
Fixed Point Propagation: A New Way To Train
Recurrent Neural Networks Using Auxiliary Variables

by

Somjit Nath

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Somjit Nath, 2019

Abstract

Recurrent neural networks (RNNs), along with their many variants, provide

a powerful tool for online prediction in partially observable problems. Two

issues concerning RNNs, however, are the ability to capture long-term depen-

dencies and long training times. There have been a variety of strategies to

improve training in RNNs, particularly by approximating an algorithm called

Real-Time Recurrent Learning. These strategies, however, can still be com-

putationally expensive and focus computation on computing gradients back-

in-time. In this work, we show that learning the hidden state in RNNs can be

framed as a fixed-point problem. Using this formulation, we provide an asyn-

chronous fixed-point iteration update that significantly improves run-times

and stability of learning the state update.

ii

Preface

This thesis is an original work by Somjit Nath. No part of this thesis has

been previously published. It will be submitted to International Conference

on Learning Representations, (ICLR), 2020.

iii

To my parents

iv

The measure of intelligence is the ability to change.

– Albert Einstein.

v

Acknowledgements

First of all, I would like to thank my supervisor Prof. Martha White for her

incredible support and guidance. Her feedback on the project was constant and

those inputs always kept me motivated on this project. Secondly, I would like

to thank my examining committee for taking time to read my work and help

me out with valuable inputs and constructive criticism. Lastly, I would like

to thank all my lab-mates from RLAI for helping me out with small problems

and fostering a great environment for research.

vi

Contents

1 Introduction 1

2 Background 3
2.1 Problem Setting . 3
2.2 Vanilla Recurrent Neural Network 4
2.3 Issues with training RNNs . 6
2.4 Approaches for Solving RNNs 7

2.4.1 Algorithmic Advances 7
2.4.2 Architectural Advances 8

3 Fixed Point Formulation 10
3.1 The Fixed-Point Objective . 10
3.2 Fixed Point Propagation . 13

4 Experiments 17
4.1 Environments and Datasets 17
4.2 Comparison to T-BPTT . 19
4.3 Importance of Auxiliary Variables 20
4.4 Multiple T-step Updates . 22
4.5 Trading off the Length and Number of Updates 26
4.6 Parameter Study . 29

5 Conclusion and Future Work 30

References 31

Appendix A Experimental Details 35
A.1 6-CycleWorld . 35
A.2 10-CycleWorld . 35
A.3 Stochastic World . 36
A.4 Sequential MNIST . 36
A.5 PTB . 36

vii

List of Tables

2.1 RNN Algorithms over the years 7

4.1 FPP vs T-BPTT on Sequential MNIST 19
4.2 FPP vs BPTT on Penn-Tree Bank Dataset 20

viii

List of Figures

2.1 Unfolding of a Vanilla RNN 4

3.1 Saving and sampling transitions for the Fixed Point Propagation
(FPP) algorithm, with T = 1. 16

4.1 Learning curves for T-FPP and T-BPTT with different T in
three domains. The curves for FPP are solid lines and T-BPTT
are dotted lines. The different colors corresponds to different
T. Both FPP and T-BPTT perform poorly for T = 1, but FPP
begins to perform well for smaller T than T-BPTT. 20

4.2 Learning curves for FPP(without state updating) are dotted and
solid for FPP. This result indicates the utility of having the auxiliary
variable, to improve stability and performance. 21

4.3 M=4 updates per step in FPP and FPP without state updating.
Multiple updates across the buffer improves performance for FPP
more compared to FPP without state updating suggesting the ad-
vantage of using auxiliary variables. 23

4.4 Learning curves for 4 updates per step in solid vs 1 update per step
FPP in dotted. This graph is a comparison of how much it can help
in learning faster. 24

4.5 Learning curves for 4 updates per step FPP in solid and BPTT in
dotted. BPTT cannot take advantage of multiple updates per step
but FPP can, and hence the performance is much better. 25

4.6 Learning curves of FPP in dotted and Random-FPP in solid. Re-
ducing T with increasing steps does not affect performance much
and even improves performance in some cases. 27

4.7 Learning curves of FPP in dotted and Decay-FPP in solid. Another
strategy for decaying T also yields similar results, which means we
can perform multiple updates per step towards the later stages of
learning. 28

4.8 Sensitivity to buffer length and trajectory length in FPP, for buffer
sizes 100, 1000 and 10000 and truncations of 1,3,5,10,15 and 50. . . 29

ix

Chapter 1

Introduction

There has been great advancements in the field of Machine Learning for solv-

ing computational problems. Given a batch of data in advance i.e. off-line,

several machine learning algorithms have been developed to make predictions

from them. We also have algorithms that tackle online learning i.e. learning

from streaming data. Here the data is given at each and every step and we have

to make predictions continually from the data. This is called online learning

a problem we choose to tackle. However, most online prediction problems are

partially observable: the most recent observation is insufficient to make ac-

curate predictions. Augmenting inputs with history can significantly improve

accuracy, but can require a long history when there are long-term dependencies

back-in-time. So we need a better method to solve such partially observable

online prediction problems.

Neural Networks are computational models developed by drawing inspira-

tion from how neurons process data in human brain. They are composed of

layers of connected nodes called artificial neurons. This interconnected layers

of nodes comprises of the Artificial Neural Network model which can perform

various tasks like data representation, feature learning, etc. One key aspect of

normal Neural Networks is that the inputs at every time-step must be inde-

pendent of each other, i.e. it cannot process sequential inputs and hence is not

useful. So they cannot be used for our problem, however, Recurrent Neural

Networks (RNNs) [10, 17] learn a state which summarizes a history of data.

Specifically, RNNs contain recurrent connections to their hidden layers which

1

allow for past information to propagate through time. This state need not

correspond to a true underlying state; rather, it is a subjective, constructed

state to facilitate prediction. This enables RNNs to remember and process

previous information and hence can be easily used for sequential data pre-

diction. RNNs have been widely used in a variety of applications. in speech

recognition [6, 14, 15, 27], image captioning [23, 24, 41], speech synthesis

[26] and reinforcement learning [9, 16].

In this work, we formulate a new algorithm for training Recurrent Neural

Networks which improves upon the computational time as well as captures

long-term dependencies better. The major list of contributions are:

• Formulating training RNNs as a fixed-point problem.

• Developing Fixed Point Propagation (FPP) Algorithm for training RNNs.

• Comparing FPP with the most popular RNN training algorithm (BPTT).

• Discussing the advantages and disadvantages of FPP with supporting

experiments.

The thesis is divided into 5 chapters. Chapter 2 includes the necessary

background on RNN and a survey of the recent advances made in RNN train-

ing. Chapter 3 formalizes the problem setting and describes the new algorithm

in detail. The algorithm is evaluated in Chapter 4 by testing it on several en-

vironments. Chapter 5 has concluding remarks and directions for future work.

