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Abstract

The flow structure in turbulent Taylor vortex flow (TTV) was investigated in Newto-

nian and shear-thinning fluids. The radius ratio of the investigated case is η = 0.76,

and the aspect ratio of the experimental setup is 10.32.

First, detailed velocity measurements of the time-averaged azimuthal and axial

components were performed with a Newtonian fluid (glycerin-water mixture). Radial

profiles were obtained at the midheight of the cylinder, and axial profiles were ob-

tained at three different radial positions. In Re = 1100 ∼ 3200, all the results of the

two velocity components showed the same periodicity in the axial profiles, indicating

the ubiquitous existence of the Taylor vortex structure in TTV (Turbulent Taylor

vortex flow). Radial jet flows resulted in the transport of angular momentum, and

some differences in the vortex structure were also found by comparing TTV with

TVF. The local Reynolds number was analyzed with the help of the radial profiles,

and the rationality of an alternative definition of the Reynolds number was evaluated

by considering the real local Reynolds number.

Similar measurements were performed for the aqueous solution of Xanthan gum,

which is strongly shear thinning and weakly elastic, with two different concentrations.

The results also revealed the Taylor vortex in the flow field in the investigated range.

Unlike the Newtonian case, TTV with shear-thinning fluids exhibited different modes

with ununified Taylor vortex wavelengths. For the case of low-concentration shear

thinning, two distinctly different distributions were discovered in the radial profiles,

which were directly resulted by the two opposite directions of the jet flow in different

modes.
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Chapter 1

Introduction

1.1 Background and literature review

Taylor-Couette(TC) flow, the flow confined in the annulus between two concentric

cylinders, with the inner andor outer inner cylinder(s) able to rotate. The earliest

reference to TC flow can be traced back to Newton’s Principia in 1667.

Maurice Couette announced his first instrument in 1890, which consisted of a pair

of cylinders, the outer rotating and the inner suspended to measure torque. This

instrument was thought to be the first viscometer, and a series of studies on viscosity

was continued on the basis of that. Today, this viscometer with rotating cylinder is

known as the Couette viscometer.

Almost 30 years later, G. I. Taylor published his paper in 1923, which discovered

the existence of the “Taylor vortex” and presented the photograph for the first time

using ink visualization.

In the common case and in the current study, the radius of the inner rotating

cylinder is Ri, and Ro for the outer stationary cylinder. Then the radius ratio would

be

η = Ri/Ro. (1.1)

The annulus width d

d = Ro −Ri, (1.2)

usually, it is much smaller than the axial length (or height) of the cylinder l.
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(a) (b)

Figure 1.1: Comparison between the basic laminar flow (a) as depicted by Newton in
Principia in 1667 and (b) Taylor vortex flow as described by Taylor.

Therefore, the aspect ratio

Γ = l/d, (1.3)

is much larger than 1 (Γ >> 1).z

The basic laminar TC flow, or may be called the circular Couette flow (CCF)

in some papers, is defined as a stationary axisymmetric laminar flow with a purely

azimuthal velocity field (ur = 0, uθ = uθ(r), uz = 0). All profiles of the basic laminar

TC flow are functions of only the radial position r and are analytically accessible.

1.1.1 TC flow transition and Taylor vortex of Newtonian flu-
ids

In [1], it is shown that as inertia dominates the flow over viscosity (larger Re), the

basic laminar TC flow tends to be unstable, and Taylor vortices stacked along the

axial direction appear. The common definition of the Reynolds number of an incom-

pressible Newtonian flow is

Re = Uθ,id/µ, (1.4)

where µ is the kinematic viscosity of the fluid. Rec would be denoted as the critical

value of the onset of TVF. Burkhalter [2] conducted a detailed measurement of the

wavelength and size of the Taylor vortex cell, with the help of the flow visualization

method. The results showed that the Taylor vortex wavelength remains constant as

long as it stays in TVF.
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For a large radius ratio, TVF enters the wavy vortex flow (WVF) at Res = 1.05Rec

(η = 0.95, Γ = 60, [3]). Coles experimentally studied the structure of TVF and WVF,

and the bifurcation from TVF to WVF was discovered ([3, 4]). For Γ ≥ 40, Res does

not change obviously, but increases with a reduction of Γ below 40. The variation

in azimuthal wavenumber could be observed with different approaches to Res [3–5].

Coles[3] also found that multiple stable flow states could be reached by a given Re,

and the non-uniqe flow states are sensitive to the used setup. For a smaller radius

ratio, η < 0.75, an apparent increase in Res is observed with decreasing η [6]. In this

numerical work, Γ = ∞ was assumed. The results agree well with the experiments

with large Γ. It should be noted that for the radius ratio η < 0.75, the variation in the

axial wavelength of the vortices could be significant. The end effect in finite cylinders

on the transition from TVF to WVF was also discussed. Especially for Γ < 30, the

damping of the wavy flow could be quite significant.

Wereley[7] conducted the experiment of imposing pressure-driven flows on the TC

flow. The velocity fields were drawn on the basis of PIV in the meridional plane. It

is suggested that this combined flow is essentially the linear superposition of the TC

flow and the imposed axial flow, at least for the TVF and WVF.

When Re increases further, the transition from WVF to modulated WVF, which

is characterized by two incommensurate temporal frequencies [8]. As Re continues to

increase, the flow soon becomes chaotic and turbulent [9], which is called the turbulent

Taylor vortex flow (TTV).

1.1.2 TC flow of shear-thinning fluids

Shear-thinning behavior is a quite common characteristic among the various non-

Newtonian fluids, which exhibits a non-linear decrease in viscosity with increasing

shear rate. In polymer solutions, this behavior is pretty common when the polymer is

above a certain concentration. At the same time, these solutions are also viscoelastic.

However, in the current study, we focus only on shear thinning behavior, for which

3



elasticity does not dominate. As reported by [10], polymer solutions, such as the

Xanthan gum solution, show significant shear thinning behavior, while the elasticity

can be negligible.

In shear-thinning TC flow, the Reynolds number defined on the basis of Newtonian

fluid eq. (1.4) needs modification: viscosity requires proper specification. Usually, the

viscosity of the nominal mean shear rate across the annulus is the common choice.

Therefore,

Re = Uθ,id/µref (1.5)

where µref = µ(γ̇)|Uθ,i/d.

Some researchers also used other different definitions of the Reynolds number.

Masuda[11] used an average viscosity weighted by the squared shear rate. Guzel[12]

used an average Reynolds number, which is defined as the radial average of the local

Reynolds number through the annulus. Due to the lack of real profiles of the local

Reynolds number, Elcicek[13] suggested using the profiles of the basic laminar TC flow

to calculate the average Reynolds number as an approximation of Guzel’s method[12].

Different selections of the reference viscosity to define the Reynolds number might

simply be a matter of choice. However, it changes the conclusions regarding the

effects of shear thinning and Reynolds number. Therefore, the definition of Reynolds

number should always be clearly emphasized, especially in non-Newtonian flows.

The main difference in the basic laminar flow of the shear thinning fluid is char-

acterized by stratification of the viscosity in the annulus. This stratification becomes

much more significant with a stronger shear-thinning effect and a smaller radius ratio.

These will also be discussed in detail later in this thesis.

Similarly to the Newtonian case, the onset of the instability of TC flow with non-

Newtonian fluids was investigated by researchers at first. In shear-thinning fluids with

negligible viscoelasticity, the mechanism of the onset of the instability is found to be

the same as the Newtonian fluids, and also leads to axisymmetric counter-rotating

Taylor vortices in pairs. However, the critical conditions of the shear-thinning TC flow
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are still different, which are assumed to be the result of stratification of the radial

viscosity and, therefore, the modified radial distribution of azimuthal velocity and

shear stress. Coronado[14] indicated that Rec in shear thinning fluids would decrease

compared to the Newtonian case by theoretical predictions. The experimental re-

sults of Ashrafi[15], Alibenyahia[16] and Calgney[17], numerical results of Lockett[18]

validate Coronado’s prediction.

Concerning the Taylor-vortex structure in the TC flow, most of the work focused

on the TVF regime: the theoretical results of Alibenyahia, Agbessi, Topayev[16, 19,

20], and the experimental results of Escudier, Cagney, Topayev[17, 20–22] indicate the

considerable change resulting from the shear thinning effect. Escudier[23] conducted

a detailed measurement of the Taylor vortex structure based on LDV. The velocity

contours showed that the shear thinning effect leads to asymmetry in the Taylor

vortex structure. Generally, in shear-thinning TVF: (1) radially, the vortex eye is

closer to the inner cylinder, where the viscosity is lower due to viscosity stratification;

(2) axially, the vortex eye is closer to the outward jet flow; (3) the strength of the

vortices is weaker than that of Newtonian TVF.

Cagney[17, 22] combined PIV and flow visualization to investigate TC flow with

xanthan gum solution. A series of experiments including Newtonian and three non-

Newtonian fluids with various flow indices. The results indicated that the shear

thinning effect was associated with an increase in the axial wavelength of the Taylor

vortex.

More recently, Elcicek[13] experimentally investigated the effect of shear thinning

on flow structure and transition thresholds from basic laminar TF to WVF. The

working fluids are also Xanthan gum aqueous solutions, at 1000 ppm and 2000 ppm.

A direct transition from TVF to modulatedWVF is observed, and a non-axisymmetric

mod is found.
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1.1.3 Taylor vortex structure in turbulent Taylor vortex flow

In the turbulent regime of the TC flow, the Taylor vortex structure is found to be

ubiquitous. Lewis[24] studied the statistics of velocity fluctuations in the TV flow for

Re up to 5× 105 for the only inner cylinder rotation TC flow. The results suggested

that Taylor vortices remained even at their highest investigated Re. Lathrop[25]

also observed Taylor vortices, but the flow structures seem to have disappeared at

Re = 1.22× 105.

Koschmieder[26] measured the wavelengths of Taylor vortices in TTV (the length

of a pair of adjacent Taylor vortices) at η = 0.727 and 0.896, and found that the wave-

length was larger than that in TVF. The hot wire measurements for η = 0.667 by

Smith[27] showed that Taylor vortices encircling the inner cylinder always dominated

the flow for Ta < 3×105Tac. Where Ta is the Taylor number, Tac is the critical value

at which the basic laminar TC flow transitions to TVF and Ta = Re2(η−1 − 1). It is

also suggested that these Taylor vortices were superimposed on a background of irreg-

ular turbulent motions. Beyond 5 × 105Tac, the Taylor vortices became fragmented

and lost regularity, indicating that the flow became completely turbulent.

Barcilon[28] studied the flow structure of the TTV with flow visualization and

observed a herringbone-shaped pattern of streaks at the outer cylinder wall. It is

conjectured that these streaks were the inflow and outflow boundaries of Gortler

vortices.

Several simulation studies have been carried out in turbulent regimes[29, 30]. More

recently, Bilson[31] simulated at Re = 3200 with η = 0.617 using a second-order finite

volume method. Dong[32] performed three-dimensional direct numerical simulations

at Re = 1000 ∼ 8000. The time-averaged velocity field clearly reveals the organized

Taylor vortex structure underlying the turbulent flow in TTV, and the instantaneous

flow is supposed to be a superposition of turbulent fluctuations on these organized

structures. Taylor vortex structures were also observed, up to Re ∼ 106[33, 34].
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Therefore, it is clear from the above literature review that additional experimental

work in TTV, especially with shear-thinning fluids, is needed to investigate the Taylor

vortex structure in TTV and its influence on the flow field.

1.2 Objectives

The overall objective of this study is to investigate the turbulent Taylor vortex flow

field of Newtonian fluids and shear thinning fluids, with η = 0.76. A series of LDV

measurements were conducted with three different fluids: a Newtonian fluid (glycerin-

water mixture), two shear thinning fluids (0.1 and 0.4 wt.% Xanthan gum aqueous

solution) in the TTV regime.

The experiment consists mainly of two parts: (1) obtain the radial profiles at the

midheight of the flow. In this part, the azimuthal velocity, shear rate, and viscosity

radial profiles are obtained, and the distribution difference between Newtonian and

shear thinning is analyzed; (2) obtain the axial profiles at three different radial po-

sitions. The axial profiles reveal the Taylor vortex structure and the radial jet flows

in the flow. Different flow modes are observed, and they are found to have a direct

connection with the different behaviors observed in the radial profiles.

1.3 Outline

This thesis is structured into five chapters as follows:

Chapter 1 (the current chapter) introduces the background of TC flow and some

important work in history. The work related to Taylor vortex structure in TCF and

TTV, with Newtonian and shear-thinning fluids, is then reviewed.

Chapter 2 provides an overview of the apparatus and methodology used in this

study, including the TC flow setup, the LDV device, and the working fluids.

Chapter 3 focuses on the radial profiles of the flow. The discussion begins with the

basic laminar TC flow to investigate the change caused by the shear thinning effect,
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the radius ratio, and the rheology model. The results of the radial measurement of

TTV are presented as profiles. Differences in radial profiles between Newtonian TTV

and shear thinning are discussed.

Chapter 4 talks mainly about the axial profiles of the flow. The Taylor vortex

structure is determined by the axial profiles, and different flow modes are observed.

The relationship between the Taylor vortex structure and the distribution of velocity,

turbulence strength, etc. is analyzed.
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Chapter 2

Methods and apparatus

2.1 Experiment setup

2.1.1 Structure of Taylor-Couette setup

A Taylor-Couette (TC) setup with two concentric cylinders was used in the exper-

iment. Two concentric cylinders were both made of transparent cast acrylic. The

outer cylinder was stationary and had a radius Ro = 7.9375 cm. The inner cylinder

connected to a shaft was rotational and had radius Ri = 6.0325 cm, height L = 19.6

cm. Therefore, the annulus width, radius ratio, and the aspect ratio of the TC cham-

ber were d = 1.9 cm, η = 0.76 and Γ = 10.32, respectively. Both cylinders were made

of transparent cast acrylic, which allowed direct observation and laser measurement.

Burin 2006[35] observed an end effect caused by Ekman circulation, which became

obvious for the cases with a small aspect ratio (Γ < 10), so a space of 4.25 cm, larger

than the annulus gap, was provided between the two cylinders’ bases to diminish this

end effect.

The inner cylinder was fixed to the inner shaft by two stainless steel shaft collars.

Two double-sealed ball bearings on the top and bottom plates separately supported

the shaft. To avoid leakage, a graphite-reinforced polytetrafluoroethylene (PTFE)

seal with good wear resistance and low friction coefficient was installed outside each

ball bearing. The top plate and the outer cylinder were firmly held onto the bottom

plate with threaded tie rods, and the bottom plate was fixed to the machine table
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with bolts and nuts.

A tachometer was fixed on the top of the shaft to monitor the rotation speed of

the inner cylinder, and at the bottom of the shaft it was connected to the shaft of

a DC motor (Amatek Inc.) using an Oldham type shaft coupling (Misumi Inc.). A

reaction torque sensor(Futek Inc.) was fixed beneath the motor to measure the torque

acting on the inner cylinder. The schematic diagram of the setup structure is shown

in Figure 2.1.

Figure 2.1: Schematic diagram of the setup.

2.1.2 Motor

A 3485-MAV5115 DC motor with speed control (Amatek Inc.) was used and its

specifications are listed in Table 2.1. This motor incorporates a single-quadratic

drive with closed-loop velocity control via the motor’s internal Hall sensors, which

help adjust the power to maintain at a certain speed. Therefore, this motor can

provide the speed control of a DC motor with the convenience of an AC power supply.
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Specification Value (Unit)

Continuous torque 0.734 N·m

Input Current 4 Amps

Rated Speed 3450 RPM

Rated Power 265 watts

Frame size NEMA 34

Shaft diameter 12.70 mm

Table 2.1: Specifications of the motor

2.1.3 Torque sensor

Compared with rotary torque sensors, reaction sensors do not require alignment or

additional parts, such as bearings and slip rings. Therefore, in this study, a reaction

torque sensor based on a strain gauge (FSH04381-TFF425, FUTEK Advanced Sensor

Technology, Inc.) was selected to measure the torque in the inner rotational cylinder.

Table 2.2 shows the relevant specifications for this device. The device was calibrated

by FUTEK Advanced Sensor Technology, Inc. at 5 different points ranging from 0

to 7 N·m in both rotatory directions. The maximum system error of this device was

reported to be 0.02% of the rated output.

An in-line USB digital amplifier and supplementary cable(USB220, 4Pin Lemo To

Cable Assembly, FUTEK Advanced Sensor Technology, Inc.) were used for analog

output voltage digitization and connection to a PC. It provided a sampling rate of up

to 4800 Hz and up to 17.8 bits of noise-free resolution. Torque measurements were

recorded using the SENSIT Test and Measurement software.
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Specification Value(Unit)

Rated Output(R.O.) 2 mV/V

Capacity 1000 in-oz

Hysteresis −0.2 ∼ 0.2% of R.O.

Nonlinearity −0.2 ∼ 0.2% of R.O.

Non-repeatability −0.05 ∼ 0.05% of R.O.

