	196
MINE H MAT RC4 SITE 15	LSN	82184 82185	MINE H MAT RC4 SITE 16	LSN		MINE H MAT RC4 SITE 20	L SN	82194 82195	MINE H MAT RC4 SITE 21	LSN	82196

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982.

MINE H MAT RC4 SITE 22																
L SN	FSN SDTH	ртн	H	PHC	PSAT	EC	SAR	NA	¥	CA	MG	S04	CARB	SND	SI	CL
82 198 82 199 82 200	198 199 200	D15 D30 D60	5.2	4.6	67.2 64.4 66.4	. 32	31.0 ND 5.4	3.10 2.40 2.10	05	.00	000	.96 .88 2.26	<u>Q</u> <u>Q</u> <u>Q</u>	39 35	40 49 34	21 26 32
MINE H MAT RC4 SITE 23																
L SN	FSN	SDIH	Ħ	PHC	PSAT	EC	SAR	N A	¥	CA	MG	804	CARB	SND	SI	CL
82201 82202	201	D15	6.6	6.3	81.6	.35	16.3	1.20	. 46	6.80	2.26	1.89	<u>Q</u> <u>Q</u>	50	34 34	16 39
MINE H MAT RC4 SITE 25																
NS 7	FSN SDTH	зотн	PH	PHC	PSAT	EC	SAR	N A	Υ .	CA	MG	504	CARB	SND	IS	CL
82204	204	015	6.2	6.1	62.4	1.38	2.4	5.30	. 18	7.20	2.77	1,71	Q	43	31	26
MINE H MAT RC4 SITE 26																
L SN	FSN SDTH	зотн	HH	PHC	PSAT	EC	SAR	A	¥	CA	MG	504	CARB	SND	SI	CL
82205 82205 82206	205	D15	5.8	5.6	63.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.2	5.50	<u>+ + + + + + + + + + + + + + + + + + + </u>	4.40 5.40	1.70	2.59	ND 15.	39 ND	35 ND	26 ND

46 46 CL 15

S1

고 : 으

S1

4123

43 38

SI

CL 27 25

SND 29 36 SND SND 16 39 38 99 9 9 ND 5.1 2 7 1 38 9.1 . 65 \$0.4 15.94 υ **Σ** 00 MG . 800 Σ 88 1.89 Ω 30 88 CA 8= CA 9 CA50 .03 01 13 ¥ ¥ 07 0 0 1.70 9.00 Ϋ́ 1.20 Y : 12.40 Ϋ́ 25 5.4 일 SAR ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1982. SAR .43 .35 EC . 25 . 52 EC 1.60 38 0.4 4.4 56.0 **8** 9 PSAT 100.0 58 58 58 60. 4.7 5.0 5.0 PHC **6** PHC HI HE 5.0 5.4 PH PHH SDTH SDTH SDTH D 15 D30 SDTH 015 FSN SDTH 045 FSN FSN 190 191 FSN FSN 188 189 192 193 207 MINE H MAT RC5 SITE 18 82188 82189 MINE H MAT RC5 SITE 19 LSN LSN 82190 82191 MINE H MAT RC5 SITE 24 LSN 82192 82193 82203

5.2 Analytical Data For Reconstructed Soils Sampled in 1983.

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1983.

SI		4 (7 0	9 0	87	24	27	56	24	ć	מ מ	5	24	33	24	24	25	0 6	7	,	٠ ۲	33	59	26	, c	7 -	- 7	23	
SND	30	0 4	7 7	. 1	, ,	ָר יַ	25	51	51	ŗ	5	,	5	45	50	, rc	49	יו ל	2	Ċ	80	36	46	48	, r.		י ל ט	51	
CARB	3.4								2.59	,	- 4		•				2 59	•	•	,	<u> </u>							2.87	
804	0.50	0.0	25.70	12.30	02.00	9.30	0/.6	6.30	17.20	6	34 70		•				37,50											16.90	
WG			•	. 4 							12 50																	3.67	
CA	,			10 00							25.00																	13.25	
¥	. 24	. 24	40	3.4	E		000	. 32	. 42	27	37		- (. 19	. 42	. 53	44	.51		96	000	0.4	. 49	.51	. 47	51	.37	. 25	
AN	2.04			1.52							5.65												٠				2.39	1.17	
SAR	1.2	4.	<u>ნ</u>	9	9	7		- 1	ຫຼ	1.3	£.	σ	ا ن		9.	۲.	9.	7.		-	σ-) LI	n -	-	7	5	9.	4.	
EC	69.	1.27	2.12	1.24	1.02	1 06	000	0 .	1.54	. 95	2.72									.92							2.28		
PSAT	45.0									5	49.0	U	· (·	s.	n.	9	9		(a)	Œ				√.	ιΩ Ω	44.0	œ.	
PHC	7.2	7.0	7.5	9.7	9.7	7.6		. r	C . 7	7.2	7.1	7 4		n •	4.	7 . 4	7.5	7.4		7.3			•	•			7.5		
HH.	7.4	7.4	9.7	7.7	7.8	7.9	7 9	1 -	0.	7.5	7.3	7.5		י ט נ	ر ا ا	7.5	9.7	7.5		7.5	7.1	7 6		9 /	9.7	7.5	7.7	7.8	
SDTH	D 15	030	D45	090	D75	060	0120		000	D 15	030	045	090	2 6	0 / 0	080	D 120	D 150		D 15	D30	D45		090	D75	060	D120	D150	
MAT	RC3	RC3	RC3	RC3	RC3	RC3	RC3		נ נ	RC3	RC3	RC3	PC 3		א נ נ	KC3	RC3	RC3		RC3									
DIG	-	-	-	-	-	-	-	•	-	2	2	7	C	• (v (7	5	5		က	က	c		י כיי	က	ო	ო	က	

35 229 24 25 7 7 21 29 29 25

25 27 27 27 27 20 10 10

51 35 28 27 27 29 29 29 28 5ND 40 48 49 49 49 49 50 40 45 55 57 86 61 47 15 14 75 59 90 77 75 30 18 28 28 96 96 54 28 03 CARB 11 2. 19 2. 45 1. 86 00 2. 33 1. 78 - 26 - 2 - 2 50 90 90 90 90 30 30 50 80 60 90 40 40 10 10 30 30 30 30 80 2 45 15 15 57 56 56 3 47 47 47 53 53 53 13 25 92 00 17 17 50 50 04 00 25 75 75 50 75 92 92 MG 92 92 00 75 00 67 67 67 2 17 17 6 6 19 22 22 27 23 15 18 18 18 20 20 20 20 20 55 25 75 00 50 00 00 35 25 50 00 00 75 75 CA 115 15 25 00 00 00 00 25 75 25 23 23 23 28 28 28 29 29 4 23 31 32 32 27 29 29 4 29 29 29 28 28 28 28 35 51 60 68 59 59 58 58 37 54 67 73 72 67 63 96 04 17 78 78 90 90 87 83 28 26 96 00 78 78 78 78 NA 24 24 13 13 66 1 60 00 00 00 48 4 - 5 8 8 0 2 SAR .77..8 1.5 1.5 2.0 2.2 2.3 2.3 7 9 9 0 7 0 B S ------66 44 32 32 57 57 46 64 64 96 90 EC --- 68 94 27 34 48 66 66 65 73 68 25 25 98 29 41 42 72 78 3939 **4666666** 8 22 20 20 20 0000000 47 46 37 34 26 29 41 0-670404 PHC 6.1 7.2 7.4 7.5 7.5 7.5 9-64666 911111 64957757 911111 911111 RC3 σ DIG **00000000** 2 MINE

SAMPLED SOILS RECONSTRUCTED FOR DATA ANALYTICAL

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1983.

