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ABSTRACT 

Unstiffened steel plate shear walls (SPSWs) are effective and economical lateral load 
resisting system, especially in regions of severe earthquakes. The system consists of 
columns intersected at the floor levels by beams and steel infill plates connected to its 
boundary members over the full height of the frame bay. Despite the recent research 
progress on this system and the attention from the structural engineering community, to 
date, relatively few structures that use this system have been constructed in North 
America. The lack of a reliable and effective analytical tool is likely one of the barriers 
for wide application of this system. Until now, the finite element analysis of SPSWs has 
been implemented with only limited success. 

A large-scale three-storey SPSW was tested under a combination of constant gravity load 
and cyclic lateral loads in a quasi-static condition in order to increase the database of test 
results and monitor closely the behaviour of the boundary members. Twenty-four cycles 
of loading were applied to the test specimen, of which 14 cycles were in the inelastic 
range. Characteristic pinching of hysteresis loops was observed in the inelastic range. The 
specimen showed high initial stiffness, excellent ductility and energy absorption capacity, 
and stable hysteresis loops. Although one of the beam-to-column moment connections 
ruptured during the test, this rupture did not detrimentally affect the strength and 
behaviour of the specimen.  

A finite element model based on nonlinear dynamic explicit formulation was developed. 
A kinematic hardening material model subroutine was implemented to simulate the 
Bauschinger effect and a special loading frame was developed to implement a 
displacement control analysis. The effectiveness and validity of the model was 
demonstrated by comparing its monotonic and cyclic predictions with the results of tests 
conducted on a four storey and the three storey SPSW tested in this research. 

A set of ten scale independent non-dimensional parameters that affect the behaviour of a 
SPSW panel under shear and gravity load was identified. Effect of some of the main 
parameters on the stiffness and capacity of SPSWs were investigated. It was concluded 
that column flexibility parameter has a significant effect on the behaviour of SPSWs. A 
method for considering the effect of overturning moment was proposed.  
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  1 

1.  INTRODUCTION 

1.1 General 

Experimental and numerical studies conducted in the past three decades have 
demonstrated that a steel plate shear wall is an effective and economical lateral load 
resisting system against both wind and earthquake forces. The system consists of infill 
steel plates connected to boundary beams and columns over the full height of the framed 
bay. The infill plates can be stiffened or unstiffened and the beam-to-column connections 
can be rigid or shear connections. A properly designed steel plate shear wall has superior 
ductility, high initial stiffness, stable hysteresis loops, inherent redundancy, and good 
energy absorption capacity. These characteristics make the system attractive in high-risk 
seismic regions. The system has been used for new buildings as well as for upgrading 
existing steel or reinforced concrete buildings. An example of such applications is the 
Olive View Hospital, which performed extremely well during the 1994 Northridge 
earthquake (Celebi, 1997).  

Use of steel plate shear wall systems has been shown to be more cost effective than the 
other lateral load resisting systems (Timler and Ventura, 1999). Steel plate shear walls 
are much lighter than the commonly used reinforced concrete shear walls, which reduce 
both the gravity loads and seismic forces. This aspect significantly reduces the foundation 
costs and makes the system attractive for application in rehabilitation projects.  

The design philosophy of existing steel plate shear wall systems is to prevent shear 
buckling of infill plate by using either a thick plate or heavily stiffened plate. This 
reduces the economic attractiveness of the system. However, Wagner (1931) showed that 
shear buckling of a thin plate that is adequately supported along its edges does not 
constitute failure. At the point of buckling the load carrying mechanism of the plate 
changes from in-plane shear to an inclined tension field to resist the panel shear. This 
concept has been used for many years in shear design of plate girders (Basler, 1961), but 
it was first applied to design of steel plate shear walls in the early 1980's through a series 
of analytical (Thorburn et al., 1983) and experimental (Timler and Kulak, 1983; 
Tromposch and Kulak, 1987) research. A steel plate shear wall is analogous to a vertical 
cantilevered plate girder, with the columns acting as the flanges and the floor beams as 
transverse stiffeners. For a thin panel, the shear buckling strength is low and, as a result, 
the tension field action is the main mechanism for carrying the applied shear forces. In 
order for the tension field to fully develop, the boundary members should have sufficient 
bending stiffness.  

Clause 27.8 of the latest version of the Canadian standard on Limit States Design of Steel 
Structures (CSA-S16-01) provides guidelines for the analysis and design of thin 
unstiffened steel plate shear walls. The analytical model proposed in Clause 27.8 is based 
on the model developed by Thorburn et al. (1983). Although the model predicts the 
capacity of the system reasonably well, it fails to predict the stiffness of the system 
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accurately in some cases (Rezai, 1999). Accurate prediction of stiffness is of paramount 
importance in drift calculations of high-rise buildings. To provide improved design 
guidelines more research is needed in areas that are still unknown. For example, it is 
necessary to quantify the effects of infill panel aspect ratio and the stiffness ratios of the 
infill plate to beams and columns stiffnesses. Because of the expense involved in an 
experimental program to investigate these parameters, an analytical tool that can 
accurately predict the monotonic and cyclic behaviour of thin unstiffened steel plate shear 
walls is needed. This model can be used for a comprehensive parametric study of this 
system.  

The research described herein consists of two phases. The first phase describes a 
quasi-static cyclic test on a large-scale three-storey unstiffened steel plate shear wall. In 
the second phase, a finite element model for monotonic and cyclic analysis of this system 
is presented and validated. Using the analytical model, the non-dimensional parameters 
describing the behaviour of a panel of this system with rigid floor beams are identified. 
The cumulative effects of several panels can be used to deduce the behaviour of multiple 
storey shear wall systems.  

1.2 Scope and objectives  

In the experimental part of this study, a large-scale test on a three-storey steel plate shear 
wall specimen was conducted under lateral quasi-static cyclic loading in the presence of 
gravity loads. The specimen formed the upper part of a four-storey steel plate shear wall, 
which had been tested earlier by Driver et al. (1997). Standard fabrication techniques 
were used in fabrication of the specimen and the loading history was based on established 
guidelines for simulating earthquake loading (Applied Technology Council, 1992). In the 
second phase of this study, a nonlinear finite element model was developed in order to 
accurately simulate the monotonic and cyclic behaviours of thin unstiffened steel plate 
shear walls. The model was validated using the results of both the three and four storey 
shear wall tests. The numerical model was then used for a parametric study of this 
system.  

The primary objective of the experimental phase was to increase the database of test 
results on large-scale multi-storey unstiffened steel plate shear walls under extreme cyclic 
loading, such as would be expected in a severe earthquake. Since the test specimen had 
gone through a history of plastic deformation from previous testing by Driver et al. 
(1997), evaluating the effect of the previous test on the overall performance of the 
specimen was one of the objectives. Stiffness, ductility, energy absorption capacity, and 
strength degradation were all assessed.  

Another objective of the test was to monitor closely the behaviour of boundary members 
and to assess how the storey shear forces are shared between the infill panel and the 
moment-resisting frame. This was achieved by evaluation of the strains at various 
sections in the beams and columns. In addition, the influence of moment resisting beam–
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to–column connections in enhancing the pinching behaviour of hysteresis loops was an 
important aspect of the test. 

A third objective of the test was to monitor the formation of buckles in the infill plates 
and to measure the angle of inclination of the tension field in the first and second panels 
of the specimen in each cycle. Investigation of the stability of the hysteresis loops under 
cyclic loading and the redundancy and ability of the system to redistribute the load was 
the fourth objective of this experimental program. 

A final objective of the experimental program was to study the failure mode of the test 
specimen and identify the primary energy-absorbing element in the system (infill plate or 
frame) in resisting the applied shear load 

The finite element analysis of unstiffened steel plate shear walls has been implemented to 
date with only limited success. Because of local instabilities and snap-through buckling 
of infill plates, commonly used solution techniques fail to converge to the solution path 
as the tension field develops in the plate. Lack of convergence is a major problem in 
finite element analysis of these systems especially when geometric nonlinearities are 
included in the model (Driver et al., 1997 and Rezai, 1999). The primary objective of the 
analytical phase was therefore to develop a suitable finite element model that includes 
geometric and material nonlinearity in order to capture the behaviour of this system both 
under monotonic and cyclic loading. 

The final objective of this research was to identify the non-dimensional geometric and 
material parameters that describe the behaviour of a typical thin steel plate shear wall 
panel subjected to shear and gravity load. The effect of these parameters can then be 
systematically investigated. 

1.3 Outline of the thesis 

Chapter 2 provides a chronological review of earlier research on steel plate shear walls. 
The review includes a summary of both the experimental and analytical investigations 
available. 

An overview of the experimental programme is presented in Chapter 3. The objectives of 
the experiment, description of the specimen details and fabrication procedures, test set-
up, instrumentation and data acquisition, as well as the loading protocol are discussed in 
detail in this chapter. A brief summary of the preliminary finite element analysis of the 
test specimen is also presented. 

Chapter 4 presents the results of the test on a three-storey steel plate shear wall. The 
observations during the test, the test results, presented in the form of hysteresis loops, and 
the overall performance of the specimen are discussed. 

Chapter 5 describes the finite element model that was developed to predict the behaviour 
of thin unstiffened steel plate shear walls. The convergence problems in the analysis of 
these systems with a static implicit method are described. As an alternative, the nonlinear 
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dynamic explicit finite element method is proposed. The formulation of the method and 
strategies for simulating a quasi-static response are discussed in detail. A method for 
controlling the displacement during cyclic analysis of multi-storey shear walls is 
presented. 

In Chapter 6, the proposed finite element model is used to predict the behaviour of the 
three-storey steel plate shear wall. Pushover analysis, cyclic behaviour, energy 
dissipation, and inclination of the tension field are obtained and compared with the test 
results. The finite element method is also used for the four-storey steel plate shear wall 
tested by Driver et al. (1997) and the predictions are compared with the test results. This 
provides a validation for the proposed finite element model and analysis technique. 

The strain data are evaluated in Chapter 7. The distribution of axial force and bending 
moment along the boundary members are obtained from the strains measured during the 
test and compared with the predictions from the pushover finite element analysis. 

The non-dimensional parameters that affect the behaviour of a panel of steel plate shear 
wall with rigid floor beams are identified in Chapter 8. The influence of some of the 
primary non-dimensional parameters on the stiffness and capacity of the selected model 
are investigated through a parametric study. 

Summary, conclusions, and recommendations for future research are presented in 
Chapter 9.  
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2. LITERATURE REVIEW 

2.1 Introduction 

Research on steel plate shear walls was initiated in the early 1970’s. Experimental and 
analytical studies that have been conducted so far have all demonstrated that a properly 
designed steel plate shear wall can be the most effective and economical lateral load 
resisting system, especially for application in severe earthquake regions. Steel plate shear 
walls have been used in several buildings, mainly in Japan and in the United States 
(Thorburn et al., 1983; Fujitani et al., 1996; Celebi, 1997; Astaneh-Asl, 2001). Early 
designs of steel plate shear walls were based on the concept of preventing shear buckling 
of infill plate under the design loads, thus neglecting any post-buckling strength. In order 
to meet this design requirement, Japanese designs have relied on heavily stiffened thin 
plates whereas designers in the United States have used unstiffened or moderately 
stiffened thick plates.  

For many years, it has been known that buckling does not represent the limit of useful 
behaviour of a shear panel. When shear panels are designed properly, the load-resisting 
mechanism changes from in-plane shear to an inclined tension field after buckling. 
Wagner (1931) showed that thin aluminium shear panels used in aircrafts and supported 
by stiff boundary members develop a diagonal tension field after buckling. Wagner 
developed the “pure” tension field theory whereby the shear capacity of a thin plate 
supported by relatively stiff boundary members depends primarily on tension field action. 
Kuhn et al. (1952) studied intermediate cases between pure diagonal tension field action 
and pure shear and proposed the “incomplete” diagonal tension theory. This theory is 
based on the assumption that the panel shear capacity results from both pure shear and 
diagonal tension field. Following the works of Wagner and Kuhn, Basler (1961) 
developed an incomplete diagonal tension field model to predict the shear capacity of 
plate girders. Basler's work has been widely accepted and has formed the basis for the 
design of steel plate girders in many modern design standards (CSA, 2001; AISC, 1999). 

Utilization of the post-buckling strength of a panel in shear was first applied to steel plate 
shear wall through a series of analytical and experimental work at the University of 
Alberta in the early 1980’s (Thorburn et al., 1983; Timler and Kulak, 1983; Tromposch 
and Kulak, 1987). In recent years, however, this concept has gained wide attention from 
researchers in Canada, the United States and England (in US Caccese et al., 1993; 
Elgaaly et al., 1993; Xue and Lu, 1994a, 1994b; Elgaaly and Liu, 1997; Astaneh-Asl and 
Zhao, 2002; and in the UK Roberts and Sabouri-Ghomi, 1991; Sabouri-Ghomi and 
Roberts, 1991 and 1992). In addition to analytical investigations a number of static, 
quasi-static and shake table tests have been performed on large and small-scale models of 
this system (Timler and Kulak, 1983; Tromposch and Kulak, 1987; Elgaaly et al. 1993; 
Driver et al. 1997; Lubell, 1997; Rezai, 1999; Astaneh-Asl and Zhao, 2002). A brief 
review of studies conducted on steel plate shear walls around the world is presented in 
the following. A similar historical review can be found in Driver et al. (1997) that also 
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included related topics such as strengthening of reinforced concrete frames with steel 
infill plates, concrete encased steel plate shear walls, and the use of steel plate panels as 
hysteretic dampers. 

2.2 Takahashi, Y., Takemoto, Y., Takeda, T., and Takagi, M. (1973) 

Japan appears to be the first country to have extensively designed, tested, and constructed 
buildings using steel plate shear walls. Takahashi et al. (1973) conducted a series of 12 
single panel tests and two single bay, two-storey full-scale stiffened steel plate shear 
walls with and without reinforced openings. The single panel specimens were fabricated 
with and without stiffeners in a pin jointed frame. The series of tests on single panels 
indicated that panels stiffened to prevent buckling of the infill plate showed excellent 
behaviour under cyclic loading with hardly any pinching. In contrast, the unstiffened 
panel showed significant pinching of the hysteresis loops (see Figure 2.1). The full-scale 
two-storey test specimens, designed to behave plastically, also showed good behaviour 
under cyclic loading. Takahashi et al. (1973) developed guidelines for the design of 
stiffened steel plate shear walls to prevent elastic buckling and a finite element model for 
the in-plane inelastic behaviour of stiffened steel plate shear walls (the out–of–plane 
buckling of the infill plate was not considered in their finite element analysis). The finite 
element model was able to trace accurately the envelope of the hysteresis loops.  

Based on their test results, Takahashi et al. (1973) recommended that stiffened steel plate 
shear panels be designed so that the panel does not buckle elastically and if inelastic 
buckling occurs, it should be limited to local buckling between the stiffeners. They also 
concluded that the classical shear theory, wherein the horizontal shear is transferred by 
beam action alone, can be used to calculate the stiffness and yield strength of the 
stiffened shear panels. 

2.3 Mimura and Akiyana (1977) 

Mimura and Akiyana (1977) developed a general method for predicting the monotonic 
and cyclic behaviour of unstiffened steel plate shear panels through a series of 
experimental and analytical studies. The monotonic behaviour of a shear wall panel was 
obtained by superimposing the behaviour of the infill plate and the frame separately. 
Classical plate theory was used to predict the infill plate buckling capacity and a diagonal 
tension field action was assumed in the post-buckling range. The contribution of the 
moment resisting frame was obtained from an elastic–plastic frame analysis.  

Mimura and Akiyana (1997) proposed a model to predict the cyclic behaviour based on 
their monotonic behaviour model and a number of simplifying assumptions. The main 
assumption was that after plastic deformation of the panel in one direction the amount of 
deformation required to develop the tension field in the opposite direction is one half of 
the permanent plastic deformation during the previous loading cycle. This statement is 
based on the assumptions of inelastic Poisson’s ratio of 0.5 and an angle of inclination of 
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the tension field of 45°. The stiffness of the frame during the redevelopment of the 
tension field was neglected 

Mimura and Akiyana (1977) conducted a series of tests to validate their proposed model. 
The tests were conducted on small-scale simply supported stiffened plate girders 
subjected to a single cyclic point load at mid-span. The test results were in good 
agreement with their proposed model except in the redevelopment phase of the tension 
field where stiffness of the frame was neglected. 

2.4 Thorburn, L.J., Kulak, G.L., and Montgomery, C.J. (1983) 

Thorburn et al. (1983) developed a simple analytical model to study the shear behaviour 
of thin unstiffened steel plate shear walls. The model was based on the pure diagonal 
tension field introduced originally by Wagner (1931). The shear strength of the panel 
prior to buckling was neglected, leaving only the tension field action as the load carrying 
mechanism. In this model, referred to as the strip model, the action of the tension field 
was modelled by a series of pin-ended inclined tension-only members. These strips were 
oriented parallel to the direction of the tension field. Each strip was assigned an area 
equal to the width of the strip times the plate thickness. The strip model for a typical 
interior panel is shown in Figure 2.2. In this model the interior beams are assumed to be 
infinitely rigid in bending. The angle of inclination of the tension field was obtained 
using the principle of least work and considering only the energy of the tension field and 
axial energy in the beams and columns. The proposed equation for angle of inclination of 
the tension field by Thorburn et al. (1983) takes the following form: 
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where, α is the angle of inclination of tension field (see Figure 2.2), pt  is the infill plate 
thickness, L is the width, h is the height of the panel, and bA  and cA  are the 
cross-sectional area of the beam and an individual column, respectively. 

By using a plane frame program and the strip representation of the infill plate a steel plate 
shear wall system can be analysed. The beams and columns are assigned their actual 
stiffness. The researchers also studied the use of a single equivalent diagonal brace 
suitable for preliminary analysis of multi-storey shear walls. The area of the brace is 
obtained in such a way that the stiffness of the panel is equivalent to that derived from the 
strip model. 
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2.5 Timler and Kulak (1983) 

In order to verify the strip model proposed by Thorburn et al. (1983), Timler and Kulak 
(1983) conducted a large-scale, single-storey steel plate shear wall test. The major areas 
of interest were the study of the tension field development in the infill plate, the out–of–
plane behaviour of the plate under service load reversals (quasi-wind cyclic loading), and 
the ultimate load behaviour of the system. The test specimen consisted of a pair of 
single-storey, one-bay, shear wall with pinned joints at the four extreme corners. 

Timler and Kulak (1983) modified the angle of inclination of tension field proposed by 
Thorburn et al. (1983). The method and the basic model used by Timler and Kulak was 
the same as used by Thorburn et al. except that the bending strain energy of the columns 
was added to the energy calculation. The revised equation for the angle of inclination of 
the tension field takes the following form: 
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where, cI is the moment of inertia of the boundary column and the other variables were 
defined in Equation 2.1. Although the formulation of Equation 2.2 involved a number of 
simplifying assumptions, Timler and Kulak (1983) showed a reasonable agreement 
between the predicted value of the angle of inclination of the tension field and the angle 
measured during the test. The measured value for α , as obtained from the strain gauge 
reading, was between 47° and 53° in the lower portion of the panel as compared to the 
predicted value of 51°. 

A comparison between the test results and the predicted behaviour using the strip model 
of Thorburn et al. with the angle of the tension field given by Equation 2.2 showed good 
agreement. The measured axial strains in the columns were also in good agreement with 
the predicted values, but the bending strains were overpredicted by the analysis. 

The strip model proposed by Thorburn et al. (1983) and the modified equation for the 
angle of inclination of tension field proposed by Timler and Kulak (1983) have been 
adopted by the Canadian Standard CSA–S16–01 as a simple approach for the analysis of 
unstiffened steel plate shear walls.  

2.6 Tromposch and Kulak (1987) 

Tromposch and Kulak (1987) conducted a large-scale test similar to the one conducted by 
Timler and Kulak (1983). The test specimen, shown in Figure 2.3, was different from 
Timler’s specimen in two respects: it used typical bolted shear beam–to–column 
connections and gravity loads were applied to the columns. Cyclic loading was applied to 
the test specimen, with gradually increasing displacements in a quasi-static condition, up 
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to the limit of the loading device at 67% of the ultimate load. The test was followed by 
monotonic loading up to the ultimate capacity of the specimen. As shown in Figure 2.4, 
the specimen showed very ductile and stable behaviour, but the hysteresis loops were 
severely pinched due to use of very thin plate and flexible boundary frame. By using the 
strip model developed by Thorburn et al. (1983), the researchers conducted a pushover 
analysis of the specimen. Good agreement was found between the analysis and the 
envelope of the hysteresis loops obtained in the test. 

Tromposch and Kulak (1987) proposed a model for predicting the hysteresis behaviour of 
unstiffened steel plate shear walls. Similar to the model proposed by Mimura and 
Akiyana (1977), the hysteresis loops were generated using a monotonic load versus 
deflection curve (obtained from a strip analysis) and assumptions about the hysteresis 
behaviour of the shear panel. The model incorporated the effect of frame stiffness and the 
effect of low panel buckling strength.  

Tromposch and Kulak (1987) demonstrated that the proposed model was able to predict 
reasonably well the experimentally observed hysteresis behaviour of their test specimen. 
A parametric study showed the significance of connection type on the stiffness and 
energy absorption capacity of steel plate shear walls. Changing simple beam–to–column 
connections to rigid beam–to–column connections can increase significantly the energy 
absorption capacity of the system. 

2.7 Sabouri-Ghomi and Roberts (1991, 1992) 

Sabouri-Ghomi and Roberts (1991) proposed a method for nonlinear dynamic analysis of 
thin steel plate shear walls whereby the system was idealized as a vertical cantilever plate 
girder. The governing differential equation of motion for a continuous cantilever beam 
was discretized to a multi-storey shear wall in which the associated storey masses and the 
dynamic forces were concentrated at each floor. Initially, the governing equations were 
formulated assuming only shear deformation and later, a more general formulation that 
included both bending and shear deformations was presented (Sabouri-Ghomi and 
Roberts, 1992). The governing differential equations were solved using a finite difference 
time stepping technique. 

Material nonlinearity was incorporated in the analysis by using an approximate elastic–
plastic hysteresis model for each panel of the shear wall. The hysteresis model took into 
account the shear buckling and yielding of the web plate as well as the boundary 
members. The hysteresis behaviour of the web plate was obtained from a series of 
quasi-static tests on small-scale single panel unstiffened plates with stiff, pin-ended 
boundary frames (Roberts and Sabouri-Ghomi, 1991). An elastic–perfectly plastic 
material model was assumed for the boundary frame alone, assuming plastic hinges at the 
top and bottom of the columns. The hysteresis curve for the entire shear wall panel was 
defined by superposition of hysteresis curves for the web plate and the boundary 
columns. The theoretical model was in reasonable agreement with the test results. 
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Sabouri-Ghomi and Roberts evaluated their analytical model by analysing a five-storey 
single bay steel plate shear wall subjected to three different periodic loadings. The loads 
were selected in such a way as to examine the elastic, elastic–plastic, and resonance 
response of the model. The results were interpreted only by engineering judgment. The 
analytical technique developed by the researchers has not been validated with any 
experimental test results. 

2.8 Caccese, V., Elgaaly, M. and Chen, R. (1993) 

To assess the effectiveness of using the thin-plate shear wall system in seismic zones 
Caccese et al. (1993) conducted quasi-static cyclic tests on six quarter-scale, single-bay 
three-storey unstiffened steel plate shear walls. Beam–to–column connection type (simple 
and rigid) and panel width–to–thickness ratio were the parameters that were investigated. 
The experimental program included cyclic and monotonic tests. The specimens were 
loaded with a single horizontal load at the top of the shear walls. The load history, similar 
to that proposed in ATC-24 (Applied Technology Council, 1992), consisted of 
displacement peaks that were increased in eight increments up to 2% drift measured at 
the top of the shear walls. 

The test results demonstrated that addition of an unstiffened thin steel plate to a steel 
frame results in a system with a substantial increase in stiffness, capacity, and energy 
absorption. The researchers concluded that the beam–to–column connection type has a 
minor effect in the behaviour of a steel plate shear wall system. This conclusion was 
discussed by Kulak et al. (1994) who pointed out that because of different plate thickness 
and material properties among the test specimens, plus a failed weld in one of the tests, 
made a direct comparison of the test results impossible. Their assessment of the effect of 
connection type was therefore rejected. Caccese et al. also concluded that when a slender 
plate is used as an infill, inelastic behaviour is initiated by yielding of the plate and the 
strength of the system is governed by the formation of plastic hinges in the columns. 
When the infill plate thickness is increased the failure mode is governed by column 
instability and only a negligible increase in system capacity is achieved.  

Following their experimental study, Elgaaly et al. (1993) carried out numerical 
investigations of the test specimens under monotonic loading. Two numerical models 
were considered. First, a nonlinear finite element model, including material and 
geometric nonlinearity, was used. The infill plates were modelled with shell elements and 
beam elements were used to model the boundary members. The finite element model 
greatly overestimated both the stiffness and the capacity of the test specimens. 

In the second study, the simple model developed by Thorburn et al. (1983) was used. In 
this model the infill plates were replaced by a perpendicular grid of tension members 
oriented in the direction of the principal tensile and compressive stresses. By using an 
elastic–perfectly plastic material model for the strips, only the initial slope of the 
response and the capacity of the specimens were predicted accurately. Based on the 
observed test behaviour, a bilinear elastic–plastic stress versus strain curve was proposed 
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for the infill plate and the parameters of the model obtained empirically, which resulted 
in a better fit of the test results. The parameters used in the model were a linear function 
of the ratio between the buckling and the yield strength of the infill plate. An empirical 
model was also developed for predicting the hysteretic behaviour of the specimens. This 
model predicted the behaviour of the test specimens reasonably well. The researchers 
indicated that their empirical formula was valid within a specific range of the parameters 
and should not be applied outside that range without further test results (the ratio of the 
buckling to yield strength of the infill plates used in their experimental program varied 
between 0.0098 and 0.123). Although the influence of the number of truss elements used 
in the strip model was found to be important for an accurate calculation of internal forces 
in the boundary members, the variation of the angle of inclination of tension field was 
found to have only a small effect on the predicted capacity of the steel plate shear wall. 

2.9 Xue and Lu (1994) 

Xue and Lu (1994a) conducted a numerical investigation of the effect of different 
arrangements for connecting the infill plate to the boundary members and the effect of 
beam–to–column connection type on the behaviour of unstiffened steel plate shear walls. 
A three-bay, 12-storey frame with moment resisting beam–to–column connections in the 
two exterior bays and with steel infill plate in the middle bay was used for their 
investigation. The system was designed to resist the earthquake loads specified in the 
Uniform Building Code (UBC, 1988). Based on two different beam–to–column 
connection types (rigid for all connections, F, or shear type at intermediate bay and rigid 
for the exterior bays, P) and two different arrangements for connecting the infill plate to 
the boundary members in a panel (connecting to both girders and columns, GC, or 
connecting only to the girders, G), a total of four frame–wall combinations were 
considered, namely, F-GC, F-G, P-GC, and P-G. Lower bound and upper bound 
solutions were also produced for comparison with the numerical analysis results. The 
upper bound solution consisted of a frame with all moment-resisting connections, infill 
plates connected along all four edges, and infill plates assumed not to buckle under load. 
The lower bound was a frame with simple beam–to–column connections in the interior 
bay, and no infill plate. 

The primary parameter investigated in this study was the lateral stiffness of the system, 
since drift control is often a major design consideration. A total of six frame–wall 
structures were modelled using the finite element method. Elastic beam elements were 
used to model the frame members and 4-node shell elements with large deformation 
capability were used for the infill plates. The initial imperfections introduced in the 
panels consisted of the superposition of several shear buckling modes of the infill plates. 
A bi-linear stress versus strain curve with kinematic hardening model was used for the 
infill plates. Vertical distribution of the lateral loads at each floor was based on UBC 
(1988). The lateral loads were applied monotonically at each floor and no gravity loads 
were applied. 
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The base shear versus top storey displacement obtained from the analysis demonstrated 
that the infill plates increased significantly the stiffness of the system, but the type of 
beam–to–column connection in the infilled bay had a negligible effect on lateral stiffness. 
The stiffness of the systems with infill plates connected to both girders and columns 
(GC) were as high as the stiffness predicted using the upper bound solution and were 
only slightly higher than the stiffness of the systems with infill plates connected to girders 
only (G). A number of factors led to the conclusion that the P-G system (simple beam–
to–column connections in the infilled bay and infill plates connected to the girders only) 
has the best performance.  

Xue and Lu (1994b) also conducted a parametric study to investigate the load versus 
deformation characteristics of the frame–wall system consisting of a panel of steel plate 
shear wall with simple beam–to–column connections and infill plate connected to beams 
only. Rigid boundary members were used in the analysis. The width–to–thickness ratio of 
the infill plate and the panel aspect ratio (width/height) were investigated by finite 
element analysis of 20 different cases. The researchers found that the width–to–thickness 
ratio has no significant effect on the response of the system while the aspect ratio of the 
panel had a significant effect on the panel behaviour. The load at significant yield 
increased significantly as the aspect ratio increased while the post-buckling stiffness 
remained almost the same. From the results of their parametric study, Xue and Lu 
proposed a simplified empirical equation to predict the yield strength, yield displacement, 
and the post-yield stiffness of the system. 

Xue and Lu (1994b) also conducted a cyclic analysis on a single panel of a twelve-storey 
three-bay structure described by Xue and Lu (1994a). Although the researchers used a 
simple panel with infill plate connected to girders only and neglected the deformation of 
the boundary members, they reported numerical difficulties in the analysis due to snap-
through behaviour of the infill plate in the intermediate deformation range. Six cycles of 
gradually increasing displacements were applied up to a storey drift of 1.68%.  The panel 
demonstrated significant energy dissipation capacity even with some pinching. The 
pinching became relatively less severe as the shear deformation increased. 

