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Abstract

Due to the exponential growth of Internet usage and inefficiency of the tradi-

tional modulations, the capacity of the current optical fiber networks is not

sufficient for future Internet demands. As a result, increasing the capacity of

the fiber networks is of great importance. Since most of the available band-

width of fiber systems has been occupied, improving the spectral efficiency

(SE) of the fiber channel is an appropriate approach to increase the capacity.

Constellation optimization (also known as constellation shaping or constella-

tion design) is an efficient SE enhancement technique, and has two important

categories: (1) probabilistic shaping and (2) geometric shaping. Probabilis-

tic shaping changes the uniform distribution of the constellation points into

a non-uniform distribution. Geometric shaping relocates the position of the

equiprobable constellation points such that the achievable rate increases. In

this thesis, we propose two constellation optimization methods. The first

method is a geometric shaping method that maximizes mutual information

(MI) of the amplitude-phase shift keying (APSK) constellations. We optimize

APSK constellations for the additive white Gaussian noise (AWGN) channel

and non-linear fiber channel. For the fiber channel, the optimization is per-

formed at the maximum modified signal-to-noise ratio (SNR) of the optical

system. By doing so, our optimization algorithm maximizes the MI rate while

the impacts of shaping on the non-linear interference noise (NLIN) power are

considered. The second shaping method is a hybrid method that combines

probabilistic shaping and geometric shaping. Our hybrid method maximizes
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the generalized mutual information by considering the impacts of shaping on

non-linear interference noise. We show that our hybrid method outperforms

both geometrically and probabilistically-shaped constellations.
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Preface

The results of Chapter 3 have been submitted to the IEEE Journal of Light-

wave Technology under the title “EGN-Based Optimization of the APSK Con-

stellations for the Non-Linear Fiber Channel Based on the Symbol-Wise Mu-

tual Information,” and the paper has been accepted for publication.
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Chapter 1

Introduction

1.1 Motivation

The Internet has a significant, undeniable impact on the life of humankind.

This technology is the most rapid means of communication, enabling lightning-

speed-level communication. Moreover, in recent years, it has led to the creation

or improvement of a wide variety of industries such as E-learning, digital mar-

keting, media broadcasting, etc. The benefits provided by the Internet would

not be possible to achieve without ultra-fast and reliable communication chan-

nels.

Fiber optic has attracted much attention in recent years, owing to its ca-

pability of handling high-rate communication. Fiber optics has several sig-

nificant advantages over other communication channels, including ultra-high

bandwidth (as high as several THz), low signal loss (as low as 0.2 dB/km),

and low electromagnetic interference, making this channel a powerful asset to

handle high data rates. Additionally, by employing multiplexing techniques

such as polarization multiplexing (PM) and wavelength division multiplex-

ing (WDM), a huge increase in the capacity of the optical fiber networks is

achieved [1]. Although the mentioned characteristics make fiber optics an ideal

channel for communication, it is prone to major impairments, which degrade

the optical system performance.

The main impairment of the fiber channel is its non-linearity behavior,

which is directly proportional to the instantaneous power of the optical sig-

nal [2]. The non-linear effects are so significant that in non-linear regimes of
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fiber, increasing the average launch power decreases the performance rather

than improving it. Consequently, in most scenarios, increasing the launch

power cannot be considered as a proper solution to the fiber channel capacity

enhancement. Moreover, considering the exponential growth of Internet us-

age, the capacity of the current optical fiber networks would not be sufficient

for future demands [3]. Hence, these challenges necessitate applying modern

modifications to the optical systems in order to catch up with the growth of

Internet usage.

The constellation used in a communication system has a significant im-

pact on the transmission rate. The well-known constellations such as pulse-

amplitude modulation (PAM), quadrature amplitude modulations (QAM),

and phase shift-keying (PSK) are not capable of providing transmission rates

as high as the channel capacity [4], meaning that the traditional constellations

are inefficient. Hence, more efficient constellations must be designed, which

we discuss in the following.

1.2 Inefficiency of PAM Constellations on the

Additive White Gaussian Noise Channel

To measure inefficiency of a constellation, a metric must be employed. The

maximum rate of information that can be transferred over a communication

channel is one of the main parameters of a communication link, and to com-

pute this parameter, we need to define a metric to measure the information.

The mutual information (MI) is one of the well-known tools to measure the

statistical dependence between the transmitted information and the received

information. Suppose that random variable X is transferred over a noisy chan-

nel, and random variable Y is the received information about X, i.e. Y is a

noisy observation of X. The mutual information between random variables X

and Y is defined as:

I(X;Y ) = H(X)−H(X|Y ), (1.1)

where H(·) is the entropy.

The maximum information rate or capacity of a channel is the maximum
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Figure 1.1: Capacity of the ideal AWGN channel with Gaussian inputs and
with equiprobable M -PAM inputs.

mutual information between the channel input and output. In the case of an

ideal discrete-time additive white Gaussian noise (AWGN) channel, Shannon

in [5], [6] shows that the capacity is obtained with a Gaussian distribution

over the channel input, and the corresponding capacity in bits per dimension

is given by:

C =
1

2
log2(1 + SNR)

[Bits

Dim

]
, (1.2)

where SNR is the signal-to-noise ratio.

In practical communication systems, the distribution of the channel input

is not Gaussian, which leads to creating a gap between the channel capacity

defined in (1.2) and the actual information rate.

M -PAM family of constellations is one of the well-known and widely used

constellations in the communication systems, where modulation symbols Xi

are chosen from set d0

2
{−M + 1,−M + 3, · · · ,M − 1}, where d0 is the mini-

mum distance between symbols. Fig. 1.1 shows the capacity and the mutual

information achieved with equiprobable M -PAM, for M = 2, 4, · · · , 32.

According to Fig. 1.1, for low values of SNR, an equiprobable 2-PAM is

almost optimal; for high values of SNR, on the other hand, the capacity of
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equiprobable M-PAM constellations, before getting saturated, approaches a

straight line parallel to the capacity of the AWGN channel. The gap between

the capacity of the AWGN channel and the mentioned straight line is πe/6

(1.53dB) [7], and it is due to not using a Gaussian distribution over the mod-

ulation symbols. This deficiency is also true for QAM constellations which are

the two-dimensional version of PAMs. To compensate for the 1.53 dB loss, we

must optimize constellations to produce a Gaussian-like distribution over the

transmitted symbols, which we discuss next.

1.3 Constellation Optimization

Constellation optimization (or constellation shaping) is to find energy-efficient

constellations that achieve better performance compared to the traditional

QAMs [8]. To optimize a constellation, different objective functions or opti-

mization criteria can be considered. For instance, we can select the achievable

information rate (AIR) of a communication system as the optimization crite-

rion or we can select its error rate (such as symbol error rate or bit error rate).

In most cases, as it is in this study, AIR is chosen as the objective function,

and by maximizing AIR, error-free communication can be achieved at higher

transmission rates.

Constellation shaping approaches can be divided into two categories: geo-

metric shaping (GS) and probabilistic shaping (PS). Both GS and PS try to

mimic a sampled Gaussian distribution; however, they follow different ideas.

The idea behind PS is to change the uniform distribution of the constellation

points into a non-uniform distribution. In GS, the position of the equiprob-

able constellation points is relocated such that the achievable rate increases

and approaches the channel capacity [9]. The idea of PS and GS are de-

scribed in Fig. 1.2. As Fig. 1.2 (b) demonstrates, a Gaussian distribution can

be estimated by assuming non-uniform distribution over symbols. Also, in

Fig. 1.2 (c), again, the Gaussian distribution is approximated by changing the

position of the constellation points.
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Figure 1.2: Two-dimensional representation of (a) a continuous Gaussian
source, (b) a 64-point probabilistic shaped QAM, and (c) a 64-point geometric
shaped constellation.

1.4 Constellation Optimization for the Fiber

Channel

PS and GS increase the AIR of the AWGN channels significantly; however, in

the case of non-linear fiber channel, more considerations are required during

the shaping probability or geometry of a constellation. This is because non-

linearity of the fiber is a modulation-dependent interference [10]. In this thesis,

we introduce two shaping methods for the non-linear fiber channel. The first

shaping method is a GS method that maximizes the AIR of the fiber channel.

We compare our method with the state-of-the-art GS methods and show that

our optimized constellations are capable of outperforming other methods in

almost all of the scenarios. Also, we obtain an equation demonstrating that

our optimized constellations introduce much lower non-linear interference noise

to the system than AWGN-based shaped constellations. The second shaping

approach is a hybrid method. In other words, we combine GS and PS to

increase the AIR of the fiber channel even further.

1.5 Organization of Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we provide

the essential preliminaries. We talk about impairments of the optical fiber

communication systems and models of the fiber channel. In addition, we de-

fine and formulate constellation shaping approaches. In Chapter 3, we propose

and explain our GS method. We optimize the geometry of constellations for
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both the AWGN and fiber channel and analyze the results. Also, we com-

pare our method with other GS methods in terms of AIR and the modified

SNR of the fiber channel. Our results indicate that our geometric-shaped con-

stellations result in both higher AIR and lower modulation-dependent noise

compared to the state-of-the-art GS methods. In Chapter 4, we propose a

hybrid probabilistic-geometric shaping method for the non-linear fiber chan-

nel. We optimize the position and probability of the points simultaneously to

maximize the AIR of the optical system. Our reported AIRs outperform that

of both QAMs and probabilistic shaped QAMs in all scenarios. Finally, in

Chapter 5, we conclude the thesis and provide some future research directions

for our studies.
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Chapter 2

Background

2.1 Optical Fiber Communication Systems

In this section, we briefly discuss the characteristics and structure of optical

fiber communication systems. First, we explain the structure of the system

used in this thesis. After that, we review equations that govern the propaga-

tion of optical signals inside the fiber and discuss impairments that result in

performance degradation. Finally, we review two well-known discreet mem-

oryless models of the fiber channel, the Gaussian-noise (GN) model and the

enhanced Gaussian-noise (EGN) model.

The structure of the fiber link studied in this thesis is provided in Fig. 2.1.

We assume that the fiber link between the transmitter and receiver consists

of Ns spans whose length is Ls. The link consists of identical spans (the

homogenous link assumption). At the end of each span, the loss is exactly

compensated for by optical amplification (the transparent link assumption).

In the following, we discuss the system of Fig. 2.1 in detail.

Transmitter Receiver

Optical 
Amplifier 1

Optical 
Amplifier 2

Optical 
Amplifier 𝑁𝑠𝐿𝑠 𝐿𝑠 𝐿𝑠

Span 1 Span 2 Span 𝑁𝑠

Figure 2.1: Structure of the fiber link
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2.1.1 Propagation of Signals Inside Optical Fiber

Since the optical fiber medium behaves similar to a waveguide, propagation

of light waves, similar to all electromagnetic fields, is governed by Maxwell’s

equations [2]:

5× E = −∂B

∂t
,

5×H = J +
∂D

∂t
,

5 ·D = ρf ,

5 ·B = 0,

(2.1)

where E, H, D and B are the electric field, the magnetic field, the electric flux

density, and the magnetic flux density, respectively. The current density vector

J and the charge density ρf represent the sources for the electromagnetic field.

Since optical fiber is a free-charge medium, we have J = 0 and ρf = 0.

The flux density D in (2.1) is related to electric field E as follows [2]:

D = ε0E + P, (2.2)

where ε0 is the vacuum permittivity, and P is the induced electric polarization.

Since optical fiber is a non-linear medium, the induced electric polarization P

can be divided into linear and non-linear terms as follows:

P(r, t) = PL(r, t) + PNL(r, t), (2.3)

where PL(r, t) and PNL(r, t) are linear and non-linear parts, respectively.

By substituting (2.3) and (2.2) in (2.1), the pulse propagation equation is

achieved. But before that, by considering that the electric field consists of

a fast and a slow varying terms (slowly varying envelope approximation), a

significant simplifications can be made in the propagation equation. Assum-

ing slowly varying envelope approximation, the electric field can be written as

follows:

E(r, t) =
1

2
x̂[E(r, t) exp (−iω0t) + c.c.], (2.4)

where x̂ is the polarization unit vector, E(r, t) is a slowly varying function of

time, ω0 is the carrier angular frequency, and c.c. stands for complex conjugate.
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In communication systems, we are highly interested in the slow varying term

to investigate the impacts of fiber on the pulse shape. Using the separation of

variables method, the wave equation for slowly varying component of electric

field is obtained as follows (the detailed derivation is provided in [2], Chapter

2):
∂A

∂z
+ β1

∂A

∂t
+
iβ2

2

∂2A

∂t2
+
α

2
A = iγ|A|2A, (2.5)

where A(z, t) is the slowly varying pulse envelope, β1 determines the group

velocity, β2 is the group velocity dispersion (GVD) parameter, α is the atten-

uation constant such that the signal power is attenuated as exp (−αz), and γ

is the Kerr non-linearity coefficient.

Equation (2.5) can be more simplified by defining a new time reference as

T = t−β1z. In this new time reference, a frame of reference is moving with the

pulse at the group velocity vg = 1
β1

. By substituting the new time reference in

(2.5), we have:

∂A

∂z
+ β1

∂A

∂T
× ∂T

∂t
+
iβ2

2

∂2A

∂T 2
+
α

2
A = iγ|A|2A, (2.6)

where
∂T

∂t
=
∂(t− β1z)

∂t
= 1− β1

β1

= 0. (2.7)

Therefore, (2.5) in the new time reference is equal to:

∂A

∂z
+
iβ2

2

∂2A

∂T 2
+
α

2
A = iγ|A|2A. (2.8)

Equation (2.8) is known as the non-linear Schrödinger equation (NLSE) that

governs propagation of light inside optical fiber. Now, based on (2.8), we

explain GVD and Kerr non-linearity as the impairments of the fiber channel

and examine their impacts on the transmitted signal.