2

Chapter 2

Background

2.1 Problem Setting

We consider a partially observable online setting, where an immediate observa-

tion is not sufficient for prediction. More formally, assume there is a sequence

of n observations, o1, . . . ,on, which provide only partial information about an

unknown underlying sequence of states. After obtaining an observation oi, the

agent makes a prediction ŷi and sees the actual outcome yi. The goal is to

minimize this prediction error. Given only oi, however, the agent is unlikely

to make accurate predictions about yi, because oi is not a sufficient statistic

to predict yi: p(y|oi,oi−1,oi−2, . . .) 6= p(y|oi). The agent could have obtained

lower prediction error by using a history of observations. The length of such

a history, however, may need to be prohibitively long, even when this history

could have been summarized compactly.

An alternative is to construct state using a Recurrent Neural Network

(RNN), by learning a state-update function. Given a current (constructed)

state st−1 ∈ Rk, and a new observation ot ∈ Rd, the parameterized state-

update function fW : Rk × Rd → Rk, with parameters W, produces the next

(constructed) state st = fW(st−1,ot). For example, fW could be a linear

weighting of st−1 and ot, with a ReLu activation:

fW(st−1,ot) = max([st−1,ot]W,0)

There are also more complex state-update functions, like the gating updates

in Long Short Term Memory (LSTM) [16].

3

The prediction error is the objective for learning these parameters W for

the state-update. For the current state st, a prediction is made by parame-

terized function gβ : Rk → Rm for learned parameters β. For example, the

prediction could be a linear weighting of the state, gβ(s) = β>s. We denote

the prediction error as `β : Rk×Rm → R for a given β. For example, this loss

could be

`β(st; yt) = ‖gβ(st)− yt‖22.

The goal in RNNs is to minimize, for some start state s0,

min
β,W

n∑
i=1

`β(fW(...fW(fW(s0,o1)︸ ︷︷ ︸
s1

,o2), ...,oi); yi). (2.1)

2.2 Vanilla Recurrent Neural Network

s

y

o

U

V Unfold

st-1

yt-1

ot-1

U

V

st

yt

ot

U

V

st+1

yt+1

ot+1

U

V

Figure 2.1: Unfolding of a Vanilla RNN

Vanilla RNNs are the simplest form of RNNs, with one hidden layer. One

defining feature of recurrent neural networks is their utilization of memory,

also known as the hidden state. Each hidden state is of the form:

st = a1(b+ st−1V + otU) = fW(st−1,ot) (2.2)

where ot is the input at time t, st is the value of the hidden state at time t,

b is the bias, a1 is the activation function, V are the weights of the recurrent

4

edges and U are the weights of the input connections and W = [U,V] The

dynamics of the network can also be visualized by unfolding it, in which the

state of the network at time t can be treated as the tth hidden layer. The

network then becomes like a deep network, where back-propagation can be

applied. This method is called Backpropagation through time (BPTT) [42].

When training VRNNs, given some state st, we compute output yt as

yt = a2(βst) = gβ(st) (2.3)

where, a2 is the output activation function. Furthermore, given some predic-

tion ŷt, we compute the prediction error `t at time t as:

`t = Error(yt, ŷt)

The partial derivatives
∂`t
∂U

,
∂`t
∂V

,
∂`t
∂β

are then computed for the RNNs three parameters, U,V,β. These computa-

tions, though, involve unrolling the RNN and computing these gradients for

time t− 1, ..., 0. This results in very slow training because the computational

cost scales linearly with the number of time-steps. A much more common

alternative is truncated BPTT (T-BPTT) [44]) which only computes the gra-

dient up to some maximum number of steps. So, for T -step truncation, the

gradients are only computed for time t−1, ..., t−T . Depending on the dataset

being processed, this can substantially reduce training time. This approxima-

tion, though, is not robust to long-term dependencies [38]. Intuitively, it can

only capture dependencies as far back as the truncation parameter being used.

This can significantly reduce the utility of RNNs, as their usefulness lies in the

capacity to capture temporal dependencies in sequential data.

Another alternative to T-BPTT is an algorithm called Real-Time Recur-

rent Learning (RTRL) [32, 43, 45] which computes the exact error gradients

by taking advantage of the recurrent structure of the network. This online al-

gorithm, however, has high computational complexity per step and therefore

is not used in practice.

5

2.3 Issues with training RNNs

There are known stability and computations issues with training RNNs online

[31, 38].

Computational Issue: Computing gradients for the objective in Eq. 2.1,

however, can be prohibitively expensive. A large literature on optimizing

RNNs focuses on approximating this gradient, either through approximations

to RTRL or using improvements to BPTT. RTRL [45] uses a recursive gra-

dient form, which can take advantage of gradients computed up until the last

observation to compute the gradient for the next observation. This estimate

is only exact in the offline case. Further, in either online or offline, RTRL

costs O(k4) computation per observation. In BPTT, gradients are computed

back-in-time, by unrolling the network. In the online setting, it is infeasible

to compute gradients all the way back to the beginning of time. Instead, this

procedure is truncated to T steps back-in-time. T-BPTT is suitable for the

online setting, and costs O(Tk2) at each time step, i.e., for each observation.

Arguably the most widely-used strategy is T-BPTT, because of its sim-

plicity. Unfortunately, though, T-BPTT has been shown to fail in settings

where dependencies back-in-time are further than T [38], as we affirm in our

experiments. Yet, the need for simple algorithms remains.

Exploding and Vanishing Gradient problem: Another problem while

training RNNs is the exploding and vanishing gradient problem. This arises

due to the recurrent structure of the network. The gradients are being prop-

agated back through time can explode meaning the long term components of

the gradients can increase exponentially or they can vanish, meaning they can

decay exponentially to 0. Exploding gradient occurs when the spectral radius

of the recurrent weight matrix is greater than 1 and if it is less than 1, we

will have the vanishing gradient problem. This especially prevents RNNs form

learning long-term dependencies. To combat this problem, we can take two

approaches- (a) modifying the architecture of the RNN (like LSTMs [16]) or

6

(b) change the algorithm of training (like using gradient clipping or regular-

ization [31]).

2.4 Approaches for Solving RNNs

Table 2.1: RNN Algorithms over the years

Year Author Algorithm

1990 Elman [10] RNNs introduced
1990 Williams [45] Real Time Recurrent Learning (RTRL)
1994 Bengio [3] Exploding Gradient problem
1997 Schuster [37] Bidrectional RNN
1997 Hochreiter [16] Long Short Term Memory (LSTM)
1999 Gers [11] Introduction of forget gates into LSTM structure
2005 Graves [13] Bidirectional LSTM improves performance further
2013 Pascanu [31] Avoiding exploding gradients by gradient clipping
2014 Koutnik [20] Clockwork RNN architecture
2015 Olliver [30] NoBackTrack Algorithm
2016 Neil [29] Phased LSTM
2017 Tallec [38] Unbiased Online Recurrent Optimization
2017 Jaderberg [18] Decoupled Neural Interfaces using Synthetic Gradients
2017 Campos [4] Skip RNN
2017 Chang [7] Dilated RNN
2017 Ke [19] Sparse Attentive Backtracking
2018 Mujika [28] Approximating RTRL with Random Kronecker Factors
2018 Liao [22] Reviving Recurrent BackPropagation
2019 Roth [34] Kernel RNN Learning

2.4.1 Algorithmic Advances

Recently, there have been some efforts towards approximating gradients for

back-propagation, both for feed-forward NNs and RNNs. Synthetic gradients

and BP(λ) [18] use an idea similar to returns from reinforcement learning:

they approximate gradients by bootstrapping off estimated gradients in later

layers [8, 18]. BP(λ) uses an idea similar to returns, but uses a recursive

form for the gradients rather than the state. The problem is not solved as a

7

fixed point problem, though they do bootstrap-off gradient estimates. They

do not solve for gradients, conditioned on inputs, and rather use one sample

estimate of the “return” for their targets. Solving the problem as a fixed point

problem, where the value function is the gradient conditioned on input, would

be prohibitively expensive.