Output Resistance 350 Ω

Table 2.2: Specification of torque sensor

2.2 Laser Doppler Velocimetry

2.2.1 Introduction

Common traditional flow measurement methods

Measurements of the flow field are based on measurements of pressure or velocity.

Traditionally, Pitot and Prandtl tubes have been used quite frequently for pressure

measurements. However, this method is not applicable to obtain data from turbulence

or other high-frequency flow fluctuations. Its poor response is mainly caused by the

delay in the pressure signal in the tubes. Additionally, the transformation from

measured pressure fluctuation to velocity fluctuation is not simple.

Compared to Pitot and Prandtl tubes for pressure, hot-wire anemometers are more

widely used for direct velocity measurements. They measure the flow velocity of the

heat transfer from the thin hot wire surface. This device is small in size and has a rapid

response, allowing turbulent flows to be measured. However, the disadvantage is that

the hot wire needs careful calibration before each experiment. Additionally, fragile

hot wire cannot withstand high-speed flows or flows that contain hard materials. In

addition, a joint shortcoming of the above traditional methods is that all of them

require insertion into the flow, which means inevitable disturbances to the original

flow field.
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Laser methods and LDV

The development of laser techniques applied to flow measurement greatly improved

the accuracy and informativity of the measurement results. Moreover, the integrated

miniaturization of the laser measurement devices makes them easier to move and ar-

range, greatly expanding their applications. Among these laser measurement meth-

ods, Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) are the

most widely used for velocity measurements.

Both methods require seeding particles suspended in the flow, but PIV illuminates

the particles using a laser sheet and measures their displacements based on image

processing to obtain the particles’ corresponding velocities. PIV is efficient in visu-

alizing the flow pattern, flow separation, and eddies while simultaneously providing

quantitative measurement data, which is not possible by smoke or dye.

Laser Doppler Velocimetry (LDV) utilizing the Doppler effect could be the most

effective and widely applied non-intrusive method in experimental investigations of

flows and flow dynamics, usually with high accuracy[36].

2.2.2 Doppler Effect

As indicated by the name Laser Doppler Velocimetry, the Doppler effect is the basic

principle behind this method and the technique is based on Doppler shift of the light

reflected from a moving seeding particle.

This principle is depicted in Figure 2.2 where a moving light source and a fixed

receiver are shown. According to the Lorenz-Mie scattering theory, light should be

scattered in all directions at the same time, but here only the direction towards the

receiver l⃗ is considered.

The initial distance between the light source point A and the receiver is s. The

speed of the laser is c and the initial wavelength is λ0. The time it takes for light

to travel this distance is t, which means s = ct, and therefore the wavenumber along

this distance is s/λ0.
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Figure 2.2: Schematic diagram of the Doppler effect with a moving light source.

Assuming that the light source is moving at a velocity of u⃗s, the light source moves

for a distance of
(︂
u⃗s · l⃗

)︂
t and the rest distance is s −

(︂
u⃗s · l⃗

)︂
t. The light velocity

is not relevant to the movement of the light source and is much higher than the

movement velocity of the light source. Therefore, the wavenumber along this path

remains constant. The wave seems to be squeezed, and the wavelength is shortened,

from λ0 to λ1, as shown in the figure.

According to the constant wavenumber:

ct

λ0

=
ct−

(︂
u⃗s · l⃗

)︂
t

λ1

(2.1)

yields the observed frequency ν1 at the receiver:

ν1 = ν0
1

1− (u⃗s/c) · l⃗
(2.2)

Taking into account u⃗s/c ≪ 1, Eq.2.2 could be simplified by only keeping the first

two terms of the corresponding Taylor series as:

ν1 = ν0(1 +
u⃗s

c
· l⃗) (2.3)

Similarly, if the light source is fixed while the receiver is moving, the observed fre-
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quency has the same relationship when u⃗s is replaced by −u⃗r in Eq.2.3:

ν1 = ν0(1−
u⃗r

c
· l⃗) (2.4)

In this study, a backward-scattering LDV system is used. This system consists of a

fixed laser source, which also functions as a receiver. The laser with a frequency of

νo is observed by a moving particle with a velocity of u⃗p, and the observed frequency

is ν1. Then, part of the laser is reflected back to the stationary receiver in a certain

direction l⃗2, with a final received frequency of ν2. The relationships between νo, ν1

and ν2 are shown below:

ν1 = ν0(1−
u⃗p

c
· l⃗1) (2.5)

ν2 = ν1(1 +
u⃗p

c
· l⃗2) (2.6)

Substituting Eq.2.5 into Eq.2.6 yields the following.

ν2 = ν0(1−
u⃗p

c
· l⃗)(1 + u⃗p

c
· l⃗2) (2.7)

This can be further simplified to a linear relation because u⃗p/1 ≪ 1 is always satisfied:

ν2 = ν0(1−
u⃗p

c
· l⃗1 +

u⃗p

c
· l⃗2) (2.8)

The final shifted frequency ν2 is only a function of the velocity of the seeding particles,

and Eq.2.8 is the basic formula of LDV. However, the shifted frequency ν2 is in the

order of 1014 Hz and is too high to be measured effectively. In reality, the LDV system

used in this study applied a dual-laser configuration to overcome this difficulty, which

has become the standard of LDV instruments today. The related details will be

described in the next section.

2.2.3 LDV principle of dual-beam configuration

Considering a dual-beam LDV configuration, two laser beams with the same frequency

transmit in the direction of l⃗1A and l⃗1B, respectively. The area where the two beams
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intersect is the measurement volume, and the included angle between the two beams

is 2θ, as shown in Figure 2.3. Particles passing the measurement volume scatter the

light from both beams, but result in different Doppler effect shifted frequencies from

each beam.

Figure 2.3: Measurement volume formed by the dual-beam configuration.

Assuming that a particle with velocity u⃗p⊥ is crossing the measurement volume

and part of the light is scattered in the direction of l⃗2, which towards the receiver,

the two frequencies detected by the receiver are given according to Eq.2.8 by:

ν2A = ν0(1−
u⃗p

c
· l⃗1A +

u⃗p

c
· l⃗2) (2.9)

and

ν2B = ν0(1−
u⃗p

c
· l⃗1B +

u⃗p

c
· l⃗2) (2.10)

The receiver detects a resultant light wave superimposed by the two waves men-

tioned above. This resultant light wave exhibits a low frequency, which is called the

beat frequency, and equals the difference between the two composed waves. This

beat frequency is called the Doppler frequency νD in the terminology of the LDV

measurement technique and can be calculated by:

νD = |v2A − v2B|

=
v0
c

⃓⃓⃓
u⃗p ·

(︂
l⃗1A − l⃗1B

)︂⃓⃓⃓
=

2 sin θ

λ0

up⊥

(2.11)
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This equation shows that the Doppler frequency is simply proportional to the particle

velocity component, which is perpendicular to the bisector of the two incident beams.

Furthermore, the measured Doppler frequency is independent of the position of the

receiver. With the assumption that the particle exactly represents the velocity of

the local flow, the velocity component can be obtained by measuring the Doppler

frequency:

u⊥ =
λ0

2 sin θ
νD (2.12)

It is implied that there is no system calibration for LDV and the coefficient 2 sin θ/λ0

is determined by the LDV specification and optical geometry.

However, the measured Doppler frequency described in this section is always pos-

itive and cannot deal with the velocity direction yet. A method to resolve this ambi-

guity will be discussed in the next section.

2.2.4 Frequency shift method for flow direction identification

To remove direction ambiguity from the Doppler frequency, the frequency of one laser

beam is slightly shifted in each laser pair. This technique is widely applied and has

become a standard[36]. This frequency shift is created by Bragg cells, which add a

constant frequency shift of νs to the initial laser. This shift is set to be much lower

than the laser frequency νo, while sufficiently higher than the Doppler frequency νD.

For example, the frequency shift is 40 MHz in this study. Thus, this moderate shift

now alters the frequency detected by the receiver:

ν2A = (ν0 + νs)(1−
u⃗p

c
· l⃗1A +

u⃗p

c
· l⃗2) (2.13)

and ν2B keeps the same as in Eq.2.10:

ν2B = ν0(1−
u⃗p

c
· l⃗1B +

u⃗p

c
· l⃗2) (2.14)

The current Doppler frequency is obtained as follows:

ν ′
D = νs +

v0
c

⃓⃓⃓
u⃗p ·

(︂
l⃗1A − l⃗1B

)︂⃓⃓⃓
+

vs
c

⃓⃓⃓
u⃗p ·

(︂
l⃗1A − l⃗2

)︂⃓⃓⃓
(2.15)
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Taking into account νs ≪ νo, the third term is negligible compared to the second

term, and the second term exactly equals νD which yields:

ν ′
D = νs + νD = νs +

2 sin θ

λ0

u⊥ (2.16)

The velocity component of the flow is calculated as follows:

u⊥ = ∆x(ν ′
D − νs) (2.17)

in which

∆x =
λ0

2 sin θ
(2.18)

Therefore, the direction of the velocity can be determined by the sign of ν ′
D − νs. ∆x

is also known as the fringe spacing of the measurement volume, a physical parameter

formed by the interference of two overlapping light waves. In practice, the calculated

fringe spacing can be used to assess the proper diameter of the particle. The particle

diameter should be comparable to or smaller than the fringe spacing. Otherwise,

large particles can still scatter light even if their centers are outside the measurement

volume, leading to an undesired increase of the effective measurement volume[36]. In

this study, the fringe space is approximately 2.5 µm, and particles with diameters,

which are 2 µm, smaller than the fringe space are selected to avoid this effect.

2.2.5 Measurement volume size

The size of the measurement volume is finite relative to the measurement performance.

Therefore, it is necessary to evaluate it properly. In general, the measurement volume

created by the overlap of two crossing beams is approximated as an ellipsoid, as shown

in Figure 2.3. The diameter of the measurement volume can be calculated by the

diameter of the laser:

dmv =
dl

cos θ
(2.19)
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Similarly, the length of the measurement volume also depends on the diameter of the

beam and the included angle:

2a =
dl

sin θ
=

dmv

tan θ
(2.20)

Moreover, the number of fringes in the measurement volume can be obtained from

the measurement volume diameter and fringe spacing:

N =
dmv

∆x
= 2

dl
λ0

tan θ (2.21)

2.2.6 Dantec LDV Device

With the development of the laser measurement technique, LDV systems have become

integrated products that include transmitting and receiving units that are commer-

cially available. A typical backward scattered Dantec LDV system used in this study

is shown in Figure 2.4, and the work process is briefly described as follows.

The laser probe containing the Bragg cell and the optical front lens integrate both

the transmitting and receiving functions. The laser from the fiber is split into a pair,

and one of the beam’s frequencies is shifted by the Bragg cell by 40 MHz to resolve

the velocity directions. As a dual-component LDV system with the advantage of the

integrated laser probe, the perpendicularity between two pairs of the laser beams and

intersection of the measurement volumes are strictly guaranteed.

The light scattered backward by the particles passes through the front lens again

and is collected by the photomultipliers, which convert the light signal into the elec-

tronic signal. Finally, the signal processor and the PC resolve the velocity of the

electronic signal.

Considering the standard LDV system manufactured by Dantec, which is used in

this study, several parameters like focal length, beam wavelength, and beam incident

angle are determined by the pre-set optical configuration. Table 2.3 lists the relevant

parameters of this system. However, refraction and other optical aberrations should
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Figure 2.4: Schematic diagram of the Dantec backward scattering LDV system, mod-
ified from [36]

Figure 2.5: Picture of the integrated laser probe unit

be considered if the laser transmits multiple medium interfaces. This part will be

described in Section 2.3

2.2.7 3-dimentional positioning of laser probe

To achieve accurate positioning and motion control of the laser probe and measure-

ment volume, a 3-axis configuration positioning system was utilized. Three single-
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Property Value

Focal length f 160 mm

Wavelength of red beams λred 632.8 nm

Wavelength of green beams λgreen 532.0 nm

Gaussian beam diameter 2.2 mm

Beam separation 2d 38.4 mm

Beam intersection angle 2θ 13.54 degree

Beam waist radius 0.024 mm

Measurement volume diameter dMV 0.05 mm

Measurement volume length 2a 0.43 mm

Table 2.3: Optical configurations and geometry properties of measurement of the
Laser probe (Dantec Dynamics, Inc.)

axis slides were assembled to provide movement in three directions (MN10–Precision

Lead Screw, BiSlide, Velmex, Inc). Every slide was driven by a stepper motor(Vexta

PK264, Velmex, Inc). A damper (D6CL-6.3F,VEXTA, ORIENTAL MOTOR CO,

LTD.) was installed on each stepper motor to absorb the motor’s vibration. All the

motors were connected to one controller (VXM-3,Velmex, Inc) which enabled PC

control.

2.3 Separation of measurement volumes

2.3.1 Separation of measurement volumes due to optical aber-
ration

For a dual-beam configuration LDV system, each pair of laser beams travels through

the setup’s outer cylinder and intersects inside the working solution. During this

process, each laser’s direction altered 2 times, at the air-acrylic interface and the

acrylic-solution interface, respectively.

Owing to the symmetrical condition of the laser light paths, only one beam and part

of the geometry is considered here and drawn in the figures. Consider a pair of red
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laser beams for measuring the circumferential velocity (uϕ), transmitting through the

outer cylinder, as shown in Figure 2.6a. The two refraction interfaces are concentric

cylindrical surfaces, shown as two concentric arcs in the schematic diagram of the

cylinder’s horizontal cross-section. Thus, the two incident angles (αo and αi in Figure

2.6a) all depend on the local position of the measurement volume inside the flow.

However, another pair of green laser beams to measure the axial velocity, as shown

in Figure 2.6b, refracts at two parallel flat surfaces, shown as two parallel lines in

the vertical cross-section in the figure. Therefore, the two incident angles αo and αi

are always consistent (αo and αi in Figure 2.6b), and the shift of the real position is

simply proportional to the displacement of the laser probe.

(a) Laser transmitting a cylinder in horizontal cross-section view

The relationship of the measurement volume shift and separation between the two

pairs of beams could be obtained for the present case by the calculation described in

the following:

For the red beams measuring the circumferential velocity component shown in

Figure 2.6a), the laser incidents with the angle of αo and refracted at points E and

I, respectively. The measurement volume is then formed at the real intersection
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(b) Laser transmitting a cylinder in vertical cross-section view

Figure 2.6: Schematic diagram of the laser path. Only one beam and part of the
geometry are shown in the figure, and θ does not represent the incident angle of the
real laser beams.)

point R, on the symmetrical axis. The dashed lines are paths without refraction, and

hence Ro and Ri are two virtual measurement volume positions formed by previous

paths. △OERo is easily obtained by the LDV probe. Applying the sine law yields

the following:

sin βo

ORi

=
sin θi
OE

(2.22)

sin γi
IRi

=
sin θi
OI

(2.23)

sin βi

OR
=

sin(βi + γi)

OI
(2.24)

in which,

θi = θ − αo + βo

γi = θi − αi
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The Snell’s Law in this case is given by:

nair sinαo = nacrylic sin βo (2.25)

nacrylic sinαi = nsolution sin βi (2.26)

These equations provide basic solutions to the real position of the measurement

volume and the measurement volume shift (RoR). For given virtual measurement

volume positions ORo, the calculation process can be performed in this sequence:

ERo =⇒ ORo =⇒ ORi =⇒ IRi =⇒ OR =⇒ RoR (2.27)

The green beams that measure the axial velocity component are shown in Figure

2.6b, because the incident angles are consistent, the relationship between the virtual

measurement volume position and the real measurement position is easily obtained.

Similarly, we apply the sine law again:

ERo

sin θi
=

RiE

sin θ
(2.28)

RiI

RiE
=

ERo cos θ − (Ro −Ri)

RiE cos θ
(2.29)

RRi

sin(βi − αi)
=

RiI

sin βi

(2.30)

in which,

θi = βo

The Snell’s Law in this case is given by:

nair sinαo = nacrylic sin βo (2.31)

nacrylic sinαi = nsolution sin βi (2.32)
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The basic calculation process sequence is as follows:

ERo =⇒ IRi =⇒ RRi =⇒ RoR (2.33)

2.3.2 Compensating method of the separation measurement
volumes

According to the previous section, the two measurement volumes separate due to

different refraction geometries, and this situation deteriorates as the measurement

volumes approach the inner rotating cylinder.

Figure 2.7: Laser transmitting a cylinder with flat outer surface in horizontal cross-
section view

To compensate for this optical aberration caused by curved interfaces in the hor-

izontal direction, Zhang[37] suggested modifying the outer surface of the cylinder to

be flat, as shown in Figure 2.7. In addition to reducing the separation between two

measurement volumes, this method also simplifies the calculation of the real mea-

surement volume position. Compared to Figure 2.6a, the outer interface is modified

to be flat, while the inner interface remains the same as the original. According to

the sine law:
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ERo

sin θi
=

RiRo

sin(αo − θo)
(2.34)

RRi

sin(βi − αi)
=

IRi

sin(βi − αi + θi)
(2.35)

and cosine law:

IRi
2 = OI2 +ORi

2 − 2 cos(π − θi)OI ·RiO (2.36)

also:

sin γi =
IRi sin θi

OI
(2.37)

in which:

θi = βo (2.38)

αi + γi = θi (2.39)

nair sinαo = nacrylic sin βo (2.40)

nacrylic sinαi = nsolution sin βi (2.41)

The sequence of the calculation process in this case is as follows:

ERo =⇒ RoRi =⇒ ORi =⇒ IRi =⇒ γi =⇒ RRi =⇒ RoR (2.42)

To evaluate the compensating effect of the flat outer surface, Figure 2.8 compares

the position of the measurement volume s of each pair of beams as a function of

the displacement of the laser probe ∆x. It is observed that the curve of the original

horizontal beams’ measurement volume (red dashed line) has a larger divergence

compared to the other two curves.