=	
Q.	
SA	
Ω	
_	
_	
\supset	
Λ	
•	
RECONSTRUCTED	
ב	
_	
-	
٠	
5	
2	
Ľ	
_	
_	
0	
7	
5	
•	
رَ	
Ū	
-	
Ľ	
•	
-	
, c	
_	
_	
1	
1	
Į.	
2	
-	
7	
:	
4	
_	
-	
1	
:	
į.	
•	

MINE D SITE 3

CL	28 25 25 26 23 23 23	28 23 24 24 24 24	23 23 23 24 25 24
SI	37 29 30 27 27 27 27	29 28 27 27 27 26	39 23 25 26 27 27
SND	35 46 45 47 49 49 50	31 4 4 9 4 4 9 5 1 5 0	35 45 5 7 7 8 7 8 8
CARB	2 20 2 87 2 87 2 62 2 67 1 64	26 2 57 2 57 2 57 2 57 2 57 57 57 57 57 57 50 57 50 50 50 50 50 50 50 50 50 50 50 50 50	22.22.22.22.31.22.22.31.22.22.31.22.22.22.22.22.22.22.22.22.22.22.22.22
S04	2 2 2 0 0 0 2 4 4 0 0 0 0 0 0 0 0 0 0 0	1.60 25.30 33.10 37.50 26.60 40.90	2.10 17.20 27.50 19.10 25.30 17.20 28.10
W	2.21 3.24 2.42 2.63 1.83 1.71	2.04 5.92 9.67 12.67 14.67 17.92 2.46	2 . 42 6 . 08 10 . 50 7 . 42 9 . 75 7 . 33 11 . 42
CA	4 25 6 35 6 50 4 80 5 05 3 75 2 65	4.05 12.75 19.00 24.75 28.00 19.75 27.50 4.85	4.55 14.25 20.00 13.75 18.25 13.00 21.00
X	26 33 33 33 25 25	25 41 56 65 67 65 65 25	31 60 60 43 51 54 56
AN	.83 1,13 1,13 .82 .77 .77 .59	74 1.48 2.57 2.48 2.22 1.78 1.83	. 85 1. 52 3. 13 2. 61 2. 74 2. 04 1. 65
SAR	n n n 4 4 4 4 0	4 r C 6 r r 4 r	r: r: 8 8 7 9 4 4
EC	. 65 . 90 . 91 . 71 . 74 . 55 . 50	. 58 1 . 47 2 . 06 2 . 50 2 . 82 2 . 15 2 . 85 . 70	. 67 1. 59 2. 15 1. 68 2. 09 1. 58 2. 23 2. 74
PSAT	43.0 42.0 42.0 42.0 42.5 41.0 33.5	45.0 40.0 40.0 40.0 40.0 43.5 60.5	45.5 40.5 37.0 44.0 41.5 41.5 43.5
	6.8 7.5 7.5 7.5 7.7 7.5	0.0000000000000000000000000000000000000	6.5 7 6 7 7 6 7 7 6 7 7 5 7 5
HH	7 7 7 7 7 8 8 7 7 7 9 8 9 7 7 7 9 9 9 9	7	6.0 7.7 7.7 6.7 7.7 6.7 7.6
SDTH	015 030 045 060 075 090 0120	D15 D30 D45 D60 D75 D90 D120	D15 D30 D45 D60 D75 D90 D120
MAT	RC3 RC3 RC3 RC3 RC3 RC3	RC3 RC3 RC3 RC3 RC3	RC3 RC3 RC3 RC3 RC3 RC3 RC3
016		00000000	

CL ND 224 226 226 223 224 224 222 338 ND 20 24 23 17 17 22 23 23 23

ND 24 28 27 20 20 25 25 26 26 ND 28 26 28 28 28 28 26 26 26 26 27 ND 27 27 27 27 27 27 25 25 25 38 ND 56 48 50 63 63 51 ND ND 49 47 47 50 51 51 24 ND 448 449 449 50 52 ND 15 24 05 90 30 79 21 ND 21 72 72 58 15 41 02 59 CARB ND 1.97 1.71 1.71 1.71 1.21 00000-0 ND 90 10 30 70 80 80 30 -122----ND 255 888 04 46 29 06 33 ND 75 175 175 16 92 92 884 04 MG ND 75 411 17 03 08 08 68 62262--ND 75 10 95 95 35 35 35 35 35 ND 50 90 20 35 35 10 CA ND ND 40 65 05 55 55 38 22 4 8 8 2 2 8 0 2 2 2 2 2 2 ND 76 55 46 64 49 43 38 ND 60 53 35 32 32 28 28 ND 411 441 440 440 440 338 338 ND 000 711 48 339 339 331 338 ND 48 38 39 34 40 40 55 55 SAR ND ND 33 33 54 Z 4 4 6 6 6 6 6 ND 23 23 90 90 68 98 72 72 36 49 EC ND ND 600 49 42 337 339 26 26 ND 339.5 40.0 339.5 28.5 42.5 37.5 38.0 ND 43.0 40.5 38.5 41.0 40.0 38.5 38.5 ND 43.0 41.0 42.5 37.0 37.5 34.5 ND 7.5 7.4 7.5 7.3 7.3 ND 7.5 O 0 0 4 4 0 4 0 ND 7.7 7.7 7.6 7.6 7.7 7.7 6.5 ~~~~~~ D15 D30 D45 D60 D75 D90 D120 RC3 ω 00000000 DIG MINE

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1983

ND 227 226 227 227 228 227 330 27 27 27 28 28 29 30 25 ND 51 48 52 52 52 48 48 ND 49 52 51 51 53 49 48 ND 52 52 52 51 52 44 47 ND 87 13 87 87 96 47 31 ND 00 83 00 00 22 1 23 47 ND 90 90 22 30 69 69 69 13 38 -0--000 255335 0004000 000 000 000 000 000 000 000 000 000 49 56 58 57 57 53 51 60 61 56 55 53 53 52 55 55 56 55 55 55 MG ND ND 75 92 000 883 58 75 75 ND 58 17 67 00 75 92 ND 42 50 50 67 17 00 33 18 22 22 25 25 22 23 19 24 25 23 23 23 20 22 24 26 26 27 23 CA ND 25 50 75 75 75 75 75 75 ND 50 50 25 75 75 25 50 50 ND 255 25 00 75 75 75 75 75 75 28 26 27 27 28 27 26 27 28 27 29 29 28 28 29 29 28 30 29 29 27 K ---- NO 711 669 772 771 771 772 772 771 ND 711 712 712 714 69 69 71 76 NA ND 222 22 96 09 30 70 74 ND 87 96 87 13 13 52 65 ND 87 87 61 87 04 83 10 16 21 21 21 18 16 17 16 20 20 19 16 15 16 10 17 17 18 19 17 ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1983 SAR ND 20.1 30.4 40.1 40.1 30.7 30.4 846072-8 7 E 4 E E E E EC ND 42 15 54 664 40 95 27 ND 58 06 66 66 59 31 23 ND 58 13 55 88 88 43 53 W 4 4 4 4 W 4 w 4 4 4 4 4 w 4 4 4 4 4 8000000000 800000000 42 41 40 39 39 39 39. 39. 37. 39. 40 41 37 41 41 43 ND 7.3 O c c 4 c c 4 c ND 7 . 4 . 7 . 4 . 7 . 5 . 7 . 5 . 7 . 5 . 7 . 5 . 7 . 5 . 7 . 5 . 7 . 5 . 7 . 5 . 7 LND 7 . 5 7 . 5 7 . 6 7 . 5 7 . 5 7 . 5 7 . 5 7 . 5 7 . 5 7 . 5 7 . 5 7 . 5 ND 7 . 2 7 . 5 7 . 5 7 . 5 7 . 5 7 . 5 7 . 5 7 . 5 7 . 5 7 . 5 7 . 5 7 . 5 7 . 5 7 . 5 D15 D30 D45 D60 D75 D90 D120 D15 D30 D45 D60 D75 D90 D120 RC3 DIG 00000000 m m m m m m m m mMINE