There are several methods estimating RTRL—which is itself an estimate

of the true gradient back-in-time—including NoBackTrack [30] which gives

an unbiased gradient estimate by using a rank-one approximation of the full

matrix gradient. Building up on that Unbiased Online Recurrent Optimiza-

tion (UORO) [38] employs same approximation but is much easier to use for

complex architectures. RTRL gradients can also be approximated using Kro-

necker factors [28] which reduces the variance in gradient estimation and thus

improves learning. Kernel RNN Learning (KERNL) [34] also approximates

the gradient by using a rank-reduced product of a sensitivity weight and an

eligibility trace which can be learned. Finally, there are some methods that

use selective memory back-in-time to compute gradients for the most perti-

nent samples, using skip connections [19]. All of these methods, however,

attempt to approximate the gradient back-in-time, for the current observation

and state, and so suffers to some extent from the same issues as BPTT and

RTRL.

Liao et. al. [22] enhances upon recurrent back-propagation (RBP) [2, 33]

which is an old algorithm that has several strict assumptions on the state and

hence is not generally applied. This paper [22] provides introduces some new

RBP variants like Neumann RBP (using Neumann series) and Conjugate RBP

(using conjugate gradients).

2.4.2 Architectural Advances

Note that in addition to a variety of optimization strategies, different archi-

tectures have also been proposed to facilitate learning long-term dependencies

with RNNs. The most commonly used are LSTMs [16], which use gates

to remember and forget parts of the state. Another strategy was to use bi-

directional networks both for RNNs [37] and LSTMs [13], where we calculate

8

the gradients both forward and backward in time. Clockwork RNNs [20] in-

troduce a hidden state that is partitioned into separate modules each having

its own clock-period when they are processed. Phased LSTMs [29] add a

separate time-gate to the LSTM structure controlled by a parameterized oscil-

lation which impose sparse updating thus requiring much lesser compute time

and accelerating training. Skip RNNs [4] use skip connections which skips

the state updates and thus enables faster convergence and lesser computation.

Dilated RNNs [7] uses dilated RNN skip connections which not only improve

the training efficiency but also help in solving gradient problems and thus en-

ables the model to capture long term dependencies better. In this work, we

focus on a general purpose RNN algorithm, that could be combined with each

of these architectures for further improvements.

9

Chapter 3

Fixed Point Formulation

In this section, we investigate an alternative optimization strategy that does

not attempt to approximate the gradient back-in-time, by reformulating state

estimation for RNNs as a fixed-point problem.

We develop an asynchronous updating mechanism on a sliding window

buffer, that takes advantage of the fixed-point formulation. The algorithm ex-

plicitly optimizes state vectors, as auxiliary variables, with many efficient one-

step—or short term multi-step updates—across the buffer. Instead of focusing

computation to get a more accurate gradient estimates for this time-step, our

algorithm, called Fixed Point Propagation (FPP), can more effectively use

computation to update several states. Further, it is a sound strategy to use

short, truncated gradient updates, because FPP is a standard gradient descent

optimization with auxiliary variables. We demonstrate that the algorithm is

effective on several problems with long-term dependencies, and improves over

T-BPTT, particularly in terms of stability and computation.

Here, we formulate RNN training as a fixed-point problem. The key idea

is to explicitly learn the state, as an auxiliary variable. We first formalize the

problem in the ideal case, with access to the unknown underlying states. We

then approximate this formulation for an online setting.

3.1 The Fixed-Point Objective

Consider an idealized setting, where the goal is to learn a state function s :

H → Rk for a discrete set of true states H. For all h ∈ H, we want to find the

10

solution to the following fixed point problem

fW(s(h),o(h′)) = s(h′) ∀ h′ s.t. P(h, h′) > 0 (3.1)

where P : H × H → [0, 1] is the transition dynamics; o : H → Rk is the

vector-valued observation function; and fW is a parameterized function pro-

ducing next state from the current state and observations. In addition to sat-

isfying this fixed point problem, the learned state should also enable accurate

prediction about the given targets: minimize `β(s(h); y(h)) for all h, where

y(h) is the expected target for a true state h. This results in the following

optimization, with the fixed point problem as a constraint

min
β,W,s

∑
h,h′∈H

P(h, h′)`β(fW(s(h); o(h′)),y(h′)) (3.2)

s.t. fW(s(h),o(h′)) = s(h′) ∀ h′ s.t. P(h, h′) > 0

The satisfiability of this will depend on fW and if s(h) and o(h′) can uniquely

determine s(h′).

In practice, we cannot explicitly learn state as a function of true state.

We can, however, approximate this objective on a batch of observed data.

Assume n observations have been observed, o1, . . . ,on, with corresponding

targets y1, . . . ,yn. Let the state variables be stacked in a matrix S ∈ Rk×n and

observations as a matrix O ∈ Rd×n, with S = [s0, . . . , sn] and O = [o1, . . . ,on].

The fixed point problem becomes S = FW(S,O) for operator

FW(S,O)
def
= [S:,0,fW(S:,0,O:,1),...,fW(S:,n−1,O:,n)] . (3.3)

The resulting optimization, for this batch, is

min
β,W,S

n∑
i=1

`β(fW(si−1,oi); yi) s.t. S = FW(S,O). (3.4)

The solution to this new optimization corresponds to the solution for the orig-

inal RNN problem in (2.1)—when also optimizing over s0 in (2.1)—because

the fixed-point constraint forces variables si to be representable by fW. There-

fore, the reformulation as a fixed point problem has not changed the solution;

11

rather, it has only made explicit that the goal is to learn these states and

facilitates the use of alternative optimization strategies.

Reformulations like the one in (3.4) have been widely considered in opti-

mization, because (3.4) is actually an auxiliary variable reformulation of (2.1).

In this case, the auxiliary variables are the states S. Using auxiliary variables

is a standard strategy in optimization—under the general term method of mul-

tipliers—to decouple terms in an optimization and so facilitate decentralized

optimization.

Such auxiliary variable methods have even been previously considered

for optimizing neural networks. Carreira-Perpiñán & Wang introduced the

Method of Auxiliary Coordinates (MAC), which explicitly optimize hidden

vectors in the neural network. Taylor et al. proposed a similar strategy, but

introduced an additional set of auxiliary variables to obtain further decoupling

and a particularly efficient algorithm for the batch setting. Scellier & Ben-

gio introduced Equilibrium Propagation for symmetric neural networks, where

the state of the network is explicitly optimized to obtain a stationary point in

terms of the energy function. Gotmare et al. built on these previous ideas to

obtain a stochastic gradient descent update for distributed updates to blocks

of weights in a neural network. Our proposed optimization can be seen as

an instance of the objective considered for MAC [5, Equation 1], though we

arrived at it from a different perspective: with the goal to obtain a fixed point

formulation in terms of state.