Figure 2.9 shows the real position of the measurement volume inside the flow of

the original green beams and the compensated red beams (dashed line), and the
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Figure 2.8: Real measurement volume position versus displacement of the laser probe.
The position s is normalized by the annulus width d. The negative value of the
position means that the horizontal measurement volume is inside the transparent
wall with respect to the position of the laser probe. With increasing displacement
of the probe ∆x, the measurement volumes move from the outer cylinder Ro to the
inner cylinder Ri.

original red beams (solid line). In the original case, the two measurement volumes

never coincide due to the finite thickness of the cylinder. The separation distance

ranges from 11.1% to 30.0% of the annulus width. However, the separation distance

is compensated well when a flat outer surface is provided. Specifically, the maximum

value is restricted to 2.9% of the width of the gap, validating a good compensating

result.

Additionally, by decreasing the magnitude of the optical aberration, this com-

pensating method also decreases the dislocation of the laser beam waists from the

measurement volumes. Therefore, the light intensity in the measurement volume is

also improved, which contributes to better signal quality, especially in xanthan gum

aqueous solutions, which are not fully transparent.

However, it should be mentioned that the compensating method cannot completely
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Figure 2.9: Separation between the measurement volumes versus the measurement
volume position of the green beams (the green beams measure the axial velocity in
the vertical cross section). Separation ∆s is normalized by the annulus width d.

eliminate the measurement volume separation, and the two pairs of beams do not

intersect at one unique point in the flow. Consequently, the results of the measurement

of the two velocity components should still be treated individually.

2.3.3 Correction factor for azimuthal measurement result

According to the LDV principle, the flow velocity is obtained by measuring the

Doppler frequency νd as follows:

|u| = λ0

2 sin θ
νd (2.43)

If the laser beams are transmitted through flat surfaces (see Figure 2.6b), and

invoking Snell’s law, Eq.2.43 yields Eq.2.44

fd
2 |u|

=
sin θ

λair

=
sin βi

λsolution

(2.44)
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where λ with subscripts air and solution represent the laser wavelength in the

corresponding medium and βi equals the actual incident angle in this figure.

This means that when both interfaces are parallel flat surfaces, the effect of dif-

ferent refractive indices is canceled out by the change in wavelength. Therefore, the

measurement results of uz do not require correction.

However, for the case of curved surfaces, such as Figure 2.6a and Figure 2.7, Eq.2.44

is no longer applicable and a correction factor is needed for the measurement results

of uϕ. As shown in Figure 2.7, this correction factor Cθ can be obtained as follows.

Cθ =
uθ

uθ,measured

=
nair sin θ

nsolution sinα
(2.45)

In Eq.2.45, knowing the real incident angle α as a function of the position of the

real measurement volume is a prerequisite to calculate the correction factor. This

could be easily done in Section 2.3.2. The correction factor is depicted as a function

of the normalized position of the measurement volume (s/d) in Figure 2.10.

Figure 2.10: Correction factor Cθ as a function of the normalized measurement volume
position s/d by Eq.2.45
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In the figure, the velocity uϕ should be corrected for by up to 2.7% and 1.0% when

the working solution is an aqueous solution of xanthan gum and a solution of water

and glycerol, respectively. Furthermore, the correction factor is much lower than it

in [38] (Cθ from 3% to 9%) where the horizontal beams were not compensated, which

validates another advantage of our compensating method.

2.3.4 Viewing chamber

To provide a flat outer surface for the laser beam, a 3D printed clear resin-based

viewing chamber was printed shown in Figure 2.11. One side of this unit has a curved

surface that matches the outer radius of the cylinder. Therefore, the two parts can

fit perfectly together when this unit was fixed to the cylinder with silicone glue.

Additionally, a piece of 1/8 inch acrylic sheet was cut and attached to the chamber

surface by bolts. To fill the hollow center space of this chamber, a 70.8 wt.% KSCN

aqueous solution was prepared. The refractive index of this solution was measured to

be 1.49 using an Abbe refractometer (ABBE-3L, BAUSCH & LOMB), similar to the

refractive index of the acrylic sheet and the acrylic cylinder. The refractive indices of

other materials were also measured and listed in Table 2.4

Figure 2.11: Viewing chamber and acrylic sheet cover modeling.
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Material Refractive Index (n)

0.1 wt.% xanthan gum aqueous solution 1.333

0.4 wt.% xanthan gum aqueous solution 1.333

70.0 wt.% glycerol aqueous solution 1.429

70.8 wt.% KSCN aqueous solution 1.491

Table 2.4: Refractive index list

As shown in Figure 2.12, a tube of the same material as the cylinder was partially

immersed in water and the prepared KSCN solution. In Figure 2.12b, the lower part

of the tube immersed in the KSCN solution was almost invisible, showing a good

refractive index matching between the solution and the cast acrylic. From the aspect

of the laser refraction on interface, the viewing chamber could be regarded as a whole

with the cylinder. Therefore, a flat surface could replace the curved outer surface of

the cylinder, effectively reducing the separation between two measurement volumes.

(a) Immersed in water
(b) Immersed in KSCN so-
lution

Figure 2.12: Comparison for the refractive index matching between the cast acrylic
and KSCN solution
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2.4 Working fluids

2.4.1 Preparation of the working fluids

The working fluids were one 70.0 wt.% water-glycerol solution and two xanthan gum

aqueous solutions of 0.4 wt.% and 0.1wt% respectively. A mixture of deionized wa-

ter and glycerol (USP, Kosher) was used to study the Newtonian case. The shear

thinning effect was studied using a food grade Xanthan gum powder (CASRS: [11138-

66-2],Chemical Store Inc.) at two different concentrations. However, xanthan gum

molecules are sensitive to bacteriological degradation. Therefore, benzoic acid with a

concentration of 0.04 wt.% was added to the solution as a preservative. The addition

of benzoic acid does not have an apparent effect on the rheological characteristics

of the solution. Each solution was prepared in batches of 4 kg. The raw materials

were well mixed using a laboratory mixer (AM120Z-H, XZB Inst & Eqpt. Co., Ltd)

to ensure fully dissolved solutions. To avoid bubbles appearing inside the working

solutions and affecting LDV measurements, we degassed them in a vacuum chamber

before adding them to the setup chamber for experiments. To improve the quality of

the LDV measurement signal, silver-coated 2.0 µm diameter spherical particles with

a very small amount were added to the working solutions.

2.4.2 Rheological models and measurement of the fluid char-
acteristic

Xanthan gum aqueous solutions exhibit shear thinning behavior and a Newtonian

plateau, which are typical of polymer solutions. In this study, two mathematical

models are used that describe the relationship between shear stress and shear rate of

non-Newtonian fluids.

First, the simplest and most widely used model, the Power Law Model, with the

form of:

µ = kγ̇n−1 (2.46)
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is fitted to the shear thinning region, where k [m2/s] is the flow consistency index, n is

the shear thinning index, γ̇ is the strain rate, and γ̇ = dγ/dt [s−1]. For 0 < n < 1, the

fluid shows a shear thinning behavior, and a lower value of n represents a stronger

degree of shear thinning. For n > 1, the fluid shows a shear thickening behavior

and n = 1 means a Newtonian behavior. Apparently, the degree of shear thinning

increases with the concentration of xanthan gum, as qualified by n(Power) in Table

2.5. Furthermore, the Power Law model could fit only well in the shear rate range

of 100 ∼ 102. Beyond this range, the fittings gradually deviate from the Newtonian

plateau.

Furthermore, the Carreau model, a four-parameter model, is used to describe the

whole rheology curve, especially the Newtonian plateau. The formulation is given as

follows:

µ = µ∞ + (µ0 − µ∞)
[︁
1 + (λγ̇)2

]︁n−1
2 (2.47)

where µ∞ and µ0 are the viscosities at an infinitely high shear rate and a zero shear

rate, respectively. λ [s] is a time constant and n is the power index.

Ideally, the flow index n in two models should be the same for one flow.

Figure 2.13: Measurement results and fitting curves of the working solution

In this study, the rheology curves were measured on a stress-controlled rheometer
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(MCR-302 WESP,Anton Paar USA Inc.). The solutions were tested right before the

experiment and three independent measurements were conducted for every sample

to test the reproducibility of the results. The measurement results are marked as

scatters in Figure 2.13, and the rheology curves are fitted by both the Power Law

model in dashed lines and the Carreau model in solid lines. And the corresponding

parameter values of the fitting models are listed in Table 2.5.

µ [Pa·s] k[m2/s] n(Power) µ0 [Pa·s] µ∞ [Pa·s] λ [s] n(Carreau) ρ [kg/m3]

Glycerol 70 wt.% 0.030 - - - - - - 1169.9

XG 0.1 wt.% - 0.078 0.57 0.069 0.0031 0.75 0.52 984.0

XG 0.4 wt.% - 2.16 0.22 11.27 0.0048 8.20 0.21 985.2

Table 2.5: Rheological characteristics of the working fluids. XG: Xanthan gum.

2.5 Basic data processing of LDV measurements

The LDV measurements provide the velocity component time series at certain spacial

point in the flow field. The velocity time series is composed of discrete velocity

samples. Therefore, a velocity profile curve is usually composed of mean velocity

value of a series of discrete spatial points. This section is going to describe the

general methods of LDV data processing, with a focus on the mean velocity and

fluctuations.

For a turbulent flow described by mean velocity and fluctuations of one spacial

point, as shown by:

u(t) = ū+ u′(t) (2.48)

the mean velocity ū is calculated by:

ū =
1

N

N∑︂
i=1

ui (2.49)

where N is the total sample number of the measurement.
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The fluctuation component can be described as turbulent strength by the standard

deviation of this group of samples statistically:

σu =

⌜⃓⃓⎷ 1

N

N∑︂
i=1

(u′)2 =

⌜⃓⃓⎷ 1

N

N∑︂
i=1

(ui − ū)2 (2.50)

and the variance σu
2, equal to the square of the standard deviation, represents the

normal turbulent stress of the corresponding velocity component.

The turbulent intensity of the considered velocity component is calculated by:

Tu =

√︃
σu

2

u2 =
σu

ū
(2.51)

2.6 Measurement field of the TC flow experiment

Figure 2.14: Sketch of Taylor vortex cell structure with the corresponding cylindrical
coordinate. The right figure explains the measurement field in radial-axial plane.

Figure 2.14 shows the cylindrical coordinate applied in the geometry. The dashed

rolls on the left represent the Taylor vortex remnants in the r − z plane, which are

considered to be the largest eddies of turbulent TC flow. It will be shown that both

the axial velocity field uz and the mean azimuthal velocity field uθ, in addition to
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depending on the radial position r, will also depend on the axial position z in later

discussion. The rectangle ABCD indicates the cross section of the measurement field

in the r − z plane.

In Chapter 3, measurements were always conducted at the mid height of the setup,

from the stationary cylinder wall (r′ = 0) to the rotating cylinder wall (r′ = 1), to

obtain the corresponding radial profiles of the flow at mid height.

In Chapter 4, mappings of the azimuthal and axial velocity components were per-

formed as a succession of traverses in the axial direction from the top to the bottom

of the geometry at three fixed radial locations to draw the axial profiles. The height

of the measurement field ranges −2.63d ∼ 2.63d (0 represents the midheight of the

cylinder). Each axial profile is made up of 51 measurement points with equidistance

in the axial direction. The green, orange, and blue dot lines indicate the three dif-

ferent radial positions of the traverses, which are at the quadrisection points through

the annulus, or (r−Ro)/d = 0.25, 0.5, 0.75, respectively, as shown in the figure on the

right. The profile curves in the plots will be in the same color as the corresponding

radial positions in Chapter 4.
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Chapter 3

Radial profiles of basic laminar TC
flow and TTV

3.1 Torque scaling for comparison with previous

experiments and theories

To compare the measurement results with the previous literature, the dimensionless

form of torque (G = T/ρν2L, [25]) was utilized, where T is the torque, ρ is the fluid

density, ν is the fluid kinematic viscosity and L is the length of the cylinder.

Marcus[39] made a prediction based on the marginal stability calculation. The

annulus was divided into three regions in the radial direction: a thin boundary layer

near the inner cylinder, a thin boundary layer near the outer cylinder, and an inviscid

core in the middle. It assumes that the core region has a constant angular momentum

density, and the boundary layer regions are laminar and marginally stable by main-

taining a constant boundary layer thickness. The derived relation between G and Re

yields

G = 0.202
(︁
η−1 − 1

)︁−5/3
Re5/3 (3.1)

Lathrop[25] mentioned another prediction derived from the Kolmogorov-type ar-

gument, which assumes a constant energy dissipation rate. Therefore, the torque is

obtained by dividing the dissipated power by the rotation speed, given as:

G = π

[︃
η(1 + η)

(1− η)2

]︃
Re2 (3.2)
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The prediction holds with the infinitely high Reynolds number when the viscous force

is negligible, and hence the exponent value equal to 2 might be regarded as an upper

limit.

Wendt [40] conducted detailed torque measurements with three different radius

ratios (η = 0.68, 0385, 0.935) and fit the dimensionless torque results to

GWendt = 1.45
η3/2

(1− η)7/4
Re1.5, 4× 102 < Re < 104 (3.3)

Lathrop [25] performed the experiment with η = 0.724 and the data fit the following

relation:

log10GLathrop = 5.726 + 0.3235 (log10Re)
2 − 1.002 (log10Re) , Re < 1.0× 104

(3.4)

Figure 3.1: Left: Comparison between the measured dimensionless torque Gc

with the results of the previous experiment (eq. (3.3) [40], eq. (3.4) [25]) and the
marginal stability prediction (eq. (3.1)). The yellow area is highlighted between
the Kolmogorov-type prediction (eq. (3.2)) and the laminar Couette flow torque
(G = 4πη [(1 + η)(1− η)2]

−1
Re), as upper and lower bounds, respectively. Right:

Relative deviations from results of Wendt (eq. (3.3) [40]) and Lathrop (eq. (3.4) [25]).

As shown by fig. 3.1, the measurements of torque show just slight deviations from

the past work, and especially agree well with the results of Wendt, which validates

our results. Taking into account the different radius ratio η = 0.724 utilized by

Lathrop and η = 0.76 in the current study, a relatively larger deviation between the
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current study and Lathrop’s results is acceptable. Besides, the marginal stability

result eq. (3.1) apparently underrates the torque, but still shows a similar magnitude

to the measurement results in the depicted range.

3.2 Basic laminar TC flow

In this section, theoretical and numerical analysis of basic laminar TC flow are per-

formed. Two rheological models for non-Newtonian fluids are included: the power

law model and the Carreau model. The effects of varying geometrical and rheological

parameters are explored and presented by profiles.

3.2.1 Scaling of the rheology models

An incompressible shear flow between two infinitely long concentric cylinders is con-

sidered. The inner cylinder is rotational and the outer is stationary. The radius ratio

η of the two cylinders is defined as η = Ri/Ro. The length scalars are normalized

by the width of the annulus between the two cylinders d = Ro − Ri. Therefore, the

dimensionless radii of the cylinders can be expressed, respectively, by

R̃i =
Ri

d
=

η

1− η

R̃o =
Ro

d
=

1

1− η

(3.5)

where the tilde (̃.) denotes dimensionless quantities. In addition, the velocity of the

inner cylinder uθ,i = ωθ,iRi is the reference velocity scale. γ̇ref = uθ,i/d is the reference

shear rate scale, sometimes also called the nominal shear rate. τref = µref γ̇ref is the

reference stress scale.

The adopted reference viscosity scale µref is widely used in the previous literature

and is defined differently depending on the specific rheology model. Hence, the ref-

erence viscosity scale will be indicated with each rheological model in the following

section.
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Scaling of power law model

µ̃ =
k · γ̇ref n−1

µref

˜̇γ
n−1

(3.6)

where µref = k · γ̇ref n−1

Scaling of Carreau model

µ̃ =
µ∞

µref

+

(︃
µ0

µref

− µ∞

µref

)︃[︂
1 + (λ̃˜̇γ)2

]︂n−1
2

(3.7)

where µref = µ0 and λ̃ = λγ̇ref . In the Carreau model, λ controls the beginning of

the shear-thinning region of the rheogram, and λ−1 is the characteristic shear rate

value of the onset of the shear-thinning.