SI ND 27 23 29 28 29 29 29 29

 5ND 41 47 51 51 49 48 47 49 53 53 53 53 51 51 CARB -----30 2.64 2.08 2.08 2.05 2.05 2.47 87 99 45 45 88 82 24 94 81 20 59 71 71 30 90 80 00 50 50 30 30 30 30 80 80 80 80 63 63 63 63 63 3 3 5 5 6 7 7 7 6 6 6 7 50 50 33 92 92 25 50 83 67 67 58 58 58 58 MG ---50 33 33 08 08 33 75 22 22 22 22 22 22 3. 18. 23. 23. 21. 21. 24 23 23 23 25 25 25 25 25 75 75 75 25 25 25 25 25 75 29 26 26 26 26 28 28 26 27 25 25 25 25 23 92 77 77 77 73 X 45 73 78 71 71 71 63 74 74 78 73 72 74 09 57 57 04 00 52 04 91 48 78 78 52 NA 87 04 17 17 65 52 52 43 35 21 24 24 23 23 23 18 23 28 28 29 26 26 23 13 22 25 25 26 25 24 25 - 4 E 6 0 C C 8 SAR 1.3 1.3 2.8 2.8 5.3 5.3 5.3 5.1 5.1 + 6 B B B B B B B 86 03 33 33 84 86 55 02 EC 07 007 333 55 55 55 55 55 55 55 57 57 57 57 57 57 W 4 4 4 4 4 44 44 44 44 42 42 40 40 40 43 6 . 8 6 . 8 7 . 0 7 . 3 7 . 5 7 . 4 7 . 5 9 1 1 1 1 9 1 0 - 7 7 7 7 8 4 មិន ១៩ ១៩ ១៩ 9 2 2 2 2 9 9 9 9 RC3 σ MINE

LYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1983.

_	
E D	
Ĭ	F
Σ	S

č	23 23 25 25 25 26 30	25 25 25 26 26 25 25	22 22 22 22 24 24 24
10	30 30 30 30 30 30 30 30	32 32 32 34 31	33 3 3 3 3 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6
CN V	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	64 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 6 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6
CARB		1. 02 2. 45 2. 46 1. 84 2. 97 1. 53	. 00 2 . 40 1 . 40 1 . 15 1 . 06 1 . 27 1 . 61 1 . 53
804	3.60 45.30 39.70 41.90 14.40 28.10 28.10 36.90	2.10 42.80 35.60 11.40 26.30 31.30 19.70	3.20 42.20 21.60 11.40 18.80 7.70 57.50 58.80
MG	4 . 67 18 . 33 13 . 08 14 . 58 5 . 33 9 . 67 11 . 17	5.75 17.08 12.08 4.25 11.50 12.33 7.42	4 .83 15 .75 7 .42 4 .50 9 .58 3 .42 26 .67 21 .25
CA	9.75 32.25 29.00 29.75 12.50 20.00 20.00	10.75 32.75 26.00 9.35 19.75 23.25 14.25	9.15 30.25 16.50 10.00 16.25 6.25 27.25
¥	92 92 91 77 77 77 77 77 77 77 77 77 77 77 77 77	77. .81 .79 .59 .92 .85	68 68 62 62 90 73 73
N	1.33 3.83 1.33 1.61 1.61 1.39 1.39	1.04 3.00 1.85 81 2.30 1.65 1.13	.86 .85 .85 .91 1.63 7.35 6.35
SAR	υ α 4 α 4 4 4 4 4 1 4 1 1 1 1 1 1 1 1 1 1	40460466	6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
EC	2 . 74 2 . 74 2 . 74 2 . 78 2 . 19 2 . 11 2 . 56	1.71 3.19 2.51 1.16 22.13 2.38 1.67 3.30	1,45 2,94 1,76 1,21 1,83 3,55 3,35
PSAT	50.0 46.0 42.5 36.0 41.5 43.0	46.5 48.5 44.5 42.0 52.0 43.0 1.5	46.5 44.4 44.0 49.0 40.0 42.0 42.0
PHC	5.5 6.9 7.3 7.3 7.3	6.00 C C C C C C C C C C C C C C C C C C	5
PHH	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	5.7 6.7 7.3 6.1 6.8 7.3	5.9 7.3 7.2 7.2 7.2
- 1	RC3 D15 RC3 D30 RC3 D45 RC3 D60 RC3 D75 RC3 D90 RC3 D120 RC3 D120	RC3 D15 RC3 D30 RC3 D45 RC3 D60 RC3 D75 RC3 D120 RC3 D120	RC3 D15 RC3 D30 RC3 D45 RC3 D60 RC3 D75 RC3 D90 RC3 D120 RC3 D150
DIG		0000000	0000000

28 33 33 33 34 15 38 30 30 31 26 30 28 46 40 39 39 41 40 58 38 51 55 68 63 63 .06 .51 .72 .72 1.02 1.02 .80 --000 233 27 27 27 61 61 61 98 30 90 90 60 10 10 30 \$04 90 70 80 10 70 70 30 80 900 800 800 30 45 31 18 25 25 23 19 22 22 9 7 7 45 68 42 25 00 00 83 58 50 50 83 08 67 67 83 83 25 50 MG 04 08 42 75 75 08 92 25 -6.9 6.7 7.8 50 50 75 75 75 75 50 35 75 75 50 25 50 00 17 17 14 16 13 13 3 3 13 14 17 15 19 30 17 7 7 7 7 7 7 7 29 29 01 97 97 97 86 88 K 56 95 79 79 58 64 17 86 96 82 87 94 88 88 74 07 50 65 35 78 04 26 37 37 65 00 50 NA 83 11 84 84 75 75 33 62--2--6 6 6 6 7 7 4 4 -SAR 1.5 1.2 1.2 1.2 22 18 18 52 90 82 64 64 81 89 89 61 61 80 42 42 EC 94 01 01 82 93 93 93 94 94 94 .e. - e.e. 0 2 0 0 0 0 0 0 46 46 44 47 45 44 44 44 45 45 46 52 404--646 0 0 0 0 0 0 0 0 6764-407 PHC 5.3 6.7 7.4 7.1 7.1 7.2 6.6 6.6 5 1 1 1 1 5 5.6 6.4 6.9 7.0 7.0 7.0 5 1 1 1 2 2 RC3 σ 0 8 I

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 19:

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1983.

0	6
MINE	SITE

ō	25 25 25 25 25 26 25 25	23 23 25 26 26 26	24 26 26 24 26 27 26
17	35 35 35 31 31 41	33 33 33 33	38 34 33 32 32
S	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	38 8 6 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	86 00 00 00 00 00 00 00 00 00 00 00 00 00
CARB	157 1 57 1 53 1 23 1 80 1 85 1 93	1.07 1.07 1.50 1.54 1.41 1.83 1.83	04 1.36 1.41 1.45 1.32 1.45
504	4.60 53.40 55.00 47.50 36.90 44.70 42.20	9.20 41.90 45.30 40.60 44.60 52.50 47.50	5.10 44.40 44.40 40.30 45.60 44.70 48.10
Ð W	2 58 14 17 12 75 10 92 10 33 12 . 17 10 92	4.75 12.08 11.42 10.75 12.00 14.33	2.71 13.25 11.33 10.42 12.17 11.55
CA	5 00 32 50 31 00 25 75 19 00 26 00 28 00	9.10 29.00 28.75 27.50 26.25 28.00 27.50 24.75	5.20 28.75 28.00 26.25 30.00 28.50 28.50
¥	6 4 4 6 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6	.59 .64 .63 .62 .60	43 67 55 78 69 71 71 59
Z V	1.07 7.04 7.57 8.30 10.43 9.13 4.83	1.54 4.96 5.35 5.43 5.22 5.96 13.04	1.33 6.39 6.70 5.61 5.70 6.96 8.70
SAR	22.22.4	7.000000	7 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
FC	3.29 3.16 2.82 2.60 3.04 2.81	2000 2000 2000 2000 2000 3000 3000 3000	3.08 2.89 2.74 3.02 3.04 3.19
PSAT	466.0 442.5 42.5 42.5 43.5 642.5 65.0	2 8 4 4 4 4 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 8 4 4 8 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
PHC	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	0.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	5.9 6.9 7.3 7.5 7.5 7.5
PHH	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	6.1 6.8 7.3 7.5 7.5 7.5
SDTH	D15 D30 D45 D60 D75 D90 D120	D15 D30 D45 D60 D75 D90 D120	015 030 045 060 075 090 0120
	RC3 RC3 RC3 RC3 RC3 RC3 RC3	RC3 RC3 RC3 RC3 RC3 RC3 RC3	RC3 RC3 RC3 RC3 RC3 RC3 RC3 D
DIG		00000000	 ოოოოოოო