The solution strategies proposed for neural networks with auxiliary vari-

ables, however, do not apply to the RNN setting, because all the auxiliary

variables are coupled to the beginning of time. The solution strategy in MAC

relies on storing all hidden layers—the auxiliary variables—for a sample. For

RNNs, this would correspond to storing all states and observations to the be-

ginning of time, which is prohibitive in an online setting. Further, in MAC,

each update is for one i.i.d. sample at a time. It is possible that the large liter-

ature on such optimizations will be fruitful for obtaining practical algorithms

in the future, but to the best of our knowledge, no easy-to-use algorithm yet

exists. In the next section, we propose a new stochastic algorithm, called Fixed

12

Point Propagation, that optimizes this objective online.

Note: Recurrent Backpropagation and related variants [2, 22, 33, 36]

also use fixed points for their optimization, but in a different way. These

algorithms only address a restricted class of RNNs, that assume a fixed input

and converge to a single low-energy state—a fixed point of the dynamics for

that given input. These RNNs are actually highly related to Graph NNs [35],

because the temporal nature only arises from cyclic connections, rather than

from temporal data. Their problem setting is fundamentally different from

our online prediction setting, and is usually used for associate memory with

Hopfield networks or semi-supervised problems. Recurrent Backpropagation

cannot be used for our setting and so we do not further discuss this class of

RNN algorithms.

3.2 Fixed Point Propagation

We need an online algorithm to optimize (3.4) and thus (a) we cannot store all

the data and (b) each update should be efficient—using the minimal computa-

tion of O(k2). To obtain such an algorithm, we propose two simple innovations

that are nonetheless effective for satisfying these criteria. First, we maintain a

windowed buffer of states and observations. Though this buffer could still be

prone to missing long-term dependencies, it can be significantly longer than

the truncation level in BPTT, since the computation per step of our algo-

rithm is independent of the buffer size. We use random sampling to simulate

asynchronous fixed point updates for (3.4).

Second, we stochastically sample the objective in such a way as to avoid

extra computation, but still satisfy the requirements of stochastic gradient

descent. As in MAC-QP [5], we reformulate this constrained objective into

an unconstrained objective with a quadratic penalty, with λ > 0

L(β,W,S)
def
=

n∑
i=1

`β(fW(si−1,oi); yi) +
λ

2

n∑
i=1

‖si − fW(si−1,oi)‖22 (3.5)

Once in this unconstrained form, we can perform stochastic gradient descent

on this objective in terms of W and S, for an iteratively increasing λ. To

13

use stochastic gradient descent, the objective needs to break up into a sum of

losses, L(β,W,S) =
∑n

i=1 Li(β,W,S), where we define

Li(β,W,S)
def
= `β(fW(si−1,oi); yi) +

λ

2
‖si − fW(si−1,oi)‖22.

For our buffer, we can stochastically sample i and update our variables with

∇Li. Fortunately, because the auxiliary variables break connections across

time, this gradient is zero for most variables, except β,W, si−1 and si. There-

fore, each stochastic update can be computed efficiently. Note that in practice,

we simply fix λ = 1 without iteratively increasing it, as this results in good

performance.

Finally, we can generalize this procedure to incorporate more than one step

of propagation back-in-time, simply by generalizing the fixed-point operator.

Consider the more general T -step fixed point problem S = FT,W(S,O) where

FT,W(S,O)
def
=[

S:,0,S:,1, . . . ,S:,T−1, fW(. . . fW(fW(S:,0,O:,1),O:,2), . . .),O:,T)︸ ︷︷ ︸
Ŝ:,T

,

. . . ,

fW(. . . fW(fW(S:,n−T−1,O:n−T),O:,n−T+1), . . .),O:,n)
]
.

For T = 1, we recover the operator provided in (3.3). This generalization

mimics the use of T -step methods for learning value functions in reinforcement

learning. This generalization could significantly improve the propagation of

state values, and provides more flexibility in using the allocated computation

per iteration. For example, for a budget of T updates per iteration, we could

use T 1-step updates, T/2 2-step updates, all the way up to one T -step update.

Intuitively, more shorter length updates should propagate state update more

effectively across the buffer, as opposed to allocating all resources to one long

gradient update. We test this hypothesis in the experiments.

The final algorithm—Fixed Point Propagation—is summarized in Algo-

rithm 1. Fig. 3.1 represents a pictorial depiction of the same algorithm. The

feed-forward path is represented using black arrows whereas the flow of gra-

dients during back-propagation is highlighted using red arrows. The values

14

highlighted by the red-circle indicate values either being added to or sampled

from the buffer.

Algorithm 1 Fixed Point Propagation (FPP)

Input: truncation T (can start higher and decay to T = 1)
Initialize weights W and β randomly
Initialize start state s0 = 0
Initialize empty buffer B
for t = 1, 2, . . . do

If buffer B is full, drop the oldest transition
Add (st = fW(st−1,ot),ot,yt) to buffer B
Sample length T trajectory from the buffer:

si−T ,oi−T , . . . , si,oi,yi

Update si−T , si,W and β using (3.7)
end for

The loss for general T similarly decomposes into a sum
∑n

i=T Li(β,W,S)

for

Li(β,W,S) = `β(ŝi(si−T ,W); yi) +
λ

2
‖si − ŝi(si−T ,W)‖22 (3.6)

where ŝi(si−T ,W)
def
= fW(. . . fW(fW(si−T−1,oi−T),oi−T+1), . . .),oi).

For each stochastic sample i, ∇Li is only non-zero for β,W, si−T and si.

Though these updates can simply be computed using automatic differentia-

tion on Li, we provide the following explicit updates, with shorthand ŝi for

ŝi(si−T ,W)

∇si−T
Li = [∇ŝi`β(ŝi; yi)− λ(si − ŝi)]

>∇si−T
ŝi

∇siLi = λ(si − ŝi)

∇WLi = [∇ŝi`β(ŝi; yi)− λ(si − ŝi)]
>∇Wŝi (3.7)

∇βLi = ∇β`β(ŝi; yi)

As alluded to, the advantage of FPP over T-BPTT is that we are not

restricted to focusing all computation to estimate the gradient T -steps back-

in-time for one state-observation pair. Rather, instead of sweeping all the

way back, we spread value by fixed point updates on random transitions in

the buffer. This has three advantages. First, it updates more states per

15

Forward Propagation

Xt

St-1

U

V
St

Y’t

Back Propagation

S’m

BUFFER
m

tt-n

Loss(Y’m,)

W

Ym

Loss(S’m,)

BUFFER

Xt, St-1,St, Yt

tt-n

[U V] = W

Sm-1
Xm, Sm-1,Sm, Ym

Xm

Sm-1

U

V

Y’m

Sm

Sm-1

W

Sm

Figure 3.1: Saving and sampling transitions for the Fixed Point Propagation (FPP)
algorithm, with T = 1.

step, including updates towards their targets. Second, this actually ensures

that targets for older transitions are constantly being reinforced, and spends

gradient computation resources towards this goal, rather than spending all

computation on computing a more exact gradient for the recent time step.