The merit of the approach proposed by these researchers, compared to the traditional 
approach for a frame–wall system, should be further investigated. A comparative study 
should highlight the differences of the two systems in terms of cyclic behaviour and 
failure mode in severe earthquake simulations. No experiment is available to confirm the 
cyclic behaviour of the proposed system. 

2.10 Driver, R.G., Kulak, G.L., Kennedy, D.J.L., and Elwi, A.E. (1997, 1998) 

Driver et al. (1997, 1998a) conducted a quasi-static cyclic test on a half-scale four-storey 
unstiffened steel plate shear wall. The main objective of the test was to evaluate the 
overall in-plane performance of the shear wall under extreme cyclic loading. The 
specimen, shown in Figure 2.5, had rigid beam–to–column connections and the infill 
plates were welded to the boundary members through fish plates. 
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Gravity loads were applied at the top of the columns and were kept constant during the 
test. Equal horizontal loads were applied cyclically at each floor under quasi-static 
condition. The load and deflection sequences were selected based on recommendations 
by Applied Technology Council (1992). The storey shear versus storey deformation of 
the first panel was used to control the test.  

A total of 30 load cycles were applied to the specimen and 20 of those cycles were in the 
inelastic range. The shear wall specimen was found to be initially stiff, very ductile, and 
it exhibited hysteresis behaviour with significant energy absorption. In the final cycle the 
panel had reached a deformation of nine times the yield deformation. The post-ultimate 
degradation was slow and controlled. The moment resisting boundary frame used in the 
test specimen improved the behaviour and prevented the severe pinching of the hysteresis 
loops that was seen in the shear walls with shear type beam–to–column connections 
(Tromposch and Kulak, 1987). 

Driver et al. (1997, 1998b) developed a finite element model for the analysis of their test 
specimen. Beams and columns were modeled with beam elements and the infill plate was 
modelled with shell elements. Initial imperfections based on the first buckling mode of 
the plate were incorporated in the model and residual stresses were included in the 
boundary members. A bilinear stress versus strain curve, along with a kinematic 
hardening model, was used for the material modelling. Because of convergence 
problems, geometric nonlinearity could not be included up to the ultimate load. The 
model was loaded both monotonically and cyclically. The analysis conducted with 
monotonic loading gave a good prediction of the capacity but overestimated the stiffness 
of the specimen. The analysis under cyclic loading was not able to capture the important 
feature of the system, namely, the pinching of the hysteresis loops due to buckling and 
redevelopment of the tension field. The researchers recommended that more research be 
conducted to improve the finite element model.  

Driver et al. (1997) also analysed their test specimen using the strip model proposed by 
Thorburn et al. (1987). The infill plate in each panel was replaced by 10 pin-ended 
diagonal tension strips. The angle of inclination of the tension field was obtained from 
equation (2.2). Using a plane frame analysis program capable of only elastic analysis, an 
incremental analysis was conducted up to the ultimate strength. As yielding of the strips 
was detected in the elastic analysis, the yielded strips were removed. The strip model 
gave a good prediction of the ultimate strength, but it underestimated the initial stiffness 
of the specimen. 

2.11 Elgaaly and Liu (1997) 

Earlier research by Elgaaly et al. (1993) showed that the strain distribution in the infill 
plate along a diagonal tension strip is not uniform (higher near the boundary members). 
As a result, yielding of the tension strips starts at the boundaries and then gradually 
extends towards the centre of the strips. Based on the model originally developed by 
Thorburn et al. (1983), Elgaaly and Liu (1997) introduced the concept of strip–gusset 
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elements in order to simulate the non-uniform distribution of strain along the length of 
the tension strips. In this concept the strips are connected through square gusset plates at 
both ends to the boundary members. The dimensions of the gussets are determined by 
equating the buckling shear stress of the equivalent square plate to the shear yield stress 
of the plate material. The gusset area represents the shear zone near the boundary 
members that yield in shear before buckling. 

To simplify the analysis, the strip–gusset elements were replaced by equivalent truss 
elements at an inclination of 45°. The researchers assumed that the stress versus strain 
relationship for the equivalent truss element is elastic, elasto–plastic, and perfectly plastic 
(i.e., a tri-linear behaviour). The initial yielding and the post-initial yielding modulus of 
the model were obtained from the strip–gusset element The equivalent truss element was 
developed for both welded and bolted connections of infill plate to the boundary 
members.  

The numerical model was implemented on some of the specimens tested by Elgaaly et al. 
(1993). The numerical model was able to simulate the test results accurately. Comparing 
the bolted shear wall with welded shear walls, the researchers stated that, because of 
slippage and local deformation at the connections, a bolted shear wall can have a lower 
stiffness and initial yielding but the ultimate capacity is comparable provided that no 
premature failure of the columns or connections occurs. 

2.12 Kulak, G.L., Kennedy, D.J.L., Driver, R.G., and Medhekar, M. (1999) 

Kulak et al. (1999) conducted a numerical study of an eight-storey steel plate shear wall 
building to investigate the seismic performance of the system. The shear wall had a width 
of 8 m and storey height of 4.5 m in the first panel and 3.6 m in the remaining stories. 
The design base shear and the vertical distribution of lateral forces on the shear wall were 
obtained from the National Building Code of Canada (NBCC, 1995). The preliminary 
design of the shear wall was carried out by single strut idealization of the system as 
proposed by Thorburn et al. (1983). This gave a panel thickness ranging from 3.33 mm 
for the bottom panel to 0.66 mm for the top panel. In the order to make the plate 
thickness more realistic, a thickness of 4.8 mm was used for all panels. A detailed design 
was then carried out by using a linear static analysis program and the tension-only strip 
model proposed by Thorburn et al. (1983). The strength design satisfied both wind and 
seismic drift limits set by NBCC (1995). A response spectrum analysis was then carried 
out to estimate the effect of higher modes on the vertical distribution of lateral forces. 

A pushover analysis of the system, conducted using the commercial software 
DRAIN-2DX, demonstrated that the structure could resist up to two times the NBCC 
prescribed base shear. This over-strength was largely due to using infill plate thickness of 
4.8 mm, which was significantly greater than required. Although most of the plastic 
deformations occurred in a column at the third storey, a ductility ratio, yδδ / , greater 
than 10 was still obtained for this storey with the structure still carrying more than the 
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NBCC shear for that panel. Therefore, the system showed significant robustness in the 
storey that was deforming. 

The researchers also conducted a nonlinear dynamic time history analysis of the 
tension-compression model by applying 20 scaled earthquake records to the structure. 
The maximum interstorey drift ratio in any storey for the suite of 20 earthquakes 
considered did not exceed 0.009 (compared to a limit of 0.02 specified by NBCC). This 
small interstorey drift provides protection to the structural and non-structural elements of 
the building. The maximum calculated storey shear varied from 2.07 to 2.97 times the 
prescribed NBCC (1995) values. In the most severe earthquake a maximum ductility 
demand of 1.9 yδ was calculated, which was only one-fifth of the ductility obtained from 
the pushover analysis. This demonstrated that a large reserve of energy dissipation exists 
in the system. Although significant yielding occurred in one of the columns in storeys 1 
and 3, the yielding did not progress to create a soft storey since the lateral deformation of 
the storey as well as strains were stabilized by the elastic tension field.  

2.13 Rezai (1999) 

Rezai (1999) conducted the first shaking table test, using a 25% scale model of a 4-storey 
unstiffened steel plate shear wall. The main objective of the shaking table test was to 
obtain more information regarding seismic performance of the system. A similar 
specimen was also tested under quasi-static loading by Lubell (1997). The test specimen 
consisted of a four-storey one-bay steel plate shear wall with typical storey height of 
900 mm and centre-to-centre column spacing of 920 mm. The beams in the lower three 
stories were made from S75×8 sections and a stiff S200×34 beam was used at the top 
storey. The columns were made of B100×9 sections over the full height of the test 
specimens. The column sizes differed slightly from quasi-static test specimen (a B100×9 
section was used instead of a S75×8 section for the quasi-static test specimen) to increase 
the out–of–plane buckling strength of the columns and to accommodate the installation of 
lateral braces. Full moment connections were provided at all joints. An infill plate 
thickness of 1.5 mm was used for all panels. The infill plates were welded to the 
boundary frame using fish plate connections similar to those used in the Driver et al. 
(1998) investigation. Stacks of steel plates were mounted to the test specimen at each 
storey level to provide a 1700 kg dead load at each storey. The specimen was braced in 
the out–of–plane direction. The fundamental frequency of the shake table specimen with 
surrounding support frame was obtained as 6.1 Hz in the longitudinal direction.  

Four different types of earthquake time histories at various intensities were selected as an 
input to the shake table test. The limited capacity of the shake table prevented attainment 
of the significant inelastic response in the specimen. The maximum computed tensile 
principal strain in the infill plate was 65% of the yield strain. Compressive principal 
strains were about one-third of the tensile principal strains at the centre of infill plates. 
The specimen deformed mainly in the first mode and the contribution of the higher mode 
was very small. The interstorey drift observed in the specimen during the tests 
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demonstrated the domination of the flexural mode at the top panels. The researchers 
found that the first natural frequency of the specimen decreased as the intensity of the 
shaking increased. By comparing the measured displacements during the test with the 
maximum interstorey drift limitation prescribed in the National Building Code of Canada 
(NBCC, 1995), the researchers concluded that the design of test specimen would be 
governed by the drift limitation and not by strength, which is an undesirable situation. 
Based on this test, the researchers emphasized the importance of accurately estimating 
the stiffness of steel plate shear wall systems and the need for a reliable analytical tool. 

2. 14 Lubell, A.S., Prion, H.G.L., Ventura, C.E., and Rezai, M. (2000) 

Lubell et al. (2000) conducted a series of experimental and numerical investigations on 
quarter-scale models of unstiffened steel plate shear walls. The experimental programme 
consisted of two single-storey (SPSW1 and SPSW2) and one four-storey specimen 
(SPSW4) under cyclic quasi-static loading. The single storey specimens represented the 
bottom storey panel of the four-storey specimen. Column-to-column spacing and 
beam-to-beam dimensions were 900 mm, resulting in an aspect ratio of 1 for all the 
panels. All material was hot-rolled. Beam and columns were S75×8 sections and the infill 
plate thickness was 1.5 mm. In specimen SPSW2 an additional S75×8 top beam was 
welded along adjoining flange tips to better anchor the tension field at the top of the panel 
whereas in SPSW4 specimen a S200×34 beam was used at the top. Rigid beam–to–
column connections were provided for all joints. Specimen SPSW1 was fabricated with 
no special precaution to eliminate frame and plate distortion due to welding and, as a 
result, initial out–of–plane deformations up to 26 mm (15 times the plate thickness) were 
measured in the infill plate. 

All the specimens were tested under quasi-static cyclic conditions. The load history 
followed the procedures recommended in Applied Technology Council (1992) 
guidelines. The single storey specimens were loaded with a horizontal cyclic load at the 
top of the panel. Specimen SPSW4 was loaded with equal horizontal cyclic loads at each 
floor level and a constant gravity load of 13.5 kN used at each floor. Gravity loads were 
applied using by steel masses attached to the test specimen.  

Well defined elastic–plastic load deformation envelopes, high initial stiffness, good 
displacement ductility, and stable S-shape hysteresis behaviour were observed in the 
experiments. Specimen SPSW2 showed significant improvement in stiffness and capacity 
relative to SPSW1, mainly due to the stiffer storey beam and, to some extent, the 
reduction in the out–of–plane imperfections in the infill plate. The sequence of yielding 
in the single-panel specimens was yielding of the infill plate followed by yielding of 
boundary frames whereas in specimen SPSW4 the columns yielded before significant 
yielding in the infill plates. The less desirable behaviour observed in SPSW4 was 
attributed to influence of overturning moments and the small aspect ratio of the panels, 
which resulted in a state of global instability and termination of the test at a ductility ratio 
of 1.5 yδ . 
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The researchers noticed significant “ pull-in” of the columns in all specimens. The inward 
deformation of the columns reduces the magnitude of the tension field stress near the 
mid-height of the storey and increases the stress near the horizontal beams at the top and 
bottom of the panel. In specimen SPSW2, inward column deformation resulted in the 
formation of plastic hinges at the top and bottom of the columns, with the specimen 
taking on an “hourglass” shape at the end of test. The “pull-in” effect, which was 
observed in these series of tests, was discussed by Montgomery and Medhekar (2001). 
The discussers believed that the specimens tested by Lubell et al. (2000) had inadequate 
column stiffness and unusual geometric characteristics. 

Lubell et al. (2000) also conducted a series of numerical studies to assess the ability of 
the current simplified analysis technique presented in the Canadian steel design standard, 
CAN/CSA-S16.1-94, to accurately simulate the behaviour of their test specimens. The 
simplified model is basically the model proposed by Thorburn et al. (1983). The 
investigated numerical models were developed using the recommendations in the design 
standard and were analysed using nonlinear frame analysis software. Rigid beams were 
used to simulate rigid floor action. 

The capacity of all the test specimens was predicted reasonably well by the numerical 
models. However, the elastic stiffness was significantly overpredicted for SPSW1 and 
SPSW4 specimens. The researchers argued that the presence of flexural modes caused by 
the specimen height and the small panel aspect ratio influenced significantly the 
behaviour of the system. An increased overturning moment in the multi-storey specimen 
resulted in high axial and flexural force effects in the columns and, therefore, altered the 
inelastic deformation characteristics of the system by changing the yielding sequence in 
the shear wall (columns yielding prior to the infill plate). The researchers stated that as 
the height of the steel plate shear wall is increased while keeping the other parameters 
constant, the flexural action caused by the overturning moment will dominate at the upper 
stories where the story shear is low. This leads to a condition that is not consistent with 
the panel shear mechanism assumed by Thorburn et al. (1983). As a result of this 
investigation the researchers recommended that design standards should require steel 
plate shear walls to be analysed as a whole since the analysis of single panel behaviour is 
significantly different from the multiple panel behaviour. 

The researchers concluded that the current design guidelines contained in the CSA–S16–
01 (CSA, 2001) may not be directly applicable to some steel plate shear walls. Although 
the recommended procedure in the standard shows a good correlation with the specimen 
post-yield strength, it may significantly overestimate the elastic stiffness under certain 
conditions. They also stated that current design standard provisions do not adequately 
address design issues related to multi-storey shear walls, including the effect of large 
overturning moments, influence of aspect ratio, and the potential for undesirable yielding 
sequences of the shear wall components. 
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2.15 Astaneh-Asl and Zhao (2002) 

Astaneh-Asl and Zhao (2002) conducted two half-scale tests to investigate the cyclic 
behaviour of a steel plate shear wall system developed by Skilling Ward Magnusson 
Barkshire of Seattle. The system, which is shown in Figure 2.6, is a dual system where a 
coupled unstiffened steel plate shear wall is the primary lateral load resisting system with 
a ductile moment frame being used as a back up system. Large steel tubes filled with high 
strength concrete are used for the exterior columns whereas rolled wide flange sections 
are used for the interior beams and columns. The exterior columns carry a major portion 
of the gravity loads and contribute significantly to the storey shear resistance. 

Astaneh-Asl and Zhao tested two specimens. The specimens, shown in Figure 2.7, were 
half-scale and representative of a two-storey (specimen 1) and a three-storey 
(specimen 2) portion of this system. Specimen 1 had an aspect ratio (width–to–height 
ratio) of 0.67 while the aspect ratio of the panels in the second specimen was 1.0. More 
details about the specimens can be found elsewhere (Astaneh-Asl and Zhao, 2002). To 
simulate the boundary condition existing at mid length of a coupling beam, the test 
specimens were supported on sliding load cells. The specimens were subjected to fully 
reversed cyclic displacements by applying a single horizontal load at the top level, which 
increased in a controlled manner in each cycle. Both specimens showed a very ductile 
behaviour and resisted a large number of inelastic cycles.  

Specimen 1 resisted a total of 79 cycles, of which 39 cycles were in the inelastic range. 
Up to an inter-storey drift of 0.7% the behaviour was elastic. At an inter-storey drift of 
2.2% local buckling occurred in the interior columns. At an inter-storey drift of 3.3% and 
base shear of about 4000 kN, the upper floor-coupling beam fractured at the face of the 
column. The fracture, which was a result of low cycle fatigue, resulted in a loss of 40% of 
the load and the test was terminated at this point. 

Specimen 2 resisted 29 cycles of loading, of which 15 cycles were in the inelastic range. 
As for specimen 1, specimen 2 showed an elastic behaviour up to an inter-storey drift of 
about 0.7%. At an inter-storey drift of 2.2%, when the specimen had reached a base shear 
of 5451 kN, the upper floor-coupling beam fractured at the face of the column due to low 
cycle fatigue. At this point the load dropped by about 25% and the test was terminated. 

Both test specimens demonstrated large ductility. Yielding of the infill plates, beams, and 
interior columns was found to be the main contributing factor to energy dissipation. In 
both specimens the coupling beams developed plastic hinges at the face of the columns 
and fracture occurred only after a large number of inelastic cycles. The concrete filled 
steel tube column behaved elastically during both tests. The performance of bolted 
splices was very good and, although they were slipping during the later cycles of the test, 
they did not fracture. The beam-to-tubular column connections also performed in a 
ductile manner.  
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2.16 Summary 

Research on unstiffened steel plate shear walls has demonstrated the effectiveness of the 
system as a lateral load resisting system. The distinct advantages of the system are 
enhanced stiffness, strength and ductility, stable hysteretic characteristics and a large 
capacity for plastic energy absorption. The system is also believed to be more economical 
than an equivalent reinforced concrete shear wall (Timler and Ventura, 1999). 

Despite the recent research progress on steel plate shear walls and attention from 
structural engineering community, to date, relatively few of these structures have been 
constructed in North America. The lack of codified design guidelines is likely one of the 
main barriers for wide application of this system. In 1994, the Canadian standard for 
structural steel design, CAN/CSA-S16.1-94, included a non-mandatory appendix 
“Design requirements for steel plate shear wall” and in the latest edition of this standard, 
CSA-S16-01, the appendix was moved to the body of the standard, thus making it a 
mandatory part of the standard. The guidance provided in the standard is based on the 
unstiffened thin-panel concept and the proposed analysis method is the strip model 
developed by Thorburn et al. (1983). As reported by Rezai (1999) and Lubell et al. 
(2000), the strip model cannot be considered a reliable analytical tool for all steel plate 
shear wall configurations. Considering the expense in conducting large-scale tests the 
need for a reliable analytical model that simulates accurately the monotonic and cyclic 
behaviour of this system is necessary. Despite many attempts to develop analytical tools 
for steel plate shear walls, to date no comprehensive finite element model that simulates 
accurately the monotonic and cyclic behaviour of thin unstiffened steel plate shear walls 
has been developed. 
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Figure 2.1: Hysteresis behaviour of steel plate shear walls (Takahashi et al., 1973) 

 
 
 

 
Figure 2.2: Strip model proposed by Thorburn and Kulak (1983) 

(a) Unstiffened    (b) Heavily stiffened 
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Figure 2.3: Schematic of specimen tested by Tromposch and Kulak (1987) 

 

 

 

 
 

Figure 2.4: Hysteresis behaviour of specimen tested by Tromposch and Kulak (1987) 

 



22 

 
 

 
 

Figure 2.5: Four-storey steel plate shear wall tested by Driver et al. (1997) 
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Figure 2.6: Steel plate shear wall system studied by Astaneh-Asl and Zhao (2002) 

 
 
 
 

 
 
 
 

Figure 2.7: Specimens tested by Astaneh-Asl and Zhao (2002) 

Specimen 1 Specimen 2 
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3.  STEEL PLATE SHEAR WALL TEST 

3.1 Introduction 

A test on a large-scale three-storey unstiffened steel plate shear wall was conducted at the 
Centre for Engineering Research (C-FER) during the summer 2000. C-FER's laboratory 
facility is equipped with a 500 mm thick reinforced concrete reaction wall, supported by 
concrete buttresses. The strong wall was used to apply the horizontal loads on the steel 
plate shear wall specimen, which was anchored at its base to a prestressed concrete strong 
floor. A specially built reaction frame was used to apply gravity loads. 

The test specimen consisted of the upper three storeys of the four-storey steel plate shear 
wall tested by Driver et al. (1997). Details of this test were presented in section 2.10. 
Most of the damage in the specimen tested by Driver was concentrated in the bottom 
storey and, although the infill plate in the second storey buckled and deformed plastically 
during the test, no significant permanent damage was noticeable in the top three storeys. 
For this reason, the first storey, including the beam at level 1, was removed and the 
remaining part was welded to a 90 mm thick base plate to provide a three-storey 
unstiffened steel plate shear wall specimen.  

The shear wall, shown in Figure 3.1, had moment resisting beam–to–column connections 
with column-to-column spacing of 3050 mm and floor-to-floor spacing of 1830 mm. The 
infill plate thickness of panel 1, the bottom panel, was 4.8 mm and the other two panels 
had 3.4 mm thick infill plates. The main objectives of the testing program were to 
increase the database of large scale steel plate shear wall tests and to monitor closely the 
behaviour of the boundary members in the system. The following sections describe how 
the test program was conducted to meet these objectives. 

3.2 Description of the test specimen 

A schematic and photograph of the test specimen are shown in Figures 3.1 and 3.2, 
respectively. The columns consist of W310×118 sections spaced at 3050 mm, 
centre-to-centre and the beams are W310×60 sections at levels 1 and 2 and W530×82 at 
the top. The overall height of the shear wall, excluding the height of the pedestals at the 
top of the test specimen, is 5497 mm, with a typical storey height of 1830 mm. These 
dimensions are representative of a shear wall at approximately 50% scale for an office 
building. 

Since the test specimen consisted of the top three storeys from the Driver et al. 
four-storey steel plate shear wall specimen, the lower storey, which suffered severe 
damage during the test, was removed by flame cutting along the top flange of the first 
beam, thus leaving the fish plate welded to the infill plate. The bottom edge of the 
three-storey test specimen was cut straight and ground in preparation for welding. The 
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columns were connected to a 3800×800×90 mm steel base plate using full penetration 
groove welds for the flanges and fillet welds for the web. The fish plate for the lower 
storey was also welded to the base plate using fillet welds.  

As reported by Driver et al. (1997), the grade of steel for panel 1 was G40.21-300W 
(CSA, 1992) and the plate thickness selected was the thinnest plate readily available in 
this grade (4.8 mm). In order to obtain the thinner plates used in the second and third 
storeys, grade A569 (ASTM, 1991) steel was used for the second storey and grade J403 
GR1010 (SAE, 1994) was used for the top storey. The mean static yield strengths for the 
first, second, and third storey infill plates were 341 MPa, 257 MPa, and 262 MPa, 
respectively. The infill plates exhibited the classical stress versus strain curve of hot-
rolled structural steel, that is, a well-defined yield plateau followed by strain hardening. 
All the beams and the columns meet the requirements of class 1 (plastic design) sections. 
Rigid beam–to–column connections were provided by using complete penetration groove 
welds for the flanges and two fillet welds for the web. Column web stiffeners were also 
added along the beam flanges. Weld access holes and backing bars with run-off tabs were 
used to ensure complete penetration and continuity of the weld across the full width of 
both flanges. The backing bars were left in place after fabrication, which was common 
industry practice at the time the specimen was fabricated. The beam–to–column welds 
were deposited using a 1.6 mm flux cored wire E4802 T-9-CH. No pre- or post-heat was 
applied in the welding process. 

The infill plates were connected to the boundary members by using a fish plate 
connection as shown in Figure 3.3. Continuous fish plates, 6 mm thick and 100 mm wide 
were fillet-welded to the boundary beams and columns. The fish plates were connected at 
the corners using strap plates. The infill plates were positioned against one side of the fish 
plates (in the plane of the beam and column webs) with a lap of approximately 40 mm all 
around and then welded with continuous fillet welds on both sides. This detail provides a 
simple means of compensating for normal dimensional tolerances in the plane of the 
shear wall. The fillet welds between the infill plates and fish plates were designed to 
develop the full capacity of the infill plate.  

3.3 Preliminary numerical analysis of test specimen 

In order to estimate the shear capacity and the behaviour of the wall prior to the test, a 
preliminary finite element analysis was carried out using the commercial general-purpose 
finite element software ABAQUS (Hibbitt et al., 1998) The measured dimensions 
reported by Driver et al. (1997) were used in the finite element model of the specimen. 
All the components of the steel plate shear wall test specimen, including the beams and 
the columns, were modelled using four-node shell elements (element S4R in ABAQUS). 
All the nodes along the lower edge of the model were fixed to simulate attachment of the 
test specimen to the rigid base plate. The model was braced in the out–of–plane direction 
at beam–to–column joints as these locations were braced against out–of–plane 
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displacement during the test. Residual stresses were not considered in the model. Since 
the specimen was expected to undergo large displacements and strains, both material 
nonlinearity and geometric nonlinearity were considered in the analysis. 

Virgin material properties measured by Driver et al. (1997) for the four-storey shear wall 
were used for the preliminary finite element analysis of the test specimen, as it was not 
possible to measure the material properties from the three-storey specimen. A brief 
summary of the material properties reported by Driver et al. (1997) is provided in 
Table 3.1. The possible impact of using these material properties on the predicted 
behaviour of the three-storey steel plate shear wall specimen is discussed in chapter 6. 
The material behaviour for both infill plates and boundary members were assumed to be 
initially isotropic with an elastic–plastic strain-hardening material model. Von Mises 
yield criterion was used as the yield surface. 

Initial imperfections were considered in the finite element model. The infill plates were 
assumed to have an initial imperfection pattern corresponding to the buckling mode of 
the shear wall loaded in the same way as the test specimen. The maximum amplitude was 
set to 10 mm. Further refinement of the initial imperfection pattern is considered in 
section 5.4.2.  

Because the computational demands on this system are high, due to shear buckling and 
localized instabilities in the infill plate, monotonic loading was used to estimate the 
envelope of load versus deflection response. The results of this analysis were needed for 
the design of the test set up. The details of the solution strategy and difficulties with 
convergence encountered during the analysis are discussed in detail in chapter 5. Base 
shear versus total displacement of the specimen at each beam level are presented in 
Figure 3.4. Based on the preliminary analysis, the required capacity for horizontal jacks 
and reaction wall and the range of motion required for the jacks and instrumentations at 
each level were obtained. Using 250 mm stroke jacks (125 mm limit stroke for a fully 
reversed loading condition) at the first and second floors and a 380 mm stroke jack at the 
top floor, the capacity of the specimen was estimated at 3300 kN. This was governed by 
the limit of jack stroke at level 2 (see Figure 3.4). At the ultimate capacity the 
displacement of the first and top levels, relative to the base of the specimen, was 
estimated at 80 mm and 165 mm, respectively.  

3.4 Test set up 

The test set up for the shear wall is shown in Figures 3.5 and 3.6. A 90 mm thick concrete 
pad (with minimum reinforcement) was placed between the base plate of the shear wall 
and the strong floor in order to move the specimen up to the proper elevation, suitable for 
installation of the horizontal jacks and connecting them to the strong wall. Fourteen 
50.8 mm diameter high strength steel anchor rods were used to anchor the base plate of 
the shear wall to the strong floor. In order to provide more friction between the specimen 
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and the strong floor and to reduce vertical deformations of the anchor rods under forces 
produced by the expected large overturning moment, all the anchor rods were 
pre-tensioned to 70% of their expected tensile strength. 

The magnitude of the horizontal forces at different floor levels depends typically on 
building geometry, mass distribution and the particular earthquake event considered. 
Assuming simple geometry and uniform mass distribution, equal horizontal loads were 
applied at each floor level using 890 kN double-acting hydraulic jacks. Since the capacity 
of the test specimen was estimated at about 3300 kN, based on the preliminary pushover 
analysis of the test specimen, the hydraulic jacks at each floor should have a minimum 
capacity of 1100 kN. This load level exceeded the capacity of the hydraulic jacks 
available for this test and it was therefore necessary to pair two hydraulic jacks at each 
level. The detail of the connection of the hydraulic jacks at each level is shown in 
Figure 3.7. All six jacks were connected to a common manifold and manual valves were 
placed between each jack and the manifold to facilitate the application of equal forces at 
each floor level. The loads were applied at the level of the beam top flange to simulate 
the location of the inertial forces induced by floor masses. The laboratory reaction wall 
resisted the horizontal actuator forces.  

Gravity loads of a magnitude representing reasonable unfactored values for a typical 
building were applied at the top of the columns. The loads were applied through a 
distributing beam at the top of the specimen and four calibrated tension rods connected to 
four 645 kN hydraulic jacks at the base (see Figure 3.5). The tension rods were connected 
at the top to the distributing beam outriggers (see Figure 3.5b), two at the north face and 
two at the south face of the shear wall. The vertical hydraulic jacks were hydraulically 
independent so that they could be controlled separately. This was necessary to keep the 
distributing beam outriggers in a horizontal position to provide full contact between the 
distributing beam and the top of the columns during the test. The position of the 
distributing beam was monitored during the test by an electronic rotation meter 
(clinometer), which was mounted on the distributing beam web. 

To keep the axis of the tension rods vertical in a plane parallel to the specimen, all four 
vertical hydraulic jacks were connected separately to gravity load simulators, shown in 
Figure 3.5. A gravity load simulator is a pin-jointed mechanism that keeps the orientation 
of the tension rods close to vertical during the in-plane displacement of the shear wall. 
The working capacity of each gravity load simulator available for this test was 420 kN. 
As a result, four gravity load simulators were used to apply 540 kN vertical loads to each 
of the two columns of the test specimen in a symmetric configuration. The gravity load 
applied to each column was kept constant at 540 kN throughout the test, except during 
the first three lateral load cycles during which the load was 400 kN. 