32 30 30 32 33 31

24 24 25 25 25 25 25

33 33 31 31 29 31 31 78 70 12 28 86 86 81 36 00 33 87 87 60 75 96 14 88 96 92 --00--0 80 40 50 50 50 20 30 30 30 30 30 30 45 62 66 70 66 63 60 60 67 63 66 66 38 54 67 67 65 65 92 75 75 83 58 50 33 83 50 58 25 25 58 92 MG ---- 000 667 442 588 3 75 92 92 17 17 18 19 19 17 18 3. 13. 19. 19. 19. 19. 5. 14 15 19 10 17 00 75 50 50 00 00 25 25 25 50 75 25 50 28 26 26 26 26 26 26 26 27 28 25 25 25 3 45 60 64 72 65 63 53 53 81 69 68 68 65 53 53 65 77 65 65 65 35 39 48 48 57 70 70 70 65 87 47 78 47 52 83 7. 20. 23. 24. 21. 22. 8 7 0 - 0 7 9 4 9 4 6 - 6 9 8 -666644 14 85 33 41 41 20 20 20 00 39 40 30 09 26 0 9 2 9 7 9 9 9 . 646000000 8 - 6 5 9 - 9 9 . 544766676 9 7 7 7 7 7 7 SDTH RC3 RC3 RC3 RC3 RC3 RC3 RC3 m m m m m m mDIG

RECONSTRUCTED SOILS SAMPLED IN 1983 ANALYTICAL DATA FOR

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1983.

MINE D SITE 11

	บ	2.1	-	16	24	9)	21	15		23	17
	SI	33) (78	33	34	(E E	28	ć	5	30
!	ONS	46	Ü	9 (43	50	,	0	27	7	† †	53
4	CAKB	=	23) (<u>\$</u>	90	-	-	. 21	-	2	. 17
0	100	1.90	C o) (d		1.20	1 70		1.20	1.30		1.60
ŭ X		2.00	1.96	2.17	: :	4.04	3.08		n -	2.13		2.67
Q V	1 1 1 1 1 1	3.85	5.25	4.30		8.55	6.15	7		4.20	Ĺ	6 . 25
¥	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 63	. 27	. 56	•	1.04	.63	22	! !	.83	ō	07.
N		. 75	1.30	99	,	<u>`</u>	.82	1		. 65	200)
SAR		4	7.	4.	u		4	9.		4	σ	
EC		99.	. 7.1	. 7.1	1 22		. 97	. 63	i	. 72	96	
PSAT	45 ዓ))	45.5	43.0	44.5	•	41.5	41.5	,	O	42.5	
PHC	7.7		8.9	5.6	6.1		5.7	8.8	ŭ	n	6.5	
HHd	5.		6.7	5.9	0.9		5.9	6.7	r.)	6.4	
MAT SDTH	015		D 15	D 15	D 15	1	015	015	7))	D 15	
			KC3	RC3	RC3	9	۳ ک	RC3	RC3		RC3	
DIG	-	(~	е	4	U	n	9	7		80	

ND 28 28 35 35 28 28 26 31 32

ND 443 460 36 35 40 43

S1 ND 31 34 36 36 36 38 36

NO 26 28 28 28 35 37 26 26

ND 36 42 41 41 42 42 38 38

38 30 31 31 31 36 36 40 29 29 29 39 39 25 25 ND 44 34 34 39 39 39 ND 444 57 69 35 35 35 03 ND 62 83 95 95 95 61 ND 233 249 471 455 884 897 992 ND 80 80 50 50 80 80 ND ND 550 880 500 000 500 67 93 125 142 127 103 98 81. 120. 126. 105. 100. 98. ND 08 67 08 08 50 50 17 ND 92 75 75 25 33 58 58 58 MG ND 42 17 17 17 17 08 50 27 46 67 77 77 67 69 37 63 66. 53. 49. ND 50 50 25 50 50 50 ND 00 00 50 50 75 50 CA ND 75 50 00 00 75 50 27 25 23 23 23 24 26 24 24 25 24 24 ND 62 68 73 77 78 76 69 ND 773 70 69 69 67 77 77 77 77 77 77 77 77 77 77 76 ND 711 671 684 668 663 653 ND 17 17 96 35 65 09 96 91 ND 09 26 74 48 91 13 NA ND ND 65 70 70 43 13 26 26 48 12 21 21 34 40 40 26 23 21 33 36 28 28 24 31 15 23 25 24 23 23 19 ND 2.3 3.7 5.1 5.4 5.4 4.4 ND 3.7 5.0 5.5 4.6 4.7 4.0 SAR ND ND 2.9 4.1 4.2 3.9 3.9 3.6 ND 01 80 01 12 60 55 52 ND 90 36 97 62 62 06 95 EC ND 26 29 68 68 65 37 37 58 527753 5 2 2 9 2 9 4 2 2 2 2 2 4 N 0 0 0 0 0 0 0 **2**0000000 ND 41.5 46.5 47.0 42.5 44.0 45.0 444 48 48 58 50 47 50. 49. 50. 44. 49. 50. ND 7.2 7.4 7.5 7.6 7.7 7.7 ND 6.6 7.6 7.7 7.7 7.3 7.4 ND 6.8 7.6 7.7 7.7 7.5 ND 7.1 ANALYTICAL DATA FOR RC3 RC3 RC3 RC3 RC3 RC3 RC3 MAT RC3 RC3 RC3 RC3 RC3 RC3 RC3 RC3 $\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma$ 00000000 16 MINE SITE

RECONSTRUCTED SOILS SAMPLED IN

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1983.

۵	6
Ä	4
-	$\overline{}$

	CL 21 13 15 15 15 23 23 25 25	25 20 20 22 25 24	26 23 23 22 22 27
	51 32 29 33 28 25 25 23 32 32	30 33 27 24 34 34	34 33 31 32 30 30 30
	SND 47 47 58 57 59 60 60 66 45	4 4 4 5 4 4 5 4 4 5 4 4 5 4 4 6 4 6 4 6	4 4 4 4 4 4 4 4 4 8 8 8 8 8 5 5 5
(CARB 1.82 1.82 1.96 2.22 1.70 1.87 2.47	2.39 2.39 2.39 2.51 3.40	2.25 2.21 2.21 2.21 2.21 2.21 2.55
Č	23.40 23.40 12.10 8.10 43.10 28.10 28.10 41.60	33.80 49.40 50.00 48.80 49.10 39.70 47.50	35 30 50 60 50 60 46 90 46 30 47 80 50 90
Z	1.03 7.17 3.96 2.79 11.17 8.17 10.92 8.25	6.83 14.00 11.58 10.92 11.25 13.25 9.00	8.42 14.83 12.08 11.00 11.50 11.50
CA	3.30 16.50 8.15 5.70 29.50 18.25 28.25 30.50	28 50 30 75 29 50 28 75 29 25 24 00 29 25 29 25	26.75 30.50 29.50 30.00 30.00 29.50
×	. 43 . 49 . 29 . 29 . 60 . 60 . 85	72 76 64 1.00 7.3 88 88	. 81 . 99 . 97 . 1 01 1 05 1 05 1 13
N	. 33 1. 13 1. 59 1. 98 2. 78 2. 78 1. 89	70 4 35 8 22 8 22 7 09 7 09 7 09	1.37 4.96 7.74 7.74 3.65 5.22 6.48
SAR	26.00		E 0 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
EC	2 53 2 53 2 55 2 55 2 55	2.21 2.86 2.93 2.93 2.50 2.00	2.25 2.93 2.96 2.73 2.73 2.83 2.96
PSAT	25.0 25.0 25.0 29.5 28.5 40.5	38.5 38.5 37.0 38.0 42.0 39.5 40.5	40.0 38.0 40.0 39.0 42.5 40.0 39.5
PHC	44666446	7	2.2.7.7.7.7.7.4.4.4.4.4.4.4.4.4.4.4.4.4.
HH4	7 7 7 9 8 8 7 7 7 9 9 9 9 9 9 9 9 9 9 9	2. 7. 7. 4 4 . 7. 5 . 7	7.3 7.5 7.5 7.5 7.6
SDTH	D15 D30 D45 D60 D75 D90 D120	D15 D30 D45 D60 D75 D90 D120	015 030 045 060 075 090 0120
MAT	RC2 RC2 RC2 RC2 RC2 RC2 RC2	RC2 RC2 RC2 RC2 RC2 RC2 RC2	RC2 RC2 RC2 RC2 RC2 RC2 RC2
DIG		_	

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1983.