This distributes updates better across time, and should likely also result in a

more stable state. Third, the formulation as a stochastic gradient descent on

the fixed point objective makes it a sound strategy—as opposed to truncation

which is not sound. FPP, therefore, maintains the simplicity of T-BPTT, but

provides a more viable direction to obtain sound algorithms for training RNNs.

16

Chapter 4

Experiments

The goal of the experiments is to investigate (a) the efficacy of FPP for training

RNNs and (b) if FPP has the hypothesized advantages over T-BPTT, in terms

of computation and robustness. We compare FPP to T-BPTT with the same

RNN architecture, as well as only a buffer-based variant of FPP. This variant

similarly uses a buffer but does not explicitly learn auxiliary variables; we

include it to investigate the importance of the use of auxiliary variables beyond

buffer-based updates. We further evaluate the ability of FPP to take advantage

of mutiple updates per step. We provide a parameter study for FPP in Section

4.6, to buffer size and truncation.

We do not compare with more baselines, because in these datasets BPTT

performs well and so provides a gold standard for performance. The use of

truncation in BPTT enables us to range from very good performance to poor

performance, trading off memory and computation. We can then ask: how

does our algorithm perform over this range, compared to truncated BPTT?

4.1 Environments and Datasets

We use the following four tasks for evaluation: CycleWorld [39], Stochastic-

World [1], Sequential MNIST [21] (image classification) and Penn-Tree Bank

[25] (character prediction).

CycleWorld is a deterministic cycle of p time-steps, where the observation

is 1 in time-step p and zero otherwise. The goal is to predict the observation

bit. The main learning indicator of the model is whether it correctly predicts

17

when the next observation should be 1; a classification accuracy of 83%(for

6 Cycleworld) and 90% (for 10 Cycleworld) is obtained by the naive predictor

that always predicts 0. We include this task is to control the dependency

back-in-time, by varying p. As in previous work, we use a simple RNN with 4

hidden neurons.

StochasticWorld is a stochastic environment producing a binary sequence

of observations and targets. The input at time t, Xt has a 50% probability of

being 0 and 50% probability of being 1. The output at time t Yt also has a

50% probability of being 0 and 50% probability of being 1. The probability

of Yt being 1 is increased by increased by 50% (i.e., to 100%) if Xt−5 is 1, and

decreased by 25% (i.e., to 25%) if Xt−12 is 1. If both Xt−5 and Xt−12 is 1,

then the probability that Yt is 1 is 75%. We include this task is to test the

robustness of FPP to stochasticity. For this problem, a cross entropy loss of

0.66 indicates that neither of the two dependencies have been learnt. When

the RNN learns one dependency (t-5) the cross entropy loss is about 0.51.

When the model learns both the dependencies the cross-entropy loss is about

0.45.

P(Yt|Xt−5 = 0, Xt−12=0) 50%
P(Yt|Xt−5 = 1, Xt−12=0) 100%
P(Yt|Xt−5 = 0, Xt−12=1) 25%
P(Yt|Xt−5 = 1, Xt−12=1) 75%

For this task, we use a simple RNN with 32 hidden neurons.

Sequential MNIST is a pixel-by-pixel MNIST classification dataset, where

the input is each pixel of the dataset, in a sequential manner, and the target

is to predict the label of the image. At each and every time-step, a row of

pixels of the image (28x28) were given as the input, and each time step had

the correct target as the output. We include this tasks to test long-term de-

pendencies. For this task, we used an RNN with 512 hidden units. Each of

the algorithms were run for 300 iterations and the results are an average over

5 runs over the entire training data.

Penn Tree Bank Dataset is a character prediction dataset. We include

this dataset because language modeling is one of the most common applications

18

of RNNs. We used a vocabulary size of 10000. The Target Loss function used

here is the seq2seq loss used in Tensorflow, which is a weighted cross-entropy

loss for a sequence of logits. For this task, we used an LSTM with 200 hidden-

neurons.

4.2 Comparison to T-BPTT

We first compare FPP to T-BPTT with varying truncation levels, in Cycle-

World and StochasticWorld. For all the algorithms, we used a constant buffer

size of 1000 and the trajectory length T, with RMSProp optimizer for the

weight updates for both BPTT and FPP. From Figure 4.1 (a) and (b), it is

evident that FPP learns almost as fast as full-BPTT (6-BPTT for (a) and

10-BPTT for (b)). Figure 4.1 (b) also portrays that for values of T in BPTT

less than 10, T-BPTT performs poorly, whereas even for T=5 for FPP, the

network does almost as well as 10-BPTT. Both of these methods have simi-

lar time-complexity of O(Tk2)—where T is the trajectory length in the case

of FPP and the truncation parameter in the case of BPTT. From Figure 4.1

(c), FPP seems to be much more robust to the trajectory length (T). So even

T=5 does better than 10-BPTT and having T=10 makes it learn both the

dependencies, which is not possible with 10-BPTT which learns only the first

dependency.

For the Penn-Tree Bank Dataset and Sequential MNIST, we include final

performance in Table 4.1 and Table 4.2. FPP performs significantly better

than T-BPTT in Sequential MNIST, with accuracies almost 10% higher. The

effect is less pronouced in Penn-Tree, but FPP still consistently performs bet-

ter.

Table 4.1: FPP vs T-BPTT on Sequential MNIST

Accuracy

Algorithm T = 5 T = 10 T = 20

BPTT 66.169 59.670 68.874
FPP 66.435 73.820 74.067

19

T=2 T=1
T=6

BaselineIncorrect
Predictions

in last
100 steps

(a) 6-CycleWorld

T=3 T=1T=5
T=10

Baseline

Incorrect
Predictions

in last
100 steps

(b)10-CycleWorld

T=5

T=1
T=10

T=15
Cross
Entropy
Loss

(c) StochasticWorld

Figure 4.1: Learning curves for T-FPP and T-BPTT with different T in three
domains. The curves for FPP are solid lines and T-BPTT are dotted lines. The
different colors corresponds to different T. Both FPP and T-BPTT perform
poorly for T = 1, but FPP begins to perform well for smaller T than T-BPTT.

Table 4.2: FPP vs BPTT on Penn-Tree Bank Dataset

Cross Entropy

Algorithm T = 1 T = 5 T = 10

BPTT 6.453 6.595 6.592
FPP 6.476 6.402 6.359

4.3 Importance of Auxiliary Variables

To investigate the benefit of the fixed point formulation and auxiliary variables,

we compare FPP with the BPTT-like version of our algorithm. BPTT can

also take advantage of a buffer, simply by executing T-length BPTT updates

from random states backwards in the buffer. This corresponds to using only

the target loss component of the FPP objective, without the explicit use of

20

auxiliary variables.

From Figure 4.2, it is evident that for smaller values of T, FPP with-

out state updating stills suffers from the same problems as T-BPTT. FPP is

particularly robust in the StochasticWorld, which is more reflective of typi-

cal partially observable domains than the deterministic cycles in CycleWorld.