3.2.2 Basic laminar TC flow

The basic laminar TC flow is defined as a stationary axisymmetric laminar flow

with a purely azimuthal velocity field (ur = 0, uθ = uθ(r), uz = 0) [16]. Therefore,

γ̇rθ(r) = γ̇θr(r) and τrθ(r) = τθr(r) = µγ̇rθ are, respectively, the only nonzero elements

of the strain rate tensor and the stress tensor, and the momentum equation reduces

to

d(r2τrθ)

dr
= 0 (3.8)

The integration of eq. (3.8) yields the following:

τrθ(r)

τrθ(Ri)
= (

Ri

r
)2 (3.9)

which indicates that the magnitude of the local stress monotonically decreases from

the inner wall to the outer wall. The velocity profiles across the annulus and the

corresponding strain rate profiles, viscosity profiles can be derived by solving the

equation set made up by eq. (3.8) (or eq. (3.9)), the non-slip boundary condition

uθ(Ro) = 0 and uθ(Ri) = uθ,i and the fluid rheological curve.

40



3.2.3 Newtonian fluid

For a Newtonian fluid with constant viscosity, the analytical solution of the azimuthal

angular velocity profile can be expressed as

ωθ(r) =
ωiRi

2

Ri
2 −Ro

2

(︃
1− Ro

2

r2

)︃
=

ωi

1− η2

(︃
1− Ro

2

r2

)︃ (3.10)

and the shear rate profile in the radial direction is:

γ̇rθ(r) = r
∂ωθ(r)

∂r

=
2ωi

1− η2
Ro

2

r2

(3.11)

Apparently, the profiles do not depend on the viscosity and only refer to the aspect

ratio η, and ωθ(r) ∼ 1 − (Ro/r)
2, γ̇rθ(r) ∼ (Ro/r)

2. Figure 3.2 draws the scaled

eqs. (3.10) and (3.11) with different η. In fig. 3.2b, the profiles deviate from the curve

of the reference case (gray dashed line), a simple shear flow between two parallel

plates, as the aspect ratio (η) decreases. As for the shear rate profiles, a smaller η

results in a lower shear rate at the outer stationary cylinder but higher shear rate at

the inner rotational wall, and the degree of difference at the inner wall is apparently

larger than the outer wall.

3.2.4 Power law fluid

As the working fluid is a power law fluid described by eq. (3.6), the velocity and shear

rate profiles are identified, respectively, by:

ωθ(r) = ωi

(︃
1

Ro
2/n

− 1

Ri
2/n

)︃−1(︃
1

Ro
2/n

− 1

r2/n

)︃
= ωi

(︃
1− 1

η2/n

)︃−1 [︃
1− (

Ro

r
)2/n
]︃ (3.12)

γ̇rθ(r) =
2ωi

n

(︄
1

R
2/n
o

− 1

R
2/n
i

)︄−1
1

r2/n

=
2ωi

n

(︃
1− 1

η2/n

)︃−1

(
Ro

r
)2/n

(3.13)

41



(a)

(b) (c)

Figure 3.2: Basic laminar TC flow of Newtonian fluids. (a) Azimuthal angular velocity
profiles. (b) Shear rate profiles scaled by the value at the inner wall. (c) Shear rate
profiles scaled by the reference shear rate. (1) η = 0.75 ; (2) η = 0.50; (3) η = 0.25
and the gray dashed line: simple shear flow between parallel plates.

If n = 1, eqs. (3.12) and (3.13) reduces to eqs. (3.10) and (3.11).

The viscosity profiles can then be easily obtained by applying the corresponding

rheological equation:

µrθ(r) = µ[γ̇rθ(r)] (3.14)

The profiles of power law fluids with various shear-thinning indices n and fixed aspect

ratio are depicted by fig. 3.3. From figs. 3.3b to 3.3d, an increasing shear thinning

effect (decreasing n) leads to a deviation from the Newtonian case, which is the same

as the behavior resulting from the decreasing aspect ratio with Newtonian fluid as
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observed in fig. 3.2. Therefore, a stronger shear thinning effect and a smaller aspect

ratio can mutually reinforce this deviation.

With respect to the viscosity profiles, the viscosity decreases monotonically from

the outer wall to the inner wall. Also, a stronger shear thinning effect indicates a

higher viscosity at the outer wall but lower viscosity at the inner wall, corresponding

to a greater alternation amplitude.

3.2.5 Carreau fluid

For the Carreau model, the analytical expression of the profiles cannot be obtained.

Instead, the equations are solved numerically. Figure 3.4 depicts the profiles with

varying n and fixed λ, and fig. 3.5 for fixed n and varying λ.

In figs. 3.4a and 3.5a, the rheograms of the Carreau fluids (solid line) are exhibited

with the power law fluids with the same n, to emphasize their rheological differences

at the viscosity plateau.

In figs. 3.4b to 3.4e, generally, a stronger shear thinning effect of Carreau fluids

leads to a similar deviation trend to power law fluids, but the magnitude of deviation

is greatly inhibited compared to power law fluids as shown in figs. 3.3b to 3.3e.

However, the velocity and shear rate profiles of both type of fluids still keep a convex

shape.

In terms of viscosity profiles (figs. 3.4e to 3.4f), the local viscosity decreases mono-

tonically from the outer wall to the inner wall, and a stronger shear thinning effect still

enhances this deviation. But compared to power-law fluids with the same shear thin-

ning index (figs. 3.3b to 3.3e), this deviation is still greatly inhibited. Additionally,

the viscosity profiles are convex, different from those of power law fluids.

In fig. 3.4d, ˜̇γ is around 100, where is exactly the transition region from the viscosity

plateau to the shear-thinning region for the Carreau fluids in fig. 3.4a. In this shear

rate range, unlike power law fluids, Carreau fluids exhibit a weaker shear thinning

characteristic and the effect of the viscosity plateau should not be ignored. As the
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ratio between the flow advection time and the characteristic time ˜̇γ
−1
/λ decreases,

the effect of the viscosity plateau becomes less obvious, as shown by figs. 3.5b to 3.5e.

In the current study, the ratio ˜̇γ
−1
/λ ≈ 10−2. As curve (4) shown in fig. 3.5a, in this

case, the Carreau model functions similarly to the power law model and the viscosity

plateau effect can be ignored.

3.2.6 Basic laminar TC flow with experimental fluids of this
study

The basic laminar TC flow with the working fluid used in this study is depicted in

fig. 3.6. The related parameters of the rheology model are listed in table 2.5. As we

have ˜̇γ
−1
/λ ≈ 10−2, we find that the Carreau model exhibits little difference from the

power-law model and the curves of both models almost overlap with each other.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Basic laminar flow with power law fluids with η = 0.76. (a) Rheogram
of power-law fluids. (b) Azimuthal angular velocity profiles. (c) Shear rate profiles
scaled by value at the inner wall. (d) Shear rate profiles scaled by the reference
shear rate scale. (e) Viscosity profiles scaled by value at the inner wall. (f) Viscosity
profiles scaled by reference viscosity scale. (1) n = 0 Newtonian fluid; (2) n = 0.75;
(3) n = 0.50; (4) n = 0.25.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Pure laminar flow of Carreau fluids with η = 0.76 and λ = 1. (a)
Rheogram of Carreau fluids (solid black line) and power law fluids (dashed gray line)
with the same n value as the corresponding Carreau fluids (gray dashed line) (b)
Azimuthal angular velocity profiles. (c) Shear rate profiles. (d) Viscosity profiles.
The gray dashed line: Newtonian fluid. Quantities denoted by the prime (′) are
normalized by the corresponding value at the inner wall, which are denoted by the
subscript i. (1) n = 0.25; (2) n = 0.50; (3) n = 0.75.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Pure laminar flow of Carreau fluids with η = 0.76, and n = 0.25. (a)
Rheogram of Carreau law fluids. (b) Azimuthal angular velocity profiles. (c) Shear
rate profiles. (d) Viscosity profiles. (1) λ = 1; (2) λ = 10; (3) λ = 100. The gray
dashed line: power law fluid with the same n value as the corresponding Carreau fluid,
n = 0.25. Quantities denoted by the prime (′) are normalized by the corresponding
value at the inner wall, which are denoted by a subscript i.
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(a) (b)

(c)

Figure 3.6: Pure laminar flow of the two xanthan gum aqueous fluids described in
table 2.5 with η = 0.76. (a) Azimuthal angular velocity profiles. (b) Shear rate
profiles. (c) Viscosity profiles. Curves are normalized by the corresponding value at
the inner wall.
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3.3 Radial profiles

3.3.1 Data collection and piecewise polynomial fitting of ve-
locity profile

Figures 3.7 to 3.9 represent the radial measurement results with glycerin-water mix-

ture, 0.4 wt.% and 0.1 wt.% Xanthan gum aqueous solutions, respectively. As the

data obtained by LDV are the local velocity of discrete spatial points (as the circle

markers), a piecewise polynomial fitting method was utilized to get an analytical

expression of every profile. Every velocity profile was divided into 3 pieces: two near-

wall region and one bulk region. The near-wall region usually exhibits a high velocity

gradient, while the bulk region does not. Every region was fitted with a third-order

polynomial, and necessary constraints were applied: (1)boundary condition: the ve-

locity equals to the rotating cylinder at the inner wall and zero at the outer wall; (2)

continuity: the velocity and its gradient at the connection point should be equiva-

lent to ensure the profile is continuous and smooth. Once the velocity profile fitting

is obtained, the shear rate and viscosity profile can be accessible from the velocity

profile’s derivative.

(a) (b)

Figure 3.7: Profiles of the TC flow experiment with Newtonian working fluids (glyc-
erin). (a) Experiment results (circle marker) and curve fittings (solid line) of the
azimuthal velocity profiles (ωθ) in the radial direction. (b) Shear rate profiles in the
radial direction.
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(a) (b)

Figure 3.8: Profiles of the TC flow experiment of non-Newtonian working fluids with
strong shear-thinning effect (0.4 wt.% Xanthan gum aqueous solution). (a) Experi-
ment results (circle marker) and curve fittings (solid line) of the azimuthal velocity
profiles (ωθ) in radius direction. (b) Shear rate profiles in radius direction.

(a) (b)

Figure 3.9: Profiles of the TC flow experiment of non-Newtonian working fluids with
relatively weaker shear-thinning effect (0.1 wt.% Xanthan gum aqueous solution).
(a) Experiment results (circle marker) and curve fittings (solid line) of the azimuthal
velocity profiles (ωθ) in radius direction. (b) Shear rate profiles in radius direction.

3.3.2 Newtonian TTV

As the shear rate profiles depicted by figs. 3.10a and 3.10b, the boundary between

the bulk region and the inner near-wall region is quite clear, while it is not quite
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obvious between the bulk region and the outer near-wall region, especially in the low

Re cases, i.e. Re=1100, 1600. Generally, the shear rate profiles keep decreasing from

the inner wall, start to increase dramatically at the inner near-wall region and reach

the maximum at the inner wall.

(a) (b)

(c) (d)

Figure 3.10: Derivative profiles of the TC flow experiment of Newtonian working fluids
(glycerin-water mixture) by different scaling. (a)&(b) Shear rate profiles. (c)&(d)
Viscous stress profiles. Figures on the left column are scaled by the value at the inner
wall, which is denoted by the subscript i, and those on the right column are scaled
by the corresponding reference scale as denoted by the subscript ref .
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3.3.3 Non-Newtonian TTV

0.4 wt.% Xanthan gum aqueous solution

As shown by fig. 3.11a, for low Re (i.e. Re=700), the lowest shear rate is obtained

at the middle of the gap (r′ ≈ 0.45) and no obvious boundary between the bulk

region and near-wall region is observed. However, as Re increases, the boundary

becomes more clear, and finally forms a “U” shape, with a quite flat bottom at the

bulk region (i.e. Re = 2700 to 3700). The shear rate and its gradient are quite

low at the bulk region, but high at the two near-wall regions. Owing to the shear-

thinning characteristic of the fluid, it indicates a sandwich structure of the viscosity

distribution: two low-viscosity layers at the near wall regions and one high-viscosity

core at the bulk region, as depicted by figs. 3.11c and 3.11d. In fig. 3.11f, the viscous

stress at the bulk region is always approximately equivalent to 0.7µref , where µref =

µn = µ|uθ,i/d. But the viscous stress at the wall increases with increasing Re.

0.1 wt.% Xanthan gum aqueous solution

Generally, the profiles of 0.1 wt.% Xanthan gum aqueous solution are similar to

Re= 2700, 3200, 3700 of 0.4 wt.% Xanthan gum aqueous solution, which have been

described in the previous subsection. It is worth stressing here is that the profiles can

be apparently classified into 2 modes: Re = 3600, 4100 and Re = 5000 ∼ 7100. The

main difference between these 2 modes is the profiles at the bulk region. The shear

rate profiles of the two lower Re cases are increasing at the bulk region, while the

profiles are decreasing of the three higher Re cases. The different trend can also be

observed from the rest of the profiles in fig. 3.12 and the radial profiles of turbulence

strength (fig. 3.13). This difference is found to be related to different Taylor vortex

structures, and will be analyzed in the later chapter.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Derivative profiles of the TC flow experiment of non-Newtonian working
fluid with strong shear-thinning effect (0.4 wt.% Xanthan gum aqueous solution) by
different scaling. (a)&(b) Shear rate profiles. (c)&(d) Viscosity profiles. (e)&(f)
Viscous stress profiles. Figures on the left column are scaled by the value at the inner
wall, which is denoted by the subscript i, and those on the right column are scaled
by the corresponding reference scale as denoted by the subscript ref .
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(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Derivative profiles of the TC flow experiment of non-Newtonian working
fluid with relatively weaker shear-thinning effect (0.1 wt.% Xanthan gum aqueous
solution) by different scaling. (a)&(b) Shear rate profiles. (c)&(d) Viscosity profiles.
(e)&(f) Viscous stress profiles. Figures on the left column are scaled by the value at
the inner wall, which is denoted by the subscript i, and those on the right column are
scaled by the corresponding reference scale as denoted by the subscript ref .
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(a) (b)

Figure 3.13: Turbulent strength profiles through the annulus. (a) 0.4 wt.% Xanthan
gum aqueous solution, n = 0.22. (b) 0.1 wt.% Xanthan gum aqueous solution, n =
0.51.
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3.4 Different definitions of Reynolds number with

non-Newtonian fluids

3.4.1 Various Reynolds number definitions

Due to the varying viscosity in the flow field, which caused by the rheological charac-

teristic of the Non-Newtonian fluid, Reynolds number defined with consistent viscosity

is no more applicable. Some Reynolds numbers calculated by different viscosity were

proposed in the literature, aiming to take the varying viscosity into account.

The Reynolds number based on the nominal shear rate across the gap (µn = µ|uθ,i/d)

is the most widely used:

Re =
ρuθ,id

µn

(3.15)

In this study, the experiments were also designed based on eq. (3.15) because of its

simplicity.

Guzel[12] introduced another definition (ReG) with consideration of the viscosity

variation throughout the flow field for pipe flow. The Reynolds number is redefined

on the basis of obtaining the real velocity profile and the viscosity profile. At first, a

local Reynolds (ReG,l) number is defined:

ReG,l(r) =
ρuθ(r)d

µ(r)
(3.16)

Therefore, a local Reynolds number profile ReG,l(r) could be obtained (the subscript l

represents “local”). Then ReG is defined as the spacial average of ReG,l(r) throughout

the annulus:

ReG =
2

(R2
o −R2

i )

∫︂ Ro

Ri

ReG,l(r)rdr

=
2ρd

(R2
o −R2

i )

∫︂ Ro

Ri

uθ(r)

µ(r)
rdr =

2ρ

(Ro +Ri)

∫︂ Ro

Ri

uθ(r)

µ(r)
rdr

(3.17)

By considering the specific viscosity change in the flow field, this adopted definition

is applicable to both Newtonian fluids and non-Newtonian fluids and therefore enable

a more proper direct comparison between them.
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However, calculating Re on the premise of knowing the velocity profile is not always

possible. Therefore, Elçiçek[13] suggested ReG
′ as an alternative. The formulas are

similar to eqs. (3.16) and (3.17), but instead of using the profiles of real flow, uθ(r) and

µθ(r) profiles were from the basic laminar TC flow, which are numerically accessible:

ReG,l
′(r) =

ρuθ
′(r)d

µ′(r)
(3.18)

ReG
′ =

2

(R2
o −R2

i )

∫︂ Ro

Ri

ReG,l
′(r)rdr (3.19)

where the superscript ′ of uθ(r) and µθ(r) represents the profiles of laminar TC flow.

Profiles of ReG,l
′(r) are shown in fig. 3.14.

3.4.2 Evaluation of the applicability of ReG and ReG
′

In this section, the difference between the radial profiles of basic laminar flow and real

flow will be exhibited. The discrepancy between ReG and ReG
′ will also be displayed

and the applicability of ReG
′ will be evaluated.