5		19 ND 23 27 35	ND 266 333 266 266 266 266 266 266 266 266	18 19 23 27 25
į	21	33 32 33 35	ND 42 37 35 ND 32	34 46 40 31
Ġ	ONS	0 N N N N N N N N N N N N N N N N N N N	ND 40 37 32 ND 42 35	45 45 44 44 45
! !	CARB	32 38 32 1 2 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1	26 21 21 09 17 28 1 88	21 17 19 23
	504	1, 30 1, 30 1, 20 1, 20 2, 70	2,00 3,50 6,00 2,40 2,70 2,30	1.00 1.00 1.90 1.80 2.00
	MG	1. 19 . 67 1. 05 . 92 . 75	2.08 1.92 3.42 1.50 1.42 1.01	. 60 . 60 . 85 . 78 . 93
	CA	2.85 1.63 1.70 1.40 1.08	4 60 4 50 5 55 2 25 2 10 2 10 2 45	2.08 1.40 1.45 1.15
	X	54 06 11 25 28 38	1.03 .08 .10 .31 .36 .36	. 26 . 08 . 08 . 16
	AN	. 43 1. 15 . 45 85 1. 37 2. 11	. 59 . 54 . 71 . 70 . 2 . 57 3 . 22	. 38 . 33 . 25 . 64
	SAR	£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	23.7.7.
	EC	36 27 27 24 42	73 62 39 47 43	.34 .25 .25 .39
	PSAT	61.0 67.5 44.0 37.5 39.0	56.0 60.5 44.0 46.5 40.0 36.0	52.0 47.5 35.5 42.0 35.0
	PHC	6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7 4 4 6 6 6 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9	5.25 6.39 6.39
	PH	7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	55.05 5.05 5.06 5.07 7.77	5.4 6.0 6.0 7.3
	SDTH	015 030 045 060 075 090	D15 D30 D45 D60 D75 D90	D15 D30 D45 D60 D75
	MAT	RC9 RC9 RC9 RC9 RC9	RC9 RC9 RC9 RC9 RC9	R C 9 R C 9 R C 9 R C 9
MINE D SITE 14	016		0000000	н н н н н

38 42 42 57 57 51 56 56 35

SI ND 45 58 53 50 50 ND ND

25 25 7 7 19 19 19 38 40 19 8 2 5 4 1 3 4 8 4 4 9 E 8 06 06 09 11 13 26 39 38 44 44 50 50 13 38 \$024 60 20 80 10 80 80 40 50 90 90 50 50 80 80 80 30 50 40 40 50 50 10 10 10 12 12 12 14 17 17 8 3 3 5 13 37 MG ---- 25 50 50 38 233 75 75 67 60 00 17 25 88 88 94 94 17 00 60 56 35 00 67 67 50 11. 2. 4. 34. 9 - - 8 7 - 9 10 8 14 14 15 16 17 17 18 50 50 63 30 25 25 00 25 60 93 73 15 80 40 20. 12. 12. 13. 3. 22. 5. 16. 13. 14. 10. 5.75.55 85 77 46 17 17 29 72 86 59 67 12 25 25 40 59 59 æ 12 − 8 9 -NA 26 22 35 35 74 48 61 48 78 61 68 20 20 09 04 13 70 78 73 28 52 48 74 74 65 52 3 3 40 38 31 6.1 0.1 2.2 7.2 7.2 7.2 7.2 44-067-4 -69768 4 9 0 - 6 -12 98 93 51 51 53 87 07 46 60 77 77 54 58 72 13 13 55 55 94 87 45 93 38 000000000 > 0000000 0000000 - 64 44 45 45 45 45 45 45 64 49 47 58 49 45 50 41 41 50 60 61 57 **8799891998** 8 9 2 6 7 6 8 849-80-0 1 7 7 9 6 7 7 9 8 100011966 8700000 27765577 7 7 7 6 6 5 5 5 8888705 RC9 D 15 DIG

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1983

44 48 49 40 35 37 37 34

CL 222 23 334 34 25 26 26 26

SI 443 443 443 34 36 36 36

20 22 33 33 25 25 27 25 25

23 23 23 24 24 23 41 38 39 34 15 15 15 26 39 39 38 35 28 21 21 27 27 27 27 27 42 13 23 30 11 18 18 54 57 13 06 15 17 19 31 78 00 00 80 50 40 70 60 50 504 90 00 20 70 70 70 40 50 20 30 30 80 60 - 6 - 2 - - 2 - 2 22-2-42 37 75 45 74 03 95 53 63 42 13 07 58 60 MG 83 34 25 25 25 08 83 08 90 28 70 08 98 45 80 60 48 12 13 00 11 12 17 А 49 49 10 10 12 15 22 22 26 25 49 87 98 61 91 33 61 61 NA 73 98 30 13 78 91 43 10837 SAMPLED IN 1983 4 10 4 10 10 10 10 10 5 7 7 7 7 7 9 8 0 0 0 SAR 7 7 8 9 1 4 1 4 1 4 1 4 30 44 54 33 37 50 50 47 23 48 39 26 26 33 33 30 31 200022 500 S 0000000 47 44 45 45 41 37 39 40 36 47. 42. 49. 41. 45. 41. 48. 46. 42. 42. 41. 41. 88 88 7 7 7 7 7 5 7 7 PHC 4.8 4.7 6.1 7.3 7.9 7.9 8 - 9 - 9 4 9 9 4400777 4 4 5 9 9 7 7 7 6 + 6 5 5 8 6 + PHH 55.1 55.3 6.5 7.4 8.1 8.2 62840000 8777655 ANALYTICAL DATA FOR MAT RC9 RC9 RC9 RC9 RC9 RC9 RC9 RC9 σ 00000000 016

RECONSTRUCTED SOILS

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1983.

>	-
Z	_
Σ	S

	CL 23 23 25 25 24 24 22	20 21 24 24 39	18 24 25 20 28 39
ļ	51 37 28 26 28 26 27 27 29	37 25 24 25 25 26	38 30 27 24 19 27 27
į	5000 455 49 51 59 649 67	443 650 651 151 14	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
9	1.92 1.92 1.50 3.42 1.71 4.90 2.04	38 4 65 4 65 4 85 3 79 2 95 2 95	2.28 1.65 8.25 87 1.56 2.26 2.08
808	45.30 80.00 85.00 81.30 82.50 106.30 38.80	42.50 110.00 101.30 102.50 75.00 76.30 81.30	28.10 85.00 91.30 95.00 101.30 98.80 111.30
∑.	11.58 17.50 15.75 16.00 18.33 23.33 7.58	11.67 25.42 19.58 21.25 15.33 18.75 17.50	7.92 20.00 17.08 17.50 20.00 19.17 18.75
C A	26.75 27.00 21.50 26.50 28.00 23.50 12.50	24.50 24.25 24.50 24.50 24.50 26.50 25.00	14.50 23.50 24.25 21.75 22.75 25.50 73
¥		1.01 56 .46 .37 .24 .45	36 39 39 44 42 42 43 44 43 44 43 44 43 44 43 44 43 44 43 44 44
N	16.74 35.00 46.09 37.83 38.26 60.00 21.74 39.35	17.39 60.87 56.52 54.78 34.57 31.09 39.78	11.74 47.83 47.83 53.91 53.04 73.91
SAR	3.8 4.70 7.08 8.00 6.09 8.00	44.1 122.2 122.0 111.5 7 7.8 6.5 8.6 49.8	3.5 10.3 12.2 12.2 11.3 11.3 35.0
EC	3.41 4.91 5.16 6.64 5.00	3.44 6.13 6.15 6.25 4.68 4.57 5.04	2.37 5.57 5.91 6.31 6.03 7.34
PSAT	44.0 38.5 40.0 32.0 40.5 37.5	46.0 42.0 39.5 43.0 42.0 38.0 41.5	47.5 41.0 45.0 43.0 44.5 38.0 63.5
PHC	7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	6 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6.2 7.2 7.8 7.7 7.7 7.8 8.0
HH.	7.1 7.8 7.9 7.7 7.7 7.7	7 7 7 7 7 7 7 7 7 7 7 9 8 7 7 8 8 8 8 8	6.6 7.5 7.9 7.8 7.8 8.3
MAT SDTH	RC4 D15 RC4 D30 RC4 D45 RC4 D60 RC4 D90 RC4 D120 RC4 D150	RC4 D15 RC4 D30 RC4 D45 RC4 D60 RC4 D75 RC4 D90 RC4 D120	RC4 D15 RC4 D30 RC4 D45 RC4 D60 RC4 D75 RC4 D90 RC4 D120 RC4 D150
DIG		0000000	ппппппп п