Group Velocity Dispersion

Here, to consider impacts of GVD, we assume that the fiber is lossless (α ≈ 0),

and the fiber non-linearity is negligible (γ ≈ 0). Also, we define the normalized

time reference τ and normalized amplitude U(z, τ) as follows:

τ =
T

T0

, (2.9)
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A(z, τ) =
√
P0 exp (−α

2
z)U(z, τ), (2.10)

where T0 is the pulse width, and P0 is the peak power of the pulse. By

substituting (2.9) and (2.10) in (2.8) and assuming both γ and α are almost

zero, we have:
∂U

∂z
+
iβ2

2T 2
0

∂2U

∂τ 2
≈ 0. (2.11)

Since (2.11) is linear, it is more convenient to solve (2.11) in the frequency

domain. In the frequency domain, (2.11) is as follows:

∂Ũ

∂z
− iβ2

2
ω2Ũ = 0, (2.12)

where Ũ is the Fourier transform of U . The solution of (2.12) is:

Ũ(z, ω) = Ũ(0, ω) exp (
iβ2

2
ω2z). (2.13)

As we can see, GVD changes the phase of each frequency component, and the

amount phase change depends on both the frequency ω and the distance z. In

other words, the more the optical pulse propagates inside the fiber link, the

more the phase of the optical pulse changes. Moreover, GVD does not affect

the amplitude of the propagating pulse, and new frequency components are

not generated during the propagation of the optical pulse. Also, according to

(2.13), different frequency components of the optical pulse travel with different

velocities inside the optical fiber. Meaning that the more the optical pulse

propagates inside the fiber, the more the pulse broadens, which results in

considerable inter-symbol interference (ISI). As an example, the impacts of

GVD on a root-raised-cosine (RRC) pulse are provided in Fig. 2.2. According

to Fig. 2.2, as the fiber length increases, the RRC pulse broadens further.

Kerr Effect

Non-linearity of the optical fiber is one of the most destructive impairments

of the fiber. To examine the impacts of this non-linearity on an optical signal,

in (2.8), we assume that β2 ≈ 0. Considering normalized time reference (2.9)

and normalized amplitude (2.10), we have:

∂U

∂z
≈ iγP0 exp (−αz)|U |2U. (2.14)
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Figure 2.2: Pulse broadening of an RRC pulse due to GVD, note that Ts is
symbol time and is equal to 31.25 picoseconds.

Equation (2.14) is a nonlinear differential equation, and it is more convenient

to solve in time-domain. To solve (2.14), we assume that:

U = V · exp (iϕNL). (2.15)

By substituting (2.15) in the differential equation of (2.14), we have:

∂V

∂z
= 0, (2.16)

∂ϕNL

∂z
= γP0 exp (−αz)V 2. (2.17)

By solving differential equations of (2.16) and (2.17), U(z, T ) is obtained as

follows:

U(z, T ) = U(0, T ) · exp (iϕNL(z, T )),

ϕNL(z, T ) = γP0|U(0,T )|2 × Leff , Leff =
1− exp (−αz)

α
.

(2.18)

According to (2.18), the amount of phase shift is intensity-dependent. In

other words, the more power is launched to the fiber link, the more phase shift

occurs. Also, ϕNL increases as the fiber length increases. In Equation (2.18),

Leff is an effective length, which is smaller than the fiber length z. The concept
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behind the Leff is the loss of power when an optical pulse propagates inside

the optical fiber. In other words, since there exists the loss of power when an

optical pulse propagates inside the optical fiber, the pulse intensity decreases,

which leads to a lower phase shift than the phase shift of the non-attenuated

optical pulse.

Another conclusion that can be drawn based on (2.18) is that the amplitude

of the optical pulse is not affected by the nonlinear effect. However, due to the

time dependence of ϕNL, the frequency-domain signal of (2.18) gets broadened

as the pulse propagates inside the optical fiber, and new frequency components

are generated during the propagation. This is the opposite of what happens

in the GVD scenario, i.e. in GVD, the amplitude of the frequency-domain

signal is not affected by GVD but the time-domain signal gets broadened;

however, when the non-linearity is considered, the time-domain signal does not

get broaden but the frequency domain signal does. As an example, Fig. 2.3

indicates the effects of non-linearity on an RRC pulse in time-domain. As seen,

the more the RRC pulse propagates inside the fiber, the more phase shift it

experiences. Moreover, the low-power points of the RRC pulse are much less

affected by the non-linearity than high-power points.

Amplified Spontaneous Emission Noise

As shown in Fig. 2.1, due to the fiber loss, Ns optical amplifiers are placed in

the fiber link to compensate for the loss. Similar to other amplifiers, optical

amplifiers are not ideal, and they introduce amplification noise to the system,

which is called amplified spontaneous emission (ASE) noise. There are several

types of optical amplifiers for the fiber channel. In this thesis, the erbium-

doped fiber amplifier (EDFA) is employed to compensate for the fiber loss.

The ASE noise of EDFA is a circularly symmetric Gaussian noise whose power

spectral density (PSD) is as follows [11]:

GASE = Fh
c

λ
(As − 1), (2.19)

where F is the EDFA noise figure, h is the Plank’s constant, c is the speed of

the light, λ is the wavelength, and As is the span loss.
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Figure 2.3: Impacts of the fiber non-linearity on an RRC pulse, note that Ts
is symbol time and is equal to 31.25 picoseconds.

Multiplexing Techniques

In the previous sections, we discussed propagation of one single pulse (which

can be simply extended to a pulse train) inside the optical fiber. However, by

employing multiplexing techniques, significant increase in the capacity of the

fiber channel can be achieved. Here, we briefly review two of the most widely-

used multiplexing techniques in the fiber, wavelength division multiplexing

(WDM) and polarization multiplexing (PM).

As mentioned earlier, the bandwidth of the optical fiber is as high as several

THz. To efficiently use the whole fiber bandwidth, it is divided into several

channels, and within each channel, independent information is transmitted.

This multiplexing technique is called WDM. As an example, Fig. 2.4 demon-

strates the base-band PSD of a WDM signaling, which consists of nine WDM

channels, and withing each WDM channel, RRC pulses with symbol rate of 32

GBaud are transmitted. Also, note that the WDM spacing, the space between

adjacent channels, is set to 40 GHz.

As mentioned earlier, since the fiber channel is a non-linear system, new
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Figure 2.4: PSD of a WDM signaling with RRC pulses whose roll-off is 0.1.
The symbol rate is 32 GBaud, and the WDM spacing is 40 GHz.

frequency components are generated as the pulse propagates inside the optical

fiber. Consequently, different WDM channels affect each other during the

propagation. To analyze the impacts of channels on each other, coupled NLSE

is employed [2]. Let Ai be the slowly varying pulse envelope of the i-th WDM

channel where i ∈ {1, 2, 3, · · · , Nch}, and Nch is the total number of WDM

channels. According to the coupled NLSE, the propagation equation for Ai

becomes [2]:

∂Ai
∂z

+
iβ2

2

∂2Ai
∂T 2

+
α

2
Ai = iγ(

∑
1<j<Nch

j 6=i

2|Aj|2 + |Ai|2)Ai. (2.20)

Based on (2.20), the destructive impacts of the other Nch − 1 channels on

channel i are two times stronger than the destructive impact of channel i on

itself.

In addition to WDM, different polarization of the fiber can carry infor-

mation. The x̂ and ŷ components of electric field are orthogonal and can

be used for transmitting information simultaneously, which doubles the spec-

tral efficiency of each WDM channel. This multiplexing technique is called

PM. In dual-polarized systems, the Manakov equation [12] is used to simulate

propagation of optical pulses instead of (2.5):

∂Ax
∂z

+
iβ2

2

∂2Ax
∂T 2

+
α

2
Ax = i

8

9
γ(|Ax|2 + |Ay|2)Ax,

∂Ay
∂z

+
iβ2

2

∂2Ay
∂T 2

+
α

2
Ay = i

8

9
γ(|Ax|2 + |Ay|2)Ay,

(2.21)

where Ax and Ay are the slowly varying pulse envelope of the x-polarization

and y-polarization, respectively.
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Numerical Solution to NLSE

A closed-form solution to both NLSE and Manakov equation does not exist,

meaning that numerical methods must be employed to solve (2.5) and (2.21).

Up to now, the best approach known for solving these partial differential equa-

tions is split-step Fourier method (SSFM) [2], [13]. In this method, to solve

(2.5) (or (2.21)), the fiber span is broken into small distances, and for each

small step, we follow two steps:

• first, we ignore the non-linearity and apply the dispersion operator to

the signal using (2.13).

• Then, we ignore dispersion and apply the non-linearity operator using

Equation (2.18).

These steps are iterated until we reach to the end of the span. At the end of

the span, the signal is amplified to compensate for the fiber loss, and then,

the ASE noise is added to the signal. For the next span, the same procedure

is repeated.

SSFM is an accurate method for simulating propagation of pulse inside

optical fibers. In this thesis, SSFM is employed to validate accuracy of the

EGN-model of fiber as well as the performance of the optimized constellations.

2.1.2 EGN-model of Fiber

As we discussed, a closed form solution for (2.5) and (2.21) does not exist,

which makes optimizing constellations for the fiber extremely hard. Therefore,

modeling of non-linear interference is of great importance. Due to the large

values of accumulated dispersion, as electric field components propagate inside

the fiber, they take on identical, statistically independent, zero-mean Gaussian

distributions. This phenomenon turns the signal into a noise-like source of

non-linear disturbance [14]. Hence, we can model non-linear interference as

additive Gaussian noise. In the rest of this section, we address two well-known

models, Gaussian-noise (GN) and enhanced Gaussian-noise (EGN) models,

which consider non-linear interference as Gaussian noise.
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To model non-linear interference (NLI) of the fiber optics, GN-model as-

sumes that NLI is approximately Gaussian and additive. This is one of the

main pillars of the GN-model. In other words, in the GN-model, the signal

disturbance caused by the non-linearity manifests itself as additive Gaussian

noise. By finding the power of NLI, we can predict system performance. PSD

of NLI must be computed in order to find the power of NLI. In the derivation

of the NLI PSD, we consider three assumptions:

• The non-linearity is relatively small versus the useful signal.

• The transmitted signal statistically behaves as stationary Gaussian noise.

• NLI manifests itself as additive Gaussian noise.

The signal-Gaussianity is the key assumption in the derivation of the NLI PSD.

This assumption is not valid at the transmitter; however, as the signal gets

dispersed, the distribution of the signal approaches a Gaussian distribution

[15]. Although the PSD of NLI can be found for systems with multiple fiber

types and different span lengths, here, for simplicity, we consider identical-span

systems. If we consider the transparent link assumption and the transmitted

signals are dual-polarization, the NLI PSD is equal to [15]:

GNLI(f) =
16

27
γ2L2

eff

∫ ∞
−∞

∫ ∞
−∞

GWDM(f1)GWDM(f2)GWDM(f1 + f2 − f)

× ρ(f1, f2, f)χ(f1, f2, f)df1 df2,

(2.22)

where GWDM(f) is the PSD of the overall WDM transmitted signal, γ is the

fiber non-linearity coefficient, and χ(f1, f2, f) has the role of accounting for

NLI accumulation in multi-span links. Also, Leff is the span effective length,

and ρ(f1, f2, f) is the normalized four-wave mixing (FWM) efficiency, and

both Leff and ρ(f1, f2, f) depend on the type of amplification. For instance,

for EDFA, we have:

ρ(f1, f2, f) =

∣∣∣∣∣1− exp (−2αLs) exp (j4π2β2(f1 − f)(f2 − f)Ls)

2α− j4π2β2(f1 − f)(f2 − f)

∣∣∣∣∣
2

× L−2
eff ,

(2.23)
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and Leff is defined in (2.18). In (2.23), Ls is the span length, β2 is the dispersion

coefficient in [s2.m−1], and α is the fiber field (not power) loss coefficient in

[m−1], such that the signal power is attenuated as exp (−2αz).

The interpretation of (2.22) is that the NLI PSD generated at frequency

f is the integrated result of the product of GWDM at three frequencies f1, f2,

and f3 = f1 + f2 − f . Also, the efficiency of the beating (or interaction) of

these three frequencies is determined by the FWM efficiency ρ(f1, f2, f).

As stated, factor χ(f1, f2, f) governs NLI accumulation along the link. If

χ(f1, f2, f) considers the produced NLI of each span coherently, it becomes:

χ(f1, f2, f) =
sin2(2Nsπ

2(f1 − f)(f2 − f)β2Ls)

sin2(2π2(f1 − f)(f2 − f)β2Ls)
, (2.24)

where Ns is the total number of spans. As seen, for Ns = 1, χ = 1. One can

make the further approximation of completely neglecting coherent interference

among NLI generated in different spans. Assuming this approximation, (2.24)

becomes:

χ(f1, f2, f) = Ns. (2.25)

This model is called the incoherent GN-model (IGN-model).

Now that we defined all factors of (2.22), we can calculate NLI power, PNLI,

by integrating GNLI(f). Since we assumed that NLI is Gaussian and additive,

the equivalent channel model of fiber according to GN-model becomes:

Y = X +NNLI +NASE, (2.26)

where NNLI and NASE are circularly symmetric Gaussian noise whose PSD is

determined by (2.22) and (2.19), respectively. According to (2.26), the system

performance is governed by the modified optical signal-to-noise ratio (OSNR):

OSNRNL =
Pch

PASE + PNLI

, (2.27)

where Pch is the average power per WDM channel, PASE is the power of the

ASE noise which falls within a conventional optical noise bandwidth BN , and

PNLI is the NLI power of the channel of interest. For matched receiver filtering,

OSNRNL can be converted to the well-known signal-to-noise ratio (SNR) by
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the following equation [14]:

SNRNL =
BN

Rs

OSNRNL, (2.28)

where Rs is the symbol rate. In this thesis, we assume that BN = Rs. Based on

(2.28), we can calculate system performance such as bit error-rate and channel

capacity.

The results of the classic GN-model are valid assuming that the trans-

mitted signal statistically behaves as stationary Gaussian noise, i.e., PNLI is

independent of the modulation format. However, as shown in [10], [16], the

NLI power does depend on the modulation format, especially in the first spans.

To resolve this problem, [10] removes the signal-Gaussianity assumption and

modifies the classic GN-model by adding some correction terms to the NLI

power of the GN-model and calls the modified model enhanced Gaussian noise

(EGN) model. According to EGN-model, NLI power can be written as [10]:

PNLI = PGN
NLI + P corr

NLI , (2.29)

where PGN
NLI is the NLI power obtained from GN-model, and P corr

NLI is the correc-

tion term of the EGN-model, which contains the modulation-dependent terms

of the NLI power. The EGN-model accuracy is discussed more in-depth in [10],

and comparison of the results of the EGN-model with the split-step Fourier

method (SSFM) simulations shows that the EGN-model is an accurate tool

for predicting the fiber optics system performance. Hence, in this thesis, we

use the EGN-model.