Figures 3.15 to 3.17 depicted the local Reynolds number profiles of the glycerin-

water mixture, 0.4 wt.% Xanthan gum aqueous solution and 0.1 wt.% Xanthan gum

aqueous solution, respectively. It is obvious that the profiles of the basic laminar

flow (gray dashed line) cannot capture the distribution of local Re. Especially in two

non-Newtonian fluids, ReG is quite low due to the high viscosity in the bulk region,

which occupies the majority of the annulus. Therefore, ReG
′ still overrates compared

to ReG. In the appendix, the detailed comparison of Re, ReG, and ReG
′ is listed in

tables.

Overall speaking, ReG
′ is more like just multiplying Re by a factor than really

considering the real distribution of the local Reynolds number, which is thought to

be unnecessary from the author’s personal point of view.
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3.5 Summary

This section starts by validating the setup by comparing it with the previous litera-

ture.

After that, the effect of the radius ratio, rheological models, and shear thinning

index on the radial profiles in the basic laminar TC flow was investigated, which

is analytically or numerically accessible. The radial measurement results were then

presented in profiles, and piecewise polynomial fittings of the velocity profiles were

obtained to calculate the shear rate, viscosity, and viscous stress profiles. The sand-

wich structure of the profiles in non-Newtonian TTV was analyzed, and two different

modes in 0.1 wt.% Xanthan gum aqueous solution were discovered which are related

to the Taylor vortex structure.

In the last part, an assumption proposed by previous literature about the use

of local Re of laminar TC flow to modify the Re of non-Newtonian Tc flow was

evaluated, on the basis of the measurement results. However, it is indicated that this

substitution is not necessary and cannot reflect the real local Re distribution in the

TC flow.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14: ReG,l profiles of the basic laminar TC flow through the annulus. (a)&(b)
η = 0.95. (c)&(d) η = 0.76, the same as the apparatus used in this study. (e)&(f)
η = 0.38. The figures in the right column are scaled by the value at the inner
wall. Black: n = 1, Newtonian solution; Green line: n = 0.51, corresponds to
0.1 wt.% Xanthan gum aqueous solution; Red line: n = 0.22, corresponds to 0.4
wt.% Xanthan gum aqueous solution. ReG

′ then can be calculated based on these
numerically accessible profiles.
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Figure 3.15: ReG,l profiles of the water-glycerin solution. The figure is scaled by
the value at the inner wall. The gray dashed line represents the profile of the basic
pure laminar TC flow case as reference, which has been shown as the black line in
fig. 3.14d.

Figure 3.16: ReG,l profiles of the 0.4 wt.% Xanthan gum aqueous solution. The figure
is scaled by the value at the inner wall. The gray dashed line represents the profile
of the basic pure laminar TC flow case as a reference, which is shown as the red line
in fig. 3.14d.
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Figure 3.17: ReG,l profiles of the 0.1 wt.% Xanthan gum aqueous solution. The figure
is scaled by the value at the inner wall. The gray dashed line represents the profile
of the basic pure laminar TC flow case as a reference, which has been shown as the
green line in fig. 3.14d.
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Chapter 4

Axial profiles and mapping of the
structures in the radial-axial plane

This chapter will mainly discuss the Taylor vortex structure by analyzing the axial

profiles of the flow field, which are based on a series of mappings mentioned in sec-

tion 2.6. In part of Newtonian TTV, the vortex structure is compared to the TVF

from the previous work.

Due to the turbulence in the TC flow investigated in this study, the instantaneous

flow field always teems with vortices in small scales, and Taylor vortex cells are not

clear in the instantaneous flow field, as shown by fig. 4.1a. However, this underly-

ing organized structure could be revealed in the time-averaged mean velocity field

(fig. 4.1b). Instantaneously, turbulent fluctuations are superimposed on Taylor vor-

tices, distorting and interrupting these organized structures [32]. As the Reynolds

number increases, the turbulent fluctuations dominate and overwhelm the Taylor roll

cells in instantaneous flow.

Therefore, the parameters measured in, such as fig. 4.3, are presented as time-

averaged axial variations at three different radial positions. A schematic diagram to

indicate the sense of radial-axial circulation of the Taylor vortices is shown at the top

of every group of figures.
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(a) (b)

Figure 4.1: Comparison of (a) instantaneous and (b) time-averaged mean flow pat-
terns in a radial-axial plane at Re = 8000 for Newtonian fluid. Figures taken from
[32].

4.1 Newtonian Turbulent Taylor vortex flow

Taylor vortices could be observed in the time-averaged velocity field, and the structure

was found to be stable in the annulus space, which means that the structure exhibits

no drift in the radial or axial direction over the measurement timescale. Similar

profiles were discovered for all Newtonian cases conducted in this study, with Re

from 1100 to 3200. Therefore, only the profiles of Re = 3200 are presented in detail

to avoid redundancy.
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To better illustrate the features of the flow, a more straightforward three-dimensional

schematic diagram is shown as fig. 4.2. The blue and red rings circulating the inner

cylinder represent the structure of the Taylor vortices that rotate in the opposite

direction. The azimuthal velocity at 3 different radial positions is depicted in the

real azimuthal direction, and the data are identical to those in fig. 4.3b and figs. 4.4a

to 4.4c. The green arrows emphasize the azimuthal velocity overshoot to the mini-

mum at the inward jet flow between two adjacent Taylor vortices, whereas the yellow

arrows indicate the velocity overshoot to the maximum. Therefore, the relationship

between the radial jet flow and the azimuthal momentum transport is quite clear.

Figure 4.2: 3D schematic diagram of the Newtonian TTV flow

In fig. 4.3c, the profiles of the radial position at 0.25 and 0.75 (blue and green)

are sinusoidal with a phase difference of π. However, the amplitude of the sinusoidal

waveform cannot be kept on the two sides of the measurement field, indicating the

likely presence of the end effects.

In fig. 4.3b, an expected axial periodicity is observed in the azimuthal component

with the same frequency as the axial velocity but with a delay of π/2 (for example,
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the maximum and minimum azimuthal velocity correspond to the zero axial velocity).

Specifically, the azimuthal velocity is highest at the boundary between adjacent Taylor

vortex cells where an outflow jet exists, and decreases to lowest at the outflow jet. This

observation is consistent with consideration of the transport of angular momentum

in the radial direction. The outflow jet carries the fluid with an excess of angular

momentum leading to a velocity overshoot, whilst the inflow jet also leads to an

overshoot, but in the reverse direction. Additionally, the magnitude of the overshoots

obviously decreases in the direction of the jets (e.g. as h equals 0, where an inflow

jet locates, the azimuthal velocity overshoots to a lower value, and the magnitude of

the overshoot decreases in the jet’s direction, namely, radially inward, from green to

blue curve in fig. 4.3a).

In fig. 4.3d and fig. 4.3e, the turbulence strength profiles of both components bulge

at the cell boundaries, where the radial jet flows are located. Radially, the turbulence

strength always peaks in the flow impingement region, which implies this region with

a high shear rate. Then, the turbulence strength decreases in the direction of the

jet flow to the minimum at the flow separation region. The maximum turbulence

strength is observed in the impingement region of the outward jet flow (that is,

near the inner cylinder), approximately 15% higher than the inward jet flow. The

decrease in magnitude of the turbulence strength is obviously greater for the azimuthal

velocity. It is concluded that this organized distribution of the turbulence strength is

also attributed to the pairing of the Taylor vortex structure and the radial jet flows.

In a single Taylor roll cell, a minor asymmetry of the Taylor vortex structure is

discovered, compared to TVF: first, the axial profiles of uz are neither sinusoidal

nor zero in the neutral plane of the annulus, as shown by fig. 4.4e; second, there is

something somewhat oblique at the peaks of the sinusoidal curves of uz at (r−Ro)/d =

0.25, 0.75, as shown by figs. 4.4d and 4.4f.

More simply, these characteristics of the uz profiles indicate a kind of distortion of

the Taylor vortex structure, as shown by the velocity contours and streamline plots

65



(a)

(b)

(c)

(d)

(e)

Figure 4.3: Newtonian TTV. (a)Schematic diagram of the Taylor vortex in r − z
plane. (b) Axial profiles of azimuthal velocity component. (c) Axial profiles of axial
velocity component. (d) Axial profiles of turbulence strength of azimuthal velocity
component. (e) Axial profiles of turbulence strength of axial velocity component.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.4: Separated profiles of the Newtonian TTV. The data are identical to
fig. 4.3. (a-c)Schematic diagram of the Taylor vortex in r−z plane. (d-f) Axial profiles
of azimuthal velocity component. (g-i) Axial profiles of axial velocity component. (d)
Axial profiles of turbulence strength of azimuthal velocity component. (j-l) Axial
profiles of turbulence strength of axial velocity component.
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in fig. 4.5. In the contours, the blue isolines represent the positive axial velocity

(towards right) corresponding to the blue blocks in the streamline plots, and red

represents negative. Radial jet flows are marked by black arrows in all subfigures.

It would be appreciated that the contours require considerable interpolation, and it

might be unwise to pay much attention to the relatively minor features. However, the

distortion of the Taylor vortex structure is undoubtedly real, especially through the

radial drift of the “neck” of the jet flows (as marked by the green dashed rectangle).

This distortion results in a radial asymmetry compared to the TVF. However, the

axial asymmetry in the TVF, with the eye of the vortex closer to the outward jet

flow, is not observed in the TTV in this study.

(a) TVF, [20] (b) TTV

Figure 4.5: Comparison between Newtonian TVF and TTV. Top: contours of uz;
bottom: schematics of the corresponding streamline, but the distortion magnitude is
exaggerated.

With respect to the profiles of uθ, for example, in fig. 4.4b, the velocity is extremed

in jet flows: minimum at the inward jet flow (point A) and maximum at the outward

jet flow (point D). However, there are a local maximum (point B) and a local minimum

(point C) in between. In contrast, the behavior is pretty simple for TVF, which

increases monotonically from the minimum at the inward jet flow to the maximum
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Figure 4.6: Sketch of the vortex structure in smaller scale inside a Taylor vortex

at the outward jet flow. Normally, the Taylor vortex is considered to be the largest

vortex in TTV. Therefore, it is supposed that there might be vortices in a smaller

scale existing inside the Taylor vortex. As depicted by fig. 4.6, three sub-vortices are

included in one Taylor vortex, and sub-jets (gray arrows) formed between every two

adjacent sub-vortices. These sub-jet flows also carry angular momentum radially but

with a lower strength, which results in the local maximum and minimum inside one

Taylor vortex as mentioned above.

4.2 Non-Newtonian Turbulent Taylor vortex flow

Same measurement procedures with section 4.1 were conducted to obtain the axial

profiles of non-Newtonian fluids, and the results will be shown in a similar way in the

next section.

4.2.1 0.4 wt.% Xanthan gum aqueous solution

In contrast to the Newtonian case, several distinctly different modes were discovered

with the 0.4 wt.% xanthan gum aqueous solution.

As shown by fig. 4.7, when Ew = 1170, only one pair of complete Taylor vor-

tices was observed within the measurement field. The effect of transport of angular

momentum by radial jet flow causes the overshoot of uθ, which is similar to the New-

tonian case. The basic distribution of the turbulence strength also corresponds to the
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Taylor vortex structure: higher turbulence in the flow impingement region and lower

in the flow separation region.

However, there are still some differences between Non-Newtonian and Newtonian

TTV: (1) the wavelength of the middle pair of vortices is approximately 4.2, obviously

greater than Newtonian TTV. And two other vortices can be found at the margin of

the measurement field, but they cannot be fully displayed due to the limited mea-

surement field; (2) the vorticity of the Taylor vortex is apparently lower than in the

Newtonian case, indicated by a much lower axial velocity at the same position; (3)

the value of the turbulence strength is typically lower than in the Newtonian case,

especially the turbulence strength of uz, as compared by figs. 4.3e and 4.7e.

In fig. 4.8, as in Re = 2200, the main difference is that the observed Taylor vortices

are not closely adjacent to each other. Normally, the region where uz ≈ 0 is regarded

as the jet flow. So in fig. 4.8a, a wide gap between the two vortices can be observed

for −1 < z/(Ro −Ri) < 1. At the same time, the high plateau of uθ also agrees that

a wide radial jet flow occupies this region. Lastly, the overall turbulence strength is

lower than the Newtonian TTV, as shown by appendix B. Especially σ(uz) at the

mid-gap is always kept at a very low level, even the jet flow has no obvious effect on

it.

As Re increases to 2700 ∼ 3700, only one pair of vortices with a large wavelength

can still be observed. Unlike Re = 2200, the Taylor vortices approach each other at

z/(Ro −Ri) = 0 now. The effect of jet flow on the uθ overshoot and the bulge of the

turbulence strength is also validated in this case, except for the turbulence strength

in the flow separation region: a decrease in σ(uθ) is observed in the flow separation

region, as shown by fig. 4.9e.

4.2.2 0.1 wt.% Xanthan gum aqueous solution

In this section, two different modes were discovered with the 0.1 wt.% Xanthan gum

aqueous solution.
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(a)

(b)

(c)

(d)

(e)

Figure 4.7: Non-Newtonian TTV with 0.4 wt.% Xanthan gum aqueous solution. Re =
1170. (a)Schematic diagram of the Taylor vortex in r− z plane. Axial profiles of (b)
the azimuthal velocity component, (c) axial velocity component, (d) the turbulence
strength of the azimuthal velocity component, (e) the turbulence strength of the axial
velocity component.
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For Re = 3600, 4100, Taylor vortices with unequal wavelength exist in the flow at

the same time. As shown by fig. 4.10a, the wavelength of the middle pair of vortices is

about 2.8, and about 1.8 for those at the margin of the measurement field. According

to fig. 4.10b, the overshoot resulted by jet flow is still distinguishable mainly at the

flow impingement region, while at the flow separation region, the overshoot is too

weak to be observed. Similar behavior also can be found in fig. 4.10d: bulges of the

profiles of σ(uθ) can be distinguished at the flow impingement region and the middle

of the gap, while the bulges are no more obvious at the flow separation region. These

may suggest that the jet flows attenuate more quickly due to the high viscosity at

the bulk region in Non-Newtonian TTV.

In fig. 4.11, the Taylor vortex structure becomes different again. The wavelength

of approximately 2.7 of the middle pair of vortices is observed, and the wavelength of

the marginal pair is apparently larger, but the value is not obtained due to the limited

measurement field. The mechanisms of azimuthal velocity overshoot and bulges of

the turbulence strength profiles are similar to Re = 3600, 4100 in fig. 4.10

However, in this case (Re = 4900, 6000 and 7000), the most notably difference is

that the jet flow direction at the mid-height (z = 0) is inward. While for all other

Newtonian cases, the direction is inward, including the 0.4 wt.% Xanthan gum aque-

ous solution. This reminds the two different modes in the radial profiles discussed in

Chapter 3: the radial profiles of azimuthal velocity, shear rate, viscosity and turbu-

lence strength can be classified into two corresponding groups, Re = 3600, 4100 and

Re = 4900, 6000 and 7000. Now it is quite clear that the discrepancy between the

radial profiles is resulted by different Taylor vortex structure, or more specifically, the

different direction of the jet flow at the mid-height.

4.3 Summary

In this chapter, the time-averaged axial profiles and mapping of the Taylor vortex

structure of one Newtonian fluid and two Non-Newtonian fluids were presented. The
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relationship between Taylor vortex structure and periodicity of axial profiles of veloc-

ity and turbulence strength was analyzed. A hypothesis of vortices with smaller scale

existing inside Taylor vortex was proposed. Comparisons of the axial profiles and

Taylor vortex structure, between Newtonian TVF and TTV, Newtonian and Non-

Newtonian TTV were conducted. At last, a connection between the Taylor vortex

structure and radial profiles was discovered.
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(a)

(b)

(c)

(d)

(e)

Figure 4.8: Non-Newtonian TTV with 0.4 wt.% Xanthan gum aqueous solution. Re =
2200. (a)Schematic diagram of the Taylor vortex in r− z plane. Axial profiles of (b)
the azimuthal velocity component, (c) axial velocity component, (d) the turbulence
strength of the azimuthal velocity component, (e) the turbulence strength of the axial
velocity component. Re = 1700 is in the same mode and has similar profiles with
Re = 2200, which is attached in the appendix.
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(a)

(b)

(c)

(d)

(e)

Figure 4.9: Non-Newtonian TTV with 0.4 wt.% Xanthan gum aqueous solution. Re =
3700. (a)Schematic diagram of the Taylor vortex in r− z plane. Axial profiles of (b)
the azimuthal velocity component, (c) axial velocity component, (d) the turbulence
strength of the azimuthal velocity component, (e) the turbulence strength of the axial
velocity component. Re = 2700, 3200 are in the same mode and has similar profiles
to Re = 3700, which are attached in the appendix.
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(a)

(b)

(c)

(d)

(e)

Figure 4.10: Non-Newtonian TTV with 0.1 wt.% Xanthan gum aqueous solution.
Re = 4100. (a)Schematic diagram of the Taylor vortex in r − z plane. Axial profiles
of (b) the azimuthal velocity component, (c) axial velocity component, (d) the tur-
bulence strength of the azimuthal velocity component, (e) the turbulence strength of
the axial velocity component. Re = 3600 is in the same mode and has similar profiles
with Re = 4100, which is attached in the appendix.
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(a)

(b)

(c)

(d)

(e)

Figure 4.11: Non-Newtonian TTV with 0.1 wt.% Xanthan gum aqueous solution.
Re = 4900. (a)Schematic diagram of the Taylor vortex in the r − z plane. Axial
profiles of (b) the azimuthal velocity component, (c) the axial velocity component, (d)
the turbulence strength of the azimuthal velocity component, and (e) the turbulence
strength of the axial velocity component. Re = 6000, 7000 are in the same mode and
have profiles similar to Re = 3700, which are attached in the Appendix.
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Chapter 5

Conclusions

5.1 Conclusions

The main objective of this study was to investigate the flow field of Newtonian and

non-Newtonian TTV based on LDV measurement.