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1983.

CL	14 18 16 16 33 34 36	15 22 25 25 16 26 40 37 37	16 18 30 34 28 31 38 38
IS	22 17 13 16 16 29 42	20 26 29 15 15 27 41	10 10 10 10 10 10 10 10 10 10 10 10 10 1
SND	64 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	65 46 69 53 22 20	66 8
CARB	2.55 2.55 1.91 8.30 2.98 3.40 2.03	1.61 2.50 2.54 2.37 2.37 2.07	23 33 34 25 33 34 35 35 35 35 35 35 35 35 35 35 35 35 35
804	73.80 65.00 95.00 95.00 73.80 106.30 73.80	72.50 110.00 70.00 53.80 32.80 88.80 90.00	68.80 87.50 80.00 70.00 106.30 123.80 97.50
æ	13.08 14.00 20.83 24.17 18.75 17.50 4.25	13.67 2.42 16.67 15.67 8.17 18.75	11.83 16.67 16.67 22.50 24.17 22.50 8.67
CA	26.00 28.25 30.50 23.50 25.50 10.75	24.75 24.50 28.00 30.75 11.50 23.50	18. 75 26. 00 25. 00 27. 50 24. 50 22. 50 21. 00
¥	63 67 67 67 67 67 67 67 67	22 53 54 1 40 63 63 70 70	. 25 . 36 . 63 . 56 . 74 . 74
∢ Z	41.96 27.39 50.43 52.17 35.00 68.70 62.61	41.30 66.96 29.57 11.30 16.96 49.57 68.70	42.39 50.43 41.74 23.04 61.74 81.74 72.17
SAR	9.5 6.0 10.0 7.7 7.4 14.8 22.9	9.4 18.3 2.4 2.4 10.8 19.7	10.8 9.1 4.6 12.5 17.2 18.7 7.2 42.7
J.	5.11 4.25 6.26 6.26 4.84 6.83 5.55	4.99 4.44 4.44 2.47 5.74 6.31	4.64 5.73 5.28 4.32 6.83 8.07 6.30
DSAT	36.0 40.5 36.0 42.0 40.0 49.5 109.0	35.5 48.0 44.5 31.0 47.0 111.0	34.0 38.5 54.5 48.5 65.0 113.5
CHa	2.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	4 9 7 7 7 7 8 8 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	7 . 6 7 . 7 7 . 7 7 . 9 7 . 9 8 . 2 8 . 3	7.7.7.9 7.1.9 7.1.9 8.2.9 8.3	8 . 1 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7
-	015 030 045 060 075 090 0120	015 030 045 060 075 090 0120	015 030 045 060 075 090 0120
;	RC4 RC4 RC4 RC4 RC4 RC4 RC4 RC4	RC4 RC4 RC4 RC4 RC4 RC4	RC4 RC4 RC4 RC4 RC4 RC4
MINE V SITE 2		0000000	

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1983.

	SND	51	51	50	52	51	51	51	52
	CARB	. 17	. 19	. 17	.21	. 15	.21	Ξ	51.
	804	7.40	2.80	3.40	3.90	2.20	4.20	8.90	3.20
	MG	4.75	1.59	1.38	2.46	. 68	2.58	3.79	1.53
	CA	8.50	2.23	2.60	4.50	1.43	5.00	7.25	3.10
	¥	11	1.15	4	1.64	60 .	09	1.05	. 24
	NA .	4.43	5.04	4.35	2.61	2.39	4.22	4.48	3.52
	SAR	1.7	3.7	3.1	4.4	2.3	2.2	1.9	2.3
	EC	1.53	. 8 1	77	68	4.1	1.07	1.35	.75
	PSAT	48.0	50.0	46.5	48.0	44.0	46.5	46.5	44.0
	PHC	5.5	0.9	8. 4	5.7	8.8	5.0	5.0	4.7
	PHH	5.8	6.4	5.3	5.9	5.4	5.4	5.3	5.1
	MAT SDTH	015	015	D 15	015	015	D 15	D15	D15
	MAT	RC4	RC4	RC4	RC4	RC4	RC4	RC4	RC4
MINE V SITE 3	DIG	-	2	၉	4	ស	9	7	60

6 t t t

33 34 33

CL

 44 44 45 45 40 40 40 SND 34 37 41 44 39 44 41 20 40 40 40 41 41 41 74 46 60 60 60 60 88 41 88 88 73 17 17 17 17 17 74 29 60 60 17 17 88 88 \$04 ...20 ...20 ...20 ...30 ...30 ...30 ...30 ...30 ...30 ...30 ...30 ...30 ...30 80 50 70 80 40 80 50 10 10 10 40 12. 63. 72. 77. 77. 87 63 77 77 44 88 86 3. 7.3 8.3 7.3 9.3 9.3 9.3 08 75 92 92 58 83 33 00 00 42 92 42 42 MG 07 07 225 67 67 92 33 17 09 330 25 25 13 25 25 22 23 23 23 15 15 15 19 00 00 25 00 25 50 49 25 50 50 50 75 41 2A 70 70 00 00 75 75 75 28 6. 25. 25. 25. 23. 25. 25 25 25 26 20 27 20 20 24 24 65 87 86 54 54 62 94 777 669 35 51 47 54 13 37 78 04 86 67 67 68 08 61 70 70 57 35 26 52 70 NA 17 17 26 26 30 91 61 35 30 48 78 70 74 74 74 74 74 27 18 18 14 14 31 16 13 24 33 7 7 7 29 36 36 34 34 16 16 0 0 0 0 0 0 0 0 2 2 2 3 3 3 3 3 3 SAR 2.7 2.5 4.7 7.1 3.7 3.7 3.7 3.7 34 6 7 3 5 3 06 29 23 23 28 43 20 50 90 75 01 88 75 75 44 08 EC ---- 50 95 98 88 44 81 90 90 17 - E 4 B - 4 B 8 - 52 4 75 65 75 -646246-46. 442. 443. 444. 62. 44 47 43 43 34 0 2 4 7 0 0 7 9 7 6 7 6 6 5 5 7 7 7 7 7 8 8 00/0/204 6400-080 0-800769 7 8 7 7 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 RC4 RC4 RC4 RC4 RC4 RC4 RC4 m m m m m m mDIG