Assuming all WDM channels are spaced equally and all with the same

modulation format, equal symbol rate, and launch power, we can write (2.29)

as follows [10]:

PNLI = η × P 3
ch, (2.30)

where

η = ηGN + Φ · ηΦ + Ψ · ηΨ. (2.31)

In Equation (2.31), Φ and Ψ are the modulation-dependent terms and are

given for a X ∈ χ, where χ = {x1, x2, · · · , xM} is the set of constellation
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points as follows:

Φ =
E
{
|X|4

}
E2
{
|X|2

} − 2 , Ψ =
E
{
|X|6

}
E3
{
|X|2

} − 9 ·
E
{
|X|4

}
E2
{
|X|2

} + 12, (2.32)

where E{·} is the expectation operator. Note that complete derivation of ηΦ

and ηΨ can be found in [10]. By substituting (2.30) in (2.28), one can conclude

that there is an optimal launch power P opt
ch at which the modified SNR of (2.28)

becomes maximum [15]:

P opt
ch = 3

√
PASE

2 · η
. (2.33)

Equation (2.33) indicates that unlike other commutation channels that in-

creasing the average launch power results in higher SNRs and lower error

rates, in the fiber channel, by increasing the average launch power, we may

achieve lower SNRs. This behavior of the fiber channel is arisen from the fact

that the non-linearity of fiber is directly proportional to the launch power (see

(2.5)). To better demonstrate this phenomenon, we provide Fig. 2.5. Fig. 2.5

shows SNRNL performance of the different types of polarization-multiplexed

QAMs (PM-QAM) and Gaussian distribution. Polarization-multiplexed 4-

QAM (PM-4QAM) introduce the least amount of NLI noise to the system.

Higher order QAMs have higher NLI than PM-4QAM, PM-16QAM and PM-

32QAM have similar performance, and PM-64QAM has slightly higher SNRNL

than PM-8QAM. Also, the Gaussian distribution introduces the lowest SNRNL

among all PM-QAMs. Moreover, for launch powers higher than 1 dBm, SNRNL

is monotonically decreasing in Pch. Results indicate that the fiber channel is a

modulation-dependent channel and to optimize constellations, constellations

must be shaped specifically for the fiber channel.

2.2 Constellation Shaping

As mentioned in Section 1.3, constellation shaping is the process of designing

constellations so that they approximate a Gaussian source more accurately.

The shaping process can be: (i) probabilistic shaping (PS); (ii) geometric

shaping (GS), and (iii) hybrid probabilistic-geometric shaping (HPGS). To
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Figure 2.5: SNRNL performance of the PM-QAMs and Gaussian distribution.
The simulation is based on the EGN-model of fiber and is done at the distance
of 3000 km.

measure how accurate a constellation is approximating a Gaussian source, a

metric must be defined. In the following, first, we review the fundamentals

of constellation shaping and define our tools for measuring the performance

of the shaped constellations. After that, we formulate the mentioned shaping

methods based on the defined measures. Finally, we briefly review recent

studies on constellation shaping in the literature and our proposed shaping

methods.

2.2.1 Fundamentals of Constellation Shaping

On a communication channel, in order to measure the quality of communi-

cation for a certain constellation, a metric must be defined. In this thesis,

mutual information (MI) and generalized mutual information (GMI) are used

as two metrics of the achievable information rate (AIR).

Mutual Information Analysis

MI is utilized as a measure to mimic the symbol-wise AIR [17], [18], [19]. MI

depends on the probability and position of each constellation point, but does
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not depend on the binary labeling of the constellation points.

Assume that the channel input and output vectors are denoted by X =

[X1,X2, · · · ,Xn] and Y = [Y1,Y2, · · · ,Yn], respectively, where Xis and Yis are

the i-th input and output respectively. It is assumed that Xis are independent

and identically distributed (i.i.d). Also, Yi only depends on Xi. Each Xi ∈ χ,

where χ = {x1, x2, · · · , xM} is the set of constellation points. The MI between

the channel input vector X and channel output vector Y is defined as:

1

n
I(X; Y) =

1

n
E
{

log2

fY|X(Y|X)

fY(Y)

}
, (2.34)

where E{·} is the expectation operator, fY|X(y|x) is the channel transition

probability, and fY(y) is the probability distribution function of Y.

In some communication channels such as fiber optics, a closed-form equa-

tion for fY|X(y|x) does not exist. However, by taking advantage of the mis-

matched decoding technique [20], [21], we can evaluate the MI rate using the

auxiliary channel transition probability qY|X instead of the unknown fY|X. In

the case of fiber optics channels, by ignoring the correlations over the polar-

ization and time, we have:

qY|X(y|x) =
n∏
i=1

qY |X(yi|xi), (2.35)

where qY |X(y|x) is the fixed channel transition probability. Assuming an

AWGN auxiliary channel, we have:

qY |X(y|x) =
1

πσ2
e−
|y−x|2

σ2 , (2.36)

where σ2 is the noise variance of the auxiliary channel, x ∈ χ, and y is a

complex number such that y = yRe + jyIm. Assuming the auxiliary channel

transition probability of (2.36), a lower bound for the MI rate can be computed

by substituting (2.35) in (2.34) [22]:

1

n
I(X; Y) ≥ E

{
log2

qY |X(Y |X)

qY (Y )

}
∆
= RSMD, (2.37)

where RSMD stands for the MI rate that can be achieved with symbol-metric

decoding (SMD) and can be computed as:

RSMD =
M∑
j=1

∫ +∞

−∞
log2

(
qY |X(y|xj)
qY (y)

)
qX,Y (xj, y)dy, (2.38)
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where

qY (y) =
M∑
i=1

qY |X(y|xi)PX(xi) =
M∑
i=1

1

πσ2
e−
|y−xi|

2

σ2 PX(xi), (2.39)

and

qX,Y (x, y) = qY |X(y|x)PX(x) =
1

πσ2
e−
|y−x|2

σ2 PX(x). (2.40)

In (2.39) and (2.40), PX(xi) is the probability that the random variable X takes

the value xi. Note that the integration over y in (2.38) is a two-dimensional

integration over yRe and yIm. Substituting (2.39) and (2.40) in (2.38) yields:

RSMD =
M∑
j=1

∫ +∞

−∞

(
− |y − xj|

2

σ2
log2 e− log2

( M∑
i=1

1

πσ2
e−
|y−xi|

2

σ2 PX(xi)

))

× 1

πσ2
e−
|y−xj |

2

σ2 PX(xj)dy.

(2.41)

Note that although (2.41) is obtained using the assumption of an AWGN aux-

iliary channel, it can be used for the non-linear fiber channels by making the

noise variance in (2.41) dependent on the launch power and the set of constel-

lation points χ [23], [24]. In addition to (2.41), RSMD can be approximated

from Monte Carlo simulations. For N transmitted points xks and received

points yks, we have:

RSMD ≈
1

N

N∑
k=1

log2

qY |X(yk|xk)
qY (yk)

=
1

N

N∑
k=1

e−
|yk−xk|

2

σ2∑M
i=1 e−

|yk−xi|2

σ2 PX(xi)
. (2.42)

Also, note that (2.41) and (2.42) are valid for any arbitrary probability mass

function PX(x).

Generalized Mutual Information Analysis

MI provides the symbol-wise AIR of a communication system and it does not

provide any insight into how efficiently the labels of the constellation points

have been assigned. Consequently, MI is not appropriate for bit-interleaved

coded modulation (BICM) systems [25]. For BICM systems, bit-metric decod-

ing (BMD) rate, RBMD, is a proper AIR [24], [26].
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To compute RBMD, we assume that symbol X consists of m bit levels

B = [B1, B2, · · · , Bm], where m = log2(M). Considering B, we have[24]:

RBMD = H(B)−
m∑
i=1

H(Bi|Y ), (2.43)

where H(·) is the entropy. For independent bit-levels (which is the case in this

thesis), RBMD becomes the generalized mutual information (GMI) rate [24],

[27]. Considering the independent bit-levels assumption, we have:

RBMD = H(B) +
m∑
i=1

EBi,Y

{
log2

(qBi,Y (B, Y )

qY (Y )

)}
, (2.44)

where

H(B) = H(X) = −
M∑
i=1

PX(xi) log2(PX(xi)), (2.45)

and

EBi,Y

{
log2

(qBi,Y (B, Y )

qY (Y )

)}
=

1∑
b=0

∫ +∞

−∞
log2

(qBi,Y (b, y)

qY (y)

)
qBi,Y (b, y)dy.

(2.46)

In (2.46), qY (y) can be computed from (2.39), and qBi,Y (b, y) is calculated as

follows:

qBi,Y (b, y) =
∑
x∈χib

qX,Y (x, y), (2.47)

where χib is the set of symbols whose i-th bit are equal to b.

By substituting (2.47) in (2.46), we have:

H(Bi|Y ) = −
1∑
b=0

∫ +∞

−∞

∑
x′∈χib

log2

(∑
x∈χib

exp (− |y−x|
2

σ2 )

πσ2 PX(x)∑
x∈χ

exp (− |y−x|
2

σ2 )

πσ2 PX(x)

)

×
exp (− |y−x

′|2
σ2 )

πσ2
PX(x′)dy.

(2.48)

Now, by substituting (2.48) and (2.45) in (2.43), the GMI rate is competed.

Also, RBMD can be estimated using Monte Carlo simulations. For N trans-

mitted bit labels bk = [b1
k, b

2
k, · · · , bmk ]s and received points yks, we have::

RBMD ≈
−1

N

N∑
k=1

log2(PX(xk))−
1

N

N∑
k=1

m∑
i=1

log2

(∑x∈χi
bi
k

exp (− |yk−x|
2

σ2 )

πσ2 PX(x)

∑
x∈χ

exp (− |yk−x|
2

σ2 )

πσ2 PX(x)

)
.

(2.49)
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2.2.2 Probabilistic Shaping

PS is to change the uniform distribution of a constellation (usually PAMs or

QAMs) to a non-uniform distribution such that AIR increases. To find the

optimal non-uniform distribution, consider the following AWGN channel:

Y = ∆X +N, (2.50)

where ∆ is a positive scalar that adjusts the average symbol energy, and N

is a circularly symmetric Gaussian noise with zero mean and unit variance so

that E{|∆ ·X|2} represents the average SNR at the receiver, i.e.,

E{|∆ ·X|2} = SNR. (2.51)

[28] shows that distributions from the family of the Maxwell–Boltzmann (MB)

distribution are capable of maximizing entropy subject to power constraint

(2.51). MB distributions have the following form:

PX(xi) =
exp (−λ|xi|2)∑M
j=1 exp (−λ|xj|2)

, (2.52)

where λ is the parameter of the MB distribution and controls the entropy rate.

For a fixed λ, we always compute ∆ such that power constraint (2.51) holds.

By making ∆ dependent on λ, we formulate the symbol-wise PS problem as

follows: for a set of constellation points χ and shaping SNR γ (the SNR value

in which we want to maximize AIR), we solve

λ∗ = argmax
λ

RSMD(χ, PX , γ(χ,PX)),

subject to:
∑
x∈χ

PX(x)× |∆ · x|2 = γ(χ,PX).
(2.53)

Note that depending on the communication channel, shaping SNR γ can de-

pend on the modulation format (in Section 2.1, we discussed that this fact

holds for the fiber channel). Also, the bit-wise PS problem is formulated as

follows: for a set of constellation points χ, binary labeling L, and shaping SNR

γ, we solve

λ∗ = argmax
λ

RBMD(χ,L, PX , γ(χ,PX)),

subject to:
∑
x∈χ

PX(x)× |∆ · x|2 = γ(χ,PX).
(2.54)
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Note that in most of the PS problems, square QAMs are selected as the con-

stellation χ is (2.53) and (2.54). Since the optimal binary labels of QAMs are

already known (Gray labels for square QAMs exist), the main focus is on solv-

ing (2.54) rather than (2.53). To achieve the whole gain that (2.53) suggests,

non-binary labels are required which makes implantation of symbol-wise-based

PS systems extremely complicated. Hence, in this thesis, we concentrate on

(2.54) for solving the PS problem.

2.2.3 Probabilistic Amplitude Shaping (PAS): An Im-
plementation of PS

One of the main challenges of PS is to design a transmitter that both shapes

the probability of the uniform data and applies a forward error correction

(FEC) code on the transmitting data. In order to ideally implement PS and

an FEC algorithm, PS and FEC must be applied on data simultaneously,

otherwise, either the optimal PX changes to another probability mass function

(PMF) or error bursts happen after PS decoder [29]. Authors in [30] solve

this problem by proposing the idea of probabilistic amplitude shaping (PAS).

PAS originally was proposed for PAM constellations. Hence, to use PAS for

square QAMs, the PAS architecture must be employed for the in-phase and

quadrature components of the square QAMs independently.

The PAS architecture is based on two observations:

• Amplitude-Sign Factorization: Since the MB distribution depends on

the amplitude of the points and the PAM points are symmetric around

zero, we can rewrite (2.52) as follows:

PX(xi) = PA(|xi|)× PS(sign(xi)), (2.55)

where PA(·) and PS(·) are PMF of the amplitude and sign of the PAM

points, respectively. Since points are symmetric around zero, the ampli-

tude and sign of a point are stochastically independent, and the sign of

the points is uniformly distributed:

PS(+1) = PS(−1) =
1

2
. (2.56)
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• Uniform Check Bit Assumption: The second observation corresponds

to the distribution of the redundant bits of a binary code. Assuming

that the systematic generator matrix of an (n, k) binary code has the

following form:

G = [Ik|P], (2.57)

one can show that the distribution of the n−k redundant bits is uniform

since they are modulo-two sums of k data bits [30]. Note that in (2.57),

Ik is a k×k identity matrix, P is the parity matrix, which is a k×(n−k)

matrix.

Based on these two observations, the encoding procedure of PAS is as

follows: consider the transmission of nc symbols of a 2m-PAM. Since the am-

plitude and sign of the PAM points are independent, we can independently

label the 2m−1 amplitudes and the 2 signs by binary strings as follows:

A 7→ b(A) ∈ {0, 1}m−1,

S 7→ b(S) ∈ {0, 1}.
(2.58)

If we use a systematic
(
n = mnc, k = (m − 1)nc

)
binary code, we can shape

distribution of data as follows (the encoding procedure is provided in Fig. 2.6):

1. The discrete memoryless source A generates i.i.d amplitudes A1, · · · , Anc
whose PMF is equal to PA(·).

2. The (m−1)nc bits of the generated amplitudes are determined based on

b(Ai).

3. The nc redundant bits of the (m− 1)nc bits are computed based on the

parity matrix P.

4. Signs of the nc redundant bits are determined using the inverse of b(Si).

5. The generated amplitudes Ais are multiplied by the corresponding signs

Sis, and then, they are scaled by ∆ and transmitted.