The poor performance of BPTT and FPP without state updating for smaller

T is mainly because of the inherent stochasticity in this problem. Also, from

Figure 4.2(b), particularly for T=5, we can see that FPP with state updating

still performs a lot worse compared to FPP. The experiment highlights that

the addition of the auxiliary variable S, which provide a sound update, seems

to have a significant impact.

T=2 T=1

T=6

BaselineIncorrect
Predictions

in last
100 steps

(a) 6-CycleWorld

T=3 T=1
T=5

T=10
Incorrect

Predictions
in last

100 steps

Baseline

(b) 10-CycleWorld

T=5

T=1

T=10
T=15

Cross
Entropy
Loss

(c) StochasticWorld

Figure 4.2: Learning curves for FPP(without state updating) are dotted and solid
for FPP. This result indicates the utility of having the auxiliary variable, to improve
stability and performance.

21

4.4 Multiple T-step Updates

One of the advantages of FPP is its ability to perform multiple updates, which

enables better propagation of state values with more updates to the buffer and

also should be sound and strictly improve learning. Thus, we can perform M

T-step updates in parallel and then update the weights for each of the processes

in a sequential manner. This is not obviously possible with BPTT, since it

only calculates gradients with respect to the current state-observation pair.

As in the previous experiment, FPP and FPP without state updating can

both do many T-step updates for the given buffer, with the only difference

being that FPP uses auxiliary variables. We compare performance for both

the algorithms with M=4 updates per step.

From Fig. 4.3, we see that both version of FPP, which do four updates per

step, improve upon BPTT. FPP can better take advantage of multiple updates

per step, improving performance particularly on 6-CycleWorld for T=2 over

its own performance with one update and over FPP without state updating

(M=4). Comparison with FPP (M=1 update per step) and BPTT are given

in Fig. 4.4 and Fig. 4.5 respectively.

22

T=2
T=1

T=6

Incorrect
Predictions

in last
100 steps

(a) 6-CycleWorld

T=3 T=1T=5

T=10

Incorrect
Predictions

in last
100 steps

(b) 10-CycleWorld

T=5

T=1

T=10

T=15
Cross
Entropy
Loss

(c) StochasticWorld

Figure 4.3: M=4 updates per step in FPP and FPP without state updating. Mul-
tiple updates across the buffer improves performance for FPP more compared to
FPP without state updating suggesting the advantage of using auxiliary variables.

23

T=2 T=1T=6
Incorrect

Predictions
in last

100 steps

(a) 6-CycleWorld

T=3 T=1T=5

T=10

Incorrect
Predictions

in last
100 steps

(b) 10-CycleWorld

T=5 T=1

T=10T=15

Cross
Entropy
Loss

(c) StochasticWorld

Figure 4.4: Learning curves for 4 updates per step in solid vs 1 update per step
FPP in dotted. This graph is a comparison of how much it can help in learning
faster.

24

T=2
T=1T=6Incorrect

Predictions
in last

100 steps

(a) 6-CycleWorld

T=3 T=1T=5
T=10

Incorrect
Predictions

in last
100 steps

(b) 10-CycleWorld

T=5 T=1

T=10T=15

Cross
Entropy
Loss

(c) StochasticWorld

Figure 4.5: Learning curves for 4 updates per step FPP in solid and BPTT in
dotted. BPTT cannot take advantage of multiple updates per step but FPP can,
and hence the performance is much better.

25

4.5 Trading off the Length and Number of Up-

dates

One modification to the FPP algorithm could be to decay the T-step updates,

and begin using more updates with smaller T. We can initially start with a

high probability of choosing T-step updates and decay this probability over

time, and increase the probability of doing T 1-step updates. The decay to T

1-step updates can significantly improve speed, because these 1-step updates

can be done in parallel. We find that such a decay performs just as well as

continuing to use a full T-step update (see Fig. 4.7), indicating FPP provides

more flexibility to take advantage of parallelism while still maintaining high

accuracy.

For Decay-FPP, we decay the value of T by 2 and increase the number

of updates by 2, after the completion of 20% of training steps. We continue

this until Decay-FPP is performing T 1-step updates. For Random-FPP. we

decay the probability of choosing T-step updates by 20% after the completion

of 20% of training steps.

From Figures 4.6 and 4.7, this method seems to do almost as well as FPP

and even better in some cases. Though in certain cases, it performed worse

depending on T. It would be beneficial to start with longer T-step updates,

but then could begin shortening updates later in learning once a reasonable

initial set of states had been obtained. As T decreases, it becomes easier to

perform more and more updates and also facilitates multiple updates across

the buffer. These domains, though are quite simple. Further investigation is

needed to understand the utility of spreading updates of different lengths, in

early and later learning.

26

T=2
T=1

T=6Incorrect
Predictions

in last
100 steps

(a) 6 CycleWorld

T=3 T=1T=5
T=10

Incorrect
Predictions

in last
100 steps

(b) 10 CycleWorld

T=5

T=1

T=10

T=15Cross
Entropy
Loss

(c) StochasticWorld

Figure 4.6: Learning curves of FPP in dotted and Random-FPP in solid. Reduc-
ing T with increasing steps does not affect performance much and even improves
performance in some cases.

27

T=2 T=1

T=6

Incorrect
Predictions

in last
100 steps

(a) 6 CycleWorld

T=3 T=1T=5
T=10Incorrect

Predictions
in last

100 steps

(b) 10 CycleWorld

T=5 T=1T=10

T=15
Cross
Entropy
Loss

(c) StochasticWorld

Figure 4.7: Learning curves of FPP in dotted and Decay-FPP in solid. Another
strategy for decaying T also yields similar results, which means we can perform
multiple updates per step towards the later stages of learning.

28

4.6 Parameter Study

We investigate the sensitivity of FPP to its two parameters: the length of

the trajectory T , and the buffer size N . Overall, the inaccuracies/losses on

y-axis of Figure 4.8 show that FPP is quite robust to buffer size and number of

updates. As expected, for very small T, performance degrades, but otherwise

the move from T= 10 to T= 50 does not result in a large difference. The

algorithm was quite invariant to buffer size, starting from a reasonable size of

100. For too large a buffer with a small number of updates, performance did

degrade somewhat. Overall, though, across this wide range of settings, FPP

performed consistently well.

Truncation Lengths

Incorrect
Predictions

in last
100 steps

(a) 6-CycleWorld

Incorrect
Predictions

in last
100 steps

Truncation Lengths

(b) 10-CycleWorld

Cross
Entropy

Loss

Truncation Lengths

(c) StochasticWorld

Figure 4.8: Sensitivity to buffer length and trajectory length in FPP, for buffer
sizes 100, 1000 and 10000 and truncations of 1,3,5,10,15 and 50.

29

Chapter 5

Conclusion and Future Work

The main objective of this thesis is to formulate RNN training as a fixed

point problem for the constructed state, and investigate the properties of this

optimization approach as an alternative for RNNs. In particular, the goal is to

investigate methods that can better distribute computation, and improve state

updating without having to compute expensive—and potentially unstable—

gradients back-in-time for each state. We found that our algorithm, called

FPP, was indeed more robust to the number of updates, than BPTT was to

its truncation level. Further, there are clear steps for proving convergence of

the approach, and even improving optimization over the auxiliary variables,

such as by taking advantage of the natural parallelism of updates. Overall, this

work provides evidence that FPP could be a promising direction for robustly

training RNNs, without the need to compute or approximate long gradients

back-in-time.