First, a compensation method to provide a flat refraction interface for the laser

was developed by adding a viewing chamber to the outer surface of the setup. The

separation distance between the measurement volumes could be reduced to less than

2.5% of the annulus width. Additionally, the conversion relationship from the dis-

placement of the laser probe to the measurement volumes was also derived, which is

essential to draw the correct flow profiles later. The rheological test results of the

non-Newtonian working fluids were fitted to the Power-law model and the Carreau

model to evaluate the shear thinning behavior of the working fluids. Later, the effect

of the viscosity plateau in basic laminar TC flow was analyzed, and it was found that

the viscosity plateau did not have an obvious effect on our flow.

In Chapter 3, at first, the shear-thinning effect on radial profiles was discussed

analytically and numerically in the basic laminar TC flow. The results show that a

stronger shear thinning behavior has a similar effect as a smaller radius ratio that

makes the curves concave downward, and this effect can be superimposed by both

factors. Then the radial profiles at the midheight of the setup were exhibited. The

measurement results were fitted to piecewise polynomials with essential constraints.
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Therefore, the radial profiles of shear rate as well as viscosity could be derived after

obtaining the expression of the velocity profiles. These profiles show that a “sand-

wich” structure, composed of one bulk region with high viscosity in the middle of the

flow and two near-wall regions with low viscosity, is more distinguished with increas-

ing Reynolds number in non-Newtonian flows. Finally, the radial profiles of the local

Reynolds number were displayed, and obvious discrapency was revealed compared

to the basic laminar TC flow. This suggests that using the basic laminar TC flow

profiles to modify the Reynolds number of the non-Newtonian TC flow [13] may not

be valuable because it cannot capture the real local Reynolds number distribution of

the turbulent TC flow.

In Chapter 4, the Taylor vortex structure inside the flow was revealed on the basis

of the axial profiles and found to be widespread. The periodicity of the profiles caused

by the Taylor vortex structure was discussed and a 90 deg lag between the azimuthal

velocity and the axial velocity profiles was found. In Newtonian TTV, only one mode

with consistent spatial wavelength of the Taylor vortex was found. However, several

different modes with varying wavelength were discovered in the non-Newtonian case.

It is worth mentioning that the two modes found in non-Newtonian TTV with the

0.1 wt% XG solution have the opposite direction of the radial jet flow at midheight.

This recalls the corresponding behavior of the radial profiles mentioned in Chapter 3

and demontrates the radial transport of the angular momentum by jet flow.

5.2 Future Considerations

Although the experimental work was finished and abundant data was obtained to

display the varying structure in TTF, some problems and defects still arose and

made the work imperfect. Therefore, some ideals and suggestions for future work are

given as follows:

• Change the placement of the LDV probe. The cylindrical wall with finite thick-
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ness makes it impossible to measure the two velocity components simultaneously

using LDV. Therefore, it is suggested to set the LDV probe above the top plate

of the setup in the axial direction. In this way, the laser will only refract at the

top flat plate, which can prevent the separation of the measurement volumes

and enable simultaneous measurement of two velocity components. In this way,

a Reynolds stress component u′
θu

′
r can be obtained.

• Obtain the profiles by using PIV. Considering that LDV measures the local

velocity of discrete spacious points, obtaining flow profiles is quite inefficient.

In contrast, PIV would be a more productive method to obtain the profiles.

• Investigate the energy spectrum of the flow using LDV. The strength of LDV is

its high temporal resolution. Therefore, spectral dynamics of turbulence should

be a valuable topic if the temporal resolution of the LDV measurement can be

guaranteed.
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Appendix A: Comparison between
Re, ReG and ReG

′

As discussed in section 3.4, different Reynolds number can be accessed due to different
selections of the visocosity reference scale. This appendix shows the detailed com-
parison between them and the corresponding relationship with dimentionless torque
in figure.

Re 1100 1550 2200 2750 3200

ReG 313 454 714 926 1163

ReGB 494 706 988 1245 1439

ReG /Re 0.29 0.29 0.33 0.34 0.37

G(×106) 0.45 0.74 1.21 1.71 2.11

Table A.1: Table of water-glycerin mixture (Newtonian).
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Re 700 1170 1700 2200 2700 3200 3700

ReG 171 280 409 473 634 719 815

ReGB 302 505 733 967 1199 1420 1654

ReG /Re 0.25 0.24 0.24 0.21 0.23 0.22 0.22

µref 0.0572 0.0461 0.0396 0.0354 0.0324 0.0303 0.0285

µG 0.1867 0.1447 0.1209 0.1113 0.0887 0.0848 0.0808

µGB 0.0786 0.0634 0.0544 0.0486 0.0446 0.0416 0.0392

µG/µref 3.26 3.14 3.05 3.15 2.74 2.80 2.83

G(×105) 2.07 2.00 3.60 6.03 7.97 9.80 11.89

GG(×105) 0.19 0.20 0.39 0.61 1.06 1.25 1.48

GGB(×105) 1.10 1.06 1.91 3.20 4.21 5.20 6.28

GG /G 0.09 0.10 0.11 0.10 0.13 0.13 0.12

Table A.2: Table of 0.4 wt.% XG aqueous solution (shear-thnning).

Re 3600 4100 4900 6000 7000

ReG 1073 1215 1287 1581 1853

ReGB 1645 1883 2265 2766 3226

ReG /Re 0.30 0.30 0.26 0.26 0.26

µref 0.0110 0.0106 0.0101 0.0096 0.0093

µG 0.0175 0.0169 0.0159 0.0151 0.0146

µGB 0.0108 0.0104 0.0099 0.0095 0.0091

µG/µref 1.60 1.60 1.57 1.57 1.57

G(×106) 3.56 3.13 4.90 6.73 8.17

GG(×106) 1.41 1.23 1.98 2.72 3.32

GGB(×106) 3.69 3.25 5.10 6.87 8.54

GG /G 0.39 0.39 0.40 0.40 0.40

Table A.3: Table of 0.1 wt.% XG aqueous solution (shear-thnning).
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(a) (b) (c)

Figure A.1: Experimental measurements for the dimensionless torque versus Reynolds
number. Measurements with different working fluids are distinguished by color. Blue:
n = 1, Newtonian solution; Green: n = 0.51, corresponds to 0.1 wt.% Xanthan gum
aqueous solution; Red: n = 0.22, corresponds to 0.4 wt.% Xanthan gum aqueous
solution.(a) G vs Re; (b) GGB vs ReGB; (c) GGB vs ReGB.
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Appendix B: Supplymentray
figures for Chapter 4
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(a)

(b)

(c)

(d)

(e)

Figure B.1: Non-Newtonian TTV with 0.4 wt.% Xanthan gum aqueous solution.
Re = 1700. (a)Schematic diagram of the Taylor vortex in r − z plane. Axial profiles
of (b) the azimuthal velocity component, (c) axial velocity component, (d) the tur-
bulence strength of the azimuthal velocity component, (e) the turbulence strength of
the axial velocity component.
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(a)

(b)

(c)

(d)

(e)

Figure B.2: Non-Newtonian TTV with 0.4 wt.% Xanthan gum aqueous solution.
Re = 2700. (a)Schematic diagram of the Taylor vortex in r − z plane. Axial profiles
of (b) the azimuthal velocity component, (c) axial velocity component, (d) the tur-
bulence strength of the azimuthal velocity component, (e) the turbulence strength of
the axial velocity component.
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(a)

(b)

(c)

(d)

(e)

Figure B.3: Non-Newtonian TTV with 0.4 wt.% Xanthan gum aqueous solution.
Re = 3200. (a)Schematic diagram of the Taylor vortex in r − z plane. Axial profiles
of (b) the azimuthal velocity component, (c) axial velocity component, (d) the tur-
bulence strength of the azimuthal velocity component, (e) the turbulence strength of
the axial velocity component.
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(a)

(b)

(c)

(d)

(e)

Figure B.4: Non-Newtonian TTV with 0.1 wt.% Xanthan gum aqueous solution.
Re = 3600. (a)Schematic diagram of the Taylor vortex in the r − z plane. Axial
profiles of (b) the azimuthal velocity component, (c) the axial velocity component, (d)
the turbulence strength of the azimuthal velocity component, and (e) the turbulence
strength of the axial velocity component.

92



(a)

(b)

(c)

(d)

(e)

Figure B.5: Non-Newtonian TTV with 0.1 wt.% Xanthan gum aqueous solution.
Re = 6000. (a)Schematic diagram of the Taylor vortex in the r − z plane. Axial
profiles of (b) the azimuthal velocity component, (c) the axial velocity component, (d)
the turbulence strength of the azimuthal velocity component, and (e) the turbulence
strength of the axial velocity component.
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(a)

(b)

(c)

(d)

(e)

Figure B.6: Non-Newtonian TTV with 0.1 wt.% Xanthan gum aqueous solution.
Re = 7000. (a)Schematic diagram of the Taylor vortex in the r − z plane. Axial
profiles of (b) the azimuthal velocity component, (c) the axial velocity component, (d)
the turbulence strength of the azimuthal velocity component, and (e) the turbulence
strength of the axial velocity component.
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Appendix C: Matlab codes for data
processing and plots

Some of the data processing scripts are attached in this appendix to briefly explain
the main steps of data processing of this study.

Generally, the data processing includes five main steps:
1) Convert the measurement data form Excel sheet to .mat file, which is more

accessible for Matlab to read data. Information of the traverse position should also be
contained to produce profile plots later; 2) Process the data from LDV measurement.
In this study, multiple times of measurements were conducted at every position.
Therefore, data should be properly categorized to be processed together;

3) Piecewise polynomial fitting of the radial profiles. In this step, detailed adjust-
ment of the piecewise polynomials had to be conducted manually to get satisfying
fitting results. Once the expression of the velocity profile is obtained, the profiles of
shear rate and viscosity would be accessible.

4) This script is mainly for plotting the radial profiles. With data provided by
previous work, the templates of the plots should be carefully handled to present a
consistent visual effect which includes fonts, size, color, figure aspect ratio and etc;

5) This script is mainly for plotting the axial profiles. Similarly, the template
should be consistent for figures of the same type.

C.1 Read data and convert

Listing C.1: Read the measurement data from Excel sheet and convert into .mat with
corresponding traverse position labeled
clear

l i s t i n g = dir ( ’*.xlsx’ )

for i = 1 : length ( l i s t i n g )

% Read data and traverse step info

f i l ename = l i s t i n g ( i ) . name
%% Input and record position info

opts = spreadsheetImportOptions (”NumVariables ” , 1) ;
% Specify sheet and range

opts . Sheet = ”BSA Header ” ;
opts . DataRange = ”E4 : E4” ; % For varied radial position , data range should be at D4:

D4.

% Specify column names and types
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opts . VariableNames = ”VarName3 ” ;
opts . VariableTypes = ” s t r i n g ” ;

% Import the data

Unt i t l ed = readtab l e ( f i l ename , opts )

Pos i t i on = st r2doub l e ( ex t r a c tBe f o r e ( Unt i t l ed . ( 1 ) ,” mm”) )

%Clear temporary opts

clear opts
%% Input measurement data

% u_z

% Set up the Import Options and import the data

opts = spreadsheetImportOptions (”NumVariables ” , 3) ;

% Specify sheet and range

opts . Sheet = ”Group 1” ;
opts . DataRange = ”A2” ;

% Specify column names and types

opts . VariableNames = [” ArrivalTimems ” , ”TransitTimes ” , ”VelocityUms ” ] ;
opts . VariableTypes = [” double ” , ” double ” , ” double ” ] ;

% Specify file level properties

opts . Miss ingRule = ”omitrow ” ;

% Specify variable properties

opts = se tva rop t s ( opts , [ ” ArrivalTimems ” , ”TransitTimes ” , ”VelocityUms ” ] , ”
TreatAsMissing ” , ’’ ) ;

% Import the data

u z = readtab l e ( f i l ename , opts , ”UseExcel ” , f a l s e ) ;
% Convert to output type

u z = tab l e2a r ray ( u z )

%Clear temporary opts

clear opts

% u_phi

% Set up the Import Options and import the data

opts = spreadsheetImportOptions (”NumVariables ” , 3) ;

% Specify sheet and range

opts . Sheet = ”Group 2” ;
opts . DataRange = ”A2” ;

% Specify column names and types

opts . VariableNames = [” ArrivalTime2ms ” , ”TransitTime2s ” , ”VelocityVPDA2ms ” ] ;
opts . VariableTypes = [” double ” , ” double ” , ” double ” ] ;

% Specify file level properties

opts . Miss ingRule = ”omitrow ” ;

% Specify variable properties

opts = se tva rop t s ( opts , [ ” ArrivalTime2ms ” , ”TransitTime2s ” , ”VelocityVPDA2ms ” ] , ”
TreatAsMissing ” , ’’ ) ;

% Import the data

u phi = readtab l e ( f i l ename , opts , ”UseExcel ” , f a l s e ) ;
% Convert to output type

u phi = tab l e2a r ray ( u phi )

%Clear temporary opts

clear opts
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%% Remove outliers

% Remove outlier by mean of u_z

TF = i s o u t l i e r ( u z ( : , 3 ) ,” mean ”)
u z ( [TF ] , : ) = [ ]

% Remove outlier by mean of u_r

TF = i s o u t l i e r ( u phi ( : , 3 ) ,” mean ”)
u phi ( [TF ] , : ) = [ ]

%% Save with position info in file name

Name = sprintf ( ’Radial_ %.2fmm.mat’ , Po s i t i on )

save (Name, ” Pos i t i on ” ,” u phi ” ,” u z ”)

end

C.2 Data averaging from multiple runs of mea-

surement

Listing C.2: Get the average value and standard deviation of the measurement data
and label them with corresponding traverse position
clear

%% Read data

FilesName = dir ( ’*mm*.mat’ )

MeanVel = zeros ( numel ( FilesName ) ,4 )
u i = 1 % m/s % Inner cylinder velocity

for i= 1 : numel ( FilesName )
load ( FilesName ( i ) . name)

MeanVel ( i , 1 ) = Pos i t i on ; % First row index by stepinfo

MeanVel ( i , 2 ) = mean ( u phi ( : , 3 ) ) % Calculate mean value

MeanVel ( i , 3 ) = mean ( u z ( : , 3 ) )
MeanVel ( i , 4 ) = std ( u phi ( : , 3 ) )
MeanVel ( i , 5 ) = std ( u z ( : , 3 ) ) %standartd deviation

MeanVel Reci ( i , 1 ) = Pos i t i on ; % First row index by stepinfo

MeanVel Reci ( i , 2 ) = 1/sum ( 1 . / u phi ( : , 3 ) ) % Calculate mean value

MeanVel Reci ( i , 3 ) = 1/sum ( 1 . / u z ( : , 3 ) )
MeanVel Reci ( i , 4 ) = sum ( ( u phi ( : , 3 )−MeanVel Reci ( i , 2 ) ) ˆ2 ./ u phi ( : , 3 ) ) /sum ( 1 . /

u phi ( : , 3 ) )
MeanVel Reci ( i , 5 ) = std ( u z ( : , 3 ) ) %standartd deviation

MeanVel ( i , 1 ) = Pos i t i on ; % First row index by stepinfo

TT = sum ( u phi ( ) )
MeanVel ( i , 2 ) =
MeanVel ( i , 3 ) = mean ( u z ( : , 3 ) )
MeanVel ( i , 4 ) = std ( u phi ( : , 3 ) )
MeanVel ( i , 5 ) = std ( u z ( : , 3 ) ) %standartd deviation

end

MeanVel ( : , 2 ) = −MeanVel ( : , 2 ) % Correct negetive value from LDV

MeanVel = sor t rows (MeanVel )

%% Save averaged mean value with corresponding position of every run

save (” Radial Run7 ” ,”MeanVel ”)
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C.3 Piecewise polynomial fitting of the radial pro-

files

Listing C.3: Get the piecewise polynomial fitting of the radial profiles and save the
results into .mat file
clear

co lorOrder = get ( gca , ’ColorOrder ’ )

l i s t i n g = dir ( ’*.mat’ ) % Read data from files

%% Define fig obj

Omega RadialPosit ion = figure ;
S t ra inRate Rad ia lPos i t i on = figure ;
S t r a i nRat eF i t t i ng Rad i a lPo s i t i on = figure ;
S t ra inRate Smo Radia lPos i t ion = figure ;
%%