Out–of–plane bracing was provided at the ends of each beam (six locations) as well as at 
each end of the distributing beam. An articulated bracing, which is based on the principle 
of the Watt mechanism, was used. Since the bracing was articulated, it did not offer any 
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significant restraint in the direction of the applied loads and did not require manual 
adjustment. One such brace is shown in Figure 3.5b. This system consists of three rigid 
links connected by ball-and-socket joints. The brace point on the specimen was 
connected to the mid-point of the centre link and the two other links were connected, 
through a ball-and-socket attachment bracket, to an independent reaction frame erected 
around the test specimen (see Figure 3.6). The brace points at the lower two beams were 
located on the columns 100 mm below the beam bottom flange in order to prevent any 
contact between the centre link and the horizontal connection tabs during the test. At the 
top level, the bracing point was on the top flange of the beam.  

Since the friction between the specimen and the concrete floor was not sufficient to 
prevent in-plane slippage of the shear wall during the test (as reported by Driver et al. 
(1997), a heavy in-plane bracing member was designed and welded to the specimen at the 
base plate and connected to the strong wall by two 50 mm high strength tension rods. A 
schematic of this bracing is shown in Figure 3.8 

3.5 Instrumentation and data acquisition 

All the kinematic parameters that seemed to be important either in interpreting the results 
or in controlling the test were measured. The following forces and displacements were 
monitored and recorded during the test: horizontal load and in-plane displacement at each 
floor level and at the base plate; gravity loads in the columns; out–of–plane displacement 
of the wall at the joints to ensure that the frame remained in the plane of the applied loads 
throughout the test; strains at 20 cross-sections in the columns and in the beams; and the 
orientation of the tension field in panels 1 and 2. The location of the instrumentation used 
to measure strains and displacements is shown in Figure 3.9. 

Horizontal loads at each floor level were measured with custom–built load cells, 
manufactured at the University of Alberta. The load cells, shown in Figure 3.7, were 
placed between the double clevis, connecting the two jacks, and the horizontal connection 
tabs at each level. To provide extra measurement for horizontal loads, two pressure 
transducers were used to measure the oil pressure in the horizontal jacks. There was an 
excellent agreement between the horizontal load cells and the measurement by pressure 
transducers. The difference between the two measurements was always less than 1%. 

Commercial, flat load cells of 890 kN capacity, shown in Figure 3.5a, were used to 
measure the vertical loads on the top of each column. Four strain gauges were mounted to 
each tension rod in a Wheatstone bridge circuit and calibrated so that they acted as 
additional load cells. This provided a redundant set of measurements for gravity loads. 
There was an excellent agreement between the two measurements and the difference 
remained below 2% throughout the test. 
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In-plane displacements were measured at each of the three levels of the shear wall using 
three long–range cable transducers. Out–of–plane displacements at all beam–to–column 
connections were measured using six linearly variable displacement transformers 
(LVDTs) to assess the effectiveness of the lateral bracing during the test. Measurements 
were also taken to monitor any movements of the base plates. Two LVDTs were used to 
measure the in-plane slippage of the base plate. Any out–of–plane movement of the base 
plate, resulting from rigid body translation and rotation of the base plate about a vertical 
axis, was captured with two mechanical dial gauges that monitored the transverse 
displacement at the north east and north west corners of the base plate. In order to assess 
the anchorage of the base plate to the strong floor, four LVDTs and two dial gauges were 
installed on the base plate to measure any vertical displacement. The LVDTs were 
installed on the north and the south sides of both columns and the dial gauges were 
placed at intermediate locations between the anchor bolts. Figure 3.9 shows the location 
of all translational measurement devices. 

Three clinometers were used to measure the rotation of the shear wall at the points of 
attachment of the hydraulic jacks to the test specimen (see Figure 3.9). In addition, one 
clinometer was installed on the web of the distributing beam to monitor the condition of 
the distributing beam. This rotation was controlled during the test by adjusting the gravity 
loads in the jacks on the north and south sides of the wall to make the distributing beam 
outriggers horizontal at the desired gravity load.  

To study the behaviour of beams and columns, especially of the boundary members 
around the second panel and the columns at the first level, a total of 91 strain gauges were 
mounted at twenty different sections as shown in Figure 3.9. Most of the strain gauges 
were placed on the boundary members of the second panel for two reasons. First, the 
second panel was an intermediate panel and, therefore, its behaviour is more 
representative of the behaviour of most panels in a multi-storey frame. Second, the 
preliminary finite element analysis of the test specimen indicated that the second panel 
might be more critical than the first panel. To avoid localized effects from the beam–to–
column connections, the strain gauges were placed at least 300 mm (almost the depth of 
beam or column) away from the connections. In order to obtain an estimate of the 
average strain in the flange at any cross-section, two strain gauges were positioned 
longitudinally on each flange at each cross-section. In addition, strain gauges were 
mounted at mid-depth at some cross-sections in order to evaluate the distribution of axial 
strain across the depth. The measured strains were used to evaluate the bending moments 
and axial forces at instrumented cross-sections. All the strain gauges were single grid 
electrical resistance gauges with a gauge length of 5 mm.  

A data acquisition system with 130 channels was used to read the input from the 
electronic devices during the test. The data was processed using the commercial software 
Lab View® to plot the load versus deflection curves for all panels and to monitor the 
parameters that were important to control the test. The dial gauges used to monitor the 
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base plate movements were recorded manually and were closely monitored throughout 
the test to ensure that no undesirable displacements were imposed on the test specimen. 

3.6 Loading protocol 

The test was conducted under fully reversed cyclic loading based on the 
recommendations outlined in ATC-24 (Applied Technology Council, 1992). The 
document provides guidance on loading history and the presentation of the results for 
slow cyclic loading tests. Based on ATC-24 a “deformation control parameter”(taken 
here as some parameter related to interstorey drift) should be selected for controlling the 
test in the inelastic range. In multi-storey buildings, usually the majority of deformation 
and energy absorption takes place in the bottom storeys. The deformation control 
parameter selected for this test was the interstorey drift in the second panel. The selection 
of this parameter for controlling the test in the inelastic phase was based on the 
preliminary pushover analysis of the test specimen, which indicated that buckling and 
yielding of the second panel would initiate slightly before the first panel due to the 
smaller thickness and lower yield strength of the panel in the second storey. During the 
test signs of yielding were indeed detected in the second panel earlier than in the first 
panel. Lateral loads were applied to the test specimen very slowly in order to simulate a 
quasi-static condition. In each plastic cycle and before recording the data, the target 
displacement at both excursions were maintained for a while to allow yielding and plastic 
deformation take place in the specimen. In average about one cycle per day were applied 
to the test specimen.  

Before application of the lateral loads, a gravity load of 400 kN was applied at the top of 
each column. This load was maintained constant for the first three cycles while the lateral 
loads were applied to the test specimen. After the third loading cycle, the gravity load in 
the columns was increased to 540 kN and kept constant for the remainder of the test. The 
application of the gravity loads did not cause any visible signs of distress anywhere in the 
test specimen. 

The point of significant yielding (δy, Qy), which is the essential parameter for controlling 
the test in the inelastic range, was first estimated from the preliminary finite element 
analysis. It was estimated that the shear wall would undergo significant yielding (detected 
from plots of load versus displacements) at a base shear, Qy, of 2650 kN. During the test, 
significant yielding was observed first in the second panel in load cycle 10 at a base shear 
Qy=2300 kN. The drift at significant yielding, yδ , was determined to be 9.5 mm when 
the test specimen was pushed in the west direction and 7.0 mm when pulled in the east 
direction. Since the drift in panel 2 at significant yielding was not the same in both 
directions, the smaller of the two values was used for controlling the test (i.e., 

yδ = 7.0 mm). The reason for the lack of symmetrical behaviour observed in the test 
specimen will be discussed in Chapter 4. 
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Prior to the point of significant yielding, the test was conducted under load control 
condition. Single loading cycles, resulting in a base shear of ±200 kN, ±400 kN, ±600 kN 
and three blocks of cycles with ±1000 kN and ±2020 kN were applied to investigate the 
elastic and early inelastic behaviour, which constituted cycles 1 to 9. After cycles 10,11, 
and 12 with a second storey drift of 9.5 mm in the west direction and 7.0 mm in the east 
direction, the drift of the second storey was increased by yδ = 7.0 mm in each subsequent 
deformation step. Based on the ATC-24 guideline, three cycles were applied at each 
deformation step up to a deformation of 3 yδ  (cycles 16-18). Two cycles were applied at 
each deformation step thereafter. 

In cycle 21, when the specimen was being loaded in the east direction, an unexpected 
fracture occurred at the east beam–to–column connection at the first level at a base shear 
of 3400 kN. This fracture resulted in only a slight reduction of base shear, mainly 
because the test was being conducted under displacement control. After completing that 
cycle, which reached a target drift of yδ5± , the connection was repaired and the 
remaining cycles were conducted to the full stroke of the hydraulic jacks to obtain the 
capacity and investigate the behaviour of the specimen beyond the peak load. The test 
was ended after cycle 24. Although the specimen had not yet failed at this time, severe 
local buckling deformations in the beam at level 1 and in the columns at the base, and the 
rapid growth of plate tears in panel 1, indicated potential rapid deterioration of the test 
specimen. 

Table 3.2 shows the loading protocol used to conduct the test. Cycles designated as + or – 
refer to loading in the west and in the east directions (away from or towards the reaction 
wall), respectively. 
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Table 3.1: Material properties used for analysis of the three-storey steel plate shear wall 
(taken from Driver et al., 1997) 

 

 
Elastic 

Modulus 
(MPa) 

Static 
Yield 
(MPa) 

Static 
Ultimate 
(MPa) 

Yield 
Strain 

% 

Hardening 
Strain 

% 

Ultimate 
Strain 

% 

Rupture
Strain 

% 

W310×118 203 000 313 482 0.169 1.41 15.5 26.3 

W310×60 203 900 332 478 0.191 1.76 16.8 26.2 

W530×82 206 100 349 493 0.204 1.85 15.5 28.2 

Panel 1 208 800 341 456 0.175 2.62 20.1 34.2 

Panel 2 210 900 257 344 0.134 2.44 20.0 42.5 

Panel 3 203 100 262 375 0.145 1.53 17.7 34.1 
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Table 3.2:Loading protocol for quasi-static cyclic test of three-storey steel plate shear 
wall 

 
Push 

(Load applied in west direction) 

Pull 

(Load applied in east direction) Cycle 

No. 
Behaviour 

Base Shear 

(kN) 

2nd Panel drift 

(mm) 

Base Shear 

(kN) 

2nd Panel drift 

(mm) 

1 Elastic +200 0.75 -200 -0.2 

2 Elastic +400 1.6 -400 -.75 

3 Elastic +600 2.0 -600 -1.8 

4 Elastic +1000 3.7 -1000 -2.8 

5 Elastic +1000 3.7 -1000 -2.9 

6 Elastic +1000 3.6 -1000 -2.8 

7 Elastic +2025 7.3 -2025 -6 

8 Elastic +2025 7.9 -2025 -5.7 

9 Elastic +2025 8.0 -2025 5.7 

10a Plastic +2290 +9.5 -2300 -7.0 

11 Plastic +2282 +9.5 -2280 -7.0 

12 Plastic +2265 +9.5 -2295 -7.0 

13 Plastic +2679 +14 -2876 -14 

14 Plastic +2696 +14 -2860 -14 

15 Plastic +2710 +14 -2848 -14 

16 Plastic +2963 +21 -3174 -21 

17 Plastic +2970 +21 -3182 -21 

18 Plastic +2961 +21 -3123 -21 

19 Plastic +3174 +28 -3419 -28 

20 Plastic +3208 +28 -3430 -28 

21 Plastic +3313 +35 -3423 -35 

22b Plastic +3339 +55 -3343 -32.8 

23c Plastic +3163 +53.8 -3272 -31.6 

24 Plastic +2848 +55 — — 

 

a Significant yielding observed in second panel. 

b Push and pull to the maximum stroke of hydraulic jacks. The specimen reached its 
maximum base shear of 3500 kN in the east and west directions at a second storey drift of 
+50.8 mm in the west direction and a second storey drift of – 31.4 mm in the east direction. 

c Pushed and pulled to the maximum stroke of the hydraulic jack at level 2. 
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Figure 3.1: Schematic of three-storey steel plate shear wall 
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Figure 3.2: Three-storey steel plate shear wall specimen 

 

 

 

 

 

 

Calibrated tension rods 

Gravity load simulator
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Figure 3.3: Fish plate detail used for connection of infill plate to the frame 
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Figure 3.6:Overview of test set up 
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Figure 3.7: Detail of connection of hydraulic jacks to the test specimen 
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Figure 3.8: Schematic of in-plane bracing at the base of specimen 
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Figure 3.9: Instrumentation used to measure strains and displacements 
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4. DISCUSSION OF TEST RESULTS  

4.1 Introduction 

The three-storey steel plate shear wall test specimen performed very well during the test. 
The specimen reached an ultimate load of 3500 kN and a displacement ductility of 
7.9 yδ . The maximum load predicted by the preliminary finite element model was 
slightly lower than the maximum load achieved in the test but the stiffness of the 
specimen was the same as predicted by the finite element model. Although one of the 
beam–to–column connections fractured during the test, this fracture had no significant 
impact on the load carrying capacity of the system. The large ductility, the system 
redundancy, and the high energy absorption capability of steel plate shear walls once 
again demonstrated the ability of the system to resist extreme cyclic loading 
representative of severe earthquakes.  

This chapter presents a discussion of the general behaviour of the steel plate shear wall 
specimen observed during testing. A discussion of the data obtained from the strain 
gauges mounted on the beams and columns is postponed until chapter 7.  

4.2 Gravity load application 

Gravity loads were applied at the top of each column through a distributing beam 
installed on the top of the shear wall. For the first three loading cycles only 75% of the 
target gravity load, i.e. 400 kN, was applied to each column in order to check the 
functionality of gravity load simulators. For the remaining cycles of the test, the full 
gravity load of 540 kN was applied to each column. During the application of gravity 
load no yielding or significant deformation was observed in any part of the test specimen. 

4.3 Specimen behaviour during the test 

4.3.1 Cycles before significant yielding  

The response of the shear wall during the first nine cycles was virtually linear despite 
some localized yielding detected in the infill plate. The first yield line was detected in the 
bottom west corner of panel 2 during cycle 7 at a base shear of 1800 kN (51% of the test 
specimen capacity) when the specimen was pulled in the east direction (see Figure 4.1). 
The yield lines were vertical lines adjacent to the fish plate, indicating high horizontal 
tensile stresses in that area due to development of diagonal tension field. In addition, 
local yielding was observed at the base of the east column and some localized yielding 
was observed at the bottom west corner of panel 1 during cycles 7, 8 and 9. None of these 
signs of local yielding had any noticeable effect on the global load versus deflection 
response of the shear wall and the behaviour remained linear elastic. 
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4.3.2 Cycles after significant yielding 

The first cycle following significant yielding was cycle 10. In this cycle the base shear 
reached 2290 kN as the lateral loads were applied in the west direction, corresponding to 
a drift of 9.5 mm in panel 2. A base shear of 2300 kN was reached in the opposite 
direction, corresponding to drift of 7 mm in panel 2. Yield lines developed around the 
fish plate to infill plate connections at both top corners and the bottom east corner of the 
first panel. New yield lines formed in the second storey infill plate and in the web of the 
beam at level 1 (see Figure 4.2). Buckling of panels 1 and 2 was accompanied by several 
loud reports as the plate buckles popped through and reoriented themselves upon reversal 
of the loading direction. These loud reports were heard in all subsequent cycles. The 
average orientation of the buckles (measured relative to the vertical) that formed during 
this series of cycles was found to be about 47.4o in panel 1 and 46.8o in panel 2 (with a 
standard deviation of 3° in panel 1 and 1.2° in panel 2). The angle of the buckles, 
measured at their crest, corresponds to the orientation of the tension field. This angle 
changed slightly during the later cycles as will be discussed in section 4.5. Cycles 11 and 
12 were applied in the same manner as cycle 10. 

The next block of three cycles was carried out at a second storey drift equal to twice the 
storey drift at significant yielding (δ = 2 yδ = 14 mm). During the first cycle of this block 
(i.e. cycle 13) the yield lines extended over the full surface of panel 2 and the beam web 
at level 1. Figure 4.3 shows the extent of yielding in panel 2 in the following cycle (cycle 
14). More yield lines developed in the infill plate at the first level during cycle 13, mainly 
around the fish plate at the corners and in the top half region of the infill plate. In this 
cycle, the first signs of yielding in panel 3 were detected along the bottom fish plate and 
in the bottom corners of the infill plate at the top level. In addition, yield lines were 
observed in the web of the beam at level 2 at both ends. The applied base shears in the 
east and west directions were about 2860 kN and 2700 kN, respectively, during this 
deformation step (δ = 2 yδ ). 

The first sign of yielding in the web and the flanges of the columns in the first storey, 
immediately below the beam at level 1, was observed during cycle 16 (δ = 3 yδ ). The 
yielding at the base of both columns was pronounced and yielding extended further in the 
beam web at level 2 and in infill panel 3. The base shear in this block of cycles varied 
from 2963 kN in the west direction to 3182 kN in the east direction.  

Starting from cycle 19, the first cycle at the second storey drift of 4  yδ = 28 mm, each 
displacement block consisted of two cycles only. In cycle 20, flange local buckling was 
detected at both ends of the beam at the first level near the beam–to–column connection 
(see Figure 4.4). Local buckling in the west flange of the east column was also observed 
at a distance of 300 mm below the beam at level 1. Cycle 20 was the second cycle in this 
block of two cycles with the base shear varying from 3200 kN in the west direction to 
3420 kN in the east direction. 
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A 15 mm tear at the bottom east corner of the infill plate of panel 1 was observed in 
cycle 21 (δ = 5 yδ ). The tear was initiated by low cycle fatigue resulting from the cyclic 
kinking of the infill plate at the corner of the panel as the infill plate buckled cyclically 
with load reversals. Four tears were also observed at the top west and bottom east corners 
of panel 2 around the strap plate and one tear was observed at the top east corner. The 
tears in panel 2 initiated in the fish plates or in the strap plates. At this time, the local 
buckles at both ends of the beam at level 1 and in the west column had grown 
significantly. As the load was reversed in cycle 21, local buckling was observed at the 
base of the east column. The load reversal caused the existing tears to open more. At a 
base shear of 3400 kN, applied in the east direction, sudden rupture of the beam top 
flange of level 1 at the east beam–to–column connection occurred. The fracture of the 
beam–to–column connection, shown in Figure 4.5, seems to have initiated at the beam 
flange–to–web junction and propagated outward towards the flange tips. Because the 
fracture was later repaired, it was not possible to examine the fracture surface to 
determine the exact origin of the flange rupture. The fracture also extended in the web at 
a distance of about 45 mm. Because the test was conducted under displacement control, 
fracture of the flange caused a reduction of base shear of 200 kN. The shear wall was still 
able to carry more loads and, despite the beam failure, cycle 21 was completed under a 
base shear of 3420 kN. 

Rupture of the beam flange also triggered the formation of a large crack in the infill plate 
of panel 2. It was suspected that the rupture of the beam–to–column connection and the 
large tear at the corner of panel 2 might affect the behaviour of the shear wall. Since one 
objective of the test was to evaluate the maximum capacity of the wall and investigate the 
behaviour of infill plates under extreme loading conditions, the beam–to–column 
connection was repaired after completing cycle 21. The connection repair consisted of 
gouging the crack in the flange, web, fish plate and infill plate, re-welding the crack and 
adding welded moment plates to the joint at the top flange. The moment plates, consisting 
of two plates half the width of the beam flange, were placed on both sides of the infill 
plate and were fillet welded to the beam and column flanges. The repair thus prevented 
further local buckling distortion of the beam flange at the face of the column. 

Testing of the specimen resumed after repair of the connection. In cycle 22, the wall was 
loaded until the limit of the stroke of the hydraulic jacks in both directions was reached in 
order to determine the capacity of the shear wall. The shear wall reached its base shear 
capacity in both directions, namely, 3530 kN in the west direction and 3500 kN in the 
east direction. In both directions the load started on a descending branch before the stroke 
capacity of the actuators was reached. The maximum storey drift in panel 2 during 
cycle 22 was 55 mm (δ = 7.9 yδ ) in the west direction and 33 mm (δ = 4.7 yδ ) in the east 
direction. The stroke limit in the hydraulic jacks at level 2 was reached sooner in the east 
direction because of the unsymmetrical drift observed in panel 1. The local buckling 
distortion of the west column flange, shown in Figure 4.6, was severe, both at level 1 and 
at the base. The magnitude of the distortion when the column was in compression due to 
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the overturning moment reached a magnitude of 70 mm. During this cycle, new tears 
were detected in panel 1. 

Cycle 22 was repeated to investigate how the specimen would behave after the load 
carrying capacity in the previous cycle had started to decrease. During cycle 23 the shear 
wall reached a base shear of 3160 kN in the west direction and 3270 kN in the east 
direction. This represents a decrease in capacity of 10% in the west direction and 6% in 
the east direction. It should be noted that in this cycle the wall did not reach its peak 
capacity in the east direction because of the stroke limitation of the hydraulic jack at the 
second level. The reduction of 6% is therefore an overestimate of the reduction in 
capacity in the east direction. It is believed that the observed degradation of the shear 
wall capacity was caused by an increase in the number of tears, growth of the existing 
tears, and local buckling of the boundary members.  

The size of the tear in the bottom east corner of panel 1, which was 15 mm in cycle 21, 
reached 300 mm in cycle 22 and 540 mm in cycle 23. The tear, shown in Figure 4.7, was 
oriented perpendicular to the tension field, thus reducing anchorage of the tension field at 
the corner of the infill plate. 

The test was completed with one half cycle applied in the west direction. Once again, the 
storey drift in panel 2 was brought to 55 mm in the west direction. The maximum base 
shear reached in this half cycle was 2850 kN, which represents a 10% reduction from the 
previous cycle. The test was terminated at this point. The shear wall specimen at the end 
of the test is shown in Figure 4.8 and the location of observed tearing is depicted in 
Figure 4.9. It can be seen that, despite the fact that panel 1 sustained the most damage, 
panel 2 also sustained severe plastic deformations, indicating the ability of both panels to 
absorb significant amount of energy. Panel 3 shows signs of extensive yielding, although 
the damage in that panel is much less severe than in the other two panels.  

4.4 Hysteresis behaviour 

The load versus deformation behaviour of panel 2 was used to control the test based on 
ATC-24 (Applied Technology Council, 1992). The base shear versus storey drift for 
panels 1, 2, and 3 are presented in figures 4.10, 4.11, and 4.12, respectively. The base 
shear is plotted in Figure 4.13 as a function of the displacement measured at the top of the 
test specimen. All the curves exhibit the same characteristics as those observed in the 
previous tests (Driver et al., 1997; Tromposch et al., 1987). In cycles 1 to 9 the specimen 
behaviour was elastic and exhibited high initial stiffness (to be discussed in next section). 
This high initial stiffness is a necessary requirement for an ideal lateral load resisting 
system in order to minimise drift under wind and service loads.  

Well defined hysteresis curves began to develop at cycle 10, where unloading and 
reloading in opposite directions developed a consistent and typical pinched hysteresis 
curve. Pinching of hysteresis curves is reflected by a substantial drop of the stiffness due 



 

  49 

to the release of the tension field developed in the previous load excursion. The slope of 
the unloading curve represents the elastic stiffness of the specimen. As can be seen, there 
is a slight reduction of stiffness after each loading cycle. This is attributed to the plastic 
deformations taking place in the infill plate at each cycle. The infill plate effectively 
becomes larger than the space delineated by the beams and columns, resulting in a 
"bulged out" panel once the load is removed. As a result, the test on the original 
four-storey shear affected the stiffness of the three-storey shear wall specimen. This 
stiffness reduction due to previous loading history should be taken into consideration for 
a more accurate analysis of the present specimen.  

The behaviour of the steel plate shear wall in the plastic range can be better understood 
by studying closely a typical hysteresis curve. Once the specimen was loaded in the 
inelastic range, unloading and reloading in the opposite direction produced typical 
pinching of the hysteresis curve. Figure 4.14 shows a typical hysteresis loop taken from 
the response of the second panel at cycle 18. Point d shows the peak displacement in this 
cycle while loading the shear wall in the west direction. When unloading the specimen 
from point d, the response follows path de, which is linear and has a similar stiffness to 
the elastic stiffness of the panel during loading (with the increasing peak deflection in 
each cycle, the slope of the unloading portion decreases slightly). When loading starts in 
the opposite direction, the specimen shows a substantial drop in the stiffness, as indicated 
by the slope of segment ef. This reduction in stiffness is due to the absence of tension 
field action. In this region of the shear versus drift curve, the frame is the main lateral 
load resisting system. The stiffness of segment ef is obtained as 47 kN/mm, which is 
slightly higher than the initial stiffness of the frame alone (32 kN/mm) but is much lower 
than the initial stiffness of the steel plate shear wall in the second panel (220 kN/mm), 
which indicates that in segment ef the infill plate is not very effective. After sufficient 
panel deformation, the tension field redevelops at point f. Redevelopment of the tension 
field increases the stiffness of the shear wall. As the load approaches the ultimate load, 
various portions of the shear wall, mainly the infill plate, yields. This results in a gradual 
stiffness reduction starting at point g. Segment habcd of the hysteresis loop represents 
unloading and reloading in the opposite direction, thus repeating the same behaviour 
completes the hysteresis loop.  

In each block of cycles, as the deflection magnitude increased to a new level, the 
maximum load in the shear wall increased gradually. The primary difference in the 
hysteresis curves is the stiffness of the panel during redevelopment of the tension field 
and the deflection required for the redevelopment of the tension field. The response of the 
control panel was kept symmetrical up to cycle 22. In the last three cycles the test 
specimen was loaded to the stroke limit of the jacks in both directions, and this resulted 
in an unsymmetrical loading of the wall. This can be observed in figures 4.10 to 4.13.  
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4.5 Discussion of test results 

A total of 24 load cycles were applied to the test specimen. Fourteen of these cycles 
caused significant yielding in the wall. Including the 20 inelastic load cycles that were 
applied in the previous test on the four-storey specimen tested by Driver et al. (1997), the 
bottom storey of the test specimen underwent 34 inelastic load cycles. This is clearly 

more severe than the number of inelastic cycles that a structure would be subjected to 
during an earthquake (Derecho et al., 1980). The two tests conducted on the top three 
storeys of the Driver et al. specimen have demonstrated the high shear capacity, the very 
high ductility, and the potential for high energy dissipation capacity of steel plate shear 
walls. The shear wall reached its maximum capacity at a base shear of 3500 kN and a 
drift of 50 mm in the second storey, which represents seven times the drift at first 
significant yield (i.e., 7 yδ ).  

In the elastic range (cycles 1 to 9), the shear wall was very stiff. The initial stiffness of 
panel 1, taken as the slope of the base shear versus storey drift, was 320 kN/mm. This is 
greater than the initial stiffness displayed by the corresponding panel in the four-storey 
specimen (the second storey in the four-storey specimen), which was 242 kN/mm (see 
Figure 4.15a). The difference in stiffness between the panel in the three-storey specimen 
and the corresponding panel in the four-storey specimen is mainly attributable to the 
change in boundary condition at the base of the panel and the reduced gravity load used 
for the three-storey steel plate shear wall. A similar stiffening phenomenon was also 
observed in panel 2, showing a stiffness of about 190 kN/mm in the pre-yield cycles, 
compared to 159 kN/mm (see Figure 4.15b) that would have been predicted based on the 
four-storey shear wall test. 

The effectiveness of the infill plate can be demonstrated by comparing the stiffness of the 
steel plate shear wall system with that of the frame alone. The initial stiffness of the steel 
plate shear wall specimen is obtained as 320 kN/mm in the first panel and 190 kN/mm in 
the second panel. A comparison of these stiffness with the corresponding stiffness for the 
frame alone (61 kN/mm in the first storey and 32 kN/mm in the second storey) indicates 
that infill plates significantly increase the stiffness of the frame. This increase is 425% for 
the first panel and 494% for the second panel. 

An interesting aspect of this system, which was clearly demonstrated in this test, is its 
redundancy. Despite the fact that a beam–to–column connection fractured during the test, 
this did not seem to affect the ability of the frame to carry the shear force. The connection 
fracture resulted in a small drop of shear force (5.9%) in the test specimen but the full 
load was quickly recovered, as demonstrated in figures 4.10 and 4.11.  

The behaviour of the test specimen was not symmetric during the test, especially in the 
first panel. The reason for this unsymmetrical behaviour becomes apparent when the 
response of the four-storey shear wall from which the present test specimen was obtained 
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is examined. During the four-storey shear wall test, the specimen failed by rupture of the 
column base during the second half of cycle 30 at a base shear of 1640 kN. At the time of 
rupture of the column base the loads were applied in the east direction (corresponding to 
the west direction in the present test since the specimen was turned 180o for testing of the 
top three storeys) and the tension field in the second panel (first panel in the present test) 
had developed in the east direction. After failure and subsequent unloading, a pattern of 
residual buckles, consistent with the orientation of the tension field in that direction, 
remained in the second panel. Consequently, when the three-storey shear wall was loaded 
in the west direction, the tension field was already active. In the opposite direction, the 
specimen showed more flexibility because the tension field had to develop. 