For future work, we are looking at comparing FPP with newer algorithms

as mentioned in Chapter 2 as well as including a few more data-sets. Also,

we are curious on implementing it on some many-to-one prediction problems,

where there is a target at the end unlike online problems where you have a

target at each time-step. We are also looking at trying to have a theoretical

proof on the convergence of our algorithm.

30

References

1. https://r2rt.com/recurrent-neural-networks-in-tensorflow-

i.html. 17

2. Almeida, L. B. A learning rule for asynchronous perceptrons with feed-
back in a combinatorial environment. Proceedings, 1st First International
Conference on Neural Networks (1987). 8, 13

3. Bengio, Y., Simard, P. & Frasconi, P. Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks
5, 157–166. issn: 1045-9227 (Mar. 1994). 7

4. Campos, V., Jou, B., Giró i Nieto, X., Torres, J. & Chang, S. Skip RNN:
Learning to Skip State Updates in Recurrent Neural Networks. CoRR
abs/1708.06834. arXiv: 1708.06834. http://arxiv.org/abs/1708.
06834 (2017). 7, 9

5. Carreira-Perpiñán, M. Á. & Wang, W. Distributed optimization of deeply
nested systems. in International Conference on Artificial Intelligence and
Statistics (2014). 12, 13

6. Chan, W., Jaitly, N., Le, Q. & Vinyals, O. Listen, attend and spell: A
neural network for large vocabulary conversational speech recognition in
2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (Mar. 2016), 4960–4964. doi:10.1109/ICASSP.
2016.7472621. 2

7. Chang, S. et al. Dilated Recurrent Neural Networks. CoRR abs/1710.02224.
arXiv: 1710.02224. http://arxiv.org/abs/1710.02224 (2017). 7, 9

8. Czarnecki, W. M., Jaderberg, M., Osindero, S., Vinyals, O. & Kavukcuoglu,
K. Understanding Synthetic Gradients and Decoupled Neural Interfaces.
arXiv:1411.4000v2. arXiv: 1703.00522v1 (2017). 7

9. Düll, S., Udluft, S. & Sterzing, V. Solving Partially Observable Rein-
forcement Learning Problems with Recurrent Neural Networks in Neural
Networks: Tricks of the Trade (2012). 2

10. Elman, J. L. Finding Structure in Time. Cognitive Science 14, 179–211.
issn: 1551-6709 (1990). 1, 7

31

https://r2rt.com/recurrent-neural-networks-in-tensorflow-i.html
https://r2rt.com/recurrent-neural-networks-in-tensorflow-i.html
http://arxiv.org/abs/1708.06834
http://arxiv.org/abs/1708.06834
http://arxiv.org/abs/1708.06834
http://dx.doi.org/10.1109/ICASSP.2016.7472621
http://dx.doi.org/10.1109/ICASSP.2016.7472621
http://arxiv.org/abs/1710.02224
http://arxiv.org/abs/1710.02224
http://arxiv.org/abs/1703.00522v1

11. Gers, F. A., Schmidhuber, J. & Cummins, F. A. Learning to Forget:
Continual Prediction with LSTM. Neural Computation 12, 2451–2471
(2000). 7

12. Gotmare, A., Thomas, V., Brea, J. & Jaggi, M. Decoupling Backpropa-
gation using Constrained Optimization Methods (2018). 12

13. Graves, A. & Schmidhuber, J. Framewise phoneme classification with
bidirectional LSTM networks in Proceedings. 2005 IEEE International
Joint Conference on Neural Networks, 2005. 4 (July 2005), 2047–2052
vol. 4. doi:10.1109/IJCNN.2005.1556215. 7, 8

14. Graves, A., Mohamed, A. & Hinton, G. E. Speech Recognition with Deep
Recurrent Neural Networks. CoRR abs/1303.5778. arXiv: 1303.5778.
http://arxiv.org/abs/1303.5778 (2013). 2

15. Hinton, G. et al. Deep Neural Networks for Acoustic Modeling in Speech
Recognition: The Shared Views of Four Research Groups. IEEE Signal
Processing Magazine 29, 82–97. issn: 1053-5888 (Nov. 2012). 2

16. Hochreiter, S. & Schmidhuber, J. Long Short-Term Memory. Neural Com-
put. 9, 1735–1780. issn: 0899-7667 (Nov. 1997). 2, 3, 6–8

17. Hopfield, J. J. Neural networks and physical systems with emergent col-
lective computational abilities. Proceedings of the National Academy of
Sciences 79, 2554–2558. issn: 0027-8424 (1982). 1

18. Jaderberg, M. et al. Decoupled Neural Interfaces using Synthetic Gradi-
ents. in International Conference on Machine Learning (2017). 7

19. Ke, N. R. et al. Sparse Attentive Backtracking: Long-Range Credit As-
signment in Recurrent Networks. arXiv:1509.01240v2. arXiv: 1711.02326
(2017). 7, 8

20. Koutnık, J., Greff, K., Gomez, F. J. & Schmidhuber, J. A Clockwork
RNN. CoRR abs/1402.3511. arXiv: 1402.3511. http://arxiv.org/
abs/1402.3511 (2014). 7, 9

21. LeCun, Y. & Cortes, C. MNIST handwritten digit database. http://
yann.lecun.com/exdb/mnist/ (2010). 17

22. Liao, R. et al. Reviving and Improving Recurrent Back-Propagation. in
International Conference on Machine Learning (2018). 7, 8, 13

23. Lu, J., Xiong, C., Parikh, D. & Socher, R. Knowing When to Look:
Adaptive Attention via A Visual Sentinel for Image Captioning. CoRR
abs/1612.01887. arXiv: 1612.01887. http://arxiv.org/abs/1612.
01887 (2016). 2

24. Mao, J., Xu, W., Yang, Y., Wang, J. & Yuille, A. L. Explain Images with
Multimodal Recurrent Neural Networks. CoRR abs/1410.1090. arXiv:
1410.1090. http://arxiv.org/abs/1410.1090 (2014). 2

32

http://dx.doi.org/10.1109/IJCNN.2005.1556215
http://arxiv.org/abs/1303.5778
http://arxiv.org/abs/1303.5778
http://arxiv.org/abs/1711.02326
http://arxiv.org/abs/1402.3511
http://arxiv.org/abs/1402.3511
http://arxiv.org/abs/1402.3511
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1612.01887
http://arxiv.org/abs/1612.01887
http://arxiv.org/abs/1612.01887
http://arxiv.org/abs/1410.1090
http://arxiv.org/abs/1410.1090

25. Marcus, M. P., Marcinkiewicz, M. A. & Santorini, B. Building a Large
Annotated Corpus of English: The Penn Treebank. Comput. Linguist.
19, 313–330. issn: 0891-2017 (June 1993). 17