LegendName = strings ( [ 1 , 7 ] ) ;
%%

% Setting of piecewise connection point

% Detailed adjustment of the connection point between adjacent piecewise

% plynomial acooerding to the shape of curve is necessary to get proper fitting

ConnectionPoint = [ ] ;
%%

for i i = 1 : length ( l i s t i n g )
FileName = l i s t i n g ( i i ) . name ;
load ( FileName )

RPM = str2doub l e ( extractBetween ( FileName , ”RPM” ,” Radia l ”) ) ;
u ph i i = (RPM) ∗pi ∗0 .060325/30 ; % Calculate the inner cylinder speed m/s

Omega i = (RPM) ∗pi /30 ;
LegendName( i i ) = sprintf ( ’%d’ ,RPM2Re( ’Gly’ ,RPM) )

%%

% Judgement of Figure start point & interpolate with equal spaced interval

RefraCorMatrix = Correct ( Pos i t i on ) ;

Cut uph i po s i t i on = Pos i t i on ;
Cut x = find (0.21< Pos i t i on&Pos i t ion <12.91) ; % Discard points where measurement

volume partialy in wall

In t e rp x = min ( RefraCorMatrix (Cut x , 1 ) ) : 0 . 0 1 : max ( RefraCorMatrix (Cut x , 1 ) ) ;
Omega = u phi Mean (Cut x , 1 ) ./((79 .375 − RefraCorMatrix (Cut x , 1 ) ) ∗1e−3) ;

Interp Omega = spline ( RefraCorMatrix (Cut x , 1 ) ,Omega , In t e rp x ) ;
%%

% Cut the interpolated curve

S t a r t 1 s t = 0 . 2 1 ; % In traverse position fixed

End 1st = ConnectionPoint ( i i , 1 ) ;

Start 2nd = ConnectionPoint ( i i , 2 ) ;
End 2nd = ConnectionPoint ( i i , 3 ) ;

S ta r t 3 rd = ConnectionPoint ( i i , 4 ) ;
End 3rd = 19 . 0 5 ;

Cut x 1st = find ( S t a r t 1 s t<In t e rp x&Interp x<End 1st ) %First part of curve

Cut x 2nd = find ( Start 2nd<In t e rp x&Interp x<End 2nd ) %Outer Middle part of curve

Cut x 3rd = find ( Star t 3rd<In t e rp x&Interp x<End 3rd ) %Inner middle part

%% Polynomial fitting

C1 x = round ( 0 . 5∗ ( End 1st+Start 2nd ) ,2 ) ;

98



C2 x = round ( 0 . 5∗ ( End 2nd+Sta r t 3 rd ) ,2 ) ; % Choice of 3 connection points for

constraints

% outer middle part fitting

Fit Omega 2nd = po l y f i x ( In t e rp x ( Cut x 2nd ) , Interp Omega ( Cut x 2nd ) ,3 , . . .
[ ] , [ ] , . . .
[ ] , [ ] )

% near outer wall part

Value c1 = polyval ( Fit Omega 2nd , C1 x ) % Same value @ 1st connetion point

Fit Omega 1st = po l y f i x ( In t e rp x ( Cut x 1st ) , Interp Omega ( Cut x 1st ) ,5 , . . .
[ 0 C1 x ] , [ 0 Value c1 ] )

%

% near inner wall part

Value c2 = polyval ( Fit Omega 2nd , C2 x ) % Same value @ 1st connetion point

Fit Omega 3rd = po l y f i x ( In t e rp x ( Cut x 3rd ) , Interp Omega ( Cut x 3rd ) ,5 , . . .
[ C2 x 1 9 . 0 5 ] , [ Value c2 Omega i ] , . . .
[ ] , [ ] )

% u_phi(r) (m/s) = f(r) [r is mm]

%%

% Spline connection

Sp l i n e Cons t r a i n t = [ ]
Sp l i n e Cons t r a i n t ( 1 , : ) = [ polyval ( Fit Omega 2nd , ConnectionPoint ( i i , 1 ) )

polyval ( Fit Omega 1st , ConnectionPoint ( i i , 2 ) )
polyval ( Fit Omega 3rd , ConnectionPoint ( i i , 3 ) )
polyval ( Fit Omega 2nd , ConnectionPoint ( i i , 4 ) ) ]

Sp l i n e Cons t r a i n t ( 2 , : ) = [ polyval ( polyder ( Fit Omega 2nd ) , ConnectionPoint ( i i , 1 ) )
polyval ( polyder ( Fit Omega 1st ) , ConnectionPoint ( i i , 2 ) )
polyval ( polyder ( Fit Omega 3rd ) , ConnectionPoint ( i i , 3 ) )
polyval ( polyder ( Fit Omega 2nd ) , ConnectionPoint ( i i , 4 ) ) ]

Sp l i n e Cons t r a i n t ( 3 , : ) = [ polyval ( polyder ( polyder ( Fit Omega 2nd ) ) , ConnectionPoint ( i i
, 1 ) )

polyval ( polyder ( polyder ( Fit Omega 1st ) ) , ConnectionPoint ( i i
, 2 ) )

polyval ( polyder ( polyder ( Fit Omega 3rd ) ) , ConnectionPoint ( i i
, 3 ) )

polyval ( polyder ( polyder ( Fit Omega 2nd ) ) , ConnectionPoint ( i i
, 4 ) ) ]

Sp l i n e Cons t r a i n t ( 4 , : ) =log10 ( Sp l i n e Cons t r a i n t ( 2 , : ) )
Sp l i n e Cons t r a i n t ( 5 , : ) = Sp l i n e Cons t r a i n t ( 3 , : ) . / ( Sp l i n e Cons t r a i n t ( 2 , : ) ∗log (10) )

Sp l i n e S e g 1 s t = spline ( [ ConnectionPoint ( i i , 2 ) ConnectionPoint ( i i , 1 ) ] , . . .
[ Sp l i n e Cons t r a i n t (2 , 2 ) . . .
Sp l i n e Cons t r a i n t ( 1 , [ 2 1 ] ) . . .
Sp l i n e Cons t r a i n t (2 , 1 ) ] )

Sp l ine Seg 2nd = spline ( [ ConnectionPoint ( i i , 4 ) ConnectionPoint ( i i , 3 ) ] , . . .
[ Sp l i n e Cons t r a i n t (2 , 4 ) . . .
Sp l i n e Cons t r a i n t ( 1 , [ 4 3 ] ) . . .
Sp l i n e Cons t r a i n t (2 , 3 ) ] )

Sp l i n e Seg 3 rd = spline ( [ ConnectionPoint ( i i , 2 ) ConnectionPoint ( i i , 1 ) ] , . . .
[ Sp l i n e Cons t r a i n t (5 , 2 ) . . .
Sp l i n e Cons t r a i n t ( 4 , [ 2 1 ] ) . . .
Sp l i n e Cons t r a i n t (5 , 1 ) ] )

Sp l i n e Seg 4 th = spline ( [ ConnectionPoint ( i i , 4 ) ConnectionPoint ( i i , 3 ) ] , . . .
[ Sp l i n e Cons t r a i n t (5 , 4 ) . . .
Sp l i n e Cons t r a i n t ( 4 , [ 4 3 ] ) . . .
Sp l i n e Cons t r a i n t (5 , 3 ) ] )

% Combine piecewise polynomial function
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pp = 0 . 0 0 1 ;
F i t x 1 s t = 0 : pp : ( ConnectionPoint ( i i , 2 )−pp) ;
F i t y 1 s t = polyval ( Fit Omega 1st , F i t x 1 s t ) ;

F i t x 2nd = ConnectionPoint ( i i , 2 ) : pp : ( ConnectionPoint ( i i , 1 )−pp) ;
F i t y 2nd = ppval ( Sp l i n e Seg 1 s t , F i t x 2nd ) ;

F i t x 3 rd = ConnectionPoint ( i i , 1 ) : pp : ( ConnectionPoint ( i i , 4 )−pp) ;
F i t y 3 rd = polyval ( Fit Omega 2nd , F i t x 3 rd ) ;

F i t x 4 th = ConnectionPoint ( i i , 4 ) : pp : ( ConnectionPoint ( i i , 3 )−pp) ;
F i t y 4 th = ppval ( Spl ine Seg 2nd , F i t x 4 th ) ;

F i t x 5 th = ConnectionPoint ( i i , 3 ) : pp : 1 9 . 0 5 ;
F i t y 5 th = polyval ( Fit Omega 3rd , F i t x 5 th ) ;

F i t x = [ F i t x 1 s t F i t x 2nd F i t x 3 rd F i t x 4 th F i t x 5 th ]
Fit omega = [ F i t y 1 s t F i t y 2nd F i t y 3 rd F i t y 4 th F i t y 5 th ]

F i t yy 1 s t = log10 ( polyval ( polyder ( Fit Omega 1st ) , F i t x 1 s t ) )
Fit yy 2nd = ppval ( Sp l ine Seg 3rd , F i t x 2nd ) ;
F i t yy 3rd = log10 ( polyval ( polyder ( Fit Omega 2nd ) , F i t x 3 rd ) ) ;
F i t yy 4th = ppval ( Sp l ine Seg 4th , F i t x 4 th ) ;
F i t yy 5th = log10 ( polyval ( polyder ( Fit Omega 3rd ) , F i t x 5 th ) ) ;

F i t S t r a i n = [ F i t yy 1 s t Fit yy 2nd F i t yy 3rd F i t yy 4th F i t yy 5th ]
F i t S t r a i n = F i t S t r a i n +log10 (79.375− Fi t x )

figure ( Omega RadialPosit ion )
Exp=plot ( RefraCorMatrix (Cut x , 1 ) ,Omega , ’o’ , . . .

’DisplayName ’ , s t r c a t ( ’\itExp of Re\rm ’ , LegendName( i i ) ) , . . .
’LineWidth ’ , 1 , . . .
”Color ” , co lorOrder ( i i , : ) )

hold on
F i t t i n g = plot ( F i t x / F i t x ( end ) , Fit omega/Omega i , . . .

’DisplayName ’ , s t r c a t ( ’\itFitting of Re\rm ’ , LegendName( i i ) ) , . . .
’LineWidth ’ , 1 . 2 5 , . . .
”Color ” , co lorOrder ( i i , : ) )

hold on

figure ( S t ra inRate Rad ia lPos i t i on )
f i g = plot ( Fit x , F i t S t r a in , ” Color ” , co lorOrder ( i i , : ) , . . .

’LineWidth ’ , 1 . 5 , . . .
’DisplayName ’ , s t r c a t ( ’\itRe \rm ’ , LegendName( i i ) ) )

hold on
%%

Der i s t ra in Smo = polyfit ( Fit x , F i t S t r a in , 9 ) % Polynomial fitting with log10 of

strain

figure ( S t r a i nRat eF i t t i ng Rad i a lPo s i t i on )
F i t t i ng S t r a i nRat e = plot ( Fit x , polyval ( Der i s t ra in Smo , F i t x ) .∗ NaN , . . .

’o’ , ’LineWidth ’ , 1 . 5 , . . .
’DisplayName ’ , s t r c a t ( ’Re = ’ , LegendName( i i ) ) , . . .
”Color ” , co lorOrder ( i i , : ) )

hold on

%%

% Store the strain rate data

Der i s t ra in Smo = polyval ( Der i s t ra in Smo , F i t x )
Name = sprintf ( ’Re_%d_RPM_%d_Sandwich ’ , str2num (LegendName( i i ) ) ,RPM)
save (Name, ’Fit_x’ , ’Fit_omega ’ , ’Deri_strain_Smo ’ , ’Fit_Strain ’ , ’RPM’ )

end

load LaminarTheorat ica l . mat % This file contains data of the profiles of basic

maminar TC flow

figure ( Omega RadialPosit ion ) ;
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plot ( r prime , NonNewt Nor Omega ( : , 3 ) , ’--’ , ’LineWidth ’ , 1 . 2 5 , ’Color’ , ’#686868 ’ , . . .
”DisplayName ” ,” Laminar ”)

lgd1 = legend ( ’Location ’ ,” no r thea s t ou t s i d e ” , ’Box’ ,” o f f ”)
pbaspect ( [ 4 3 1 ] )
% axis padded

%lgd1.NumColumns = 2;

%lgd1.Title.String = ’\itRe\rm’

ylim ( [ 0 1 ] )
xlabel ( ’$r^\prime=(R_o -r)/(R_o -R_i)$’ , ’Interpreter ’ , ’latex’ )
ylabel ( ’$\bar{\ omega}_\theta /\ omega_ {\theta ,i}$’ , ’Interpreter ’ , ’latex’ )
% xlabel(’\its\rm (mm)’)

% ylabel(’\it\omega\rm rad/s’)

set ( gca , ’FontName ’ , ’Times New Roman’ )
set ( gca , ’FontSize ’ , 12)

figure ( S t ra inRate Rad ia lPos i t i on ) ;
% lgd2 = legend(’Location ’," northeastoutside",’Box ’,"off")

pbaspect ( [ 4 3 1 ] )
axis padded
%lgd1.NumColumns = 2;

%lgd1.Title.String = ’\itRe\rm’

xlabel ( ’\its\rm (mm)’ )
ylabel ( ’log_ {10}\it\gamma^\prime\rm (/s)’ )
set ( gca , ’FontName ’ , ’Times New Roman’ )
set ( gca , ’FontSize ’ , 12)

figure ( Stra inRate Smo Radia lPos i t ion ) ;
lgd3 = legend ( ’Location ’ ,” no r thea s t ou t s i d e ” , ’Box’ ,” o f f ”)
pbaspect ( [ 4 3 1 ] )
%lgd1.NumColumns = 2;

%lgd1.Title.String = ’\itRe\rm’

axis padded
xlabel ( ’\its\rm (mm)’ )
ylabel ( ’shear strain rate log_ {10}\it\gamma ^\ prime\rm (/s)’ )
set ( gca , ’FontName ’ , ’Times New Roman’ )
set ( gca , ’FontSize ’ , 12)

C.4 Plotting radial profiles

Listing C.4: Plot the radial profiles on the basis of the previous .mat file
clear

co lorOrder = get ( gca , ’ColorOrder ’ )

Miu Radia lPos i t ion = figure

Miu Radia lPos i t ion Log = figure

St r e s s Rad i a lPo so t i on Re f = figure

St r e s s Rad ia lPoso t i on Log = figure

ShearRate Radia lPos i t i on = figure

ShearRate Rad ia lPos i t i on Re f = figure

Re Gl Radia lPosot ion = figure

Re GltoRe G RadialPosotion = figure

LegendName = strings ( [ 1 , 7 ] ) ;
Re G = zeros ( 7 , 2 )
%%

l i s t i n g = dir ( ’*Re_*_Sandwich *.mat’ ) % Read

% miu_zero = 0.08635;

% miu_inf = 0.004981;

% m = 0.3508;

% n = 0.7032;
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Dens i s ty = 1169.9
R o = 79.375∗1 e−3
R i = 60.325∗1 e−3
d = R o − R i

for i i = 1 : length ( l i s t i n g )
FileName = l i s t i n g ( i i ) . name ;
load ( FileName )
LegendName( i i ) = sprintf ( ’%d’ ,RPM2Re( ’Gly’ ,RPM) )

ShearRate re f = (RPM) ∗pi ∗0.060325/30/d
Miu = 0 . 0296 ;
S t r e s s r e f = ShearRate re f ∗Miu ;
Re( i i ) = Dens i s ty ∗(RPM) ∗pi ∗0.060325/30∗d/Miu

%

% Miu = (miu_zero -miu_inf)./...

% (1+(m.*(10.^ Fit_Strain)).^n)+miu_inf; % Fit_Strain is log10 of strain

%

S t r e s s t h e t a r = Miu . ∗ ( 1 0 . ˆ F i t S t r a i n ) ;

figure ( ShearRate Radia lPos i t i on )
Exp=semilogy ( F i t x / F i t x ( end ) , ( 1 0 . ˆ F i t S t r a i n / ( 10 . ˆ ( F i t S t r a i n ( end ) ) ) ) , . . .

’DisplayName ’ , s t r c a t ( ’\itRe\rm ’ , LegendName( i i ) ) , . . .
’LineWidth ’ , 1 . 5 , . . .
”Color ” , co lorOrder ( i i , : ) )

hold on

figure ( ShearRate Rad ia lPos i t i on Re f )
Exp=semilogy ( F i t x / F i t x ( end ) , ( 1 0 . ˆ F i t S t r a i n / ShearRate re f ) , . . .

’DisplayName ’ , s t r c a t ( ’\itRe\rm ’ , LegendName( i i ) ) , . . .
’LineWidth ’ , 1 . 5 , . . .
”Color ” , co lorOrder ( i i , : ) )

hold on

% figure(Miu_RadialPosition)

% Exp=plot(Fit_x/Fit_x(end),Miu/Miu(end) ,...

% ’DisplayName ’,strcat(’\itRe\rm ’, LegendName(ii)), ...

% ’LineWidth ’,1, ...

% "Color",colorOrder(ii ,:))

% hold on

%

% figure(Miu_RadialPosition_Log)

% Exp=semilogy(Fit_x/Fit_x(end),Miu/Miu(end) ,...