The test on the original four-storey steel plate shear wall not only affected the symmetry 
of the three-storey shear wall test results, but it also affected the stiffness of the specimen. 
Figure 4.15(a), which shows the response of the second storey of the four-storey 
specimen, indicates that the test would have ended at point B when the load was removed 
after failure at point A. As the test specimen was reloaded in the three-storey steel plate 
shear wall test, the stiffness in one direction is significantly different from the stiffness in 
the other direction (54 kN/mm when loading towards point C versus 162 kN/mm when 
re-loading towards point A). It was also observed during the four-storey steel plate shear 
wall test that the stiffness of the wall decreased with the number of cycles. In cycles 29 
and 30 of the four-storey test the stiffness had dropped to almost 54 kN/mm even after 
development of the tension field, compared to the initial stiffness of 242 kN/mm. Panel 1 
from the three-storey test specimen had significant buckles present before the start of the 
test. It is expected that its stiffness would be reduced as a result of these buckles. 
Figure 4.15(b) indicates that a similar effect would be expected from the infill plate in the 
second storey of the three-storey specimen. This change in stiffness, the significant 
change in the boundary condition at panel 1 when the four-storey specimen was cut to a 
three-storey specimen, combined with the effect of the different gravity loads in the two 
test specimens, makes a direct comparison between the three-storey specimen and the 
four-storey specimen difficult. 

The area enclosed by a hysteresis curve is a measure of the energy dissipated by the 
system through a load cycle. The hysteresis curves generated by a steel plate shear wall, 
especially at the lower panels, are fairly wide, indicating good energy absorption of the 
system. In order to assess the performance of the test specimen quantitatively, the energy 
dissipated by the test specimen was calculated for each of the three storeys. Figure 4.16 
shows a summary of the cumulative energy absorbed by each panel throughout the test. 
As expected, because the behaviour in the first ten cycles was essentially elastic, little 
energy was absorbed in the early stages of the test. Figure 4.16 also confirms that panel 3 
did not contribute very much to the total energy absorption. Although in the early stages 
of inelastic behaviour panel 2 contributed to the total energy dissipation as much as 
panel 1, its relative contribution decreased near the end of the test when severe plastic 
deformations and tearing were observed in panel 1. The contribution of panel 2, 
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nevertheless, remained significant. At the end of the test, panel 1 had absorbed 1740 kJ, 
panel 2 had absorbed 790 kJ, and the top panel had absorbed 130 kJ. Therefore, panel 1 
contributed 65% of the total energy dissipation and panel 2 contributed 30%. 

The ability to develop tension field action and to dissipate a significant amount of energy 
in more than one storey would be an important aspect of the design of steel plate shear 
walls in multi-storey buildings. Consideration of this aspect in the design of steel plate 
shear walls results in a more economical system in resisting lateral loads, especially in 
region with severe earthquakes. 

4.6 Inclination of the tension field 

The angle of the tension field in the first and second panels was measured during the test. 
A number of relatively large buckle waves, at least two in each panel, were formed and 
the inclination of the tension field was assumed to be the same as the orientation of the 
buckle waves. Therefore, the angle of the tension field was obtained by measuring the 
angle of the crest of the buckle waves (relative to the vertical). Because of unsymmetrical 
behaviour in the response of the shear wall, the inclination of the tension field was 
measured as the load was applied in each directions and the average was taken to obtain 
the tension field orientation. 

Figure 4.17 shows a schematic of the buckles as seen on the north face of the first and 
second panels as the shear wall was loaded in the east and west directions. Tables 4.1 to 
4.4 present the measured orientation of the tension field at various load cycles. The 
measurements were taken from cycle 10 when significant yielding was first observed in 
the load versus deflection response of the shear wall. Figure 4.18 shows the variation of 
this angle at different loading cycles for both panels. As it can be seen, there is a 
fluctuation of a few degrees in the inclination of tension field between cycles 10 and 16. 
However, after cycle 16 the orientation of the tension field remained approximately at 51 
degrees in the first panel and 45 degrees in the second panel. Equation 2.2 (Timler and 
Kulak, 1983) predicts a tension field inclination of 41.2° for the first panel and 42.4° for 
the second panel.  

Equation 2.2, which is the form used in the Canadian Standard CSA–S16–01, is based on 
a number of simplifying assumptions, mainly elastic behaviour of the infill plate and the 
boundary members. However, the measurements were obtained when the test specimen 
was in the plastic range. Therefore, the measured value at cycle 10, which represents the 
beginning of general yielding, is a more appropriate value to compare with the theoretical 
formula. The angle of inclination of the tension field in cycle 10 was 47.6° in panel 1 
(compared to a predicted value of 41.2°) and 46.7° in the second panel (compared to a 
predicted value of 42.4°). Another simplifying assumption made in the derivation of 
equation 2.2 was a simple beam–to–column connection for the steel plate shear wall 
panel whereas rigid connections were used in this specimen. Considering the simplifying 
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assumptions made in the derivation of equation 2.2, the equation presented in CSA–S16–
01 gives a good prediction of the orientation of the tension field. 
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Table 4.1: Measured tension field inclination (First panel – Pushing) 
 

Cycle 
No. 

Base Shear 
kN 

α2 
Degree 

α3 
Degree 

α4 
Degree 

αave. 
Degree 

10 2290 46 50 43 46.3 
11 2282 45 49 44 46.0 
12 2265 46 50 47 47.7 
13 2679 46 53 46 48.3 
14 2697 46 54 47 49.0 
15 2710 47 55 47 49.7 
16 2964 47 55 47 49.7 
17 2970 48 56 45 49.7 
18 2961 48 56 44 49.3 
19 3174 49 56 44 49.7 
20 3208 48 55 45 49.3 
21 3313 48 55 45 49.3 

 
 

 
 
 
 

Table 4.2: Measured tension field inclination (First panel – Pulling) 
 

Cycle 
No. 

Base Shear 
kN 

α2 
Degree 

α3 
Degree 

αave. 
Degree 

10 -2301 50 48 49.0 
11 -2280 49 48 48.5 
12 -2294 50 51 50.5 
13 -2876 51 52 51.5 
14 -2861 49 50 49.5 
15 -2849 50 53 51.5 
16 -3174 52 53 52.5 
17 -3182 50 55 52.5 
18 -3123 50 56 53.0 
19 -3419 50 56 53.0 
20 -3430 50 56 53.0 
21 -3424 50 56 53.0 
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Table 4.3: Measured tension field inclination  (Second panel – Pushing) 
 

Cycle 
No. 

Base Shear 
kN 

α2 
Degree 

α3 
Degree 

α4 
Degree 

αave. 
Degree 

10 2290 49 47 47 47.7 
11 2282 47 46 45 46.0 
12 2265 46 47 45 46.0 
13 2679 48 48 47 47.7 
14 2697 48 48 47 47.7 
15 2710 48 46 46 46.7 
16 2964 48 48 43 46.3 
17 2970 50 49 42 47.0 
18 2961 49 49 42 46.7 
19 3174 49 49 42 46.7 
20 3208 48 48 42 46.0 
21 3313 47 48 42 45.7 

 
 
 
 
 
 

Table 4.4: Measured tension field inclination (Second panel – Pulling) 
 

Cycle 
No. 

Base Shear 
kN 

α1 
Degree 

α2 
Degree 

α3 
Degree 

α4 
Degree 

αave. 
Degree 

10 -2301 46 46 46 — 46.0 
11 -2280 48 47 45 — 46.7 
12 -2294 48 47 46 — 47.0 
13 -2876 47 46 46 — 46.3 
14 -2861 46 46 46 — 46.0 
15 -2849 44 44 44 — 44.0 
16 -3174 45 43 43 — 43.7 
17 -3182 45 45 45 43 44.5 
18 -3123 44 44 45 44 44.3 
19 -3419 44 44 42 42 43.0 
20 -3430 44 44 42 42 43.0 
21 -3424 45 45 43 42 43.8 
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Figure 4.1: Initial yield lines along the west edge of panel 2 (cycle 7) 
 
 
 
 

 
 

Figure 4.2: Yield line pattern in the web of the beam at level 1  
(south face at west end – cycle 10) 
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Figure 4.3: Extent of yielding at north face of second panel (cycle 14) 
 
 
 
 
 

 
 

Figure 4.4: Initiation of flange local buckling – beam at level 1, east end (cycle 20) 
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Figure 4.5: Fracture of beam–to–column connection (cycle 21) 
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Figure 4.6: Local buckling of west column in panel 1 (end of test) 
 

 

 
 

Figure 4.7:Tear at the bottom east corner of first panel (end of test) 
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Figure 4.8: Specimen at the end of the test 
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Figure 4.9: Location of tears in the test specimen at the end of the test (north side) 
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Figure 4.10: Base shear versus first storey drift 
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Figure 4.11: Second storey shear versus second storey drift 
 

 

 

Fracture at 
beam–to–column 

connection 

Cycle 10 (δy) 
Cycle 22 (7.9 δy) 

Block of 3  
cycles with 3δy 

Cycle 21 (5δy) 

Fracture at 
beam–to–column 

connection 

Cycle 10 (δy) 

Cycle 22 (7.9 δy) 



 

  63 

 

 

-4000

0

4000

-80 0 80

Third storey drift (mm)

Th
ird

 st
or

ey
 sh

ea
r (

kN
) a

Figure 4.12: Third storey shear versus third storey drift  
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Figure 4.13: Base shear versus top storey displacement  
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Figure 4.14: Typical hysteresis curve, 2nd panel, cycle 18 
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(a) Second panel  

 

 
  

(b) Third panel 

 

Figure 4.15: Response of four-storey steel plate shear wall specimen (cycles 29 and 30) 
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Figure 4.16: Cumulative energy absorbed by each panel through the test 
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Figure 4.17: Tension field orientation in panels 1 and 2 
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Figure 4.18 Average inclination of the tension field in the first and second panels 
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5. FINITE ELEMENT MODEL 

5.1 Introduction 

The large scale test of a three storey unstiffened steel plate shear wall presented in 
chapters 3 and 4, along with the test results by other researchers (see Chapter 2), are 
significant contributions towards understanding of the cyclic behaviour of this system. 
However, the specific dimensions and parameters investigated in the laboratory tests do 
not cover the full range of cases that might be encountered in practice. It is therefore 
necessary to develop analytical tools to investigate the behaviour of steel plate shear 
walls with different geometry and loading conditions, thus avoiding the large expense of 
performing additional tests. The main objective of this chapter is to develop a reliable 
finite element model that can simulate the behaviour of steel plate shear walls under 
cyclic loading. The numerical model will be validated using the available test data. The 
model can then be refined so that other shear wall configurations can be analysed 
reliably. 

In a limit states design context both strength and serviceability must be considered. This 
means that the numerical model of a steel plate shear wall should be able to simulate 
accurately both the stiffness and the capacity. A numerical model of the three-storey steel 
plate shear wall described in Chapter 3 was developed using the commercial 
general-purpose nonlinear finite element program ABAQUS (Hibbitt et al., 2001). This 
software is well suited for the solution of highly nonlinear engineering problems. It 
contains an extensive library of elements that can model virtually all geometric boundary 
conditions.  

ABAQUS consists of two main analysis modules: ABAQUS/Standard and 
ABAQUS/Explicit. In ABAQUS/Standard, an implicit method is used for analysis of 
systems under quasi-static and dynamic loads. In implicit method, equilibrium is 
achieved through an iterative procedure, from which the deformed configuration of the 
structure is obtained. ABAQUS/Explicit uses a nonlinear explicit dynamic formulation 
and can be used for analysis of systems under both dynamic and quasi-static conditions. 
In dynamic explicit method the unbalanced forces between the internal and external 
forces at the beginning of the increment is considered as a driving force acting on a mass, 
from which the deformed state after a very small time increment using the central 
difference method, thus no iteration is involved in this technique. 

Because large-scale tests on steel plate shear walls have been conducted under 
quasi-static conditions the steel plate shear wall was initially analysed with the static 
implicit method implemented in ABAQUS/Standard. Development of the tension field 
and shear buckling of infill plate as the load increases creates local instabilities in the 
infill plates. These local instabilities make it very difficult to trace the solution up to the 
limit point due to convergence problems in the solution process with an implicit method. 
For this reason, and since in an explicit formulation the solution is obtained without any 
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iteration, the explicit version of ABAQUS was used for analysis of steel plate shear 
walls. 

A brief discussion of the static implicit method and the convergence problems associated 
with this method of analysis of steel plate shear walls is presented in section 5.2. The 
explicit finite element method and the issues related to quasi-static simulation of steel 
plate shear walls with this method are explained in detail in section 5.3 to provide the 
necessary background to the remaining portion of the this Chapter, which discusses the 
issues related to the finite element modelling of steel plate shear walls investigated in this 
research. 

5.2 Convergence problem in implicit finite element method 

5.2.1 Solution strategies in a static implicit method 

When the response of a system is nonlinear, the solution should be obtained 
incrementally. In general, the equation of equilibrium at the end of a load increment, at 
time tt ∆+ , can be written as: 

 0=− ∆+∆+ tttt FR  (5.1) 

where ttR ∆+  is the vector of externally applied loads and the vector ttF ∆+  represents the 
internal nodal point forces that are equivalent to the element stresses. Since ttF ∆+  
depends on the history of the nodal point displacements, it is necessary to adopt an 
iterative process to solve equation (5.1) for the exact configuration of the system or to 
obtain a reasonable solution and accept some error in the equilibrium. The equilibrium 
equation can be written as: 

 )()()( *** UfUFUR tttttt ∆+∆+∆+ =−  (5.2) 

where *U  is an approximation of the real solution and )( *Uf
tt ∆+

is a vector of residual 
unbalanced forces at time tt ∆+ , which drives the iterative process. 

The basic approach used in ABAQUS/Standard to solve the above nonlinear equation is a 
load-control Newton-Raphson iterative method. The solution procedure is shown in 
Figure 5.1 (Bathe, 1996). The solution seeks equilibrium through a horizontal path at a 
constant load vector of ttR ∆+ . In this method the stiffness matrix ideally is updated at the 
end of every iteration. Since the major computational cost per iteration in Newton-
Raphson iterations lies in the calculation and decomposition of the tangent stiffness 
matrix, a modification to the method is often made by using the stiffness matrix 
developed at the beginning of a time step for all iterations within the time step. The 
solution path followed in a modified Newton-Raphson iterative method is illustrated in 
Figure 5.2. However, both methods fail to converge in the neighbourhood of unstable 
responses, including local instabilities.  
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In a steel plate shear wall the local instability occurs as the tension field in the infill plate 
re-orients itself during loading and unloading paths. This makes it very difficult to obtain 
a complete solution up to the ultimate capacity using a load control strategy. The 
situation is aggravated when modelling cyclic loading of the steel plate shear wall and the 
solution quickly becomes intractable. 

To allow tracking of system response past limiting points the so-called “arc length 
control” was introduced. The technique was first developed by Riks (1979) and was later 
modified by (Ramm, 1981). In the Riks solution algorithm both the load level and 
displacements are treated as unknowns. The basic algorithm remains the Newton-
Raphson iteration method, but the search for equilibrium is based on an iterative path 
perpendicular to a tangent plane taken in the equilibrium surface at the previously 
converged point (see Figure 5.3). In this method the perpendicular solution path is easily 
controlled to intersect the equilibrium surface and converges well past limiting points. 
The strategy, however, still shows convergence problems at local instabilities that arise 
during the loading and unloading processes. 

5.2.2 Convergence problem 

In the analysis of a steel plate shear wall, because of the sudden out–of–plane 
deformation of the infill plates due to tension field development, convergence is a serious 
problem. The preliminary pushover analysis of the three-storey steel plate shear wall, 
obtained before conducting the experiment, was very time consuming. To overcome the 
convergence problem many different approaches were tried, including application of 
lateral and gravity loads in various steps and sequences, use of different imperfection 
shapes and sizes, use of different initial increment sizes, relaxation of the convergence 
criteria, etc. In most of the cases during the iteration, the size of the increments had to be 
reduced to a value less than 10 5−  in order to obtain convergence. This increment size is 
suitable for an explicit scheme but not for a multiple iteration implicit method. Because 
of the poor performance of the implicit finite element method, the explicit dynamic 
method was adopted as a tool for the analysis of steel plate shear wall systems. 

5.3 Explicit finite element method 

The explicit dynamic procedure can be used as an effective tool for solving a wide 
variety of nonlinear solids and structural mechanics problems. Originally it was 
developed to analyse high-speed dynamic events that are extremely expensive to analyse 
using implicit methods (Benson, 1992). With proper control of the kinetic energy, the 
explicit approach can be used for quasi-static problems that include complex contact 
problems, complex post-buckling behaviour, highly nonlinear processes and material 
degradation and failure. All are problems that experience severe convergence difficulties 
in implicit analysis methods. 
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5.3.1 Formulation of the dynamic explicit finite element method 

The governing equilibrium equations of a body in a dynamic state can be obtained using 
the principle of virtual work. This principle states that for a body under static or dynamic 
equilibrium and for any compatible, small virtual displacements that satisfy the boundary 
conditions, the total internal virtual work is equal to the total external virtual work:  

 dVuuePUdSufdVuf
V

TS

S

B

V

)( ρδσδδδδ +=++ ∫∫∫  (5.3) 

where Bf is the body force per unit volume, Sf  is the traction force per unit area, P  is 
applied concentrated force vector at nodes, σ  is Cauchy stress, ρ  is the material density, 
u is the acceleration field, uδ  is a virtual displacement field applied to the system at the 
state of dynamic equilibrium, Uδ  is the vector of virtual displacement evaluated at 
nodes, and eδ  is the virtual strain field. The superscript T indicates the transpose of the 
associated vector. By introducing a shape function matrix, N , the displacement, 
acceleration, and virtual displacement field can be related to the nodal displacements and 
accelerations as: 

 UNu T= ; UNu T= ; UNu Tδδ =   (5.4) 

Where U  and U  are nodal displacement and nodal acceleration vector, respectively. 
Combining equations (5.3) and (5.4), the following dynamic force balance, in matrix 
form, can be obtained: 

 MU R F= −  (5.5) 

in which 

 M  = T

V

N NdVρ∫  (5.6) 

 T

V

F B dVσ= ∫  (5.7) 

 T B

V

R N f dV= ∫  + T S

V

N f dV∫  + P  (5.8) 

The matrix B in equation (5.7) is the strain operator matrix, M is the consistent mass 
matrix, F is a vector containing the internal forces evaluated at the nodes, and R  is a 
concentrated external force vector evaluated at the nodes. If, instead of using a consistent 
mass matrix, a lumped or diagonal mass matrix is used, equation (5.5) can be decoupled 
and the dynamic balance equation can be written separately for each node. This is an 
important step in the dynamic explicit formulation since by doing so the time integration 
procedure can be carried out quite effectively explicitly. 
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5.3.2 Computational procedures in a dynamic explicit method 

ABAQUS/Explicit uses the central difference method, which is the most commonly used 
time integration procedure. The equilibrium of the system is considered at time t in order 
to calculate the kinematic conditions at time tt ∆+ (the next increment). 

Neglecting the effect of viscous damping and using a diagonal mass matrix, the dynamic 
equilibrium equations are written at node level, as discussed above. The dynamic 
equilibrium equation at time t states that the inertial force, tUM , equals the total nodal 
forces (the difference between the externally applied force, tR , and the internal element 
force, tF  evaluated at the nodes) which is the same as equation (5.5) but at time t and for 
individual nodes. 

Since the explicit method uses a diagonal mass matrix, solving for the acceleration is 
trivial because no simultaneous equations need to be solved: 

 ).()( 1
ttt FRMU −= −  (5.9) 

As a result, the acceleration of any node is determined completely by its nodal mass and 
the net force acting on the node, making the nodal calculation very inexpensive. Using 
central difference method the accelerations are integrated through time to obtain the 
change in velocity, assuming a constant acceleration. The change in velocity is added to 
the velocity from the middle of the previous increment to determine the velocities at the 
middle of present increment: 

 t
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+= ∆+∆−∆+  (5.10) 

The velocities are then integrated through time and added to the displacements at the 
beginning of the increment to determine the displacements at the end of the increment as 
follows: 

 )
2

()()( . ttttttt UtUU ∆+∆+∆+ ∆+=  (5.11) 

Therefore, by satisfying dynamic equilibrium at the beginning of the increment, the 
velocities and the displacements are obtained at the middle and end of the increment, 
respectively. A summary of the computational procedure for the dynamic explicit 
procedure is depicted in Figure 5.4. 

5.3.3 Stability limit of a dynamic explicit method 

With the explicit method the state of the model is advanced through an increment of time, 
t∆ , based on the state of the model at time t. Since the central difference method, which 

is a conditionally stable algorithm (Bathe, 1996), is used as time integrator, the amount of 
time that the state can be advanced, keeping the error bounded, should be less than a 
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stability limit. The stability limit is defined in terms of the highest frequency of the 
system, maxω . Without damping the stability limit is defined as: 

 
max

2
ω

=∆ stablet  (5.12) 

and if damping is present in the model, the stable time increment is defined as: 

 )1(2 2

max
ξξ

ω
−+=∆ stablet  (5.13) 

where ξ  is the fraction of critical damping in the mode with the highest frequency. In 
ABAQUS/Explicit, a small amount of damping in the form of bulk viscosity is always 
added to the model to control the high frequency oscillations. As can be seen from 
equation (5.13), damping reduces the stable time increment and requires more CPU time 
for the analysis. 

Since obtaining the actual highest frequency in a model is not computationally feasible, 
especially in large models, a simple estimate, that is feasible and conservative, is used by 
ABAQUS/Explicit. In this method the highest frequency is estimated from the individual 
elements in the model. The highest frequency, based on element–by–element method is 
higher than the highest frequency of the global model (Hibbitt, et al., 2001b). Therefore, 
a stable time increment based on element–by–element calculation is smaller than the 
global value and is a more conservative estimate. The highest frequency of an element is 
associated with the dilatational mode, and the critical time increment is given by: 

 
d

e
stable C

L
t =∆  (5.14) 

where, eL  is the smallest characteristic length of the element and dC  is the dilatational 
wave speed of the material defined as: 

 
ρ
ECd =  (5.15) 

where, E  is the modulus of elasticity and ρ  is the density of the material. Examination 
of these equations reveals that a conservative value for critical time increment is the time 
that a dilatational wave passes across the smallest characteristic element length. 

Two main parameters can change the critical time increment and, as a result, can change 
the required computational time for an explicit analysis. These are material properties and 
size of the finite element mesh. The dilatational wave speed depends on both stiffness 
and density of the material. The stiffer the material the higher the wave speed, resulting 
in a smaller stable time increment. On the other hand, a higher material density results in 
a reduction of the wave speed and an increase in the critical time increment. For a 
specific material the wave speed is constant in the linear portion of the analysis since the 
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modulus of elasticity is constant and, therefore, the critical time depends only on the 
smallest element size in the finite element mesh. In the nonlinear range, however, the 
modulus of elasticity decreases, which reduces the wave speed and increases the critical 
time increment. Since the critical time increment is approximately proportional to the 
shortest element dimension, it is recommended that the element size be kept as large as 
possible as long as the accuracy of analysis is acceptable.  

5.3.4 Simulation of a quasi-static analysis with the dynamic explicit method  

Almost all of the tests on unstiffened steel plate shear walls available in the literature, 
including the test reported herein, have been conducted in a quasi-static manner. 
However, the explicit finite element method is based on a dynamic formulation in which 
the inertial forces resulting from the acceleration and mass of the system play an 
important role. As a result, applying the explicit dynamic procedure to a quasi-static 
problem requires some special considerations. The main goal is to simulate the analysis 
in the shortest period of time in which the inertial forces remain insignificant. The speed 
of an analysis often can be increased substantially without significantly reducing the 
accuracy of quasi-static solutions. However, if the speed of an analysis increases to a 
point where the inertial forces dominate, the solution tends to localize and the results will 
be quite different from the quasi-static solution. 

For accuracy and efficiency of a quasi-static analysis, loads should be applied as 
smoothly as possible such that the accelerations change only a small amount from one 
increment to the next increment. If the acceleration is smooth, it results in a smooth 
velocity and displacement. ABAQUS/Explicit has a simple built-in type of amplitude, 
called SMOOTH STEP, which automatically creates the smoothest possible loading 
amplitude between two points. Using this option, each of the data pairs will be connected 
with curves whose first and second derivatives are smooth and whose slopes are zero at 
each data point (see Figure 5.5). Using this type of loading amplitude, a quasi-static 
analysis can be performed in the shortest possible time. 

In a quasi-static analysis the slowest mode of the structure dominates the response. As a 
result, by calculating the frequency and period of the slowest mode of the system, a lower 
bound time period for doing a quasi-static simulation can be obtained. In most structural 
problems a loading duration corresponding to 10 times the period of the slowest mode is 
recommended in order to make sure that a solution is quasi-static. 

5.3.5 Methods to accelerate a quasi-static analysis 

The analysis time can be optimized by artificially increasing the speed of the simulation, 
increasing the loading rate, and then checking for acceptance of the static solution (to be 
discussed later). Another option to optimize the analysis is to increase the critical time 
increment by artificially increasing the density of the whole or part of the model. This 
method is called “Mass Scaling” (Hibbitt et al., 2001a). Mass scaling is a technique that 
enables the analysis to be performed economically without artificially increasing the 
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loading rate. This method is suitable in simulations involving a rate dependent material or 
a rate dependent damping. In these simulations increasing the load rate is not an option 
since material strain rate increases by the same rate as the load rate. Since the properties 
of the material changes with the strain rate, artificially increasing the load rate artificially 
changes the solution and is not acceptable. 

According to equations (5.14) and (5.15), an artificial increase of the material density ρ , 
by a factor of 2f decreases the dilatational wave speed by a factor f and increases the 
stable time increment by a factor f . This increases the global stability limit and, as a 
result, fewer increments are required to perform the same analysis for the same time 
period, resulting in less computing time. Scaling the mass, however, has exactly the same 
influence on inertial effects as artificially increasing the load rate. Excessive mass 
scaling, just like excessive loading rate, can lead to a wrong solution. As the mass scaling 
increases, the solution time decreases and at the same time the quality of the solution 
decreases because of increase in inertial forces. Methods of evaluating the quality of the 
solution in order to determine the acceptable loading rate scale factor or acceptable mass 
scaling factor are discussed in the following. 

5.3.6 Evaluation of a quasi-static solution 

5.3.6.1 Energy balance  

The most general tool for evaluating whether or not a response is quasi-static is to 
monitor the different energies in the model during the simulation. The energy balance 
equation can be defined as: 

 ==−+++ TOTALWKEFDVI EEEEEE 0.0 (5.16) 

where, 

IE   : internal energy (both elastic strain energy and plastic work), 

VE   : energy absorbed by viscous dissipation, 

FDE   : frictional energy (energy dissipated by frictional forces in a contact problem), 

KEE  : kinetic energy, 

WE  : work done by external forces, 

TOTALE  : total energy in the system. 

For example, the energy balance for a uniaxial tensile test is shown in Figure 5.6. As can 
be seen in a tension test, the work done by external forces is almost equal to the internal 
energy in the bar. Viscous dissipated energy is usually small unless viscous materials, 
dashpots, or material damping is used. Since velocities of the material are small in a 
quasi-static simulation, the kinetic energy should be negligible. As a general rule, the 
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kinetic energy of the deforming material should not exceed a small fraction (typically 5% 
to 10%) of its internal energy during most of the simulation (Hibbitt et al., 2001a). 

5.3.6.2 Strategies for evaluating a quasi-static solution  

The first check that must be performed after completion of an analysis is the assessment 
of the suitability of the quasi-static simulation. The first step in the verification process is 
to compare the ratio of the kinetic energy history, KEE , to the internal energy history, 

IE , and see if this ratio is small throughout the analysis. As mentioned above, this ratio 
should be less than 5% to 10 %. If the ratio is less than the proposed value, the next step 
is to evaluate the two energies separately to see if they are reasonable. 

Generally, a smooth loading history should produce smooth results. If the loading is 
smooth but the energy results during the analysis are oscillatory or noisy, the quality of 
the simulation may not be adequate. Since the energy ratio is incapable of showing such 
behaviour, the kinetic energy history itself should be studied to determine if it is smooth 
or noisy. If the kinetic energy does not show quasi-static behaviour, it can be useful to 
look at the velocity history of some of the critical nodes to see which part of the model is 
acquiring velocity and causing the high kinetic energy. For the analysis of steel plate 
shear walls, in addition to evaluating energy of the system, the velocity history of the top 
floor is also obtained to evaluate the quality of the response. These issues will be 
discussed in Chapter 6. 

5.4 Description of the finite element model 

5.4.1 Element selection 

A steel plate shear wall system typically consists of beams and columns with thin steel 
plate infills in the openings delineated by the columns and beams. In order to capture 
local buckling of beam and column flanges, the infill plate and the boundary members 
were discretized with shell elements. Most of the continuum and plate elements in 
ABAQUS/Explicit are based on an updated Lagrangian formulation (Bathe, 1996). This 
means that at the beginning of each increment the nodal coordinates are updated to reflect 
current positions in space and all the shape functions and derivatives are re-evaluated 
using these updated nodal coordinates. This formulation is useful since the deformation 
magnitude and strains in the infill plates after many cycles are so large that the shape of 
the shear wall, especially in the first panel, is changed considerably.  

The S4R shell element was selected from the ABAQUS/Explicit library of elements to 
model the shear wall. This element is a general-purpose 4-node doubly curved shell 
element with reduced integration. The element accounts for finite (large) membrane 
strains and arbitrary large rotations. Each node has six degrees of freedom, namely, three 
translations ( ),, zyx uuu  and three rotations ( zyx θθθ ,, ) defined in a global coordinate 
system. The default local directions (see Figure 5.7) are used on the surface of the shell to 
define anisotropic material properties and to report stress and strain components. These 
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local directions rotate with the average rotation of the surface. The positive normal on a 
shell is given by the right-hand rule going around the nodes of the element in the order 
that they are defined in the element data line. The “top” surface of a shell element is the 
surface in the positive normal direction and the “bottom” surface is in the negative 
normal direction. 