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 19

20 24 24 26 32 32 32

12 17 17 36 25 25 25 25 34

21 20 28 28 26 26 35 31

5ND 67 68 68 48 46 47 62 62 43 67 63 36 49 49 40 35 66 62 62 43 43 43 43 38 30 22 31 31 51 51 51 60 30 43 38 14 84 86 73 73 87 - 000000 30 30 30 50 30 60 90 30 90 40 50 10 2. 18. 90. 103. 88. 110. 4 81 81 70 77 77 5. 63. 128. 72. 80. 81. 00. MG 92 33 92 93 93 93 75 75 31 96 42 42 42 25 08 33 63 33 33 58 58 67 67 58 14 14 15 17 17 18 19 19 10 17 17 17 80 25 00 50 00 00 00 45 00 00 00 50 75 75 5 17 17 12 12 15 15 3. 52-20. 25. 23. 23. 4. 25. 20. 25. 23. 23. 22 56 14 51 51 47 47 32 . 19 1.28 2.62 1.90 1.12 .45 .43 - 0 e NA 655 657 96 770 335 833 609 83 96 35 09 65 13 13 65 22 83 83 48 35 23 23 78 3. 13. 36. 28. 29. 47. 3 16 44 46 40 70 70 68 ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1983 4400-000 V 8 9 V + + 8 + 2 & 0 0 0 0 0 7 4 2 / 8 0 0 0 0 -89 04 04 41 41 54 58 62 63 74 02 62 53 47 40 11 84 25 20 20 97 21 27 27 23 0 10 4 10 10 10 7 2 8 8 8 7 7 4 80 4 10 10 10 10 0000000 45 45 44 45 45 46 54 38 40 40 42 42 44 44 59 44 44 44 47 47 47 99677704 1 0 8 0 7 7 9 7 99777789 9 7 7 7 7 8 LL81111 -00788-7 90998975 04088070 7 7 8 7 7 8 8 7 RC4 DIG 00000000 m m m m m m m m m

25 26 26 23 23 27 24 25 35

CL 13 24 23 15 15 15 15 35

14 24 24 30 30

51 24 31 28 14 19 19 23 29 41 65 47 47 88 65 65 60 60 61 52 51 51 51 53 17 52 42 42 00 17 65 89 CARB 3.61 1.55 1.55 2.26 3.01 3.55 5.31 64 B B 64 504 90 10 80 10 30 50 80 10 10 10 10 40 10 99 30 90 80 90 90 53. 45. 53. 53. 40. 4 555. 449. 147. 423. 439. 149. 149. 149. 149. 149. 00 17 17 00 00 67 00 75 92 83 83 50 50 58 17 MG 67 17 17 558 92 38 75 58 58 53 14 13 16 20 20 20 20 6. 15 11 17 14 4 2 4 4 2 6 0 00 50 00 50 50 50 50 50 50 50 00 25 70 25 61 CA 000 75 75 50 95 00 75 82 29 29 28 30 30 4 4 25 27 27 27 27 27 27 44 27 29 27 10 3 31 28 10 46 54 36 67 26 34 04 72 34 37 43 51 51 29 23 91 87 91 13 48 02 35 52 17 00 65 09 48 72 78 NA 74 57 04 26 65 70 70 83 8 2 - 2 6 8 5 6 8 26. 12. 2. 10. 3. 19. 5.6 2.6 2.3 2.3 7.7 6 SAR 3.6 1.4 9.9 8.1 1.5 1.5 27 --- 27 41 89 21 30 63 64 94 57 45 54 52 42 51 10 460000--00002 0000000 0000000 PSAT 50.0 41.0 42.0 37.5 32.5 40.5 37.0 44 40 42 27 27 34 43 35 50 38 40 40 29 30 51 E 0 8 4 4 E E E PHC 7 2 7 5 7 6 5 6 5 7 7 5 7 7 8 8 3 -00r4e44 7 7 7 7 8 8 2 - 8 8 6 - 2 4 48044477 7.4 7.6 7.8 7.7 7.7 6.9 7.7 7.7 7 7 7 7 7 7 8 RC4 RC4 RC4 RC4 RC4 RC4 RC4 **ANALYTICAL** e α DIG MINE

RECONSTRUCTED SOILS SAMPLED IN FOR DATA

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1983.

>	7
MINE	I

ö	16 35 27 27 15 17 19 25 27	14 17 13 15 15 29	13 24 17 22 23
ā	20 37 30 16 16 22 29 29	16 26 11 11 32	14 29 20 18 29 29
S N	64 43 69 67 67 67 67 67 67	70 52 63 76 67 65	73 52 63 61 45 49
CARR	1.07 5.14 3.99 2.42 2.03 2.99 2.99	3 0 6 6 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3.10 3.95 3.87 59 1.03 1.64
804	24.70 70.00 105.00 92.50 75.00 91.30 91.30	27.20 101.30 86.30 49.40 12.80 33.80 88.80	53.80 92.50 122.50 76.30 88.80 110.00 108.80
∑	10.17 10.58 18.75 17.08 14.83 14.67 12.25	8 . 67 18 . 75 15 . 83 10 . 67 4 . 00 7 . 58 14 . 92 15 . 25	18.33 12.42 23.75 15.25 18.75 20.67 20.00
CA	18.75 10.50 22.75 23.75 25.00 22.50 19.25 24.75	14.25 23.00 22.75 23.00 7.95 15.25 19.00	26.50 22.50 22.75 25.75 21.50 22.25 22.00
¥		38 34 37 37 26 29	.67 .38 .37 .35 .42 .28 .36
N	5.26 51.30 66.09 55.65 38.48 55.65 60.87	8.39 61.74 49.57 17.61 4.61 14.78 55.65	13 . 48 57 . 39 75 . 65 36 . 34 49 . 57 66 . 96 68 . 70 13 . 91
SAR	4 1 1 2 1 2 1 4 4 4 4 4 4 4 4 4 4 4 4 4	2 C C C C C C C C C C C C C C C C C C C	2.9 13.7 15.7 11.1 14.3 15.0 3.4
EC	2.38 5.34 7.19 6.46 5.19 6.37 6.61	2.26 6.084 6.02 7.28 7.28 7.63 6.19	3.51 6.18 8.01 5.02 5.98 7.16 7.23
PSAT	38.0 94.0 51.5 42.0 36.0 44.0 80.0	44.5 47.0 42.0 34.5 28.5 31.5 47.5	42.5 55.5 48.5 33.5 35.0 55.0 45.0
PHC	6.9 8.1 7.7 7.5 7.7 7.5	7.6 7.8 7.2 7.7 7.7	7.6 88.0 88.0 7.7 7.7 6.7
HH4	7.0 8.3 7.6 7.6 8.0 7.6	7 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 8 9 9 9 9	7.8 8.1 8.1 7.7 7.7 7.5 7.5
SDTH	015 030 045 060 075 090 0120	D15 D30 D45 D60 D75 D90 D120	015 030 045 060 075 090 0120
MAT	RC4 RC4 RC4 RC4 RC4 RC4	RC4 RC4 RC4 RC4 RC4 RC4 RC4	RC4 RC4 RC4 RC4 RC4 RC4 RC4
DIG		0000000	пппппппп

39 34 31 37 39 33 33

CL 19 23 27 27 26 26 27 35

51 38 24 30 32 35 40 34 33

17 18 25 25 24 23 23 35

47 48 42 44 44 39 39 32 43 43 43 43 39 39 32 42 43 42 45 45 41 41 41 27 38 86 86 77 71 71 29 30 69 ND 10 34 26 29 38 30 46 1.68 34 3.80 ND ND 2.99 2.44 90 50 50 80 30 10 20 30 30 00 80 70 70 80 00 50 50 30 70 4. 77. 106. 111. 90. 17. 3. 72. 108. 108. 67. 83. 6. 30. 123. 80. 97. 20. 51 08 33 08 50 00 58 17 MG 83 42 42 58 33 25 13 51 00 50 75 00 29 93 12 13 15 15 15 17 18 16 4 20 112 18 13 03 25 25 25 50 25 50 50 40 97 00 75 25 25 25 33 95 CA 48 05 05 50 50 50 60 60 85 42 17. 23. 24. 19. 1 17 23 24 25 25 26 45 24 24 24 24 24 17 60 67 53 43 38 76 24 56 56 58 42 17 17 28 09 7 24 38 38 60 60 53 53 443 344 11 35 70 74 70 00 74 96 83 83 83 57 87 83 43 NA 35 74 00 70 70 52 91 22 96 7. 54. 67. 69. 60. 17. 7 48 81 68 68 68 40 46 9 80 48 56 28 20 16 4 6 6 5 6 7 6 6 SAR 8.7 13.9 17.1 11.3 12.2 15.6 13.2 8 17. 17. 15. 9. 9. 30. 67 35 01 08 90 95 73 34 72 97 24 37 36 84 53 04 EC 95 16 98 711 311 888 055 499 5 4 4 4 5 5 -226573 0000000 0000000 52 48 57 56 49 45 46 73 50. 54. 53. 53. 41. 52 48 63 47 47 42 83 ANALYTICAL DATA FOR RECONSTRUCTED 30000 2 - 8 r 4 8 0 E 1-7-63-8-9 - 1 - 1 - 2 - 9 8 6 7 9 2 8 8 8 6.7 7.1 7.7 7.7 7.0 6.9 340088 6.6 7.2 7.9 6.8 6.8 6.5 6.8 8 1 1 1 8 D15 D30 D45 D60 D75 D90 D120 D15 D30 D45 D60 D75 D90 D120 SDTH RC4 m m m m m m m m00000000 DIG MINE

SOILS SAMPLED IN 1983

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1983.