According to the uniform check bit assumption, the probability of signal xi in

Fig. 2.6 is equal to PA(ai)× 1
2
, which is equal to PX(xi) in (2.55). As a result,

the distribution of the transmitted data is MB.
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Δ

𝑆1, ⋯ , 𝑆𝑛𝑐

Figure 2.6: The PAS architecture for probabilistic shaping [30]

In general, PAS-based PS provides much higher achievable information

rates compared to GS [9], however, implementation of PS is challenging. PS

is typically implemented by distribution matchers (DM) (the discrete mem-

oryless source A in Fig. 2.6) which require long block lengths to provide the

expected AIR. Unfortunately, the hardware implementation of DM for long

block lengths is a significant challenge [31]. Consequently, the imperfect im-

plementation of DM decreases the performance of the PS systems [32]. In

addition, other drawbacks of PS are as follows: (i) they experience error prop-

agation after the distribution de-matcher [29]; and (ii) they incur high com-

plexity due to applying the multiple bit-to-symbol (B2S) and symbol-to-bit

(S2B) mappings at the transceiver [30].

2.2.4 Geometric Shaping

GS is a technique that increases AIR by changing the position of the equiprob-

able constellation points, i.e., PX(x) = 1
M

. As a result, the GS problem can

be formulated as follows: for a set of constellation points χ, binary labeling L,

and shaping SNR γ, we try to solve:

χ∗ = argmax
χ

RSMD(χ, γ(χ)),

subject to:
1

M

∑
x∈χ

|x|2 = 1,
(2.59)

for the symbol-wise problem, and

χ∗,L∗ = argmax
χ,L

RBMD(χ,L, γ(χ)),

subject to:
1

M

∑
x∈χ

|x|2 = 1,
(2.60)
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for the bit-wise problem. In (2.59), there is no need to find labels of the points

because RSMD informs us of the maximum transmission rate at which error-free

communication is possible. Meaning that RSMD assumes the ideal detection

rule.

To solve (2.59), for a D-dimensional M -point constellation, we need to

search in a D-dimensional space and pick the best set of M points in terms

of MI. Consequently, there are D ×M unknown variables to be determined.

Considering the fact that (2.59) is non-convex [9], solving this optimization

problem becomes extremely complicated, especially for large values of M .

Moreover, to solve (2.60), in addition to the position of the points, the corre-

sponding binary labels must be found, which results in D× (M + 1) unknown

variables.

Compared to PS, GS needs high-resolution digital-to-analog and analog-to-

digital converters. Also, in GS, there is a gap between the mutual information

and generalized mutual information rate due to the non-Gray-mapping [23],

[27]. However, GS is more capable of mitigating fiber non-linear effects than

PS [23], [33], [34]. Hence, GS has attracted a lot of interest in recent years

[23], [26], [27], [33], [35]–[37].

2.2.5 Hybrid Probabilistic-Geometric Shaping

As mentioned in the previous sections, in GS, there is a gap between the

MI and GMI rate due to the non-Gray-mapping. In PS transmission sys-

tems, which are based on the PAS architecture, there is a rate loss at the

distribution matcher block due to using finite blocklengths. To compensate

for these losses, one can employ both PS and GS, which is known as hybrid

probabilistic-geometric shaping (HPGS). Hence, HPGS can be formulated for

bit-wise shaping as follows: for a set of constellation points χ, binary labeling

L, PMF equals to MB distribution with parameter λ, and shaping SNR γ, we

try to solve:

χ∗,L∗, λ∗ = argmax
χ,L,λ

RBMD(χ,L, PX , γ(χ,PX)),

subject to:
∑
x∈χ

PX(x)× |∆ · x|2 = γ(χ,PX).
(2.61)
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Note that since PS is used in HPGS, same as PS, we select RBMD as the AIR

of the communication system.

2.2.6 Related Works

Here, we briefly review some of the recent studies on constellation shaping in

the literature.

PS is employed in the fiber channel in [24], [29]. Both studies find the

optimized λ for the AWGN channel, and then, the obtained PMF is studied

over the fiber channel. Optimization results of [24] for the 64-QAM show that

the probabilistic-shaped 64-QAM is capable of providing GMI gains as high

as 0.35 bits/4D-symbol and system reach increases as high as 400 km over

64-QAM.

In [23], a class of Gaussian-like constellation points is introduced and stud-

ied over a 100-km fiber-optics transmission system. [23] proposes an iterative

algorithm for maximizing MI of M -QAM modulations. In this algorithm, the

location of the M constellation points is initialized with the position of the

regular M -QAM constellation points, then, a symbol sequence following the

Gaussian distribution is generated (in ASE noise limited optical fiber channels,

the optimal source distribution is a two-dimensional Gaussian distribution),

and the generated sequence is distributed into M clusters based on the Eu-

clidean distance from the current constellation points. After that, the new

positions are equal to the average central positions of the labeled symbols.

These steps are repeated until the algorithm converges. MI performance as

a function of optical fiber length was calculated for 8-QAM, 16-QAM, and

32-QAM. In the case of 8-QAM, at the MI value of 2.5 bits/symbol, the op-

timized 8-QAM provides 700 km reach improvement over regular 8-QAM. In

the simulation of 16-QAM, the optimized 16-QAM achieved a gain of 300 km

compared with the regular 16-QAM when the MI is equal to 3.2 bits/symbol.

Also, in the 32-QAM scenario, when the MI value is 4 bits/symbol, the reach

improvement of 100 km was achieved by the optimized 32-QAM.

The pairwise optimization (PO) algorithm [38] is one of the ways to solve

the GS problem. Authors in [38] show that if a zero mean and an average power
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constraint is concerned, it is not possible to solve the GS problem by adjust-

ing the position of only a single constellation point, but by taking any pair

of points and moving them simultaneously, we can find the optimum position

of the two constellation points, while the mentioned constraints are satisfied.

Moreover, to satisfy the zero mean and average power constraints, the selected

pair of points must be located on two different circles [38]. Hence, the problem

of searching over a continuous two-dimensional plane is reduced to searching

over a circle. Therefore, the steps of the PO algorithm are to 1) configure an

initial constellation satisfying the zero mean and average constraint, 2) ran-

domly select a pair of points, 3) calculate the constrained circles, and 4) find

the optimum positions on the constrained circles. Steps 2-4 are repeated until

the constellation stabilizes. In [27] and [26], PO is used to maximize mutual

information of 64 and 32-point constellations, respectively. Simulations of [26]

for an optical fiber link show that at an SNR value of 15 dB, the MI-optimized

and GMI-optimized GS modulations achieve gains of 0.33 bits/symbol and

0.2 bits/symbol compared with 64-QAM, respectively. Also, in [27], by tak-

ing advantage of the pairwise optimization algorithm and a quasi-Gray bits

mapping, the GMI optimization problem was solved for 32-point constellations

over a nonlinear optical fiber link, and a gain of 0.15 bits/symbol compared

with 32-QAM was achieved. Also, [35] employs PO to minimize the bit error

rate of 8 and 32-point constellations. In [39], PO is combined with the binary

switching algorithm (BSA)[40] to maximize generalized mutual information of

16, 64, and 256-point constellations.

In [41], probabilistic fold shaping (PFS) [42] is used to design a probabilistic-

geometric-shaped 32-QAM. PFS is originally used for shaping PMF of non-

square QAM constellations. However, the authors in [41] employ PFS to shape

both geometry and probability of 32-ary constellations. In a PFS-based N -fold

rotationally symmetrical QAM, the log2(N) bits determining the fold index

yield the uniform distribution, which can be used to carry the parity-check

bits after FEC encoding. The authors in [41] assume the 4-fold condition

on the position of the constellation points. As a result, only the position of

the constellation points located on the first quadrant is required to be opti-
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mized. After finding the optimal location of the first quadrant points, they

are mirrored with respect to the x and y-axis to obtain the complete con-

stellation. After that, the PS scheme can be applied to achieve an optimized

probabilistic-geometric-shaped 32-QAM (the MB distribution is assumed on

the constellation). Results of [41] show that the optimized constellation out-

performs 32-QAM by approximately 0.35 bits/4D-symbol. Also, the optimized

constellation is capable of extending the reach of 32-QAM by more than 500km.

In [42], arbitrary probabilistic shaping (APS) scheme is introduced. APS is

suitable for any geometric-shaped constellation. However, the main drawback

of APS is that the symbols generated by APS do not yield an MB distribution.

The results of studying the APS scheme over the fiber channel show that the

probabilistic-geometric-shaped 32QAM outperforms 32-QAM in terms of bit-

error rate by 0.9 dB. Also, results of [42] show that APS cannot outperform

probabilistically-shaped QAM constellations in low-transmission-rate regimes

[42].

The main drawback of most of these algorithms is that they optimize the lo-

cation of the constellation points for the AWGN channels. Then, the obtained

constellations are studied over fiber-optics channels. Since the optimization is

for the AWGN channel, the shaped constellations may introduce much higher

NLI noise (NLIN) to the system than the constellations that are shaped specif-

ically for the fiber channel [43]. Consequently, in most cases, the best possible

shaping gain is not achieved. Moreover, in these algorithms, since there is

no constraint on the position of constellation points (each point moves freely

during the optimization process), analyzing the pattern of the location of the

obtained points remains a challenge. By assuming and utilizing a model for the

position of the constellation points, one can simplify the process of finding the

pattern of the optimal points and decrease the complexity of the optimization

problem as well.
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2.2.7 Overview of Proposed Solutions to Constellation
Shaping

Amplitude-phase shift keying (APSK) modulations have a good potential for

GS. The reason is that a well-designed APSK can properly approximate a

Gaussian source [44]. However, properly designing APSK constellations is a

challenge as APSKs have several parameters. In [45], using the method of

non-uniformly assigning the constellation points [46], an equation for the op-

timal radii of APSK rings for the AWGN channels is obtained. This equation,

however, does not provide the other optimal parameters of APSK points.

In this thesis, unlike previous work which optimize the constellations for the

AWGN channel and use it for the fiber, we directly maximize the symbol-wise

MI rate of the constellations for the fiber optic channel based on the EGN-

model of fiber. In fact, we optimize various APSK constellations for both the

AWGN and non-linear fiber channels and compare the MI performance of the

optimized APSKs with other GS methods to demonstrate the superiority of

our optimization scheme.

For the fiber channel, we shape APSK constellations at the maximum

modified SNR of the system. By doing so, we maximize the MI rate while

the impacts of shaping on NLIN are considered. Our results indicate that

when we optimize APSK constellations specifically for the fiber channel, more

improvement in the mutual information is achieved compared to optimizing

APSK points for the AWGN channel and then using them on the fiber chan-

nel. Also, by comparing the mutual information performance of the optimal

constellations with the widely used QAM constellations, we observe that the

optimized APSK constellations can achieve much higher rates on both the

AWGN and the fiber channel. These results are achieved by first formulating

the mutual information maximization problem in the form of an optimization

problem with a small number of optimization variables. And then efficiently

solving this problem using the particle swarm optimization (PSO) [47].

In addition, by using the mutual information formula, we obtain an equa-

tion that results in the optimal radius of the APSK rings. Using this equation,
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we analyze how the optimal radius of APSK rings are changing for both the

AWGN and the non-linear fiber channels. We show that for short fiber links,

optimized APSKs are close to those optimized for AWGN; however, when the

fiber length increases, the radius of rings grows slower than those of the AWGN

channel.

In addition to our GS method, we propose an HPGS method for the non-

linear fiber channel based on the PFS architecture. We optimize the position

and PMF of the points to maximize the GMI rate while the impacts of shap-

ing on NLIN are considered. Using our method, we shape 32 and 64-point

constellations for the fiber channel. Our reported GMIs outperform that of

both QAMs and probabilistic-shaped QAMs in all scenarios. Moreover, our

results show that constellations shaped for the fiber channel have higher GMI

than constellations shaped for the AWGN channel.
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Chapter 3

Geometric Shaped
Constellations for the Fiber
Channel

3.1 Introduction

GS is an efficient method to increase the AIR of the fiber channel. As men-

tioned in Chapter 2, implementation of GS is less complicated compared to PS.

Moreover, geometrically shaped constellations are much more capable of miti-

gating fiber non-linear effects than the probabilistically shaped ones [23], [33],

[34]. Despite the advantages of GS over PS, solving the optimization prob-

lem of (2.59) is challenging since it is non-convex [9]. However, putting some

constraints on the position of the constellation points may reduce the opti-

mization complexity significantly. In order to decrease the complexity burden,

in this chapter, we assume that the constellation points are located on some

rings. Constellations that consist of a few rings are known as amplitude-phase

shift keying (ASPK). In the following, we show that APSK optimization is

very efficient and that when we optimize APSK constellations, we outperform

existing GS algorithms.

3.2 APSK Constellations

APSK constellations consists of R concentric rings, and on each ring, uniformly

spaced phase shift keying (PSK) points are located. We can formulate an M -
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Figure 3.1: An example of a 32-APSK constellation with n1 = 6, θ1 = π
6
,

n2 = 11, θ2 = 13π
110

, n3 = 15, and θ3 = π
10

.

APSK constellation set as follows [48]:

χAPSK =



r1 exp

(
j
(

2π
n1
i+ θ1

))
i = 0, · · · , n1 − 1

r2 exp

(
j
(

2π
n2
i+ θ2

))
i = 0, · · · , n2 − 1

...

rR exp

(
j
(

2π
nR
i+ θR

))
i = 0, · · · , nR − 1

, (3.1)

where nk, rk, and θk are the number of constellation points, radius, and phase

offset of the k-th ring, respectively. Also,
∑R

k=1 nk = M . Fig. 3.1 provides a

demonstration of a 32-APSK based on (3.1), which consists of 3 rings.

Optimizing an M -APSK constellation according to (2.59) is equivalent to

optimizing the parameters nk, rk, and θk for k = 1, · · · , R. Hence, to simplify

the mathematical representation of (3.1), we revise it as follows:

~χAPSK =
[
n1, r1, θ1︸ ︷︷ ︸

ring 1

, n2, r2, θ2︸ ︷︷ ︸
ring 2

, · · · , nR, rR, θR︸ ︷︷ ︸
ring R

]
. (3.2)

Considering (3.2), we substitute ~χAPSK with χ in (2.59). By doing so, for an

M -point constellation, the number of optimization variables of (2.59) changes
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from M complex numbers to 3R real numbers, which is a considerable reduc-

tion. Moreover, the complexity can be further decreased by using equation

n1 = M −
∑R

k=2 nk and by setting θ1 = 0. By doing so, we remove the two

unknowns n1 and θ1 from (3.2).