The S4R shell element can be used to model the behaviour of both thin and thick shells. 
This element is sufficient for shell problems that are adequately described by either the 
classical (Kirchhoff) theory or the shear flexible (Mindlin) theory.  

The S4R shell element is based on an isoparametric formulation, meaning that the same 
shape functions are used for interpolation of the displacement field as well as the 
geometry of the element. This element uses one integration point on its mid-surface to 
form the element internal force vector. Reduced integration elements give more accurate 
results and significantly reduce running time if the elements are not distorted. However, 
since S4R is a linear reduced element it may suffer from hourglassing under certain 
loading conditions. This may impact both the load application and required mesh size for 
the steel plate shear wall model. Hourglassing is a pattern of zero energy non-physical 
deformations (Belytschko et al., 1984b). ABAQUS/Explicit uses a small artificial 
stiffness associated with rotation about the normal to the shell surface to prevent 
hourglass modes. The default hourglass stiffness values are small such that the artificial 
energy content is negligible. During the analysis described in this work, the default value 
was sufficient to prevent the hourglass mode. 

There are number of ways to diagnose hourglassing in an analysis. Examining the 
deformed shape, hourglassing appears as a pattern of alternating trapezoid deformations 
(see Figure 5.8). If the artificial energy is excessive, it means that too much strain energy 
may be going into controlling this mode. The most useful approach is to compare the 
artificial energy to the internal energy. This ratio should be less than 5% to 10% during 
most of the analysis. For modeling beams and columns it is recommended that at least 
four elements in the depth of a web or the width of a flange be used in order to prevent 
hourglassing (Hibbitt et al., 2001a). To discourage hourglass modes, all the concentrated 
loads and boundary conditions are distributed on a number of nodes (see Figure 5.8). The 
size of the mesh used in modeling the steel plate shear wall was fine enough so that no 
sign of hour glassing was observed during the simulation, either in the deformed shape or 
the history of artificial energy. 

The default number of integration points through the thickness of this element is five 
(Figure 5.7), which is usually sufficient for simulating the elasto–plastic response of a 
shell structure under monotonic loading. The pushover analysis of the three-storey steel 
plate shear wall was conducted with 5 and 9 integration points and no significant 
difference was observed between the two analyses. Although the pushover analysis 
indicated that five integration points through the thickness is sufficient, for more complex 
analysis involving strain reversal (cyclic loading) and high localized curvatures more 
integration points may be required. Therefore, for the cyclic analysis of steel plate shear 
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walls, nine integration points were used, which should be sufficient for the thin shell 
elements of the steel plate shear wall model.  

5.4.2 Geometry and initial imperfections 

Before conducting the shear wall test described in Chapter 3, the specimen was measured 
to determine the as-built dimensions required for the finite element analysis. The 
imperfections can be categorised as camber and sweep of beams and columns and out–
of–flatness of the plate. The camber and sweep of the beams and columns and the column 
out–of–plumb were considered small and were neglected in the formulation of the finite 
element model. 

The fish plate connection tabs were not considered in the finite element analysis. The 
assumption that neglecting the fish plate will not affect the overall behaviour of steel 
plate shear wall was shown to be adequate by Driver et al. (1997). 

The behaviour of thin plates subjected to in-plane membrane stresses is affected by initial 
out–of–plane deformations. The stiffness of a perfectly flat plate is very high under in-
plane-shear forces, but slight initial imperfections will substantially reduce the in-plane 
shear stiffness of the plate. Therefore, initial imperfections of the infill plates, were 
considered in the finite element model. Out–of–plane displacements of only the first 
panel were measured before the test. The previous four-storey steel plate shear wall test 
(Driver et al., 1997) had introduced a pattern of residual buckles in the infill plate at the 
first level. The maximum value of the out–of–plane initial imperfection was measured to 
be 39 mm in the first panel. Table 5.1 shows the coordinates and values of the measured 
out–of–plane imperfections. This pattern was considered as an initial imperfection pattern 
for the present study. The measured out–of–plane displacement pattern was then mapped 
onto the finite element mesh in order to get a finite element mesh that accurately 
modelled the tested steel plate shear wall. For the second and third panels, the infill plate 
was taken to have an initial imperfection pattern corresponding to the buckling mode of 
the shear wall loaded in the same way as in the test. The peak amplitude for the second 
and third panel out–of–plane displacement was set 10 mm. The initial imperfection 
pattern used in the finite element model is depicted in Figure 5.9. 

5.4.3 Boundary conditions and loading of finite element model 

In order to provide the rigid boundary at the base of the shear wall that the 90 mm steel 
base plate anchored to the laboratory strong floor provided to the test specimen, all the 
nodes at the base of the steel plate shear wall model were fully fixed. 

In order to simulate the out-of-plane bracing provided in the physical test, the out-of-
plane displacements at both ends of the beam at the locations shown in Figure 5.10 were 
restrained. In order to prevent local distortions at the brace points, a number of nodes 
were restrained at each brace point. 
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In the physical test the horizontal loads at each floor level and also the gravity loads at 
the top of each column were applied through thick bearing plates welded to the test 
specimen. To simulate the effect of bearing plates in the finite element model a rigid 
body surface was defined by connecting the nodes under the bearing plates to a reference 
node with rigid links at each loading points and at the top of the columns where the 
gravity loads were applied (see Figure 5.10). Loads were delivered to the reference nodes 
through a loading frame described in section 5.6. 

5.4.4 Residual stresses and history of plastic deformation from previous test 

Residual stresses are present in all fabricated steel structures and are the result of 
differential plastic deformations. They are frequently the result of welding, but are also 
the result of differential cooling during the manufacture of hot rolled structural shapes, 
rolling of shapes and plates, force fitting or grinding. In steel plate shear walls residual 
stresses are present in the beams and columns as a result of the manufacturing process of 
the rolled shapes, welding of beams to columns and welding of the infill plates to the 
boundary members through fish plates. The test specimen had additional local residual 
stresses resulting from welding of attachments and stiffeners to transfer the loads to the 
test specimen. The resulting pattern of residual stresses is complex and since no 
measurements were taken, these residual stresses were not considered in the finite 
element model. The initial residual stresses will be dissipated and new patterns of 
residual stresses will arise as the steel plate shear wall deforms plastically. In a cyclic 
finite element analysis that considers material yielding, the cyclic plastic deformations 
will capture these new residual stresses. It is therefore believed that the initial residual 
stresses would only play a role in the initial elastic load cycles. 

The previous test conducted by Driver et al. (1997) resulted in some plastic deformations, 
mainly in the first panel of the present specimen. These plastic deformations changed the 
material properties of the specimen and they should be considered in the analysis. Due to 
its complexity, the history of plastic deformations is neglected in the analysis of the 
three-storey steel plate shear wall. 

5.4.5 Material properties 

The constitutive relationship in the analysis is based on stress versus strain responses 
obtained from tension coupon tests of different parts of the steel plate shear wall. 
Although Driver et al. (1997) reported material properties for the four-storey steel plate 
shear wall from which the test specimen in this study was obtained, these material 
properties are not directly applicable to the three-storey specimen. The material 
properties reported by Driver et al. (1997) do not reflect any of the changes that took 
place as a result of the plastic deformations during four-storey shear wall test. It was not 
possible to conduct material tests for the three-storey specimen. As a consequence, the 
results of the tension tests from Driver et al. (1997) were used. The steel used in all parts 
of the shear wall exhibited the classical stress versus strain behaviour of hot rolled ductile 
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steel with a well defined yield plateau. A simple rate independent constitutive behaviour 
that is identical in tension and compression is used. The elasto–plastic kinematic 
hardening material modelling, discussed later, requires a bilinear representation of stress 
versus strain curve. The bilinear stress versus strain curve is obtained by extending a line 
from the origin to the mean value of static yield point (the slope is equal to the mean 
modulus of elasticity) and then to the mean static ultimate stress and corresponding 
strain.  

The material properties obtained from a tension coupon test are nominal values, i.e., 
engineering stress and engineering strain, which are defined in terms of an initial gauge 
length and initial cross sectional area of the coupon. The finite element analysis uses true 
stress (Cauchy stress) and logarithmic strain as stress and strain measures regardless of 
the type of analysis.  To obtain the true stress ( trueσ ) and logarithmic plastic strain ( pl

lnε ) 
the following transformations are applied to the tension coupon data (Lubliner, 1990): 

)1( nomnomtrue εσσ +=  (5.17) 

and 

E
true

nom
pl σεε −+= )1ln(ln  (5.18) 

where, E  is the modulus of elasticity nomσ  is the nominal (engineering) stress and nomε  
is the nominal (engineering) strain obtained from material tests. 

The material models in ABAQUS/Explicit are based on “incremental” theories in which 
the mechanical strain increment, ε∆ , is decomposed into an elastic part, elε∆ , and a 
plastic part, plε∆ . An incremental plasticity model usually is formulated in terms of a 
yield surface, flow rule, and a hardening model. The von Mises yield surface is used in 
ABAQUS/Explicit to specify the state of multi-axial stress corresponding to start of 
plastic flow. This yield surface assumes that yielding of metals is independent of the 
hydrostatic stress and has the form of a cylinder that is centred on the hydrostatic axis in 
a three-dimensional principal stress space. 

The associated flow rule is used to obtain the plastic strain increment. Based on this flow 
rule, as the material yields the inelastic deformation rate (plastic strain increment vector) 
is normal to the yield surface. Thus, the plastic deformation is volume invariant. This 
assumption is generally acceptable for most metals. 

A hardening rule specifies the evolution of the yield surface during plastic flow. In 
ABAQUS/Explicit (Hibbitt et al., 2001a) three types of work hardening models are 
provided for metals: a perfectly plastic model, an isotropic hardening model, and the 
Johnston-Cook hardening model. In the perfectly plastic model the yield stress does not 
change with plastic strain and, as a result, no hardening or softening occurs in the 
material. This model was tried for the pushover analysis as well as for cyclic analysis of 
the three-storey steel plate shear wall, but was not successful in predicting the 
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post-yielding behaviour of the specimen. In the isotropic hardening model the size of the 
yield surface changes (increases or decreases) uniformly in all directions as plastic 
straining occurs. The isotropic hardening model in ABAQUS/Explicit is nonlinear and a 
full range of effective plastic stress versus effective plastic strain can be defined. The 
Johnston-Cook hardening model is a particular type of isotropic model. In this model the 
yield stress is defined as an analytical function of effective plastic strain, strain rate, and 
temperature. This hardening rule is suitable for modelling monotonic high rate 
deformations of most metals. 

The isotropic hardening model was used only for the pushover analysis of the shear wall. 
However, cyclic loading of the test specimen implies many strain and stress reversals 
occur during the process. The Bauschinger effect becomes important and should be 
considered in the model. The kinematic hardening flow rule is intended to simulate the 
behaviour of metals subjected to cyclic loading and is typically applied to studies of low 
cycle fatigue. In this model the basic concept is that the yield surface translates in stress 
space without any rotation or changes in size. This means that yielding in one direction 
reduces the yield stress in the opposite direction, thus simulating the Bauschinger effect 
and anisotropy by work hardening.  

Although ABAQUS/Explicit is intended for dynamic, hence cyclic, analysis, it does not 
have a kinematic hardening model. However, it allows the user to implement a material 
model through a user subroutine. In this respect a kinematic material model suitable for 
analysis of a shell element was prepared and used successfully for cyclic simulation of 
steel plate shear walls. Some specific issues that were encountered in this model are 
discussed below. 

5.5 Kinematic hardening model 

The stress tensor, σ , for the case of a 3-D shell element is defined at an integration point 
in the local element axis coordinates as: 

312312332211 ,,,,, σσσσσσσ =  (5.19) 

in which 1, 2, and 3 refer to the element coordinate axes with direction 3 normal to the 
surface of the element. The stress 33σ , which is the through thickness stress, is normally 
neglected in shell elements. 

Transverse shear stresses, 23σ  and 31σ , are not calculated from the constitutive 
behaviour at points through the shell section. These stresses are obtained in ABAQUS 
from the transverse shear stiffness of the section. In general, the transverse shear stiffness 
is calculated by matching the shear response of the case of a shell element bending about 
one axis using a parabolic distribution of transverse shear stress (Hibbitt et al., 2001b). 
This approach usually produces a reasonable estimate of shear flexibility of shells. In 
ABAQUS/Explicit, when using a user subroutine for material modeling the transverse 
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shear stiffness values should be given as an input to the model. The equations used for 
calculating the transverse shear stiffness are presented in Appendix A.  

From the above discussion, the constitutive model is based on the membrane stresses 
11σ , 22σ , and 12σ  as well as the strain increments 11ε∆ , 22ε∆ , 12ε∆ , and 33ε∆ . The 

subroutine also defines part of the internal energy due to membrane deformations and 
returns it to the main program in each increment. The required options in the input file 
and the subroutine are presented in Appendix B. 

The kinematic hardening subroutine was verified by simulating the cyclic behaviour of a 
cantilever beam loaded with a concentrated force at the free end. All the details are 
depicted in Figure 5.11. The web and the flanges of the beam were discretized with shell 
elements (element S4R). Comparison of the cyclic behaviour of the beam obtained with 
ABAQUS/Explicit and ABAQUS/Standard, shown in Figure 5.11(d), indicates that 
ABAQUS/Explicit with the new material model subroutine gives the same result as 
ABAQUS/Standard and the Bauschinger effect is clearly simulated by the model. This 
indicates that the kinematic hardening model is valid and can be used for cyclic analysis 
of steel plate shear walls. 

5.6 Displacement control analysis 

Displacement control is preferred as a solution strategy over a load control scheme in this 
project. As discussed in Chapter 6, the finite element model was used to carry out a 
pushover analysis as well as a cyclic analysis of the three and four-storey steel plate shear 
walls. In a pushover analysis the objective is to obtain the stiffness and the capacity of the 
shear wall. In order to obtain the capacity properly, the solution strategy should be able to 
trace the response near the limit point and be able to pass the limit point. Because of the 
load response is flat near the limit point, a very small increment of load results in a large 
displacement. In addition, applying a load in a load control scheme that is larger than the 
capacity of the shear wall will result in an unstable dynamic solution. The response of a 
system after the limit point is important, but a load control scheme cannot pass the limit 
point and trace the descending branch. Therefore, in a pushover analysis a displacement 
control method in which the load level can be adjusted based on the displacement level is 
more useful. 

The need for a displacement control strategy is more vital in a cyclic analysis. As 
explained in Chapter 3, a typical loading procedure for a cyclic test of a structure is to 
select a deformation control parameter such as the inter-storey drift, and control the 
magnitude of this parameter during the test. In the elastic range the load control strategy 
is adequate to determine the point of significant yielding of the deformation control 
parameter, yδ . In the plastic range the cyclic behaviour should be obtained by 
successively increasing the deformation control parameter as a multiple of the yield 
deformation parameter.  

In ABAQUS/Explicit the available control option is to apply a history of displacement, 
velocity and/or acceleration to one or more nodes separately. These nodes are treated as 
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boundary nodes and the required force at each node to reach a specific displacement 
(velocity and/or acceleration) is obtained from equilibrium.  

During cyclic loading of the three-storey steel plate shear wall, the gravity loads are 
constant and the cyclic loads are equal horizontal loads applied at each level. In order to 
implement a displacement control type analysis, the distributing beam system shown in 
Figure 5.12 was used as a loading frame. The loading frame consists of a system of rigid 
beam elements that are connected to the shear wall at beam levels in order to transfer 
horizontal forces only. The geometry and the connections are defined in such a way that 
any loads applied at node B7 on loading frame will be transferred equally to each level of 
the shear wall. For stability, out–of–plane displacement and rotation along the axis of the 
loading frame element are prevented. Since the selected system is statically determinate, 
it will not impose any constraint to the shear wall. Therefore, a system of equal horizontal 
loads can be applied to the shear wall only by controlling the displacement, velocity, or 
acceleration of node B7, as shown in Figure 5.12. 

By changing the geometry of the loading frame, any proportion of loads can be applied to 
the shear wall and the response can be traced in the post limit state and unloading regions 
without any difficulty as well. However, with this system only the kinematics of node B7 
on the loading frame can be controlled directly, so that, for a parameter other than this 
node, the control is indirect. For example, to run a cyclic simulation in which the control 
parameter is first storey drift of the shear wall, a pushover analysis is required to obtain 
an approximate relationship between node B7 and the first storey drift. This relationship 
allows a reasonable displacement history at node B7 to yield an approximate drift history 
for the first panel. 

The loading frame developed for implementing a displacement control analysis of the 
four-storey steel plate shear wall with equal horizontal loads is shown in Figure 5.13. As 
can be seen the load or displacement should be applied at node B14.  
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Table 5.1: Measured initial imperfections in the infill plate of panel 1  

 Po in t X (mm ) Y (mm ) Z (mm )
1 623 1212.5 -16
2 923 1212.5 -9
3 1223 1212.5 4
4 1523 1212.5 11
5 1823 1212.5 12
6 2123 1212.5 7
7 2423 1212.5 -3
8 2723 1212.5 -13
9 623 912.5 -7
10 923 912.5 -27
11 1223 912.5 -16
12 1523 912.5 11
13 1823 912.5 28
14 2123 912.5 21
15 2423 912.5 11
16 2723 912.5 7
17 623 612.5 4
18 923 612.5 -5
19 1223 612.5 -31
20 1523 612.5 -19
21 1823 612.5 15
22 2123 612.5 39
23 2423 612.5 27
24 2723 612.5 10
25 623 312.5 -2
26 923 312.5 4
27 1223 312.5 -12
28 1523 312.5 -24
29 1823 312.5 -4
30 2123 312.5 23
31 2423 312.5 27
32 2723 312.5 -3  
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Figure 5.1: Illustration of Newton-Raphson iterative method 

 
 
 

 
Figure 5.2 Illustration of modified Newton-Raphson iterative method 
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Figure 5.3: Modified Riks solution strategy 
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Figure 5.4: Summary of explicit dynamic algorithm 
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Figure 5.5: Example of smooth step amplitude function with two data points 
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Figure 5.6: Energy history for quasi-static tensile test 
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Figure 5.8: Hourglass mode: (a) shape; (b) common source of hourglass mode; 

(c) method of improvement 
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Figure 5.9: Imperfection shape used in finite element model (magnification factor = 5.0) 
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Figure 5.10: Boundary and loading conditions for the finite element model 
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Figure 5.11: Cyclic response of a cantilever beam loaded at the free end   
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Figure 5.12: Loading frame for displacement control of 
the three-storey steel plate shear wall specimen 
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Figure 5.13: Loading frame for displacement control of 
the four-storey steel plate shear wall specimen 
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6. VALIDATION OF THE FINITE ELEMENT MODEL 

6.1 Introduction 

The finite element model developed for analysis of unstiffened steel plate shear walls was 
presented in Chapter 5. The model is based on a nonlinear dynamic formulation and an 
explicit strategy is used to obtain the state of the model at each increment without any 
iteration. 

In this chapter the model is used to simulate the behaviour of the three-storey steel plate 
shear wall described in chapters 3 and 4. The pushover analysis results and the cyclic 
behaviour are used as a basis of comparison with the test results. The finite element 
model is then applied to the four-storey steel plate shear wall tested by Driver et al. 
(1997) and the results of the analysis are compared with the test results. 

The characteristics of the steel plate shear wall behaviour that were used to compare the 
result of the pushover analysis with the envelope of hysteresis loops obtained from the 
physical test were the initial stiffness, the point of significant yielding, the inclination of 
the tension field, and the shear resistance at the drift where the peak capacity was reached 
during the test. For the cyclic loading case, in addition to the aforementioned 
characteristics, the hysteresis loops (mainly pinching and stiffness at different stages of 
the hysteresis loops), the amount of energy absorbed during cyclic loading, and the 
deformed configuration of shear wall at different stages of the response were used as a 
basis of comparison between the cyclic load analysis and the test results. 

6.2 Finite element analysis of the three-storey steel plate shear wall  

6.2.1 Pushover analysis 

To determine how accurately the proposed finite element model is able to predict the 
stiffness and the capacity of the three-storey steel plate shear wall specimen, a pushover 
analysis was carried out using the finite element model of the specimen described in 
Chapter 5. As explained in section 4.5, because of presence of the tension field in the 
west direction in the first panel before starting the test, the behaviour was not 
symmetrical in the elastic range. Since the plastic deformation history from the prior test 
on the four-storey steel plate shear wall was not considered in the finite element analysis,  
for simplicity, the pushover analysis was obtained by loading the model towards the west 
direction only. A gravity load of 540 kN was applied to the top of each column in the first 
load step. This magnitude is equal to the target gravity load used in the physical test and 
was kept constant for the remainder of the analysis.  

The loading frame designed for displacement control of three-storey steel plate shear wall 
(see Figure 5.12) was used to apply increments of displacement at node B7. This 
displacement was increased monotonically until the displacement at the first level (node 
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S1 in Figure 5.12) reached a value well beyond the displacement at which the specimen 
reached its ultimate capacity during the test. Monotonically increasing the displacement 
of node B7 is equivalent to monotonically applying equal horizontal in-plane forces at 
each floor level of the test specimen. Since this is a displacement control procedure, the 
response of the shear wall can be controlled well past the ultimate strength. 

A frequency analysis of the test specimen indicated that the period of the first mode is 
3.51 seconds. The associated mode shape, shown in Figure 6.1, corresponds to an out–of–
plane plate movement with no drift of the overall frame. This mode is clearly similar to a 
buckling mode resulting from the application of gravity loads. The total time of the 
analysis was set at about 50 times the period of the first mode and the initial time 
increment of the model, which depends on mesh size and material properties (see 
equation 5.14), was obtained as 410322.2 −× second.  

The gravity load was applied to the shear wall over a loading period of 30 seconds. The 
time period of 30 seconds created a quasi-static loading condition. In the pushover 
analysis, in order to control the amount of kinetic energy of the specimen, velocity rather 
than displacement was imposed smoothly to node B7. Starting at 30 seconds, the velocity 
history shown in Figure 6.2 was applied horizontally to node B7 in order to load the shear 
wall laterally. The shear wall was pushed using a smooth amplitude function (see section 
5.3.4), so that the velocity and acceleration at the beginning and end of the loading step 
are zero, thus reducing the influence of the inertia forces. Application of the velocity 
history shown in Figure 6.2 resulted in a horizontal displacement of 80 mm at node B7, 
which created enough drift at the first level to pass the limit point. 

The history of different types of energy (see sections 5.3.6.1) developed in the whole 
system during the pushover analysis is shown in Figure 6.3. The internal and external 
energies are equal and the other forms of energy are negligible relative to internal energy. 
This indicates that the analysis has been carried out in a quasi-static condition. The 
artificial energy is also very small compared to the internal energy, which indicates that 
the hourglass mode has not affected the simulation (section 5.4.1). The kinetic energy 
versus time curve presented in Figure 6.4 shows that the kinetic energy varies smoothly 
over time except when the tension field is being developed. When the tension field 
develops the kinetic energy increases rapidly. This behaviour is characteristic of thin 
unstiffened steel plate shear walls and it was observed during the test when the 
development of the tension field was accompanied by loud reports and rapid out–of–
plane deformations in the infill plates. 

The horizontal velocity history of the top storey (all the nodes on the floor beams had 
almost the same velocity history) is depicted in Figure 6.5. The velocity response 
oscillates with small amplitude and intensifies when the tension field develops. In order 
to test the influence of this oscillation on the response of the specimen, the model was 
reanalyzed with the analysis time doubled. As shown in Figure 6.5, the velocity history of 
the top storey became smoother, but the global response was unchanged. Therefore, it 
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was concluded that application of the velocity history shown in Figure 6.3 results in a 
reasonable quasi-static pushover analysis of three-storey steel plate shear wall. 

Figures 6.6 to 6.8 show the predicted storey shear versus storey drift obtained from the 
pushover analysis and the envelope of the hysteresis curves obtained from the test results 
for storeys 1 to 3. The base shear versus horizontal displacement at the top storey is 
shown in Figure 6.9. Figures 6.6 to 6.9 all indicate that the finite element model predicts 
the stiffness of the shear wall very well in all storeys. The slightly higher predicted 
stiffness in the second and third panels is attributed to the fact that the applied loads were 
maintained horizontal in the finite element model, whereas the loads applied to the test 
specimens rotated slightly as the test specimen deformed. The resulting vertical 
component of the load, due to rotation of the hydraulic jacks, reduces the stiffness of the 
panel. Since this rotation increases along the height of the test specimen, the apparent 
reduction in wall stiffness is more visible for the top panels than for the lower panel. 
Another reason for the slight overestimation of the wall stiffness could be the effect of 
residual stresses, which are ignored in the finite element model. In addition to the 
response of the steel plate shear wall, the response of the bare frame is also shown in 
figures 6.6 to 6.9. It can be seen that the infill plate has significantly increased the 
stiffness and capacity of the frame. 

The gradual post-ultimate strength degradation exhibited by the test specimen is not 
observed in the finite element model because the cracks and tearing of the shear wall 
were not included in the model. The strength of the shear wall after significant yielding is 
underestimated by the finite element model, especially in the first panel. Taking the 
capacity of the finite element model as the storey shear at the ultimate displacement 
observed in the test, the predicted capacity is lower than the observed capacity by as 
much as 12%. 

Since the stiffness of the shear wall is predicted accurately with the finite element model, 
the lower predicted strength can reasonably be attributed to the difference in material 
properties between the finite element model and the three-storey steel plate shear wall 
test specimen. As stated before, the three-storey test specimen consisted of the top three 
storeys from the four-storey steel plate shear wall tested by Driver et al. (1997). The 
plastic deformations imposed to the second panel of that specimen during testing of the 
four-storey specimen may have changed the initial yield strength of the infill plate of the 
first storey of the three-storey specimen. This increase in yield strength is not uniform 
since the stress field in the infill plate is not uniform over a panel, which makes this 
factor very difficult to assess and incorporate into the finite element model. Since most 
plastic deformations from the previous tests are mainly concentrated in the first panel of 
the three-storey specimen, this is where the largest discrepancy between predicted and 
test capacities are found to lie. 

A vector plot of the in-plane principal stresses at the mid-surface of the elements is 
shown in Figure 6.10 when the shear wall is loaded at its ultimate capacity. Except at the 
corners of the infill panels the orientation of the principal stresses is almost the same over 
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the entire infill plate. The angle of inclination of the tension field, relative to the vertical, 
is measured from this vector plot as 51°, 38°, and 42° in the first, second and third panel, 
respectively. The angle of inclination of the tension field at ultimate load during the test 
was measured as 51° for the first panel and 45° for the second panel (see Chapter 4). 
There is an excellent agreement between the measured and the calculated tension field 
angle of inclination in the first panel. The orientation of the tension field in panel 2 
obtained from the finite element analysis is 15% less than the angle measured during the 
test. The angle of inclination of the tension field predicted using Equation 2.2 is 42°, 42°, 
and 44° for the first, second, and third panels, respectively. This equation for the 
calculation of the tension field orientation is based on some simplifying assumptions, 
including elastic behaviour, whereas the measured values from the test and the finite 
element analysis are obtained at the limit points. 

6.2.2 Cyclic analysis  

A pushover analysis provides an estimate of the stiffness and capacity of a steel plate 
shear wall as it captures closely the envelope of cyclic response of a system. However, to 
evaluate the energy dissipation characteristics and the efficiency of a steel plate shear 
wall under cyclic loading, the finite element model should be able to simulate accurately 
the cyclic response of the system. 

Any pattern of displacement history can be applied to the shear wall by controlling the 
displacement or velocity of node B7 (see Figure 5.12). For simplicity, drift of the first 
panel was taken as a control parameter to cycle the finite element model. In the first step 
the target gravity load of 540 kN was applied to the top of each column and was kept 
constant during the rest of analysis. Based on the relationship between horizontal 
displacement of node 7 and drift of the first panel (obtained from the pushover analysis of 
the shear wall discussed in section 6.2.1) the history of displacement at node B7 was set 
to create the desirable drift history for the first panel. In the following load steps the shear 
wall was cycled by increasing drift of the first panel as a multiple of the yield drift. At 
each displacement level the shear wall was cycled two times in order to develop a stable 
hysteresis curve. 

In order to better control the kinetic energy of the system, node B7 was displaced 
following a velocity history equivalent to the desired displacement history. Figures 6.11 
and 6.12 show velocity versus time and displacement versus time curves used at node B7, 
respectively. The velocity history of node B7 was generated using the SMOOTH STEP 
option (see section 5.3.4). The velocity was kept small in order to minimize the delivered 
kinetic energy to the steel plate shear wall and the time period was calculated in such a 
way that the area under the velocity curve results in the desired displacement at node 7. 
The resulting drift in the first panel as a function of time is presented in Figure 6.13. The 
variation with the time of the different energies for the whole model is shown in 
Figure 6.14. The internal and external energies are similar and the kinetic and artificial 
energies are negligible during the cyclic loading, which indicates that the load model 
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simulated a quasi-static condition. The ripples seen in the internal and external energy 
curves are related to the loss of elastic energy of the system during the unloading portions 
of each loading cycle. 