26. Mehri, S. et al. SampleRNN: An Unconditional End-to-End Neural Audio
Generation Model. CoRR abs/1612.07837. arXiv: 1612.07837. http:
//arxiv.org/abs/1612.07837 (2016). 2

27. Miao, Y., Gowayyed, M. & Metze, F. EESEN: End-to-End Speech Recog-
nition using Deep RNN Models and WFST-based Decoding. CoRR abs/1507.08240.
http://dblp.uni-trier.de/db/journals/corr/corr1507.html#

MiaoGM15 (2015). 2

28. Mujika, A., Meier, F. & Steger, A. Approximating Real-Time Recur-
rent Learning with Random Kronecker Factors. CoRR abs/1805.10842.
arXiv: 1805.10842. http://arxiv.org/abs/1805.10842 (2018). 7, 8

29. Neil, D., Pfeiffer, M. & Liu, S. Phased LSTM: Accelerating Recurrent
Network Training for Long or Event-based Sequences. CoRR abs/1610.09513.
arXiv: 1610.09513. http://arxiv.org/abs/1610.09513 (2016). 7, 9

30. Ollivier, Y. & Charpiat, G. Training recurrent networks online without
backtracking. arXiv (2015). 7, 8

31. Pascanu, R., Mikolov, T. & Bengio, Y. On the Difficulty of Training
Recurrent Neural Networks in Proceedings of the 30th International Con-
ference on International Conference on Machine Learning - Volume 28
(Atlanta, GA, USA, 2013). http://dl.acm.org/citation.cfm?id=
3042817.3043083. 6, 7

32. Pearlmutter, B. A. Gradient calculations for dynamic recurrent neural
networks: a survey. IEEE Transactions on Neural Networks 6, 1212–
1228. issn: 1045-9227 (Sept. 1995). 5

33. Pineda, F. J. Generalization of back-propagation to recurrent neural net-
works. Physical review letters (1987). 8, 13

34. Roth, C. Z., Kanitscheider, I. & Fiete, I. R. Kernel RNN Learning (KeRNL)
in ICLR 2019 (2019). 7, 8

35. Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. & Monfardini, G.
The graph neural network model. IEEE Transactions on Neural Networks
20, 61–80 (2008). 13

36. Scellier, B. & Bengio, Y. Equilibrium Propagation: Bridging the Gap
between Energy-Based Models and Backpropagation. Frontiers in Com-
putational Neuroscience (2017). 12, 13

37. Schuster, M. & Paliwal, K. Bidirectional Recurrent Neural Networks.
Trans. Sig. Proc. 45, 2673–2681. issn: 1053-587X (Nov. 1997). 7, 8

38. Tallec, C. & Ollivier, Y. Unbiased Online Recurrent Optimization. arXiv:1411.4000v2
[cs.LG]. arXiv: 1702.05043v3 (2017). 5–8

33

http://arxiv.org/abs/1612.07837
http://arxiv.org/abs/1612.07837
http://arxiv.org/abs/1612.07837
http://dblp.uni-trier.de/db/journals/corr/corr1507.html#MiaoGM15
http://dblp.uni-trier.de/db/journals/corr/corr1507.html#MiaoGM15
http://arxiv.org/abs/1805.10842
http://arxiv.org/abs/1805.10842
http://arxiv.org/abs/1610.09513
http://arxiv.org/abs/1610.09513
http://dl.acm.org/citation.cfm?id=3042817.3043083
http://dl.acm.org/citation.cfm?id=3042817.3043083
http://arxiv.org/abs/1702.05043v3

39. Tanner, B. & Sutton, R. S. TD(lambda) Networks: Temporal-Difference
Networks with Eligibility Traces in (2005). 17

40. Taylor, G., Burmeister Ryan, Z. X., Singh, B., Patel, A. & Goldstein,
T. Training Neural Networks Without Gradients - A Scalable ADMM
Approach. ICML (2016). 12

41. Vinyals, O., Toshev, A., Bengio, S. & Erhan, D. Show and Tell: A Neural
Image Caption Generator. CoRR abs/1411.4555. arXiv: 1411.4555.
http://arxiv.org/abs/1411.4555 (2014). 2

42. Werbos, P. J. Backpropagation through time: what it does and how to do
it. Proceedings of the IEEE 78, 1550–1560. issn: 0018-9219 (Oct. 1990). 5

43. Williams, R. J. & Zipser, D. A Learning Algorithm for Continually Run-
ning Fully Recurrent Neural Networks. Neural Computation 1, 270–280.
issn: 0899-7667 (June 1989). 5

44. Williams, R. J. & Peng, J. An Efficient Gradient-Based Algorithm for On-
Line Training of Recurrent Network Trajectories. Neural Computation 2,
490–501 (1990). 5

45. Williams, R. J. & Zipser, D. A Learning Algorithm for Continually Run-
ning Fully Recurrent Neural Networks. Neural Computation (1989). 5–7

34

http://arxiv.org/abs/1411.4555
http://arxiv.org/abs/1411.4555

Appendix A

Experimental Details

The experimental details of each dataset are provided below.

A.1 6-CycleWorld

Network Type = simple RNN

Hidden Units = 4

Total time-steps = 100000

Batch size = 1

Optimizer = RMSprop

Learning rate = Swept over a range 0.0001-0.1 and the learning rate chosen

for each algorithm had the best online prediction

Number of runs = 30

A.2 10-CycleWorld

Network Type = simple RNN

Hidden Units = 4

Total time-steps = 100000

Batch size = 1

Optimizer = RMSprop

Learning rate = Swept over a range 0.0001-0.1 and the learning rate chosen

for each algorithm had the best online prediction

35

Number of runs = 30

A.3 Stochastic World

Network Type = simple RNN

Hidden Units = 32

Total time-steps = 1000000

Batch size = 100

Optimizer = RMSProp

Learning rate = Swept over a range 0.0001-0.1 and the learning rate chosen

for each algorithm had the best online prediction

Number of runs = 30

A.4 Sequential MNIST

Network Type = simple RNN

Hidden Units = 512

Image size = 784 pixels

Input dimension = 28 pixels

Iterations = 300

Batch size = 100

Optimizer = RMSProp

Learning rate = Swept over a range 0.0001-0.1 and the learning rate chosen

for each algorithm had the best online prediction

Number of runs = 5

A.5 PTB

Network Type = LSTM

Hidden Units = 200

36

Batch size = 20

Vocabulary Size = 10000

Optimizer = RMSProp

Learning rate = Swept over a range 0.00001-0.1 and the learning rate chosen

for each algorithm had the best online prediction

Number of runs = 5

37

	Introduction
	Background
	Problem Setting
	Vanilla Recurrent Neural Network
	Issues with training RNNs
	Approaches for Solving RNNs
	Algorithmic Advances
	Architectural Advances

	Fixed Point Formulation
	The Fixed-Point Objective
	Fixed Point Propagation

	Experiments
	Environments and Datasets
	Comparison to T-BPTT
	Importance of Auxiliary Variables
	Multiple T-step Updates
	Trading off the Length and Number of Updates
	Parameter Study

	Conclusion and Future Work
	References
	Appendix Experimental Details
	6-CycleWorld
	10-CycleWorld
	Stochastic World
	Sequential MNIST
	PTB