Since the optimization problem of (2.59) is non-convex [9], using stochas-

tic optimization algorithms is justified. Among many stochastic optimiza-

tion algorithms, particle swarm optimization (PSO) [47] is a well-known ap-

proach that is computationally efficient and robust against its hyperparame-

ters. Moreover, it has a good potential to quickly converge and escape from

local maximums [49], [50]. Due to these advantages, in this thesis, we use PSO

to find the optimized ~χ∗APSK.

3.3 APSK Optimization Using PSO Algorithm

In PSO, we place several agents, or the particles, in the search space of the

objective function. In each iteration, each particle, ~an, computes the value of

the objective function at its current location and moves in the search space

according to a speed vector. The speed vector, ~vn, of each particle depends on

the history of its best-found location, ~pbestn , and the best-found location among

all particles, ~gbest. After each particle moved based on the corresponding speed

vector, the value of the objective function at the new location is computed,

and the current location is replaced with the new location. Here, we update

the speed vector ~vn as follows:

~vn(i+ 1) = w(i)⊗ ~vn(i) + ~U1 ⊗ (~pbestn (i)− ~an(i)) + ~U2 ⊗ (~gbest(i)− ~an(i)),

(3.3)

where w(i) is the adaptive weight of ~vn(i) at the i-th iteration. Also, ~U1 and

~U2 are D-dimensional uniformly distributed random vectors in the intervals

(0, u1) and (0, u2), respectively, and they determine the amount of movement

in the direction of ~pbestn and ~gbest. Note that ⊗ represents the element wise

multiplication of vectors.

Based on our problem definition in Chapter 2, we aim to find the optimal

vector ~χAPSK in terms of RSMD. As a result, we use (2.41) as the objective
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function in the PSO algorithm and try to maximize it. In addition, since

we removed n1 and θ1 from the unknowns of (3.2), the search space becomes

a (3R − 2)-dimensional space. According to the defined search space and

objective function, we present our method to optimize ~χAPSK in Algorithm 1,

where Ni and Np are the number of iterations and particles, respectively.

Moreover, the adaptive weight w(i) is linearly decreased from its maximum to

its minimum. Note that in the computation of RSMD(~an(i), γ(~an(i))), we round

the value of nk to the nearest integer number, and we scale the radii if energy

of the constellation is not equal to one. Also, note that since the shaping SNR,

γ, depends on the constellation points, γ must be computed for each particle

separately.

The procedure of MI maximization for APSK constellations is provided

in Algorithm 1; however, the value of hyperparameters are not determined.

These hyperparameters include Ni, Np, wmax, wmin, u1, and u2. In addition,

the upper and lower bound of ~χAPSK entries and the maximum number of rings

must be determined. In this thesis, we assume that the maximum number of

rings is 7, i.e., R = 7, which makes the search space a 19-dimensional space.

We set the minimum value of all entries of ~χAPSK zero. Also, the maximum

values of nk, rk, and θk are set M , 3(
√
M−1)√

2
3

(M−1)
(three times the maximum am-

plitude of the M -QAM constellation), and 1.99× π, respectively. The bounds

of the search space entries are provided in Table 3.1. Moreover, for hyperpa-

Table 3.1: Bounds of ~χAPSK Entries

Parameter Minimum Value Maximum Value

nk 0 M

rk 0 3(
√
M−1)√

2
3

(M−1)

θk 0 1.99× π

rameters of Algorithm 1, we use 150, 500, 0.9, 0.2, and 2 for Np, Ni, wmax,

wmin, u1, and u2, respectively. We obtained these values by performing several

experiments on AWGN and fiber channel. In these experiments, we analyzed

the convergence speed of PSO as well as its capability to escape from local

optimums, and based on our analysis, we chose the value of hyperparameters
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Algorithm 1 PSO Algorithm for MI Maximization

Output: optimized ~χAPSK

1: Initialize the position vector of all particles randomly between their lower
and upper bound.

2: Initialize the speed vector and ~pbest of all particles with zero vectors, and
set the corresponding MI value to −∞.

3: Initialize the position vector of ~gbest with a zero vector, and set the corre-
sponding MI value to −∞.

4: for i = 1 : Ni do
5: for n = 1 : Np do
6: compute RSMD(~an(i), γ(~an(i))) using Equation (2.41), then set Rn

SMD =
RSMD(~an(i), γ(~an(i))).

7: if Rn
SMD > RSMD(~pbestn , γ(~pbestn )) then

8: set ~pbestn = ~an(i).
9: end if
10: if Rn

SMD > RSMD(~gbest, γ(~gbest)) then
11: set ~gbest = ~an(i).
12: end if
13: end for
14: Set w(i) = i×(wmax−wmin)+Ni·wmin−wmax

Ni−1
.

15: for n = 1 : Np do
16: Compute ~vn(i+ 1) using Equation (3.3).
17: Set ~an(i+ 1) = ~an(i) + ~vn(i+ 1).
18: if Any entry in ~an(i+1) is larger/smaller than the upper bound/lower

bound then
19: set that entry of ~an(i+ 1) to its upper bound/lower bound.
20: end if
21: end for
22: end for
23: return ~gbest
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such that by using a reasonable number of particles, an acceptable convergence

speed is achieved. Hyperparameters of Algorithm 1 are provided in Table 3.2.

Table 3.2: Hyperparameters of Algorithm 1

Hyperparameter Value

Np, number of particles 150
Ni, number of iterations 500
wmax 0.9
wmin 0.2
u1 2
u2 2

Although Algorithm 1 finds the near-optimal APSK constellation, it does

not provide any mathematical intuition onto how the entries of ~χAPSK change

in different situations. Since the radius of rings is one of the most important

parameters that impact the minimum distance between constellation points,

among entries of ~χAPSK, we now focus on forming an equation for the radius of

rings, and by using this equation, we analyze how the optimal radius of rings

changes for both AWGN and fiber channel in Section 3.5 and Section 3.6.

3.4 Analysis of the Radius of APSK Rings

In the following, we find an equation that, subject to some approximations, re-

sults in obtaining the near-optimal rks for the given sets {nk}Rk=1 and {θk}Rk=1.

To achieve this equation, we need to find a closed-form equation that approxi-

mates MI. As mentioned before, by using the mismatched decoding technique

and AWGN auxiliary channel, a lower bound for MI can be found (see (2.37)).

Without loss of generality, we can formulate an AWGN channel as follows:

Y =
√

SNRX +N, (3.4)

where E
{
|X|2

}
= 1, and N is a circularly symmetric Gaussian noise with zero

mean and unit variance, i.e., N ∼ CN (0, 1) so that SNR represents the average

signal-to-noise ratio at the receiver. Considering (3.4), we can rewrite (2.37)
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as follows:

RSMD = EX,Y
{

log2

( 1
π
e−|Y−

√
SNRX|2∑M

i=1
1
π
e−|Y−

√
SNRxi|2PX(xi)

)}
. (3.5)

By substituting (3.4) in (3.5) and setting PX(xi) = 1
M

and averaging over X,

RSMD can be written as:

RSMD = log2 M−

1

M
EN
{ M∑

j=1

log2

( M∑
i=1

e−|
√

SNR(xj−xi)+N |2+|N |2
)

︸ ︷︷ ︸
loss

}
. (3.6)

The loss term shown in (3.6) can be used as a reference objective function

to maximize RSMD, i.e., minimizing the loss term is equivalent to maximizing

RSMD; however, this minimization is not feasible since the loss term depends

on noise N . Here, we solve this problem through an approximation in the

exponent of the exponential term. By expanding the exponent in (3.6), we

have:

−|
√

SNR(xj − xi) +N |2 + |N |2 = −SNR|xj − xi|2−

2
√

SNR Re{(xj − xi)N}.
(3.7)

The first term in (3.7) will be the dominant term according to the dominated

convergence theorem [51]. Moreover, in GS problems, the shaping SNR is

usually larger than 10 dB; hence, we can ignore the second term of (3.7). We

further discuss the accuracy of this approximation in the next two sections.

By doing so, we define the approximated loss function as follows:

loss function (LF ) =
M∑
j=1

log2

( M∑
i=1

e−SNR|xj−xi|2
)
. (3.8)

As a result, the problem of finding the optimal set {rk}Rk=1 for the given sets

{nk}Rk=1 and {θk}Rk=1 is equivalent to find the set {rk}Rk=1 such that (3.8) be-

comes minimum. The search space of this problem is an R-dimensional space,

which cannot be solved analytically. However, proposing and using a model

for the radius of rings can both decrease the complexity of the problem and

give intuition about the optimization process.
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To approximate a Gaussian source, we consider two regimes: low-SNR

regimes and high-SNR regimes. In low-SNR regimes, the variance of the opti-

mal Gaussian source is low, which results in a narrow Gaussian distribution.

Hence, more rings should be placed at low-power levels than high-power ones.

To do so, in low-power levels, the ring radius must grow slowly with the ring

number, but for high-power levels, the radius must grow much faster. In

other words, the ring radius increases super-linearly with the ring number. In

high-SNR regimes, on the other hand, a broad Gaussian distribution source

is the optimal source. To approximate a broad Gaussian distribution using a

finite-size APSK, rings should be distributed such that the APSK resembles an

almost-uniform distribution. To do so, depending on the number of points lo-

cated on each ring ({nk}Rk=1), the ring radius can increase sub-linearly, linearly,

or super-linearly with the ring number. To preserve these three behaviors, we

assume that the growth of the ring radius with the ring number follows the

following pattern:

rk ∝ kτ k = 1, 2, · · · , R, (3.9)

where parameter τ captures the speed of growth of the ring radius with the ring

number. However, this pattern does not include the case that one constellation

point is placed at the origin. This can be solved by starting the rings index

from zero, i.e., k = 0, 1, 2, · · · , R − 1. In other words, if one constellation

point is placed at the origin (n1 = 1), the rings index start from 0 to R − 1,

otherwise, they start from 1 to R. Hence, we update (3.9) to get:

rk = r0(k − Γ)τ k = 1, 2, · · · , R. (3.10)

In (3.10), parameter Γ is equal to one if one constellation point is located at

the origin, i.e., Γ = 1 if n1 = 1, otherwise Γ = 0. Also, r0 is a coefficient to

adjust the average symbol energy of the constellation points. In the next two

sections, we demonstrate the success of model (3.10).

We can analyze the behavior of rks based on (3.10) in four different cases:

• τ = 0: radius of all rings is equal to r0, which results in an M -PSK

constellation.
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• 0 < τ < 1: sub-linear behavior, the inner rings get loosen, and the outer

rings get compacted.

• τ = 1: linear behavior, the increase in the radii is completely linear.

• τ > 1: super-linear behavior, the inner rings get compacted, and the

outer rings get loosen.

By finding the optimal value of τ such that (3.8) becomes minimum, we show

that the proposed model (3.10) is able to estimate the optimal radii with high

accuracy.

To find the optimal value of τ , first, we rewrite (3.8) according to the model

(3.10):

LF =
∑

1≤k≤R
0≤j≤nk−1

log2

( ∑
1≤k′≤R

0≤i≤nk′−1

e
−γ.r2

0 .|dkj,k′i
|2
)
,

(3.11)

where γ is the shaping SNR, and dkj ,k′i is the normalized distance to r0, i.e.:

|dkj ,k′i |
2 = (k − Γ)2τ + (k′ − Γ)2τ − 2[(k − Γ)(k′ − Γ)]τ cos (ϕkj − ϕk′i), (3.12)

where

ϕkj =
2π

nk
j + θk , ϕk′i =

2π

nk′
i+ θk′ . (3.13)

To compute the optimal τ , we solve:

∂LF

∂τ
= 0, (3.14)

where ∂LF
∂τ

is provided in (3.15). The complete derivation of (3.15) is provided

in Appendix A.

∂LF

∂τ
=

∑
1≤k≤R

0≤j≤nk−1

( ∑
1≤k′≤R

0≤i≤nk′−1

( R∑
k′′=1

nk′′

M
(k′′ − Γ)2τ ·

[
(
∂γ

∂τ
− 2γ loge(k

′′ − Γ))|dkj ,k′i |
2

+ γ ·
∂(|dkj ,k′i |

2)

∂τ

])
× e

−
γ·|d

kj,k
′
i
|2∑R

k′′=1

nk′′
M

(k′′−Γ)2τ ×
(
− loge 2×

∑
1≤k′≤R

0≤i≤nk′−1

e
−

γ·|d
kj,k
′
i
|2∑R

k′′=1

nk′′
M

(k′′−Γ)2τ

)−1
)
.

(3.15)
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Also, notice that the term ∂γ
∂τ

in (3.15) considers the impact of the constellation

points on SNR, and it depends on the type of communication channel. For

instance, SNR of the AWGN channels does not depend on the constellation

points, which yields ∂γ
∂τ

= 0. In the case of non-linear fiber channels, on the

other hand, the modified SNR does depend on the constellation points, which

results in ∂γ
∂τ
6= 0 (we discuss this fact in more depth in Section 3.6).

In the next two sections, we apply Algorithm 1 on two well-known com-

munication channels, the AWGN and non-linear fiber channels, and show that

the PSO-based algorithm outperforms other GS methods in terms of both MI

performance and convergence speed. Also, we use (3.15) to analyze the be-

havior of the changes in the optimal radius of rings for different experiment

setups.

3.5 APSK Optimization for the AWGN chan-

nel

In this section, first, we optimize 8, 16, 32, and 64-APSK constellations for the

AWGN channels using Algorithm 1, and then, we compare them with QAM

constellations and other GS methods in the literature.