The hysteresis curves generated from the storey shear versus storey drift are shown in 
figures 6.15 to 6.17 for both finite element analysis and test results. Figure 6.18 presents 
a comparison of the hysteresis curves generated for the whole specimen and the finite 
element analysis. Using the response characteristics outlined in section 6.1 as a basis of 
comparison, it was concluded that very good agreement between the test and the finite 
element analysis exist. The pinching of the hysteresis curves, which is an important 
feature of unstiffened steel plate shear walls, is captured reasonably well by the finite 
element model. During the early reloading phase, a significant reduction of stiffness 
occurs after a load reversal. This reduction of stiffness remains until redevelopment of the 
tension field in the infill plate. Figure 6.19a shows the deformed configuration of the steel 
plate shear wall at full development of tension field during loading of the wall in the 
positive 1-direction. For comparison, the configuration of the first and the second panels 
of the specimen during the test is also depicted in Figure 6.19b. The deformed shape 
obtained from the finite element analysis is very similar to the one observed during the 
test. Both have the same configuration and number of buckle waves in the infill plates. 
The deformed configuration of the steel plate shear wall at an early stage of the 
redevelopment of the tension field and at full tension field development during loading of 
the shear wall in the negative 1-direction are shown in figures 6.20 and 6.21, respectively. 

Although the finite element model successfully emulates the cyclic behaviour of the steel 
plate shear wall, there are a few differences between the test and the finite element model 
responses. Starting at load cycle 21, a number of tears and cracks developed in the shear 
wall because of localized plastic deformation. The size of these tears increased with each 
loading cycle. This phenomenon causes a gradual stiffness reduction after each cycle of 
loading, which can be observed in the experimental response but not in the finite element 
response. 

The hysteresis curves generated by the analysis show slightly less pinching than the 
pinching observed in the test results. The test specimen showed a significant reduction in 
stiffness immediately after reloading in the opposite direction, whereas this stiffness 
reduction is somewhat delayed in the finite element model. One reason for this behaviour 
might be the effect of the fish plates, which were not incorporated in the finite element 
model. Referring to Figure 3.3, which shows the details of the connection of the infill 
plates to the boundary members, it can be seen that the tension field developed in the 
infill plates is transferred to the boundary members at an eccentricity equivalent to the 
average thickness of fishplate and infill plate. The eccentricity of the force on the 
boundary members may affect the response of the system. As a result, considering the 
fishplate in the finite element model may improve the pinching simulation.  

 



102 

6.2.3 Energy dissipation 

The ability of a structural system to dissipate energy is one of the key parameters for 
evaluating the performance of a system in a severe earthquake. A common approach used 
to account for inelastic seismic performance of a structural system is to employ a seismic 
force reduction factor. This factor reduces the elastic spectral demands to a design level 
that would be encountered if a system possesses significant inelastic behaviour. Structural 
systems that can effectively dissipate energy are permitted a larger reduction. The 
National Building Code of Canada (NBCC, 1995) introduces a force modification factor, 
R, to account for inelasticity in the response of a system. Energy dissipation ability is a 
key parameter used to establish a value for this factor. The area enclosed by hysteresis 
loops generated during a specific load or displacement history is used as a measure of the 
energy dissipated by the system. 

In order to compare the energy dissipation ability of the finite element model with that of 
the test specimen, hysteresis loops that have reached a stable behaviour will be used. 
Because the behaviour of the test specimen was not symmetrical, as discussed in Chapter 
4, an unsymmetrical cycle is assumed to be equivalent to a symmetrical cycle with the 
drift level taken as the average drift from the two excursions. 

The amount of energy dissipated during a stable cycle is obtained by measuring the area 
enclosed by the hysteresis curve using the trapezoidal rule. Figures 6.22 to 6.24 present 
the amount of energy dissipated by the first, second, and third panels from both the test 
and the finite element analysis plotted against the drift level. Figure 6.25 plots the 
dissipated energy for the system, which was calculated using the base shear versus 
displacement at the top of the steel plate shear wall. In general, there is good agreement 
between the test and the finite element analysis, although the finite element model 
overestimates the dissipated energy in all the panels. At a drift level of 1% the test-to-
predicted energy dissipation in panels 1 and 2 is 0.75 and 0.85, respectively. The test-to-
predicted energy dissipation at a drift level of 2% is 0.85 and 0.90 for panels 1 and 2, 
respectively.  

6.3 Finite element analysis of the four-storey steel plate shear wall tested by Driver 

et al. (1997) 

Although good agreement between the finite element analysis and the test results from 
the three-storey steel plate shear wall was observed in section 6.2 based on the observed 
characteristics of the steel plate shear wall outlined in section 6.1, some of the differences 
were attributed to the effect of the previous test by Driver et al. (1997). Since the history 
of plastic deformations was not considered in modelling the three-storey shear wall, a 
further test of the finite element model was carried out by modelling the four-storey steel 
plate shear wall tested by Driver et al. (1997). 

The geometry of the four-storey steel plate shear wall is shown in Figure 2.5. Modelling 
of the boundary conditions, infill plate, and material properties in the first panel is similar 
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to the first panel of the three-storey model discussed earlier, except that the first plate-
buckling mode of the shear wall was used as initial imperfections instead of measured 
values. The peak amplitude of the imperfection was set at 10 mm in order to represent a 
reasonable maximum out–of–flatness of the infill plate. 

As explained in Chapter 2, the test was conducted with a constant gravity load applied at 
the top of the columns and equal cyclic horizontal loads, which were applied at each floor 
level. In order to conduct a displacement control analysis, a loading frame was designed 
for the finite element model, similar to the one used for the three-storey analysis. Details 
of this loading frame are depicted in Figure 5.13. The loading frame is an assembly of 
rigid elements that form a statically determinate system. The horizontal force or 
displacement is applied only at node B14 on the loading frame. As with the three-storey 
shear wall analysis, a velocity history was applied at node B14, and this translated into a 
displacement history and associated boundary forces. The geometry and connections of 
the loading frame were selected so that the force at node B14 was distributed equally to 
all four levels. 

6.3.1 Pushover analysis 

The same procedure and controls used for the pushover analysis of the three-storey shear 
wall model were followed for conducting a monotonic pushover analysis of the 
four-storey shear wall model. A gravity load of 720 kN was first applied to the top of 
each column and was kept constant for the remainder of the analysis. 

The displacement at node B14 of the load frame (see Figure 5.13) was increased 
smoothly and monotonically until the displacement at the first level, node S1, reached a 
value well beyond the drift at ultimate capacity of the specimen. The energy content of 
the model was investigated to assure a smooth quasi-static analysis. 

The storey shears for all four panels are plotted against the storey drift and compared 
with the envelope of the hysteresis curves obtained from the test results in figures 6.26 to 
6.29. The base shear is plotted against the displacement at the top of the wall in 
Figure 6.30. Figures 6.26 to 6.30 show an excellent agreement between the test and the 
finite element analysis. As was the case for the analysis of three-storey steel plate shear 
wall, the elastic stiffness is predicted well. The predicted elastic stiffness of all four 
panels is the same as observed during the test. Any slight variations can be attributed to 
the rotation of the hydraulic jacks during the experiment, which was not considered in the 
finite element model. 

The post-yielding response of the test specimen is also predicted well by the finite 
element analysis. The capacity of the shear wall is under-predicted by only 7.8% on 
average at all panels compared to 12% under-prediction for the three-storey shear wall. 
Compared to the three-storey steel plate shear wall, the prediction of the response of the 
four-storey steel plate shear wall in the post-yielding region is closer to the observed test 
result. This improvement in the prediction of the test result was expected since the 
four-storey specimen had no prior history of plastic deformation.  
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Figure 6.31 shows a vector plot of the in-plane principal stresses at the ultimate load at 
mid-surface of the shell elements. The orientation of principal stresses is uniform for 
relatively large portions of the infill plate in each panel. From the plot of the principal 
stress vectors, the angle of inclination of the tension field is obtained as 45°, 43°, and 45° 
for panels 1, 2, and 3, respectively. The corresponding angles of inclination of the tension 
field are obtained by Equation 2.2 as 42° for all three panels. As was observed for the 
three-storey steel plate shear wall, the inclination of the tension field predicted using 
equation 2.2 is in very close agreement to the inclination observed in the finite element 
model. 

6.3.2 Cyclic analysis 

Cyclic analysis of the four-storey steel plate shear wall was conducted in the same way as 
for the three-storey steel plate shear wall. The gravity load was first applied to the top of 
each column and was kept constant for the rest of the analysis. Drift of the first panel was 
selected as the control parameter to establish a cyclic load history. 

The drift at significant yielding and the relationship between the horizontal displacement 
of node B14 (on the loading frame) and node S1 (at level 1) were obtained from the 
pushover load analysis. Using this information, a proper velocity history was applied at 
node B14 in order to create the desired displacement history at the first panel. It should 
be noted that, despite the fact that the test specimen was not loaded symmetrically 
because of stroke limitation of the actuator at level 3, the finite element model was loaded 
symmetrically for simplicity. 

Hysteresis loops obtained from the finite element analysis of the four-storey steel plate 
shear wall are compared with the hysteresis loops obtained from the test results in figures 
6.32 to 6.36 for each panel and the displacement at the top of the shear wall. For 
simplicity, only the portion of the test results where the test specimen was loaded 
symmetrically in both directions is presented in the figures. In general, there is good 
agreement between the test and the finite element analysis. The capacity and stiffness of 
the shear wall are in excellent agreement with the test results but, as was the case for the 
three-storey steel plate shear wall, pinching of the hysteresis loops is not as pronounced 
as the test. A possible reason for this discrepancy was discussed in section 6.2.2. 

6.3.3 Energy dissipation 

Figures 6.37 to 6.40 show the energy dissipated by each panel of the steel plate shear wall 
as a function of drift level. The overall energy absorbed by the steel plate shear wall as a 
function of the displacement at the top of the wall is plotted in Figure 6.41. As expected, 
the finite element model overestimates the energy dissipation primarily because the 
pinching of the hysteresis loops is not simulated accurately. The limitation in the stroke 
of the third level actuator during the test is also another cause of the lower energy 
dissipation observed in the test specimen as compared to the finite element model.  
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A comparison of the predicted behaviour of a three-storey and a four-storey steel plate 
shear wall with test results has indicated that the finite element procedure developed in 
Chapter 5 is able to provide a reliable prediction of the stiffness, point of significant 
yielding, pinching of hysteresis loops, energy absorption, and strength of steel plate shear 
walls subjected to cyclic loading. The validated procedure will be used in Chapter 8 to 
conduct a parametric study. 
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Figure 6.1: First vibration mode of the three-storey steel plate shear wall  
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Figure 6.2: Velocity history for node B7 in the pushover analysis of the three-storey steel 

plate shear wall 
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Figure 6.3: Energy history of the pushover analysis of the 

three-storey steel plate shear wall 
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Figure 6.4: History of kinetic energy of the pushover analysis of the 

three-storey steel plate shear wall 
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Figure 6.5: Top storey velocity history during a pushover analysis of the 

three-storey steel plate shear wall for two different time periods 
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Figure 6.6: Monotonic finite element analysis compared with the envelope of the test 

cyclic response –– Panel 1 
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Figure 6.7: Monotonic finite element analysis compared with the envelope of the test 

cyclic response –– Panel 2 
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Figure 6.8: Monotonic finite element analysis compared with the envelope of the test 

cyclic response –– Panel 3 
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Figure 6.9: Monotonic finite element analysis compared with the envelope of the test 

cyclic response –– Top displacement 
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Figure 6.10: Vector plot of maximum in-plane principal stress at ultimate load––
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Figure 6. 11: History of horizontal velocity applied to node B7 on loading frame 
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Figure 6.12: History of horizontal displacement at node B7 on loading frame 
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Figure 6.13: History of first storey drift 
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Figure 6.14: Energy history in cyclic analysis of the three-storey steel plate shear wall 
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Figure 6.15: Comparison of finite element hysteresis analysis with test results––Panel 1 
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Figure 6.16: Comparison of finite element hysteresis analysis with test results––Panel 2 
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Figure 6.17: Comparison of finite element hysteresis analysis with test results––Panel 3 
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Figure 6.18: Comparison of finite element hysteresis analysis with test results––

Top displacement 
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(a) Finite element model 

 

 
(b) First and second panels of test specimen 

 
Figure 6.19: Deformed shape of steel plate shear wall loaded in positive 1-direction — 

Tension field fully developed 
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Figure 6.20: Deformed shape of steel plate shear wall loaded in negative 1-direction — 

Early stage of tension field redevelopment 

 
Figure 6.21: Deformed shape of steel plate shear wall loaded in negative 1-direction — 

Tension field fully redeveloped 
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Figure 6.22: Energy dissipation as a function of drift level—Panel 1 
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Figure 6.23: Energy dissipation as a function of drift level—Panel 2 
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Figure 6.24: Energy dissipation as a function of drift level—Panel 3 
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Figure 6.25: Energy dissipation as a function of displacement at the top 
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Figure 6.26: Monotonic finite element analysis compared with the envelope of the test 

cyclic response –– Panel 1 
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Figure 6.27: Monotonic finite element analysis compared with the envelope of the test 

cyclic response –– Panel 2 
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Figure 6.28: Monotonic finite element analysis compared with the envelope of the test 

cyclic response –– Panel 3 
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Figure 6.29: Monotonic finite element analysis compared with the envelope of the test 
cyclic response –– Panel 4 
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Figure 6.30: Monotonic finite element analysis compared with the envelope of the test 

cyclic response –– Top displacement 
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Figure 6.31: Vector plot of maximum in-plane principal stress at ultimate load––
Mid-surface of shell elements 
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Figure 6.32: Comparison of finite element hysteresis analysis with test results—Panel 1 
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Figure 6.33: Comparison of finite element hysteresis analysis with test results––Panel 2 
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Figure 6.34: Comparison of finite element hysteresis analysis with test results—Panel 3 

 
 

-2500

0

2500

-25 0 25

Fourth storey drift (mm)

Fo
ur

th
 p

an
el

 sh
ea

r (
kN

)  
 a

Finite element model
Test-4spsw

Figure 6.35: Comparison of finite element hysteresis analysis with test results—Panel 4 
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Figure 6.36: Comparison of finite element hysteresis analysis with test results—

Displacement at the top 
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Figure 6.37: Energy dissipation as a function of drift level—Panel 1 
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Figure 6.38: Energy dissipation as a function of drift level—Panel 2 
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Figure 6.39: Energy dissipation as a function of drift level—Panel 3 
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Figure 6.40: Energy dissipation as a function of drift level—Panel 4 
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Figure 6.41: Energy dissipation as a function of displacement at the top 
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7. EVALUATION OF STRAIN DATA 

7.1 Introduction 

Testing of a three-storey steel plate shear wall was conducted as described in Chapter 3. 
The behaviour of boundary members was monitored using 91 strain gauges mounted at 
20 different sections along the beams and columns. The objective was to compare the 
cyclic response to pushover finite element analysis results. If the shear capacity predicted 
by a pushover analysis is in good agreement with the test results, a pushover analysis can 
be used to carry out a parametric study. The location of these strain gauges was presented 
in Figure 3.9. Since the second panel of the test specimen is representative of a panel in a 
multi-storey building and was expected to be the critical panel, most of the strain gauges 
were mounted on the boundary members of this panel. A minimum of four strain gauges 
was mounted at each instrumented cross-section. For model validation purpose, boundary 
elements are more suitable than infill plates because the latter are more susceptible to 
local buckling.  

The measured strain distributions across the depth of the cross-sections were used to 
calculate the axial force and bending moment at cycles 6, 12, 15 and 18 when the lateral 
loads were applied in the west direction (hydraulic actuators pushing against the test 
specimen). The strain data and calculated member forces are compared with the results of 
a pushover finite element analysis at the same load level as the test. In cycle 6 the shear 
wall behaved elastically. Cycles 12, 15 and 18 are the third cycle from the corresponding 
load blocks with the second panel drift at  yδ , 2 yδ  and 3 yδ , respectively. 

7.2 Strain measurements in the flanges 

In order to estimate the average strain of the flange at any cross-section two strain gauges 
were mounted longitudinally near the flange tips, as shown in Figure 3.9. To check the 
validity of the measured strains, readings from each pair of strain gauges mounted on a 
flange were plotted as a function of the applied load and the differences between the two 
gauges were investigated. Theoretically, the two strain readings should follow almost the 
same trend. However, for a localized effect such as local buckling, the strain readings 
will be significantly different and the average of two gauges cannot be taken as the 
average strain at the surface of the flange. A plot of strain versus base shear for gauges 8c 
and 8d, mounted on the west flange of section 8, during cycles 18 and 19 is presented in 
figures 7.1a and 7.1b. Figure 7.1a shows that the two strain gauges responded similarly 
during cycle 18 (this similarity in response was also observed in previous cycles). 
However, in cycle 19 and at a load level of approximately 3000 kN (see Figure 7.1b), the 
reading from strain gauge 8d diverged suddenly from the strain gauge reading at 8c, 
indicating onset of a local instability. At some instrumented sections a small discrepancy 
was observed between the two gauges on the flange, which could be caused by out–of–
plane bending of the cross-section. Since the strains recorded in the flanges were 
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averaged, the calculations based on the average flange strains did not include the effect of 
any out–of–plane bending.  

7.3 Strain measurements in the web 

The interaction between the infill plates and frame members and the presence of high 
shear forces resulting from the development of the tension field can affect the distribution 
of axial strain across the depth in the beams and columns. In order to investigate the 
distribution of axial strain along the depth, one more strain gauge was mounted 
longitudinally at the middle of the web on the north face of the wall. In wide flange 
sections the flanges carry most of the bending moment, whereas the web contributes 
approximately 10% of the moment carrying capacity in the elastic range. Therefore, any 
error in the strain measurements in the web should lead to only a small error in the 
bending moment calculation. On the other hand, axial forces create a uniform stress in the 
cross-section and the web contribution becomes more significant. 

Initial imperfections in the web and flanges of rolled wide flange sections, resulting from 
the manufacturing and fabrication processes create out–of–plane deformations because 
in-plane stresses are introduced in the cross-sections. This unavoidable out–of–plane 
bending of the web creates different magnitudes of strain on opposite faces of the web, 
but no net strain on the cross-section. As the applied load increases, the difference 
between the membrane strain and the measured strain on one face of the web increases. 
To obtain the membrane strain of the web during the test, the average strain on both faces 
of the web should be used, especially at high load levels. In this study, however, strains 
were measured only on the north face of the web, which was not enough to capture the 
membrane strain in the web in the presence of out–of–plane bending of the web. 

The measured strain distribution at section 13 in the west column (see Figure 3.9) is 
shown in Figure 7.2. The strain distribution across the depth of the beam near the column 
(section 20) is presented in Figure 7.3. These two sections are highly strained sections in 
the column and the beam. At low load levels (up to about cycle 12) the strain distribution 
at both sections is linear, but at high load levels the strain distribution in the cross-section 
is no longer linear. As shown in these figures, the rate of change of strain at the surface of 
the web (mid-height of the cross-sections) is much higher than the strain rate in both 
flanges. One possible reason for this behaviour at high load levels, as discussed above, 
could be the out–of–plane deformation of the web. Because of this out–of–plane 
deformation, the strain reading on one side of the web cannot be considered as the 
membrane strain of the web, especially at high load levels. This nonlinear behaviour was 
not observed in the finite element analysis, which did not include out–of–plane member 
imperfection. In the remaining portion of this chapter a linear strain distribution was 
assumed across the sections. 
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7.4 Comparison of finite element analysis with test results 

7.4.1 Strain distribution in boundary members 

The strain distributions at various sections of the beams and columns were obtained using 
the finite element model presented in Chapter 5. In order to minimize the data storage 
requirement during the finite element analysis, the strains in the boundary members were 
obtained from a pushover analysis. The comparison between the finite element analysis 
and the test was performed for one elastic cycle, cycle 6, and three plastic cycles namely, 
cycles 12, 15 and 18, which are stabilized cycles in the blocks of cycles with drift of yδ , 
2 yδ , and 3 yδ , respectively. In Chapter 5 it was demonstrated that the pushover analysis 
successfully predicts the envelope of hysteresis loops. Therefore, in the finite element 
analysis the strains were obtained at the peak load level of these cycles. 

A comparison between measured and predicted strains at sections 10, 11, 12, and 13 in 
the west column is presented in figures 7.4 to 7.7. Excellent agreement was obtained 
between the test results and the finite element analysis at all sections for low load levels. 
At sections 10 and 11 a good correlation between the measured strains and the strains 
predicted by the finite element analysis is observed even at high load level and after as 
many as 18 cycles. However, at sections 12 and 13 the accuracy of the analysis 
deteriorates as the load increases. The strain distributions predicted by the finite element 
analysis show approximately a linear distribution at all load levels across these cross–
sections.  

The strain distributions at sections 7, 8, 9, located in the west column of first storey, and 
in sections 17, 18, 19, and 20, located in the beam at level 2, are presented in figures 7.8, 
through 7.14. A comparison of the measured strains with the strains predicted by the 
finite element analysis indicates that at strain levels less than about 1600 µε the finite 
element predictions are in excellent agreement with the test results. Although the 
difference between the measured and predicted strains increases with increasing load and 
number of cycles, the predicted and measured shape of the strain distributions are similar. 
The strain magnitudes at different sections of the beam are relatively small compared to 
the strains in the columns. This is caused by equal and opposing tension fields from the 
panels above and below the beam.  

7.4.2 Bending moment and axial force diagrams in the boundary members 

In this section comparisons of the strain data obtained from the test results and with the 
finite element analysis are made in the form of bending moments and axial forces for the 
beams and columns. In order to obtain the axial force and the bending moment at various 
sections from the strain data, a number of assumptions had to be made. It was assumed 
that the bending moment is uniaxial. Hence, the strain at the extreme fibres of the cross-
section was taken as the average of the readings from the two gauges on each flange. A 
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linear strain distribution was assumed over the depth of the cross-section. An elastic 
perfectly plastic material model with the mean measured value of the modulus of 
elasticity (obtained from ancillary tests by Driver et al. (1997)) was used to determine the 
associated stress values. It was also assumed that the boundary members in the previous 
four-storey test remained elastic and, as a consequence, the effect of previous cyclic 
loading on the moment versus curvature response of a section was considered negligible. 
The resultant axial force and bending moment at the instrumented sections were 
calculated from a numerical integration of the stress distribution on the cross-section. 

The presence of residual stresses affects the calculation of bending moment and axial 
force from the measured strain data. Although residual stresses do not affect the ultimate 
strength of a member, it softens the moment versus curvature or axial force versus axial 
deformation responses by initiating yielding at an earlier loading stage. The effect of 
residual stresses remains negligible as long as the sum of the applied stress and the 
residual stress is less than the yield stress at every point on the cross-section. The axial 
load and bending moment calculations were carried out without considering the softening 
effect from residual stresses.  

Welding of the fishplates to the boundary members introduces an unknown pattern of 
residual stresses in the cross-section of the boundary members. To assess the error that 
results from neglecting the residual stresses in calculating the bending moment from 
strain readings, a simplified residual stress pattern typical for a hot rolled section (shown 
in Figure 7.15) was assumed on a W310×118 section (which is the beam cross-section at 
levels 1 and 2) and used in a series of calculations. A modulus of elasticity of 
200 000 MPa, yield stress of 300 MPa and elastic perfectly plastic material model was 
assumed in the residual stress investigation. Moment versus curvature relations was 
obtained for three conditions. One was free of residual stresses and the other two had 
maximum residual stresses of 30% and 100% of the yield strength, respectively. The 
moment versus curvature (M–Φ) responses for these three residual stress conditions are 
presented in Figure 7.15 and the error resulting from neglecting the residual stresses is 
presented in Figure 7.16. Figure 7.15 indicates that residual stresses soften the response 
but do not change the capacity. Neglecting the residual stresses in a W310×118 section 
can result in an overestimate of the bending moment by as much as 21% in bending 
moments under these assumptions (see Figure 7.16). The same observation can be made 
concerning the effect of neglecting the residual stresses when calculating the axial load 
response. This source of error should, therefore, be considered when interpreting the 
internal forces.  

The axial force and bending moment diagrams in the west column of the first storey are 
shown in figures 7.17 and 7.18, respectively. The axial force along the column is 
predicted very well by the pushover analysis, even after significant yielding. On the other 
hand, the bending moment along the column is in good agreement with the test results 
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only in the elastic range. In the plastic range, the discrepancy between the finite element 
predictions and the test values increases with increasing load level and number of cycles. 

The effect of the tension field on the columns can be assessed by comparing the axial 
force and bending moment diagrams, shown in figures 7.17 and 7.18, with the axial force 
and bending moment diagrams expected for a frame without infill plates. In a rigid frame 
with no infill plate the axial force would be uniform along the column length. This is not 
the case, however, in a rigid frame with an infill plate. Because of the presence of the 
tension field, the axial force varies over the length of the column. The gradient of the 
axial force along the column represents the vertical component of tension field, which, in 
turn, depends on the inclination and the magnitude of the tension field at that location. As 
shown in Figure 7.17, the axial force gradient in cycles 12 and 15 is greater than the 
gradient in cycle 6, which indicates that the tension field in the infill plate has increased 
from cycle 6 to cycle 12. The gradient of the axial force in cycles 12 and 15 is 
unchanged, which indicates that the tension field has reached its maximum value 
corresponding to yielding in tension. The gradient of the axial force is maximum at the 
top of the column and minimum at the bottom of the column, although the gradient does 
not vary much along the column. This indicates that the vertical component of the tension 
field is slightly larger at the top corner of the panel. 

The axial force and bending moment diagrams in the west and east columns at the second 
storey are shown in figures 7.19 to 7.22. The predicted axial force diagram for the east 
column (see Figure 7.21) is in excellent agreement with the test results even in cycle 15 
and after a number of inelastic cycles, which is consistent with the results obtained for the 
west column at the first storey. The axial tension force in the east column increases from 
the top to the bottom of the column. Similarly, the axial compression force in the west 
column was observed to increase from the top to the bottom of the column. This is 
consistent with a tension field running diagonally across the steel plate shear wall panel.  

The bending moment diagram obtained from the test for the west column in the second 
panel (Figure 7.20) is similar to the bending moment diagram in a portal frame without 
infill plate subjected to lateral load. The bending moment diagram predicted by the finite 
element analysis shows a nonlinear variation, which is the effect of tension field on the 
column. In the east column the bending moment diagram is somehow different from that 
the west column. In this column, which is shown in Figure 7.22, the inflection point in 
both the test and the finite element analysis is shifted towards the bottom of the column, 
and as a result a major portion of the column is subjected to a positive bending moment. 
The difference in the bending moment diagrams of the two columns is mainly attributed 
to the restraining effect of the infill plate at the lower corners of the panel. As the wall is 
pushed in the west direction the infill plate at the bottom west corner can effectively 
restrain the west column, but this is not the case at the bottom portion of the east column.  

The axial force and bending moment diagrams in the beam at level 2 are shown in figures 
7.23 and 7.24, respectively. As expected, the pushover analysis accurately predicts the 
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internal force effects in the beam in the elastic range. Unlike the columns, the axial force 
was not predicted accurately in the plastic range. One probable reason could be the 
localized effects due to welding of fish plates to the boundary members, which is more 
pronounced in the beams than in the columns (fishplates were welded to the beams from 
both flanges and only to one flange of the columns). As shown in Figure 7.23, the slope 
of the axial force diagram in the beam is close to zero, which indicates that the tension 
field transferred to the beam from the top and bottom panel almost counteract each other, 
resulting in a very small variation of axial force along the beam. The bending moment 
diagrams shown in Figure 7.24 show a good agreement between the test and the finite 
element analysis in the inelastic range. The beam curvature and the inflection point are 
predicted accurately by the finite element model. The predicted bending moment diagram 
shows almost the same pattern as a bending moment for a beam in a frame without any 
infill plate; opposite curvatures at beam-ends and an inflection point near the midspan, 
except that because of the tension field the bending moment diagram is no longer linear 
and the inflection point is shifted towards the west column.  

There are a number of factors that have not been considered in the finite element model, 
such as the difference between a pushover analysis and a cyclic loading response. 
Therefore, in the plastic range the history of plastic deformations and accumulation of 
effective plastic strains have not been considered in the finite element model. This causes 
the pushover finite element analysis to diverge from the test results as the number of 
cycles in the plastic range increases. Residual stresses, localized imperfections and plastic 
flow history from the previous test on the four-storey steel plate shear wall are all factors 
that were not included in the finite element model. Although discrepancies exist, the 
overall trends are in good agreement. 

7.5 Summary 

The strain data collected from strain gauges mounted at various sections along the beams 
and columns of the test specimen were used to determine the strain distribution in the 
beams and columns, from which the axial forces and in-plane bending moments were 
calculated. The pushover finite element analysis developed in Chapter 5, which 
successfully predicted the envelope of the hysteresis loops, was also used to predict the 
strains and internal forces of the instrumented cross-sections at the peaks of some of the 
hysteresis loops. 

Up to cycle 12 (third block of cycle with displacement drift of δy), the strains and the 
corresponding forces and bending moments at most instrumented sections were predicted 
accurately by the finite element analysis. In the inelastic range, and even after several 
plastic cycles, the axial forces in the west column of storey 1 and the east column of 
storey 2 were in excellent agreement with the test results. In general, as the number of 
inelastic cycles increased, the pushover analysis prediction started to diverge from the 
test results. However, both followed the same trend. In this range the difference between 
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the analysis and the test was reasonable and all the features of the behaviour (inflection 
points, slopes, and curvatures) were predicted accurately in all locations.  