>	σ
	1
-	_
2	C

	21 21 21 21 33 31 40	16 32 23 27 24 34	15 24 22 32 32 34
,	31 34 31 31 31 30 30 40	36 23 34 38 38	39 27 19 28 33 46 33
Č	555 48 48 48 16 16 21 6	48 52 37 39 9	4 4 8 8 8 8 8 9 9 9 8 8 9 9 9 9 9 9 9 9
90	. 30 . 38 . 38 . 19 . 2 94 . 92 . 4 . 92	. 21 . 84 . 92 . 23 . 23 . 51	. 29 . 52 . 50 . 29 2 . 29 1 . 15
504	10.60 95.00 92.50 46.90 66.30 27.80 20.60	3.40 116.30 103.80 73.80 53.10 38.10 40.60	3.80 91.30 91.30 50.90 39.40 17.80 30.00
₩	2.00 14.00 13.50 6.33 16.50 25.42 .57	20.42 15.08 10.83 13.08 3.83	. 53 15.00 13.50 7.08 9.50 7.17 7.50
CA	3.90 19.50 17.75 9.00 19.50 26.25 1.43	1.05 22.75 22.00 13.25 17.25 20.25 7.80	1. 10 23.50 22.50 12.75 11.75 6.50 14.50
¥	. 43 . 24 . 20 . 20 . 53 . 27	. 21 . 32 . 17 . 13 . 63 . 63	. 25 . 23 . 23 . 14 . 15
NA	10.65 68.70 66.96 34.57 31.09 20.43 33.04	6.22 80.00 73.91 55.65 29.13 10.22 34.78	5.04 59.13 61.74 35.43 8.35 15.43 9.57
SAR	16.8 16.8 12.5 7.3 4.0 33.0	7.0 17.2 17.2 16.0 7.5 2.5 2.5 4.4 45.6	6.5.4 6.4.1 7.5.8 7.7.9 8.0 7.7.9 8.0 7.7.9 8.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0 7.0 8.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7
EC	1.33 6.73 6.70 3.64 4.41 4.25 2.77	. 65 8 . 19 7 . 73 5 . 65 4 . 10 2 . 87 2 . 09	60 670 670 415 338 169 265 289
PSAT	47.5 51.0 53.5 45.5 53.5 47.0 108.5	47.5 61.0 47.0 42.5 46.5 48.5 72.0 125.5	50.5 52.0 44.0 46.0 44.5 58.0 57.5
PHC	6.3 7.5 7.7 7.5 7.5 8.2 8.2	8 7 7 7 7 9 8 S 9 8 S 9 8 S 9 8 S 9 9 9 9 9 9 9 9	5 . 8
PHH	6.9 6.7 7.7 7.7 8.8 8.8	6.6 8.0 7.7 7.4 7.6 8.2 8.5	6.4 7.7 7.4 7.4 7.9 8.6
SDTH	D15 D30 D45 D60 D75 D90 D120	D15 D30 D45 D60 D75 D90 D120	D15 D30 D45 D60 D75 D90 D120
MAT	RC4 RC4 RC4 RC4 RC4 RC4 RC4 RC4	RC4 RC4 RC4 RC4 RC4 RC4 RC4 RC4	RC4 RC4 RC4 RC4 RC4 RC4 D RC4 D
DIG		01.01.01.01.01	

ANALYTICAL DATA FOR RECONSTRUCTED SOILS SAMPLED IN 1983.

>	2
ш	ш
Ž	_
Σ	S

บ	16	5	00		27	27	25	25		6	50	18	22	24	27	2.5	24	ç	2 6	œ	0.0	27	. C	2.0	25	
SI	39	40	9.6	4 1	· -	60	3.5	32		38	38	44	42	38	29	30	32	36	37	40	. 4		22	£ 6	31	
SND	45	4	33	36	42	4 4	4	43		43	42	38	36	38	44	45	44	44	. 4	42	32	38	48	44	44	
CARB	. 15	0.4	15	<u> </u>	2.5	15	3.26	5.09		19	. 21	.51	15	. 23	17	28	3.98	96	. 4	. 23	. 23	.21	17	2.02	4.39	
804		•				2.20		. 70		80	1.90	2.70	1.70	1.50	1, 10	1 .8	.80	-	5.20	4.60	3.70	2.90	4 10	66.30	9.10	
MG	. 95	.93	. 85	. 47	. 47	. 58	1.17	. 57	•	.41	. 65	.83	. 54	. 56	. 29	98	.64	64	1.52	.72	5.	. 29	. 25	18.75	.83	
CA	1.38	1.68	1.85	1.18	1, 13	1.43	3.70	1.90		. 97	1.20	1.53	1.15	1.20	. 72	2.35	2.18	1.40	2.75	1.35	1.20	. 74	.71	27.00	2.15	
¥	96	.35	1.10	.27	. 19	.21	.21	. 14		30	.34	. 48	.39	. 23	. 13	. 17	. 12	.40	. 53	. 78	. 24	=	80	. 68	.07	
A N	1.96	3.78	4.17	1.76	1.04	69	. 70	. 63			3.00			.77	58	.81	. 65		3.61							
SAR	-	დ დ	3.6	6.1	1.2	۲.	5	9.		9.	3.1	2.8	1 .5	80 ,	80	9.	9.		2.5							
EC	.34	. 53	9.	. 34	. 27	. 28	.45	. 27		. 22	. 40	. 47	. 32	. 27	. 16	.34	. 28	.31	. 68	. 57	.49	.39	.47	4.18		
PSAT	64.0	61.0	63.5	49.0	44.0	42.0	43.5	39.0		0.07	55.5	0.09	53.5	41.0	41.5	43.0	40.0	59.5	59.5	55.5	49.0	44.5	43.5	47.0	40.0	
PHC	5.6	5.7	5.6	5.1	4.9	4 9	7.1	9.7		5.5	5.5	5.6	5.0	4.6	4.7	0.9	7.3	5.6	5.5	5.5	4.8	4 . 7	4.8	7.5	7.7	
HH	0.9	6.2	+ 9	5.4	5. 1	5.3	7.1	7.9		5.9	5.9	5.9	5.5	4 9	4 6	0.9	7.7	6.1	5.8	5.7	5.5	5.0	5 -	9.7	8	
SDTH	D 15	D30	045	090	075	060	D120	D150		D15	030	045	090	075	060	D 120	D150	D 15	D30	045	090	075	080	D120	D 150	
	RC9	RC9	RC9	RC9	RC9	RC9	RC9	RC9		RC9	RC9	RC9	RC9	RC9	RC9	RC9	RC9	RC9								
DIG	-	-	-	-	-	-	-	-		7	7	7	7	7	7	7	7	က	က	က	၉	ဇ	က	က	ღ	

This material is provided under educational reproduction permissions included in Alberta Environment's Copyright and Disclosure Statement, see terms at http://www.environment.alberta.ca/copyright.html. This Statement requires the following identification:

"The source of the materials is Alberta Environment http://www.environment.gov.ab.ca/. The use of these materials by the end user is done without any affiliation with or endorsement by the Government of Alberta. Reliance upon the end user's use of these materials is at the risk of the end user.