3.5.1 MI Performance of the Optimized APSK Constel-
lations

Since the optimizations are performed for AWGN channels, we assume that the

shaping SNR γ is constant during the optimization process. Here, the values

of shaping SNR for 32 and 64-APSKs are 14 dB and 15 dB, respectively. The

MI performances of the optimized constellations as well as their shape are

provided in Fig. 3.2. In all cases, the optimized APSKs outperform the QAM

constellations for all values of SNR. In the case of 32-point APSK, Algorithm 1

converged to a structure with 4 rings. The numbers of points located at each

ring are 1, 6, 11, and 14. For MI rates between 3.7 and 4.1 bits/symbol, this

constellation achieves about 0.25 dB SNR gain over 32-QAM and maximum

shaping gain of 0.069 bits/symbol (0.26 dB SNR gain) at an SNR of 11.62 dB.
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Figure 3.2: The MI performance of the optimized APSKs (using Algorithm 1)
versus SNR for (a) 32-point APSK with shaping SNR of 14 dB and (b) 64-point
APSK with shaping SNR of 15 dB.
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For the 64-APSK, the optimized structure consists of 5 rings with n1 = 2,

n2 = 12, n3 = 16, n4 = 17, and n5 = 17. The maximum shaping gain of

this constellation is 0.173 bits/symbol (0.6 dB SNR gain), which happens at

an SNR of 13.64 dB, and it provides approximately 0.59 dB SNR gain over

the 64-QAM for MI rates between 4.2 and 4.8 bits/symbol. Also, we optimize

8 and 16-point APSKs at shaping SNRs of 8 and 11.5 dB. For the 8-point

APSK, among 7 possible rings, Algorithm 1 selected a 2-ring APSK with

n1 = 1 and n2 = 7, with one point located at the origin. This optimized

8-APSK can provide the maximum shaping gain of 0.0592 bits/symbol at an

SNR of 7.88 dB. Note that in this thesis, star-8-QAM is selected as the 8-QAM

constellation. For the 16-point APSK, a 3-ring APSK with values of n1 = 1,

n2 = 6, and n3 = 9 has been selected. This constellation can achieve about

0.3 dB SNR gain over 16-QAM for MI rates between 2.8 and 3.2 bits/symbol

and provides the maximum shaping gain of 0.072 bits/symbol at an SNR of

9.11 dB.

In addition, the MI performances of the other APSKs and GS methods

published in the literature are provided in Fig. 3.2. We compare our optimized

APSKs with proposed 32 and 64-point APSKs of [52], [53] and APSKs of [54].

As results suggest, our optimized APSKs outperform other constellations in all

scenarios. Our 32 and 64-point APSKs outperform the APSKs of [52] and [53]

by 0.032 and 0.106 bits/symbol at SNR values of 14 and 15 dB, respectively. A

more detailed comparison of constellations is provided in the next subsection.

3.5.2 Comparison of Algorithm 1 with Other GS Meth-
ods

In this section, we compare Algorithm 1 with the recent GS methods in terms

of MI performance and convergence speed. Here, we analyze shaping gains of

the APSK constellations obtained from Algorithm 1, the Gaussian-like GS-

QAM constellations [23], constellations optimized using pairwise optimization

(PO) algorithm [26], [27], APSKs of [54], and APSKs with radius model of

[45]. Note that [45] provides only the near-optimal radius of the APSK rings;

hence, to compare our method with [45], we use {nk}Rk=1 and {θk}Rk=1 obtained
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Table 3.3: Comparison of Shaping Gain in the AWGN Channel

M SNR Algorithm 1 Gaussian-like
GS-QAM[23]

PO[26],
[27]

APSK[45]APSK[54]

8
7 dB 0.0568 0.0660 0.0589 0.0506 0.0568
8 dB 0.0592 0.0620 0.0550 0.0221 0.0592
9 dB 0.0551 0.0509 0.0450 0.0175 0.0551

16
10.5 dB 0.0655 0.0654 0.0421 0.0554 0.0536
11.5 dB 0.0546 0.0538 0.0358 0.0377 0.0416
12.5 dB 0.0406 0.0391 0.0273 0.0176 0.0259

32

13 dB 0.0638 0.0633 0.0546 0.0524 -0.1008
14 dB 0.0539 0.0436 0.0432 0.0296 -0.1416
15 dB 0.0407 0.0227 0.0292 0.0053 -0.1772

64

14 dB 0.1721 0.1609 0.1692 0.1652 0.1435
15 dB 0.1614 0.1419 0.1570 0.1430 0.1184
16 dB 0.1361 0.1124 0.1319 0.1067 0.0771

from Algorithm 1. In addition, the shaping gains are computed based on

∆MI = R∗SMD − R
QAM
SMD , where R∗SMD and RQAM

SMD are the MI rate of the shaped

constellation and QAM constellation, respectively. Table 3.3 provides the

shaping gains of Algorithm 1 and other mentioned methods. We consider

constellations of 8, 16, 32, and 64 points. For each constellation size, we

compare these methods at three values of SNR. These results show the success

of our optimized APSKs.

In addition to the MI performance, the convergence speed of Algorithm 1

must also be considered since it is an iterative method. Fig. 3.3 demonstrates

the convergence of Algorithm 1 for the optimized APSK constellations. For the

constellation size of 8, 16, 32, and 64, to make sure that a good constellation

is achieved, approximately 20, 50, 100, and 200 iterations are needed, respec-

tively. This indicates that the required number of iterations almost linearly

changes with the constellation size, which is much faster than PO algorithm

that needs roughly M2 iterations to converge to a good constellation [38].

3.5.3 Analysis of the Radius of APSK Rings

In this section, first, we explore the accuracy of Equation (3.15) and radius

model of (3.10) in computing the near-optimal radius of APSK rings. After

that, according to (3.15), we analyze how the optimal radius of rings are
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Figure 3.3: Convergence speed of Algorithm 1 for APSK constellations with
size of 8, 16, 32, and 64. The optimization is performed for the AWGN channel.
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changing for different values of SNR.

To validate (3.15) and (3.10), we compare the MI performance of the op-

timized APSK constellations obtained in Section 3.5.1 with constellations of

model (3.10), i.e., we use the optimized sets {nk}Rk=1 and {θk}Rk=1 that ob-

tained from Algorithm (1) to compute the near-optimal radius of rings at the

corresponding shaping SNRs according to Equation (3.15) and model (3.10),

then, we compare the MI performance of these two constellation to explore

the accuracy of (3.15) and (3.10). Notice that the values of shaping SNR are

the same as Section 3.5.1 and are equal to 11.5, 14, and 15 dB for 16, 32, and

64-APSKs, respectively. For the 8-point APSK, since the structure obtained

in Section 3.5.1 consists of two rings with one point at the origin, the optimal

radius of the second ring does not depend on τ . Hence, in this section, we do

not consider the optimized 8-APSK. The MI comparison of these two methods

are provided in Fig. 3.4. For 16, 32, and 64-point APSKs, the optimal value of

τ , according to (3.15), are 0.9502, 0.9862, and 1.1601, respectively. Based on

Fig. 3.4, model (3.10) is quite capable of computing the near-optimal radius

of APSK rings. In the case of 16-point APSK, model (3.10) strongly concurs

with Algorithm (1). For 32 and 64-point APSKs, there is a tiny gap between

the MI performance of Algorithm (1) and model (3.10), and the error between

these two methods is less than 0.4% and 1%, respectively.

Since the proposed model for the radius of APSK rings is strongly in agree-

ment with Algorithm (1), we can use this model to analyze how the optimal

radius of APSK rings changes for different values of SNR. To do so, we consider

the same sets {nk}Rk=1 and {θk}Rk=1 used in Fig. 3.4. Then, given these sets, we

compute the optimal values of τ for different channel SNRs. Fig. 3.5 provides

the optimal values of τ for SNR values between 5 and 20 dB. According to this

figure, for 32 and 64-point APSKs, τ is monotonically decreasing in SNR. For

16-point APSK, τ is monotonically decreasing in SNR < 10 dB, and for SNR

values of higher than 10 dB, τ increases with a very slow rate. As a result,

generally speaking, τ increases as the channel SNR decreases. In other words,

as the shaping SNR decreases, the optimized radius of APSK rings grows in a

more super-linear manner. This is completely in agreement with the fact that
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Figure 3.5: Optimal values of τ for 16, 32, 64-APSK constellations for the
AWGN channel.

in the low-SNR regimes, APSK points try to mimic a low-variance Gaussian

source.

3.6 APSK Optimization for the Non-Linear

Fiber Channel

In this section, we optimize APSK constellations for the enhanced Gaussian

noise (EGN) model [10] of the fiber channel. We also investigate the effects of

GS in reach increase and MI gain. Finally, we analyze how the optimal radius

of APSK rings changes in a fiber link and compare it with the AWGN channel.

As mentioned in Chapter 2, assuming all WDM channels are spaced equally

and all with the same modulation format, equal symbol rate, and launch power,

it can be shown that there is an optimal launch power P opt
ch at which the

modified SNR of (2.28) becomes maximum [15]. By substituting the optimal

power P opt
ch in (2.28), the maximum SNR can be obtained as follows [15]:

SNRmax
NL =

2

3
× 3

√
1

2 · P 2
ASE · η

. (3.16)
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3.6.1 Optimization Procedure for the EGN-Model

To optimize APSK constellations for the fiber channel based on the EGN-

model, we try to maximize MI at the SNR of (3.16), i.e., we set the shaping

SNR as follows:

γ = SNRmax
NL (χ). (3.17)

Considering (3.17), we observe that the shaping SNR depends on the constella-

tion χ in the fiber channel. Using the definition of (3.17), APSK constellations

are optimized for the fiber channel in a manner that increase the MI rate while

the impacts of shaping on the NLIN power are considered. Also, according to

(3.17), we can compute ∂γ
∂τ

, whose formula is provided in (3.18). Note that the

complete derivation of (3.18) is provided in Appendix A. Interestingly, based

on (3.18), the maximum value of (3.16) happens at τ = 0, which means that

PSK constellations introduce the least amount of NLIN into the system.

∂γ

∂τ
= − γ

3η
×

(
R∑
k=1

R∑
k′=1

nknk′ · loge

( k − Γ

k′ − Γ

)
· ((k − Γ)2(k′ − Γ))2τ

[6ηΨ

M2
· (k − Γ)2τ +

4(ηΦ − 9ηΨ)

M3
·

R∑
k′′=1

nk′′(k
′′ − Γ)2τ

])
×
[ R∑
k=1

nk
M

(k − Γ)2τ
]−4

(3.18)

According to (3.16), we optimize APSK constellations for the fiber channel

at the shaping SNR of (3.17). We discuss the results of the optimizations

in Sections 3.6.3, 3.6.4. Also, in Section 3.6.5, we analytically compute and

analyze the near-optimal radius of APSK for the fiber channel. Before that,

we define the system parameters in the next section.

3.6.2 System Parameters and Simulation Procedure

We simulate a multi-span fiber system with parameters of Table 3.4. APSK /

QAM symbols transmitted over all WDM channels, and x and y-polarization

are i.i.d with uniform distribution. The central channel is the channel-under-

test (CUT). Propagation of the signal over the fiber link is simulated using the

split-step Fourier method (SSFM). The fiber link is made up of identical spans.
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Table 3.4: System and Simulation Parameters

Parameter Value

Modulation format M -APSK/QAM
Polarization Dual-polarization
Symbol rate 32 GBaud
WDM channels 9
WDM spacing 40 GHz
Pulse shape Root-raised cosine (RRC)
RRC roll-off 0.01
Attenuation 0.22 dB/km
Dispersion 16.7 ps/nm/km
Non-linear coefficient 1.3 1/W/km
Span length 100 km
Amplification EDFA
EDFA noise figure 5 dB
SSFM step size 0.1 km
Oversampling factor 16
APSK/QAM symbols per WDM ch. 219

At the end of each span, the loss is exactly compensated for by an erbium-

doped fiber amplifier (EDFA), then, the ASE noise is added to the amplified

signal. At the receiver, the central channel is filtered, and the chromatic dis-

persion is compensated for. After that, the signal passes through the matched

filter, then, the filtered signal is downsampled to compute the received sym-

bols. Finally, for each polarization, the MI rate between the transmitted and

received symbols is computed according to the Monte Carlo simulations using

(2.42). To compute the total MI rate, we sum over MI of x and y-polarization.

3.6.3 Reach Increase from GS

In this section, we optimize polarization-multiplexed (PM) APSK constella-

tions at a specific distance (at the maximum modified SNR of that distance

according to (3.16)) and compare their MI performance with PM-QAM con-

stellations. We optimize 8, 16, 32, and 64-point PM-APSKs for spans 35

to 85 with a 10-span step, 15 to 55 with a 10-span step, 10 to 34 with an

8-span step, and 10 to 28 with a 6-span step, respectively. The MI perfor-

mances of the optimized PM-APSK constellations and PM-QAM according to

the EGN-model of fiber and SSFM simulations are provided in Fig. 3.6 and
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Figure 3.6: MI performance of the optimized PM-APSKs (using Algorithm 1)
versus span number for (a) 8-point PM-APSKs and (b) 16-point PM-APSKs.
Notice that the MI performance of the optimized PM-APSKs, and PM-QAMs
according to the SSFM simulations are shown with circle, square markers,
respectively.

Fig. 3.7. Based on Fig. 3.6 and Fig. 3.7, EGN-model is in good agreement with

the SSFM simulations. The maximum error between these two methods is less

than 2%, which shows that the EGN-model is a reliable tool for computing the

MI performance of the fiber channel. In Fig. 3.6 (a), the MI performances of

the optimized PM-8APSKs compared to the PM-star-8QAM constellation are

52



Figure 3.7: MI performance of the optimized PM-APSKs (using Algorithm 1)
versus span number for (a) 32-point PM-APSKs and (b) 64-point PM-APSKs.
Notice that the MI performance of the optimized PM-APSKs, and PM-QAMs
according to the SSFM simulations are shown with circle, square markers,
respectively.

provided. The MI rate of each optimized PM-APSK is shown within 10 spans.

For instance, if a PM-8APSK is optimized for span 55, we show its MI rate for

spans 50 to 60. For MI rates between 4.4 and 5.2 bits/4D-symbol, the opti-

mized PM-8APSKs give approximately a 600 km (12.0%) reach improvement

compared to PM-star-8QAM. For spans between 50 and 80, the shaping gain

53



of the optimized PM-8APSKs is almost 0.18 bits/4D-symbol. Also, according

to the insets of Fig. 3.6 (a), Algorithm 1 choose 2-ring APSKs for spans 30 to

90; however, for span 85, the APSK structure changes from (n1 = 1, n2 = 7)

to (n1 = 2, n2 = 6). This happens because the NLIN power increases with the

fiber length, and Algorithm 1 tries to reduce NLIN by placing more constel-

lation points in the low-power levels. In Fig. 3.6 (b), the MI performances of

the optimized PM-16APSKs are provided. For MI rates between 5.5 and 6.5

bits/4D-symbol, approximately a 300 km (8.0%) reach improvement over PM-

16QAM is achieved, and shaping gains of 0.17 bits/4D-symbol are obtained

for spans 35 to 55. According to Fig. 3.7 (a), optimized PM-32APSKs give

almost 200 km reach improvements over PM-32QAM for MI rates between 6.5

and 7.5 bits/4D-symbol. Also, our optimized PM-32APSKs provide shaping

gains of 0.17 bits/4D-symbol for spans 25 to 35. According to Fig. 3.7 (b), us-

ing optimized PM-64APSKs, approximately 200 km reach improvements over

PM-64QAM can be achieved for MI rates between 7.5 to 8.5 bits/4D-symbol

as well as shaping gains of 0.31 bits/4D-symbol for spans 15 to 30. Consider-

ing insets of Fig. 3.6 (b), Fig. 3.7 (a), and (b), similar to 8-point PM-APSKs,

as the fiber length increases, Algorithm 1 puts more points in the low-power

levels and less point in the high-power levels. Moreover, the radius of APSK

rings increases with ring number in a super-linear manner. We discuss these

changes more in-depth in Section 3.6.5.