The good agreement of the pushover finite element predictions in the elastic range and in 
the plastic range with the test results once again demonstrates the effectiveness of the 
finite element model in simulating the cyclic behaviour of steel plate shear walls.  
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(a) Cycle 18 
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Figure 7.1: Strain versus base shear at points c and d of section 8  
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Figure 7.2: Strain distribution at section 13 in west column 
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Figure 7.3: Strain distribution at section 20 in beam at level 2 
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Figure 7.4: Strain distribution at section 10 in west column 
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Figure 7.5: Strain distribution at section 11 in west column 
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Figure 7.6: Strain distribution at section 12 in west column 
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Figure 7.7: Strain distribution at section 13 in west column 
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Figure 7.8: Strain distribution at section 7 in west column  
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Figure 7.9: Strain distribution at section 8 in west column 
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Figure 7.10: Strain distribution at section 9 in west column 
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Figure 7.11: Strain distribution at section 17 in the beam at level 2 
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Figure 7.12: Strain distribution at section 18 in the beam at level 2 
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Figure 7.13: Strain distribution at section 19 in the beam at level 2 
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Figure 7.14: Strain distribution at section 20 in the beam at level 2 
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Figure 7.15: Effect of residual stresses on the moment versus curvature response for a 
W118×60 
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Figure 7.16: Error introduced when residual stresses are ignored in moment calculation 
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Figure 7.17: Axial force diagram of the west column in the first storey  
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Figure 7.18: Bending moment diagram of the west column in the first storey  
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Figure 7.19: Axial force diagram of the west column in the second storey  
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Figure 7.20: Bending moment diagram of the west column in the second storey  
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Figure 7.21: Axial force diagram of the east column in the second storey  
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Figure 7.22: Bending moment diagram of the east column in the second storey  
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Figure 7.23: Axial force diagram in the beam at level 2 

 
 
 

-160

-120

-80

-40

0

40

80

0 500 1000 1500 2000 2500 3000

Distance along the beam (mm)

B
en

di
ng

 m
om

en
t (

kN
.m

)  
 a

Test cycle   6 (1000 kN)
Test cycle 12 (2266 kN)
Test cycle 15 (2710 kN)
               FEA (1000 kN)
               FEA (2246 kN)
               FEA (2726 kN)

Beam-Level 2

 
Figure 7.24: Bending moment diagram in the beam at level 2 
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8. PARAMETRIC STUDY 

8.1 Introduction 

A finite element model based on a nonlinear dynamic formulation was developed in 
Chapter 5 for the analysis of unstiffened steel plate shear walls. The model was validated 
by comparing the predicted behaviour of a three-storey and a four-storey steel plate shear 
wall against the test results presented in chapters 3 and 4 and the work of Driver et al. 
(1997). It was shown that the finite element model is able to predict accurately both the 
monotonic and cyclic behaviour of steel plate shear walls. 

The main objective of this chapter is to identify the parameters that affect the behaviour 
of a steel plate shear wall system. The model selected for this investigation is a single 
steel plate shear wall panel with rigid floor beams subjected to shear force and constant 
gravity load. A set of non-dimensional parameters that define the behaviour of the model 
is identified from a dimensional analysis. The effects of the primary non-dimensional 
parameters are investigated and a method for considering the effect of the number of 
storeys in a multi-storey frame is proposed. 

8.2 System selected for investigation 

The steel plate shear wall model selected for the parametric study presented in section 8.3 
is shown in Figure 8.1. The model consists of a single panel bounded by two rigid beams 
at the top and bottom. Neglecting the bending deformation of floor beams in a multi-
storey unstiffened steel plate shear wall is a reasonable assumption, because equal and 
opposite tension fields applied to the interior beams tend to counteract the double 
curvatures expected in a beam in a drifting frame. The results of the test described in 
chapters 3 and 4 and the tests by other researchers (Driver et al., 1997 and Rezai, 1999) 
showed that the strains developed in the top and bottom flanges of the storey beams were 
relatively small, indicating that the contribution of flexural and axial stiffness of the floor 
beams to the overall behaviour of the shear wall is relatively small and that the shear wall 
system behaves more as a cantilever wall than a frame. It is assumed that any gravity 
loads applied directly to the beams in the steel plate shear wall will be small. 

Assuming cantilever behaviour, the rotational flexibility of the lower floor beam of an 
isolated panel in a multi-storey building can be neglected with the top floor beam allowed 
to rotate as a rigid body relative to the lower floor beam. This allows each panel of a 
multi-storey shear wall to be analysed separately (“panel-by-panel analysis”) if the effect 
of over-turning moments from the top storeys is considered in the analysis. The analysis 
of a single storey model gives an accurate result for the first storey, assuming the shear 
wall is connected to a rigid foundation. By accounting for the rotation of the upper floor 
beams, this model can be extended to capture the behaviour of top panels as well. At first, 
only the shear force and gravity loads are considered in the panel. The effect of the 
number of storeys above the panel is discussed in sections 8.4 and 8.5. 
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8.2.1 Model parameters 

In general, parameters affecting the behaviour and capacity of a system can be classified 
into four categories: geometric variables, loading variables, deformational variables, and 
material variables. The parameters that govern the behaviour and capacity of the selected 
model of steel plate shear wall with rigid floor beams are defined below. 

Referring to Figure 8.1, the geometric variables are the width of the infill plate, L, the 
height of the panel, h, the thickness of infill plate, pt , the moment of inertia of the 
columns, cI , the cross-sectional area of the columns, cA , and the magnitude of the 
maximum out–of–plane imperfection in the infill plate, imp∆ . The loading variables are 
the applied gravity load in the columns, W, and the shear force, V, while the 
deformational variable is selected as the drift of the panel (δ ). The material variables are 
the modulus of elasticity, E, the elastic shear modulus, G, Poisson’s ratio, ν , the static 
yield strength of column material, ycσ , and the static yield strength of the infill plate 
material, yplσ . Of these, the modulus of elasticity, the elastic shear modulus, and 
Poisson’s ratio are nearly constant for all grades of steel. The first two are also related 
through Poisson’s ratio. Thus, only the modulus of elasticity needs to be considered an 
independent parameter. 

8.2.2 Simplification of parametric study- Dimensional analysis 

A total of 12 parameters are therefore believed to affect the behaviour and capacity of the 
selected model: L, h, pt , cA , cI , imp∆ , W, V, δ , ycσ , yplσ , and E. Considering the 
number of parameters, along with the practical range for each parameter, a 
comprehensive study of this system requires an analysis of an unmanageable number of 
models. By implementing methods of dimensional analysis, the complexity of the study 
can be reduced. This can be achieved by selecting a representative set of parameters that 
are scale independent and dimensionless (Taylor, 1974).  

Assuming that the behaviour of a physical problem can be obtained by a set of n 
variables, A1, A2 , … An ,  the relationship between these variables can be expressed in 
terms of a homogeneous function (Taylor, 1974): 

 F(A1, A2 , … An) = 0  (8.1) 

For practical reasons, it is useful to reduce the number of variables and identify a proper 
set of dimensionless parameters that can characterize the behaviour of the physical 
problem. This can be done by using the Buckingham Pi theorem (Langhaar, 1951), which 
is stated as follows: 

If an equation is dimensionally homogeneous, it can be reduced to a relationship among 

a complete set of dimensionless products. 

Langhaar (1951) showed that the number of independent dimensionless groups of 
variables needed to correlate the variables in a given process is equal to n-r. Here, r is the 
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rank of the dimensional matrix of the variables A1, A2 , … An . Rank of a matrix is the 
largest order of any square sub-matrix that has a non-zero determinant. As a result of 
using Buckingham theorem, the function (8.1) can be rewritten in terms of a smaller set 
of dimensionless parameters, β : 

 F( rn−βββ ,..., 21 ) = 0  (8.2) 

Transformation of the primary variables into a set of dimensionless parameters is useful 
because the number of parameters that must be considered is reduced by r, and this 
represents a significant saving of computational effort. This transformation, however, 
may have scale effects, which must be ruled out in a successful parametric study. 

8.2.3 Application of dimensional analysis to the selected model 

Using the fundamental units of mass, M, length, L, and time, T, the dimensional matrix 
of the primary variables described above takes the form: 

 
L h pt  cI  cA  imp∆ W V δ  ycσ  yplσ E 

M 0 0 0 0 0 0 1 1 0 1 1 1 

L 1 1 1 4 2 1 1 1 1 -1 -1 -1 

T 0 0 0 0 0 0 -2 -2 0 -2 -2 -2 

The rank of the above dimensional matrix is 2. Therefore, ten 
non-dimensional β -parameters must be formed in order to obtain a complete set of 
dimensionless products. For the one storey steel plate shear wall model the following trial 
set of parameters was chosen: 

 hL /1 =β   (aspect ratio) 

 
c

p

A
Lt

22 =β  (ratio of axial stiffness of infill plate to that of columns) 

 4
4

3 2
7.0

c

p

LI
th

=β   (column flexibility parameter) 

 
yW

W=4β  (ratio of gravity load to axial yield load or normalized 

gravity load)  

 
h
δβ =5   (drift index) 
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yV

V=6β  (ratio of shear load to the shear yield capacity or 

normalized base shear) 

 yc
yc

E
ε

σ
β ==7  (column yield strain) 

 ypl
ypl

E
ε

σ
β ==8  (plate yield strain) 

 
Lh
imp∆

=9β   (imperfection ratio) 

 
( )

c

c
I

A 2

10 =β   (local buckling index) 

in which yW  is the axial load that causes yielding of the whole cross section of the shear 
wall, yV is the shear force that causes yielding of the whole cross section of the shear 
wall, ycε  is the yield strain of the column material, and yplε  is the yield strain of the 
infill plate material. Using the von Mises yield criterion, yW and yV can be obtained as 
follows: 

 yplpyccy LtAW σσ += 2  (8.3) 

 )577.0()577.0(2 yplpycwy LtdtV σσ +=  (8.4) 

Of the above parameters, the normalized gravity load, 4β , and the normalized base 
shear, 6β , are loading parameters, while the drift index, 5β , is obtained as an output. The 
remaining β –parameters define the finite element model. In terms of limit states design, 
the ultimate limit state is defined as the maximum value of 6β  and the serviceability 
limit state can be described in terms of 5β , the drift index. 

The aspect ratio, 1β , is an important parameter since it is expected that it will strongly 
influence the inclination of the tension field and the resulting general behaviour of the 
steel plate shear wall. In a narrow and tall shear wall (small aspect ratio) the tension field 
is close to vertical, which makes the tension field contribution to shear resistance small 
and bending becomes the governing factor. In a wide and short shear wall (large aspect 
ratio) the tension field is more inclined, which results in shear deformations governing 
the behaviour of the shear wall. Changing the aspect ratio in a steel plate shear wall 
changes the relative stiffness of the columns to the infill plate, and this affects the 
stiffness and the capacity of the shear wall. The effect of the aspect ratio is investigated in 
section 8.3.1.  

The ratio of the in-plane stiffness of the infill plate in the vertical direction to the axial 
stiffness of the columns, 2β , affects the compressive stress field in the infill plate, which 
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depends, in an average sense, on the gravity load. The effect of this parameter on the 
behaviour of the selected model is investigated in section 8.3.2.  

The non-dimensional parameter 3β  is proportional to the ratio of the in-plane bending 
flexibility of the column, ( )cEIh3 , to the in-plane flexibility of the infill plate in the 
horizontal direction, ( )hEtL p . This parameter was originally introduced by Wagner 
(1931) in order to study the effect of flexibility of the plate girder flange on the 
redistribution of the tension field in a plate girder web. By analogy with the plate girder, a 
relatively flexible column prevents a uniform and complete tension field from developing 
in the infill plate, thus reducing the stiffness and the capacity of the steel plate shear wall 
system. The parameter 3β  is similar to hω , which is designated in CSA–S16–01 as 
column flexibility. The effect of this parameter is investigated in section 8.3.3. 

The normalized gravity load, 4β , is the ratio of applied gravity load to the gravity load 
that causes yielding of the horizontal cross-section of the shear wall. An increase in 
gravity loads causes an increase in the secondary bending moments, and this reduces both 
the stiffness and capacity of the shear wall. This may have contributed to the higher 
capacity observed in the three-storey steel plate shear wall compared to the four-storey 
steel plate shear wall. A gravity load of 1080 kN was applied to the three-storey steel 
plate shear wall whereas 1440 kN was applied to the four-storey steel plate shear wall. 
An investigation of the effect of this parameter on the behaviour of steel plate shear walls 
is presented in section 8.5. 

The parameters 7β  and 8β  are the yield strains of the columns and infill plate, 
respectively. These parameters are important because they affect not only the capacity 
but also the failure mode of the shear wall. Ideally, most of the yielding and plastic 
deformation in a steel plate shear wall system would take place in the infill plates rather 
than in the columns so that the infill plates contribute most of the inelastic energy 
dissipation while the surrounding boundary elements just enhance the hysteresis loops 
during cyclic loading. Column yielding should not occur until an infill plate has gone 
through large plastic deformations. This can be achieved by proper selection of geometric 
parameters and also by using low-yield steel for the infill plate. However, because of time 
constraint, an investigation of 7β  and 8β  is beyond the scope of this parametric study. 

The imperfection ratio, 9β , is a parameter that takes into account the effect of maximum 
infill plate imperfection relative to the size of the panel. The shape and the magnitude of 
the out–of–flatness identify an imperfection pattern for an infill plate. However, only the 
maximum out–of–flatness, imp∆ , is considered as a parameter in this investigation. The 
first buckling mode of the infill plate is used as an imperfection shape for all analyses. 
The effect of this parameter on the behaviour of steel plate shear walls is presented in 
section 8.3.4. 

The parameter 10β  reflects the ability of the column section to undergo large plastic 
deformations without local web or flange buckling. CSA–S16–01 recommends a cross-
section that satisfies Class 1 requirements for the columns in a steel plate shear wall In 
order for the cross-section to reach its plastic capacity with sufficient reserve plastic 
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deformation capacity before local buckling of the web or flanges, the ratios of flange 
width to the thickness and web depth to the thickness must be less than the following 
limiting values (CSA-S16-01): 

 
ycf

f

t
b

σ
145

2
≤  (8.5) 

 
ycwt

d
σ
670≤  (8.6) 

Substituting equations (8.5) and (8.6) into the expressions for the cross-sectional area and 
the expression for the moment of inertia, the following equation for tw can be obtained: 
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In order to ensure that the web thickness will be greater than zero, the following 
condition must also be satisfied for a Class 1 section: 

 
2010
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yc

c

c
I

A σ
β ≥=  (8.8) 

8.2.4 Suitability of non-dimensional parameters 

One of the requirements of the Buckingham Pi theorem is that all of the fundamental 
variables necessary to describe the mechanics of a problem must be included in the set of 
Αn quantities used in equation 8.1. For the selected steel plate shear wall model, the 
fundamental variables were identified earlier as L, h, pt , cI , cA , δ , V, W, ycσ , yplσ , E, 
and imp∆ . To determine whether all of the essential variables that play a role in the 
behaviour of the system are represented in this set, a preliminary investigation was 
conducted on several steel plate shear walls having identical β –parameters but with 
different scales. If the set contains all of the essential quantities, then the results from 
these analyses should not be affected by changes in scale. 

In order to check for potential scale effect, three models designated as A, C, and E were 
analysed. A description of these three models is presented in Tables 8.1 and 8.2. Model C 
has the same scale as the first panel of the four-storey steel plate shear wall tested by 
Driver et al. (1997). Except for material properties, all other variables in the selected 
models are different for each of the three models. However, the β –parameters, shown in 
Table 8.3, are the same for the three models.  

The base shear versus drift for the three models are presented in Figure 8.2. The 
responses of the models are different since different scales have been used. However, a 
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comparison of the models is presented in Figure 8.3 in terms of the normalized base 
shear, 6β , plotted against the drift index, 5β . Examination of the figure reveals that the 
change of scale did not have any effect on the non-dimensional response of the models. 
Therefore, it can be concluded that these parameters are the true representative 
parameters that are scale independent and that fully describe the behaviour of a steel plate 
shear wall panel. The β–parameters can therefore be used for an investigation of the 
selected model of steel plate shear wall.  

8.3 Effect of the β –parameters on the behaviour steel plate shear wall panels 

In this section only four parameters are investigated in depth in the context of the single 
storey model. These are the aspect ratio, 1β , the axial stiffness ratio, 2β , the column 
flexibility parameter, 3β , and the imperfection index, 9β . As in the previous section the 
material parameters 7β and 8β  are kept constant at 0.00152 and 0.00166, respectively. 
The gravity load is kept at 10% of the yield capacity. 

8.3.1 Effect of aspect ratio (β1) 

The effect of infill plate aspect ratio on the behaviour of steel plate shear wall was 
investigated using four models with aspect ratios of 0.7, 1.0, 1.5, and 2.0. The remaining 
non-dimensional parameters were kept constant for these models. An aspect ratio of 0.7 
represents a narrow and high shear wall panel whereas an aspect ratio of 2.0 represents a 
wide and short shear wall. The other β –parameters were obtained in such a way that the 
combination of non-dimensional parameters result in practical and reasonable dimensions 
for each model. The various geometric and material properties used for each model are 
presented in Table 8.4, with the actual cross-sectional dimensions of the columns 
presented in Table 8.5. Table 8.6 presents the value of all the β –parameters used for all 
four models.  

The normalized base shear, 6β , versus the normalized drift, 5β , for the four models, are 
plotted in Figure 8.4. The slope of the linear portion of the response represents a non-
dimensional stiffness, ( )( )yVhV //δ . Figure 8.4 indicates that a decrease in aspect ratio 
results in an increase in the capacity and the non-dimensional stiffness of steel plate shear 
walls. This increase of capacity and stiffness, however, is negligible within the range of 
aspect ratio between 1.0 and 2.0. For aspect ratios less than 1.0, the increase in capacity 
and non-dimensional stiffness is noticeable. By decreasing the aspect ratio of the steel 
plate shear wall from 1.0 to 0.7 the non-dimensional stiffness is increased by 35% and the 
capacity is reached at a smaller drift. At a value of 5β  = 0.007 local buckling occurred at 
the top of the right column in the steel plate shear wall with aspect ratio of 0.7. This local 
buckling, which is depicted in Figure 8.5, is believed to have limited the capacity of the 
shear wall as the drift increased. 

In order to investigate the effect of this local buckling, a new model for the steel plate 
shear wall with an aspect ratio of 0.7 was prepared. Local buckling was prevented in the 
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new steel plate shear wall panel by providing a stiffener at that location. The response of 
the steel plate shear wall when local buckling of the columns is precluded is depicted in 
Figure 8.6. As expected, the portion of the curve before local buckling of the earlier 
model has not changed. However, the normalized capacity has increased by 
approximately 11%, which confirms the detrimental effect of column local buckling on 
the shear resistance. 

8.3.2 Effect of axial stiffness ratio ( 2β ) 

Three different values of 2β , namely, 0.31, 0.44, and 0.62, were selected for this 
investigation while the other non-dimensional parameters were kept unchanged in the 
models. The value of 0.44 is the same as for the lower storey of the three-storey steel 
plate shear wall tested in this program. The selected dimensions for the models and the 
value of the other dimensionless parameters are presented in Tables 8.7 to 8.9. 

The normalized response is shown in Figure 8.7 for three different values of 2β . The 
base shear has reached 90% of yV  in all models. As the 2β –parameter increases, the 
slope of the non-dimensional response, which can be considered as a non-dimensional 
stiffness, increases. For instance, by increasing the 2β –parameter from 0.31 to 0.62 the 
non-dimensional stiffness increases from 250 to 310, which is a 24% increase. However, 
the axial stiffness ratio, 2β , does not affect the strength of the shear wall.  

8.3.3 Effect of column flexibility parameter ( 3β ) 

The stiffness and capacity of an unstiffened steel plate shear wall system mainly depends 
on the development of the tension field in the infill plate. In order to develop a uniform 
tension field, the boundary members should have enough flexural stiffness to anchor the 
tension field. In-plane transverse deformations of the boundary members release the 
tension field in the infill plate and reduce the effectiveness of the system. For interior 
beams or columns of a steel plate shear wall, the presence of equal and opposite tension 
fields usually keeps the flexural deformations small. At the top and bottom panels, 
however, enough rigidity should be provided to anchor the tension field. Similarly, in 
order to increase the effectiveness of a steel plate shear wall, enough flexural stiffness 
should be provided by the columns on the perimeter of the shear wall. The minimum 
stiffness of a column ( )3/ hEIc , however, depends on the magnitude of the tension forces 
that need to be transferred by the columns and this can be related to the in-plane stiffness 
of the infill plate in the direction of shear force ( )LhEt p / . As a consequence, 3β  should 
play an important role in a steel plate shear wall system. As 3β  increases in a steel plate 
shear wall panel the flexibility of the columns and corresponding in-plane deformation of 
the columns increase. This reduces the efficiency of the system. 

In order to investigate the effect of 3β  on the behaviour of a steel plate shear wall, three 
models with column flexibility ratios of 1.5, 2.5, and 3.5 were analysed. The scales of the 
models were selected to keep the other non-dimensional parameters constant for this 
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investigation. A column flexibility ratio of 2.5 is the maximum value allowed by CSA–
S16–01, and 3β  of 1.5 is the column flexibility of the bottom panel of the three-storey 
steel plate shear wall tested in this project. 

Figure 8.8 shows the normalized response of the three steel plate shear walls with varying 
3β  values. As can be seen in the figure, 3β  has a major effect on both the stiffness and 

the capacity of the steel plate shear wall. As the column flexibility parameter decreases, 
the shear wall capacity approaches the yield capacity, yV , resulting in a more economical 
system. For instance by reducing the column flexibility of the model from 3.5 to 1.5 the 
capacity of the steel plate shear wall is increased from 72% of yV to more than 90% of 

yV . As mentioned above, CSA–S16–01 has limited the column flexibility parameter to a 
value of 2.5. For the set of β –parameters selected for this study the shear wall capacity 
corresponding to this limit is 0.8 yV .  

The slope of the linear portion of the normalized response is 160, 180, and 278 for 
column flexibilities of 3.5, 2.5, and 1.5, respectively (see Figure 8.8). The relationship 
between the column flexibility parameter and the stiffness of the shear wall is therefore 
nonlinear. The wall stiffness is more sensitive to a change in 3β  at lower values of 3β . 
As a consequence the column flexibility parameter has a major effect on both stiffness 
and capacity and should be considered as a key parameter in the design of a steel plate 
shear wall systems. 

8.3.4 Effect of the imperfection index ( 9β ) 

In order to investigate the effect of the magnitude of initial imperfections on the 
behaviour of steel plate shear walls, five different values of 9β , namely, 0.0, 0.0045, 
0.0113, 0.0227, and 0.0340 were used. The other β –parameters were kept constant for 
all the models. These steel plate shear walls have the same dimensions as case C in Table 
8.1. The values of 9β  are equivalent to maximum imperfection sizes of 0 pt , 2 pt , 5 pt , 
10 pt , and 15 pt , where pt  is the thickness of the infill plate. All these models have the 
same imperfection shape, i.e., the first buckling mode of the infill plate. 

Since the only difference between the models is the size of imperfection, instead of 
normalized responses the base shear versus the drift are plotted at different imperfection 
sizes. These plots, depicted in Figure 8.9, show that the initial imperfection magnitude 
does not have a major effect on the capacity but affects slightly the stiffness of the 
system. As long as the imperfection magnitude is less than 1% of Lh  the effect is very 
small and can be neglected. For imperfection sizes larger than 1% of Lh  the stiffness 
reduction is noticeable and should be accounted for in the design. For instance, by 
increasing the imperfection size from 1.1% to 3.4% of Lh  the stiffness of the steel 
plate shear wall panel reduces by 18% (from 550 kN/mm to 450 kN/mm). From the 
above findings, it seems reasonable to limit the imperfection size, in a steel plate shear 
wall panel to 1% of Lh . For the test specimen presented in Chapter 3, this limit 
corresponds to an imperfection magnitude of 20.5 mm. This is well within the normal 
fabrication tolerances. 
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8.4 Inclusion of overturning moment in the one-storey model 

In the parametric study presented above the gravity load was kept constant at 10% of the 
axial yield load. To take into account the effect of the number of storeys above a certain 
panel in a multi-storey structure the overturning moment that is transferred from the 
structure above the panel of interest should be considered in the analysis. The overturning 
moment on the top of panel j, jovM )( , in a multi-storey shear wall (see Figure 8.10) can 
be calculated from the following equation of equilibrium:  

 )()()(
11

∑∑
+=+=

−+−=
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ji
jii

n

ji
jiijov UUwHHFM  (8.9) 

where n is the total number of storeys, j is the panel under investigation, iF  is the 
horizontal force applied to the thi  floor, iw  is the gravity load applied to the thi  floor, 

iH  is the height of the thi  floor above the base, and iU  is the horizontal displacement of 
the thi  floor relative to the base of the shear wall. If the second order overturning 
moment resulting from gravity loads acting over the drift is neglected and a constant 
horizontal force, F, and equal storey height, h, are assumed for all panels, expression for 
the overturning moment is simplified to: 
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where jV  is the shear force applied in panel j and given as: 

 FjnV j )1( +−=  (8.11) 

The overturning moment can be converted to a couple composed of two equal and 
opposite forces applied at the centre of the columns by dividing the overturning moment 
obtained from equation 8.10 by the column spacing ( L′ ). All loads required for the 
analysis of the panel are shown in Figure 8.11 where jW  is the total gravity load applied 
from the higher storeys on panel j and jV  is the shear force in this panel. By applying a 
fixed boundary condition to the bottom of the panel and then, considering the rigid body 
rotation of the lower floor beam separately, the total drift of the panel can be obtained 
from the following equation: 

 1)( −+= jfixjj huu θ  (8.12) 

where ju  is the total drift of panel j, fixju )(  is the drift of panel j assuming a fixed 
boundary condition at the base of the panel, and 1−jθ  is the rotation of the base of the 
panel about an axis normal to the plane of the shear wall (see Figure 8.11). Using this 
two-step procedure, the total drift in a given panel can be obtained. If the rotation at the 
base of a multi-storey shear wall is assumed to be zero (assuming the wall to be anchored 
to a rigid foundation), the drift in the first panel can be obtained from the model shown in 
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Figure 8.11(a). Using equation 8.12, the total drift of the second panel can be obtained by 
determining the rotation of floor 1 ( 1θ ), obtained from the analysis of single store model 
of first panel, and the analysis of single storey model of panel 2 from which the drift for 
rigid boundary condition, fixu )( 2 , can be obtained. This procedure can be continued to 
assemble a panel-by-panel analysis of the steel plate shear wall. The total rotation of a 
floor can be obtained as: 

 11 −− += jjjj θθθ  (8.13) 

where, 1jθ −  is the rotation at the base of the panel and 1−jjθ  is the rotation of floor j in 
the analysis of panel with fixed boundary condition.  

To assess the accuracy of the proposed model depicted in Figure 8.11 for the analysis of 
an intermediate panel of a multi-storey steel plate shear wall, the panel-by-panel 
procedure is applied to the four-storey steel plate shear wall tested by Driver et al. 
(1997). Rigid floor beams were assumed at all the levels. Constant gravity loads of 
360 kN were applied at each level. The shear wall was pushed monotonically by applying 
equal horizontal loads at each floor. The response of the first, second, and the third panels 
of the model was obtained from the panel-by-panel method and compared with the 
analysis of the whole model.  

The drift and rotation at the first level of the shear wall were obtained by analysing a 
single storey model of the bottom panel. Figure 8.12 shows that the base shear versus 
storey drift obtained from the analysis of the whole model and the single storey model of 
first panel are the same. Figure 8.13 presents the base shear versus the rotation of the 
beam at the first level, 1θ , which was obtained from the analysis of the single storey 
model. A single storey model of the second panel was analysed to obtain fixu )( 2  and 

1/2θ  (see Figure 8.11a). Knowing fixu )( 2 , which is presented in Figure 8.14, and 1θ , the 
total drift of the second panel, 2u , was obtained from equation 8.12 where the storey 
height, h, is 1830 mm. Figure 8.15 presents the shear versus storey drift response of the 
second storey obtained from the panel-by-panel procedure and from a four-storey steel 
plate shear wall model. Both models give identical predicted load response. Base shear 
versus total rotation of beam at second level, 2θ , is presented in Figure 8.16, where 2θ  
was obtained by adding the rotation at the first level, 1θ , to the relative rotation of second 
floor to the first floor, 1/2θ  (also shown in Figure 8.16). An analysis of the single storey 
model of the third panel and application of the procedure used for the second panel yields 
the total drift of third panel (see Figure 8.17). The results clearly demonstrate that the 
proposed panel-by-panel analysis is successful and the model shown in Figure 8.11 is 
valid for use in accounting for the effect of overturning moment and number of storeys 
above a panel. 

8.5 Effect of gravity load and overturning moment 

In order to investigate the effect of the gravity load and overturning moment on the 
behaviour of a steel plate shear wall panel, the response of the first panel of a four and an 
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eight-storey steel plate shear wall are compared with the response of a one-storey steel 
plate shear wall at different gravity load levels. The effect of gravity load and overturning 
moment was investigated for only one panel geometry, namely, panel C described in 
Table 8.1. That panel geometry was repeated for each storey of the four and eight storey 
frames investigated. Equal horizontal loads are applied at each floor level and increased 
monotonically under constant gravity load. Four different gravity load levels are applied 
to the shear walls, namely, 4β  magnitudes of 0.0, 0.1, 0.3, and 0.5 for the bottom panel 
of each shear wall. The gravity load is assumed to be distributed equally between the 
floors. The four and eight storey steel plate shear walls are analysed using the model 
shown in Figure 8.11a. 

As discussed in the previous section, the overturning moment applied at the top of a panel 
can be obtained from equation 8.10. If both sides of equation 8.10 are divided by ( LV j ′ ), 
the following non-dimensional parameter is obtained for panel j:  
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where 11β  is a normalized overturning moment in panel j, 1β  is the aspect ratio and the 
storey shear jV  is defined in equation 8.11. Although 11β  is a non-dimensional 
parameter, its scale independence has not been verified.  