% ’DisplayName ’,strcat(’\itRe\rm ’, LegendName(ii)), ...

% ’LineWidth ’,1, ...

% "Color",colorOrder(ii ,:))

% hold on

figure ( S t r e s s Rad ia lPoso t i on Log )
Exp=semilogy ( F i t x / F i t x ( end ) , S t r e s s t h e t a r / S t r e s s t h e t a r ( end ) , . . .

’DisplayName ’ , s t r c a t ( ’\itRe\rm ’ , LegendName( i i ) ) , . . .
’LineWidth ’ , 1 . 5 , . . .
”Color ” , co lorOrder ( i i , : ) )

hold on

figure ( S t r e s s Rad i a lPo so t i on Re f )
Exp=semilogy ( F i t x / F i t x ( end ) , S t r e s s t h e t a r / S t r e s s r e f , . . .

’DisplayName ’ , s t r c a t ( ’\itRe\rm ’ , LegendName( i i ) ) , . . .
’LineWidth ’ , 1 . 5 , . . .
”Color ” , co lorOrder ( i i , : ) )

hold on
%%

% Re_Gl & Re_G

Re Gl = Fit omega .∗(79.375 − Fi t x ) ∗1e−3./Miu∗Dens i s ty ∗(R o−R i )
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% no Lack the coefficient density&length

Re G( i i , 1 ) = trapz ( F i t x ∗1e−3,Re Gl .∗(79.375 − Fi t x ) ∗1e−3) . . .
∗2/(R oˆ2−R i ˆ2)

%1st row for integrated value of lack Re_Gl*r

Re G( i i , 2 ) = trapz ( F i t x ∗1e−3,Miu .∗(79.375 − Fi t x ) ∗1e−3) . . .
∗2/(R oˆ2−R i ˆ2)

%2nd row for integrated value of density miu*r

figure ( Re Gl Radia lPosot ion )
Exp=plot ( F i t x / F i t x ( end ) , Re Gl/Re Gl ( end ) , . . .

’DisplayName ’ , s t r c a t ( ’\itRe\rm ’ , LegendName( i i ) ) , . . .
’LineWidth ’ , 1 . 5 , . . .
”Color ” , co lorOrder ( i i , : ) )

hold on

figure ( Re GltoRe G RadialPosotion )
Exp=plot ( F i t x / F i t x ( end ) , Re Gl/Re G( i i , 1 ) , . . .

’DisplayName ’ , s t r c a t ( ’\itRe\rm ’ , LegendName( i i ) ) , . . .
’LineWidth ’ , 1 . 5 , . . .
”Color ” , co lorOrder ( i i , : ) )

hold on

end

load LaminarTheorat ica l . mat

figure ( ShearRate Radia lPos i t i on ) ;
% plot(r_prime ,NonNewt_Nor_ShearRate (:,3) ,’--’,’LineWidth ’,1.25,’Color ’,’#686868’,

...

% "DisplayName ","Laminar ")

% lgd1 = legend(’Location ’," northeastoutside",’Box ’,"off")

pbaspect ( [ 4 3 1 ] )
axis padded
%lgd1.NumColumns = 2;

%lgd1.Title.String = ’\itRe\rm’

xlabel ( ’$r^\prime=(R_o -r)/(R_o -R_i)$’ , ’Interpreter ’ , ’latex’ )
ylabel ( ’$\bar{\dot{\ gamma}}_{\theta r}(r)/\dot{\gamma}_{\theta r,i}$’ , ’Interpreter ’ , ’

latex’ )
set ( gca , ’FontName ’ , ’Times New Roman’ )
set ( gca , ’FontSize ’ , 12)

figure ( ShearRate Rad ia lPos i t i on Re f ) ;
plot ( r prime , NonNewt Nor ShearRate ( : , 3 ) , ’--’ , ’LineWidth ’ , 1 . 2 5 , ’Color’ , ’#686868 ’ , . . .

”DisplayName ” ,” Laminar ”)
% lgd1 = legend(’Location ’," northeastoutside",’Box ’,"off")

pbaspect ( [ 4 3 1 ] )
axis padded
%lgd1.NumColumns = 2;

%lgd1.Title.String = ’\itRe\rm’

xlabel ( ’$r^\prime=(R_o -r)/(R_o -R_i)$’ , ’Interpreter ’ , ’latex’ )
ylabel ( ’$\bar{\dot{\ gamma}}_{\theta r}(r)/\dot{\gamma}_{\theta r,ref}$’ , ’Interpreter ’

, ’latex’ )
set ( gca , ’FontName ’ , ’Times New Roman’ )
set ( gca , ’FontSize ’ , 12)

% figure(Miu_RadialPosition);

% plot(r_prime ,Nor_Miu (:,2) ,’--’,’LineWidth ’,1.25,’Color ’,’#686868’, ...

% "DisplayName ","Laminar ")

%

% lgd1 = legend(’Location ’," northeastoutside",’Box ’,"off")

% pbaspect ([4 3 1])

% % axis padded

% %lgd1.NumColumns = 2;

% %lgd1.Title.String = ’\itRe\rm ’

% xlabel(’$r^\ prime=(R_o -r)/(R_o -R_i)$’,’Interpreter ’,’latex ’)
% ylabel(’${\mu_\theta }^\ prime=\mu_\theta(r)/\mu_{\theta ,i}$’,’Interpreter ’,’latex ’)
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% set(gca , ’FontName ’, ’Times New Roman ’)

% set(gca ,’FontSize ’,12)

figure ( S t r e s s Rad i a lPo so t i on Re f ) ;
% plot(r_prime ,Nor_Stress (:,3) ,’--’,’LineWidth ’,1.25,’Color ’,’#686868’, ...

% "DisplayName ","Laminar ")

%

% lgd1 = legend(’Location ’," northeastoutside",’Box ’,"off")

pbaspect ( [ 4 3 1 ] )
axis padded
%lgd1.NumColumns = 2;

%lgd1.Title.String = ’\itRe\rm’

xlabel ( ’$r^\prime=(R_o -r)/(R_o -R_i)$’ , ’Interpreter ’ , ’latex’ )
ylabel ( ’${\ sigma_ {\theta r}}^\ prime=\ sigma_ {\ theta r}/\ sigma_ {\theta r,ref}$’ , ’

Interpreter ’ , ’latex’ )
%ylabel(’\it\sigma\rm (pa)’)

set ( gca , ’FontName ’ , ’Times New Roman’ )
set ( gca , ’FontSize ’ , 12)

% figure(Miu_RadialPosition_Log);

% plot(r_prime ,Nor_Miu (:,2) ,’--’,’LineWidth ’,1.25,’Color ’,’#686868’, ...

% "DisplayName ","Laminar ")

%

% lgd1 = legend(’Location ’," northeastoutside",’Box ’,"off")

% pbaspect ([4 3 1])

% % axis padded

% %lgd1.NumColumns = 2;

% %lgd1.Title.String = ’\itRe\rm ’

% xlabel(’$r^\ prime=(R_o -r)/(R_o -R_i)$’,’Interpreter ’,’latex ’)
% ylabel(’${\mu_\theta }^\ prime=\mu_\theta(r)/\mu_{\theta ,i}$’,’Interpreter ’,’latex ’)
% set(gca , ’FontName ’, ’Times New Roman ’)

% set(gca ,’FontSize ’,12)

figure ( S t r e s s Rad ia lPoso t i on Log ) ;
plot ( r prime , Nor St r e s s ( : , 3 ) , ’--’ , ’LineWidth ’ , 1 . 2 5 , ’Color’ , ’#686868 ’ , . . .

”DisplayName ” ,” Laminar ”)

% lgd1 = legend(’Location ’," northeastoutside",’Box ’,"off")

pbaspect ( [ 4 3 1 ] )
axis padded
%lgd1.NumColumns = 2;

%lgd1.Title.String = ’\itRe\rm’

xlabel ( ’$r^\prime=(R_o -r)/(R_o -R_i)$’ , ’Interpreter ’ , ’latex’ )
ylabel ( ’${\ sigma_ {\theta r}}^\ prime=\ sigma_ {\ theta r}/\ sigma_ {\theta r,i}$’ , ’

Interpreter ’ , ’latex’ )
set ( gca , ’FontName ’ , ’Times New Roman’ )
set ( gca , ’FontSize ’ , 12)

figure ( Re Gl Radia lPosot ion ) ;
plot ( r prime , Nor Re l ( : , 3 ) , ’--’ , ’LineWidth ’ , 1 . 2 5 , ’Color’ , ’#686868 ’ , . . .

”DisplayName ” ,” Laminar ”)

% lgd1 = legend(’Location ’," northeastoutside",’Box ’,"off")

pbaspect ( [ 4 3 1 ] )
% axis padded

%lgd1.NumColumns = 2;

%lgd1.Title.String = ’\itRe\rm’

xlabel ( ’$r^\prime=(R_o -r)/(R_o -R_i)$’ , ’Interpreter ’ , ’latex’ )
ylabel ( ’$Re_{G,l}/Re_{G,l,i}$’ , ’Interpreter ’ , ’latex’ )
set ( gca , ’FontName ’ , ’Times New Roman’ )
set ( gca , ’FontSize ’ , 12)

figure ( Re GltoRe G RadialPosotion ) ;
plot ( r prime , Re l Re G ( : , 3 ) , ’--’ , ’LineWidth ’ , 1 . 2 5 , ’Color’ , ’#686868 ’ , . . .

”DisplayName ” ,” Laminar ”)

% lgd1 = legend(’Location ’," northeastoutside",’Box ’,"off")

pbaspect ( [ 4 3 1 ] )
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% axis padded

%lgd1.NumColumns = 2;

%lgd1.Title.String = ’\itRe\rm’

xlabel ( ’$r^\prime=(R_o -r)/(R_o -R_i)$’ , ’Interpreter ’ , ’latex’ )
ylabel ( ’$Re_{G,l}/Re_{G}$’ , ’Interpreter ’ , ’latex’ )
set ( gca , ’FontName ’ , ’Times New Roman’ )
set ( gca , ’FontSize ’ , 12)

C.5 Plotting axial profiles

Listing C.5: Plot the axial profiles on the basis of the previous .mat file
clear all

l i s t i n g = dir ( ’*RPM660 *.mat’ )

Nor uph i Traver sePos i t i on = figure ;
Nor uphi Nor Height = figure ;
Nor uz Nor Height = figure ;
TS uphi Nor Height = figure ;
TS uz Nor Height = figure ;
TI uphi Nor Height = figure ;
TI uz Nor Height = figure ;

LegendName = strings ( [ 1 , 3 ] ) ;
LegendName (1) = ( ’at \it r/(r_o -r_i)=0.25\ rm’ )
LegendName (2) = ( ’at \it r/(r_o -r_i)=0.5\ rm’ )
LegendName (3) = ( ’at \it r/(r_o -r_i)=0.75\ rm’ )

I t e rpStep = 0 .2
%%

for i i = 1 : length ( l i s t i n g )
FileName = l i s t i n g ( i i ) . name ;
load ( FileName ) % Read data file

RPM = str2doub l e ( extractBetween ( FileName , ”RPM” ,” Mid ”) ) ; % Get RPM info from file

name

u ph i i = (RPM+2)∗pi ∗0 .060325/30 ; % Calculate the inner cylinder speed m/s

Pos i t i on = u phi Comb Mean ( : , 1 )
xq = min ( Pos i t i on ) : I t e rpStep : max ( Pos i t i on )
Interp Data ( : , 1 ) = −interp1 ( Pos i t ion , u phi Comb Mean ( : , 2 ) , xq )
Interp Data ( : , 2 ) = interp1 ( Pos i t ion , u z Comb Mean ( : , 2 ) , xq )
Interp Data ( : , 3 ) = interp1 ( Pos i t ion , u phi Comb Mean ( : , 3 ) , xq )
Interp Data ( : , 4 ) = interp1 ( Pos i t ion , u z Comb Mean ( : , 3 ) , xq )

Smooth Data = smoothdata ( Interp Data , 1 , ’sgolay ’ , 250)
xq = xq

%%

figure ( Nor uph i Traver sePos i t i on )

plot ( xq , Interp Data ( : , 1 ) / u ph i i , . . .
’DisplayName ’ , LegendName( i i ) , . . .
’LineWidth ’ , 1 . 5 )

hold on

%%

figure ( Nor uphi Nor Height )

h=plot ( xq /19 .05 , . . .
Smooth Data ( : , 1 ) / u ph i i , . . .
’DisplayName ’ , LegendName( i i ) , . . .
’LineWidth ’ , 1 . 5 )

% normalized u_phi and normalized height
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hold on
%%

figure ( Nor uz Nor Height )
h=plot ( xq /19 .05 , . . .

Smooth Data ( : , 2 ) / u ph i i , . . .
’DisplayName ’ , LegendName( i i ) , . . .
’LineWidth ’ , 1 . 5 )

hold on
%%

figure ( TS uphi Nor Height )
plot ( xq /19 .05 , . . .

Smooth Data ( : , 3 ) / u ph i i , . . .
’DisplayName ’ , LegendName( i i ) , . . .
’LineWidth ’ , 1 . 5 )

%TS normalized by uphi_i

hold on
%%

figure ( TS uz Nor Height )
plot ( xq /19 .05 , . . .

Smooth Data ( : , 4 ) / u ph i i , . . .
’DisplayName ’ , LegendName( i i ) , . . .
’LineWidth ’ , 1 . 5 )

hold on

end

figure ( Nor uph i Traver sePos i t i on ) ;
xlabel ( ’\ith\rm (mm)’ )
ylabel ( ’\itu_{\phi}^\ prime=u_{\phi} /u_i\rm’ )
legend ( ’Interpreter ’ , ’latex’ )
set ( gca , ’FontName ’ , ’Times New Roman’ )
set ( gca , ’FontSize ’ , 12)

figure ( Nor uphi Nor Height ) ;
% ylim ([0.3 0.51])

xlabel ( ’$h/(R_o -R_i)$’ , ’Interpreter ’ , ’latex’ )
ylabel ( ’$u_\theta(h)/u_{\theta ,i}$’ , ’Interpreter ’ , ’latex’ )
set ( gca , ’FontName ’ , ’Times New Roman’ )
set ( gca , ’FontSize ’ , 12)
Nor uphi Nor Height . Pos i t i on ( 3 : 4 ) = [36 9 ]∗40
% xline(DashedLines ,’--’,’Color ’ ,[105 ,105 ,105]/255 , ’ LineWidth ’ ,1.25)

figure ( Nor uz Nor Height ) ;
xlabel ( ’$h/(R_o -R_i)$’ , ’Interpreter ’ , ’latex’ )
ylabel ( ’$u_z(h)/u_{\theta ,i}$’ , ’Interpreter ’ , ’latex’ )
set ( gca , ’FontName ’ , ’Times New Roman’ )
set ( gca , ’FontSize ’ , 12)
Nor uz Nor Height . Po s i t i on ( 3 : 4 ) = [36 9 ]∗40
% xline(DashedLines ,’--’,’Color ’ ,[105 ,105 ,105]/255 , ’ LineWidth ’ ,1.25)

figure ( TS uphi Nor Height ) ;
xlabel ( ’$h/(R_o -R_i)$’ , ’Interpreter ’ , ’latex’ )
ylabel ( ’$\sigma(u_{\ theta})/u_{\theta ,i}$’ , ’Interpreter ’ , ’latex’ )
set ( gca , ’FontName ’ , ’Times New Roman’ )
set ( gca , ’FontSize ’ , 12)
TS uphi Nor Height . Po s i t i on ( 3 : 4 ) = [36 9 ]∗40
% xline(DashedLines ,’--’,’Color ’ ,[105 ,105 ,105]/255 , ’ LineWidth ’ ,1.25)

figure ( TS uz Nor Height ) ;
xlabel ( ’$h/(R_o -R_i)$’ , ’Interpreter ’ , ’latex’ )
ylabel ( ’$\sigma(u_{z})/u_{\theta ,i}$’ , ’Interpreter ’ , ’latex’ )
set ( gca , ’FontName ’ , ’Times New Roman’ )
set ( gca , ’FontSize ’ , 12)
TS uz Nor Height . Pos i t i on ( 3 : 4 ) = [36 9 ]∗40
% xline(DashedLines ,’--’,’Color ’ ,[105 ,105 ,105]/255 , ’ LineWidth ’ ,1.25)

figure ( TI uphi Nor Height ) ;
xlabel ( ’\ith/(r_o -r_i )\rm’ )
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ylabel ( ’\it\sigma(u_{\phi})/u_{\phi}(h)\rm’ )
set ( gca , ’FontName ’ , ’Times New Roman’ )
set ( gca , ’FontSize ’ , 12)

figure ( TI uz Nor Height ) ;
xlabel ( ’$\mathit{h/(r_o -r_i)}$’ , ’Interpreter ’ , ’latex’ )
ylabel ( ’$\mathit {\sigma(u_z)/u_z(h)}$’ , ’Interpreter ’ , ’latex’ )
set ( gca , ’FontName ’ , ’Times New Roman’ )
set ( gca , ’FontSize ’ , 12)
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