3.6.4 MI Gain from GS

In this section, we discuss shaping gains of the optimized 8, 16, 32, and 64-point

PM-APSKs for spans 65, 35, 18, and 16, respectively. As well, we compare

the performance of the optimized APSKs with Gaussian-like GS-QAMs, PO-

based constellations, as well as the APSKs of [52]–[54]. Note that the shaping

SNR for these GS methods is set to the maximum modified SNR of the cor-

responding QAM constellation. In addition, we discuss the effects of GS on

NLIN power. The MI performances of the optimized PM-APSKs are provided

in Fig. 3.8 and Fig. 3.9 for launch powers between -6 dBm to 4 dBm. Re-

sults of the SSFM simulations and EGN-model are shown with markers and
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Figure 3.8: MI performance of the optimized PM-APSKs (using Algorithm 1)
and other shaped constellations versus the launch power for (a) 8-point con-
stellations at span 65 and (b) 16-point constellations at span 35. Note that
SSFM simulations are shown with markers.

dashed lines, respectively, indicating that EGN-model concurs with SSFM

simulations. According to Fig. 3.8 and Fig. 3.9, at the corresponding opti-

mal launch power, the optimized 8, 16, 32, and 64-point PM-APSKs provide
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Figure 3.9: MI performance of the optimized PM-APSKs (using Algorithm 1)
and other shaped constellations versus the launch power for (a) 32-point con-
stellations at span 18 and (b) 64-point constellations at span 16. Note that
SSFM simulations are shown with markers.

shaping gains of 0.1866, 0.1398, 0.1656, 0.3137 bits/4D-symbol over the PM-

QAM constellations. In addition, our optimized PM-APSKs outperform other

GS methods in all scenarios. Among PM 8, 16, and 32-point constellations,
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Gaussian-like GS-QAMs have the best performance among benchmark algo-

rithms, and our optimized PM-APSKs outperform them by 0.063, 0.054, and

0.031 bits/4D-symbol, respectively. For PM 64-point constellations, the PM-

64-point-PO-based constellation has the best performance among benchmark

algorithms, and our optimized APSK outperforms it by 0.009 bits/4D-symbol.

Also, one can observe the impact of GS on the NLIN power. Based on (3.16),

we can conclude that the maximum modified SNR is monotonically decreasing

in η. As a result, modulations with higher NLIN power have lower SNRmax
NL ,

or equivalently, have lower P opt
ch . According to Fig. 3.8 and Fig. 3.9, the opti-

mal launch power of PM-8APSK is higher than PM-star-8QAM, which shows

that the NLIN power has decreased due to GS. In the case of 16, 32, and 64-

point PM-APSKs, on the other hand, the optimal launch power is lower than

the corresponding PM-QAM optimal launch power, which shows that in these

cases, GS increases the NLIN power. To compare the shaped constellations in

terms of NLIN, we plot SNRNL for average launch powers between -1.5 dBm to

3 dBm. The results are provided in Fig. 3.10. As Fig. 3.10 indicates, the op-

timized PM-64APSK introduces lower NLIN to the system than PM-64-point

PO-based constellation, PM-64GS-QAM, and PM-64APSK of [54]. Although

PM-64APSK of [53] introduces the least amount of NLIN among the shaped

constellations, it does not provide MI gains as high as other shaped constel-

lations. In other words, PM-64APSK of [53] does not shape the geometry of

the constellation that much to be considered as a shaped constellation. Al-

gorithm 1, however, optimizes APSKs in a manner that the optimized APSK

both introduces low additional NLIN and provides very high MI gains. In

Fig. 3.10, the optimized PM-64APSK has almost 0.05 dB higher SNR than

PM-64-PO and almost 0.11 dB higher SNR than PM-64GS-QAM, and PM-

64APSK of [54].

3.6.5 Analysis of the Radius of APSK Rings

In the following, first, we validate the radius model of (3.10) for the fiber chan-

nel according to Equations (3.15) and (3.18). Then, we discuss the differences

between the AWGN and fiber channel in terms of the optimal radius of the
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Figure 3.10: Values of SNRNL of 64-point constellations at span 10.

APSK rings.

To validate (3.15), we compare MI performance of the constellations ob-

tained from Algorithm 1 with the same corresponding constellation but with

the radii obtained from (3.10). We use the sets {nk}Rk=1 and {θk}Rk=1 of the

optimized 8, 16, 32, and 64-point PM-APSK constellations for spans 85, 55,

34, and 28, respectively. The MI comparisons of Algorithm 1 and radius model

of (3.10) are provided in Fig. 3.11. For 8, 16, 32, and 64-point PM-APSKs,

the optimal value of τ , based on radius model of (3.10) and Equations (3.15)

and (3.18), is 1.6224, 0.9495, 0.9564, and 1.1065, respectively. The maximum

error between these two methods is less than 0.5%, which indicates that radius

model of (3.10) strongly concurs with Algorithm 1.

To compare the optimal τ of the fiber and AWGN channel, for each M -

APSK, we need to analyze identical sets of {nk}Rk=1 and {θk}Rk=1 in the fiber

and AWGN channel. To do so, we use sets {nk}Rk=1 and {θk}Rk=1 of optimized

8, 16, 32, 64-point PM-APSKs for spans 85, 15, 10, and 16 obtained in Sec-

tion 3.6.3, respectively. For 8, 16, 32, and 64-point APSKs, we compute the

SNRmax
NL at spans 5 to 85. Then, for each constellation, we calculate the optimal
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Figure 3.11: MI comparison between the PM-APSK constellations obtained
form Algorithm 1 and Equation (3.15) in the fiber channel.

Figure 3.12: Comparison between the fiber channel and AWGN channel in
terms of τ .
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values of τ for the AWGN channel at the shaping SNRs equal to the obtained

SNRmax
NL s. By plotting the optimal values of τ for the fiber and AWGN channel

in one figure, Fig. 3.12 is obtained. In the fiber channel, for all constellations,

τ is monotonically decreasing in SNRmax
NL (or equivalently, monotonically in-

creasing in span number), which shows that as the fiber length increases, the

optimized radius of APSK rings grows faster. Also, in the AWGN channel,

τ is monotonically decreasing in SNRmax
NL ; however, there are some differences

between the fiber and AWGN channel. Based on Fig. 3.12, for high values of

SNRmax
NL (for short fiber links), τ of the fiber and AWGN channel is almost

equal, which means that for short fibers, the AWGN and fiber channels are

similar. This was expected since, in the short fibers, ASE is dominant to

NLIN. For low values of SNRmax
NL , on the other hand, the difference between

the fiber and AWGN channel becomes more evident. In 8 and 16-point AP-

SKs, optimal values of τ of the AWGN channel are slightly greater than the

optimal τs of the fiber channel. For 32 and 64-point APSKs, the optimal val-

ues of τ of the AWGN channel are much greater than the fiber channel. Hence,

in general, the optimal values of τ for the AWGN channels are greater than

the fiber channel. This is because for the fiber channel, Algorithm 1 is more

cautious about increasing the radius of APSK rings in a super-linear manner.

In the fiber channel, if we set the radius of APSK rings exactly equal to the

radii optimized for AWGN channels, some constellation points are placed at

very high-power levels that results in a significant increase in the NLIN power.

Moreover, Fig. 3.12 clearly indicates that the constellations that are shaped

based on the AWGN channel are not appropriate to be used in the highly non-

linear regimes of the fiber channel. To substantiate this claim, we compare the

Kurtosis of the APSKs optimized for the AWGN and the fiber channel. The

Kurtosis of a constellation (let say X) is defined as follows:

µ4 =
E
{
|X − E{X}|4

}(
E
{
|X − E{X}|2

})2 . (3.19)

A larger µ4 means increased NLIN in the fiber [24], [55], [56]. Hence, we

expect that the APSKs optimized for the fiber channel have lower µ4 than the
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Figure 3.13: Kurtosis µ4 of optimized APSKs for the fiber channel (solid lines)
and the AWGN channel (dashed lines).

ones optimized for the AWGN channel. To show that, we compute µ4 of 8,

16, 32, and 64-point APSKs optimized for fiber and AWGN channels for spans

between 5 and 85. The results are provided in Fig. 3.13. Based on Fig. 3.13, as

the span number increases (NLIN increases), the difference between µ4 of the

optimized APSKs for the AWGN and fiber channel increases as well. Meaning

that at highly non-linear regimes of fiber, AWGN-based GS will result in higher

NLIN than EGN-based GS.
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Chapter 4

Hybrid Probabilistic-Geometric
Shaped Constellations for the
Fiber Channel

4.1 Introduction

In the previous chapter, we introduced a GS method that maximizes the MI

rate of the fiber channel. However, the MI rate can be achieved if the optimal

detection rule is employed. In most scenarios, the optimal detection rule of

a geometrically shaped constellation is hard to find, and the detection rule

of the BICM systems is employed instead. Consequently, in GS, there is a

gap between the mutual information and generalized mutual information rate

(the AIR of the BICM systems) due to employing sub-optimal detection. In

addition, there is a rate loss in PS transmission systems due to using distri-

bution matchers with finite blocklengths. As a result, in both GS and PS,

the ultimate AIR cannot be achieved due to the imperfect implementation.

To compensate for these losses, one can employ both PS and GS, which is

known as hybrid probabilistic-geometric shaping (HPGS). However, to imple-

ment HPGS, a transmitter that is compatible with both PS and GS must be

developed.

As mentioned in Chapter 2, designing a transmitter that both shapes and

codes uniform data is a challenge. PAS [30] designs a transmitter that includes

both PS and FEC coding. However, PAS is only suitable for square QAM

constellations. For non-square QAMs, probabilistic fold shaping PFS [42] is
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Figure 4.1: PFS of 32-QAM based on (a) 2-fold and (b) 4-fold structure.

employed.

PFS is similar to PAS; however, in PFS, two-dimensional DMs are used

instead of one-dimensional ones. PFS uses the N -fold rotationally symmetrical

property of the non-square QAMs to assign the FEC parity-check bits. In other

words, PFS uses the log2(N) bits out of log2(M) of a constellation point for

carrying the parity-check bits. Fig. 4.1 demonstrates 2-fold and 4-fold PFS

of 32-QAM. In Fig. 4.1 (a), we consider that 32-QAM is symmetrical with

respect to the in-phase axis (2-fold), and as shown in the figure, one bit out

of five bits is used as the parity-check bits. Also, Fig. 4.1 (b) shows the 4-fold

example of the shaping of 32-QAM, where 2 bits are reserved for parity-check

bits. Although PFS is proposed for non-square QAM constellations, it can be

used for geometrically-shaped constellations as well.

Since PFS considers only the N -fold rotationally symmetrical property of

the non-square QAMs, it can be also used for geometrically-shaped constella-

tions if points are N -fold rotationally symmetrical. Here, we consider 4-fold

constellations, i.e., we shape the position of the points only for the first quad-

rant, and then, we fold them to obtain points of other quadrants. Also, we

use PMFs from the family of MB distributions to shape the probability of
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the points. Hence, we only need to find the optimal value of λ and use the

power constraint of (2.61) to compute ∆. Moreover, during optimization, we

assume that binary labeling is fixed, i.e., for a given binary labeling, we find

the optimized position of the points of the first quadrant and optimal λ. We

discuss our optimization scheme for HPGS in the next section.

4.2 Optimization Scheme

Our optimization scheme to find the near-optimal position of the whole points

and λ is as follows: initialize the position of the points, binary labels, and

λ with the corresponding parameters of probabilistic-shaped M -QAM. Then,

for a point located in quadrant (I) (say xn), we try to find two displacement

vectors (∆xn and ∆λ) such that

xnew
n = xold

n + ∆xn,

λnew = λold + ∆λ
(4.1)

lead to the maximum increase in RBMD. Then, using the optimal ∆x∗n and

∆λ∗, we update the position of xn and the MB distribution, respectively.

After that, we follow the same procedure for point xn+1. We repeat this pro-

cedure until the end of the last iteration. This procedure guarantees that the

final constellation outperforms the corresponding probabilistic-shaped constel-

lation. Our optimization scheme for HPGS is provided in Algorithm (2), where

Ni is the number of iterations, and superscript (I) shows the corresponding

values/sets of quadrant (I), and superscript F shows the folded values/sets of

the corresponding values/sets of quadrant (I). Here, we use particle swarm

optimization (PSO) [47] to find optimal ∆x∗n and ∆λ∗. Based on our simula-

tions, PSO outperforms other optimization methods such as gradient descent

in terms of both computational efficiency and convergence speed.

The search space of particles for a point (say xn) is as follows:

~axn = [∆xRe
xn ,∆x

Im
xn ,∆λxn ], (4.2)

where ∆xRe
xn and ∆xIm

xn are the real and imaginary part of the displacement vec-

tor of point xn. Also, the hyperparameters of the PSO algorithm and bounds

of the entries of (4.2) are provided in Table 4.2 and Table 4.1, respectively.

64



Algorithm 2 Optimization Scheme for HPGS

Output: optimal χ∗ and λ∗

1: Initialize χ(I) with the position of the M -QAM first quadrant points.
2: Set L(I) to the last (m−2) bits of the optimized binary labeling of M -QAM

obtained from binary switching algorithm (BSA) [40].
3: Initialize λ with the optimal λ of the probabilistically shaped M -QAM.
4: for i = 1 : Ni do
5: for n = 1 : M

4
do

6: find optimal value of ∆xn and ∆λ such that RBMD(χF ,LF , PXλn , γ
F)

becomes maximum, where
χF =

{
± Re(χ

(I)
n )± jIm(χ

(I)
n )
}
,

χ
(I)
n =

{
x1, x2, · · · , xn + ∆xn, · · · , xM

4

}
,

LF =
{

[bI , bQ,L(I)]
∣∣bI , bQ = 0, 1

}
,

PXλn is PMF of MB with λ+ ∆λ,
γF = SNRmax

NL (χF , PXλn ).
Then, update the value of xn and λ using optimal ∆x∗n and ∆λ∗:
xn = xn + ∆x∗n , λ = λ+ ∆λ∗.

7: Scale the amplitudes of the points if energy of the constellation is not
equal to one.