As the non-dimensional overturning moment 11β  increases, the behaviour should 
gradually be governed by flexural action rather than shear deformation. In this 
investigation, three values of 11β  are investigated, namely, 0.0, 0.9, and 2.07 for the 
bottom panel of a single panel, a four panel, and an eight panel steel plate shear wall, 
respectively. Using four different values of 4β , namely, 0.0, 0.1, 0.3, and 0.5, for each 
value of 11β , a total of twelve different combinations are obtained for this investigation. 
The values of the remaining β–parameters selected for this investigation are tabulated in 
Table 8.1. 

The elastic stiffness, taken as the slope of the base shear versus storey drift, of the bottom 
panel from one, four, and eight-storey steel plate shear walls versus the normalized 
gravity load ( 4β ) is shown in Figure 8.18. As expected, both the gravity load and the 
overturning moment reduce the elastic stiffness of the shear wall panel. The rate of 
reduction of the elastic stiffness is almost the same for the range of the normalized 
overturning moment parameters selected in this study ( 11β  from 0.0 to 2.07). An increase 
of the normalized gravity load parameter ( 4β ) from 0.0 to 0.5 results in a decrease of the 
stiffness of the first panel of about 20% in all shear walls. For a given gravity load level, 
an increase of the non-dimensional overturning moment from 0.0 (one-storey shear wall) 
to 0.9 (four-storey shear wall) results in a reduction of the elastic stiffness of the first 
panel of about 12% on average. This stiffness reduction is about 24% in the bottom panel 
of the eight-storey shear wall ( 11β =2.07).  
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The normalized capacity of the panel (maximum base shear divided by the shear force 
that causes yielding of the whole cross section of the panel) is plotted against the 
normalized gravity load ( 4β ) for three values of the normalized overturning moment, 

11β , in Figure 8.19. The figure shows that the gravity load and overturning moment have 
a significant effect on the capacity of the shear wall panel. The shear wall panel can reach 
up to 95% of yV  when both 4β  and 11β  are zero. However, an increase of 4β  to 0.5 and 

11β  to 2.07 (eight-storey shear wall) results in a reduction of the panel capacity down to 
only 22% of yV . Figure 8.20 presents the same data as in Figure 8.19, except that in this 
figure the reduction in the shear capacity (from the case with no gravity load), has been 
normalized by dividing with the shear capacity obtained under no gravity load. The figure 
shows that the capacity of the panel reduces at a higher rate when the overturning 
moment is larger. For instance, at a 4β  of 0.5, the ratio of the capacity with gravity load 
to the capacity with no gravity load is reduced by 26% in the one-storey ( 11β =0) shear 
wall, 53% in the four-storey ( 11β =0.9) shear wall, and 63% in the eight storey 
( 11β =2.07) shear wall. 

The gravity load and overturning moment also reduce the ductility of the shear wall 
panel. If ductility of a steel plate shear wall panel is defined as the drift at which the peak 
capacity is reached, the forgoing analysis indicates that the gravity load and overturning 
moment reduce the ductility of shear walls. This is illustrated in Figure 8.21 where the 
normalized base shear, 6β , is plotted against the drift index, 5β , for the bottom panel of 
the eight-storey shear wall at four different gravity load levels. The circles at the peak 
load indicate where the maximum capacity of the shear wall was reached. The figure 
clearly indicates that the maximum capacity is reached at a smaller drift when the 
normalized gravity load is increased. The normalized response of the panel at a constant 
normalized gravity load level of 0.5 is plotted in Figure 8.22 for different normalized 
overturning moments. The drift, at which the peak capacity is reached, indicated by the 
circles also decreases as the moment is increased.  
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Table 8.1: Parameters for investigation of potential scale effects 

 Case A Case C Case E 

L (mm) 2000.0 2751.8 4000.0 
h (mm) 1183.5 1628.4 2367.0 

pt (mm) 3.49 4.80 6.98 

cI (mm4) 7.67E+07 2.75E+08 1.23E+09 

cA (mm2) 7923 15000 31694 

ycσ (MPa) 313 313 313 

yplσ (MPa) 341.2 341.2 341.2 
E (MPa) 2.06E+05 2.06E+05 2.06E+05 
W (kN) 760.7 1440.0 3042.6 

imp∆  (mm) 6.98 9.6 13.96 
 

 

 

Table 8.2: Cross-sectional dimensions of columns in the trial cases 

 tf (mm) tw (mm) bf (mm) d (mm) bf / 2tf d / tw 

Case A 14.4 5.46 236 206.9 8.2 37.87 
Case C 19.8 7.52 324.7 284.7 8.2 37.87 
Case E 28.8 10.9 472.1 412.8 8.2 37.87 

 

 

 

 

Table 8.3: β –parameters for trial cases (A, C, and E) 

1β  2β  3β  4β  7β  8β  9β  10β  

1.69 0.44 1.52 0.1036 0.00152 0.00166 0.0045 0.81818 
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Table 8.4: Primary parameters for investigation of the effect of 1β  

 1β =0.7 1β =1 1β =1.5 1β =2 

L (mm) 1048 3001.6 6906.0 13098.0 
h (mm) 1497.5 3001.6 4605.0 6548.0 

pt (mm) 8.0 5.5 2.5 1.5 

cI (mm4) 1.179E+08 4.57E+08 5.00E+08 6.47E+08 

cA (mm2) 7678.2 15117 15812 17991 

ycσ (MPa) 313 313 313 313 

yplσ (MPa) 341.2 341.2 341.2 341.2 
E (MPa) 2.06E+05 2.06E+05 2.06E+05 2.06E+05 
W (kN) 766.8 1509.6 1578.9 1796.6 

imp∆  2.71 6.48 12.19 20.0 
 

 

 

Table 8.5: Cross-sectional dimensions of columns used to study the effect of 1β  

 tf (mm) tw (mm) bf (mm) d (mm) bf / 2tf d / tw 

1β =0.7 13.21 7.18 216.7 272 8.2 37.87 

1β =1.0 18.55 10.07 304.0 381.36 8.2 37.87 

1β =1.5 18.96 10.31 310.9 390.3 8.2 37.87 

1β =2.0 20.22 10.99 331.66 416.32 8.2 37.87 
 

 

 

Table 8.6: β –parameters in the study of the effect of 1β  ( 1β =0.7, 1.0, 1.5, and 2.0) 

2β  3β  4β  7β  8β  9β  10β  

0.546 2.5 0.1 0.00152 0.00166 0.0022 0.5 
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Table 8.7: Primary parameters for investigation of 2β  

 2β =0.31 2β =0.44 2β =0.62 

L (mm) 2751.8 2751.8 2751.8 
h (mm) 1628.4 1628.4 1628.4 

pt (mm) 2.4 4.8 9.6 

cI (mm4) 1.38E+08 2.75E+08 5.50E+08 

cA (mm2) 10606.6 15000.0 21213.2 

ycσ (MPa) 313 313 313 

yplσ (MPa) 341.2 341.2 341.2 
E (MPa) 2.06E+05 2.06E+05 2.06E+05 
W (kN) 921 1440 2309 

imp∆  9.6 9.6 9.6 
 

 

 

Table 8.8: Cross-sectional dimensions of columns used to study the effect of 2β  

 tf (mm) tw (mm) bf (mm) d (mm) bf / 2tf d / tw 

2β =0.31 16.65 6.325 273 239.5 8.2 37.87 

2β =0.44 19.81 7.517 324.7 284.7 8.2 37.87 

2β =0.62 23.55 8.94 386.2 338.6 8.2 37.87 
 

 

 

Table 8.9: β –parameters in the study of the effect of 2β  

( 2β =0.31, 0.44, and 0.62) 

1β  3β  4β  7β  8β  9β  10β  

1.69 1.52 0.1036 0.00152 0.00166 0.0045 0.81818 
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Table 8.10: Primary parameters for investigation of 3β  

 3β =1.5 3β =2.5 3β =3.5 

L (mm) 2751.8 6241.0 9071.0 
h (mm) 1628.4 3693.0 5368.0 

pt (mm) 4.54 1.33 0.51 

cI (mm4) 2.75E+08 1.22E+08 3.70E+07 

cA (mm2) 15000.0 10000.0 5500.0 

ycσ (MPa) 313 313 313 

yplσ (MPa) 341.2 341.2 341.2 
E (MPa) 2.06E+05 2.06E+05 2.06E+05 
W (kN) 1365.22 910.2 500.6 

imp∆  4.57 10.37 15.07 
 

 

 

Table 8.11: Cross-sectional dimensions of columns used to study the effect of 3β  

 tf (mm) tw (mm) bf (mm) d (mm) bf / 2tf d / tw 

3β =1.5 19.8 7.517 324.7 284.7 8.2 37.87 

3β =2.5 16.17 6.14 265 232.5 8.2 37.87 

3β =3.5 12 4.55 196.6 172.4 8.2 37.87 
 

 

 

Table 8.12: β –parameters in the study of the effect of 3β  ( 3β =1.5, 2.5, and 3.5) 

1β  2β  4β  7β  8β  9β  10β  

1.69 0.416 0.1 0.00152 0.00166 0.0022 0.81818
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Figure 8.1: Selected model for parametric study of a panel 
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Figure 8.2: Base shear versus drift for three models with similar β -parameters 
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Figure 8.3: Normalized responses for three different models with similar β –parameters 
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Figure 8.4: Effect of aspect ratio parameter, 1β , on behaviour of steel plate shear wall 

 
 
 

 
 

Figure 8.5: Column local buckling and deformation of model with 1β =0.7 
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Figure 8.6: Normalized response for different aspect ratios 

(if column local buckling prevented) 
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Figure 8.7: Effect of 2β  on steel plate shear wall response 
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Figure 8.8: Effect of 3β  on the normalized response of steel plate shear wall 
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Figure 8.9: Effect of imperfection magnitude on the behaviour of a steel plate shear wall 
panel 
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Figure 8.11: Panel j of a steel plate shear wall in deformed configuration 
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Figure 8.12: Base shear versus first storey drift obtained from the analysis of whole 

model and single storey model 
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Figure 8.13: Rotation of the first floor obtained from the analysis of a single storey model 
of the first panel  
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Figure 8.14: Panel shear versus storey drift obtained from single storey model of the 

second panel with fixed boundary condition 
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Figure 8.15: Panel shear versus storey drift obtained from the analysis of whole model 
and single storey model of the second panel 
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Figure 8.16: Rotation of the second floor  
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Figure 8.17: Third storey shear versus third storey drift obtained from the analysis of 

whole model and single storey model of the third panel  
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Figure 8.18: Elastic stiffness of the panel versus β4 at different β11 parameters 
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Figure 8.19: Effect of β4 and β11 on shear wall panel capacity 
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Figure 8.20: Effect of β4 and β11 on reduction of shear wall panel capacity 
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Figure 8.21: Normalized response of the first panel of an eight-storey shear wall at 

various β4 parameter 
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Figure 8.22: Normalized response at β4 equal to 0.5 and various β11 parameter 
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9. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

9.1  Summary 

An experimental and numerical investigation of unstiffened steel plate shear walls was 
conducted in this research project. A three-storey unstiffened steel plate shear wall was 
tested under quasi-static cyclic condition. The test specimen consisted of the undamaged 
upper three storeys of a four-storey steel plate shear wall tested by Driver et al. (1997). It 
consisted of a single bay rigid frame with column-to-column spacing of 3050 mm and 
typical storey height of 1830 mm, representing a 50% model scale of a typical office 
building. The specimen was tested under a combination of constant gravity load and 
cyclic lateral loads. Equal lateral loads were applied at each beam level and were cycled 
according to the guideline ATC-24 (1992) in order to simulate a severe earthquake 
condition. 

Twenty-four cycles of loading were applied to the test specimen, of which 14 cycles were 
in the inelastic range. Those cycles induced fully reversed large deformations in the shear 
wall, well beyond the point of significant yielding, which simulated a situation much 
worse than a severe earthquake. In the second excursion of cycle 21, one of the 
beam-to-column connections in the first level fractured at a drift of four times the drift 
corresponding to the point of first significant yielding. Fracture of the connection did not 
have any significant effect on the load carrying capacity of the shear wall because of the 
inherent load path redundancy and excellent load redistribution capability of the system. 
The load cycle at which fracture took place was completed at the target drift of five times 
the yield drift. Following the repair of the connection, the shear wall was loaded up to the 
stroke limit of the hydraulic jacks. The wall reached its maximum capacity at a ductility 
ratio of 7 at which point the shear capacity of the steel plate shear wall started to 
deteriorate gradually because of the formation of tears in the infill plate of the lower 
storey and yielding and local buckling of the columns and beam at level 1. The specimen 
showed high elastic stiffness, excellent ductility, high energy dissipation capability, and 
stable hysteresis loops. 

A finite element model based on explicit dynamic formulation was developed for the 
analysis of steel plate shear walls. Material and geometric nonlinearity, and the initial 
imperfections of the infill plates were included in the model. A kinematic hardening 
material model subroutine was implemented in order to simulate the Bauschinger effect 
in the cyclic analysis of the shear wall.  

The finite element model was used to simulate the monotonic and cyclic responses of the 
three-storey test specimen and the four-storey steel plate shear wall tested by Driver et al. 
(1997). Since the solution strategy in the explicit formulation does not involve iteration, 
the analysis was completed without any numerical difficulty. In general, excellent 
agreement was observed between the test results and the finite element predictions. The 
stiffness of the three-storey and the four-storey steel plate shear walls was predicted well 
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with the finite element model, but the predicted capacity was 12% and 7.8% lower than 
the measured capacity for the three and four-storey specimens, respectively. Part of the 
discrepancies between the analysis and the measured three-storey specimen behaviour 
can be attributed to the effect of the earlier test on the material properties. In general, the 
hysteresis loops generated by the finite element model were in good agreement with 
those generated during the test. The pinching effect observed in the physical tests was 
also captured in the finite element analysis, although to a slightly lesser extent than 
observed in the physical tests. Strains and the derived internal forces obtained from the 
test on the three-storey shear wall were found to be in good agreement with the finite 
element model. 

The parameters describing the behaviour of a single panel of steel plate shear wall with 
rigid floor beams subjected to shear and gravity loads were identified. A dimensional 
analysis using the validated finite element model was used to identify a set of ten 
non-dimensional and scale independent parameters that describe the behaviour of 
unstiffened steel plate shear walls. A parametric study was conducted to identify the 
effect of some of the main parameters on the stiffness and capacity of single panel steel 
plate shear wall. A method for extrapolating the findings of the parametric study on 
single panels to panels that form part of a multi-storey steel plate shear walls was 
proposed.  

9.2 Conclusions  

A test on a three-storey steel plate shear wall specimen demonstrated again the excellent 
behaviour of this system. The bottom storey of the three-storey test specimen was 
exposed to 34 inelastic loading cycles, including 20 cycles from a prior test. The 
specimen showed high initial stiffness, very ductile behaviour, and stable hysteresis 
loops. Despite the fact that a beam-to-column connection fractured during the test, the 
ability of the system to resist the applied shear force was not noticeably affected, which 
illustrates the high redundancy of steel plate shear walls. The dual system of steel plate 
shear wall and ductile moment-resisting frame provided excellent performance. Although 
plastic hinges developed at the top and bottom of the columns in the first panel, the infill 
plate limited the inelastic straining of the boundary members and prevented the creation 
of a soft storey during the experiment. The behaviour of the steel plate shear wall 
observed during testing demonstrates that the selected configuration is an excellent lateral 
load resisting system, both for wind and earthquake forces. 

Gradual decrease in the capacity, caused by plate tearing and local buckling, started when 
the test specimen reached a drift of about 3% of the storey height in the first and the 
second panels. This deflection is greater than the limiting storey drift specified by design 
standards for all groups of buildings. Therefore, in a properly designed steel plate shear 
wall subjected to seismic loads, degradation of capacity is unlikely to occur. 
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A finite element model, developed by using a nonlinear dynamic explicit formulation, 
gave an excellent prediction of the monotonic and cyclic behaviour of three and 
four-storey unstiffened steel plate shear walls without any solution difficulty. The model 
showed much superior capability compared to earlier simplified models proposed by 
other researchers. The proposed model is able to capture all essential features of the 
behaviour of steel plate shear walls.  

The non-dimensional parameters affecting the behaviour of a single steel plate shear wall 
panel with rigid floor beams subjected to shear and gravity loads were identified. A 
parametric study of some of the primary variables was conducted and the following 
conclusions can be drawn from this analysis: 

- Changing the aspect ratio ( 1β = hL / ) of the shear wall panels within the range 
of 1 to 2 has negligible effect on the behaviour of a shear wall panel. However, 
when the aspect ratio is less than 1.0, both the normalized stiffness, 
[ ])//()/( yVhV δ , and the normalized shear capacity of the panel, 6β , increase. 

- An increase in the ratio of the axial stiffness of infill plate to that of the columns 
( cp ALt 2/2 =β ) leads to an increase in the stiffness of the shear wall panel, but 
has a negligible effect on the normalized capacity, 6β , of the system. 

- As expected, the column flexibility parameter, 3β , has a significant effect on 
the behaviour of steel shear walls. An increase of 3β  results in increasing 
bending deformation in the columns. The inward displacement of the columns 
induced by the action of the tension field prevents the development of a uniform 
tension field. As a result, both stiffness and capacity of the system decreases.  

- Initial imperfections in the infill plate can have a significant influence on the 
stiffness of steel plate shear walls, especially when subjected to low amplitude 
cyclic loading, but have little effect on the shear capacity. The parametric study 
showed that the effect of initial imperfections is negligible when the maximum 
imperfection size, imp∆ , is less than 1% of Lh , which corresponds to a value 
in excess of 20 mm for the specimen tested in this program. 

9.3 Recommendations for future research 

Although thin plates in the order of a few millimetres are sufficient to carry the applied 
shear forces and dissipate energy, in order to avoid fabrication problems related to the use 
of thin plates, thicker plates (6 to 8 mm) are often used. The impact of using infill plates 
thicker than that required for strength on the behaviour of steel plate shear walls should 
be investigated.  

The column flexibility parameter is limited to a value of 2.5 by S16-01. An investigation 
of stress distribution along the boundary columns can lead to an optimum value for this 
parameter. The presence of high overturning moment in a panel and also ratio of yield 
strength of infill plate to that of the columns should be considered in establishing a limit 
for column flexibility parameter. 
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In the model selected for the parametric study the bending deformation of the floor beams 
was neglected. This was based on the assumption that equal and opposite tension fields 
would be present at interior beams. A finite element analysis of the four-storey specimen 
with rigid beams exhibited stiffer behaviour (but the same capacity) than the shear wall 
with actual beam bending stiffness. It is recommended that bending and axial stiffness of 
the floor beams be further investigated. Parameters equivalent to 2β and 3β , introduced 
for columns, can be developed for considering axial and bending deformation of floor 
beams.  

The ratio of overturning moment to the shear force has a significant effect on the 
behaviour of a steel plate shear wall panel. For a typical multi-storey shear wall subjected 
to equal horizontal load at each level and equal storey height a non-dimensional 
parameter, taken as )/(2/)()( 111 hdjnLVM jjov +−=′= ββ , was added to the set of 
governing parameters. The normalized moment factor was derived based on a number of 
simplifying assumptions such as equal lateral loads at each level. The study of this 
parameter should therefore be expanded to look at the effect of unequal lateral loads at 
each floor level.  

A set of non-dimensional parameters affecting the behaviour of a single panel of steel 
plate shear wall was defined in this study. By extending the parametric study, an 
empirical formula suitable for preliminary design of this system can be derived. This 
empirical formula should consider the effect of overturning moment, in addition to shear 
and gravity loads. More research in this area is recommended. 

Usually openings are required in order to allow mechanical and electrical services to pass 
through steel plate shear walls. The effect of these openings and their location on the 
behaviour of steel plate shear walls should be investigated. 
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APPENDIX A 
 

A.1  Transverse shear stiffness for element S4R in ABAQUS/Explicit 

Element S4R in ABAQUS is based on first-order transverse shear deformable theory in 
which the transverse shear strain is assumed to be constant through the thickness of the 
shell. This assumption requires the use of a shear correction factor. The transverse shear 
stresses, 13σ  and 23σ  (see Figure 5.7 for local directions) are estimated by matching the 
elastic strain energy associated with the shear deformation of the shell section (expressed 
in terms of section forces and strains at the centre of the element) with that based on 
quadratic variation of the transverse shear stress across the section, under the condition of 
bending about one axis. In calculating the transverse shear stiffness, it is assumed that the 
shell section directions are the principal bending directions (bending about one principal 
direction does not require restraining moment about the other direction). For a shell 
subjected to only bending moment and shear force in the plane normal to direction 1 (see 
Figure A.1), the membrane forces in the shell are zero and the shear stresses on the 
section have a parabolic distribution, which can be obtained from the equilibrium by the 
following equation: 

 









−= 2

2

3
13

13 4
6

zt
t
Vσ  A.1 

where, 13σ  is the transverse shear stress at a distance z from mid-surface, 13V  is the shear 
force per unit width, and t is the shell thickness. 

The associated shear strain energy can be obtained for a unit length of the shell as: 
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where, 13G  is the shear modulus of the material in plane (1-3). 

By introducing transverse shear stiffness, trK13 , the shear strain energy of the shell section 
can also be calculated as: 

 trtr
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By equating the expressions of A.2 and A.3, the transverse shear stiffness of the shell in 
the plane normal to direction 1 is obtained as: 

 tGK tr 1313 6
5=  A.4 
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For an isotropic shell element trK13  and trK23  are equal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure A.1: Shell element subjected to bending and shear in the plane normal to 

direction 1. 
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APPENDIX B 
 

Kinematic hardening subroutine for shell element in ABAQUS/Explicit 
 
a) Options to define the material modelling: 
 
*MATERIAL, NAME = name 
*DENSITY 
ρ 
*DEPVAR 
5,  
*USER MATERIAL, CONST=4 
E, ν, σy, H 
 
b) Option to define transverse shear stiffness of a homogenous, isotropic shell 
element: 
 
*TRANSVERSE SHEAR STIFFNESS 

13 23,tr trK K  
 
c) Subroutine: 
 
C Read only (unmodifiable)variables - 
     1  nblock, ndir, nshr, nstatev, nfieldv, nprops, lanneal, 
     2  stepTime, totalTime, dt, cmname, coordMp, charLength, 
     3  props, density, strainInc, relSpinInc, 
     4  tempOld, stretchOld, defgradOld, fieldOld, 
     5  stressOld, stateOld, enerInternOld, enerInelasOld, 
     6  tempNew, stretchNew, defgradNew, fieldNew, 
C Write only (modifiable) variables - 
     7  stressNew, stateNew, enerInternNew, enerInelasNew ) 
C 
      include 'vaba_param.inc' 
C 
      dimension props(nprops), density(nblock), coordMp(nblock,*), 
     1  charLength(nblock), strainInc(nblock,ndir+nshr), 
     2  relSpinInc(nblock,nshr), tempOld(nblock), 
     3  stretchOld(nblock,ndir+nshr), 
     4  defgradOld(nblock,ndir+nshr+nshr), 
     5  fieldOld(nblock,nfieldv), stressOld(nblock,ndir+nshr), 
     6  stateOld(nblock,nstatev), enerInternOld(nblock), 
     7  enerInelasOld(nblock), tempNew(nblock), 
     8  stretchNew(nblock,ndir+nshr), 
     8  defgradNew(nblock,ndir+nshr+nshr), 
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     9  fieldNew(nblock,nfieldv), 
     1  stressNew(nblock,ndir+nshr), stateNew(nblock,nstatev), 
     2  enerInternNew(nblock), enerInelasNew(nblock) 
C 
      character*80 cmname 
C 
      parameter( zero = 0.d0, one = 1.d0, two = 2.d0, three = 3.d0, 
     1   third = 1.d0/3.d0, half = .5d0, two_thirds = 2.d0/3.d0, 
     2   three_halfs = 1.5d0 ) 
c 
c j2 mises plasticity with kinematic hardening for plane strain case. 
c the state variables are stored as: 
c 
c         state(*, 1) = back stress component 11 
c         state(*, 2) = back stress component 22 
c         state(*, 3) = back stress component 33 
c         state(*, 4) = back stress component 12 
c         state(*, 5) = equivalent plastic strain 
c 
      e      = props(1) 
      xnu    = props(2) 
      yield  = props(3) 
      hard   = props(4) 
c 
c    elastic constants 
c 
      twomu  = e / ( one + xnu ) 
      thremu = three_halfs * twomu 
      sixmu  = three * twomu 
      alamda = twomu * ( e - twomu ) / ( sixmu - two * e ) 
      term   = one / ( twomu * ( one + hard/thremu ) ) 
      con1   = sqrt( two_thirds ) 
      terma= -xnu / (one - xnu ) 
c 
c 
c 
c if steptime equals to zero, assume the material pure elastic and use 
c initial elastic modulus 
c 
      if( steptime .eq. zero ) then 
c 
      do i = 1,nblock 
c 
c  trial stress 
         strainZ= terma * (straininc (i, 1)+ straininc (i, 2))   
         trace = straininc (i, 1) + straininc (i, 2) + strainZ 
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         stressnew(i, 1)=stressold(i, 1) + alamda*trace 
     1   +               twomu*straininc(i,1) 
         stressnew(i, 2)=stressold(i, 2) + alamda*trace 
     1   +               twomu*straininc(i, 2) 
         stressnew(i, 3)=stressold(i, 3) + alamda*trace 
     1   +               twomu*strainZ 
         stressnew(i, 4)=stressold(i, 4) 
     1   +               twomu*straininc(i, 4) 
      end do 
c 
      else 
c 
c    plasticity calculations in block form 
c 
      do i = 1, nblock 
c  elastic predictor stress 
         strainZ= terma * (straininc (i, 1)+ straininc (i, 2))   
         trace = straininc(i, 1) + straininc(i, 2)+ strainZ  
         sig1= stressold(i, 1) + alamda*trace + twomu*straininc(i, 1) 
         sig2= stressold(i, 2) + alamda*trace + twomu*straininc(i, 2) 
         sig3= stressold(i, 3) + alamda*trace + twomu*strainZ 
         sig4= stressold(i, 4)                + twomu*straininc(i, 4) 
c  elastic predictor stress measured from the back stress 
         s1 = sig1 - stateold(i, 1) 
         s2 = sig2 - stateold(i, 2) 
         s3 = sig3 - stateold(i, 3) 
         s4 = sig4 - stateold(i, 4) 
c  deviatoric part of predictor stress measured from the back stress 
         smean = third * ( s1 + s2 + s3 )  
         ds1 = s1 - smean 
         ds2 = s2 - smean 
         ds3 = s3 - smean 
c  magnitude of the deviatoric predictor stress difference 
         dsmag = sqrt( ds1**2 + ds2**2 + ds3**2 + two*s4**2 ) 
c 
c  check for yield by determining the factor for plasticity, zero for  
c  elastic, one for yield 
         radius = con1 * yield 
         facyld = zero 
         if(  dsmag - radius .ge. zero ) facyld = one 
c  add a protective addition factor to prevent a divide by zero when dsmag 
c  is zero. if dsmag is zero, we will not have exceeded the yield stress 
c  and facyld will be zero. 
         dsmag  = dsmag + ( one - facyld ) 
c  calculated increment in gamma ( this explicitly includes the time step) 
         diff   = dsmag - radius 
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         dgamma = facyld * term * diff 
c  update equivalent plastic strain 
         deqps  = con1 * dgamma 
         statenew(i, 5) = stateold(i, 5) + deqps 
c  divide dgamma by dsmag so that the deviatoric stresses are explicitly  
c  converted to tensors of unit magnitude in the following calculations 
         dgamma = dgamma / dsmag 
c  update back stress 
         factor  = hard * dgamma * two_thirds 
         statenew(i, 1) = stateold(i, 1) + factor * ds1 
         statenew(i, 2) = stateold(i, 2) + factor * ds2 
         statenew(i, 3) = stateold(i, 3) + factor * ds3 
         statenew(i, 4) = stateold(i, 4) + factor * s4 
c  update stress 
         factor   = twomu * dgamma  
         stressnew(i, 1) = sig1 - factor * ds1 
         stressnew(i, 2) = sig2 - factor * ds2 
         stressnew(i, 3) = sig3 - factor * ds3 
         stressnew(i, 4) = sig4 - factor *  s4 
c  update the specific internal energy - 
         stress_power = half * ( 
     1         ( stressold(i, 1)+stressnew(i, 1) )*straininc(i, 1) 
     2   +     ( stressold(i, 2)+stressnew(i, 2) )*straininc(i, 2) 
     3   +     ( stressold(i, 3)+stressnew(i, 3) )*strainZ 
     4   + two*( stressold(i, 4)+stressnew(i, 4) )*straininc(i, 4) ) 
         enerinternnew(i) = enerinternold(i)  
     1   +                    stress_power/density(i) 
c  update the dissipated inelastic specific energy - 
         smeana = stressnew(i, 1) + stressnew(i, 2) + stressnew(i, 3)  
         smean = third * smeana 
         equiv_stress = sqrt( one 
     1   *                ( (stressnew(i, 1)-smean)**2 
     2   +                  (stressnew(i, 2)-smean)**2 
     3   +                  (stressnew(i, 3)-smean)**2 
     4   +             two * stressnew(i, 4)**2 ) ) 
c 
 
         plastic_work_inc = equiv_stress * deqps 
         enerinelasnew(i) = enerinelasold(i) 
     1   +                    plastic_work_inc / density(i) 
c  
      end do 
c 
      end if 
      return 
      end 
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