8: end for
9: end for
χ∗ =

{
± Re(χ(I))± jIm(χ(I))

}
,

λ∗ = λ.
10: return χ∗, λ∗
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Table 4.1: Bounds of ~axn Entries

Parameter Minimum Value Maximum Value

∆xRe
xn −Re(xn) + 0.001 3(

√
M−1)√

2
3

(M−1)

∆xIm
xn −Im(xn) + 0.001 3(

√
M−1)√

2
3

(M−1)

∆λxn −λ 2.5

Table 4.2: Hyperparameters of Algorithm 2

Hyperparameter Value

Ni, number of iterations 10×M
Np, number of particles of PSO 10
NPSO
i , number of iterations of PSO 60

wmax 0.9
wmin 0.2
u1 2
u2 2

4.3 HPGS Constellations for the Non-Linear

Fiber Channel

In the previous section, we introduced our method to shape PMF and geometry

of the constellation point at a given shaping SNR. As discussed in Chapter 2,

the fiber channel is modulation-dependent, and during optimization of the

constellation, impacts of shaping on NLIN must be considered. To do so, we

follow the same procedure of Chapter 3, i.e., we set

γ = SNRmax
NL =

2

3
× 3

√
1

2 · P 2
ASE · η

. (4.3)

In the following, we shape the geometry and PMF of the PM 32 and

64-point constellations and compare their GMI performance with both the

corresponding PM-MQAMs and probabilistic shaped PM-MQAMs (PM-PS-

MQAM). Also, system and simulation parameters are provided in Table 4.3.

Propagation of the signal over the fiber link is simulated using the split-step

Fourier method (SSFM). The fiber link is made up of identical spans. At the

end of each span, the loss is exactly compensated for by an erbium-doped fiber

amplifier (EDFA).
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Table 4.3: System and Simulation Parameters

Parameter Value

Modulation format M -HPGS/PS-QAM/QAM
Polarization Dual-polarization
Symbol rate 32 GBaud
WDM channels 9
WDM spacing 35 GHz
Pulse shape Root-raised cosine (RRC)
RRC roll-off 0.01
Attenuation 0.22 dB/km
Dispersion 16.7 ps/nm/km
Non-linear coefficient 1.3 1/W/km
Span length 100 km
Amplification EDFA
EDFA noise figure 5 dB
SSFM step size 0.1 km
Oversampling factor 16
APSK/QAM symbols per WDM ch. 219

4.3.1 Reach Increase from HPGS

The GMI performance of the HPGS constellations, PM-32-HPGS and PM-64-

HPGS, versus the span number is provided in Fig. 4.2 (a) and (b), respectively.

We optimize PM-32-HPGSs and PM-64-HPGSs for spans 12 to 32 and 5 to

20 with a 5-span step, respectively. GMI of each optimized PM-M -HPGS

is shown within 5 spans. Based on Fig. 4.2 (a) and (b), HPGS constella-

tions outperform both the corresponding PM-QAMs and PM-PS-QAMs in all

cases. The reach improvements compared to PM-QAMs and PM-PS-QAMs

are as high as 400 and 100 km, respectively. In Fig. 4.2 (a), for GMI rates be-

tween 6.5 and 8 bits/4D-symbol, PM-32-HPGSs give approximately a 400 and

100 km reach improvement compared to PM-32QAM and PM-PS-32QAM, re-

spectively. For spans between 20 and 34, the optimized PM-32-HPGSs provide

almost 0.462 and 0.085 bits/4D-symbol higher GMI rate than PM-32QAM and

PM-PS-32QAM, respectively. Also, in Fig. 4.2 (b), PM-64-HPGSs provide ap-

proximately a 100 and 17 km reach improvement compared to PM-64QAM and

PM-PS-64QAM for GMI rates between 9.5 and 11.5 bits/4D-symbol, respec-

tively.
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Figure 4.2: GMI performance of the (a) optimized PM-32-HPGSs and (b) PM-
64-HPGSs versus span number. The GMI rate of the constellations according
to the SSFM simulations are shown with markers. The optimized position of
the points is shown in the insets of Fig. (a) and (b).

4.3.2 GMI Gain from HPGS

In Fig. 4.3 (a) and (b), the GMI performance of the optimized PM-32-HPGS

and PM-64-HPGS versus Pch is shown, respectively. Also, GMI of the HPGS

constellations optimized for the AWGN channel(during optimization, γ is as-

sumed to be constant) is provided. Based on Fig. 4.3 (a) and (b), HPGS
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Figure 4.3: GMI performance of the (a) optimized PM-32-HPGSs and (b)
PM-64-HPGSs versus the launch power for (a) PM-32-HPGS at span 27 and
(b) PM-64-HPGS at span 10. The GMI rate of the constellations according
to the SSFM simulations are shown with markers.
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constellations outperform PM-QAMs and PM-PS-QAMs in all scenarios and

provide gains up to 0.48 and 0.092 bits/4D-symbols, respectively. Moreover,

in the non-linear regimes (high launch powers), constellations optimized for

the fiber channel have much higher GMI than ones optimized for AWGN,

but in the linear regimes (low launch powers), they exhibit similar perfor-

mance. PM-32-HPGS provides gains of 0.48 and 0.092 bits/4D-symbols over

PM-32QAM and PM-PS-32QAM, respectively. Also, PM-64-HPGS outper-

forms PM-64QAM and PM-PS-64QAM by 0.391 and 0.033 bits/4D-symbols,

respectively. Note that the reported gains are computed at the correspond-

ing optimal Pch. The reason that PM-64-HPGSs provide less gain compared

to PM-32-HPGSs is that for 64-point constellations, the gap to the channel

capacity is very low, and hence, there is no room for significant gains. How-

ever, PM-64-HPGSs are still capable of outperforming PM-PS-64QAMs in all

scenarios.
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Chapter 5

Conclusion and Future Research
Directions

5.1 Conclusions

In this thesis, we considered the optimization of the constellations for the

non-linear fiber channel in order to increase AIR. We discussed that the fiber

channel is a modulation-dependent channel, meaning that the type of modula-

tion used to transmit information affects the degree to which the optical signal

is distorted. This makes optimizing constellations for the fiber channel com-

plicated since there is no closed-form solution to NLSE (the partial differential

equation that governs the propagation of signals inside the optical fiber). In

this work, we proposed constellation shaping methods to address this issue.

In Chapter 3, we introduced a GS method based on the PSO algorithm to

maximize the MI rate. To reduce the complexity of the optimization problem,

we assumed the APSK constraint on the position of the points. We showed that

this constraint not only makes the convergence of the optimization algorithm

faster but also results in higher MI rates than other GS methods. To optimize

APSKs for the non-linear fiber channel, the shaping is done at the maximum

modified SNR of the optical system. By doing so, our optimization algorithm

maximizes the MI rate while the impacts of shaping on the NLIN power are

considered. We indicated that this scheme provides significant MI gains and

reach improvements. In addition, using the mutual information formula, we

proposed a model for the radius of APSK rings, which in turn resulted in
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an equation for the optimal radii. Using this equation, we analyzed how the

optimal radius of the APSK rings changes for different shaping SNRs (for the

AWGN channel) and different spans (for the non-linear fiber channel). We

compared the optimal radius of the AWGN and fiber channel and concluded

that, in the low-SNR regimes, in the AWGN channel, the optimal radius of the

APSK rings grows faster than the optimal radius of the fiber channel. This

indicates that in the highly non-linear regimes of the fiber channel, geometric

shaping based on the AWGN is not valid, and shaping must be done for the

fiber channel.

In Chapter 4, we proposed a hybrid shaping method by combining PS and

GS. In our HPGS method, we start with the probabilistic-shaped QAM as

the initial constellation, and at each step of the optimization, the position

of one constellation point and parameter of the MB distribution are changed

such that the GMI rate increases. This approach guarantees that the ultimate

constellation provides higher GMI rates than the probabilistic-shaped QAM.

To consider the impacts of shaping on the NLIN of the fiber, optimization is

done at the maximum modified SNR. We compared AWGN-based and EGN-

based HPGS in terms of the GMI rate and demonstrated that the AWGN-

based shaping cannot provide GMI gains as high as the EGN-based shaping.

In both studies, the optimized constellations provide considerable gains

over the baseline modulations. Our GS method provides reach improvements

as high as 600 km over QAMs, and our HPGS method is capable of outper-

forming regular QAMs and probabilistic-shaped QAMs by 400 and 100 km,

respectively.

5.2 Future Research Directions

As mentioned, modulations used in an optical fiber communication system

have a considerable impact on the amount of nonlinearity introduced to the

system. Hence, designing modulations in a manner that mitigates the inter-

fering effects of the fiber channel is a great approach to improve the perfor-

mance significantly. In this thesis, we employed the EGN-model of fiber to
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design optimized constellations for the fiber channel. According to the EGN-

model, fiber impairments manifest themselves as circularly symmetric additive

Gaussian noise, and it considers the impacts of the modulations on fiber non-

linearity in a random manner. However, based on NLSE, most of the fiber

impairments such as non-linearity and GVD are in fact deterministic phenom-

ena rather than random phenomena. Hence, optimizing constellation based

on SSFM simulations may result in much better performance than the EGN-

based optimization. The possible future works for SSFM-based constellation

optimization are as follows:

• SSFM-based GS enables us to optimize four-dimensional constellation

for the fiber channel. According to the Manakov equation (2.21), the to-

tal power of the x and y-polarization affects the non-linearity introduced

to the corresponding WDM channel. In other words, the instantaneous

power of y-polarization directly affects the non-linearity of x-polarization

and vice versa. Hence, optimizing four-dimensional constellations will

result in much more non-linearity mitigated constellations than two-

dimensional ones. The EGN-model cannot be used for four-dimensional

shaping since it assumes that the modulations in the x and y-polarization

are identical. Consequently, SSFM-based optimizations must be used to

design four-dimensional constellations.

• As mentioned in Chapter 2, to estimate the AIR of the fiber channel,

mismatched decoding is used by assuming an AWGN auxiliary channel.

Using SSFM simulations, one can find a more accurate auxiliary channel

than the AWGN one. Using the accurate auxiliary channel, we have

a more accurate estimation of the channel transition probability fY|X,

which enables us to modify our shaping methods. For instance, using

the accurate auxiliary channel, we can define a new minimum distance,

which is more efficient than the traditional minimum Euclidean distance

that the AWGN auxiliary channel suggests. Using this new distance,

we will have much better insights into where to place the constellation

points.
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• SSFM-based PS may suggest that a different distribution is optimal for

the fiber channel instead of the MB distribution. MB is optimal for

PS assuming that the AWGN auxiliary channel is employed. If other

auxiliary channels are employed, they may result in distributions that

provide much lower gaps between the channel capacity and AIR.

The major issue of SSFM-based shaping is that SSFM simulations are

extremely computationally complex, which makes SSFM-based optimization

hard to implement. By investigating methods that can approximate SSFM

simulations, one can implement the SSFM-based constellation optimization in

a more efficient manner.
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Appendix A

Derivation of Partial
Derivatives of Equation (3.11)

In this appendix, we provide complete derivations of Equations (3.15) and

(3.18).

A.1 Derivation of ∂LF
∂τ

By taking the partial derivative of (3.11) with respect to τ , we have:

∂LF

∂τ
= − 1

loge 2

∑
1≤k≤R

0≤j≤nk−1

∑
1≤k′≤R

0≤i≤nk′−1
Nkj ,k′i∑

1≤k′≤R
0≤i≤nk′−1

Dkj ,k′i

, (A.1)

where

Nkj ,k′i
=
(∂γ
∂τ
.r2

0.|dkj ,k′i |
2 + γ.

∂(r2
0)

∂τ
.|dkj ,k′i |

2 + γ.r2
0.
∂(|dkj ,k′i |

2)

∂τ

)
× e

−γ.r2
0 .|dkj,k′i

|2
,

(A.2)

and

Dkj ,k′i
= e

−γ.r2
0 .|dkj,k′i

|2
. (A.3)

In (A.2), three derivative terms are needed to be computed. The first term,

∂γ
∂τ

, depends on the type of communication channel. For the non-linear fiber

channel, we compute ∂γ
∂τ

in the next section. Term
∂(r2

0)

∂τ
is computed based on

the specified average symbol energy. Since we are using model (3.4), we have

E
{
|X|2

}
= 1. In the case of APSK constellations, one can simply show that:

E
{
|X|l

}
=

R∑
k=1

nk
M
rlk for even values of l. (A.4)
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Using the proposed model of (3.10) and equation E
{
|X|2

}
= 1, we can com-

pute r2
0 as follows:

r2
0 =

1∑R
k=1

nk
M

(k − Γ)2τ
, (A.5)

which yields:

∂(r2
0)

∂τ
= −

2
∑R

k=1
nk
M

(k − Γ)2τ loge(k − Γ)

(
∑R

k=1
nk
M

(k − Γ)2τ )2
. (A.6)

The third and last term,
∂(|dkj,k′i

|2)

∂τ
, considers the effects of τ on the normalized

distance between two constellation points. According to (3.12), we have:

∂(|dkj ,k′i |
2)

∂τ
= 2(k − Γ)2τ loge(k − Γ) + 2(k′ − Γ)2τ loge(k

′ − Γ)

− 2[(k − Γ)(k′ − Γ)]τ × loge((k − Γ)(k′ − Γ)) cos (ϕkj − ϕk′i).
(A.7)

By substituting Equations (A.5), (A.6), and (A.7) in Equations (A.2) and

(A.3), and by substituting the obtained equations in (A.1), we reach to Equa-

tion (3.15).

A.2 Derivation of ∂γ
∂τ Based on the EGN-Model

of Fiber

Based on Equations (3.16) and (3.17), we can compute ∂γ
∂τ

using the chain rule:

∂γ

∂τ
= − γ

3η
× ∂η

∂τ
, (A.8)

where
∂η

∂τ
= ηΦ ·

∂Φ

∂τ
+ ηΨ ·

∂Ψ

∂τ
. (A.9)

To compute ∂Φ
∂τ

and ∂Ψ
∂τ

, we need to rewrite Φ and Ψ based on the radius model

of (3.10). Using (A.4), we have:

Φ =

∑R
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nk
M
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(
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nk
M
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− 2, (A.10)

and
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By taking the partial derivative of Φ and Ψ with respect to τ , we have:

∂Φ

∂τ
=

[
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and
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(A.13)

where ∂Φ
∂τ

is defined in (A.12). By substituting Equations (A.12) and (A.13)

in (A.9), and by substituting the obtained equation in (A.8), we reach to

Equation (3.18).
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